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Preface

These are the proceedings of the 16th International Conference on Information Pro-
cessing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2016.
The conference was held during June 20–24, 2016, in Eindhoven, The Netherlands:
one of the vibrant hi-tech hot spots of Europe. The IPMU conference is organized every
two years with the aim of bringing together scientists working on methods for the
management of uncertainty and aggregation of information in intelligent systems.

Since 1986, the IPMU conference has been providing a forum for the exchange of
ideas between theoreticians and practitioners working in these areas and related fields.
In addition to the many contributed scientific papers, the conference has in the past
attracted prominent plenary speakers, including the Nobel Prize winners Kenneth
Arrow, Daniel Kahneman, and Ilya Prigogine. Another important feature of the con-
ference is the presentation of the Kampé de Fériet Award for outstanding contributions
to the field of uncertainty and management of uncertainty. Past winners of this pres-
tigious award were Lotfi A. Zadeh (1992), Ilya Prigogine (1994), Toshiro Terano
(1996), Kenneth Arrow (1998), Richard Jeffrey (2000), Arthur Dempster (2002),
Janos Aczel (2004), Daniel Kahneman (2006), Enric Trillas (2008), James Bezdek
(2010), Michio Sugeno (2012), and Vladimir N. Vapnik (2014). This year, the recipient
was Joseph Y. Halpern from Cornell University, USA.

IPMU 2016 had a rich scientific program. Four invited overview talks (tutorials)
were given on the first day, identifying the challenges and discussing the various
methods in the field of information processing and the management of uncertainty.
Further, the program consisted of five invited plenary talks, 13 special sessions, 127
contributed papers that were authored by researchers from 34 different countries,
industry round tables, and discussion panels. The plenary presentations were given by
the following distinguished researchers: Chris Dyer (Carnegie Mellon University,
USA), Joseph Y. Halpern (Cornell University, USA), Katharina Morik (Technische
Universität Dortmund, Germany), Peter P. Wakker (Erasmus University Rotterdam,
The Netherlands), and Ronald R. Yager (Iona College, USA). All contributed papers
underwent the same review process and were judged by at least two reviewers; 90 %
of the papers were reviewed by three or more referees, and some papers by as many as
five referees. Furthermore, all papers were scrutinized by the program chairs, meaning
that each paper was studied by three to six independent researchers. The review process
also respected the usual conflict-of-interest standards, so that all papers received
blinded, independent evaluations.

Organizing a conference like IPMU 2016 is not possible without the assistance,
dedication, and support of many people and institutions. We want to thank our industry
sponsors, the institutional sponsors, and the material sponsors. Our sponsor chair, Paul
Grefen, did an excellent job in attracting the interest and support from industry for the
success of IPMU 2016. We are also particularly grateful to the organizers of sessions
on dedicated topics that took place during the conference—these special sessions have



always been a characteristic element of the IPMU conference. Special thanks go to Joao
Sousa, who helped evaluate and select the special session proposals. The help of the
members of the international Program Committee as well as multiple reviewers was
essential in safeguarding the scientific quality of the conference. The local Organizing
Committee is very grateful for the efforts of multiple student volunteers who provided
practical support during the conference.

Finally, we gratefully acknowledge the technical support of several organizations
and institutions, notably the IEEE Computational Intelligence Society, the European
Society for Fuzzy Logic and Technology (EUSFLAT), and the Netherlands Research
School for Information and Knowledge Systems (SIKS). Last, but not least, our
greatest gratitude goes to the authors who submitted their work and presented it at the
conference!

April 2016 Rui J. Almeida
Joao Paulo Carvalho
Marie-Jeanne Lesot

Anna M. Wilbik
Bernadette Bouchon-Meunier

Uzay Kaymak
Susana Vieira

Ronald R. Yager
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Abstract. Irrelevance, a notion put forward in [5,12], is a convenient
tool to speed up computations in the arithmetic of interactive fuzzy num-
bers, which were first put forward in the seminal paper [3]. To make our
point, below we deal with standard and less standard binary operations
for fuzzy quantities whose interactivity is described by a t-norm joint
distribution function.

Keywords: Fuzzy arithmetic · Interactive fuzzy numbers · t-norm joint
distributions

1 Introduction

In the approach to fuzzy arithmetic which we are taking, an approach which
was pioneered in [3] and which is largely followed today, cf. e.g. [1,2,6,8,10], a
fuzzy n-tuple X1, . . . , Xn is defined by giving its distribution function, or simply
its distribution, f(x) : Rn → [0, 1], x=̇x1, . . . , xn, where the equation f(x) = 1
admits of at least one solution. The marginal distribution of any m-tuple thereof,
say X1, . . . , Xm, m < n, is defined by taking a supremum:

g(x1, . . . , xm) = sup
all xm+1,...,xn

f(x1, . . . , xn)

The advantage of the joint distribution approach is not only its generality,
but first and foremost the fact that the computation rules are the same as those
in the usual arithmetic of crisp numbers, cf. AppendixA. We speak about fuzzy
quantities, rather than numbers, to make it clear that we are not making any
special assumption on distribution functions, unless explicitly specified, even if
we are quite aware that in practice sensible restrictions are needed, as done
below. If ψ : Rn → R is a function, the distribution Z(z) of the fuzzy quantity
Z=̇ψ(X1, . . . , Xn) is given by:

Z(z) = sup
x:ψ(x)=z

f(x)

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-40581-0 1



4 A. Sgarro and L. Franzoi

with Z(z) = 0 when the set on which one takes the supremum is void. A relevant
case is when n = 2 and so ψ(x, y) is a binary operation x ◦ y on fuzzy quantities
X and Y of joint distribution f(x, y), Z = ψ(X,Y )=̇X ◦ Y .

Z(z) = sup
x,y: x◦y=z

f(x, y) =̇ sup
x,y: x◦y=z

[X,Y ](x, y)

Let us fix two marginal distributions X(x) and Y (y). A joint distribution
f(x, y) = [X,Y ](x, y) with those marginals can be derived from any t-norm �,
cf. [4,11], by just setting f(x, y) = X(x)�Y (y). Relevant t-norms are e.g.:

x�y = x ∧ y (minimum, non-interactive)
x�y = x × y (product, probabilistic)
x�y = (x + y − 1) ∨ 0 (�Lukasiewicz )
x�1 = 1�x = x, else x�y = 0 (drastic)

The wedge ∧ denotes a minimum, while ∨ is a maximum. An example of
an important joint distribution with given marginals which is not derivable
from a t-norm is instead deterministic equality X = Y ; in this case one has
to assume equidistribution1 of X and Y, i.e. X(x) = Y (x) for all x, and one sets
f(x, x)=̇X(x) = Y (x), else f(x, y) = 0. As for the operands X and Y , Lemma 1
allows one to restrict one’s attention to fuzzy quantities of simple types, e.g.
increasing or decreasing on the interval which is their support.

In [5,12] the authors have introduced in an explicit and convenient way the
notion of irrelevance w.r. to a family F of joint distributions f(x, y) with fixed
marginals X and Y : what is meant is that a binary operation x ◦ y is given,
and that the distribution of Z = X ◦ Y remains the same over F : in practice
it depends only on the two marginal distributions X(x) and Y (y). In the case
of joint distributions derived from a family N of t-norms, one can equivalently
speak of irrelevance w.r. to N , cf. next Section. The motivation for this paper
is to bring out the convenience of using a tool as is irrelevance to streamline
and speed up computations in fuzzy arithmetic. To achieve this goal, we shall
spot remarkable cases of irrelevance for relevant binary operations between fuzzy
quantities, cf. Theorems 1 and 2 below, but also Lemma 2 and Example 6. Our
results on t-norm joint distributions always involve the drastic distribution, for
which computations are quite easy, cf. Lemma 2; cf. also the examples to follow in
Sect. 3. The results of this paper, in particular Corollary 1, generalize results on
sums and products already found in literature [1–3,6–8,10]: our monotone binary
operations X ◦Y as in the body of the paper do cover as special cases sums and
products, in the latter case assuming however “pure” supports (all non-negative
or all non-positive), and using in case the identities xy = (−x)·(−y) = −[(−x)·y].
As general references for fuzzy set theory, cf. e.g. [4,9].

1 To avoid misunderstandings, in this paper we carefully distinguish between equidis-
tribution X(x) = Y (x) and deterministic equality X = Y ; deterministic equality is
a very special joint distribution for X and Y , and only when X = Y one of the two
symbols X or Y is disposable.
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2 Preliminary Lemmas

Lemmas in this section are straightforward; they are quoted explicitly to facil-
itate referencing, but their easy proofs are omitted or at most hinted at. The
fuzzy quantities involved may be quite unruly, unless otherwise specified.

The next lemma explains why one can often operate on separate components,
with supports not even necessarily disjoint, e.g. monotone components. One
needs the distributive property:

(a ∨ b)�c = (a�c) ∨ (b�c) , a, b, c ∈ [0, 1] (1)

which holds for any t-norm �, being implied by t-norm monotonicity. First
we put forward a notation: by 〈X1,X2〉 we denote the fuzzy quantity X whose
distribution2 is X(x) = X1(x)∨X2(x), and more generally by 〈Xi〉i∈I we denote
the fuzzy quantity X whose distribution is X(x) = supi∈I Xi(x):

〈Xi〉i∈I(x) = sup
i∈I

Xi(x)

Lemma 1. If the joint distribution of X and Y is derived from a t-norm and
X = 〈Xi〉i∈I then

X ◦ Y =
〈
Xi ◦ Y

〉
i∈I (2)

where the joint distribution of Xi and Y is derived from the same t-norm, i ∈ I.

A similar property holds for Y = 〈Yj〉j∈J . Below by II we mean a fuzzy
quantity whose distribution function is 1 over I ⊆ R, else is 0; if I has size 1,
I = {a}, one re-finds crisp numbers. If X is any fuzzy quantity, we set IX=̇IK[X]

where K[X]=̇{x : X(x) = 1} is the kernel of X. Assume drastic interactivity
and just observe that, whatever the fuzzy quantity X, IX can be written as the
sup of crisp a’s in the sense of Lemma 1, a ∈ K[X]; observe also that for the
fuzzy couple [X, a] only one joint distribution has the given marginals:

Lemma 2. With drastic interactivity one has:

Z =̇X ◦ Y =
〈
X ◦ IY , IX ◦ Y

〉

Moreover, when computing X ◦ IY , or IX ◦ Y , the t-norm used is irrelevant.

Example 1. Take X and Y unimodal, X(x) = Y (y) = 1 only for x = α and y =
β. If the operation is multiplication and α × β �= 0, then X × β has distribution
function X(x)/β, while Y × α has distribution function Y (y)/α. So Z(z) =(
X(z)/β

) ∨ (
Y (z)/α

)
. One might take more general operations as in Theorem 1

below.

2 Observe that no joint distribution of X1X2 is needed. Note also that 〈X,Y 〉 is not
the same as X ∨ Y , just think of two crisp numbers; of course in the case of X ∨ Y
a joint distribution is needed.
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Fuzzy quantities3 usually dealt with in literature are as follows:

Definition 1. A fuzzy quantity X = 〈X1, IX ,X2〉 with an upper semicontinuous
distribution function X(x) is a fuzzy interval (a, b, c, d), a ≤ b ≤ c ≤ d, when
X1(x) is (possibly weakly) increasing on the support [a, b] of X1, IX has support
[b, c] = K[X], and X2(x) is (possibly weakly) decreasing on the support [c, d] of
X2.

Some of the components of a fuzzy interval might be lacking: if b = c one
finds a fuzzy number, or even a crisp number if a, b, c, d are all equal. Actually,
all the three components of a fuzzy interval, X1 increasing, IX “flat” and X2

decreasing, are themselves fuzzy intervals, be they “degenerate”; Lemma 1 allows
one to deal with them separately, and it is in terms of such simple components
that Theorems 1 and 2 are stated: the fuzzy quantities involved might be quite
odd, say X(x) = | sin 1

x | for x > 0, X(0) = 0, which has countably infinite
monotone components.

Definition 2. Given two fuzzy quantities X and Y , a binary operation x◦y and
a family F of admissible joint distributions, i.e. of joint distributions with the
assigned marginals, there is irrelevance with respect to F when the distribution
function of Z=̇X ◦ Y is the same whatever the admissible joint distribution in
F .

We need two partially ordered sets. Norms and distributions can be ordered
in an obvious way, by requiring that the corresponding order holds whatever the
value of their arguments. As for t-norms, as well known [4], there is an absolute
minimum, the drastic t-norm, and an absolute maximum, the non-interactive
t-norm; as equally well-known, �Lukasiewicz t-norm precedes the probabilistic
one. Clearly, two joint distributions f1(x, y) and f2(x, y) with fixed marginals
obtained by two t-norms such that �1 ≤ �2 verify the same inequality.

If f1(x) and f2(x) are the distribution functions of the fuzzy quantities X1

and X2, and if X2 dominates X1, i.e. if f2(x) ≥ f1(x) for all x, one soon checks
that X2 ◦Y dominates X1 ◦Y , whatever the binary operation involved, provided
only that the two joint distributions are derived from the same t-norm.

If there is irrelevance w.r. to F=̇{f1(x, y), f2(x, y)} with f1(x, y) < f2(x, y),
one soon checks that there is irrelevance also w.r. to any family comprising
only joint distributions intermediate between the two. In particular, if f1(x, y) is
derived from the drastic t-norm, one can take advantage of the fact that drastic
computations are quite easy, cf. above Lemma 2.

3 The support of X is defined as {x : X(x) �= 0}; however, with a mild but convenient
imprecision, we shall say that a fuzzy quantity of distribution X(x) has closed sup-
port [a, b] even if X(a) and/or X(b) is 0. Below we might even have a = −∞ and/or
b = +∞, but in this case X(a) and/or X(b) are bound to be 0; thus, in the following
our supports need not be limited.
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3 Two Cases of Irrelevance

Below x ◦ y is a commutative binary operation which is continuous and strictly
increasing on the supports of the fuzzy operands X and Y .

Theorem 1. Irrelevance of non-interactivity vs. drastic interactivity.
Let X and Y with supports [a, b] and [γ, δ], respectively, be an increasing and
a decreasing component as in Definition 1, X(b) = Y (γ) = 1. Let the joint
distribution function of the fuzzy couple [X,Y ] be derived from any given t-norm,
and take a binary operation x◦y as above. One has Z = 〈X ◦γ, Y ◦ b〉, whatever
the t-norm; X ◦ γ has support [a ◦ γ, b ◦ γ] while Y ◦ b has support [b ◦ γ, b ◦ δ].

Proof. Assuming that x, y, z = x ◦ y belong to the respective supports, by z � x
we denote the single y such that x◦y = y ◦x = z. As soon checked: x ≤ z � y iff
z ≥ x ◦ y, and z � [z � y] = y. Writing y = z � x rather than x ◦ y = z, one has
Z(z) = maxx X(x)�Y (z �x), where x is constrained as follows: {x : x ≤ b} and
also {x : z � x ≥ γ} = {x : x ≤ z � γ}. The function to be maximized is weakly
increasing in x, so being Y (z � x), and therefore the maximum is achieved on
the border for x = b ∧ z � γ. In the case z ≤ b ◦ γ, i.e. b ≥ z � γ, one has
Z(z) = X(z �γ)�Y (z � [z �γ]) = X(z �γ)�Y (γ). In the second case, z ≥ b◦γ,
i.e. b ≤ z � γ, one has Z(z) = X(b)�Y (z � b). Recall that X(b) = Y (γ) = 1, the
neuter element for any t-norm. Since the binary operation is strictly increasing,
one soon checks that X(z � γ) = X(z) ◦ γ, Y (z � b) = Y (z) ◦ b. The same result
had been found in greater generality for the drastic case, Lemma 1.

Example 2. Let X be linear increasing on its support [0, 1], Y (y) = e2−y for
y ≥ 2 (cf. footnote 3). Take the three operations x + y, x × y, x � y=̇

√
x + y;

correspondingly, the supports of X ◦ Y are the halflines z > 2, z > 0, z >
√

2.
One has b ◦γ = 3, 2,

√
3, respectively, and z �x = z −x, z

x , z2 −x, respectively.
In the three cases:
X + Y = 〈X + 2, Y + 1〉
X × Y = 〈X × 2, Y 〉
X � Y = 〈√X + 2,

√
Y + 1〉

E.g. in the last case [X � Y ](z) is z2 − 2 on [
√

2,
√

3] and is e3−z2
for z ≥ √

3.

Unfortunately, unlike Theorem1, the following Theorem 2 not only requires
a certain “shape” of the distribution functions, but is also limited to sums, and
to t-norms which do not verify the positivity condition x, y > 0 ⇒ x�y >
0. In Theorem 2 convexity is required in a weak sense, and so X and/or Y
are possibly linear; Example 5 will show that convexity is essential. First, we
find it convenient to quote explicitly an obvious lemma for two fuzzy quantities
X and Y .

Lemma 3. Linear transformations and sums:
If there is irrelevance of X + Y over the family of t-norms N , then there is
irrelevance over N also for X̃ + Ỹ , X̃=̇aX + b, Ỹ =̇aY + c, a �= 0.
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Thanks to this lemma, for sums one can restrict the attention to X over
[0, 1] and Y over [0, α], α ≥ 1 (so, if α �= 1, Y is the term in the sum with larger
support); the sum Z=̇X + Y has a support equal to or included into [0, α + 1].
Take any t-norm x�y; one has, with X(x) and Y (y) with those supports:

Z(z) =̇
[
X + Y

]
(z) = max

x: x∈[0,1]∩[z−α,z]
X(x)�Y (z − x)

In the maximization one conveniently distinguishes three cases:

x ∈ [0, z] for z ∈ [0, 1]; x ∈ [0, 1] for z ∈ [1, α];
x ∈ [z − α, 1] for z ∈ [α, α + 1] (3)

Theorem 2. Let X and Y be two increasing components (or two decreasing
components) as in Definition 1, and let their distribution functions X(x) and
Y (y) be convex-cup on the respective supports. There is irrelevance for the sum
Z = X + Y w.r. to the drastic t-norm and the �Lukasiewicz t-norm.

Proof. For X and Y both increasing, let the supports of X and Y be [0, 1]
and [0, α], α ≥ 1, cf. Lemma 3; the support of Z=̇X + Y is at most [0, α +
1]. One has to maximize the function ψz(x)=̇X(x) + Y (z − x) − 1, which is
convex, so being the terms in the sum

(
we “cut” at 0 later, using the obvious

interchangeability property supx(ψz(x) ∨ 0) =
(
supx ψzi(x)

) ∨ 0
)
. In the case

z ∈ [0, 1], use convexity after checking that ψz(0) ≤ 0, ψz(z) ≤ 0. In the other
two cases, the function ψz(x) being convex-cup in x, one obtains Y (z − 1) and
X(z − α) ∨ Y (z − 1), respectively, i.e., X(z − α) being zero on [1, α], the same
result found for drastic interactivity, Lemma2.

Example 3. Let X and Y = 〈Y1, Y2〉 be two triangles (0, 1, 1, 1) and (1, 2, 2, 4)
on [0, 1] and [1, 4], respectively, with all their three components convex, and
the respective modes in 1 and 2, i.e. IX = {1}, IY = {2}; X is “degenerate”
and Y is “skew”, the supports of Y1 and Y2 being [1,2] and [2,4]. Summing by
components and using the obvious associativity of maxima, one has for any t-
norm (use Lemma 1 in 1=, Theorem 1 in 2=, and the fact that X + Y1 dominates
X + 2): X + Y = X + 〈Y1.Y2〉 1=〈X + Y1,X + Y2〉 2=〈X + Y1,X + 2, Y2 + 1〉
= 〈X +Y1, Y2 +1〉. Assume the t-norm is intermediate between �Lukasiewicz and
drastic, e.g. is any convex combination of the two; using Theorem2 in 3= and
Lemma 1 in 4= one can continue: X +Y = 〈X +Y1, Y2+1〉 3=〈X +2, Y1+1, Y2+1〉
1=〈X + 2, Y + 1〉 on the support [2,5].

Example 4. Go back to Example 3: parametric t-norms [4] yield further cases
of joint distributions intermediate between drastic and �Lukasiewicz over which
there is irrelevance: take Schweizer-Sklar t-norm with any parameter p ≤ 1, or
Yager t-norm with p ∈ [0, 1], or Sugeno-Weber t-norm with p ∈ [−1, 0]. For
definitions and properties of these t-norms cf. [4].

The following example shows that in Theorem2 convexity is essential.
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Example 5. Take X(x) =
√

x, Y (y) = y on [0, 1]. Take maxima in two cases
left in (3) (the intermediate case vanishes as α = 1); Z=̇X + Y has support
at most [0, 2]. With the following four t-norms, non-interactive, probabilistic,
�Lukasiewicz and drastic, one obtains, respectively:
Z1(z) = 1

2

(√
4z + 1 − 1

)
, z ∈ [0, 2]

Z2(z) = 2
3z

√
z
3 for z ∈ [0, 3

2 ], and Z2 =
√

z − 1 for z ∈ [ 32 , 2]
Z3(z) = 0 for z ∈ [0, 3

4 ], Z3(z) = z − 3
4 for z ∈ [ 34 , 5

4 ], Z3(z) =
√

z − 1
for z ∈ [ 54 , 2]
Z4(z) =

√
z − 1 for z ∈ [1, 2], else 0

The four t-norms give four different results. As for computations, the case
of interactivity is quite familiar, but to enhance self-readability we re-take it
in AppendixB. With the probabilistic and the �Lukasiewicz t-norms, one just
maximizes w.r. to x as in (3) the functions ψx(x) = X(x)×Y (z−x) and X(x)+
Y (z − x) − 1 with standard analytic methods, using again in the �Lukasiewicz
case the interchangeability property as in the proof of Theorem2. For the drastic
case cf. Lemma 2 above.

In the following corollary to Theorem1, we take in ample generality two
fuzzy intervals with components X1 increasing on [a, b], XF =̇IX “flat” on the
kernel [b, c], X2 decreasing on [c, d], Y1 increasing on [α, β], YF =̇IY “flat” on the
kernel [β, γ] and Y2 decreasing on [γ, δ]. “Flat” components might be lacking
(b=c and/or β = γ), and so we deal also with fuzzy numbers. The two cases
ruled out in the corollary are covered directly by Theorem1.

Corollary 1. Take a binary operation x ◦ y as in Theorem1 and rule out the
two cases X = X1, Y = Y2 and X = X2, Y = Y1. One has: X ◦ Y = X1 ◦ Y1 on
[a ◦ α, b ◦ β], [X ◦ Y ](z) = 1 on [b ◦ β, c ◦ γ] and X ◦ Y = X2 ◦ Y2 on [c ◦ γ, d ◦ γ].

Proof. Thanks to Lemma 1, one can match separately the various components.
As for X1 ◦Y2 = 〈X1 ◦γ, Y2 ◦ b〉 and X2 ◦Y1 = 〈X2 ◦β, Y1 ◦ c〉 their contributions
can be ignored by using four times dominance (proceed as in Example 3; this
would not hold, had we not ruled out the two cases). Clearly, the support of
IX◦Y is [b ◦ β, c ◦ γ], and so we need to deal only with contributions before b ◦ β
or after c ◦ γ. The supports of X1 ◦ Y1 and X1 ◦ YF intersect on [a ◦ β, b ◦ β], but
there one has X1 ◦ YF = X1 ◦ β and so we can once more use dominance. The
same holds for X2 ◦ Y2 and XF ◦ Y2.

The following example exhibits a situation where there is irrelevance for
t-norms intermediate between drastic and probabilistic, but not w.r. to non-
interactivity.

Example 6. Take two degenerate equidistributed fuzzy intervals X and Y both
(0, 1, 2, 2) with piecewise linear distribution function, X(x) = x on [0, 1]. Take the
binary operation x◦y = − 1

xy ; cf. footnote 3. On [−1,− 1
4 ] Z(z) = 1 whatever the

t-norm; one is left with X1 ◦Y1 on ]−∞,−1]. Assume probabilistic interactivity:
one has to maximize in x the function X(x) × Y (z � x) = x · −1

xz which actually
does not depend on x. So Z(z) = −z−1 for z ≤ −1. The same result is obtained
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with the drastic distribution, Lemma2, and consequently with any t-norm whose
joint distribution is intermediate between drastic and probabilistic. Instead a
straightforward computation, cf. AppendixB, shows that under non-interactivity
Z(z) =

√−z−1 for z ≤ −1.

Appendix

A Montecatini Lemma

With caveat 2 below, the following lemma basically states that the arithmetic
of fuzzy quantities, however unruly, is the very same as for crisp numbers. At
an INdAM workshop held in Montecatini, Tuscany, the lemma gave rise to a
fruitful discussion; we are tentatively using this odd “attribution” because we
were unable to trace back a self-standing and explicit formulation of this result
in the literature.

Lemma 4. Montecatini lemma:
f(x1, . . . , xn) = g(x1, . . . , xn) is an identity for crisp numbers iff the two fuzzy
quantities Z1=̇f(X1, . . . , Xn) and Z2=̇g(X1, . . . , Xn) are deterministically equal
whatever the joint distribution of X1, . . . , Xn.

E.g., since x(y + z) = xy + xz for any crisp numbers x, y and z, one has
X(Y + Z) = XY + XZ for any fuzzy quantities X,Y and Z, whatever their
joint distribution. Since log xy = log x + log y for positive x and y one has
log XY = log X + log Y for any fuzzy quantities X and Y whatever their joint
distribution with positive support. To prove the equidistribution of Z1 and Z2

just observe that one is taking the supremum of the same function over two sets,
{x : f(x) = z} and {x : g(x) = z}, which are however equal. As for deterministic
equality Z1 = Z2, one cannot have f(x) �= g(x), and so the joint distribution of
the fuzzy couple [Z1, Z2] is zero outside the main diagonal z1 = z2.

Caveat 1: in more traditional literature on fuzzy arithmetic, where in prac-
tice only non-interactivity is used to “glue together” marginal distributions, one
comes across statements as are X ×X �= X2 or X(Y +Z) �= XY +XZ. What is
meant is that equidistribution between X1 and X2 does not imply equidistribu-
tion between X1 ×X2 and X2

1 or between X1(Y +Z) and X1Y +X2Z. We insist
that in our approach a single symbol X is used for two fuzzy numbers only when
they are not only equidistributed but also deterministically equal. Note that the
analogue of Montecatini lemma holds also for random numbers, i.e. for random
variables as used in probabilistic distribution calculus, where one takes much
care to distinguish between equidistribution and deterministic equality, the lat-
ter being a very special form of joint probability. We recall that non-interactivity
of fuzzy quantities is seen as an analogue of probabilistic independence between
random variables.

Caveat 2: The lemma is stated in terms of arbitrary fuzzy quantities: if one
insists on certain properties, e.g. upper continuity or unimodality, one should of
course check whether the result Z = f(X1, . . . , Xn) = g(X1, . . . , Xn) still verifies
those properties, so as to ensure stability.
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B Computations for Examples 5 and 6

We shortly cover the very familiar case of non-interactivity as in Example 5,
when the t-norm is x ∧ y. We assume that X(x) and Y (y) are continuous and
strictly increasing on [0,1] and [0, α], respectively, α ≥ 1, cf. Lemma 3; so Y (z−x)
is strictly decreasing when seen as a functions of x. For fixed z in the interval
[0, 1 + α], one soon checks that the equation in x X(x) = Y (z − x) has a single
solution μ(z), X

(
μ(z)

)
= Y

(
z−μ(z)

)
, and that μ(z) strictly increases in z from

μ(0) = 0 to μ(1 + α) = 1. One has three cases, cf. (3); in the first, x ∈ [0, z], fix
z ∈ [0, 1]: on the border x = 0 the increasing function X(x) and the decreasing
function Y (z − x) take the two values 0 = X(0) < Y (z), while on the border
x = z they take the two values X(z) > Y (0) = 0: the required maximum is
found for x = μ(z). The remaining two cases are dealt in the same way and give
the same solution Z(z) = X

(
μ(z)

)
= Y

(
z − μ(z)

)
, which is found also when

X(x) and Y (y) are both strictly decreasing. If the support-intervals are different
just use Lemma 3. In Example 5 one has α = 1; since X(x) =

√
x, Y (y) = y, one

gets μ(z) = z + 1
2

(
1 − √

4z + 1
)
, and so Z(z) = Y

(
z − μ(z)

)
= 1

2 (
√

4z + 1 − 1).
As for Example 6, for fixed z, z ≤ −1, one has to maximize w.r. to x the

minimum of two functions x∧ −1
xz , the first increasing, the second decreasing, over

the intersection {x : 0 ≤ x ≤ 1}∩{x : 0 ≤ −1
xz ≤ 1} i.e. over {x : −z−1 ≤ x ≤ 1}.

The two functions meet at μ(z) =
√−z−1, −z−1 ≤ μ(z) ≤ 1}.
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Abstract. As a generalization of the L-fuzzy contexts, we propose the
study of the L-fuzzy hypercontexts where the relation R between the
objects X and the attributes Y takes as values other L-fuzzy relations. In
this work, we propose the study of these structures using OWA operators
in different situations. Finally, the practical case that has motivated this
paper is analyzed.

Keywords: L-fuzzy contexts · L-fuzzy concepts · L-fuzzy hypercon-
texts · OWA operators

1 Introduction

The L-fuzzy concept analysis provides a tool for the extraction of knowledge
from tables (L-fuzzy contexts) using L-fuzzy concepts. These L-fuzzy contexts
are tuples (L,X, Y,R), with L a complete lattice, X and Y the object and
attribute sets and R ∈ LX×Y an L-fuzzy relation between the objects and the
attributes.

L-fuzzy contexts establishing frameworks that allow us to represent R(x, y),
x ∈ X and y ∈ Y, as a collection of values that has the structure of L-fuzzy
context with a set of objects Qx associated with x and a set of attributes Sy

associated with y. These sets Qx are related to each other, and the same happens
with the Sy.

For example, consider a chain of supermarkets that has several establishments
in different cities. We want to study the evolution in time Y of the sales of
different articles in each of the cities X where they are sold.

Our hypercontexts are the extensions to the fuzzy case of certain multicon-
texts of Wille [13] verifying some properties with respect to the objects and the
attributes. On the other hand, the approach given in this work, using OWA
operators, will also be different from the topic discussed by Wille.

The main goal of the paper is the study of the values of R taking into account
that for every x ∈ X, we have a set of objects Qx that can be different in every
case and for every y ∈ Y, a different set of attributes Sy.
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 12–22, 2016.
DOI: 10.1007/978-3-319-40581-0 2
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Although this problem is related to the construction of formal contexts devel-
oped in [9], we extend our study to new structures with values in a complete
lattice L. Then, fuzzy logic tools and specifically OWA operators can be applied
for obtaining information.

As some of the practical cases are represented in a natural way by a fuzzy rela-
tion, we consider the new framework as a good contribution because it increases
the range of application of formal and fuzzy concept analysis.

Firstly, we will see some results about L-fuzzy concept analysis and OWA
operators [11]:

1.1 Formal Concept Analysis and L-Fuzzy Concept Analysis

The Formal Concept Analysis of R. Wille [12] extracts information from a binary
table that represents a formal context (X,Y,R) with X and Y finite sets of
objects and attributes respectively and R ⊆ X × Y . The hidden information
consists of pairs (A,B) with A ⊆ X and B ⊆ Y , called formal concepts, verifying
A∗ = B and B∗ = A, where (·)∗ is the derivation operator that associates the
attributes related to the elements of A to every object set A, and the objects
related to the attributes of B to every attribute set B. These formal concepts
can be interpreted as a group of objects A that shares the attributes of B.

In previous works [6,7] we have defined the L-fuzzy contexts (L,X, Y,R),
with L a complete lattice, X and Y sets of objects and attributes respectively
and R ∈ LX×Y a fuzzy relation between the objects and the attributes. This is
an extension of Wille’s formal contexts to the fuzzy case when we want to study
the relations between the objects and the attributes with values in a complete
lattice L, instead of binary values.

In our case, to work with these L-fuzzy contexts, we have defined the deriva-
tion operators 1 and 2 given by means of these expressions:

∀A ∈ LX ,∀B ∈ LY

A1(y) = inf
x∈X

{I(A(x), R(x, y))}

B2(x) = inf
y∈Y

{I(B(y), R(x, y))}

with I a fuzzy implication operator defined in the lattice (L,≤).
The information stored in the context is visualized by means of the L-fuzzy

concepts that are pairs (A,A1) ∈ LX ×LY with A ∈ fix(ϕ), set of fixed points of
the operator ϕ, being defined from the derivation operators 1 and 2 as ϕ(A) =
(A1)2 = A12. These pairs, whose first and second components are said to be
the fuzzy extension and intension respectively, represent a group of objects that
share a group of attributes.

Using the usual order relation between fuzzy sets, that is,

∀A,C ∈ LX , A ≤ C ⇐⇒ A(x) ≤ C(x) ∀x ∈ X,
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we define the set L = {(A,A1)/A ∈ fix(ϕ)} with the order relation � defined as:

∀(A,A1), (C,C1) ∈ L, (A,A1) � (C,C1) if A ≤ C( or A1 ≥ C1)

As ϕ is an order preserving operator, by the theorem of Tarski, the set fix(ϕ)
is a complete lattice and then (L,�) is also a complete lattice that is said to be
[6,7] the L-fuzzy concept lattice.

On the other hand, given A ∈ LX , (or B ∈ LY ) we can obtain the associated
L-fuzzy concept applying twice the derivation operators. In the case of using a
residuated implication, as we do in this work, the associated L-fuzzy concept is
(A12, A1) (or (B2, B21)).

Other important papers that generalize the Formal Concepts Analysis using
residuated implication operators are due to R. Belohlavek [4,5]. Moreover, exten-
sions of Formal Concept Analysis to the interval-valued case are in [1,8] and to
the fuzzy property-oriented and multi-adjoint concept lattices framework in [10].

1.2 OWA Operators

Families of OWA operators were introduced by Yager [11] as a new aggregation
technique based on the ordered weighted averaging. This is the definition of these
operators:

Definition 1. A mapping F from Ln −→ L, where L = [0, 1] is called an
OWA operator of dimension n if associated with F is a weighting n−tuple W =
(w1, w2 ... wn) such that wi ∈[0,1] and

∑

1≤i≤n

wi = 1, where F (a1, a2, ... an) =

w1.b1 + w2.b2 + · · · + wn.bn, with bi the ith largest element in the collection
a1, a2, ... an.

There are two particular cases of special interest:
W∗ defined by the weighting n-tuple with wn = 1 and wj = 0,∀j �= n, and

W ∗ defined by the weighting n-tuple such that w1 = 1 and wj = 0,∀j �= 1.
It is proved that F∗(a1, a2, ... an) = minj(aj) and F ∗(a1, a2, ... an) =

maxj(aj). These operators are said to be and and or, respectively.
To study the L-fuzzy hypercontexts, we are interested in the use of operators

close to or. To measure this proximity the orness degree can be used [11].
Furthermore, the use of different weighting vectors provides different results

as we will see in the paper.

2 L-Fuzzy Hypercontexts

We will begin defining the framework:

Definition 2. We denote the tuple (L,X, Y, (Qx)x∈X , (Sy)y∈Y , R) by an L-
fuzzy hypercontext, with L = [0, 1], X and Y sets of objects and attributes respec-
tively, (Qx)x∈X and (Sy)y∈Y families of sets associated with the elements of X

and Y , and R such that R(x, y) is also a new relation Rxy ∈ LQx×Sy , for every
(x, y) ∈ X ×Y. This relation Rxy defines a new L-fuzzy context (L,Qx, Sy, Rxy).
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Remark 1. The objects Qx associated with x ∈ X do not have to be elements of
X. Neither for Sy.

The main target of the paper is the study of these hypercontexts when L =
[0, 1]. In some cases, we want to make the study only in respect to the elements
of X or Y but, in other cases, we will also be interested in analyzing the results
based on the families (Qx)x∈X and (Sy)y∈Y .

We begin with the general case. It is not easy to work with the original R
from the point of view of the L-fuzzy concept analysis as it does not represent
an L-fuzzy context, the initial idea is to transform this structure in a derived
L-fuzzy context (L, X̆, Y̆ , R̆). Then we can extract the information by means of
the construction of its L-fuzzy concepts.

After that, we analyze the particular case where Qx = Q,∀x ∈ X (or Sy =
S,∀y ∈ Y ). In this case, the relation values can be studied from the values of an
only set Q (or S respectively). Furthermore, if Card(X)=1, we have an L-fuzzy
sequence studied in [3].

Let us see an example:

Example 1. We want to study the evolution in time Y of the sales of some
articles in a supermarket chain in the different cities X in which it works. We
define an L-fuzzy hypercontext (L,X, Y, (Qx)x∈X , (Sy)y∈Y , R) with X and Y

sets of objects and attributes respectively. The establishment chain (Qx)x∈X

has different values according to the cities and the family of products (Sy)y∈Y

changes over time Y (months). Finally, we define Rxy ∈ LQx×Sy , for every (x, y),
as a relation that recover the sales of the different products Sy in a month y ∈ Y,
in the different establishments Qx of the city x ∈ X.

R y1 y2 y3

x1 Rx1y1 sy11 sy12 sy13 Rx1y2 sy21 sy22 sy23 Rx1y3 sy31 sy32

qx11 0.3 1 0.1 qx11 0.6 0.9 1 qx11 0.4 0.5

qx12 0.7 0.3 0.8 qx12 1 0 0.2 qx12 0 1

qx13 0.9 0.2 0 qx13 0.6 0.8 1 qx13 0.9 1

x2 Rx2y1 sy11 sy12 sy13 Rx2y2 sy21 sy22 sy23 Rx2y3 sy31 sy32

qx21 0.7 0.8 1 qx21 0.3 0.9 0 qx21 0.4 0.2

qx22 1 0 0.2 qx22 1 0.2 0.8 qx22 0 0.6

2.1 General Study

We analyze different ways to transform the L-fuzzy hypercontext in an L-fuzzy
context.

(1) In this first case, we are interested in keeping the complete information that
we have. So, we give the following definition:
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Definition 3. The L-fuzzy hypercontext (L, X̆, Y̆ , R̆) derived in a natural way
from the tuple (L,X, Y, (Qx)x∈X , (Sy)y∈Y , R), is:

• X̆ =
⋃

Q̇x with Q̇x = {x} × Qx

• Y̆ =
⋃

Ṡy with Ṡy = {y} × Sy

• R̆((x, q), (y, s)) = Rxy(q, s), ∀x ∈ X,∀y ∈ Y,∀q ∈ Qx,∀s ∈ Sy.

Example 2. For our example, this will be our relation R̆:

R̆ (y1, sy11 ) (y1, sy12 ) (y1, sy13 ) (y2, sy21 ) (y2, sy22 ) (y2, sy23 ) (y3, sy31 ) (y3, sy32 )

(x1, qx11 ) 0.3 1 0.1 0.6 0.9 1 0.4 0.5

(x1, qx12 ) 0.7 0.3 0.8 1 0 0.2 0 1

(x1, qx13 ) 0.9 0.2 0 0.6 0.8 1 0.9 1

(x2, qx21 ) 0.7 0.8 1 0.3 0.9 0 0.4 0.2

(x2, qx22 ) 1 0 0.2 1 0.2 0.8 0 0.6

In this case, the derivation operators have the following expression:

Proposition 1. ∀A ∈ LX̆ ,∀B ∈ LY̆ ,∀x ∈ X,∀y ∈ Y,∀q ∈ Qx,∀s ∈ Sy

A1(y, s) = inf
(x,q)∈X̆

{I(A(x, q), R̆((x, q)(y, s))}

= inf
(x,q)∈X̆

{I(A(x, q), Rxy(q, s)}

B2(x, q) = inf
(y,s)∈Y̆

{I(B(y, s)), R̆((x, q)(y, s))}

= inf
(y,s)∈Y̆

{I(B(y, s)), Rxy(q, s)}

with I an L-fuzzy implication operator defined in (L,≤) and where A1 represents
the attributes related to the objects of A and B2, to the objects related to the
attributes of B.

In this case, every pair (x, q) behaves as an object and every pair (y, s) as an
attribute.

This definition does not lose the original information but the size of the
obtained context is large.

(2) In some situations, it can be interesting to try to reduce the size of the L-
fuzzy context although we lose information related to Qx, Sy, x ∈ X, y ∈ Y .
We have three possibilities:

(a) Aggregate all the values for every Rxy.
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Definition 4. We define the derived L-fuzzy context (L, X̆, Y̆ , R̆):

• X̆ = X
• Y̆ = Y
• R̆ : X̆ × Y̆ −→ L such that ∀x ∈ X,∀y ∈ Y :

R̆(x, y) =Fwxy
(Rxy(qx1 , sy1), Rxy(qx1 , sy2) ... Rxy(qx|Qx| , sy|Sy|)) =

w1.b1 + w2.b2 + · · · + w|Qx|.|Sy|.b|Qx|.|Sy|,

where Fwxy
is an OWA operator with the associated weighting vector

wxy = (w1, w2, ... w|Qx|.|Sy|) and bi the ith largest element of the collection
Rxy(qx1 , sy1), Rxy(qx1 , sy2) ... Rxy(qx|Qx| , sy|Sy|).

This aggregation allows to establish an study of the elements of X respect
to Y. There is not information about the set Qx neither about Sy.

Let see an example.

Example 3. Suppose that in example 1 we want to give more relevance to the
closest to 1 observations, then the use of OWA operators can be a good election.

We can use weights wxy (see Sect. 1.2) such that

wi =
2(n − i + 1)

n(1 + n)
,∀i ∈ {1, ... , n}.

In this case, we obtain the result applying the definition:

R̆Fwxy
y1 y2 y3

x1 0.66 0.84 0.80

x2 0.80 0.71 0.40

For the extraction of the information, we can now take a set that represents
the interest of study and calculate the associated L-fuzzy concept using the
Lukasiewicz implication operator.

For instance, if we want to study the second city, then we take {x1/0, x2/1}
and we obtain the following result:

({x1/0.86, x2/1}, {y1/0.8, y2/0.71, y3/0.4})

We can interpret this L-fuzzy concept saying that there are important sales in
both cities during the first two months.

(b) Aggregate for every x ∈ X the values of Rxy associated with the different
Qx.
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Definition 5. We define the derived L-fuzzy context (L, X̆, Y̆ , R̆):

• X̆ = X
• Y̆ =

⋃
Ṡy with Ṡy = {y} × Sy,∀y ∈ Y

• R̆ : X̆ × Y̆ −→ L such that ∀x ∈ X,∀y ∈ Y,∀s ∈ Sy:

R̆(x, (y, s)) = Fwx
(Rxy(qx1 , s), Rxy(qx2 , s) ... Rxy(qx|Qx| , s))

where Fwx
is an OWA operator with the associated weighting vector wx =

(w1, w2, ... w|Qx|) and bi the ith largest element in the collection Rxy(qx1 , s),
Rxy(qx2 , s) ... Rxy(qx|Qx| , s).

In this case, we can analyze the elements of X although there is not infor-
mation about those of Qx.

Example 4. We are going to prioritize the membership degrees closest to 1 by
means of w. Then, to aggregate the values, we use wx1 = (3/6, 2/6, 1/6) and
wx2 = (2/3, 1/3). The result is:

R̆Fwx
y1 y2 y3

sy11 sy12 sy13 sy21 sy22 sy23 sy31 sy32
x1 0.73 0.63 0.43 0.8 0.72 0.87 0.58 0.92

x2 0.9 0.53 0.73 0.77 0.67 0.53 0.27 0.47

In this example, what is sold in every city xi in time can be studied although
the establishments qxi

information is missing.
For instance, if we want to study the second city, we take {x1/0, x2/1} and,

applying the derivation operator, obtain the following result:

{y1/(0.9, 0.53, 0.73), y2/(0.77, 0.67, 0.53), y3/(0.27, 0.47)}
We can highlight the sales of sy11

product in all establishments of the second
city in the first month.

We can conclude that in the second city there are important sales mainly in
the first two months (y1, y2).

Moreover, we can also see details of sales of products: there is a larger sale of
the first product in the first month followed by the sale, also of the first product,
in the second month.

We can establish different nuances that otherwise would not be possible using
other OWA operators. For instance, with the minimum (wx1 = (0, 0, 1) and
wx2 = (0, 1)), and also for the second city, the result is:

{y1/(0.7, 0, 0.2), y2/(0.3, 0.2, 0), y3/(0, 0.2)}
We can highlight the sales of sy11

product in all establishments of the second
city in the first month.
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(c) Aggregate for every y ∈ Y the values Rxy associated with the different Sy.

Definition 6. We define the derived L-fuzzy context (L, X̆, Y̆ , R̆):

• X̆ =
⋃

Q̇x with Q̇x = {x} × Qx,∀x ∈ X
• Y̆ = Y
• R̆ : X̆ × Y̆ −→ L such that ∀x ∈ X, y ∈ Y, q ∈ Qx

R̆((x, q), y) =Fwy
(Rxy(q, sy1), Rxy(q, sy2) ... Rxy(q, sy|Sy|))

where Fwy
is an OWA operator with the associated weighting vector wy =

(w1, w2, ... w|Sy|) and bi the ith largest element in the collection Rxy(q, sy1),
Rxy(q, sy2) ... Rxy(q, sy|Sy |).

This aggregation allows the study of the elements of Y (there is not infor-
mation about the products).

Example 5. We are going to see the evolution of the sales over time (Y ). In this
case, it is also interesting for us the study of the observations with membership
degrees closest to 1 and next to the current instants of time. For the aggrega-
tion of the values, we will use wy1 = (3/6, 2/6, 1/6) and wy2 = (2/3, 1/3). The
obtained result is:

R̆Fwy
y1 y2 y3

x1 qx11 0.62 0.9 0.47

qx12 0.68 0.57 0.67

qx13 0.52 0.87 0.97

x2 qx21 0.88 0.55 0.33

qx22 0.57 0.8 0.4

We can here study the evolution in time of the sales in every supermarket
qxi j of every city xi.

For instance, if we look at the third month (y3), we can take {y1/0, y2/0, y3/1}
and obtain the result:

{x1/(0.47, 0.67, 0.97), x2/(0.33, 0.4)}
Then, we can conclude that there are lower sales values in the second city (x2)
and many differences among the establishments of the first one (x1) with higher
sales in the last two.

Also in this case the results are different if we use other OWA operators. For
instance, using the minimum (wy1 = (0, 0, 1) and wy2 = (0, 1)) and also for the
third month, the result is:

{x1/(0.4, 0, 0.9), x2/(0.2, 0)}
Then, we can highlight the sales of all products of establishment qx13 of the city
x1 in the third month.
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2.2 Study of a Particular Case

In this case, when one of the sets (Qx or Sy) is fixed, we can perform more
complete studies. For instance, suppose that Sy = S,∀y ∈ Y.

For the example:

Example 6. In this case, the articles S = {s1, s2, s3} are the same in all the
establishments but there are different establishments in the different cities.

R y1 y2 y3

s1 s2 s3 s1 s2 s3 s1 s2 s3

x1 qx11 0.3 1 0.1 0.6 0.9 1 0.4 0.5 0.9

qx12 0.7 0.3 0.8 1 0 0.2 0 1 0.2

qx13 0.9 0.2 0 0.6 0.8 1 0.9 1 0.2

x2 qx21 0.7 0.8 1 0.3 0.9 0 0.4 0.2 1

qx22 1 0 0.2 1 0.2 0.8 0 0.6 0.3

Then, we can apply all the results obtained in the general case and, as the
set S is fixed, we can also perform a more individualized study for each one of
its values.

Definition 7. We define the derived L-fuzzy context (L, X̆, Y̆ , R̆) (Aggregating
the values of Y ) in this way:

• X̆ =
⋃

Q̇x with Q̇x = {x} × Qx,∀x ∈ X
• Y̆ = S
• R̆ : X̆ × Y̆ −→ L such that ∀x ∈ X, q ∈ Qx, s ∈ S :

R̆((x, q), s) = FwY
(Rxy1(qx, s), Rxy2(qx, s) ... Rxy|Y |(qx, s))

where FwY
is an OWA operator with the associated weighting vector wY =

(w1, w2, ... w|Y |) and bi the ith largest element in the collection Rxy1(qx, s),
Rxy2(qx, s) ... Rxy|Y |(qx, s).

Example 7. In our example and using wY = (3/6, 2/6, 1/6), we obtain the fol-
lowing table:

We can answer the question about which are the different cities with good
sales of the different products over time.

For instance, if we take as the set {s1/0, s2/1, s3/0}, we obtain the result:

{x1/(0.88, 0.6, 0.8), x2/(0.75, 0.37)}
Hence, we can conclude that there are good sales, mainly of s2 in all the

establishments of x1.
However, if we do the same for the product s1 we have:

{x1/(0.48, 0.73, 0.85), x2/(0.53, 0.83)}
and now we have fewer sales only in the last establishment.
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R̆FwY
s1 s2 s3

x1 qx11 0.48 0.88 0.82

qx12 0.73 0.6 0.5

qx13 0.85 0.8 0.57

x2 qx21 0.53 0.75 0.83

qx22 0.83 0.37 0.53

Similar developments can be obtained for Qx = Q,∀x ∈ X.

Definition 8. We define the derived L-fuzzy context (L, X̆, Y̆ , R̆) (Aggregating
the values of X) in this way:

• X̆ = Q
• Y̆ =

⋃
Ṡy with Ṡy = {y} × Sy,∀y ∈ Y

• R̆ : X̆ × Y̆ −→ L such that ∀x ∈ X, q ∈ Q, s ∈ Sy :

R̆(q, (y, s)) = FwX
(Rx1y(q, sy), Rx2y(q, sy) ... Rx|X|y(q, sy))

where FwX
is an OWA operator with the associated weighting vector wX =

(w1, w2, ... w|X|) and bi the ith largest element in the collection Rx1y(q, sy),
Rx2y(q, sy) ... Rx|X|y(q, sy).

In this case, we can perform a study in depth of the elements of Q although
it has no interest for our example.

3 Conclusions and Future Lines

This paper introduces the study of L-fuzzy hypercontexts by using OWA opera-
tors in a complete lattice L with the aim of obtaining the relevant information.
These new frameworks allow us to work with L-fuzzy contexts where the set of
objects and attributes are variable.

Firstly we have developed a general study in two different situations: the
first one without lost of information and the second one, reducing the size of the
context and losing the information of the not prioritized set.

Finally, we analyze a particular case where the set of objects or attributes is
fixed. Then a more individualized study can be performed.

In all the cases, the use of OWA operators is an interesting tool for obtaining
the relevant information and establishing different nuances in our study.

In future works we will use linguistic variables [14] for the representation of
the points of interest following the ideas of [2].
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2. Alcalde, C., Burusco, A., Fuentes-González, R., Zubia, I.: The use of linguistic
variables and fuzzy propositions in the L-fuzzy concept theory. Comput. Math.
Appl. 62, 3111–3122 (2011)

3. Alcalde, C., Burusco, A., Fuentes-González, R.: The study of fuzzy context
sequences. Int. J. Comput. Intell. Syst. 6(3), 518–529 (2013)
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6. Burusco, A., Fuentes-González, R.: The study of the L-fuzzy concept lattice. Math.
Soft Comput. 1(3), 209–218 (1994)
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Abstract. There exist two formulations of rough sets: the conceptual
and computational one. The conceptual or semantical approach of rough
set theory focuses on the meaning and interpretation of concepts, while
algorithms to compute those concepts are studied in the computational
formulation. However, the research on the former is rather limited. In this
paper, we focus on a semantically sound approach of Pawlak’s rough set
model and covering-based rough set models. Furthermore, we illustrate
that the dominance-based rough set model can be rephrased using this
semantic approach.

Keywords: Covering-based rough sets · Dominance-based rough sets ·
Semantics · Pre-order

1 Introduction

Rough set theory has two formulations: a conceptual and a computational one
[29]. The former formulation emphasizes the meaning and interpretation of con-
cepts and notions of the theory, while the latter formulation is used to construct
procedures and algorithms to compute those notions. A major difference between
the formulations is the notion of definability. Nevertheless, both formulations
are complementary and they are both fundamental in the research on rough
set theory. In addition, it is sometimes necessary to consider both approaches
together, for example in the minimal description length principle [8,16] in which
it is stated that we need to find a balance between the loss of accuracy (com-
putational) and a more compact description of data models (conceptual) when
computing decision reducts.

The research on computational formulations has dominated the rough set the-
ory research field since the seminal paper of Pawlak [10]. For instance, there is a
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broad study on generalized rough set models, in which a binary relation or neigh-
borhood operator is used to describe the indiscernibility relation between objects
of the universe [2,3,17,21,24,38]. In addition, several covering-based rough set
models are defined in literature [12,19,20,22,23,30–38]. More recently, the clas-
sification and comparison of these different rough set models have been discussed
[1,14,15,27].

In such contributions on the computational formulations of rough set theory,
the notion of definability of subsets of the universe of discourse is determined
by the approximation operators. This can be done in different ways: a subset
X ⊆ U is definable if X equals its lower approximation, or if X equals its upper
approximation, or if its lower and upper approximation are equal.

In comparison, the contribution to the conceptual formulation of rough set
theory is limited. Prior to the introduction of rough sets, Pawlak [9] and Marek
and Pawlak [6] described a definable set as the extension of a concept, of which its
intension is a formula in a descriptive language based on the data. The intension
of a concept is an abstract description of the properties characteristic for a
concept, while the extension of a concept contains all the objects of the universe
of discourse satisfying those properties [29]. Hence, a concept is jointly described
by its intension and extension. However, except for a few articles by Marek and
Truszczyński [7], Yao and Zhou [25] and Yao [26], this notion of definability,
which is semantically superior, has scarcely been discussed.

In this paper, we refocus our attention on the conceptual or semantical app-
roach of rough sets. Given an information or decision table which represents the
data, definable subsets of the universe are used as primitive notion. A definable
set is an arbitrary union of elementary sets. Such an elementary set is a basic
granule which represents an indivisible block of information, obtained from the
table. Hence, each elementary and definable set is meaningful. In the original
rough set of Pawlak [10], the elementary sets are given by the equivalence classes
U/E related to the equivalence relation E, which represents the indiscernibility
relation between the objects based on the given data. However, it is not always
possible to construct such a partition. For example, when the data is incomplete,
or when there is a strict order on the values of certain attribute values. There-
fore, we extend the semantical approach of Pawlak’s model to covering-based
rough set models. The elementary sets are now no longer given by a partition
U/E, but by a covering C. As each definable set is the union of elementary
sets, the set of definable sets is obtained by closing the set of elementary sets
under set union. This results in the Boolean algebra B(U/E) for the model of
Pawlak and in the ∪-closed set ∪∗(C) for the covering-based rough set mod-
els. As the definability of sets is established, the approximation of undefinable
sets by definable sets comes naturally [26]. Therefore, approximation operators
are constructed as derived notions in both Pawlak’s rough set model and the
framework of covering-based rough set models.

To illustrate the semantic approach of covering-based rough sets, we determine
the elementary and definable sets in the framework of dominance-based rough
sets, introduced by Greco et al. [2,3,18]. In this framework, the indiscernibility
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relation between objects is given by a dominance relation or pre-order, which is a
reflexive and transitive relation. Such an indiscernibility relation is useful, when
the data represented in the table are preference-ordered, i.e., based on the differ-
ent conditional attributes, it is determined whether an object x is preferred over
an object y.

Given an object x and a dominance relation �, two neighborhoods of x are
defined by the objects dominating x and the objects dominated by x. Moreover,
each set of neighborhoods results in a covering. Given both coverings, by the
semantic approach of covering-based rough sets meaningful lower approximation
operators are constructed. It will be shown that these conceptual lower approx-
imation operators are exactly the computational lower approximation operators
suggested by Greco et al. [2,3,18].

Furthermore, it is discussed how certain decision rules are obtained from a
decision table using dominance-based rough sets. Rule induction [4] is an impor-
tant technique to extract knowledge from a decision table and can be used for the
classification of new objects. For example, to determine whether a new object is
preferable to the current objects.

This paper is organized as follows. In Sect. 2, we discuss the semantic app-
roach of Pawlak’s rough set model and covering-based rough set models. In
Sect. 3, we recall some results on the different characterizations of the lower
approximation operator based on a reflexive and transitive neighborhood oper-
ator. In Sect. 4, we illustrate that the dominance-based lower approximation
operator introduced by Greco et al. is semantically meaningful. Furthermore, we
discuss how decision rules are obtained in the dominance-based framework. To
end, we state conclusion and future work in Sect. 5.

2 Semantics of Rough Set Models

Rough set analysis is a tool to study data given in an information table. Formally,
a complete information table is a tuple T = (U,At, {Va | a ∈ A}, {Ia | a ∈ At}),
where U is a finite non-empty set of objects, At is a finite non-empty set of
attributes and for each a ∈ A, Va represents a non-empty set of values related to
the attribute a. Furthermore, the information functions Ia : U → Va map every
object of U to a value in Va, for each a ∈ At. The table T is called a complete
decision table if the set of attributes At consists of the disjoint sets C and {d},
where C represents the conditional attributes of the table and d represents the
decision attribute. In this paper, we use the closed world assumption, i.e., the
table contains all objects under consideration [11].

Given such a table T , a basic granule represents an elementary unit of knowl-
edge we can obtain from the table and is formally given by a subset of the
universe U . Given a non-empty family of granules G ⊆ 2U , the poset (G,⊆) is
called a granular structure, where ⊆ is the set-theoretic inclusion relation [28].
By imposing different conditions on the set G, we derive different models (U,G)
of granular structures. For example, when G is closed under set intersection, set
union and set complement, the model (U, (G,∩,∪, c)) is a Boolean algebra [28].
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In the original rough set model of Pawlak [10,11] the basic granules of the
information table are given by equivalence classes. Namely, let A ⊆ C be a set
of conditional attributes, then we can define an equivalence relation EA on U as
follows:

∀x, y ∈ U : xEAy ⇔ ∀a ∈ A : Ia(x) = Ia(y).

The equivalence class of an object x is given by [x]EA
= {y ∈ U | xEAy}. The

partition U/EA can be seen as a family of basic granules and each equivalence
class is called an elementary set. Moreover, the union of a family of equivalence
classes is called a definable set, since such a set can be constructed and interpreted
from the available data in the information table. The granule structure which is
used in rough set theory to represent the definable sets is given by

B(U/EA) = {
⋃

F | F ⊆ U/EA}

and is obtained by closing the partition U/EA under set union. As B(U/EA)
is closed under set intersection, set union and set complement, it is a Boolean
algebra. Therefore, the granule structure (U, (B(U/EA),∩,∪, c)) which repre-
sents the definable sets of the information table in Pawlak’s rough set model can
be seen as a model of granular structures, as described in [28].

However, not every subset of U is contained in the granular structure
B(U/EA). Such a set, which we call undefinable, must be approximated by
subsets in the granular structure. Naturally, the lower approximation of X ⊆ U
consists of definable sets which are subsets of X (approximation from below),
while the upper approximation of X consists of definable sets which are supersets
of X (approximation from above) [10,28].

As in Pawlak’s rough set model the definable sets are represented by the
Boolean algebra B(U/EA), there is a unique greatest set in B(U/EA) con-
tained by X, and a unique smallest set in B(U/EA) containing X. Therefore,
in Pawlak’s rough set model the approximations of X are given by

apr
A
(X) = the greatest definable set inB(U/EA) contained byX

=
⋃

{Y ∈ B(U/EA) | Y ⊆ X},

aprA(X) = the smallest definable set inB(U/EA) containing X

=
⋂

{Y ∈ B(U/EA) | X ⊆ Y }.

Note that for all X ⊆ U , its lower and upper approximation are definable, i.e.,
apr

A
(X) ∈ B(U/EA) and aprA(X) ∈ B(U/EA). Moreover, if X is definable,

then
apr

A
(X) = aprA(X) = X.

Hence, one derives the notion of definability which is used in computational
formulations.

Unfortunately, it is not always possible to construct a meaningful equiva-
lence relation between objects based on the attribute values. For example, if the
information table is incomplete, or when we have an ordered information table.
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While in the former case attribute values are missing which makes it impossible
to construct an equivalence relation, the equivalence classes in the latter case
will mostly consist of only one object which is unreasonable for applications such
as rule induction.

In such cases, the family of basic granules for A ⊆ C is not given by a
partition, but by a more general covering CA. A covering C is a non-empty
family of non-empty subsets of U such that

⋃
C = U . Every set or patch in CA is

called an elementary set and should be constructed using meaningful semantics.
In addition, every union of patches of CA will be interpretable from the data
in the information table. Such a union is called a definable set. The granular
structure which represents these definable sets is given by

∪∗(CA) = {
⋃

F | F ⊆ CA}

and is obtained by closing CA under set union. It is ∪-closed, contains the
empty set and its corresponding model of granular structure is denoted by
(U, (∪∗(CA),∪)) [28]. Although it is closed under set union, it is not closed
under set intersection and set complement such as in the case of Pawlak’s
rough set model. As every partition can be seen as a covering of the universe,
(U, (B(U/EA),∩,∪, c)) is a sub-model of (U, (∪∗(CA),∪)).

Similar to the rough set model of Pawlak, a subset X ⊆ U which is not
definable can be approximated by definable sets in ∪∗(CA). As ∪∗(CA) is closed
under set union, there exists a unique greatest definable set in ∪∗(CA) contained
by X, therefore

apr
A
(X) = the greatest definable set in ∪∗ (CA) contained byX (1)

=
⋃

{Y ∈ ∪∗(CA) | Y ⊆ X}. (2)

Unfortunately, as ∪∗(CA) is not closed under set intersection, there does not
necessarily exist a unique smallest definable set in ∪∗(CA) containing X and
thus, aprA(X) is not necessarily an element in ∪∗(CA), but a set of minimal
elements in ∪∗(CA) [28]:

aprA(X) = {Y ∈ ∪∗(CA) | X ⊆ Y, Y minimal},

where Y is minimal if Y ∈ ∪∗(CA), X ⊆ Y and ∀Z ∈ ∪∗(CA) with X ⊆ Z,
if Z ⊆ Y then Y = Z. Note that the upper approximation operator of X is
given by the definable sets ‘just’ above X, as they provide the most accurate
information.

Hence, as the upper approximation operator is a subset of P(U) rather than
an element of P(U), various properties from Pawlak’s framework no longer
make sense, such as the definability of the upper approximation operator and
the duality between the lower and upper approximation operator. Note that for
X ∈ ∪∗(CA) it does hold that apr

A
(X) = X and aprA(X) = {X}.
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We illustrate the above approximation operators in the following example:

Example 1. [28] Let U = {a, b, c, d, e} and C = {{a}, {b, d}, {a, b, c}, {b, c, e}},
then

∪∗(C) = {∅,{a}, {b, d}, {a, b, c}, {b, c, e}, {a, b, d},

{a, b, c, d}, {a, b, c, e}, {b, c, d, e}, {a, b, c, d, e}}.
The lower and upper approximation of {a, b, c} are given by apr({a, b, c}) =
{a, b, c} and apr({a, b, c}) = {{a, b, c}} and for {b, c, d} they are given by
apr({b, c, d}) = {b, d} and apr({b, c, d}) = {{a, b, c, d}, {b, c, d, e}}.

Next, we discuss different characterizations for the lower approximation oper-
ator, when a reflexive and transitive neighborhood operator is used instead of
an equivalence relation.

3 Different Characterizations for the Lower
Approximation Operator Based on a Reflexive
and Transitive Neighborhood Operator

As we saw above, the lower approximation operator of Pawlak’s model is given by

apr(X) =
⋃

{Y ∈ B(U/E) | Y ⊆ X},

where E is an equivalence relation based on the data and X is a subset of
the universe U . This characterization is called the subsystem-based definition
of Pawlak’s model [27]. Moreover, there are two equivalent characterizations of
the lower approximation operator, called the element-based and granule-based
definition, respectively:

apr(X) = {x ∈ U | [x]E ⊆ X},

apr(X) =
⋃

{[x]E | x ∈ U, [x]E ⊆ X}.

In [24], Yao generalized the element-based and granule-based lower approx-
imation operator of Pawlak’s model by using neighborhoods instead of equiva-
lence classes. A neighborhood operator n : U → P(U) maps an object x ∈ U
to a subset n(x) ⊆ U . A neighborhood operator n is called reflexive if x ∈ n(x)
for all x ∈ U and it is called transitive if x ∈ n(y) implies n(x) ⊆ n(y) for all
x, y ∈ U [24].

Let n be a neighborhood operator and X ⊆ U , then the element-based and
granule-based lower approximation of X based on n are defined as follows [24]:

apr
1,n

(X) = {x ∈ U | n(x) ⊆ X},

apr
2,n

(X) =
⋃

{n(x) | x ∈ U, n(x) ⊆ X}
= {x ∈ U | ∃y ∈ U : x ∈ n(y), n(y) ⊆ X}.

In general, the element-based and granule-based definition are no longer equiv-
alent to each other, which was the case in Pawlak’s model. However, they are
equivalent for a reflexive and transitive neighborhood operator.
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Theorem 1. [24] Let n be a neighborhood operator. The operators apr
1,n

and
apr

2,n
are equivalent if and only if n is reflexive and transitive.

Following the discussion in Sect. 2, a meaningful generalization of the
subsystem-based definition of Pawlak is provided. The definable sets are now
given by the neighborhood system

Cn = {n(x) | x ∈ U},

which is a covering, instead of the partition U/E. Applying covering Cn to
Eq. (2), we obtain the subsystem-based lower approximation of X ⊆ U based
on n:

apr
3,n

(X) =
⋃

{Y ∈ ∪∗(Cn) | Y ⊆ X}.

In the following, we discuss that the operator apr
3,n

is equivalent to the operators
apr

1,n
and apr

2,n
if n is a reflexive and transitive operator.

Let n be a reflexive and transitive neighborhood operator and let

τn = {X ⊆ U | apr
1,n

(X) = X}.

As n is reflexive, τn is a topology [5]. Qin et al. [13] proved the following theorem:

Theorem 2. [13] If n is a reflexive and transitive operator, then the topology
τn can be characterized by τn = {apr

1,n
(X) | X ⊆ U} and apr

1,n
is the interior

operator of τn.

From this, we derive that for X ⊆ U

apr
1,n

(X) = the greatest set in τn contained byX

=
⋃

{Y ∈ τn | Y ⊆ X},

since τn is a topology and apr
1,n

is its interior operator.

In the following theorem, we prove that all sets in the topology τn are defin-
able and that the operators apr

1,n
and apr

3,n
are equivalent.

Theorem 3. Let n be a reflexive and transitive neighborhood operator, then

1. τn ⊆ ∪∗(Cn),
2. ∀X ⊆ U : apr

1,n
(X) = apr

3,n
(X).

Proof. 1. Let Y ∈ τn, then Y = apr
1,n

(Y ). By Theorem 1,

Y = apr
2,n

(Y ) =
⋃

{n(y) | y ∈ U, n(y) ⊆ Y }.

Hence, Y is a union of neighborhood operators from Cn, and therefore, Y ∈
∪∗(Cn).
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2. Let X ⊆ U . From τn ⊆ ∪∗(Cn), we immediately derive that apr
1,n

(X) ⊆
apr

3,n
(X). On the other hand, let x ∈ apr

3,n
(X), then there exists a set

Y ∈ ∪∗(Cn) such that x ∈ Y and Y ⊆ X. As Y ∈ ∪∗(Cn), there is a subset
F ⊆ Cn such that

Y =
⋃

{n(y) ∈ F}.

Therefore, there exists a neighborhood n(y) ∈ F such that x ∈ n(y). As n is
reflexive and transitive, we have that apr

1,n
(n(y)) = n(y) [24]. Hence, n(y) ∈

τn and since x ∈ n(y) and n(y) ⊆ Y ⊆ X, we derive that x ∈ apr
1,n

(X).

From the above theorem, we conclude that the operators apr
1,n

and apr
3,n

are
equivalent for a reflexive and transitive neighborhood operator. While the latter
is constructed from a semantical point of view, the former is preferable from a
computational point of view.

In the following section, we discuss how the above semantics and different
characterizations of the lower approximation operator can be used to obtain
decision rules from a dominance-based rough set model.

4 Decision Rules in a Dominance-Based Rough
Set Model

The dominance-based rough set model introduced by Greco et al. [2,3,18]
extends the rough set model of Pawlak by using a dominance relation instead
of an equivalence relation as indiscernibility relation. A dominance relation is
reflexive and transitive and is often called a pre-order. It is preferable to choose
a dominance relation instead of an equivalence relation when the domains Va of
the attributes in At are preference-ordered, i.e., if there is a natural order on the
possible values of an attribute. A real-life example is the overall evaluation of
bank clients based on the evaluations of different risk factors.

Formally, an outranking relation �a is defined for each attribute a ∈ At
based on the natural order on Va, i.e., an object x ∈ U dominates an object
y ∈ U , or y is dominated by x, with respect to the attribute a if Ia(x) �a Ia(y).
Such a relation �a is reflexive and transitive. It is assumed that each relation
�a is complete, i.e., that for every pair of objects one object is dominating
the other. This way, we also get preference-ordered decision classes Di, with
Di = {x ∈ U | Id(x) = i}, i ∈ Vd. For i, j ∈ Vd, if i �d j, the objects from Di

are strictly preferred to the objects from Dj . E.g., the bank clients with overall
evaluation ‘good’ are preferable to the clients with overall evaluation ‘medium’.

As the decision classes are preference-ordered, we obtain the upward and
downward union of classes: for i ∈ Vd we have

D≥
i =

⋃
{Dj ∈ U/d | j ≥ i}

and
D≤

i =
⋃

{Dj ∈ U/d | j ≤ i}.
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An object x belongs to D≥
i if the decision of x is at least i, while x belongs to

D≤
i if the the decision of x is at most i.

Given a set of conditional attributes A ⊆ C, we obtain a relation DA of
U based on A as follows: an object x ∈ U dominates an object y ∈ U or y is
dominated by x with respect to A if and only if x �a y for all a ∈ A. The relation
DA is a complete pre-order, since all relations �a are. Given the relation DA for
A ⊆ C and an object x ∈ U , we can define the A-dominating and A-dominated
set of x. The former is given by all predecessors of x by DA, the latter by the
successors of x:

Dp
A(x) = {y ∈ U | yDAx}, (3)

Ds
A(x) = {y ∈ U | xDAy}. (4)

An object y belongs to Dp
A(x) if for all attributes a ∈ A y dominates x with

respect to the attribute a, while y belongs to Ds
A(x) if for all attributes a ∈ A

y is dominated by x with respect to the attribute a. Note that both Dp
A(x) and

Ds
A(x) are reflexive and transitive neighborhoods of the object x [24]. Moreover,

the sets C
p
A = {Dp

A(x) | x ∈ U} and C
s
A = {Ds

A(x) | x ∈ U} are coverings of the
universe U . These coverings are meaningful families of basic granules for A ⊆ C
as it is clear that every patch Dp

A(x), respectively Ds
A(x), represents the objects

which attributes values on A are bounded from below, respectively from above,
by the values of x on A. Moreover, the definable sets are given by the ∪-closed
sets ∪∗(Cp

A) and ∪∗(Cs
A). From Sect. 2, the lower approximation of X ⊆ U using

∪∗(Cp
A) and ∪∗(Cs

A) is given, respectively, by

apr
3,Dp

A

(X) =
⋃

{Y ∈ ∪∗(Cp
A) | Y ⊆ X}, (5)

apr
3,Ds

A

(X) =
⋃

{Y ∈ ∪∗(Cs
A) | Y ⊆ X}, (6)

where we inherit the notation for the lower approximation operators from Sect. 3.
To obtain useful knowledge from the decision table, we want to derive decision

rules from the given data. More specifically, Greco et al. obtained certain rules
from the following lower approximations of the upward and downward union of
classes.

apr
1,Dp

A

(D≥
i ) = {x ∈ U | Dp

A(x) ⊆ D≥
i }, (7)

apr
1,Ds

A

(D≤
i ) = {x ∈ U | Ds

A(x) ⊆ D≤
i } (8)

By Theorem 3, the lower approximations apr
1,Dp

A

(D≥
i ) and apr

1,Ds
A

(D≤
i ) are

equal to apr
3,Dp

A

(D≥
i ) and apr

3,Ds
A

(D≤
i ). Hence, the computational approxima-

tion operators used by Greco et al. both have a semantically sound counterpart,
provided by the framework from Sect. 2.

The interpretation of the lower approximation of an upward union D≥
i is

the following: an object x certainly belongs to D≥
i , i.e., it belongs to its lower

approximation, if for every object y which dominates x with respect to A it holds
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that the decision of y is at least i. Analogously, x certainly belongs to D≤
i if every

object y which is dominated by x with respect to A has a decision at most i.
This way, if the evaluation of an object on A improves, the class assignment of
the object does not worsen and vice versa, if the evaluation on A is less good, the
class assignment does not improve. Therefore, it is not meaningful to consider
{x ∈ U | Dp

A(x) ⊆ D≤
i } and {x ∈ U | Ds

A(x) ⊆ D≥
i } as lower approximations,

although it can be done from computational point of view.
To obtain certain decision rules, let A = {a1, a2, . . . , an} ⊆ C and i ∈ Vd. If

the lower approximation apr
1,Dp

A

(D≥
i ) is not empty then we derive the certain

decision rule

if Ia1(x) ≥ v1 ∧ Ia2(x) ≥ v2 ∧ . . . ∧ Ian
(x) ≥ vn, then Id(x) ≥ i,

where vi ∈ Vai
. Analogously, if apr

1,Ds
A

(D≤
i ) is not empty, then the following

certain decision rule is obtained:

if Ia1(x) ≤ v1 ∧ Ia2(x) ≤ v2 ∧ . . . ∧ Ian
(x) ≤ vn, then Id(x) ≤ i.

In the above discussion, we only obtained certain decision rules as we only
used the lower approximations of the upward and downward unions of decision
classes. However, it is also possible to derive possible rules by using the upper
approximations, which we obtain as the dual operators from Eqs. (7) and (8):

apr1,Dp
A
(D≥

i ) = {x ∈ U | Ds
A(x) ∩ D≥

i �= ∅}, (9)

apr1,Ds
A
(D≤

i ) = {x ∈ U | Dp
A(x) ∩ D≤

i �= ∅}. (10)

Note that these upper approximations are obtained from a computational view-
point, and not from a conceptual one. Although they provide us with possible

Fig. 1. Comparison between the semantical framework and the dominance-based rough
set model
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rules which can be used in data analysis, the semantical meaning of these rules
is less clear.

To end, we summarize the different steps to obtain the lower approximation
operator in the semantically sound approach and the dominance-based rough set
approach in Fig. 1. The lower approximation operators from both frameworks are
equivalent, but there is no such comparison for the upper approximation oper-
ators. By constructing the meaningful coverings C

p and C
s via the dominance

relation �, the dominance-based rough set model can be seen as a special case
of the semantically sound framework of rough sets.

5 Conclusion and Future Work

In this paper we have refocussed on the conceptual formulation of rough sets. We
discussed a semantical approach of Pawlak’s rough set model and covering-based
rough set models in which we formalized the elementary and definable sets. Tak-
ing the definable sets as primitive notions, meaningful approximation operators
are obtained. Unfortunately, since the definable sets in a covering-based rough
set model are not closed under set intersection, the upper approximation of a
set of the universe in this framework is not a definable set, but it is a set of
definable sets.

Furthermore, we have illustrated the semantic approach of covering-based
rough sets with the dominance-based rough set model. The obtained conceptual
lower approximation operator is in fact equivalent to the known computational
lower approximation operator in the dominance-based framework. In addition,
we illustrated how to obtain certain decision rules from a preference-ordered
decision table.

A future objective is to formalize the elementary and definable sets with
respect to a logic language as in [25], by formally describing the intensions and
the extensions of the concepts. Moreover, we will study how to obtain a mean-
ingful covering CA. Furthermore, we want to discuss a semantic approach for
covering-based rough sets for an incomplete decision table.
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2. Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets theory for multi-criteria deci-
sion analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)
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Abstract. In our previous papers, we formally analyzed the general-
ized Aristotle’s square of opposition using tools of fuzzy natural logic.
Namely, we introduced general definitions of selected intermediate quan-
tifiers, constructed a generalized square of opposition consisting of them
and syntactically analyzed the emerged properties. The main goal of
this paper is to extend the generalized square of opposition to graded
generalized hexagon.

Keywords: Intermediate quantifiers · Fuzzy natural logic · Evaluative
linguistic expressions · Generalized Peterson square · Graded generalized
hexagon

1 Introduction

Fuzzy natural logic (FNL) is a formal mathematical theory that consists of three
theories: (1) a formal theory of evaluative linguistic expressions (explained in
detail in [25]), (2) a formal theory of fuzzy IF-THEN rules and approximate
reasoning (presented in [24,27]), and (3) a formal theory of intermediate and
generalized fuzzy quantifiers (presented in [16,18,20,26]). This paper is a con-
tribution to (3), namely to extension of the generalized square of opposition to
graded generalized hexagon.

Recall that the classical Aristotle’s square of opposition [35] consists of the
following formulas:

∗A :All B are A (∀x)(Bx ⇒⇒⇒ Ax) ∧∧∧ (∃x)Bx, (1)
E :No B are A (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax), (2)
I :Some B are A (∃x)(Bx ∧∧∧ Ax), (3)

∗O :Some B are not A (∃x)(Bx ∧∧∧ ¬¬¬Ax) ∨∨∨ ¬¬¬(∃x)Bx. (4)

The diagonals correspond to the relation of contradiction between the uni-
versal affirmative A (“All”) and the particular negative O (“Not all”), as
well as between the universal negative E (“No”) and the particular positive
I (“Some”). The property of contrary holds horizontally at the top between A
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 36–47, 2016.
DOI: 10.1007/978-3-319-40581-0 4
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(“All”) and E (“No”). The inverse relation of sub-contraries holds horizontally
at the bottom between I (“Some”) and O “Not all”. Finally, the vertical relation
between A and I as well as between E and O describes the relation of subaltern
(superaltern).

All the relations can be characterized using the definitions formulated in
[19, p. 17] (see also below). Note that the Aristotle’s square of opposition works
fully with presupposition only. In [30,34]), the authors draw a crucial distinc-
tion between the “classical” Aristotelian square of opposition and the “modern”
duality one based on the concepts of inner and outer negation.

Béziau in [2,3] suggested to extend a square of opposition into a hexagon.
This technically means to add two new formulas U and Y1 that are defined
as disjunction of the two top corners of the square and conjunction of the two
bottom corners:

U = A∨∨∨ E : All or No B are A. (5)
Y = I∧∧∧ O : Some but Not All B are A. (6)

Then we obtain the following Aristotelian hexagon.

U : All or No B are A

∗A : All B are A ∗E : No B are A

I : Some B are A O : Some B are Not A

Y : Some but Not All B are A

The diagonal lines represent contradictories (denoted by straight lines), the
formulas A and E are contraries (denoted by dashed lines), A and E entail U
(denoted by arrow), while Y entails both formulas I as well as O. The formulas
I and O are sub-contraries (denoted by dotted lines). It is interesting to see
that the logical hexagon obtains three Aristotle’s squares of opposition, namely,
AEIO,AYOU and EYUI.

In [32], we can find differences between the Aristotle hexagon and the Duality
hexagon. A logical hexagon with many examples and also the cube of opposition
was described in [15]. A more complex 3D generalization of the hexagon was
proposed by Moretti [17], Pellissier [29] and Smessaert [33]. Applications of the
square of opposition in philosophical and mathematical logic, linguistics and
psychology were studied in [4–6].

The graded Aristotle square of opposition and also a cube of opposition and
its graded version that associates the traditional square of opposition with the
dual one were introduced in [13,14]. The structures of opposition in rough set

1 Blanché in [7] introduced Y at first, before completing it with U in [8].
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theory were analyzed in [10,11]. The gradual hexagon with fuzzy relation and a
connection of hexagon and a cube of opposition was described in [12].

In [19], we demonstrated how the generalized2 Aristotle square of opposition
can be represented formally in fuzzy natural logic. In this paper, we first extend
this theory and analyze graded Aristotle hexagon as a generalization of the
Aristotle classical one. Then we propose a generalization of the Peterson’s square
of opposition (cf. [31]) to a graded hexagon with intermediate quantifiers (we will
call it graded generalized hexagon). Let us remark that these results contribute
also to development of FNL because the discovered relations among intermediate
quantifiers can be applied to formulation of general rules of human reasoning.

The paper is structured as follows: First of all we very briefly remember the
basic mathematical formal system. In Sect. 3, we remember the basic definitions
of contrary, contradictories, sub-contrary and sub-alterns. Then we prove the
main properties of interpretation of three squares of opposition (AEIO,AYOU
and EYUI). Finally, we introduce the graded generalized hexagon with five
basic intermediate quantifiers.

2 Preliminaries

2.1 The Basic Formal System

The fuzzy natural logic is formulated using tools of �Lukasiewicz fuzzy type theory
(�L-FTT) which is a higher-order fuzzy logic. All the details can be found in
the papers [19,23,25]. Recall that the basic syntactical objects of �L-FTT are
classical, namely the concepts of type and formula (cf. [1]).

The semantics is defined using the concept of general model in which the type
o of truth values is assigned a linearly ordered MVΔΔΔ-algebra which is an MV-
algebra extended by the delta operation (see [9,28]). In this paper we will con-
sider only models whose algebra of truth values forms the standard �Lukasiewicz
MVΔ-algebra

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉. (7)

The following special formulas are important in our theory:

Υoo ≡ λzo · ¬¬¬ΔΔΔ(¬¬¬zo), (nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬ΔΔΔ(zo ∨∨∨ ¬¬¬zo). (general truth value)

Thus, M(Υ (Ao)) = 1 iff M(Ao) > 0, and M(Υ̂ (Ao)) = 1 iff M(Ao) ∈ (0, 1)
holds in any model M.

The following completeness theorem will be often used below.

Theorem 1 ([23]).

(a) A theory T is consistent iff it has a general model M.
(b) For every theory T and a formula Ao, T  Ao iff T |= Ao.

2 In some papers, the term “generalized Aristotle square” is replaced by “graded on”.
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2.2 Theories of Evaluative Expressions and Intermediate Quantifiers

The main constituent of FNL is the theory of evaluative linguistic expressions.
These are special natural language expressions such as small, medium, big, very
short, more or less deep, quite roughly strong, extremely high, etc. A formal
theory of their semantics was introduced in [25].

Another constituent of FNL is the theory of intermediate quantifiers. These
are natural language expressions such as most, almost all, a few, etc. Their
semantics is formalized using a special theory of �L-FTT denoted by T IQ[S],
which extends the theory of evaluative expressions. The detailed structure of
T IQ[S] and precise definitions can be found in [18,19,26].

Definition 1. Let S ⊂ Types be a set of selected types. Let T IQ[S] be a theory
of intermediate quantifiers. Let z ∈ Formoα, x ∈ Formα and A,B ∈ Formoα.
Then the following special intermediate quantifiers can be introduced:

A: All B are A := (Q∀
BiΔΔΔx)(B, A) ≡ (∀x)(Bx ⇒⇒⇒ Ax),

E: No B are A := (Q∀
BiΔΔΔx)(B,¬¬¬A) ≡ (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax),

P: Almost all B are A := (Q∀
Bi Exx)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax))∧∧∧ (Bi Ex)((μB)z)),

B: Almost all B are not A := (Q∀
Bi Exx)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax))∧∧∧ (Bi Ex)((μB)z)),

T: Most B are A := (Q∀
Bi Vex)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax))∧∧∧ (Bi Ve)((μB)z)),

D: Most B are not A := (Q∀
Bi Vex)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax))∧∧∧ (Bi Ve)((μB)z)),

K: Many B are A := (Q∀
¬¬¬(Sm ν̄νν)x)(B, A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax))∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

G: Many B are not A := (Q∀
¬¬¬(Sm ν̄νν)x)(B,¬¬¬A) ≡

(∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ ¬¬¬Ax))∧∧∧ ¬¬¬(Sm ν̄νν)((μB)z)),

I: Some B are A := (Q∃
BiΔΔΔx)(B, A) ≡ (∃x)(Bx ∧∧∧ Ax),

O: Some B are not A := (Q∃
BiΔΔΔx)(B,¬¬¬A) ≡ (∃x)(Bx ∧∧∧ ¬¬¬Ax).

3 Graded Aristotle Hexagon

3.1 From Aristotle Square to Graded Square

In this subsection, the main definitions and results that will be used later are
summarized.

Definition 2. Let T be a consistent theory of �L-FTT and P1, P2 ∈ Formo be
closed formulas of type o.
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(i) P1 and P2 are contraries if T  ¬¬¬(P1 &&&P2). By completeness, this is equiv-
alent to

M(P1) ⊗ M(P2) = 0

for every model M |= T 3.
(ii) P1 and P2 are weak contraries if T  Υ̂ (P1 &&& P2). By completeness, this is

equivalent to
0 < M(P1) ⊗ M(P2) < 1

for every model M |= T .
(iii) P1 and P2 are sub-contraries if T  (P1 ∇∇∇ P2). By completeness, this is

equivalent to
M(P1) ⊕ M(P2) = 1

for every model M |= T .
(iv) P1 and P2 are weak sub-contraries if T  Υ (P1∨∨∨P2). By completeness, this

is equivalent to
M(P1) ∨ M(P2) > 0

for every model M |= T .
(v) P1 and P2 are contradictories if both

T  ¬¬¬(ΔΔΔP1 &&&ΔΔΔP2) as well as T  ΔΔΔP1 ∇∇∇ΔΔΔP2.

By completeness, this means that both M(ΔΔΔP1) ⊗ M(ΔΔΔP2) = 0 as well as
M(ΔΔΔP1) ⊕ M(ΔΔΔP2) = 1 hold for every model M |= T .

(vi) The formula P2 is a subaltern of P1 in T if T  P1 ⇒⇒⇒ P2. By completeness,
this means that the inequality

M(P1) ≤ M(P2)

holds true in every model M |= T . We will call P1 a superaltern of P2.

Below we recall the main results which were formally proved in [19]. Recall
that we fix the set S and write T IQ instead of T IQ[S]. Recall that the graded
Aristotle’s square of opposition in �L-FTT works with the following four formulas
with presupposition:

∗A :All B are A (∀x)(Bx ⇒⇒⇒ Ax)&&&(∃x)Bx, (8)
E :No B are A (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax), (9)
I :Some B are A (∃x)(Bx ∧∧∧ Ax), (10)

∗O :Some B are not A (∃x)(Bx ∧∧∧ ¬¬¬Ax)∇∇∇¬¬¬(∃x)Bx. (11)

3 Let M |= T IQ. Then we denote M(�) = 1 and M(⊥) = 0.
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3.2 From Graded Aristotle Square to Graded Aristotle Hexagon

Generalizing the graded Aristotle square to the graded Aristotle hexagon means
to define new formulas which will be put to the top and the bottom of the latter:

U := A∨∨∨ E All or No B are A. (12)
Y := I&&&O Some but Not All B are A. (13)

Lemma 1. There is no model such that

(a) M(Y) = 1 and M(A) = 1.
(b) M(Y) = 1 and M(E) = 1.

Proof. (a) Let there be a model M |= T IQ such that M(Y) = 1 and M(A) = 1.
Then M(ΔΔΔA) = 1 and so from the contradictory relation to O it follows that
M(ΔΔΔO) = 0. Because A is superaltern of I, M(I) = 1 and so, M(I&&&O) =
M(Y) = 0 which contradicts the assumption.

(b) Analogously as (a).

Lemma 2. The following holds in every model M |= T IQ:

(a) M(I∇∇∇U) = 1,
(b) M(O∇∇∇U) = 1.

Proof. (a) Let M |= T IQ. From the contradictory relation of E to I it follows
that M(ΔΔΔE∇∇∇ΔΔΔI) = 1. Then

1 = M(ΔΔΔE∇∇∇ΔΔΔI) ≤ M(E∇∇∇ I) ≤ M(I∇∇∇(E∨∨∨ A)) = M(I∇∇∇U).

(b) Analogously as (a).

Corollary 1. There is no model of T IQ such that

(a) M(U) = 0 and M(I) = 0.
(b) M(U) = 0 and M(O) = 0.

Hence, we conclude the following:

Theorem 2 (Sub-contraries). The couples of formulas I and U, as well as
O and U are sub-contraries in T IQ.

Lemma 3. Let M |= T IQ.

(a) If M(Υ̂ (A)) = 1 then M(O) = 1.
(b) If M(Υ̂ (E)) = 1 then M(I) = 1.

Proof. (a) Let the assumption hold and M(O) < 1. From the contradictory
relation of A to O it follows that M(ΔΔΔA) = 1 and hence M(A) = 1 which
contradicts the assumption.

(b) is proved analogously.
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We see from Lemma 3 that in every model of T IQ, if the truth degree of
the formulas A and E is smaller than 1 then the truth degree of the respective
formulas I and O must be equal to 1. We can also immediately see that if
M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1 then also M(Υ̂ (U)) = 1.

Lemma 4. Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then the
following is true:

(a) M(I) ⊗ M(ΔΔΔU) = 0
(b) M(I) ⊕ M(ΔΔΔU) = 1,
(c) M(O) ⊗ M(ΔΔΔU) = 0,
(d) M(O) ⊕ M(ΔΔΔU) = 1,
(e) M(I) ⊗ M(U) = a ∈ (0, 1),
(f) M(O) ⊗ M(U) = b ∈ (0, 1),
(g) M(I) ⊕ M(U) = 1,
(h) M(O) ⊕ M(U) = 1.

(i) M(ΔΔΔA) ⊗ M(ΔΔΔY) = 0
(j) M(ΔΔΔA) ⊕ M(ΔΔΔY) = 1,
(k) M(ΔΔΔE) ⊗ M(ΔΔΔY) = 0,
(l) M(ΔΔΔE) ⊕ M(ΔΔΔY) = 1,

(m) M(A) ⊗ M(Y) = a ∈ (0, 1),
(n) M(E) ⊗ M(Y) = a ∈ (0, 1),
(o) M(A) ⊕ M(Y) = 1,
(p) M(E) ⊕ M(Y) = 1.

Theorem 3. Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then the
following is true:

(a) The formulas I and U can be contradictories, sub-contraries, as well as weak
contraries.

(b) The formulas O and U can be contradictories, sub-contraries, as well as
weak contraries.

(c) The formulas A and Y can be contradictories, sub-contraries, as well as
weak contraries.

(d) The formulas E and Y can be contradictories, sub-contraries, as well as weak
contraries.

(e) The formulas I and U as well as the formulas O and U cannot be contraries.
(f) The formulas A and Y as well as the formulas E and Y cannot be contraries.

Lemma 5. Let A, E and I,O be intermediate quantifiers introduced above.
Then the following holds in every model M |= T IQ:

(a) M(U) = 0 implies M(Y) = 1.
(b) M(U) = 1 implies M(Y) = 0.

Proof. (a) Let there be a model M |= T IQ such that M(U) = M(A∨∨∨ E) = 0.
Then M(A) = M((∀x)(Bx ⇒⇒⇒ Ax)) = 0 and also M(E) = M((∀x)(Bx ⇒⇒⇒
¬¬¬Ax)) = 0. Hence,

1 = M((∃x)(Bx&&&¬¬¬Ax)) ≤ M((∃x)(Bx ∧∧∧ ¬¬¬Ax)) = M(O)

and also

1 = M((∃x)(Bx&&& Ax)) ≤ M((∃x)(Bx ∧∧∧ Ax)) = M(I).

We conclude that M(I&&&O) = M(Y) = 1.
(b) immediately follows from (a).
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Lemma 6. Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then the
following is true:

(a) M(ΔΔΔU) ⊗ M(ΔΔΔY) = 0,
(b) M(ΔΔΔU) ⊕ M(ΔΔΔY) = 1.

Proof. (a) Let M |= T IQ. Let M(Υ̂ (A)) = 1 and M(Υ̂ (E)) = 1. Then from the
definition of Υ̂ it follows that M(ΔΔΔ(A ∨ E)) = 0. From Lemma 3 we conclude
that M(I&&&O) = 1 as well as M(ΔΔΔ(I&&&O)) = 1. Finally, M(ΔΔΔU)⊗M(ΔΔΔY) = 0
and M(ΔΔΔU) ⊕ M(ΔΔΔY) = 1 are fulfilled.

As a corollary we immediately obtain the following.

Theorem 4 (Contradictories). The quantifiers U and Y are contradictories
in T IQ.

Finally, we can demonstrate that in the graded Aristotle hexagon the two
extra formulas are perfectly united by means of the four arrows of subalterns.

Theorem 5 (Subalterns). The following holds true in the theory T IQ:

(a) The formula U is subaltern of A and E, i.e., T IQ  A ⇒⇒⇒ U and T IQ 
E ⇒⇒⇒ U.

(a) The formula Y is superaltern of I and O, i.e., T IQ  Y ⇒⇒⇒ I and T IQ 
Y ⇒⇒⇒ O.

Corollary 2. The graded Aristotle hexagon forms three graded squares of oppo-
sition, namely AEIO, AYOU and EYIU.

3.3 From Graded Generalized Peterson’s Square to Graded
Generalized Hexagon

In the papers [19,21], we syntactically analyzed and semantically verified the
generalized Peterson square (5-square) of opposition in FNL. In this section, we
will introduce basic concepts using which the graded generalized hexagon can be
formed. We start with the following definitions of new generalized intermediate
quantifiers:

UExBi := P∨∨∨ B Almost all B are A or Almost all B are not A (14)
UVeBi := T∨∨∨ D Most B are A or Most B are not A (15)
Y¬¬¬Sm := K&&&G Many B are A and Many B are not A. (16)

We will suppose that the basic fuzzy set used in the definition of the interme-
diate quantifier is a normal fuzzy set. This is specified by the following definition.

Definition 3. Let B ∈ Formoα. By T [B] we denote an extension of the theory
T IQ such that

T [B]  (∃xα)ΔΔΔBx.
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Theorem 6 (Contraries, [19]). The following couples of formulas are con-
traries in T [B]: B and P, and also D and T.

Other properties of five basic generalized intermediate quantifiers were proved
in [19]. In [22], we analyzed the intermediate quantifier “Many” and its position
inside of 5-square of opposition.

Recall that the formula A is a superaltern of all the formulas P,T,K, I. At
the same time, E is a superaltern of B,D,G,O.

Lemma 7. The following is provable:

(a) T [B]  I∇∇∇UExBi ,
(b) T [B]  I∇∇∇UVeBi .

Proof. (a) Because E is a superaltern of B then by the properties of the delta
operation we obtain T [B]  ΔΔΔE ⇒⇒⇒ ΔΔΔB. Then

T [B]  ΔΔΔE∇∇∇ΔΔΔI ⇒⇒⇒ ΔΔΔB∇∇∇ΔΔΔI. (17)

Furthermore, by the properties of delta we obtain T [B]  ΔΔΔB ⇒⇒⇒ B as well as,
T [B]  ΔΔΔI ⇒⇒⇒ I. Then by properties of �L-FTT we get

T [B]  ΔΔΔB∇∇∇ΔΔΔI ⇒⇒⇒ B∇∇∇ I. (18)

Joining (17) and (18) we obtain

T [B]  ΔΔΔE∇∇∇ΔΔΔI ⇒⇒⇒ B∇∇∇ I. (19)

But we know that The quantifiers E and I are contradictories and so T [B] 
ΔΔΔE∇∇∇ΔΔΔI, which gives T [B]  B∇∇∇ I and also T [B]  (B ∨ P)∇∇∇ I.

(b) Analogously as (a).

Theorem 7. The following couples of formulas are subcontraries in T[B]:
UExBi and I, and also UVeBi and I.

Theorem 8. The following is provable in T [B]:

(a) The quantifier U is a superaltern of UExBi .
(b) The quantifier UVeBi is a subaltern of UExBi .
(c) The quantifier Y¬¬¬Sm is a superaltern of Y.
(d) The quantifiers P and B are a superalterns of UExBi .
(e) The quantifiers T and D are a superalterns of UVeBi .

3.4 Example of the Graded Generalized Hexagon

Let us consider a model M |= T [B] such that T IQ  (∃x)Bx and let M(A) =
a > 0 (e.g., a = 0.2). The degrees inside of the generalized Peterson’s square
follow from the definitions of contraries, contradictories, sub-contraries and
subalterns.
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The following can be proved: The formulas I and O are sub-contraries with
each of U,UExBi ,UVeBi . The quantifier U is superaltern and the formula Y is
subaltern of all of the other quantifiers. Furthermore, the quantifiers A and E
are weak contraries with Y. The motivation and explanation that the quantifier
A is not a negation of the formula O is explained in [19]. Similarly the quantifiers
P,T and B,D are weak contraries with Y.

U : M(A∨∨∨ E) = 0.5

UExBi : M(P∨∨∨ B) = 0.52

UVeBi : M(T∨∨∨ D) = 0.55

∗A : M(A) = 0.2 ∗E : M(E) = 0.5

∗P : M(P) = 0.4 ∗B : M(B) = 0.52

∗T : M(T) = 0.45 ∗D : M(D) = 0.55

∗K : M(K) = 0.8 ∗G : M(G) = 0.7

I : M(I) = 1 O : M(O) = 1

Y¬¬¬Sm : M(K&&&G) = 0.5

Y : M(I&&&O) = 1

In every classical Aristotle hexagon, three squares AEIO, AYOU and
EYIU are formed on the basis of the properties of contraries, contradictories,
sub-contraries and sub-alterns. The graded Aristotle square (AEIO) contains
the same properties as its classical version. It can be seen that the new graded
squares (AYOU and EYIU) prove that the formulas A and Y as well as the
formulas E and Y are weak contraries.
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4 Conclusion

In this paper we extended the theory of graded classical Aristotle square of
opposition to the graded Aristotle hexagon. Then we suggested generalization
of the Peterson’s square of opposition to a graded generalized hexagon, i.e., the
hexagon whose vertices contain intermediate quantifiers.

The future work will focus on more detailed analysis of the properties of
the graded generalized hexagon, possibly extended by more intermediate quan-
tifiers. Furthermore, we will also study graded cube of opposition. This may open
interesting area of study of relations among important classes of properties. We
expect that these results will contribute to the development of fuzzy natural
logic, namely to formulation of various kinds of general rules used in human
reasoning.
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Abstract. We establish extensionality of some upper and lower fuzzy
rough approximation operators on an L-valued set. Taking as the ground
basic properties of these operators, we introduce the concept of an (exten-
sional) fuzzy rough approximation L-valued space. We apply fuzzy func-
tions satisfying certain continuity-type conditions, as morphisms between
such spaces, and in the result obtain a category FRASPA(L) of fuzzy
rough approximation L-valued spaces. An interpretation of fuzzy rough
approximation L-valued spaces as L-fuzzy (di)topological spaces is pre-
sented and applied for constructing examples in category FRASPA(L).

Keywords: Fuzzy rough approximation operators · Extensionality ·
GL-monoid · L-valued set · Fuzzy function · Fuzzy rough approximation
L-valued space

1 Introduction and Motivation

The concept of a many-valued, or L-valued set, appears in research of different
authors. As the basic source, we refer here to U. Höhle’s works [9–12]. Actually,
an L-valued set is a pair (X,E) where X is a set and E : X × X → L is
a fuzzy equivalence, that is a reflexive symmetric transitive fuzzy relation, see
Subsect. 2.2. However, specific is the interpretation of the value E(x, y) as the
degree to which elements x, y ∈ X are equal. Such interpretation provokes, in its
turn, the idea to use not usual functions f : X → Y , assigning to each x ∈ X
a unique y ∈ Y , as morphisms between L-valued sets (X,EX) and (Y,EY ) but
the so called fuzzy functions, that is fuzzy relations R : X × Y → L, satisfying
certain extensionality type conditions [8,27]. The basics of the theory of fuzzy
functions in the channel of this work are exposed in Sect. 4.

Returning back to the concept of an L-valued set (X,E) and recalling that
E : X × X → L is a fuzzy relation, we have the challenge to apply it for the
construction of upper and lower rough approximation operators u : LX → LX

and l : LX → LX , thus approaching the problems of fuzzy rough approximation
of fuzzy sets, see Subsect. 3.1. However, aiming to study such structures and to
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40581-0 5
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stick to fuzzy functions as morphisms between them, we need to assure certain
extensionality properties of the approximation operators u and l. This problem
is solved, in the “optimal way”, in Subsect. 3.2., where we consider extensional
fuzzy rough approximation operators uE , lE : LX → LX . Basic properties of
these operators are the subject of Subsect. 3.3

In Sect. 5 we study properties of fuzzy functions on L-valued sets enriched
with operators uE , lE and apply the obtained results in order to introduce the
general category FRASPA(L) of extensional fuzzy rough approximation L-
valued spaces as objects and fuzzy functions satisfying certain “continuity-type”
properties as morphisms.

In Sect. 6, we briefly touch some issues concerning the interpretation of exten-
sional fuzzy rough approximation L-valued spaces (X,E, u, l) as L-fuzzy ditopo-
logical spaces (X,T,K) and the relations between the corresponding categories.
Some perspectives for the future work are mentioned in Sect. 7.

2 Prerequisites: The Context of the Work

2.1 Cl-Monoids and Residuated Lattices

Let (L,≤,∧,∨) denote a complete frame, that is a lattice in which arbitrary
suprema (joins) and infima (meets) exist and in which finite meets distribute
over arbitrary unions: α ∧ {∨βi : i ∈ I} =

∨
i{α ∧ βi : i ∈ I} ∀α ∈ L, ∀{βi :

i ∈ I} ⊆ L. In particular, the top 1L and the bottom 0L elements in L exist and
0L 	= 1L. Following G. Birkhoff [1] by a cl-monoid we call a tuple (L,≤,∧,∨, ∗)
where (L,≤,∧,∨) is a complete frame and the binary operation ∗ : L × L → L
satisfies conditions:

(0cl) ∗ is monotone: α ≤ β =⇒ α ∗ γ ≤ β ∗ γ for all α, β, γ ∈ L;
(1cl) ∗ is commutative: α ∗ β = β ∗ α for all α, β ∈ L;
(2cl) ∗ is associative: (α ∗ β) ∗ γ = α ∗ (β ∗ γ) for all α, β, γ ∈ L;
(3cl) ∗ distributes over arbitrary joins: α∗(∨

i∈I βi

)
=

∨
i∈I(α∗βi) for all α ∈ L,

for all {βi | i ∈ I} ⊆ L,
(4cl) α ∗ 1L = α, α ∗ 0L = 0L for all α ∈ L.

In a cl-monoid a further binary operation �→, residuum, is defined:
α �→ β =

∨{λ ∈ L | λ ∗ α ≤ β}, ∀α, β, γ ∈ L. Residuation is connected with
operation ∗ by the Galois connection: α ∗ β ≤ γ ⇐⇒ α ≤ (β �→ γ), see e.g. [5].

Remark 1. A cl-monoid can be defined also as an integral commutative two-sided
quantale [25] A cl-monoid (L,≤,∧,∨, ∗) interpreted as a tuple (L,≤,∧,∨, �→) is
known also as a residuated lattice, see [18].

2.2 GL-monoids

[10,13] A cl-monoid (L,≤,∧,∨, ∗) is called a GL-monoid1 if it is divisible, that
is the following axiom is satisfied:
(GL) If α ≤ β, α, β ∈ L, then there exists γ ∈ L such that α = β ∗ γ.

1 GL comes as an abbreviation of Generalized Logic.
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It is known that a GL-monoid has the following important properties, which
are not valid in an arbitrary cl-monoid, see [10], [12, pp. 108–109]:

(GL1) α ∗ (α �→ β) = α ∧ β;
(GL2) α ∗ (β ∧ γ) = (α ∗ β) ∧ (α ∗ γ), ∀α, β, γ ∈ L;
(GL3) α ∗ β ≤ (α ∗ α) ∨ (β ∗ β), ∀α, β ∈ L.

Important examples of GL-monoids are frames (if ∗ = ∧) and MV-algebras.
A large part of our research can be done if an arbitrary cl-monoid L is used

as the range L for fuzzy equivalences and fuzzy sets. However in some cases we
additionally need to request divisibility of the cl-monoid. Therefore, in order to
make exposition more concise, we always assume that L denotes a GL-monoid.

2.3 L-Equivalences and L-valued Sets

A binary fuzzy relation E on X is called an L-equivalence, or a fuzzy equivalence
on X (see [9,11,15,28], et al.) if for all x, y, z ∈ X, the following properties hold:

(1) E(x, x) = 1, reflexivity,
(2) E(x, y) = E(y, x), symmetry,
(3) E(x, y) ∗ E(y, z) ≤ E(x, z), transitivity.

A pair (X,E), where E is a fuzzy equivalence on X, is called an L-valued set.

2.4 Extensional Fuzzy Sets

A fuzzy set A in an L-valued set (X,E) is called extensional if A(x)∗E(x, x′) ≤
A(x′) for all x, x′ ∈ X, see, e.g., [9,10,14].

3 Fuzzy Rough Approximation Structure of L-valued
Sets

3.1 Historical Comments and Statement of the Problem

In 1982 Z. Pawlak introduced the concept of a rough set [19]. Given a set X
endowed with a (crisp) equivalence relation E ⊆ X × X and a subset A ⊆ X,
a rough set determined by A can be defined as the pair (A�, A�), where A� =
{x ∈ A | [x]E ∩ A 	= ∅} and A� = {x ∈ A | [x]E ⊆ A}; here [x]E denotes the
E-equivalence class of the element x ∈ A.

In 1990 D. Dubois and H. Prade [4] published the first work where the concept
of a rough set was extended to the context of fuzzy sets. Later there was done
much research where different approaches to the fuzzification of the concept of
a rough set were developed. Specifically, an important research work related to
fuzzy rough sets is presented in the papers [16,17,20,21,23,26], et al. in which
different approaches to the subject of a fuzzy rough set were presented.

When working in the context of L-valued sets and their fuzzy subsets, espe-
cially when developing abstract mathematical structures, such as algebraic or
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topological, the property of extensionality of fuzzy sets involved in the research,
plays an important role. In particular, aiming to introduce an abstract math-
ematical concept for a set equipped with some kind of a fuzzy rough approxi-
mation structure (u, l), it is natural to request extensionality of these operators.
The “classical”, Pawlak’s definition of a rough set, leads to extensional upper
and lower approximation operators �,�, see Remark 3. On the other hand many
generalizations of these operators to the fuzzy setting fail to be extensional. The
aim of this section to find “the most appropriate” upper and lower extensional
fuzzy rough approximation operators uE and lE and to establish their basic
properties.

3.2 Definition of the Extensional Fuzzy Rough Approximation
Operators

Recall (see e.g. [9,10,14]) that the extensional hull of a fuzzy set A ∈ LX in an
L-valued set (X,E) is the smallest extensional fuzzy set Ã ∈ LX that is larger
than or equal to A (Ã ≥ A.)

We define the extensional kernel of a fuzzy set A ∈ LX in an L-valued set
(X,E) as the largest fuzzy subset A0 ∈ LX that is smaller than or equal to A
(A0 ≤ A).

Definition 1 [16], see also [26]. Given an L-valued set (X,E), the upper fuzzy
rough approximation operator uE : LX → LX is defined by:

uE(A)(x) = supx′(E(x, x′) ∗ A(x)), ∀A ∈ LX , ∀x ∈ X,

and the lower fuzzy rough approximation operator lE : LX → LX is defined by:

lE(A)(x) = infx′(E(x, x′) �→ A(x)), ∀A ∈ LX , ∀x ∈ X.

The proof of the following known fact is included for clarification purposes.

Proposition 1. [9,10,14,27]. The extensional hull of a fuzzy set A in an L-
valued set (X,E) equals to its image under upper fuzzy rough approximation
operator uE : LX → LX , that is Ã = uE(A).

Proof. By definition of uE(A), for every x ∈ X, we have uE(A)(x) ∗ E(x, x′) =
supx′′∈X (A(x′′) ∗ E(x, x′′)) ∗ E(x, x′) ≤ supx′′∈XA(x′′) ∗ E(x′, x′′) = uE(A)(x′),
and hence uE(A) is extensional. Applying reflexivity of E we see that uE(A) ≥ A.
Further, by the definition of uE(A) it is clear, that any extensional fuzzy set
containing A will contain also uE(A), and hence uE(A) = Ã.

Proposition 2. Let A be a fuzzy subset of an L-valued set (X,E) and let A0

be its kernel. Then A0 ≤ lE(A)

Proof. Since A0 is extensional, we have A0(x)∗E(x, x′) ≤ A0(x′) for every x, x′

in X, and hence A0(x) ≤ E(x, x′) �→ A0(x′) ≤ E(x, x′) �→ A(x′), ∀x, x′ ∈ X. It
follows from here that A0(x) ≤ infx′∈X (E(x, x′) �→ A(x′)) = lE(A)(x), ∀x ∈ X,
that is A0 ≤ l(A). �
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Proposition 3. uE(lE(A)) = lE(A) for a fuzzy set A in an L-valued set (X,E).

Proof. From the definition of the operators uE , lE : LX → LX we have:

uE(lE)(A)(x) = supy∈X (E(x, y) ∗ infz∈X (E(z, y) �→ A(z))) ≤
sup
y∈X

inf
z∈X

(E(x, y) ∗ (E(z, y) �→ A(z))) ≤ inf
z∈X

sup
y∈X

E(x, y) ∗ (E(z, y) �→ A(z))

≤ inf
z∈X

sup
y∈Y

((E(x, y) �→ E(y, z)) �→ A(z)) ≤ inf
z∈X

( inf
y∈Y

(E(x, y) �→ E(y, z)) �→ A(z))

≤ inf
z∈X

(E(x, z) �→ A(z)) = lE(A)(x).

The third and the fourth inequalities in the above series are ensured by the easily
established inequalities a ∗ (b �→ c) ≤ (a ∗ b �→ c) and

∨
i(ai �→ b) ≤ (

∧
i ai �→ b)

which hold in every GL-monoid; the last inequality follows from the definition of
an L-valued equivalence: the condition E(x, y) ≤ E(x, z) ∗ E(z, y) implies that
E(x, z) ≤ E(z, y) �→ E(y, x),∀y ∈ X.

Thus we have uE(lE(A)) ≤ lE(A). Since the inequality lE(A) ≤ uE(lE(A) is
obvious, we get the requested equality uE(lE(A)) = lE(A). �

Remark 2. In the special case when L = [0, 1] is viewed as a Gödel algebra, that
is ∗ = ∧ is the infimum t-norm, the statement of the above theorem is contained
in Proposition 9 in [23]. We have reworked the proof of that proposition in order
to cover the case of an arbitrary GL-monoid L.

Corollary 1. For every fuzzy set A in an L-valued set (X,E) its lower fuzzy
rough approximation lE(A) is an extensional fuzzy set.

From here and Proposition 2 we get the following fundamental for us result:

Theorem 1. For every fuzzy set A in an L-valued set (X,E) the lower fuzzy
rough approximation operator assigns to A its kernel A0: lE(A) = A0.

From this theorem and Proposition 1 we get

Corollary 2. The equality lE(uE(A)) = lE(A) holds for every fuzzy set A of an
L-valued set (X,E).

In the sequel the pair (uE , lE) will be referred to as the extensional fuzzy rough
approximation structure induced by the L-equivalence E.

Remark 3. Let L = {0, 1} =: 2 and let E : X × X → {0, 1} be an equivalence
relation. Obviously, in this case E is actually the crisp equivalence relation on X.
Then the images of a set A ∈ 2X under operators uE : 2X → 2 and lE : 2X → 2
make the pair (uE(A), lE(A)) which is actually Pawlak’s originally defined rough
set (A�, A�) determined by the set A. Indeed, notice first that uE(A)(= Ã) in
this case is just the set of all elements x ∈ A whose classes [x]E of E-equivalence
have non-empty intersections with A: [x]E ∩ A 	= ∅, and hence uE(A) = A�. On
the other hand, lE(A)(= A0) is the set of all elements x ∈ A, whose classes of
equivalence [x]E are contained in A: [x]E ⊆ A, and hence lE(A) = A�.
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3.3 Properties of Operators uE and lE

The most important for us properties of the operators uE and lE are collected
in the next proposition:

Proposition 4 (cf [6,7,16,26]). Let (X,E) be an L-valued set and (uE , lE) be
the extensional fuzzy rough approximation structure of E. Then

(1u) uE(0X) = 0X , where 0X : X → L is the constant mapping 0X(x) = 0L;
(2u) A ≤ uE(A), ∀A ∈ LX ;
(3u) uE(

∨
i Ai) =

∨
i uE(Ai), ∀{Ai | i ∈ I} ⊆ LX in particular

(3′u) uE(A1 ∨ A2) = uE(A1) ∨ u(A2),∀A1, A2 ∈ LX ;
(4u) uE(uE(A)) = uE(A), ∀A ∈ LX ;
(1l) l(1X) = 1X where 1X : X → L is the constant mapping 1X(x) = 1L;
(2l) A ≥ lE(A), ∀A ∈ LX ;
(3l) lE(

∧
i Ai) =

∧
i lE(Ai), ∀{Ai | i ∈ I} ⊆ LX in particular

(3′l) lE(A1 ∧ A2) = lE(A1) ∧ u(A2),∀A1, A2 ∈ LX ;
(4l) lE(lE(A)) = lE(A), ∀A ∈ LX .

For completeness we include the proof of this important proposition.

Proof Statement (1u) is obvious. Statement (2u) follows easily taking into
account reflexivity of the L-relation E. We prove property (3u) as follows:
uE(

∨
i Ai)(x) = supx′(E(x, x′) ∗ (

∨
iAi(x′))) = supx′(

∨
iE(x, x′) ∗ Ai(x′)) =∨

i(supx′(E(x, x′) ∗ Ai(x′))) =
∨

i(uE(Ai)(x)) = (
∨

i(uE(Ai)) (x).
Finally, taking into account transitivity of the L-relation we have:
uE(uE(A))(x) = supx′(uE(A)(x′) ∗ E(x, x′)) = supx′′supx′(A(x′′) ∗ E(x, x′) ∗
E(x′, x′′)) ≤ supx′′A(x′′) ∗ E(x, x′′) = uE(A)(x). Since the converse inequality
follows from (2u), we get property (4u).

Statement (1l) is obvious. Statement (2l) follows easily taking into account
reflexivity of the L-equivalence E. We prove property (3l) as follows:
lE(

∧
iAi)(x) = infx′ (E(x, x′) �→ ∧

iAi(x′)) = infx′
∧

i (E(x, x′) �→ Ai(x′)) =∧
iinfx′ (E(x, x′) �→ Ai(x′)) =

∧
ilE(Ai).

Finally, taking into account transitivity of the L-equivalence E we have:
lE(lE(A))(x) = infx′(E(x, x′) �→ lE(A)(x′)) = infx′(E(x, x′) �→ infx′

(E(x′, x′′) �→ A(x′′))) = infx′(infx′′(E(x, x′) ∗ E(x′, x′′) �→ A(x′′))) ≥
infx′′(E(x, x′′) �→ A(x′′)) = lE(A)(x). Since the converse inequality follows from
(2l), we get (4l). �

4 Fuzzy Functions

The concept of a fuzzy function in the sense, as it is used in this work first
appeared in [3], and (independently) in [8]. Further development of the theory
of fuzzy functions was conducted in [27] and in the recent research [22]. Here we
expose the basics of the theory of fuzzy functions in the form and to the extent,
as it is needed in the sequel.
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4.1 Fuzzy Functions and the Category FSET(L)

Let L = (L,≤,∧,∨, ∗) be a fixed GL-monoid. Recall that an L-relation (or just
a fuzzy relation if the GL-monoid L is fixed) between sets X and Y is a mapping
R : X × Y → L, see e.g. [29], [28]. In case when (X,EX), (Y,EY ) are L-valued
sets, we specify a special type of fuzzy relations, which “respect” L-equivalences:

Definition 2 [22]. A double extensional L-fuzzy relation ( or a d.e. fuzzy rela-
tion for short) between L-valued sets (X,EX) and (Y,EY ) is a fuzzy relation
R : X × Y → L such that

(1Ff) R(x, y) ∗ EY (y, y′) ≤ R(x, y′), ∀x ∈ X, ∀y, y′ ∈ Y ;
(2Ff) EX(x, x′) ∗ R(x, y) ≤ R(x′, y), ∀x, x′ ∈ X, ∀y ∈ Y ;

Aiming to distinguish a class of d.e. fuzzy relations that could be interpreted as
fuzzy functions, we introduce the degree of functionality for a d.e. fuzzy relation:

Definition 3 [22]. Given a d.e. fuzzy relation R : X ×Y → L between L-valued
sets (X,EX) and (Y,EY ), we define its degree of functionality by
φ(R) = infx∈X,y,y′∈Y (R(x, y) ∗ R(x, y′) �→ EY (y, y′)) .

Definition 4 [22]. A fuzzy function from an L-valued set (X,EX) to an L-
valued set (Y,EY ) is a d.e. fuzzy relation R : X × Y → L such that φ(R) = 1.

One can easily see that a fuzzy function from (X,EX) to (Y,EY ) can be defined
also as a d.e. fuzzy relation R : X × Y → L such that

(3Ff) R(x, y) ∗ R(x, y′) ≤ EY (y, y′), ∀x ∈ X, ∀y, y′ ∈ Y ;

Note, that fuzzy functions, defined as fuzzy relations satisfying properties (1Ff) -
(3Ff), were introduced and studied in [3,8,27].

Definition 5. Let R : X × Y → L and S : Y × Z → L, be fuzzy relations; then
their composition is a fuzzy relation S ◦ R : X × Z → L defined by

(S ◦ R)(x, z) =
∨

y∈Y
(R(x, y) ∗ S(y, z)), ∀x ∈ X, z ∈ Z.

Proposition 5 [22]. Let (X,EX), (Y,EY ), (Z,EZ) be L-valued sets and let R :
X × Y → L, S : Y × Z → L be d.e. fuzzy relations. Then their composition
S ◦ R : X × Z → L is double extensional.

Proposition 6 [8,22,27]. Composition of two fuzzy functions R : X × Y → L
and S : Y × Z → L is a fuzzy function S ◦ R : X × Z → L.

Given an L-valued set (X,EX), the fuzzy relation I : X × X → L defined by
I(x, x′) = 1 iff x = x′ and I(x, x′) = 0 otherwise, is obviously a fuzzy function
I : X×X → L. Besides I◦R = R◦I = R for every fuzzy function R whenever the
composition is defined. So, referring to Proposition 6, we come to the following

Proposition 7. L-valued sets as objects and fuzzy functions as morphisms con-
stitute a category. This category will be denoted FSET(L)
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4.2 Soundedness Degree of a Fuzzy Function [22,27]

Definition 6. Given a fuzzy function R : X × Y → L, we define its degree of
soundedness by μ(R) = infxsupyR(x, y). In case μ(R) = 1L, the fuzzy function
R is called sound.

Remark 4. The intuitive meaning of the value μ(R) is to what extent the set X
is the domain of the fuzzy function R : X × Y → L. We illustrate this with the
following example: Let X,Y be sets, X ′ ⊆ X and f : X ′ → Y be a function.
Interpreting f as the fuzzy function Rf : X×Y → {0, 1} defined by Rf (x, y) = 1
iff y = f(x), we have μ(Rf ) = 1 iff X ′ = X and μ(Rf ) = 0 otherwise.

Proposition 8 [8,27]. Let (X,EX), (Y,EY ), (Z,EZ) be L-valued sets, R : X ×
Y → L, S : Y × Z → L be fuzzy functions and S ◦ R : X × Z → L be their
composition. Then μ(S ◦ R) ≥ μ(R) ∗ μ(S).

4.3 Forward and Backward Powerset Operators Induced by Fuzzy
Functions

Let (X,EX) and (Y,EY ) be L-valued sets and R : X×Y → L be a fuzzy relation.
Following [22,27] we define the forward and the backward powerset operators
induced by R : X × Y → L as follows:

Definition 7. The forward operator R→ : LX → LY is defined by setting:

R→(A)(y) =
∨

x
(R(x, y) ∗ A(x)) , ∀A ∈ LX , ∀y ∈ Y.

The two alternative backward operators R← : LY → LX and R⇐ : LY → LX

are defined by setting for all B ∈ LY :

R←(B)(x) =
∨

y
R(x, y) ∗ B(y), R⇐(B)(x) =

∧

y
R(x, y) �→ B(y), ∀x ∈ X.

The fuzzy set R→(A) is called the image of the fuzzy set A under R : X×Y → L,
and fuzzy sets R←(B) and R⇐(B) are called the preimage and the small preimage
of the fuzzy set B under R : X × Y → L respectively.2

Remark 5. Let EX and EY be =X and =Y , that is the ordinary equalities on
the sets X and Y respectively. If R = Rf is the relation induced by an ordinary
function f : X → Y , then R→

f and R←
f , R⇐

f reduce to the definitions of a
forward and backward operators f→ : LX → LY and f← : LY → LX , as they
were introduced by S.E. Rodabaugh [24].

Basic properties of forward and backward operators are collected in the fol-
lowing proposition, the proof of which can be found in [22,27].

2 In [22] we show that R⇐(B) ≤ R←(B) under some “reasonable” assumptions on R.
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Proposition 9. Let (X,EX), (Y,EY ) be L-valued sets and let R : X × Y → L
be a fuzzy function. Further, let LX

E and LY
E denote the families of extensional

subsets of the L-valued sets (X,EX) and (Y,EY ) respectively. Then:

(1) R→ (∨
i∈I(Ai)

)
=

∨
i∈I R→(Ai), ∀{Ai | i ∈ I} ⊆ LX ;

(2) R→(A1 ∧ A2) ≤ R→(A1) ∧ R→(A2), ∀A1, A2 ∈ LX ;
(3) if R is sound, R← (∧

i∈IBi

)
=

∧
i∈I(R

←Bi), R⇐ (∧
i∈IBi

)
=

∧
i∈I(R

⇐Bi);
(4) R← (∨

i∈IBi

)
=

∨
i∈I(R

←Bi), ∀{Bi : i ∈ I} ⊆ LY ;
(5) in case R is sound, A ≤ R←(R→(A)), ∀A ∈ LX ;
(6) R→(R←(B) ≤ B, ∀B ∈ LY

E ;
(7) R←(αY ) = αX and R⇐(αY ) = αX whenever R is sound.

Proposition 10. Let R : X × Y → L and S : Y × Z → L, be fuzzy relations
and let S ◦ R : X × Z → L be their composition. Then for every C ∈ LZ it holds
(S ◦ R)←(C) = R←(S←(C)) and (S ◦ R)⇐(C) = R⇐(S⇐(C)).

Proof. Take any x ∈ X. Then (S ◦ R)←(C)(x) =
∨

z∈Z(S ◦ R)(x) ∗ C(z) =
∨

z

(∨
y(R(x, y) ∗ S(y, z))

)
∗C(z) =

∨
y R(x, y)∗∨

z(S(y, z)∗C(z)) =
∨

y R(x, y)∗
S←(C)(y) = R←(S←(C))(x);
(S ◦ R)⇐(C)(x) =

∨
z((S ◦ R)(x) �→ C(z)) =

∨
z

( ∨
y(R(x, y) ∗ S(y, z)) �→

C(z)
)

=
∨

z

∨
y(R(x, y) �→ (S(y, z) �→ C(z))) =

∨
y(R(x, y) �→ ∨

z(S(y, z) �→
C(z))) =

∨
y (R(x, y) �→ S⇐(C)(y)) = R⇐(S⇐(C))(x). �

5 A Category of Extensional Fuzzy Rough Approximation
L-valued Spaces and Fuzzy Functions

We start with establishing two important properties concerning the behaviour
of operators uE and lE under fuzzy functions:

Theorem 2. Let R : (X,EX) → (Y,EY ) be a fuzzy function, and let uEX
, lEX

:
LX → LX , uEY

, lEY
: LY → LY be fuzzy rough approximation operators induced

by L-valued equivalences EX and EY respectively. Then the following hold:
(Ru) R→(uEX

(A)) ≤ uEY
(R→(A)) for every A ∈ LX

(Rl) lEX
(R⇐B) ≤ R⇐(lEY

(B)) for every B ∈ LY .

Proof. We prove Property (Ru) as follows. Let A ∈ LX and y ∈ Y . Then
R→(uE(A))(y) =

∨
x(R(x, y)∗uE(A)(x)) =

∨
x R(x, y)∗∨

x′(E(x, x′)∗A(x′)) =∨
x

∨
x′(R(x, y)∗E(x, x′))∗A(x′)) ≤ ∨

x′ R(x′, y)∗A(x′) = R→(A)(y), and hence,
moreover R→(uE(A))(y) ≤ R→uE(A)(y).

We prove Property (Rl) as follows. Let B ∈ LY and x ∈ X. Then
R⇐(l(B))(x) =

∧
y(R(x, y) �→ l(B)(y)) =

∧
y(R(x, y) �→ ∧

y′(E(y, y′) �→
B(y′))) =

∨
y

∧
y′(R(x, y) �→ (E(y, y′) �→ B(y′))) =

∧
y

∨
y′(R(x, y) ∗ E(y, y′) �→

B(y′)) ≥ ∧
y(R(x, y) �→ B(y)) ≥ R⇐(B)(x), and hence lE(R⇐(B))(x) ≤

R⇐(lE(B))(x).
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Remark 6. Property (Ru) in the previous theorem implies that the image
R→(A) of every A ∈ LX is an extensional fuzzy subset in (Y,EY ). We show
that the preimage R←(B) of every B ∈ LY is an extensional fuzzy subset
in (X,EX). Indeed, for every x, x′ ∈ X we have R←(B)(x) ∗ EX(x, x′) =(∨

yR(x, y) ∗ B(y)
)
∗EX(x, x′) =

∨
y((R(x, y)∗EX(x, x′))∗B(y) ≤ ∨

y(R(x′, y)∗
B(y)) = R←B(x′), and hence R←(B) is extensional. Specifically, this means that
R←(lE(B)) ≤ lE(R←(B)). The above comments can be summarized as follows:

Proposition 11. For a fuzzy function R : (X,EX) → (Y,EY ) the following
inequalities hold: (RuR) R→ ◦ uEX

≤ uEY
◦ R→; (RlR) R← ◦ lEY

≤ lEX
◦ R←.

Motivated by the properties of operators uE , lE summarized in Proposition 4
and their behaviour under fuzzy functions established in Theorem 2, and antic-
ipating their (di)topological interpretation in Sect. 6, we introduce definitions:

Definition 8. By a fuzzy rough upper approximation operator on an L-valued
set (X,E) we call a mapping u : LX → LX

E satisfying properties (1u),(2u),(3′u),
(4u), see Proposition 4. By a lower rough approximation operator on (X,E) we
call a mapping u : LX → LX

E satisfying properties (1l),(2l),(3′l), (4l). The tuple
(X,E, u, l) thus obtained is called a fuzzy rough approximation L-valued space.

Definition 9. Given fuzzy rough approximation L-valued spaces (X,EX ,
uX , lX) and (Y,EY , uY , lY ), a fuzzy function R : (X,EX , uY , lY ) →
(X,EY , uY , lY ) is called continuous if it satisfies properties (Ru) and (Rl) from
Theorem 2.

Let FRASET(L) be the category determined by fuzzy rough approx-
imation L-valued spaces (X,E, u, l) and continuous fuzzy functions R :
(X,EX , uX , lX) → (X,EY , uY , lY ). We introduce a partial order on the set
FRA(X,E) of all fuzzy rough approximation structures (u, l) of an L-valued set
(X,E) by setting (u, l) ≺ (u′, l′) if and only if u′ ≤ u and l′ ≥ l. From Theorem 2
it follows that the category FSET(L) can be identified with the full subcategory
of the category FRASPA(L) whose objects are tuples (X,E, uE , lE). Besides,
the structure (uE , lE) is the largest one in the family FRA(X,E). Specifically,
this means that the identity fuzzy function Id : (X,E, uE , lE) → (X,E, u, l) is
continuous for every structure (u, l). The smallest fuzzy rough approximation
structure on (X,E) is the pair (u0, l0) where u0(0X) = 0X and u0(A) = 1X
whenever A 	= 0X ; l0(1X) = 1X and l0(A) = 0X whenever A 	= 1X . Obviously
Id : (X,E, u, l) → (X,E, u0, l0) is continuous for every fuzzy rough approxima-
tion structure (u, l).

6 A Topological Outlook on the Fuzzy Rough
Approximation L-valued Spaces

Given an L-valued set (X,E), the operators uE and lE can be interpreted
as closure and interior fuzzy topological operators (Proposition 4). The cor-
responding fuzzy topology TlE = {A ∈ LX | l(A) = A} and co-topology
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KuE
= {A ∈ LX | A = u(A)} coincide and are equal to the set LX

E of all
extensional fuzzy subsets of X. Besides, it is an Alexandroff fuzzy topology in
the sense that it is invariant under taking arbitrary intersections of open fuzzy
sets. In a certain sense the family LX

E is the extensional analogue of the discrete
fuzzy topology and is the finest “extensional” fuzzy topology on (X,E).

Generalizing observation in the previous paragraph, let cl : LX → LX
E be

an arbitrary closure operator and int : LX → LX
E be an arbitrary (generally

unrelated) interior operator, in the sense that they satisfy conditions like (1u),
(2u), (3′u) (4u) and (1l), (2l), (3′l) (4l) respectively in Proposition 4. We define
upper an lower approximation operators u : LX → LX

E and l : LX → LX
E by

setting u = cl ◦ uE and l = int ◦ lE . It is clear that u and l satisfy properties
(1u), (2u), (3′u) (4u) and (1l), (2l), (3′l) (4l) respectively and hence (X,E, u, l)
gives an example of a fuzzy rough approximation L-valued space. On the other
hand, by setting Tl = {A ∈ LX | l(A) = A} we obtain a fuzzy topology and
by setting Ku = {A ∈ LX | u(A) = A} a fuzzy co-topology on X; hence in
the result, we get a fuzzy ditopology [2], that is a pair (Tl,Ku) of generally
independent families of open and closed extensional fuzzy subsets of (X,E).
Since, obviously, u ≥ uE and l ≤ lE the ditopology (Tl,Ku) generated by (u, l)
is coarser than the ditopology (TlE ,KuE

). On the other hand every L-fuzzy
(di)topological space (X,T,K) can be realized as a fuzzy rough approximation
L-valued space (X,E, u, l) by taking the ordinary equality =X as E and defining
u = clK , l = intT ) where intT and clK are the interior and the closure operators
determined by T and K respectively.

Remark 7. Note that various aspects of relations of different (fuzzy) rough
approximation structures and (fuzzy) topologies, however, as far as we know,
without taking any care of the property of extensionality, where considered by
different authors, see e.g. [7,16,20,21,26] just to mention a few of them.

7 Conclusion

We establish extensionality of fuzzy rough approximation operators uE and lE
induced by a fuzzy equivalence E : X ×X → L. Basing on this fact we introduce
the concept of a fuzzy rough approximation L-valued space as a tuple (X,E, u, l)
where u, l : LX → LX

E are operators satisfying properties, analogous to the
properties of operators uE , lE . After brief refreshing information concerning fuzzy
functions we define the category of fuzzy rough approximation L-valued spaces
and fuzzy functions satisfying certain continuity-type conditions. A ditopological
interpretation of a fuzzy rough approximation L-valued space is developed. and
used for constructing examples of fuzzy rough approximation L-valued spaces.

Concerning perspectives for the future research in the direction of this work,
we have in view the following. To study properties of the category FRASPA(L).
Specifically, to study the properties of the lattice of fuzzy rough approxima-
tion structures (u, l) on an L-valued set (X,E); to investigate operations of
products, coproducts, etc., of such spaces; to define initial and final structures
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in FRASPA(L) etc. In this work we have only briefly touched the relations
between fuzzy rough approximation L-valued spaces and (L-)fuzzy ditopological
spaces. We think this subject has perspectives for a further study. In particu-
lar, it seems interesting to study “inner” conditions on the L-valued equivalence
E and/or on operators u and l under which the resulting fuzzy ditopology is
a fuzzy topology, that is when u and l are related as the closure and interior
operators in an ordinary topological space. Another problem is to elucidate, to
what extent the properties of the fuzzy equivalence E are fundamental for the
present research. Specifically, whether the results of this work in a certain way
can be extended to the so called local fuzzy equivalences E [10].
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Abstract. In this paper we show how many-valued relations syntac-
tically can be formulated using powertype constructors. This in turn
enables to describe the syntax of generalized relations in the start-
ing point sense where the category sets and relations is isomorphic to
the Kleisli category of the powerset monad over the category of sets.
We can then generalize to work over monoidal closed categories, and
thereby description logic, formal concepts and rough sets can be viewed
as depending on that powertype constructor, and within a setting of
many-valued λ-calculus. In order to achieve this, we will adopt a three-
level arrangement of signatures [4], and demonstrate the benefits of using
it. Bivalent and untyped relational adaptations typically appear in ter-
minology and ontology, and we will illuminate this situation concerning
classifications in health. Extensions to multivalent and typed nomencla-
tures provides an enrichment that is beneficial in practical use of health
classifications and nomenclatures.

Keywords: Classification · Concept · Functor · Generalized relation ·
Health · Monad · Nomenclature · Ontology · Signature

1 Introduction

Terms are the foundational cornerstones of logic, and signatures are founda-
tional for the term construction. Type constructors are frequently used to create
new sorts from old ones, but type constructors are traditionally adopted from
the outside. This means that type constructors are not seen as operators in a
signature in its own right.

We adopt a three-level arrangement of signatures [4] where the middle level
contains type constructors, and the first and third level, respectively, is used to
clearly distinguish terms from λ-terms. The conventional definition of λ-terms
is informal, and, in fact, not constructive, or at least to say that it hides the
underlying formal term construction. Doing so, the conventional definition cre-
ates a demand for renaming, which cannot be formally justified, but is an ad hoc
necessity to avoid ambiguities. Similar hidden phenomena appears, of course, in
many branches of computing, even in Turing machines, that hides recursion in
a way that makes Church’s thesis to be informal only.

We respect Church’s view that λ is just an informal symbol [1], and we go
even further by showing how it can be formalized, when it must be formal-
ized. A fundamental consequence for terms on signature levels is then that λ is
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 61–68, 2016.
DOI: 10.1007/978-3-319-40581-0 6
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seen not to be a general abstractor, but rather that any operator possesses its
own capacity to abstract itself, and not to possess any capacity whatsoever to
abstract anything else. In an expression like λx.f , λ is unique to f , and should be
clearly viewed as “f owns its λ”. This obviously departs from traditional views
and definitions of λ-terms, but on the other hand it disables the appearance of
“unwanted” terms. Doing so we, we can also avoid renaming.

A key enabler is then the possibility to use a wide variety of further type
constructor, together with the function type constructor producing λ-calculus.
The type constructors enable the transportation of terms on level one in the
three-level arrangement of signatures to become abstracted to λ-terms on the
third level. A key issue for the syntax of relations, and e.g. for fuzzy description
logic, formal concepts and rough sets, is the use of the powertype constructor.
This also enables to describe the syntax of generalized relations in the sense
where the category of sets and relations is isomorphic to the Kleisli category of
the powerset monad over the category of sets.

For many-valuedness to become identifiable within and because of the use
of suitable underlying categories, we use monoidal categories, and thereby the
notion of many-valued description logic, formal concepts [6] and rough sets [5],
can be seen as depending on that powertype constructor. In this paper we focus
on description logic, and how it has been adopted within classification and
nomenclature in health. This is an unfortunate adoption, since it identifies ‘ontol-
ogy’ in web ontology with ‘ontology’ in health ontology. Doing so, health ontology
becomes both bivalent and untyped. Concepts like those in IHTSDO’s (Inter-
national Health Terminology Standards Development Organisation) SNOMED
are similarly bivalent as are the alphanumeric codes in WHO’s (World Health
Organization) ICD, i.e., an encoded disease is assumed either as diagnosed or not.
There are considerations of using a ‘not (yet) specified’ for a disease, as is done in
practice, but the severity of a disease as related e.g. to the extent of damage is not
encoded in any way. Typical examples appear in the case of cardiac diseases and
injuries involving fractures. Fractures with or without dislocation, and in various
degrees, are obviously quite different e.g. from subsequent surgery point of view.
Having alphanumeric codes rather than only numeric codes in ICD, helps to see
the categorization of codes and indeed mostly based on anatomy. In SNOMED,
concept identifiers are purely numeric, and unstructurally symbolic in the sense
that the sequence of digits building up the identifier is treated as a digitized and
purely symbolic name. The identifier of a concept in SNOMED is then attached
with a description, which is the textual counterpart for the identifier. SNOMED
prefers to speak of ‘concept types’, but their no formal underlying typing. These
types are more like categories, and SNOMED indeed interchangeably uses ‘con-
cept type’ and ‘concept category’. From signature point of view, a ‘category’ can
be seen as a sort, but concepts are indeed only constants as terms (or expres-
sions), so that ‘constant of a sort’ is the same as ‘concept of a type’ or ‘con-
cept within a category. Needless to say, there is connection whatsoever between
‘category’ in SNOMED’s ‘concept category’ and ‘category’ in ‘category theory’.

Web ontology is better suited for applications involving natural language,
where in fact the depth of applications still is on the level of counting words and
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finding similarities between sentences. The capacity of web ontology to identify
context and meaning is very poor, which typically is seen in tools for identify-
ing plagiarism. For instance, web ontology is unable to clearly understand the
distinction between reference and self-reference.

2 Informally Defined Terms in Type Theory

The informal definition of (untyped) λ-terms basically states, firstly, that a vari-
able is a λ-term, secondly, if M is a λ-term, then λx.M is a λ-term, where x is
a variable (abstraction), and thirdly, if M and N are λ-terms, then also MN is
a λ-term (application).

Traditional λ-calculus looks at terms as becoming abstracted to operators.
It is generally seen as a nice trick, but cannot be formally and logically justified.
What in fact happens is that an operator is abstracted to another operator,
of different arity. Variables cause confusion, and the notion of free and bound
is the root of this inconvenience, trying to make substitution something more
than it actually is. Substitution is a morphism in the Kleisli category of a given
term monad and over a selected category [4]. Church [1] indeed called “λ” an
improper symbol, together with “(“and”)” also being improper symbols. The
proper symbols are those residing in the signature, or being symbols for variables.

As was pointed out also in [4], Church’s ι and o types are not clearly defined.
There is a consensus about ι being the ‘type of types’, but we have to be careful
e.g. not say that “ι is a ι”, as was noted also by predecessors to modern type
theory. The o type for ‘propositions’ is still not well explained.

3 Levels of Signatures

The syntax of relations, i.e., the powertype, resides as a unary operator on the
second level in a three-level arrangement of signatures. Generalized relations,
as syntactic objects are therefore λ-terms in a general sense, i.e., generality
depending on the semantics of the operator, but in particular, as we shall see,
on the underlying category of the term monad producing types as terms on that
second level for the sake of delivering generalized λ-terms over the third level
signature.

In order to explain this in all detail, we adopt the categorically somewhat
informal notation Σ = (S,Ω) of a signature. The way it actually needs to be
handled in a more strict fashion is explained in [4], which also contains detail on
the corresponding formal and fully categorical construction of the term monad
with its underlying term functor TΣ . For a sort s, and a term t of sort s, we
may use the notation t :: s. The underlying category is some monoidal biclosed
category, but in this treatment we hide detail about this underlying category.

In subsequent papers we will provide detail concerning potential use of sig-
natures like ΣICD, ΣICF , and ΣSNOMED in order to enrich their respective
classification and nomenclature structure. Making concepts to be semantically
explained through their expressions in form of being terms over a signature is
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far more specific than expecting to have meaning based on textual descriptions
of concept identifiers like in SNOMED. Monad compositions like Φ◦TΣSNOMED

[3] point to the underlying functor Φ to structured conglomerates of concepts
(as structured terms), where simple hierarchies, like those in SNOMED, can be
provided by bivalent powerset functors. Multivalence can be invoked either by
using many-valued powerfunctors, or by allowing the term functors to act over
underlying categories embracing the required multivalence. In the case of WHO’s
ICF, the term functor TΣICF

: Set(Q) → Set(Q) introduced both typing as well
as multivalence [2], where Q is the quantale representing ICF’s generic scale.

This is where typing comes into play, and multivalence overlooks that com-
pletely. Sets X of points must be extended to structures of terms (or expres-
sions). This requires underlying signatures Σ embracing sorts and operators,
so that term functors TΣ provide formal term constructions. The term functor
TΣ : C → C operates typically over monoidal biclosed categories C. If C is Set, we
have the traditional bivalent (but typed!) situation, and with the Goguen cat-
egory Set(Q), where Q is a quantale (often non-commutative!), we have a full
multivalent and typed situation enabled by the signature acting over a selected
underlying category [4].

Term functors constructed in this way can be extended to monads, so that
substitution can be composed. A substitution in this categorical context is a mor-
phism in the Kleisli category of the related monad. Monad compositions enable
to arrive at generalized sets of terms, where the typical example is composing
the term functor TΣ with the powerset functor P in order to obtain the monad
P ◦ TΣ . More elaborate generalized set functors Φ can be applied in order to
make use of the composition Φ ◦ TΣ .

On level one, we have Σ, and terms over Σ are produced by TΣX, where
X is an object of variables in the underlying category. In case of a one-sorted
signature over the category of sets and functions, terms are just traditional terms
as typically seen in first-order logic.

On level two, the level of type constructors, with introduce the single-sorted
signature

SΣ = ({type}, {s :→ type | s ∈ S} ∪ {� : type × type → type}),

where we then have TSΣ
∅ as the object of all types and constructed types.

On level three, the level then includes λ-terms based on the signature Σ′ =
(S′, Ω′) where S′ = TSΣ

∅ and Ω′ is

{λω
i1,...,in

:→ (si1 � · · · � (sin−1 � (sin
� s)) | ω : s1 × . . . × sn → s ∈ Ω}

included with the operator apps,t : (s � t)×s → t. In this notation (i1, . . . , in)
is a permutation of (1, . . . , n). Note also how level one operators are transformed
to constant operators on level three. Further, note indeed how “ω owns its
abstraction” in λω

i1,...,in
. In fact, we could even avoid using the informal symbol

‘λ’ in this context.
As an example, consider the signature of natural numbers

NAT = ({nat}, {0 :→ nat, succ : nat → nat}



The Syntax of Many-Valued Relations 65

on level one. The 0-ary operator 0 converts to λ0
0 :→ nat, i.e., as a 0-ary operator

on level three. The unary operator succ is (λ-)abstracted to become a 0-ary
operator λsucc

1 :→ (nat � nat) on level three. Note also that we must not
confuse nat on level one with nat on level three, even if for simplicity we use
the same notation.

In [4], we pointed out the advantage in avoiding the need of renaming.
On β-reduction we obviously have the following transition from the tradi-

tional form to using the three-level signature. Let [x := t] be a substitution, i.e.,
we have some σ(x) = t, and choose a ω : s1 × s2 → s. Then β-reduction

λx.λy.ω(x, y) t →β λy.(ω(x, y)[x := t]) = λy.ω(t, y)::s2 � s

transforms to

(μ ◦ Tσ)(app(λω
s1,s2 , x)) →β app(λω

s1,s2 , t)::s2 � s.

All these constructions can potentially be used in natural language expres-
sions involving modifiers and quantifiers in expressions like “there are more small
balls than large balls in this box”. Obviously, there are no unique solutions to
handle this as they are context dependent. Possible encodings of such expression,
or related subexpressions, in our three level signatures setting for λ-terms, could
view modifiers are closely related to type constructors. Modifiers as operators
on level three are then specified using constructed types on level two. We should
note that quantifiers are more like abstractors of sentences, and it may therefore
be anticipated that the formalization of quantifiers, with quantifier symbols as
informal symbols, is similar to the formalization of the way λ acts on expressions.

4 The Syntax of Generalized Relations

In this section we present some background and motivation for generalized rela-
tions, and also provide notational considerations needed in this context. We use
notation as adopted in [4].

The observation that relations R ⊆ X × X correspond precisely to functions
(in form of substitutions) σR : X → PX, where P is the powerset functor over
the category of sets and functions, is the basis for viewing generalized relations
as morphisms (substitutions) in the Kleisli category over generalized powerset
monads.

For Σ = (S,Ω) on level one, we now extend SΣ with further operators
beyond just �. Concerning unary operators we may include an F : type → type,
which intuitively is expected to be semantically described by a functor, that is,
assuming that the ‘algebra’ of type is the class of objects in some monoidal closed
category. Whereas the algebras A(Σ) of signatures Σ, involving assignments of
sorts s to domains A(s) of A, are standard according to universal algebra, the
‘algebra’ of the (Σ-)superseding type signature SΣ is not immediate since the
domain assigned to the sort type clearly cannot be just a set. There are several
options for this, and these considerations may go beyond traditional universal
algebra. These discussions are outside the scope of this paper.
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The ‘syntactic functors’ view is based on unary type constructors φ, ψ :
type → type, allowing the composed type constructor ψ ◦ φ : type → type
by (ψ ◦ φ)s = ψ(φs). For unary type constructors φ, ψ : type → type, a type
transformation τ from φ to ψ, denoted τ : φ ⇒ ψ, if it exists, is assumed, for all
s ∈ TSΣ

∅, to be given by a unique (constant operator) τs :→ (φs � ψs). Further,
we assume that any f :→ (s � t) gives rise to a unique φf :→ (φs � φt).

Various ‘syntactic set functors’ can be introduced, including the ‘powerset’
type constructor P : type → type on level two, intuitively thinking that the
‘algebra’ of P is the powerset functor, with the underlying monoidal closed cat-
egory being the category of sets and functions.

From application point of view, it is important now to see how operators like
ω : s → Pt is the underlying syntactic support for enabling typed generalized
relations.

5 Description Logic

For transforming description logic into our categorical framework, we use nota-
tions in [7]. Interpretations I = (DI , ·I), where ·I maps every concept description
to a subset of DI , use D for that universe, which should not be confused with
D as used for concept descriptions, e.g., in expressions like C

⊔
D, where D is

not to be understood as the “D in DI”.
With C as a “concept”, we have CI ⊆ DI ∈ PDI . This means that PDI

is the actual ‘algebra’. Roles R are semantically described as relations RI ⊆
DI × DI , i.e., we can equivalently write it as a substitution RI : DI → PDI .
The inverse relation R−1 is what is actually used on the semantic side, and, in
fact, we have

(∃R : C)I = {a ∈ DI | ∃(a, b) ∈ RI : b ∈ CI} = μDI (PR−1C).

Note how ‘∃’ in ∃(a, b) ∈ RI : b ∈ CI is different from ‘∃’ in (∃R : C)I ,
where in the latter it appears as an informal symbol providing an abstrac-
tion of C. In fact, the “existential quantifier” in ∃R : C is an “R-modality”
applied to the powerconcept C. The definition for the semantic expression
(∃R : C)I uses the existential quantifier that appears in the assumed under-
lying set theory.

Concerning the underlying signature and related variables, in [7] the situa-
tion is unclear, given the assumption about the existence of two further disjoint
alphabets of symbols, which are called individual and concept variables. Logically,
variables are not part of any alphabet. Variables are terms, and as such they
are terms of a certain type. We should therefore speak of “individual concept”
rather than “individual variable”, and then use x, y, z as variables for individual
concepts, and X,Y,Z as variables for concepts.

Now typing of “concept” and “individual concept” comes into play, and we
will need type constructors on level two. As opposed to [7], we say “concept”
instead of “individual concept”, and “powerconcept” instead of “concept”. The
underlying signature must be formalized, where concept is a sort in the given
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underlying signature on level one. On level two, concept becomes a constant
operator, and a type constructor P is then used to produce a new type Pconcept,
which in their ‘algebra’ will be understood, respectively, as DI and PDI .

Simply typed description logic can now be formally defined in λ-calculus. Let
Σ = (S,Ω) be on level one, where S = {concept}. Operators in Ω are the
constants c1, . . . , cn :→ concept. Concepts and powerconcepts must eventually
reside in the same signature on level three. Therefore, on level two, we use SΣ ,
so that concept :→ type becomes a constant in SΣ . We then include the type
constructor P : type → type into SΣ , and as the constructed type for “power-
concept”. Note that P(concept) is a term on level two, becoming a sort on level
three. A fundamental weakness of traditional description logic is the intertwin-
ing of syntax and semantics of the powerconcept. A variable x ∈ XP(concept) is
a “concept variable” in the sense of [7], and is also a ‘term’ as an element of
TΣ′,P(concept)(Xs)s∈S′ . On level three we have c1, . . . , cn ∈ TΣ′,concept(Xs)s∈S′ .
“Roles” are of the form r :→ (P(concept) � P(P(concept))), which cre-
ates the need to include operators η :→ (concept � P(concept)) and μ :→
(P(P(concept)) � P(concept)) on level three.

A concept
c :→ concept

on level one becomes a “singleton powerconcept”

appconcept,P(concept)(η, c)

on level three, and the syntactic expression “∃r.x” as a term of type P(concept)
can be defined as

∃r.x = appP(P(concept)),P(concept)(μ, appP(concept),P(P(concept))(r, x)).

“Disjunction” and “negation” are added as new type constructors on level
two as


 : P(concept) × P(concept) → P(concept)

and
¬ : P(concept) → P(concept).

6 Conclusions

We have shown how syntactic aspects of description logic can be extended to
involve generalized relations as compared to just being represented by powerset
functors. Double powerset functors, and a range of composed functors can be
used, thus representing relations in a more generalized sense. These generaliza-
tions are interesting to investigate further over various underlying categories.
Viewing many-valued description logic as part of λ-calculus is more general as
compared to approaches in [8,9], where fuzzy description logic is basically simply
typed description logic with the semantics of P in practice being extended only
to the many-valued powerset monad. Our approach reveals the modal nature of
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description logic more clearly, and shows why it is doubtful to speak about the
“existential quantifier” in description logic.

For health applications, the consequence of using our extended relational
model is that classifications and nomenclatures [2] can be enriched to become
multivalent and typed. Further, this enables a much more elaborate and practi-
cally useful approach to structural mapping between classification. Indeed, in the
simple bivalent and untyped case, where relations are provided upon unstruc-
tured sets, mappings are nothing but mappings of points to points, or points
to subsets of points. This is not sufficient in practice. In the case of IHTSDO’s
approach to nomenclature, SNOMED’s logical foundation is all too shallow for
practical applications. Ongoing revisions of ICD classification for diseases also
indicates adoption of the shallow approach as invited by the use of description
logic without extension towards multivalence and typing. The lack of logically
multivalent considerations among WHO’s reference classifications is particularly
unfortunate, as ICD is from time to time criticized of not embracing multiple
values, and the ICF classification for functioning in fact is inherently multivalent
given its generic scale. In subsequent work, we will expose this situation in more
detail.
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1 Department of Statistic and Operations Research, University of Cádiz, Cádiz, Spain
mariaeugenia.cornejo@uca.es

2 Department of Mathematics, University of Cádiz, Cádiz, Spain
{jesus.medina,eloisa.ramirez}@uca.es

Abstract. The computation of fuzzy concept lattices is really complex.
Hence, looking for mechanisms in order to reduce this complexity is fun-
damental. This paper presents a new efficient mechanism which com-
bines two procedures. First of all, an attribute reduction is given, which
removes the unnecessary attributes, and then a reduction based on a
truth degree is applied, which removes the fuzzy attributes with low
weight. Different interesting properties and examples of this mechanism
are also introduced.

Keywords: Fuzzy sets · Formal Concept Analysis · Concept lattice
reduction

1 Introduction

One of the most important mathematical tools for analyzing relational data-
bases and representing conceptual knowledge in a formal way is Formal Concept
Analysis (FCA), which is closely related to soft set theory and rough set theory
and has been theoretically developed [1,3,12] and in applications [17,18].

Since real databases are usually very large they give rise to complex concept
lattices, from which extracting conclusions is a really difficult task. This fact
highlights the importance of obtaining new procedures which lets us reduce the
concept lattices from both perspectives: attribute reduction and size reduction.
These procedures have widely been studied in the classical case [14,15,19], how-
ever this development is less advanced in frameworks allowing uncertainties and
imprecise data. Besides attribute reduction [7,13], the reduction of the size of
a fuzzy concept lattice is also fundamental, but the main information must be
preserved. In [6,10] the authors studied a mechanism to reduce the size of con-
cept lattices based on the meet-irreducible elements of the lattice and on a cut
value given by the user. This method provides a sublattice of the original concept
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lattice, which is called meet-irreducible α-cut concept lattice. Consequently, the
most representative knowledge is preserved since the original concepts are not
modified and the valuable concepts are not removed. This feature is not shared
with other procedures to reduce the size of concept lattices which use hedges [2]
or granular computing [11].

This paper introduces a new procedure which combines an attribute reduc-
tion and the meet-irreducible α-cut reduction. This mechanism considers a
reduct before computing the α-cuts, which provides a more efficient procedure.
Moreover, several properties and examples are introduced in order to explain
the main features of the new reduction process.

The structure of this paper is the following: Sect. 2 presents a brief summary
with basic definitions and results. Section 3 recalls attribute reduction based
on the characterizations of the absolutely necessary, relatively necessary and
absolutely unnecessary attributes in terms of the meet-irreducible elements of
the concept lattice, and the meet-irreducible α-cut concept lattices, respectively.
Section 4 introduces the new mechanism combining the attribute reduction with
the irreducible α-cut concept lattices, several properties and remarks. Lastly, the
paper finishes with the conclusions and prospects for future work.

2 Preliminaries

In the following, we will summarize the essential definitions and results required
to make the paper self-contained.

Definition 1. Given a lattice (L,�), such that ∧,∨ are the meet and the join
operators, and an element x ∈ L verifying

1. If L has a top element �, then x �= �.
2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of L. Condition (2) is equiv-
alent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

Hence, if x is ∧-irreducible, then it cannot be represented as the infimum of
strictly greatest elements. A join-irreducible (∨-irreducible) element of L is
defined dually.

The considered fuzzy concept lattice framework is the one needed to define
the multi-adjoint concept lattices [16], in which the adjoint triples are the basic
computational operators [8,9].

Definition 2. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
↙ : P3 ×P2 → P1, ↖ : P3 ×P1 → P2 be mappings, then (&,↙,↖) is an adjoint
triple with respect to P1, P2, P3 if:

x ≤1 z ↙ y iff x& y ≤3 z iff y ≤2 z ↖ x (1)

where x ∈ P1, y ∈ P2 and z ∈ P3. The condition (1) is also called adjoint
property.
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Now, the notions of multi-adjoint frame and context are included.

Definition 3. A multi-adjoint frame L is a tuple (L1, L2, P,&1, . . . ,&n) where
(L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and (&i,↙i,↖i)
is an adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.
Definition 4. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context is
a tuple (A,B,R, σ) such that A and B are non-empty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P
and σ : A×B → {1, . . . , n} is a mapping which associates any element in A×B
with some particular adjoint triple in the frame.

For each multi-adjoint frame and context, two concept-forming operators
↑ : LB

2 −→ LA
1 and ↓ : LA

1 −→ LB
2 can be defined, for all g ∈ LB

2 , f ∈ LA
1 and

a ∈ A, b ∈ B, as

g↑(a) = inf{R(a, b) ↙σ(a,b) g(b) | b ∈ B} (2)
f↓(b) = inf{R(a, b) ↖σ(a,b) f(a) | a ∈ A} (3)

where LB
2 and LA

1 denote the set of mappings g : B → L2 and f : A → L1,
respectively, which form a Galois connection [16].

A multi-adjoint concept is a pair 〈g, f〉, such that g ∈ LB
2 , f ∈ LA

1 satisfying
g↑ = f and f↓ = g. The fuzzy subsets of objects g (resp. fuzzy subsets of
attributes f) are called extensions (resp. intensions) of the concepts. The sets
of these are denoted as Ext(M) and Int(M), respectively.

Definition 5. Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a con-
text (A,B,R, σ). The multi-adjoint concept lattice associated with this frame
and this context is the set

M = {〈g, f〉 | g ∈ LB
2 , f ∈ LA

1 and g↑ = f, f↓ = g}

in which the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2
(equivalently f2 �1 f1).

Henceforth we will fix a multi-adjoint concept lattice (M,�) associated with
a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ).

From the specific family of fuzzy subsets of attributes presented in the follow-
ing definition, we remind the characterization of the ∧-irreducible elements [5,7].

Definition 6 [7]. For each a ∈ A, the fuzzy subsets of attributes φa,x ∈ LA
1

defined, for all x ∈ L1, as

φa,x(a′) =
{

x if a′ = a
⊥1 if a′ �= a

will be called fuzzy-attributes, where ⊥1 is the minimum element in L1. The set
of all fuzzy-attributes will be denoted as Φ = {φa,x | a ∈ A, x ∈ L1}.
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Theorem 1 [7]. The set of ∧-irreducible elements of M, MF (A), is formed by
the pairs 〈φ↓

a,x, φ↓↑
a,x〉 in M, with a ∈ A and x ∈ L1, such that

φ↓
a,x �=

∧
{φ↓

ai,xi
| φai,xi

∈ Φ, φ↓
a,x ≺2 φ↓

ai,xi
}

and φ↓
a,x �= g�2 , where �2 is the maximum element in L2 and g�2 : B → L2 is

the fuzzy subset defined as g�2(b) = �2, for all b ∈ B.

3 Reduction Mechanisms

This section will recall the attribute reduction introduced in [7] to multi-adjoint
concept lattices, which is based on a classification of the attributes of the context,
and the size reduction mechanism based on a α-cut [10], which will be used later
to build the new method.

3.1 On the Attribute Classification

First of all, we recall the notions of consistent set, reduct, absolutely necessary
attribute, relatively necessary attribute and absolutely unnecessary attribute [7].

Definition 7. A set of attributes Y ⊆ A is a consistent set of (A,B,R, σ) if
the following isomorphism is satisfied:

M(Y,B,RY , σY ×B) ∼=E M(A,B,R, σ)

This is equivalent to say that, for all 〈g, f〉 ∈ M(A,B,R, σ), there exists a
concept 〈g′, f ′〉 ∈ M(Y,B,RY , σY ×B) such that g = g′.

Moreover, if M(Y \ {a}, B,RY \{a}, σY \{a}×B) �∼=E M(A,B,R, σ), for all
a ∈ Y , then Y is called a reduct of (A,B,R, σ).

The core of (A,B,R, σ) is the intersection of all the reducts of (A,B,R, σ).

Definition 8. Given a formal context (A,B,R, σ) and the set Y = {Y ⊆ A |
Y is a reduct} of all reducts of (A,B,R, σ). The set of attributes A can be divided
into the following three parts:

1. Absolutely necessary attributes (core attribute) Cf =
⋂

Y ∈Y Y .
2. Relatively necessary attributes Kf = (

⋃
Y ∈Y Y ) \ (

⋂
Y ∈Y Y ).

3. Absolutely unnecessary attributes If = A \ (
⋃

Y ∈Y Y ).

Taking into account the previous definitions, three classification theorems
were introduced in [7].

Theorem 2 [7]. Given ai ∈ A, we have that ai ∈ Cf if and only if there exists
xi ∈ L1, such that 〈φ↓

ai,xi
, φ↓↑

ai,xi
〉 ∈ MF (A), satisfying that 〈φ↓

ai,xi
, φ↓↑

ai,xi
〉 �=

〈φ↓
aj ,xj

, φ↓↑
aj ,xj

〉, for all xj ∈ L1 and aj ∈ A, with aj �= ai.
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Theorem 3 [7]. Given ai ∈ A, we have that ai ∈ Kf if and only if ai /∈ Cf

and there exists 〈φ↓
ai,xi

, φ↓↑
ai,xi

〉 ∈ MF (A) satisfying that Eai,xi
is not empty and

A \ Eai,xi
is a consistent set, where the sets Eai,x with ai ∈ A and x ∈ L1 are

defined as:

Eai,x = {aj ∈ A \ {ai} | there exist x′ ∈ L1, satisfying φ↓
ai,x = φ↓

aj ,x′}

Theorem 4 [7]. Given ai ∈ A, it is absolutely unnecessary, ai ∈ If , if and only
if, for each xi ∈ L1, we have that 〈φ↓

ai,xi
, φ↓↑

ai,xi
〉 �∈ MF (A), or in the case that

〈φ↓
ai,xi

, φ↓↑
ai,xi

〉 ∈ MF (A), then A \ Eai,xi
is not a consistent set.

From these results, a classification in absolutely necessary, relatively neces-
sary and absolutely unnecessary attributes is given and the reducts are computed
as well. Each reduct provides a reduction in the (number of) attributes of the
original context, which decreases the computational complexity of the concept
lattice.

3.2 Size Reduction by Irreducible α-cuts

In this section, a mechanism to reduce the size of multi-adjoint concept lat-
tices [6,10] is recalled. This reduction procedure only considers the fuzzy-
attributes with a truth degree bigger than a value α provided by the user. This
threshold represents the least truth-value of a fuzzy-attribute in order to be con-
sidered in the computation of the concept lattice. Hence, given a value α, for
each attribute a, we only consider the following set of meet-irreducible elements
of (M,�):

M̂F (A)α = {〈φ↓
a,x, φ↓↑

a,x〉 ∈ MF (A) | α �1 x}
The concepts obtained from the infimum of the elements of M̂F (A)α and the

greatest element in (M,�), that is 〈g�, g↑
�〉, from a complete lattice.

Definition 9. Given α ∈ L1, the set

M̂α = {〈g, f〉 ∈ M | g =
∧

i∈I

φ↓
ai,xi

, with 〈φ↓
ai,xi

, φ↓↑
ai,xi

〉∈M̂F (A)α}
⋃

{〈g�, g↑
�〉}

is called meet-irreducible α-cut concept lattice of M, for short, irreducible α-cut
concept lattice.

In [10], diverse properties of this reduced lattice were introduced. One of
the most important ones is that the reduced concept lattice M̂α is a complete
sublattice of the original one. Therefore, this mechanism provides a reduction
of the original concept lattice without modifying the information given by the
concepts.

The following section will merge the philosophies of the two previous mecha-
nisms in order to obtain a more efficient size reduction procedure of fuzzy concept
lattices.
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4 Reduct-Irreducible α-cut Concept Lattices

An interesting alternative to increase the reduction and decrease the complexity
in the computation of the concept lattice is the combination of both reduction
mechanisms. First of all, the attribute reduction will be applied and the unneces-
sary attributes will be removed. Once the different reducts have been obtained, a
threshold is considered and the corresponding irreducible α-cuts are computed.
This mechanism is formally introduced in the following definition.

Definition 10. Let (A,B,R, σ) be a context, (L1, L2, P,&1, . . . ,&n) a multi-
adjoint frame, (M,�) its concept lattice, α ∈ L1 and (MY ,�) the concept
lattice built from a reduct Y ⊆ A. The concept lattice obtained applying the
irreducible α-cut CL to (MY ,�) is called r-irreducible α-cut concept lattice
and it is denoted as M̂ Y

α .

One of the most important advantages of considering the attribute reduction
at the beginning is that we simplify the construction process since unnecessary
fuzzy-attributes to compute the concept lattice are removed. Specifically, when
the attribute classification satisfies that the set Kf is not empty, then several
reducts can be obtained. This fact will determine the subsequent size reduction
i.e. depending on the choice of the starting reduct, we will obtain a major or
minor reduction of the size. It is interesting to identify sufficient conditions
to ensure the reduction is independent of the chosen reduct. This and other
properties, together with several examples of this mechanism will be introduced
next.

The first property shows that after reducing the number of attributes, if we
carry out the r-irreducible α-cut concept lattice to the context with a reduct, we
obtain a complete lattice isomorphic to a sublattice of the original one with the
same extensions, which is called sublattice by extensions.

Proposition 1. Given a context (A,B,R, σ), a frame (L1, L2, P,&1, . . . ,&n)
and the associated multi-adjoint concept lattice (M,�), we have that for each
reduct Y of (M,�) and α ∈ L1, the pair (M̂ Y

α ,�) is a complete sublattice by
extensions of (M,�).

This property is shown in the following example.

Example 1. Let L = (L1, L2, L3,�,&∗
G) be the considered framework, where

L1 = [0, 1]10, L2 = [0, 1]4 and L3 = [0, 1]5 are the regular partitions of [0, 1] in
10, 4 and 5 pieces, respectively, and &∗

G is discretization of the Gödel conjunctor
defined on L1×L2, see [4] for more details. Let (A,B,R, σ) be the fixed context,
with A = {a1, a2, a3, a4}, B = {b1, b2, b3}, R : A × B → L3 given in Table 1, and
σ is constantly &∗

G.
The Hasse diagram of the concept lattice (M,�) is presented in Fig. 1, where

it is easy to see that the set of meet-irreducible elements is formed by the concepts
C0, C5, C6, C9 and C10. Below, the fuzzy-attributes associated with the meet-
irreducible elements are listed:
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Table 1. Relation R of Example 1

R b1 b2 b3

a1 0.6 0.8 0.6

a2 1 1 0

a3 0.6 0.8 0

a4 0.2 0 0.2

〈φ↓
a4,0.3, φ

↓↑
a4,0.3〉 = 〈φ↓

a4,0.4, φ
↓↑
a4,0.4〉 = 〈φ↓

a4,0.5, φ
↓↑
a4,0.5〉 = 〈φ↓

a4,0.6, φ
↓↑
a4,0.6〉 =

〈φ↓
a4,0.7, φ

↓↑
a4,0.7〉 = 〈φ↓

a4,0.8, φ
↓↑
a4,0.8〉 = 〈φ↓

a4,0.9, φ
↓↑
a4,0.9〉 = 〈φ↓

a4,1.0, φ
↓↑
a4,1.0〉 = C0

〈φ↓
a2,0.1, φ

↓↑
a2,0.1〉 = 〈φ↓

a2,0.2, φ
↓↑
a2,0.2〉 = 〈φ↓

a2,0.3, φ
↓↑
a2,0.3〉 = 〈φ↓

a2,0.4, φ
↓↑
a2,0.4〉 =

〈φ↓
a2,0.5, φ

↓↑
a2,0.5〉 = 〈φ↓

a2,0.6, φ
↓↑
a2,0.6〉 = 〈φ↓

a2,0.7, φ
↓↑
a2,0.7〉 = 〈φ↓

a2,0.8, φ
↓↑
a2,0.8〉 =

〈φ↓
a2,0.9, φ

↓↑
a2,0.9〉 = 〈φ↓

a2,1.0, φ
↓↑
a2,1.0〉 = 〈φ↓

a3,0.1, φ
↓↑
a3,0.1〉 = 〈φ↓

a3,0.2, φ
↓↑
a3,0.2〉 =

〈φ↓
a3,0.3, φ

↓↑
a3,0.3〉 = 〈φ↓

a3,0.4, φ
↓↑
a3,0.4〉 = 〈φ↓

a3,0.5, φ
↓↑
a3,0.5〉 = 〈φ↓

a3,0.6, φ
↓↑
a3,0.6〉 = C5

〈φ↓
a4,0.1, φ

↓↑
a4,0.1〉 = 〈φ↓

a4,0.2, φ
↓↑
a4,0.2〉 = C6

〈φ↓
a1,0.9, φ

↓↑
a1,0.9〉 = 〈φ↓

a1,1.0, φ
↓↑
a1,1.0〉 = C9

〈φ↓
a1,0.7, φ

↓↑
a1,0.7〉 = 〈φ↓

a1,0.8, φ
↓↑
a1,0.8〉 = C10

According to the attribute classification theorems given in Sect. 3.1, we clas-
sify the attributes of A as follows:

Cf = {a1, a4}
Kf = {a2, a3}

From this classification two reducts Y1 = {a1, a2, a4} and Y2 = {a1, a3, a4} can
be obtained. Considering the reduct Y2 and the value α = 0.7, we will build the
r-irreducible 0.7-cut concept lattice of (MY2 ,�). For that purpose, we need to

consider the set of concepts 〈φ↓Y2

a,x , φ
↓Y2↑Y2
a,x 〉 that belongs to MF (Y2) such that

α � x, with a maximal value x, that is:

M̂F (Y2)0.7 = {〈φ↓Y2

a4,1.0, φ
↓Y2↑Y2
a4,1.0 〉, 〈φ↓Y2

a1,1.0, φ
↓Y2↑Y2
a1,1.0 〉, 〈φ↓Y2

a1,0.8, φ
↓Y2↑Y2
a1,0.8 〉}

Computing the meet-closure of M̂F (Y2)0.7 and considering the greatest ele-
ment of (MY2 ,�), we obtain the lattice (M̂ Y2

0.7 ,�) as usual, which can be seen
in the right side of Fig. 1. Taking into account the notion of complete sublat-
tice and Fig. 1, we can easily verify that (M̂ Y2

0.7 ,�) is a complete sublattice by
extensions of (M,�).

The second property guarantees that when the carrier of the fuzzy subsets of
attributes is linear, there always exists a value α ∈ L1 such that for all β �1 α,
the reduced concept lattices from different reducts are isomorphic.

Proposition 2. Let (A,B,R, σ) be a context, (L1, L2, P,&1, . . . ,&n) be a frame
and (M,�) the associated multi-adjoint concept lattice. If (L1,�1) is a linear
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Ext(C0)

Ext(C9)

Ext(C10)

Ext(C7)

Fig. 1. The Hasse diagram of (M, �) (left) and (̂M Y2
0.7 , �) (right).

lattice, then there exists α greater than the minimum element of L1, such that,
M̂ Y1

β
∼=E M̂ Y2

β , for all β �1 α and for all reducts Y1, Y2.

Since in Example 1 the considered lattice L1 is linear, we will continue work-
ing with the same framework and context in order to illustrate the previous
result.

Example 2. In the environment of Example 1, we can build the concept lattice
(M̂ Y1

0.7 ,�) considering the following set:

̂MF (Y1)0.7 = {〈φ↓Y2
a4,1.0

, φ
↓Y2↑Y2
a4,1.0

〉, 〈φ↓Y2
a1,1.0

, φ
↓Y2↑Y2
a1,1.0

〉, 〈φ↓Y2
a2,1.0

, φ
↓Y2↑Y2
a2,1.0

〉, 〈φ↓Y2
a1,0.8

, φ
↓Y2↑Y2
a1,0.8

〉}

The r-irreducible 0.7-cut concept lattice of (MY1 ,�) is shown in Fig. 2. In
the size reduction process when we consider Y1, we remove the meet-irreducible
element C6. If we observe the concept lattice (M̂ Y2

0.7 ,�) in Fig. 1, in this case,
we have removed the meet-irreducible elements C5 and C6. This is because C5

is obtained from the fuzzy-attributes φa2,1.0 and φa3,0.6. Hence, if we regard Y2

the fuzzy-attribute related to C5 does not exceed the cut established by α = 0.7.
Therefore, we conclude that (M̂ Y1

0.7 ,�) �∼=E (M̂ Y2
0.7 ,�).

On the other hand, if a value α = 0.6 is fixed, for every value β �1 α the
reduced concept lattices from the different reducts, (M̂ Y1

β ,�) and (M̂ Y2
β ,�),

are isomorphic. For instance, when β = 0.5 we have that:
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Ext(C0)

Ext(C1)

Ext(C3)

Ext(C8) Ext(C9)

Ext(C5) Ext(C10)

Ext(C7)

C0

C1

C3

C8 C9

C5 C10

C7

Fig. 2. The Hasse diagram of (̂M Y1
0.7 , �) (left) and (̂M0.5, �) (right).

̂MF (Y1)0.5 = {〈φ↓Y2
a4,1.0

, φ
↓Y2↑Y2
a4,1.0

〉, 〈φ↓Y2
a1,1.0

, φ
↓Y2↑Y2
a1,1.0

〉, 〈φ↓Y2
a2,1.0

, φ
↓Y2↑Y2
a2,1.0

〉, 〈φ↓Y2
a1,0.8

, φ
↓Y2↑Y2
a1,0.8

〉}
̂MF (Y2)0.5 = {〈φ↓Y2

a4,1.0
, φ

↓Y2↑Y2
a4,1.0

〉, 〈φ↓Y2
a1,1.0

, φ
↓Y2↑Y2
a1,1.0

〉, 〈φ↓Y2
a3,0.6

, φ
↓Y2↑Y2
a3,0.6

〉, 〈φ↓Y2
a1,0.8

, φ
↓Y2↑Y2
a1,0.8

〉}

Building the concept lattices (M̂ Y1
0.5 ,�) and (M̂ Y2

0.5 ,�) from the previous
sets, we obtain the same Hasse diagram shown in the left side of Fig. 2. That
is, these reductions coincide with the reduction given by the concept lattice
(M̂ Y1

0.7 ,�). Consequently, (M̂ Y1
0.5 ,�) ∼=E (M̂ Y2

0.5 ,�). As it was previously com-
mented, this fact also arises for all β �1 0.6.

The following property establishes that if the r-irreducible α-cut concept
lattices obtained from each of the reducts are isomorphic then they also are
isomorphic to the meet-irreducible α-cut concept lattice of M.

Proposition 3. Given a context (A,B,R, σ), a frame (L1, L2, P,&1, . . . ,&n)
and the associated multi-adjoint concept lattice (M,�), we obtain that if α ∈ L1

satisfies M̂ Y1
α

∼=E M̂ Y2
α , for all reducts Y1, Y2, then the reduction obtained from

a reduct Y ⊆ A is isomorphic to the one obtained from the original concept
lattice, M̂ Y

α
∼=E M̂α.

Once again, we return to Example 2 in order to clarify the statement above.

Example 3. Coming back to Example 2, when we compute the concept lattice
(M̂0.5,�) we obtain the Hasse diagram presented in the right side of Fig. 2.
From this figure, we can observe that the r-irreducible 0.5-cut concept lattice
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of (M̂ Y1
0.5 ,�) and (M̂ Y2

0.5 ,�) are isomorphic to the reduction of the original one
(M̂0.5,�).

The last proposition presents how is the reduced concept lattice in the par-
ticular case in which the set of relatively necessary attributes is an empty set.

Proposition 4. Let (A,B,R, σ) be a context, (L1, L2, P,&1, . . . ,&n) be a frame
and (M,�) the associated multi-adjoint concept lattice. If Kf = ∅, then only
one reduct exists, which is given by the core set, Y = Cf , and the isomorphism
M̂ Y

α
∼=E M̂α holds, for all α ∈ L1.

Finally, a reduction of a concept lattice with only one reduct is introduced.

Example 4. Considering the same framework as in Example 1 and the context
(A,B,R, σ), where A = {a1, a2, a3}, B = {b1, b2, b3}, R : A × B → L3 is given
in Fig. 3 and σ is constantly &∗

G.

R b1 b2 b3

a1 0.6 0.8 0.6

a2 0.8 0.8 0.4

a3 0.2 0.4 0.2

Fig. 3. The definition of the relation R of Example 4 and the Hasse diagram of (M, �).

From the Hasse diagram of the concept lattice (M,�) shown in Fig. 3, we
can observe that the concepts C0, C2, C5, C6, C8 and C9 are the meet-irreducible
elements. In the following, we list the fuzzy-attributes associated with them:

〈φ↓
a3,0.5, φ

↓↑
a3,0.5〉 = 〈φ↓

a3,0.6, φ
↓↑
a3,0.6〉 = 〈φ↓

a3,0.7, φ
↓↑
a3,0.7〉 = 〈φ↓

a3,0.8, φ
↓↑
a3,0.8〉 =

〈φ↓
a3,0.9, φ

↓↑
a3,0.9〉 = 〈φ↓

a3,1.0, φ
↓↑
a3,1.0〉 = C0

〈φ↓
a3,0.3, φ

↓↑
a3,0.3〉 = 〈φ↓

a3,0.4, φ
↓↑
a3,0.4〉 = C2

〈φ↓
a2,0.5, φ

↓↑
a2,0.5〉 = 〈φ↓

a2,0.6, φ
↓↑
a2,0.6〉 = 〈φ↓

a2,0.7, φ
↓↑
a2,0.7〉 = 〈φ↓

a2,0.8, φ
↓↑
a2,0.8〉 = C5

〈φ↓
a1,0.7, φ

↓↑
a1,0.7〉 = 〈φ↓

a1,0.8, φ
↓↑
a1,0.8〉 = C6

〈φ↓
a2,0.9, φ

↓↑
a2,0.9〉 = 〈φ↓

a2,1.0, φ
↓↑
a2,1.0〉 = C8

〈φ↓
a1,0.9, φ

↓↑
a1,0.9〉 = 〈φ↓

a1,1.0, φ
↓↑
a1,1.0〉 = C9



Reduct-Irreducible α-cut Concept Lattices 79

Applying the attribute classification theorems, we obtain that Cf =
{a1, a2, a3}. Therefore, the unique reduct that can be considered is Y = Cf .
In order to obtain the concept lattice (M̂ Y

0.9,�), we will take into account the
following set:

M̂F (Y )0.9 = {〈φ↓Y

a1,1.0, φ
↓Y ↑Y

a1,1.0〉, 〈φ↓Y

a2,1.0, φ
↓Y ↑Y

a2,1.0〉}

The Hasse diagrams corresponding to the reduced concept lattices (M̂ Y
0.9,�)

and (M̂0.9,�) are displayed in Fig. 4. Clearly, both diagrams are isomorphic.

Ext(C0)

Ext(C1)

Ext(C2)

Ext(C4)

Ext(C6) Ext(C5)

Ext(C7)

C0

C1

C2

C4

C6 C5

C7

Fig. 4. The Hasse diagram of (̂M Y
0.9, �) and (̂M0.9, �).

This property is also very interesting since it drastically reduces the com-
plexity of the computation of the concept lattice.

5 Conclusions and Future Work

A new mechanism has been introduced in order to decrease the complexity to
obtain a fuzzy concept lattice, which combines two different ones: an attribute
reduction is firstly applied and an irreducible α-cut reduction based on a reduct
is considered after that. This procedure provides more efficiency, because, for
instance, different cuts α may be considered before obtaining the most optimal
reduction. Furthermore, several properties and examples have been introduced
showing interesting features of the introduced reduction.

Although the presented mechanism is efficient, we need to carry on improving
it and, mainly, to apply it to practical examples as well. This last fact will surely
need the study of new properties and advances in the future.
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Positive Semifields
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Abstract. In this paper we try to extend the Galois connection con-
struction of K-Formal Concept Analysis to handle semifields which are
not idempotent. Important examples of such algebras are the extended
non-negative reals and the extended non-negative rationals, but we pro-
vide a construction that suggests that such semifields are much more
abundant than suspected. This would broaden enormously the scope
and applications of K-Formal Concept Analysis.

Keywords: Formal Concept Analysis extensions · K-Formal Concept
Analysis · Positive semifields · Galois connection

1 Introduction and Motivation

The most orthodox presentation of Standard FCA is still [1], whose Galois con-
nection is interpreted as between the set of subsets of objects and attributes.
But Standard FCA can also be understood in the context of the linear algebra
of boolean spaces with sets substituted for characteristic functions, and other
extensions, e.g. the K-FCA [2–4], FCA in a fuzzy setting [5], etc., can also be
considered in the light of linear algebra over a certain subclass of semirings. In
this paper, we will understand a semiring [6] to be an algebra S = 〈S,⊕,⊗, ε, e〉
for which

– the additive structure, 〈S,⊕, ε〉, is a commutative monoid,
– the multiplicative structure, 〈S\{ε},⊗, e〉, is a monoid,
– multiplication distributes over addition from right and left
– and the zero element is multiplicatively-absorbing i.e. ∀a ∈ S, ε ⊗ a = ε.

We will only consider commutative semirings, those whose multiplicative struc-
ture is commutative.

Specifically, every commutative semiring accepts a canonical preorder, a ≤ b
if and only if there exists c ∈ D with a⊕c = b. A dioid is a commutative semiring
D where this relation is actually an order. And in fact the mentioned extensions
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to FCA all feature subtypes of dioids (e.g. K-FCA or FCA in a fuzzy setting) or
dioid-valued entries (e.g. interval-based FCA) in their formal contexts.

One of the most useful extensions to FCA uses K-valued formal contexts
where K is a complete idempotent semifield: this is the basis of K-Formal Concept
Analysis [2–4]. An idempotent semiring is one whose addition is idempotent,
u⊕u = u while semifields are semirings whose multiplicative structure is a group.
Idempotent semifields like Rmax,+ and Rmin,× are within this class, but also the
semifields of non-negative rationals Q+

0 and that of completed nonnegative reals
R≥0 = 〈[0,∞],+, ∗,⊥ = 0, e = 1,� = ∞〉 which is complete and totally ordered
in its usual order.

It would be interesting to know whether dioids, in general, are FCA-
generating, but for this paper we consider only a proper subclass of dioids: its
intersection with the class of semifields, the “positive” semifields.

Regarding this extension we may wonder,

1. whether there are many positive semifields available that generate such exten-
sion of FCA.

2. whether the extension is useful, that is whether there are instances of FCA-
related problems that are solved with positive semifields,

In this paper we try to address both these concerns. First, we review the theory
of dioids and semimodules over them with an emphasis on semifields; next we
present and approach to generating semifields and examples of their ubiquity. We
also review the construction of Galois Connections from residuated semirings and
finally provide a new application of this construction to matrix decomposition.

2 Positive Semifields and Semimodules

2.1 Dioids and Positive Semifields

Complete and Positive Dioids. Recall that a dioid is a commutative semiring
D where the canonical preorder relation, a � b if and only if there exists c ∈ D
with a ⊕ c = b is actually an order 〈D,�〉. For this order, the additive zero is
always the bottom ⊥ = ∧D = ε.

In a dioid, the canonical orden relation is compatible with both ⊕ and ⊗ [7,
Chap. 1, Prop. 6.1.7]. Dioids are all zero-sum free, that is, they have no non-null
additive factors of zero: if a, b ∈ D, a ⊕ b = ε then a = ε and b = ε.

A dioid is complete if it is complete as an ordered set for the canonical order
relation, and the following distributivity properties hold, for all A ⊆ D, b ∈ D,

(
⊕

a∈A

a

)

⊗ b =
⊕

a∈A

(a ⊗ b) b ⊗
(

⊕

a∈A

a

)

=
⊕

a∈A

(b ⊗ a) (1)

In complete dioids, there is already a top element � = ⊕a∈Da.
A semiring is entire or zero-divisor free if a ⊗ b = ε implies a = ε or b = ε.

If the dioid is entire, its order properties justifies calling it a positive dioid or
information algebra [7].
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Positive Semifields. A semifield, as mentioned in the introduction, is a semi-
ring whose multiplicative structure 〈K \ {ε},⊗, e, ·−1〉 is a group, where ·−1 :
K → K is the function to calculate the inverse such that ∀u ∈ K,u ⊗ u−1 = e.
Since all semifields are entire, dioids that are at the same time semifields are
called positive semifields, of which the positive reals or rationals are a paragon.

Example 1 (Semifield of non-negative reals). Since we need the completion prop-
erty to develop Galois connections, we concentrate on the completed nonnegative
reals

R≥0 = 〈[0,∞],+,×, ·−1,⊥ = 0, e = 1,� = ∞〉
which is complete and totally ordered in its usual order 〈R≥0,≤〉. Note that the
multiplicative 〈(0,∞),×〉 structure must exclude also the infinity, since 0×∞ = 0
does not have an inverse. ��

Regarding the intrinsic usefulness of positive semifields that are not fields,
and apart from the trivial case of B the booleans, there is not doubt of their
usefulness: the best known semifield R≥0 is widely used, for instance, in Elec-
trical Network theory, where the series or parallel addition of resistances and
conductances is carried out entirely in it.

Pairs of Mutually Inverse Semifields. In fact, this application provides a
way forward regarding our first difficulty, to wit the fact that the idempotent
semifields used in K-FCA always comes in pairs: Rmax,+ and Rmin,+ or Rmax,×
and Rmin,×. Each member of these pairs appears as the dual of the other member
by means of the ·−1 involution so Rmax,+ = (Rmin,+)−1 and Rmin,+ = (Rmax,+)−1.

To settle notation straight, these semifields come in pairs
(K, (K)−1

)
with

dual order structures K = 〈K,�〉 and (K)−1 = 〈K,�≡�δ〉, and dual algebraic
structures: suppose that {⊥,�} ⊆ K, then

K = 〈K,
�
⊕,

�
⊗, ·−1,⊥, e,�〉 K−1

= 〈K,
�⊕,

�⊗, ·−1,�, e,⊥〉 (2)

On top of the individual laws as positive semifields, we have the modular laws:

(u
�
⊕ v)

�
⊗(u

�⊕ v) = u
�
⊗ v (u

�
⊕ v)

�⊗(u
�⊕ v) = u

�⊗ v

the analogues of the De Morgan laws:

u
�
⊕ v = (u−1

�⊕ v−1)−1 u
�⊕ v = (u−1

�
⊕ v−1)−1

u
�
⊗ v = (u−1

�⊗ v−1)−1 u
�⊗ v = (u−1

�
⊗ v−1)−1

and the self-dual inequality

(u
�
⊗ v)

�⊗ w � u
�
⊗(v

�⊗ w)
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Note that:

– the notation to “speak” about these semirings tries to follow a convention
reminiscent of that of boolean algebra, where the inversion is complement.

– the dot notation is a mnemonic for where do the multiplication of the bottom
and top go:

⊥
�
⊗ � = ⊥ ⊥ �⊗� = �

implying that the “lower” addition and multiplication are aligned with the
usual order in the semiring while the “upper” addition and multiplication are
aligned with its dual.

Example 2 (Dual semifields for the Non-negative Reals). The previous proce-
dure shows that there are some problems with the notation of Example 1, and
this led to the definition of the following signatures for this semifield and its
inverse in convex analysis [8]:

R≥0 = 〈[0,∞],
�
+,

�
×, ·−1, 0, 1,∞〉 R−1

≥0 = 〈[0,∞],
�
+,

�×, ·−1,∞, 1, 0〉 (3)

Both of these algebras are used, for instance, in (Electrical) Network Analy-
sis: the algebra of complete positive reals to carry out the series sum of resis-
tances, and its dual semifield to carry out parallel summation of resistances.
With the convention that R≥0 semiring models resistances, it is easy to see that
the bottom element, ⊥ = 0 models a shortcircuit, that the top element � = ∞
models an open circuit (infinite resistance) and these conventions are swapped
in the dual semifield of conductances. Interestingly, the required formulae for the
multiplication of the extremes:

0
�
⊗∞ = 0 0

�⊗∞ = ∞ (4)

are a no-go for circuit analysis, which suggests that what is actually being oper-
ated with are the incomplete versions of these semifields, and the many problems
that EE students have in learning how to properly deal with these values may
stem from this fact. ��

2.2 Semimodules over Positive Semifields

Let D = 〈D,+,×, εD, eD〉 be a commutative semiring. A D-semimodule X =
〈X,⊕,�, εX〉 is a commutative monoid 〈X,⊕, εX〉 endowed with a scalar action
(λ, x) �→ λ � x satisfying the following conditions for all λ, μ ∈ D, x, x′ ∈ X:

(λ × μ) � x = λ � (μ � x) λ � (x ⊕ x′) = λ � x ⊕ λ � x′ (5)
(λ + μ) � x = λ � x ⊕ μ � x λ � εX = εX = εD ⊗ x

eD � x = x

Matrices form a D-semimodule Dg×m for given g, m. In this paper, we only use
finite-dimensional semimodules where we can identify semimodules with column
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vectors, e.g. X ≡ Dg. If D is commutative, naturally-ordered or complete, then
X is also commutative, naturally-ordered or complete [9]. If K is a semifield, we
may also define an inverse for the semimodule by the coordinate-wise inversion,
(x−1)i = (xi)−1.

Similarly, the may define a matrix conjugate (A�)ij = A−1
ji . For complete

idempotent semifields, the following matrix algebra equations are proven in [10,
Ch. 8]:

Proposition 1. Let K be an idempotent semifield, and A ∈ Km×n. Then:

1. A
�
⊗(A� �⊗A) = A

�⊗(A�
�
⊗ A) = (A

�⊗ A�)
�
⊗ A = (A

�
⊗A�)

�⊗A = A and

A�
�
⊗(A

�⊗A�) = A� �⊗(A
�
⊗ A�) = (A� �⊗A)

�
⊗A� = (A�

�
⊗A)

�⊗ A� = A�.
2. Alternating A − A� products of 4 matrices can be shortened as in:

A� �⊗(A
�
⊗(A� �⊗ A)) = A� �⊗A = (A� �⊗A)

�
⊗(A� �⊗A)

3. Alternating A − A� products of 3 matrices and another terminal, arbitrary
matrix can be shortened as in:

A� �⊗(A
�
⊗(A� �⊗M)) = A� �⊗M = (A� �⊗A)

�
⊗(A� �⊗M)

4. The following inequalities apply:

A� �⊗(A
�
⊗M) ≥ M A�

�
⊗(A

�⊗M) ≤ M

2.3 Galois Connections over Idempotent Semifields

In this paper we presuppose the setting of [11]. When K is a completed idem-
potent semifield and X ≡ Kg

and Y ≡ Km
are idempotent vectors spaces or

semimodules, the definition of the Galois connection involves the use of a scalar
product 〈· | R | ·〉 : X × Y → K and a scalar ϕ ∈ K [4]:

x↑
R,ϕ = ∨{y ∈ Y | 〈x | R | y〉 ≤ ϕ} y↓

R,ϕ = ∨{x ∈ X | 〈x | R | y〉 ≤ ϕ}

This definition is quite general and might even be valid for any dioid, but we
now want to use it when the semiring has the richer algebraic structure of a
complete positive semifield. For simplicity’s sake we will consider in this paper
that ϕ = e. Generalizing it along the lines of [11, Sect. 3.1] is not difficult.

We consider the scalar product 〈x | R | y〉 = xt
�
⊗ R

�
⊗ y, where R ∈ Kg×m

.
Since xt

�
⊗R

�
⊗ y ≤ e ⇔ yt

�
⊗ Rt

�
⊗x ≤ e, by using residuation we may write:

x↑
R = (xt

�
⊗R)

�
\ e = R� �⊗ x−1 y↓

R = (yt

�
⊗ Rt)

�
\ e = R−1

�⊗ y−1 (6)

involving only transposition, inversion and operation in the dual semifield.
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We recall the following proposition:

Proposition 2. (·↑R, ·↓R) : X ⇀↼ Y is a Galois connection between the semimod-
ules X ∼= Kg

and Y ∼= Km
: for x ∈ X, y ∈ Y , we have y ≤ x↑

R ⇔ x ≤ y↓
R.

Proof. We need only prove in one sense, since the other is similar. If y ≤
x↑

R = R� �⊗ x−1, then by inversion, Rt
�
⊗x ≤ y−1 whence, by residuation

x ≤ Rt

�
\ y−1 = R−1

�⊗ y−1 = y↓
R. ��

The diagram in Fig. 1 summarizes this Galois connection [4]

Fig. 1. (·↑R, ·↓R) : X ⇀↼ Y, the Galois connection between positive spaces.

This immediately puts at our disposal a number of results which we collect
in the following proposition:

Proposition 3. Consider the Galois connection (·↑R, ·↓R) : X ⇀↼ Y. Then:

1. The polars are antitone, join-inverting functions:

(x1 �
⊕x2)

↑
R

= x1
↑
R

�⊕ x2
↑
R (y1 �

⊕ y2)
↓
R

= y1
↓
R

�⊕ y2
↓
R. (7)

2. The compositions of the polars: πRt : X → X,πR : Y → Y

πRt(x) = (x↑
R)

↓
R = R−1

�⊗(Rt

�
⊗x) πR(y) = (y↓

R)
↑
R = R� �⊗(R

�
⊗ y)

are closures, that is, extensive and idempotent operators.

πRt(x) ≥ x πR(y) ≥ y

πRt(πRt(x)) = πRt(x) πR(πR(y)) = πR(y)

3. The polars are mutual pseudo-inverses:

(·)↑
R ◦ (·)↓

R ◦ (·)↑
R = (·)↑

R (·)↓
R ◦ (·)↑

R ◦ (·)↓
R = (·)↓

R

One of the advantages of working in idempotent semimodules is that we can
strengthen Statement 1 in Proposition 3 to reveal that the polars are idempotent
semimodule morphisms:
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Proposition 4. The polar of intents of the Galois connection transforms a K-
semimodule of extents into a K−1

-semimodule of intents, and dually for the polar
of the extents.

Proof. For linearity, consider x1
↑
R = R� �⊗ x−1

1 and x2
↑
R = R� �⊗x−1

2 .

(λ1 �
⊗x1 �

⊕λ2 �
⊗x2)

↑
R

= R� �⊗(λ1 �
⊗ x1 �

⊕λ2 �
⊗x2)−1 =

= R� �⊗(λ−1
1

�⊗ x−1
1

�⊕ λ−1
2

�⊗ x−1
2 ) =

= (λ−1
1

�⊗ R� �⊗x−1
1 )

�⊕ (λ−1
2

�⊗R� �⊗x−1
1 ) =

= (λ−1
1

�⊗ x1
↑
R)

�⊕ (λ−1
2

�⊗x2
↑
R).

For the polar of extents the proof is similar. ��
Note that this is the K-FCA analogue of the fact that the polars are join-
inverting. But the novelty is that the scalings for one semimodule and the other
are inverted. We need two more results from [11]:

Lemma 1. Let IG and IM be the identity matrices of dimension g×g and m×m
in K. Then the object- and attribute-concepts of the Galois connection are:

γR(IG) = (R−1
�⊗Rt, R�) μR(IM ) = (R−1, R� �⊗R)

taken as pairs of co-indexed vectors.

Corollary 1. Consider the Galois connection (·↑R, ·↓R) : X̃ γ ⇀↼ Ỹμ. Then, its
system of extents is K−1

-generated by the attribute-extents. Dually, its system
of intents is K−1

-generated by the object-intents.

3 A Construction for Positive Semifields

There is a non-countable number of semifields obtainable from R≥0. Their dis-
covery is probably due to Maslov, but we present here the generalized procedure
introduced by Pap and collaborators that include Maslov results. The applica-
tion to positive semifields is our own statement:

Construction 1 (Pap’s dioids and semifields). Let R≥0 be the semiring of
non-negative reals, and consider a strictly monotone generator function g on an
interval [a, b] ⊆ [−∞,∞] with values in [0,∞]. Since g is strictly increasing it
admits an inverse g−1, so set

1. the pseudo-addition, u ⊕ v = g−1(g(u)
�
+(g(v))

2. the pseudo-multiplication, u ⊗ v = g−1(g(u)
�
×(g(v))

3. neutral element, e = g−1(1)
4. inverse, x∗ = g−1( 1

g(x) ),
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Then,

1. if g is strictly increasing such that g(a) = 0 and g(b) = ∞, then a complete
positive semifield whose order is aligned with that of R+

0 is:

Kg = 〈[a, b],
�
⊕,

�
⊗, ·∗,⊥ = a, e,� = b〉.

2. if g is strictly decreasing such that g(a) = ∞ and g(b) = 0, then a complete
positive semifield whose order is aligned with that of (R≥0)−1 is

(Kg)−1 = 〈[a, b],
�⊕,

�⊗, ·∗,⊥−1 = b, e,�−1 = a〉.
Proof. See [12,13] for the basic dioid, and [7, p. 44] for the inverse operation and
the fact that it is a semifield, hence a positive semifield. ��

Our use of Construction 1 is to generate different kind of semifields by pro-
viding different generator functions:

Construction 2 (Multiplicative-cost semifields [14]). Consider a free
parameter λ ∈ [−∞, 0)

⋃
(0,∞] and the function g(x) = xλ in [a, b] = [0,∞]

in Construction 1. For the operations we obtain:

u ⊕λ v =
(
uλ

�
+ vλ

) 1
λ

u ⊗λ v =
(
uλ

�
× vλ

) 1
λ

= u
�
× v u� =

(
1
xλ

) 1
λ

= x−1

(8)

where the basic operations are to be interpreted in R≥0. Now,

– if λ ∈ (0,∞] then g(x) = xλ is strictly monotone increasing whence ⊥λ = 0,
eλ = 1, and �λ = ∞, and the complete positive semifield generated, order-
aligned with R≥0, is:

R≥0,λ = 〈[0,∞],
�
⊕

λ
,

�
×, ·−1,⊥λ = 0, e,�λ = ∞〉 (9)

– if λ ∈ [−∞, 0) then g(x) = xλ is strictly monotone decreasing whence ⊥λ = ∞,
eλ = 1, and �λ = 0, and the complete positive semifield generated, order-
aligned with (R≥0)−1, or dually aligned with R≥0, is:

R≥0,−λ = R≥0
−1
,λ = 〈[0,∞],

�⊕λ,
�×, ·−1,⊥−1

λ = ∞, e,�−1
λ = 0〉 (10)

Proof By instantiation of the basic case. ��
In particular, consider the cases:

Proposition 5. In the previous Construction 2, if λ ∈ {±1} then

R≥0,1 = R≥0 (R≥0,1)
−1 = (R≥0)−1 (11)

and

lim
λ→∞

R≥0,λ = Rmax,× lim
λ→−∞

R≥0
−1
,λ = Rmin,× (12)

Proof. The proof of (11) by inspection. For (12) see [14]. ��
This suggests the following corollary:

Corollary 2. R≥0,λ and R≥0
−1
,λ are inverse semifields.
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4 The Idempotent Singular Value Decomposition

This is our answer to the second question presented in the introduction as to
the usefulness of the Galois Connection in the setting of semifields.

The singular value decomposition (SVD) is a well-known decomposition
scheme for real- or complex-valued rectangular matrices [15].

Theorem 1. Given a matrix M ∈ Mm×n(K) where K is a field, there is a
factorization M = UΣV ∗ where ·∗ stands for conjugation, given in term of three
matrices

– U ∈ Mn×n(K) is a unitary matrix of left singular vectors.
– Σ ∈ Mm×n(K) is a diagonal matrix of non-negative real values called the

singular values.
– V ∈ Mn×n(K) is a unitary matrix of right singular vectors.

Often the singular values are listed in descending order, and the left and right
singular eigenvalues are re-ordered accordingly.

Note that M can also be written using outer products as:

M =
min(m,n)∑

i=1

σiuiv
∗
i (13)

hence, since the SVD is a costly procedure, it is also interesting to find k <
min(m,n) such that using the k greatest singular values we may approximate:

M ≈
k∑

i=1

σiuiv
∗
i . (14)

Note that, in particular, singular vectors of the null eigenvalue never contribute
to the reconstruction so they may be discarded. This approximation procedure
is particularly useful in applications like Latent Semantic Analysis [16].

Equation (13) suggests that the triples (σi, ui, vi) of a singular value and
related left and right singular vectors have a special status in the theory. Indeed,
[17] already suggested the use of formal concepts for this purpose. We are going
next to introduce the idempotent Singular Value Decomposition (iSVD) for
matrices over an idempotent semifield, in several flavours.

A full singular value decomposition is particularly easy in idempotent semi-
fields. Recall from property 1 of Proposition 1 that we have no less than four
decompositions of A ∈ Mm×n(K) in terms of two other matrices:

A
�
⊗(A� �⊗ A) = A

�⊗(A�
�
⊗A) = (A

�⊗A�)
�
⊗A = (A

�
⊗A�)

�⊗ A = A

Why these are SVDs is the answer produced by K-Formal Concept Analysis.

Proposition 6. The σ-concepts (u, v) of a matrix M ∈ Mm×n(K) over a com-
pleted idempotent semifield K are (u, σ, v) triples in a singular value decomposi-
tion of M in the linear algebra of K.
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Proof. Consider the massaged SVD equation in the dual semiring:

M = (Ut)� �⊗ Σ
�⊗ V � (15)

where the columns of U are left singular vectors, those of V are right singular
vectors and Σ is the (dual) diagonal matrix of singular values, whose off-diagonal

entries are �. We relax the equation M ≤ (Ut)� �⊗ Σ
�⊗ V � to bring residuation

in the dual semimodule into the picture and then use the residuation equalities
to find:

(Ut)� �
\ M

�
/ V � ≤ Σ ⇔ Ut

�
⊗ M

�
⊗V ≤ Σ (16)

These are actually m×n inequations, but those with i �= j for i ∈ {1, . . . , m}, j ∈
{1, . . . , n}, are trivial ut

i �
⊗M

�
⊗ vj ≤ �, so we concentrate on the ones involving

the triples (uk, σk, vk), k ∈ {1, . . . ,min(m,n)} where σk = Σkk and uk, vk, are,
respectively the k-th columns of U , V so ut

k �
⊗M

�
⊗ vk ≤ σk

Now consider the definition of the σ-polars

u↑
R,σ = {v ∈ Kn | ut

�
⊗ M

�
⊗ v ≤ σ} u↑

R,σ = {u ∈ Km | ut

�
⊗M

�
⊗ v ≤ σ} (17)

So for a σ-concept (u, v) clearly M ≤ (ut)� �⊗σ
�⊗ v� whence

M ≤
∧

(u,v)∈Bσ(G,M,R)K

(ut)� �⊗ σ
�⊗ v� (18)

��
Note that the number of SVD triples in (18) is enormous, hence the descrip-

tion is not practical. We can, of course, ignore in this description, all triples with
the null singular value σ = ⊥. But, more importantly, we can ignore collinear
concepts, whereby we mean λ

�
⊗(u, v) = (λ

�
⊗u, λ−1

�
⊗ v):

Lemma 2. If (u1, v1) and (u2, v2) are collinear, one of them can be ignored in
the reconstruction of the matrix.

Proof. Mere algebra on the concepts as per Proposition 3. ��
Another step would be to prove that a linear combination of concepts does

not add to the individual generating concepts, but we can actually do much more
than that.

Proposition 7. Let M ∈ Mm×n(K) be a matrix over a completed idempotent
semifield K. Then it can be synthesized from the join- and meet-irreducibles of
the concept lattice Be(G,M,R)K as:

M =
(
M

�
⊗M�

) �⊗M M = M
�⊗

(
M�

�
⊗M

)
(19)
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Proof. The proof is easy: from Lemma 1 and Corollary 1 select the triples with
σ = e and write for the join-irreducible and meet irreducible concepts, respec-
tively:

M =
(

M−1
�⊗Mt

)−1 �⊗(M�)� M = (M−1)−1
�⊗

(
M� �⊗M

)�
(20)

Then simplify algebraically. ��
Note how the last result accounts for two of the previously introduced decom-
positions: the other two are their duals in the inverse semifield. Note also, how
scalar multiples of any of the join- or meet-irreducibles may be further ignored.

5 Discussion and Further Work

We have presented two different contributions in this paper. First an analysis of
the possibilities of positive semifields to generate Galois Connections, possibly
by residuation. In this respect, we have mixed results:

– On the one hand, we have described Pap’s construction which, instantiated
with a suitable function, is able to generate dual pairs of idempotent semi-
fields (e.g. max-times and min-times), among a plethora of other, commuative,
complete non-idempotent semifields.

– On the other hand, commutative complete dioids are already complete residu-
ated lattices, which make them good candidates to support Galois connections
by residuation, although we have not been able to provide closed expressions
for the polars.

Note that the Pap semifields are a side result of the lengthier process of
defining a g-calculus [12,13]. Also, in [18, Sect. 6.2,7] functions like g above a
called transforms. This would seem to imply that we would have a non-standard
calculus associated to semifields, as well as a non-standard algebra, e.g. concept
lattices, in this algebraic setting.

The second contribution was a new application of Concept Lattices to decom-
pose nonnegative matrices (NMF) by providing an analogue of Singular Value
Decomposition. Since the procedure was developed in the completed idempotent
semifield notation, this means there are different instantiations for semifields
with different carrier sets, hence this is a generic procedure.
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Abstract. The majority of works on modal fuzzy logics consider Kripke-
style possible worlds semantics as the principal semantics despite its well
known axiomatizability issues when considering fuzzy accessibility rela-
tions. The present work offers the first (two) steps towards exploring a
more general semantical picture, namely a fuzzified version of the clas-
sical neighborhood semantics. First we prove the fuzzy version of the
classical relationship between Kripke and neighborhood semantics. Sec-
ond, for any axiomatic extension of MTL (one of the main fuzzy logics),
we define its modal expansion by a �-like modality, and, in the presence
of some additional conditions, we prove that the resulting logic can be
axiomatized by adding the (E)-rule to the corresponding Hilbert-style
calculus of the starting logic.

1 Introduction

The study of propositional systems expanded with modal operators has recently
been gaining momentum in the field of Mathematical Fuzzy Logic (MFL). Several
works such as [3–5,13,14,19] follow the steps of the initial developments in [10,
12]. In this line of research, modal fuzzy logics are endowed with a Kripke-style
semantics which generalizes the classical one by allowing a fuzzy scale for either
(or for both) the truth-values of propositions at each possible world and for
the degree of accessibility from one world to another. However, axiomatizing
such semantics over a given algebra (or class of algebras) of truth-values is in
general a difficult problem. Also, conversely, proof systems with natural syntactic
conditions may fail to be complete with any such Kripke-style semantics.

In classical modal logic, the neighborhood semantics [15,18] is seen as a more
general framework (compared to Kripke frames) that allows us to prove com-
pleteness for non-normal modal logics, where the Kripke-style semantics would
not work. Similarly, the goal of the present paper is to propose a form of neighbor-
hood semantics (as already considered in [16,17] in a slightly different setting) for
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 95–107, 2016.
DOI: 10.1007/978-3-319-40581-0 9
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modal fuzzy logics that provides a relational semantics for a bigger class of log-
ics. After recalling the main notions from the classical case in Sect. 2.1, standard
notions from MFL in Sect. 2.2 and fuzzy class theory in Sect. 2.3, we introduce
neighborhood frames for fuzzy logics in Sect. 3. Then we show their relationship
with the Kripke-style semantics in Sect. 4 and we obtain an axiomatization of
the logic given by all neighborhood frames in Sect. 5.

2 Preliminaries

In this section, we briefly introduce the classical neighborhood semantics and
the basics on fuzzy sets, MTL logic and its algebraic counterpart, along with the
different notations we use throughout the paper.

First, we fix a language L�, consisting of a fixed countably infinite set Var
of (propositional) variables, denoted p, q, . . ., binary connectives ∧, ∨, &, and
→, constants 0, 1, and the unary operator �. The set of formulas Fm�, with
arbitrary members denoted ϕ,ψ, χ, . . . is defined inductively as usual, as are
subformulas of formulas. We call formulas of the form �ϕ box-formulas and fix
the length of a formula ϕ to be the number of symbols occurring in ϕ. We also
define ¬ϕ = ϕ → 0 and ϕ ↔ ψ = (ϕ → ψ) ∧ (ψ → ϕ).

Note that in the setting defined in Sect. 3, the diamond modality ♦ is not
definable from the box � and would need to be introduced as another primitive
unary connective. This is due to the fact that in MTL, as in many other logics
weaker than classical, double negation elimination fails. However in this paper,
for the sake of simplicity, we focus on modal fuzzy logics only with �.

2.1 Classical Neighborhood Semantics

Introduced independently by Scott [18] and Montague [15], neighborhood seman-
tics is a kind of possible worlds semantics for modal logics, similar in spirit to the
well-known Kripke semantics, but resulting in a weaker logic. A good overview
of these semantics is [8].

A neighborhood model, or shortly SM-model, is a triple M = 〈W,N, V 〉, where
W is a non-empty set of worlds while N is a function N : W → 22

W

(2 =
{0, 1}, denoting the domain of two-element Boolean algebra) that assigns to
each world x a set of subsets of W , called the neighborhood of x ∈ W . V is an
evaluation V : Var × W → 2 that is extended to all formulas inductively as in
classical propositional logic (where & and ∧ coincide and both denote classical
conjunction), while for a box-formula:

V (�ϕ, x) = 1 iff [[ϕ]]M ∈ N(x) ,

where [[ϕ]]M = {y ∈ W | V (ϕ, y) = 1}, the set of worlds where “ϕ is true”.
We say that a formula ϕ ∈ Fm� is valid in an SM-model M = 〈W,N, V 〉 if

V (ϕ, x) = 1 for all x ∈ W (which we can equivalently formulate as [[ϕ]]M = W ),
written M |=SM ϕ. For a set of formulas Γ ⊆ Fm�, we use the shorthand
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notation M |=SM Γ , if for all ϕ ∈ Γ , M |=SM ϕ. Furthermore, a formula ϕ ∈ Fm�
is called an SM-consequence of a set of formulas Γ ⊆ Fm�, if for all SM-models
M, such that M |=SM Γ , also M |=SM ϕ, written Γ |=SM ϕ. Note that we
consider the so-called global consequence relations; the reformulations of all our
definitions to the local variant is straightforward. If ∅ |=SM ϕ, we write |=SM ϕ
and say that ϕ is SM-valid. Clearly, SM-valid formulas are the same for global
and local consequences.

A Kripke model, or shortly K-model, is a triple M = 〈W,R, V 〉, where W
is a non-empty set of worlds, R is an accessibility relation on W , i.e. a binary
relation R ⊆ W 2, and V is an evaluation, i.e., a mapping V : Var × W → 2 .
For convenience, we write Rxy instead of 〈x, y〉 ∈ R and denote the R-image of
x ∈ W as R[x], i.e., the set {y ∈ W | Rxy}. An evaluation V is extended to
formulas ϕ ∈ Fm� inductively as in classical propositional logic (where again &
and ∧ coincide and both denote classical conjunction) while for a box-formula:

V (�ϕ, x) = 1 iff V (ϕ, y) = 1, for all y ∈ R[x] .

Note that we can equivalently write this condition as: R[x] ⊆ [[ϕ]]M, where
[[ϕ]]M is defined as in the case of SM-semantics. K-validity and K-consequence
are defined analogously to SM-validity and SM-consequence.

It is not hard to see, that given any K-model M = 〈W,R, V 〉, we obtain an
SM-model M = 〈W,NR, V 〉 by setting for all x ∈ W ,

NR(x) = {X ∈ 2W | R[x] ⊆ X} ,

and the truth values of all formulas are preserved in all worlds.
Conversely, given any SM-model M = 〈W,N, V 〉, we can define a K-model

M = 〈W,RN , V 〉 by setting for all x, y ∈ W ,

RNxy iff y ∈ X, for each X ∈ N(x) .

Note that this entails that RN [x] =
⋂

N(x) =
⋂

X∈N(x)X. However, in order to
preserve the truth of all formulas at each world, we need the original SM-model
M to satisfy the following two additional conditions for each x ∈ W :

– N(x) contains its core, i.e. the set (
⋂

X∈N(x) X) ∈ N(x),
– N(x) is closed under taking supersets, i.e. if X ∈ N(x) and X ⊆ Y , then

Y ∈ N(x).

In this case, M is called augmented. The following results about these transitions
can be found for example in [8].

Theorem 1.

(a) Let M = 〈W,R, V 〉 be a K-model. Then RNR
= R, M = 〈Ŵ ,NR, V̂ 〉, defined

by Ŵ = W and V̂ = V , is an augmented SM-model, and for all ϕ ∈ Fm�
and all x ∈ W , V̂ (ϕ, x) = V (ϕ, x).
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(b) Let M = 〈W,N, V 〉 be an augmented SM-model. Then NRN
= N , M =

〈Ŵ ,RN , V̂ 〉, defined by Ŵ = W and V̂ = V , is a K-model, and for all
ϕ ∈ Fm� and all x ∈ W , V̂ (ϕ, x) = V (ϕ, x).

If we define a semantical consequence relation |=ASM by considering only aug-
mented instead of all SM-models, the following corollary is immediate.

Corollary 1. For any subset Γ ⊆ Fm� and formula ϕ ∈ Fm�,

Γ |=ASM ϕ iff Γ |=K ϕ .

Furthermore, let CPC denote any Hilbert-style axiomatization of classical propo-
sitional logic, and let (E) denote the following rule:

ϕ ↔ ψ

�ϕ ↔ �ψ

Given Γ ∪ {ϕ} ⊆ Fm�, we denote the fact that there is a proof of ϕ from Γ in
SM = CPC + (E) by Γ �SM ϕ. We then have the following completeness result:

Theorem 2. Let Γ ∪ {ϕ} ⊆ Fm�, then

Γ �SM ϕ iff Γ |=SM ϕ .

2.2 MTL Logic and MTL-Algebras

An MTL-algebra (introduced in [9]) is a prelinear commutative bounded integral
residuated lattice. That is, using the algebraic language L = L� \ {�}, the
algebraic structure

A = 〈A,∧,∨,&,→, 0, 1〉
is an MTL-algebra if the following conditions are satisfied:

– 〈A,∧,∨, 0, 1〉 is a bounded lattice,
– 〈A,&, 1〉 is a commutative monoid,
– & and → form a residuated pair, i.e. a & b ≤ c iff a ≤ b → c, for all a, b, c ∈ A,
– (a → b) ∨ (b → a) = 1 is satisfied for all a, b ∈ A.

The class of all MTL-algebras forms a variety, i.e. an equational class of algebras.
An MTL-algebra A is called an MTL-chain if it is linearly ordered and we
will call it complete, if

∨
B and

∧
B exist in A, for any subset B ⊆ A. The

set of formulas built from propositional variables in Var and connectives in
L is denoted by Fm. Fixing an MTL-algebra A, we define an A-evaluation
as a function e : Var → A that extends to e : Fm → A by interpreting the
connectives in L by the corresponding operations of A, i.e. a homomorphism
from the algebra of formulas to A. For a subset Γ ∪ {ϕ} ⊆ Fm, we say that ϕ
is an A-consequence of Γ , written Γ |=A ϕ, if e(ϕ) = 1 for all A-evaluations
e such that e[Γ ] = {e(ψ) | ψ ∈ Γ} ⊆ {1}. Furthermore, we say that ϕ is an
MTL-consequence of Γ , written Γ |=MTL ϕ, if Γ |=A ϕ, for all MTL-algebras A.
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MTL is the logic given by the consequence relation |=MTL. It was axiomatized
(see [9,11]) by a Hilbert-style calculus with modus ponens rule (MP) as the only
inference rule.

MTL is not only sound and complete with respect to the variety of all MTL-
algebra, but also with respect to the class of all standard MTL-algebras, while
an MTL-algebra 〈A,∧,∨,&,→, 0, 1〉 is called standard, if A = [0, 1], the real
unit interval, ∧ and ∨ are the minimum and maximum, respectively, and & is a
left-continuous t-norm (i.e. an associative, commutative binary operation with
1 as neutral element).

The logic MTL� is the expansion of MTL with an extra unary operator �,
axiomatized in [9]. The additional operation � is interpreted on any chain as:

�(a) =

{
1 if a = 1 ,

0 otherwise .

By A� we denote the MTL�-chain resulting from adding � to the MTL-chain A
and say that A� is the �-expansion of A.

2.3 Fuzzy Sets and Their Notation

In order to formulate neighborhood semantics over MTL-algebras, rather than
the two-element Boolean algebra, we need to talk about fuzzy subsets of worlds
and fuzzy sets of fuzzy subsets. To do this efficiently, we introduce a convenient
notation inspired by the syntax of fuzzy class theory (FCT), see e.g. in [1].

Given a complete MTL�-chain A� = 〈A,∧,∨,&,→,�, 0, 1〉, and a (classi-
cal) set of worlds W , a fuzzy subset X of W is a function X : W → A. Intuitively,
a world x ∈ W is a member of X to the degree X(x) ∈ A and thus we also write
‘x ∈ X’ to denote the value X(x) in A. A fuzzy set X of fuzzy subsets of W is
a function X : AW → A and we also write ‘X ∈ X ’ for the value X (X) in A.
We usually use lower case letters x, y, z, . . . to denote members of W , upper case
letters X,Y,Z, . . . to denote members of AW and upper case calligraphic letters
X ,Y,Z, . . . to denote members of AAW

.
Obviously, as e.g. x ∈ X and X ∈ X represent values in A, we can use the

operation symbols in L ∪ {�}, representing operations of A�, to form what we
call meta-formulas, e.g. (x ∈ X) → (X ∈ X ), which themselves represent values
in A. Furthermore, we use quantifier symbols ∀ and ∃ to represent infima and
suprema over A�; e.g., the meta-formula (∀X)(∃Y )(∀x)((x ∈ X) ↔ (x ∈ Y ))
represents the following value in A:

∧

X∈AW

∨

Y ∈AW

∧

x∈W

((x ∈ X) ↔ (x ∈ Y )) .

Given a meta-formula ϕ(x) (e.g. ϕ(x) = (∃X)(x ∈ X)), we define a fuzzy set
X = {x ∈ W | ϕ(x)} to which each element y belongs exactly to the same degree
as is the value of ϕ(y), i.e.

ϕ(y) = (y ∈ {x ∈ W | ϕ(x)}) .
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Using the same idea, we introduce fuzzy sets of fuzzy subsets of W by compre-
hension terms {X ∈ AW | ϕ(X)}, e.g. for ϕ(X) = (∀x)(x ∈ X). Finally, we write
‘X ⊆ Y ’ to denote the value in A represented by (∀x)((x ∈ X) → (x ∈ Y )).

3 Neighborhood and Kripke Semantics for Modal MTL

Let us fix an MTL-chain A. We define an A-neighborhood frame (short: SM(A)-
frame) to be a pair 〈W,N〉 such that W is a non-empty (classical) set of worlds
while N is a function N : W → AAW

that assigns to each world x ∈ W a fuzzy
set of fuzzy subsets of W , called the A-neighborhood of x ∈ W .

We define an A-neighborhood model (short: SM(A)-model) to be a triple
〈W,N, V 〉, where 〈W,N〉 is an SM(A)-frame and V is an evaluation V : Var ×
W → A that is extended to formulas ϕ ∈ Fm� inductively as follows: the non-
modal connectives are interpreted locally at each world as the corresponding
operations of A while for a box-formula,

V (�ϕ, x) = ([[ϕ]]M ∈ N(x)) ,

where for any formula ϕ ∈ Fm�, [[ϕ]]M denotes the fuzzy subset of W to which
y belongs to the degree V (ϕ, y), i.e., the fuzzy subset {y ∈ W | V (ϕ, y)}.

Furthermore, if A is a complete MTL-chain, we define an A-Kripke frame
(short: K(A)-frame) to be a pair 〈W,R〉 such that W is a non-empty (classical)
set of worlds while R is a function R : W × W → A. For any x ∈ W we define
R[x] = {y ∈ W | Rxy}, i.e., the fuzzy subset of W to which y belongs to the
degree Rxy.

An A-Kripke model (short: K(A)-model) is a triple M = 〈W,R, V 〉, where
〈W,R〉 is a K(A)-frame and V is an evaluation V : Var × W → A that extends
to formulas ϕ ∈ Fm� inductively as follows: the non-modal connectives are
interpreted locally at each world as the corresponding operations of A while for
a box-formula,

V (�ϕ, x) =
∧

{Rxy → V (ϕ, y) | y ∈ W} = (R[x] ⊆ [[ϕ]]M).

Given an SM(A)-model M = 〈W,N, V 〉, a formula ϕ ∈ Fm� is valid in M, if
V (ϕ, x) = 1 for all x ∈ W , written M |=SM(A) ϕ. For a subset Γ∪{ϕ} ⊆ Fm�, we
say that ϕ is an SM(A)-consequence of Γ , written Γ |=SM(A) ϕ, if for all SM(A)-
models M such that M |=SM(A) Γ , also M |=SM(A) ϕ. The notion of validity in
a K(A)-model and K(A)-consequence (Γ |=K(A) ϕ) are defined analogously.

An SM(A)-frame 〈W,N〉 is A-augmented if the following meta-formulas is
valid (i.e., the meta-formula represents 1 in A�, the �-expansion A) for each
x ∈ W :

(∃X)�(∀Y )(X ⊆ Y ↔ Y ∈ N(x)) .

Note that validity of this formula, for a given x, means that there is a fuzzy
subset Cx of W such that (Cx ⊆ Y ) = (Y ∈ N(x)). Note that this implies that
(Cx ∈ N(x)) = 1 (because for each fuzzy subset X we have X ⊆ X = 1 and
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1 → a = a is satisfied in any MTL-algebra) and if there would be two such fuzzy
sets Cx and C ′

x, we would have Cx = C ′
x (just consider X = Cx and Y = C ′

x,
and vice-versa). This fuzzy subset, for a given x, is called the core of N(x).
Clearly, an SM(A)-frame 〈W,N〉 is A-augmented iff for each element x, N(x)
has a core.

4 Relating Neighborhood and Kripke Semantics

For this section, let A be a complete MTL-chain. We show that also in the fuzzy
setting, there is, analogously to the classical case, a close relationship between
fuzzy neighborhood semantics and fuzzy Kripke semantics. While the (fuzzy)
neighborhood function N allows more freedom, it becomes equivalent to the more
restricted (fuzzy) binary relation R when it is required to be (A-)augmented.

Similarly to the classical case, given a K(A)-frame 〈W,R〉, we define an
SM(A)-frame 〈W,NR〉 as follows. For all x ∈ W , let

NR(x) = {X ∈ AW | (∀y)(Rxy → y ∈ X)} .

Note that (∀y)(Rxy → y ∈ X) = (R[x] ⊆ X). On the other hand, given an
SM(A)-frame 〈W,N〉, we define a K(A)-frame 〈W,RN 〉 as follows:

RN [x] = {y ∈ W | (∀X)(X ∈ N(x) → y ∈ X)} .

Similarly to the classical case, our goal is to prove that for a K(A)-frame 〈W,R〉,
we have RNR

= R, and if an SM(A)-frame 〈W,N〉 is A-augmented, then NRN
=

N . These proofs follow the same ideas as in the classical case (see e.g. [8]), but
obviously an adaptation to deal with fuzzy sets of fuzzy subsets of W is needed.

Lemma 1. Let 〈W,N〉 be an A-augmented SM(A)-frame, x ∈ W , and let Cx

be the core of N(x). Then Cx = RN [x].

Proof. We prove that Cx = RN [x] by showing that for all y ∈ W , (y ∈ RN [x]) ≤
(y ∈ Cx) and (y ∈ Cx) ≤ (y ∈ RN [x]). First note that because Cx is the core of
N(x), it is the case that (Cx ∈ N(x)) = 1. Fixing a y ∈ W , it follows that

(y ∈ RN [x]) = (∀Y )(Y ∈ N(x) → y ∈ Y )
≤ (Cx ∈ N(x) → y ∈ Cx)
= (y ∈ Cx)

as ‘(∀Y )’ denotes
∧

and its instantiation by Cx is greater. The last equality is
justified by the fact that the equation 1 → a = a is satisfied in any MTL-algebra.

For the other inequality, note first that for all y ∈ W and all Y ∈ AW ,

(Cx ⊆ Y ) = (∀z)(z ∈ Cx → z ∈ Y ) ≤ (y ∈ Cx → y ∈ Y ) .

By residuation and commutativity of the & operation, it follows that

(y ∈ Cx & Cx ⊆ Y ) = (Cx ⊆ Y & y ∈ Cx) ≤ (y ∈ Y ) ,
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for all y ∈ W , and thus by residuation again

(y ∈ Cx) ≤ (Cx ⊆ Y → y ∈ Y ) .

From this, the fact that Cx is the core of N(x), and by the definition of RN , we
can complete the proof by the following chain of (in)equalities

(y ∈ Cx) = (∀Y )(y ∈ Cx)
≤ (∀Y )(Cx ⊆ Y → y ∈ Y )
= (∀Y )(Y ∈ N(x) → y ∈ Y ) = (y ∈ RN [x]) . ��

Lemma 2. If 〈W,R〉 is a K(A)-frame, then the SM(A)-frame 〈W,NR〉 is A-
augmented.

Proof. We prove that for each world x ∈ W , R[x] is the core of NR(x) and so
〈W,NR〉 is A-augmented. For this, we recall the observation after the definition
of NR and note that for all Y ∈ AW , we have

(R[x] ⊆ Y ) = (Y ∈ NR(x)) .

Thus, we obtain that the meta-formula

�(∀Y )(X ⊆ Y ↔ Y ∈ NR(x))

is satisfied for X = R[x]. ��
Theorem 3. Let 〈W,N〉 be an SM(A)-frame. Then 〈W,N〉 is A-augmented iff
NRN

= N .

Proof. For the direction from left to right, let 〈W,N〉 be an A-augmented A-
neighborhood frame. Then notice for all x ∈ W :

NRN
(x) = {Y ∈ AW | (∀y)(RNxy → y ∈ Y )} (1)

= {Y ∈ AW | RN [x] ⊆ Y } (2)
= {Y ∈ AW | Cx ⊆ Y } (3)
= {Y ∈ AW | Y ∈ N(x)} (4)
= N(x) . (5)

While the first two and the last equalities are just notational facts, step (2)
to (3) is justified by Lemma 1, and we get from (3) to (4) because 〈W,N〉 is
A-augmented.

The right to left direction is an easy consequence of Lemma 2. ��
Theorem 4. If 〈W,R〉 is a K(A)-frame, then RNR

= R.
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Proof. Let 〈W,R〉 be a K(A)-frame and fix an x ∈ W , then

RNR
[x] = {y ∈ W | (∀Y )(Y ∈ NR(x) → y ∈ Y )}

= {y ∈ W | (∀Y )(Y ∈ {Z ∈ AW | (∀y)(Rxy → y ∈ Z)} → y ∈ Y )}
= {y ∈ W | (∀Y )(Y ∈ {Z ∈ AW | R[x] ⊆ Z} → y ∈ Y )}
= {y ∈ W | (∀Y )(R[x] ⊆ Y → y ∈ Y )} .

It then remains to be shown that for all y ∈ W , (∀Y )(R[x] ⊆ Y → y ∈ Y ) =
(y ∈ R[x]). For this, note first that for all y ∈ W and all Y ∈ AW ,

(R[x] ⊆ Y ) = (∀z)(z ∈ R[x] → z ∈ Y ) ≤ (y ∈ R[x] → y ∈ Y ) .

By residuation and commutativity of the & operation, we obtain (y ∈ R[x]) ≤
(R[x] ⊆ Y → y ∈ Y ) for all y ∈ W and Y ∈ AW , and thus also for all y ∈ W ,

(y ∈ R[x]) ≤ (∀Y )(R[x] ⊆ Y → y ∈ Y ) .

On the other hand, by instantiation,

(∀Y )(R[x] ⊆ Y → y ∈ Y ) ≤ (R[x] ⊆ R[x] → y ∈ R[x]) = (y ∈ R[x]) ,

and thus RNR
[x] = {y ∈ W | (∀Y )(R[x] ⊆ Y → y ∈ Y )} = R[x]. ��

Having established a tight connection between A-neighborhood and A-Kripke
frames, the extension of this connection to the level of models does not come as
a surprise.

Theorem 5.

(a) Given a K(A)-model M = 〈W,R, V 〉, define the SM(A)-model M = 〈Ŵ , N̂ ,

V̂ 〉 with Ŵ = W , N̂ = NR, and V̂ = V . Then for all ϕ ∈ Fm� and all
x ∈ W :

V̂ (ϕ, x) = V (ϕ, x) .

(b) Given an A-augmented SM(A)-model M = 〈W,N, V 〉, define the K(A)-
model M = 〈Ŵ , R̂, V̂ 〉 with Ŵ = W , R̂ = RN , and V̂ = V . Then for all
ϕ ∈ Fm� and all x ∈ W :

V̂ (ϕ, x) = V (ϕ, x) .

Proof. We proceed by induction over the complexity of a formula ϕ ∈ Fm�.
For (a) and (b), the case where ϕ ∈ Var or ϕ is a constant follows by the
definition of V̂ while the case where ϕ is not a box-formula follows trivially from
the induction hypothesis (as only box-formulas depend on R or N). Let ϕ = �ψ
for some ψ ∈ Fm�.
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For (a), note that by the induction hypothesis, for any x ∈ Ŵ = W ,

V̂ (�ψ, x) = ([[ψ]]M ∈ NR(x))

= ([[ψ]]M ∈ {Y ∈ AW | (∀y)(Rxy → y ∈ Y )})
= (∀y)(Rxy → y ∈ [[ψ]]M)

=
∧

{Rxy → V̂ (ψ, y) | y ∈ Ŵ}
=

∧
{Rxy → V (ψ, y) | y ∈ W}

= V (�ψ, x) .

For (b), on the other hand, by the fact that M is A-augmented and thus, for any
x ∈ Ŵ = W , RN [x] is the core of N(x) by Lemma 1, we can use the induction
hypothesis to conclude the proof by the following chain of equalities:

V (�ψ, x) = ([[ψ]]M ∈ N(x))
= (RN [x] ⊆ [[ψ]]M)
= (∀y)(y ∈ RN [x] → y ∈ [[ψ]]M)

=
∧

{RNxy → V (ψ, y) | y ∈ W}
=

∧
{RNxy → V̂ (ψ, y) | y ∈ Ŵ}

= V̂ (�ψ, x) . ��

Corollary 2. For all subsets Γ ∪ {ϕ} ⊆ Fm�,1

Γ |=K(A) ϕ iff M |=SM(A) ϕ for all A-augmented SM(A)-models M

such that M |=SM(A) Γ.

Proof. For the contraposition of the right-to-left direction, let us assume
Γ �|=K(A) ϕ, that is, there is a K(A)-model M = 〈W,R, V 〉 such that V [Γ,W ] =
{V (ψ, x) | ψ ∈ Γ, x ∈ W} ⊆ {1} and V (ϕ, y) < 1, for some world y ∈ W .
Define the SM(A)-model M = 〈Ŵ , N̂ , V̂ 〉 by Ŵ = W, N̂ = NR, and V̂ = V
and notice that by Lemma 2, M is A-augmented, and that for all x ∈ W and
all ψ ∈ Fm�, V̂ (ψ, x) = V (ψ, x), by Theorem 5(a). It therefore follows that
V̂ [Γ, Ŵ ] = V [Γ,W ] ⊆ {1} and V̂ (ϕ, y) = V (ϕ, y) < 1 and thus the right-hand
side of the claim is false.

For the contraposition of the left-to-right direction, let us assume that there
is an A-augmented SM(A)-model M = 〈W,N, V 〉, such that V [Γ,W ] ⊆ {1} and
V (ϕ, y) < 1, for some world y ∈ W . Define the K(A)-model M = 〈Ŵ , R̂, V̂ 〉
by Ŵ = W, R̂ = RN , and V̂ = V and notice that for all x ∈ W and all ψ ∈
Fm�, V̂ (ψ, x) = V (ψ, x), by Theorem 5(b). It therefore follows that V̂ [Γ, Ŵ ] =
V [Γ,W ] ⊆ {1} and V̂ (ϕ, y) = V (ϕ, y) < 1 and thus Γ �|=K(A) ϕ. ��

1 It is easy to check that this result also holds for the local consequence.



From Kripke to Neighborhood Semantics for Modal Fuzzy Logics 105

5 An Axiomatization of SM(A)

A logic L is an axiomatic extension of MTL if it is obtained by adding new axiom
schemes. It is well known that MTL, and hence all its axiomatic extensions, is
algebraizable in the sense of Blok and Pigozzi (see [2,7]). Given an axiomatic
extension L, we call L-algebras the members of its equivalent algebraic semantics,
which form a subvariety of MTL-algebras. It is also well known that all axiomatic
extensions of MTL are semilinear, that is, each member of the equivalent alge-
braic semantics is representable as a subdirect product of chains. Prominent
axiomatic extensions of MTL include Gödel-Dummett logic G, �Lukasiewicz logic
�L, Product logic Π, and Hájek’s basic fuzzy logic HL (see [7,12]).

We say that an axiomatic extension L of MTL is strongly complete with
respect to an L-chain C if for every Γ ∪{ϕ} ⊆ Fm we have: Γ �L ϕ iff Γ |=C ϕ.
We say that L is finitely strongly complete with respect to C if the same property
holds for each finite set Γ ∪{ϕ} ⊆ Fm. The four prominent axiomatic extensions
of MTL mentioned above are finitely strongly complete (G is even strongly
complete) with respect to the respective ‘standard’ chains, i.e., algebras defined
over the real unit interval [0, 1] ordered in the usual way (see [7,12]).

For each axiomatic extension L of MTL, we define the modal logic LSM in
the language L� as the logic axiomatized by any axiomatic system of L and the
additional rule (E) (see Sect. 2.1). Clearly, LSM remains an algebraizable logic,
since (E) ensures the congruence law for the new connective �, hence it has an
equivalent algebraic semantics. If we assume that L is (finitely) strongly complete
with respect to an L-chain C we are able to prove (finite) strong completeness
of LSM with respect to a semantics of SM(C)-models.

Theorem 6. Let L be an axiomatic extension of MTL and let C be an L-
chain. If L is (finitely) strongly complete with respect to C, then for each (finite)
Γ ∪ {ϕ} ⊆ Fm� we have:

Γ �LSM ϕ iff Γ |=SM(C) ϕ .

Proof. For the left-to-right directions, we only need to check the soundness of
the rule (E). Let us assume that for some SM(C)-model M = 〈W,N, V 〉 and
some formulas ψ, χ ∈ Fm�, M |=SM(C) ψ ↔ χ, then

M |=SM(C) ψ ↔ χ ⇒ V (ψ, x) = V (χ, x), for all x ∈ W,

⇒ [[ψ]]M = [[χ]]M
⇒ ([[ψ]]M ∈ N(x)) = ([[χ]]M ∈ N(x)), for all x ∈ W,

⇒ V (�ψ, x) = V (�χ, x), for all x ∈ W,

⇒ M |=SM(C) �ψ ↔ �χ.

For the reverse implication in the finite strong completeness case, assume that
Γ �LSM ϕ for a finite set Γ ∪{ϕ} ⊆ Fm�. By the algebraizability of LSM, there
is an LSM-algebra A and an evaluation e : Fm� → A such that e[Γ ] ⊆ {1A} and
e(ϕ) �= 1A. The L-reduct of A is an L-algebra, and because L is a semilinear logic,
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it is representable as a subdirect product of L-chains {Ai | i ∈ I} (see e.g. [6,
Proposition 2.14]). Let X be the finite set of the subformulas of Γ ∪{ϕ}. By the
completeness assumption for L, we have that each Ai is partially embeddable
into C [6, Theorem 3.8]. For each i ∈ I, πi[e[X]] is a finite subset of Ai; let gi be
a corresponding partial embedding into C. For each i ∈ I, we take an arbitrary
C-evaluation ei such that ei(ψ) = (gi ◦ πi ◦ e)(ψ) for each ψ ∈ X.

Now we have all the ingredients to build an SM(C)-model M = 〈W,N, V 〉.
Let W = I and define for all p ∈ Var and all j ∈ W , V (p, j) = ej(p) and

(〈ai〉i∈W ∈ N(j)) =

{
ej(�ψ) if there is ψ ∈ X s.t. 〈ai〉i∈W = 〈ei(ψ)〉i∈W

0C otherwise.

Then for each formula ψ ∈ X and each world j ∈ W , we have V (ψ, j) = ej(ψ)
(by an easy induction where the step for � follows from the following chain
of equalities: V (�ψ, j) = ([[ψ]]M ∈ N(j)) = (〈ei(ψ)〉i∈W ∈ N(j)) = ej(�ψ)).
Therefore M is a model of Γ (because for each ψ ∈ Γ we have e(ψ) = 1A and
so for each j ∈ W : V (ψ, j) = ej(ψ) = (gi ◦πi ◦ e)(ψ) = 1C) but it is not a model
of ϕ (because e(ϕ) �= 1A, there has to be a j ∈ W such that (πj ◦ e)(ϕ) �= 1Aj

and so V (ϕ, j) = ej(ϕ) = (gj ◦ πj ◦ e)(ϕ) �= 1C).
The proof of the right-to-left direction for the strong completeness case is

very similar; in this case we even know that the projections of the countable
subalgebras generated by the values of the subformulas of Γ ∪ {ϕ} by the eval-
uation e are totally embeddable into C (by [6, Theorem 3.5]). ��
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Abstract. In this work we lay a theoretical framework for developing
dynamic epistemic logics in a many-valued setting. We consider in partic-
ular the logic of Public Announcements, which is one of the simplest and
best-known dynamic epistemic systems in the literature. We show how to
develop a Public Announcement Logic based on finite-valued �Lukasiewicz
modal logic. We define our logic through a relational semantics based on
many-valued Kripke models, and also introduce an alternative but equiv-
alent algebra-based semantics using MV-algebras endowed with modal
operators. We provide a Hilbert-style calculus for our logic and prove
completeness with respect to both semantics.

Keywords: �Lukasiewicz modal logic · MV-algebras · Public
Announcements Logic · Epistemic logics

1 Introduction

Dynamic epistemic logics (DEL) are formal systems designed to model the
change brought about by epistemic actions, that is, actions that affect the cog-
nitive state of (a group of) reasoning agents, rather than the facts of the world
themselves. A prominent and simple example of an epistemic action is the public
announcement of a certain proposition α. In this scenario one considers how α
becoming publicly known affects the beliefs of a group of agents. In the tradi-
tion of modal logic, DEL formally represent the beliefs of agents as algebraic or
relational (Kripke-style) models. An epistemic action such as a public announce-
ment induces a change on such models, which is accordingly modelled through
an algebraic or frame-theoretic construction.

For example, viewing the set of beliefs of an agent as a Kripke model (a
set of worlds that the agent considers possible, plus an accessibility relation
and a valuation), the public announcement of a proposition α causes certain
worlds (those where α is not true) to be no longer plausible, that is, precisely,
to be no longer “possible worlds” from the agent’s perspective. These worlds
are therefore “deleted” and a new Kripke model is created, whose underlying
set of worlds is essentially just the extension of α (all worlds which satisfied α
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in the original model) and where the relation and the valuation are restricted
in a straightforward way. This construction is known as an epistemic update.
One then uses this new model to define the semantics of sentences of type 〈α〉ϕ,
whose intended meaning is: the proposition α has been announced, and after
that ϕ holds. Now if ϕ itself contained an epistemic modal operator, then we
would for example have a sentence like 〈α〉�ψ, whose intended meaning is: the
proposition α has been announced, and after that the agent knows (believes,
etc.) that ψ is the case.

The system of DEL that was introduced to deal with public announcements
is called precisely Public Announcement Logic (PAL): see e.g. [1,2]. This is
essentially a language expansion of classical modal logic with so-called dynamic
modal operators 〈α〉 and [α], whose meaning and semantics is the one introduced
above. A series of more recent papers [7,9,10] considers systems of PAL built
on a non-classical propositional base. The motivation for the introduction of
non-classical PAL is along the following lines.

On the one hand, PAL and related systems based on classical propositional
logic have been used to provide a formal solution to epistemic problems such
as the Muddy Children Puzzle and the Byzantine Generals Problem. It can be
shown, however, that at least for some of these scenarios the full power of classical
inference principles may not be needed: for example [7] provides a constructive
solution to the Muddy Children Puzzle using intuitionistic logic.

Secondly, there are reasoning contexts where the strength of classical logic
makes it unsuitable, a prominent example being reasoning in the presence of
inconsistent information. The papers [9,10] provide a framework for building a
logic of public announcements that may be applied in such contexts.

Lastly, from a theoretical point of view, one may ask which structural con-
ditions make it possible to extend a given modal epistemic system to a dynamic
setting. The above-mentioned papers [6,7,9,10] point at certain conditions that
seem to be sufficient, at least in the cases that have been studied so far, and the
present paper, as we will argue, provides further evidence and tools in this direc-
tion. However, the more general problem of formulating mathematically precise
conditions that can be proven to be necessary and sufficient is still open, and
constitutes, in our opinion, an intriguing direction for future research.

In the present paper we take the generalization of PAL to non-classical set-
tings proposed in [7,9,10] one step further: namely, we show how to define a
logic of public announcements having as base n-valued �Lukasiewicz modal logic,
n being an arbitrary positive integer. In doing so, we believe we are providing a
tool that can be useful for reasoning in all those contexts where graded properties
and predicates are involved, which are the main scope of many-valued and fuzzy
logics. On the other hand, as mentioned above, we also hope that our study will
shed further light on the mathematical nature of epistemic updates performed
on relational structures and on algebras, thus helping to define a most general
context in which these constructions can be performed.

The epistemic update constructions and the logical methods used in the
present paper are essentially those of [6,7], that we extend using insights of
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[9,10]. These methods are applied to the family of finite-valued �Lukasiewicz
modal systems developed in [5], relying on on the duality for finitely-generated
modal MV-algebras of [8].

The paper is organized as follows. Section 2 contains an introduction to Pub-
lic Announcement Logic and to �Lukasiewicz modal logic, which are the two main
ingredients that are going to be combined in our treatment. In Sect. 3 we officially
introduce �Lukasiewicz Public Announcement Logic (�LnPAL). We define a rela-
tional semantics based on many-valued Kripke models and present a Hilbert-style
calculus for �LnPAL. Section 4 is an intermezzo on the equivalence between alge-
braic and relational semantics of �Lukasiewicz modal logic: this result is needed
in order to introduce and develop our algebraic semantics for �LnPAL. In Sect. 5
we define the mechanism of epistemic updates in the algebraic setting of modal
MV-algebras (Subsect. 5.1). This will allow us to provide an algebraic semantics
for �LnPAL (Subsect. 5.2) that is alternative but equivalent to the relational one,
and to prove soundness (and completeness) for our Hilbert-style calculus (Sub-
sect. 5.3). Lastly, Sect. 6 contains concluding remarks and suggestions for future
work.

2 Preliminaries

2.1 The Logic of Public Announcements

The logic of public announcements [1,2] is a dynamic logic that models the
epistemic change on the cognitive state of a group of agents resulting from a
given fact (expressed by some proposition, that we will denote by α) becoming
publicly known.

From a syntactic point of view, PAL is a language expansion of (classical)
modal logic where, besides the so-called “static” modal operators � and ♦ (whose
intended interpretation is epistemic), we have “dynamic” operators 〈α〉 and [α]
for each formula α in the language. The intended meaning of a formula of type
〈α〉ϕ is: the proposition α has been announced, and after the announcement ϕ
is the case. The other dynamic operator, which in the classical and �Lukasiewicz
case is the dual of 〈α〉, has the following interpretation: [α]ϕ means that if the
proposition α has been announced, then after the announcement ϕ is the case.

The formulas of PAL are built from a countable set of propositional letters
V ar through the following inductive rule:

ϕ ::= p ∈ V ar | ¬ϕ |ϕ → ϕ |�ϕ | [ϕ]ϕ

In this paper we focus on this language, because all other connectives are term-
definable from these in both classical and �Lukasiewicz logic. In particular we
have ♦ϕ := ¬�¬ϕ and 〈α〉ϕ := ¬[α]¬ϕ.

As mentioned above, the underlying (static) modal logic is usually taken to be
a system modeling the knowledge of an agent, for example modal logic S5, whose
semantics is provided in the standard way by relational models 〈W,R, v〉 with R
an equivalence relation. In order to provide a semantics for formulas involving
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dynamic modalities, one needs to introduce the epistemic update construction.
Let M = 〈W,R, v〉 be a model, where v : Fm×W → {0, 1} is the valuation map,
and let α be a formula in the above-defined language. We define a new model
Mα = 〈Wα, Rα, vα〉 where Wα := {w ∈ W : M,w |= α}, Rα := R∩ (Wα ×Wα)
and vα : Fm × Wα → {0, 1} is the restriction of the map v to Wα. Notice
that, although M and Mα are different models, the set Wα can be embedded
into W in the obvious way. This justifies the abuse of language of the following
definitions:

M,w |= [α]ϕ iff M,w |= α implies Mα, w |= ϕ.

Dually, one sets

M,w |= 〈α〉ϕ iff M,w |= α and Mα, w |= ϕ.

Given these definitions, the notion of modal consequence (usually one focuses
on the so-called local one) is introduced in the standard way.

Classical PAL admits a simple Hilbert-style axiomatization. One expands the
set of axioms and rules for modal logic (S5) with the following schemes:

1. 〈α〉p ↔ (α ∧ p)
2. 〈α〉¬ϕ ↔ (α ∧ ¬〈α〉ψ)
3. 〈α〉(ϕ ∨ ψ) ↔ (〈α〉ϕ ∨ 〈α〉ψ)
4. 〈α〉♦ϕ ↔ (α ∧ ♦(α ∧ 〈α〉ϕ))

where p ∈ V ar and α,ϕ, ψ ∈ Fm, together with the monotonicity rule:

from ∅ � ϕ → ψ derive ∅ � 〈α〉ϕ → 〈α〉ψ.

The restriction that p ∈ V ar in the first axiom reflects the important fact that
the consequence relation of PAL is not substitution-invariant. Taken together,
the above axioms suggest that any PAL-formula having the dynamic operator
as main connective can be proven to be inter-derivable in the calculus to one
where the dynamic operator has been pushed inside the scope of some other
propositional or static modal operator. This is indeed the case, as we will see,
and is the key to a completeness proof that relies on reducing any PAL-formula
to a formula that does not contain any dynamic operator. In fact, also when
moving from classical to a non-classical version of PAL, it is sufficient to check
soundness of the set of proposed axioms with respect to the intended semantics,
and completeness can be proven using the same reduction strategy that works
for the classical case (see [7,9,10]). This is also the approach that we will take
in our treatment of �Lukasiewicz PAL.

2.2 �Lukasiewicz n-valued Modal Logic

The main ingredients that we need to introduce our �Lukasiewicz PAL are: (1)
a “static” �Lukasiewicz modal logic base to build upon, defined in terms of a
(Hilbert-style) calculus which is sound and complete with respect to a relational
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semantics; (2) a suitable adaptation of the techniques for dealing with non-
classical dynamic epistemic logics developed in [6,7,9,10]; (3) in order to be
able to successfully apply these techniques, it is also desirable to have at hand
a workable duality theory connecting the relational and the algebraic semantics
of (the static fragment of) the logic. As mentioned earlier on, the first item
is provided by the work of Hansoul and Teheux [5], while the third is due to
Teheux [8].

In this section we recall the main definitions and facts that we shall need
about the modal extension of �Lukasiewicz logic introduced in [5], which is going
to be the static base of our �Lukasiewicz PAL. We begin by recalling the essentials
of �Lukasiewicz (non-modal) logic, and then turn to its modal counterpart.

�Lukasiewicz logic can be defined as the logic of MV-algebras (built in the
language 〈→,¬, 1〉 of type 〈2, 1, 0〉 and defined as in [3, Definition 4.2.1]). We
use the following abbreviations: 0 := ¬1, x ⊕ y := ¬x → y, x  y := ¬(x → ¬y),
x∨y := (x → y) → y, x∧y := ¬(¬x∨¬y). We also abbreviate xm := x . . .x
(m times) and mx := x ⊕ . . . ⊕ x (m times). As the notation suggests, the
{∧,∨, 0, 1}-reduct of any MV-algebra is a bounded (distributive) lattice. As
often happens in many-valued logics, algebras whose lattice order is total play a
key role within the variety of MV-algebras. It is in particular well-known that,
for every positive integer n, there is up to isomorphism only one totally ordered
n-element MV-algebra. We denote it by �Ln, and by MVn the variety generated
by �Ln.

The logics that we shall focus on have as non-modal base n-valued
�Lukasiewicz logic . This is the logic defined by the the logical matrix 〈�Ln, {1}〉
in the standard way. For formulas Γ ∪ {ϕ} ⊆ Fm, we set Γ |=�Ln

ϕ iff, for every
MV-algebra homomorphism h : Fm → �Ln, it holds that h(ϕ) = 1 whenever
h[Γ ] ⊆ {1}. Logically, we think of → as an implication and ¬ as a negation,
while ⊕,∨ are two different types of disjunction and ,∧ are two different con-
junctions.

The above consequence relation is extended in [5] to the language 〈→,¬,�, 1〉
which is augmented with a unary (necessity-type) modal operator � through a
many-valued generalization of Kripke semantics. The notion of Kripke frame is
defined in the usual way: a frame is a structure F = 〈W,R〉 with W a non-
empty set of ‘worlds’ and R ⊆ W × W an accessibility relation. An n-valued
Kripke model is a structure M = 〈W,R, v〉 such that 〈W,R〉 is a frame and
v : Fm × W → �Ln is a valuation map satisfying the following requirements: for
all ϕ,ψ ∈ Fm and any w ∈ W ,

– v(¬ϕ,w) = ¬�Lnv(ϕ,w)
– v(ϕ → ψ,w) = v(ϕ,w) →�Ln v(ψ,w)
– v(�ϕ,w) =

∧�Ln{v(ϕ,w′) : wRw′} where
∧�Ln is the lattice meet in �Ln.

Note that arbitrary meets always exist in the finite algebra �Ln, and in fact the
meet is a minimum because �Ln is a chain. A dual possibility operator ♦ can be
defined by ♦ϕ := ¬�¬ϕ, and it is easy to check that, for any valuation v, any
ϕ ∈ Fm and all w ∈ W , we have v(♦ϕ,w) =

∨�Ln{v(ϕ,w′) : wRw′}, where
∨�Ln

is the lattice join (or maximum) in �Ln.
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As usual, we say that an n-valued model M = 〈W,R, v〉 satisfies a formula
ϕ at a world w ∈ W , denoted M, w |= ϕ, when v(ϕ,w) = 1�Ln (we omit the
parameters n and �Ln when they are clear from the context). We can then define
a (local) modal consequence relation by setting Γ |=l

n ϕ iff, for every n-valued
model M and every w ∈ W , M, w |= γ for all γ ∈ Γ implies M, w |= ϕ.

In this paper (as in [5]) we focus on the local logic. The local consequence
relation over a given �Ln is axiomatized by the following Hilbert-style calculus
[5, Theorem 6.2].

The set of axioms is the least set of formulas Σ that is closed under modus
ponens (if ϕ, ϕ → ψ ∈ Σ, then ψ ∈ Σ), under substitutions, necessitation (if
ϕ ∈ Σ, then �ϕ ∈ Σ) and that contains:

– an axiomatic base for �Lukasiewicz n-valued logic (see [4]),
– �(ϕ → ψ) → (�ϕ → �ψ)
– �(ϕ ⊕ ϕ) ↔ (�ϕ ⊕ �ϕ)
– �(ϕ  ϕ) ↔ (�ϕ  �ϕ).

The only inference rule that can be used without restrictions is modus ponens.
Notice that the set of axioms Σ of the above calculus includes all proposi-

tional �Lukasiewcz tautologies, and that if ϕ is a propositional tautology, then,
by necessitation, �ϕ ∈ Σ. However, it is not true that if we have derived ϕ
from a set of formulas Γ in the whole calculus, then we can derive �ϕ from Γ .
This reflects the fact that the calculus is designed to capture the notion of local
modal consequence relation, not the global one. If we add necessitation as a rule
that can be applied without restrictions, then indeed we obtain a calculus for
the global modal consequence relation.

Writing Γ �l
n ϕ when there is a proof (in the standard sense) of ϕ from Γ

using the axioms and rule of the above calculus, we can state completeness as
follows:

Γ �l
n ϕ if and only if Γ |=l

n ϕ.

3 �Lukasiewicz Public Announcement Logic

The language of �Lukasiewicz Public Announcement Logic is the same as classi-
cal PAL. For the single-agent case1, formulas are built from a countable set of
propositional letters V ar through the following inductive rule:

ϕ ::= p ∈ V ar | ¬ϕ |ϕ → ϕ |�ϕ | [ϕ]ϕ

Following the usual conventions, we set ♦ϕ := ¬�¬ϕ and 〈α〉ϕ := ¬[α]¬ϕ.
For a given n, we can define the semantics of the static modal fragment of

n-valued �Lukasiewicz Public Announcement Logic (abbreviated �LnPAL) using

1 The multi-agent case is a straightforward generalization of the single-agent one: one
just needs to index the static modal operator by the agents. At this point we do not
deal with more complicated operators such as those for common knowledge; these
may provide interesting lines for future research.
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n-valued Kripke models as described in the preceding section. In order to provide
a semantics for formulas of type [α]ϕ, we need to define a notion of epistemic
update on n-valued Kripke models.

Let M = 〈W,R, v〉 be an n-valued model, and let α be a formula. Mimicking
the classical case, we set

Wα := {w ∈ W : v(α,w) = 1�Ln}.

Notice that Wα = Wα�α, because v(α,w) = 1�Ln iff v(α  α,w) = 1�Ln . In
fact, writing αm instead of α  . . .  α (m times), we have Wα = Wαm

for
any m ≥ 1. This means that there is no difference between announcing α and
announcing αm, because we are only looking at formulas that are “absolutely
true”. This fact will play an important role in our definition of epistemic updates
in the n-valued setting.

The accessibility relation can be restricted just as in the classical case, that
is we set Rα := R ∩ (Wα × Wα). Similarly, we define vα : Fm × Wα → �Ln to
be the restriction of the map v to Wα. In this way we obtain the updated model
Mα = 〈Wα, Rα, vα〉, which allows us to define

M,w |= [α]ϕ iff M,w |= α implies Mα, w |= ϕ.

Given that we are in a many-valued setting, the reader might wonder whether
the above definition is sufficient to determine the semantic value of arbitrary
formulas involving dynamic operators. This may not evident at this point, but
will be easily checked by looking at the algebraic semantics that we are going to
define in Sect. 5.2 (which is, as we will show, equivalent to the relational one via
duality). This is indeed one of the main reasons why we find it useful to present
a double perspective (relational as well as algebraic) on �LnPAL.

Having provided a notion of satisfaction for arbitrary formulas, the definition
of consequence in �LnPAL is just a reformulation of the one we have stated
above for the static fragment. We define the (local) modal consequence relation
by setting Γ |=l

�LnPAL
ϕ iff, for every n-valued model M and every w ∈ W ,

M, w |= γ for all γ ∈ Γ implies M, w |= ϕ.
We now introduce an axiomatization that we will later on prove to be

sound and complete with respect to the above-defined semantics. We abbreviate
〈α〉ϕ := ¬[α]¬ϕ. The axioms of �LnPAL are all axioms and rules of MMVn [5,
Definition 3.1] plus the following:

Interaction with 1 [α]1 ↔ 1
Interaction with → [α](ϕ → ψ) ↔ (〈α〉ϕ → 〈α〉ψ)
Interaction with ¬ [α]¬ϕ ↔ (αn → ¬[α]ϕ)
Interaction with � [α]�ϕ ↔ (αn → �[α]ϕ)
Preservation of facts [α]p ↔ (αn → p)

where ϕ,ψ, α are arbitrary formulas, while p is a propositional variable. We
further require the set of theorems to be closed under [α]-monotonicity:

� ϕ → ψ ⇒ � [α]ϕ → [α]ψ.
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The only rule of our calculus is modus ponens: ϕ, ϕ → ψ � ψ.
This defines the calculus �l

�LnPAL
for �LnPAL.

As the reader will have noticed, the shape of the axioms defining the inter-
action of the dynamic operator with the other connectives resembles that of
the classical (and intuitionistic: see [7]) case, and their role in our completeness
proof is analogous. The main difference worth mentioning is the presence of the
formula αn, which is a shorthand for α  . . .  α (n times; recall that α  α is
itself a shorthand for ¬(α → ¬α)). The parameter n obviously distinguishes one
finite-valued �Lukasiewicz public announcement logic from another. However, for
the purpose of axiomatization, all that matters is that the n appearing in the
axioms be big enough. In fact we might use any m ≥ n for providing a complete
axiomatization of �LnPAL, for αm is semantically equivalent in �LnPAL to αn for
each m ≥ n. The role of these exponents will be further clarified when we look
at the algebraic semantics of �LnPAL.

Let us also highlight that the static modal logic we build on is a many-valued
analogue of the minimal normal modal logic K (rather than, say, of modal logic
S5). This choice was made just for the sake of generality, for we will show that,
once we have axiomatized the minimal �LnPAL, it is easy to deal with extensions
obtained by adding axioms to its static fragment.

As mentioned earlier, completeness of �LnPAL can be proved using the same
strategy as the classical case. For this, we will need to check the soundness
of the above-introduced axioms, which is most easily done with respect to the
algebraic semantics of �LnPAL. Then, assuming we know that the algebraic and
the relational semantics are equivalent, we will have completed the proof. This
equivalence can indeed be easily obtained exploiting Teheux’s duality for modal
MV-algebras [8]. It is therefore convenient to recall the main results of this
duality before we introduce our algebraic semantics for �LnPAL and go on to
develop the epistemic update construction on algebraic models.

4 On Duality for Modal MV-algebras

The Hilbert-style calculus for �Lukasiewicz n-valued modal logic of Subsect. 2.2
not only enjoys completeness with respect to the relational semantics of n-valued
Kripke models, but can also be endowed with an algebraic semantics provided
by the class of modal n-valued MV-algebras (MMVn-algebras). These play a
key role in our semantic approach to �LnPAL, therefore in this section we take
a closed look at them and in particular at the duality relating MMVn-algebras
to n-valued Kripke frames.

An MMV-algebra is a structure 〈A,→,¬,�, 1〉 such that the reduct 〈A,→
,¬, 1〉 is an MV-algebra and the following equations are satisfied:

(MO1) �1 = 1
(MO2) �(x → y) → (�x → �y) = 1
(MO3) �(x ⊕ x) = �x ⊕ �x and �(x  x) = �x  �x
(MO4) �(x ⊕ xm) = �x ⊕ (�x)m for every natural number m.
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A dual operator ♦ can be defined by ¬�¬ as for classical modal logic. An
MMVn-algebra is an MMV-algebra whose �-free reduct belongs to MVn.
In this case one can prove that (MO4) follows from (MO1)-(MO3), which also
explains why we have omitted the corresponding axiom in the Hilbert-style cal-
culus for n-valued modal logic of Subsect. 2.2.

An important notion, both from a logical and a duality point of view, is
that of filter. Given an algebra A having an MV-algebra reduct (thus also any
algebra in MMV or MMVn), a filter of A is defined as a non-empty set F ⊆ A
which is an up-set w.r.t. the lattice order of A and is moreover closed under the
 operation, i.e. a, b ∈ F implies a  b ∈ F . Every MV-algebra A has a least
filter which is the singleton {1A}.

An algebraic model of modal n-valued �Lukasiewicz logic is a pair 〈A, v〉 where
A ∈ MMV and v : Fm → A is a homomorphism of MMV-algebras. Through
this notion we can define, as with the relational semantics, a local consequence
relation. We set Γ |=MMVn ϕ when, for any algebraic model 〈A, v〉 and any
filter F ⊆ A, we have v(ϕ) ∈ F whenever v(γ) ∈ F for all γ ∈ Γ .

The Hilbert-style calculus of [5] introduced in Subsect. 2.2 is complete, for
each modal n-valued �Lukasiewicz system, w.r.t. to the corresponding above-
defined local consequence; this result can be proved either directly or, via duality
(see below), using completeness w.r.t. to n-valued Kripke models. For details
and proofs about the duality for n-valued �Lukasiewicz modal logics, we refer
the reader to [5,8]. Here we just recall the main bits that are needed for our
treatment of �LnPAL.

If we have an algebraic model for our logic 〈A, v〉, where A ∈ MMVn

and v : Fm → A, we can use duality to turn it into a n-valued Kripke model
as follows. We construct the canonical frame A+ = 〈MV(A, �Ln), R〉, where
MV(A, �Ln) is the set of MV-algebra homomorphisms (i.e., not necessarily �-
preserving) from A to �Ln and the accessibility relation R� ⊆ MV(A, �Ln) ×
MV(A, �Ln) is defined, for all h, h′ ∈ MV(A, �Ln), by

〈h, h′〉 ∈ R� iff ∀a ∈ A h(�a) = 1�Ln implies h′(a) = 1�Ln .

Denoting by [0,1] the MV-algebra having as universe the real interval [0, 1], it
is easy to show that MV(A, �Ln) ∼= MV(A, [0,1]) for any A ∈ MMVn. This
explains why we can rephrase [5, Definition 5.2] replacing the algebra [0,1] by
�Ln. Given an algebraic model 〈A, v〉, the canonical model 〈A+, v+〉 is obtained
by defining the valuation v+ : Fm × MV(A, �Ln) → �Ln as

v+〈h, ϕ〉 = (h · v)(ϕ)

for all h ∈ MV(A, �Ln) and ϕ ∈ Fm. It can be checked that v+ indeed respects
all connectives of the logic and is therefore a modal valuation. It is also easy to
check that, for any formula ϕ, we have v(ϕ) = 1A if and only if v+〈h, ϕ〉 = 1�Ln

for all h ∈ MV(A, �Ln), that is, if and only if ϕ is valid in the model 〈A+, v+〉.
Conversely, any n-valued Kripke model M = 〈F , v〉, where F = 〈W,R〉 and
v : Fm × W → �Ln, can be turned into an algebraic one in the following way.
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We have the MVn-algebra F+ = �Ln
W whose elements are all maps f : W → �Ln,

which can be endowed with a modal operator �R defined by

�R(f)(w) :=
�Ln∧

{f(u) : u ∈ W and wRu}. (1)

We have then a MMVn-algebra F+ = 〈�Ln
W ,�R〉, on which we define a valuation

v+, for all ϕ ∈ Fm and w ∈ W , as

v+(ϕ)(w) := v(ϕ,w).

A formula ϕ is valid in M if and only if v+(ϕ) is the constant map 1�Ln .
Analogously to the case of modal Boolean algebras, it can be shown that

every n-valued frame F is embeddable into its double dual (F+)+. Likewise, an
arbitrary MMVn-algebra A need not be isomorphic to its double dual (A+)+

but it will be embeddable in it. This is sufficient to prove that the algebra-based
and the frame-based semantics are equivalent.

We prove the equivalence by contraposition. First, suppose Γ �|=MMVn
ϕ,

which means that there is an algebraic model 〈A, v〉 and a filter F ⊆ A with
v(ϕ) /∈ F and v(γ) ∈ F for all γ ∈ Γ . Now F can be extended to a maximal filter
F ′ ⊇ F with v(ϕ) /∈ F ′, and F ′ corresponds to an MV-algebra homomorphism
hF ′ ∈ MV(A, �Ln) such that hF ′(γ) = 1�Ln for all γ ∈ Γ and hF ′(ϕ) �= 1�Ln .
Thus we have 〈A+, v+〉, hF ′ |= γ for all γ ∈ Γ while 〈A+, v+〉, hF ′ �|= ϕ. Hence,
Γ �|=l

n ϕ.
Conversely, assume Γ �|=l

n ϕ, which means that there is an n-valued model
M = 〈F , v〉 with F = 〈W,R〉 and a point w ∈ W such that M, w |= γ for all
γ ∈ Γ while M, w �|= ϕ. Thus, in the dual algebra F+ = 〈�Ln

W ,�R〉 we have
elements aγ for each γ ∈ Γ and an element aϕ such that aγ(w) = 1�Ln �= aϕ(w).
This means that aγ �≤ aϕ for each γ ∈ Γ , which implies that the filter F generated
by all aγ does not contain aϕ. Thus, the algebraic model 〈F+, v+〉 together with
the filter F is a counter-model to Γ |=MMVn ϕ, as was required to prove.

5 Algebraic Models and Completeness

5.1 Epistemic Updates on Modal MV-algebras

Given the n-valued Kripke model M = 〈F , v〉 where F = 〈W,R〉, we have an
MVn-algebra �Ln

W whose elements are all maps f : W → �Ln. Following Teheux,
we endow this algebra with a modal operator �R defined as in (1) and we have an
MMVn-algebra 〈�Ln

W ,�R〉. Now let α ∈ Fm, and consider the updated model
Mα = 〈Wα, Rα, vα〉 defined as in Sect. 3. To this model corresponds, via duality,
the MMVn-algebra 〈�Ln

W α

,�Rα〉, whose elements are maps g : Wα → �Ln, which
are precisely the restrictions of the maps in �Ln

W to Wα. We are going to see that
the algebra 〈�Ln

W α

,�Rα〉 is isomorphic to a pseudo-quotient of MMVn-algebra
〈�Ln

W ,�R〉, defined as below.
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Let A = 〈�Ln
W ,�R〉 be the algebra dual to 〈W,R〉, and let a ∈ A be the

element corresponding to the map v(α, ·) : W → �Ln. We define the following
equivalence relation: for all b, c ∈ A,

b ≡a c iff b  an = c  an.

Notice that, since the non-modal reduct of A is in the variety generated by �Ln,
the equation an = an+1 holds in A. This means that an is an idempotent element
of A, which implies that in fact we have:

b ≡a c iff b  an = c  an iff b ∧ an = c ∧ an.

Thanks to the idempotency of an, the above-defined relation is a congruence of
the MV-algebra reduct of A. In fact, the possibility of finding such an idempo-
tent element one of the main technical reasons for working with finitely-generated
algebras: at the moment we are not aware of a definition of pseudo-quotient that
would work for general MV-algebras.
Although ≡a need not be compatible with the modal operator �, we can define,
for each [b]≡a

∈ A/≡a,

�a[b]≡a
:= [�(an → b)]≡a

and we obtain an MMVn-algebra 〈A/≡a,�a〉, which we call the pseudo-quotient
and denote by Aa (see Proposition 1 below). As usual, the operator dual to �a

is defined by ♦a[b]≡a
:= ¬�a¬[b]≡a

which gives

♦a[b]≡a
= [♦(b ∧ an)]≡a

Lemma 1. The algebra 〈�Ln
W α

,�Rα〉 is isomorphic to the pseudo-quotient Aa.

Proof. Let η : Aa → �Ln
W α

be defined by η[b] = b � Wα (from now on we shall
write [b] instead of [b]≡a

to simplify the notation). Notice that if [b] = [c], i.e.
b∧an = c∧an, then, for all w ∈ Wα, we have a(w) = 1 and so an(w) = 1. Hence,
b(w) = (b ∧ an)(w) = (c ∧ an)(w) = c(w). That is, if [b] = [c], then η[b] = η[c].
Thus the map η is well-defined. To see that it is injective, notice that, for any
w ∈ W , the element an(w) is an idempotent of �Ln, that is, an(w) ∈ {0�Ln , 1�Ln}.
Now, assuming [b] �= [c], we have (b ∧ an)(w) �= (c ∧ an)(w) for some w ∈ W .
If w /∈ Wα, one would have 1�Ln > a(w) and so necessarily 1�Ln > a(w) ≥
an(w) = 0�Ln . So we must have w ∈ Wα, which means that an(w) = 1�Ln and
so b(w) = (b ∧ an)(w) �= (c ∧ an)(w) = c(w), i.e. η[b] �= η[c]. Surjectivity of η is
straightforward: if b ∈ �Ln

W α

, then b is the restriction of some b′ ∈ �Ln
W , and so

η[b′] = b.
Hence η is a bijection between the universe of 〈�Ln

W α

,�Rα〉 and that of Aa. It is
also obvious that η is an MV-algebra homomorphism. Furthermore, it is easy
to show that, for all w ∈ Wα,

η(�a
R[b])(w) = η[�R(an → b)](w) = �Rα(b)(w) = (�Rα(η[b]))(w).
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The equality

�Ln∧
{(an → b)(u) : u ∈ W and wRu} =

�Ln∧
{(an → b)(u) : u ∈ Wα and wRαu}

holds because, when computing the infimum, any world outside Wα can be
disregarded. In fact, if u /∈ Wα, then an(u) = 0�Ln as we have seen earlier, and
so (an → b)(u) = 1�Ln .
We thus conclude that η is an MMVn-algebra isomorphism.

In light of Lemma 1, we shall adopt the above-defined pseudo-quotient as
our official construction for epistemic updates on MMVn-algebras.

Lemma 2. Let u ∈ A be an idempotent element of an MV-algebra A. Then,
for all a, b ∈ A,

(i) u  a = u ∧ a and u ⊕ a = u ∨ a
(ii) u → (a  b) = (u → a)  (u → b)
(iii) u → (a ⊕ b) = (u → a) ⊕ (u → b)

Proof. It suffices to check that the above items hold in any MV-chain, for it is
well-known that the variety of MV-algebras is generated (as a quasivariety) by
its chains. It is also well-known that in an MV-chain the only idempotents are
the top and the bottom element, for which the above statements follow trivially.

Proposition 1. For any A ∈ MMVn and any a ∈ A, we have Aa = 〈A/≡a,
�a〉 ∈ MMVn.

Proof. That ≡a is a congruence follows from, e.g., [3, Proposition 1.2.6], so we
have A/≡a ∈ MV, and if A ∈ MVn then A/≡a ∈ MVn. It remains to check
that �a is a modal operator satisfying equations (MO1)–(MO3) of [8, Definition
3.1]. The proof of these facts follows straighforwardly from Lemma 2 and the
fact that an is idempotent.

As mentioned in Sect. 3, we take as static base the minimal n-valued modal
�Lukasiewicz logic. It is however easy to see that the pseudo-quotient construction
introduced above can be applied also to MMVn-algebras satisfying additional
equations, which correspond to axiomatic extensions of the basic logic. All that
needs to be checked is that, if A ∈ MMVn satisfies some extra equation δ, then
the pseudo-quotient algebra Aa will also satisfy δ. For equations in the pure
language of MV-algebras, this is straightforward, for the non-modal reduct of
Aa is actually just a quotient of the corresponding reduct of A. On the other
hand, if δ contains some modal operator, then it may not be preserved. A simple
example is the equation ♦1 = 1. On the contrary, it is easy to check e.g. that
the equation �x → x = 1 (which corresponds, also in the setting of n-valued
frames, to reflexivity of the relation) is preserved.

In general, reasoning on frames, it is not hard to see that a sufficient condition
for an equation to be preserved is that it corresponds to some property that is
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preserved by the update, which consists essentially in deleting some worlds from
a model. This is of course not a characterization, and indeed providing such
a characterization might prove an interesting topic for future research. It is,
however, sufficient to establish that it is possible to define an n-valued analogue
of, e.g., modal logic S5 by adding appropriate axioms/equations, and to take
this logic as the static base for �LnPAL.

5.2 Algebraic Semantics for �LnPAL

We are now going to use the notion of algebraic model for modal �Lukasiewicz
logic introduced in Sect. 4 to provide an alterative but equivalent semantics
for �LnPAL. This semantics, which is based on MMVn-algebras, is in certain
respects easier to handle than the relational one, and will allow us to give us a
simple(r) proof of completeness.

Recall that an algebraic model for �Lukasiewicz n-valued modal logic is a
pair 〈A, v〉 where A ∈ MMVn (for we focus here on finitely-generated MMV-
algebras) and v : Fm → A is a homomorphism of MMV-algebras (thus, �-
preserving, too). To a formula α that is being announced corresponds an element
v(α) = a ∈ A, which we can use to build the pseudo-quotient algebra Aa as
shown earlier. Notice that each equivalence class [b] ∈ Aa has a minimum element
(w.r.t. the lattice order of A), namely b∧an. This means (cfr. [7, Fact 6.1]) that
we can define an injective map ι : Aa → A given by ι[b] := b ∧ an. Via ι we
can view Aa as a pseudo-subalgebra of A, and we can also extend the algebraic
semantics for n-valued modal logic to formulas with dynamic operators, as shown
in the following definition.

An algebraic model for �LnPAL is a pair 〈A, v〉 where A ∈ MMVn and
v : Fm → A is a homomorphism of MMV-algebras. The map v is extended to
formulas containing dynamic operators as follows:

v([α]ϕ) := v(αn) →A (ι · vα)(ϕ).

where vα : Fm → Av(α) is the unique MMVn-homomorphism extending the
map vα : V ar → Av(α) defined by vα(p) := [v(p)]≡v(α) for each p ∈ V ar. We do
not take the dynamic diamond 〈α〉 as primitive, but if we did, we would define,
analogously to classical and intuitionistic PAL,

v(〈α〉ϕ) := v(αn) ∧A (ι · vα)(ϕ).

At this point we can use algebraic models to introduce a notion of (local)
consequence relation. We set Γ |=l

�LnPAL
ϕ if and only if for every algebraic

model 〈A, v〉 and every filter F ⊆ A, we have that �γ� ∈ F for all γ ∈ Γ implies
�ϕ� ∈ F .

5.3 Soundness and Completeness

As mentioned earlier, in the case of public announcement logics the less straight-
forward part of the completeness proof consists in proving soundness. For this
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we find it more convenient to work with algebraic rather than relational models,
and we will need to establish a few technical lemmas. We won’t include proofs
because of space constraints, but these are analogous to the corresponding ones
in [7,10].

Lemma 3. Let A be an MMVn-algebra and Aa the pseudo-quotient relative to
some a ∈ A. Then the map ι : Aa → A defined by ι[b] := an ∧A b for all b ∈ A
satisfies the following:

(i) ι(¬Aa

[b]) = an ∧A ¬Aι[b].
(ii) ι(�a[b]) = an ∧A �A(an →A ι[b]).
(iii) ι([b] →Aa

[c]) = an ∧A (ι[b] →Aa

ι[c]).

Lemma 4. Let (A, v) be an algebraic model, α,ϕ, ψ ∈ Fm and p ∈ V ar. Then,

(i) v(〈α〉ϕ) = v(αn) ∧A (ι · vα)(ϕ)
(ii) v([α] 1) = 1A

(iii) v([α] p) = v(αn) →A v(p)
(iv) v([α]¬ϕ) = v(αn) →A ¬Av([α]ϕ)
(v) v([α](ϕ → ψ)) = v(〈α〉ϕ) →A v(〈α〉ψ)
(vi) v([α]�ϕ) = v(αn) →A �Av([α]ϕ)
(vii) if v(ϕ → ψ) = 1A, then v([α]ϕ → [α]ψ) = 1A.

Notice that the first item of Lemma 4 actually shows that the dynamic oper-
ators [α] and 〈α〉 are dual to one another, which justifies our choice of focusing
on one only.

Theorem 1. The calculus �l
�LnPAL

is sound and complete w.r.t. the consequence
of �LnPAL.

6 Conclusions and Future Work

The present paper is part of an ongoing enterprise that aims, on the applied logic
side, at extending dynamic epistemic logics outside the boundaries of classical
reasoning and, on the theoretical side, at better understanding the mechanism
itself of epistemic updates. Many issues are still open on both sides. It has been
shown in [6,7] that certain epistemic reasoning contexts can be alternatively, and
perhaps more appropriately be handled using intuitionistic logic instead of the
classical one. In the case of �LnPAL this is an almost trivial exercise, for we can
simply recover classical logic by restricting semantic valuations to {0, 1}-valued
ones. More interesting will be the study of specific scenarios for which we can
argue that classical logic would be unsuitable altogether; for this enterprise we
hope to have at least provided a mathematically sound framework which can
serve as a starting point.

The framework itself can and most likely needs to be improved in many
directions. An obvious extension is to consider a more general product update
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construction such as those of [1,6], which would allow us to consider more com-
plex epistemic actions than public announcements. This might prove a relatively
straightforward task, but also one that may lead to interesting applications.
Another potentially promising line of research could result from dropping the
assumption that propositions are announced with the highest possible truth
degree, which entails, as mentioned earlier, that announcing α is equivalent to
announcing αm for any m. This fact played a central rôle in this paper from
a technical point of view; in a many-valued setting, however, a very natural
thing to do would be to allow for graded announcements such as “α has at least
true degree k/n”. This choice, which is supported by a strong semantic intuition,
would give rise to the novel notion of graded epistemic action. A technically more
challenging issue, even in the simplest public announcement setting, is whether
and how it is possible to apply our methods to infinite-valued �Lukasiewicz modal
logic.
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Abstract. In this paper we provide a simplified semantics for the logic
KD45(G), i.e. the many-valued Gödel counterpart of the classical modal
logic KD45. More precisely, we characterize KD45(G) as the set of valid
formulae of the class of possibilistic Gödel Kripke Frames 〈W, π〉, where
W is a non-empty set of worlds and π : W → [0, 1] is a normalized
possibility distribution on W .

1 Introduction

Possibilistic logic [7,8] is a well-known uncertainty logic to reasoning with graded
beliefs on classical propositions by means of necessity and possiblity measures.
These measures are defined in terms of possibility distributions. A (normalized)
possibility distribution is a mapping π : Ω → [0, 1], with supw∈Ω π(w) = 1,
on the set Ω of classical interpretations of a given propositional language that
ranks interpretations according to its plausibility level: π(w) = 0 means that w
is rejected, π(w) = 1 means that w is fully plausible, while π(w) < π(w′) means
that w′ is more plausible than w. A possibility distribution π induces a pair of
dual possibility and necessity measures on propositions, defined respectively as:

Π(ϕ) = sup{π(w) | w ∈ Ω,w(ϕ) = 1}
N(ϕ) = inf{1 − π(w) | w ∈ Ω,w(ϕ) = 0}.

From a logical point of view, possibilistic logic can be seen as a sort of graded
extension of the non-nested fragment of the well-known modal logic of belief
KD45 [9], in fact, {0, 1}-valued possibility and necessity measures over classical
propositions can be taken as equivalent semantics for the modal operators of the
logic KD45 [1].

When trying to extend the possibilistic belief model beyond the classical
framework of Boolean propositions to many-valued propositions, one has to come
up with appropriate extensions of the notion of necessity and possibility measures
for them (see e.g. [6]). In the particular context of Gödel fuzzy logic [11], natural
generalizations that we will consider in this paper are the following. A possibility
distribution π : Ω → [0, 1] on the set Ω of Gödel propositional interpretations
induces the following generalized possibility and necessity measures over Gödel
logic propositions:
c© Springer International Publishing Switzerland 2016
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Π(ϕ) = supw∈Ω{min(π(w), w(ϕ))}
N(ϕ) = infw∈Ω{π(w) ⇒ w(ϕ)},

where ⇒ is Gödel implication, that is, for each x, y ∈ [0, 1], x ⇒ y = 1 if
x ≤ y, x ⇒ y = y, otherwise.1 These expressions agree with the ones commonly
used in many-valued modal Kripke frames (W,R) to respectively evaluate modal
formulas ♦ϕ and �ϕ (see for example [2] and references therein) when the [0, 1]-
valued accessibility relation R : W × W → [0, 1] is defined by a possibility
distribution π : W → [0, 1] as R(w,w′) = π(w′), for any w,w′ ∈ W .

Actually, modal extensions of Gödel fuzzy logic have been studied by Caicedo
and Rodriguez [5], providing sound and complete axiomatizations for different
classes of [0, 1]-valued Kripke models. These structures are triples M = (W,R, e),
where W is a set of worlds, R = W × W → [0, 1] is a many-valued accessibility
relation and e : W ×V ar → [0, 1] is such that, for every w ∈ W , e(w, ·) is a Gödel
[0, 1]-valued evaluation of propositional variables (more details in next section)
that extends to modal formulas as follows:

e(w,♦ϕ) = supw′∈W {min(R(w,w′), e(w′, ϕ))}
e(w,�ϕ) = infw′∈W {R(w,w′) ⇒ e(w′, ϕ)}.

We will denote by KD45(G) the class of [0, 1]-models M = (W,R, e) where R
satisfies the following many-valued counterpart of the classical properties:

– Seriality: ∀w ∈ W , supw′∈W R(w,w′) = 1.
– Transitivity: ∀w,w′, w′′ ∈ W , min(R(w,w′), R(w′, w′′)) ≤ R(w,w′′).
– Euclidean: ∀w,w′, w′′ ∈ W , min(R(w,w′), R(w,w′′)) ≤ R(w′, w′′).

In this setting, the class ΠG of possibilistic Kripke models (W,π, e), where
π : W → [0, 1] is a normalized possibility distribution on the set of worlds W , can
be considered as the subclass of KD45(G) models (W,R, e) where R is such that
R(w,w′) = π(w′). Since ΠG � KD45(G), it follows that the set V al(KD45(G))
of valid formulas in the class of KD45(G) is a subset of the set V al(ΠG) of valid
formulas in the class ΠG, i.e. V al(KD45(G)) ⊆ V al(ΠG).

In the classical case (where truth-evaluations, accessibility relations and pos-
sibility distributions are {0, 1}-valued) it is well known that (see e.g. [13]) that
the semantics provided by the class of Kripke frames with serial, transitive and
euclidean accessibility relations is equivalent to the class of Kripke frames with
semi-universal accessibility relations (that is, relations of the form R = W × E,
where ∅ 	= E ⊆ W ). But the latter models are nothing else than {0, 1}-valued
possibilistic models, given by the characteristic functions of the E’s.

However, over Gödel logic, the question of whether the semantics provided by
the class of [0, 1]-valued serial, transitive and euclidean Kripke frames is equiv-
alent to the possibilistic semantics, that is, whether V al(ΠG) = V al(KD45(G))
also holds, is not known. In this paper we positively solve this problem. Indeed

1 Strictly speaking, the possibility measure is indeed a generalization of the classical
one, but the necessity measure is not, since x ⇒ 0 �= 1 − x.
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we show that Caicedo-Rodriguez’s Gödel modal logic KD45(G) [5] properly
captures the above possibilistic semantics. In this way, we extend the results
obtained in [6] for the non-nested fragment of the modal language. We also
note that this problem has already been solved for logics over finite and linearly
ordered residuated lattices (MTL chains), thus in particular for finite-valued
Gödel logics, but with a language expanded with truth-constants and with Baaz-
Monteiro operator Δ, see [3,12].

After this introduction, in the next section we first summarize the main
results by Caicedo-Rodriguez on Gödel modal logic KD45(G) and its semantics
given by [0, 1]-valued serial, transitive and euclidean Kripke models. Then we
consider our many-valued possibilistic Kripke semantics, and prove in the last
section that it is equivalent to the relational one. We conclude with some open
questions that we leave as future research. We also include an appendix with
several technical proofs.

2 Gödel Kripke Frames

In their paper [5] Caicedo and Rodriguez consider a modal logic over Gödel
logic. The language L�♦(V ar) of propositional bi-modal logic is built from a
countable set V ar of propositional variables, connectives symbols ∨,∧,→,⊥,
and the modal operator symbols � and ♦. We will simply write L�♦ assuming
V ar is known and fixed. Then, the modal semantics is defined as follows.

Definition 1. A Gödel-Kripke frame (GK-frame) will be a structure F =
〈W,R〉 where W is a non-empty set of objects that we call worlds of F , and
R : W × W → [0, 1]. A F-Kripke Gödel model is a pair M = 〈F , e〉 where F is
a GK-frame and e : W × V ar → [0, 1] provides in each world an evaluation of
variables. e is inductively extended to arbitrary formulas in the following way:

e(w,ϕ ∧ ψ) = min(e(w,ϕ), e(w,ψ)) e(w,ϕ ∨ ψ) = max(e(w,ϕ), e(w,ψ))
e(w,ϕ → ψ) = e(w,ϕ) ⇒ e(w,ψ) e(w,⊥) = 0
e(w,�ϕ) = infw′∈W {R(w,w′) ⇒ e(w′, ϕ)}
e(w,♦ϕ) = supw′∈W {min(R(w,w′), e(w′, ϕ))}.

Truth, validity and entailment are defined as usual: given a GK-model M =
(W,R, e), we write (M,w) |= ϕ when e(w,ϕ) = 1, and M |= ϕ if (M,w) |= ϕ for
every w ∈ W ; given a class of GK-models N , and a set of formulas T , we write
T |=N ϕ if, for every model M = (W,R, e) and w ∈ W , (M,w) |= ϕ whenever
(M,w) |= ψ for every ψ ∈ T .

In [5] it is shown that the set V al(K) = {ϕ | |=K ϕ} of valid formulas in
K, the class of all GK-frames, is axiomatized by adding the following additional
axioms and rule to those of Gödel fuzzy logic G (see e.g. [11]):
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(K�) �(ϕ → ψ) → (�ϕ → �ψ) (K♦) ♦(ϕ ∨ ψ) → (♦ϕ ∨ ♦ψ)
(F�) �� (P ) �(ϕ → ψ) → (♦ϕ → ♦ψ)

(FS2) (♦ϕ → �ψ) → �(ϕ → ψ) (Nec) from ϕ infer �ϕ.

The resulting logic will be denoted K(G). Moreover, in [5] it is also shown that
the set V al(KD45(G)) of valid formulas in the subclass of GK-models KD45(G)
is axiomatized by adding the following additional axioms:

(D) ♦�
(4�) �ϕ → ��ϕ (4♦) ♦♦ϕ → ♦ϕ
(5�) ♦�ϕ → �ϕ (5♦) ♦ϕ → �♦ϕ.

The logic obtained by adding these axioms to K(G) will be denoted KD45(G).

3 More About KD45(G)

Let �G denote deduction in Gödel fuzzy logic G. Let L(X) denote the set of
formulas built by means of the connectives ∧,→, and ⊥, from a given subset of
variables X ⊆ V ar. For simplicity, the extension of a valuation v : X → [0, 1] to
L(X) according to Gödel logic interpretation of the connectives will be denoted
v as well. It is well known that G is complete for validity with respect to these
valuations. We will need the fact that it is actually sound and complete in the
following stronger sense, see [4].

Proposition 1. (i) If T ∪ {ϕ} ⊆ L(X), then T �G ϕ iff inf v(T ) ≤ v(ϕ) for
any valuation v : X → [0, 1].

(ii) If T is countable, and T �G ϕi1 ∨ ..∨ϕin for each finite subset of a countable
family {ϕi}i∈I there is an evaluation v : L(X) → [0, 1] such that v(θ) = 1
for all θ ∈ T and v(ϕi) < 1 for all i ∈ I.

The following are some theorems of K(G), see [5]:

T1. ¬♦θ ↔ �¬θ
T2. ¬¬�θ → �¬¬θ
T3. ♦¬¬ϕ → ¬¬♦ϕ
T4. (�ϕ → ♦ψ) ∨ �((ϕ → ψ) → ψ)
T5. ♦(ϕ → ψ) → (�ϕ → ♦ψ).

The first one is an axiom in Fitting’s systems in [10], the next two were intro-
duced in [5], the fourth one will be useful in our completeness proof and is the
only one depending on prelinearity. The last is known as the first connecting
axiom given by Fischer Servi.

Next we show that in KD45(G) iterated modalities can be simplified. This
is in accordance with our intended possibilistic semantics for KD45(G) that will
be formally introduced in next section.

Proposition 2. The logic KD45(G) proves the following schemes:

(F�♦) ♦�� ↔ �♦� ↔ ¬⊥
(U♦) ♦♦ϕ ↔ ♦ϕ ↔ �♦ϕ
(U�) ��ϕ ↔ �ϕ ↔ ♦�ϕ.
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Proof. It is easy to prove F�♦ using axioms F� and D. The details are left to
reader. For schemes U♦ and U�, axioms 4�, 4♦, 5� and 5♦ give one direction of
them. The opposite directions are obtained as follows:

Proof 1. Proof 2.
♦ϕ → �♦ϕ axiom 5♦ ♦�ϕ → �ϕ axiom 5�
�(ϕ → ♦ϕ) by MP and FS2 �(�ϕ → ϕ) by MP and FS2
♦ϕ → ♦♦ϕ by MP and P ��ϕ → �ϕ by MP and K

Proof 3. Proof 4.
♦ϕ → ♦ϕ prop. taut. �ϕ → �ϕ prop. taut.
♦(♦ϕ → ♦ϕ) by D ♦(�ϕ → �ϕ) by D
�♦ϕ → ♦♦ϕ by MP and T5 ��ϕ → ♦�ϕ by MP and T5
�♦ϕ → ♦ϕ by 4♦ �ϕ → ♦�ϕ by 4� �

From now on we will use ThKD45(G) to denote the set of theorems of
KD45(G). We close this section with the following observation: deductions in
KD45(G) can be reduced to derivations in pure propositional Gödel logic G.

Lemma 1. For any theory T and formula ϕ in L�♦, it holds that T �KD45(G) ϕ
iff T ∪ ThKD45(G) �G ϕ.

4 Possibilistic Semantics and Completeness

In this section we will show that KD45(G) is also complete with respect to the
class of possibilistic Gödel frames.

Definition 2. A possibilistic Gödel frame (ΠG-frame) will be a structure 〈W,π〉
where W is a non-empty set of worlds, and π : W → [0, 1] is a normalized
possibility distribution over W , that is, such that supw∈W π(w) = 1.

A possibilistic Gödel model is a triple 〈W,π, e〉 where 〈W,π〉 is a ΠG-frame
frame and e : W ×V ar → [0, 1] provides an evaluation of variables in each world.
For each w ∈ W , e(w, ·) extends to arbitrary formulas in the usual way for the
propositional connectives and for modal operators in the following way:

e(w,�ϕ) := infw′∈W {π(w′) ⇒ e(w′, ϕ)}
e(w,♦ϕ) := supw′∈W {min(π(w′), e(w′, ϕ))}.
Observe that the evaluation of formulas beginning with a modal operator

is in fact independent from the current world. As we already mentioned in the
introduction, it is clear that a possibilistic frame 〈W,π〉 is equivalent to the
GK-frame 〈W,Rπ〉 where Rπ = W × π.

In the rest of the paper we provide a completeness proof of the logic KD45(G)
with respect of the class ΠG of possibilistic Gödel models, in fact we are going
to prove weak completeness for deductions from finite theories.

In what follows, for any formula ϕ we denote by Sub(ϕ) ⊆ L�♦ the set of
subformulas of ϕ and containing the formula ⊥. Moreover, let X := {�θ,♦θ :
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θ ∈ L�♦} be the set of formulas in L�♦ beginning with a modal operator;
then L�♦(V ar) = L(V ar ∪ X). That is, any formula in L�♦(V ar) may be seen
as a propositional Gödel formula built from the extended set of propositional
variables V ar ∪ X. In addition, for a given formula ϕ, let ∼ϕ be equivalence
relation in [0, 1]V ar∪X × [0, 1]V ar∪X defined as follows:

u ∼ϕ w iff ∀ψ ∈ Sub(ϕ) : u(�ψ) = w(�ψ) and u(♦ψ) = w(♦ψ).

Now, assume that a formula ϕ is not a theorem of KD45(G). Hence by
completeness of Gödel calculus and Lemma 1, there exists a Gödel valuation
v such that v(ThKD45(G)) = 1 and v(ϕ) < 1. Following the usual canonical
model construction, once fixed the valuation v, we define next a canonical ΠG-
model Mv

ϕ in which we will show ϕ is not valid.
The canonical model Mv

ϕ = (W v, πϕ, eϕ) is defined as follows:

• W v is the set {u ∈ [0, 1]V ar∪X | u ∼ϕ v and u(ThKD45(G)) = 1}.
• πϕ(u) = minψ∈Sub(ϕ){min(v(�ψ) → u(ψ), u(ψ) → v(♦ψ))}.
• eϕ(u, p) = u(p) for any p ∈ V ar.

In this context, we call the elements of Δϕ = {�θ,♦θ : θ ∈ Sub(ϕ)}, the
fixed points of the Canonical Model.

Note that having ν(ThKD45(G)) = 1 does not guarantee that ν belongs
to the canonical model because it may not take the appropriated values for the
fixed points, i.e. it may be that v 	∼ϕ ν. However, the next lemma shows how,
in certain conditions, to transform such an evaluation into another belonging to
the canonical model.

Lemma 2. Let u ∈ W v and let ν : V ar ∪ X �→ [0, 1] be a Gödel valuation.
Define α = max{u(λ) : ν(λ) < 1 and λ ∈ Δϕ} and β = min{u(λ) : ν(λ) =
1 and λ ∈ Δϕ}. If ν satisfies the following conditions:

a. ν(ThKD45(G)) = 1.
b. for any ψ, φ ∈ {λ : u(λ) ≤ α and λ ∈ Δϕ}, ν(ψ) < ν(φ) iff u(ψ) < u(φ).
c. ν(λ) = 1 for every λ ∈ Δϕ such that u(λ) > α,

then, there exists a Gödel valuation w ∈ W v such that, for any formulas ψ, φ:

1. ν(ψ) = 1 implies w(ψ) ≥ δ.
2. ν(ψ) < 1 implies w(ψ) < δ.
3. 1 	= ν(ψ) ≤ ν(φ) implies w(ψ) ≤ w(φ).
4. ν(ψ) < ν(φ) implies w(ψ) < w(φ).
5. ν(ψ) = ν(φ) = 1 and u(ψ) ≤ u(φ) imply w(ψ) ≤ w(φ).
6. ν(ψ) = ν(φ) = 1 and u(ψ) < u(φ) imply w(ψ) < w(φ).

Proof. See Appendix.

Completeness will follow from the next truth-lemma.
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Lemma 3 (Truth-lemma). eϕ(u, ψ) = u(ψ) for any ψ ∈ Sub(ϕ) and any
u ∈ W v.

Proof. For simplicity, we write W for W v. We prove the identity by induction
on the complexity of the formulas in Sub(ϕ), considered now as elements of
L�♦(V ar). For ⊥ and the propositional variables in Sub(ϕ) the equation holds
by definition. The only non trivial inductive steps are: eϕ(u,�ψ) = u(�ψ) and
eϕ(u,♦ψ) = u(♦ψ) for �ψ,♦ψ ∈ Sub(ϕ). By the inductive hypothesis we may
assume that eϕ(u′, ψ) = u′(ψ) for every u′ ∈ W ; thus we must prove

inf
u′∈W

{πϕ(u′) ⇒ u′(ϕ)} = u(�ϕ) (1)

sup
v′∈W

{min(πϕ(u′), u′(ϕ))} = u(♦ϕ). (2)

By definition, πϕ(u′) ≤ (v(�ψ) ⇒ u′(ψ)) and πϕ(u′) ≤ (u′(ψ) ⇒ v(♦ψ)) for
any ψ ∈ Sub(ϕ) and u′ ∈ W ; therefore, u(�ψ) = v(�ψ) ≤ (πϕ(u′) ⇒ u′(ψ))
and min(πϕ(u′), u′(ψ)) ≤ v(♦ψ) = u(♦ψ). Taking infimum over u′ in the first
inequality and the supremum in the second we get

u(�ψ) ≤ inf
u′∈W

{πϕ(u′) ⇒ u′(ψ)}, sup
u′∈W

{min(πϕ(u′), u′(ψ))} ≤ u(♦ψ).

Hence, if u(�ψ) = 1 and u(♦ψ) = 0 we obtain (1) and (2), respectively. There-
fore, it only remains to prove the next two claims for �ψ,♦ψ ∈ Sub(ϕ).

Claim 1. If u(�ψ) = α < 1, for every ε > 0, there exists a valuation w ∈ W
such that πϕ(w) > w(ψ) and w(ψ) < α + ε, and thus (πϕ(w) ⇒ w(ψ)) < α + ε.

Claim 2. If u(♦ψ) = α > 0 then, for any ε > 0, there exists a valuation w′ ∈ W
such that w′(ψ) = 1 and πϕ(w′) ≥ α − ε, and thus min(w′(ψ), πϕ(w′)) ≥ α − ε.

The proof of these two claims are rather involved and they can be found in
the appendix. �

Theorem 1 (Finite strong completeness). For any finite theory T and
formula ϕ in L�♦, T |=ΠG ϕ implies T �KD45(G) ϕ.

Proof. One direction is soundness, and it is easy to check that the axioms are
valid in the class ΠG of models. As for the other direction, assume T = ∅
and 	�KD45(G) ϕ. Then ThKD45(G) 	�G ϕ by Lemma 1, and thus there is,
by Proposition 1, a Gödel valuation v : V ar ∪ X → [0, 1] such that v(ϕ) <
v(ThKD45(G)) = 1. Then v is a world of the canonical model Mϕ

v and by
Lemma 3, eϕ(v, ϕ) = v(ϕ) < 1. Thus 	|=ΠG ϕ. This proof can be easily generalized
when T is a non empty and finite. �

5 Conclusions

In this paper we have studied the logic over Gödel fuzzy logic arising from many-
valued Gödel Kripke models with possibilistic semantics, and have shown that it
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actually corresponds to a simplified semantics for the logic KD45(G), the exten-
sion of Caicedo and Rodriguez’s bi-modal Gödel logic with many-valued versions
of the well-known modal axioms D, 4 and 5. The truth-value of a formula ♦ϕ in
a possibilistic Kripke model is indeed a proper generalization of the possibility
measure of ϕ when ϕ is a classical proposition, however the semantics of �ϕ is
not. This is due to the fact that the negation in Gödel logic is not involutive.

Therefore, a first open problem we leave for further research is to consider
to extension of the logic KD45(G) with an involutive negation and investigate
its possibililistic semantics. A second open problem is to investigate the logic
arising from non-normalized possibilistic Gödel frames. In the classical case,
one can show that this corresponds to the modal logic K45, that is, without
the axiom D, see e.g. [13]. However, over Gödel logic this seems to be not as
straightforward as in the classical case.
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Appendix

Proof of Lemma 2

Proof. First of all, notice that if ν satisfies the condition b, then necessarily
α < β. Let B = {ν(λ) : λ ∈ Δϕ, ν(λ) < 1} ∪ {0} = {b0 = 0 < b1 < . . . bN}.
Obviously, bN < 1. For each 0 ≤ i ≤ N , pick λi ∈ Δϕ such that ν(λi) = bi.
Define now a continuous strictly function g : [0, 1] �→ [0, δ) ∪ {1} such that

g(1) = 1
g(bi) = v(λi) for every 0 ≤ i ≤ N
g[(bN , 1)] = (α, δ).

Notice that α = g(bN ). In addition, define another continuous strictly increasing
function h : [0, 1] �→ [δ, 1] such that

h(0) = δ
h[(0, β)] = (δ, β)
h(x) = x, for x ∈ [β, 1].

Then we define the valuation w : V ar ∪ X → [0, 1] as follows:

w(p) =
{

g(ν(p)), if ν(p) < 1,
h(u(p)), if ν(p) = 1.

First of all, let us show by induction that this extends to any propositional
formula, that is,

w(ϕ) =
{

g(ν(ϕ)), if ν(ϕ) < 1,
h(u(ϕ)), if ν(p) = 1.
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Note that, since g and h are strictly increasing mappings, g ◦ ν and h ◦ u are
valuations as well. So, in the induction steps below we only need to check that
everything is fine when both are used at the same time when evaluating a com-
pound formula. The base case holds by definition.

– Assume ψ = ψ1 ∧ ψ2. We only check the case when v(ψ) < 1 and v(ψ1) < 1
and v(ψ2) = 1. Then w(ψ) = min(w(ψ1), w(ψ2)) = min(g(ν(ψ1)), h(u(ψ2))) =
g(ν(ψ1)), since g(ν(ψ1)) < δ ≤ h(u(ψ2). But, g(ν(ψ1)) = min(g(ν(ψ1)), 1) =
min(g(ν(ψ1)), g(ν(ψ2))) = g(ν(ψ1 ∧ ψ2)) = g(ν(ψ)).

– Assume ψ = ψ1 → ψ2, and consider two subcases:
(1) v(ψ1) < 1 and v(ψ2) = 1. Then v(ψ1 → ψ2) = 1 and w(ψ) = w(ψ1) ⇒
w(ψ2) = g(ν(ψ1)) ⇒ h(u(ψ2)) = 1 = h(u(ψ1)) ⇒ h(u(ψ2)) = h(u(ψ1 →
ψ2)) = h(u(ψ)).
(2) v(ψ1) = 1 and v(ψ2) < 1. Then v(ψ1 → ψ2) = v(ψ2) < 1 and w(ψ) =
w(ψ1) ⇒ w(ψ2) = h(u(ψ1)) ⇒ g(ν(ψ2)) = g(ν(ψ2)) = g(ν(ψ1)) ⇒ g(ν(ψ2)) =
g(ν(ψ1 → ψ2)) = g(ν(ψ)).

Properties 1 – 6 in the statement of Lemma 2 now directly follow from the above.
Finally, we prove that w ∈ W v. By definition of w it is clear that w ∼ϕ v. It

remains to check that w validates all the axioms. The axioms of G are evaluated
to 1 by any Gödel valuation. As for the specific axioms of KD45(G), it is an
immediate consequence of Property 3 because it implies that if ν(ψ → φ) = 1
then w(ψ → φ) = 1. �

Claim 1 from Lemma 3. If u(�ψ) = α < 1, for every ε > 0, there exists
a valuation w ∈ W such that πϕ(w) > w(ψ) and w(ψ) < α + ε, and thus
πϕ(w) ⇒ w(ψ) = w(ψ) < α + ε.

Proof. By definition of Gödel’s implication ⇒ in [0,1], to grant the required
conditions on w it is enough to find w ∈ W such that α ≤ w(ψ) and, for any
θ ∈ Sub(ϕ), u(�θ) ≤ w(θ) ≤ u(♦θ) ≤ α. This is achieved in two stages:

– first producing a valuation ν ∈ W satisfying ν(ψ) < 1 and preserving the
relative ordering conditions the values w(θ) must satisfy, conditions which
may be coded by a theory Γψ,u;

– and then moving the values ν(θ), for θ ∈ Sub(ϕ), to the correct valuation w
by composing ν with an increasing bijection of [0,1].

Assume u(�ψ) = α < 1, and define (all formulas involved ranging in L�♦(V ar))

Γψ,u = {λ : λ ∈ Δϕ and u(λ) > α}
∪{λ → θ : λ ∈ Δϕ and u(λ) ≤ u(�θ)}
∪{(θ → λ) → λ : λ ∈ Δϕ and u(λ) < u(�θ) < 1}
∪{θ → λ : λ ∈ Δϕ and u(♦θ) ≤ u(λ)}
∪{(λ → θ) → θ : λ ∈ Δϕ and u(♦θ) < u(λ) < 1}

Then we have u(�ξ) > α for each ξ ∈ Γψ,u. Indeed, first recall that, by U�
and U♦ of Proposition 2, for any λ ∈ Δϕ we have u(λ) = u(�λ) = u(♦λ). We



132 F. Bou et al.

analyse case by case. For the first set of formulas, it is clear by construction.
For the second set, we have u(�(λ → θ)) ≥ u(♦λ → �θ) = u(♦λ) ⇒ u(�θ) =
u(λ) ⇒ u(�θ) = 1, by FS2. For the third, by FS2 and P, we have u(�((θ →
λ) → λ)) ≥ u(♦(θ → λ) → �λ) ≥ u((�θ → ♦λ) → �λ) = 1, since u(�λ) =
u(♦λ) = u(�θ → ♦λ) < 1. The fourth and fifth cases are very similar to the
second and third ones respectively.

This implies
Γψ,u 	�KD45(G) ψ,

otherwise there would exist ξ1, . . . , ξk ∈ Γψ,u such that ξ1, . . . , ξk �KD45(G) ψ.
In such a case, we would have �ξ1, . . . ,�ξk �KD45(G) �ψ by Nec and K�. Then
�ξ1, . . . ,�ξk, ThKD45(G) �G �ψ by Lemma 1 and thus by Proposition 1 (i),
and recalling that u(ThKD45(G)) = 1,

α < inf u({�ξ1, . . . ,�ξk} ∪ ThKD45(G)) ≤ u(�ψ) = α,

a contradiction. Therefore, by Proposition 1 (ii) there exists a valuation ν :
V ar ∪ X �→ [0, 1] such that ν(Γψ,u ∪ ThKD45(G)) = 1 and ν(ψ) < 1. This
implies the following relations between u and ν, that we list for further use.
Given λ ∈ Δϕ, θ ∈ L�♦(V ar), we have :

#1. If u(λ) > α then ν(λ) = 1 (since then λ ∈ Γψ,u).
#2. If u(λ) ≤ u(�θ) then ν(λ) ≤ ν(θ) (since then λ → θ ∈ Γψ,u). In particular,

if λ1, λ2 ∈ Δϕ and u(λ1) ≤ u(�λ2) = u(λ2) then ν(λ1) ≤ ν(λ2). Further-
more,if �θ ∈ Δϕ then from u(�θ) = u(�θ) by #2, ν(�θ) ≤ ν(θ). That
means, taking θ = ψ, ν(�ψ) ≤ ν(ψ) < 1.

#3. If u(λ) < u(�θ) < 1 then ν(λ) < ν(θ) or ν(λ) = 1 (since then (θ →
λ) → λ) ∈ Γψ,u). In particular, if λ1, λ2 ∈ Δϕ, u(λ1) < u(λ2) and u(λ2) ≤
u(�ψ) = α then ν(λ1) < ν(ψ) < 1 and thus ν(λ1) < ν(λ2). This means that
ν preserves in a strict sense the order values by u of the formulas λ ∈ Δϕ

such that u(λ) ≤ α.
#4. If u(♦θ) ≤ u(λ) then ν(θ) ≤ ν(λ) (because θ → λ ∈ Γψ,u). In particular, if

♦θ ∈ Δϕ then ν(θ) ≤ ν(♦θ).
#5. If u(♦θ) < u(λ) < 1 then ν(θ) < ν(λ) or ν(θ) = 1. In particular, if λ1, λ2 ∈

Δϕ and u(λ1) < u(λ2) ≤ α = u(�ψ) then ν(λ1) < ν(λ2). Furthermore, if
u(λ2) > 0 then ν(λ2) > 0 (making λ1 := ♦⊥ since u(⊥) = u(♦⊥) = 0).

According to the properties #1, #2 and #3, it is clear that ν satisfies the
conditions of Lemma 2. Consequently, for all ε > 0 (such that α + ε < β),
taking δ = α + ε in Lemma 2, there exists a valuation w ∈ W v such that
w(ψ) < α + ε = δ. Then in order to finish our proof, it remains to show that:

πϕ(w) = inf
λ∈sub(ϕ)

min(v(�λ) ⇒ w(λ), w(λ) ⇒ v(♦λ)) > w(ϕ) (3)

To do so, we will prove that, for any λ ∈ sub(ϕ), both implications in (3) are
greater than δ.2 First we prove it for the first implication by cases:
2 Remember that u ∼ϕ v ∼ϕ w.
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- If v(�λ) ≤ α < 1 then min(v(�λ) ⇒ w(λ), w(λ) ⇒ v(♦λ)) = 1. Indeed, first of
all, by #2, from u(�λ) = v(�λ) ≤ α = u(�ψ) it follows ν(�λ) ≤ ν(ψ) < 1.
Now, since u(�λ) ≤ u(�λ), by #2, we have 1 	= ν(�λ) ≤ ν(λ), and by 3 of
Lemma 2 we have v(�λ) = w(�λ) ≤ w(λ). Then v(�λ) ⇒ w(λ) = 1.

- If v(�λ) > α then by #1 and #2, 1 = ν(�λ) ≤ ν(λ). Therefore, by 1 of Lemma
2, w(λ) > δ which implies v(�λ) ⇒ w(λ) > δ.

For the second implication we also consider two cases:

- If v(♦λ) = u(♦λ) > δ then it is obvious that w(λ) ⇒ v(♦λ) > δ.
- If u(♦λ) < δ, by definition of δ and taking into account that ♦λ ∈ Δϕ,

then u(♦λ) < α. Now from u(♦λ) = u(♦λ) we obtain by #4, that ν(λ) ≤
ν(♦λ) < 1. Then by Lemma 2 we have w(λ) ≤ w(♦λ) = v(♦λ) and thus
w(λ) ⇒ v(♦λ) = 1. �

Claim 2 from Lemma 3. If u(♦ψ) = α > 0 then, for any ε > 0, there
exists a valuation w′ ∈ W such that w′(ψ) = 1 and πϕ(w′) ≥ α − ε, and thus
min(w′(ψ), πϕ(w′)) ≥ α − ε.

Proof. Assume u(♦ψ) = α > 0 and define Γψ,u in the same way that it was
defined in the proof of Claim 1. Then we consider two cases:

- If u(♦ψ) = 1, let Uψ,u = {λ : λ ∈ Δϕ and u(λ) < 1}. We claim that

ψ, Γψ,u 	�KD45(G)

∨
Uψ,u ,

otherwise we would have θ1, . . . , θn ∈ Γψ,u such that �KD45(G) ψ → ((θ1 ∧ . . . ∧
θn) → ∨

Uψ,u), and then we would also have �KD45(G) ♦ψ → ♦((θ1∧ . . .∧θn) →∨
Uψ,u), that would imply in turn that �KD45(G) ♦ψ → ((�θ1 ∧ . . . ∧ �θn) →

♦
∨

Uψ,u). In that case, taking the evaluation u it would yield: 1 = u(♦ψ) ≤
u(�θ1 ∧ . . . ∧�θn) ⇒ u(♦

∨
Uψ,u), a contradiction, since u(�θ1 ∧ . . . ∧�θn) = 1

and u(♦
∨

Uψ,u)) < 1.3

Therefore, there is a Gödel valuation ν′ (not necessarily in W ) such that
ν′(ψ) = ν′(Γψ,u) = ν′(ThKD45(G)) = 1 and ν′(

∨
Uψ,u) < 1. By #2 and

#3, it follows that for any λ1, λ2 ∈ Δϕ such that u(λ1), u(λ2) ≤ α, we have
u(λ1) < u(λ2) ≤ α iff ν′(λ1) < ν′(λ2). Thus, ν′ satisfies the conditions of
Lemma 2 because it is strictly increasing in Δϕ (i.e. it satisfies condition b of
Lemma 2), and ν′(ThKD45(G)) = 1. Therefore, there exists a valuation w′ ∈ W
such that w′(ψ) = 1.

It remains to show that πϕ(w′) = 1. Indeed, by construction, it holds that
u(�θ) ≤ w′(θ) ≤ u(♦θ), and hence min(u(�θ) ⇒ w′(θ), w′(θ) ⇒ u(♦θ)) = 1.

- If 1 > u(♦ψ) = α > 0, then we let Uψ,u = (♦ψ → ψ) → ψ. We claim that

3 Note that, in this case, the first member of the union defining Γψ,u is the empty set.
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��, Γψ,u 	�KD45(G) Uψ,u ,

otherwise there would exist θ1, . . . , θn ∈ Γψ,u such that �KD45(G) �� → ((θ1 ∧
. . .∧θn) → Uψ,u), and then we would have �KD45(G) ♦�� → ♦((θ1∧ . . .∧θn) →
Uψ,u), which would imply �KD45(G) �� → ((�θ1 ∧ . . . ∧ �θn) → ♦Uψ,u). In
that case, evaluating with u it would yield 1 = u(��) ≤ u(�θ1 ∧ . . . ∧ �θn) ⇒
u(♦Uψ,u)), contradiction, since u(�θ1 ∧ . . . ∧ �θn) > α and u(♦Uψ,u)) ≤ α
(because u(♦((♦ψ → ψ) → ψ)) ≤ u(�(♦ψ → ψ) → ♦ψ) ≤ u(♦ψ) ≤ α).

Therefore, there is an evaluation ν′ such that ν′(ThKD45(G)) = ν′(Γψ,u) =
1 and ν′(

∨
Uψ,u) < 1. Hence, we can conclude that the three pre-conditions a,

b and c required in Lemma 2 are satisfied. In addition, the following condition
is also satisfied:

d. ν′(♦ψ) = ν′(ψ).

At this point, we can now do a proof dual to the one for Claim 1. Again, by
Lemma 2 for δ = β−α

2 , we obtain from ν′ an evaluation w′ ∈ W v such that
w′(ψ) = α. It only remains then to show that πϕ(w) > α. But in this case,
the proof is the same than the one given for Eq. (3) using w′ instead of w. This
finishes the proof. �
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Abstract. We introduce hypersequent calculi for Rational �Lukasiewicz
logic and for the logic KZ(π), an extension of Kleene-Zadeh logic, moti-
vated by game semantic investigations.

1 Introduction

Fuzzy Logic is nowadays a vast research area, which offers many different meth-
ods and tools to handle vagueness for computational purposes. In particular, in
the area of so-called Fuzzy Logic in narrow sense or Mathematical Fuzzy Logic
[4] many axiomatic systems have been so far introduced and investigated, in
order to characterize valid inferences under vagueness. One of the most promi-
nent such system is �Lukasiewicz logic �L. This logic is an important example of
a t-norm based logic, together with Gödel and Product logic, see e.g. [4,9]. In
its intended or standard semantics, truth values are taken over the real interval
[0, 1] and the (strong) conjunction and implication connectives are interpreted
by the well known �Lukasiewicz t-norm x∗y = max(0, x+y−1) and its residuum
x → y = min(1, 1 − x + y), respectively.

In this paper we focus on Rational �Lukasiewicz logic R�L, an expansion of �L
with a family of unary connectives {δn}n∈N, standing for division operators. In
other words, the intended evaluation v over the real interval [0, 1] of a formula
δnα is defined by v(δnα) = v(α)/n where/stands for the usual division.

The name of the logic hints at the fact that constants corresponding to all the
rational numbers in [0, 1] are definable in R�L. Not surprisingly, therefore, R�L has
been shown in [3] to be a conservative extension of the so-called Rational Pavelka
logic [9]. The logic has also a nice functional representation, in analogy to the
famous McNaughton theorem for �Lukasiewicz [11]: formulas in R�L correspond to
continuous piecewise linear functions with rational coefficients over [0, 1], see [2,3].

R�L has been systematically investigated in [3], where a Hilbert system and
a corresponding algebraic semantics DMV (divisible MV algebras) have been
introduced.

In this work we present a hypersequent calculus HR�L for R�L, which extends
the calculus for �Lukasiewicz logic introduced in [12]. In Sect. 2 we introduce the
calculus and show its soundness and completeness with respect to the standard
semantics. In Sect. 3 we then move to consider the logic KZ(π), an expansion
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 136–147, 2016.
DOI: 10.1007/978-3-319-40581-0 12
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of Kleene-Zadeh logic (KZ in the following), introduced in [7] by considerations
of game-semantic nature. A hypersequent calculus for KZ(π) is easily obtained
from suitable restrictions on HR�L. Indeed, the logic KZ(π) can be seen as a
proper fragment of R�L. In Sect. 4 we conclude by pointing to future work. In
particular, we suggest that our calculi may provide a useful framework for a
proof-theoretic investigation of fuzzy logics extended with so-called fuzzy quan-
tifiers [8], such as many, few, about half, etc.

2 The Hypersequent Calculus HR�L

In this section we introduce a calculus for the logic R�L, i.e. the expansion of
�Lukasiewicz logic with division operators. Recall that in a language for propo-
sitional �Lukasiewicz logic only the constant (or 0-ary connective) ⊥ the connec-
tive → are needed, other connectives ¬, ·,⊕,∧,∨,� being definable in terms of
→,⊥. In the following, we call atomic formula a propositional variable or the
constant ⊥. As usual, formulas are built recursively from atomic formulas. Any
evaluation v on the standard semantics assigns truth values in [0, 1] to proposi-
tional variables, the value 0 to ⊥, and is extended truth functionally by letting
v(α → β) = min(1, 1 − v(α) + v(β)). For the remaining connectives, evaluations
v are determined as follows:

v(�) = 1, v(¬α) = 1 − v(α)
v(α · β) = min(0, v(α) + v(β) − 1), v(α ⊕ β) = min(1, v(α) + v(β))
v(α ∧ β) = min(v(α), v(β)), v(α ∨ β) = max(v(α), v(β))

Notation. In what follows, given an integer n, we denote by αn a multiset of
α’s and by nα the formula α ⊕ · · · ⊕ α. More precisely, we let

α1 = α αn = α, αn−1 and 1α = α nα = α ⊕ (n − 1)α.

The language of R�L is obtained extending that of �L with the set of unary con-
nectives {δn}n∈N. (Standard) Evaluations for R�L are defined extending those for
�L with the condition:

v(δnα) =
v(α)

n

for any δn. Clearly v(δm(δnα)) = v(δmnα) and v(δ1α) = v(α). Hence we will
identify in the following any formula of the kind δm(δnα) with δmnα and δ1α
with α. Note that for any rational number n/m in [0, 1], a corresponding con-
stant n(δm�) is definable in R�L and clearly satisfies v(n(δm�)) = n/m for any
evaluation v.

A Hilbert-style axiomatization of the logic R�L has been introduced in [3]. It
is obtained by adding the following axioms to the Hilbert system for �Lukasiewicz
logic

(δ1a) n(δnϕ) → ϕ
(δ1b) ϕ → n(δnϕ)
(δ2) ¬δnϕ ⊕ ¬(n − 1)(δnϕ)
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The axiomatic system is shown in [3] to be complete w.r.t. the standard seman-
tics over [0, 1], via algebraic methods. More precisely, a corresponding general
algebraic semantics, the variety of divisible MV algebras (DMV algebras) is
introduced and shown to be generated by its members on the real interval [0, 1].
In what follows we introduce a Gentzen-style calculus for the logic R�L that is
based on hypersequents. We exhibit a direct proof of the completeness of the
calculus w.r.t the standard semantics. First, we recall the notion of sequent and
hypersequent (see e.g. [1,13]).

Definition 1. A hypersequent is a non-empty finite multiset S1 | . . . |Sn where
each Si, i = 1, . . . , n is a sequent, called a component of the hypersequent. A
(multiple-conclusioned) sequent is in turn an object of the form Γ ⇒ Π, where
Γ,Π are multisets of formulas.

Our hypersequent calculus for R�L is an extension of the hypersequent calculus
for �Lukasiewiz logic introduced in [12]. In Table 1 we recall the calculus H �L for
�L , with some unessential modifications. We include also rules for the connectives
⊕,¬,�, although they are not necessary, being derivable from the rules for →,⊥.

Table 1. Hypersequent calculus H �L for �Lukasiewicz logic

⇒ (emp) α ⇒ α (id) ⊥ ⇒ α
(⊥)

G | Γ1, Γ2 ⇒ Δ1, Δ2

G | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2
(split)

G | Γ1 ⇒ Δ1 G | Γ2 ⇒ Δ2

G | Γ1, Γ2 ⇒ Δ1, Δ2
(mix) ⇒ � (�)

G | H | H

G | H
(ec)

G

G | H
(ew)

G | Γ ⇒ Δ

G | Γ, Π ⇒ Δ
(wl)

G | Γ, β ⇒ α, Δ | Γ ⇒ Δ

G | Γ, α → β ⇒ Δ
(→ l)

G | Γ ⇒ Δ G | Γ, α ⇒ β, Δ

G | Γ ⇒ α → β, Δ
(→ r)

G | Γ, α, β ⇒ ⊥, Δ

G | Γ, α ⊕ β ⇒ Δ
(⊕l)

G | Γ, ⊥ ⇒ α, β, Δ G | Γ ⇒ Δ

G | Γ ⇒ α ⊕ β, Δ
(⊕r)

G | Γ, ⊥ ⇒ α, Δ

G | Γ, ¬α ⇒ Δ
(¬l)

G | Γ, α ⇒ ⊥, Δ

G | Γ ⇒ ¬α, Δ
(¬r)

We are now ready to introduce the calculus for R�L.

Definition 2. The calculus HR�L is obtained by adding to the calculus for
�Lukasiewicz logic in Table 1 the rules in Table 2.

Hypersequents are usually interpreted as particular formulas in a logic: for
instance, the symbol | is generally interpreted as a disjunction ∨ and ⇒ as
an implication →. This is not the case of H �L, where hypersequents are directly
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Table 2. Additional rules for HR�L

G | Γ, (δnα)n ⇒ Δ, ⊥n−1

G | Γ, α ⇒ Δ
(δ ↑ l)

G | Γ, ⊥n−1 ⇒ (δnα)n, Δ

G | Γ ⇒ α, Δ
(δ ↑ r)

G | Γ, α, ⊥n−1 ⇒ Δ

G | Γ, (δnα)n ⇒ Δ
(δ ↓ l)

G | Γ ⇒ α, ⊥n−1, Δ

G | Γ ⇒ (δnα)n, Δ
(δ ↓ r)

G | Γ, δnβ, δn� ⇒ δnα, Δ | Γ, δn� ⇒ Δ

G | Γ, δn(α → β) ⇒ Δ
(δ → l)

G | Γ, δnα ⇒ δn�, δnβ, Δ Γ ⇒ δn�, Δ

G | Γ ⇒ δn(α → β), Δ
(δ → r)

interpreted over the standard semantics of the logic. The evaluation of a multiset
Γ of formulas is defined in [12,13] for �L as:

v(Γ ) = 1 +
∑

α∈Γ

(v(α) − 1).

We will adopt the same notion for the evaluation of a multiset of formulas in the
logic R�L . The validity of a hypersequent is then defined as follows.

Definition 3. Let G = Γ1 ⇒ Δ1 | . . . |Γn ⇒ Δn be a hypersequent in HR�L .
We say that G is valid and denote it by |=R�L G iff for any valuation v there is
a component Γi ⇒ Δi such that v(Γi) ≤ v(Δi) ( i ∈ {1, . . . , n}).

As usual, we denote by �HR�L G the fact that a hypersequent G is derivable
in HR�L . Note that the rules for (δ →) allow for a form of deep inference: they
do not necessarily operate on the most external connective, i.e. on δn, but inside
the formula. As an example to illustrate the functioning of the calculus, we show
how to derive the axiom (δ2):

⊥n ⇒ ⊥n

(wl)
ϕ,⊥n ⇒ ⊥n

(δ ↓ l)⊥, (δnϕ)n ⇒ ⊥n

(⊕l) × (n − 2)⊥, δnϕ, (n − 1)(δnϕ) ⇒ ⊥,⊥
(¬r) × 2⊥ ⇒ ¬δnϕ,¬(n − 1)(δnϕ)

(emp)⇒
(⊕r)⇒ ¬δnϕ ⊕ ¬(n − 1)(δnϕ)

where ⊥n ⇒ ⊥n is clearly derivable by repeated applications of (mix) with the
axiom ⊥ ⇒ ⊥.

Lemma 1. The rules for HR�L in Table 2 are sound and invertible.

Proof. We consider only two rules, the others being similar. First, we consider
the rule (δ → r). Assume that the premises hold. The case where the context G
is valid is trivial. W.l.o.g. let us assume thus:

(∗) v(Γ ) + (
v(α)

n
− 1) ≤ (

1
n

− 1) + (
v(β)
n

− 1) + v(Δ)
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and
(∗∗) v(Γ ) ≤ v(Δ) + (

1
n

− 1).

In case v(α) ≤ v(β), we have v(α → β) = 1, hence the conclusion just amounts
to (∗∗). In case v(β) ≤ v(α), we have v(α → β) = 1 − v(α) + v(β), hence the
conclusion holds iff

v(Γ ) ≤ (
1 − v(α) + v(β)

n
− 1) + v(Δ)

which follows from (∗) by easy computations. For invertibility, we assume that

(∗ ∗ ∗) v(Γ ) ≤ (
v(α → β)

n
− 1) + v(Δ).

In case v(α) ≤ v(β) this amounts to (∗∗) i.e. the right premise. Combining
v(α) ≤ v(β) and (∗∗) we can easily obtain (∗), i.e. the left premise. In case
v(β) ≤ v(α) we obtain the left premise (∗) by easy computations. From (∗ ∗ ∗)
we easily get

v(Γ ) ≤ 1
n

+
v(β) − v(α)

n
− 1 + v(Δ) ≤ 1

n
− 1 + v(Δ)

i.e. the right premise (∗∗).
Let us consider now the rule (δ ↑ l) and assume its premises hold, i.e.

v(Γ ) + n(
v(α)

n
− 1) ≤ v(Δ) − (n − 1).

This is clearly equivalent to

v(Γ ) + v(α) − 1 ≤ v(Δ).

that is, the conclusion of (δ ↑ l). The same reasoning gives also the invertibility
of (δ ↑ l).

In what follows we call δ-atomic any formula of kind δnα, with α atomic formula.1

We call a hypersequent δ-atomic if it only contains δ-atomic formulas. Towards
the completeness theorem, we show first two useful technical lemmas.

Lemma 2. (i) The following rules are derivable in HR�L and invertible.

G |Γm,⊥(m−1)n ⇒ Δm

G |Γ, (δm�)n ⇒ Δ
(div l)

G |Γm ⇒ ⊥(m−1)n,Δm

G |Γ ⇒ (δm�)n,Δ
(div r)

(ii) The sequent δmα ⇒ δm� is derivable in HR�L.

1 A formula of the kind δn(δmα) with α atomic is considered δ-atomic as well. Recall
that we identify such formulas with δmnα.
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Proof. (i). The rule (div l) is derivable as follows:

G |Γm,⊥(m−1)n ⇒ Δm

(wl)
G |Γm,�n,⊥(m−1)n ⇒ Δm

(δ ↓ l) × n
G |Γm, ((δm�)m)n ⇒ Δm

(split) × m
G |Γ, (δm�)n ⇒ Δ | . . . |Γ, (δm�)n ⇒ Δ

(ec) × m
G |Γ, (δm�)n ⇒ Δ

For invertibility, note that (δ ↓ l) and (ec) are invertible in general. The applica-
tions of (split) and (wl) above can be easily shown to be invertible as well. The
rule (div r) is derivable in a similar way, using repeated (mix) with the sequent
⇒ � instead of (wl) and (δ ↓ r) instead of (δ ↓ l).

(ii). A derivation of δmα ⇒ δm� is obtained as follows:

⊥m−1 ⇒ ⊥m−1

(wl)
α,⊥m−1 ⇒ ⊥m−1

(δ ↓ l)
(δmα)m ⇒ ⊥m−1

(div r)
δmα ⇒ δm�

where ⊥m−1 ⇒ ⊥m−1 is derivable by repeated applications of (mix) with the
axiom ⊥ ⇒ ⊥.

Lemma 3. If �HR�L G |Γ, δn� ⇒ Δ then �HR�L G |Γ, δnα ⇒ Δ.

Proof. We reason by induction on the length of the derivation of G |Γ, δn� ⇒ Δ.
For the base case, if we have an axiom of the form δn� ⇒ δn�, we replace it by
the derivable sequent δnα ⇒ δn� (see Lemma 2). In the remaining cases, the
lemma just follows by a suitable application of the induction hypothesis on the
last applied rule in a derivation of G |Γ, δn� ⇒ Δ.

We are now ready for the completeness theorem, which follows the basic
structure of the argument for �Lukasiewicz logic as presented e.g. in [5,12,13].

Theorem 1. [Completeness] Let G be a hypersequent in HR�L. If |=R�L G, then
�HR�L G

Proof. By the invertibility of logical rules (see Lemma 1), it is sufficient to show
the claim only for δ-atomic hypersequents. We reason by induction on the num-
ber k of different propositional variables occurring on the left hand side of the
components of G. In case k = 0, there can only be ⊥, δn� on the left hand side
of any component. By applying (mix) backwards with ⊥ ⇒ ⊥, δn� ⇒ δn�, we
remove any simultaneous occurrence of ⊥ and δn� on both sides of a sequent.
We then apply the rules (div l) and (div r) backwards (see Lemma 2) to obtain
a hypersequent G1 where no occurrences of δn� appear. It is clear that G1 is
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valid iff G is valid and moreover, if G1 is derivable, G is derivable as well. To
conclude the base case, we are now left to show that if G1 is valid, it is provable.
Note that any component of G1 can only be of the form (⊥)n ⇒ Δ for a certain
n. If there is a component such that n ≥ |Δ|, then the whole hypersequent is
derivable by (⊥), (mix),(wl) and (ew). Assume this is not the case and consider
an evaluation which assigns the value 0 to any propositional variable. It can be
easily shown that this evaluation would falsify the whole hypersequent G1, thus
contradicting our assumption that G1 is valid.

We consider now the case where k > 0 and we pick an atomic variable
q occurring on the left of at least one sequent in G. By suitable backwards
application of the rules (δ ↑ r) and (δ ↑ l), we can obtain a hypersequent where
all occurrences of q are of the form δnq, for the same integer n. W.l.o.g. we assume
n ≥ 2 (in case n = 1 the proof proceeds as the one in [13]). We remove any
occurrence of δnq on both sides of each sequent, applying backwards repeatedly
(mix) with the axiom δnq ⇒ δnq. We obtain thus a valid hypersequent, whose
components contain δnq either only on the right or on the left. We multiply
the components of this hypersequent applying (ec) and (split) backwards, so to
obtain

G′ = G0 | {Γi, (δnq)λ ⇒ Δi |Πj ⇒ (δnq)λ, Σj}i∈I,j∈J

where I, J are finite sets of indices and λ ∈ N. Clearly we still have |=R�L G′. Let
us consider now the hypersequent

H = G0 | {Γi,Πj ⇒ Σj ,Δi |Γi, (δn�)λ ⇒ Δi |Πj ⇒ (δnq)λ, Σj}i∈I,j∈J

which contains fewer distinct variables on the left than G′. We claim that, if H
is derivable, G′ is derivable as well. Indeed, from a derivation of H, by suitable
applications of (mix) with δnq ⇒ δnq and (split), we can obtain a derivation of

G0 | {Γi, (δnq)λ ⇒ Δi |Γi, (δn�)λ ⇒ Δi |Πj ⇒ (δnq)λ, Σj}i∈I,j∈J

Applying Lemma 3 to the latter hypersequent and (ec), we obtain our desired
derivation of G′. It suffices now to show that H is valid, as in this case we obtain
�HR�L H by the induction hypothesis. For a contradiction, let us suppose that
there exists a valuation v such that v(Γ ) > v(Δ) for all components Γ ⇒ Δ ∈ H.
We let

x = max({v(Δi) − v(Γi)}i∈I ∪ {−λ})

y = min({v(Πj) − v(Σj)}j∈J ∪ {0}).

Assume x ≥ y. We would have either v(Γi) + v(Πj) ≤ v(Σj) + v(Δi) or −λ ≥
v(Πj)−v(Σj) or v(Δi)−v(Γi) ≥ 0. In any of these cases, we can easily obtain a
contradiction with the assumption that the valuation v does not satisfy H. Hence
we have x < y. We claim that there is a w ∈ [0, 1] such that x < λ(w

n − 1) < y.
Towards this aim, let us first show the two following facts:

(a) x < λ(
1
n

− 1) (b) λ(
v(q)
n

− 1) < y
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Let us start from (a). In case x = −λ we get −λ < λ( 1
n −1) which clearly holds.

Assume instead that x = v(Δi)− v(Γi) for some i ∈ I. We have v(Δi)− v(Γi) <
λ( 1

n − 1) as otherwise v would satisfy the component Γi, (δn�)λ ⇒ Δi of H and
this would contradict our assumption. Let us now consider the inequation (b)
and assume it does not hold. In case y = 0, we would have λ(v(q)

n −1) ≥ 0, which
is clearly a contradiction. Otherwise, there would be an index j ∈ J such that
y = v(Πj) − v(Σj) ≤ λ(v(q)

n − 1). Hence we would have v(Πj) ≤ v(Σj , (δnq)λ),
which contradicts the assumption that v does not satisfy the hypersequent H.
Recall now that x < y. If either x < λ(v(q)

n − 1) < y or x < λ( 1
n − 1) < y we are

done. Otherwise we have

λ(
v(q)
n

− 1) < x < y < λ(
1
n

− 1)

Also in this latter case we can find a w ∈ [0, 1] (actually in (v(q), 1)) such
that x < λ(w

n − 1) < y. We define now a new valuation v′(q) which differs
from v only for letting v′(q) = w. We have thus x < λ(v′(q)

n − 1) < y. Hence
v′(Δi) − v′(Γi) < λ(v′(q)

n − 1) and λ(v′(q)
n − 1) < v′(Πj) − v′(Σj), i.e.

v′(Γi, (δnq)λ) > v′(Δi) v′(Πj) > v′(Σj , (δnq)λ)

for any i ∈ I, j ∈ J . This means that G′ is not valid, which contradicts our
initial assumption.

In Theorem 1 we have directly shown the completeness of the hypersequent
calculus with respect to the standard semantics over the real interval [0, 1]. Notice
that our calculus does not include the (cut) rule

G |Γ, α ⇒ Δ Σ ⇒ α,Π

G |Γ,Σ ⇒ Π,Δ
(cut)

which can be easily proved to be sound with respect to the standard seman-
tics. The completeness of our (cut)-free calculus shows thus that the (cut) rule
is actually admissible for HR�L. This means that the addition of (cut) to the
calculus HR�L would not change the set of derivable formulas.

3 A Hypersequent Calculus for the Logic KZ(π)

In this section we introduce a calculus for the logic KZ(π), which we obtain as
a restriction of the calculus HR�L. KZ(π) was introduced in [7] in the context
of an investigation into Hintikkas’s game semantics for fuzzy logic. Hintikka-
games [10] are essentially two-person zero-sum games. The players, say Myself
and You, in each move stepwise reduce a complex logic formula, until atomic
formulas are reached. A state of the game is fully determined by the formula at
stake and by an attribution of roles (attacker and defender) to the two players.
For propositional (classical) logic, the rules for decomposing complex into atomic
formulas are as follows:
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(R∧) If I assert (i.e. defend) α∧β then You attack by pointing either to the left
or to the right subformula. As corresponding defense, I then have to assert
either α or β, according to Your choice.

(R∨) If I assert α ∨ β then I have to assert either α or β at My own choice.
(R¬) If I assert ¬α then You have to assert α. In other words, our roles are

switched: the game continues with You as defender and Me as attacker (of α).

Once the players reach an atomic formula, the game ends. We say that I win
if in a final state I assert an atomic formula α and v(α) = 1 (my payoff is 1).
Similarly, I lose if v(α) = 0 (my payoff is 0). In case in a final state You assert
an atomic formula α, the winning conditions and related payoffs are reverted.

The game-theoretical framework just sketched provides an alternative char-
acterization for truth in classical logic: the truth of a formula corresponds to
the existence of a winning strategy (i.e. ending with payoff 1) for Myself in the
corresponding game.

Hintikka games were not originally meant to deal with many-valued logic:
atomic formulas are indeed interpreted only as either true or false. Nevertheless,
it is possible to drop this requirement and admit evaluations over [0, 1], while
retaining the basic game-theoretical framework. As shown in [7], this results in
a game-theoretic semantics for the {∧,∨,¬,⊥}-fragment of �Lukasiewicz logic,
i.e. the so-called Kleene Zadeh logic (KZ). More precisely, a formula α in KZ
evaluates to w ∈ [0, 1] under a certain evaluation iff the corresponding Hintikka
game has a payoff value w for Myself. Moreover, it is shown in [7] that any
additional rule in a Hintikka game, involving only choices between two players
and role switches, (such as (R∧), (R∨), (R¬)) always corresponds to a definable
connective in KZ. Hence a different kind of game rule is needed to go beyond
the logic KZ. The logic KZ(π) is obtained in [7] expanding KZ with a new
binary connective π, characterized by the following random choice rule:

(Rπ) If the current formula is απβ then a uniformly random choice determines
whether the game continues with α or with β.

The corresponding truth function for this connective is obtained as

v(απβ) = (v(α) + v(β))/2.

This truth function matches the corresponding game semantics, provided that we
consider expected payoff instead of payoff. More precisely, it is shown in [7] that a
formula of KZ(π) has a value w under a given evaluation iff the expected payoff
in the corresponding Hintikka game for Myself is w. Note that the logic KZ(π) is
a proper extension of KZ, but it is incomparable with �L: indeed, the connective
π is not definable from the connectives of �L, nor can ·,⊕,→ be defined from
π,∧,∨,¬,⊥. The addition to KZ(π) of a further unary connective, standing for
a doubling of the truth values, is needed to capture the whole �L while retaining
the Hintikka-style game-semantics.

We can see KZ(π), however, as a fragment of the logic R�L, which we con-
sidered in Sect. 2. The fragment is generated by the atomic formulas and the



A Calculus for Rational �Lukasiewicz Logic and Related Systems 145

connectives ∧,∨,¬, π where xπy := δ2x ⊕ δ2y. Note that, in turn the unary
connective δ2 is definable in KZ(π) by letting δ2α = απ⊥. By these simple
observations we can thus obtain a hypersequent calculus for KZ(π) as a frag-
ment of that for R�L. We present the calculus explicitly in Table 3. Note that
only δ-formulas of the kind δ2mα can occur in a proof of a hypersequent in the
language of KZ(π)2.

Table 3. Calculus HKZ(π) for KZ(π)

G | Γ ⇒ Δ

G | Γ, Π ⇒ Δ
(wl)

⇒ (emp) α ⇒ α (id)

(δ2m )⊥ ⇒ α
(⊥l) ⇒ � (�)

G | Γ1, Γ2 ⇒ Δ1, Δ2

G | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2
(split)

G | Γ1 ⇒ Δ1 G | Γ2 ⇒ Δ2

G | Γ1, Γ2 ⇒ Δ1, Δ2
(mix)

G | H | H

G | H
(ec)

G

G | H
(ew)

G | Γ, (δ2m ) α ⇒ Δ G | Γ, (δ2m ) β ⇒ Δ

G | Γ, (δ2m ) α ∨ β ⇒ Δ
(∨l)

G | Γ ⇒ (δ2m ) α, Δ | Γ ⇒ (δ2m ) β, Δ

G | Γ ⇒ (δ2m ) α ∨ β, Δ
(∨r)

G | Γ, (δ2m ) α ⇒ Δ | Γ, (δ2m ) β ⇒ Δ

G | Γ, (δ2m ) α ∧ β ⇒ Δ
(∧l)

G | Γ ⇒ (δ2m ) α, Δ G | Γ ⇒ (δ2m ) β, Δ

G | Γ ⇒ (δ2m ) α ∧ β, Δ
(∧r)

G | Γ, (δ2m+1 ) α, (δ2m+1 ) β ⇒ ⊥, Δ

G | Γ, (δ2m ) απβ ⇒ Δ
(πl)

G | Γ, ⊥ ⇒ (δ2m+1 ) α, (δ2m+1 ) β, Δ

G | Γ ⇒ (δ2m ) απβ, Δ
(πr)

G | Γ, ⊥, (δ2m ) � ⇒ (δ2m ) α, Δ

G | Γ, (δ2m ) (¬α) ⇒ Δ
(¬l)

G | Γ, (δ2m ) α ⇒ ⊥, (δ2m ) �, Δ

G | Γ ⇒ (δ2m ) (¬α), Δ
(¬r)

G | Γ, δ2α, δ2α ⇒ Δ, ⊥
G | Γ, α ⇒ Δ

(δ ↑ l)
G | Γ, ⊥ ⇒ δ2α, δ2α, Δ

G | Γ ⇒ α, Δ
(δ ↑ r)

G | Γ, α, ⊥ ⇒ Δ

G | Γ, δ2α, δ2α ⇒ Δ
(δ ↓ l)

G | Γ ⇒ α, ⊥, Δ

G | Γ ⇒ δ2α, δ2α, Δ
(δ ↓ r)

Lemma 4. The logical rules and (δ ↑), (δ ↓) in Table 3 are sound and invertible
for R�L.

Proof. By simple arithmetic computation, as for the proof of Lemma 1. Notice
that the rules (δ ↑) and (δ ↓) are just particular cases of the corresponding ones
in Table 1. Similarly, the rules for (¬) and (π) are just special cases of the rules
(δ →) and (⊕), respectively.
2 As for R�L, we identify δ2mδ2nα with δ2m+nα and δ20α, i.e. δ1α, with α.
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Being the logical rules invertible, the completeness proof in Theorem 1 can be
adapted to the fragment KZ(π).

Theorem 2. Let G be a hypersequent in the language of KZ(π). If |=KZ(π) G,
then �HKZ(π) G

Proof. Using the invertibility of the logical rules, we can reduce G to an atomic
hypersequent. Applying the rules (δ ↑ l) and (δ ↑ r) backwards we obtain a valid
hypersequent which contains only δ-atomic formulas of the kind (δ2m) α, for a
given m. The rest of the proof proceeds as in Theorem 1 (note that Lemmas 2
and 3 apply to HKZ(π) as well).

4 Conclusions and Future Work

Variants of KZ(π), with similar game theoretical motivations, can also be defined
as fragments of R�L. First, in the definition of the game rule (Rπ) in page 9 we
can drop the requirement that the formula is chosen according to a random
uniform distribution. A generalized connective πr for any rational number r in
[0, 1] can be introduced via the game rule:

(Rπr
) If the current formula is απrβ then the game continues with α with

probability r and with β with probability 1 − r.

Let r = m/n, for m,n natural numbers. The corresponding truth function for πr

is v(απrβ) = (m/n)v(α)+ (1−m/n)v(β). The connective πr is clearly definable
in R�L as απrβ := m(δnα) ⊕ (n − m)δnβ.

In a different direction, we can also consider π-like connectives of arbitrary
arity3, i.e. connectives of kind πn, arising from the following game rule:

(Rπn
) If the current formula is πn(α1, . . . , αn) then a uniform random choice

determines whether the game continues with one of the α1, . . . , αn.

The corresponding truth function is clearly the average of the truth values
v(α1), . . . , v(αn), i.e.

v(πn(α1, . . . , αn)) =
∑

i=1,...,n

v(αi)
n

.

The connective is definable in R�L by letting πn(α1, . . . , αn) = δnα1 ⊕· · ·⊕δnαn.
The connective πn is strictly related to the random witness quantifier, introduced
by game semantics means in [6], as an extension of first-order �Lukasiewicz logic.
The random witness quantifier is determined by the following game rule

(RΠ) If the current formula is ΠxF (x) then an element c from the domain D
is chosen randomly and the game continues with F (c).

3 Note that π is not associative in general.
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As we might expect, for a finite domain D, the corresponding truth function for
Πx is defined as:

v(ΠxF (x)) =
∑

d∈D

v(F (d))
|D|

This coincides with the truth function of the connective πn for n = |D|. It is thus
possible to investigate the properties of the quantifier Π(x) in a finite domain by
means of the corresponding connective πn, which is in turn definable in R�L. As
shown in [6,7], the mechanism of random choice provides a guiding principle for
the characterization and systematic introduction of families of so-called fuzzy
quantifiers, i.e. expressions such as “few”, “many”, “about half”. Many such
quantifiers are indeed definable over an extension of first-order �Lukasiewicz logic
with Π(x). Our calculus HR�L can thus provide a natural framework where a
proof-theoretical study of these quantifiers can be further developed.

We leave also as a topic of future research the closer investigation of the
connection between the calculi HR�L,HKZ(π) and the game semantics of the
corresponding logic, along the lines of [5].
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Abstract. Negation is a key element in the construction of logical sys-
tems and plays a central role in reasoning and information manipulation
tools. This paper considers the issue of negating graded beliefs, in the
framework of a graded doxastic logic. It studies three interpretations of
negation for these high level pieces of information, where negation is
transferred to the three components of graded beliefs: the formula about
which a belief is expressed, the belief modality and the belief level. The
paper discusses the choice of appropriate formal frameworks for each
of them, considering modal, fuzzy and many-valued logics; it charac-
terises their use and underlines their relations, in particular regarding
their effects on the belief degrees.

Keywords: Belief reasoning · Modal logic · Weighted logic · Doxastic
logic

1 Introduction

One of the authors of this paper firmly believes unicorns exist, the other two do
not. One does not firmly believe they exist, the other firmly does not believe they
exist. Most people can tell the difference between these two points of view and
can even tell them apart from someone who firmly believes unicorns do not exist.
All three assertions are distinct negations of the original belief, which serves to
show how tricky it is to negate a high level concept like graded beliefs.

The very notion of graded belief is a complex one, for which several interpre-
tations can be considered: first, degrees of beliefs can be interpreted in terms of
certainty. They can for instance be related to the -subjective- certainty an agent
associates with the fact about which he expresses a belief [1]. Another type of
uncertainty arises when an agent reasons about the beliefs of another agent,
as revealed by the latter [2]: this uncertainty can be modelled in a possibilistic
framework, as offered by Generalised Possibilistic Logic [8,9] a graded version of
Meta-Epistemic Logic [2].

This paper takes a different point of view: interpreting degrees of beliefs in
terms of belief strength. Graded beliefs are used to express partial beliefs, i.e.
beliefs that are more or less true, but all attached to the same level of certainty.
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 148–160, 2016.
DOI: 10.1007/978-3-319-40581-0 13
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For this general type of graded beliefs, the paper offers a discussion of the
negation issue, proposing to model the three interpretations of the negation given
in the introduction and, in particular, their cognitive underpinnings. It focuses on
choosing appropriate formal paradigms to model all three, specifically looking
at modal, many-valued and fuzzy logics: the former with its doxastic variant
for belief representation, the latter two weighted logics to help represent and
manipulate gradual concepts, with distinct truth degrees, beyond the classic
binary case. In these high level logics, negation models notions which cannot be
addressed in classical logics.

After setting a formal representation of the tackled issues in Sect. 2, the
paper reviews the principles of negation in these logics in Sect. 3. The three
interpretations of negation for graded beliefs are then discussed in turn in the
following three sections. Conclusion and future works are presented in Sect. 7.

2 Formalising the Graded Belief Negation Issue

In order to formalise the issue of graded belief negation, this section first intro-
duces the notation proposed to represent graded beliefs and then expresses the
three interpretations of their negation outlined in the introduction.

2.1 Notations for Graded Beliefs

A graded belief extends the notion of belief by introducing a measure of the
extent to which something is believed. We propose to denote this B(ϕ,α), read
‘ϕ is believed to a degree α’: this notation simultaneously represents (i) the
considered formula, ϕ, about which a modal assertion is expressed; (ii) the type
of non factual modality, belief, B; (iii) the degree to which belief is partially
held, α.

Using this notation, a sentence such as ‘I firmly believe that unicorns exist’
can be represented as B(ϕ,α) for which ϕ is the formula ‘unicorns exist’ and
α represents the belief degree ‘firmly’, e.g. 0.8 if a numerical transposition were
chosen, the choice of a correspondence between a numerical value and a linguistic
term being out of the scope of this paper, 0.8 is given here as a mere example.

This notation highlights the relation between graded beliefs and the doxastic
variant of modal logic [12], which aims at representing and reasoning about
beliefs, as well as to weighted logics, such as many-valued or fuzzy logics, which
manipulate degrees, respectively with ordinal and numerical values.

The negation of a graded belief is linguistically expressed as ‘it does not hold
that ϕ is believed to a degree α’. We formally denote this N (B(ϕ,α)) where
N is a general negation operator whose meaning is the topic of this paper: we
propose a special notation to distinguish it from the classical negation, so as
not to confuse it with ¬B(ϕ,α) and avoid implicitly transposing classical results
known for ¬ to the case of graded belief negation.
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2.2 Objects of the Negation of Graded Beliefs

The challenge of negating graded beliefs comes from the fact that several inter-
pretations can be considered, depending on which of their components is seen as
the negated object: formally, negation can be considered as transferred to each
of them, leading to examine the following formulae, illustrated below:

global negation transferred on modality formula degree
N (B(ϕ,α)) N (B)(ϕ, β) B(N (ϕ), γ) B(ϕ,N (α))

The purpose of this work is to discuss them, questioning the choice of appro-
priate formal frameworks and definitions for the three types of negation opera-
tors N . Note that, in the general notation above, different degrees, α, β, γ and
N (α), are used to avoid implicitly imposing a priori constraints. Establishing
their relations to one another, including the possibility of their being equal, is an
integral part of the problem of negation interpretation: the three object trans-
positions above show a simplified view of the problem. The three components
of graded beliefs are actually intertwined and their combination and mutual
influence matters.

First, note that, when considering the transfer to the believed formula ϕ, i.e.
B(N (ϕ), γ), the general negation N applies to a logical formula and is therefore
naturally interpreted as the logical negation, i.e. N ≡ ¬. The question is then
whether the statement N (B(ϕ,α)), read ‘it does not hold that ϕ is believed to
a degree α’, allows to draw some conclusion about the belief in ¬ϕ, formally
written B(¬ϕ, γ): if it does not hold that ‘I firmly believe that unicorns exist’,
do I believe that unicorns do not exist and, if so, how much?

Second, transferring the negation to the belief degree means that ‘I believe ϕ’
does hold, but to a degree other than α: using the running unicorn example, the
question is to specify the meaning of the level for which it holds that ‘I not
firmly believe that unicorns exist’. The general negation N then applies to the
belief degrees and is denoted N , some suitable negation operator for degrees,
to be defined. This interpretation questions the relationship between the global
negation N (B(ϕ,α)) and B(ϕ,N(α)).

Third, the modality itself comes into question, considering that the statement
‘it does not hold that ϕ is believed to a degree α’ gives some information about
a ‘non-belief’ of ϕ, written N (B)(ϕ,α), to indicate that the negation applies to
the modality. Depending on how it is taken, this interpretation may lead to the
introduction and manipulation of a second, opposite modality, on top of belief,
something along the lines of disbelief.

3 Literature Review of Negation Principles

Negation is a central component of reasoning and information manipulation tools
and constitutes an essential part of any logical system: its specification, together
with, e.g., that of implication and the definition of an inference rule, suffices
to define fully such a logical system. If, in classical logic, it establishes simple
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relations from true to false formulae, for systems with higher expressive power,
it offers more complex, and richer, options and behaviours.

Since graded beliefs are related to both the formal frameworks of modal and
weighted logics, the interpretation of their negation is related to the negation
they respectively define: after reviewing the reference case of classical logic, this
section discusses the richness of negation meaning when applied to high level
notions e.g. representing knowledge or beliefs in the case of modal logics, and to
truth degrees for many-valued and fuzzy logics.

3.1 Negation in Classical Logic

In classical logic, the manipulation of negation relies on the laws of excluded
middle (EM) and non-contradiction (NC) which respectively state that ϕ ∨ ¬ϕ
is a tautology and that ϕ ∧ ¬ϕ is a contradiction. (EM) imposes that any for-
mula is either true or its negation is; (NC) imposes that they cannot be true
simultaneously. Together they mean that exactly one among ϕ and ¬ϕ is true.

This principle can also be expressed in terms of truth values: denoting by F
the set of all well-formed formulae and d : F → B, the function that computes the
truth value of any formula, the negation principle can be expressed as d(¬ϕ) =
n(d(ϕ)), where n:{0, 1} → {0, 1} is the function n(x) = 1 − x.

From an informational point of view, ¬ϕ is usually taken as the opposite
piece of information with respect to ϕ: if, e.g., ϕ is ‘unicorns exist’, ¬ϕ usually
means ‘unicorns do not exist’.

3.2 Negation in Modal Logic

Modal logics [3,7] manipulate non factual pieces of information, such as knowl-
edge and beliefs, through the modal operator �. Their combination with negation
then raises the issue of the relations between the formulae F1 = �ϕ, F2 = ¬�ϕ,
F3 = �¬ϕ and, applying negation both before and after the modal operator,
F4 = ¬�¬ϕ = �ϕ. The mere existence of these four variants underlines the
richness of meaning negation can express in modal logics.

The negation behaviours expressed in classical logic still hold in modal logics.
In particular, applying (EM) to the modal formula �ϕ implies that �ϕ ∨ ¬�ϕ
is a tautology, which establishes a relation between F1 and F2, and similarly
between F3 and F4.

Relations between F1 and F4 are established by axioms (D) and (CD), recip-
rocal of each other, which state that:

(D) � �ϕ → ¬�¬ϕ (CD) � ¬�¬ϕ → �ϕ (1)

Since ϕ is any formula, taking it to be a negated one and using the double
negation property ¬¬ϕ = ϕ makes it possible to establish relations between F3

and F2, when similarly applying (D) and (CD) to �¬ϕ.
Among the variants of modal logics, doxastic logic [12] interprets the modal

operator as a belief operator, offering a formalism to represent and reason with
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beliefs. The doxastic reading of axiom (D) expresses that if ϕ is believed, then its
contrary is not: it conveys the impossibility of believing both a formula and its
contrary. (D) is thus considered as modelling one facet of the assumed rationality
of the agent whose beliefs are represented. It is known as the consistency axiom
and is included in the usual axiomatic definition of doxastic logic, viz. KD45.

Its reciprocal, (CD), conveys a similar, if complementary, consistency: in a
doxastic reading, it would state that if a formula is not believed, then its contrary
is. Its premise applies to an absence of belief and its conclusion to a belief.
Rewriting the implication with negation and disjunction, it, therefore, imposes
that an agent either believe a formula or its contrary, leading to a modal form
of (EM), stating that �¬ϕ ∨ �ϕ is a tautology. This constraint, which requires
he take a stance on his belief in ϕ, excludes modelling a neutral, perplexed or
undetermined frame of mind, i.e. the absence of belief. It is considered as too
restrictive and generally not included in the axiomatic definition of doxastic logic.

These axioms illustrate the fact that processing non factual pieces of infor-
mation leads to discussions and allows the expression of negations with specific
behaviours, as opposed to what classical logic offers.

3.3 Negation in Many-Valued Logic

Graded logics, including many-valued [18] and fuzzy [20] logics, respectively
reviewed in this subsection and the next, consider factual pieces of information,
like classical logic does, but extend the set of admissible truth values beyond the
binary case {0, 1}. They thus manipulate truth degrees, with major consequences
on the behaviour of the negation: they relax the law of non-contradiction, allow-
ing both ϕ and ¬ϕ to be partially true together. The negation principles are thus
redefined to set how far a formula and its negation can simultaneously hold.

Formally, for many-valued logics [18] the set of admissible truth values is the
totally ordered set LM = {τ0, . . . , τM−1}, where M is a predefined positive inte-
ger and ∀α, β ∈ {0, . . . , M −1}, (α ≤ β ⇔ τα ≤ τβ). LM represents intermediary
truth values between ‘false’, written τ0, and ‘true’, τM−1, at various levels of
granularity, depending on the total number of levels, M .

As in classical logic, the negation principle can be written d(¬ϕ) = n(d(ϕ)).
The truth negation function n is modified, compared to the classic negation (see
Sect. 3.1), to process truth degrees and no longer just binary truth values. The
usual definition is:

n : LM → LM

τi �→ τM−1−i
(2)

This extension preserves compatibility with classical logic: the negation of ‘false’,
n(τ0) = τM−1, is still ‘true’, and vice-versa. For intermediary truth degrees, this
negation operator can be seen as computing the symmetrical value with respect
to the scale’s middle value τM−1

2
. In the case where the number of truth levels

M is odd, i.e. when this middle value indeed belongs to the scale, it is its own
negation n(τM−1

2
) = τM−1

2
. This means that a formula whose truth degree is

τM−1
2

has the same truth degree as its negation. This specific behaviour of the



Negation of Graded Beliefs 153

negation, allowing a formula and its negation to be somewhat true together, can
be interpreted in terms of a generalised law of non-contradiction.

Many-valued logic is further motivated by its capacity to provide linguistic
representations of truth degrees, using a correspondence between the discrete
ordered scale LM and a set of linguistic labels, e.g. based on adverbs qualifying
the truth degree: for instance, L5 is in bijection with the set {‘false’, ‘rather false’,
‘neither’, ‘rather true’, ‘true’}. Taken thus, the negation operation expressed in
Eq. (2) can be interpreted in terms of the linguistic notion of antonymy [17].

3.4 Negation in Fuzzy Logic

Fuzzy logic [20] is an infinitely many-valued logic, for which truth values are not
defined on a discrete scale but on the real interval [0, 1]. As detailed below, two
levels account for the richness of its negation behaviour: fuzzy logic offers many
negation operators on truth degree, as well as two negation types for predicates.

As in classical and many-valued logics, the negation principle can be
expressed as d(¬ϕ) = n(d(ϕ)), where the truth negation function n is adapted
to manipulate values in [0, 1]. Such a function is called a fuzzy negator [19]
and is defined by three properties: (i) domain and co-domains: n is a function
n : [0, 1] → [0, 1]; (ii) monotonicity: n is non-increasing; (iii) boundary condi-
tions: n(0) = 1 and n(1) = 0.

Note that the general definition does not impose involutivity, which makes
a major difference with the classic case when processing double negations: the
truth degree of ¬¬ϕ can be different from ϕ’s.

However, the most usual definition of a fuzzy negator [20],

n : [0, 1] → [0, 1]
x �→ 1 − x

(3)

is both involutive and strict (i.e. strictly decreasing and continuous). Note that
it is a straightforward generalisation of the negation operator defined for classic
logic (see Sect. 3.1) from the domain {0, 1} to [0, 1]; the preservation of the cases
when the truth value is 0 or 1 are guaranteed by the boundary conditions. It also
generalises the many-valued negation operator (see Eq. (2)) when the degrees τi

are mapped to a discretisation of the interval [0, 1], τi → i/(M − 1).
Other fuzzy negators include (see e.g. [19]) n(x) =

√
1 − x2 or n(x) = 1 −

x2 which is strict but not involutive. The Gödel operator, defined by n(x) =
0 if x > 0 and n(0) = 1, and its dual, defined by n(x) = 1 if x < 1 and
n(1) = 0, are neither continuous nor involutive. These two examples are drastic
choices: their use restricts the truth values to the Boolean {0, 1}. The variety
of functions satisfying the general definition of fuzzy negators allows to define
complex negation stances, richer than the behaviours the classic case can express.

Further, fuzzy logic also offers two types of negations for predicates defined
as sub-intervals of a fuzzy partition over a numerical universe: complements and
antonyms (see [16], for instance). Formally, for a predicate with membership
function A : [a−, a+] → [0, 1], its complement, based on a fuzzy negator, and its
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antonym are respectively defined by the membership functions A(x) = n(A(x))
and Â(x) = A(a+ − a− − x). They usually differ one from another. Observe
that, if the predicate is a modality of a Ruspini partition, its antonym can be
interpreted as the symmetrical modality with respect to the central one, estab-
lishing a relationship with the principle of the many-valued negation operator
defined in Eq. (2). It is then also related to the already mentioned linguistic def-
inition of antonymy [17]: fuzzy predicates thus allow, for instance, to represent
and distinguish between the three notions ‘hot’, ‘not hot’ and ‘cold’.

4 From N (B(ϕ, α)) to B(¬ϕ, β): Negating Formulae

This paper addresses the issue of negation in the case of graded beliefs, at the
crossroads of doxastic and weighted logics: this issue can thus be discussed as
extensions of the manipulation rules reviewed in the previous section.

As described in Sect. 2, the general form of negation, written N (B(ϕ,α)),
reads ‘it does not hold that ϕ is believed to a degree α’. A first interpretation of
this negation considers its transposition to the formula about which the belief is
expressed, leading to examine the relation between N (B(ϕ,α)) and B(¬ϕ, β).

After discussing the general principles underlying this interpretation, this
section reads it as a graded variant of the consistency axiom (D).

4.1 General Principles

Establishing a relation between N (B(ϕ,α)) and B(¬ϕ, β) raises the question of
drawing conclusions about a belief in ¬ϕ from the negation of a belief in ϕ to a
degree α: in the running example, this interpretation aims at establishing a rela-
tion between the facts ‘it does not hold that I firmly believe that unicorns exist’
and ‘I � believe that unicorns do not exist ’, where � represents an appropriate
modulating adverb, yet to be determined.

Let us underline that, even if this interpretation is expressed as a shifting of
the negation to the formula, the associated belief degree, β, will likely also be
impacted, allowing for a discussion: imposing it a priori to be equal to any value,
in particular to α, would limit the expressiveness of the considered interpretation.

4.2 Graded Variant of the Consistency Axiom

We propose to study the transfer of the global negation to the formula in the
framework of doxastic logic, respectively interpreting N and ¬ as an outer and an
inner negation with respect to the belief operator: setting the degrees aside, for
a moment, this introduces a correspondence between the formulae N (B(ϕ,α))
and B(¬ϕ, β), on the one hand, and ¬�ϕ and �¬ϕ, on the other.

This interpretation of N requires that it satisfies the basic properties of a
negation operator and, in particular, involutivity. From its very definition, this
is indeed the case, as can be informally illustrated by its proposed reading:
N (N (B(ϕ,α)) is read ‘it does not hold that it does not hold that ϕ is believed
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to a degree α’. It can be argued that this awkward expression is expected to be
equivalent to ‘ϕ is believed to a degree α’.

In doxastic logic, a relation is established between formulae ¬�ϕ and �¬ϕ,
denoted F2 and F3 in Sect. 3.2, as the contrapositive of axiom (D), according to
which � �¬ϕ → ¬�ϕ. This implication is equivalently obtained when applying
(D) to formula ¬ϕ.

Studying this negation for graded beliefs further leads to question a graded
equivalent for axiom (D). There exist several graded extensions of modal logics,
mainly specified from a semantic point of view: they consider enriched Kripke
frame definitions [4–6,14] or introduce counting functions in the semantic defin-
ition of the modal operator [10,11,13,15]. Using a relative counting approach to
introduce a weighted modality �α, we established in previous work [15] a graded
variant of (D) stating that �αϕ → ¬�β¬ϕ is a tautology, for any β > 1 − α, on
the same semantic frame hypotheses as (D).

This weighted extension makes a relevant candidate for the desired relation
between the global belief negation N (B(ϕ,α)) and the belief in the negated
formula B(¬ϕ, β): applying (Dα) to ¬ϕ and still considering N as the outer and
¬ as the inner negation w.r.t. the modal operator: B(¬ϕ,α) → N (B(ϕ, β)) for
all α, β ∈ [0, 1] such that β > 1 − α. This formula can be read read ‘if ¬ϕ is
believed at degree α, then it does not hold that ϕ is believed at degree β’. As a
consequence, ϕ and ¬ϕ can both be partially believed together, so long as their
respective degrees satisfy the inequality constraint.

5 From N (B(ϕ, α)) to B(ϕ, N(α)): Negating Degrees

Considering now that the negation bears not on the formula but on the degree,
a new set of possibilities arises. Indeed, interpreting ‘it does not hold that ϕ is
believed to a degree α’ as ‘ϕ is believed to a degree N(α)’, where N remains to
be defined, offers new interpretations, both on the choice of operator and on the
meaning these impose on the ensuing doxastic reading. At a fundamental level,
this question depends on the interpretation of the degrees.

After detailing this interpretation, this section proposes to read the degrees
as partial membership to a belief set, in the fuzzy set formalism, and studies the
relevance of fuzzy negators, from a doxastic point of view.

5.1 General Principle

Note, first, that this section focuses on the case where the belief degrees are rep-
resented as numerical values, more specifically in the interval [0, 1]. A discreti-
sation of this range could be considered, but it makes the interpretation harder
to grasp. Indeed, it blurs the difference with the case where linguistic labels are
used to express belief degrees but these hold no meaning when interpreted alone,
apart from the modality. These will be considered when the negation is applied
to the modality, as discussed in Sect. 6.
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A literal interpretation of the negation of the degree considers a negative
statement ‘it does not hold that ϕ is believed to a degree α’ as meaning ‘ϕ is
believed to a degree which is not α’, suggesting that any value other than α
is suitable: it may lead to define N(α) as a set and not a value, e.g. N(α) =
[0, 1]\{α}. This interpretation, although acceptable to the letter, leads to a highly
imprecise and uninformative understanding of the statement: we do not examine
it further and propose to establish N as a function from [0, 1] to [0, 1].

5.2 Belief Degree as Fuzzy Membership to a Belief Set

Considering the universe of all well-formed formulae F , the set of gradual
beliefs B of an agent can be defined as a fuzzy subset of F : each formula more or
less belongs to B and the belief degrees are interpreted as membership degrees.

The boundary case, where the degree is B(ϕ, 1), that is, a formula ϕ repre-
senting a fully believed fact, believed without any restriction, is interpreted as
totally belonging to the belief set B. From a defuzzified point of view, it can
be seen as equivalent to �ϕ in doxastic logic. A formula with a lower member-
ship degree to B is believed less: defuzzifying the belief set through an α-cut,
with α < 1, can then be interpreted as enlarging the set of beliefs taken into
account for reasoning, to extend beyond the full-fledged ones. The other bound-
ary case appears to be somewhat harder to interpret. B(ϕ, 0), means that ϕ
does not belong to the belief set at all and represents a formula about which no
belief holds. This interpretation raises the question of introducing an additional
modality, to represent ‘disbelief’, and is discussed in the next section.

5.3 Relevance of Fuzzy Negators

Considering belief degrees as fuzzy membership degrees to a belief set suggests
to use a fuzzy negator for the negation operator N on degrees, as reviewed in
Sect. 3.4. This subsection examines their properties, regarding boundary condi-
tions, monotonicity and involutivity, and their effect on a doxastic reading.

Boundary Conditions. Using the running example, the relevance of fuzzy
negator boundary conditions questions the relevance of equating ‘I believe to a
degree N(1) that unicorns exist’ to ‘I believe to a degree 0 that unicorns exist’ –
and vice-versa– and therefore depends on the interpretation of these degrees.
Considering B(ϕ, 1) as equivalent to �ϕ, as suggested above, the boundary con-
ditions can be interpreted as preserving the compatibility with the classic case
of the modal expression of (EM), which states that �ϕ ∨ ¬�ϕ is a tautology.

Monotonicity. From a doxastic point of view, the monotonicity of fuzzy nega-
tors implies comparing beliefs –or rather their levels– and their negations.

Let us extend the running example slightly and suppose we hold the follow-
ing graded beliefs: B1: ‘I believe to a degree N(0.8) that unicorns exist’ and
B2: ‘I believe to a degree N(0.6) that leprechauns exist’. Negating both these
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beliefs with a fuzzy, and therefore non-decreasing, negator entails that N (B1) is
believed, at most, as much as N (B2).

Additionally, any increasing operator would contradict the scale’s structure,
e.g. creating situations where N(α) < N(1) = 0. The different fuzzy negators,
be they symmetric, drastic or if they offer some form of compromise, allow ways
of modelling different belief stances, none of which contradict monotonicity.

Involutivity. Finally, a property that not all fuzzy negators share but which
is held by the most usual ones is involutivity. Choosing to believe N (N (B1)) as
much as B1 can be understood as refusing to gain or lose any belief by not not
accepting 0.8 for a belief level. Even if the expression is somewhat farfetched,
the underlying notion seems desirable.

6 From N (B(ϕ, α)) to N (B)(ϕ, β): Negating Modalities

The third and final interpretation of negated graded beliefs transfers negation to
the modality, where the negative statement ‘it does not hold that ϕ is believed to
a degree α’ is seen as providing information about a disbelief, therefore requiring
an additional modality, besides belief. At a more intuitive, yet nuanced, level,
in the case where belief degrees are linguistically expressed by adverbs, we pro-
pose to consider several modalities, intrinsically combining the modality with
the level, e.g. distinguishing between the modalities ‘weakly believe’ and ‘firmly
believe’. This section considers these two cases in turn.

The difference with the transfer of negation to the formula should be under-
lined: the latter discusses how far one can believe a fact and its contrary simulta-
neously, with different degrees. This transfer considers a single fact and questions
the links between believing and disbelieving it.

6.1 Belief and Disbelief

The introduction of a disbelief modality proposes to interpret ‘it does not hold
that ϕ is believed to a degree α’ as ‘ϕ is disbelieved to a degree β’, transferring the
global negation to the modal operator, and simultaneously allowing an effect on
the associated degrees, so as to avoid limiting the expressiveness of the considered
negation interpretation a priori.

Note that the β coefficient describes a degree of disbelief, and not a belief
degree. This induces a major change as opposed to the previously discussed inter-
pretations, where degrees are measured on a single scale and all have the same
meaning. As, nevertheless, the belief and disbelief modalities are related to one
another, the associated degrees open the way to a signed scale rather than two
independent ones. This interpretation was mentioned in Sect. 5.2 where under-
standing a 0-belief as utter disbelief was suggested. It then begs the question of
at which level, i.e. around which α, does belief become disbelief.

The fuzzy interpretation discussed in the previous section can be considered
as an extreme case, where the open interval (0,1] represents various belief degrees
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Table 1. Discussed interpretations of graded belief negation

Framework Negation expression Degree constraint

Graded modal B(¬ϕ, α) → N (B(ϕ, β)) α, β ∈ [0, 1] and β > 1 − α

Fuzzy N (B(ϕ, α)) = B(ϕ, N(α)) e.g. N(α) = 1 − α

Bimodal N (B(ϕ, α)) = Db(ϕ, f(α)) f isotone function

Multimodal N (Bt(ϕ)) = Bn(t)(ϕ) t ∈ LM , n(τi) = τM−1−i

and a single value, 0, is considered for disbelief. Such an interpretation can
be considered as bridging the gap between the interpretation of graded belief
negation in terms of degree and in terms of modalities.

A natural value for changing from belief to disbelief considering a signed scale
is probably 0.5, the scale’s middle value: (0.5, 1] then represent intermediate
degrees of belief and [0, 0.5) intermediate degrees of disbelief and 0.5 a neutral
value. However, one could choose another value, to emphasise different attitudes
with regards to belief, e.g. to have more positive values than negative ones, even
if both sides are uncountable.

6.2 Finite Set of Belief Modalities

When considering the transfer of negation to the modality, a variant of special
interest is the case where a belief level is considered as integrated in the modal-
ity, e.g. when ‘firmly believe’ and ‘weakly believe’ are considered to be two sepa-
rate, yet comparable, modalities, instead of a single, continuous, belief modality
nuanced with a degree: this interpretation is equivalent to considering a finite
set of modalities with more than the two levels, belief and disbelief, discussed in
the previous subsection. One can for instance consider five levels of belief {‘low’,
‘weak’, ‘moderate’, ‘strong’ and ‘high’} or more, with more linguistic labels.

This choice naturally leads to exploit a formalisation in many-valued logic,
introducing several modalities formally defined as Bt, t ∈ LM = {τ0, . . . , τM−1}.
Negation then requires to define N (Bt), t ∈ LM , which can be translated to
Bn(t) with the many-valued negation operator n (see Eq. (2)). The negation can
then be considered as being applied to the adverb, which represents the degree-
modality combination, and therefore interpreted in terms of linguistic antonyms.

7 Conclusion and Future Works

This paper proposed a discussion of the problem of negating graded beliefs.
In the formal frameworks of modal, fuzzy and many-valued logics, it examined
three main interpretations of this negation, depending on what it bears on:
the formula about which a modal assertion is expressed; the modality, so as to
express belief; or the degree, which represents the level of belief. Table 1 gathers
the given interpretations and the associated frameworks. Although the objects
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of the negation have been considered separately, the results show them to be
closely related to one another, in particular in their influence on the associated
belief degree. This suggests that the core component of graded beliefs is the
level and, thus, their manipulation revolves around the construction of the rules
governing its evolution.

Beyond negation, graded belief manipulation, in order to allow the combina-
tion of available beliefs into new ones, requires the definition of reasoning tools,
in particular regarding their conjunction and disjunction. Future work will aim
at extending the principles established for the negation operation to other con-
nectives, leading to a general formal framework to reason about graded beliefs.
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1 Introduction

It is well-known that in combination with further premises that look less contro-
versial, the tolerance principle – the constraint that if Pa holds, and a and b are
similar in P -relevant respects, Pb holds as well – leads to contradiction, namely
to the sorites paradox. According to many influential views of the sorites paradox
(e.g. Williamson 1994), we therefore ought to reject the principle of tolerance as
unsound.

There are reasons to think of such a view as too drastic and as missing out on
the role that such a principle plays in categorization and in ordinary judgmental
and inferential practice. Taking a different perspective, the tolerance principle
ought not to be discarded that fast, even when viewed normatively. Instead, it
corresponds to what might be called a soft constraint, or a default, namely a rule
that we can use legitimately in reasoning, but that must be used with care.

One family of approaches represents the tolerance principle by a certain
conditional sentence, of the form: Pa ∧ a ∼P b → Pb, and bestows spe-
cial properties to the conditional to turn it into a soft constraint. One nat-
ural option is to use fuzzy logic, where vM(A) can be anywhere in [0, 1] and
vM(A → B) = Min{1, 1 − vM(A) + vM(B)}. One can demand that the toler-
ance conditional may never have a value below 1 − ε for some small ε. Given an
appropriate sorites sequence, it will be possible to have: vM(Pa1 → Pa2) = 1−ε,
vM(Pa2 → Pa3) = 1 − ε, without having vM(Pa1 → Pa3) = 1 − ε.

A different option is to treat the tolerance conditional as expressing a defea-
sible rule (like when ‘→’ expresses a counterfactual conditional). Say that
Pa ∧ a ∼P b → Pb is true provided Pb is true in all ‘optimal’ (Pa ∧ a ∼P b)-
worlds. Call a world (Pa ∧ a ∼P b)-optimal if a is P -similar to b but is not
close to a borderline case of P . From Pa ∧ a ∼P b, Pa ∧ a ∼P b → Pb, it
need not follow that Pb, since a world may satisfy Pa ∧ a ∼P b without being

Except for the last section, this paper is an abridged version of a longer paper entitled
“The Tolerance Principle: Nontransitive Reasoning or Nonmonotonic Reasoning?”.
We are indebted to two anonymous reviewers for helpful comments.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40581-0 14
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(Pa ∧ a ∼P b)-optimal, precisely when b is a borderline case of P . This condi-
tional fails to satisfy modus ponens, and it is also nontransitive. But moreover
it is nonmonotonic, since a world that is Pa ∧ a ∼P b-optimal need not be
Pa ∧ Pc ∧ a ∼P b-optimal. On that view, the tolerance conditional represents a
defeasible rule, usable only if the main premise correspond to an optimal world.

Both the fuzzy approach and the nonmonotonic approach have some appeal.
On the definition of fuzzy validity that allows tolerance to be a sound premise,
the sorites paradox is solved by saying that modus ponens is not a valid rule
any more (where Γ |= A iff ∀M : Min{vM(γ) : γ ∈ Γ} ≤ vM(A)). On the
nonmonotonic approach, the sorites paradox is solved by saying that modus
ponens is a defeasible rule: the sorites argument has sound premises, but is not
undefeasibly valid. Despite that, both approaches suffer an important limitation,
which concerns their treatment of the tolerance principle in terms of a special
conditional connective. As is well known, a sorites argument can be stated using
only conjunction and negation, by saying that it is not the case that there are
two cases a and b that are very similar, but are such that Pa and not Pb. But a
nonmonotonic treatment of the conditional does not tell us how to address that
alternative version of the sorites. Similarly, for the fuzzy case.

In this paper, we are interested in accounts of vagueness that, instead of rely-
ing on a special conditional connective in a way that leaves intuitively desirable
properties of a conditional connective in place, and in a way suitable to deal
with the sorites argument in its conjunctive form as well as its conditional one.
We will focus on two structural approaches which mirror the nontransitive and
nonmonotone conditional to some extent, but shift those properties up one level,
namely to the consequence relation. The first is the nontransitive treatment of
logical consequence favored in our past work, on which the principle of tolerance
comes out as valid in rule form, but cannot be iterated without risk (soft con-
sequence as permissive consequence, see Cobreros et al. (2014) for an overview).
The second is the nonmonotone treatment of logical consequence, on which the
principle of tolerance too can come out as valid, but in a way that is sensitive to
context and to the addition of further premises (soft consequence as defeasible
consequence).

2 Validating Tolerance Using Non-standard Entailment

We have argued in Cobreros et al. (2012, 2014) that the tolerance principle
should be adopted both in rule form and in sentential form. We were able to do
so by (i) interpreting the language in standard three valued models, (ii) adding
similarity relations (one for each predicate P ) to the language and interpreting
that in a specific way, and (iii) by formulating a new consequence relation, |=st

∼ .
In this section we first rehearse the details of our approach in more detail. We
first concentrate on (i) and (iii). We then consider two broader variants of our
initial strategy, which both rely on a more general notion of pragmatic entailment
which turn out to be non-monotonic.
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2.1 The Logic st

Let M = 〈D, I〉, with I a total function from atomic sentences to {0, 1
2 , 1}. This

model extends to formulas according to the strong Kleene valuation scheme:

– VM(φ) = IM(φ), if φ is atomic
– VM(¬φ) = 1 − VM(φ)
– VM(φ ∧ ψ) = min{VM(φ),VM(ψ)}
– VM(φ ∨ ψ) = max{VM(φ),VM(ψ)}
– VM(∀xφ) = min{VM([x/d]φ) : d ∈ D}1

We say that φ is strictly true in M iff VM(φ) = 1, and that φ is tol-
erantly true iff VM(φ) ≥ 1

2 . In terms of this semantics we can define some
well-known logics: Kleene’s K3 and Priest’s LP . Both logics understand entail-
ment as preservation of truth in all models, the difference is that while for K3
truth means strict truth, for LP means tolerant truth:

Γ |=K3 Δ just in case for all M :
if ∀A ∈ Γ : VM(A) = 1, then ∃B ∈ Δ : VM(B) = 1

Γ |=LP Δ just in case for all M :
if ∀A ∈ Γ : VM(A) > 0, then ∃B ∈ Δ : VM(B) > 0

A fundamental idea in Cobreros et al. (2012) was to define entailment from
strict to tolerant:

Γ |=st Δ just in case for all M :
if ∀A ∈ Γ : VM(A) = 1, then ∃B ∈ Δ : VM(B) > 0

Thus, although we don’t give up the idea that entailment is truth-preserving,
we allow the standard of assertion of the conclusions to be weaker than the
standard of assertion of the premises. A surprising feature of this logic is that
although the semantics makes use of three truth-values, the consequence relation
is exactly the familiar consequence relation of classical logic for the standard
language fragment. This in contrast with K3 and LP , which give up many
classically valid arguments.

Now, despite its classicality, this new semantics makes room for tolerance
without falling prey to the sorites paradox. In order to account for tolerance,
we extend the language with similarity relations, ∼P , one for each predicate P .2

One interpretation is the following:

– VM(a ∼P b) = 1 iff |VM(Pa) − VM(Pb)| < 1, 0 otherwise

1 We assume here for convenience that each d ∈ D has a name d.
2 See Halpern (2008) and van Rooij (2010) for more on the link between vagueness
and nontransitive similarity.
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The resulting logic st∼ is a conservative extension of classical logic, in the
sense that any classically valid argument in the old vocabulary remains valid.
In addition, the tolerance formula (∀x, y((Px ∧ x ∼P y) → Py)) becomes
valid, as does the tolerance argument: Pa, a ∼P b |=st

∼ Pb. The endorse-
ment of tolerance does not lead to paradox, however, since tolerance in st∼

leads to non-transitivity: Pa, a ∼P b |=st
∼ Pb and Pb, b ∼P c |=st

∼ Pc BUT
Pa, a ∼P b, b ∼P c |=st

∼ Pc.
We felt, and still feel, that this is a very intuitive and appealing treatment of

the sorites paradox. The treatment however, comes with the limitation that we
should make a distinction about the diagnosis of the sorites paradox depending
on its formulation. If we look at the sorites as a step-by-step argument based
on the validity of tolerance inferences then, though each tolerance inference is
valid, validity breaks when we try to chain these inferences. If we consider the
sorites argument with the tolerance formula (∀x, y((Px ∧ x ∼P y) → Py)) as an
explicit premise, then although that formula is valid, the resulting argument is
valid but unsound (the tolerance formula is valid but cannot automatically be
appealed to as a premise; it is not suppressible). In short, although the tolerance
formula is valid, according to the logic st∼ we are not in a position to draw on it
as a premise without further ado. However, there are contexts in which we would
like to assert the tolerance formula, in much the same way there are contexts in
which we would like to assert a contradiction; we would like assert, from time
to time, in a tolerant sense

A number of recent psycholinguistic studies (e.g., Alxatib and Pelletier 2011;
Ripley 2011; Egré et al. 2013) show that naive speakers find a logical contra-
diction like ‘John is tall and John is not tall’ acceptable in cases where John
is a borderline tall man. This seems to show that we need to take account of
tolerant truth, since tolerant truth exhibits this exact behavior. However, just
relying on the notion of tolerant truth would mean that the assertion ‘John is
tall’ would be acceptable in the same situation. The same experimental evidence
shows, however, that this is not the case: ‘John is tall’ is taken to be acceptable
only if John is really tall. In terms of our three-valued models this could be
modeled by saying that the assertion ‘John is tall’ is acceptable only if John is
strictly tall. Similarly, Serchuk et al. (2011) found that classical tautologies like
‘Tj ∨ ¬Tj’ are not automatically accepted if John is borderline tall. So making
use of tolerant and of strict truth (which exhibits this latter behavior) seems
required.

The conclusion we draw from the previous discussion (cf. Cobreros et al.
2012) is that we should interpret a sentence strictly if possible, and tolerantly
otherwise. This interpretation strategy is in line with Grice’s (1967) strategy
to account for scalar implicatures. Unfortunately, this interpretation strategy
taken at face value gives rise to trouble for more complex sentences. Alxatib
et al. (2013) show that we wrongly predict that a sentence like ‘Adam is tall
and not tall, or John is rich’ not only entails, but even means that John is
strictly rich, although it should not entail this and intuitively should mean that
either Adam is borderline tall or John is strictly rich. In Cobreros et al. (2015)
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we responded by providing a more sophisticated pragmatic interpretation rule
to strengthen the meaning of a sentence.

2.2 Pragmatic Interpretation

To account for this pragmatic strengthening we make use of truth-makers. We
propose that the pragmatic interpretation of φ makes one exact truth-maker of
φ as true as possible. To determine what the truth-makers of a sentence are, we
follow van Fraassen (1969). We start with a set of basic state of affairs, SOA.
It is assumed that for every element p of SOA there is also its complement
p ∈ SOA for which it holds that p = p. For simplicity we assume a close
correspondence between atomic sentences of the language and the SOAs: with
each literal (atomic sentence or its negation) of the language there corresponds
exactly one SOA: the state of affairs that makes this literal true. The set of
facts, F , is just ℘(SOA) − {∅}, so any non-empty subset of SOA is thought
of as a fact. If p,q ∈ SOA, then {p} and {q} are atomic facts, and {p,q}
is a conjunctive fact. A fact is what makes a sentence true. But, of course,
a sentence might have more than one truth-maker. Atomic sentence p is not
only made true by atomic fact {p}, but also by conjunctive fact {p,q}. The
former one is a more minimal truth-maker than the latter. More interestingly,
disjunctive sentences might have several minimal truth-makers. The disjunction
p ∨ q, for instance, has two minimal truth-makers: {p} and {q}. What we are
after, however, is the notion of the exact truth-makers for φ. We say that the
disjunction p∨(p∧q) – although it has only {p} as its minimal truth-maker – has
two exact truth-makers: {p} and {p,q}. We can give the following simultaneous
recursive definition of the set of exact truth- and falsity-makers of φ, T (φ) and
F (φ), respectively:

T (p) = {{p}} F (p) = {{p}} for atomic p.
T (¬φ) = F (φ) F (¬φ) = T (φ).
T (φ ∧ ψ) = T (φ) ⊗ T (ψ) F (φ ∧ ψ) = F (φ) ∪ F (ψ).
= {X ∪ Y |X ∈ T (φ), Y ∈ T (ψ)}
T (φ ∨ ψ) = T (φ) ∪ T (φ) F (φ ∨ ψ) = F (φ) ⊗ F (ψ).

Notice that according to these rules, T (p) = {{p}}, T (¬p) = {{p}}, T (p ∨ q) =
{{p}, {q}} and T (p ∧ q) = {{p,q}}. We analyse conditionals like φ → ψ as
material implication, that is p → q ≡ ¬p ∨ q, and thus T (p → q) = {{p}, {q}}.

To account for quantifiers, we assume that for each n-place predicate P the
model contains facts like Pd1, , · · ·dn, with each di ∈ D an individual. We
assume for simplicity that each d ∈ D has a unique name d in the language.

– T (Pd1, · · · , dn) = {{Pd1, · · · ,dn}} F (Pd1, · · · , dn) = {{Pd1, · · · ,dn}}
– T (∀xφ) =

⊗
d∈D T (φ[x/d]) F (∀xφ) =

⋃
d∈D F (φ[x/d]).

– T (∃xφ) =
⋃

d∈D T (φ[x/d]) F (∃xφ) =
⊗

d∈D F (φ[x/d]).

Observe that T (∀xPx) = T (Pa) ⊗ T (Pb) = {{Pa,Pb}}, if D = {a, b}.
Similarly, T (∃xPx) = T (Pa) ∪ T (Pb) = {{Pa}, {Pb}}. Notice that facts might
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not only be incomplete (neither verify nor falsify a sentence), they might also
be inconsistent and both verify and falsify a sentence. Indeed, we have not ruled
out facts like {Tj,Tj}. Such inconsistent facts are crucial for us to model the
meaning of vague sentences, expressing in this case that John is borderline tall.

T (φ) can be thought of as a fine-grained semantic interpretation of φ. It
can be used to determine its standard truth-conditional meaning as given by
possible worlds semantics, if a world is taken to be a maximally consistent con-
junctive fact. In that case the standard truth-conditional meaning of φ, [[φ]], can
be recovered as the set of worlds in which φ has a truth-maker:

• [[φ]]
def
= {w ∈ W | ∃f ∈ T (φ) : f ⊆ w}.

For our purposes, we retain the insistence that worlds be maximal, that p ∈ w
or p ∈ w for each atomic fact p and world w. But we allow for worlds to be
inconsistent, for some worlds to contain both p and p, for some atomic facts p.
This allows us to capture the difference between strict and tolerant satisfaction
at a world, connecting this truth-maker semantics to our three-valued st-models.
For each atomic sentence p and st-model, or world, w we define Vw(p) = 1 iff
p ∈ w and p ∈ w; Vw(p) = 0 iff p /∈ w and p ∈ w, and Vw(p) = 1

2 otherwise.
But we did not introduce truth-makers just to recover notions we already

had. Our purpose in introducing truth-makers is to define a notion of pragmatic
meaning in terms of which we can strengthen the semantic meaning of a sentence.
We have suggested above that although we allow for inconsistencies, we can still
pragmatically infer that ¬p is not true from the fact that ‘p’ is said by a reasoning
analogue to those involving scalar implicatures. In linguistic pragmatics it is not
uncommon to use minimal models (e.g. van Rooij and Schulz 2004) to account
for scalar pragmatic implicatures. For us, a minimal model, or world, is one that
is minimally inconsistent: it doesn’t contain more inconsistencies than required.
To model this, we will make use of the following definition, with v <f w iff df

{x ∈ SOA : x ∈ f & x ∈ v} � {x ∈ SOA : x ∈ f & x ∈ w}):

• PRAG(φ)
def
= {w ∈ W | ∃f ∈ T (φ) : f ⊆ w & ¬∃v ⊇ f : v <f w}.

PRAG gets many predictions correct: (i) ‘John is tall’ is pragmatically inter-
preted to mean that John is strictly tall, (ii) ‘John is not tall’ is predicted to
mean that John is not even tolerantly tall, (iii) ‘John is tall and John is not tall’
means that John is borderline tall, and (iv) ‘John is tall or not tall’ means that
John is not borderline tall. All these predictions are in accordance with recent
experimental results reported by Alxatib and Pelletier (2011), Ripley (2011),
Serchuk et al. (2011) and Egre et al. (2013). Furthermore, ‘John is tall and not
tall, and Mary is rich’ is pragmatically interpreted to mean that John is border-
line tall and Mary strictly rich, which seems intuitively correct. Finally, ‘John is
tall and not tall, or Mary is rich’ is correctly interpreted as saying that John is
borderline tall, or Mary is strictly rich.

Let us go back now to the tolerance principle. How PRAG interprets it
depends partly on the way we interpret similarity statements. We might use
similarity statements to constrain our models at least in the following ways:
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(i) VM(a ∼P b) = 1 iff |VM(Pa) − VM(Pb)| < 1, 0 otherwise, or
(ii) VM(a ∼P b) = 1 − |VM(Pa) − VM(Pb)|.

Notice that they are incompatible with each other, at least if there are any
a, b with |VM(Pa) − VM(Pb)| = 1

2 .
Option (i) is the one we mentioned in Sect. 2.1, as an example constraint.

According to this option that Vw(Pa∧a ∼P b) = 1 does not force it to be the case
that Vw(Pb) = 1. In Sect. 2.1 this was used to account for the nontransitivity
of the logic st. For one of the logics discussed below, however, we will adopt
option (ii).

Making use of facts and truth-makers, this means that we should assume that
T (a ∼P b) = {{Pa,Pb}, {Pa,Pb}} and F (a ∼P b) = {{Pa,Pb}, {Pa,Pb}}.
Notice that if Vw(Pa) = 1 and Vw(a ∼P b) = 1, it follows that Vw(Pb) = 1.
To see this using facts, observe that from Vw(Pa) = 1, it follows that Pa ∈ w
and Pa ∈ w. Because a ∼P b is true and not false, it follows that Pb ∈ w and
Pb ∈ w, and thus that Vw(Pb) = 1.3

2.3 Tolerance and Inference Relations

Our pragmatic interpretation rule can be included in the definition of logical
consequence to try to overcome the limitations we pointed out above about the
assertability of the tolerance formula in st∼. Consider, in particular, the following
notion of pragmatic consequence, |=prt, that goes from pragmatically strongest
to tolerant (see Cobreros et al. 2015):

• φ |=prt ψ iff PRAG(φ) ⊆ [[ψ]]t.

Thus, for inference we take into account what is (pragmatically) meant by
the premise. The fact that we look at what was meant by the premise means
that, even though φ ∧ ¬φ |=prt φ, it does not hold that φ ∧ ¬φ |=prt ψ. Thus,
explosion is not valid. In this sense, prt-entailment is a type of paraconsistent
entailment relation. Notice, moreover, that if we extend the language with our
similarity relation, our new consequence relation |=prt

∼ validates the tolerance
formula just as much as |=st

∼ did.
How should we extend |=prt so as to allow for multiple premises? This is

somewhat tricky. The first thought that comes to mind is the following:

• Γ |=prt φ iffdf

⋂
γ∈Γ PRAG(γ) ⊆ [[φ]]t

One shortcoming of that definition, however, is that the resulting notion of
consequence fails the adjunction property (the property that φ, ψ |= χ provided
φ ∧ ψ |= χ). In order to avoid that problem, we introduce the following variant
on that definition. We restrict attention to finite sets of premisses, and say that

3 To be sure, we could make use of truth-makers as well to implement the analysis of
similarity relation in (i). To do so, however, is somewhat involved, and we won’t go
into that here.
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a finite set of premisses Γ entails φ provided the pragmatic meaning of the
conjunction of the premisses entails the tolerant meaning of the conclusion. We
note

∧
Γ the conjunction of the premisses in Γ , and call Prt the corresponding

notion of validity, to distinguish it from the former:

• Γ |=Prt φ iffdf PRAG(
∧

Γ ) ⊆ [[φ]]t

Notice that if we extend the language with our similarity relation, our new
consequence relation |=Prt

∼ validates the tolerance formula just as much as |=st
∼

did. The fact that we look at what was meant by the premisses means that, even
though φ,¬φ |=Prt φ, it does not hold that φ,¬φ |=Prt ψ. Thus, explosion is
not valid. In this sense, Prt-entailment is a type of paraconsistent entailment
relation, just like LP.

Distinctive about |=Prt are the following three properties: (i) conjunction
elimination is valid, which implies that p∧¬p |=Prt p; (ii) |=Prt

∼ is nontransitive,
if based on similarity relation (i); and (iii) it is nonmonotonic. As for (ii), even
if both Pa and a ∼P b have value 1, it is required that Pb have at least value 1

2 ,
but not that it have value 1. As for (iii), in contrast with |=st

∼ , the notion |=Prt
∼

is nonmonotonic in the sense that if φ1 |=Prt
∼ χ, it might still be the case that

φ1, φ2 |=Prt
∼ χ. In particular, Pa, a ∼P b |=Prt

∼ Pb, but Pa, a ∼P b,¬Pa |=Prt
∼

Pb.
There are reasons for which one might be unhappy with |=Prt, however.

We argued in Sects. 1 and 2 that nontransitivity and nonmonotonicity might be
desirable features to account for vagueness. One might wonder, however, whether
we need both of these properties. Second, if pragmatic interpretation captures
what is meant by the speaker, one might wonder whether either conjunct can
be inferred from the premisse Pa ∧ ¬Pa. With this sentence the speaker wants
to impart that a is borderline tall. But if a conjunct like ‘Pa’ is asserted alone,
it is pragmatically interpreted to mean that a is strictly tall, and thus that a
is not borderline tall. If we want a consequence relation capturing what can be
asserted on the basis of antecedent assertions, the inference from Pa ∧ ¬Pa to
Pa should not be valid according to such a relation (see Alxatib and Pelletier
2011).

To account for the latter type of consequence relation we therefore define the
following inference relation (from Pragmatic to Pragmatic interpretation), again
restricting ourselves to finite sets of premisses:

• Γ |=PrPr φ iffdf PRAG(
∧

Γ ) ⊆ PRAG(φ)

Thus, for inference we take into account what is (pragmatically) meant by the
premisses and by the conclusion. It follows that |=PrPr does not satisfy conjunc-
tion elimination: in particular, p ∧ ¬p |=PrPr p. Even though φ ∧ ψ |=PrPr φ
for arbitrary φ and ψ, still p ∧ q |=PrPr p. Important for the analysis of vague-
ness is that (p ∧ ¬p) ∨ q |=PrPr q. Similarly, φ ∧ ¬φ �

PrPr ψ, that is, explosion
is not valid. In this sense, PrPr-entailment is again a type of paraconsistent
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entailment relation, just like Prt. Likewise, the tolerance inference is valid:
Pa, a ∼P b |=PrPr

∼ Pb, on either of the two interpretations of the similarity rela-
tions discussed in the previous section. Again, PrPr is nonmonotonic for even
as φ1 |=Prt χ, it can happen that φ1, φ2 |=PrPr χ. This is already clear from the
fact that even though p |=PrPr p, we have that p,¬p �

PrPr p. And in context of
soritical reasoning, Pa, a ∼P b |=PrPr

∼ Pb, but Pa, a ∼P b,¬Pa |=PrPr
∼ Pb.

3 Comparisons

With the machinery introduced in Sect. 2 we have come to define three different
consequence relations: |=st, |=Prt and |=PrPr. In Sect. 2.2 we presented a way to
capture similarity relations, in order to be able to express tolerance. In these
logics tolerance is internalized since, in fact, the inference from ‘Pa’ and ‘a ∼P b’
to ‘Pb’ is valid. In this section we review how these logics deal with sorites
arguments.

The logic st is based on the idea that premises and conclusions of an argument
need not be subject to equal standards of satisfaction. If the premises of an
argument are true to some strict standard, it suffices for validity if the conclusion
is true to some less strict standard. Intuitively, this will lead to breaches of
transitivity and this is precisely what happens, according to this logic, in sorites
arguments.

The logic Prt combines two features: pragmatic interpretation for the
premises and tolerance for the conclusion. If the premises of an argument are
classically satisfiable, the argument is Prt-valid just in case it is st-valid. When
the premises are not classically satisfiable, pragmatic interpretation enters the
scene. The logic is nontransitive, as we would expect by its affinities with st. It
is also nonmonotonic as pragmatic interpretation of the premises will change the
range of models.

The logic PrPr, like the previous ones, depends on the existence of different
standards of satisfaction. This time however, the driving idea for PrPr is that
the validity of an argument should be evaluated in connection with those models
that provide the highest standards of satisfaction compatible with the statements
contained in the premises and in the conclusion. Intuitively, that the set of models
vary with what is in the premises or in the conclusion will lead to breaches of
monotonicity and this is precisely what happens, according to this logic, in sorites
arguments.

Hence, we have outlined three distinct consequence relations: st, Prt, and
PrPr. Of these, the first is monotonic but nontransitive, the second is both
nonmonotonic and nontransitive, and the third is nonmonotonic but transitive.
All validate tolerance, in both its theorem and argument forms. So each gives
a different approach to capturing tolerance, and each allows the soft status of
tolerance to be recognized by failing to obey the full budget of usual structural
rules. Which consequence relation, then, do we recommend?

None, or all, depending on how our recommendation will be understood.
None of these consequence relations captures what we take to be the full story
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in play with vague predicates; each is only one window on the underlying phe-
nomena. In particular, we have offered a nonstandard (but reasonably familiar)
model-theoretic semantics, on which the models involve two distinct notions of
satisfaction, plus a pragmatic story involving van-Fraassen-style truthmakers
and a particular bias towards stronger interpretations. No single consequence
relation will capture the full texture of this story, but each can reflect something
important about it.

For example, consider the data reported by Alxatib and Pelletier (2011),
where some participants accept the claim that a borderline case is both tall and
not tall, while rejecting the claim that he is tall and rejecting the claim that he is
not tall. That is, there are situations in which these participants accept Ta∧¬Ta
but reject both Ta and ¬Ta. This suggests that a consequence relation in which
Ta ∧ ¬Ta does not entail either Ta or ¬Ta may capture some patterns in these
participants’ judgments; indeed, the relation PrPr invalidates these arguments.

Importantly, however, we do not hold up PrPr for this use simply because its
pattern of entailments tracks (some) speakers’ behavior. We have in fact offered
a model of the pragmatic processes underlying these speaker judgments, and it
is PrPr that is sensitive to the outputs of this model both in its premises and
in its conclusions. Since speaker judgments are sensitive to pragmatic processes,
we predict that speakers will judge in ways that accord with PrPr-validity.

On the other hand, it is hard not to think that the classical tradition is on
to something, in taking conjunctions to entail their conjuncts, and in other ways
besides. PrPr, of course, does not reflect this; there are cases in which conjunctions
are correctly assertible without either of their conjuncts being so. But since st val-
idates every classically-valid argument, we have a story available about just what
it is that classical logic gets right: any classically-valid argument whose premises
are strictly satisfied must have some conclusion that is tolerantly satisfied.

Again, though, we do not hold up st for this use simply because it agrees with
classical logic. Rather, st is fully semantic, involving only the notions of strict
and tolerant satisfaction; the pragmatic part of our apparatus does not enter
into it. Classical logic, of course, is much more plausible as a logic for semantics
than as a logic for pragmatics;4 the unified picture we have given respects that.

The logic Prt, finally, gives a picture about an interesting mixed phenom-
enon: when the premises of a Prt-valid argument are correctly assertible, then
some conclusion must be at least tolerantly satisfied.

We have given the raw materials to define nine different (two-sided) conse-
quence relations. None of these is itself the full story; they all reveal different
interactions between strict satisfaction, tolerant satisfaction, and the pragmatic
processes we have outlined. Some, like K3, fail to validate tolerance in any form;
it is part of our theory, then, that tolerance (the formula) is not always strictly
satisfied, and that the tolerance argument is not guaranteed to preserve strict
satisfaction. Overall, then, our approach not only explains how tolerance can be
valid without the sorites wreaking disaster, it also gives a detailed picture of the
ways in which tolerance is valid.

4 The point goes back at least to Grice (1967).
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4 Outlook

To finish this paper, we will suggest that by making use of our rule of pragmatic
interpretation PRAG, and the consequence relation |=PrPr we can account for
a pragmatic solution to the sorites paradox, and solve an expressive limitation
problem for the theory of transparent truth.

According to this radical pragmatic solution to the problem (Gaifman 2010;
Pagin 2010, 2011; Rayo 2010 and van Rooij 2010, arguably all based on Wittgen-
stein 1953), we can appropriately use a predicate P in a context if and only if
it helps to clearly demarcate the set of objects that have property P from those
that do not (the gap-hypothesis). This solution seems natural: the division of the
set of all relevant objects into those that do have property P and those that do
not is (i) easy to make and (ii) worth making. In those circumstances, the toler-
ance principle (∀x, y((Px ∧ x ∼P y) → Py)) will not give rise to inconsistency,
but serves its purpose quite well. Only in exceptional situations — i.e., when we
are confronted with long sequences of pairwise indistinguishable objects — do
things go wrong.

Unfortunately, there is a major problem with this approach: the gap hypoth-
esis seems too strong: Even if there is no clear demarcation between the bigger
and the smaller persons of the domain, certainly the tallest person can be called
‘tall’. Thus, the gap-hypothesis doesn’t seem to allow for such exceptional sit-
uations. Fortunately, it does, if we make use of our nonmonotonic consequence
relation |=PrPr. Notice first that the following holds: Px,¬Py |=PrPr x ∼P y.
This basically says that if we have a sequence going from truth value 1 to 0,
you expect this to be due to a gap (a pair xi, xj such that xi ∼P xj). Sim-
ilarly, it holds that if you explicitly say that x ∼P y (and do not say much
more) then you expect that Px and Py have the same truth value. Still, this
expectation can be cancelled if it is explicitly said that another individual in the
transitive closure of the similarity relation (of course, the similarity relation is
only transitively closed with respect to strict truth) doesn’t have property P .
This cancellation holds if we use our nonmonotonic consequence relation |=PrPr.
Thus, Px1,¬Pxn, x1 ∼P x2, · · · , xn−1 ∼P xn |=PrPr Pxn.

Consider, finally, the extension of the language with a transparent truth
predicate (and the possibility of self-reference). One can express within the lan-
guage the truth-conditions of sentences of that language. Unfortunately, this
normally also immediately gives rise to the Liar paradox. In Cobreros et al.
(2013) it is shown, however, that this problem can be solved, making use of the
non-transitive consequence-relation |=st. There, however, we had to put limits
on expressibility: paradox reappears if a sentence can say that it is, e.g. strictly
true.

Is there perhaps a way of communicating that a sentence is only true or
only false without explicitly saying it? Priest (2006) proposes that to commu-
nicate that a sentence is ‘only true’ or ‘only false’, a speaker either makes use
of an independent speech act of denial (or rejection), or relies on a conversa-
tional implicature. In this paper we can suggest the latter: the pragmatic rea-
soning from the assertion that φ is true, to the conclusion that φ is only true
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(and not also false) can be seen as an implicature, and immediately follows from
the pragmatic interpretation of φ as here proposed.
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Abstract. Real-life datasets that occur in domains such as industrial
process control, medical diagnosis, marketing, risk management, often
contain missing values. This poses a challenge for many classification and
regression algorithms which require complete training sets. In this paper
we present a new approach for “repairing” such incomplete datasets by
constructing a sequence of regression models that iteratively replace all
missing values. Additionally, our approach uses the target attribute to
estimate the values of missing data. The accuracy of our method, Incre-
mental Attribute Regression Imputation, IARI, is compared with the
accuracy of several popular and state of the art imputation methods, by
applying them to five publicly available benchmark datasets. The results
demonstrate the superiority of our approach.

Keywords: Missing data · Imputation · Regression · Classification ·
Random forest

1 Introduction

In industrial processes and many other real-world applications, data points are
collected to gain insight into the process and to make important decisions. Under-
standing and making predictions for these processes are vital for their optimiza-
tion. Missing values in the collected data cause additional problems in building
predictive models and applying them to fresh data. Unfortunately, missing values
are very common and occur in many processes, for example, sensors that collect
data from a production line may fail; a physician that examines a patient might
skip some tests; questionnaires used in market surveys often contain unanswered
questions, etc. This problem leads to the following questions:

1. How to build high quality models for classification and regression, when some
values in the training set are missing?

2. How to apply trained models to records with missing values?

In this paper we address only the first question, leaving the answers to the
second one for further research.

c© Springer International Publishing Switzerland 2016
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There are several methods developed for tackling this problem, see
e.g., [4,5,11,15,16]. The most common method, imputation, reconstructs the
missing values with help of various estimates such as means, medians, or simple
regression models which predict the missing values. In this paper we present
a more sophisticated approach, Incremental Attribute Regression Imputation,
IARI, which prioritizes all attributes with missing values and then iteratively
“repairs” each of them, one by one, using values of all attributes that have no
missing values or are already repaired, as predictors. Additionally, the target
variable is also used as a predictor in the repair process. Repairing an attribute
is achieved by constructing a regression model and applying it for estimation of
missing values. We use here the Random Forest algorithm, [3,6], due to its accu-
racy, robustness, and versatility: it can be used to model both numerical and cat-
egorical variables. Obviously, after repairing all attributes with missing values a
final model for the original target variable is trained on the repaired training set.

We tested our algorithm on five datasets: Digits,Page Blocks,Concrete, and
CoverType from the UCI Machine Learning Repository, [2], and Housing 16H
from mldata.org [1], first removing some values at random, and then reconstruct-
ing them with help of IARI and several common imputation algorithms. Finally
we compared the quality of these imputation methods by measuring the accu-
racy of regression and classification models trained on the reconstructed datasets.
The results demonstrate that in most cases, no matter how many attributes were
spoiled and how severely, the IARI outperformed other imputation methods both
in terms of the accuracy of the final models and the accuracy of imputation. On
the other hand, the IARI algorithm is computationally very demanding–it builds
as many Random Forests as the number of attributes that should be repaired.
Fortunately, due to the parallel nature of the Random Forest algorithm, the
runtime of the IARI algorithm can be dramatically reduced by running it on a
system with multiple cores or CPUs.

The paper is organized as follows. After introducing various types of missing
data and providing an overview of the relevant research on imputation methods,
we present the IARI algorithm. Next, we describe in more detail an experimental
framework and results of our experiments. Finally, we draw some conclusions and
make recommendations for further research.

2 Missing Data Types

There are three categories of missing data [6,8,10,11,13]: Missing Completely
at Random (MCAR), Missing at Random (MAR), and Missing Not at Random
(MNAR). In many cases, data are MNAR, meaning that the probability that a
value of a variable is missing somehow depends on the actual (observed or not)
values of this or other variables. A value of a variable is MAR if the probability
of being missing does not depend on the (unobserved) value of this variable.
And a value of a variable is MCAR if the probability of being missing does
not depend on (observed or unobserved) values of this or other variables. In real
world scenarios one often cannot determine if the missing data are MCAR, MAR



An Incremental Algorithm for Repairing Training 177

or MNAR because the mechanism behind missingness is not known. In such
situations domain expertise is of vital importance and it can guide the choice of
a strategy for handling missing values.

3 Relevant Research

There are many ways of dealing with missing data when building a regression
or classification model. Some of the most popular methods are:

Complete Case Analysis (CCA): This method simply ignores all records
that have missing values and selects only records with no missing values [5,7].
When the percentage of complete records is relatively high and the data are
missing at random or completely at random, this method does not affect model
accuracy. However, if the amount of missing data is large the prediction accuracy
will be low (not enough complete cases) and when the data are missing not at
random then this method generates bias.
Missing Indicator Variable (MIV): This method uses a dummy variable as
an indicator for missing values [7]. For every variable that might be missing, a
dummy variable is introduced, where the value of this dummy variable is 1 when
the input variable is missing and 0 when the input variable is not missing. While
this method is more efficient than the Complete Case Analysis, it can also create
bias in the final model.
Predictive Value Imputation (PVI): PVI replaces missing values by some
estimates of their values [9]. In many cases the unconditional mean is used (the
mean value of all non-missing values of the attribute) or a conditional mean
(the mean of a specific group of records where the record with a missing value
belongs to). The problem with this method is that the predictive values are
always derived from the complete cases and that might introduce some bias.
However, some additional mechanisms can be added to PVI which lower this
bias. For example, PVI might use the conditional mean over the K nearest
neighbors of a record with a missing value, and then the bias can be limited by
first imputing the dataset with unconditional mean and then using the K nearest
neighbors on the completed dataset to predict the values of the originally missing
data. By counting the number of missing data in the neighbors, one can create a
weighted average that incorporates the uncertainty of the measurements. There
are several other methods to do single-value predictive imputation like hot-deck
imputation, cold-deck imputation and last observation carried forward, where the
dataset is sorted on specific variables and when a missing value is encountered,
the value is replaced by the value of its predecessor.
Regression Imputation (RI): Regression Imputation [9] is a PVI variant
where we use regression models (Support Vector Machines, Random Forests,
etc.) to estimate the imputed value. One way is to build the models to estimate
the missing values using the complete cases. However, it is usually better to also
incorporate the non-complete cases by first imputing the missing values with a
more simple imputation method (like the unconditional mean). In the first case
(using only complete cases), there might be too few complete cases to generate
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good models, in the latter case there is a danger of bias by training the model
with imputed (wrong) data.
Multiple Imputation (MI): This is a general imputation framework by Rubin
et al. [4,13–15]. The idea is to generate multiple versions of imputed (completed)
datasets, which result in multiple models. Each model is then combined into a final
predictor. The framework uses a single value imputation algorithm of choice and a
random component that represents the uncertainty of the imputation. By creating
multiple imputed datasets, the distribution of the imputed values will reflect the
distribution of the already known values and therefore reduce bias. This method
allows any non-deterministic imputation algorithm to be used. After imputing the
dataset several times, creating several copies, a model is being built for each com-
plete dataset. The results of each model are combined using Rubin’s Rules [4].
The combined result leads to less biased and more accurate predictions. One of
the major advantages of MI is that it can be used with almost any imputation
algorithm. Because of this, we do not add MI in our comparison because each of
the imputation algorithms can be wrapped with Multiple Imputation.

Most of the above methods can also be used for handling missing data at
prediction time. The CCA method is here an obvious exception, but imputation
or using dummy variables are valid ways to deal with missing values at predic-
tion time. It should also be mentioned that in addition to the classical “off-line”
scenario, where the training set is fixed and is not changing over time, some
researchers were considering an “on-line” scenario, where the model is continu-
ously updated while processing a stream of data [18].

In this paper we propose a novel strategy that uses regression models in an
attribute wise algorithm to impute missing values in the training stage using the
target attribute as one of the predictors. We compare our model strategy with
commonly used imputation methods and an imputation method that also uses
regression models: Regression Imputation.

4 IARI: Incremental Attribute Regression Imputation

There are two ideas behind our method for incremental repair of training sets.
First, attributes with missing values are repaired one by one, according to the
priority of the attribute. The attribute with the highest priority is repaired
first, the attribute with the lowest priority is repaired last. Second, the data
used for repairing an attribute include all attributes that are already repaired
and additionally the target attribute of the original dataset. The choice of the
repair algorithm is arbitrary, in principle any regression algorithm can be used
here. In our experiments we used Random Forest [3], due to its superior accu-
racy, speed and robustness. Random Forest requires little to no tuning, which
is very important when numerous models have to be developed without human
assistance. Additionally, the Random Forest algorithm provides a heuristic for
ranking attributes according to their importance. The IARI algorithm uses this
heuristic for ordering the attributes.

It might seem counter-intuitive to include the target attribute in the set of
predictors to impute an input attribute–it resembles a circular process. However,
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our goal is to repair a training set with help of any data we have. When the train-
ing set is fixed, a final model is trained and it can be applied to fresh data that
were not used in the training process, so there is no circularity here. Moreover,
results of our experiments demonstrate that including the target variable in the
imputation process substantially increases the accuracy of the final model which
is validated on data that were not used in the imputation process.

The IARI algorithm consists of two steps: initialization and main loop. Dur-
ing the initialization all attributes are split into two groups: those that contain no
missing values (REPAIRED), and all others (TO BE REPAIRED). We assume
here that the target attribute, y, contains no missing values so it falls into the
REPAIRED group. Additionally, the set of attributes with missing values is
ordered according to their importance. This is achieved in three steps. First, the
training set is repaired with help of a simple imputation method which replaces
missing values of continuous attributes by their mean values and missing values
of discrete variables are replaced by their most frequent values. Second, a Ran-
dom Forest model is built on the repaired training set to predict values of y.
Finally, the model is applied to randomized out-of-bag samples to measure the
importance of all attributes, as described in [6].

When the initialization step is finished, the algorithm enters the main loop
which repairs attributes with missing values, one by one, in the order of their
importance (from most to least important). To repair an attribute x, IARI cre-
ates a temporary training set which contains all attributes that are already
repaired (including y) as predictors and x as the target. All records where the
value of x is missing are removed from this training set and, depending on the
type of x, a classification or regression variant of the Random Forest algorithm
is used to model x. Finally, the model is used to impute all missing values of x
and x is moved from the TO BE REPAIRED to the REPAIRED set.

The pseudo-code of a generic version of the IARI algorithm is provided
below.

5 Experimental Setup

To compare the existing algorithms with our approach we used five, very differ-
ent, datasets from various Machine Learning Repositories: Digits, Cover Type,
House 16H, Page Blocks, and Concrete Compressive Strength. For a complete
overview of these datasets, see the public IARI repository, [17].

5.1 Parameters

In our experiments we used a popular implementation of the Random Forest
algorithm that comes with the Scikit-learn Python package, [12]. The key learn-
ing parameter, the number of estimators, was set to 100, and the remaining
parameters had default values.

For each dataset we run several experiments with 75% of the attributes
containing missing values and 25% of the attributes (randomly chosen) con-
taining no missing values. The amount of missing values in the attributes with
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Algorithm 1. Incremental Attribute Regression Imputation
Given: A training set X with input attributes x1, . . . , xn, a target attribute y, and a

classification or regression algorithm ALG

Initialization:
for all attributes xi ∈ X do

Nmissing[i] = Count missing(xi)
Importance[i] = ImportanceMeasure(X , xi , y)

end for
REPAIRED = y ∪ {All attributes xi where Nmissing[i] = 0}
TO BE REPAIRED = {All attributes xi where Nmissing[i] > 0}
while TO BE REPAIRED ! = ∅ do

Repair Attribute = SELECT Xi(TO BE REPAIRED , Importance)
Repair Target = Delete Missing Values(Repair Attribute)
Model = ALG.train(REPAIRED ,Repair Target)
for all records Aj ∈ Repair Attribute do

if is missing(Aj) then
Aj = ALG.predict(REPAIRED [j])

end if
end for
REPAIRED = REPAIRED ∪ Repair Attribute
TO BE REPAIRED = TO BE REPAIRED \ Repair Attribute

end while
return REPAIRED

missing data, was set to 10, 20, 30, 40, 50, 60 percent and for each setup we run
20 experiments using different random seeds. In each experiment, the complete
dataset was split in a training (80%) and a test set (20%). The deletion of val-
ues, repairing the training set and final modeling was performed on the training
set. The test set was used to estimate the accuracy of the final model. When
removing values from the training set we used two strategies: “missing at ran-
dom”, MAR, where values were removed uniformly at random, and “missing
not at random”, MNAR, where only values bigger than the median value of the
attribute, were removed uniformly at random.

5.2 Performance Indicators

We measured two aspects of the quality of the imputation. First, we estimated,
with help of cross-validation, the accuracy of the final model that was trained on
the repaired dataset. The accuracy was measured either by the ratio of correctly
classified cases (in case of classification) or by the coefficient of determination,
R2, (in case of regression):

R2 = 1 −
∑

i (pi − yi)2∑
i (yi − ȳ)2

where yi denotes the target value and pi the predicted value.
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This score indicates how well the model fits the test data. The maximal
value of R2 is 1, meaning the perfect fit; values smaller than 1 reflect the error.
Furthermore, the R2 and accuracy scores of each dataset are measured on final
models that were developed with three algorithms: Random Forests, Support
Vector Machines and Gradient Boosted Decision Trees. This is to demonstrate
that the value of R2 (or the accuracy score) depends on the regressor or classifier
that is being used in the final modeling, and that it not always reflects the quality
of the imputation itself.

Second, we measured the quality of the approximation of the imputed values.
As all the imputed variables were numeric, we used the Root Mean Squared Error,
RMSE, to measure the difference between the observed and imputed values:

RMSE =

√∑
(vobserved − vimputed)

2

n

To make the comparison of results over various datasets meaningful, we stan-
dardized attributes of all training sets by centering them around 0 and dividing
by their standard deviations. As the last indicator of algorithm’s performance
we measured the execution time. For bigger datasets the cpu time might be an
issue to consider.

6 Results

For each dataset, we performed 12 experiments: one for each of the percentage
levels of missing values (from 10 to 60) combined with the type of missingness
(MAR or MNAR). Each experiment was repeated 20 times (with different ran-
dom seeds) and the results were averaged. Additionally, for each reconstructed
training set, we run three algorithms, Random Forests, Support Vector Machines
and Gradient Boosted Decision Trees, to build the final models.

The results of our experiments, the accuracy of the final model (R2 or the
ratio of correctly classified cases) and the accuracy of imputation (RMSE),
are presented in the following subsection. Each row contains averaged results
of 20 runs of the same experiment with different random seeds. The amount of
missing values and the type of missing values (MAR or MNAR) are shown as
well. For the sake of space we report only results for the percentage of missing
values 20%, 40%, and 60% for the MAR model, and various percentages for the
MNAR model where we used the missing percentages 20%, 40%, and 60% as
upper bounds for the percentage of missing values per attribute, but were not
always able to delete that many values of the attribute due to the restriction of
deleting only values bigger than the median. Let us note, that it may happen
that the fraction of records with a value of an attribute bigger than its median
might be arbitrarily small, e.g., when an attribute is almost constant. Moreover,
in the results presented below, we show the average number of missing values
taken over all attributes with missing values.

For the first three datasets (Cover Type, Digits and Houses 16H) we show
the results from the Random Forest final model; for the remaining data sets
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and final model options we do not show the results due to space limitations. A
complete overview of the results, together with software and data used in our
experiments, can be found in the public IARI repository, [17].

Each table contains several columns. The first two columns contain informa-
tion about the percentage of missing values and the type of missingness. The
next column, Ref, contains the accuracy of the model trained on the original
complete dataset: either R2 for regression problems or classification accuracy for
classification problems. The following columns contain results of various impu-
tation methods: Imputation by Mean, Imputation by Median, Imputation by
Most Frequent, Predictive Value Imputation using 2-Nearest Neighbour over a
dataset imputed by the Mean, Regression Imputation using Random Forests and
last but not least, our own algorithm: IARI. Entries in boldface are significantly
better than all other entries with the same settings. The significance is tested
using the t-test, with significance level p = 0.05. The absence of a bold entry
in the row means that none of the results were significantly better than the
others.

6.1 Cover Type Dataset Results

In Tables 1 and 2 the accuracy of the model (Accuracy Score) and the qual-
ity of imputation (RMSE) are shown for the imputation algorithms on 40.000
instances of the Cover Type dataset.

From our test results we can observe that the maximum average number
of MNAR values we can delete from each attribute is around the 12%. Which
implies that approximately 88% of the dataset is filled with values below or equal
the median of each attribute (probably 0). In Table 3 the execution time for each
algorithm is shown for the case of 50% values MAR, which is representative for
all the tests on this dataset. Our approach is not the fastest, Replace by Median,
Replace by Mean and Replace by Most Frequent are almost instant while PVI,
RI and IARI are more complex and take some time. The execution time is mostly
dependent on the size of the dataset and on the number of attributes, and not
so much on the number of missing values.

Table 1. Model accuracy score on the cover type dataset with 40000 instances using
random forests

Miss.% Type Ref. Mean Median Freq. PVI NN RI IARI

6 MNAR 0.911 0.871 0.864 0.860 0.868 0.868 0.881

10 MNAR 0.911 0.815 0.809 0.803 0.806 0.805 0.839

12 MNAR 0.911 0.670 0.678 0.656 0.657 0.663 0.693

20 MAR 0.911 0.874 0.887 0.886 0.883 0.880 0.899

40 MAR 0.911 0.834 0.859 0.858 0.845 0.845 0.878

60 MAR 0.911 0.776 0.824 0.822 0.787 0.799 0.847
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Table 2. Imputation quality (RMSE) of each imputation algorithm on the cover type
dataset with 40000 instances

Miss.% Type Mean Median Freq. PVI NN RI IARI

6 MNAR 0.786 0.795 0.813 0.786 0.776 0.760

10 MNAR 0.848 0.852 0.867 0.847 0.838 0.791

12 MNAR 0.894 0.884 0.889 0.894 0.894 0.877

20 MAR 0.380 0.389 0.414 0.370 0.330 0.266

40 MAR 0.540 0.552 0.588 0.533 0.496 0.422

60 MAR 0.661 0.676 0.718 0.658 0.630 0.564

Table 3. Execution time of imputation algorithms on the cover type dataset with
values 50% MAR in seconds.

Mean Median Freq. PVI NN RI IARI

0.03 0.11 0.48 61.47 381.75 119.12

6.2 Digits Dataset Results

In the table below (Table 4) the accuracy of the models created using the different
imputed datasets as training set are shown.

In Table 5 the RMSE values for every imputation algorithm are presented
for all the combinations of missing data percentage and missing data type. Our
IARI approach outperforms the other imputation algorithms in most of the
MAR cases with respect to the accuracy. In the MNAR cases our algorithm
works well but imputation by Mean sometimes has a slightly better accuracy for
the Random Forest model.

Table 4. Model accuracy score on the digits dataset using random forests

Miss.% Type Ref. Mean Median Freq. PVI NN RI IARI

16 MNAR 0.972 0.969 0.967 0.953 0.967 0.967 0.968

25 MNAR 0.972 0.967 0.951 0.904 0.954 0.961 0.947

27 MNAR 0.972 0.950 0.923 0.815 0.934 0.932 0.944

20 MAR 0.972 0.964 0.963 0.961 0.967 0.968 0.970

40 MAR 0.972 0.954 0.957 0.952 0.959 0.960 0.962

60 MAR 0.972 0.944 0.943 0.934 0.944 0.948 0.953
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Table 5. Imputation quality (RMSE) of each imputation algorithm on the digits
dataset

Miss.% Type Mean Median Freq. PVI NN RI IARI

16 MNAR 0.608 0.649 0.752 0.566 0.565 0.479

25 MNAR 0.858 0.903 1.037 0.841 0.829 0.646

27 MNAR 0.974 0.994 1.103 0.960 0.963 0.850

20 MAR 0.380 0.399 0.511 0.299 0.316 0.231

40 MAR 0.537 0.564 0.721 0.470 0.472 0.345

60 MAR 0.658 0.692 0.883 0.619 0.608 0.451

6.3 Houses 16H Dataset Results

In Table 6 the R2 scores are shown and in Table 7 the RMSE results are shown
for the imputation algorithms on the Houses 16 H dataset.

Table 6. Model accuracy score (R2) on the houses dataset using random forests

Miss.% Type Ref. Mean Median Freq. PVI NN RI IARI

20 MNAR 0.636 0.604 0.598 0.580 0.606 0.603 0.617

40 MNAR 0.636 0.534 0.491 0.485 0.511 0.520 0.531

49 MNAR 0.636 −0.277 −0.287 −0.545 −0.405 −0.171 −0.450

20 MAR 0.636 0.604 0.599 0.586 0.610 0.598 0.620

40 MAR 0.636 0.544 0.533 0.511 0.552 0.521 0.590

60 MAR 0.636 0.423 0.402 0.375 0.458 0.414 0.536

Table 7. Imputation quality (RMSE) of each imputation algorithm on the houses
dataset

Miss.% Type Mean Median Freq. PVI NN RI IARI

20 MNAR 0.486 0.517 0.709 0.485 0.428 0.342

40 MNAR 0.785 0.801 1.007 0.787 0.753 0.587

49 MNAR 0.956 0.925 1.134 0.955 0.954 0.927

20 MAR 0.386 0.395 0.542 0.370 0.328 0.280

40 MAR 0.545 0.558 0.764 0.535 0.487 0.412

60 MAR 0.669 0.685 0.925 0.665 0.625 0.531
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7 Conclusion

We presented a novel algorithm, IARI, for imputing missing values into train-
ing sets. IARI can handle both regression and classification problems. The key
advantage of IARI over other imputation methods is the superior accuracy of the
final models which are trained on the repaired training sets, and more accurate
reconstruction of missing values. On the other hand, IARI requires much more
computing resources than its alternatives: 2-3 orders of magnitude. Fortunately,
the main algorithm behind IARI, Random Forest, can be efficiently distributed
along multiple nodes, significantly reducing the real (wall clock) computation
time.

In principle, IARI is a generic algorithm which can be configured in various
ways by changing the measure of importance of attributes, ordering of attributes,
and the base algorithm used for imputation. Also the initialization step, where
only attributes with no missing values are used as a starting set of predictors,
can be modified: sometimes adding to this set several attributes with just a few
missing values and removing incomplete records from it, lead to better results.

During our experiments with IARI, we noticed that sometimes a simple impu-
tation method may lead to better results than those obtained with IARI. This
happens in case of the Digits dataset, where values were removed “not at ran-
dom”, see the IARI repository [17]. As expected, the quality of IARI approxi-
mations of missing values was always significantly better than those obtained by
imputing means, but surprisingly, the opposite holds for the quality of the corre-
sponding final models. This is probably caused by the nature of the classification
problem and the fact that the Random Forest is not suitable for image classifica-
tion. Almost in all other cases the IARI algorithm outperforms other imputation
methods: both in terms of the accuracy of imputation and the accuracy of the
final model.

In most real world cases it is difficult to determine how well a certain imputa-
tion algorithm will work. The quality of imputation depends a lot on the dataset
and the reason of why values are missing. However, when we know little about
a dataset, the IARI algorithm is probably the best choice.

References

1. PASCAL Machine Learning Benchmarks Repository - mldata.org. http://mldata.
org/repository/data

2. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.
ics.uci.edu/ml

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Carpenter, J.R., Kenward, M.G.: Multiple Imputation and its Application, 1st edn.

Wiley, New York (2013)
5. Greenland, S., Finkle, W.: A critical look at methods for handling missing covari-

ates in epidemiologic regression analyses. Am. J. Epidemiol. 142(12), 1255–1264
(1995)

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference and Prediction, 2nd edn. Springer, Verlag (2009)

http://mldata.org/repository/data
http://mldata.org/repository/data
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


186 B. van Stein and W. Kowalczyk

7. Henry, A.J., Hevelone, N.D., Lipsitz, S., Nguyen, L.L.: Comparative methods for
handling missing data in large databases. J. Vasc. Surg. 58(5), 1353–1359 (2013)

8. Howell, D.C.: The Analysis of Missing Data. Sage, London (2007)
9. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Meth-

ods for imputation of missing values in air quality data sets. Atmos. Environ.
38(18), 2895–2907 (2004)

10. Lakshminarayan, K., Harp, S.A., Samad, T.: Imputation of missing data in indus-
trial databases. Appl. Intell. 11, 259–275 (1999)

11. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley,
New Year (2002)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

13. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)
14. Rubin, D.B., Schenker, N.: Multiple imputation in healthcare databases: an

overview and some applications. Stat. Med. 10, 585–598 (1991)
15. Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys, vol. 81. Wiley,

New York (2004)
16. Seaman, S.R., White, I.R.: Review of inverse probability weighting for dealing with

missing data. Stat. Methods Med. Res. 22(3), 278–295 (2013)
17. Stein, B. van: A Python implementation of the incremental attributeregression

imputation (2015). http://basvanstein.github.io/IARI/
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Abstract. Missing values in datasets form a very relevant and often
overlooked problem in many fields. Most algorithms are not able to
handle missing values for training a predictive model or analyzing a
dataset. For this reason, records with missing values are either rejected
or repaired. However, both repairing and rejecting affects the dataset
and the final results, creating bias and uncertainty. Therefore, knowl-
edge about the nature of missing values and the underlying mechanisms
behind them are of vital importance. To gain more in-depth insight into
the underlying structures and patterns of missing values, the concept
of Monotone Mixture Patterns is introduced and used to analyze the
patterns of missing values in datasets. Several visualization methods are
proposed to present the “patterns of missingness” in an informative way.
Finally, an algorithm to generate missing values in datasets is provided
to form the basis of a benchmarking tool. This algorithm can generate a
large variety of missing value patterns for testing and comparing different
algorithms that handle missing values.

Keywords: Patterns · Imputation · Missing values · Monotone

1 Introduction

In the current era of data science and big data, missing values in datasets become
an increasingly important problem. Many state of the art algorithms for build-
ing predictive models for supervised learning, unsupervised learning and other
algorithms that use datasets, are most of the time not able to handle missing
values, or perform significantly worse if missing values are present. To address
this issue, several algorithms have already been proposed, ranging from various
forms of single value imputation, multiple imputation to expectation maximiza-
tion [2,9,10,12]. However, as one might expect, performance of these algorithms
strongly depends on the dataset to which they are applied – an algorithm that
performs very well on one dataset can fail on another dataset. Therefore, gaining
more insights into the patterns of the missing values is an important factor for
selecting algorithms that are appropriate for a given dataset.

A theory about missing value patterns and mechanisms [3–6,8] already exists,
but the existing theory is insufficient to gain a clear understanding of each pos-
sible pattern of missing values because it only defines a small set of possibilities.
c© Springer International Publishing Switzerland 2016
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188 B. van Stein et al.

In this paper, an extension to the current theory is proposed, covering all
patterns of missing values occurring in a dataset, ranging from a completely
Univariate Pattern to a completely Arbitrary Pattern. Using this new concept,
a greedy algorithm that analyzes datasets is proposed, together with various
visualization techniques that provide a clear overview of the patterns of missing
values occurring in the dataset. Besides analyzing missing values, it is also inter-
esting that the same techniques can be used to analyze the patterns of occurrence
of a specific value. For example, the patterns in sparse datasets (where 0 would
be the unique value to analyze, or even more interesting where all non-zero values
are analyzed).

In Sect. 2, an overview of types of missing data, patterns and missing value
mechanisms is given as well as an extension of the current theory. In Sect. 3, a
greedy algorithm for analyzing missing value patterns is proposed and several
visualization methods are presented in Sect. 4. In Sect. 5 the quality of the greedy
algorithm is tested, and in Sect. 6 a generator of missing values is proposed as a
basis of a benchmarking tool for algorithms handling missing values.

2 Missing Data

In the following two sections an overview of common definitions of several mech-
anisms behind missing data is given, and several new concepts of “patterns of
missingness” are introduced.

2.1 Missing Data Types

Rubin [8] defined three major classes of missing values: Missing Completely At
Random (MCAR), Missing At Random (MAR), and Missing Not At Random
(MNAR). Informally, we say that values in a dataset are Missing Completely
At Random (MCAR), if the probability distribution of “being missing” is com-
pletely independent on the observed or missing data. When the probability dis-
tribution of “being missing” somehow depends on the observed (non-missing)
values, then we talk about the Missing At Random (MAR) scenario. Finally,
when “being missing” depends on the actual, unobserved values, then we talk
about the Missing Not At Random (MNAR) scenario.

To illustrate these three definitions, let us consider data of patients collected
in a hospital. When a doctor decides not to measure patient’s body temperature
because she can already see that the temperature is too high, then we have the
MNAR scenario - the decision of not measuring the parameter depends on its
actual value. On the other hand, if the temperature is systematically measured,
but from time to time the data registration process malfunctions (independently
on the measured values), then we have the MCAR scenario. Finally, if the doctor
has a habit of not measuring the temperature of patients with high blood pressure
(and blood pressure is always registered), then we have a MAR scenario.

Formally, the three scenario’s can be summarized in the following
definition, [3]:
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Definition 1. Let y denote a target attribute y, X a matrix of input attributes
with missing values, Xobs the observed entries in X, Z = (y,X), Zobs = (y,Xobs).
Additionally, let R denote an indicator matrix with ijth entry 1 if xij is missing
and 0 otherwise.

We say that the data is Missing Completely At Random if:

Pr(R|Z, θ) = Pr(R|θ).
We say that the data is Missing At Random if:

Pr(R|Z, θ) = Pr(R|Zobs, θ).

We say that the data is Missing Not At Random if it is not Missing at
Random. (Here we assume that probability distributions are parametrized by

parameters θ.)

2.2 Patterns of Missing Values

In addition to some general probabilistic mechanisms behind missing values, one
can also look at the shape of missing values in the data table. In the literature [6],
three definitions of missing value patterns exist; namely Univariate, Monotone
and Arbitrary pattern.

A univariate pattern (Fig. 1a) of missing values means that one or several
attributes (columns) contain missing values in exactly the same records and no
other values are missing. When attributes can be organized in several groups
G1, ..., Gk, such that each group forms a univariate pattern and records with miss-
ing values in Gi have also missing values in Gi−1, for i = k, ..., 2, then we have a
monotone pattern (Fig. 1b). An arbitrary pattern, is anything else. Obviously, in
order to visualize patterns of missing values, one has to permute columns and rows
of the data matrix to create “rectangular regions of missingness”.

It is very important to understand the patterns of missing values in a dataset,
because they might provide insight into why values are missing and relations of
attributes that are missing in groups. As an example: a camera system fails to
recognize the bar-code of a certain product, which in turn makes it impossible for
the next two sensors to save their measurements to the database, resulting in two
missing values. Additionally, identifying important patterns of missing values in
the data can lead to using a different strategy for handling these missing values.
However, in reality there are many more patterns that are now falling under the
category arbitrary pattern, but that are not arbitrary at all. Consider a dataset
with a Monotone pattern of missing values, now remove one value from a column
that does not contain any missing values yet. The dataset with the extra removed
value falls under the arbitrary category, while in reality the dataset is almost com-
pletely falling into the category of a monotone pattern. Another example, imag-
ine that a survey takes place led by two volunteers, both volunteers ask the same
ten questions to a hundred different people, but volunteer a asks the questions in
order, and volunteer b asks the questions in reverse order. Due to time limitations,
people start to drop out after the sixth question. The combined dataset seems to
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have an arbitrary pattern of missing values, while if we look more closely we can
identify two partitions of the data with both one monotone pattern of missing
values.

To fill the gap between the definitions of missing value patterns, we introduce
the concept of Mixtures of Monotone patterns. This requires a more precise defi-
nition of the Univariate and Monotone patterns.

Let us consider a dataset D of size N × k, with N the number of records in
D and k the number of attributes in D, and a missing indicator matrix I. Here,
Iij = 1 if Dij is missing, and 0 otherwise.

Definition 2 (Univariate Pattern). Missing values in D form a univariate
pattern if and only if there exists a set of attributes A such that:

∀x ∈ D : {a : xa is missing} = A or ∅
So for all records in D, the record has either missing values in all attributes in the
attribute set A or the record has no missing values.

Definition 3 (Monotone Pattern). A dataset D has missing values in a
monotone pattern if and only if there exists an ordering of all attributesA, a1 . . . ak

such that:

∀i ∈ {1, ..., N},∀j ∈ {1, ..., k} : Ii,j = 0 ⇒ Ii,j+1 = 0, . . . , Ii,k = 0

Note that Definition 3 is a generalization of Definition 2, in other words, a uni-
variate pattern is a special case of a monotone pattern. A monotone pattern can
also be seen as a collection of record groups, where each group of records has a uni-
variate pattern of missing values. For example, a dataset has twenty attributes and
forty records, five of the records have attribute one and five missing this is denoted
as: (1, 5). Ten records have attributes one, five and nineteen missing: (1, 5, 19), and
twenty records have only attribute five missing: (5). The remaining five records are
complete. The complete dataset has a monotone pattern of missing values, which
can be denotes as set p = {(5), (1, 5), (1, 5, 19)}. Each element in p stands for a
univariate pattern that holds within a subset of the complete dataset.

This way we can further generalize into a Mixture of Monotone patterns
(Fig. 1c).

Definition 4 (k-Monotone Mixture Pattern). A dataset D has missing val-
ues in a k-monotone mixture pattern if and only if here is a partitioning of D,
S = S0 . . . Sk−1 of size k such that S0 ∪ S1 · · · ∪ Sk−1 = D and ∀Si, Sj ∈ S, i �= j :
Si ∩ Sj = ∅ and ∀Si ∈ S : Si has values missing in a monotone pattern.

A univariate pattern can be seen as a rectangular area of missingness, a
monotone pattern can be seen as a stack of adjacent rectangular regions and a
monotone mixture pattern can be seen as a union of disjoint monotone patterns.

Note that any dataset has values missing in a k-Monotone Mixture Pattern
where k ≤ N . When there exists a 1–Monotone Mixture Pattern, the pattern is
completely monotone, when there exists only a high k mixture pattern, the pattern
is close to arbitrary. In this manner, a transition between completely monotone
and arbitrary patterns can be identified.
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Fig. 1. Dataset of records (y-axis) and attributes (x-axis) with missing values denoted
by the colored bars (Color figure online).

3 Heuristic Search for MonotoneMixture Patterns

It is possible to analyze a dataset and identify the existing monotone mixture pat-
terns using our novel MMP-Finder (Algorithm 1). In this algorithm, first a dic-
tionary with all existing monotone patterns of missing values is build and sorted
by the number of rows per pattern. Then, mixtures of monotone patterns are con-
structed by adding the next monotone pattern to an already existing mixture, or
by defining a new mixture. The MMP-Finder uses a greedy approach to construct
the mixtures of monotone patterns.

The complexity of the proposed greedy approach is O(n+m2), where n is the
number of records and m is the number of unique sets of missing attributes. Of
course m ≤ n, since every record can have a unique set of attributes missing, but
usually m is much smaller than n.

Using the MMP-Finder, all identified monotone patterns in the partitions
of dataset X are returned, together with the number of records and record
indexes that belong to each monotone pattern. Notice that the solution returned
is not a unique solution, it is possible that a specific univariate pattern can
belong to multiple monotone patterns. For example, two monotone pattern sets
are defined: {(1, 5), (1, 5, 8)} and {(4, 5), (4, 5, 9)}, the next univariate pattern
that occurs is (5), this pattern might belong to the first monotone pattern set,
or the second. The proposed algorithm handles these choices in a greedy man-
ner, the univariate patterns are handled in an order depending on the coverage,
the pattern that covers most records is handled first, the pattern that covers the
least records is handled last. This way it is very likely to identify “the biggest”
monotone pattern. Since the missingness mechanism is usually not known, it is
impossible to find the “correct” monotone patterns.

Once the monotone patterns and their support are known, it is easier to ver-
ify why certain attributes contain missing values, and whether there are relations
between the various attributes inside the monotone patterns. This can not only
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Algorithm 1. MMP-Finder
Given: A training set X with input attributes x0, . . . , xn containing missing values, a target

attribute y
# Create a dictionary with all unique missing attribute combinations
CombinationsMissing = dict()
RecordsPerCombination = dict()
for all records xi ∈ X do

combi = GetMissingAttributes(xi )
if combi /∈ CombinationsMissing then

CombinationsMissing[combi] = 0
RecordsPerCombination[combi] = ∅

end if
CombinationsMissing[combi]+ = 1
RecordsPerCombination[combi].append(xi)

end for
# Sort the combinations by size
sortedComb = sort(CombinationsMissing)
Mixtures = []
MixtureRecords = []
# Construct the mixtures
for all comb ∈ sortedComb do

for all M ∈ Mixtures do
# If the combination is a sub or super set for all combinations in M add it to M
if ∀c ∈ M : comb ⊆ c ∨ comb ⊇ c then

Mixtures[M ].append(comb)
MixtureRecordsM .append(RecordsPerCombination[comb])
Added = True
Break

end if
end for
if Added == False then

# If the combination does not belong to an existing Mixture, add a new Mixture
Mixtures.append([comb])
MixtureRecords.append([RecordsPerCombination[comb]])

end if
end for

return Mixtures

provide valuable insight, but also help in choosing a good imputation or modeling
algorithm.

4 Analysis of Existing Datasets

Fourteen datasets with missing values from the UCI machine learning reposi-
tory [1] were analyzed using Algorithm 1. The output of the algorithm is shown in
Table 1, and a visualization of the result is provided in Figs. 2 and 3. The visualiza-
tion and textual summaries are generated directly from the output of the MMP-
finder algorithm.

In Fig. 2, the monotone mixture patterns found in the Wiki dataset can be
observed using two kinds of visualization techniques. In Fig. 2a each record in the
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Table 1. Textual summaries for datasets with missing values

dataset #Mixtures Ratio of each mixture Miss.% Category

Post-oper. 1 [ 1.0 ] 0.0333333333333 Monotone

Wisconsin 1 [ 1.0 ] 0.0228898426323 Monotone

Dermato. 1 [ 1.0 ] 0.0218579234973 Monotone

Cleveland 2 [ 0.667 0.33 ] 0.019801980198 Two monotone patterns

Adult 2 [ 0.776 0.224 ] 0.0741165390443 Two monotone patterns

census 7 [ 0.948 0.030 0.006 0.001 . . . ] 0.5268 Mostly monotone

automobile 4 [ 0.826 0.087 0.043 0.043 ] 0.224390243902 Mostly monotone

hepatitis 7 [ 0.707 0.093 0.093 0.053 . . . ] 0.483870967742 70% mono., 30% rand.

Mammogr. 5 [ 0.550 0.244 0.160 0.038 . . . ] 0.136316337149 Monotone mixture

Bands 18 [ 0.39 0.259 0.086 0.086 . . . ] 0.322820037106 60% two patterns

Wiki 116 [ 0.503 0.091 0.030 0.016 . . . ] 0.807228915663 50% mono., 50% rand.

Marketing 39 [ 0.353 0.128 0.112 0.111 . . . ] 0.235405315245 Random

Horse-colic 82 [ 0.221 0.061 0.058 0.044 . . . ] 0.98097826087 Random

dataset that contains missing values is labeled with a color and a position on the
x axis. This way it is easy to observe where several monotone mixture patterns
are located in the dataset and if there are specific regions in the dataset where
these patterns occur. Additionally, the horizontal length of each bar depends on
the number of attributes that are missing. For each mixture, the longest pattern
(pattern with most attributes missing) has a length of one, and each other univari-
ate pattern belonging to the same monotone pattern, has a length proportional to
the ratio of missing attributes over the longest pattern.

This visualization technique to present the various monotone patterns in a
dataset can be useful in understanding the underlying missing data mechanisms.
For example, in the Wiki dataset, the two monotone patterns that cover most
of the records are located in a very specific order in the dataset, which might
be relevant information regarding the missing data mechanism. Even more spe-
cific, the three most occurring univariate patterns occur exactly after each other
in the dataset. In Fig. 2b, the same patterns can be observed, but now in a his-
togram plot. The distribution of records belonging to each univariate pattern
can be observed and the largest monotone patterns in terms of the number of
records and in terms of the number of univariate patterns can be identified easily.
Using this visualization technique it is easy to observe the different distributions
in between the patterns. In Fig. 3, a visualization of all the datasets with natural
missing values is shown using the first visualization technique.

5 QualityMeasurements

As already mentioned, the monotone mixture patterns found are not one unique
solution, patterns can sometimes be combined in multiple ways. Because of
these different possible monotone mixture patterns, some quality measurements
are proposed to see which of the quality measurements are optimized by the
MMP-finder (Algorithm1). The assumption is that finding the largest monotone
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Fig. 2. First five monotone mixture patterns for the Wiki dataset (Color figure online).

Fig. 3. Visualization of datasets with natural occurring missing values.
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patterns (in terms of records they cover) is of major importance. One very large
pattern with multiple tiny patterns is generally preferred over two middle sized
patterns with a few smaller patterns. On the other hand, finding the minimal set
of monotone patterns might be an objective as well, which can conflict with the
previous objective. Yet a third objective would be to maximize the size in terms
of univariate patterns covered by one monotone pattern.

Therefore, three measurements are proposed: the first two are Skewness of
Monotone Pattern Coverage (SMPC) and Skewness of Monotone Pattern Lengths
(SMPL), which are both basically the sum of squares, also called the Surprise
number [7] in Mining Data Streams, of records covered per monotone pattern and
pattern lengths. The third quality measure is the Monotone Mixture Size (MMS),
which is the k in k-Monotone Mixture Patterns (Eq. 1). In the equations below,
s denotes one possible solution of a k-monotone mixture pattern, Ms is the col-
lection of monotone patterns belonging to s, mrecords is the number of records
covered by one monotone pattern m and mupatterns is the number of univariate
patterns belonging to monotone pattern m.

MMS (s) = |s| (1)

The Skewness of Monotone Pattern Coverage (Eq. 2) is the sum of all squared
monotone pattern record counts:

SMPC (s) = (
∑

∀m∈Ms

|mrecords|2) (2)

The Skewness of Monotone Pattern Lengths (Eq. 3) is the sum of all squared
monotone pattern sizes, where the size of a monotone pattern is the number of
univariate patterns that belong to this monotone pattern.

SMPL(s) = (
∑

∀m∈Ms

|mupatterns|2) (3)

For both skewness measurements, a higher value is better, for MMS less is
better. A higher SMPC means a lower number of monotone patterns that cover
most of the records with missing values. A higher SMPL means a lower number
of monotone patterns that cover most of the univariate patterns. In both cases it
implicitly means a more unbalanced distribution, which we assume is preferred.
Note that both the total number of records with missing values and the total num-
ber of univariate patterns is always the same per dataset. To visualize these mea-
surements in a convenient manner and compare the measurement with the optimal
possible solution for each of the measurement, the relative performance (RP) is
calculated like:

fmax = max
∀s∈S

(f(s)) (4)

fmin = min
∀s∈S

(f(s)) (5)

RPf (s) =
f(s) − fmin

fmax − fmin
(6)
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Where f is a placeholder for the measurements (SMPC , SMPL andMMS ) and S is
the set of all possible solutions, and s ∈ S is one particular possible solution. Here
a relative performance of 1.0 means the maximum possible for this measurement,
and 0.0 meaning the lowest possible, so for MMS, a value of 0.0 is optimal, while
for the other two measures a value of 1.0 is optimal.

Table 2. Performance Greedy algorithm versus optimal

Dataset MSS SMPL SMPC Comb.

Cleveland 0.00 1.00 1.00 2

Adult 0.00 1.00 1.00 2

Census 0.00 1.00 1.00 6

Automobile 0.00 1.00 1.00 1

Mammogr. 0.00 1.00 1.00 4

Bands 0.75 0.50 0.97 3683

Wiki 0.40 0.59 0.04 >100000*

Marketing 0.50 0.78 0.91 >100000*

Horse-colic 0.00 0.77 1.00 >100000*

∗ The optimal solutions are calculated using
a backtracking algorithm that was limited
to find a maximum of 100.000 possible solu-
tions.

It is shown in Table 2 that the proposed greedy algorithm performs well in most
quality measurements for the tested datasets, only the number of mixtures found
is not always minimal. The last column (Comb.) is the number of all possible com-
binations, limited at 100.000 for time complexity reasons.

6 Missing Value Generator

Using the definitions of Subsect. 2.2, a missing data generator is constructed to
remove values from a given dataset using user defined parameters to cover the com-
plete spectrum from univariate to completely arbitrary missing value patterns.

Using the k-monotone mixture pattern concept, it is possible to generate miss-
ing values in any dataset that obeys the number of monotone patterns defined
by the user. For this the user should be able to define; the distribution of the
monotone patterns (one pattern may be applicable to most of the data while a
second only affects a small portion of the data), and the number of attributes that
contain missing values.

It is also possible to analyze datasets that already contain missing values using
Algorithm 1, and use the return values of this algorithm to specify a “similar”
dataset for testing purposes.
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6.1 Open Source

Both the missing value generator and the analysis and visualization methods are
publicly available on Github [11]. The missing value generator uses a wide set of
parameters, k as the number of monotone mixture patterns, a variety of parame-
ters to set the various distributions of patterns and records with missing values
and parameters to set the number of missing values and patterns.

Using this broad set of parameters, there are many possible patterns of miss-
ing values that can be generated, ranging from completely univariate (where we
set k = 1), to completely arbitrary (with k = N and each distribution set to
“random”). The generator can be used as a benchmarking tool to compare the
performance of algorithms on different distributions and patterns of missing val-
ues.

The missing data mechanism used by the algorithm is “MCAR” at the
moment, but this can be extended by “MAR” and “MNAR” mechanisms. How-
ever since these are open to interpretation and there are many ways to accomplish
these mechanisms, this it is left for further research.

7 Conclusions

A new concept to analyze and visualize missing value patterns in datasets is pro-
posed and it is shown that with a greedy method called MMP-finder, a dataset
with missing values can be analyzed. Using the concept of k-Monotone Mixture
Patterns, a better in-depth understanding of the underlying patterns of missing
values or unique values can be obtained.

Furthermore, a missing value generator is developed and made publicly avail-
able to make it possible to test and compare different algorithms on a wide set of
both generated and natural datasets. The proposed missing value generator can
be used as a tool to generate benchmark datasets for algorithms that handle cer-
tain kinds of missing values, giving insight in what kind of situations an algorithm
might work well and in what situations certain algorithms would not perform well.

For future work, it would be interesting to incorporate various mechanisms of
missing values into the generator to also cover MNAR situations. Another inter-
esting extension to the proposed analysis algorithm would be to include expert
knowledge and assumptions to come up with the most likely partition of monotone
patterns.

Finally, another challenge would be developing efficient heuristics aimed at
optimizing the proposed objective functions (MSS, SMPL and SMPC).
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Abstract. In many recent applications, data are intrinsically uncertain,
noisy and error-prone. That is why, uncertain database management has
attracted the attention of several researchers. Data uncertainty can be
modeled in the evidence theory setting. On the other hand, skyline analy-
sis is a powerful tool in a wide spectrum of real applications involving
multi-criteria optimal decision making. It relies on Pareto dominance
relationship. However, the skyline maintenance is not an easy task when
the queried database is updated. This paper addresses the problem of
the maintenance of the skyline objects of frequently updated evidential
databases. In particular, we propose algorithms for maintaining eviden-
tial skyline in the case of object insertion or deletion. Extensive experi-
ments are conducted to demonstrate the efficiency and scalability of our
proposal.

Keywords: Evidential database · Skyline · b-Skyline · Database update

1 Introduction

Efficient processing of uncertain data, which differs from handling certain data in
traditional databases, has become increasingly important. This kind of process-
ing is a crucial requirement in different and several domains such as object
identification [4], sensor networks [12] and medical databases [7]. Uncertain data
in those applications are generally caused by factors like data randomness and
incompleteness, limitations of measuring equipment, and delay or loss in data
transfer. To deal with uncertain data, several models were proposed: probabilis-
tic databases [1,14], possibilistic databases [6] and evidential databases [3,9].
The advantage of the evidential databases model is twofold: (i) it allows mod-
elling both uncertainty and imprecision in data; and (ii) in some cases, it can be
a generalization of probabilistic and possibilistic models.

On the other hand, the present decade has seen a revival of interest in prefer-
ence queries which aim at retrieving the tuples from a database which are domi-
nated by no other tuple. Skyline queries [5] are a popular example of preference
c© Springer International Publishing Switzerland 2016
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queries and are very useful in multi-criteria decision making applications. They
rely on Pareto dominance relationship. Substantial research work has addressed
the problem of skyline analysis on uncertain data from different perspectives and
within various communities, including databases like [10].

Though the skyline queries can control selection, unfortunately, there exist
not much works that can handle skyline queries under database updates. The
maintenance of the skyline set is then very useful. It allows users to get informed
about the new interesting objects. Let us mention the work done in [13,15] where
the authors introduce an optimal skyline deletion maintenance for certain data.
Xia et al. [16] present efficient update algorithms for compressed skyline Cubes.
Closely relating to the maintenance of skyline results, let us point out the study
related to the progressive skyline query evaluation and maintenance done in [18].
However, up to our knowledge, there is no work about the skyline maintenance
issue in the uncertain/evidential databases context.

In [9], the authors introduced a method for extracting skyline objects from an
evidential database. When evidential data are updated, the skyline set could be
computed, again from the overall updated database. It is the trivial maintenance
of the skyline set. In this paper, the aim is to incrementally maintain the skyline
set, without starting from the scratch. Our objective is to reduce the computation
cost of the maintenance by using the skyline set already computed. We address
then the following major challenges:

• We propose efficient methods to maintain the skyline results in the evidential
database context when an object is inserted or deleted.

• We perform an extensive experimental evaluation to demonstrate the scala-
bility of the algorithms proposed for the evidential skyline maintenance.

The rest of the paper is organized as follows. Section 2 contains a reminder about
skyline notions and provides some basic concepts about evidential theory, evi-
dential databases and skyline. In Sect. 3, we formally propose a new approach for
the incremental maintenance of evidential skyline. Our experimental evaluation
is reported in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Preliminaries

In this section, we first present a reminder about skyline operator. Then, we
provide some notions about evidential theory as well as evidential databases.
We conclude with a recall on b-dominant evidential skyline initially introduced
in [9].

2.1 Skyline Set

We present here a basic formal model of Pareto dominance. Let O be a collection
of objects defined on a set of d attributes A = {a1, a2, . . . , ad}.
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Definition 1. (Pareto Dominance) Given two objects oi, oj ∈ O, oi dominates
oj (in the sense of Pareto), denoted by oi � oj, if and only if oi is as good
or better than oj on all attributes and strictly better in at least one attribute,
i.e., ∀ak ∈ A : oi.ak ≤ oj .ak ∧ ∃a� ∈ A : oi.a� < oj .a� where oi.ar and oj .ar

stand for the rth attribute of oi and oj, respectively.

The skyline includes those objects that are dominated by no other object. With-
out loss of generality, we assume through all the paper that the smaller the value
the better.

Definition 2. (Skyline) The skyline of O, denoted by SkyO, includes objects of O
that are dominated by no other object, i.e., SkyO = {oi ∈ O | � oj ∈ O, oj � oi}.

2.2 Evidential Databases

Evidence Theory. The theory of evidence is a generalization of the Bayesian
theory of subjective probabilities [8]. Let Θ be a finite and exhaustive set whose
elements are mutually exclusive, Θ is called a frame of discernment. A basic belief
assignment (bba), also called a mass function is a mapping m : 2Θ −→ [0, 1] such
that m(∅) = 0 and

∑

A⊆Θ

m(A) = 1.

An element A of 2Θ is called a focal element whenever m(A) > 0. The mass
m(A) represents the level of confidence in the truth allocated to the subset A.
The belief of A, reflects the total weight of evidence (confidence) in A, denoted
by bel(A), and defined as the sum of the masses assigned to every subset B of
A, i.e., bel(A) =

∑

B⊆A

m(B).

The plausibility of A, denoted by pl(A), is defined as the sum of the masses
assigned to every subset B of Θ that intersects A, i.e., pl(A) =

∑

B∩A �=∅
m(B).

Table 1. Evidential database example.

Property Price Distance

p1 〈{150, 160, 180}, 0.1〉, 〈{190, 200}, 0.9〉 〈90, 0.3〉, 〈100, 0.7〉
p2 〈100, 0.7〉 〈Θ, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉
p3 70 Θ

Definition 3. Let x, y two bba whose mass functions are mx,my : 2Θ −→
[0, 1], respectively. Then, for A,B ⊆ Θ, bel(x ≤ y) =

∑
A⊆Θ(mx(A)

∑
B⊆Θ,A≤∀B my(B))), Where A ≤∀ B means that a ≤ b for all a ∈ A and b ∈ B.

Example 1. Assume we have the following information about the price of prop-
erties p1 and p2 denoted by x and y, respectively: x = 〈{10}, 0.3〉, 〈{10, 20}, 0.7〉
and y = 〈{10}, 1〉. It is easy to check that bel(x ≤ y) = 0.3 ∗ 1 = 0.3
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Evidential Databases. The paradigm of evidential databases [2,11], aims at
handling imprecise, missing and uncertain data. An evidential database, is a
collection of objects O defined on a set of d attributes A = {a1, a2, . . . , ad} where
each attribute ak has a domain Θak

, and the relation between the ith object and
the kth attribute is expressed by a bba. That is: mik = {A ⊆ Θak

,mik(A) > 0},
where mik : 2Θak −→ [0, 1], with mik(∅) = 0 and

∑
A⊆Θak

mik(A) = 1.

Example 2. Table 1 represents an evidential database describing properties over
their price and distance to the user office. Assume that the data about the prop-
erties are pervaded with some imperfection modelled thanks to evidence theory.
A bba defined on each property and on each attribute, may have one or more focal
elements. For example, the bba defined on object 1 and Attribute price, (i.e., the
price of the property p1) includes two focal elements 〈{150, 160, 180}, 0.1〉 and
〈{190, 200}, 0.9〉. That is, we believe that the price of p1 is either 150, 160 or 180
with mass function 0.1 or one of the values 190 or 200 with mass 0.9. However,
we do not know how much each single element is credible. Note that evidential
databases can store various kind of data imperfection: Probabilistic data: focal
elements are singletons (p1.Distance), Possibilistic data: focal elements are nested
(p2.Distance), Partial ignorance: 0 < m(Θak

) < 1, (p2.Price), Perfect data: focal
element is a singleton and its mass is equal to one (p3.Price), Total ignorance:
m(Θak

) = 1, (p3.Distance).

2.3 Evidential Skyline

Given a set of objects O = {o1, o2, . . . , on} defined on a set of attributes A =
{a1, a2, . . . , ad}, with oi.ak denoting the bba (the set of focal elements) of object
oi w.r.t. attribute ak. The belief that an object oi is better than or equal to
another object oj w.r.t. an attribute ak is given by [3]:
bel(oi.ak ≤ oj .ak) =

∑
A⊆Dom(ak)

(mik(A)
∑

B⊆Dom(ak),A≤∀B mjk(B)), where
Dom(ak) stands for the domain of attribute ak, and A ≤∀ B stands for a ≤ b for
all (a, b) ∈ A × B. Given two objects oi and oj in O : oi �= oj , the belief that oi

dominates oj is defined in [9] as follows: bel(oi � oj) =
∏

ak∈A bel(oi.ak ≤ oj .ak).
The notions of b-dominance and b-skyline were introduced in [9] where b is a
threshold defined by the user.

Definition 4. (b-dominance) Given two objects oi, oj ∈ O and a belief threshold
b, oi b-dominates oj, denoted by oi �b oj if and only if bel(oi � oj) ≥ b.

Definition 5. (b-skyline) The skyline of O, denoted by b-SkyO, comprises those
objects in O that are b-dominated by no other object, i.e., b − SkyO = {oi ∈ O |
� oj ∈ O, oj �b oi}.

3 Incremental Maintenance of Evidential Skyline

In this section, we discuss the maintenance problem of the b-skyline after an
insertion or a deletion occurs in the evidential database EDB.
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3.1 Object Insertion

Because the b-dominance relationship is intransitive as proved in [9], a naive
approach to see if a new object has an impact on the b-skyline, is to compare
all objects in O against this inserted object. This way results in a very costly
procedure. To avoid the full scan of the database, we could prune the search
space in some cases.

We present in this section an approach for optimizing b-skyline updating by
using the notions of “IdealPoint” and “HeaderPoint” which keep up a con-
cise summary of the already visited regions of the objects’ space. This summary
allows a fraction of objects in O to be pruned from b-skyline processing phases
required in the naive approach, thus reducing the overall cost of expensive dom-
inance checks.

An IdealPoint and a HeaderPoint summarize the region of data explored
in earlier iterations. They enable a newly inserted object to be compared against
this summary rather than to perform multiple comparisons against the whole
objects in the b-skyline. Our goal is to leverage these two points to determine
whether a newly inserted object should be considered as a candidate skyline
object or be pruned in advance from the expensive skyline processing phases.
The IdealPoint is a virtual object having the most interesting values across all
attributes.

Definition 6. (IdealPoint) Let b-skyO = {S1, S2, . . . , Sn} be the set of objects
being in the b-skyline. An IdealPoint IP of b-skyO is a certain object defined
such as: <MIN(val.a1), MIN(val.a2), . . . , MIN(val.ad) >,∀Si ∈ b-skyO where
MIN(val.ak) is the function which returns the minimum value defined on the
attribute ak and val.ak is the set of distinct values defined on ak.

Table 2. 0.4-Skyline.

Skyline objects Si Distance (m) Price (K)

S1 〈{50, 51}0.7〉, 〈{55, 56}0.3〉 20

S2 {40, 41} 〈{30}0.9〉, 〈{31}0.1〉
S3 {10, 11} {60}

Example 3. Suppose we have the 0.4-skyline objects presented in Table 2. The
most interesting values defined on distance and price attributes, are returned
by the MIN() function and appear in an underlined form in Table 2. Thus,
IdealPoint is IP (10, 20).

Let O∗ ⊆ b-skyO be the set of skyline points having the most interest-
ing values in one or more attributes, i.e., O∗ = {S ∈ b-skyO/∃item ∈
S.ak, item =MIN(val.ak)} where val.ak is the set of distinct values in attribute
ak occurring in the skyline and item is a single proposition in the bba “S.ak”.
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Example 4. In Table 2, O∗ comprises the skyline objects S1 and S3 since they
have the interesting values 10 and 20 defined respectively on distance and price.

Definition 7. (HeaderPoint) Let O∗ be the set of skyline points having the
most interesting values. A HeaderPoint HP of b-skyO = {S1, S2, ..., Sn} is a
certain virtual object defined such as:
∀Si ∈ O∗, such that, <MAX(val.a1),MAX(val.a2), . . . ,MAX(val.ad)>.

Example 5. One can check that in Table 2, O∗ = {S1, S3}. The maximum values
defined on distance and price for S1 and S3 are 56 and 60, respectively. Then
the Header Point is HP (56, 60).

Fig. 1. Ideal and header points.

Our goal with the Header Point and the Ideal Point is to determine whether the
newly inserted object should be considered as a candidate skyline object or be
pruned in advance from the expensive skyline processing phases. As shown in
Fig. 1, if the newly inserted point denoted by P+ is in the hatched area, i.e., is
strictly better than IP in at least one dimension, then it is directly added to the
b-skyline. In this case, P+ should be compared to all skyline’s points because it
could dominate one or several of them. We also propose another pruning strategy
by adapting the notion of Header Point (HP ) to the evidential database context.
If P+ is in the crosshatch area, then it cannot be in the b-skyline because it has
a value attribute which is worse than the HP . In other words, if a newly inserted
object is not better than the Ideal Point in at least one dimension and it is worse
than the Header Point, then, the new object cannot be a skyline object and can
be discarded.

If an evidential object is inserted, we have to refer to Definition 3 in order
to compare the new object against the Header Point and the Ideal Point. Let
P+.ak be the new object value defined on attribute ak. Let also b be the threshold
introduced by the user. Note that b is already considered to compute the original
set of skyline points b-skyO.
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Property 1. If ∃ak ∈ A such that bel(P+.ak < IP.ak) ≥ b, then P+ is added to
the b-skyline.

Property 2. If Property 1 is not satisfied and ∃ak ∈ A such that
bel(P+.ak ≤ HP.ak) < b then P+ cannot be in the b-skyline.

Proof. Suppose ∀ai ∈ A, bel(P+.ai ≤ HP.ai) = 1 and ∃ak ∈ A such that
bel(P+.ak ≤ HP.ak) = x < b.

Wehavebel(P+ � HP ) =
∏d

i=1 bel(P+.ak ≤ HP.ak) = 1 ∗ 1 ∗ · · · ∗ 1 ∗ x =
x < b. Thus P+ does not b-dominates HP.

Algorithm 1. Incremental maintenance after Insertion (MAI)
Input: b-SkyO, P+: the object to insert; HP(a1, a2, . . . , ad): Header Point,

IP(a1, a2, . . . , ad): Ideal Point
1 begin
2 var1 ← true;
3 while ak in A and var1 do
4 if bel(P+.ak < IP.ak) ≥ b then
5 b-SkyO′ ← P+;
6 Compare P+ to all point in b-SkyO;
7 var1 ← false;

8 else

9 if bel(HP.ak < P+.ak) ≥ b then
10 P+ cannot be in the b-skyline;
11 var1 ← false;

12 else

13 Execute b-SkyO();

A naive approach for skyline insertion maintenance is to recompute from scratch
the b-skyO considering the newly inserted object (Baseline Maintenance Algo-
rithm after Insertion denoted by BMAI). Clearly, this approach may result in
a high computational cost since we recompute the b-dominance relationship
between all objects in {O}∪{P+}. Algorithm 1 shows the algorithmic description
of the proposed method in order to decrease the check space.

As shown in Algorithm 1, we compare the bbas of the inserted object defined
on each attribute against all values of the Ideal Point and the Header Point
defined on the set of attributes A. If it does exist an attribute ak ∈ A such
that bel(P+.ak < IP.ak) ≥ b, then the newly inserted object is added to the
b-skyline and is compared to all skyline points since it may dominate some of
them. If Property 1 is not satisfied and it does exist an attribute ak ∈ A such
that bel(HP.ak <P+.ak) ≥ b, then the newly inserted object is directly discarded
from the b-skyline since the Header Point b-dominates the new object P+ in at
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Fig. 2. Exclusive dominance region example.

least one dimension. Else, because of the well-known non transitivity of the b-
dominance relationship, we have to re-compute the b-skyline from scratch which
is represented by the function “b-SkyO()”.

3.2 Object Deletion

In this section, we study the impact of skyline object deletion on the set of
skyline points. Two simple approaches are discussed here. The most straight-
forward method for skyline deletion maintenance is to recompute from scratch
(represented by the Baseline Deletion Algorithm BMAD) the b-SkyO. Clearly,
this approach is overly simplistic and may result in a high computational cost
because a considerable portion of evidential objects is not affected by the deleted
point at all. This BMAD computation can be easily optimized for the purpose
of deletion maintenance.

For a given skyline object Si ∈ b-SkyO, we define its b-dominance region
designed by b-DR(Si) as the whole objects space that is dominated by Si, and its
exclusive b-dominance region, designed by EDR(Si), which contains the objects
space that is only dominated by Si. For instance, in Fig. 2, the b-DR(a) can
be represented as rectangle ahfe. However, objects d1 and d2 are exclusively b-
dominated by object a. Thus, the exclusive b-dominance region of skyline object
a is defined as follows: EDR(a) = {d1, d2}. As a result, both d1 and d2 are
promoted in the skyline after object a is deleted. EDR(Si) presents the smallest
region that may contain the new skyline objects after deletion of Si. Intuitively,
EDR(Si) contains those points that must be added to the new skyline after Si

is deleted, since those points are exclusively dominated by Si.
Let b-SkyO denotes the original skyline, b-SkyO’(Si) denotes the new sky-

line after the deletion of skyline object Si, i.e., Si ∈ b-SkyO. Let ΔS denotes
the skyline objects that are expected to be added in the new skyline b-SkyO’,
then b-Sky′

O - b-SkyO = ΔS. ΔS is exactly the exclusive dominance region
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Table 3. b-Dominance region

Skyline Objects Si b-DR(Si)

S1= o2 {o1, o3}
S2 = o4 {o3}
S3 = o6 {o5}

of deleted object. The key issue now is to compute the EDR of the skyline
object Si in order to find the exact b-SkyO’ with optimal I/O performances.

Example 6. Suppose we have an evidential database that contains a set of objects
O= {o1, o2, . . . , o6} and b-SkyO = {o2, o4, o6}. Table 3 gives the objects that are
dominated by each object in b-SkyO, i.e., the b-dominance region of skyline
objects. Suppose o2 is deleted, only objects that are exclusively dominated by o2
are promoted as new skyline objects. However, o3 can not be promoted to the
b-skyline because it is dominated by one or more other objects. Table 4 shows
that o2 exclusively b-dominates o1. It is then promoted to be in the new skyline
b-SkyO’. As a result, b-SkyO’= {o1, o4, o6}

Table 4. Exclusive b-dominance region of skyline points.

Object Skyline Si EDR(Si)

o2 {o1}
o4 ∅
o6 {o5}

To compute the b-skyline over an evidential database, we refer to the algo-
rithm proposed in [9] called b-SkyO. In b-SkyO algorithm, while computing the
b-dominance degrees between objects in O, one can automatically save the exclu-
sive b-dominance region of each skyline point EDR(Si).

Algorithm 2. Incremental maintenance after Deletion (MAD)
Input: O: evidential database, b-SkyO: evidential skyline, Si: the skyline point

to delete;
Output: b-SkyO’: the new evidential skyline;

1 begin
2 b-Sky′

O ← b-SkyO ∪ EDR(Si);
3 return b-Sky′

O;
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As it can be seen, once information about exclusive b-dominance region of
each skyline object is available, we can detect via Algorithm 2, which object can
be directly promoted as a new skyline object.

4 Experimental Evaluation

In this section, we present an extensive experimental evaluation of our approaches.
More specifically, we focus on the scalability of our proposed methods for main-
taining the evidential skyline. For comparison purpose, we also implemented the
baseline algorithms for maintenance after insertion and after deletion referred to
as BMAI and BMAD. The generation of evidential data sets is controlled by the
parameters in Table 5. In each experimental setup, we investigate the effect of one
parameter, while we set the remaining ones to their default values. K means a thou-
sand of evidential objects.

Table 5. Parameters and examined values.

Parameter Symbol Values Default

Skyline size S 1K, 3K, 5K, 7K, 10K 10K

Number of objects in O n 10K, 30K, 50K, 70K, 100K 10K

Number of attributes d 2, 4, 6, 8 4

Number of focal elements/attribute f 3, 5, 7, 9 5

Figure 3 depicts the execution time of the implemented algorithms MAI and
BMAI w.r.t. S, d and f . Overall, MAI outperforms BMAI. More specifically,
MAI is faster than BMAI since it can detect immediately whether an inserted
object is better or not than another existing in the b-SkyO. A simple comparison
between the attributes values of P+ and the certain points IP and HD, makes
the algorithm MAI more efficient than BMAI. This later aims at comparing P+

against all objects in the skyline set in order to check if the newly inserted object
is in the evidential skyline or not. However, MAI decreases the research space
by discarding points which are worst than the Header Point on the one hand,
and inserting P+ in the b-skyline if it is better than the Ideal Point on the other
hand. As expected, Fig. 3a shows that the performance of the algorithm BMAI
deteriorates with the increase of the skyline size S. This is because when S
increases the number of dominance checks becomes larger. Observe that MAI is
one order of magnitude faster than BMAI since it can quickly identify if an object
can be in the skyline or not with a simple operation of comparison with both
Header Point and Ideal Point. As shown in Fig. 3b and c, MAI is not affected by
increasing d and f as it makes a simple check. However, BMAI does not scale with
d and f . Figure 3 depicts also the execution time of the implemented algorithms
MAD and BMAD w.r.t. n, d and f . Figure 3d shows that the execution time of
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the algorithm MAD slightly increases with the increase of n as we have to check
more and more objects in O, but it outperforms BMAD. Observe that BMAD
has a high computational cost if we increase all parameters. It is not the case
for MAD.

Fig. 3. Elapsed time for maintenance operations.

5 Conclusion

In this paper, we have addressed the important problem of efficiently maintain-
ing an evidential skyline result set in response to an object insertion or deletion.
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Our solutions guarantees I/O optimality and can be easily implemented. Exper-
imental results show that our methods outperform the naive methods. An inter-
esting future direction is to introduce the notion of confidence level to b-skyline
computing and updating in the spirit of [17].
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Abstract. The regression model is one of typical model for predicting
some values by analyzing existing numerical data collected in various
ways. If data are not crisp numbers, they are usually transformed into
numerical crisp values by means of some methods such as quantification
method. In companies’ decision making process, collected and referred
data usually have uncertainty which sometimes play an important roles
for business performance. One of authors have proposed a model deriving
predicting values with uncertainty by handling data with uncertainties.
In this paper, we review some method for this purpose, then describe the
model by applying it to some test cases.

Keywords: Prediction model · Interval data · Application test

1 Introduction

In various stages of decision making, properly predicted data from available
information are valuable, so many people not only in research area but also in
practical area are investigating and proposing several methods or methodologies
with certain model.

One of most typical model is the regression model based on relationships
between objective value and set of explanatory values which are collected before-
hand. For instance, the price of a production or a service are determined from sev-
eral factors, such as price of raw materials, selling expenses, consumer demand,
etc. The price also has high correlation coefficient with customer value of product
or service. Bradley T. Gale proposed a scenario where price satisfaction carries
40 % of the weight and non-price attributes 60 % in the customer-value equation,
and showed a figure representing the relationship between relative performance
overall score and relative price for luxury cars based on data [8, pp. 218–219]. In
that figure, the relative price is generically expressed in linguistic values such as
“Higher”, “Lower”, etc., but these values are translated into numerical values in
order to plot corresponding points on the performance-price plane.
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In the real world, it is usually happened that the collected data are expressed
in linguistic values, then these values are transformed into numerical ones for
applying well-known and authorized stochastic methods such as regression analy-
sis. When we estimate the price of a product, we should consider certain amount
of customer related factors which usually have uncertainties. Inoue et al. pro-
posed a sale price prediction model by fuzzy regression, [5], and one of authors,
Michihiro Amagasa, also proposed a method to handle data with uncertainty
in the model of regression analysis as an extension of their model, [2]. He has
aimed at constructing a model for a sale price prediction and proposed a regres-
sion model whose input and output are both expressed in fuzzy sets. In the paper,
outline of the model and necessarily formulas are described, however there are
no comparative studies nor even test examples presented. In this paper, we try
to study the model by considering it in some particular conditions, and give
some examples.

The rest of the paper is organized as follows: In the next section, we will
review some existing research especially on fuzzy regression model. The following
section is dedicated to the details of the Amagasa’s proposed model. Examples
to see how the proposed model works are coming up in the following section with
some discussions. The last section is the conclusion and the future works.

2 Existing Research on Regression Model

There are several researches and papers on fuzzy regression analysis, and there
are many systems in various fields in which fuzzy regression model are involved.
Here we refer some papers on essential models of fuzzy regression.

2.1 Original Model by Tanaka et al.

Among some of papers in this field, the most referred works are by Tanaka
et al. (e.g. [11,12]), in which the following type of regression model was proposed,

Y = A0 +
n∑

i=1

Aixi, (1)

where Y , Ai (i = 0, . . . , n) are symmetrical triangular fuzzy numbers (STFN)
and xi (i = 0, . . . , n) are crisp numbers. This formula looks like ordinary linear
regression model which is usually solved by the least square method, but in the
fuzzy case it can be solved by linear programming analysis so that minimizing
the total value of the range of intervals of Ai times the sum of input data under
several linear constraints.

Tanaka mentioned that this type of regression analysis is based on interval
regression analysis and error terms in ordinary regression analysis are absorbed
in intervals of objective fuzzy set, [13].



Prediction Model with Interval Data -Toward Practical Applications- 215

2.2 On Review by Shapiro

Arnold F. Shapiro published an article reviewing studies on the fuzzy regres-
sion and discussing issues related to Tanaka’s approach as the original work in
possibilistic approach, [14].

In the article, he pointed out followings as problematic situations, and the
reason why fuzzy regression model was required.

– Number of observations is inadequate, i.e., data set is not large enough
– Difficulty of verifying that the error is normally distributed
– Vagueness in the relationship between the independent and dependent vari-

ables
– Ambiguity associated with the event or degree
– Inappropriate assumption of linearity

On the other hand, he summarized some researches pointing out problems
of Tanaka’s model. Followings are some of identified problems in the paper.

– It is unclear what the relation is to a least squares concept, or that any measure
of best fit by residuals is present. (by Diamond, [3])

– The original Tanaka model was extremely sensitive to the outliers. (by Peters,
[9])

– There is no proper interpretation about the fuzzy regression interval. (by Wand
and Tsaur, [15])

– The fuzzy linear regression tends to have multi-collinearity when more inde-
pendent variables are collected. (by Kim et al., [6])

– etc.

There are many techniques to detect outliers of data set, and some of them
could be applied for fuzzy case. So the extreme sensitivity of fuzzy regression
model to outliers could be solved by removing them before hand.

Wang and Tsaur proposed a question on interpretation of fuzzy regression
interval, then they tried to give a proper interpretation in the paper [15].

The least squares concept can be applied for fuzzy regression model, and
Diamond implemented the fuzzy least squares regression (FLSR) model using
distinct measures, [3]. FLSR is actually the other type of important model for
fuzzy regression, and Shapiro also referred FLSR in his paper. We will refer this
type of fuzzy regression models in the next subsection.

2.3 Fuzzy Least Square Regression (FLSR)

Fuzzy regression model is classified into two classes according to type of app-
roach. One is by possibilistic approach introduced by Tanaka et al. and the other
is the least square approaches. The concept of FLSR model is similar to that
of ordinary regression model, that is to minimize the sum of distances between
given data and estimated values.

D’Urso adopts the least square approach, because he insists that “the possi-
bilistic approach (in which linear programming methods are utilized to estimate



216 M. Amagasa and K. Nagata

the regression coefficients) presents some difficulties in the estimation proce-
dures”, [4]. He handles several types of input-output data, such as crisp-fuzzy,
fuzzy-crisp, and fuzzy-fuzzy, with not only type1 fuzzy set but also type2 fuzzy
set. Here we describe the case of both input and output are type1 fuzzy set.

Let Xj (j = 1, . . . , k), Y be explanatory variables and the objective variable
respectively. As these variables are type1 fuzzy sets, they are expressed as Xj =
(xj , wj , zj) and Y = (y, p, q) with centers xj and y, left spread wj and p, and
right spread zj and q, respectively. When we have a dataset of n number of
data, {(Yi;Xi1, · · · ,Xik)}i=1,...,n with Xij = (xij , wij , zij) and Yi = (yi, pi, qi),
consider ⎧

⎨

⎩

y = (Xa + Wr + Zs) + ε = y∗ + ε
p = (by∗ + d1) + λ = p∗ + λ
q = (gy∗ + h1) + ρ = q∗ + ρ

, (2)

where b, d, g, h are numbers,

y =

⎛

⎜⎜⎜⎜
⎝

y1
...
...

yn

⎞

⎟⎟⎟⎟
⎠

,a =

⎛

⎜⎜⎜
⎝

a0

a1

...
ak

⎞

⎟⎟⎟
⎠

, r =

⎛

⎜⎜⎜
⎝

r0
r1
...
rk

⎞

⎟⎟⎟
⎠

, s =

⎛

⎜⎜⎜
⎝

s0
s1
...

sk

⎞

⎟⎟⎟
⎠

, ε =

⎛

⎜⎜⎜⎜
⎝

ε1
...
...

εn

⎞

⎟⎟⎟⎟
⎠

,

and

X =

⎛

⎜⎜
⎜⎜
⎝

1 x11 · · · x1k

...
... · · · ...

...
... · · · ...

1 xn1 · · · xnk

⎞

⎟⎟
⎟⎟
⎠

,W =

⎛

⎜⎜
⎜⎜
⎝

1 w11 · · · w1k

...
... · · · ...

...
... · · · ...

1 wn1 · · · wnk

⎞

⎟⎟
⎟⎟
⎠

,Z =

⎛

⎜⎜
⎜⎜
⎝

1 z11 · · · z1k
...

... · · · ...
...

... · · · ...
1 zn1 · · · znk

⎞

⎟⎟
⎟⎟
⎠

.

The problem is to find numbers b, d, g, h and vectors a, r, s minimizing

Δ(a, r, s, b, d, g, h) = πc|y − y∗|2 + πp|p − p∗|2 + πq|q − q∗|2, (3)

with certain weights πc, πp, πq. Here |v| means the norm of the vector v.
D’Urso gives practical examples for some input-output cases, one of which is

on price and its related factors such as cooking and cellar from Italian specialized
book on the Roman restaurant.

2.4 Dual Models for Possibilistic Regression

Guo and Tanaka have investigated the possibilistic regression model, and dual
possibilistic regression models with crisp input and fuzzy output are analyzed
in [7]. Although they consider not only linear model but also non-linear model,
here we refer only linear model.

Let Y = (y, p) = (y, p, p) be a symmetric fuzzy type output from crisp input
values for variables xj (j = 1, . . . , k). Then consider a model,

Y = A1x1 + A2x2 + · · · + Akxk, (4)
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with symmetric fuzzy coefficients Aj = (aj , rj) (j = 1, . . . , k). Once we have
the model, the value of Y is obtained by calculate (

∑k
j=1 ajcj ,

∑k
j=1 rj |cj |) with

given explicit values c1, . . . , ck for each variable. When we have a dataset of n
number of data, {(Yi;xi1, · · · , xik)}i=1,...,n with crisp xij and symmetric fuzzy
Yi = (yi, pi), we consider the upper regression model and the lower regression
model.

In the upper regression model, try to find fuzzy coefficients A∗
j = (a∗

j , r
∗
j )

such that

Minimizing: J(r∗) =
∑k

j=1 r∗
j

(
∑n

i=1 |xij |
)

,under the condition

Yi ⊆ Y ∗
i = A∗

1xi1 + · · · + A∗
kxik (i = 1, . . . , n).

(5)

Since the shapes of fuzzy set are supposed to be similar, the inclusion relation is
dependent only on the value of spread and the condition above can be expressed
by the following equations.

⎧
⎪⎨

⎪⎩

yi − pi ≥ ∑k
j=1 a∗

jxij − ∑k
j=1 r∗

j |xij |
yi + pi ≤ ∑k

j=1 a∗
jxij +

∑k
j=1 r∗

j |xij |
r∗
j ≥ 0

. (6)

In the lower regression model, try to find fuzzy coefficients Aj∗ = (aj∗, rj∗)
such that

Maximizing: J(r∗) =
∑k

j=1 rj∗

(
∑n

i=1 |xij |
)

,under the condition

Yi ⊇ Yi∗ = A1∗xi1 + · · · + Ak∗xik (i = 1, . . . , n).
(7)

Then the condition above can be expressed by the following equations.
⎧
⎪⎨

⎪⎩

yi − pi ≤ ∑k
j=1 aj∗xij − ∑k

j=1 rj∗|xij |
yi + pi ≥ ∑k

j=1 aj∗xij +
∑k

j=1 rj∗|xij |
rj∗ ≥ 0

. (8)

Guo and Tanaka also showed two theorems, one is on the existence of upper
regression model and the other is on that of lower regression model.

Theorem 1. (by Guo and Tanaka, [7])

1. There always exists an optimal solution in the upper regression model (5)
under (6) .

2. There exists an optimal solution in the lower regression model (7) under (8)
if and only if there exist a

(0)
1∗ , a

(0)
2∗ , . . . , a

(0)
k∗ satisfying

yi − pi ≤
k∑

j=1

a
(0)
j∗ xij ≤ yi + pi (i = 1, . . . , n). (9)
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Proof.

1. This is trivial as a sufficiently large r∗
j satisfies each condition of (6).

2. If there exist Aj∗ = (aj∗, rj∗) (j = 1, . . . , k) satisfying (8), then

yi − pi ≤ ∑k
j=1 aj∗xij − ∑k

j=1 rj∗|xij | ≤ ∑k
j=1 aj∗xij ,

yi + pi ≥ ∑k
j=1 aj∗xij +

∑k
j=1 rj∗|xij | ≥ ∑k

j=1 aj∗xij .

Conversely, for a
(0)
j∗ satisfying (9), put A

(0)
j∗ = (a(0)

j∗ , 0) and they satisfy the
condition (8). �

Remark: Original expression of the condition (9) is Yi ∩ Y
(0)
i∗ �= φ (the empty

set) for some A
(0)
i∗ = (a(0)

i∗ , r
(0)
i∗ ) with

∑k
j=1 r

(0)
j∗ |xij | = 0 for i = 1, . . . , n.

3 Details of Our Model

Souhir Charfeddine et al. proposed a system as original Tanaka’s extension using
h-cut with crisp input and L-R fuzzy output, [10]. Michihiro Amagasa already
proposed a possibilistic model with fuzzy input and fuzzy output using h-cut,
[2]. In the paper, he constructed the system with L-R fuzzy number for both
input and output. Here we first describe the system in much more general case
with proofs, then review it as the limited case. We also give some remarks some
of which are related to the value of h.

3.1 Situation and Necessary Settings

We consider two functions L and R satisfying the following conditions for the
left and right spreading parts of a fuzzy number, respectively .

(1) L and R are defined in the interval [0,+∞), and monotone decreasing,
(2) L(0) = 1 and R(0) = 1,
(3) L(1) = 0 and R(1) = 0.

Then the member-ship function of a L-R fuzzy number Y = (y, p, q) is defined as

μY (u) =

⎧
⎨

⎩

L(y−u
p ) if u ≤ y

R(u−y
q ) if y ≤ u

0 otherwise
. (10)

The inverse functions L−1(h) and R−1(h) are defined for any non-negative value
h by putting L−1(0) = 1 and R−1(0) = 1. And μY (u) = h implies

u =
{

y − pL−1(h) if u ≤ y
y + qR−1(h) if y < u

. (11)

We consider the same situation as in the Subsect. 2.3, i.e., there are dataset
of L-R fuzzy numbers {(Yi;Xi1, · · · ,Xik)}i=1,...,n with Xij = (xij , wij , zij) and
Yi = (yi, pi, qi).
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3.2 Proposed Model

We consider the possibilistic fuzzy regression model

Y = A1X1 + A2X2 + · · · + AkXk, (12)

with L-R fuzzy variables Y = (y, p, q) and Xj = (xj , wj , zj) and L-R fuzzy
coefficients Aj = (aj , rj , sj) (j = 1, . . . , k).

When the support of fuzzy number Y above h-cut line is denoted by [Y ]h,
we have

[Y ]h = [y − pL−1(h), y + qR−1(h)],
[Xj ]h = [xj − wjL

−1(h), xj + zjR
−1(h)],

[Aj ]h = [aj − rjL
−1(h), aj + sjR

−1(h)].

Applying commonly known multiplication and summation of L-R fuzzy numbers,
for example see [1], we have

[
∑k

j=1 AjXj ]h = [
∑k

j=1(aj − rjL
−1(h))(xj − wjL

−1(h)),
∑k

j=1(aj + sjR
−1(h))(xj + zjR

−1(h))]h,

and the range of the interval, J , is calculated by subtract the left end value from
the right end value. Then

J =
∑k

j=1{(zjR−1(h) + wjL
−1(h))aj

+(xj + zjR
−1(h))R−1(h)sj + (xj − wjL

−1(h))L−1(h)rj}.

In the same way as Guo and Tanaka did, we consider upper and lower models,
and describe the inclusion relation of the support of Yi and that of obtained fuzzy
number in the regression model for a given dataset.

Now let ZWj , XZj , XWj be as follows,
⎧
⎨

⎩

ZWj = (
∑n

i=1 zij)R−1(h) + (
∑n

i=1 wij)L−1(h)
XZj = ((

∑n
i=1 xij) + (

∑n
i=1 zij)R−1(h))R−1(h)

XWj = ((
∑n

i=1 xij) − (
∑n

i=1 wij)L−1(h))L−1(h)
. (13)

Then our upper model Y ∗ is constructed if we have A∗
j = (a∗

j , r
∗
j , s

∗
j ) such

that
Minimizing: J(A∗) =

∑k
j=1(ZWja

∗
j + XZjs

∗
j + XWjr

∗
j ),

where A
∗ = (A∗

1, . . . , A
∗
k),

(14)

under the condition that for all i
⎧
⎪⎨

⎪⎩

yi − piL
−1(h) ≥ ∑k

j=1(a
∗
j − r∗

jL
−1(h))(xij − wijL

−1(h))
yi + qiR

−1(h) ≤ ∑k
j=1(a

∗
j + s∗

jR
−1(h))(xij + zijR

−1(h))
r∗
j , s∗

j ≥ 0
. (15)

The lower model Y∗ is similarly constructed if we have Aj∗ = (aj∗, rj∗, sj∗)
such that

Maximizing: J(A∗) =
∑k

j=1(ZWjaj∗ + XZjsj∗ + XWjrj∗),
where A∗ = (A1∗, . . . , Ak∗),

(16)



220 M. Amagasa and K. Nagata

under the condition that for all i
⎧
⎪⎨

⎪⎩

yi − piL
−1(h) ≤ ∑k

j=1(aj∗ − rj∗L−1(h))(xij − wijL
−1(h))

yi + qiR
−1(h) ≥ ∑k

j=1(aj∗ + sj∗R−1(h))(xij + zijR
−1(h))

rj∗, sj∗ ≥ 0
. (17)

3.3 Some Properties of the Model

First we show the similar theorem to the Theorem 1 on the existence of models
under assumption on the given dataset.

Theorem 2. When xij − wijL
−1(h) > 0 (i = 1, . . . , n, j = 1, . . . , k), then

1. There always exists an optimal solution in the upper regression model (14)
under (15) .

2. There exists an optimal solution in the lower regression model (16) under (17)
if and only if there exist a

(0)
1∗ , a

(0)
2∗ , . . . , a

(0)
k∗ satisfying

{
yi − piL

−1(h) ≤ ∑k
j=1(xij − wijL

−1(h))a(0)
j∗

yi + qiR
−1(h) ≥ ∑k

j=1(xij + zijR
−1(h))a(0)

j∗
. (18)

Proof.

1. If xij−wijL
−1(h) ≥ 0 in (15), then xij > 0 from wij ≥ 0 and 0 ≤ L−1(h) ≤ 1.

Therefore xij + zijR
−1(h) are also non-negative, and sufficiently large r∗

j and
s∗
j satisfy the condition.

2. If there exist Aj∗ = (aj∗, rj∗, sj∗) (j = 1, . . . , k) satisfying (17), then we have
the condition (18). Conversely, for a

(0)
j∗ satisfying (18), put A

(0)
j∗ = (a(0)

j∗ , 0, 0)
and they satisfy the condition (17).

�

Remark 1: The assumption in the Theorem 2 are reasonable condition especially
when we consider fuzzy numbers. If the data for independent variables are given
in linguistic values, they are usually transformed into fuzzy numbers satisfying
the assumption. Even if given data has negative center value, they sometimes
can be transformed in the positive one by translating them by a certain constant
value.

Remark 2: The condition (18) represents the inclusion relation between Yi and
the resulted fuzzy number Yi∗. When the condition hold, then area between h-
cut horizontal line and the base-line (h = 0) of the Yi∗ is included in the area
of Yi.

Remark 2.1: In case of h = 1, L−1(1) = R−1(1) = 0 and (18) is reduced to

yi =
k∑

j=1

xija
(0)
j∗ ,

which means that the line segment of Yi∗ is in the area of Yi.
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Remark 2.2: In case of h = 0, L−1(0) = R−1(0) = 1 and (18) is reduced to
{

yi − pi ≤ ∑k
j=1(xij − wij)a

(0)
j∗ ≤ ∑k

j=1 xija
(0)
j∗

yi + qi ≥ ∑k
j=1(xij + zij)a

(0)
j∗ ≥ ∑k

j=1 xija
(0)
j∗

.

which means that Yi∗ ∩ Yi �= φ.

In Amagasa’s paper [2], although a multi-objective variables model is con-
structed, only the case that left spread and right spread are equal and L = R is
considered. In that case, ZWj , XZj , XWj in (13) become as follows,

⎧
⎨

⎩

Zj = ZWj = 2(
∑n

i=1 zij)L−1(h)
X+

j = XZj = ((
∑n

i=1 xij) + (
∑n

i=1 zij)L−1(h))L−1(h)
X−

j = XWj = ((
∑n

i=1 xij) − (
∑n

i=1 zij)L−1(h))L−1(h)
,

and the objective functions becomes

J(A) =
∑k

j=1(Zjaj + X+
j rj + X−

j rj)
= L−1(h)

∑k
j=1((

∑n
i=1 zij)aj + (X+

j + X−
j )rj)

= 2L−1(h)
∑k

j=1((
∑n

i=1 zij)aj + (
∑n

i=1 xij)rj)
.

Then the upper model Y ∗ for A∗
j = (a∗

j , r
∗
j ) is

Minimizing: J ′(A∗) =
∑k

j=1((
∑n

i=1 zij)a∗
j + (

∑n
i=1 xij)r∗

j ),
where A

∗ = (A∗
1, . . . , A

∗
k),

(19)

under the condition that for all i
⎧
⎪⎨

⎪⎩

yi − piL
−1(h) ≥ ∑k

j=1(a
∗
j − r∗

jL
−1(h))(xij − zijL

−1(h))
yi + piL

−1(h) ≤ ∑k
j=1(a

∗
j + r∗

jL
−1(h))(xij + zijL

−1(h))
r∗
j ≥ 0

. (20)

The lower model Y∗ is

Maximizing: J ′(A∗) =
∑k

j=1((
∑n

i=1 zij)aj∗ + (
∑n

i=1 xij)rj∗),
where A∗ = (A1∗, . . . , Ak∗),

(21)

under the condition that for all i
⎧
⎪⎨

⎪⎩

yi − piL
−1(h) ≤ ∑k

j=1(aj∗ − rj∗L−1(h))(xij − zijL
−1(h))

yi + piL
−1(h) ≥ ∑k

j=1(aj∗ + rj∗L−1(h))(xij + zijL
−1(h))

rj∗ ≥ 0
. (22)

4 Test Examples

Here we apply Amagasa’s model for some STFN type dataset. First dataset is
very small only with two independent variables, one is crisp and the other is
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fuzzy, shown in the Table 1. Using EXCEL’s solver to solve the LP problem of
the upper and lower model for h = 0.63, we have

Y ∗ = (2.7435, 2.7641)X1 + (0.6745, 0.0000)X2,
Y∗ = (2.5194, 0.0000)X1 + (0.6932, 0.0260)X2.

The spread value of the coefficient of X1 in Y ∗ seemed to be too large. But when
substituting X1 = (1.0, 0.2) and X2 = (8.0, 0.5) as a test data, the resulted values
Y ∗ = (8.2153, 3.65) and Y∗ = (8.0665, 1.0587) might be acceptable.

For comparison, calculate three regression formulas Yc(center values), Yl(left
end) and Yr(right end) of each dataset of [Yi]0.63, here we call a “simple FLSR
model”.

Yc = 0.71x2 + 2.559, Yl = 0.684x2 + 2.125, Yr = 0.733x2 + 2.984,

and the corresponding value for the test data is (8.2153, 0.7446, 0.7446).

Table 1. Crisp and fuzzy input 1st

(y, p) (x1, z1) (x2, z2)

1 (3.5, 1.5) (1.0, 0.0) (2.0, 0.5)

2 (4.5, 2.0) (1.0, 0.0) (2.0, 0.5)

3 (7.0, 2.5) (1.0, 0.0) (6.5, 0.5)

4 (9.5, 2.0) (1.0, 0.0) (9.5, 1.0)

5 (11.0, 3.0) (1.0, 0.0) (12.0, 1.0)

Next we consider 6 variable model with 8 data, as in Table 2, and performed
the calculation for h = 0.7 and 0.8. The ordinary regression formula for Yc

calculated from values for xi (i = 1, . . . , 6) is alway the same as

Yc = 0.162x1 − 0.056x2 + 0.104x3 + 0.353x4 + 1.232x5 + 0.005x6 − 0.394.

We show the resulted formulas of our proposed model and of the simple
FLSR model for each h, and give corresponding values by substituting X1 =
(1, 0),X2 = (8, 0.5),X3 = (1.5, 0.5),X4 = (3, 1),X5 = (4, 0.3),X6 = (5, 0.5) as
test data.

In case that h = 0.7

Y ∗ = (0.2898, 0)X1 + (0, 0.0774)X2 + (0.023, 0)X3

+(0.2633, 0.1434)X4 + (1.1619, 0)X5 + (0, 0.2111)X6

Y∗ = (0.4691, 0)X1 + (0.1082, 0)X2 + (0, 0)X3

+(0.3712, 0)X4 + (0.8873, 0.0894)X5 + (0, 0.0262)X6

Yl = 0.862x1 + 0.144x2 − 0.061x3 + 0.477x4 + 0.851x5 + 0.04x6 − 1.433,
Yr = −0.261x1 − 0.167x2 + 0.162x3 + 0.271x4 + 1.431x5 + 0.002x6 + 0.508.

The resulted values are Y ∗ = (5.7879, 2.7279), Y∗ = (6.0013, 1.18), and (5.488,
0.2016, 0.4218) from the simple FLSR.
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In case that h = 0.8

Y ∗ = (0.2421, 0)X1 + (0, 0.1004)X2 + (0.0416, 0)X3

+(0.273, 0.261)X4 + (1.1621, 0)X5 + (0, 0.0645)X6

Y∗ = (0.2903, 0)X1 + (0.0449, 0)X2 + (0.0409, 0)X3

+(0.3606, 0)X4 + (1.0115, 0.0884)X5 + (0, 0)X6

Yl = 0.7019x1 + 0.0924x2 − 0.022x3 + 0.4384x4 + 0.9556x5 + 0.0489x6 − 1.2015,
Yr = −0.512x1 − 0.248x2 + 0.2477x3 + 0.2495x4 + 1.5756x5 − 0.0672x6 + 0.6497.

The resulted values are Y ∗ = (5.7856, 2.5513), Y∗ = (5.8399, 1.0607), and (5.488,
0.0556, -0.112 ) from the simple FLSR.

Fig. 1. Fuzzy sets for h = 0.7 Fig. 2. Fuzzy sets for h = 0.8

We can see that the resulted fuzzy sets of our model have higher ambiguities
than that of the simple FLSR model, but they preserve at least the shape of
fuzzy set. In case of h = 0.8, the right end value of the simple FLSR model is
minus, so the shape of the corresponding set in the Fig. 2 is extremely sharp.

Table 2. Crisp and fuzzy input with six variables

(y, p) (x1, z1) (x2, z2) (x3, z3) (x4, z4) (x5, z5) (x6, z6)

1 (3.5, 1.5) (1.0, 0.0) (2.0, 0.5) (2.0, 0.3) (4.0, 0.5) (1.8, 0.0) (3.0, 0.5)

2 (4.5, 2.0) (1.0, 0.0) (2.0, 0.5) (1.0, 0.5) (3.5, 0.5) (2.8, 0.3) (6.0, 0.5)

3 (7.0, 2.5) (1.0, 0.0) (6.5, 0.5) (2.0, 0.5) (5.0, 0.5) (4.6, 0.3) (4.0, 0.5)

4 (9.5, 2.0) (1.0, 0.0) (9.5, 1.0) (1.0, 0.2) (6.0, 1.0) (6.5, 1.0) (2.0, 0.0)

5 (10.0, 3.0) (1.0, 0.0) (10.0, 1.0) (3.0, 0.5) (4.5, 0.0) (7.2, 0.5) (6.0, 0.0)

6 (8.0, 2.0) (2.0, 0.0) (3.0, 1.0) (1.0, 0.5) (5.6, 1.0) (5.0, 0.3) (3.0, 0.3)

7 (6.0, 1.5) (2.5, 0.0) (5.0, 0.5) (5.0, 1.0) (2.3, 0.5) (4.0, 0.5) (2.0, 0.5)

8 (7.0, 1.5) (1.5, 0.0) (4.0, 0.5) (6.0, 0.5) (8.6, 0.5) (3.0, 1.0) (4.0, 0.5)
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5 Conclusion and Discussion

We have reviewed some regression models of several types of input-output. Our
purposes is to see the possibility of application of our proposed model to real
problems, but it is still on the way. We could see that the model is feasible, and
the resulted fuzzy values are reasonable as long as judging from the examples.

It is not easy to see advantage or disadvantage of our model just from the
calculated values in the previous section. We need a dataset conforming to reality
and some standard to see what kind of values are effective for decision making
in a certain business performance.
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Abstract. The paper addresses the robustness of multi-objective opti-
mization problems with fuzzy data, expressed via triangular fuzzy num-
bers. To this end, we introduced a new robustness approach able to deal
with fuzziness in the multi-objective context. The proposed approach is
composed of two main contributions: First, new concepts of β-robustness
are proposed to analyze fuzziness propagation to the multiple objectives.
Second, an extension of our previously proposed evolutionary algorithms
is suggested for integrating robustness. These proposals are illustrated on
a multi-objective vehicle routing problem with fuzzy customer demands.
The experimental results on different instances show the efficiency of the
proposed approach.

Keywords: Robustness · Multi-objective optimization · Triangular
fuzzy numbers · Evolutionary algorithms · VRP

1 Introduction

Multi-objective problems under uncertainty have gained more and more atten-
tion in recent years since they closely reflect the reality of many practical applica-
tions. These problems are characterized by the necessity of optimizing simultane-
ously different objectives, while considering that some input data are uncertain
and without knowing what their full effects will be. Indeed, input uncertainty in
a multi-objective problem can affect the set of objectives and/or constraints to
be satisfied and thereby may lead to great deviations on the quality of solutions.
To handle such a problem, specific optimization algorithms that consider uncer-
tainty propagation along the decision making process should be used. Then, it
is important to examine the performance of these algorithms and to analyse the
influence of unavoidable uncertainties on the generated solutions. To this end,
robustness analysis becomes necessary since it is intuitively connected to the
idea that in the presence of uncertain inputs, the outputs should be relatively
insensitive. Moreover, the goal of robustness in multi-objective optimization is
to achieve a set of solutions that are not only optimal but also safe, reliable
and robust. Several and various approaches exist in the literature to assess sen-
sitivity and robustness of achieved results. Some of them use a combination of
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 225–237, 2016.
DOI: 10.1007/978-3-319-40581-0 19
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Monte-Carlo simulation and optimization to generate robust solutions [16]. Some
others consider min-max criteria to produce solutions having the best possible
performance in the worst-case [1,7]. However rather than gambling on the pos-
sible performance, it may be more efficient to give a lower limit on the overall
acceptable performance and to state the confidence in being able to achieve that
level. This is the main idea of β-robust approach [3] to take into account the
subjective aspect of robustness through a target level specified by the decision
maker. Unfortunately, all these approaches are limited to a single-objective only
and often fail to consider the robustness requirement for real-world applications.
Indeed, there are very few approaches regarding the robustness in multi-objective
setting [2,5,6]. In this paper, we first propose to generalize the standard β-
robustness concepts to our fuzzy multi-objective context. Then, we suggest to
extend two fuzzy evolutionary algorithms from our previous work, for integrating
robustness. Otherwise, the new robustness concepts are included into the search
process of our algorithms in order to ensure the convergence towards robust
optimal solutions. The remainder of this paper is organized as follows: Sect. 2
recalls some known concepts on which our approach is based. Section 3 defines
the new β-robustness concepts after briefly describing the problem and summa-
rizing our previous achievements. Section 4 presents the algorithmic refinements
for integrating robustness and finally Sect. 5 reports the obtained results.

2 Background

We define here a multi-objective optimization problem (MOP) in both deter-
ministic and uncertain cases and discuss some existing robustness approaches.

2.1 Deterministic vs. Uncertain MOP

A deterministic MOP usually involves the simultaneous optimization of two
or more conflicting objectives and implies obtaining not only a single solution
but a set of solutions called Pareto optimal set [17]. Formally, a MOP defined
in the sense of minimization of all objectives, consists of solving the following
mathematical program:

min F (x) = (f1(x), . . . , fn(x)) s.t. x ∈ X (1)

where F (x) is the vector of n (n ≥ 2) objective functions to be minimized and
x = (x1, . . . , xk) is the vector of decision variables from the feasible decision
space X ⊆ R

n. In the objective space, F can be defined as a cost function by
assigning an objective vector y = (y1, . . . , yn) which represents the quality of
solutions.

F : X → Y ⊆ R
n, F (x) = y = (y1, . . . , yn) (2)

While deterministic MOPs have been extensively discussed and reviewed in the
literature [17], only few studies exist today for dealing with uncertain MOPs.
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An uncertain MOP is characterized by the necessity of optimizing simulta-
neously several objectives in the presence of some uncertain data. Uncertainty
in such problems may be associated with the key elements of decision making
such as preference parameters, decision variables, constraints and/or objectives.
In our study, we focus on the most critical and difficult case where uncertainty
is assumed to occur in the objective functions. Formally, an uncertain MOP can
be defined as follows:

min F (x, ξ) = (f1(x, ξ), f2(x, ξ), . . . , fn(x, ξ)) s.t. x ∈ R
n, ξ ∈ U (3)

where F is the vector of uncertain objectives that may depend on uncertainty
scenarios U and ξ = (ξ1, ξ2, . . . , ξq) is the vector of uncertain variables. It should
be noted that ignoring uncertainty propagation in the optimization process can
lead to very poor decisions with often misleading simulation results. It becomes
therefore necessary to estimate the influence of possible uncertainties on outputs.
So far, very little research works investigate the combination of uncertain multi-
objective optimization and output sensitivity. In fact, almost all the existing
approaches for handling a MOP with uncertain objectives are limited to trans-
form the problem into a mono-objective one by aggregating the set of objectives
or also to reduce it to a deterministic MOP by using expectation values. Only
few approaches have been developed for dealing with an uncertain MOP as-
is without erasing any of its multi-objective or uncertain characteristics [10].
Besides, the robustness is not well handled by these approaches. Thus, a need
for special methods able to deal with uncertainty in multi-objective problems
while respecting their flexibility and robustness, is evident.

2.2 Robustness and Some Related Approaches

Robustness is a very important and essential concept for many optimization
problems in diverse areas. It can be described as the ability of a resolution sys-
tem to remain unaffected despite potential perturbations due to uncertain para-
meters. The approaches to cope with robustness in decision making are multiple
and varied. For instance, in [16] a robust approximation approach combined with
the Monte Carlo method is introduced. In [1,7], min-max regret approaches are
applied to seek solutions having the best possible performance in the worst case.
Yet, these robust min-max approaches may be deemed as extremely conservative
when the worst case is not crucial and so an overall acceptable performance is
preferred. Consequently, other approaches are introduced to take into account
the subjective aspect of robustness through a target level specified by the deci-
sion maker. Among them, we cite the popular β-robustness approach [3] to which
we are interested in this work. The goal of this approach is to maximise the like-
lihood that a solutions’s actual performance is not worse than a given threshold.
In fact, many studies have already used the β-robustness to assess simulation
results. For example, in [3] the authors developed constraint models to achieve
β-robust solutions that minimize the risk of costs exceeding the fixed threshold.
In [14] the authors proposed a non-linear programming model to seek β-robust
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solutions minimizing the probability of achieving poor system performance and
in [13] they introduced concepts of necessary and possible β-robustness. How-
ever, all these approaches can only deal with specific mono-objective problems
for which they have been developed. In other words, until now, only few studies
are devoted to robustness in multi-objective optimization where the aim is to
find the set of robust non-dominated solutions. For example, in [9], a robust
multi-objective genetic algorithm is proposed to achieve the trade-off between
robustness and optimality. In [5], robustness is defined by either adding con-
straints to fix a predefined limit of variation or by replacing objectives with
their mean functions. In [2], a multi-objective approach based on the degree of
robustness of solutions is presented. In [20], an hypervolume-based robustness
approach is considered and recently in [6] the concept of min-max robustness
is extended to multi-objective optimization. Unlike these approaches, the app-
roach we propose readily generalizes the standard β-robustness concepts to the
multi-objective fuzzy context. Specifically, our approach retains the basic idea
of β-robustness and extends it for evaluating any multi-objective problem with
fuzzy data, especially with fuzzy-valued objective functions. To the best of our
knowledge, there was no similar work done in the multi-objective optimization
domain that involves β-robustness concepts in the context of fuzzy objectives.

3 Proposed Approach

This section presents the new β-robustness concepts for fuzzy MOPs and briefly
describes the treated problem.

3.1 Problem Description

In the following, we focus on MOPs with fuzzy data in which fuzziness can be
associated with the linguistic vagueness or ambiguity of information due to lim-
ited knowledge. Indeed, fuzzy sets are frequently used in many real-world appli-
cations since they offer a natural and efficient way to express different aspects of
uncertainty [19]. First, we assume that uncertain input data are modeled using
the most popular and simplest shape of fuzzy sets, namely, triangular fuzzy num-
bers or TFNs. A TFN denoted A = [a, â, a] with an interval of possible values
[a, a] and a modal value â, is represented by a piecewise linear membership func-
tion μA which assigns a value within [0, 1] to each element in A (see Fig. 1). In
practical use of TFNs, the two dual measures: Possibility Π and Necessity N
can be applied to express the degree of plausibility of any subset of A. Formally,
the degree that A is less than a real number r may be derived from measures
Π(A ≤ r) = supA≤r μA(x) and N(A ≤ r) = 1 − Π(A>r) = 1 − supA>r μA(x),
which are given by:

Π(A ≤ r) =

⎧
⎨

⎩

1 if â < r
r−a
â−a if a < r<â,

0 if a ≥ r.

N(A ≤ r) =

⎧
⎨

⎩

1 if a < r
r−â
a−â if â ≤ r ≤ a

0 if â ≥ r.

(4)
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Fig. 1. Triangular Fuzzy number

As illustrated in Fig. 1, for any value of r ∈ R, N(A ≤ r) ≤ Π(A ≤ r). This
means that if N is positive, we are somewhat certain that Π matches the require-
ment. For this reason, the necessity degree is of great importance than the pos-
sibility degree [4]. Passing now to the semantic of problem outputs, we suppose
that fuzziness of input data is propagated through the optimization process. This
propagation has an impact on the objective functions that will be disrupted by
the used fuzzy shape. Consequently, the problem outcomes or solutions will be
also affected by fuzziness and obtained as vectors of triangular fuzzy values.
Therefore, a fuzzy MOP with fuzzy-valued objectives can be formulated as:

F : X → Y ⊆ (R × R × R)n,

F (x) = y =

⎛

⎝
y1 = [y1, ŷ1, y1]

...
yn = [yn, ŷn, yn]

⎞

⎠ (5)

To deal with such a problem, we have previously proposed a framework composed
of two main stages:

– A fuzzy Pareto dominance for ranking the generated fuzzy-valued solutions
since the standard dominance can only be applied for deterministic case [11].

– An extension of two Pareto-based evolutionary algorithms in order to enable
them working in fuzzy space. The extended algorithms, denoted E-SPEA2 and
E-NSGAII, use the fuzzy Pareto dominance as a fitness assignment strategy
[12]. As well, the source code of these algorithms is shared via: http://www.
oumaymabahri.com/sourcecodes.

While our framework can be efficiently applied for solving any MOP with fuzzy-
valued objectives, there are still some limitations that need to be addressed.
In fact, for performance assessment, we have approximated the generated fuzzy
solutions into crisp ones and then simply applied classical multi-objective indi-
cators (i.e., Hypervolume and epsilon indictors). However, fuzziness of solutions
must not be ignored because if the input data or domain parameters are highly
ambiguous, how can the optimizer simply state that the outputs are robust? It
may be feasible only for simplicity or other practical reasons as long as the algo-
rithm performance will not be affected. Moreover, approximating the generated
fuzzy solutions to exact values may be criticised since it reduces the informa-
tion provided and so affects their reliability. To this end, sensitivity analysis
should be performed in order to draw further conclusions about the robustness
of solutions.

http://www.oumaymabahri.com/sourcecodes
http://www.oumaymabahri.com/sourcecodes
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3.2 New β-Robustness concepts for fuzzy MOPs

We present here a generic robustness approach able to determine robust solu-
tions for any fuzzy MOP, in which fuzziness is modeled via triangular fuzzy
numbers. To illustrate the new approach, we consider a well-studied combinato-
rial problem: the MO-VRPTW-UD (Multi-objective Vehicle Routing Problem
with Time Windows and Uncertain Demands). The main idea of this problem
is to find optimal routes for a fleet of identical vehicles which serve a set of
customers whose exact demands are known only upon arrival at the customer’s
location. Besides, every route starts and ends at a central depot and each cus-
tomer has a time window for its delivery. A detailed description of the problem is
given in [18]. Without loss of generality, we assume that we have to minimize two
objectives, namely the total traveled distance and total tardiness time. Moreover,
the uncertain customer demands are assumed to be triangular fuzzy numbers.

Example 1. Figure 2 is an illustration of the MO-VRPTW-UD, with a central
depot, 3 vehicles (V 1, V 2, V 3) and a set of 8 customers represented by nodes.
Each customer has a triangular fuzzy demand; the fuzzy demand of a customer
i = 1, . . . , 8 is dmi = [dmi, d̂mi, dmi]).

Fig. 2. Example of MO-VRPTW-UD

As the sequence of customers and service time for every vehicle depend primely
on the amount of demands to be delivered, the transportation cost will be clearly
disrupted by the fuzziness of demands. In consequence, both objective functions
are affected by the used fuzzy shape and obtained as triangular fuzzy vectors.
The challenge is so to achieve a set of robust optimal routes with respect to the
fuzzy-valued objectives. Then as we want to generalize the β-robustness concepts
to fuzzy multi-objective context, our aim becomes to obtain robust routes that
yield actual cost no worse than a given quality threshold. We start by defining
the β-robust solutions of the MO-VRPTW-UD problem:
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Let D = [D, D̂,D] and T = [T , T̂ , T ] denote respectively triangular fuzzy
variables for the traveled distance and the tardiness time, we assume that:

Definition 1. β-Robust Routes are routes with a certain confidence that the
total traveled distance D and tardiness time T will be less than a given threshold
of desired optimal cost.

Notice that, in real-life problems, a quality threshold is often provided by one
or more experts opinions. However, as we are treating synthetic problems, such
threshold is not always available. Then, knowing that the objective functions
in a MOP are usually considered to be independent from each other (i.e., they
depend only on the decision variable), we suggest to define a threshold to each
objective as follows:

Let D∗ be a traveled distance threshold, T ∗ be a tardiness time threshold
and let A = [a, â, a] and B = [b, b̂, b] be the best known solutions for D and T
respectively, then we have:

D∗ = â + TF × (a − â), T ∗ = b̂ + TF × (b − b̂) (6)

where TF is a given tightness factor of best possible performance selected by a
parametric analysis which consists of examining the variability and closeness of
triangular fuzzy values to the peaked ones (i.e. the most plausible values).

The issue now is so to maximise the confidence that the traveled distance D
and tardiness time T of each route will “for sure”be less than the fixed thresholds
D∗ and T ∗, respectively. Thus, we propose to maximize the degrees of necessity
that each objective value lies within its confidence level. In possibilistic setting,
these degrees are provided by the necessity measure N which gives a pessimistic
view in decision making (see Eq. 5). In what follows, we assume that the neces-
sary β-robustness, denoted βi

N for every objective i, is equivalent to the necessity
degree N and so should ideally be close to 1 (i.e., the higher βi

N is the better).
Subsequently, suppose we have computed the βN degrees for both objectives:
β1

N = N(D ≤ D∗) and β2
N = N(T ≤ T ∗), the question is how to evaluate the

obtained values. More generally, we need to check if a solution has a good or
insufficient level of necessary robustness based on its different βN values. We
suggest hence to use the t-norm operator min [4] which is classically applied to
interpret the conjunction. Based on the min operator, we propose to aggregate
the set of βN degrees of each solution:

(β1
N ∩ β2

N ) = min (β1
N , β2

N ) (7)

This aggregation allows us to make a decision based on the most pessimistic
value given by the minimum necessary robustness. Thereafter, to avoid achieving
a solution with low βN values, we propose to enhance them with an interval of
desired robustness level [R, 1] where R is the lowest value fixed by the decision
maker. The necessary robustness of our problem may be defined as follows:

Definition 2. A route with traveled distance D and tardiness time T is said to
be necessarily βN -robust w.r.t. thresholds D∗ and T ∗ respectively, iff:

β1
N = N(D ≤ D∗), β2

N = N(T ≤ T ∗) and min (β1
N , β2

N ) ∈ [R, 1]
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Example 2. We consider an example of βN -robustness evaluation with a set of 4
solutions {x1, x2, x3, x4}, their corresponding βN degrees: βN (x1) = (0.30, 0.60),
βN (x2) = (0.55, 0.80), βN (x3) = (0.95, 0.15) and βN (x4) = (0.75, 1.00) and a
confidence parameter R = 0.5 to suppose that the attitude of decision maker is
neither pessimistic nor optimistic. We clearly remark that solutions x1 and x3

are not robust because the minimum of their βN values is low than the confidence
interval [0.5, 1]: min βN (x1) = 0.3 and minβN (x3) = 0.15. On the other hand,
solutions x2 and x4 are judged as necessary robust since they reach the desired
level of robustness (i.e., all their βN values are within [0.5, 1]).

Furthermore, as necessity and possibility are inter-definable and their dual
expression N(A) = 1 − Π(¬A) induces N(A) ≤ Π(A), we conclude that by
maximising the necessary robustness of any solution, we are also maximising its
possible robustness denoted βi

Π for every objective i = (1, . . . , n). Obviously, we
have:

Definition 3. A route with traveled distance D and tardiness time T is said to
be possibly β-robust w.r.t. thresholds D∗ and T ∗ respectively, iff:

β1
Π = Π(D ≤ D∗) = 1 − N(D>D∗) and β2

Π = Π(T ≤ T ∗) = 1 − N(T>T ∗).

Finally, βN and βΠ can be seen as lower and upper bounds of the degree that a
solution is β−robust and so we may deduce that:

Definition 4. If a route is necessarily and possibly β-robust w.r.t. the same
thresholds, then we have:

∀i = {1, . . . , n}, βi
N ≤ βi ≤ βi

Π

4 Algorithmic Refinements

To develop the new β-robustness approach, we suggest to extend our previously
proposed evolutionary algorithms E-SPEA2 and E-NSGAII [12]. The idea is
how to integrate the robustness concepts as evaluation criteria into the search
process of these algorithms. As described above, our aim is to solve the MO-
VRP-FD while maximizing the necessary β-robustness of routes. Notice that
the discussion to follow focuses only on the necessary robustness βN since the
possible robustness βP can always be deduced from the dual relationship. In
order to enable the algorithms achieving β–robust solutions, we suggest firstly
to replace the fitness function of each solution by the degree of necessary robust-
ness, specifically with the minimum of its βN values (Eq. 7). Yet, the initial
random population usually generates poor solutions that may yield a βN value
closer or equal to zero for any reasonable threshold and thereby will prevent
the algorithm from converging more quickly. Therefore to avoid returning zero-
fitness values, we follow the method of “adaptive” threshold [13] which consists
in a set of successive smaller thresholds with linearly decreasing approximations.
For the MO-VRPTW-UD problem, we begin the initial population with two first
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thresholds D∗
0 and T ∗

0 obtained as most pessimistic values of the best traveled-
distance and tardiness-time. Then, populations and thresholds are generated
iteratively with more demanding values until reaching D∗ and T ∗ which remain
fixed in the last generations. These latter thresholds are used to define the nec-
essary βN robustness. Secondly in order to perform selection, the quality of each
solution should be evaluated according to a Pareto dominance relationship. At
this level, we may simply use the fuzzy Pareto dominance from our previous work
[11] for comparing or ranking the generated triangular fuzzy solutions. Hence,
this dominance is not enough to evaluate their quality and cannot discriminate
between the robust ones. Thus, we suggest to extend it for integrating the β-
robustness criterion. We present here the refinements of three mono-objective
dominance relations: Total β-robust dominance, Strong β-robust dominance and
Weak β-robust dominance.

Definition 5. Total β-robust dominance
Let y = [y, ŷ, y] and y′ = [y′, ŷ′, y′] two triangular fuzzy solutions. y totally and
robustly dominates y′ (denoted by y ≺β

T
y′) iff:

(y<y′) and (βN (y) ≥ βN (y′))

Definition 6. Strong β-robust dominance
Let y = [y, ŷ, y] and y′ = [y′, ŷ′, y′] be two triangular fuzzy solutions. y strongly
and robustly dominates y′ (denoted by y ≺β

S
y′) iff:

(y ≥ y′) ∧ (ŷ ≤ y′) ∧ (y ≤ ŷ′) ∧ (βN (y) ≥ βN (y′))

Definition 7. Weak β-robust dominance
Let y = [y, ŷ, y] ⊆ R and y′ = [y′, ŷ′, y′] ⊆ R be two triangular fuzzy solutions.

y weakly and robustly dominates y′ (denoted by y ≺w y′) iff:

[(y<y′) ∧ (y<y′)] ∧ [βN (y) ≥ βN (y′)]∧
[((ŷ ≤ y′) ∧ (y>ŷ′)) ∨ ((ŷ>y′) ∧ (y ≤ ŷ′)) ∨ ((ŷ>y′) ∧ (y>ŷ′))].

Afterwards, the Pareto dominance between vectors of fuzzy solutions is deter-
mined based on the type of mono-objective dominance found for all objectives.
For instance, a β-robust Pareto dominance holds if there is at least a total or
strong β-robust dominance in one of objective and a weak β-robust dominance
in another. All these dominance relations are then integrated into the search
process of each algorithm, especially into the fitness assignment strategy. Finally,
to implement the new robust evolutionary algorithms denoted R-SPEA2 and R-
NSGAII, we have followed and extended the repository of classical algorithms
(i.e., SPEA2 and NSGAII) of platform ParadisEO-MOEO [8].

5 Experimental Results

For the experimental study, we have conducted some tests to examine the robust-
ness of obtained solutions in solving the MO-VRP-FD problem. In fact, we have
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used 56 fuzzy instances sampled uniformly at random from the crisp Solomon’s
benchmark [15]. More precisely, we have generated for each Solomon’s instance
its fuzzy sampled version in which the exact demand values are replaced by tri-
angular fuzzy values in the following manner: First, the kernel value (d̂m) for
each triangular fuzzy demand dm is kept the same as the crisp demand value
dmi of the current instance. Then, the lower (dm) and upper (dm) bounds of
this triangular fuzzy demand are uniformly sampled at random in the inter-
vals [50%dm, 95%dm] and [105%dm, 150%dm], respectively. All the 56 sam-
pled fuzzy instances were then tested on the refined algorithms R-SPEA2 and
R-NSGAII. In parametric analysis, we have taken the following values: a ran-
domly initialized population with size = 100, crossover rate = 0.8, mutation
rate = 0.05, tightness factor TF = 0.75 and number of generations = 1000 from
which the last 100 use the threshold values D∗ and T ∗. Both algorithms have
been executed 30 times on each fuzzy instance, i.e., 2 × 56 × 30 = 3360 runs.
For empirical assessment, we follow the method of fuzzy semantics from [13]
and use Monte-Carlo simulations. In our setting, fuzzy routes are taken as a-
priori solutions found when the customer demands are not exactly known. Each
route consists of a precise sequence of visits to customers with minimum traveled-
distance and tardiness-time. This sequence is necessary to evaluate the behaviour
of solutions on a family of N crisp instances interpreted as possible a-posteriori
realizations. To this end, we have generated, for each fuzzy instance, 10 deter-
ministic samples by simulating exact demands at random according to different
probability distributions which are coherent with the triangular fuzzy demands.
We have then used the sequences of customers provided by the resolution of
fuzzy instances in order to obtain a simulation of real traveled distance and
tardiness time that may be under or above the thresholds D∗ and T ∗. Finally,
we have computed the proportion n of those values among the N which are
below the thresholds. This gives us an empirical measure of the real robustness
n-rob, i.e., a good degree of βN should correspond to a high n. Table 1 presents
the robustness results for six fuzzy instances (labeled as Fuzz-C101, Fuzz-C201,
etc.) and it shows for each instance, the thresholds D∗ and T ∗, the βN values
of the best solution across 30 runs, the robustness of simulated proportion n
and the runtime in seconds. Notice that, the lowest desired level of robustness is
already fixed to R = 0.25. As we can see, the necessary βN robustness is >0 in
all the cases, so the possible robustness βΠ is 1. Then observing the minimum
of βN degrees, we can deduce that almost all solutions provide a good level of
robustness (min(β1

N , β1
N ) ∈ [0.25, 1]). Besides, the simulated real robustness val-

ues n−rob are always 1 or ideally close to 1 even when βN is low. This means
that the traveled-distance and tardiness-time values for all simulations are below
the fixed thresholds. It should be noticed that we achieved the same robustness
results for other not shown instances, since they are completely similar and
exhibit the same trend. In that sense, we may conclude that the robustness we
are looking for in our solutions is satisfiable. Figure 3 illustrates the results by
box plots, such that each box presents the min(βN ) values of 30 runs of each
algorithm tested on one fuzzy instance. Clearly, for the six illustrated instances,
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Table 1. Robustness results of R-SPEA2 and R-NSGAII

Instances Algorithms D∗ T ∗ β1
N β2

N min(β1
N , β2

N ) Runtime n−rob

Fuzz-C101 R-SPEA2 2548.00 272894.25 0.647 0.553 0.553 7.4 s 0.996

R-NSGAII 2781.00 281100.50 0.489 0.502 0.489 8.5 s 0.892

Fuzz-C201 R-SPEA2 2958.75 286533.50 0.469 0.704 0.469 7.5 s 0.954

R-NSGAII 3101.75 301994.00 0.233 0.641 0.233 9.1 s 0.912

Fuzz-R101 R-SPEA2 2504.25 219522.00 0.732 0.815 0.772 6.6 s 0.989

R-NSGAII 2822.50 220531.00 0.471 0.723 0.471 7.4 s 0.869

Fuzz-R201 R-SPEA2 3018.50 214915.00 0.623 0.913 0.623 7.7 s 0.994

R-NSGAII 3214.50 250975.00 0.554 0.736 0.554 8.9 s 0.979

Fuzz-RC101 R-SPEA2 3747.00 295513.50 0.389 0.642 0.389 8.3 s 0.934

R-NSGAII 3998.00 309812.00 0.215 0.571 0.215 9.0 s 0.887

Fuzz-RC201 R-SPEA2 3879.00 318017.50 0.361 0.617 0.361 7.9 s 0.997

R-NSGAII 4086.00 325519.00 0.327 0.496 0.327 9.5 s 0.985

Fig. 3. Comparison of R-SPEA2 and R-NSGAII

the boxes of R-SPEA2 are less sensitive to variations and higher than those of
R-NSGAII. Consequently, R-SPEA2 provides better robust solutions than the
R-NSGAII.

6 Conclusion

In this paper, we have presented a new approach of β-robustness that allows us
to achieve robust optimal solutions for any fuzzy multi-objective problem. We
have also described an extension of two evolutionary algorithms for integrating
robustness. Moreover, we have applied our approach on a vehicle routing prob-
lem and empirically assessed the actual robustness of obtained solutions using
Monte-Carlo simulations. As future work, we intend to extend multi-objective
performance indicators (i.e., Hypervolume indicator) to the robust fuzzy context.
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It would also be interesting to validate the proposed approach for different fuzzy
multi-objective problems.
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Abstract. ELECTRE-III is a well-known multi-criteria decision analysis
method that ranks a set of alternatives in terms of a set of heterogeneous eval-
uation criteria. It is based on constructing and exploiting a pairwise outranking
relation between alternatives, which are defined with numerical and ordinal
values. However, nowadays it is very common the use of descriptive linguistic
tags, which is information that requires a qualitative treatment rather than a
numerical one. In this paper we propose to store the user preferences about a set
of tags in an ontological structure and to use this knowledge to construct the
outranking relation by means of a semantic analysis of the tags associated to the
alternatives. Uncertainty is handled by means of fuzzy concordance and dis-
cordance functions. The method is illustrated with a case study related to the
recommendation of touristic activities.

Keywords: MCDA � Ontology � Semantic profile � Outranking relations

1 Introduction

The problem of ranking a set of alternatives has been thoroughly studied in Multi-
Criteria Decision Aid (MCDA). Some well-known ranking methods, like the ELEC-
TRE (ELimination and Choice Expressing REality) family [2], construct a preference
structure from a pairwise comparison of a set of possible alternatives, which is based on
two voting-inspired ideas: concordance (or “the choice of the majority”) and discor-
dance (or “the respect to minorities”). These outranking techniques have been widely
used in many fields [4].

An important advantage of these methods is that they can work directly with purely
ordinal scales, without requiring their transformation into abstract ones with an arbi-
trary range. A second advantage is that indifference and preference thresholds can be
used to model uncertain knowledge. However, one of the main shortcomings of
ELECTRE is that alternatives can only be defined in terms of numerical and ordinal
criteria. Nowadays it is becoming increasingly common to find decisional situations in
which alternatives may also include non-numerical information, represented in the
form of semantic criteria, which may take as values the concepts of a given domain
ontology. For example, the description of a touristic destination may include numerical
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criteria (e.g. number of inhabitants, average temperature) but also semantic ones (e.g.
sports that may be practiced in the city, cultural attractions that may be visited).

Ontologies are knowledge structures that commonly store the main concepts of a
domain, the taxonomic and non-taxonomic relationships between them, and their
attributes [8]. A semantic user profile [10] may contain the degree of preference of the
user with respect to some domain concepts. This information may be exploited to
compare and rank a set of alternatives. The main aim of this paper is to show how
ELECTRE-III, a well-known outranking method of the ELECTRE family, may be
enhanced to deal with alternatives defined on semantic criteria. The contribution of this
paper is twofold. First, we propose a mechanism by which the preference scores
missing in a semantic user profile may be estimated from the known ones, using the
taxonomical relationships of the ontology. Second, we present a method that constructs
an outranking relation on a set of alternatives defined on semantic multi-valued criteria
using a new definition of the concordance and discordance fuzzy functions. This
relation is later exploited to rank the alternatives and show the best ones to the user so
that she can take the final decision.

The rest of the paper is organised as follows. The next section explains how the
classical ELECTRE-III method builds an outranking relation that is used to rank the
alternatives in a partial pre-order structure. Section 3 introduces multi-valued semantic
criteria, which are those that can take as values the concepts defined in a reference
ontology. The following section proposes a way to represent a semantic user profile in an
ontological structure and to complete the missing preferential information by taking into
account the available one. These preferences are used in Sect. 5 to propose an extension
of ELECTRE-III that builds an outranking relation on alternatives defined on semantic
criteria. This method is illustrated with a case study in which it is employed to order
tourist attractions. The paper finishes with some conclusions and lines of future work.

2 The ELECTRE-III Ranking Method

The ELECTRE-III ranking method considers the following input data [2]:

• Alternatives A: they are the potential actions or solutions for the decision problem.
A ¼ a; b; c; d; . . .f g is the finite set of n alternatives.

• Criteria G: they are the numerical or ordinal indicators on which the alternatives are
evaluated based on the goals of the decision maker. G ¼ g1;g2; . . .; gm

� �
is the

finite set of m criteria.
• Weights W: they indicate the relevance of each criterion on the final decision. W is

the addition of the m weights in vector W, i.e.
Pm

j¼1 wj ¼ W.

ELECTRE-III constructs the outranking relation taking into account the uncertainty
and imprecision associated to the pairwise comparison of the alternatives using
pseudo-criteria. For this reason, each criterion is associated with the following two
discrimination thresholds:
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• Indifference threshold qjðaÞ: given two alternatives a and b, it is the difference on
criterion gj below which the decision maker is indifferent between both options.

• Preference threshold pjðaÞ: given two alternatives a and b, it is the difference on
criterion gj above which the decision maker shows a clear strict preference in favour
of awover b.

ELECTRE-III also includes the veto rule, which is the right of giving essential
reasons for rejecting the outranking relation. This is introduced as another threshold:

• Veto threshold vjðaÞ: given two alternatives a and b, a discordant difference larger
than the veto in favour of bwwith respect to awinwcriterion gj will require the
negation of the outranking relation aSb (thus, if there is a criterion in which b is
much better than a, it will not be possible to claim that a is at least as good as b).

The ELECTRE-III ranking procedure has two steps:

Step 1 (Construction of the outranking relation): The outranking relation S is
built for each pair of alternatives a; bð Þ 2 AxA by comparing their performance on the
set of criteria G. The alternative a outranks alternative b if, taking into account the
decision maker’s preferences, a is at least as good as b and there is no strong argument
against this claim. Two indices are applied to evaluate this relation: concordance and
discordance. For each criterion gj 2 G, the partial concordance is calculated as:

cj a; bð Þ ¼
1 if gj að Þ� gj bð Þ � qj bð Þ
0 if gj að Þ� gj bð Þ � pj bð Þ
gj að Þ�gj bð Þþ pj bð Þ

pj bð Þ�qj bð Þ otherwise:

8<
: ð1Þ

Once the partial concordances have been measured, an overall concordance index
is computed for each pair a; b as follows:

c a; bð Þ ¼ 1
W

Xm

j¼1
wjcj a; bð Þ ð2Þ

On the other hand, the partial discordance index is defined as:

dj a; bð Þ ¼
1 if gj að Þ� gj bð Þ � vj að Þ
0 if gj að Þ� gj bð Þ � pj að Þ
gj bð Þ�gj að Þ�pj að Þ

vj að Þ�pj að Þ otherwise

8<
: ð3Þ

Finally, the degree of credibility of the outranking relation aSb, q a; bð Þ, is calcu-
lated using the global concordance and the partial discordance indices of the set Jða; bÞ
of criteria for which the discordance is larger than the overall concordance.

q a; bð Þ ¼ c a; bð Þ if 8jdj a; bð Þ� c a; bð Þ;
c a; bð Þ:Qj2Jða;bÞ

1�dj a;bð Þ
1�c a;bð Þ otherwise:

(
ð4Þ
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Step 2 (Distillation): The outranking relation is exploited to build a partial
pre-order among the alternatives in A. It is an iterative process that selects at each step a
subset of alternatives, taking into account the credibility values of the outranking
relation. This procedure yields two complete pre-orders (descending and ascending
distillation chains), which are intersected to generate the final partial pre-order.

3 Semantic Criteria

When structuring information in data matrices (as in ELECTRE), a semantic variable is
defined as an unbounded categorical variable whose linguistic values can be interpreted
based on background knowledge; thus, values are concepts rather than simple
modalities [3]. Moreover, semantic criteria are usually multi-valued, so an alternative
has a list of concepts (tags) in each criterion, rather than a single value.

The semantic interpretation of the tags requires a structured representation of the
domain concepts. In the Artificial Intelligence literature, the most successful knowledge
representation models are ontologies. They offer a formal and explicit description of a
shared conceptualization [8], in which semantic interrelations are modelled as links
between concepts. Ontologies enable the formal articulation of domain knowledge at a
high level of expressiveness and the implementation of automatic reasoning proce-
dures. Each semantic criterion may be associated to a different ontology depending on
its domain. Specialized search engines such as Swoogle [1] permit to find domain
ontologies.

As an example, Table 1 presents a small dataset with different touristic activities.
The first column shows the name of the activities. The second one shows a semantic
criterion with a list of tags that describe it. The third one corresponds to a numerical
criterion that gives the price of the activity, and the last column is another semantic
criterion which includes tags that describe the best weather conditions to perform each
activity. It can be seen that each semantic criterion may take a different number of tags
on each alternative. Due to the different meaning of the two semantic criteria, a dif-
ferent ontology would be used for each one. For example, in [5] a weather ontology
was constructed, and in [6] some Tourism ontologies are presented.

Table 1. Example of a dataset with semantic and numerical criteria

Activity name Touristic description Cost Best weather

Montsant
Mountain

Paragliding, ClimbingWall, Rappelling 80 € NoPrecipitation,
PartlyCloudy

Tarragona
Beach

BeachPicnic, FamilyBeaches,
Sunbathing

40 € HighSun, LightAir

Archeological
Museum

UniqueBuilding, HumanHeritage,
Ruins, CultureRoutes,
HistoricBuilding

50 € LightPrecipitation,
NeutralState,
OverCast

Adventure and
Journey

HorseRiding, Car4 × 4, PaintBall,
ShoppingArea

60 € ModerateSun,
OptimumHumidity
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4 User Profiling with Ontologies

Ontologies are mainly used to represent the concepts and relations in a certain domain.
However, they can also be employed [10] to store information about the preferences of
users on different concepts, i.e. a semantic user profile.

The semantic user profile model proposed in this work consists on adding a
numerical property to each of the most specific concepts of the ontology (i.e. the leaves
of the ontological tree), called Tag Interest Score (TIS). This value represents the
degree of interest of the decision maker in the corresponding concept, with a satis-
faction score in [0,1]. An example is shown in Fig. 1, where we can see that some of
the leaves of the ontology have a score, like TIS(Boating) = 0.7, TIS (Rowing) = 0.4,
TIS(WaterSkiing) = 0.8 and TIS (Fishing) = 0.6. Notice that the leaves of the tree may
appear at different levels.

Initially, we may know the scores of some leaf concepts, which may have been
obtained explicitly from the user or elicited implicitly with learning algorithms that
analyse the interaction of the user with the system [6]. Provided that ontologies usually
have hundreds of leaves, the system can estimate unknown scores from the ones
available in the ontology. The procedure proposed to estimate the missing score for a
concept c is the following:

1. Following the taxonomic relations we find concepts that are semantically similar to
c. A set of leaf concepts is built by following the taxonomical relations in the
ontology using relatives(c,l), where l is the number of is-a levels we want to

Fig. 1. Ontology portion dealing with Sports concepts
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explore. The function leaves(t) returns the set of leaves (basic concepts) of the
ontology subtree whose root is t.

relatives c; lð Þ ¼ leavesðfatherðcÞÞ l ¼ 1
leavesðfatherðcÞ; l� 1Þ l[ 1

�
ð5Þ

We propose to start with l = 1 (i.e. leaf concepts descending from the father of c). If the
number of elements with a known score is below a given threshold, we can move to
l = 2 (i.e. including also leaf concepts descending from the grandparent of c). If the
number of known scores is still low, we continue increasing l.

2. The value of TIS(c) is calculated using some averaging operator on the known
scores given to the relatives of c. In particular, the WOWA (Weighted Ordered
Weighted Average) operator with two weighting factors is proposed [9]. The
classical OWA weights allow the definition of different aggregation policies [11].
With conjunctive parameters the resulting score is penalized when similar concepts
have low scores (pessimistic approach), whereas with disjunctive parameters the
score is based only on the highest scores of the similar concepts (optimistic
approach). A neutral configuration is also possible, which leads to the classic
arithmetic average. In addition, with WOWA we can give a different importance to
each of the values that are aggregated in terms of the number of levels used to find it
(so that for instance concepts obtained in level 1 are given more relevance than
concepts found in level 2). For a concept ck found at level i, the corresponding
weight wk is calculated with the following expression, in which #concepts(p) is the
number of new concepts that would be discovered in level p:

wk ¼ 1
i � V ; where V ¼

X
l¼1...max

#conceptsðlÞ
l

ð6Þ

Considering Fig. 1, if we want to estimate the score of the concept ‘Kayaking’, first
we construct a set of similar concepts: relatives(Kayaking,1) = {Rowing, Sail,
SeaFishing, Canoeing, Boating} which are all descendants of ‘Sailing’. As all of them
have a known score we can proceed to the calculation of TIS(Kayaking). Using an
optimistic policy (e.g. averaging the 2 highest scores) the result is 0.75, using a pes-
simist policy (e.g. averaging the 2 lowest scores) the result is 0.4, and with an average
of all the scores we get 0.58. If we wanted to calculate TIS(ScubaDiving) all the leaves
under ‘AquaticSports’ should be considered in the WOWA calculation, because there is
no scoring information in other ‘Underwater’ sports.

5 Concordance and Discordance Indices for Semantic
Criteria

In Sect. 2 it was shown how ELECTRE-III calculates the concordance and discordance
indices in the case of numerical criteria. In this section we propose a novel way to
calculate those indices when semantic criteria are considered. Those indices would be
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used to construct an outranking relation between the set A of alternatives. Each
semantic criterion is defined as a pseudo-criterion, with two discriminant thresholds as
well as the veto threshold. This procedure follows the same principles than the classic
ELECTRE-III method. We define new concordance and discordance indices as fuzzy
functions based on thresholds in the sense of [7], but in terms of the pairwise com-
parison of Tag Interest Scores.

First, we define how to measure the strength of the assertion aSb in terms of one
semantic variable:

Definition 1. Semantic Win Rate SWRj a; bð Þ: it is a numerical value in [0,1] that
indicates the degree of performance of alternative a with respect to b on the semantic
criterion gj. It is based on the two sets of tags gj að Þ ¼ t1;a; t2;a

�
; t3;a; . . .; t gjðaÞj j;ag and

gj bð Þ ¼ t1;b; t2;b
�

; t3;b; . . .; t gjðbÞj j;bg and it is calculated as follows:

SWRj a; bð Þ ¼
P

ti;a2gj að Þ
P

tk;b2gj bð Þ f ðti;a; tk;bÞ
gjðaÞ
�� �� � gjðbÞ

�� �� ; ð7Þ

where

f x; yð Þ ¼ 1 if TIS xð Þ� TIS yð Þ
0 if TIS xð Þ\TISðyÞ

�

Thus, SWRj a; bð Þ is the percentage of pairwise comparisons between the tags of
a and b for the semantic criterion gj for which the user has a higher (or equal)
preference for the a-tag than for the b-tag. Using this value, the partial concordance and
partial discordance indices are defined as follows:

Definition 2. Partial concordance and discordance indices for semantic criteria

cj a; bð Þ ¼
1 if SWRj a; bð Þ� lj
0 if SWRj a; bð Þ� lj � pj
SWRj a;bð Þ�ðlj�pjÞ

pj
otherwise

8><
>: ð8Þ

dj a; bð Þ ¼
1 if SWRj a; bð Þ� lj � vj
0 if SWRj a; bð Þ� lj � pj
lj�pjð Þ�SWRj a;bð Þ

vj�pj
otherwise

8><
>: ð9Þ

As SWRj a; bð Þ is a percentage that represents the comparison of the performance of
a over b, the thresholds are not parameterised and they have this meaning:

• lj replaces the qj indifference threshold. It is the minimum value for the strength of
SWRj a; bð Þ to consider a maximum concordance with aSb.

• pj indicates the maximum difference between SWRj a; bð Þ and lj that still shows
some preference of a with regards to b, thus still supporting the relation aSb to a
certain degree.
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• vj is the veto threshold, which shows the minimum negative difference between
SWRj a; bð Þ and lj that requires the full discordance with the outranking relation.

Figure 2 shows how these thresholds delimit the fuzzy functions for concordance
and discordance in semantic criteria. This new partial concordance and discordance
indices can be used in the standard ELECTRE-III procedure explained in Sect. 2 to
calculate the overall concordance (2) and the credibility (4). After that, the standard
distillation procedure is applied to obtain the partial pre-order among the alternatives.

6 Case Study

This new procedure to construct concordance and discordance indices for semantic
criteria is illustrated in this section with a case study, in which alternatives are tourist
attractions in the city of Tarragona. As shown in Table 2, there are 20 alternatives,
defined on 2 criteria: a multi-valued semantic one (Touristic Tags) and a numerical one
(Cost). We have used a Tourist ontology developed in the Scientific and Technological
Park for Tourism and Leisure [6], in which 343 concepts are structured in a 5-level
hierarchy. The identifier of each alternative shows its stronger focus: C-Culture,
E-Event, S-Sport and L-Leisure. We consider the case of a very sportive tourist, who
has a mild interest in events and leisure activities but is not keen on cultural activities
(except UrbanLandscape). It is assumed that all the preference scores of the ontology
leaves have been calculated using the procedure described on Sect. 4, from some basic
initial information on the user’s preferences.

Test 1: This test shows the influence of the discordance index in the construction of the
outranking relation. ELECTRE-III has been executed with or without discordance (i.e.
without veto power) in each criterion. The parameters are the following: Cost (num,
min, q = 0, p = 10, v = 20) and Touristic Tags (semantic, max, μ = 0.7, p = 0.1,
v = 0.4).

In this test both criteria have the same weight. The results are displayed in Fig. 3 (a.
partial pre-order with veto in both criteria, b. without veto in Cost, c. without veto in
Touristic Tags, d. without any veto). In the first case we consider both the semantic
information and the cost, so the best options are the cheapest sports (S5 and S3) and
some cheap events and leisure activities. When the Cost veto is not considered the

Fig. 2. Fuzzy relations for concordance and discordance in semantic criteria
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sportive activities are promoted, so S1 and S2 are able to outrank more options (like
C5, C4 and E3). In the third case, in which there is no veto for Touristic Tags, the price
takes more importance and activities like S3 and S1 go down in the ranking. Finally,
when no discordance is used (fourth case), the result is very similar to the first one,
because there are only two criteria. Notice that in all cases we identify some incom-
parability relations between activities that have good performance in one criterion but
bad in the other (for instance between C5 -cheap but not in the interests of the user- and
L1 –more interesting but much more expensive-). In the first positions, S3 (sport, 30 €)
is better than E5 (event, 5 €) when there is no veto on cost, but the relation is reversed
when there is no veto on the semantic criterion. These results show that the formulation
of concordance and discordance indices for semantic data leads to plausible results
when applied in the ELECTRE-III distillation procedure.

Test 2: This test studies the influence of veto power (i.e. discordance) when there is a
strong difference on the criteria weights (0.9 vs 0.1). The same previous 4 cases (with

Table 2. List of alternatives

Id Touristic tags Cost

C1 CultureRoutes, Cathedral, Palace, Tower 30 €

C2 UrbanLandscape, CultureRoutes, HistoricBuilding, Tower, Baroque, Castle 30 €

C3 UniqueBuilding, Ruins, HumanHeritage, CultureRoutes, HistoricBuilding 30 €

C4 WineFairs, CultureRoutes, Ruins, Amphitheater 15 €

C5 BookFairs, TraditionalCelebrations, HistoricBuilding 5 €

E1 TraditionalCelebrations, MusicFestivals, DanceFestivals, GastronomyFestivals 20 €

E2 WineFairs, MusicFestivals, ChampagneFestivals, BookFairs, DanceFestivals 20 €

E3 ChampagneFestivals, ArtsAndCraftsEvents, MusicFestivals,
GastronomyFestivals

40 €

E4 BeachPicnic, DanceFestivals, BigGroupsAtmosphere, TapasCuisine,
TraditionalCuisine

30 €

E5 TapasCuisine, ArtsAndCraftsEvents, BookFairs, TraditionalCelebrations,
WineFairs

5 €

S1 Canoeing, Kayaking, BananaRafting, Windsurfing, WaterSkiing,
Wakeboarding, ScubaDiving

80 €

S2 Snorkelling, Rappelling, ZipLine, BananaRafting, Kayaking 60 €

S3 HorseRiding, Car4 × 4, PaintBall, ShoppingArea 30 €

S4 SafariPark, HorseRiding, Car4 × 4, PaintBall 40 €

S5 Paragliding, ClimbingWall, Rappelling 10 €

L1 BeachPicnic, FamilyBeaches, Pizzeria, SafariPark 40 €

L2 TapasCuisine, ShoppingCenter, SpaResorts, Vegetarian, LocalMarket 20 €

L3 WineRoutes, TapasCuisine, WineFestivals, BookFairs 10 €

L4 Car4 × 4, PaintBall, HorseRiding, Pizzeria, SafariPark 40 €

L5 Bars, Discos, ShoppingArea, BeachPicnic, TraditionalCuisine, WineRoutes,
SpaResorts

20 €

246 M. Martínez-García et al.



a                                  b                                        c                           d

Fig. 3. Partial pre-orders obtained in test 1.

a                             b                                      c                        d

Fig. 4. Partial pre-orders obtained in test 2
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and without veto) have been studied, using the same parameters for the thresholds as in
Test 1. The partial pre-orders are displayed in Fig. 4.

In the two figures on the left (4a and 4b) wcost = 0.9 and wtags = 0.1, whereas in the
two figures on the right (4c and 4d) wcost = 0.1 and wtags = 0.9.

When cost is more important, using or not its veto power (the discordance) leads to
the same result, which is the first partial pre-order in Fig. 4 (a). The right of veto of the
semantic criterion is able to place S5 (10 €) at the top, S3 (30 €) in the third position
and most cultural activities in the lowest ones, despite the extremely high importance of
cost. However, when there is no veto in the semantic criterion (Fig. 4b) the ranking is
mainly based on the cost and touristic tags are almost neglected, due to its low weight:
C5 and E5(5 €) are the first options, S5 and L3 (10 €) the second ones, etc. This test
shows that the formulation of semantic discordance and concordance proposed in the
paper has the expected effect in the construction of the partial pre-orders.

Similarly, when importance is given to the semantic data, the ranking with cost veto
(Fig. 4c) places S5 as the best alternative, S3 is the second one and (S4, E4, L3, L4)
appear in the third place, because they are quite cheap and fit with the user’s prefer-
ences. However, when there is no veto on cost (Fig. 4d) the ranking depends mainly on
the scores of the touristic tags, which are based on the Semantic Win Rate, because the
cost has an extremely low weight.

Therefore, we can see that the veto power of the less relevant criterion is able to
influence the result, both in the case on numerical data (classic procedure) and semantic
values (new proposal).

7 Conclusions and Future Work

Semantic information is nowadays frequent in some datasets and requires new analysis
methods. In this paper, an extension of the ELECTRE-III multi-criteria decision
making method is proposed. In particular, the procedure for constructing a fuzzy
outranking relation is modified with the definition of new concordance and discordance
indices. Those indices are calculated with a fuzzy function that depends on three
thresholds (two for concordance and one for discordance) similar to those of classic
ELECTRE-III. However, they are based on Semantic Win Rate that is a new measure
that permits to compare the lists of tags of a pair of alternatives using the user’s
preferences about the tags. The illustrative example shows that the behaviour of the
method is similar for numeric and semantic data, which was the aim of the proposal.
An analysis with real data is our next step, this will help us to evaluate the robustness
the decision with regards to the new parameters based on the TIS scores. The influence
of user’s preference scores variations will be also studied.

The user’s preference about different tags is easily stored inside an ontology by
adding a new property to the classes, called Tag Interest Score (TIS). This score is only
required for the most specific concepts of the ontology (the leaves), so the user do not
need to know the structure of the ontology. As a manual initialization of big ontologies
may be not feasible (cold start problem), the paper proposes the WOWA operator to
estimate unknown scores in terms of the existing ones. It remains an open research line
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the definition of appropriate learning methods to help the user in the initialization and
updating of the scores that are stored in the ontology.

The thorough study of other weighting policies forWOWA is our next step. Semantic
similarity measures between concepts could be used in this stage.
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Abstract. In many fields of automated information processing it
becomes crucial to consider imprecise, uncertain or inconsistent pieces
of information. Therefore, integrating uncertainty factors in argumenta-
tion theory is of paramount importance. Recently, several argumentation
based approaches have emerged to model uncertain data with proba-
bilities. In this paper, we propose a new argumentation system called
evidential argumentation framework that takes into account imprecision
and uncertainty modeled by means of evidence theory. Indeed, evidence
theory brings new semantics since arguments represent expert opinions
with several weighted alternatives. Then, the evidential argumentation
framework is studied in the light of both Smets and Demspter-Shafer
interpretations of evidence theory. For each interpretation, we generalize
Dung’s standard semantics with illustrative examples. We also investi-
gate several preference criteria for pairwise comparison of extensions in
order to select the ones that represent potential solutions to a given
decision making problem.

Keywords: Argumentation theory · Evidence argumentation
framework · Pignistic scenario graph · Belief scenario graph

1 Introduction

Argumentation has long been a major topic in Artificial Intelligence (see e.g.,
[1,2] and for more recent accounts e.g., [3]) that has concerned a large variety
of application domains for more than a decade, like e.g., medicine [4], law [5,6],
negotiation [7], decision making [8], multiagent systems [9,10], semantic web [11],
and databases [12], etc. Argumentation is basically concerned with the exchange
of interacting arguments. This set of arguments may come either from a dialogue
between several agents but also from the available (and possibly contradictory)
pieces of information at the disposal of one unique agent. Usually, the interaction
between arguments takes the form of a conflict, called attack. Two main families
of computational models for argumentation have been studied in the literature:
namely, the abstract and the logic-based argumentation frameworks. Following
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 253–264, 2016.
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the seminal work of [13], the first family is based on graph-oriented representa-
tions and focuses mainly on the interaction between arguments without taking
the possible internal structure of the involved arguments into account. Different
acceptability semantics for abstract argumentation frameworks have also been
proposed that highlight different aspects of argumentation. Basically, each of
these semantics corresponds to some properties which certify whether a set of
arguments can be profitably used to support a point of view in a discussion.
On the contrary, the logic-based approaches (e.g., [14–17]) exploit the logical
internal structure of arguments and adopt inconsistency as a pivotal paradigm:
any pair of conflicting arguments must be contradictory.

Although Dung’s frameworks are widely approved tools for abstract argumen-
tation, their abstractness make expressing notions such as support or uncertainty
very difficult. So far a plethora of works have been introduced in order to model
the uncertainty of an argument with a probability [18–20]. However, weight-
ing arguments in this manner has several drawbacks, due mainly to uncertainty
representation. To illustrate this point, let us consider, for example the follow-
ing three doctors that prescribe medication to a patient. To cure the patient
headache, the first doctor prescribes several paracetamol-family drugs (e.g. P1

and P2) with weights to express his/her preferences. The second doctor favours
all biological medical products and therefore (s)he prescribes an andrographis
drug. Finally, a third doctor is hesitating whether to give the paracetamol-based
product P1 or the andrographis one without a further complementary analysis
on the patient. In this argumentation context, uncertainty is ubiquitous in all
opinions. In addition, doctors are confronting arguments about the convenience
and the applicability of drug alternatives (drug brands) rather a type of medica-
tion. This kind of example is difficult to handle with classical probability-based
approaches.

The aim of this paper is to extend uncertainty consideration in argumentation
theory. In fact, uncertainty is modelled thanks to evidence theory rather with
classical probabilities to solve problems as the one described above. A new frame-
work, called evidential argumentation framework, is introduced to model experts’
opinion over alternatives. The latter is studied and interpreted in the light of two
evidence theory interpretations: the non probabilistic model of Smets [21] and
the probabilistic one of Dempster-Shafer [22,23]. Therefore, several acceptability
semantics are generalized based on scenario graphs derived from the evidential
argumentation framework.

The roadmap of this paper is organized as follows. The basic foundations
of abstract argumentation theory are detailed in Sect. 2. In Sect. 3, the eviden-
tial argumentation framework is motivated and introduced. Then, our approach
is studied and interpreted in the light of two evidence theory interpretations.
Moreover, acceptability semantics are generalized for evidential argumentation
framework. We also introduce various preference relations at the semantics level
in order to determine what are desirable outcomes of the argumentation frame-
work. Finally, we conclude and sketch potential issues for the future work.
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2 Abstract Argumentation Framework: Brief Overview

In this section, we briefly outline the notion of abstract argumentation framework
and various semantics studied in the literature.

An abstract argumentation framework [13], AF for short, is a pair 〈A,R〉,
where A is a finite set, whose elements are called arguments, and R ⊆ A×A is a
binary relation over A, whose elements are referred to as attacks. An argument
is an abstract entity whose role is entirely determined by its relationships with
other arguments.

An AF can simply be represented as a directed graph, called attack graph,
where nodes are the arguments and edges represent the attack relation. Through-
out the paper examples are using this graph representation.

Given two arguments A and B, we say that A attacks B iff there is (A,B) ∈
R. Moreover, a set S ⊆ A attacks an argument B ∈ A iff there is A ∈ S s.t.
A attacks B. A set S ⊆ A of arguments is said to be conflict-free if there are
no arguments A,B ∈ S s.t. A attacks B. An argument A is defended by a set
S ⊆ A iff ∀B ∈ A s.t. B attacks A, there is C ∈ S s.t. C attacks B.

Using the notions of conflict-freeness and defense, we can define a number of
argumentation semantics, each embodying a particular rationality criterion, in
order to identify reasonable sets of arguments, called extensions.

Definition 1 (Acceptability semantics). Given an argumentation frame-
work F = 〈A,R〉. A set S ⊂ A of arguments is said to be:

– admissible iff S is conflict-free and all its arguments are defended by S
– a stable extension iff S is conflict-free and S attacks each argument in A \ S
– a complete extension iff S is admissible and S contains all and only the argu-

ments it defends
– a grounded extension iff S is a minimal (w.r.t. set inclusion) complete set of

arguments
– a preferred extension iff S is a maximal (w.r.t. set inclusion) admissible set

of arguments
– an ideal extension iff S is admissible and S is contained in every preferred set

of arguments.

Example 1. Consider the AF F = 〈A,R〉 such that A = {A,B,C,D,E} and
R = {(A,B), (C,B), (C,D), (D,C), (D,E)}. The graph representation of F is
indicated on Fig. 1. This argumentation framework has two preferred extensions:
E1 = {A,C,E} and E2 = {A,D}; these are also the unique stable extensions.
Moreover, F possesses a unique ideal extension {A}.

3 Evidence Theory Based Argumentation Framework

One of the abstract argumentation frameworks shortcomings is the insufficient
handling of the levels of uncertainty, an aspect which typically occurs in domains,
where diverging opinions are raised. In this section, we describe a new framework
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CB

A ED

Fig. 1. Attack graph of the AF from Example 1

of abstract argumentation based on evidence theory in which uncertainty has two
dimensions. In other words, we intend to model an argumentation system that
handles imprecise opinions as arguments. Indeed, each argument (i.e., opinion)
is described over the powerset of alternatives (hypotheses). In the sequel, we
denote by ΘA the frame of discernment of the alternatives of the argument A.

Definition 2 (Evidential Argumentation Framework). An evidential
argumentation framework is a tuple V = 〈A,R,m〉 where 〈A,R〉 is an AF,
m = {mA, A ∈ A}, and mA (basic belief assignment (bba)) is a mapping from
elements of the powerset 2ΘA onto [0, 1] such that:

⎧
⎨

⎩

mA(∅) = 0
∑

a∈ΘA

mA(a) = 1

In Definition 2, a corresponds to a hypothesis of the argument A and is called
an alternative of A. Clearly, an evidential argumentation framework differs from
classical argumentation models since it deals with arguments’ alternatives rather
with arguments. In this study, the arguments are supposed to be independent.

Example 2. Let us consider the evidential argumentation graph shown in Fig. 2.
Five arguments are considered A = {A,B,C,D,E}. Each argument highlights
the diagnostic of a doctor and the intended prescription. Each prescription con-
tains either one of two alternatives from a drug family. In other words, an argu-
ment represents a drug type family having several brands. A drug brand of a
single family has its own properties, effects and prescriptions. Therefore, a mass
is given to each drug brand depending on the treated patient. For example, A =
“Patient has hypertension so prescribe drug family A with a higher preference to
A1 of all other same family products”. In addition, a doctor can hesitate between
same drug family alternatives. For example argument E = “Patient has hyper-
tension so prescribe one of the medication of the drug family E without any
preference to any of them.”. Here, we assume that C and D attack each other
because we should only give one treatment and so giving one precludes the other,
and we assume that A and C attack B because they provide a counterargument
to all A family medications.

Several interpretations exist for evidence theory such as [21,22,24]. In the
remainder, we build our contributions following the Transferable Belief Model
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C
mC(C1) = 0.5
mC(C2) = 0.3
mC(ΘC) = 0.2

B
mB(B1) = 0.4
mB(B2) = 0.4
mB(ΘB) = 0.2

A
mA(A1) = 0.6
mA(ΘA) = 0.4 E mE(ΘE) = 1DmD(D1) = 1

Fig. 2. Example of an evidential argumentation graph

(TBM), that was introduced by Smets [21] and the probabilistic interpretation of
Dempster-Shafer [22,23]. The TBM model is a non-probabilistic interpretation
of the theory, that aims at representing quantified beliefs based on two levels: (i)
a credal level where beliefs are entertained and quantified by belief functions; (ii)
a pignistic level where beliefs can be used to make decisions and are quantified by
probability functions. In the following subsection, we provide the argumentation
framework based on the TBM interpretation.

3.1 Pignistic Argumentation Framework

In the following, we analyse the evidential argumentation framework using Smets
TBM interpretation. Even if TBM is not limited to normalized bbas (i.e., bba
with a null mass over the empty-set), we restrict our study to bbas without
conflict.

Definition 3. Let V = 〈A,R,m〉 be an evidential argumentation framework. A
pignistic scenario graph is a tuple Gp = 〈A,R,P〉 such that P = {PA, A ∈ A}
where PA is a pignistic probability defined as:

PA(a) =
∑

x⊆ΘA

|a ∩ x|
|x| × mA(x) ∀a ∈ ΘA

where mA is the bba of the argument A ∈ A and |.| is the cardinality operator.

Obviously, the value assigned by PA(a) represents the probability that the
alternative a actually occurs. This probability also considers the absolute igno-
rance (i.e., ΘA) when probabilities are built. Comparatively to the state-of-the-
art works, the pignistic scenario graph analyses the attacks of the hypotheses
of arguments rather than arguments. This could be seen as an extension of pre-
vious works [13]. Indeed, to recover the method of [13], a certain bba1 must
be constructed over single hypothesis. In addition, it is important to note that
the number of pignistic scenario graphs N that could be retrieved from an evi-
dential argumentation framework is computed as N =

∏ |ΘA|, A ∈ A. Indeed,
the number of scenarios depends on the arguments’ frame of discernment size.
However, a simple heuristic could be applied to drop alternatives with a low

1 A certain bba expresses the total certainty. It is defined as follows: m(A) = 1 and
m(B) = 0 for all B �= A and B ⊆ Θ, where A is a singleton event of Θ.
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pignistic probability. This approach consists of dropping alternatives with a pig-
nistic probability lower than 0.5. Thus, the number of retrieved scenario graphs
is drastically reduced.

Example 3. Fig. 3 shows an example of pignistic scenario graph built from the
evidential argumentation framework presented in Example 2.

C PC(C2) = 0.4BPB(B1) = 0.5

APA(A1) = 0.8 E PE(E1) = 0.5DPD(D1) = 1

Fig. 3. A pignistic scenario graph from Example 2

Note that some of the provided constraints of [25] in probabilistic argumen-
tation framework could be recovered in our pignistic argumentation framework.
The pignistic probability function may take different aspects of the structure of
the argument graph into account. More formally,

– P is coherent w.r.t. Gp if for every a ∈ ΘA,
∑

a⊆ΘA
PA(a) = 1.

– P is semi-founded w.r.t. Gp if PA(a) ≥ 0.5 for every unattacked a ∈ ΘA.
– P is founded w.r.t. Gp if PA(a) = 1 for every unattacked a ∈ ΘA.
– P is semi-optimistic w.r.t. Gp if PA(a) ≥ 1 − ∑

(a,b)∈R PB(b) for every
a ∈ ΘA that has at least one attacker.

– P is optimistic w.r.t. Gp if PA(a) ≥ 1 − ∑
(a,b)∈R PB(b) for every a ∈ ΘA.

– P is justifiable w.r.t. Gp if P is coherent and optimistic.
– P is ternary w.r.t. Gp if PA(a) ∈ {0, 0.5, 1} for every a ∈ ΘA.
– P is rational w.r.t. Gp if for every a ∈ ΘA, b ∈ ΘB , if (A,B) ∈ R then

PA(a) > 0.5 implies PB(b) ≤ 0.5.
– P is neutral w.r.t. Gp if PA(a) = 0.5 for every a ∈ ΘA.
– P is involutary w.r.t. Gp if for every a ∈ ΘA, b ∈ ΘB , if (A,B) ∈ R then

PA(a) = 1 − PB(b).
– P is maximal w.r.t. Gp if PA(a) = 1 for every a ∈ ΘA.
– P is minimal w.r.t. Gp if PA(a) = 0 for every a ∈ ΘA.

Definition 4. Let Gp = 〈A,R,P〉 be a pignistic scenario graph such that a ∈
ΘA and b ∈ ΘB. Then, a is stronger than b, denoted by a �s b, if and only if

PA(a) > PB(b)

In order to characterize a particular argumentation semantics for a pignistic
argumentation framework, we define a version of the semantics introduced in
Definition 1.
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Definition 5. Let Gp = 〈A,R,P〉 be a pignistic scenario graph s.t. a ∈ ΘA,
b ∈ ΘB and S ⊆ ΘA. We say that:

– a defeats b if and only if a attacks b, b does not attack a, and a �s b.
– a is p-acceptable with respect to S, if ∀b which defeats a there exists c ∈ S

such that c defeats b.
– a set S of arguments is p-conflict-free if there are no arguments a, b ∈ S such

that a attacks b.
– S is p-admissible iff S is conflict-free and all its arguments are acceptable

w.r.t. S.
– S is a p-stable extension iff S is conflict-free and S attacks each argument in

ΘA \ S.
– S is a p-complete extension iff S is admissible and S contains all and only

the arguments it defends.
– S is a p-grounded extension iff S is a minimal (w.r.t. set inclusion) complete

set of arguments.
– S is a p-preferred extension iff S is a maximal (w.r.t. set inclusion) admissible

set of arguments.
– S is a p-ideal extension iff S is admissible and S is contained in every preferred

set of arguments.

Let Extx(Gp) denote the set of extensions of the pignistic scenario graph Gp

under semantics x where x ∈ {a, s, c, g, p, i} and a (resp. s, c, g, p, i) stands for
p-admissible (resp. p-stable, p-complete, p-grounded, p-preferred and p-ideal).
When the semantics are not important, or when it is clear from the context to
which semantics we refer to, we use the notation Ext(F) for short.

Example 4. Let us consider the pignistic scenario graph depicted in Fig. 3. We
have two p-preferred extensions E1 = {A1, C2, E1} and E2 = {A1,D1}.

By applying a basic argumentation semantics to a pignistic scenario graph,
one can infer different extensions which represent potential solutions to a given
decision making problem. Since an extension has different arguments that argue
for a particular decision, some criteria for selecting a suitable decision are worth
defining. In other words, it is desirable to compare extensions based on the
arguments which support a decision with level of certainty. There exist several
different approaches to induce a preference relation over extensions. The first
comparison criterion is based on the cardinality of the set of arguments.

Definition 6. Let Gp = 〈A,R, P 〉 be a pignistic scenario graph and E1, E2 ∈
Ext(Gp). Then, E1 is cardinality-preferred to E2, denoted by E1 �c E2, iff |E1| >
|E2|.

In certain applications, counting is not the best method of defining an
order between extensions. Therefore, a more cautious preference relation can
be defined based on probability of the arguments induced in a given exten-
sion. For the next preference relation, we need to provide a new metric. To do
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so, let E = {a1, . . . , an} ∈ Ext(Gp) be a given extension, the weight of E is
W (E) =

∑n
i=1 PA(ai). Now, let us define an ordering for pairwise comparison of

extensions as follows.

Definition 7. Let Gp = 〈A,R,P〉 be a pignistic scenario graph. Let E1, E2 ∈
Ext(Gp). Then, E1 is probability-preferred to E2, denoted by E1 �p E2, iff
W (E1) > W (E2).

Example 5. Let us consider again the pignistic scenario graph depicted in Fig. 3.
We have W (E1) = 1.7 and W (E2) = 1.8, then E2 �p E1.

Notice that several extensions can be obtained through each pignistic sce-
nario graph. Now, in order to select the outcome of the original argumentation
framework, it will be of interest to compare different extensions from the different
pignistic scenario graphs. To do this, let us consider the following definition.

Definition 8. Let V = 〈A,R,m〉 be an evidential argumentation framework and
G1

p, . . . , G
n
p the set of pignistic scenario graphs obtained from V. Let W(Gi

p) =∑m
j=1 W (Ej) such that {E1, . . . , Em} are the extensions over the pignistic scenario

graph Gi
p. Then, the outcome of V, denoted by Ext(V), is defined as:

Ext(V) = {E | E ∈ Ext(Gp), Gp = argmaxn
i=1W(Gi

p)}
The pignistic scenario graph represents the TBM-based approach to handle

the evidential argumentation framework. Another interpretation can be obtained
based on Dempster-Shafer works. In fact, a lower and an upper bound on the
degree of belief of a single argument’s alternative could be assigned.

3.2 Belief Argumentation Framework

In the following, we intend to analyse the evidential argumentation framework
in the light of Dempster-Shafer interpretation. In this context, each alternative’s
pertinence is bounded by an upper and a lower bound.

Definition 9. Let V = 〈A,R,m〉 be an evidential argumentation framework. A
belief scenario graph is a tuple GB = 〈A,R,Bel,Pl〉 such that for all A ∈ A,
BelA : ΘA → [0, 1] and PlA : ΘA → [0, 1] are, respectively, the belief and the
plausibility functions over the hypotheses of A where:

BelA(a) =
∑

∅�=x⊆a

mA(x) (1)

PlA(a) =
∑

a∩x�=∅
mA(x) (2)

Example 6. Fig. 4 shows an example of a belief scenario graph built from the
evidential argumentation framework of Example 2. Each argument is labelled
by a belief and a plausibility functions of a single alternative.
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C BelC(C2) = 0.3
PlC(C2) = 0.5

BBelB(B1) = 0.4
PlB(B1) = 0.6

ABelA(A1) = 0.6
PlA(A1) = 1

E BelE(E1) = 0
PlE(E1) = 1

D
BelD(D1) = 1

PlD(D1) = 1

Fig. 4. Belief scenario attack graph built from Example 2

Now, we consider some constraints on the belief scenario graph which may
take different aspects of the structure of the argument graph into account. For
two arguments a ∈ ΘA, b ∈ ΘB we have:

– An argument a is believable over b, if BelA(a) ≥ BelB(b) for every, such that
(a, b) ∈ R.

– Bel (resp. Pl) is semi-founded, if BelA(a) ≥ 0.5 (resp. PlA(a) ≥ 0.5) for
every unattacked a.

– Bel (resp. Pl) is founded, if BelA(a) = PlB(a) = 1 for every unattacked a.
– An argument a is plausible over b, if PlA(a) ≥ PlB(b) for every such as

(a, b) ∈ R.
– An argument a is preferred over b, if BelA(a) ≥ PlB(b) for every such as

(a, b) ∈ R.
– An argument a is weak over b, if PlA(a) ≤ BelB(b) for every such as (a, b) ∈

R.
– BelA (resp. Pl) is maximal w.r.t. GB if BelA(a) = 1 (resp. PlA(a) = 1).
– BelA (resp. Pl)is minimal w.r.t. GB if PlA(a) = 0 (resp. PlA(a) = 0).

Proposition 1. If a is preferred, then a is believable and plausible.

Definition 10. Let GB = 〈A,R,Bel,Pl〉 be a belief scenario graph and a ∈ ΘA.
The strength of a is defined as (BelA(a), P lA(a)).

The use of a dual value for dealing with the strength of an argument, as
it is done in Definition 10, was explored in the context of possibilistic theory
in [26]. The strength of an argument allows us to compare pairs of arguments.
Informally, an argument is all the better as it uses more certain knowledge and
refers to an important goal. This can be formally captured by a Pareto-based
comparison criterion2.

Definition 11. Let GB = 〈A,R,Bel,Pl〉 be a belief scenario graph and a ∈ ΘA

and b ∈ ΘB. Then, a is stronger than b, denoted a �b b, if and only if:

(BelA(a), P lA(a)) ≥pareto (BelB(b), P lB(b))

2 Let x1, x2, x
′
1, x

′
2 be four alternatives. Then (x1, x2) ≥pareto (x

′
1, x

′
2) iff ∀i ∈ [1, 2],

xi ≥ x
′
i and ∃ j, such that xj > x

′
j .
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Definition 12. Let GB = 〈A,R,Bel,Pl〉 be a belief scenario graph s.t. a ∈ ΘA,
b ∈ ΘB and S ⊆ ΘA. We say that:

– a defeats b if and only if a attacks b, b does not attack a, and a �b b.
– a is b-acceptable with respect to S, if ∀b which defeats a there exists c ∈ S

such that c defeats b.
– a set S of arguments is b-conflict-free if there are no arguments a, b ∈ S such

that a attacks b.
– S is b-admissible iff S is conflict-free and all its arguments are acceptable

w.r.t. S.
– S is a b-stable extension iff S is conflict-free and S attacks each argument in

ΘA \ S.
– S is a b-complete extension iff S is admissible and S contains all and only

the arguments it defends.
– S is a b-grounded extension iff S is a minimal (w.r.t. set inclusion) complete

set of arguments.
– S is a b-preferred extension iff S is a maximal (w.r.t. set inclusion) admissible

set of arguments.
– S is a b-ideal extension iff S is admissible and S is contained in every preferred

set of arguments.

Proposition 2. Let GB = 〈A,R,Bel,Pl〉 such that F = 〈A,R〉 be a belief
scenario graph and E ∈ Ext(GB). Then, �b is a partial order relation over
arguments in E.

Notice that the condition in Definition 11 follows the principle of Pareto
optimality according to which an argument is preferred if it is better or equal to
another in all attributes and strictly better in at least one attribute. The set of
best arguments is represented by the Pareto frontier which contains arguments
which are not dominated by any other arguments. A way for computing the
Pareto frontier is by means of the skyline operator [27]. It is important to observe
that the Pareto relation can be used for defining the acceptability of arguments.
This means that a belief argumentation framework can be instantiated as GB =
〈F , Bel, P l,�b〉. In this case, any basic argumentation semantics applying to GB

could use >pareto for defining the acceptability of arguments from A.
Now in order to compare extensions, of a given belief scenario graph, we can

consider the following ordering criteria.

Definition 13. Let GB = 〈A,R,Bel,Pl〉 and E1, E2 ∈ Ext(GB), Then:

1. E1 �B1 E2 if |E1| > |E2|.
2. E1 �B2 E2 if ∀a ∈ E1,∀b ∈ E2, a �b b.
3. E1 �B3 E2 if the number of arguments in E1 non attacked by E2 is greater

than the number of arguments in E2 non attacked by E1.

Note that the first relation is a basic ordering based on the size of extensions.
The last two ones give a more fine-grained ordering since they are based on
the degree of certainty of arguments (�B2) and the number of non-attacked
arguments (�B3).
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Example 7. Consider the belief scenario graph from Example 6. Then,
Exta(GB) = {E1, E2, E3} where E1 = {A1} and E2 = {D1}, E3 = {A1,D1}.
Therefore, we have E3 �B1 E1 , E3 �B2 E2, and E3 �B3 E2.

Last, Definition 8 can be naturally extended in order to compute the outcome
of the original argumentation framework. This can be done by considering all
the belief scenario graphs obtained from the original evidential argumentation
framework.

4 Conclusion

In this paper, we have presented a new argumentation framework that handles
uncertainty based on evidence theory. The evidential argumentation framework
allows to model arguments expressed as opinions and preferences over several
alternatives. From this argumentation framework, two families of scenario graphs
are distinguished. Each one relies on a specific interpretation of the evidence the-
ory. Moreover, new acceptability semantics are provided on the pignistic and the
belief scenario graphs to select acceptable arguments. We have also introduced
several criteria for pairwise comparison of extensions and a method for selecting
only the best extensions given the winners of pairwise duels.

There is still work needed on the topic. First to propose other criteria to
compare and rationalize extensions and to explore the notion of skyline in argu-
mentation theory. Second, we plan to study aggregation methods for evidential
abstract argumentation by taking as input a profile of evidential argumentation
frameworks, and give as result an argumentation framework that represents the
beliefs of the group. Finally, an ambitious research agenda would be to study the
computational complexity of our framework and practical algorithms to compute
extensions.
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Abstract. Value-based argumentation framework (VAF) is an exten-
sion of Dung argumentation framework where arguments promote spe-
cific values. In VAF, an argument a defeats b only if the value promoted
by b is not preferred than the value promoted by a according to some
total ordering on values given by a specific audience. However, despite
the interesting idea of considering the preference relation between argu-
ments’ values, VAF does not offer a way to express further requirements,
like “no arguments promoting expensive value” or “if we accept argu-
ments promoting expensive value, then we accept arguments promot-
ing healthy value”. This paper extends VAF by incorporating some con-
straints, expressed as propositional formulas on either the arguments’ val-
ues or on the arguments. We propose two inference relations for defining
some acceptability semantics in such constrained value-based argumen-
tation framework (CVAF). The first inference relation is more prudent
than the second one since it derives less arguments.

1 Introduction

Dung argumentation framework (AF ) has been extended by considering different
aspects: preferences [1,9,11], values [2], weights for attacks [4,8], etc. Extensions
of AF where every argument promotes a specific value and audiences consti-
tute a preference relation between the arguments’ values are called value-based
argumentation framework (VAF). In VAF, an argument a successfully attacks
(defeats) b according to a given audience only if the value promoted by b is not
preferred than the value of a according to that audience. Despite the interesting
idea of considering preferences between the values of arguments, VAF does not
offer a way to express further requirements. For example, assume that a group
of friends want to choose a good restaurant. Using VAF, the friends can give
their preferences like “restaurants proposing gourmet recipes are preferred to
those proposing healthy recipes”, but they cannot express further requirements
such as “no expensive restaurant” or “if we accept expensive restaurant, then
we accept restaurant proposing healthy recipes”.
c© Springer International Publishing Switzerland 2016
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A quite natural approach for handling constraints in argumentation frame-
work has been proposed in [5]. But to the best of our knowledge, there is no
work incorporating constraints in VAF. So, our proposition consists in extend-
ing VAF by incorporating additional information, expressed as propositional
formulas on either the arguments’ values or on the arguments. Such information
represent constraints about the set of arguments to be admissible. Considering
constraints is interesting and can concern many real applications. For example,
in medical decision making where doctors have to take a decision concerning a
given patient (e.g., what is the appropriate drug to prescribe?), there is not only
need to consider their preferences about a set of appropriate treatments such
as “low side-effects treatments are preferred to high side-effects treatments” but
additional constraints are also needed such as “reimbursable by social security
treatments”, “if hospitalization is required then we do not want lengthy duration
treatments”.

Our aim consists to point out some semantics and evaluate the set of argu-
ments on the basis on the preferences and the additional constraints. Thus,
we propose two inference relations. The first inference relation aims to handle
the preferences as in VAF and the constraints as in constrained argumentation
framework (CAF for short) presented in [5]. More precisely, for handling pref-
erences, the process considers Dung AF with removing unsuccessful attacks on
the basis of the preferences represented in a specific audience. For handling the
constraints, the process corresponds to consider Dung AF with the condition of
satisfying the constraints. Namely, a given set of arguments is admissible if and
only if it is admissible for VAF, admissible for Dung AF and satisfies the con-
straints. In the second inference relation, a given set of arguments is admissible
if and only if it is admissible for VAF and satisfies the constraints. We show that
the second inference relation is less prudent than the first one since it allows to
derive more admissible sets of arguments.

The remainder of the paper is organized as follows: Sect. 2 recalls some basics
on Dung AF and VAF. We present CVAF in Sect. 3. Section 4 concludes the
paper.

2 Argumentation Framework: Preliminaries

This section briefly recalls Dung’s AF [7] and V AF [2].

2.1 Dung’s Argumentation Framework

An argumentation framework [7] is defined on a set of arguments and a set of
attacks between them. An attack expresses conflicts between arguments. Each
argumentation system can be represented with a directed graph where nodes are
the arguments, and the edges represent the attacks between them.

Definition 1 (Dung’s argumentation framework). An argumentation
framework is a pair AF = 〈A,R〉 where A is a finite set of arguments and
R is a binary attack relation defined on A×A. Given two arguments a and b, a
R b or (a, b) ∈ R means a attacks b.
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The output of an AF is a set of sets of acceptable arguments, called extensions
which are also called acceptability semantics (for example, preferred).

Definition 2. Let AF = 〈A,R〉 be an argumentation framework and S ⊆ A,

– S is conflict-free of AF iff there are no arguments a, b ∈ S s.t. a R b.
– a ∈ A is acceptable w.r.t. S iff ∀b ∈ A s.t. b R a, ∃ c ∈ S s.t. c R b.
– S is an admissible set iff it is conflict-free and each argument in S is acceptable

w.r.t. S.
– S is a preferred extension iff it is maximal (for set inclusion) among admissible

sets.

2.2 Value-Based Argumentation Framework

VAF [2] is an extension of Dung AF where arguments promote specific values
like, economy, health, etc. Compared to Dung’s framework, where all attacks are
always successful, in VAF, we must distinguish attack from defeat. For example,
if an argument promoting the value health attacks an argument promoting the
value economy then the attack succeeds only if economy is not preferred to
health. The concept of audience is introduced in VAF where the values constitute
a preference relation (transitive, irreflexive and asymmetric). For example, given
two values health and economy, we can have an audience where health preferred
to economy. In the remainder of the paper, an audience is called preference-
audience.

Definition 3 (Value-based Argumentation Framework [2]). A Value-
based Argumentation Framework is a 5-tuple VAF=〈A,R, V , val, P〉, where
A is a set of arguments, R is an irreflexive binary attack relation defined on
A×A, V is a non empty set of values, val is a function which maps elements of
A to elements of V and P is the set of preference-audiences.

Definition 4. An AF specific to a preference-audience α is a 5-tuple AVAFα=
〈A,R, V , val, �α〉 where A,R, V and val are as a VAF and �α is a (transitive,
irreflexive and asymmetric) preference relation on V for the audience α.

An AVAF is a VAF where the attack relation of the VAF is replaced by a
defeat relation for that preference-audience (i.e., the attacks which are unsuc-
cessful for that preference-audience are removed). An AVAF can be treated as a
Dung-style AF since for Dung, all attacks are always successful. Thus, the defeat
relation is relative to a preference-audience. We use Dα to denote the defeat rela-
tion w.r.t. the preference-audience α and val(a)�αval(b) means that the value
promoted by a is preferred to the value of b w.r.t. the preference-audience α.
The preference relation for the set of audiences should constitute a total order on
V . For example, if V ={v1, v2, v3} and P={v2�v1, v2�v3} then the preference
relation for P is not a total order on V . So, another audience (v3�v1 or v1�v3)
should be added to P in order to obtain a total order on V . Some details about
the notion of an audience can be found in [3].
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Definition 5. Let 〈A,R, V , val, �α〉 be an AVAF and let a, b be two arguments
in A. a Dα b iff a R b and not val(b) �α val(a).

Definition 5 states that an argument a defeats another argument b for the
preference-audience α iff it attacks it and the value of b is not preferred to its
value for that audience. Note that the attack succeeds if both arguments promote
the same value, or if no preference between the values has been defined. If V
contains a single value, then the VAF becomes a standard AF .

Bench-Capon [2] introduces the notions of acceptability, conflict freeness,
admissible sets and preferred extensions for VAF which are relative to a
preference-audience.

Definition 6. Let 〈A,R, V , val, �α〉 be an AVAF, α be a preference-audience
and S be a subset of arguments. An argument a is acceptable for α w.r.t. S iff
∀b ∈A s.t. b Dα a, ∃ c ∈ S s.t. c Dα b.

Definition 7. Let 〈A,R, V , val, �α〉 be an AVAF, α be a preference-audience
and S be a subset of arguments.

– A set S is conflict-free for the preference-audience α iff for all a, b ∈ S, it is
not the case that aDαb.

– S is an admissible set for α iff it is conflict-free for α and ∀a∈S, a is acceptable
for α w.r.t. S.

– S is a preferred extension for α iff it is maximal (for set inclusion) among
admissible sets for the preference-audience α.

Definition 8 (Status of arguments in VAF). Let 〈A,R, V , val, P〉 be
a VAF and ε1, . . . , εn its preferred extensions for the set of all preference-
audiences. Let a∈ A.

– a is objectively accepted iff ∀i ∈ {1 . . . n}, a ∈ εi.
– a is subjectively accepted iff ∃i ∈ {1 . . . n} s.t. a ∈ εi.
– a is rejected iff ∀i ∈ {1 . . . n}, a 	∈ εi.

From Definition 8, it follows that an argument is objectively accepted iff it is in
every preferred extension for every preference-audience, subjectively accepted iff
it is in preferred extension for some preference-audiences and rejected iff it does
not belong to preferred extension of any preference-audience.

Note that in [2], different notions such as admissible sets and preferred exten-
sions are relative to a preference-audience. For our contribution, we need to intro-
duce the following definitions concerning admissible sets and preferred extensions
for VAF.

Definition 9. Let VAF=〈A,R, V , val, P〉, AVAFα1 ,..., AVAFαn
be n AF spe-

cific to the given preference-audience α1,...,αn and S ⊆A. Let Adm(AVAFα1),...,
Adm(AVAFαn

) be the set of admissible sets for AVAFα1 ,..., AVAFαn
. S is an

admissible set for VAF iff ∃i ∈ {1 . . . n} s.t. S ∈ Adm(AVAFαi
).
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Definition 10. Let VAF=〈A,R, V , val, P〉, AVAFα1 ,..., AVAFαn
be n AF spe-

cific to the given preference-audience α1,...,αn and S ⊆A. Let Pref(AVAFα1),...,
Pref(AVAFαn

) be the set of preferred extensions for AVAFα1 ,..., AVAFαn
. S is

a preferred extension for VAF iff ∃i ∈ {1 . . . n} s.t. S ∈ Pref(AVAFαi
).

In VAF, the status assigned to each argument is relative to preferred exten-
sions of the audiences (i.e. the union of preferred extensions of each audience
is considered). For example, a given argument is subjectively accepted in VAF
iff it is in the preferred extension for at least one preference-audience. However,
preferred extensions are maximal (for set inclusion) among admissible sets. This
means that if VAF has at least one subjectively accepted argument, then there
is at least one audience having this argument in its preferred extension and then
there is at least one admissible set to which this argument belongs, as stated in
Definitions 9 and 10.

Example 1. In Fig. 1, we have an example of VAF with A={a, b, c, d}, R =
{(a, b), (b, c), (c, b), (c, d)}. V ={v1, v2, v3}, val(a)=v1, val(b)=v2, val(c)=v3 and
val(d)=v3. Assume that we have the following preference-audiences: v2�v1 and
v3�v2. For the preference-audience v2�v1: {a, b, d}, {a, c} are the preferred
extensions. For this preference-audience, the attack from a to b is unsuccessful
(i.e., the attack is removed for that preference-audience) because the value of a
is not preferred to the value of b. For v3�v2: {a, c} is the preferred extension.
For this preference-audience, b attacks c but it does not defeat it because its
value is not preferred to the value of b, so the attack from b to c is removed for
that preference-audience. Thus, the argument a is objectively accepted, while b,
c and d are subjectively accepted.

a: v1 b: v2 c: v3 d: v3

Fig. 1. An example of VAF

3 Constrained Value-Based Argumentation Framework

Our aim in this section is to extend VAF by incorporating constraints defined
on either the arguments’ values or on the arguments. More precisely, instead
of considering only preferences between the arguments’ values as in VAF, we
propose to consider additional information. Let us consider the following nota-
tions to be used in the remainder of the paper. Let PROPPS be the language of
propositional formulas defined on a set PS of propositional symbols, the classical
logic connectives ¬, ∧, ∨, →, ⇔ and the symbols �, ⊥ which denote tautology
and contradiction respectively. The symbol |= denotes classical inference rela-
tion. PROPA is the language of propositional formulas defined on a set A of
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arguments, the classical logic connectives and the symbols �, ⊥. PROPV is the
language of propositional formulas defined on a set V of values, the classical
logic connectives and the symbols �, ⊥.

Definition 11. A Constrained Value-based Argumentation Framework is a 6-
tuple CVAF=〈A,R, V , val, P, C=CA∪CV 〉, where A is a set of arguments, R
is an irreflexive binary attack relation defined on A×A, V is a non emptyset of
values, val is a function which maps elements of A to elements of V , P is the set
of preference-audiences and C is a set of constraints such that CA are constraints
defined as propositional formulas from PROPA and CV are constraints defined
as propositional formulas from PROPV .

In CVAF, an audience can be seen as a user in group decision making.
Thus, the term preference (resp. constraint) can be interchangeably used with
preference-audience (resp. constraint-audience). Namely, the element P of CVAF
contains preference-audiences defined over the arguments’ values (as for VAF)
and the element C contains all constraints where some of them are defined as
propositionnal formulas over the arguments’ values (CV ) and others are defined
as propositionnal formulas over the arguments (CA). Note that it is also possible
to have constraints only from CA (resp. CV ). For simplicity, we sometimes use C
instead of C=CA∪CV .

Example 2. Let us consider the CVAF obtained by adding two constraints
cV defined on PROPV and cA defined on PROPA to the VAF of Fig. 1
(Example 1). We have CVAF=〈A,R, V , val, P, CA∪CV 〉 with A =
{a, b, c, d}, R={(a, b), (b, c), (c, b), (c, d)}. V ={v1, v2, v3}, val(a)=v1, val(b)=v2,
val(c)=val(d)=v3, P={v2�v1, v3�v2}. CV ={cV } s.t. cV =¬v3 and CA={cA} s.t.
cA=a.

Contrary to the approach proposed in [5] where the additional constraint is
defined on the arguments, for CVAF, constraints are defined either on the argu-
ments or on the arguments’ values. Thus, we introduce the following useful def-
initions for handling the constraints.

Definition 12. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based
argumentation framework. We define Arg: V →2A a function that associates for
each value v in V , a set of arguments S ⊆ A, denoted by Arg(v)=S s.t. for each
a ∈ S, we have that val(a) = v.

Definition 12 states that the function Arg groups the arguments promoting
the same value in the same subset. More precisely, given a set of arguments A
and the set of values V ={v1, v2,.., vm} of CVAF, the result of Arg is {S1, S2,...,
Sm} s.t. S1 (resp. S2,..., Sm) ⊆ A and Arg(v1)=S1, Arg(v2) = S2,..., Arg(vm)
= Sm.

Example 3. Le us consider the CVAF of Example 2. We have Arg(v1) = {a},
Arg(v2) = {b} and Arg(v3) = {c, d}.

Let us introduce the following definition. Each subset S of arguments corre-
sponds to an interpretation over A given by the completion [5] of S .
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Definition 13. (Completion). Let CVAF=〈A,R, V , val, P, C〉 be a con-
strained value-based argumentation framework. Let S ⊆ A. The completion of S
denoted by Ŝ is obtained as follows: Ŝ = {a | a ∈ S} ∪ {¬a | a ∈ A\ S}.

In the following, we define how a given set of arguments S satisfies a con-
straint c defined on PROPA. This definition is inspired from the one given in [5].

Definition 14. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based
argumentation framework, c be a constraint defined on PROPA and S ⊆ A be a
subset of arguments. S satisfies c iff the completion of S is a model of c (denoted
by Ŝ |= c).

Example 4. Let us consider the CVAF obtained by adding a constraint cA=¬b∨¬c
to the VAF of Fig. 1. Let E1 ={a, d} be a set of arguments of CVAF. Applying
Definition 13,we have Ê1={a, d,¬b,¬c} is a completion ofE1. FollowingDefinition
14, Ê1|= cA. So, E1 satisfies cA. However, E2 ={c, b} does not satisfy cA.

In the following, we define situations where a given set of arguments S sat-
isfies a constraint cV defined on PROPV .

Definition 15. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based
argumentation framework, c, c′ be two constraints from PROPV and S ⊆ A be
a subset of arguments. The following items give the definition of satisfaction of
a constraint c by S:

1. ∀ S ⊆ A, S satisfies �.
2. ∀ S ⊆ A, S does not satisfy ⊥.
3. S satisfies vi iff ∃a ∈S s.t. val(a) = vi (for a propositional atom vi).
4. S satisfies ¬c iff S does not satisfy c.
5. S satisfies c ∧ c′ iff S satisfies c and S satisfies c′.
6. S satisfies c ∨ c′ iff S satisfies c or S satisfies c′.

Example 5. Let us consider the CVAF of Example 2 where cV =¬v3. Let S1 =
{a, b} and S2 = {c, d}. From Definition 15, we have S1 satisfies cV , S2 does not
satisfy cV .

3.1 From Constraints over Arguments’ Values to Constraints over
Arguments

The following definition introduces a function, which associates with each con-
straint cV from PROPV , its corresponding constraint cA from PROPA. The
possibility to give constraints over the values in CVAF seems natural since argu-
ments promote values. However, transforming constraints defined on PROPV

to constraints defined on PROPA is important from computational point of
view, since it allows us to reuse existing results and algorithms developed in
argumentation theory (e.g. [5,6,10]).
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Definition 16. Let CVAF=〈A,R, V , val, P, C=CA∪CV 〉 be a constrained
value-based argumentation framework, cV , c′

V be two constraints in CV . Let FA
be a function which associates with each constraint cV , its represented constraint
cA. Then, we have:

1. FA(�)=�.
2. FA(⊥)=⊥.
3. If cV = v then FA(cV ) =

∨
ai s.t. ai ∈ Arg(v).

4. FA(¬(cV )) = ¬FA(cV ).
5. FA(cV ∨ c′

V )=FA(cV ) ∨ FA(c′
V ).

6. FA(cV ∧ c′
V )=FA(cV ) ∧ FA(c′

V ).

From Item 1 (resp. 2) of Definition 16, it follows that having a constraint cV = �
(resp. cV = ⊥) from PROPV , then its corresponding constraint from PROPA
is � (resp. ⊥). Item 3 of Definition 16 states that having a constraint cV = v
from PROPV , then its corresponding constraint from PROPA is obtained by
replacing v by

∨
ai s.t. ai ∈ Arg(v). The rest of items give the way to trans-

form any constraint from PROPV defined using the usual connective (negation,
disjunction and conjunction) to its corresponding constraint from PROPA.

Example 6. In Example 2, the considering CVAF has two constraints: cV =¬v3
and cA=a. From Definition 16, there is a constraint c′

A defined on PROPA
that corresponds to cV . We have, Arg(v3) = {c, d}, then, applying Item 3 of
Definition 16, FA(c′

V ) = c′
A=¬(c ∨ d).

Proposition 1. Let CVAF=〈A,R, V , val, P, C=CA∪CV 〉 be a constrained
value-based argumentation framework. Let S ⊆ A and cV be a constraint in CV .
Then, it holds that S satisfies cV if and only if the completion Ŝ is a model of
FA(cV ) (denoted by Ŝ |= FA(cV )) where FA(cV ) is obtained from Definition 16.

Proof. Let us reason by induction of the structure of cV .

– Case 1: Let cV ≡ vi (vi is a propositional atom from PROPV ). Recall that
from Definition 16, we have FA(cV ) =

∨
aj s.t. aj ∈ Arg(vi).

• Suppose that S satisfies cV . Following Definition 15, this means that
∃ak ∈ S s.t. val(ak) = vi. This means that ak ∈ Arg(vi). Besides that,
ak ∈ Ŝ (i.e. completion of S). Thus, Ŝ |= ∨

aj s.t. aj ∈ Arg(vi) which
means that Ŝ |= FA(cV ).

• Assume that S satisfies FA(cV ), thus, Ŝ |= ∨
aj s.t. aj ∈ Arg(vi). This

means that ∃ak ∈ Ŝ with ak ∈ Arg(vi). Thus, ∃ak ∈ S with val(ak) = vi,
which means that S satisfies cV .

– Case 2: Let cV ≡ ¬(c′
V ). Suppose that the proposition is satisfied with respect

to c′
V and show that it is satisfied for cV too. By definition, S satisfies ¬(c′

V )
means that S does not satisfy c′

V . Thus, following the induction hypothesis
we have S does not satisfy FA(c′

V ). Which means that Ŝ 	|= FA(c′
V ). Thus,

we have Ŝ |= ¬FA(c′
V ). However from Definition 16, we have ¬FA(c′

V ) =
FA(¬(c′

V )). Thus, Ŝ |= FA(¬c′
V ).
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– Case 3: Suppose that the proposition is verified for both c′
V and c′′

V and show
that it is verified for cV ≡ c′

V ∧ c′′
V too. S satisfies both c′

V and c′′
V means

that S satisfies c′
V and satisfies c′′

V (according to Definition 15). Following the
induction hypothesis, this is equivalent to say that S satisfies FA(c′

V ) and S
satisfies FA(c′′

V ). Thus, we have Ŝ |= FA(c′
V ) and Ŝ |= FA(c′′

V ). Equivalently,
Ŝ |= FA(c′

V ) ∧ FA(c′′
V ). But from Definition 16, FA(c′

V ) ∧ FA(c′′
V ) is nothing

that FA(c′
V ∧ c′′

V ). Finally, Ŝ |= FA(c′
V ∧ c′′

V ) which means that S satisfies
FA(cV ).

– Case 4: Suppose that the proposition is verified for c′
V and c′′

V and show that
it is verified for cV ≡ c′

V ∨c′′
V too. S satisfies c′

V ∨ c′′
V means that S satisfies c′

V

or satisfies c′′
V (according to Definition 15). Following the induction hypothesis,

this is equivalent to say that S satisfies FA(c′
V ) or S satisfies FA(c′′

V ). Stated
otherwise, Ŝ |= FA(c′

V ) or Ŝ |= FA(c′′
V ). Equivalently, Ŝ |= FA(c′

V ) ∨ FA(c′′
V ).

But FA(c′
V )∨FA(c′′

V ) is nothing that FA(c′
V ∨c′′

V ) (according to Definition 16).
Finally, Ŝ |= FA(c′

V ∨ c′′
V ) which means that S satisfies FA(cV ).

3.2 Acceptability Semantics in CVAF

To define some acceptability semantics and evaluating the set of arguments in
CVAF, we propose two inference relations. The first one is more prudent than
the second one since it derives less acceptable arguments. Each inference relation
requires the satisfaction of the preferences and the additional constraints. So, let
us firstly introduce the following observation regarding the satisfaction of the
constraints.

Observation 1. To verify if a given set of arguments S satisfies a constraint
c, we have the following cases. If c is defined on PROPA, then Definition 14 is
applied. If c is defined on PROPV then either Definition 15 is applied without
transforming c into its corresponding constraint over arguments or Definition
16 is firstly applied to transform each c to its corresponding constraint over
arguments and then Definition 14 is applied.

First Inference Relation. For handling constraints in CVAF, this relation
consists to generalize the approach proposed in [5]. The preferences are handled
as in VAF. More precisely, for handling preferences, the process corresponds
to consider Dung AF with removing unsuccessful attacks on the basis of the
preferences represented in a specific audience. For handling the constraints, the
process corresponds to consider Dung AF with the condition of satisfying the
constraints. Namely, as defined in the following, considering both preferences
and constraints, a given set of arguments S is admissible for CVAF iff it is
admissible for at least one preference-audience (i.e. S is admissible for VAF as
stated in Definition 9), admissible for AF and it satisfies each constraint.

Definition 17. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based
argumentation framework. Let c ∈ C be a constraint and S be a subset of argu-
ments. S is admissible for CVAF iff
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1. S is admissible for VAF=〈A,R, V , val, P〉, and
2. S is admissible for AF=〈A,R〉, and
3. S satisfies c (see Observation 1).

Definition 17 states that S is admissible for CVAF iff S is admissible for VAF
(condition of Item 1) and S is admissible for 〈A,R, C〉 (conditions of Item 2
and Item 3) which corresponds to constrained argumentation framework (CAF)
defined in [5] and recalled in Definition 18. More precisely, in this inference rela-
tion, we consider each constraint-audience as a CAF. Note that in CAF defined
in [5], additional constraints are defined over the arguments while in CVAF,
constraints are defined either on the arguments’ values or on the arguments.
However, it is shown above that each constraint defined over arguments’ val-
ues has its corresponding constraint over the arguments. Let us define the CAF
proposed in [5].

Definition 18. A constrained argumentation framework is a triple CAF =
〈A,R, C〉 where A is a set of arguments, R is a binary attack relation defined
on A×A and C is a propositional formula from PROPA.

Definition 18 states that CAF extends Dung AF in order to take account for
constraints over arguments defined as propositionnal formulas from PROPA.

Let us now introduce the following property.

Property 1. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based argu-
mentation framework and c be a constraint in C. In case of applying the first
inference relation, it holds that 〈A,R, C〉 is a CAF defined in Definition 18.

Proof. It is mentioned above that for handling the constraints in CVAF, the
first inference relation is the generalization of the approach defined for CAF in
[5] where a given set of arguments S is admissible for CAF if it is admissible
for AF and satisfies the constraints. These conditions are the same to those of
Item 2 and Item 3 of Definition 17. Thus, Definition 17 can be rewritten, where
S is admissible for CVAF iff S is admissible for VAF=〈A,R, V , val, P〉, and S
is admissible for 〈A,R, C〉. In addition, CVAF can contain constraints that are
defined on PROPA which is the case for CAF. If the constraints of CVAF are
defined on PROPV , then from Definition 16, each constraint defined on PROPV

has its corresponding constraint defined on PROPA. Thus, given CVAF=〈A,R,
V , val, P, C〉, then 〈A,R, C〉 is a CAF defined in [5].

Considering the first inference relation, we can observe that each CVAF is
composed of two formalisms VAF and CAF where each preference-audience is
an AVAF defined in Definition 4 and each constraint-audience is considered as
a CAF.

Second Inference Relation. The idea of the second inference relation consists
to consider a given set of arguments S be admissible for CVAF iff it is admissible
for VAF and it satisfies the constraint. Namely, this inference relation does not
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require additional condition about is admissibility for Dung AF as it is the case
in the first inference relation. So, this relation allows to derive more acceptable
arguments than the first one.

Definition 19. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based
argumentation framework. Let c ∈ C be a constraint and S be a subset of argu-
ments. S is admissible for CVAF iff

1. S is admissible for VAF=〈A,R, V , val, P〉, and
2. S satisfies c (see Observation 1).

Definition 19 states that a given set of arguments S is admissible for CVAF iff
S is admissible for VAF and S satisfies each constraint.

The following definitions are available either for applying the first or the
second inference relation.

Definition 20. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based
argumentation framework. A preferred extension of CVAF is a subset S of A
s.t. S is maximal w.r.t. ⊆ among the set of admissible sets for CVAF. The set
of preferred extensions of CVAF is denoted by PrefCV AF .

Definition 21 (Status of arguments in CVAF). Let CVAF=〈A,R, V , val,
P, C〉 be a constrained value-based argumentation framework, ε1, . . . , εm be its
preferred extensions. Let a∈ A.

– a is objectively accepted iff ∀i ∈ {1 . . . m}, a ∈ εi.
– a is subjectively accepted iff ∃i ∈ {1 . . . m} s.t. a ∈ εi.
– a is rejected iff 	∃i ∈ {1 . . . m} s.t. a ∈ εi.

From Definition 21, it follows that an argument is objectively accepted iff it is
in every preferred extension for CVAF, subjectively accepted iff it is in some
preferred extensions for CVAF, rejected iff it does not belong to any preferred
extension for CVAF.

Property 2. Let CVAF=〈A,R, V , val, P, C〉 be a constrained value-based argu-
mentation framework, Adm1CV AF (resp. Adm2CV AF ) be the set of admissible
sets of CVAF by applying the first (resp. second inference relation). Then, it
holds that Adm1CV AF ⊆Adm2CV AF .

Proof. It can be given directly from Definitions 17 and 19 where defining admis-
sible sets of CVAF by applying the first inference relation requires the two con-
ditions of the second inference relation with another condition (admissibility for
AF ). Namely, all admissible sets for CVAF obtained by applying the first rela-
tion are also admissible for CVAF when applying the second relation but the
converse is not true.

Example 7. Assume that a group of friends want to choose a good restaurant.
They perceived a restaurant and one of them ask the question: “Are we going to
choose this restaurant?”. On the basis of the reputation of the restaurant and
some displayed information, each member of the group can give its arguments
in order to take a decision.
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– Argument a: This restaurant is expensive because the cook is a star chef.
– Argument b: The restaurant is expensive but the reason is that recipes are

prepared in the restaurant and the products are fresh and local.
– Argument c: Of course, the ingredients are freach and local, so the proposed

recipes are certainly healthy.
– Argument d: Our goal is to make us pleasure and we do not interest neither

for the price nor for healthy recipes.

Assume that we have the following information concerning the group.

– Group Preferences: p1=Pleasure�Expensive and p2=Healthy�
Pleasure.

– Group constraints: c=Pleasure∧¬Expensive.

The corresponding CVAF to the group dialogue, the preferences and the
constraints is CVAF=〈A,R, V , val, P, C〉 with A = {a, b, c, d}, R={(a, b),
(b, a), (c, a), (d, a), (d, b), (d, c)}. V ={Healthy,Expensive, Pleasure}, val(a)
=val(b)=Expensive, val(c)=Healthy and val(d)=Pleasure. P={Pleasure�
Expensive, Healthy�Pleasure}. C={c} s.t. c=Pleasure∧¬Expensive. The
graph of CVAF is given in Fig. 2.

a: Expensive b: Expensive

c: Healthy d: Pleasure

Fig. 2. The graph of VAF

The AF specific to p1 is AV AFp1=〈A,R, V , val, Pleasure�Expensive〉.
The AF specific to p2 is AV AFp2=〈A,R, V , val, Healthy�Pleasure〉. Applying
Definition 7, admissible sets for AV AFp1 are: {d}. Admissible sets for AV AFp2

are: {c}, {d}, {c, d}. Thus, from Definition 9, admissible sets for VAF are: {c},
{d}, {c, d}. Applying Definition 2, admissible sets for 〈A,R〉 are: {d}. We have
{d} and {c, d} satisfy c while {c} does not satisfy it.

In the following, we define admissible sets, preferred extensions and the status
of each argument for CVAF by applying the two proposed inference relations.

Applying the first inference relation: From Definition 17, we have
AdmCV AF ={d} since it is the unique set which is admissible for VAF and
for AF and satisfies the constraint. Applying Definition 20, we have PrefCV AF

={d}. From Definition 21, the arguments d is objectively accepted (under the
preferred extensions) while a, b and c are rejected.

Applying the second inference relation: From Definition 19, we have
AdmCV AF = {d}, {c, d} since they are admissible for VAF and each one satis-
fies the constraint. From Definition 20, we have PrefCV AF ={c, d}. Thus, from
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Definition 21, the arguments c and d are objectively accepted, while a and b are
rejected (under the preferred extensions).

We can observe that the result obtained by applying the second inference
relation is more coherent with the preferences and the constraints expressed
by the group. For example, the argument c is rejected by applying the first
inference relation although val(c)=Healthy and Healthy is the first choice of
the preference-audience p2 and it is not excluded in the constraint. However, c
is objectively accepted by applying the second inference relation which is the
expected result.

4 Conclusion

In this paper, we have presented a generalization of VAF by incorporating addi-
tional constraints defined either on the arguments’ values or on the arguments.
We have proposed two inference relations for defining some acceptability seman-
tics in the new framework called, constrained value-based argumentation frame-
work. The first inference relation is more prudent than the second one since
it requires more conditions than the second one for defining admissible sets of
arguments. We have also shown that each constraint over arguments’ values
has its corresponding constraint over arguments. CVAF can be used in many
applications. It can also be used for multiple criteria decision making problems
where values can be considered as criteria, preferences as a relative importance
between the criteria and constraints as a requirements about the criteria with the
possibility to give arguments. As future work, we would study different points
including: (i) other properties of the two inference relations, (ii) determining
other acceptability semantics for CVAF and (iii) applying CVAF for medical
decision making.

References

1. Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. Int. J.
Approximate Reasoning 55, 585–606 (2014)

2. Bench-Capon, T.J.M., Atkinson, K., Chorley, A.: Persuasion and value in legal
argument. J. Logic Comput. 15(6), 1075–1097 (2005)

3. Bench-Capon, T.J.M., Doutre, S., Dunne, P.E.: Audiences in argumentation frame-
works. Artif. Intell. 171(1), 42–71 (2007)

4. Cayrol, C., Lagasquie-Schiex, M.-C.: From preferences over arguments to prefer-
ences over attacks inabstract argumentation: a comparative study. In: Proceedings
of the IEEE International Conference on Tools with Artificial Intelligence, pp. 1–8
(2013)

5. Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frame-
works. In: Proceedings of the Tenth International Conference on Principles of
Knowledge Representation and Reasoning, pp. 112–122 (2006)
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Abstract. This paper provides a natural interpretation of the EM algo-
rithm as a succession of revision steps that try to find a probability dis-
tribution in a parametric family of models in agreement with frequentist
observations over a partition of a domain. Each step of the algorithm cor-
responds to a revision operation that respects a form of minimal change.
In particular, the so-called expectation step actually applies Jeffrey’s
revision rule to the current best parametric model so as to respect the
frequencies in the available data. We also indicate that in the presence
of incomplete data, one must be careful in the definition of the likeli-
hood function in the maximization step, which may differ according to
whether one is interested by the precise modeling of the underlying ran-
dom phenomenon together with the imperfect observation process, or
by the modeling of the underlying random phenomenon alone, despite
imprecision.

Keywords: Maximum likelihood · Belief revision · Incomplete informa-
tion · Expectation-Maximization

1 Introduction

The EM (Expectation-Maximization) algorithm is an iterative technique aim-
ing to find a parameterized model achieving a local maximum of the likelihood
function when there is no closed-form solution for the maximum likelihood esti-
mator. Another case where EM is repeatedly used is when there are missing data
(unsupervised or semi-supervised learning). In order to do so, a latent (unob-
served) variable (artificial, in the first case, meaningful in the second case) is
used, whose distribution depends on the same parameter as the observed one.
The procedure starts with the assessment of an initial value (or vector of val-
ues) for the parameter. Each iteration alternates two steps, the “expectation”
(E) step and the “maximization” (M) step. The expectation step postulates an
empirical distribution for the unobserved variable that agrees with the observed
data. During the maximization step, the maximum likelihood estimator based
on the joint empirical distribution of both the latent and the observed variable is
determined. The process iterates until some stability is reached. The procedure is
known to provide an increasing sequence of values for the likelihood function. It
converges to a local maximum when some additional conditions are satisfied [12].
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 279–290, 2016.
DOI: 10.1007/978-3-319-40581-0 23



280 I. Couso and D. Dubois

In the following we study the EM algorithm for likelihood-based estimation,
where an observed random variable Y goes along with a latent variable X with
range X , and where, based on a sequence of precise observations y1, . . . , yN , a
likelihood function of the form

∏N
i=1 PY (yi; θ), understood as a likelihood func-

tion on the joint space
∏N

i=1 P(X,Y )(X×{yi}; θ), is maximized. The EM algorithm
proceeds based on an alternating optimisation scheme, where at each step, a ficti-
tious precise data set pertaining to (X,Y ) and agreeing with the observed result
on Y is generated in agreement with the optimal probabilistic model obtained
at the previous step from the previous fictitious data set pertaining to (X,Y )
and agreeing with the observed result on Y .

The aim of the paper is to better understand the nature of the solution
provided by the EM algorithm on the range of (X,Y ). We provide an inter-
pretation of the EM algorithm in terms of a sequence of revision steps. More
specifically, the E step consists in determining the sample that minimises Kull-
back divergence with respect to the parametrical distribution postulated during
the M step of the last iteration, while respecting the constraints imposed by the
data. We show that it corresponds to a natural use of Jeffrey’s rule of revision,
that comes down to an imputation of sample values for the latent variable. This
result enables a better understanding of what the EM algorithm actually aims
to. To the best of our knowledge the relationship between the EM algorithm and
Jeffrey’s rule has not been previously pointed out.

Moreover, we provide an example-based preliminary discussion on cases of
incompletely informed data where the EM algorithm should not be used without
caution, either because the collection of postulated parametrized distributions
is large enough in order to contain all the joint distributions in agreement with
the empirical one, or because, in case of overlapping incomplete observations,
the definition of the proper likelihood function is a delicate issue.

The paper is organized as follows: Sect. 2 proposes an original introduction
to the EM algorithm where the basic steps are formally justified. In Sect. 3,
we recall Jeffrey’s rule of revision, the properties it satisfies and its connection
with the minimization of divergence. We then reinterpret the EM algorithm
as a succession of revision steps. Finally, in Sect. 4, we give some examples of
anomalies due to an inefficient or incautious usage of the EM algorithm.

2 Introduction to the EM Algorithm

Let X be a random variable, namely a mapping from a sample space (Ω,A, P ) to
the range of X. For simplicity, we assume that X is finite, and PX , the probability
function attached to X depends on a parameter θ, i.e. PX(·; θ) is a model of the
random process driving X. We suppose that instead of observing X, another
random quantity Y is observed, also driven by parameter θ. Y incompletely
informs about the realization of X, in the sense that if Y = b ∈ Y = {b1, . . . , bn},
we only know that X ∈ Γ (b) ⊆ X , for some multimapping Γ [3]. Dempster et al.
[4] give a version of the EM algorithm when the observations yi are viewed as
incomplete perceptions of a latent variable X, assuming that the observations
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bear on a partition of the whole state space. So, the range of Y is of the form
{{A1}, . . . , {Ar}}, where the Ai’s form a partition of X .

Let us consider a sequence of N iid copies of Z = (X,Y ). We will use the
nomenclature z = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N to represent a specific
sample of the vector (X,Y ). Thus, y = (y1, . . . , yN ) will denote the observed
sample (an observation of the vector Y = (Y1, . . . , Yn)), and x = (x1, . . . , xN )
will denote an arbitrary artificial sample from X for the latent variable X, that
we shall vary in X N . Let us also use the nomenclature Ly(θ) = log p(y; θ) for the
log-likelihood function, where p(y; θ) =

∏N
i=1 p(yi; θ) denotes the probability of

observing y ∈ YN , assuming that the value of the parameter is θ. The final goal
of EM is to find a value of the parameter θ that is a (maybe local) maximum of
Ly(θ).

We are interested in modelling the likelihood function associated to the
result of the random process driving the random variable X despite imprecision.
Namely, behind the measurement report (y1, . . . , yN ) there exists a sequence of
precise outcomes for X, (x∗

1, . . . , x
∗
N ) that would have been observed, had the

measurement device been accurate (had Γ been a one-to-one function).

2.1 From the Likelihood Function to the EM Criterion

Let PX N

be the set of all probability measures P we can define on the measur-
able space (X N , ℘(X N )).When the optimisation of the log-likelihood Ly(θ) =
log

∑
x∈X N p(x,y; θ) is too difficult, a trick is to optimize a lower bound F (P, θ)

of it that is simpler to optimize. This is allowed by the introduction of arbitrary
latent or fake variables1 and the use of Jensen inequality. Haas [8] proposes the
simple following derivation of the functional F :

Ly(θ) = log
∑

x∈X N

p(x,y; θ) = log
∑

x∈X N

p(x)p(x,y; θ)
p(x)

≥
∑

x∈X N

p(x) log
[
p(x,y; θ)

p(x)

]
(Jensen’s inequality)

=
∑

x∈X N

p(x) log
[
p(x|y; θ)p(y; θ)

p(x)

]

=
∑

x∈X N

p(x) log p(y; θ) +
∑

x∈X N

p(x) log
[
p(x|y; θ)

p(x)

]

= Ly(θ) − D(P,P(·|y; θ)) = F (P, θ).

where D(P,P′) =
∑

x∈XN p(x) log[ p(x)
p′(x) ] is the Kullback-Leibler divergence of

P′ from P, and p is the mass function associated to P.2

1 In some cases, they are not artificial, and are naturally present in the problem.
2 In the expression in line 2 of the above derivation, F (P, θ) could be, with some abuse

of notation, written −D(P,P(·,y; θ)) as it is a kind of divergence from P(·,y; θ)).
However the sum on XN of the latter quantities is not 1 (it is p(y; θ)) and this
pseudo-divergence can be negative.



282 I. Couso and D. Dubois

Some authors use the nomenclature �(θ|θ(n−1)) = F (P(·|y; θ(n−1)); θ).
According to the definition of F , the properties of logarithms, we can alter-
natively express �(θ|θ(n−1)) as follows:

�(θ|θ(n−1)) = log(p(y; θ)) +
∑

x∈X N

p(x|y; θ(n−1)) log
p(x|y; θ)

p(x|y; θ(n−1))
.

Moreover, taking into account the fact that p(·|y; θ(n−1)) : X N → [0, 1] is a mass
function (the sum of the masses is equal to 1), �(θ|θ(n−1)) also reads

∑

x∈XN

p(x|y; θ(n−1)) log
p(x|y; θ)p(y; θ)
p(x|y; θ(n−1))

=
∑

x∈XN

p(x|y; θ(n−1)) log
p(x,y; θ)

p(x|y; θ(n−1))
. (1)

since p(x,y; θ) = p(x|y; θ)p(y; θ). We can therefore express �(θ; θ(n−1)) as the
sum of an entropy and a term that takes the form of an expectation:

�(θ|θ(n−1)) = H(P(·|y; θ(n−1)) + E·|y;θ(n−1) [log p(X,y; θ)]. (2)

The last term represents indeed the expectation of a function of the random
variable X taking the value log p(x,y; θ) with probability p(x|y; θ(n−1)) for every
x ∈ X N .

The main structure of the EM algorithm is then as follows. We first provide an
initial value for the parameter, θ(0) ∈ Θ. Each iteration of the algorithm, n ≥ 1
consists of two steps, respectively called “expectation” (E) and “maximization”
(M). According to [13], they can be described as follows:

– Expectation step: We compute the expectation E·|y;θ(n−1) [log p(X,y; θ)].
– Maximization step: We maximize �(θ|θ(n−1)) wrt θ. According to Eq. (1), this

is equivalent to minimizing the divergence D(P(·|y; θ(n−1));P(·|y; θ)).

2.2 The EM Algorithm as a Succession of Revision Steps

Computing E·|y;θ(n−1) [log p(X,y; θ)] requires the determination of the con-
ditional distribution P(·|y; θ(n−1)). The algorithm can then be alternatively
described as follows:

– “Expectation” step: We compute the first argument of F as the probability
measure determined by the mass function p(·|y; θ(n−1)) : X N → [0, 1]. In
other words, we find the value of the first argument of the function F in order
to fulfill the equality F (P, θ(n−1)) = Ly(θ(n−1)).

– Maximization step: We determine θ(n) = arg maxθ∈Θ F (P(·|y; θ(n−1)), θ).

Note that in this presentation, the E-step is no longer, strictly speaking, comput-
ing an expectation, as it yields a mass function on X N . In this case, the computa-
tion of the expectation proper takes place when determining F (P(·|y; θ(n−1)), θ).

With these two steps, it is easy to guarantee that the sequence
(Ly(θ(n)))n∈N is increasing. Namely as noticed above, we have that
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F (P(·|y; θ(n−1)), θ(n−1)) = Ly(θ(n−1)), for an arbitrary n. Now, since
θ(n) = arg maxθ∈Θ F (P(·|y; θ(n−1)), θ), we have that F (P(·|y; θ(n−1)), θ(n)) ≥
F (P(·|y; θ(n−1)), θ(n−1)) = Ly(θ(n−1)). Taking into account the non-negativity
of Kullback-Leibler’s divergence (due to Jensen’s inequality), we can deduce that
Ly(θ(n)) ≥ F (P(·|y; θ(n−1)), θ(n)), and therefore that Ly(θ(n)) ≥ Ly(θ(n−1)).

Some authors also describe the EM algorithm as a maximization-
maximization procedure, since both steps refer to the maximization of the func-
tion F :

– Expectation step: We maximize F (P, θ(n−1)) with respect to P; we get P =
P(·|y; θ(n−1)).

– Maximization step: maximize F (P(·|y; θ(n−1)), θ) with respect to θ; we get
θ = θ(n).

3 The EM Algorithm from a Belief Revision Perspective

In this section, we shall prove that the E-step is an example of application of
Jeffrey’s revision rule governed by the minimal change principle. As the M-
step also implements a form of minimal change, we thus show that the EM
algorithm tries to iteratively find a statistical model that is as close as possible to
a distribution of latent variables that is compatible with the observed incomplete
data, oscillating from one distribution to the other.

3.1 Jeffrey’s Revision Rule

In probability theory, there is a natural method for revising a prior probability P
on a set S of mutually exclusive alternatives, in the presence of new probabilistic
information I: a distribution ρ1, . . . , ρr on elements of a partition {A1, . . . , Ar} of
S. The coefficients ρi sum to 1 and act as constraints on the posterior probability
of elements Ai of the partition. Such an updating rule is proposed by Jeffrey [11].
Jeffrey’s rule provides an effective means to revise a prior probability distribution
P to a posterior P ′, given input I. Some axioms guide the revision process:

P ′(Ai) = ρi. (3)

This axiom clearly expresses that P ′ should respect the input information which
is of the same nature as the prior probability, with priority given to the input.

Jeffrey’s method also relies on the assumption that, while the probability
on a prescribed subalgebra of events is enforced by the input information, the
probability of any event B ⊆ S conditional to any uncertain event Ai in this
subalgebra is the same in the original and the revised distributions. Namely,

∀Ai,∀B,P (B|Ai) = P ′(B|Ai). (4)
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The underlying interpretation of minimal change implied by the constraint of
Eq. (4) is that the revised probability measure P ′ must preserve the conditional
probability degree of any event B knowing event Ai has occurred. Jeffrey’s rule
of conditioning yields the unique distribution that satisfies (3) and (4) and takes
the following form:

P ′(B) =
r∑

i=1

ρi · P (B ∩ Ai)
P (Ai)

. (5)

Jeffrey’s rule respects the probability kinematics principle, whose objec-
tive is to minimize change, usually in the sense of an informational distance
between probability distributions [1]: The posterior probability P ′ minimizes
the Kullback-Leibler divergence D(P, P ′) =

∑
s∈S p′(s) log[p′(s)

p(s) ] with respect to
the original distribution under the probabilistic constraints (3) defined by the
input I (as explained in [16]).

3.2 The EM Algorithm from the Standpoint of Joint Distributions:
E-step

Since we have assumed that z represents a sequence of N i.i.d. copies of (X,Y ),
we can decompose the probability mass p(·|y; θ) : X N → [0, 1] into a product of
N mass functions, each one determining a distribution on X . Let us now denote
by nkj the number of times that the pair (ak, bj) appears in the sample z. Now,
in order to denote the product mass function, we will use the nomenclature

p(x|y; θ) =
N∏

i=1

p(xi|yi; θ) =
m∏

k=1

r∏

j=1

p(ak|bj ; θ)nkj , (6)

where p(·|bj ; θ) denotes the mass function associated to the j-th marginal distri-
bution:

p(ak|bj ; θ) =
pθ

kj

pθ
.j

, ∀ j = 1, . . . , r.

At the expectation step of the nth iteration of the EM algorithm, we com-
pute the conditional probabilities p(·|bj ; θ(n−1)),∀ j = 1, . . . , r. If we consider the
joint probability that results from combining those conditional probabilities with
the marginal distribution on (Y, ℘(Y)) determined by the empirical distribution
associated to the observed sample y, (n.1

N , . . . , n.r

N ), where n.j =
∑m

k=1 nkj is the
number of times bj appears in the observed sample, we will get the following
joint mass distribution on (X × Y, ℘(X ) × ℘(Y)) :

p̂(n−1)(ak, bj) :=
n.j

N
· p(ak|bj ; θ(n−1)) =

n.j

N
· pθ(n−1)

kj

pθ(n−1)

.j

(7)

The E-step thus leads to a joint probability measure P̂ (n−1), on X × Y that,

if the terms n.j · pθ(n−1)
kj

pθ(n−1)
.j

are integers, corresponds to an artificial sample z(n−1) ∈
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(X ×Y)N involving the latent variable X, that is in agreement with the observed
sample y. Let us denote by Py, the set of such joint probability measures on
(X × Y, ℘(X ) × ℘(Y)) whose marginal distribution on Y coincides with the
empirical distribution (p.1, . . . , p.r) = (n.1

N , . . . , n.r

N ), associated to the sample y.

Proposition 1. The result p̂(n−1) of the E-step is the posterior probability dis-
tribution generated by Jeffrey’s rule of conditioning where the input information
is given by the observed sample probabilities.

Proof: Compare Eqs. (5) and (7). In the above Eq. (7), let S = X × Y, the
prior probability P is the parametric one with mass function p(ak, bj ; θ(n−1)),
the input comes from the observable sample y, in the sense that Aj = X ×{bj},
with probabilities ρj = n.j

N .
According to the result provided in [16] by P.M. Williams, if we consider

the collection, Py, of joint probability measures on (X ×Y, ℘(X )×℘(Y)) whose
marginal distribution on Y coincides with the empirical distribution associated to
the sample y, (p.1, . . . , p.r) = (n.1

N , . . . , n.r

N ), the above joint probability measure,
P̂ (n), is, among all of them, the one that minimizes Kullback-Leibler’s divergence
with respect to the joint distribution p(·, ·; θ(n−1)) : X × Y → R obtained in the
maximization step of the previous iteration.

3.3 The EM Algorithm from the Standpoint of Joint Distributions:
M-step

Next we will check that the M step aims at looking for the Maximum Likelihood
Estimate (MLE) of θ, given the joint empirical distribution proposed in Eq. (7).
The criterion to be optimised at the nth M- step is

F (P(·|y; θ(n−1)), θ) = Ly(θ) − D
(
P(·|y; θ(n−1)),P(·|y; θ)

)
.

Let us also notice that:

D(P(·|y; θ(n−1)),P(·|y; θ)) =
N∑

i=1

D
(
P (·|yi; θ(n−1)), P (·|yi; θ)

)

=
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log
p(ak|yi; θ(n−1))

p(ak|yi; θ)
.

On the other hand, due to the properties of the logarithmic function, we can
write Ly(θ) =

∑N
i=1 log p(yi; θ). Moreover, taking into account the fact that

p(·|yi; θ(n−1)) : X → [0, 1] is a mass function (
∑m

k=1 p(ak|yi; θ(n−1)) = 1), we can
equivalently write:

Ly(θ) =
N∑

i=1

log p(yi; θ) =
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) log p(yi; θ).



286 I. Couso and D. Dubois

Again, taking into account the properties of logarithm and also the commuta-
tivity of the sum, we can write:

F (P(·|y; θ(n−1)), θ) = −
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log
p(ak|yi; θ(n−1))

(p(ak|yi; θ) · p(yi; θ))

= −
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log
p(ak|yi; θ(n−1))

p(ak, yi; θ)

=
N∑

i=1

H(P (·|yi; θ(n−1))) +
N∑

i=1

m∑

k=1

p(ak|yi; θ(n−1)) · log p(ak, yi; θ),

where H stands for Shannon entropy. For each j = 1, . . . , r, recall that n.j is the
number of occurrences of bj ∈ Y in the observed sample y = (y1, . . . , yN ). Then
we can rewrite the above expression of F (P(·|y; θ(n−1)), θ) as follows:

−
r∑

j=1

n.jH(P (·|bj ; θ(n−1))) +
r∑

j=1

m∑

k=1

n.j · p(ak|bj ; θ(n−1)) · log p(ak, bj ; θ).

And due to the properties of logarithm, we can rewrite F (P(·|y; θ(n−1)), θ) as:

−
r∑

j=1

n.jH(P (·|bj ; θ(n−1))) + log

⎛

⎝
r∏

j=1

m∏

k=1

p(ak, bj ; θ)n.jp(ak|bj ;θ
(n−1))

⎞

⎠ . (8)

According to the nomenclature established in (Eq. (7)), the above exponent
n.jp(ak|bj ; θ(n−1)) coincides with N ·p̂(n)(ak, bj). Such an exponent can be seen as
the number of occurrences of (ak, bj) in an artificial sample inducing the empir-
ical distribution determined by p̂(n) (the joint distribution characterised by the
mass function displayed in Eq. (7)). Moreover the entropy term in (8) does not
depend on θ. Therefore, maximizing the above expression with respect to θ is
equivalent to finding the maximum likelihood estimator associated to such an
artificial sample on X × Y.

In a nutshell, the M step at iteration n actually finds the MLE associ-
ated to the fake sample (the joint distribution) determined by Eq. (7). If the
algorithm stops at iteration n∗, we have determined the collection of max-
imum likelihood estimators associated to all the joint artificial samples on
X × Y constructed for the first n∗ iterations (the n∗ samples inducing the
empirical distributions determined by the collection of joint mass functions
{p̂(n) : n = 1, . . . , n∗}). Let the reader notice that, for a specific iteration n,
the exponent n.j · p(ak|bj ; θ(n−1)) = N · p̂(n)(ak, bj) may not be an integer neces-
sarily, and therefore such an empirical joint distribution is not necessarily in total
correspondence with some feasible joint sample. In some papers, the fake sample
is interpreted as a probability distribution over possible imputations (see e.g.,
the short paper by Do and Batzoglou [5]), over which the expectation is then
taken. This makes the fact that the fake sample could be unobservable much less
problematic from an interpretation standpoint.
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4 Some Difficulties with the EM Algorithm for Handling
Incomplete Information

In this section we show that when the set Pθ of parameterized joint distributions
includes the set Py of joint distributions whose marginals on Y agree with the
empirical distribution induced by y, the EM algorithm cannot be properly used.
Moreover in the case of overlapping pieces of incomplete data, a non-careful
definition of the likelihood function leads to anomalous results.

Case of Imprecise Data Forming a Partition. As above, we consider the
situation where each observation y = bi on Y is interpreted as a report providing
an element Ai of a partition of X . The maximum likelihood estimator of θ based
on the observed sample y will be the value of the argument for which the likeli-
hood of y is maximal among all the maximum likelihood estimators associated
to all the joint empirical distributions compatible with y. If the probabilities of
elements of X and Y are not related to each other via enough constraints, there
will generally be several MLE distributions on X in agreement with the observed
sample on Y. Moreover, the collection of n∗ joint distributions determined by
the n∗ E-steps of the algorithm are, in general, just a fraction of this collection
of compatible joint distributions.

Example 1. Consider the random experiment that consists of rolling a dice. We
do not know whether the dice is fair or not. Suppose we only get reports on
whether the outcomes are even or odd. Let X be the random variable denoting
the actual outcome of the dice roll (from a1 = 1 to a6 = 6) and let Y be a
binary variable taking the values b1 (odd) and b2 (even). Let the 6-dimensional
vector θ = (p1, . . . , p6) represent the actual (unknown) probability distribution
of Z, with p6 = 1 − ∑5

i=1 pi. Let π = p2 + p4 + p6 and 1 − π = p1 + p3 + p5
respectively denote the probabilities of getting an even or an odd number. Based
on a sample of n.1 occurrences of b1 and n.2 occurrences of b2 in a sample of
N = n.1 + n.2 trials, the maximum likelihood estimator of π would be π̂ = n.2

N .
Also, we can easily check that any vector (p̂1, . . . , p̂6) satisfying the constraints
p̂2 + p̂4 + p̂6 = n.2

N is a maximum likelihood estimator of θ given the observed
sample. Now, let us suppose that we use the EM algorithm in order to find
such an MLE. We first initialize the vector θ, by means of selecting some θ(0) =
(p(0)1 , . . . , p

(0)
6 ). Then, we have to apply the E-step, that is, Jeffrey’s rule with

ρ1 = n.1
N , A1 = {1, 3, 5}, ρ2 = n.2

N , A2 = {2, 4, 6}. We get (p(1)1 , . . . , p
(1)
6 ), where:

p
(1)
i =

n.1

N

p
(0)
i

p
(0)
1 + p

(0)
3 + p

(0)
5

, i = 1, 3, 5; p
(1)
i =

n.2

N

p
(0)
i

p
(0)
4 + p

(0)
6 + p

(0)
6

, i = 2, 4, 6.

For instance, if we take the starting point
(
p
(0)
1 , . . . , p

(0)
6

)
= (16 , . . . , 1

6 ) then,

we will get p
(1)
i = n.1

3N , i = 1, 3, 5 and p
(1)
i = n.2

3N , i = 2, 4, 6. Such a vector is
also the maximum likelihood estimator of θ based on a fake sample with equal
numbers of 1, 3, 5’s and equal numbers of 2, 4, 6’s. This vector is thus the
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optimum of the first M step based on this fake sample. A different postulated
initial vector would be identified with a different imputation

(
p
(1)
1 , . . . , p

(1)
6

)
.

The previous example illustrates a case where the MLE based on the observed
sample y is not unique, and an MLE is reached after the first iteration of the
EM algorithm. Whatever the starting point θ(0), the estimate based on the
subsequent iteration of the algorithm, θ(1) is an MLE of θ based on y, which
completely depends on θ(0). Using EM in this situation sounds questionable.
In cases where the probabilities on X are tightly constrained, the MLE for y
can be unique and is asymptotically reached after several iterations of the EM
algorithm, independently of the initial choice of the parameter (see the first
example in the paper by Dempster et al. [4]).

Anomalies when Imprecise Observations Overlap. When the elements of
the range of the observed variable Y correspond to elements of a partition of X ,
the likelihood function of Y takes the form

∏r
j=1 P (X ∈ Aj)n.j , with

∑r
j=1 n.j =

N . Suppose now that the images {A1, . . . , Ar} of Γ do not form a partition of
X . In other words, if x ∈ X there may be several A′

is enclosing outcome xj .
Maximizing the product

∏r
j=1 P (X ∈ Aj)n.j instead of Ly(θ) =

∏r
j=1 P (Y =

{Aj})n.j leads to counter-intuitive results, as we show in the following example.

Example 2. Suppose that a dice is tossed, as in the previous example. Suppose
we are told either that the result has been less than or equal to 3 or that it has
been greater than or equal to 3. Then A1 = {1, 2, 3} and A2 = {3, 4, 5, 6}. Let
us denote both responses by y1 and y2, respectively. After each toss, when the
actual result (X) is 3, the reporter says y1 or y2 but we do not know how it is
chosen. Let us take a sample of N tosses of the dice and let us assume that we
have been told us n1 times “less than or equal to 3” and n2 = N − n1 times
“greater than or equal to 3”. Suppose we take as a likelihood function

h(θ) = P (Z ∈ A1)n1 · P (Z ∈ A2)n2 = (p1 + p2 + p3)n1 · (p3 + p4 + p5 + p6)n2 ,

where θ = (p1, . . . , p6) ∈ [0, 1]6 such that
∑6

i=1 pi = 1. We can easily observe
that it reaches its maximum (h(θ) = 1) for any vector θ satisfying the constraint
p3 = 1. But such a prediction of θ would not be a reasonable estimate for θ.
Worse, the EM algorithm applied to this case would also stop after the first
iteration and fail to reach this maximum, for the same reason as in the previous
example.

The difficulty comes from the fact that, with overlapping pieces of data, the
function h(θ) is arguably not a likelihood function. Edwards ([6], p. 9) defines a
likelihood function as follows:

Let P (R|θ) be the probability of obtaining results R given the hypothesis
θ, according to the probability model . . . The likelihood of the hypothesis θ
given data R, and a specific model, is proportional to P (R|θ), the constant
of proportionality being arbitrary.
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Edwards mentions that “this probability is defined for any member of the
set of possible results given any one hypothesis . . . As such its mathematical
properties are well-known. A fundamental axiom is that if R1 and R2 are two
of the possible results, mutually exclusive, then P (R1 or R2|θ) = P (R1|θ) +
P (R2|θ)”.

The key point in our problem with overlapping imprecise observations is what
we understand by “a result”. Actually, an imprecise result taking the form of
a subset Ai of X should be modelled by a singleton Ri = {Ai} of the power
set of X in order to satisfy the requirements of Edwards. In other words, if
the possible observable results are {{A1}, . . . , {Ar}} then

∑r
i=1 P ({Ai}|θ) =

1. In our case, a result is not an event Ai, it is an elementary event {Ai} (a
report carrying imprecise information about X). Only elementary events can
be observed. For instance, when tossing a die, you cannot observe the event
“odd”. What you see is 1, 3 or 5. But some source may report “{odd}”. So, a
likelihood function is proportional to P ({Ai}|θ) where R is an elementary event.
For instance, P (X|θ) = 1 cannot be viewed as the likelihood of θ given the sure
event.

In order to properly apply the EM algorithm to find the distribution of X,
in the case of overlapping observations Ai, we have to introduce a parametric
model describing which Ai is chosen by the reporter when the outcome of X is
xj , say a conditional probability Pθ({Ai} | xj) and let the likelihood function
Ly(θ) account for it, e.g. P ({Ai}|θ) =

∑
i=1,m Pθ({Ai} | xj)P (xj | θ). Generally,

Pθ({Ai} | xj) > 0 only if xj ∈ Ai. For instance, the superset assumption [10]
considers Pθ({Ai} | xj) to be constant over all supersets of xj .

In the above example, suppose we model the measurement device by assum-
ing P (Γ = {1, 2, 3}|Z = 3) = α. If m denotes the mass function associ-
ated to the imprecise observations, we have that m(A1) = P (Y = y1) =
p1 + p2 + α p3, m(A2) = (1 − α)p3 + p4 + p5 + p6.

Notice that in this case P (X ∈ A) does not coincide with m(A) = P (Y =
{A}). It would, only under the special situations where α = 1 or p3 = 0. More-
over, the difficulty due to the inclusion Pθ ⊇ Py, making the EM algorithm
inefficient, remains.

5 Conclusion

What our results show is that the EM algorithm oscillates between the set Pθ

of parameterized joint distributions and the set Py of joint distributions whose
marginals on Y agree with the empirical distribution induced by y: In the ini-
tial step a probability measure in Pθ is chosen, and then it is updated in the
E-step into a probability measure P̂ (0) in Py using Jeffrey’s rule of revision,
thus producing an artificial sample on X × Y; on this basis, an MLE estimate
θ(1), hence a probability measure P (·; θ(1)) ∈ Pθ is computed in the M-step,
based on the artificial sample underlying P̂ (0), and so on, until convergence of
the θ(n) sequence. At each stage n, the log-likelihood function Ly(θ) increases.
However, we have shown cases of incomplete information management where
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this method does not seem to work properly. In future works we shall propose a
more systematic analysis of situations when the EM algorithm stops at the first
iteration under the partition assumption, and explore alternative ways of posing
the problem of maximum likelihood estimation under incomplete overlapping
data [2,7,9,10]. Another issue is to investigate the cogency of the fake sample
found by the EM algorithm viewed as an imputation method [14,15].
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Abstract. The belief function theory is an efficient tool to represent
causal knowledge under uncertainty. Therefore, causal belief inference
process is important to evaluate the impact of an observation or an
intervention on the system. However, existing algorithms only deal with
the propagation of observational data in belief networks. This paper
addresses propagation algorithms of causal knowledge in multiply con-
nected causal belief networks. To handle this propagation, we have first
to transform the initial network into a tree structure. Therefore, we pro-
pose some modifications to construct a new structure by exploiting inde-
pendence relations in the initial network. This structure is called hybrid
binary join tree composed of conditional distributions and non condi-
tional ones. Then, we develop a causal belief propagation algorithm using
the belief graph mutilation or the graph augmentation methods.

Keywords: Belief function theory · Causality · Causal belief networks ·
Hybrid binary join tree · Propagation process · Interventions

1 Introduction

Causality is an important concept involved in many fields. It amounts to deter-
mine what truly causes what and what it matters. It allows to describe, interpret
and analyze information and events and it plays an important role in the expres-
sion of our perception of our environment. Besides, it enables to identify if two
events are related in a causal way or not, using interventions which are external
actions that force a target variable to have a specific value. While conditioning
is used to compute the effect of observations, the “do” operator [12] is used as
a tool to represent interventions on causal networks. Thus, this operator is used
to compute the impact of external action [5].

Bayesian networks [11] are successful graphical models. However, proba-
bility distribution does not naturally distinguish between equiprobability and
ignorance situations. To tackle this problem, some researchers [2,3,17,23] have
proposed alternative networks where uncertainty is quantified with the belief
function theory [13]. This latter is well established as a general framework for
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J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 291–302, 2016.
DOI: 10.1007/978-3-319-40581-0 24



292 O. Boussarsar et al.

reasoning with uncertainty, and has well understood connections to other frame-
works such as probability, possibility and imprecise probability theories. A causal
belief network [5] is a graphical structure. It is used to represent causal rela-
tions between nodes under the belief function framework. Two different graphi-
cal approaches to represent interventions in causal belief networks are provided
namely, the mutilated and the augmented based approaches [5].

A network is said to be multiply connected if there are several paths between
two variables in the network. Since, the adaptation of propagation algorithms in
singly connected graphs (i.e., where there is at most one directed path between
any two nodes) [6,7] is not appropriate, the idea in this case is to transform the
initial graph (a multiply connected graph) into a tree structure (a singly con-
nected graph) such as join trees (JT) [16], binary join trees (BJT) [15], modified
binary join (MBJT) [1] trees and junction trees [10] to remove the loops in order
to avoid infinite traffic messages.

In this paper, we explain how we can propagate interventions in multiply con-
nected networks. Since, there are some problems when propagating beliefs in the
modified binary join tree [8], we present first a new structure called hybrid binary
join tree based on conditional nodes and non-conditional ones. We propose some
improvements in cases representing some ambiguities. This structure uses the
two rules proposed by Smets: the disjunctive rule of combination (DRC) and
the generalized Bayesian theorem (GBT) between nodes having a conditional
node and extension and marginalisation between non-conditional nodes. The
second contribution consists of presenting an algorithm of propagation of inter-
ventions in multiply connected networks using the mutilated and the augmented
approaches on this data structure. We explain that this algorithm allows the
propagation of several observations and interventions.

The rest of the paper is organized as follows: Sect. 2 presents the basic con-
cepts of the belief function theory. In Sect. 3, we recall belief networks. The
causal belief propagation algorithm in hybrid binary join tree is described in
Sect. 4 as well as the changes made to the construction of the tree structure.
Section 5 concludes the paper.

2 Belief Function Theory

The belief function theory [13,20] represents an appropriate framework for
experts to express their beliefs in a flexible way and to reason under uncertainty.

Let Θ the finite non empty set including n elementary events representing
the solutions of a given problem. These events are assumed to be exhaustive
and mutually exclusive. The set Θ is called the frame of discernment. Beliefs
are expressed on subsets belonging to the powerset of Θ denoted 2Θ. The basic
belief assignment (bba), denoted by mΘ or m, is a mapping from 2Θ to [0,1] such
that:

∑
A⊆Θ m(A)=1.

m(A) is a basic belief mass (bbm) assigned to the event A. It represents the
part of belief exactly committed to the event A of Θ. Subsets of Θ such that
m(A) > 0 are called focal elements. The mass function respecting the constraint
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m(∅) = 0 is called normalized. A bba is said to be certain if the whole mass is
allocated to a unique singleton of Θ and Bayesian when all focal elements are
singletons. If the bba has Θ as a unique focal element, it is called vacuous and it
represents the case of total ignorance.

The belief function theory offers interesting tools for aggregating basic belief
assignments. Two bbas provided by two distinct and independent sources m1

and m2 may be combined to give one resulting mass using the Dempster rule of
combination (several explanations for the origin and the unicity of this rule are
given in [9,18]).

m1 ⊕ m2(A) = K ·
∑

B∩C=A

m1(B)m2(C),∀B,C ⊆ Θ (1)

where K−1 = 1 − ∑

B∩C=∅
m1(B)m2(C).

Dempster’s rule of conditioning allows to update the knowledge of an expert
following the new information. m(A|B) denotes the degree of belief of A in the
context of B with A, B ⊆ Θ.

m(A|B) =

{
K.

∑

C⊆B̄

m(A ∪ C) if A ⊆ B,A �= ∅
0 if A �⊆ B

(2)

where K−1=1 − m(∅).
Vacuous extension is useful when new variables are added to the referential. It
allows to express the marginal mass function mΘ defined on Θ over the frame
Θ × Ω as follows:

mΘ↑ΘΩ(B) = mΘ(A) if B = A × Ω (3)

such that A ⊆ Θ,B ⊆ Θ × Ω

Given the product space Θ × Ω and a mass distribution defined on this
product space. Marginalization allows to map over a subset of the product space
by dropping the extra coordinates.

mΘΩ↓Θ(A) =
∑

C⊆Θ×Ω,C↓Θ=A

mΘΩ(C), A ⊆ Θ (4)

The ballooning extension [4,14] is useful when, after conditioning, an expert
would reconstruct the initial distribution. The ballooning extension transforms a
mass belief function m(A|ω) defined on Θ given ω ∈ Ω into a new mass function
over Θ × Ω. To get rid of conditioning, we have to compute the ballooning
extension defined as:

m
Θ �ΘΩ
ω (C) =

{
mΘ(A|ω) if C = (A × ω ∪ Θ × ω̄)
0 otherwise

(5)

such that A = (C ∩ ωΘΩ)↓Θ
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3 Causal Belief Networks

Causal belief networks [5] are graphical models representing imperfect causal
knowledge under an uncertain environment where the uncertainty is quantified
by mass distributions. They represent an efficient model due to their capacity to
handle causal relationships between variables. These graphical models represent
an alternative and an extension to causal Bayesian networks [21,22] that offer
interesting tools to handle interventions. They allow the detection of causal rela-
tionships under the belief function framework. Moreover, they offer a flexible way
to define conditional beliefs without the need to specify all a priori distributions
using vacuous bbas. They are defined on two levels:

– Qualitative level: represented by a directed acyclic graph (DAG) G=(N,E),
where nodes N represent different random variables and edges E encode the
causal links among variables. Parents of the node A denoted by PA(A) are
their immediate causes and children of A denoted by CH(A) are considered
as their effects. PAj(A) is a single parent of A. A subset from the set of the
parents of A is denoted by Pa(A) and a subset from PAj(A) is denoted by
Paj(A). The conditional nodes are denoted by C.

– Quantitative level: represented by the set of mass distributions associated to
each node in the graph. Conditional distributions can be defined for each
subset of each variable Ai (subik ⊆ ΘAi

) in the context of its parents such
that:

∑

subik⊆ΘAi

mAi(subik|Pa(Ai)) = 1

In order to predict the effects of external actions on the system, the construc-
tion of the belief causal network must be different from belief network and the
conditioning on an observation should be distinguished from a conditioning on
an external action. Handling interventions and computing their effects on the
system can be done by making changes on the structure of the belief causal
network [5]: after acting on a variable, we assume that its initial causes are no
more responsible of its state. Accordingly, arcs linking the variable of interest to
its parents should be deleted. The resulting graph is a mutilated causal belief
network. Another alternative is to add a new fictitious variable “DO” as a par-
ent node of the variable concerned by an intervention. This added variable will
totally control its status. The resulting graph is called an augmented causal
belief network.

4 Causal Inference in Hybrid Binary Join Tree

The inference process is used to evaluate the influence of the various observations
and interventions of the system using equivalent local computations. To ensure
the belief causal inference, we have to compute the effect of observations and
interventions with two different equivalent ways, i.e., mutilating the graph or
using the augmented graph method.
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In order to propagate beliefs efficiently, the computation of joint belief func-
tions on the product space is involved using the disjunctive rule of combination
(DRC) and the generalized Bayesian theorem (GBT) [19].

Let us consider plΩ(c|ai) and ai ∈ a where a ⊆ Θ and c ⊆ Ω. Θ or Ω may
well represent the frame of discernment of one variable or multi-variables.

The message sent from the parent node A to its child C using the DRC is
defined as follows:

plΩ(c) =
∑

a⊆Θ

mΘ(a)(1 −
∏

ai∈Θ

(1 − plΩ(c|ai))) (6)

The message sent from the child node to its parent node A using the GBT is
defined as follows:

plΘ(a) =
∑

c⊆Ω

mC(c)(1 −
∏

ai∈Θ

(1 − plΩ(c|ai))) (7)

4.1 Hybrid Binary Join Tree

Since in binary join tree [15], computation time is minimized while a lot of
memory space is required to store intermediate results, authors in [1] proposed a
refinement of the binary join tree, called modified binary join tree which exploits
the structure of the original belief network by transforming it into a binary join
tree and then doing some modifications by manipulating conditional relations
between variables instead of joint distributions.

The construction of the modified binary join tree follows three steps [1]:

– arrange the subsets the hypergraph in a binary join tree where each node has
no more than three neighbors

– attach singleton subsets to the binary join tree and always ensure that the
tree is binary

– replace circle containing the list of these variables by a rectangle containing
the conditional relations between variables

As explained in [8], the construction of the modified binary join tree have
some limitations:

– Limitation 1: sometimes it is not possible to distinguish between the child
and the parent nodes

– Limitation 2: conditional nodes on the MBJT represented by rectangle nodes
do not correspond to the ones initially represented on the original network.

– Limitation 3: conditional distributions initially defined per edge are repre-
sented conditional distributions defined for all parents on the MBJT.

To tackle these problems, we first propose in this paper a new solution to make
the propagation process efficient so called hybrid binary join tree. It is a com-
bination of the two structure “the modified binary join tree” exploiting the
independence relations and “the binary join tree”.
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– Solution for limitation 1: do not replace the node containing the list of vari-
ables by a conditional one. Replace the circle containing the list of variables
(non-conditional nodes) with a rectangle nodes representing the a priori con-
ditional distribution in the case where the parent and child nodes are present
in the initial network.

– Solution for limitation 2: do not replace the node containing the list of vari-
ables by a conditional one.

– Solution for limitation 3: combine the distributions of the parent nodes in a
fictional node using Dempster’s rule of combination [7].

The propagation process will be based on the two rules DRC and GBT (Eqs. 6
and 7) between non-conditional nodes having between them a conditional node.
Otherwise, extension and marginalisation (Eqs. 3 and 4) will be used between
nodes containing a list of variables.

Example 1. Let us consider the multiply connected belief network depicted in
Figure 1 originally constituted by 8 nodes U={A,T,L,E,S,B,D,X} representing
the variables of the problem (note that we use the same network proposed by [1]
to explain the limitations and the proposed modifications).

Fig. 1. The multiply connected belief network.

In the modified binary join tree represented in Figure 2, we cannot deduce
which is the parent or the child nodes between {T,E} and {L,E} given the con-
ditional node {E|T,L} to perform the propagation. Besides, the node {L,B|S}
is not a conditional node in the initial network (we only have conditional mass
distributions {L|S} and {B|S}). Accordingly, we cannot found the mass distribu-
tion of the conditional node {L,B|S}. Moreover, for {D|E,B}, initially the con-
ditional distributions are defined per edge. So, the mass distribution represented
in the modified binary join tree is not the same. The suggested modifications are
represented in the hybrid binary join tree depicted in Figure 3.
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Fig. 2. The corresponding modi-
fied binary join tree.

Fig. 3. Hybrid binary join tree.

4.2 Propagation Algorithm in Hybrid Binary Join Tree

To ensure the propagation using DRC and GBT rules, some elements of the
message passing scheme have to be used. When receiving a message, each node
updates three local vectors, the vector m(x1, · · · , xn) (the mass distribution), the
vector π(x1, · · · , xn) (the vector concerning messages received by its parents)
and the vector λ(x1, · · · , xn) (the vector concerning messages received by its
children). Each node sends and receives messages from its neighbors, the π-
message (the message sent from a parent node to a child node) and the λ-message
(the message sent from a child node to a parent node). A post-order (in direction
of pivot) and a pre-order (from pivot to other nodes) will be defined to propagate
information.

In this section, we propose new propagation algorithms for multiply con-
nected causal belief networks where beliefs are quantified by conditional masses.
To propagate beliefs in the causal multiply connected network, we have to trans-
form it into an hybrid binary join tree. Then, we will perform the propagating
algorithm which comprises three steps (see Fig. 4):

1. the initialization phase in which all vectors are instantiated
2. the collect of information algorithm will be performed in which the nodes

send messages towards the pivot node
3. the distribution of information algorithm will be applied where messages are

sent from the pivot to other nodes

In initialization step, the algorithm initializes all fields π, λ and m.
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Fig. 4. Propagation process

Algorithm. Initialization
For i from 1 to length(U)
mX ← mX

0

πX ← mX

λX ← vacuous bba
End for

To collect information, if the adjacent node is a conditional node, a message
is sent to the next node. Otherwise, there will be an extension to the product
space and a combination.

Algorithm. Collect of information
For each A ∈ post-order

If adj node in C
If adj node in PA(adj node)

Send a π message
else

send a λ message
End if
else

Extend to the product space.
Combine the mass distributions.

End if
End for

To distribute information, if the adjacent node is a conditional node, a mes-
sage is sent to the next node. Otherwise, there will be an extension to the product
space and a combination.
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Algorithm. distribution of information
For each A ∈ pre-order

If adj node in C
If adj node in PA(adj node)

Send a π message
else

send a λ message
End if
else

Extend to the product space.
Combine the mass distributions.

End if
End for

4.3 Inference in the Mutilated Modified Binary Join Tree

The external action do(aij) imposes a specific value aij to the variable Ai. The
conditional distribution of the target variable becomes a certain bba which is
defined as follows:

mAi

Gmut
(subik) =

{
1 if subik = {aij}
0 otherwise (8)

Propagation in this graph consists of three main steps: the mutilation step, the
construction of the hybrid binary join tree and the propagation process.

Algorithm. Propagation using the mutilated based approach
Cutting all edges pointing to the node concerned by the intervention.
Construction of the hybrid binary join tree.
Choose a pivot.
Initialization.
Collect of information.
Distribution of information.

Note that using this approach, we had to construct a new hybrid binary join
tree for new interventions.

4.4 Inference in the Augmented Modified Binary Join Tree

After adding the “DO” node, the conditional distribution of the node concerned
by the intervention A given parent nodes must be updated. The parents set
of the variable A is transformed to PA′ = PA ∪ {DO}. The DO node takes
values in do(x), x ∈ {ΘA∪ {nothing}}. do(nothing) represents the case when
no interventions are made. When the DO node is taking the value ai. This means
that a certain action succeeds to put its target variable A at a precise value which
makes it completely independent of its original causes. Let PA(A) be the parents
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of the variable A except the DO node, the conditional distribution of A is defined
as follows:

m(ak|PA(A), do(x)) =

⎧
⎨

⎩

1 if x = ai

0 if x �= ai

m(ak|PA(A), do(x)) x = nothing
(9)

Propagation using this approach consists of the augmentation of the graph. The
conditional distribution of the node concerned by the intervention becomes cer-
tain. Then, the propagation process described above is handled.

Algorithm. Propagation using the augmented based approach
Add the node DO as a parent of the node concerned by the intervention.
Updating its conditional mass distribution.
Construction of the MBJT.
Choose a pivot.
Initialization.
Collect of information.
Distribution of information.

The use of the augmented approach allows to represent the effect of inter-
ventions and also observations. The main advantage of this approach in multiply
connected networks, is that the reconstruction of the tree structure after each
evidence can be avoided. Indeed, it is possible to add the DO node before or after
the construction of the hybrid binary join tree. The two methods are equivalent
since the nodes resulting from the augmented hybrid binary join tree and the
nodes resulting from hybrid binary join tree obtained from the augmented initial
network are the same.

Proposition 1. Let G be the initial network. Gaug represents the augmented
causal belief network where interventions are initially represented and G

′
its

Fig. 5. An augmented multiply connected network.
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corresponding hybrid binary join tree. Let G
′′

be the hybrid binary join tree
constructed from the G and then augmented by adding DO nodes. These two
structures (G

′
and G

′′
) are equivalent.

By adding the DO node as a parent for each variable, the structure of the ini-
tial network graph is stable regardless the number of observations and interven-
tions. There is no need to build another hybrid binary join tree. The conditional
distribution given the DO node is obtained using Eq. 9. In the case where a node
in not concerned by an intervention, it takes the value nothing by avoiding the
regeneration of the hybrid binary join tree for each evidence (see Fig. 5).

5 Conclusion

In this paper, we explained how we can propagate observations and interventions
in causal multiply connected networks using the hybrid binary join tree. We
proposed a propagation algorithm on this structure allowing the inference of
several observations and interventions in the augmented and mutilated graphs.
As future work, we intend to treat inference of non standard interventions in
singly and multiply connected networks. Inference in causal belief networks can
be used in several applications like those allowing the intrusion detection and or
ensuring system reliability.
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Abstract. When record sets become large, indexing becomes a required
technique for speeding up querying. This holds for regular databases,
but also for ‘fuzzy’ databases. In this paper we propose a novel index-
ing technique, supporting the querying of imperfect numerical data. A
possibility based relational database setting is considered. Our approach
is based on a novel adaptation of a B+-tree, which is currently still one
of the most efficient indexing techniques for databases. The leaf nodes
of a B+-tree are enriched with extra data and an extra tree pointer so
that interval data can be stored and handled with them, hence the name
Interval B+-tree (IBPT). An IBPT allows to index possibility distrib-
utions using a single index structure, offering almost the same benefits
as a B+-tree. We illustrate how an IBPT index can be used to index
fuzzy sets and demonstrate its benefits for supporting ‘fuzzy’ querying
of ‘fuzzy’ databases. More specifically, we focus on the handling of ele-
mentary query criteria that use the so-called compatibility operator IS,
which checks whether stored imperfect data are compatible with user
preferences (or not).

Keywords: Indexing · Possibilistic databases · B+-tree

1 Introduction

Query processing can be time-consuming. Regular database management sys-
tems cope with this problem by providing indexing mechanisms. In its simplest
form, an index can be seen as an ordered file of attribute values where each value
has an associated disk block address, denoting in which disk block a database
record with that value is stored. Among the most popular indexing mechanisms
for handling numerical data is the B+-tree [1].

However, when considering the management of imperfect data in a database
system, indexing mechanisms must be adapted in order to efficiently cope with
the data format in which the imperfect data are represented. A commonly used
technique for representing imperfect data is to model the uncertainty that is
caused by the imperfections, by means of a possibility distribution [11]. This
approach is known as the possibility based database modelling approach and
was originally presented in [8]. A possibility distribution can be represented by
c© Springer International Publishing Switzerland 2016
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a fuzzy set, which on its turn is characterized by a membership function [11].
For practical reasons, membership functions for possibility distributions over
numerical data are often approximated by trapezoidal shape functions.

Hence, indexes for imperfect numerical data should support the efficient
querying of ‘trapezoidal’ data (instead of numerical data). The research pre-
sented in this paper, aims to contribute in the study of such indexing techniques.

Although very relevant and indispensable for real-world databases, not many
researchers have studied indexes for imperfect data. In [3], Bosc and Galibourg
proposed an indexing principle that aims to preselect and efficiently retrieve only
those records that potentially satisfy the query condition under consideration.
This principle forms the basis for the work presented in this paper. Boss and
Helmer studied the use of superimposed coding to annotate the support and core
of a possibility distribution and use these annotations for index construction
[4]. In [9,10], Yazici and Cibiceli proposed to use a single, multidimensional
index for indexing similarity-based fuzzy data. This technique is only applicable
for attribute domains that consist of a finite number of fuzzy values that are
represented by linguistic labels. A technique, based on so-called G-trees, has
been presented by Liu et al. [7]. This technique, called 1GT, is suitable for
indexing convex possibility distributions, of which the support is mapped to a
two-dimensional data point, with a single G-tree. Finally, in [2] Barranco et al.
presented a B+-tree based indexing technique, called 2BPT, for fuzzy numerical
data where two indexes are constructed: one for the lower bounds of the supports
of the trapezoidal possibility distributions, and one for their upper bounds. The
efficiency of 2BPT is similar to the efficiency of GT, however 2BPT is more
stable and much easier to implement as it is based on B+-trees [2].

In this paper we propose the Interval B+-tree (IBPT) indexing technique,
which is an alternative to 2BPT using only one IBPT. The idea is to extend the
concept of a B+-tree, so that it is able to store and handle numerical intervals.
This new tree structure is called IBPT. An IBPT can then be used to store and
index the lower bound and upper bound points of the support of the possibility
distributions representing the values of a given ‘fuzzy’ database attribute. This
leads to lesser storage needs (only one IBPT is needed) and a faster preselection
for query condition checking (only one IBPT has to be traversed).

The remainder of the paper has the following structure. In Sect. 2 some pre-
liminaries on possibilistic data modelling and B+-trees are described. The novel
IBPT indexing technique is presented in Sect. 3. In Sect. 4 an illustrative exam-
ple, demonstrating the practical use of IBPT indexing is presented and discussed.
Finally, in Sect. 5 some conclusions and directions for further work are given.

2 Prelimaries

In this section the basic concepts of the possibility based database modelling
approach and B+-trees are briefly described.
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2.1 Possibility Based Database Modelling

Possibility based database modelling has been introduced for relational data-
bases [5] by Prade and Testemale in [8] and is based on possibility theory [6,11].
Consider a relation R with schema R(A1 : T1, . . . , An : Tn) of a relational data-
base. R is characterized by a finite attribute set {A1 : T1, . . . , An : Tn}, where
each attribute Ai : Ti, i = 1, . . . , n has a name Ai and associated data type Ti

implying that Ai can take values from the domain (set of allowed values) domTi

of Ti. Hence, for every tuple t(A1 : v1, . . . , An : vn) of R it holds that vi ∈ domTi
.

In traditional databases, all attribute values in tuples should be crisp or null, the
latter denoting that the actual value is unknown or undefined. This approach
does not support the explicit handling of imperfect data.

The basic idea in possibility based database modelling is to model the uncer-
tainty that characterizes imperfect data by means of a possibility distribution.
A possibility distribution reflecting the available knowledge about which candi-
date values are plausible (or less plausible) to be the actual value of an attribute
A : T , is a mapping πA : domT → [0, 1]. Extreme forms of partial knowl-
edge like complete knowledge (i.e. ∃v′ ∈ domT : πA(v′) = 1 and ∀v �= v′ ∈
domT : πA(v) = 0) and complete ignorance (i.e. ∀v ∈ domT : πA(v) = 1) can
be reflected. Each possibility distribution πA is normalized, which implies that
∃v ∈ domT : πA(v) = 1. A possibility distribution πA can be modelled by means
of a fuzzy set F with membership function μF : domT → [0, 1]. In such a case,
∀v ∈ domT : πA(v) = μF (v). Every normalized membership function can be
used but, for practical reasons, often trapezoidal membership functions are used
for numerical domains. Trapezoidal membership functions can be fully charac-
terized by a quadruple consisting of the values values a (lower bound of the
support), b (lower bound of the core), c (upper bound of the core) and d (upper
bound of the support). This is illustrated in Fig. 1.

Fig. 1. Examples of trapezoidal membership functions, characterized by a quadruple
(a, b, c, d).

If uncertainty is reflected in the data, this uncertainty propagates to the query
results and should therefore not be neglected. In a possibility based approach
this uncertainty is often reflected by a pair consisting of a possibility degree and
necessity degree. These degrees respectively denote to which extent it is plausible
and to which extent it is certain that the (stored value in the) tuple satisfies a
given query criterion. A basic facility for querying imperfect data is the so-called
compatibility operator IS. In its general form
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A IS P (1)

the operator checks whether the stored value for attribute A is possibly and
necessarily compatible with the preferences P (for A) as specified by the user.
For the sake of generality, it is hereby assumed that the user preferences P are
expressed by means of a (trapezoidal) membership function μP : domT → [0, 1].
For each v ∈ domT , μP (v) then expresses to which extent v corresponds to
the user’s preferences regarding the values of A. The user preferences are hence
defined by all v ∈ domT : μP (v) �= 0. Consider a tuple t(A1 : v1, . . . , An : vn) of
R and let the attribute value of A : T in t be shortly denoted by t[A]. In case
of imperfect data, t[A] will be a possibility distribution, which will be denoted
by πt[A]. With these considerations, the definition of the evaluation of A IS P
given in [6] can be written as

Π(A IS P )(t) = sup
v∈domT

min(πt[A](v), μP (v)) (2)

and

N(A IS P )(t) = inf
v∈domT

max(1 − πt[A](v), μP (v))

= 1 − sup
v∈domT

min(πt[A](v), 1 − μP (v)) (3)

where Π(A IS P )(t) is the possibility degree and N(A IS P )(t) is the necessity
degree. The index proposed in this paper aims to support the evaluation of
queries that contain a criterion that uses the compatibility operator IS.

2.2 B+-Trees

B+-trees [1] are considered to be among the most efficient techniques used for
indexing numerical data in traditional databases. A B+-tree is a tree structure
where each node corresponds to a disk block (the unit of data transfer in hard
disk drive I/O operations). The tree is balanced, which implies that all leaf nodes
are at the same level. Because data pointers are only stored in leaf nodes, all
data can be accessed with the same number of disk accesses (to traverse the tree
from the root to a leaf node and one extra to load the disk block that contains
the data). All nodes in a B+-tree are kept between half full and full (except for
the root node if this is the only node in the tree).

As depicted in Fig. 2, each internal node of a B+-tree of order p can contain
at most p tree pointers Pi, i = 1, . . . , q, q ≤ p and p − 1 search values Ki,
i = 1, . . . , q − 1, q ≤ p. The search values in the node are sorted such that
K1 < K2 < · · · < Kq−1. Each tree pointer Pi refers to the root node of a subtree
Si. If 1 < i < q, then each search value K in Si satisfies Ki−1 ≤ K < Ki. Each
search value K in S1 satisfies K < K1, and each search value K in Sq satisfies
Kq−1 ≤ K. Every internal node should be kept at least half full, i.e. it should
contain at least �(p/2)	 tree pointers and �(p/2)	 − 1 search values.
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Fig. 2. The structure of internal and leaf nodes (left) and an example of a B+-tree of
orders p = 3 and pleaf = 2 (right).

Leaf nodes are structured in a different way because these are the only nodes
that contain data pointers that refer to the disk blocks of stored data (containing
records with the search value). Usually leaf nodes also have a different order pleaf .
As depicted in Fig. 2, each leaf node can contain at most pleaf search values Ki

and pleaf data pointers Pri, i = 1, . . . , q, q ≤ pleaf . It also contains a tree
pointer Pnext that refers to the next leaf node in the tree. This supports efficient
sequential traversal of the indexed data (in ascending order of the search values).
The search values in each node are sorted such that K1 < K2 < · · · < Kq. Every
leaf node, except if it is the root node, should be kept at least half full, i.e. it
should contain at least �(pleaf/2)	 data pointers and �(pleaf/2)	 search values.

In the right hand side of Fig. 2, an example of a B+-tree is shown. The
values in this tree are inserted in the order 8, 5, 1, 7, 2, 12, 9, and 6. B+-trees
are dynamically constructed. Inserting data can result in new nodes, which can
eventually propagate to a tree growth (adding one level). Deleting data can result
in the removal of nodes, which can propagate to a tree shrinkage (removing one
level). Efficient algorithms for constructing (node insertion and removal) and
searching B+-trees are described in [1] and other works on data structuring.

3 Interval B+-trees

In this section we present our proposal for indexing database attributes that
contain imperfect numerical data. Considering the possibility based setting as
described in Sect. 2, we hereby assume that imperfect data are modelled by trape-
zoidal possibility distributions. As illustrated in Fig. 1, each such a trapezoidal
distribution is fully specified by a quadruple (a, b, c, d).

3.1 Background

Our goal is to support the processing of the compatibility operator A IS P
(cf. Eqs. (2)-(3)), where P is modelled by a trapezoidal fuzzy set. Without an
index, for each tuple t of R, the stored possibility distribution πt[A] has to be
compared with the given fuzzy set P . If R contains a lot of tuples, this can be
time-consuming. This is why Bosc and Galibourg proposed an indexing principle
to preselect only those possibility distributions πt[A] that overlap with the user
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preferences P [3]. Indeed, for possibility distributions that do not overlap with
P , it holds that Π(A IS P ) = N(A IS P ) = 0.

The preselection principle of Bosc and Galibour forms the basis of the 2BPT
indexing technique proposed by Barranco et al. [2]. In 2BPT indexing, two B+-
trees are used. Assume that the possibility distribution πt[A] for the attribute
A in tuple t is specified by the quadruple (at[A], bt[A], ct[A], dt[A]), then one B+-
tree of 2BPT is used to index the lower bounds at[A] of the support of the
possibility distributions πt[A], and the other B+-tree is used to index the upper
bounds dt[A] of this support. Let the fuzzy set P be specified by the quadruple
(aP , bP , cP , dP ). With 2BPT, preselection boils down to using the first B+-tree
to find the set of those possibility distributions that start before the end of P ,
i.e. for which at[A] ≤ dP . Subsequently, using the second B+-tree to find the
set of those possibility distributions that end after the start of P , i.e. for which
dt[A] ≥ aP , and finally, taking the intersection of both sets [2].

3.2 Index Structure

With IBPT indexing, we aim to further improve the indexing of imperfect data
by using only one tree structure instead of two. The interval B+-tree is used
to index the upper bounds dt[A] of the supports of the possibility distributions
πt[A], but is constructed in such a way that extra data about the lower bounds
at[A] are stored in the leaf nodes. We propose to define the nodes of an IBPT as
depicted in Fig. 3.

Fig. 3. The structure of internal and leaf nodes of an IBPT.

Internal nodes are structured like the internal nodes of a regular B+-tree.
Each internal node of order p can contain at most p tree pointers Pi, i = 1, . . . , q,
q ≤ p and p − 1 search values di, i = 1, . . . , q − 1, q ≤ p. Each search value
corresponds to an upper bound of the support of a possibility distribution πt[A]

that is stored as value for attribute A in a tuple t of R. The search values in an
internal node are sorted such that d1 < d2 < · · · < dq−1. Like with a regular
B+-tree, each tree pointer Pi refers to the root node of a subtree Si. If 1 < i < q,
then each search value d in Si satisfies di−1 ≤ d < di. Each search value d in S1

satisfies d < d1, and each search value d in Sq satisfies dq1 ≤ d. Every internal
node should be kept at least half full.

Each leaf node of order pleaf can contain at most pleaf data values [ai, (di)]
and pleaf data pointers Pri. Each data value [ai, (di)] is composed of the lower
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bound ai and upper bound di of the support of a possibility distribution πt[A].
(For notational clarity, we put parentheses around the upper bound values, here-
with denoting that these are the (search) values based on which the tree has been
constructed.) Hence, information about the lower bound and the upper bound
of each support is stored in the leaf nodes of the IBPT. The data values in each
node are sorted such that d1 < d2 < · · · < dq. Each leaf node also contains two
tree pointers Pprev a, Pnext d. The Pnext d pointer is used to construct a linked
list of leaf nodes that supports to traverse the data values in ascending order
of the upper bound values di. Because the IBPT is constructed like a B+-tree,
using the upper bound values di, the Pnext d pointer will always refer to the
next leaf in the tree (except for the last node, which contains a null pointer).
The Pprev a pointer is new and introduced to set up a second linked list of leaf
nodes that supports the processing of all data values with a smaller lower bound
value than a given data value. For that purpose, the smallest lower bound value
amin of all data values [ai, (di)] in each leaf node is selected and leaf nodes are
connected with a linked list in descending order of their smallest lower bound
value amin. Every leaf node, except if it is the root node, should be kept at least
half full.

Fig. 4. An example of a IBPT index structure.

An example of a IBPT index structure is given in Fig. 4. The IBPT is used
to index possibility distributions with (upper bound of) support [8, (8)], [2, (5)],
[1, (1)], [2, (7)], [1, (2)], [10, (12)], [8, (9)], [4, (6)], and [2, (10)] (inserted in that
order). The Pprev a tree pointers are depicted using dotted arrows. For the sake
of clarity, the upper bound values in the leaf nodes are presented in boldface
and the smallest lower bound value of each leaf node is shown in boldface, left
on top of the leaf node.

3.3 Preselection

Preselection aims to support the querying of imperfect data by preselecting only
those database tuples, for which it is known that they could satisfy the query
condition. Or, as seen from the opposite point of view, by discarding those tuples
from further query processing for which it is known that they certainly can not
satisfy the query condition.
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When supporting the processing of query conditions that are based on the
compatibility operator IS, preselection can in its simplest form be guided by
interval comparison. Consider a query condition A IS P where A is an attribute
of a relation R and P is a fuzzy set, denoting the user’s preferences with respect
to the values of attribute A, as described in Sect. 2. Assume that the possibil-
ity distribution πt[A], representing the available knowledge about the potential
values of A in tuple t, and the membership function μP of P have a trapezoidal
shape that is respectively characterized by the quadruples (at[A], bt[A], ct[A], dt[A])
and (aP , bP , cP , dP ). Under this assumption it is certain that tuples for which
the support of the value πt[A] of attribute A does not overlap with the support
of μP will not satisfy A IS P , because for these tuples t Eqs. (2)-(3) will yield
a necessity N(A IS P )(t) = 0 and a possibility Π(A IS P )(t) = 0.

Not overlapping translates to the conditions:

dt[A] < aP (4)

expressing that the end point dt[A] of the support of πt[A] is located before the
start point aP of the support of μP , or

dP < at[A] (5)

expressing that the start point at[A] of the support of πt[A] is located before the
end point dP of the support of μP . This is depicted in Fig. 5.

Fig. 5. Preselection conditions for processing A IS P .

When using an IBPT index structure, preselection of candidate values that
potentially satisfy the query condition can be done with a three step procedure.

– Step 1. Find the first candidate value. Search the IBPT for aP (the lower
bound of the support of μP ). After searching through the internal nodes, a
tree pointer to the leaf node that should contain a value [at[A], (aP )] will be
obtained.

• If aP is in the index, i.e. if a tuple t with value (at[A], bt[A], ct[A], aP ) exists,
then the first candidate value is the value [at[A], (aP )] in the leaf node. (If
multiple tuples with value (at[A], bt[A], ct[A], aP ) exist, then the tree will
store a reference to a list of data pointers –each referring to one of those
tuples– instead of a single data pointer.) Because the data values [a, (d)]
in each leaf node are sorted increasingly based on their value for d, it is
certain that all values located left from this first candidate value have
an upper bound for which Eq. (4) holds and hence do not belong to the
preselection.
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• If aP is not in the index, i.e. if a tuple t with value (at[A], bt[A], ct[A], aP )
does not exist in the database, then the first candidate value is the first
value [a, (d)] of the next leaf node which is obtained by using the Pnext d

tree pointer. All the values located in leave nodes that are located in the
linked list before this node have an upper bound for which Eq. (4) holds
and hence do not belong to the preselection.

– Step 2. Traverse the leaf nodes using the Pnext d tree pointers. From
the previous step a candidate value [a, (d)] is obtained. This candidate value
is the starting point for a traversal of the values in the leaf nodes. The val-
ues are traversed in increasing order of their end point (d). This traversal is
straightforward, because by construction of the IBPT, all the values in the
leaf nodes are already sorted in the proposed traversal order and the Pnext d

tree pointer determines the next leaf node to traverse.
During traversal, each value [a, (d)] is considered to be a candidate and will
be checked using Eq. (5). If the candidate value does not satisfy the condition,
i.e. if dP ≥ a, then we know that πt[A] (partially) overlaps with μP . So, the
candidate value should be put in the preselection and we can move to the
next candidate value. Traversal stops when a candidate value is found for
which Eq. (5) holds, or when the last value in the list is checked. If Eq. (5) is
satisfied for a candidate value [a, (d)], i.e. if dP < a, then we know that πt[A]

starts after μP and hence can not overlap with it. So, the candidate value
should not be put in the preselection.
When the traversal stops, we consider the last value [a, (d)] that has been
checked and continue with the third step.

– Step 3. Traverse the leaf nodes using the Pprev a tree pointers. In
the previous step we started with the construction of the preselection. The
traversal based on the Pnext d tree pointers stops when the last data value
is reached or when Eq. (5) is satisfied for a candidate value. This last stop
condition gives no guarantee that all values that should be preselected are
found. Indeed, it is still possible that there exist data values with a larger
upper bound (d) for which Eq. (5) is not satisfied. This will be illustrated in
the example in the next section. To find such values, we traverse the leaf nodes
backwards using the Pprev a tree pointers, starting with the leaf node of the
last value that has been checked in step 2.

Before we start the traversal, all the remaining data values [a, (d)] in the
leaf node have to be checked for potential membership to the preselection.
If Eq. (5) does not hold, i.e. if dP ≥ a, then the value [a, (d)] should be in
the preselection (unless Eq. (4) holds). If it is not already there, it has to be
added. If we find a data value for which Eq. (4) holds, i.e. for which d < aP ,
or if Pprev a is a null pointer, then the traversal stops. Else we move on to
the leaf node that is referred to by Pprev a and check all data values in that
node for missing preselection values using Eqs. (5) and (4). Step 3 ends if the
traversal stops.

After finishing the three step procedure described above, the preselection
for processing the compatibility operator IS is determined. The data pointers



314 G. De Tré et al.

associated with the data values in the preselection can then be used to efficiently
load the preselected data from the storage for further query processing.

4 Illustrative Example

Reconsider the IBPT index structure that is presented in Fig. 4. This index is
obtained after subsequently inserting the upper bounds of the supports [8, (8)],
[2, (5)], [1, (1)], [2, (7)], [1, (2)], [10, (12)], [8, (9)], [4, (6)], and [2, (10)]. Assume
that these are the supports of the (trapezoidal) possibility distributions used
as values for the attribute A : T in the different tuples t that are stored in
the database. Moreover, assume that the (trapezoidal) membership function μP

expressing the user’s preferences in a query condition A IS P has the interval
[3, 7] as support. This information in depicted in Fig. 6. The supports in this
figure are depicted bottom-up in increasing order of their upper bound values
(the lowest support has the lowest upper bound value, whereas the highest sup-
port has the highest upper bound value).

Fig. 6. The supports of the possibility distributions πt[A] stored in a database.

When applying preselection, the preselection should consist of those intervals
that (partially) overlap with the interval [3, 7]. As can be seen in Fig. 6 (consider
the vertical dotted lines) the preselection should be the set

S = {[2, (5)], [4, (6)], [2, (7)], [2, (10)]}.

Applying our three step procedure, presented in Sect. 3, yields the following.
Assume that S = ∅.

– Step 1. Search the IBPT of Fig. 4 for the lower bound value (3) of the support
of μP . Traversing the IBPT leads to the most left leaf node. The value (3) is
not in the index, hence the first candidate value is the value [2, (5)], being the
first value in the leaf node that is referred to by the Pnext d tree pointer of the
most left leaf node.
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– Step 2. Check the candidate value [2, (5)]. It holds that 2 ≤ 7, so S =
{[2, (5)]}. Move to the next candidate value, which is [4, (6)]. It holds that
4 ≤ 7, so S = {[2, (5)], [4, (6)]}. Move to the next candidate value, which is
[2, (7)]. It holds that 2 ≤ 7, so S = {[2, (5)], [4, (6)], [2, (7)]}. Move to the next
candidate value, which is [8, (8)]. Now 8 > 7, hence Step 2 ends.

– Step 3. Search for missing values in S. Reconsider the leaf node containing
the last data value [8, (8)] that has been checked. There are no subsequent data
values in this node (cf. Fig. 4), hence we follow the Pprev a tree pointer and
move on to the leaf node containing the data value [2, (7)]. This value is already
in S, so we can move on to the next leaf node, which is the node containing
the data values [2, (10)] and [10, (12)]. For [2, (10)] it holds that 2 ≤ 7, so this
value should be in S, but it is not. A missing data value is found and should
be added to the preselection, so S = {[2, (5)], [4, (6)], [2, (7)], [2, (10)]}. Check
the value [10, (12)]. This value should not be in S. Move on to the next leaf
node, which is the node containing the data values [2, (5)] and [4, (6)]. Both
data values are already in S, so we can move on to the next leaf node, which
is the node containing the values data [1, (1)] and [1, (2)]. Because 2 < 3 and
1 < 3, Eq. 4 holds for at least one data value in the leaf node and we can stop
the traversal. Hence S is found and equal to {[2, (5)], [4, (6)], [2, (7)], [2, (10)]}.

5 Conclusions and Future Work

In this paper, we proposed a novel indexing technique for possibilistic numerical
data: Interval B+-Trees (IBPT). The main advantage of an IBPT is that it allows
to index supports of fuzzy sets using a single tree structure, while still offering
the benefits of a regular B+-tree. This should result in smaller index storage
needs and faster preselection of candidate results in the processing of ‘fuzzy’
queries (because only one B+-tree is used and should be traversed). We demon-
strated the use of IBPT indexing with an illustrative example. More extensive
experiments with real databases are still needed. Also, comparative studies with
existing indexing techniques, taking into consideration the number of performed
operations, are required. This is subject to ongoing and future work.
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Abstract. In this paper, a novel assessment method for measurement
of consistency of individual, text-valued attributes is proposed. The first
novelty of this method is that it allows to express a broad range of well-
known consistency measurements in a simple, elegant and standardized
way. This property is obtained by relying on the standardized frame-
work of regular expressions to support measurement. The key advantage
of using such a highly standardized expression syntax, is that knowledge
about consistency becomes portable, exchangeable and easy to access.
The second novelty of the method, is that it examines the advantages
of using a finite and ordinal scale for expression of measurement. These
advantages include a high degree of interpretation and efficient calcula-
tions both in terms of time and space complexity.

Keywords: Data quality · Regular expressions · Ordinal measurement

1 Introduction

Throughout the past decades, data has become one of the most important assets
of a modern organization. Understanding data leads to valuable insights, aids in
making strategic decisions and creates a lead with respect to competitors. The
quality of data has therefore become an important factor in its practical useful-
ness. As a result, the field of data quality has become more and more mature
and the main principles of data quality research have been established. Perhaps
the most accepted principle is that data quality is a multi-dimensional problem
([2,23]), meaning that quality of data has many different aspects also known as
dimensions. Many such dimensions have been proposed and investigated, but
the most commonly studied are correctness, completeness, consistency and the
three time-related dimensions being timeliness, currency and volatility [3,22].
Within this paper, the focus lies on the dimension of consistency.

According to [3], consistency is a dimension of data quality that “captures the
violation of semantic rules defined over data items”. Basically, a piece of data is
consistent if it satisfies all of the known rules that apply to it. Within the scope
of the relational database model, consistency can be partially enforced through
integrity constraints such as functional and inclusion dependencies, unique con-
straints and check constraints. In more recent storage systems such as NoSQL
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 317–328, 2016.
DOI: 10.1007/978-3-319-40581-0 26
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database, such support for consistency is omitted for the sake of higher through-
put and better performance. To cope with this decreased support of consistency
verification, several authors have investigated the measurement of consistency
independently from the type of storage system [1,4,7].

As a running example throughout the paper, the scope of Belgian Social
Security Numbers (SSNs) is considered. These are 11-digits numbers that must
satisfy a set of rules in order to be a valid SSN. An example1 of such an SSN
is 18.01.01 − 022.42. The rules for a valid Belgian SSN will be introduced grad-
ually throughout the paper and will be used to illustrate the measurement of
consistency proposed in this paper. To explain the novelty of our approach, we
revise two important issues of current measurement techniques for consistency.

First, based on the three functional forms for quality expression described by
Pipino et al. [21], there is a perseverance in expressing measurement of consis-
tency in the unit interval [0, 1]. This was originally advocated by Pipino et al. [21]
and has been widely adopted since then. However, this choice has never been well
motivated and is not the result of a formal, measure-theoretic treatment of data
quality [19]. To make things worse, it is often assumed that numbers in the unit
interval expressing quality of data are by default interval-scaled. However, what
do we know about two pieces of data that are assigned a consistency score of
respectively 0.73 and 0.86? How do we interpret the difference between those two
numbers? In this paper, a first small step towards a more interpretation-oriented
method for measuring consistency is envisioned.

Second, there is currently a great dispersion in the knowledge about data
consistency. In order to know the rules that define the consistency of a particular
type of data (e.g., a Belgian SSN), a human agent has to look for those rules on
the web or another source. If available, the rules are usually described in words,
mathematical formulae or in the best case in pseudo-code. There is no common
agreement on how to express rules for consistency, making it hard to access and
share such knowledge. An interesting contribution with respect to this problem
was made by Fürber et al., who proposed the Data Quality Management (DQM)
ontology as a standard vocabulary to express data quality rules [13]. The authors
of the current paper believe that this effort deserves to be further examined by
proposing a more concrete syntax for expression of consistency rules.

In this paper, a method for measurement of consistency is proposed that
overcomes the two problems mentioned above. In our approach, an ordinal scale
is adopted to express quality. Each level in this scale has a clear interpretation
in terms of predicates on which measurement is based. In order to standardize
measurement of consistency, the basic predicates underlying measurement are
defined entirely in terms of regular expressions. Hereby, two types of predicates
are distinguished. On the one hand, a predicate can verify whether or not data
matches a given regular expression pattern. On the other hand, a predicate
can also verify additional assertions in terms of captured groups of a matched
pattern. It is pointed out that these predicates allow a broad coverage of existing
consistency measurements, but describe these measurements in a standardized

1 This example is fictional.
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manner. In addition, it is shown that our approach has appealing properties in
terms of computational complexity.

The remainder of this paper is structured as follows. In Sect. 2, the most
relevant contributions that have been made in the field of data quality are sum-
marized and reviewed with respect to the current paper. In Sect. 3, some prelimi-
nary notations are introduced. Next, in Sect. 4, a novel method for measurement
of consistency is proposed and two kinds of predicates are defined in terms of
standard regular expressions. In Sect. 5, a discussion regarding the practical use-
fulness of the proposed framework is given. Section 6 provides some insights in
future research and finally, the main contributions of this paper are summarized
in Sect. 7.

2 Related Work

Throughout the past decades, a consensus has grown that data quality is a
multi-dimensional problem [22–24]. Based on this observation, several authors
defined a broad range of different data quality dimensions [2,3]. When it comes
to measurement of data quality, it has been argued that a distinction can be
made between objective and subjective measurement [21]. This distinction is
investigated in depth in [10–12] and led to the proposal of an axiomatic defini-
tion of data quality measurement, which was further refined in [14]. Apart from
the developments with respect to quality measurement in general, there have
been several contributions that proposed techniques for measurement of specific
dimensions. In that respect, completeness, accuracy and currency of data have
been investigated in terms of the above mentioned axiomatic definition of data
quality [15–17]. Interestingly, when it comes to measurement of data consistency,
there is a great dispersion in the nature of existing techniques. It has been moti-
vated in [13] that such heterogeneity is cumbersome and for that reason, the
Data Quality Management (DQM) ontology is proposed as a standard vocabu-
lary to express data quality rules. Despite this important effort to standardize
the definitions of quality measurement, it is argued here that the exercise of
standardization should be done at a more fundamental level. The current paper
aims to fill this gap by proposing a standardized way of measuring consistency
of data and in case of textual attributes, this is obtained by relying on regular
expressions.

3 Notations and Preliminaries

In the remainder of this paper, the relational database model is assumed [5].
With A a countable set of attributes, a (relational) schema R is defined by a
non-empty and finite subset of A. The domain of an attribute a ∈ A is denoted by
dom(a). A relation R over the schema R is defined by a subset of the crossproduct
of all attribute domains, i.e., R ⊆ dom(a1) × ... × dom(am). An element of the
relation R with schema R is called a tuple t over R. The projection of R with
schema R over a set of attributes A ⊆ R is denoted as R[A]. It is defined by a
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relation with schema A that contains the tuples from R projected over attributes
in A. In the case where R and A are given by singletons {t} and {a}, the notation
t[a] is adopted.

When proposing measurements of consistency for textual attributes, the con-
cept of regular expressions will be adopted. A regular expression Σ is basically
a sequence of characters that forms a pattern to which textual data can be
matched. At the end of the previous century, first attempts were made by IEEE
to standardize regular expressions and in this paper, the current POSIX standard
is assumed [18]. Basically, a pattern can contain both literals and metacharac-
ters, which are characters with a special meaning and role within the pattern.
The key role of metacharacters is to denote patterns in a compact way. The most
important metacharacters are summarized in Table 1.

Table 1. An overview of the most important meta-character constructions in regular
expressions.

Metacharacter construction Meaning

. Matches any character

[ ] Matches any character within the specified range

[ˆ] Matches any character not within the specified range

( ) Defines a capture group

\d Matches any digit

\w Matches any word character

\s Matches any whitespace

| Matches the preceding or the following

* The preceding must occur zero or more times

+ The preceding must occur one or more times

? The preceding must occur zero or one time

{n} The preceding must occur exactly n times

{n,m} The preceding must occur between n and m times

Within this paper, special attention is given to the concept of “capture
groups”. In an arbitrary pattern Σ, each pair of round brackets defines a specific
part of the pattern that is known as a capture group or group for short. This
name refers to the ability that each group can be “captured” in each piece of
data matches the pattern. More specifically, if a string s matches the pattern Σ,
then each group in Σ uniquely identifies a substring of s. As such, the definition
of groups within a pattern fits a string s into a data structure that is induced by
the groups of Σ and the different parts of this structure can be accessed easily.
This powerful concept will allow us to define additional constraints on data that
are known to match a pattern Σ in the remainder of this paper.
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4 Ordinal Assessment of Consistency

Consider a relation R with schema R and consider attributes A ⊆ R for which
consistency is to be measured. As mentioned in the previous, data is consistent
if it satisfies a set of semantic rules. This is formalized by assuming a set of
predicates, where each predicate verifies the satisfaction of one rule. A predicate
is thus is defined by a function p : dom(A) → B. The entire set of semantic rules
then corresponds to a set P = {p1, ..., pn} where each predicate pi models one
semantic rule. In order to translate predicates into a measurement of quality, we
assume a total order relation ≺ on the set P such that pi ≺ pj expresses that
predicate pi needs to be evaluated before pj . The subset of P that contains the
predicates that should be evaluated first under ≺ is then denoted by P(i). In
order to express quality, a finite ordinal scale S = {s1, ..., sk} is considered such
that:

s1 < s2 < ... < sk. (1)

The smallest element of S is referred to as 0 and the largest element is referred
to as 1. With these notations at hand, the definition of a quality function can
be introduced as follows.

Definition 1 (Quality Function). Consider a relation R with schema R and
A ⊆ R for which the predicates P are given. A quality function Q for attributes
A on the scale S is defined by a function:

Q : dom(A) → S (2)

that satisfies the boundary constraints:

∀t ∈ dom(A) : (∀p ∈ P : p(t) = F ) ⇒ Q(t) = 0 (3)
∀t ∈ dom(A) : (∀p ∈ P : p(t) = T ) ⇒ Q(t) = 1 (4)

and is monotonic w.r.t. the evaluation order ≺ on P , which means that for any
t ∈ dom(A) and t′ ∈ dom(A) we have that:

Q(t) ≥ Q(t′) ⇔ max
{
i | ∀p ∈ P(i) : p(t)

} ≥ max
{
j | ∀p ∈ P(j) : p(t′)

}
(5)

Informally, Definition 1 dictates that quality of t ∈ dom(a) is determined by eval-
uating predicates in a specific order (i.e., indicated by ≺). The more predicates
are true, the higher the appreciation2. The main advantage of assessing consis-
tency in this way, is a clear interpretation of a measurement. Each si ∈ S implies
a set of predicates that have succeeded and a set of predicates for which at least
one has failed. A special kind of quality function is obtained when (i) there are
as much predicates as there are non-zero levels in the scale (i.e., |P | = |S| + 1)
and (ii) level si is obtained if and only if all predicates in P(i) are true and p(i+1)

2 Such a paradigm is also used to determine the normal form of a relational database
[5,6].
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is false. A quality function that meets these requirements is called a complete
quality function here. In what follows, the case of complete quality functions is
assumed. In order to apply a quality function in the case of consistency, two
kinds of measurement should be distinguished.

The first kind of measurement considers attributes separately and quality
functions are defined for singleton sets of the type {a} with a ∈ R. The need for
this kind of measurement comes from the fact that a database system usually
provides a very small set of very generic data structures such as integer numbers,
dates and character strings. When an attribute a is assigned with such a generic
data structure, the domain of this data structure is usually a superset of the
set of all valid values for a. A very generic way of limiting such a domain is the
following. For an attribute a, consider k nested sets N1 ⊂ N2 ⊂ ... ⊂ Nk ⊆
dom(a) and consider the predicates:

∀i ∈ {1, ..., k} : pi (t[a])
�
= t[a] ∈ Nk−i+1. (6)

With this construction, for any v ∈ dom(a) we have that Q(v) is calculated by
finding the smallest Ni that contains v. It is noted that this system of mea-
surement bears a very close relationship with the way a possibility measure can
be defined in the qualitative case [9]. The second kind of measurement has a
broader scope and measures directly on entire groups of attributes. Rather than
considering single attributes independently of each other, it is recognized that
there may exist dependencies between attributes. These dependencies can be
used to verify whether the co-occurrence of multiple attribute values within the
same tuple is in adherence to the rules of consistency.

In the remainder of this paper, we will focus on the first kind of measurement
and it will be shown how the nested sets Ni can be denoted in a very generic
yet compact manner if the domain is that of textual character strings. We rely
hereby on the concept of regular expressions and more specifically on (capture)
groups. Consider an attribute a such that dom(a) is the set of all character
strings. For a pattern Σ, a Σ-predicate p is characterized by:

p(v)
�
= v |= Σ. (7)

A Σ-predicate is thus a predicate that verifies whether a value v matches the
pattern Σ. In the scope of the running example of Belgian SSNs, we may consider
the pattern Σ as follows:

(\d{2}) \.? (\d{2}) \.? (\d{2}) \−? (\d{3}) \.? (\d{2}). (8)

A value v matches this pattern if it starts with two digits (i.e., \d{2}), option-
ally followed by a dot character. Next, there must again be two digits, again
optionally followed by a dot character etcetera. As mentioned in Sect. 3 and as
can be seen in the above pattern, groups can be used to identify specific parts
of data that match Σ. If such groups are defined with a pattern Σ, they allow
for an easy definition of additional predicates on the data as explained in the
following.
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In the context of a pattern Σ, a group expression λ is generally defined as a
formula in which variables may occur that refer to groups defined in Σ. These
variables are denoted by the symbol @ followed by the index of the group it
refers to3. In order to allow flexibility in the way group expressions are to be
interpreted, each variable that references to a group, can be assigned a data
type. The default data type of a variable is text. Other data types that are
allowed are currently the basic numerical data types float, int and long. For
simplicity, it is assumed in this paper that all variables within the same group
expression λ have the same data type. If the data type of variables within λ
must be denoted explicitly, the notation [λ] :: < type > will be used. If we wish
to explicitly mention the pattern Σ in context of which λ must be put, we shall
denote this as [λ | Σ].

For a value v ∈ dom(a), λ is resolved by first replacing all variables with
the text that matches the referenced group and then evaluate the formula. In
case of data type text, evaluation simply maintains the textual representation
of λ. In case of numerical data types, λ is evaluated in an analytical manner. Let
us illustrate this idea on the running example of Belgian SSNs. Consider v to
be 18.01.01 − 022.42 and consider Σ as defined above. Note that Σ defines five
groups. When applied to v, the first group comprises “18” while the fifth and last
group comprises “42”. Consider now the group expression λ = @1 + @3 + @5.
This group expression concatenates groups with indices 1, 3 and 5, interleaved
by a ‘+’ character. If this group expression is resolved on v under the assumption
that variables are of data type text, then we get the string “18 + 01 + 42”. If
we resolve λ as an int, then we get the integer number 61 as the sum of 18, 1
and 42. Let us now assume that, for an attribute a and a pattern Σ, g group
expressions are defined. In general, a predicate on these g group expressions can
be defined by:

θ : X1 × ... × Xg → B (9)

where Xi is the domain of resolution of λi. In many practical cases, predicate
functions with 0 < g ≤ 2 appear to be sufficient. In the example of Belgian
SSNs, there are two constraints that need to be verified besides the satisfaction of
pattern Σ as defined above. First, in Belgian SSNs, the first six digits constitute
the birth date of the person in question. As such, for a value v, the first six digits
must at least constitute a valid date in order for v to be an SSN. This constraint
can be verified by the following predicate:

[@1/@2/@3] :: text matches yy/MM/dd (10)

The above predicate verifies that, after resolution, the resolved text constitutes a
valid date under the date pattern yy/MM/dd. Second, it must be verified whether
the control number is valid and this check is somewhat more complex. The reason
for this is that the structure of the Belgian SSN uses a two-digit year notation.
As a result, the calculation of the control number is different for people born in

3 The assignment of indices to groups is standardized and is a based on the order in
which opening brackets appear in the pattern.
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or after the year 2000. Therefore, the check of the control number consists of
two subtests that are combined with a Boolean disjunction. These subtests are:

[97 − (@1@2@3@4%97)] :: int = [@5] :: int (11)

and
[97 − (2@1@2@3@4%97)] :: int = [@5] :: int (12)

The first subtest takes the first four groups from Σ and concatenates them.
Because the data type of resolution is int, the expression is analytically resolved
into an integer by applying modulo 97 on the number formed by the first four
groups. This result is then subtracted from 97. The predicate then checks if this
result is equal to the number given by the fifth group. The second subtest does
the same thing, but prefixes the digit formed by the first four groups with the
digit 2. The control number predicate is then the Boolean disjunction of these
two predicates. With respect to the data fragment that we consider, the first
four groups constitute the number 180101022. We have that:

97 − 180101022%97 = 42 (13)
97 − 2180101022%97 = 71 (14)

Because the fifth group of the data fragment equals 42, the first subtest passes
and thus the predicate on the control number evaluates to true. In the following
section, the advantages of the described approach are discussed.

5 Discussion

In the previous section we have introduced quality functions and we have pro-
posed to define such functions for text-based attributes by using regular expres-
sions. Thereby, two kinds of predicates came apparent: Σ-predicates that verify
the pattern Σ and θ-predicates that verify additional constraints in terms of
groups of a pattern Σ. In order to verify the usefulness of these concepts, an
implementation in Java was made. In this implementation, group expressions
can be defined and resolved either as text, (4 or 8 bytes) integer numbers or
floating point (8 bytes) numbers. Analytical resolution obeys the standard rules
of precedence and the most important mathematical functions are defined. In
addition, custom mappings can be defined. Next to Σ and θ-predicates, it is also
possible to define a predicate as a Boolean function (conjunction, disjunction,
negation, implication) on other predicates. This implementation allows us to
illustrate some important advantages of the proposed framework.

Interpretation. The use of the ordinal scale S results in a framework of mea-
surement with a high degree of interpretation. For a given s ∈ S, there is an
immediate feedback on the kind of degradation of data. In turn, this enables
concrete actions to be undertaken to improve both current and future data.

Standardization. An important advantage of the approach is that the defini-
tion of predicates relies on POSIX standard regular expressions and basic (math-
ematical) operators to define predicates on group expressions. Quality functions
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for consistency are therefore defined in terms of strongly standardized concepts.
As a result, whereas knowledge about consistency is very dispersed and repre-
sented heterogeneously at the time of writing, our framework opens the path to
an open repository in which knowledge about consistency measurement can be
easily accessed, shared and extended. In such a repository, attribute names are
standardized by means of Uniform Resource Indicators (URIs) and measurement
of consistency becomes as easy as asserting that data should match a specific
standardized attribute in the open repository.

Coverage. Despite its simple structure, the current implementation of the pro-
posed framework covers a broad range of the functionalities required to verify
data consistency. Currently, properties like gender, email addresses, social secu-
rity numbers, zip codes, bank accounts, various EAN codes and many more are
supported. It has been verified that both basic checksum algorithms (e.g., the
Luhn algorithm [20]) as well as more sophisticated, state-of-the-art algorithms
(e.g., the Damm algorithm [8]) are covered. In addition, the current implemen-
tation can easily be extended to cover more data type resolutions and suitable
predicate operators.

Fig. 1. Execution time (ms) of consistency measurement for ISBN numbers for different
dataset sizes.
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Computational Complexity. Finally, the proposed approach has some appeal-
ing features with respect to computational complexity. First, because S is finite,
measurements of consistency for an attribute can be efficiently stored and rep-
resented as a histogram with a linear space complexity in terms of |S|. Such
a histogram representation can be updated incrementally and allows for very
efficient calculation of many different aggregations.

Second, the actual measurement of consistency is efficient in terms of time
complexity. Figure 1 shows the execution time in milliseconds of measuring the
consistency of ISBNs for different sizes of data. Hereby, both the ISBN-10 and
ISBN-13 structure are mixed in one dataset and must therefore both be checked.
However, about 95% of the samples have the ISBN-10 structure. For 10M sam-
ples of data it takes about 42 seconds to measure consistency in terms of the
ISBN-10 structure. For the ISBN-13 structure, it takes only 1 second. This dif-
ference can be explained by noting that in case of the ISBN-13 structure, most
data does not adhere to the basic pattern Σ and results in an “early abort”
of the measurement. For the ISBN-10 structure, all predicates are verified and
this results in additional computations. However, it can be seen that execution
time increases linearly in terms of the size of the data. In combination with the
incremental properties discussed above, this yields very efficient computations.

6 Future Work

In this paper, a novel approach to measurement of consistency has been pro-
posed. Although some advantages of this approach have been pointed out, some
promising paths of research are left open here. First, efforts should be taken to
further implement and manage an open repository that contains quality func-
tions for measurement of consistency. This way, standardized definitions of con-
sistency are made possible and can be shared between researchers and end users.
Second, group expressions as introduced here seem to provide an interesting way
to describe dependencies between data. For example, in the case of Belgian SSNs,
the 9th digit must be even for females and odd for males. As a result, the gender
of a person can be inferred from its SSN. It is very easy to denote this inference
in terms of a group expression. If such inferences are at hand, this opens the
path to an automated data repair algorithm.

7 Conclusion

In this paper, quality functions are introduced as an ordinal-scaled measurement
technique for consistency of data. In the case of text-based attributes, an app-
roach to define such quality functions in terms of regular expressions has been
described. It has been shown that the proposed approach enables a highly inter-
pretable, standardized and efficient way to measure consistency. Whereas knowl-
edge about consistency rules is nowadays very disperse and heterogeneously
structured, the proposed approach clears the path to an open repository in which
this knowledge becomes easy to access, share and extend.
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Aurélien Moreau(B), Olivier Pivert, and Grégory Smits

Irisa – University of Rennes 1, Technopole Anticipa, 22305 Lannion Cedex, France
{aurelien.moreau,pivert}@enssat.fr, gregory.smits@univ-rennes1.fr

Abstract. This paper describes an approach helping users to better
understand the results of their queries. These results are structured with
a clustering algorithm and described using a personal vocabulary. The
goal is to find what the elements of a cluster have in common that also
differentiates them from the elements of the other clusters. The data
considered for characterizing each cluster of answers are not limited to
attributes used in the query, revealing unexpected correlations to the
user. The originality of this work resides in the definition and use of
fuzzy-set-based characterizations and their properties.

Keywords: Databases · Cooperative answering · Clustering · Fuzzy
logic

1 Introduction

Providing users with additional information when answering their queries is one of
the objectives of cooperative query answering, along with taking into account per-
sonal preferences, or helping users formulate their queries correctly for instance in
the field of databases [3]. Many approaches aiming at helping users harness data-
bases have been proposed in the past. Helping users explore databases is a form of
cooperative answering, along with handling failing queries [6], which can be dealt
with by relaxing the selection conditions; or queries yielding a plethoric answer set
which on the opposite may need more conditions to filter the answers; or ranking
the answers to return only the top-k ones.

Several approaches consider clustering to tackle the many answer problem
such as [9]. In this case the authors offer the users to refine their results by
presenting the most representative answers. However they do not provide any
additional information regarding the formed clusters beyond the attributes used
by the user. Providing end users with a mechanism to understand the answer
set and eventually narrow it down according to unexpected criteria is one of
our objectives. For instance, if one looks for possible prices for houses to let
obeying some (possibly fuzzy) specifications, and that two clusters of prices
are found, one may discover, e.g., that this is due to two categories of houses
having, or not, some additional valuable equipment such as a swimming pool.
This latter issue, which constitutes the topic of the present paper, has been
c© Springer International Publishing Switzerland 2016
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previously dealt with in [2]. The authors used a possibilistic representation of the
data to determine which elements were most present and responsible of peaks.
Here, we propose an alternative approach that first uses a clustering algorithm
to detect groups of answers (a group corresponds to elements that have similar
values on the attributes from the projection clause of the query) — this is the
description step, that makes use of a fuzzy vocabulary specified by the user.
Then we look for common properties between the elements of each cluster (that
are not possessed by elements from other clusters) for the other attributes – this
is the characterization step. This paper is a refinement of the approach presented
in [10], in which the characterization was based on a Boolean definition, resulting
in a lack of robustness and flexibility in the case of overlapping clusters. In this
paper, the characterization is now based on fuzzy set theory, increasing the
chance to explain a result since a characterization is now assigned a specificity
degree in [0, 1] (whereas it had to be fully specific in the Boolean version of the
approach).

The remainder of the paper is structured as follows. Related work is dis-
cussed in Sect. 2. Section 3 provides a refresher on fuzzy sets and fuzzy partitions.
In Sect. 4, we describe the principle of the approach and present experimental
results in Sect. 5. Finally, Sect. 6 recalls the main contributions and outlines per-
spectives for future work.

2 Related Work

Fuzzy approaches to answer explanations have been previously proposed in [1,2].
In [1], the answers to a fuzzy query are ranked according to an overall aggregation
function and additional information (positive and negative) is provided about
the different results. A bridge between formal concept analysis and bipartite
graph analysis is established in [4]. The authors introduce new operators and
discuss topics that could benefit from this parallel such as community detection.

Case-based reasoning is at the heart of [2], as the authors study the similar-
ities between situations and their resulting outcomes. To do so, queries with a
single output attribute are considered and the result is presented in the form of
(1) a possibility distribution reflecting the values taken by this attribute, and
(2) a function giving the number of cases supporting a particular outcome
attribute value. The fact that a single attribute is considered makes it rela-
tively easy to detect clusters of answers (they correspond to distinct peaks of
the distribution) by looking at the associated curve. However, the authors do
not give any detail about how this detection process could be generalized and
automated (which we do by using a clustering technique). To find explanations
for a given distribution, they propose to look for attribute values that are shared
by elements in one peak and different in the others, through the use of fuzzy
sets, membership functions and similarity measures. The authors point out that
the explanations found may not always be meaningful with sets containing val-
ues that are too different. Our use of a vocabulary helps the user understand
which ranges of values are considered. Also the authors do not make clear how
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to compute “joint ranges” to find explanations based on several attributes (in
the case no single attribute can explain a peak).

In [11], explanations based on causality and provenance are defined. The
objective of the authors is different from ours insofar as they do not provide any
insight regarding the structure of the results of the queries but rather illustrate
causality with “intervention”, i.e. removing tuples from the database and assess-
ing how the results are modified. A close research direction deals with “why not”
answers in [5], looking for explanations for missing elements in an answer set.
Causality and provenance are here the keys to figuring out which tuples and
which conditions prevented some tuples from being part of the result.

3 Fuzzy Vocabulary

Fuzzy set theory was introduced by Zadeh [13] for modeling classes or sets whose
boundaries are not clear-cut. For such objects, the transition between full mem-
bership and full mismatch is gradual rather than crisp. Typical examples of such
fuzzy classes are those described using adjectives of the natural language, such
as young, cheap, fast, etc. Formally, a fuzzy set F on a referential U is character-
ized by a membership function μF : U → [0, 1] where μF (u) denotes the grade of
membership of u in F . In particular, μF (u) = 1 reflects full membership of u in
F , while μF (u) = 0 expresses absolute non-membership. When 0 < μF (u) < 1,
one speaks of partial membership.

In the approach we propose, it is assumed that the user specifies a vocabulary
defined by means of fuzzy partitions. Let R be a relation defined on a set A of
q categorical or numerical attributes {A1, A2, . . . , Aq}. A fuzzy vocabulary
on R is defined by means of fuzzy partitions of the q domains. A partition Pi

associated with the domain of attribute Ai is composed of mi fuzzy predicates
{Pi,1, Pi,2, . . . , Pi,mi

}, such that for all x ∈ domain(Ai):
mi∑

j=1

μPij
(x) = 1

where μPij
(x) denotes the degree of membership of x to the fuzzy set Pij .

Fig. 1. A partition over the domain of the attribute year

More precisely, we consider partitions for numerical attributes (Fig. 1) com-
posed of fuzzy sets, where a set, say Pi, can only overlap with its predecessor
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Pi−1 or/and its successor Pi+1 (when they exist). For categorical attributes, we
simply impose that for each value of the domain the sum of the satisfaction
degrees on all elements of a partition is equal to 1. These partitions are speci-
fied by an expert during the database design step and represent “common sense
partitions” of the domains. Each Pi is associated with a set of lingiustic labels
{Li

1, Li
2, . . . , Li

mi
}.

As an example, let us consider a database containing ads about second
hand cars and a view named secondHandCars of schema (id, model, descrip-
tion, year, mileage, price, make, length, height, nbseats, consumption, accelera-
tion, co2emission) as the result of a join-query over the database. A common
sense partition and labelling of the domain of the attribute year is illustrated in
Fig. 1.

4 Principle of the Approach

Let us denote by R the relation concerned by the selection-projection query Q
considered (note that R that may be the result of a join operation on multiple
relations). A being the set of attributes of R, let us denote by Aπ the subset of
A made of the attributes onto which R is projected (i.e., the attributes of the
resulting relation), by Aσ the subset of A concerned by the selection condition,
and let us denote Aω = A\(Aπ ∪Aσ). Let us consider a set of clusters of answers,
formed based on the attributes from Aπ (with a clustering algorithm). The two
main steps are:

1. description of the clusters: projecting them on the vocabulary defined on
the domains of the attributes from Aπ (Subsect. 4.1);

2. characterization of each cluster in terms of the vocabulary defined on the
domains of the attributes from Aω (Subsect. 4.2).

Step 1 is about using a fuzzy vocabulary to describe each one of these clusters.
Step 2 aims at providing one or several characterizations for each of these clus-
ters. A characterization is considered as additional information as it concerns
attributes that do not appear in the query. Descriptions and characterizations
both appear in the form of a conjunction of modalities (i.e. fuzzy labels) from
the vocabulary, the only difference being in the origin of the attributes consid-
ered. The objective is to find properties that will permit to describe the clusters
with attributes used to produce them (from Aπ) and then characterize them
with attributes not involved in the query (from Aω).

A characterization is related to the set of clusters built in step 1. It is made
of a set of linguistic descriptions, one for each cluster. Let us denote by C =
{C1, . . . , Cn} the set of clusters obtained.

Definition 1. A characterization ( resp. description) ECi
attached to a cluster

Ci is a conjunction of couples (attribute, fuzzy set of labels) of the form

ECi
= {(Aj , Fi,j) | Aj ∈ Aω (resp. Aπ) and Fi,j is a fuzzy set of

linguistic labels from the partition of the domain of Aj}.
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Example 1. Let us consider a query looking for the year and mileage
of second-hand cars. Thus Aπ = {year, mileage} and Aω = {price,
consumption, make, ...}.

The following descriptions and characterizations may be obtained:

– Cluster 1 is described by:
“(year is recent (0.8) or medium (0.2)) and (mileage is small (1))”;
A characterization could be:
“(consumption is medium (1)) and (price is expensive (0.7) or medium
(0.3))”.

– Cluster 2 is described by:
“(year is old (0.6) or very old (0.4)) and (mileage is high (1))”;
A characterization could be:
“(consumption is high (0.8) or medium (0.2)) and (price is low (0.7) or very
low (0.3))”.�

Table 1. Correspondance between modalities and clusters: Example 1

Year Mileage Price Consumption · · ·
C1 {0.8/recent small {0.7/expensive medium · · ·

0.2/medium} 0.3/medium}
C2 {0.6/old high {0.7/low 0.8/high · · ·

0.4/very old} 0.3/very low} 0.2/medium

4.1 Description Step

Once the clusters are formed, they are projected on the vocabulary in order to
provide the user with a description of the clusters using terms of the natural
language. The projection of Ci on the partition of an attribute Aj ∈ Aπ is
represented by a fuzzy set of labels Fi,j = {μLj

k
(Ci)/Lj

k | Lj
k ∈ Pj} where

μLj
k
(Ci) =

∑
x∈Ci

μLj
k
(x)

|Ci| (1)

and μLj
k
(x) is the degree of membership of x to Lj

k. It is assumed that the only
labels that appear in Fi,j are such that μLj

k
(Ci) > 0. Note that the fuzzy set

Fi,j is not normalized in general, but this does not matter here. The degree
associated with each label is related to the number of points verifying it and
to their membership degrees, hence making descriptions representative of each
cluster.
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4.2 Characterization Step

The first step to discovering characterizations (in the sense of Definition 1)
consists in filling a table associating each cluster with its projection on the
attributes of Aω (cf. Formula 1, considering this time that Aj ∈ Aω). For every
Aj (j ∈ [1, |Aω|]) in Aω, we indicate which modality Lj

k, k ∈ [1, |Pj |] (or fuzzy
set of modalities) is satisfied by each cluster and to which degree μLj

k
(Ci).

To be informative, a characterization should satisfy two properties: specificity
and minimality.

Property 1. Specificity: the specificity degree μspec(EC) determines how repre-
sentative a characterization EC is for a given cluster C, and not so for the other
clusters.

Since the cluster projections are fuzzy sets of labels, the notion of specificity must
itself be viewed as a gradual concept. Being specific for a cluster characterization
E means that there does not exist any other cluster with the same characteriza-
tion, i.e., with fuzzy sets that are not disjoint from those of E for every attribute.
It is then necessary to define the extent to which two such fuzzy sets are disjoint.
Let us first consider a characterization involving a single attribute. Let E1 and
E2 be the respective projections of the clusters C1 and C2 onto an attribute Aj

of Aω, whose associated fuzzy partition is denoted by Pj . One may define:

μdisjoint(E1, E2) = 1 − max
L∈Pj

min(μLj
k
(C1), μLj

k
(C2)), (2)

which corresponds to the fuzzy interpretation of the constraint �L ∈ Pj such
that both C1 and C2 are L. When several attributes – let us denote by A this
set of attributes – are involved, two characterizations are globally disjoint if they
are so on at least one attribute and we get:

μdisjoint(E1, E2) = max
Aj∈A

(1 − max
L∈Pj

min(μLj
k
(C1), μLj

k
(C2))). (3)

Finally, the specificity degree attached to a candidate characterization associated
with a given cluster C may be defined as:

μspec(EC) = min
C′ �=C

μdisjoint(EC , EC′), (4)

where EC′ denotes the projection of C ′ onto the attributes present in EC .

Property 2. Minimality: viewing a characterization as a conjunction of fuzzy sets
of predicates, one says that EC is a minimal characterization of the cluster C iff
�E′

C ⊂ EC so that E′
C characterizes C with a specificity degree equal or greater

than that of EC .
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Formally, we use the inclusion in the sense of Zadeh (F1 ⊆ F2 iff ∀x ∈ U, μF1(x) ≤
μF2(x) where U denotes the universe on which fuzzy sets F1 and F2 are defined)
and we get:

EC is minimal iff 
 ∃E′
C such that ∀Aj ∈ Aω, E′

C [Aj ] ⊆ EC [Aj ]
and μspec(E′

C) ≥ μspec(EC)
(5)

where EC [Aj ] denotes the fuzzy set related to attribute Aj in EC .
Here is a crisp example for the sake of clarity. If we consider houses to let, and

identify a subset of answers whose characterization is E = (price is expensive
(1)) ∧ (swimming pool = yes (1)) ∧ (garden is big (1)), there should not exist a
characterization e.g. E′ = (price is expensive (1)) ∧ (swimming pool = yes (1))
also characterizing this cluster only i.e. so that μspec(E′) � μspec(E).

4.3 Characterization Algorithms

Given the definition of specificity, a characterization involving every attribute
from Aω will have the highest specificity degree possible, denoted maxSpec.
(Elements of proof: adding attributes to characterizations will add more terms
to the aggregate maxAj∈A, thus potentially raising the specificity degree).

The first step of the characterization process is to determine for each cluster
the maximal specificity degree maxSpec one may expect for its characteriza-
tions. Clusters whose maximal specificity degree is greater than a predefined
threshold λ are said to be fully characterizable. For the others, two strategies
may be envisaged: to accept a less demanding specificity threshold, or to try to
find specific characterizations on subsets (of points) of the clusters concerned.
Hereafter, we investigate the second option and propose a solution based on the
notion of cluster focusing. With this method, one expects to be able to generate
specific enough characterizations of an interesting subset of a non fully character-
izable cluster. Our goal being to characterize a set of items gathered particularly
according to their closeness to each other, it appears obvious to focus on the most
central points of the cluster concerned. It is nevertheless worth noticing that the
central points of a cluster built on the attributes from Aπ do not necessarily
form a compact and characterizable set on the attributes from Aω.

Thus, Algorithm 1 is applied on each cluster to determine its maximal speci-
ficity degree, and if necessary to determine the largest subset of central points
for which a characterization of a high enough specificity degree may be found.

This focusing step is done with the clusterFocus function, which requires
three parameters: the cluster originalCi, a focusing step α and the number of
focusing steps focus-factor. It returns a limited part of the cluster, (100−α)% of
originalCi. The new maxSpec value for this cluster is then computed (line 9).
For this calculation, all clusters are considered in their entirety (whether some
have already been focused or not) except for the current one.

If it is still not characterizable, this step can be repeated until the cluster is
reduced to its medoid/centroid (line 6), always computing the new size of the
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cluster focusing based on the original cluster Ci (line 8). In other words, clus-
ters are automatically truncated to provide users with the best characterizations
possible i.e. with a specificity degree higher than λ. When displaying character-
izations, users will be informed whether or not said characterizations concern a
full or a focused cluster.

Input: n clusters C ; |Aω| attributes/values for each cluster ; specificity
threshold λ ; focusing step α

Output: one maxSpec for each cluster
1 begin
2 foreach cluster Ci do
3 compute maxSpec;
4 focus-factor ← 0;
5 originalCi ← Ci;
6 while maxSpec < λ ∧ |Ci| > 1 do
7 focus-factor ← focus-factor + 1;
8 C′

i ← clusterFocus(originalCi, focus-factor, α);
9 compute maxSpec for C′

i;
10 Ci ← C′

i;

11 end

12 end
13 characterize each cluster (focusing) with Algorithm 2;

14 end
Algorithm 1. Cluster Characterizer

Once the maximal specificity degree has been computed for each cluster,
(either complete or truncated), Algorithm 2 is applied to determine for each
cluster all the possible characterizations of a minimal size and a maximal speci-
ficity.

This algorithm takes as input the number of clusters, the maxSpec value
for each of them computed with Algorithm1 as well as the data from Table 1.
For each cluster Ci (line 2), we look for characterizations (line 5) composed first
of a single fuzzy set of labels (for one attribute only), then with two of them,
then three, etc., and check whether candidate characterizations are specific and
minimal. If so, they are added to the set of characterizations (line 9).

Remark 1. Some attributes from Aσ may also be added to Aω: those concerned
by inequality conditions (<,�,�, >, 
=) as results may have several satisfying
values for these attributes, and participate in the characterization process.

5 Experimentation

Concerning the choice of the clustering algorithm, we need an algorithm that
does not imply to know in advance the number of clusters to obtain. We used the
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Input: n clusters C ; |Aω| attributes/values for each cluster ; one maxSpec for
each cluster ;

Output: a set of characterizations for each cluster ;
1 begin
2 foreach cluster Ci do
3 Charact(Ci) ← ∅;
4 if maxSpec � λ then
5 for j ← 1 to |Aω| do
6 for every characterization E of size j that is not a superset of

any element of Charact(Ci) of specificity maxSpec do
7 if μspec(E) � λ then
8 if E is minimal then
9 Charact(Ci) ← Charact(Ci)

⋃

E

10 end

11 end

12 end

13 end

14 end

15 end

16 end
Algorithm 2. Characterizations Finder

l-cmed-select algorithm, a crisp variant of the l-fcmed-select technique proposed
in [8], which belongs to the framework of incremental clustering and combines
relational clustering and medoid-based methods. l-fcmed-select is an extension of
the linearised fuzzy c-medoids clustering algorithm [7], l-fcmed. The l-cmed-select
algorithm possesses the following main characteristics: (i) it does not require a
precise number of clusters to operate, simply an over-estimation; (ii) it exploits a
linear approximation scheme to update the cluster medoid, looking for the new
medoid in the vicinity of its previous position. This approximation alleviates
computational costs. The distance measure used is dist(x, y) = |x−y|/max(x, y).

5.1 Illustrative Examples

To test our approach, we performed a preliminary experimentation with a real
dataset of second hand cars ads extracted from LeBonCoin.fr. The attributes
considered were price, mileage, year, option level, consumption, horse power,
brand and model. The first two Aπ = {price, mileage} were the ones according
to which the groups of data were formed, while the others Aω = {year, horse-
power, ...} were used to find characterizations for each cluster, both specific and
minimal. Several examples are presented illustrating different situations.

Querying for the prices and mileage of cars of make ‘Audi’, from 2010 onwards
and costing less than 15,000e (Query 1), the clusters obtained are presented in
Fig. 2a. We empirically chose λ = 0.7 and got:
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(b) Query 2

Fig. 2. Full clusters of second hand cars over the attributes price and mileage (Color
figure online)

– Cluster 1: description: (price is medium (0.69) or expensive (0.31)) and
(mileage is very low (0.68) or low (0.32); characterization: specificity 0.83,
(year is recent (0.15) or very recent (0.85));

– Cluster 2: description: (price is expensive (0.77) or medium (0.23)) and
(mileage is medium (0.85) or high (0.15); characterization: specificity 0.71,
(option level is high (0.70) or medium (0.13) or low (0.13)) and (consumption
is high (0.76) or low (0.12) or medium (0.11);

– Cluster 3: description: (price is medium (1)) and (mileage is medium (0.78)
or high (0.22); characterization: specificity 0.75, (year is recent (0.83) or very
recent (0.17)) and (option level is medium (0.5) or low (0.28) or high (0.22));

but no characterizations for cluster 0. After a double focusing (62 %), we got:

– Cluster 0 (62 %): specificity 0.71, (year is recent (0.87) or very recent (0.13))
and (consumption is low (0.33) or medium (0.33) or high (0.3).

We then considered cars of make ‘BMW’, ‘Seat’ or ‘Volkswagen’ costing less
than 15,000e with a mileage inferior to 100,000 km (Query 2). The clusters are
presented in Fig. 2b.

– Cluster 0: description (price is expensive (0.58) or medium (0.41)) and
(mileage is low (0.62) or very low (0.38)); characterization: specificity 0.74,
year is very recent (0.65) or recent (0.27);

– Cluster 1: description (price is medium (0.64) or expensive (0.29)) and
(mileage is medium (0.73) or low (0.26)); characterization: specificity 0.74,
year is recent (0.63) or medium (0.3).

Two characterizations were found for the entire clusters, however since they were
not very well separated, descriptions and characterizations have many labels in
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common, albeit with different degrees. Labels whose degree is inferior to 0.1 are
omitted for the sake of readability, which explains why the sum of the description
or characterization degrees is not always equal to 1.

5.2 Performances

To assess the efficiency of this approach, we used a synthetic dataset with
randomly-generated values on a Macbook Pro with a 3 GHz Intel Core i7 proces-
sor and 16 GB RAM. We checked the impact of two parameters on the processing
time: the cardinality of the dataset and the number of attributes in Aω. |Aπ| was
set to 3 for both experimentations. In the first experiment (Fig. 3a), |Aω| was set
to 10. The clustering part processing times are acceptable under 10,000 tuples
of data and those for the explanation process (description and characterization)
are below one second for answer sets of up to 10,000 tuples. Let us emphasize
that the clustering step is performed on a set of answers, not on a base relation,
and one may consider that 10,000 already corresponds to a rather large answer
set. The number of tuples raises the computation times of Table 1, which has to
be updated for every focusing. However the rest of the characterization process is
not impacted by the number of tuples considered. In the second experiment, we
set the number of tuples to 10,000. The results (Fig. 3b) show that the processing
times remain low as long as |Aω| is under 15. The complexity of Algorithm2 is
exponential in the number of attributes |Aω|, and follows the growth of 2|Aω|.

Fig. 3. Experimentations (Color figure online)

6 Conclusion

In this paper, we have presented an approach aimed to characterize subsets
of answers to database queries, using two steps: (i) description: the clusters
obtained beforehand are described in terms of a fuzzy vocabulary; (ii) charac-
terization: other attributes (not involved in the clustering process) are used to
highlight the particular properties of each cluster.
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Preliminary experimental results show that the approach is indeed effective
in finding characterizations including in cases where the approach described
in [10] would fail because of its rigidity. The use of fuzzy sets to characterize
clusters offers flexibility when dealing with clusters with mixed borders, and
cluster focusing limits the impact of borderline elements. Perspectives include
considering cluster focusing based on typicality (in the sense of [12]) instead of
distance only, in order to better identify these borderline elements.
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incremental clustering methodology. In: Hüllermeier, E., Link, S., Fober, T., Seeger,
B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 325–336. Springer, Heidelberg (2012)

9. Liu, B., Jagadish, H.V.: DataLens: making a good first impression. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, pp. 1115–
1118 (2009)

10. Moreau, A., Pivert, O., Smits, G.: A clustering-based approach to the explanation
of database query answers. In: Andreasen, T., et al. (eds.) FQAS 2015. AISC, vol.
400, pp. 307–319. Springer, Switzerland (2015)

11. Roy, S., Suciu, D.: A formal approach to finding explanations for database queries.
In: Proceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2014, pp. 1579–1590. ACM, New York (2014)

12. Smits, G., Pivert, O.: Linguistic and graphical explanation of a cluster-based data
structure. In: Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS, vol. 9310, pp.
186–200. Springer, Heidelberg (2015)

13. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

http://dl.acm.org/citation.cfm?id=1182635.1164146


Making the Skyline Larger:
A Fuzzy-Neighborhood-Based Approach

Djamal Belkasmi1,2, Allel Hadjali2(B), and Hamid Azzoune3

1 DIF-FS/UMBB, Boumerdes, Algeria
2 LIAS/ENSMA, Poitiers, France

{djamal.belkasmi,allel.hadjali}@ensma.fr
3 LRIA/USTHB, Algiers, Algeria

azzoune@yahoo.fr

Abstract. Skyline queries have gained much attention in the last decade
and are proved to be valuable for multi-criteria ranking. They are based
on the concept of Pareto dominance. In many real-life applications, the
skyline returns only a small number of non-dominated objects which
could be insufficient for the user. In this paper, we discuss an approach
to enriching the small skyline with particular points that could serve the
decision makers’ needs. The idea consists in identifying the most interest-
ing non-skyline points belonging to the fuzzy neighborhood of a skyline
point and then adding them to the classical skyline. To do so, a partic-
ular fuzzy closeness relation is introduced. The relaxed skyline obtained
which include the classical skyline, is a discriminated set. Furthermore,
an efficient algorithm to compute the relaxed skyline is proposed. Exten-
sive experiments are conducted to demonstrate the effectiveness of our
approach and the performance of the proposed algorithm.

Keywords: Fuzzy sets · Databases · Skyline queries · Closeness
· Relaxation

1 Introduction

In recent years, preference queries have received a great attention by many data-
base researchers. Skyline queries [1] are specific example of SQL extensions that
allow users to express preference in queries. Based on Pareto dominance relation-
ship, skyline queries select all non-dominated objects based on a multi-criteria
comparison. This means that, given a set D of d-dimensional points, a skyline
query returns, the skyline S, set of points of D that are not dominated by any
other point of D. A point p dominates another point q iff p is better than or equal
to q in all dimensions and strictly better than q in at least one dimension. One
can see that skyline points are incomparable. Several research studies have been
conducted to develop efficient algorithms and introduce multiple variants of sky-
line queries [2–5]. However, querying a d-dimensional data sets using a skyline
operator may lead to two possible scenarios: (i) a large number of skyline points
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returned, which could be less informative for users, (ii) a small number of sky-
line points returned, which could be insufficient for users. To solve the two above
problems, various approaches have been proposed to refine the skyline, therefore
reducing its size [6–13], but only very few works exist to relax the skyline in order
to increase the number of skyline results [10,14–17]. Goncalves and Tineo [15]
propose a flexible dominance relationship using fuzzy comparison operators. This
increases the skyline with points that are only weakly dominated by any other
point. In [10], Hadjali et al. discuss some ideas of relaxing the skyline. In [14],
and taking as starting point the study in [10], we develop an approach, called
MP2R (Much Preferred Relation for Relaxation), for skyline relaxation. This
approach relies on a novel fuzzy dominance relationship Much Preferred (MP)
which makes more demanding the dominance between the points of D.

In this paper, we investigate another way of relaxing the skyline S. The
idea is to consider that a non-skyline point p still belongs to a fuzzily extended
skyline SFE if p is close to a skyline point q. We then develop an approach,
called C2R (Closeness Relation for Relaxation), to enlarging the small skyline
with points that are closest to skyline points (keep in mind that those points are
ruled out from the skyline when applying the classical Pareto dominance). The
approach makes use of a particular appropriate fuzzy “Closeness (C)” relation.
Each element in the relaxed skyline obtained SFE is then associated with a
degree (∈ [0, 1]) expressing the extent to which it belongs to SFE . In summary,
the main contributions made are as follows:

– We provide the definition and semantic basis for a relaxed variant of skyline
SFE .

– We develop and implement an algorithm to compute SFE efficiently.
– We conduct a set of experiments to study and analyze the relevance and

effectiveness of SFE .
– Finally, we present a comparative study between SFE and SRelax (i.e., the

relaxed skyline obtained by the MP2R approach of [14]).

The paper is structured as follows: Sect. 2 provides some necessary background
on skyline queries and on MP2R-based approach to skyline relaxation. In Sect. 3,
we introduce a new approach for skyline relaxation based on fuzzy closeness
relationship. An algorithm to efficiently compute SFE is presented and discussed.
Section 4 is devoted to the experimental study. Finally, Sect. 5 concludes the
paper and draws some lines for future works.

2 Background

In this section, we recall some notions on skyline queries. Then, we present our
MP2R-based approach for Skyline relaxation.

2.1 Skyline Queries

The notion of skyline queries was pioneered in [1]. Subsequently, the interest
in this area has exploded: [1] has garnered over 1800 citations (Google Scholar,
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January 2016). Skyline queries are a specific, yet relevant, example of preference
queries. They rely on Pareto dominance principle which can be defined as follows:

Definition 1. Let D be a set of d-dimensional data points and ui and uj two
points of D. ui is said to dominate in Pareto sense uj (denoted ui � uj) iff ui

is better than or equal to uj in all dimensions and better than uj in at least one
dimension. Formally, we write

ui � uj ⇔ (∀k ∈ {1, .., d}, ui[k] ≥ uj [k]) ∧ (∃l ∈ {1, .., d}, ui[l] > uj [l]) (1)

where each tuple ui = (ui[1], ui[2], ui[3], ..., ui[d]) with ui[k] stands for the value
of the tuple ui for the attribute Ak.

In (1), without loss of generality, we assume that the largest value, the better.

Definition 2. The skyline of D, denoted by S, is the set of points which are not
dominated by any other point.

u ∈ S ⇔ �u′ ∈ D,u′ � u (2)

Skyline queries compute the set of Pareto-optimal tuples in a relation, i.e., those
tuples that are not dominated by any other tuple in the same relation.

Example 1. To illustrate the concept of the skyline, let us consider a database
containing information on candidates as shown in Table 1. The list of candi-
dates includes the following informations: Code, Age, Management experience
(man exp in years), Technical experience (tec exp in years) and distance work
to Home (dist wh in Km). Ideally, personnel manager is looking for a candi-
date with the largest management and technical experience (Max man exp and
Max tec exp), ignoring other informations. Applying the traditional skyline will
returns the following candidates: M5, M8. As can be seen, such results are the
most interesting candidates (see Fig. 1).

2.2 MP2R-based Approach for Skyline Relaxation

In [14] we have proposed an approach to relax skyline called MP2R. Its relies
on a new dominance relationship that allows enlarging the skyline with the most
interesting points among those ruled out when computing the initial skyline S.
This new dominance relationship uses a fuzzy relation, named“Much Preferred
(MP)” to compare two tuples u and u′. So, u is an element of Srelax if there is
no tuple u′ ∈ U such that u′ is much preferred to u (denoted MP (u′, u)) in all
skyline attributes. Formally, we write:

u ∈ Srelax ⇔ �u′ ∈ U,∀i ∈ {1, ..., d},MPi(u′
i, ui) (3)

where, MPi is a fuzzy preference relation defined on the domain Di of the
attribute Ai and MPi(u′

i, ui) expresses the extent to which the value u′
i is much

preferred to the value ui. Each element u of Srelax is associated with a degree
(∈ [0, 1]). The semantics of this relation is represented by the trapezoidal function
(γi1, γi2,∞,∞), and denoted MP

(γi1,γi2)
i , see Fig. 2. Figure 3 shows the relaxed

version, Srelax, of the skyline S of the Example 1.
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Table 1. List of candidates

Code Age man exp tec exp dist wh

M1 32 5 10 35

M2 41 7 5 19

M3 37 5 12 45

M4 36 4 11 39

M5 40 8 10 18

M6 30 4 6 27

M7 31 3 4 56

M8 36 6 13 12

M9 33 6 6 95

M10 40 7 9 20
Fig. 1. Skyline of candidates

3 C2R: An Efficient Approach to Enlarging the Skyline

Let D = (D1, D2, ..., Dd) a d-dimensional space where Di is the domain attribute
of Ai and R(A1, A2, ..., Ad) a relation defined in D. We assume the existence of
a total order relationship on each domain Di. U = (u1, u2, ..., un) is a set of n
tuples belonging to a relation R. Let S be the skyline of U and SFE the relaxed
skyline of U computed by C2R approach.

3.1 Principe of the Approach

Our approach relies on the idea of identifying interesting points that are in the
neighborhood of skyline points and adding them to the skyline S. Let u be a
tuple of U − S, and u′ a tuple of S. Then, u ∈ SFE if u is close to u′. We write:

u ∈ SFE ⇔ ∃u′ ∈ S, such that ∀i ∈ {1, ..., d}, (ui, u
′
i) ∈ Ci (4)

where, Ci is a reflexive, symmetrical approximate indifference (or equality) rela-
tion defined on the domain Di of the attribute Ai and Ci(ui, u

′
i) expresses the

extent to which the value ui is close to the value u′
i. Since Ci is of a gradual

Fig. 2. μMPi function Fig. 3. Srelax
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nature, each element u of SFE is associated with a degree (∈ [0, 1]) expressing
the extent to which u belongs to SFE . In fuzzy set terms, we write:

μSF E
(u) = max

u′∈S
min

i
μCi

(ui, u
′
i) (5)

As for Ci relation on Di, its semantics can be provided by the formulas (6)
(see also Fig. 4). In terms of t.m.f., Ci writes (0, 0, γi1, γi2), and denoted C

(γi1,γi2)
i .

It is easy to check that C
(0,0)
i corresponds to the classical equality “=”.

μ
C

(γi1,γi2)
i

(ui, u
′
i) =

⎧
⎨

⎩

0 if |ui − u′
i| ≥ γi2

1 if |ui − u′
i| ≤ γi1

(γi2−|ui−u′
i|)

γi2−γi1
else

(6)

Fig. 4. The membership function μ
C

(γi1,γi2)
i

Let γ = ((γ11, γ12), · · · , (γd1, γd2)) be a vector of pairs of parameters where
C

(γi1,γi2)
i denotes the Ci relation defined on the attribute Ai and S

(γ)
FE denotes

the extended skyline computed on the basis of the vector γ. One can easily check
that the classical Skyline S is equal to S

(0)
FE , where 0 = ((0, 0), · · · , (0, 0)).

Definition 3. Let γ and γ′ be two vectors of parameters. We say that γ ≥ γ′ if
and only if ∀i ∈ {1, · · · , d}, (γi1, γi2) ≥ (γ′

i1, γ
′
i2) (i.e., γi1 ≥ γ′

i1 ∧ γi2 ≥ γ′
i2).

Proposition 1. Let γ and γ′ be two vectors of parameters. The following prop-
erty holds: γ ≤ γ′ ⇒ S

(γ)
FE ⊆ S

(γ′)
FE .

Proof. Let γ ≤ γ′, one can deduce that ∀i, Cγ
i ⊆ Cγ′

i . Let u ∈ S
(γ)
FE

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, (ui, u
′
i) ∈ C

(γi1,γi2)
i

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, μ
C

(γi1,γi2)
i

(ui, u
′
i) > 0

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, μ
C

(γ′
i1,γ′

i2)
i

(ui, u
′
i) > μ

C
(γi1,γi2)
i

(ui, u
′
i) > 0

⇒ ∃u′ ∈ S, ∀i ∈ {1, · · · , d}, (ui, u
′
i) ∈ C

(γ′
i1,γ′

i2)
i ⇒ u ∈ S

(γ′)
FE

So we have S
(γ)
FE ⊆ S

(γ′)
FE �

Lemma 1. Let γ = ((0, γ12), · · · , (0, γd2)) and γ′ = ((γ′
11, γ

′
12), · · · , (γ′

d1, γ
′
d2)),

the following holds: S
(0)
FE ⊆ S

(γ)
FE ⊆ S

(γ′)
FE
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Table 2. Degrees of the elements of SFE

Mat M5 M8 M3 M10 M1 M2 M4 M6 M7 M9

μSF E 1 1 0.66 0.66 0.28 0 0 0 0 0

Fig. 5. Points retrieved by SFE

Example 2. Let us come back to the skyline calculated in Example 1. Assume
that the fuzzy “Closeness” relations corresponding to the skyline attributes
(man exp and tec exp) are respectively given by:

μ
C

(1/2,2)
man exp

(u, u′) =

⎧
⎨

⎩

1 if |u − u′| ≤ 1/2
0 if |u − u′| ≥ 2
(−2|u − u′| + 4)/3 else

(7)

μ
C

(1/2,4)
tec exp

(u, u′) =

⎧
⎨

⎩

1 if |u − u′| ≤ 1/2
0 if |u − u′| ≥ 4
(−2|u − u′| + 8)/7 else

(8)

Now, applying our approach to relax the skyline S = {M5, M8} found in Exam-
ple 1, leads to the following SFE = {(M5, 1), (M8, 1), (M3, 0.66), (M10, 0.66),
(M1, 0.28)}, see Table 2. One can note that some candidates that were not in
S are now elements of SFE (such M3, M10 and M1) see Fig. 5. As can be seen,
SFE is larger than S and SFE ⊆ Srelax. Let us now take a glance at the content
of SFE , one can observe that (i) the skyline elements of S are still elements of
SFE with a degree equal to 1; (ii) Appearance of new elements recovered by
our approach whose degrees are less than 1 (such as M3). Interestingly, the user
can select from SFE : (i) the Top-k elements (k is a user-defined parameter), or
(ii) the subset of elements, denoted (SFE)σ, with a degrees higher than a thresh-
old σ provided by the user. In the context of Example 2, it is easy to check that
Top − 5 = {(M5, 1), (M8, 1), (M3, 0.66), (M10, 0.66), (M1, 0.28)} and (SFE)0.66

= {(M5, 1), (M8, 1), (M3, 0.66), (M10, 0.66)}.

3.2 SFE Computation

To compute SFE , we proceed in two steps (see Fig. 6). Firstly we compute the
skyline S using a slightly modified version of BNL algorithm [14], then we
execute our FES algorithm to relax the skyline S (see Algorithm 1).
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Fig. 6. Enlarging skyline process

Algorithm 1: FES
Input: Set of n tuples U − S; a Skyline of m tuples S; γ a vector of parameters;
Output: The relaxed skyline SFE ;

1 begin
2 SFE = S;
3 for i = 1 to n do
4 Vmax = 0;
5 for j = 1 to m do
6 Vmin = 1;
7 for k = 1 to d do
8 Vmin = MIN(Vmin, μCk(ui, uj));
9 if Vmin = 0 then

10 break;

11 Vmax = MAX(Vmax, Vmin);
12 μSF E (ui) = Vmax;
13 if Vmax = 1 then
14 break;

15 if μSF E (ui) > 0 then
16 SFE = SFE ∪ {ui};

17 rank SFE in decreasing order w.r.t. μSF E (ui);
18 - to return top-K;
19 - or to return ui satisfying μSF E (ui) ≥ σ, (σ is a user-defined threshold).

4 Experimental Study

The goal of this study is to demonstrate the effectiveness of the approach pro-
posed and its ability to relax small skylines with the most interesting tuples. We
also compare the results obtained with those computed by the MP2R approach.
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4.1 Experimental Environment

We use a Linux OS, on a machine with an i7 processor, a RAM of 8 GB and
a 250 GB of disk. Algorithms were implemented with Java. Dataset benchmark
is generated using method described in [1] following three distribution schema
(correlated, anti-correlated and independent). For each dataset, we consider dif-
ferent sizes (5 K to 750 K). Each tuple contains an integer identifier (4 bytes), 12
decimal fields (96 bytes) with values belonging to the interval [0,1], and a string
field with length of 10 characters. Therefore, the size of one tuple is 110 bytes.

4.2 Experimental Results

We vary a collection of parameters that could impact the results. This collec-
tion includes the dataset size [D] (5 K, 10 K, 50 K, 100 K, 250 K, 500 K, 750 K),
dataset distribution schema [DIS] (independent, correlated, anti-correlated),
the number of skyline dimensions [d] (2, 4, 6, 8, 10, 12) and the relaxation
thresholds [γ = (γi1, γi2), i∈ {1, . . . , d}] where (γi1, γi2 ∈[0,1] and γi1 ≤ γi2).
The default values of these parameters are D = 5 K; DIS= “Correlated”; d = 2;
γ=((0,0.25),(0,0.25)). In our experiment, we consider that the less the value,
the better. Also, we address the issue of comparison between SFE and Srelax in
terms of Data distribution scheme [DIS], Number of skyline dimension [d], Data
size [D] and Variation of the values of (γi1, γi2).

–SFE vs Srelax w.r.t [DIS]. Figure 7 shows that the particularity of cor-
related data minimize the seize of SFE and Srelax. We observe also that C2R
approach retrieves fewer tuples than MP2R because it is more demanding when
relaxation processes. We note that the execution time of C2R, for the three dis-
tributions, is largely low compared with the time of MP2R approach.

Fig. 7. SFE vs Srelax w.r.t [DIS]. (Color figure online)

–SFE vs Srelax w.r.t [d]. When dimensionality increases (from 2 to 12) the
size of SFE and Srelax increases proportionally (see Fig. 8). We also note that
SFE outperforms Srelax in terms on computing time.

–SFE vs Srelax w.r.t [D]. The analysis of Fig. 9 shows that the size of SFE

and Srelax are proportional to the size of the dataset. While in terms of execu-
tion time, the computation of SFE is extremely faster.
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Fig. 8. SFE vs Srelax w.r.t [d] (Color figure online)

Fig. 9. SFE vs Srelax w.r.t [D] (Color figure online)

As can be seen, this first part of the experimental study shows that C2R
approach is better and more optimal than MP2R approach.

Variation of (γi1 , γi2) values. Now, we show the influence of the variation of
(γi1 , γi2) values on the size and the computation time of SFE and Srelax.The
idea is to vary both thresholds. For the sake of simplicity, and since the data are
normalized, we will apply the same values of (γ1, γ2) for all skyline dimensions.
Note that the size of the skyline is equal to 1 and we will analyze the variation
of the number of tuples whose degree μSF E

(u) > 0. The following scenarios are
worth to be discussed:

Scenario 1: In this scenario, we fix γi1 and vary γi2 to increase the relaxation
zone. We observe the following cases:

– γi1 = 0 and γi2 ∈ {0; 0.25; 0.5; 0.75; 1} (see Fig. 10)

– γi1 = 0.25 and γi2 ∈ {0.25; 0.5; 0.75; 1} (see Fig. 11)

– γi1 = 0.5 and γi2 ∈ {0.5; 0.75; 1} (see Fig. 12)

– γi1 = 0.75 and γi2 ∈ {0.75; 1} (see Fig. 13)

The analysis of Fig. 10 shows that the size of SFE and Srelax increases when
the value of γi2 increases. We also note that there are no tuples whose degrees of
relaxation is equal to 1 (this is due to the value of γi1 = 0). In Figs. 11, 12 and 13
we note that the value of γi2 controls the size of relaxation (by SFE or Srelax).
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Fig. 10. Scenario 1: Fix γi1 and vary γi2 (case1) (Color figure online)

Fig. 11. Scenario 1: Fix γi1 and vary γi2 (case2) (Color figure online)

Fig. 12. Scenario 1: Fix γi1 and vary γi2 (case3) (Color figure online)

Fig. 13. Scenario 1: Fix γi1 and vary γi2 (case4) (Color figure online)
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Fig. 14. Varying γi1 and γi2 (Color figure online)

However, we observe the appearance of retrieved tuples with degrees equal 1.
It noted that, whatever the value of γi1 and γi2, the C2R is more efficient than
MP2R in terms of computation time.

Scenario 2: In this scenario, we vary both thresholds. The obtained results are
shown in Fig. 14. The analysis of these curves shows that the relaxation process
becomes more permissive when thresholds move away from the origin. Neverthe-
less, SFE is always more selective than Srelax on the number of tuples retrieved
(i.e., |SFE | < |Srelax|)1 and more efficient in terms of computation time. The
Fig. 15 illustrates the distribution of tuples recovered by SFE according to their
degrees of relaxation.

Scenario 3: In the previous scenarios, the vector γ = (γi1 , γi2) is similar when
computing Srelax and SFE . Here we will show the impact of using different
vectors γ and γ′ respectively for SFE and Srelax. Table 3 summarizes the results
obtained. One can observe that |SFE | < |Srelax| if γ � γ′, |SFE | > |Srelax|
otherwise (Fig. 16).

Table 3. Impact of the vector γ and γ′.

#Tuples

SFE Srelax Conclusion

Cas1: γ < γ′ 2043 4998 |SFE | < |Srelax|
Cas2: γ > γ′ 4985 4403 |SFE | > |Srelax|
Cas3: γ = γ′ 2042 2808 |SFE | < |Srelax|

1 Even the relation SFE ⊆ Srelax holds in this context.
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Fig. 15. Distribution of tuples recovered by SFE (Color figure online)

Fig. 16. Distribution of tuples recovered by SFE and Srelax (Color figure online)
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5 Conclusion

In this paper, we addressed the problem of skyline relaxation, especially less
skylines. We propose a new approach for relaxing the skyline, called C2R. This
approach is based on a particular fuzzy Closeness relation whose semantics is a
user-defined. In addition, a new algorithm called FES to compute the relaxed
skyline is proposed. The experimental study we done has shown that, on the one
hand, and in some cases, the C2R approach is more restrictive than MP2R
approach when relaxing classic skyline and, on the other hand, the computation
cost of C2R is more acceptable. Furthermore, C2R like MP2R involves various
parameters, which can be used to control the size and the quality of the relaxed
skyline. As for future work, we will consider the C2R approach using a relative
fuzzy closeness relation. Then, we will investigate the issue of skyline relaxation
in the categorical attributes context.
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Abstract. Rough approximations, a pair of lower and upper approxima-
tions, and rule induction are described by directly using indiscernibility
relations in information tables containing incomplete information. A set
of values is used to express incomplete information. The indiscernibility
relations are constructed from viewpoints of both certainty and possibil-
ity. First, rough approximations and rule induction are described in infor-
mation tables with complete information. Second, they are addressed in
three cases under incomplete information. One is that a set of objects is
approximated by objects with incomplete information. Another is that
a set of objects with incomplete information is approximated by objects
with complete information. The other is the most general case where a
set of objects with incomplete information is approximated by objects
with incomplete information. Consequently, we obtain four approxima-
tions: certain lower, certain upper, possible lower, and possible upper
approximations. Using these approximations, rough approximations are
expressed by interval sets. The rough approximations have the comple-
mentarity property linked with lower and upper approximations, as is
valid under complete information. Last, rule induction are addressed in
information tables with incomplete information. Rough approximations
under incomplete information do not give sufficient information on rules
that an object supports. This is resolved by introducing formulae dealing
with pairs of an object and a rule that it supports. The pairs are clas-
sified into certain and consistent, possible and consistent, certain and
inconsistent, and possible and inconsistent pairs.

Keywords: Rough sets · Incomplete information · Indiscernibility rela-
tion · Lower and upper approximations · Rule induction

1 Introduction

Incomplete information systems consist of objects whose attribute values are
described by a set of values. When a set of values is obtained as an attribute
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value, one element of the set is the actual one, but we cannot know it without
additional information. Such a situation frequently appears in our daily life. For
example, when we obtain the incomplete information “John’s age is round 20,”
“round 20” is expressed by {19, 20, 21}. The actual age is in {19, 20, 21}, but it
is unknown which is actual.

The framework of rough sets, constructed by Pawlak [10], is used as an effec-
tive tool for data science including various fields such as data analysis, pattern
recognition, machine learning, data mining, and so on. The rough sets are based
on indiscernibility of objects whose characteristic values are indistinguishable.
The fundamental framework is given by rough approximations that consist of
lower and upper approximations. The original rough approximations are usually
derived from interrelationships, inclusion and intersection, between equivalence
classes. The equivalence classes are obtained from indiscernibility relations in an
information table containing only complete information.

Some extensions are imposed on the original rough approximations to deal
with incomplete information. Kryszkiewicz constructed a discernibility rela-
tion by giving indiscernibility of a missing value with any value under an
assumption [2]. Some authors propose indiscernibility relations under different
assumptions from Kryszkiewicz [1,3,11]. This approach creates poor results of
rough approximations [6,11], because it considers only the possibility that a
missing value may be equal to another value. In addition, the approach does not
give the same rough approximations as the method based on Lipski’s one under
possible world semantics [6].

A missing value has two possibilities. One possibility is that it may be equal
to another value. The other is that it may not be equal to the value. It is unknown
which possibility is true without additional information. From this standpoint,
Nakata and Sakai have developed an approach based on possible equivalence
classes [7]. The number of possible equivalence classes exponentially increases,
as the number of missing values does. They avoid the computational complexity
by using minimum and maximum possible equivalence classes. Their approach
gives the same rough approximations as the work based on Lipski. However, the
approach is limited in the case of obtaining possible equivalence classes.

To remove the limitation, we show an approach directly using indiscernibil-
ity relations, but not equivalence classes obtained from the indiscernibility rela-
tions. The approach is applicable to various types of information. Nakata and Sakai
develop the approach for possibilistic information and give successful results [8,9].
In this paper, we apply the approach to incomplete information expressed by a set
of values. We formulate rough approximations and rule induction from the view-
point of both certainty and possibility, as Lipski did in incomplete databases, to
deal with incomplete information that includes present but unknown type of miss-
ing values as special cases.

The paper is organized as follows. In Sect. 2, an approach based on indiscerni-
bility relations is briefly addressed in the case of information tables with com-
plete information, called complete information systems. In Sect. 3, we develop the
approach in the case of information tables with incomplete information, called
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incomplete information systems. The approach is described from the viewpoint
of both certainty and possibility. In Sect. 4, conclusions are addressed.

2 Rough Sets by Indiscernibility Relations in Complete
Information Systems

A data set is represented as a table, called an information table, where each row
and each column represent an object and an attribute, respectively. A mathemat-
ical model of an information table with complete information is called a complete
information system. The complete information system is a triplet expressed by
(U,AT, {D(ai) | ai ∈ AT}). U is a non-empty finite set of objects called the
universe, AT is a non-empty finite set of attributes such that ai : U → D(ai)
for every ai ∈ AT where D(ai) is the domain of attribute ai. Binary relation
Rai

for indiscernibility of objects on attribute ai ∈ AT , which is called the
indiscernibility relation for ai, is:

Rai
= {(o, o′) ∈ U × U | ai(o) = ai(o′)}, (1)

where ai(o) is the value for attribute ai of object o. From the indiscernibility
relation, indiscernible class [o]ai

for object o is obtained:

[o]ai
= {o′ | (o, o′) ∈ Rai

}. (2)

The condition ai(o) = ai(o′) in formula (1) makes [o]ai
an equivalence class. The

condition can be replaced by another condition. For example, ai(o) and ai(o′)
are similar. In this case, [o]ai

is not always an equivalence class. Family Eai
of

indiscernible classes on ai is:

Eai
= {[o]ai

| o ∈ U}. (3)

When [o]ai
is an equivalence class, U is uniquely partitioned by ai; namely, this

is the classification induced by ai.
Using indiscernibility relation Rai

, lower approximation apr
ai

(O) and upper
approximation aprai

(O) for ai of set O of objects are:

apr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ Rai
∨ o′ ∈ O}, (4)

aprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ Rai

∧ o′ ∈ O}. (5)

When we focus on object o, o is an element of the lower approximation of O, if all
objects that are indiscernible with o are included in O. On the other hand, the
object is an element of the upper approximation of O, if some objects that are
indiscernible with o are in O. Thus, if o ∈ apr

ai
(O), then o ∈ aprai

(O); namely,
apr

ai
(O) ⊆ aprai

(O). It is well known that the lower and upper approximations
are linked with each other, which is called complementarity property:

apr
ai

(O) = U − aprai
(U − O). (6)
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From this formula, o ∈ apr
ai

(O) if and only if o �∈ aprai
(U−O) and o ∈ aprai

(O)
if and only if o �∈ apr

ai
(U − O).

When objects are characterized by values of attributes, a set of objects being
approximated have some structures. In the case where ai(o) = ai(o′) is used
in formula (1), the set of objects is partitioned by equivalence classes obtained
from the values of attribute ai being equal. Under this consideration, lower
approximation apr

ai
(O/aj) and upper approximation aprai

(O/aj) for ai are:

apr
ai

(O/aj) = {o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ Rai
∨ (o′, o′′) ∈ Raj

∧ o′ ∈ O},(7)

aprai
(O/aj) = {o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ Rai

∧ (o′, o′′) ∈ Raj
∧ o′ ∈ O}.(8)

In the two approximations, if o ∈ apr
ai

(O/aj), then o ∈ aprai
(O/aj); namely

inclusion relation apr
ai

(O/aj) ⊆ aprai
(O/aj) holds. On the other hand, the

complementarity property does not hold. If o ∈ apr
ai

(O/aj), then o �∈ aprai
((U−

O)/aj) and if o ∈ aprai
(O/aj), then o �∈ apr

ai
((U − O)/aj).

We induce rules that hold between attributes from lower and upper approx-
imations. From the lower approximation, when o ∈ apr

ai
(O/aj), ∃Eaj=v ∈

Eaj
[o]ai=u ⊆ Eaj=v, where Eaj=v is the indiscernible class characterized by

value v of aj and [o]ai=u is the indiscernible class including o characterized by
value u for ai:

Eaj=v = {o | aj(o) = v ∧ v ∈ D(aj)},
[o]ai=u = {o′ | ai(o′) = ai(o) ∧ ai(o) = u ∧ u ∈ D(ai)}.

All objects in [o]ai=u supports the rule denoted by ai = u → aj = v where
o has u and v of ai and aj ; namely , ai(o) = u and aj(o) = v, respectively.
Thus, o consistently supports ai = u → aj = v. This is denoted by (o, ai =
u → aj = v). From the upper approximation, when o ∈ aprai

(O/aj), ∃Eaj=v ∈
Eaj

[o]ai=u ∩ Eaj=v �= ∅ if o has u of ai. From apr
ai

(O/aj) ⊆ aprai
(O/aj),

o ∈ (aprai
(O/aj)−apr

ai
(O/aj)) inconsistently supports a rule denoted by ai =

u → aj = v where o has u of ai, but o does not always have v of aj , although
this is also expressed by (o, ai = u → aj = v). All objects included in [o]ai=u

do not support ai = u → aj = v. The consistency degree, called accuracy,
is evaluated by |[o]ai=u ∩ Eaj=v|/|[o]ai=u|. Clearly, this degree is equal to 1, if
o ∈ apr

ai
(O/aj).

For formulae on sets A and B of attributes,

RA = ∩ai∈ARai
, (9)

[o]A = {o′ | (o, o′) ∈ RA} = ∩ai∈A[o]ai
, (10)

apr
A
(O) = {o | ∀o′ ∈ U (o, o′) �∈ RA ∨ o′ ∈ O}, (11)

aprA(O) = {o | ∃o′ ∈ U (o, o′) ∈ RA ∧ o′ ∈ O}, (12)
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apr
A
(O/B) =

{o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ RA ∨ (o′, o′′) ∈ RB ∧ o′ ∈ O}, (13)
aprA(O/B) =

{o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ RA ∧ (o′, o′′) ∈ RB ∧ o′ ∈ O}. (14)

3 Rough Sets by Indiscernibility Relations in Incomplete
Information Systems

In incomplete information systems, ai : U → sai
for every ai ∈ AT where sai

is
the set of all subsets over domain D(ai) of attribute ai. v ∈ ai(o) is a possible
value that may be the actual one as the value of attribute ai in object o. The
possible value is the actual one if |ai(o)| = 1.

The indiscernibility relation for ai in an incomplete information system is
expressed by using two relations CRai

and PRai
. CRai

is a certain indiscerni-
bility relation and PRai

is a possible one:

CRai
= {(o, o′) | o = o′ ∨ ai(o) = ai(o′) with |ai(o)| = |ai(o′)| = 1}, (15)

PRai
= {(o, o′) | o = o′ ∨ u = v ∧ u ∈ ai(o) ∧ v ∈ ai(o′)}. (16)

The certain indiscernibility relation is reflexive, symmetric, and transitive, but
the possible one is not transitive although it is reflexive and symmetric. We
have three patterns. One case is that a pair of objects are not in both certain
and possible indiscernibility relations, which means that they are discernible.
Another is that they are not in the certain indiscernibility relation, but in the
possible one, which means that they are discernible and indiscernible. The other
is that they are in both certain and possible indiscernibility relations, which
means that they are indiscernible.

Example 1. Let information table T be obtained as follows:

T
U a1 a2
1 {x} {a, c}
2 {x, y} {a, b}
3 {y} {b}
4 {y} {b}
5 {w} {c}
6 {w, z} {c}

In information table T , U = {o1, o2, o3, o4, o5, o6}, where domains D(a1) and
D(a2) of attributes a1 and a2 are {w, x, y, z} and {a, b, c}, respectively. Using
formulae (15) and (16), certain and possible indiscernibility relations for a1 in
T are:

CRai
= {(o1, o1), (o2, o2), (o3, o3), (o3, o4), (o4, o3), (o4, o4), (o5, o5), (o6, o6)},

PRai
= {(o1, o1), (o1, o2), (o2, o1), (o2, o2), (o2, o3), (o2, o4), (o3, o2), (o3, o3),

(o3, o4), (o4, o2), (o4, o3), (o4, o4), (o5, o5), (o5, o6), (o6, o5), (o6, o6)}.
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Lipski showed that certain and possible answers, not the actual answer, are
obtained in query processing under incomplete information [4,5]. This is true
for rough approximations. We cannot definitely obtain whether or not an object
belongs to rough approximations, but we can know whether or not the object
certainly or possibly belongs to rough approximations. Therefore, we show cer-
tain rough approximations (resp. possible rough approximations) whose object
certainly (resp. possibly) belongs to the actual rough approximations.

Let O be a set of objects. Certain lower approximation Capr
ai

(O) and pos-
sible one Papr

ai
(O) are:

Capr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ PRai
∨ o′ ∈ O}, (17)

Papr
ai

(O) = {o | ∀o′ ∈ U (o, o′) �∈ CRai
∨ o′ ∈ O}. (18)

Proposition 1. Capr
ai

(O) ⊆ Papr
ai

(O).

Similarly, Certain upper approximation Caprai
(O) and possible one

Paprai
(O) are:

Caprai
(O) = {o | ∃o′ ∈ U (o, o′) ∈ CRai

∧ o′ ∈ O}, (19)
Paprai

(O) = {o | ∃o′ ∈ U (o, o′) ∈ PRai
∧ o′ ∈ O}. (20)

Proposition 2. Caprai
(O) ⊆ Paprai

(O).

Proposition 3. Capr
ai

(O) ⊆ Caprai
(O) and Papr

ai
(O) ⊆ Paprai

(O).

Proposition 4. Capr
ai

(O) ⊆ Papr
ai

(O) ⊆ O ⊆ Caprai
(O) ⊆ Paprai

(O).

Four approximations are linked with each other.

Proposition 5. Papr
ai

(O) = U − Caprai
(U − O) and Capr

ai
(O) = U −

Paprai
(U − O).

Using four approximations denoted by formulae (17)–(20), lower and upper
approximations are expressed by interval sets as follows:

apr
ai

(O) = [Capr
ai

(O), Papr
ai

(O)], (21)

aprai
(O) = [Caprai

(O), Paprai
(O)]. (22)

Certain and possible approximations are the lower and upper bounds of the
actual approximation. The lower and upper approximations depend on each
other; namely, the complementarity property linked with them holds, as is so in
complete information systems.

Proposition 6.

apr
ai

(O) = U − aprai
(U − O).
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Example 2. Let us go back to Example 1. Let set O of objects be {o2, o3, o4}.
Using formulae (17)–(20),

Capr
a1

(O) = {o3, o4},
Papr

a1
(O) = {o2, o3, o4},

Capra1
(O) = {o2, o3, o4},

Papra1
(O) = {o1, o2, o3, o4}.

Thus, using formulae (21)–(22),

apr
a1

(O) = [{o3, o4}, {o2, o3, o4}],

apra1
(O) = [{o2, o3, o4}, {o1, o2, o3, o4}].

Subsequently, we describe the case where a set of objects characterized by
incomplete information is approximated by objects with complete information.
Let objects in U have complete information for ai and O be characterized by aj
with incomplete information. Four approximations are:

Capr
ai

(O/aj) = {o | ∃o′′ ∈ O ∀o′ ∈ [o]ai
(o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (23)

Papr
ai

(O/aj) = {o | ∃o′′ ∈ O ∀o′ ∈ [o]ai
(o′, o′′) ∈ PRaj

∧ o′ ∈ O}, (24)

Capr
ai

(O/aj) = {o | ∃o′′ ∈ O ∃o′ ∈ [o]ai
(o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (25)

Papr
ai

(O/aj) = {o | ∃o′′ ∈ O ∃o′ ∈ [o]ai
(o′, o′′) ∈ PRaj

∧ o′ ∈ O}. (26)

Combining the above two cases, we can obtain four approximations in the
case where both objects used to approximate and objects approximated are
characterized by attributes with incomplete information. Certain lower approx-
imation Capr

ai
(O/aj) and possible one Papr

ai
(O/aj) are:

Capr
ai

(O/aj)

= {o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ PRai
∨ (o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (27)
Papr

ai
(O/aj)

= {o | ∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ CRai
∨ (o′, o′′) ∈ PRaj

∧ o′ ∈ O}. (28)

Proposition 7. Capr
ai

(O/aj) ⊆ Papr
ai

(O/aj).

Similarly, certain upper approximation Caprai
(O/aj) and possible one

Paprai
(O/aj) are:

Caprai
(O/aj)

= {o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ CRai
∧ (o′, o′′) ∈ CRaj

∧ o′ ∈ O}, (29)
Paprai

(O/aj)
= {o | ∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ PRai

∧ (o′, o′′) ∈ PRaj
∧ o′ ∈ O}. (30)
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Proposition 8. Caprai
(O/aj) ⊆ Paprai

(O/aj).

Proposition 9. Capr
ai

(O/aj) ⊆ Caprai
(O/aj) and Papr

ai
(O/aj) ⊆

Paprai
(O/aj).

Proposition 10. Capr
ai

(O/aj) ⊆ Papr
ai

(O/aj) ⊆ O ⊆ Caprai
(O/aj) ⊆

Paprai
(O/aj).

Lower and upper approximations are:

apr
ai

(O/aj) = [Capr
ai

(O/aj), Papr
ai

(O/aj)], (31)

aprai
(O/aj) = [Caprai

(O/aj), Paprai
(O/aj)]. (32)

Example 3. Let us go back to information table T in Example 1. Let O
be {o2, o3, o4} that is characterized by values of attribute a2. Using formulae
(27)–(32),

apr
a1

(O/a2) = [{∅}, {o2, o3, o4}],

apra1
(O/a2) = [{o2, o3, o4}, {o1, o2, o3, o4}].

An object that belongs to certain rough approximations does not certainly
support a rule. For example, Capr

a1
(U/a2) = {o5, o6} in T of Example 1. o5

certainly supports rule a1 = w → a2 = c, but o6 does not certainly supports rule
a1 = w → a2 = c, because a1 = {w, z}. To clarify how an object supports a rule,
we derive certain and possible indiscernibility relations CRai=u and PRai=u

where all pairs of objects are characterized by value u of attribute ai.

CRai=u = {(o, o′) | ai(o) = ai(o′) = u}, (33)
PRai=u = {(o, o′) | u ∈ ai(o) ∧ u ∈ ai(o′)}. (34)

Example 4. In T of Example 1, using formulae (33) and (34),

CRa1=x = {(o1, o1)},
PRa1=x = {(o1, o1), (o1, o2), (o2, o1), (o2, o2)},
CRa1=y = {(o3, o3), (o3, o4), (o4, o3), (o4, o4), },
PRa1=y = {(o2, o2), (o2, o3), (o2, o4), (o3, o2), (o3, o3), (o3, o4), (o4, o2), (o4, o3),

(o4, o4), },
CRa1=z = ∅,
PRa1=z = {(o6, o6)},
CRa1=w = {(o5, o5)},
PRa1=w = {(o5, o5), (o5, o6), (o6, o5), (o6, o6)}.
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Using indiscernibility relations CRai=u and PRai=u that are characterized
by a value of an attribute, we obtain four sets of pairs of an object and a rule
that it supports: certain lower, possible lower, certain upper, and possible upper
sets, which correspond to the above four approximations.

Certain lower set Crai
(O/aj), which corresponds to Capr

ai
(O/aj), is:

Crai
(O/aj) = {(o, ai = u → aj = v) | ∃o′ ∈ U (o, o′) ∈ CRai=u∧

(∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ PRai=u ∨ (o′, o′′) ∈ CRaj=v ∧ o′ ∈ O)}.
(35)

Possible lower set Prai
(O/aj), which corresponds to Papr

ai
(O/aj), is:

Prai
(O/aj) = {(o, ai = u → aj = v) | ∃o′ ∈ U (o, o′) ∈ PRai=u∧

(∃o′′ ∈ O ∀o′ ∈ U (o, o′) �∈ CRai=u ∨ (o′, o′′) ∈ PRaj=v ∧ o′ ∈ O)}.
(36)

Proposition 11. Crai
(O/aj) ⊆ Prai

(O/aj).

This proposition shows that the possible lower set includes the certain lower
set.

Certain upper set Crai
(O/aj), which corresponds to Caprai

(O/aj), is:

Crai
(O/aj) = {(o, ai = u → aj = v) |

∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ CRai=u ∧ (o′, o′′) ∈ CRaj=v ∧ o′ ∈ O}. (37)

Possible upper set Prai
(O/aj), which corresponds to Paprai

(O/aj), is:

Prai
(O/aj) = {(o, ai = u → aj = v) |

∃o′′ ∈ O ∃o′ ∈ U (o, o′) ∈ PRai=u ∧ (o′, o′′) ∈ PRaj=v ∧ o′ ∈ O}. (38)

Proposition 12. Crai
(O/aj) ⊆ Prai

(O/aj).

This proposition shows that the possible upper set includes the certain upper set.

Proposition 13. Crai
(O/aj) ⊆ Crai

(O/aj) and Prai
(O/aj) ⊆ Prai

(O/aj).

This proposition shows that the certain upper set includes the certain lower set
and the possible upper set includes the possible lower set.

Using the above four sets, sets rai
(O/aj) and rai

(O/aj), which correspond
to Capr

ai
(O/aj) and Caprai

(O/aj), are also expressed by interval sets:

rai
(O/aj) = [Crai

(O/aj), P rai
(O/aj)], (39)

rai
(O/aj) = [Crai

(O/aj), P rai
(O/aj)]. (40)

Pairs of an object and a rule are classified into four cases: certain and consis-
tent, certain and inconsistent, possible and consistent, and possible inconsistent
pairs. Objects that appear in certain set Crai

(O/aj) certainly support rules with
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consistency. From Proposition 13, Crai
(O/aj) ⊆ Crai

(O/aj). So, objects that
appear in (Crai

(O/aj)−Crai
(O/aj)) certainly support rules with inconsistency.

From Proposition 11, Crai
(O/aj) ⊆ Prai

(O/aj). So, objects that appear in
(Prai

(O/aj)−Crai
(O/aj)) possibly support rules with consistency. From Propo-

sitions 12 and 13, Crai
(O/aj) ⊆ Prai

(O/aj) and Prai
(O/aj) ⊆ Prai

(O/aj).
So, objects that appear in (Prai

(O/aj) − Prai
(O/aj) − Crai

(O/aj)) possibly
support rules with inconsistency.

Example 5. Let us go back to Example 1. Using formulae (35)–(38) and then
gathering objects supporting the same rule in a set,

Cra1
(U/a2) = {({o5}, a1 = w → a2 = c)},

Cra1(U/a2) = {({o3, o4}, a1 = y → a2 = b), ({o5}, a1 = w → a2 = c)},
P ra1

(U/a2) = {({o1}, a1 = x → a2 = c), ({o1, o2}, a1 = x → a2 = a),
({o2, o3, o4}, a1 = y → a2 = b), ({o5, o6}, a1 = w → a2 = c),
({o6}, a1 = z → a2 = c)},

P ra1(U/a2) = {({o1, o2}, a1 = x → a2 = a), ({o1, o2}, a1 = x → a2 = b),
({o1, o2}, a1 = x → a2 = c), ({o2, o3, o4}, a1 = y → a2 = a),
({o2, o3, o4}, a1 = y → a2 = b), ({o5, o6}, a1 = w → a2 = c),
({o6}, a1 = z → a2 = c)}.

Using these formulae, the certain set of pairs of objects and a rule with consis-
tency, which are in Cra1

(U/a2), is:

{({o5}, a1 = w → a2 = c)}.

The certain set of pairs with inconsistency, which are in (Cra1(U/a2) −
Cra1

(U/a2)), is:

{({o3, o4}, a1 = y → a2 = b)}.

The possible set of pairs with consistency, which are in (Pra1
(U/a2) −

Cra1
(U/a2)), is:

{({o1}, a1 = x → a2 = c), ({o1, o2}, a1 = x → a2 = a),
({o2, o3, o4}, a1 = y → a2 = b), ({o6}, a1 = w → a2 = c),
({o6}, a1 = z → a2 = c)}.

A possible set of pairs with inconsistency, which are in (Pra1(U/a2) −
Pra1

(U/a2) − Cra1(U/a2)), is:

{({o1, o2}, a1 = x → a2 = b), ({o2}, a1 = x → a2 = c),
({o2, o3, o4}, a1 = y → a2 = a)}.
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4 Conclusions

We have described an approach based on rough sets in an incomplete informa-
tion system. An attribute value is expressed by a set of values in the incomplete
information system. The approach is based on directly using indiscernibility rela-
tions from the viewpoint of both certainty and possibility. First, We have shown
rough approximations for the case where only objects used to approximate are
characterized by attributes with incomplete information. Second, we have shown
the case where only objects in a set approximated have incomplete information.
Finally, rough approximations have been shown in the case where both objects
used to approximate and objects approximated are characterized by attributes
with incomplete information.

We have four approximations: certain lower, possible lower, certain upper,
and possible upper ones. These are linked with each other. Lower and upper
approximations consists of a pair of certain and possible lower ones and a pair
of certain and possible upper ones, respectively. This is essential in incomplete
information systems. As a result, the complementarity property linked with lower
and upper approximations holds, as is valid under complete information.

Objects that belongs to certain rough approximations do not always support
certain rule. To clarify how rules an object supports, we have introduced expres-
sions where we deal with pairs of an object and a rule that it supports. By using
the expressions, we can obtain four sets of pairs of an object and a rule that it
supports: certain and consistent, possible and consistent, certain and inconsis-
tent, and possible and inconsistent sets. In other words, pairs of an object and
a rule are classified into four types.

Our approach is applicable to the case where equivalence classes are not
obtained, because we directly use indiscernibility relations.
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Abstract. The ever growing capabilities of data storage systems have
created the need to assess the quality of data in an efficient manner. In
this paper, we consider a framework of data quality measurement that
relies on basic predicates formulated on the data. It is then motivated
that in some cases, the evaluation of predicates is hindered due to a lack
of information. As a result, the truth value of a predicate can not be
determined with complete certainty. In this paper, it is first shown how
such uncertainty about the evaluation of predicates can be modelled.
Such uncertainty can then be propagated throughout the measurement
process. This establishes a possibilistic measurement of data quality.

Keywords: Data quality measurement · Uncertainty modelling ·
Possibility theory

1 Introduction

The ever growing amount of data that is collected and made available nowadays,
has caused a setting in which modern organisations increasingly rely on infor-
mation drawn from data they posses to make important and strategic decisions.
This phenomenon is sometimes referred to as “Business Intelligence”. Needless
to say, if data become the cornerstone for decisions, the quality of data strongly
influences the accuracy of these decisions and thus gains importance. As a result,
methods and techniques for the assessment (and improvement) of data quality
have drawn much attention of researchers in the past decade [1].

In this paper, a recently proposed framework is adopted in which quality of
data is measured on an ordinal scale. In the very essence, the measurement of
data considers a set of predicates that models the requirements for data to be
of the best possible quality. The level of quality for given data is then obtained
as an appreciation on an ordinal scale of all true predicates for that data. In the
scope of this framework, predicates can only be evaluated if all information is at
hand to do this. Otherwise, the evaluation of a predicate is hindered and there
is uncertainty about its truth value. Such a lack of information can have many
different causes. A first cause is when the data for which we want to measure
quality, is not known completely. In this case, rather than an exact value, we
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 367–378, 2016.
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are given for example an interval or a possibility distribution. A second cause
is when the agent that evaluates the predicate is not entirely trustworthy. The
uncertainty about the truth value of p is then caused by the lack of trust we have
in the evaluation. Finally, lack of information also occurs when a predicate is not
formulated precisely. Consider for example the predicate “X is high”. Hereby, the
term ‘high’ is difficult to quantify in a precise manner and as a result, there exists
an implicit uncertainty about the truth value of the predicate. An important
application where such imprecise predicates naturally arise, is the measurement
and assessment of relationship cardinality. In a database, an object can be in a
one-to-one, a one-to-many or a many-to-many relationship with another object
[4]. It is hereby almost impossible to precisely quantify the term ‘many’ as it
may vary from case to case (i.e., from object to object). However, it is often
possible to model the term ‘many’ as a fuzzy set that describes the reasonable
ranges of acceptable cardinalities. This fuzzy set then serves as the basis for an
imprecise predicate.

The two main contributions of this paper are the following. First, it is shown
how the uncertainty about the truth value of predicates can be modelled by
means of possibility theory. Hereby, a novel approach is described for the cal-
culation of possibilities when uncertainty comes from imprecision in the predi-
cate formulation. It is shown that this approach better respects the connection
between the given information and the derived uncertainty. Second, it is shown
how this uncertainty on the level of predicates can be propagated throughout the
process of measurement. This leads to a model for measurement of data quality
on the ordinal scale under circumstances of uncertainty.

The remainder of this paper is structured as follows. In Sect. 2, a concise
overview of related work from different fields is presented. In Sect. 3, some pre-
liminary concepts regarding possibility theory are presented. In Sect. 4, we intro-
duce the basic concept of a quality function based on predicates. It is then shown
how to treat uncertainty caused by an imprecise formulation of these predicates
and the propagation of this uncertainty throughout the measurement process is
studied. The properties of the approach are investigated. Section 5 highlights the
main results of the paper.

2 Related Work

The field of data quality assessment and measurement has received many con-
tributions in the last decades. Virtually all of these contributions adhere to a
multi-dimensional model for data quality [1]. Numerous such dimensions exist
but the most important are accuracy, consistency, completeness and timeliness.
For these dimensions, several measurement techniques have been proposed [7–
9]. The theoretical and technical maturity created by all these contributions has
led recently to more application-oriented research. In [12], a tool is proposed to
visualise all discrepancies and quality-degrading issues in a tabular-structured
dataset. In [2], the connection between degraded quality and outcome of data
mining techniques is studied. In [3], data quality is studied in the context of big
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data. In order to inform data consumers better on the quality of the data, an
ontological approach for the binding between quality measurements and data is
studied in [6]. A similar goal is envisioned in [16], where it is studied how quality
demands can be incorporated in an SQL-like query language.

Apart from these contributions, a specific line of research has focussed on the
aspect of uncertainty in data quality assessment. The quality of data in XML doc-
uments in the presence of uncertainty is investigated in [13]. Hereby, four measures
of quality are proposed: uncertainty density, answer decisiveness, adapted preci-
sion and adapted recall. These measures allow to assess the quality of an answer
that is posed to an XML database under uncertainty. From a different perspective,
the various contributions on automated linguistic summaries of data can also be
regarded as data assessment techniques. Yager has initially established the basic
framework for summaries of the type “Q objects are S” where Q is a fuzzy set that
models a quantity and S is a fuzzy set that models a linguistic constraint on the
objects under consideration [19]. In addition, Yager proposed a measure to vali-
date the degree of truth of a summary. This idea was further elaborated in later
research and several other types of linguistic summaries were proposed [10,11].
Raschia et al. have proposed SaintEtiq, which is an incremental (i.e., online) app-
roach to the construction of linguistic summaries [15].

3 Preliminaries

Possibility theory is an uncertainty theory that allows to quantify the confidence
about the occurrence of uncertain events. It is differentiated from probability
theory by the fact that uncertainty is caused by incomplete information rather
than randomness in the outcome of experiments. In the finite case, possibilistic
information can be represented as a possibility distribution π : X → [0, 1] that
is normalized in the sense that supx∈X π(x) = 1. A widely studied application of
possibility theory [5,14,18] is the case where the universe X is the set of Boolean
values B = {T, F}. In that case, possibility distributions are called possibilistic
truth values (PTVs). For a Boolean proposition p, the possibilistic truth value
p̃ represents the uncertainty about the truth value of p, where uncertainty is
caused by a lack of information about p. In the following, we shall denote a PTV
in the couple notation (p̃(T ), p̃(F )). The natural order of PTVs is given by:

p̃1 ≥ p̃2 ⇔
{

p̃1(F ) ≤ p̃2(F ) if p̃1(T ) = p̃2(T ) = 1
p̃1(T ) ≥ p̃2(T ) else. (1)

If we wish to omit the distribution p̃ for notational purposes, we will denote:

Pos(p = T ) = p̃(T ) (2)
Pos(p = F ) = p̃(F ) (3)

Several researchers have investigated the extensions of Boolean connectives to
the epistemological case of PTVs [5,18]. The extension of the negation operator
is defined by:

¬̃ p̃ = (Pos(p = F ),Pos(p = T )) . (4)
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The extensions of Boolean conjunction and disjunction of propositions is based
on the principle of t-independence [5] where t is an appropriate triangular norm
[17]. For two propositions p1 and p2 that are t-independent, the possibilistic
extension of ∧ is defined by:

Pos (p1 ∧ p2 = T ) = t (Pos (p1 = T ) ,Pos (p2 = T )) (5)
Pos (p1 ∧ p2 = F ) = max (Pos (p1 = F ) ,Pos (p2 = F )) (6)

and the possibilistic extension of ∨ is defined by:

Pos (p1 ∨ p2 = T ) = max (Pos (p1 = T ) ,Pos (p2 = T )) (7)
Pos (p1 ∨ p2 = F ) = t (Pos (p1 = F ) ,Pos (p2 = F )) (8)

The corresponding PTVs are denoted as p̃1 ∧̃t p̃2 and p̃1 ∨̃t p̃2.

4 Quality Measurement Under Uncertainty

4.1 Quality Functions

Consider a universe of discourse U in which quality measurement is required and
suppose a set of predicates P = {p1, ..., pn} where each predicate is given by a
function p : U → B. Basically, the set P models the sufficient constraints for
data in U to be of the best possible quality. The quality of u ∈ U is obtained by
evaluating all p ∈ P and by expressing an appreciation of those evaluations on a
scale S = {s1, ..., sk} that is at least ordinal. For such a scale, it will be assumed
that s1 < s2 < ... < sk. The smallest and largest elements of S will be denoted
as 0 and 1 respectively. For simplicity, it is assumed here that the appreciation
of evaluations is based on a total order relation ≺ on P where pi ≺ pj expresses
that pi needs to be evaluated before pj . Such an evaluation order indicates there
is a logical order in which predicates must be evaluated and naturally arises in
many applications such as database normalization and consistency verification.
Let us denote the set of the i predicates that must be evaluated first under ≺ by
P(i) and the ith predicate as p(i). We can then provide the following definition.

Definition 1 (Quality Function). Consider a universe of discourse U and a
set of predicates P on U . A quality function Q for U on the scale S is defined
by a function Q : U → S that satisfies the boundary constraints:

∀u ∈ U : (∀p ∈ P : p(u) = F ) ⇒ Q(u) = 0 (9)

∀u ∈ U : (∀p ∈ P : p(u) = T ) ⇒ Q(u) = 1 (10)

and is monotonic w.r.t. the evaluation order ≺ on P , which means that for any
u and u′ we have that:

Q(u) ≥ Q(u′) ⇔ max
{
i | ∀p ∈ P(i) : p(u)

} ≥ max
{
j | ∀p ∈ P(j) : p(u′)

}
(11)
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A quality function basically evaluates predicates in the order specified by ≺ and
the more predicates are true, the higher the quality on the scale S. A complete
quality function is a quality function for which |P | = |S| + 1 and:

∀u ∈ U : Q(u) = si ⇔ p(1)(u) ∧ ... ∧ p(i−1)(u) ∧ ¬p(i)(u). (12)

With a complete quality function, each additional predicate that evaluates to
true increases the quality with one level. If none of the predicates are true, the
lowest level of quality (i.e., 0 = s1) is assigned. Unless explicitly stated otherwise,
a quality function is assumed to be complete.

4.2 Imprecise Predicates

As mentioned in the introduction of this paper, it may naturally occur that the
predicates in P can not be formulated in a precise manner. As a result, evaluation
of predicates for observed values u ∈ U is hindered by a lack of information and
uncertainty about the evaluation arises. For the sake of simplicity, we restrict
ourselves to predicates of the form “u is L” where L is a fuzzy set on U with
membership function L̃.

When a predicate p is formulated imprecisely, its evaluation to a truth value
deals with uncertainty that can be expressed as a PTV p̃(u). Before we treat the
general case of how p̃(u) can be calculated, two special cases can be considered:
binary and ternary evaluation. In the case of binary evaluation, there is no uncer-
tainty about the predicate evaluation and we have that p̃(u) ∈ {(1, 0), (0, 1)}. It is
then either completely certain that the predicate evaluates to true or completely
certain that the predicate evaluates to false. A strongly related case is that of
ternary evaluation, where there is either no uncertainty or complete uncertainty
about the predicate evaluation. This means that p̃(u) ∈ {(1, 0), (1, 1), (0, 1)}. As
such, it is either known with complete certainty that the predicate evaluates to
true or false, or nothing about the predicate is known at all. Ternary evaluation
is a useful extension of binary evaluation to account for missing data (i.e., null
values) and has a strong affinity with Kleene’s three-valued logic.

In the general case where we consider an imprecise predicate of the form
“u is L”, a state of partial information occurs. To infer p̃(u) for an evaluation,
there exist some approaches but it is shown in the following that these approaches
cope with some counter intuitive issues. Therefore, a novel way of inferring p̃(u)
is proposed here.

A first option to calculate p̃(u) is to model the operator “is” as a binary
relation on U . Typically, an equivalence relation is used to indicate which values
in U are compatible with each other. When using such a binary relation, the
Extension Principle (EP) of Zadeh [20] allows to obtain p̃(u). For an equivalence
relation E , we obtain that:

Pos(“u is L” = T ) = Pos(u ≡E L) = sup
v∈U,(v,u)∈E

L̃(v) (13)

and
Pos(“u is L” = F ) = Pos(¬ (u ≡E L)) = sup

v∈U,(v,u)/∈E
L̃(v). (14)
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The above given formulae assume that u is a proper value from U . In the case
where u is unknown (i.e., a null-value), the previous reasoning can be general-
ized by modelling a null-value with a possibility distribution πnull that satisfies
∀v ∈ U : πnull(v) = 1. The formulae for uncertainty inference are then given by:

Pos(“πnull is L” = T ) = sup
(v1,v2)∈E

min
(
L̃(v1), πnull(v2)

)
(15)

Pos(“πnull is L” = F ) = sup
(v1,v2)/∈E

min
(
L̃(v1), πnull(v2)

)
. (16)

By normalization of L̃ and reflexivity of E , we get that Pos(“πnull is L” = T ) = 1.
In addition, if E = U ×U and thus induces at least two equivalence classes on U ,
we have that Pos(“πnull is L” = F ) = 1. As such, we get that the uncertainty
about the proposition “u is L” is given by (1, 1) in the case where u = null.
This indicates that we have no knowledge at all about the truth value of the
proposition, which makes perfect sense as we have no knowledge at all about the
value of u.

The usage of the EP to infer uncertainty has some disadvantages. It relies
on the assumption that there exists a binary relation that properly models the
concept of compatibility. It can be seen that this assumption might not always
hold. In case of interval and ratio scales a distance-based technique can be used,
but this confronts us with some parameters that must be chosen. In case of
ordinal and nominal scales, the construction of an equivalence relation is even
more difficult. In the special case where the equality relation is adopted, more
objections for the EP approach are found. For example, we have that:

∣∣
∣core

(
L̃

)∣∣
∣ > 1 ⇒ (Pos(“u is L” = F ) = 1) . (17)

In other words, if the core of L̃ contains more than one value, it is always
completely possible that proposition “u is L” is false. As such, L̃(u) = 1 implies
that p̃ = (1, 1). This means that if a value u is completely compatible with
a linguistic concept L, there is complete uncertainty about the corresponding
predicate p, which is a counter intuitive result.

A second option to derive the uncertainty about the proposition “u is L” is
to let the possibilities for T and F be proportional to the membership degree
L̃ (u) and the complement thereof [18]. This approach requires an explicit step to
ensure a normalized distribution. The calculation of p̃(u) following this approach
yields:

Pos(p(u) = T ) =
L̃(u)

max
(
L̃(u), 1 − L̃(u)

) (18)

Pos(p(u) = F ) =
1 − L̃(u)

max
(
L̃(u), 1 − L̃(u)

) (19)
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In addition, if u = null then p̃(u)
�
= (1, 1). The advantage of this approach over

usage of the EP, is that it does not require any input in the form of a binary
relation and is thus always directly applicable. However, just as was the case
with application of the EP, this method allows to infer that p̃(u) = (1, 1) when
u is a known value from U . More specifically, this holds if L̃(u) = 0.5. Again,
the indication of complete uncertainty in a case where u is a known value, is
a counter-intuitive result. Indeed, if u ∈ U and L̃(u) = 0.5, we most definitely
have information about the proposition “u is L” and this information should be
reflected in p̃(u).

To solve the problem that complete uncertainty is inferred while informa-
tion is present, a novel method of uncertainty derivation is proposed here. This
method relies on a separate measurement for the possibilities of T and F 1. In
our approach, we treat L̃ as a source of information that supports the evalua-
tion of the predicate “u is L”. We then use this information to determine which
truth value is most plausible. Based on the outcome of this, one of the truth
values (i.e., T or F ) is considered to be completely possible. Next, we use the
information given by L̃ to calculate the certainty we have for this truth value.
It is shown in the following that we can implement this process in two different
ways, depending on how we perceive information from L̃. More specifically, if
we employ a pessimistic view on information, then failure of the predicate is
considered to be unacceptable. In this case, a decreasing membership of u to L̃
indicates a decreasing possibility that “u is L” is true. In other words, if u only
partially belongs to the fuzzy set L̃, then it is not completely possible that the
corresponding predicate evaluates to true. Under this pessimistic perception of
information, the uncertainty about “u is L” is given by:

p̃−(u) =

⎧
⎪⎨

⎪⎩

(1, 1) if u = null

(1, 0) if L̃(u) = 1(
L̃(u), 1

)
otherwise

(20)

According to this formula, there is complete uncertainty about the truth value
of the predicate “u is L” if u is unknown. If L̃(u) = 1, then the truth value
of the predicate “u is L” is known to be T . In any other case, it is considered
completely possible that the truth value of the predicate is F and to some extent
possible that the truth value is T . This reflects the following decision rule u /∈
core

(
L̃

)
⇒ p(u) = F . In the notation p̃−(u), the minus sign indicates the

pessimistic and suspicious treatment of information which is reflected by the
fact that under partial information, it will remain completely possible that the
predicate is falsified. Opposed to this, a more confident and optimistic treatment
of information can be embraced. In this case, a decreasing membership of u to
L̃ indicates an increasing possibility that the proposition “u is L” is false. In
other words, if u only partially belongs to the fuzzy set L̃, then it is to some

1 In his formal derivation of the theory of PTVs, De Cooman observed that it is
essential that information about p = T and p = F can be separated [5].
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extent possible that the corresponding predicate evaluates to false. Under this
optimistic perception of information, the uncertainty about “u is L” is given by:

p̃+(u) =

⎧
⎪⎨

⎪⎩

(1, 1) if u = null

(0, 1) if L̃(u) = 0(
1, 1 − L̃(u)

)
otherwise

(21)

According to this formula, there is again complete uncertainty about the truth
value of the proposition “u is L” if u is unknown. If L̃(u) = 0 then the truth
value of the proposition “u is L” is known to be F . In any other case, it is
considered completely possible that the truth value of the proposition is T and
to some extent possible that the truth value is F . This reflects the following
decision rule u ∈ supp

(
L̃

)
⇒ p(u) = T . In the notation p̃+(u), the plus sign

indicates an optimistic and confident treatment of information.
Figure 1 illustrates the derivation of uncertainty in the case where U = R

and under the assumption of respectively a strong and a weak predicate. It can
be seen that the membership degree L̃(u) influences the possibility of only one
truth value. The other possibility depends on whether or not u is an element of
resp. the core and the support of L̃. There are some interesting dualities between
the pessimistic and optimistic treatment of information. These are discussed in
the following.

Property 1 (Dominance). For a predicate “u is L” it holds that p̃−(u) ≤ p̃+(u).

Proof. The proof follows immediately from (20) and (21). ��

Fig. 1. Uncertainty inference for a predicate “u is L” for pessimistic (upper panel) and
optimistic (lower panel) treatment of information.
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Property 2 (Complete Uncertainty). For a predicate “u is L” we have that:

u = null ⇔ p̃−(u) = (1, 1) (22)

u = null ⇔ p̃+(u) = (1, 1). (23)

Proof. The proof follows immediately from (20) and (21). ��
Property 2 states that whenever u is a proper value of U , we have that p̃(u) =
(1, 1). The sole cause of complete uncertainty is when there is no information at all.
This property establishes a certain consistency between information and uncer-
tainty. Property 2 differentiates our approach from both usage of the EP and nor-
malized membership degrees. Some additional properties are the following.

Property 3 (Boundary Values). For a predicate “u is L” we have that:

L̃(u) = 1 ⇔ p̃−(u) = p̃+(u) = (1, 0) (24)

L̃(u) = 0 ⇔ p̃−(u) = p̃+(u) = (0, 1). (25)

Proof. The proof follows immediately from (20) and (21). ��
Property 4 (Trivalence). For a “u is L” we have that:

supp(L̃) = core(L̃) ⇒ p̃−(u) ∈ {(1, 0), (1, 1), (0, 1)} (26)

supp(L̃) = core(L̃) ⇒ p̃+(u) ∈ {(1, 0), (1, 1), (0, 1)}. (27)

Proof. The proof follows immediately from (20) and (21) on the one hand and
the definition of ternary predicates on the other hand. ��

It is noted that the reasoning about predicates of the type “u isL” can be easily
generalized. In the binary case, predicates of the type “u1 and u2 are L” can be
considered where L is a linguistic term modelled by a binary fuzzy relation L̃ ∈
F(U1) × F(U2). Further generalization to the n-ary case is then straightforward.

4.3 A Possibilistic Measurement of Quality

Let us now investigate how uncertainty about predicate evaluation affects mea-
surement of quality on the scale S. As mentioned before, our main interest lies
with complete quality functions. Equation (12) shows that for such functions,
the calculation of the level of quality can be written as a Boolean function of the
predicates under consideration. By using the possibilistic extensions of opera-
tors described in Sect. 3, the propagation of uncertainty about predicates can be
modelled as follows. For u ∈ U and si ∈ S, let us consider the Boolean predicate
“Q (u) = si” and let us denote this predicate with the shorthand notation psi .
Taking into account the definitions of possibilistic extension (Sect. 3), applica-
tion of Eq. (12) implies that for any i ∈ {1, ..., n + 1}, with n the number of
predicates, we have that:

p̃si(u) = p̃(1)(u) ∧̃t ... ∧̃t p̃(i−1)(u) ∧̃t ¬̃ p̃(i)(u). (28)
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As a boundary case, we have that p(n+1) is a contradiction and is therefore
falsified for any u ∈ U by definition. Based on this, a possibilistic inference of
uncertainty is established under the assumption of mutual t-independence of
predicates in P . From the definition of the extended operators, it can be seen
that Pos (psi(u) = T ) is given by:

t
(
Pos

(
p(1)(u) = T

)
, ...,Pos

(
p(i−1)(u) = T

)
,Pos

(
p(i)(u) = F

))
(29)

and that Pos (psi(u) = F ) is given by:

max
(
Pos

(
p(1)(u) = F

)
, ...,Pos

(
p(i−1)(u) = F

)
,Pos

(
p(i)(u) = T

))
(30)

It is now shown that the derivation of uncertainty from imprecisely formulated
predicates implies the following interesting property.

Property 5. For a complete quality function Q based on a set of predicates P of
the type “u is L”, we have that:

u = null ⇔ ∀si ∈ S : Pos (Q(u) = si) = Pos (Q(u) = si) = 1 (31)

Proof. On the one hand, if u = null, then for all predicates p(i) we have that
p̃(i)(u) = (1, 1). By construction of the possibilistic inference, we have that
p̃si(u) = (1, 1) for all si ∈ S. On the other hand, if for all si ∈ S we have
that p̃si(u) = (1, 1) then by construction of possibilistic inference all p̃(i)(u)
must equal (1, 1) which means that u = null. ��
Property 5 shows that, only if u is a null value, the outcome of quality measure-
ment is completely uncertain. This illustrates that the interpretation attached to
the concept ‘no information’ is maintained on the level of quality measurement.
Although this is a nice result, a stronger result can be shown with respect to the
possibilistic inference of uncertainty.

Theorem 1. Let Q be a complete quality function based on a set of predicates
P of the type “u is L”. If u = null there exists one and only one s ∈ S for
which:

Pos (Q(u) = s) = 1. (32)

Proof. Consider P = {p1, ..., pn} and let m be the smallest number in {1, ..., n+
1} such that Pos

(
p(m)(u) = T

)
< 1 and

∀j < m : Pos
(
p(j)(u) = T

)
= 1. (33)

Because u = null we have that ∀j < m : Pos
(
p(j)(u) = F

)
< 1. It can now

be shown in three steps that the possibility of the predicate “Q(u) = s” is 1 if
s = sm and is smaller than 1 for any other element of S.

Step 1. For the levels of quality sj where j > m, we have that m ≤ j − 1
and Pos

(
p(m)(u) = T

)
< 1. From the definition of a t-norm it follows that:

Pos
(
psj (u) = T

)
< 1. (34)
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Step 2. For the levels of quality sj where j < m, we have for any j that
Pos

(
p(j)(u) = F

)
< 1. It thus follows from the definition of a t-norm that:

Pos
(
psj (u) = T

)
< 1. (35)

Step 3. For the level of quality sm, we have by construction of m and by
the law of normalization that Pos (psm(u) = T ) = 1. ��
Theorem 1 implies that, if u ∈ U is known, propagation of uncertainty on the
level of predicates with an imprecise formulation, induces a unimodal possibility
distribution on S. This possibility distribution π : S → [0, 1] is characterized by:

π (s) = Pos (ps(u) = T ) . (36)

This distribution represents a possibilistic measurement of quality in the presence
of imprecise formulated predicates. Note that the unimodality of the distribution
comes from the optimistic or pessimistic treatment of information. However, it
is clear that the propagation schema modelled by Eq. (28) can also be applied
if uncertainty about predicate evaluation is caused by something else than an
imprecise formulation. More specifically, a possibilistic measurement of quality
can also be achieved in cases where data is incomplete (i.e., u is a possibility
distribution) or when evaluation is not entirely confident (i.e., the assessor that
evaluates p is not entirely trustworthy). Having this said, there is a rich set
of applications in which possibilistic measurement of quality can play a central
role. Examples thereof include peer assessment, community-driven assessment
and vague data mining tasks like sentiment analysis.

5 Conclusion

In this paper, data quality measurement is studied in the presence of uncer-
tainty. Hereby, a framework of measurement is considered where quality of data
is expressed as an appreciation of the results of predicate tests on an ordinal
scale. It is then argued that in some cases, these predicates can not be formu-
lated in a precise manner. An example thereof is the assessment of relationship
cardinality between entities in a database, where the concepts ‘one-to-many’
and ‘many-to-many’ are hard to quantify precisely. When such imprecise pred-
icates occur, evaluation of these predicates is hindered by a lack of information
and uncertainty about the evaluation can be modelled by means of possibility
theory. For that purpose, a novel approach to model the uncertainty about pred-
icate evaluation is presented here. It is shown that, by usage of this approach,
uncertainty propagates nicely throughout the process of quality measurement
and eventually, a possibility distribution on the ordinal scale of measurement is
obtained.



378 A. Bronselaer and G. De Tré
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Abstract. Frequent pattern mining aims to discover implicit, previously
unknown, and potentially useful knowledge in the form of sets of fre-
quently co-occurring items, events, or objects. To mine frequent patterns
from probabilistic datasets of uncertain data, where each item in a trans-
action is usually associated with an existential probability expressing
the likelihood of its presence in that transaction, the UF-growth algo-
rithm captures important information about uncertain data in a UF-tree
structure so that expected support can be computed for each pattern. A
pattern is considered frequent if its expected support meets or exceeds
the user-specified threshold. However, a challenge is that the UF-tree
can be large. To handle this challenge, several algorithms use smaller
trees such that upper bounds to expected support can be computed. In
this paper, we examine these upper bounds, and determine which ones
provide tighter upper bounds to expected support for frequent pattern
mining of uncertain big data.

Keywords: Uncertainty · Data analysis · Big data · Data science · Data
mining

1 Introduction

Uncertain big data (e.g., [21,33,34,38]) are becoming more and more popular
in modern applications [23] (e.g., social computing [20,22], data warehousing
and OLAP [10]) because (big) data in real-life scenarios are typically impre-
cise and uncertain (e.g., [14,17,19]). Mining uncertain big data (e.g., [6,40]) is
problematic due to the fact that models, techniques, and algorithms running
on such data must consider uncertainty as a fundamental characteristic of big
data while this challenging property is not foreseen by classical large-scale data
mining approaches. As a consequence, mining uncertain big data is a first-class
problem to deal with, and several interesting initiatives that focus the attention
on this problem are appearing recently in active literature [12,35,45].

Among the wide class of data mining tasks [4,16,42,43], frequent pattern
mining [2] is a very popular problem that has attracted the attention of a large
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 379–392, 2016.
DOI: 10.1007/978-3-319-40581-0 31
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community of data miners. Frequent pattern mining aims to discover implicit,
previously unknown, and potentially useful knowledge in the form of sets of
frequently co-occurring items, events, or objects (i.e., frequent patterns). It also
serves as building blocks for various other data mining tasks such as stream
mining [8,9,25,26] (which mines data that come at a high velocity), constrained
mining [13], and social network mining [27,41]. Many existing algorithms mine
frequent patterns from high volumes of precise data, in which users definitely
know whether an item is present in, or absent from, a transaction in databases
of precise data. However, there are situations in which users are uncertain about
the presence or absence of items (e.g., a physician may suspect, but may not
guarantee, that a fevered patient got a flu or Zika virus) in a probabilistic dataset
of uncertain data. In such dataset, each item xi in a transaction tj is associated
with an existential probability P (xi, tj) expressing the likelihood of the presence
of xi in tj .

To mine frequent patterns from high varieties of (high-value) uncertain data,
various algorithms [1,3,44] have been proposed, including UF-growth [30]. The
UF-growth algorithm first constructs a UF-tree structure with the goal of cap-
turing important contents on uncertain data, from which frequent patterns can
then be mined recursively. A pattern X is considered frequent if its expected
support expSup(X) in the entire uncertain dataset meets or exceeds the user-
specified minimum support threshold minsup [24]. Here, expSup(X) over all
n transactions in the uncertain dataset can be computed in terms of the sum of
expSup(X, tj) over every transaction tj containing X, as follows:

expSup(X) =
n∑

j=1

expSup(X, tj) (1)

while expSup(X, tj) can be computed in terms of the product of the exis-
tential probability P (xi, tj) of every independent item xi within the pattern
X = {x1, . . . , xk}, as follows:

expSup(X, tj) =
k∏

i=1

P (xi, tj) (2)

In order to accurately compute the expected support of each pattern, paths
in the corresponding UF-tree are shared only if tree nodes on the paths have
the same item and the same existential probability. Due to this restrictive path
sharing requirement, the UF-tree may be quite large.

A way to solve this large tree-size issue is to explore alternative mining
approaches (e.g., UH-Mine algorithm [1] that uses hyper-structures, as well as
sampling-based or vertical mining approaches [5]). Another way is to make the
tree compact by capturing less information about uncertain data but sufficient
for computing upper bounds to the expected support of patterns. Over the past
few years, different computations on the upper bounds to expected support have
been proposed. Many of them are reported to lead to more compact tree struc-
tures for capturing uncertain data than the UF-tree. These, in turn, shorten the
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tree traversal time during the mining process, and thus help reduce the overall
runtime. In addition, another benefit of using these upper bounds is that they
are guaranteed not to generate any false negatives. Indeed, if an upper bound to
expected support of a pattern X is less than minsup, then X is guaranteed to be
infrequent. Moreover, these upper bounds are reported to be so tight that not
too many false positives are generated-and-tested. Then, interesting questions
to ask include the following: Among these upper bounds, which one is tighter?
Which one leads to shorter runtime or mining time? In this paper, we exam-
ine these upper bounds, and re-formulate them so that we can compare them
and determine which ones provide tighter upper bounds to expected support
of patterns when mining frequent patterns from a high variety of high volumes
of high-value uncertain data that may come at a high velocity (i.e., uncertain
“streaming” big data). Our key contributions of this paper include our com-
putation of theoretically-sound upper bounds to expected support for frequent
pattern mining problems over uncertain big data.

The remainder of this paper is organized as follows. In Sect. 2, we provide a
formal unifying model for computing upper bounds to expected support, as to
obtain a (formal) model to be used thought the paper. The section also contains
relevant related work for our research. Section 3 reports a theoretical analysis on
the bounds. In Sect. 4, we provide an experimental assessment and evaluation of
our methods for computing these upper bounds, according to several experimen-
tal parameters. Finally, Sect. 5 presents conclusions and proposes future work of
our research.

2 Computing Upper Bounds: A Unifying Model from the
State-of-the-Art Analysis

In this section, we re-formulate upper bounds to expected support (as provided
by the state-of-the-art analysis) via using a common expression or notion so
that we can introduce a unifying model for easily comparing among the various
proposals available in literature. This section also serves as analysis of related
work that is relevant to our research.

To approximate an upper bound to expected support of a pattern X, CUF-
growth [31] introduces the concept of transaction cap (TC), which is defined as
the product of the two highest existential probabilities in the entire transaction
tj={y1, . . . , yr−1, yr, . . . , yh} ⊇ {x1, . . . , xk}=X (where xk = yr), as follows:

TC (X, tj) =
{
P (y1, tj) if h = 1
TM1(tj) × TM2(tj) if h ≥ 2 (3)

where (i) TM 1(tj) = maxi∈[1,h] P (yi, tj) is the transaction maximum, which
is defined as the highest existential probability in tj ; and (ii) TM 2(tj) =
maxi∈[1,h]∧(i�=g) P (yi, tj) is the second highest existential probability in tj for
yg = argmaxi∈[1,h]P (yi, tj) (i.e., TM 1(tj) = P (yg, tj)).

While this transaction cap serves as a good upper bound to 2-itemsets, it
may not be too tight for k-itemsets (where k ≥ 3). To tighten the upper bound
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to expected support for 3+-itemsets, CUF*-growth [31] extends the concept of
transaction cap as to use the product of the three highest existential probabilities
in tj , as follows:

CUF ∗(X, tj) =
{
TC(X, tj) if k ≤ 2
TM1(tj) × TM2(tj) × [TM3(tj)]

k−2 if k ≥ 3
(4)

where TM 3(tj) = maxi∈[1,h]∧(i�=g)∧(i�=s) P (yi, tj) is the third highest existential
probability in tj for ys=argmaxi∈[1,h]∧(i�=g) P (yi, tj) (i.e., TM 2(tj) = P (ys, tj)).

On the one hand, the transaction cap can be easily pre-computed. On the
other hand, it may not involve any items in X. To tighten the upper bound, item
cap (IC) [37] involves at least one item in X. Specifically, the item cap is defined
as the product of P (xk, tj) and the highest existential probability TM 1(tj) in
tj , as follows:

IC(X, tj) =
{
P (y1, tj) if h = 1
P (xk, tj) × TM1(tj) if h ≥ 2 (5)

For the special case where TM 1(tj) = P (xk, tj), DISC-growth [37] avoids
multiplying TM 1(tj) twice. Instead, it multiplies P (xk, tj) by the second highest
existential probability TM 2(tj) in tj , as follows:

DISC (X, tj) =

⎧
⎨

⎩

P (y1, tj) if h = 1
P (xk, tj) × TM1(tj) if h ≥ 2 ∧ xk �= yg
P (xk, tj) × TM2(tj) if h ≥ 2 ∧ xk = yg

(6)

To deal with 3+-itemsets, DISC*-growth [37] uses the self-product of
TM 2(tj). For special cases where (i) TM 1(tj) = P (xk, tj) or (ii) TM 2(tj)
= P (xk, tj), DISC*-growth uses the self-product of the third highest existen-
tial probability TM 3(tj) in tj , as follows:

DISC∗(X, tj) =
⎧
⎪⎪⎨

⎪⎪⎩

DISC(X, tj) if k ≤ 2
P (xk, tj) × TM1(tj) × [TM 2(tj)]

k−2 if k ≥ 3 ∧ xk �= yg ∧ xk �= ys
P (xk, tj) × TM 1(tj) × [TM 3(tj)]

k−2 if k ≥ 3 ∧ xk = ys
P (xk, tj) × TM 2(tj) × [TM 3(tj)]

k−2 if k ≥ 3 ∧ xk = yg

(7)

Recall from Eq. (2) that the expected support of X can be computed as the
product of P (xk, tj) and existential probabilities of proper prefix of xk. Hence,
it is more logical to approximate an upper bound to expected support of X by
involving P (xk, tj) and existential probabilities of proper prefix of xk. This leads
to the concept of prefixed item cap (PIC) [29], which is defined as the product
of P (xk, tj) and the highest existential probability PM 1(yr, tj) among items in
the proper prefix of xk=yr, as follows:

PIC(X, tj) =
{
P (y1, tj) if h = 1
P (xk, tj) × PM1(yr, tj) if h ≥ 2 (8)
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where (i) PM 1(yr, tj) = maxi∈[1,r−1] P (yi, tj) is the prefixed maximum, which is
defined as the highest existential probability in {y1, . . . , yr−1} ⊂ tj .

PUF-growth [32] makes use of the above prefixed item cap to approximate
a tight upper bound to expected support of 2-itemsets. To handle 3+-itemsets,
PUF*-growth [36] multiplies PIC (X, tj) with self-product of the second highest
existential probability PM 2(yr, tj) in {y1, ..., yr−1} ⊂ tj , as follows:

PUF ∗(X, tj) =
{
PIC(X, tj) if k ≤ 2
P (xk, tj) × PM 1(yr, tj) × [PM 2(yr, tj)]

k−2 if k ≥ 3
(9)

where PM 2(yr, tj) = maxi∈[1,r−1]∧(i�=g) P (yi, tj) is the second highest existential
probability in {y1, . . . , yr−1} ⊂ tj for yg=argmaxi∈[1,h] P (yi, tj) (i.e., PM 1(yr, tj)
= P (yg, tj)).

Alternatively, the BLIMP-growth algorithm [28] multiplies PIC (X, tj) with
existential probabilities of the first (k−2) items in the proper prefix {y1, ..., yr−1}
⊂ tj , as follows:

BLIMP (X, tj) =
{
PIC(X, tj) if k ≤ 2
P (xk, tj) × PM1(yr, tj) × ∏k−2

i=1 P (yi, tj) if k ≥ 3
(10)

3 Theoretical Analysis and Results

After re-formulating upper bounds to expected support of patterns in Sect. 2, let
us analyze and evaluate these bounds by taking advantages from the unifying
model introduced above. When dealing with singletons (1-itemsets), we do not
need to use upper bounds because we could scan the entire uncertain dataset of n
transactions and accurately obtain the expected support of each pattern {x} by
summing existential probabilities of {x} in every transaction tj containing {x}:

expSup({x}) =
n∑

j=1

P (x, tj) (11)

For any 2-itemset X, the upper bound computing models of Sect. 2 specialize
as follows:

CUF ∗(X, tj) = TC(X, tj) (12)
DISC∗(X, tj) = DISC(X, tj) (13)

PUF ∗(X, tj) = BLIMP (X, tj) = PIC(X, tj) (14)

Among these groups of upper bounds of Eqs. (12)–(14), PIC involves the item
having the maximum existential probability PM 1(yr, tj) in the proper prefix of
yr, whereas IC (used by DISC-growth) involves the item having the maximum
existential probability TM1 (tj) in the proper prefix of yr as well as its suffix. So,
as PM 1(yr, tj) ≤ TM 1(tj), we derive the following theoretical result:

PIC(X, tj) ≤ IC(X, tj) (15)
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Moreover, IC also uses P (xk, tj), whereas TC uses TM 2(tj)—which may not
even involve any items in X—when xk �=yg. So, as P (xk, tj) ≤ TM 2(tj), we get
the following result:

IC(X, tj) ≤ TC(X, tj) (16)

Hence, it is generally that

PIC(X, tj) ≤ IC(X, tj) ≤ TC(X, tj) (17)

i.e., PIC generally provides the tightest upper bounds to expected support when
mining frequent 2-itemsets from high volumes of high-value uncertain data.

When mining 3+-itemsets, the following property holds:

CUF ∗(X, tj) ≤ TC(X, tj) (18)

This is due to the extra multiplication term [TM 3(tj)]k−2 in CUF* such that
0 < [TM 3(tj)]k−2 ≤ 1. Hence, CUF* provides tighter upper bounds to expected
support than TC when mining frequent 3+-itemsets from high volumes of high-
value uncertain data. Similar comments, due to the same reason, apply to DISC*
(when compared with DISC), as well as PUF* and BLIMP (when both compared
with PIC):

DISC∗(X, tj) ≤ DISC(X, tj) (19)
PUF ∗(X, tj) ≤ PIC(X, tj) (20)

BLIMP (X, tj) ≤ PIC(X, tj) (21)

After analyzing the intra-group relationships among the aforementioned algo-
rithms, let us analyze the inter-group relationships among CUF*, DISC*, PUF*,
and BLIMP when they mine 3+-itemsets. If xk = yg, then the following property
holds:

DISC∗(X, tj) = CUF ∗(X, tj) (22)

because P (xk, tj) = P (yg, tj) = TM 1(tj). The same property also holds when
xk = ys because P (xk, tj) = P (ys, tj) = TM 2(tj). Hence, when xk is associated
with the highest or the second highest existential probability in tj , both DISC*
and CUF* provide the same upper bounds to expected support when mining
frequent 3+-itemsets. Moreover, if xk �=yg and xk �=ys, then the following property
holds:

PUF ∗(X, tj) ≤ DISC∗(X, tj) (23)

because both PM 1(yr, tj)≤TM 1(tj) and PM 2(yr, tj)≤TM 2(tj). Hence, when xk

does not associated with the highest or the second highest existential probability
in tj , PUF* provides tighter upper bounds to expected support than DISC*.

Furthermore, if P (xk−1, tj)=PM 1(yr, tj) and P (xi, tj)=P (yi, tj) for i ∈
[1, k − 2], then we obtain:

BLIMP (X, tj) = expSup(X, tj) (24)
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Hence, when X is the first k items in tj such that P (xk−1, tj) happens to be the
highest existential probability in the proper prefix {y1, ..., yr−1} ⊂ tj , BLIMP
provides upper bounds that are so tight that they are indeed the expected support.

Note that all the aforementioned algorithms do not generate any false nega-
tives. With tighter upper bounds to expected support, fewer false positives are
produced. Hence, shorter runtime is needed to verify whether or not a pattern
is true positive (i.e., frequent) or false positive (i.e., potentially frequent w.r.t.
upper bounds but truly infrequent w.r.t. minsup).

In terms of memory consumption, the aforementioned frequent pattern min-
ing algorithms are all tree-based. The number of nodes in the corresponding tree
is small. With appropriate item ordering, the number of tree nodes for uncer-
tain big data mining is identical to that of the FP-tree [18] for mining precise
data. Note that each node in the FP-tree captures an item x and its actual
support, respectively. Conversely, when mining 2-itemsets, each tree node cap-
tures x and its TC for CUF-growth. Similarly, each tree node captures x and
DISC for DISC-growth; and each tree node captures x and PIC for PUF-growth.
When mining 3+-itemsets, each tree node captures an additional information
such as TM 3(tj) for the CUF*-growth algorithm, TM 2(tj) or TM 3(tj) for the
DISC*-growth algorithm, PM 2(yr, tj) for PUF*-growth, as well as P (yi, tj) for
BLIMP-growth, respectively.

It should be noted, as these theoretical results allow us to find tight upper
bounds to expected support for frequent pattern mining problems over uncer-
tain big data, they also introduce the nice amenity of effectively lowering the
overall algorithm runtime efficiently. This will be completely demonstrated in
our experimental assessment and analysis in Sect. 4.

4 Experimental Assessment and Evaluation

In this section, we evaluate several performance aspects on the optimization
opportunities offered by the six different upper bounds to expected support
described in Sect. 3. As regards the data layer of our experimental campaign,
we considered the following well-known datasets: (i) IBM synthetic dataset, and
(ii) mushroom dataset from the UC Irvine Machine Learning Depository. In
particular, these datasets have been artificially made uncertain via a simple
sampling-based routine that injects the existential probabilities as associated
to the values of a pre-determined sub-set of attributes of the input dataset. As
regards metrics, we focused on the following experimental benchmarks: (i) mem-
ory consumption, (ii) accuracy, and (iii) runtime. The final goal of our experi-
mental campaign is to provide a comparative analysis and confirm our analytical
findings provided in Sect. 3.

4.1 Memory Consumption Analysis

First, we analytically evaluate the memory consumption of the different approxi-
mations. Among them, we observe the following main behaviors that are relevant
to our research:
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– CUF-growth (which uses TC) requires the least amount of memory space
because they are solely dependent on transaction tj . In other words, only a
single value (TC) is needed for each transaction tj .

– CUF*-growth (which uses CUF*) requires slightly more memory space because
two values—both TC and TM 3(tj)—are needed for each transaction tj in
order to compute the CUF* value for patterns of different cardinality k. Both
CUF-growth and CUF*-growth do not need to store existential probabilities
of any items in transaction tj .

– DISC-growth and PUF-growth each requires a total of h values for each trans-
action tj . Specifically, for each transaction tj = {y1, y2, . . . , yr . . . , yh} with
h items, a single value (IC or PIC) is needed for each item yi in tj .

– DISC*-growth, as an extension to DISC-growth, needs to store an additional
value—namely, TM 2(tj) or TM 3(tj) depending on whether xk = yg or ys—for
each item xk (= yr) in transaction tj .

– PUF*-growth, as an extension to PUF-growth, needs to store an additional
value—namely, PM 2(yr, tj)—for each item yr in transaction tj . Both DISC*-
growth and PUF*-growth require the most amount of memory space because
each of them requires a total of 2h values for each transaction tj .

4.2 Accuracy Analysis

We measure the accuracy of the different frequent pattern mining algorithms
when the derived theoretical upper bounds are applied. In this experiment series,
we compare the tightness of the upper bounds as approximated expected sup-
port. From Sect. 3, Eqs. (12)–(14) are confirmed by results shown in Fig. 1. Note
the following:

– CUF*-growth and CUF-growth lead to the same number of false positives for
2-itemsets (i.e., cardinality = 2).

– DISC*-growth and DISC-growth, as well as PUF*-growth and PUF-growth,
also lead to the same number of false positives for 2-itemsets.

Fig. 1. Experimental results on accuracy analysis
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Among these three groups of upper bounds, we also observe the following:

– PUF-growth involves the item having the maximum existential probability
PM 1(yr, tj) in the proper prefix of yr.

– DISC-grwoth involves the item having the maximum existential probability
TM 1(tj) in the proper prefix of yr as well as its suffix.

As a consequence, since PM 1(yr, tj) ≤ TM 1(tj), we can also experimen-
tally illustrate Eq. (15). Moreover, IC also uses P (xk, tj), whereas TC uses
TM 2(tj)—which may not even involve any items in X—when xk �= yg. So,
as P (xk, tj) ≤ TM 2(tj), we can also experimentally illustrate Eq. (16). These
two experimental evidences support the observation that PUF-growth generally
provides the tightest upper bounds to expected support when mining frequent
2-itemsets from high volumes of high-value uncertain data.

When mining 3+-itemsets, following the analysis provided in Sect. 3, we fur-
ther observe the following results, which are also confirmed by our experimental
evaluation (see Fig. 1):

– DISC∗(X, tj)≤TC (X, tj) due to the extra multiplication term [TM 3(tj)]k−2

in CUF*-growth such that 0 < [TM 3(tj)]k−2 ≤ 1. Hence, CUF*-growth pro-
vides tighter upper bounds to expected support than CUF-growth when min-
ing frequent 3+-itemsets from high volumes of high-value uncertain data.

– DISC∗(X, tj) ≤ IC (X, tj) and PUF ∗(X, tj) ≤ PIC (X, tj) due to the same
reason, i.e., the extra multiplication terms—which are in the range (0,1]—in
DISC*-growth and PUF*-growth.

After analyzing the intra-group relationships between the aforementioned upper
bounds, let us analyze the inter-group relationships among the four extensions
when they mine k-itemsets, and simultaneously checking it on the experimental
results shown Fig. 1 (which further confirm our theoretical analysis provided in
Sect. 3):

– If xk=yg, then DISC∗(X, tj) = CUF ∗(X, tj) because P (xk, tj) = P (yg, tj) =
TM 1(tj).

– If xk=ys, then DISC∗(X, tj) = CUF ∗(X, tj) because P (xk, tj) = P (ys, tj) =
TM 2(tj).

– If xk �=yg and xk �=ys, then PUF ∗(X, tj) ≤ DISC∗(X, tj) because both
PM 1(yr, tj)≤TM 1(tj) and PM 2(yr, tj)≤TM 2(tj).

Hence, it follows that, when xk is associated with the highest or the second high-
est existential probability in tj , both DISC*-growth and CUF*-growth provide
the same upper bounds to expected support when mining frequent 3+-itemsets.
Moreover, when xk is not associated with the highest or the second highest exis-
tential probability in tj , PUF*-growth provides tighter upper bounds to expected
support than DISC*-growth.

The evaluation above shows the tightness of our upper bounds to expected
support. Note that all these bounds do not lead to any false negatives but only
false positives. The tighter the bound, the lower is the number of false positives.
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Fig. 2. Experimental results on runtime analysis

Our experimental results shown in Fig. 1 clearly support our analytical results.
Specifically, CUF-growth leads to the highest numbers of false positives, whereas
PUF*-growth leads to the lowest numbers (with DISC*-growth led to a close
second lowest numbers) of false positives in IBM synthetic dataset and mushroom
real-life dataset. Also, it is interesting to note that the tightness of the upper
bound to expected support provided by the following extensions: CUF*-growth,
DISC*-growth, PUF*-growth and BLIMP-growth. In fact, they do not generate
any false positives beyond cardinality 6 for the mushroom dataset, as shown in
Fig. 1.

4.3 Runtime Analysis

Recall that knowledge discovery and data mining algorithms use the aforemen-
tioned caps TC, IC and PIC to approximate expected support (see Sect. 2). The
related algorithms find patterns with upper bounds to expected support meeting
or exceeding the user-specified threshold minsup. This results in a collection of
all potentially frequent 2+-itemsets that include both true positive (i.e., truly
frequent patterns) and false positive (i.e., potentially frequent with respect to
upper bounds but truly infrequent with respect to minsup). With tighter upper
bounds to expected support, fewer false positives are produced. Hence, shorter
runtimes result. Figure 2 shows overall runtime of the various alternatives using
the proposed upper bounds. From the analysis Fig. 2, the following observations
can be derived:

– Due to its highest number of false positives generated, CUF-growth introduces
the longest runtime.

– As all three extensions (CUF*-growth, PUF*-growth and DISC*-growth) pro-
duce fewer false positives than the counterparts (CUF-growth, PUF-growth
and DISC-growth), runtimes for the former are also shorter.

– As usual, when minsup increases, runtime decreases.
– Recall that PUF ∗(X, tj) ≤ DISC∗(X, tj) if xk=yg and xk=ys. For the cases

where xk=yg or xk=ys, it is possible (but not guaranteed) that PUF ∗(X, tj)
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≤ DISC∗(X, tj). However, for some other cases (e.g., for short transactions in
the IBM synthetic dataset or short frequent patterns mined from the real-life
mushroom dataset), DISC*-growth beats PUF*-growth.

4.4 Comparative Analysis

After evaluating the seven approximations as upper bounds to expected support,
we observe the following:

– CUF-growth requires the least amount of memory space (with a single value
per transaction), and CUF*-growth requires the second least amount of mem-
ory space (with two values per transaction);

– DISC*-growth and PUF*-growth both produce fewest false positives due to
the tightness of their bounds;

– DISC*-growth takes the shortest runtime, where PUF*-growth and CUF*-
growth take just slightly longer than DISC*-growth.

Hence, our recommendation is as follows: If memory is an issue, it is better to
use CUF*-growth due to its small memory requirements, few false positives and
short runtimes. Otherwise, it is better to use DISC*-growth or PUF*-growth
because their relatively low memory requirements (2h values for h items in a
transaction) while they produce fewer false positives and run faster than others.

5 Conclusions and Future Work

In this paper, we have examined the concepts of transaction cap TC, item cap IC
and prefixed item cap PIC by viewing them as tight upper bounds to expected
support of frequent k-itemsets when mining uncertain big data. Among these
upper bounds, PIC provides the tightest upper bounds when mining frequent
2-itemsets, and thus produces the fewest false positives and the fastest running.
When mining frequent 3+-itemsets, the concepts of TC, IC, and PIC have been
extended to become CUF*, DISC*, PUF*, and BLIMP. Our experimental results
confirm our analytical findings that any of these four extensions could provide
tighter upper bounds to expected support of frequent 3+-itemsets than the other
three extensions on different mining parameters and/or distributions of uncertain
data.

Future work is mainly oriented towards (i) studying optimization alternatives
particularly targeted to distributed environments (e.g., fragmentation techniques
[11,15], which could allow us to improve the efficiency of our framework, and
(ii) extending the proposed framework according to modern big data analytics
predicates [7,21,39].

Acknowledgements. This project is partially supported by NSERC (Canada) and
University of Manitoba.
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Abstract. Despite their traditional roles, database systems increasingly
became attractive as scalable analytical platforms using extensible SQL
over the last decade. This methodology is termed in-database processing
and provides several advantages over traditional mining attempts. In this
work we bring Variable Precision Rough Sets to the domain of databases
as a common framework to unlock hidden knowledge from data. Our
derived model is built upon pure relational operations and thus very
efficient. We further demonstrate its applicability for feature selection
by introducing two in-database algorithms. Our experiments indicate,
the model scales and is comparable to existing approaches in terms of
performance but superior when applied to real-life applications.

Keywords: Concept approximation · Feature selection · In-database
analytics · Knowledge discovery in databases · Relational algebra ·
Relational database systems · Rough Set Theory · SQL · Variable
Precision Rough Sets

1 Introduction

In the 1990s and early 2000s, traditional mining frameworks relied on a client-
only or client-server architecture. These frameworks produce predictive models
or pursue other kinds of mining tasks by either loading data from flat files
or external repositories. While the former requires inefficient file operations,
the latter suffers from enduring data transmissions. These characteristics are
crucial particularly when processing enormous datasets and have been critized
in literature due to their poor performance and their inability to meet agile
exploratory analysis today [1,2]. By that time, Rough Set Theory (RST) broadly
emerged as a sophisticated instrument of extracting hidden knowledge from data.
Therefore a lot of rough set-based software systems and libraries are based on
those traditional architectures (e.g. [3–5]) and thus suffer from time-consuming
operations or high communication costs.

In this work, we try to overcome those historical drawbacks of classic rough
set-based systems by computing Variable Precision Rough Sets (VPRS) in-
database. In-database processing took off more recently as a flexible paradigm in
data science (e.g. [6,7]). It orchestrates conventional database systems to build
c© Springer International Publishing Switzerland 2016
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up reliable mining algorithms in a data-centric fashion using SQL and statisti-
cal extensions. Thus it provides essential benefits, because hidden knowledge is
stored in relational repositories predominantly given through transactional data
or warehouses. As such, data transports are minimized and processing time can
be reduced to a large extend. Exploiting this paradigm, we redefine the concept
approximation of VPRS as an extension of an earlier work [8] and derive an
equivalent model based on common database operations, which enriches most
conventional databases. Unlike classic rough sets, it is tolerant to minor data
irregularities and thus valueable for real-life scenarios. Further motivation comes
from the following three points: (i) We observed that the availability of RST algo-
rithms for in-database analytics is very limited and (ii) those existing approaches
are either inefficient or unable to cope with uncertainty. (iii) Leveraging efficient
relational database infrastructures (parallelism, algorithms, data structures and
statistics) provide promising opportunities for the practical application of RST
particularly dimensionality reduction, pattern extraction or classification. In this
work, we concentrate on Feature Selection (FS) as a key application in RST and
introduce new relational expressions to compute core and reducts. Based on that,
we present two filter algorithms utilizing efficient in-database processing.

The remainder is organized as follows: First we introduce central concepts
of RST and VPRS (Sect. 2). In Sect. 3 we review related models and systems.
Section 4 restructures VPRS for in-database processing and presents two FS
algorithms. Then we compare close related approaches to our model (Sect. 5)
and conclude in Sect. 6.

2 Rough Set Preliminaries

RST is a mathematical framework to analyze uncertain data proposed by Z.
Pawlak [9,10]. An extension to that theory are VPRS coined by W. Ziarko
[11]. In this section, we introduce rudiments of both including the basic data
structures, the concept approximation and the definition of core and reduct.

2.1 Information Systems and Indiscernibility Relation

In RST, data is represented in a table-like data structure, i.e. the Informa-
tion System (IS). It consists of objects (rows) U = {x1, ..., xn} and attributes
(columns) A = {a1, ..., am}, n,m ∈ N. Thus, it can be expressed in the tuple
〈U,A〉, where each a ∈ A poses a mapping from U to a’s value range Va, i.e.
a : U → Va. An extension to an IS is the Decision System (DS), which even holds
features di ∈ D with di : U → Vdi

, 1 ≤ i ≤ p ∈ N, representing a context-specific
decision made by an expert or teacher. It is denoted by 〈U,A,D〉.

To discern objects inside an IS or DS, RST supplies the indiscernibility rela-
tion w.r.t. the feature subset B ⊆ A. Formally, it is denoted by IND(B) =
{(x, y) ∈ U2 | ∀a ∈ B : a(x) = a(y)} in a given 〈U,A〉. Its resulting partition
U/IND(B) produces disjoint equivalence classes Kj over U w.r.t. B. Out of
convenience we write U/B = {K1, ...,Kq}, 1 ≤ j ≤ q ∈ N.
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2.2 Variable Precision Rough Sets

In RST, we approximate concepts based on equivalence classes and standard
subset inclusion. These tools are relaxed in VPRS by applying a majority inclu-
sion. As such, a controlled degree of overlapping is permitted in order to address
minor irregularities in the data that would, in turn, fall out or be considered
inconsistent in the classic rough set model. The substantial part of VPRS relies
on the relative inclusion measure

c(X,Y ) =

{
1 − |X∩Y |

|X| , if X 	= ∅
0 , otherwise

(1)

where X and Y are two sets. To obtain the majority inclusion, we define the
bound 0 ≤ β < 0.5 such that c(X,Y ) ≤ β. In this regard, X is said to be included
in Y w.r.t. the permitted overlapping β and we write X ⊆β Y . Combining
this relaxation and the indiscernibility relation, a given target concept can be
described in terms of VPRS: Let 〈U,A〉, B ⊆ A, β ∈ [0, 0.5) and the concept
X ⊆ U , then for any fixed β the β-lower approximation of X is defined by

Xβ
B =

⋃{K ∈ U/B | c(K,X) ≤ β} (2)

whereas the β-upper approximation can be specified by

X
β

B =
⋃{K ∈ U/B | c(K,X) < 1 − β}. (3)

Both expressions form the β-approximation of X w.r.t. the knowledge of B and
precision β. For Xβ

B 	= X
β

B we get an indication that information in B is insuf-
ficient to express the knowledge of X properly. Objects causing this uncertainty
can be determined by the β-boundary approximation

X
β

B =
⋃{K ∈ U/B | β < c(K,X) < 1 − β}. (4)

In some domains of interest, there might be multiple concepts to address,
which can be modelled in a DS easily. Consequently, RST and VPRS provide
further definitions to extract all approximations. Given 〈U,A,D〉, B ⊆ A,E ⊆ D
and β ∈ [0, 0.5), all concepts induced by the partition U/E can be evaluated
using the β-positive region

POSβ
B(E) =

⋃

X∈U/E

Xβ
B (5)

and the β-boundary region

BNDβ
B(E) =

⋃

X∈U/E

X
β

B . (6)

Denote, (5) holds those kind of samples which we can classify certainly to be
in the concepts X ∈ U/E employing knowledge B with β-precision, while (6)
contains inconsistent objects. With both β-regions we get a complete view on
the quality of B to describe E properly. Ultimately, the tolerance of this model
can be mitigated. In case of β = 0, VPRS is identical to RST.
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2.3 Core and Reducts

In many applications, the question arises whether we require all condition
attributes to predict or describe a decision well. Thus, there may be attributes
which do not contribute much while others are essential. Using the β-positive
region, VPRS provide us with a quality measure to seek for such attribute sub-
sets. Let 〈U,A,D〉 be a DS with B ⊆ A,E ⊆ D. The attribute set R ⊆ B is
called β-reduct w.r.t. E if

|POSβ
R(E)| = |POSβ

B(E)| (7)

and ∀a ∈ R :
|POSβ

R\{a}(E)| 	= |POSβ
R(E)|. (8)

By definition, R yields the same predictive power compared to B and any
attribute removal changes the classification of E. In that sense, a reduct is min-
imal. Intersecting all β-reducts reveals the β-core holding most essential infor-
mation. Particularly it consists of those attributes a that are indispensable, i.e.

|POSβ
B\{a}(E)| 	= |POSβ

B(E)|. (9)

Note, the β-reduct definition can be further relaxed by modifying (7) with “≥”
instead of “=”, which is possible in VPRS permitting to extract much more
compact reducts. However, this change does not jointly work with (9).

3 Related Work

One of the first systems combining RST and database systems is presented
in [3]. To compute the concept approximation, SQL commands are embedded
inside external programming logic for a final row-by-row processing, which causes
enduring network i/o particularly for enormous datasets. To manage this short-
coming of many mining frameworks today, Nguyen suggests to perform simple
in-database aggregations rather than transmitting huge volumes of data over
the wire [1]. Thus, latency can be decreased to a large extend but a client-server
architecture is implied. In contrast, the work in [12] and [13] fully leverage data-
base operations for FS, but without the explicit computation of the concept
approximation. They share an efficient algorithm to extract core attributes and
present distinctive approaches to retrieve a final set of significant attributes. In
both, inconsistent data is considered noise and handled differently. While in [12]
a noise measure is developed on predefined thresholds, such records are simply
eliminated in [13]. Another work extracting value reducts is proposed in [14]
using database operations. Similar to the two previous approaches, this method
runs on consistent data only and thus preprocessing is an obligatory step. Other
approaches exploiting database technology rely on procedural structures rather
than pure and efficient database operations [15–17]. More recently, a new data-
base system emerged known as Infobright [18]. Inspired by RST, it focuses on
fast data processing and estimated query results towards ad-hoc querying.
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Most existing approaches such as [3,15–17] leverage database technology only
partially using procedural structures or external programming. Only few RST
methods fully exploit database operations [12–14] but do not rely on the concept
approximation, which limits their methods to consistent data only. In contrast,
our proposed model is compliant with RST and VPRS. Thus it can handle
uncertainty and irregularities in the data using efficient relational operations.

4 In-Database Feature Selection

This section redefines fundamental concepts of RST and VPRS. We obtain a
new model based on relational algebra and demonstrate its applicability for FS.

4.1 Basic Database Notation

Being aware of their differences, a DS and a database table share common struc-
tures, i.e. rows and columns. Therefore we suppose a data table R with columns
A∪D and underlying schema 〈a1, ..., am, d1, ..., dp〉, where A = {a1, ..., am},m ∈
N and D = {d1, ..., dp}, p ∈ N. For short, we write R〈a1,...,am,d1,...,dp〉 or R〈A,D〉
intuitively. Concerning basic database operations, we draw on conventional pro-
jection π, selection σ, grouping G, join �� and renaming operation ρ as follows:
πB(R〈A〉) allows to project tuples t ∈ R to a specified feature subset B ⊆ A
while removing duplicates, whereas a projection without duplicate elimination
is indicated by π+

B(R〈A〉). The selection σφ(R〈A〉) only holds those tuples t ∈ R
fulfilling condition φ with retaining feature schema 〈A〉. G{f1,...,fr},G,B(R〈A〉)
groups tuples of R according to G ⊆ A while applying the aggregation func-
tions f1, ..., fr. The output features are B ∪ {f1, ..., fr} with B ⊆ G, r ∈ N0. For
B = G = ∅, G returns only one row performing f1, ..., fr on all given rows. Out
of simplicity, we write G{f1,...,fr}(R〈A〉). The natural join S〈G〉 �� T〈H〉 assembles
both tables S and T to a new relation R such that s.b = t.b,∀s ∈ S, t ∈ T and
attributes b ∈ G∩H. Note, R consists of all attributes in G and H, where overlap-
ping attributes are shown only once. Finally, the operation ρ〈b1,...,bm〉(R〈a1,...,am〉)
renames attributes ai in table R to its new name bi, 1 ≤ i ≤ m ∈ N.

To compute the different levels of the indiscernibility relation, our model
makes use of G. For our purpose we simply count the number of members in
each elementary class of a given table R〈A〉, i.e. the cardinality expressed by
the aggregate count, and include it as new feature c. Consolidated, we make
use of the following notation IG

B∪{c}(R) := ρ〈c,b1,...,bm〉(G{count},G,B(R〈A〉)) with
B = {b1, ..., bm}, B ⊆ G ⊆ A and refer to IG

B∪{c}(R) as our compressed multiset
representation using schema 〈c, b1, ..., bm〉.

4.2 VPRS Using Relational Operations

We redefine the β-approximation using Propositions 1 and 2. Thus, we can bring
VPRS immediately to the domain of databases through Theorems 1 and 2 using
relational operations from Sect. 4.1. Furthermore we examine the runtime of our
proposed model utilizing established database algorithms in Theorem 3.
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Proposition 1. Let 〈U,A〉 and B ⊆ A. For any X ⊆ U and a fixed β ∈ [0, 0.5),
the β-approximation of X can be described by

⋃{K ∈ U/B | ∃H ∈ X/B : φ} with

φ :

⎧
⎪⎨

⎪⎩

c(K,H) ≤ β, for Xβ
B

c(K,H) < 1 − β, for X
β

B

β < c(K,H) < 1 − β, for X
β

B .

(10)

Proof. We have to compare classes K ∈ U/B which have elements in X ⊆ U
and H ∈ X/B. Because of X ⊆ U we obtain for K∩X 	= ∅: K∩X = H and thus
c(K,X) = 1 − |K∩X|

|K| = 1 − |H|
|K| = 1 − |K∩H|

|K| = c(K,H). It follows: c(K,X) =

c(K,H) ≤ β which is proposed by Xβ
B . Likewise, we can show c(K,X) < 1 − β

is equivalent to c(K,H) < 1 − β which holds X
β

B . From those two justifications
we conclude X

β

B . ��
Proposition 2. Let 〈U,A,D〉, B ⊆ A and E ⊆ D. For any fixed β ∈ [0, 0.5),
the β-regions POSβ

B(E) and BNDβ
B(E) can be described by

⋃{K ∈ U/B | ∃H ∈ U/(B ∪ E) : φ} with

φ :

{
c(K,H) ≤ β, for POSβ

B(E)
β < c(K,H) < 1 − β, for BNDβ

B(E).
(11)

Proof. Using the equality {H ∈ X/B | X ∈ U/E} = U/(B ∪ E), we conclude
Proposition 2 directly from Proposition 1. ��
Theorem 1. Let T〈A〉, B ⊆ A, β ∈ [0, 0.5) and let the target concept C〈A〉 be a
subset of T . We can compute the β-lower (Lβ

B(T,C)), β-upper (Uβ
B(T,C)) and

β-boundary approximation (Bβ
B(T,C)) of C using the relational operations

π+
ct,b1,...,bm

(σφ(IB
B∪{ct}(T ) �� IB

B∪{cp}(C))) with

φ :

⎧
⎪⎨

⎪⎩

1 − cp

ct
≤ β, for Xβ

B

1 − cp

ct
< 1 − β, for X

β

B

β < 1 − cp

ct
< 1 − β, for X

β

B .

(12)

Theorem 2. Let T〈A,D〉, B ⊆ A, E ⊆ D and β ∈ [0, 0.5). The β-positive region
(Lβ

B,E(T )) and β-boundary region (Bβ
B,E(T )) can be computed by

πct,b1,...,bm
(σφ(IB

B∪{ct}(T ) �� IB∪E
B∪{cp}(T ))) with

φ :

{
1 − cp

ct
≤ β, for POSβ

B(E)
β < 1 − cp

ct
< 1 − β, for BNDβ

B(E).
(13)

Theorem 3. Our VPRS model based on extended relational algebra (see Theo-
rems 1 and 2) can be computed in O(nm), where n is the number of tuples and
m the number of attributes.
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Proof. The grouping (G) and projection (π) can be implemented using hash
aggregation, which requires nm time for either operation. Therefore the com-
parison (��) of both partitions utilizing the hash join results in 4nm. At most,
the selection (σ) requires a sequential scan followed by the final projection (π).
Thus six subsequent scans need to be performed overall, which is O(nm). ��

4.3 Feature Selection

One of the main challenges in machine learning and related subjects is the task
of finding one or multiple subsets of all condition attributes with same or similar
expressiveness compared to all conditions, i.e. FS. Particularly in RST, FS plays
a central role, because it provides built-in concepts to address this subject (see
Sect. 2.3). However, finding such subsets is not trivial and computational expen-
sive [19]. The integration of FS algorithms with databases is most promising for
this subject, because of the efficient operations and data structures provided.

Only few RST methods exist fully exploiting database operations for FS
[12,13]. Despite their efficiency, they do not rely on the concept approximation
and therefore have a crucial drawback, i.e. their limited applicability to inconsis-
tent data. This fact leads to two key findings: These methods are less favorable for
(i) mining in continuous environments and (ii) reduce FS quality in terms of rough
sets. For (i) there are real-life scenarios where the removal of inconsistencies is an
inpractical task or simply not an option. Particularly in dynamic or near real-time
systems producing decision rules as data becomes available, FS is an essential pre-
requisite. In these scenarios, inconsistent entities are of great value and should be
kept in the mining process. They constitute an exceptional source for the conflict
resolution of potentially new concept descriptors, existing rules or the fusion of
them. No less critical is finding (ii). We argue that imperfection in data can give
rise to core attributes which would not be detectable in cleaned environments1.
Thus we generally miss the chance to identify essential features by ignoring the
nature of inconsistency. Denote, in RST a special treatment for ambiguous data
is not required, because it features built-in capabilities to handle uncertainty by
definition. So, inconsistent data can remain in place. Our model preserves these
traditional bounds. Thus data movement or removal is not a requirement and
proper reducts can be obtained. In what follows, we demonstrate the applicability
of our model by presenting two FS approaches relying on attribute dependency as
a heuristic function to maximize where inconsistencies are permitted. All inten-
sive calculations are lifted by the database engine and huge data transports can
be avoided. In order to comprehend the details, we figure out the concept of core
and reduct in terms of database operations in advance.

The core is the intersection of all available reducts in a given dataset. Thus,
it contains most relevant attributes to address classification problems, i.e. all

1 Let 〈U, A, D〉 be inconsistent. Thus, we have K, K′ ∈ U/A : K ⊆β X and K′ ∩X �= ∅
with K′

�β X, X ∈ U/D. For indispensable attributes a ∈ A, we consider U/(A\{a})

and may get K∗ ∈ U/(A\{a}) with K∗ = K∪K′ and |POSβ
A\{a}(D)| �= |POSβ

A(D)|.
Hence a is in the β-core. This case is not covered when 〈U, A, D〉 is cleaned up-front.
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indispensable attributes. These attributes can be computed in a straightforward
fashion and therefore their involvement in the search for reducts is most valuable.
According to (9) and in line with our proposed model (see Theorem 2), Corollary
1 determines indispensable attributes using relational expressions.

Corollary 1. Let T〈A,D〉, B ⊆ A,E ⊆ D and β ∈ [0, 0.5). An attribute a ∈ B is
a β-core attribute w.r.t. to the classification of E if

G{sum(ct)}(Lβ
B\{a},E(T )) 	= G{sum(ct)}(Lβ

B,E(T )). (14)

Likewise, from the reduct definition (see (7) and (8)) and Theorem 2, we can
transfer the reduct properties to the relational domain in addition. Corollary 2
states the two required properties.

Corollary 2. Let T〈A,D〉, B ⊆ A,E ⊆ D,β ∈ [0, 0.5) and R ⊆ B. R is a β-
reduct w.r.t. E if

G{sum(ct)}(Lβ
R,E(T )) = G{sum(ct)}(Lβ

B,E(T )) (15)

and ∀a ∈ R :

G{sum(ct)}(Lβ
R\{a},E(T )) 	= G{sum(ct)}(Lβ

R,E(T )). (16)

Denote, the final aggregations G in Corollaries 1 and 2 imply the cardinality of
all tuples in the designated β-region. The next Corollary 3 provides insight to
the runtime of both corollaries.

Corollary 3. For a given data table with n tuples and m attributes, the costs
for Corollary 1 are 2nm and two additional scans for the aggreations. Hence, we
obtain O(nm). Consequently, the entire core computation is O(nm2) inspecting
all m attributes. Corollary 2 requires 4nm for (15) and 4nm2 for (16) under the
strong assumption that a reduct consists of all condition attributes. Therefore
checking an attribute set to be a valid β-reduct takes O(nm2).

In RST, one of the most prominent FS algorithm is QuickReduct intro-
duced in [20]. This forward selection greedy hill climber starts off with an empty
attribute set and constantly appends the attribute with highest significance. The
algorithm ends if either a reduct is found or a local optimum is reached. For illus-
tration purpose, we reimplemented QuickReduct using our relational model
based on VPRS. The pseudo code is given in Algorithm 1 (QuickReductDB).
Its runtime can be observed as follows: Let n be the number of tuples and m the
feature size of a given data table. At most, the for-loop has 1

2m(m+1) iterations
(see line 5 to 9) whereas the stop criterion (see line 11) is evaluated m times.
Thus, using our model (see (13)), we get a worst-case runtime of O(nm3). In
practice, however, QuickReductDB performs much better. This examination
is supported by experiments obtained from the original algorithm, where the
average runtime appeared to be fairly linear [21].
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Algorithm 1. QuickReductDB
Input: T〈A,D〉, B ⊆ A, E ⊆ D, β ∈ [0, 0.5)
Output: R ⊆ B
Procedure:

1: BEGIN
2: R ← {}
3: LOOP
4: S ← R
5: FOR a ∈ B \ R LOOP

6: IF G{sum(ct)}(L
β
R∪{a},E

(T )) > G{sum(ct)}(L
β
S,E(T )) THEN

7: S ← R ∪ {a}
8: END IF
9: END LOOP
10: R ← S
11: EXIT WHEN G{sum(ct)}(L

β
R,E(T )) = G{sum(ct)}(L

β
B,E(T ))

12: END LOOP
13: END

QuickReduct or our port QuickReductDB generally suffers from its
best-first heuristic which may result in a local optimum. The next algorithm we
present tries to overcome such situations and allows to extract multiple reducts.
The basic idea of Algorithm 2 (BacktrackReductsDB) is to pursue a for-
ward selection approach utilizing the same climbing engine as QuickReduct.
In contrast, it does not start with an empty configuration, but uses the core
as an ideal initialization. Additionally, it relaxes the strict best-first strategy by
expanding its heuristic with all best solutions in the current round. This means,
we constantly append one or multiple succeeding attribute subsets to a queue
Q for further observation. This enables us to explore various alternative paths,
which QuickReduct simply ignores and we overcome potential local optima
by backtracking to previously identified branches with same validity than the
current path seeked. As a result, we may extract several reducts R. Obviously,
these can be valuable in a number of applications including co-training, ensem-
ble learning or rule induction to name a few. However, the benefits of Back-
trackReductsDB come at a price, i.e. complexity. The main steps consist of
the core computation (see line 2), the reduct examination (see line 3) and the
main loop (see line 7 to 20), where most actions are performed. Hence, the dom-
inant factor concerning time is the number of iterations required. This number,
though, is unknown in advance and highly dependent to the underlying data.
Therefore we make a rather theoretical assessment towards the upper bound:
Let us assume we constantly find k > 1 attribute subsets per iteration. This
means we append k new candidates to Q per round while processing one only.
Inquiring this statement, we obtain an overall runtime of O(nmkm) for the for-
ward selection including backtracking, where n is the number of tuples, m the
feature size and constant k. One can verify this exponential upper bound is
pessimistic especially when considering real-world datasets. In fact, experiments
on various inputs including some from [22] and internal datasets indicate that
the number of expected alternative paths per round is way below 2.0 on aver-
age. This exposes that alternatives are rarely explored compared to the amount
of ordinary iterations with a single best path only. In turn, that leads to a
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non-exhaustive search in practice while collecting multiple reducts. The aver-
age costs of BacktrackReductsDB are rather comparable to the worst-case
runtime of QuickReductDB.

Denote, both presented algorithms may incorporate with variable precision
(i.e. β > 0) which is beneficial for certain domains of interest. However, its usage
needs to be treated with caution, because the β-positive region is not necessarily
monotonic.

Algorithm 2. BacktrackReductsDB
Input: T〈A,D〉, B ⊆ A, E ⊆ D, β ∈ [0, 0.5)
Output: R ⊆ P(B)
Procedure:

1: BEGIN
2: R, Q ← ∅, C ← find core (according to (14))
3: IF C is reduct (see (15) and (16))
4: R ← C
5: RETURN
6: END IF
7: LOOP
8: pmax ← max(G{sum(ct)}(L

β
C∪{a},E

(T )), ∀a ∈ B \ C)

9: FOR a ∈ B \ C LOOP

10: IF G{sum(ct)}(L
β
C∪{a},E

(T )) = pmax THEN

11: IF pmax < G{sum(ct)}(L
β
B,E(T )) THEN

12: Q ← Q ∪ (C ∪ {a})
13: ELSIF C ∪ {a} fulfills (16) THEN
14: R ← R ∪ (C ∪ {a})
15: END IF
16: END IF
17: END LOOP
18: EXIT WHEN Q = ∅
19: C ← first element of Q, Q ← Q \ C
20: END LOOP
21: END

4.4 Implementation Details

To highlight implementation details for our model, we use common SQL nota-
tion. Starting with the β-approximation for a single concept, let T〈A,D〉 be given
by conditions A, decision D = {d} and the considered target C = σd=1(T ). Using
B ⊆ A with B = {b1, ..., bm} and β ∈ [0, 0.5), Theorem 1 can be computed by the
following SQL statement. The WHERE clause specifies the β-approximation.

SELECT T.∗ FROM (
SELECT COUNT(∗) AS ct, b1,...,bm FROM T
GROUP BY b1,...,bm

) AS T JOIN (
SELECT COUNT(∗) AS cp, b1,...,bm FROM T WHERE d=1
GROUP BY b1,...,bm

) AS C ON T.b1=C.b1 AND ... AND T.bm=C.bm
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WHERE

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 − CAST(cp AS DECIMAL)/ct <= β, for Lβ
B(T, C)

1 − CAST(cp AS DECIMAL)/ct < 1 − β, for Uβ
B(T, C)

β < 1 − CAST (cp AS DECIMAL)/ct AND

1 − CAST (cp AS DECIMAL)/ct < 1 − β, for Bβ
B(T, C)

For Theorem 2 we consider T〈A,D〉, β ∈ [0, 0.5), B ⊆ A, E ⊆ D with B = {b1, ..., bm}
and E = {e1, ..., ep}. It can be implemented by the next SQL command. Note, the
WHERE clause depends on whether to compute Lβ

B,E(T ) or Bβ
B,E(T ).

SELECT DISTINCT T.∗ FROM (
SELECT COUNT(∗) AS ct, b1,...,bm FROM T
GROUP BY b1,...,bm

) AS T JOIN (
SELECT COUNT(∗) AS cp, b1,...,bm FROM T
GROUP BY b1,...,bm, e1,...,ep

) AS C ON T.b1 = C.b1 AND ... AND T.bm = C.bm

WHERE

⎧

⎪

⎨

⎪

⎩

1 − CAST(cp AS DECIMAL)/ct <= β, for Lβ
B,E(T )

β < 1 − CAST(cp AS DECIMAL)/ct AND

1 − CAST(cp AS DECIMAL)/ct < 1 − β, for Bβ
B,E(T )

Finally, the aggregation G{sum(ct)}(Q) can be implemented by

SELECT SUM(ct) FROM (Q)

where Q is replaced by either one of the queries above.

5 Comparative Study

For comparison reasons, this evaluation concentrates on the time analysis of
the positive region, a measure frequently used in FS. We compare our model
(see Sect. 4) against two related approaches, i.e. RSDM [3] and RSMDS [13].
Additionally we state the responses of the classic RST framework RSES [5] and
the R package “RoughSets” (RSR) [23] for reference.

All evaluated approaches except RSMDS provided an implementation of the
positive region. Therefore the corresponding metrics of RSMDS were examined
instead. For RSDM, we redeveloped its algorithm in two versions to verify the
potentials: an in-database cursor implementation and a mixed variant consisting
of a client program implemented in Java supplied with data of a conventional
database query. The measures of RSES and RSR were based on latest software
but processing relied on a single core only. The configuration2 of our experi-
ment was based on a standalone server environment, whereas six machine learn-
ing datasets ranging from 148 K to 11 M records with varying dimensions, data

2 OS: Microsoft Windows 2012 R2 (Standard edition x64); DBs: Microsoft SQL Server
2014 (Developer edition 12.0.2, x64), Oracle 12c (Enterprise edition 12.1.0.2, x64);
Misc: JDK 1.8.0.51, latest JDBC, R 3.2.0 (x64), RSESLib 3.0.4, RSR 1.3.0; Memory:
48GByte; CPU: 32x2.6 GHz Intel Xeon E312xx (Sandy Bridge); HDD: 500GByte.
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types and distribution were chosen from [22]: HIGGS [24], KDD99m3, PAMAP2
[25], Poker Hand [26], Covertype [27], NSLKDD [28]. For RSDM, RSMDS and
our model, we ran our experiment inside the two established database systems
SQL Server (MSSQL) and Oracle (ORA) providing us with parallelism up to
32 cores. Denote, all compared models and systems were tuned according to
documentation and best knowledge to ensure optimal outcomes.

Using the best query plan and most optimal fetch size for the mixed variant
of RSDM revealed very high network i/o waits degrading performance especially
for HIGGS and PAMAP2. A similar weak performance was encountered for the
in-database version. In neither case the in-database implementation could out-
perform the mixed variant of RSDM. On average the combination of Java and
MSSQL was 5 times faster and the interaction of Java and ORA completed 3
times earlier than the corresponding in-database cursor. The direct comparison
to our model turned out that on average our model using a very efficient hash-
based query plan was 10 times faster on both database engines. Despite that
huge difference in latency, RSDM generally benefits from coarse-grained datasets
because its underlying query compresses the data already at the database end.
Consequently fewer records are passed and processed at the application level. In
our experiment, this effect took place on KDD99m where the amount of records
could be reduced from 4 M to 1 M. Under these circumstances our model was only
4.6 times faster on ORA and 2.5 times faster utilizing MSSQL. The comparison
to RSES and RSR showed that our model was at least 13 times faster bene-
fitting from parallelism (see details in Fig. 1(a)). Furthermore, we analyzed the
runtime of RSMDS using a similar hash-based plan to our model. Disregarding
preprocessing, the partial terms to compute core and reduct attributes outper-
formed our model because both expressions require fewer operations than our
implementation, i.e. the join operator. The core query rests upon one projection
and an aggregation, while its reduct metric takes twice as much operations and
time on average. On both databases, RSMDS was 30 % faster on average. When
we considered preprocessing, which is generally required for RSMDS, our model
performed much better. It was 26 % faster on HIGGS, PAMAP2 and KDD99m
on both database engines. For Poker Hand, Covertype and NSLKDD it was only
10 % quicker on average. However, this superior is cushioned by the fact that
preprocessing for RSMDS is only required once in a FS task. Further details
about this particular comparison are stated in Fig. 1(b).

Performance-wise, this evaluation showed our VPRS implementation is
able to compete with close related concepts and is faster than conventional
approaches. In the selected environment, our model is more than 10 times faster
compared to RSDM. On inconsistents dataset our model outruns RSMDS by
18 %, while both approaches show similar responses computing core attributes.
In cleaned environments, however, RSMDS takes advantage of its elaborated
queries, which is 30 % faster to find reducts and 60 % faster for core attributes.

3 KDD99m is a modification of the original KDD99 dataset available in [22]. In con-
trast, it holds one additional attribute resulting in evenly sized equivalence classes.
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Fig. 1. The experimental results on six different datasets measuring the positive region
and equivalent heuristics for FS. (a) shows an overview of the best measures obtained
from each evaluated approach, where (b) compares the two best models in detail. (Color
figure online)

6 Conclusion and Future Work

Although Rough Set Theory has proven to be well suited for a wide range of
mining problems in the past, few implementations exist fully supporting its con-
cept approximation for in-database analytics. In this work, we made an attempt
to bring Variable Precision Rough Sets to the domain of databases exploiting the
efficient and well-established algorithms provided by these systems. Furthermore,
we demonstrated the applicability of our derived model for feature selection
by introducing two algorithms utilizing efficient in-database processing. From
a quantitative perspective, our experiments revealed that the proposed model
is faster or comparable to existing approaches. Particularly in mining real-life
scenarios, we outlined the model’s qualitative advantages due to variable pre-
cision and its ability to cope with uncertainty. As part of our current research
in the field of intrusion detection, the proposed model is central. We will use
the presented algorithms and concept approximation to induce reliable attack
signatures from incoming network traffic. These rules will be computed in near
real-time and build a sound base to detect reoccuring cyberattacks in ambiguous
environments. Another objective is to bring our idea to distributed architectures
in order to obtain a scale-out rather than a scale-up approach. Additionally
our model can be employed to develop new rough set algorithms, while existing
approaches based on the concept approximation can be ported easily leveraging
reliable in-database capabilities.
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Abstract. We consider an optimization problem in ecology where our
objective is to maximize biodiversity with respect to different land-use
allocations. As it turns out, the main problem can be framed as learning
the weights of a weighted arithmetic mean where the objective is the
geometric mean of its outputs. We propose methods for approximating
solutions to this and similar problems, which are non-linear by nature,
using linear and bilevel techniques.

Keywords: Aggregation functions · Linear programming · Weight
learning · Ecology · Biodiversity

1 Introduction

We consider the problem of distributing a human population across a finite land
area in such a way that negative impact to local flora and fauna is minimized.
A simple version of the problem, optimization of abundance for a single species, is
one that is easily solved with a linear programming approach, however ecologists
are usually more interested in how the land-use allocations affect biodiversity.
A number of quantitative indices exist for biodiversity, which incorporate both
the number of species present (the richness) along with how evenly distributed
the species are. As has been observed in [1], many of these can be expressed
in terms of common aggregation functions. For instance, the geometric mean
of species abundances is being increasingly used as a proxy for biodiversity
[2], providing an average abundance that is more sensitive to smaller values
(rare species). Whilst the optimization of these more complicated indices is
non-linear in nature, we will show that close approximations can be achieved
using mostly linear techniques and capitalizing on the ability to express quasi-
arithmetic means in terms of generating functions. We illustrate the techniques
using bird occupancy data from surveys conducted in Melbourne, Australia, and
include details of our implementations as an appendix.

The article will be set out as follows: In Sect. 2, we outline our notation along
with the necessary underlying concepts from the field of aggregation functions.
In Sect. 3, we introduce the ecological context and go through the associated
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 411–422, 2016.
DOI: 10.1007/978-3-319-40581-0 33
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problems with our proposed optimization solutions. We then provide an example
in Sect. 4, before concluding in Sect. 5.

2 Preliminaries

We will give an overview of the preliminary concepts of aggregation functions as
relevant to the problem of land-use allocation. We consider an input dataset con-
sisting of an m×n matrix where the entries xij denote the predicted abundances
of the i-th species for the j-th land-use type. In practice, such abundances are
measured by reporting rates calculated after conducting surveys. In our case,
the n land-use types correspond with increasing densities of human population
but these need not be numeric or even ordered. With respect to a total human
population P and available land area A, the values wj denote the percentage
allocation to each land-type, so that

∑n
j=1 wj = 1. These values will correspond

with the weights of our aggregation functions.
Aggregation functions are employed in various contexts for summarizing

data. Overviews of the important families, properties and definitions can be
found in [3–6].

Definition 1. An aggregation function f : [a, b]n → [a, b] is a function
monotone in each argument and satisfying the boundary conditions f(a, . . . , a) =
a and f(b, . . . , b) = b (with a < b).

Of particular interest to us is the weighted arithmetic mean, perhaps the
most commonly employed aggregator across various contexts. It is expressed,

WAM(x1, . . . , xn) =
n∑

j=1

wjxj . (1)

In our case, for a given species i, the aggregated value WAM(xi1, . . . , xin)
denotes its abundance per unit of area.

Another aggregation function important in ecology is the geometric mean.
For an input vector x, the geometric mean is given by,

G(x1, . . . , xn) =

⎛

⎝
n∏

j=1

xj

⎞

⎠

1
n

. (2)

In ecology, the geometric mean of species abundance is often used to give
a measure of abundance that is more sensitive to rare species. So if we have
s = (s1, s2, . . . , sm) denoting the set of species abundances for each of the m
species, G(s) is a proxy measure for biodiversity. We note that G(s) ≤ AM(s)
where AM is the weighted arithmetic mean with equal weights, and that the
values will be closer the more even the species abundances are.
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The geometric mean can also be obtained as a special case of the quasi-
arithmetic mean, which generalizes1 the WAM. Specifically, we have

G(x1, . . . , xn) = g−1

⎛

⎝
n∑

j=1

wjg(xj)

⎞

⎠ , (3)

where g(t) = ln t is the generating function, its inverse is g−1(t) = exp(t) and in
our context we have wj = 1/n for all j.

3 Finding Optimum Land-Use Allocations with Respect
to Species Diversity

The process of urbanization is a major contributor to biodiversity loss [7],
with the expansion of cities leading to habitat loss, climatic changes in tem-
perature as well as other disruptions to local species dynamics. However while
some species respond negatively to increases in human population density, other
species (pigeons for example) can actually benefit. In planning for the develop-
ment of cities and towns, two theories of conservation have arisen in ecology
literature [8]: land-sharing, whereby the human population is spread as evenly
as possible over a given area; and land-sparing, which fits the human population
to small areas of high density so that the remaining area can be reserved to
preserve flora and fauna.

The way individual species respond to changes in human population density
can be considered in terms of response curves (see Fig. 1).

Fig. 1. Examples of response curves for species that benefit most from either a land-
sparing or land-sharing approach to urban development. Species that respond to urban
density according to curves like A and B are best suited to land-sparing, since it aims
to segment a city into either very high or very low density living (where the abundances
for these species are highest). On the other hand, response curves like C and D relate
to species who would be better off with a land-sharing approach, since they have high
abundance for mid-range urban intensity.

1 More information about such generalizations can be found in any of [3–6], however
we will restrict ourselves to the relevant cases to our problem.
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We consider different ranges of population density to constitute a ‘land-type’,
with each species having a predicted abundance. For example, if we considered
5 levels of density, for each species we would have data of the following form.

Land type (j) 1 2 3 4 5

Human population density (per 25ha) 0 50 100 250 500

Species abundance (per 25ha) 20 14 12 10 7

In the following subsections, we will present methods for finding the best allo-
cation of each land-type subject to area and human population constraints where
we are interested in optimizing either (1) the total abundance of all species, (2)
the geometric mean of species abundances, and (3) the biodiversity as calcu-
lated using Shannon’s diversity index. We focus on linear methods over more
general approaches for two reasons. Firstly, although the dataset we use here is
relatively small, both the number of species and the number of land-types can
potentially be very large in practice and we want the method to be scalable.
Secondly, we have a number of constraints that are more difficult to incorporate
in more general optimisation models2, such as the land area and population.

3.1 Optimization of Total Abundance

In previous works we have used linear optimization to learn the weights of various
aggregation functions from data [9–14]. In those cases, we considered a set of
input and output pairs with the aim of minimizing differences between observed
and predicted outputs. Our aim here is to find the best allocation of land types.
The percentage allocations which correspond with our aggregation weights wj

are our decision variables. We denote by dj the population density for the j-th
land-type. For any given species i, we have

Maximize
w

n∑

j=1

wjxij ,

s.t. A
n∑

j=1

wjdj ≥ P,

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n. (4)

In order to maximize the total abundance, we note that we can simply sum
the total abundances across all species for each land-type, so that the objective
equation becomes,
2 However since the constraints are linear, quadratic programming formulations would

also be fine.



Linear Optimization for Ecological Indices Based on Aggregation Functions 415

Maximize
w

n∑

j=1

wj

(
m∑

i=1

xij

)

. (5)

3.2 Maximizing the Geometric Mean of Species Abundances

As discussed previously, we are often more interested in maximizing the geomet-
ric mean of abundances, which is more sensitive to rare species. This is so that
the impression of abundance is not inflated by having a very common species.
Our objective becomes,

Maximize
w

m∏

j=1

⎛

⎝
n∑

j=1

wjxij

⎞

⎠

1
n

. (6)

We can ignore the 1/n power since the product and geometric mean will have the
same maximum. This is still a non-linear objective, however we can use Eq. (3)
and consider maximizing the sum of the logarithms of each species. In terms of
the decision variables we have,

Maximize
w

m∑

i=1

ln

⎛

⎝
n∑

j=1

wjxij

⎞

⎠ , (7)

and whilst this representation remains non-linear, we can find an approximate
solution to any desired precision by taking advantage of the fact that the log
function is concave and hence can be expressed as the maximum value with
respect to a set of bounding linear equations.

We transform the log function and write it as,

ln t = lim
K→∞

min (f1(t), f2(t), f3(t), . . . , fK(t)) ,

where fk(t) denote the tangent lines of ln t across its domain, with fk(t) =
αkt + βk, αk = d

dt (ln tk) = 1/tk, βk = ln tk − αktk where tk are the points at
which log is evaluated. In other words, the logarithm is expressed in terms of
the minimum of its K affine functions. Figure 2 helps demonstrate this visually.

Equation (7) hence becomes piecewise linear and the objective can be reduced
to a linear program if the constraints are also linear. For each species i and each
of our tangent functions given by fk(t) = αkt + βk, we introduce constraints of
the form, −αksi + yi ≤ βk, where si is the abundance of the i-th species, i.e.

−αk(w1xi1 + w2xi2 + . . . + wnxin) + yi ≤ βk.

The variables yi now become decision variables in the optimization formulation.
We optimize for the maximum sum of these values, however each yi is bounded
from above by the tangent lines described by the K constraints.
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Fig. 2. Example of the natural log function being bound from above by 10 approxi-
mating affine functions, equispaced over the interval [0, 1].

Summarizing, we have the following linear programming formulation for this
problem.

Maximize
w,y

m∑

i=1

yi

s.t. A
n∑

j

wjdj ≥ P.

−αkA(w1xi1 + w2xi2 + . . . + wnxin) + yi ≤ βk, k = 1, . . . ,K, i = 1, . . . , m
n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n. (8)

3.3 Maximization of Shannon’s Diversity

Whilst the approach of the previous section could be adapted to the optimization
of any convex function of abundance values that can be expressed as the sum of
generating functions, there are a number of ecological indices that are not based
on species abundances but rather on proportional abundance, i.e. the values pi
such that,

pi =

n∑

j=1

wjxij

m∑

i=1

n∑

j=1

wjxij

.

Shannon’s diversity index is one such example, expressed in terms of the pi,

m∑

i=1

−pi ln pi. (9)
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For a given number of species (m) present in a given community, it reaches
a maximum ln m when all species have equal abundance, and approaches zero if
a single species dominates, i.e. if pi = 1 for any i.

The use of pi values makes it impossible to express this in terms of linear
multiples of the constraints as we did previously, however we can take a differ-
ent approach that results in a bi-level optimization problem. As we will see, it
remains feasible for finding practical solutions with real datasets.

We introduce a variable M which indicates the total abundance, i.e.

M =
m∑

i=1

wj

⎛

⎝
n∑

j=1

xij

⎞

⎠ .

With M known, we can therefore use this to scale our variables so that they
are equivalent to proportions. We then have the capacity to solve the optimiza-
tion, provided we know M . As before, we create affine functions from the curve,
−t ln t and maximize such that the yi values are bounded by these lines. In this
case, accuracy bounds pose less of a problem since we know that all pi are less
than 1. The constraints will now be of the form,

−αk(w1
xi1

M
+ w2

xi2

M
+ . . . + wn

xin

M
) + yi ≤ βk.

We then can find the M that gives the best result for Shannon’s diversity,
which we implement as a bilevel problem. We have,

Maximize
M

Z

Z = max
w,y

m∑

i=1

yi

s.t. A
n∑

j

wjdj ≥ P

−αkA

M
(w1xi1 + w2xi2 + . . . + wnxin) + yi ≤ βk, k = 1, . . . ,K, i = 1, . . . ,m

n∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , n. (10)

4 Example: Bird Surveys Data

Survey data reporting presence or absence of bird species across 28 land-
scapes in the wider Melbourne area was collected over a period of four months
(May to August) in 2015. All landscapes were one hectare in area and the human
population densities were determined from census data. The report rates for each
species were the result of four separate observation rounds. An example of the
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fitted response curves (showing the probability of a species occurring in a land-
type with that human density) across the 28 sites for three bird species are shown
in Fig. 3.

Fig. 3. Data collected for three bird species at sites with increasing human population
density. While the grey fantail virtually only lives in reserves (i.e. all vegetation and
no housing), the spotted turtle dove benefits from high urban population density and
the brown thornbill was present across the range.

The dataset we will use to illustrate the methods proposed here includes that
relating to 21 native species, with response rates calculated at densities from 0 to
1600 at intervals of 100 (n = 17 land types). We consider allocating the optimum
allocation of a human population of 2.744 million, i.e. the current population of
the Melbourne residential area (outside the central business district). The area
under consideration is 964 km2.

Table 1. Summary results from applying the methods for optimizing total abundance,
the geometric mean, and Shannon’s diversity index respectively.

Objective Densities

w1 w2 w3 Total Geometric Shannon’s

0 1000 1600 Abundance Mean Diversity

Abundance 0.5551 0 0.4449 17445 549.4 2.7425

Geometric mean 0.5210 0.0911 0.3879 17068 564.3 2.7443

Shannon’s diversity 0.5247 0.0813 0.3941 17108 564.0 2.7443
∗ weights and Shannon’s diversity rounded to 4 dp, geometric mean rounded to
1 dp

The results are shown in Table 1. These do not vary greatly based on the
objective used, however we do note slight changes. Obviously all three measures
will be somewhat correlated, with each essentially capturing some overall mea-
sure of how many individuals are present. We have only displayed three weights
because in all models the remaining densities were all given zero allocation,
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regardless of the method. In terms of the ecological interpretation, we see that
the land-sparing approach to biodiversity conservation is preferred overall for
this particular set of species, allocating areas of high population density as well
as reserves for wildlife, with only small amounts of land at medium population
density (Table 2).

Table 2. Summary results from applying the methods for optimizing total abundance,
the geometric mean, and Shannon’s diversity index respectively with a smaller subset
of the data (only 4 species).

Objective Densities

w1 w2 w3 w4 w5 Total Geom. Shan.

0 600 800 1000 1600 Abund. Mean Div.

Abundance 0.1102 0 0.8898 0 0 5736 990.0 1.1106

Geometric mean 0.3582 0 0 0.5251 0.1167 5534 1079.6 1.2156

Shannon’s diversity 0.3499 0.3284 0 0 0.3217 5244 1054.3 1.2289
∗ weights and Shannon’s diversity rounded to 4 dp, geometric mean rounded to 1 dp

To help give some insight into the difference between these approaches, we
have also optimized for a smaller set of species. We used the four species with
response curves shown in Fig. 4. We note that in this case, we have four very
different response curves including quite common species, e.g. the Australian
magpie, and rare species such as the eastern rosella.

Fig. 4. Four species and their response curves. The Australian magpie is present at high
levels across all population densities while the brown thornbill and the eastern rosella
both generally decrease as the human population becomes more and more dense.

In Fig. 5 we can observe how each of the species change individually with
respect to the different optimization objectives. When the overall abundance
is maximized, low abundance in the brown thornbill’s population is compen-
sated for by high abundance with the Australian magpie and common starling3.
3 As a side note the common starling is an introduced species and was not included

in the previous example of 21 native bird species.
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Fig. 5. Comparison of individual species’ abundances obtained with each of the opti-
mization objectives.

Both the geometric mean and Shannon’s diversity approaches obtain a more
evenly spaced distribution for these three species, however we note that in all
cases we are not able to raise the abundance of the eastern rosella.

5 Conclusion

We have focused on an optimization problem that arises in ecology where land
management decisions can have an impact on the local biodiversity. In this con-
text, the optimization problems take on a similar form to what we have in
learning parameters for aggregation functions, however with objective functions
whose arguments are expressible in terms of weighted arithmetic means of our
data. We have shown that these non-linear objectives can be approximated with
linear techniques, the advantages of which are that they are quickly solvable,
are guaranteed to reach a global optimum and are scalable in terms of time and
computation complexity. In our main problem involving the geometric mean of
species abundances, we represented its additive generating function as the max-
imum of bounding affine functions. We have made all R algorithms available at
our website.

Appendix: Implementations

We have implemented all three approaches to optimization as functions in an R
library available at our website4.

Optimizing total abundance: eco.opti().

Description of inputs

species.data - matrix of species abundances per unit of land area, i.e. with xij

denoting the i-th species and its abundance for land type j;

4 http://aggregationfunctions.wordpress.com.
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densities - vector of densities per unit of land area, i.e. with dj denoting the
human population density for a given land-type j;

tot.pop - the total population required to be fit into the given land area;
tot.land - the total area over which we need to distribute the population.

Additional optional constraints

w.min / w.max - vectors denoting minimum or maximum bounds on the land-
types, e.g. if we want to ensure that at least 20 % of the land is populated
at minimum density we incorporate the constraint w1 ≥ 0.2 (assuming w1 is
the land-type with minimum density), or alternatively we may wish to limit
high density housing to at most 40 % of the land area etc.;

spec.min / spec.max - vector placing minimum or maximum bounds for a
particular species, for example, if we want to make sure that a rare species

is above a given threshold γi, the linear constraint
n∑

j=1

wjxij ≥ γi is added

for that species.

The function also gives as output a number of ecological indices such as the
individual species abundances, and the Simpson and Shannon diversity indices.

Maximizing the geometric mean of species abundances: eco.opti.gm()

Description of inputs

In addition to all inputs and constraints used with eco.opti(), this function
has two additional optional parameters to control the precision.

fprec - a positive integer giving the number of tangent functions to be defined.
The default setting is 100 linear segments, and so gains in accuracy can be
achieved with settings of 500, 1000 etc., however obviously at the cost of
computation time;

max.x - a real number giving the maximum value for the domain over which
the tangent functions are calculated, the default setting is 10000, and so
depending on the scale given it could be necessary to increase this value (or
decrease it for finer accuracy) or the optimization will be the same as it would
be for maximizing abundance.

For the number of tangent lines K, optimizing over 5 species with 100 linear
segments will require 5 × 100 = 500 additional constraints, use of 1000 linear
segments will require 5000 additional constraints and so on. We need to be
careful when reducing the precision, since the log function’s gradient changes
more drastically for values closer to zero than it does for large values. Rather
than taking equal step sizes in calculating our tangent lines, they were distributed
using tk = exp(−k · max(s)/K) where max(s) is the max.x parameter above.

We note also that by default the setting for spec.min will be 1 for all species.
It could be adjusted to a fractional value if desired.
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Maximizing Shannon’s diversity index: eco.opti.sh()

This function uses the same inputs as with the previous two. The program first
solves a maximum and minimum problem using eco.opti() in order to find the
feasible bounds to search for M . Note that −t ln t is concave for t ∈ (0, 1].

Another biodiversity index used as an objective and included in the code made
available online is Simpson’s diversity index 1/(

∑m
i=1 p2i ). This is performed in

a similar manner, however now we are minimizing for a convex function y = t2

rather than maximizing for a concave function and so we need to make the
appropriate changes when using the linear framework above.
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M. (eds.) MDAI 2012. LNCS, vol. 7647, pp. 35–44. Springer, Heidelberg (2012)
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Abstract. The problem addressed in this paper is “how to set ambitious targets
when improving or designing a product while these targets remain within the
reach of the manufacturer”. Thus, improvements to be focused on are those
which both have a significant positive impact on product performance and
correspond to operational changes properly under control by the manufacturer.
While some approaches in the literature have already addressed each of the two
issues of the improvement problem, few deal with both of them at the same time.
In this paper we investigate a qualitative approach that conciliates both points of
view as an optimization problem. The notion of interaction between any two
objectives to be simultaneously satisfied is central in our framework. An illus-
trative example related to the design phase of autonomous robot is provided.

Keywords: Multi criteria decision support � Criteria interaction � Conceptual
design � Performance management � Qualitative reasoning

1 Introduction

Competition in industry is becoming increasingly intense; therefore, in order to satisfy
fluctuating demand and customers’ increasing expectations, deal with the competition
and remain or become market leader; industries must focus on searching for sustainable
advantages. The survival of a company is heavily dependent on its capacity to identify
new customer requirements and develop new products [1]. However, dealing with new
products or improving existing ones in today’s technology–driven market presents
significant risks. Many constraints must be taken into account into the design or
improvement phases [2, 3]. The number of components, functions, and interactions
within complex products/systems is becoming so substantial that responding to the
requirements of customers, and moreover at lower cost is anything but obvious [4]. To
remain successful, manufacturers must adapt to an unprecedented rate of change in
their processes and practices. Such a challenge requires large forecasting capacities.
Industrials must be able to produce challenging but achievable goals. The corre-
sponding optimization problem to be solved for the industrial manufacturer is how to
design new products or improve products according to customers’ requirements at the
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limit of what is technically feasible as he is aware of his available enterprise-level
skills.

Defining achievable targets is a matter of situation awareness to relevantly manage
the balance between strategic ambition and manufacturing realism. Thus, improve-
ments to be made as a priority, i.e. targets that must be raised considerably, are those
which allow both significant positive impacts on product/system performance but also
correspond to actions that are derived from the expertise of the manufacturer. Indus-
trials are thus supposed to relevantly make a prediction about the positive impact one
improvement or another one might have on the global performance of the
product/system but simultaneously be aware of the actions they can actually undertake
with regard to their skill [5]. Forecasting the performances of a new product is far from
obvious: it may be confusing to associate preferential interactions between goals and
behavioral influences actions may have on these goals. This is further complicated by
the qualitative characteristic of the knowledge used to do this forecasting: impacts of
changes in the system/product configuration upon the expected performances cannot
generally be properly quantified. Defining achievable targets is thus a risky and not
deterministic process. The two aspects of the problem that this paper addresses when,
improving a product or a system are:

• Assessing which performances should be improved first to maximize customer
expectations [6];

• Identifying the configurations of the system that should best fulfill these expected
goals [7].

• Sequential management of these two steps may lead to non-convergent situations:
expected goals do not necessarily match feasible ones. Identifying achievable goals
necessitates a conjoint management of these two steps.

• Moreover, the problem is all the more complicated because knowledge regarding
actions-and-goals relationships is mostly imprecise, especially in the preliminary
stage of product design [8]. Two challenges are hereafter considered when
improving a complex system: at the strategic level, which changes in system out-
puts would bring actual improvements that would best fulfill customers’ expecta-
tions, and at the operational level, how system configuration adjustments have to be
carried out in order to achieve these targets. This paper is based on this semantic
distinction to organize approaches in the literature and finally propose a unified
framework.

These two problems have been extensively studied in the literature. Nevertheless
few works integrate both of them. The first point of view focuses on defining strategic
targets without actual feasibility considerations [6, 9], which may lead to focus on
unachievable goals. Conversly, the second point of view focuses on the capacity to
achieve specific goals while not taking into account the commitment to do it [10–12],
which may lead to focus on meaningless goals for the strategic development of the
industrial manufacturer. Some attempts seem nevertheless to be aware of the necessity
to deal with both aspects when improving and designing systems [13, 14]. The
MAUT-like formalism in [13] is attractive, but hides the difficulty of establishing the
behavioral model. In [15], we proposed to identify the coalition of criteria to be
improved first using the index value defined in [6] while being the least difficult to be
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reached; both identifications are merged in a unique optimization problem, unlike to [7]
where they are sequentially processed. This sequencing might lead to divergent cases
where strategic targets never met feasible ones. The model in [15] avoids this mis-
leading process, but is limited to deal with quantitative knowledge. Yet the difficulty is
still compounded by the only imprecise or incomplete data and knowledge that are
generally available in the conceptual phase of design. In this paper, we propose to
reformulate the problem defined in [15] in a qualitative framework. Adequate quali-
tative operators as Sugeno integral and median operator will replace quantitative ones:
Choquet integral and weighted average. Section 2 poses the problematic and the uni-
fied approach with the related optimization problem and proposes redefining the two
sub problems in a qualitative framework. Section 3 proposes an illustration with a case
study and discusses the results. Finally Sect. 4 gives some conclusions and
perspectives.

2 Modeling Policy Aspirations and Capacity to Act

2.1 Problem Characterization and Notations

In order to study complex system, we should characterize it by a set of parameters. For
example, an autonomous robot can be characterized by several parameters: type of
rolling base, size, engine type, embedded energy capacity etc. Each configuration of
these parameters is an instantiation of a robot. To check if there is an improvement
when changing the configuration, the decision maker has to consider the objectives that
have to be achieved by the robot in terms of autonomy, reliability, mobility, cost etc.
The possible configurations perform different outputs that more or less satisfy the
objectives. In a general context, let a system be characterized by its parameters
c1; c2; . . .cp. Let C be the set of all possible values of the vector c1; c2; . . .cp

� �
.

A system is then defined by a configuration c 2 C. Improving a system is to make it
evolve from a configuration c 2 C to a configuration c0 2 C which gives a better
satisfaction of the objectives that have been fixed for the system under cost constraints
(money, risk, time etc.). Let us denote N ¼ 1; 2; ::nf g, the set of criteria. The system
performance is evaluated by its elementary performance measures p1; p2; . . .pn. An
action aj is associated with each change of parameter cj . The set of actions is denoted
by A. As there are operational constraints over the set of actions, some of them cannot
be performed together: they are said to be mutually exclusive. We define an action plan
denoted ap as a subset of non-exclusive actions in A. We are searching among the
available action plans ap, the ones that better improve the customer’s satisfaction and
that are compliant with the capacity of the manufacturer to apply them. The greater the
number of individual performances to be improved, the more difficult it is to find the
proper action plan.

Optimistically, one can seek for an action plan that improves all objectives asso-
ciated to the system. But, it can be more relevant for the decision maker to improve a
subset of criteria I of N that leads to reasonable satisfaction degree when the
improvement is written-down to its achievability. For I�N, let S Ið Þ denote the degree
to which improving criteria of I seems achievable considering the available actions; and
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W Ið Þ the expected degree of satisfaction the improvement on criteria in I should
provide. In [16], we proposed an optimization problem (1) in a multi-criteria aggre-
gation framework to identify the set of criteria I� that maximizes the expected degree of
satisfaction under achievability constraints:

maxI�N WðIÞ
subject toW Ið Þ� S Ið Þ

�
ð1Þ

The problem can be seen as a multi-criteria decision making problem subject to
feasibility. However, feasibility has little to do with explicit operational constraints. S
(I) rather assesses how much confidence there is that the actions the manufacturer
intends to commit will give satisfaction. The idea is to make comparable the degree of
confidence in achieving one goal and the expected degree of satisfaction this goal
would provide.

In [15], S(I) and W(I) were defined in a quantitative setting. In this paper we
propose to redefine these quantities in a qualitative setting. Indeed, the system’s
response to configuration changes and the decision-maker expectations are generally
only imprecisely and incompletely known during the conceptual design phase.
Expected benefits and achievability of targets are assessed through adequate operators
in this qualitative framework.

2.2 Qualitative Characterization of the Capacity to Achieve a Subset
of Criteria

The qualitative approach involved in this section has been originally proposed in [7,
16] and is summarized in the following. It models the impacts that actions have on the
system’s performances. It covers three sub problems:

• how to characterize the impact of one parameter change on a given performance?
• how to merge the impact of several parameters’ changes on a given performance?
• how to assess the overall impact a configuration may have on a set of criteria?

Let Si aj
� �

denote the degree to which the action aj may support performance pi. As
soon as Si aj

� �
> 0, the action aj contributes to the satisfaction of the criterion i. Let

Di aj
� �

be the degree to which the action aj may distract the performance pi. As soon as
Di aj
� �

> 0, the action aj harms the criterion i. The qualitative action-performance
relationship has then to be extended to action plans. The major difficulty is that for a
given action plan ap and a criterion i, several actions in ap may affect pi positively and
several other actions in ap may affect pi negatively. What is then the resulting effect of
ap on the performance pi? To answer this question, standard multi-criteria approaches
cannot be applied since both positive and negative impacts on performance level are
considered here.

Indeed, the estimation of the merged impact of an action plan naturally depends on the
system behavior, as well as on the designer’s/operator’s decisional behavior: a pessimistic
attitude (whereby a risk aversion position will focus attention on the lowest positive merged
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impacts of the action plan) vs. an optimistic attitude (whereby risk acceptance will focus
attention on the most highly positive merged impacts). In both cases, we suppose that the
merged negative impacts cannot be under rated. For example, from an optimistic point of
view, the merged effect can be defined as (Considering Di apð Þ ¼ mina2AD

i
Di að Þ; should

be too permissive.): Si apð Þ ¼ maxa2AS
i
Si að Þ andDi apð Þ ¼ maxa2AD

i apð Þ Di að Þ While in a
pessimistic approach: Si apð Þ ¼ mina2AS

i apð Þ Si að Þ andDi apð Þ ¼ maxa2AD
i apð Þ Di að Þ

Where AS
i apð Þ ¼ a 2 ap : Si að Þ[ 0f g andAD

i apð Þ ¼ a 2 ap : Di að Þ[ 0f g:
Then, the degree to which an action plan may affect a subset of criteria is yet to be

defined. Let I�N be a subset of criteria and ap an action plan. The resulting degree to
which ap should contribute to the improvement of I while not deteriorating the other
criteria in N\I can be assessed, from a pessimistic point of view by:

sI apð Þ ¼ mini2I Si apð Þ if 8 j 2 NnI Sj apð Þ[Dj apð Þ or AD
j apð Þ ¼ ;

h i
0 otherwise

(
, (respectively

maxi2I Si apð Þ if 8 j 2 NnI Sj apð Þ[Dj apð Þ or AD
j apð Þ ¼ ;

h i
0 otherwise

(
from an optimistic

point of view).
More precisely SI apð Þ[ 0 if any criterion in I is improved by ap, whereas no

criterion in N\I is distracted1.
Finally, maxapSIðapÞ characterizes the highest degree to which criteria in I can be

expected to be improved considering all possible action plans. Hence, the quantity
s Ið Þ ¼ maxapSI apð Þ is considered here as the assessment of the capacity to achieve
improvement of I.

2.3 Qualitative Characterization of the Commitment to Achieve a Subset
of Criteria

In this subsection, we are interested in determining the criteria that should be improved
first to satisfy as much as possible the decision-maker expectations. For this purpose,
we build a value function wp defined on the set of all the criteria subsets I of N, and that
estimates the expected overall satisfaction the improvement of criteria in I would
provide, knowing that the initial performances are given by the vector of performances
p0 ¼ p01; p

0
2; . . .; p

0
n

� �
. In our qualitative multi-criteria framework, the overall satisfac-

tion related to any vector of partial performances p1; p2; . . .; pnð Þ is modeled as the
qualitative aggregation of the pi’s performance on the ith criterion by the Sugeno
integral. This operator both allows modeling the importance of criteria but also the
preferential interactions among them. Let us start by recalling some notations con-
cerning the Sugeno integral.

1 In fact we believe that only the pessimistic point of view is a reasonable attitude to compute sI (ap)
since a conjunctive aggregation is necessary in order to guarantee that all criteria of I are expected to
be improved.
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Let L be an ordered qualitative scale with 1L its highest value and 0L its lowest
value. A function μ: 2N → L is called a fuzzy measure if it satisfies the following
conditions:

1. l ;ð Þ ¼ 0L
2. l Nð Þ ¼ 1L
3. l is monotonic non decreasing for inclusion, i.e., for any A;B�N

A�B ) l Að Þ� l Bð Þ.
The monotonicity of l means that the weight of a subset of criteria cannot decrease

when new criteria are added to it (see [9, 10] for further details).
Let l be a fuzzy measure on N taking values in the scale L. Let consider a function

f: N → L, then the Sugeno integral of f with respect to l; denoted Sl fð Þ is given by:

Sl fð Þ ¼ max
1� i� n

minðfr ið Þ; l Ar ið Þ
� �� �

;

where r is a permutation on N such that fr 1ð Þ � fr 2ð Þ � � � � fr nð Þ andAr ið Þ ¼ r ið Þ;f
r iþ 1ð Þ; . . .r nð Þg:

This integral is monotone, and obviously presents a compromise behavior. It
searches the importance exceeding a certain level, and then performs a compromise
deal between the selected values. Another point of view is to see this combination as
the disjunction of conjunctions. All the criteria, their interactions and their importance,
are taken into account to assess the aggregated score of a given vector of elementary
ratings [17–19].

Let us consider that the overall performance of the system is evaluated from criteria
performances using a Sugeno integral operator with respect to the fuzzy measure
l : Sl pð Þ ¼ max1� i� n minðpr ið Þ; l Ar ið Þ

� �� �
where pi is the i

th performance with a value
in the same ordinal scale L ¼ f0L; . . .; 1Lg as the capacity l. By considering the set of
criteria I and the initial vector of performances p0, several vectors of performances pk

are possible improvements on I. If p0 ¼ p01; p
0
2; . . .; p

0
n

� �
, then any pk ¼ pk1; p

k
2; . . .; p

k
n

� �
such that 8i 2 I; pki [ p0i is a possible improvement. Let us note Improvtp0 the set of all
these vectors such that pk is obtained from pk�1 by increasing each pk�1

i one step up
(steps are the levels of L) for all the criteria in I. In other words, similarly to [6], only
improvements obtained by progressing from p0 to 1I along the diagonal of the jIj-cube
are considered (where jIj denotes the cardinal of I) in order to be sure to improve all
criteria in I. To each expected improvement pk is associated its overall performance
Sl pk
� �

. Then, the expected overall performance in this qualitative framework of per-

formance can be assessed by the median of the Sl pk
� �0

s: The median provides how
worth it is improving criteria on I (the median is an associative qualitative compen-
satory aggregation operator [21]):

wp0 Ið Þ ¼ med Sl p0
� �

; Sl p1
� �

; . . .Sl pmaxð Þ� �
;where pmax ¼ 1l; p0NnI

� �
:

Note that the cardinal number of Improvtp0 may be odd or even. Since in the last
case the median consists of finding a value between the two middle points, such a
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choice depends on the decision maker’s attitude. A pessimistic attitude would take first
middle point as the median, while an optimistic one would take the second point.

2.4 Optimization Problem in the Qualitative Setting

Note that by construction, I� I 0 ) sI apð Þ� sI 0 apð Þ; 8ap; and therefore s(I) ≥ s(Iʹ). In
the other hand, I� I 0 ) wp0 Ið Þ�wp0 I 0ð Þ for a given initial performance vector p0.
Hence these two functions are respectively non-increasing and non-decreasing with
respect to I (with respect to the inclusion relationship), and so coincide at an optimal
given I� solution of the optimization problem (1). Hence, the problem of searching the
subset of criteria that are both profitable and achievable is equivalent to the opti-
mization problem (1) with s(I) and wp0 Ið Þ as arguments. However precautions are
necessary to properly process the inequality constraint of problem (1).

In the case where these functions take their values in different ordered qualitative
scales, a third ordered qualitative scale can be introduced where values have the
semantic of satisfaction degree or of possibility degree in order to draw the comparison
of the inequality in (1).

Solving this problem may be extremely hard with 2jAPj action plans and 2jNj subsets
of criteria to search. The first thorny exponential problem comes from the computation
of s(I): heuristics have already been introduced in a branch and bound algorithm in [7]
to compute s(I) in a reasonable time. Further heuristics are needed to solve (1) while
computing the minimum of s Ið Þ0s values; they will be addressed in our future works.
We give here just an overview of two heuristics. The first heuristic will be based on the
inverse monotonicity of s(I) and wp Ið Þ I� I 0 ) s Ið Þ� s I 0ð Þ and, I� I 0 ) wp0 Ið Þ�
�wp0 I 0ð ÞÞ; a second heuristic will introduce lower and upper bounds for s(I). In the
following study case Nj j and APj j are small enough to perform exhaustively all the
required computations.

3 Design Application

The following example has no validation ambition but aims at illustrating the proposed
approach. The robotic challenge Robafis is organized annually by the French associ-
ation of Systems Engineering AFIS to promote Systems Engineering practice in
engineers’ schools2. The scope of the challenge is for instance (Robafis_2013) to build
an autonomous mobile robot able to compete with other robots and using some pro-
vided and imposed materials. Each robot is limited to a 0.33m3 cube and has to achieve
the following mission as quickly as possible: to grasp and transport some various
colored spheres between several stock devices spread over a plan playground. Some
dark lines are drawn on the ground to guide the robot between stock devices. The
autonomous robot was broken down into four sub-systems: a gripper device, sensors
equipment, a rolling base, a control device. The programmable control device type is

2 (http://www.robafis.fr/RobAFIS/Bienvenue.html).
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also imposed to the competitors. The physical alternatives (the possible robot config-
urations) depend on the design options and on the skills of each competitor. The
preference model depends on the strategy followed by each competitor. The solution
principles are resumed in Table 1. There are three principles for designing the gripper
device, three for the rolling base and two for the sensors equipment. Thus, there are 18
actions plans to be compared, corresponding to the 3 × 3 × 2 admissible
configurations.

In this example an action is the choice of one element of the configuration, and an
action plan is a configuration.

3.1 Data of the Application

Four criteria are considered to decide between configurations: the sparsity of used
components (Cr1), the robot speed capacity (Cr2), the reliability of the robot (Cr3), and
the maintainability of the robot (Cr4). Taking into account the competition rules,
Table 2 provides an example of competitors’ preferences between the criteria
modeled by a qualitative capacity function l : 2N ! L where N = {1,2,3,4}, and
L ¼ 0; a; b; c; d; e ¼ 1Lf g; 0 means: not important at all and e means very important.
Table 3 presents, for each of the four criteria, the positive impact (denoted by “+”) or
the negative impact (denoted by “−”) of each elementary technical choice on the
satisfaction level of each criteria. Furthermore a confidence degree in the fulfillment of
such an impact is defined on the same qualitative scale L.

It must be emphasized here that the approach differs from just aggregating
sub-criteria of multiple options and choosing the best one since actions may have
positive or negative impacts on the criteria (it is a bipolar problem) and that Table 3

Table 1. Solution principles

Gripper device Rolling base Sensors equipment

G1: Fork (taking the
sphere from below)

R1: Four wheels
rolling base

S1: two color sensors for following the
dark lines, one light sensor for
recognizing the sphere color

G2: Lateral gripper
(pinching laterally
the sphere)

R2: Two wheel drive
and one free wheel
rolling base

S2: one color sensor for following the
dark line, one color sensor for
recognizing the sphere color

G3: Grapnel (taking
over the sphere)

R3: rolling base with
tracks

Table 2. Competitors’ preferences: the qualitative capacity function values μ(I)

I µ(I) I µ(I) I µ(I) I µ(I)

∅ 0 {C4} a {C1,C3} b {C1,C3,C4} d
{C1} a {C1,C4} b (C2,C3) d {C2,C3,C4} d
{C2} a {C2, C4} c (C1,C2,C3) e {C1,C2,C3,C4} e
{C1,C2} b {C1,C2,C4} d {C3} b {C3, C4} b
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results from an analysis of a behavior model of the robot and describes the confidence
the designers have in the impacts the actions may have on each partial performance.

3.2 Computation of wpi

Let’s consider some given initial performance vectors: p0 ¼ 0 0 0 0ð Þ; p01 ¼
0 a 0 að Þ; p02 ¼ 0 d b cð Þ: The Sugeno integral for each of these initial performance
vectors are respectively: Sl p0ð Þ ¼ 0; Sl p01ð Þ ¼ a; Sl p02ð Þ ¼ d with respect to the
capacity defined in Table 2. Hence, the values of the wp0i for each initial performance
vectors are given in the Table 4:

It can be easily checked in Table 4 that I� I 0 ) wp0i Ið Þ�wp0i I
0ð Þ and wp0i depends

on the initial performance: the higher the initial global performance value Sl p0ið Þ, the
higher wp0i Ið Þ: As the configuration to be selected is the first design choice, we assume
that the initial performance vector is the null vector (p0). Then, with such an initial
vector, the Sugeno integral properties, the median operator and the ordinal scale L
imply that wp0 cannot exceed the value c.

Table 3. Impacts of configuration

Number of pieces Speed Reliability Maintainability
Cr1 Cr2 Cr3 Cr4

G1: fork +e −a −b +e
G2: gripper −b −a +d −a
G3: graspel −d −a +c −d
R1: 4wheels +e −c −d +c
R2: 3 wheels −c +d +c −b
R3: trackers −d +c −c −d
S1: 2 + 1 −c +e +c −c
S2: 1 + 1 +b −d −c +c

Table 4. wp0i ðIÞ values for different initial performances p0i
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3.3 Computation of s(I)

The values of the s Ið Þ0s for each subset of criteria I are computed with an optimistic
attitude (see Sect. 2.2) and are given in Table 5:

Considering the initial performance p0, s(I) takes its values on {c,d,e}, The only
valid coalitions I� that satisfy the inequality constraint of (1) are the coalition {2,4} and
{1,2,4} which happen to maximize, in this particular case both s Ið Þ and wp01

Ið Þ: Thus,
according to the competitors’ preference model defined in Table 4, the best strategy to
follow is to build a robot with high speed and easily maintainable. Considering
Table 3, the three configurations that improve I� and do not degrade the performance
on N=I� are: a1 = {G1,R1,S2}, a2 = {G1,R2,S2} and a3 = {G1,R3,S2}. The three
rolling bases are acceptable at this stage of the design. A sensibility analysis has to be
undergone in order to consolidate this configurations choice. Such analysis should be
included in a wider risk analysis that should be the scope of further research work.

4 Conclusion

Dealing with new products or improving existing ones in today’s technology-driven
markets present important risks. In the case of complex industrial systems, the number
of constraints and goals rapidly becomes inextricable. Manufacturers are faced with an
unprecedented rate of changes in their processes and practices. This challenge requires
large forecasting capacities to produce challenging but achievable goals. In [15], we
have proposed a model in a quantitative framework of performance to better manage the
balance between strategic ambition and manufacturing realism. Nevertheless, the
forecasts are yet compounded by the only imprecise or incomplete knowledge generally
available in the conceptual phase of design. In this paper, we have proposed to refor-
mulate the problem defined in [15] in a qualitative framework. This qualitative approach
allows lifting the constraint encountered in [15]. It allows qualitative reasoning with a
gradient like approach, which seems more consistent with the available knowledge
during design phases. The case study of a design autonomous robot shows the necessity
of considering simultaneously know-how and ambition in design project to set
achievable goals. Identifying achievable goals necessitates a conjoint management of
feasibility and ambition in their definition contrarily to [7] where they were sequentially
managed. In future works, we will propose another point of view to this conjoint control
issue. The idea is to integrate the capacity s(I) in the computation of wI in such a way that

Table 5. s(I) values
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improvements are all the less credible than they require high level of know-how whereas
improvements are all considered equally probable in the models of [7, 15].
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Abstract. In this work we introduce a new class of OWA operators
for Atanassov intuitionistic fuzzy sets which distinguishes between the
weights for the membership degree and the weights for the nonmember-
ship degree; we call these operators Unbalanced Atanassov Intuitionistic
OWA operators. We also study under which conditions these operators
are aggregation functions with respect to the Atanassov intuitionistic
admissible linear orders. Finally, we apply these aggregation functions in
an illustrative example of a decision making problem.

Keywords: Atanassov Intuitionistic Fuzzy Set · OWA operators ·
Unbalanced OWA operators

1 Introduction

Aggregation functions have shown to be a useful tool in problems where informa-
tion should be fused. Although a partial order is used in some generalizations of
aggregation function on other sets (see, for example [1]), some particular classes
of these functions such as OWA operators and Choquet or Sugeno integrals
require all the elements being comparable. Consequently a linear order is needed.
However, these orders are not trivially generated in the extensions of fuzzy sets
where more than one value is used to define the membership degree. This is
the case, for instance of Interval-Valued Fuzzy Sets (IVFSs) [2] or Atanassov
Intuitionistic Fuzzy Sets (AIFSs) [3].

Although some constructions of linear orders on AIFSs have already been
studied [4], more works generalizing different notions using linear orders are
indispensable for its use in applications. In particular, we aim to define on AIFSs
a new class of OWA operators which may apply different weight vectors for the
membership and nonmembership degree. We denote these operators Unbalanced
Atanassov Intuitionistic OWA operators (UAIOWAs). Taking into account that
OWA operators are a particular class of aggregation functions frequently used
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 435–444, 2016.
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in applications, our final goal is to study when UAIOWAs satisfy the proper-
ties demanded to the aggregation functions. Finally, we introduce an illustrative
example on a decision making problem where the Unbalanced Atanassov intu-
itionistic OWA operators are a suitable option to solve the problem.

The structure of the work is as follows: In Sect. 2 we introduce some well-
known concepts which are necessary for the development of this work. The
notion of Unbalanced Atanassov intuitionistic OWA operators is introduced in
Sect. 3 where we study when these operators are aggregation functions. Section 4
shows an example where Unbalanced Atanassov intuitionistic OWA operators are
applied to a decision making problem. We close the study with some conclusions
and open problems for future research.

2 Preliminaries

This section is devoted to briefly introduce several well-known basic concepts and
to fix the notation used in this work. We first recall the notion of aggregation
function on a poset which becomes crucial in the development of this work. For
more information see [1,5].

Definition 1. Given a poset (P,�) with bottom and top, 0P and 1P respectively,
an aggregation function M on P with respect to the order � is a mapping M :
Pn → P satisfying:

– M(0P , . . . , 0P ) = 0P , M(1P , . . . , 1P ) = 1P ,
– M(x1, . . . , xn) � M(y1, . . . , yn) whenever (x1, . . . , xn) � (y1, . . . , yn),

where (x1, . . . , xn) � (y1, . . . , yn) if and only if xi � yi for all i ∈ {1, . . . , n}.
A particular instance of aggregation functions frequently used in many appli-

cations are OWA operators given by Yager [6].

Definition 2. [6] Let w be a weight vector, i.e., w = (w1, . . . , wn) ∈ [0, 1]n with
w1 + . . .+wn = 1. The Ordered Weighted Averaging operator associated with w,
OWAw, is a mapping OWAw : [0, 1]n −→ [0, 1] defined by

OWAw(x1, . . . , xn) =
n∑

i=1

wix(i),

where x(i), i = 1, . . . , n, denotes the i − th greatest component of the input
(x1, . . . , xn).

In this work, we focus on Atanassov intuitionistic fuzzy sets which were
presented in 1986 by Atanassov.

Definition 3. [3] An Atanassov intuitionistic fuzzy set A over the universe X �=
∅ is defined as

A = {(x, μA(x), νA(x)) | x ∈ X},
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where μA(x), νA(x) ∈ [0, 1] are respectively, the membership and nonmembership
degree of the element x to A and they satisfy μA(x) + νA(x) ≤ 1.

We call (μA(x), νA(x)) Atanassov Intuitionistic Fuzzy pair (AIF-pair) and
we denote by L([0, 1]) the set of all possible AIF-pairs, i.e.

L([0, 1]) = {(μ, ν) | μ, ν ∈ [0, 1] and μ + ν ≤ 1}.

For the sake of simplicity, when the Atanassov intuitionistic fuzzy set and the ele-
ment of the referential could not be misunderstood we denote the AIF-pair (μ, ν).

In [3] a partial order on AIF-pairs is introduced. This order is certainly
enough for defining some aggregation functions but for a suitable definition of
OWA operators on these sets a linear order is required. In this way, some recent
studies define and construct admissible orders for the different generalizations
of fuzzy sets [7,8].

In the following we introduce a construction method of an Atanassov intu-
itionistic admissible order [4], namely, a linear order which refines the partial
order introduced in [3] by Atanassov. That is, a linear order that satisfies
that for all (μ1, ν1), (μ2, ν2) ∈ L([0, 1]) such that μ1 ≤ μ2 and ν1 ≥ ν2 then
(μ1, ν1) ≤ (μ2, ν2).

Proposition 1. Let M1,M2 be two aggregation functions M1,M2 : [0, 1]2 →
[0, 1] such that for all (μ1, ν1), (μ2, ν2) ∈ L([0, 1]) the equalities M1(μ1, 1− ν1) =
M1(μ2, 1 − ν2) and M2(μ1, 1 − ν1) = M2(μ2, 1 − ν2) hold simultaneously if and
only if μ1 = μ2 and ν1 = ν2.

The relation ≤M1,M2 on L([0, 1]) given by (μ1, ν1) ≤M1,M2 (μ2, ν2) if and
only if

(i) M1(μ1, 1 − ν1) < M1(μ2, 1 − ν2) or
(ii) M1(μ1, 1 − ν1) = M1(μ2, 1 − ν2) and M2(μ1, 1 − ν1) ≤ M2(μ2, 1 − ν2)

is an admissible order on L([0, 1]).

Notice that taking

– M1(μ, 1 − ν) = μ and M2(μ, 1 − ν) = 1 − ν we recover the intuitionistic
lexicographic 1 order on L([0, 1]). We denote it by ≤ilex1 and it is given by:

(μ1, ν1) ≤ilex1 (μ2, ν2) if and only if μ1 < μ2 or (μ1 = μ2 and ν1 ≥ μ2). (1)

– M1(μ, 1 − ν) = 1 − ν and M2(μ, 1 − ν) = μ we recover the intuitionistic
lexicographic 2 order on L([0, 1]). We denote it by ≤ilex2 and it is given by:

(μ1, ν1) ≤ilex2 (μ2, ν2) if and only if ν1 > ν2 or (ν1 = ν2 and μ1 ≤ μ2). (2)

3 Unbalanced Atanassov Intuitionistic OWA Operators

In the literature we can find several constructions of OWA operators on the intu-
itionistic field. In the following, we introduce the first construction of OWA oper-
ators on AIFSs considering the partial order introduced by Atanassov on [9]. It
is worth mentioning we do not use the original notation on [9] but we rewrite the
method following the notation introduced in Sect. 2.
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Definition 4. The OWA aggregation of intuitionistic fuzzy set associated with
w̃ a weight vector (w̃ = (w1, . . . , wn) in [0, 1]n) such that w1 + . . . + wn = 1 is
given by

UAIOWA[w̃,ṽ,≤]((μ1, ν1), . . . , (μn, νn)) =

(
n∑

i=1

wiμ(i),

n∑

i=1

wn−i+1ν(i)

)

, (3)

where μ(n) ≤ . . . ≤ μ(1) and ν(n) ≤ . . . ≤ ν(1).

More recently, some other works about similar aggregation functions but
using linear orders are presented. For instance, in [10] where Xu and Yager order
is presented, some geometric operators are defined. These operators are IFWG,
IFOWG and IFHG. However, in all these operators the same weight vector is
considered for both membership and nonmembership degree. In this way, the
novelty of the concept of Unbalanced Atanassov intuitionistic OWA operators
lies on the use of two different weight vectors w̃ and ṽ.

Definition 5. An Unbalanced Atanassov Intuitionistic OWA(UAIOWA) opera-
tor associated with an admissible order ≤ on L([0, 1]) and w̃, ṽ weight vectors
(w̃ = (w1, . . . , wn), ṽ = (v1, . . . , vn) in [0, 1]n such that w1 + . . . + wn = 1 and
v1 + . . . + vn = 1) is a mapping UAIOWA[w̃,ṽ,≤] : (L([0, 1]))n −→ [0, 1]2 given by

UAIOWA[w̃,ṽ,≤]((μ1, ν1), . . . , (μn, νn)) =

(
n∑

i=1

wiμ(i),

n∑

i=1

viν(i)

)

, (4)

where (μ(n), ν(n)) ≤ . . . ≤ (μ(1), ν(1)).

OWA operators on fuzzy sets are particular instances of aggre-
gation functions. In the following we study under which conditions
UAIOWA operators are also particular examples of these functions. Since
the boundary conditions UAIOWA[w̃,ṽ,≤]((1, 0), . . . , (1, 0)) = (1, 0) and
UAIOWA[w̃,ṽ,≤]((0, 1), . . . , (0, 1)) = (0, 1) are trivially satisfied, we only need
to study the monotonicity with respect to the considered order ≤ and when
they are well defined, i.e., the codomain is L([0, 1]). That is, we have to study
when the image of n AIF-pairs satisfies

n∑

i=1

wiμ(i) +
n∑

i=1

viν(i) ≤ 1.

Proposition 2. Let ≤ be the order ≤ilex1 or ≤ilex2 on L([0, 1]) (generated as in
Eq. (1) or (2), respectively) and w̃, ṽ ∈ (0, 1]n. Then UAIOWA[w̃,ṽ,≤] operator
satisfies monotonicity.

Proof. Straight by the monotonicity of the OWA operators when the space
considered is the unit interval.

Notice that in Proposition 2, wi, vi �= 0 for all i = 1, ..., n is imposed. This
fact is crucial as it can be seen in the following example.
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Example 1. Let ≤ilex2 be the order generated as in Eq. (2), w = (0.5, 0.5) and
v = (0, 1) Then

UAIOWA[w,v,≤ilex2]((0.9, 0.1), (0, 1)) = (0.9 · 0.5 + 0 · 0.5, 0.1 · 0 + 1 · 1) =
(0.45, 1).

Similarly, UAIOWA[w̃,ṽ,≤ilex2]((0.8, 0), (0, 1)) = (0.8 · 0.5 + 0 · 0.5, 0 · 0 + 1 ·
1) = (0.4, 1). Since (0.9, 0.1) ≤ilex2 (0.8, 0) but (0.45, 1) ≥ilex2 (0.4, 1), then
UAIOWA is not monotonic.

Finally, we study when the image of the operators are always intuitionistic
pairs, namely, (

n∑

i=1

wiμ(i) +
n∑

i=1

viν(i) ≤ 1

)

. (5)

It is a simple calculation to see that in the more restrictive case, when ν(i) =
1 − μ(i), the equation is reduced to

n∑

i=1

wiμ(i) ≤
n∑

i=1

viμ(i). (6)

Lemma 1. Let w̃, ṽ ∈ [0, 1]n be two weight vectors. Then the following state-
ments are equivalent.

(i)
i∑

j=1

wj ≤
i∑

j=1

vj for all i = 1, . . . , n.

(ii)
n∑

i=1

witi ≤
n∑

i=1

viti for all ti ∈ [0, 1] such that t1 ≥ t2 ≥ . . . ≥ tn ≥ 0.

Proof. We first prove (i.) implies (ii.). As

w1 ≤ v1 then for all a1 ≥ 0 a1w1 ≤ a1v1

w1 + w2 ≤ v1 + v2 then for all a2 ≥ 0 a2(w1 + w2) ≤ a2(v1 + v2)

.

.

.
.
.
.

w1 + . . . + wn ≤ v1 + . . . + vn then for all an ≥ 0 an(w1 + . . . + wn) ≤ an(v1 + . . . + vn).

(7)
If we sum

(a1 + . . .+an)w1 +(a2 + . . .+an)w2 + . . .+anwn ≤ (a1 + . . .+an)v1 +(a2 +
. . . + an)v2 + . . . + anvn for all a1, . . . , an ≥ 0.

Taking t1 = (a1 + . . . + an), t2 = (a2 + . . . + an), . . . , tn = an it satisfies (ii.).
Let us see that (ii.) implies (i.). But this is trivial taking t1 = t2 = . . . = ti = 1

and ti+1 = ti+2 = . . . = tn = 0.
Finally, we have the following characterization of UAIOWA operators.

Theorem 1. Let w̃, ṽ ∈ (0, 1]n be weight vectors. Then the following statements
are equivalent:

(i) UAIOWA operator associated with w̃, ṽ and the order ≤ilex1 is an aggrega-
tion function.
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(ii)
n∑

i=1

witi ≤
n∑

i=1

viti for all ti ∈ [0, 1] such that t1 ≥ t2 ≥ . . . ≥ tn ≥ 0.

Proof. Notice that since the boundary conditions and the monotonicity holds
true, UIOWA is an aggregation operator if the codomain of the function is
L([0, 1]), namely, the image of n AIF-pairs is always an AIF-pair.

Let us show that (i.) implies (ii.). Suppose UAIOWA is an aggregation
function. Then it satisfies Eq. (6) for all μi ∈ [0, 1], i = 1, . . . , n. Due to ≤ilex1,
μ(1) ≥ ... ≥ μ(n), i.e., they are ordered in a decreasing way. Taking ti = μ(i) it
satisfies (ii.).

Finally, let us show that (ii.) implies (i.). First of all (ii.) can be rewritten as

n∑

i=1

(wi − vi)ti ≤ 0, for all ti ∈ [0, 1] such that t1 ≥ t2 ≥ . . . ≥ tn ≥ 0. (8)

Let (μi, νi) for i = 1, . . . , n, be n intuitionistic pairs. The expression of
UAIOWA associated with w̃, ṽ and the order ≤ilex1 is

UAIOWA[w̃,ṽ,≤ilex1]((μ1, ν1), . . . , (μn, νn)) =

(
n∑

i=1

wiμ(i),

n∑

i=1

viν(i)

)

,

where μ(1) ≥ μ(2) ≥ . . . ≥ μ(n) due to the order ≤ilex1 used.
Considering that μ(i) + ν(i) ≤ 1 and v1 + v2 + . . . + vn = 1 then

n∑

i=1

wiμ(i) +
n∑

i=1

viν(i) ≤
n∑

i=1

wiμ(i) +
n∑

i=1

vi(1 − μ(i)) = 1 +
n∑

i=1

(wi − vi)μ(i) ≤ 1,

where the last inequation is due to Eq. (8).

Corollary 1. Let w̃, ṽ ∈ (0, 1]n be weight vectors. Then the following statements
are equivalent:

(i) UAIOWA operator associated with w̃, ṽ and the order ≤ilex1 is an aggrega-
tion function.

(ii)
i∑

j=1

wj ≤
i∑

j=1

vj for all i = 1, . . . , n.

Proof. Straight by Lemma 1 and Theorem 1.

Lemma 2. Let be w̃, ṽ ∈ [0, 1]n two weight vectors. Then the following state-
ments are equivalent:

(i)
n∑

j=i

wj ≥
n∑

j=i

vj for all i = 1, . . . , n.

(ii)
n∑

i=1

witi ≥
n∑

i=1

viti for all ti ∈ [0, 1] such that tn ≥ tn−1 ≥ . . . ≥ t1 ≥ 0.
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Proof. Similar to Lemma 1.

Theorem 2. Let w̃, ṽ ∈ (0, 1]n be weight vectors. Then the following statements
are equivalent:

(i) UAIOWA operator associated with w̃, ṽ and the order ≤ilex2 is an aggrega-
tion function.

(ii)
n∑

i=1

witi ≥
n∑

i=1

viti for all ti ∈ [0, 1] such that tn ≥ tn−1 ≥ . . . ≥ t1 ≥ 0.

Proof. Similar to Theorem 1.

Corollary 2. Let w̃, ṽ ∈ (0, 1]n be weight vectors. Then the following statements
are equivalent

(i) UAIOWA operator associated with w̃, ṽ and the order ≤ilex2 is an aggrega-
tion function.

(ii)
i∑

j=1

wj ≤
i∑

j=1

vj for all i = 1, . . . , n

Proof. Straight by Lemma 2 and Theorem 2.

Remark 1.
It can be seen that:

i∑

j=1

wj ≤
i∑

j=1

vj for i = 1, ..., n − 1 (the condition for i = n is trivial)

if and only if

1 +
i∑

j=1

wj ≤ 1 +
i∑

j=1

vj for i = 1, ..., n − 1

if and only if

1 −
i∑

j=1

vj ≤ 1 −
i∑

j=1

wj for i = 1, ..., n − 1

if and only if
n∑

j=i+1

vj ≤
n∑

j=i+1

wj for i = 1, ..., n − 1.

Consequently, taking into account that w̃ and ṽ are weight vectors, i.e.,
n∑

i=1

wi = 1 and
n∑

i=1

vi = 1, the condition that the weight vector must satisfy

to be aggregation functions is the same for the orders ≤ilex1,≤ilex2.
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Notice that the weight vectors wi = vi for all i = 1, . . . , n satisfy the condition
required. In this way, the UAIOWA operators obviously increase the expressive-
ness and add more flexibility to the aggregation result than other operators. In
fact, we believe a deep study on the optimization of the weight vectors could be
useful in the improvement of the applications.

Example 2. Take w̃ = (0.2, 0.3, 0.5), ṽ = (0.4, 0.25, 0.35) and ≤ilex2. Given the
AIF-pairs (0.3, 0.7), (0.4, 0.2) and (0.1, 0.8)

UAIOWA[w̃,ṽ,≤ilex2]((0.3, 0.7), (0.4, 0.2), (0.1, 0.8)) =
(0.2 · 0.4 + 0.3 · 0.3 + 0.5 · 0.1, 0.4 · 0.2 + 0.25 · 0.7 + 0.35 · 0.8) = (0.22, 0.535)

which satisfies 0.22 + 0.535 ≤ 1.

4 Illustrative Example: Application to a Decision Making
Problem

In this section we make use of UAIOWA operators in a decision making problem
where information represented by Atanassov intuitionistic fuzzy set needs to be
fused. However, we never intended to introduce a real application, but rather to
show how it can be used.

We recall that a decision making problem consists on finding which is the
best alternative in a set of n elements, X = {x1, . . . , xn}. In particular, in this
problem we consider a set of four companies where some money can be invested.
We ask a set of 50 experts who give their opinion in the following way:

– If they believe investing in the company is a good option, they vote in favour
of the company.

– If they believe investing in the company is not a good option, they vote against
the company.

– If they are not sure they vote abstain.

In this way, after all the votes we have the results given in Table 1.
We can construct the Atanassov intuitionistic fuzzy set, considering the uni-

verse X = {Company 1,Company 2,Company 3,Company 4} and generating
the membership and nonmembership degrees dividing the values in favour and
against the company by the number of experts.

Table 1. Opinions of the experts with respect of the 4 companies

Favour Against Abstain

Company 1 15 10 25

Company 2 28 14 8

Company 3 30 10 10

Company 4 8 13 29
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For instance, with the information of Table 1 the following AIFS is generated:

A1 = {(C1, (0.3, 0.2)), (C2, (0.56, 0.28)), (C3, (0.6, 0.2)), (C4, (0.16, 0.26))}.

Due to the international nature of the companies, the cultural differences may
have a negative effect on the result. To avoid this situation, we repeat this process
in three different countries: Spain, China and Brasil.

The results of the three countries Spain, China and Brasil are summarized
in the AIFSs A1, A2, A3, respectively.

A2 = {(C1, (0.46, 0.42)), (C2, (0.4, 0.6)), (C3, (0.2, 0.5)), (C4, (0.75, 0.2))},

A3 = {(C1, (0.12, 0.34)), (C2, (0.26, 0.58)), (C3, (0.7, 0.3)), (C4, (0.44, 0.26))}.

In the process of choice, the first step to be taken is the fusion of the three
AIFSs. In this example, such fusion is carried out using an UAIOWA operator.
Since the aim of this section is purely illustrative and for the sake of simplicity
and clarity, the order and the weights vectors in this example are set arbitrarily.
Nevertheless, in real applications some kind of optimization algorithm should be
used to fine-tune them. In the present example the considered order is ≤ilex1,
and the weight vectors are set to w̃ = (0.2, 0.25, 0.55) and ṽ = (0.25, 0.35, 0.4)
(which satisfy the condition of Corollary 1).

The results are

UAIOWA[w̃,ṽ≤ilex1]((0.3, 0.2), (0.46, 0.42), (0.12, 0.34)) = (0.233, 0.311),

UAIOWA[w̃,ṽ≤ilex1]((0.56, 0.28), (0.4, 0.6), (0.26, 0.58)) = (0.355, 0.512),

UAIOWA[w̃,ṽ≤ilex1]((0.6, 0.2), (0.2, 0.5), (0.7, 0.3)) = (0.4, 0.345),

UAIOWA[w̃,ṽ≤ilex1]((0.16, 0.26), (0.75, 0.2), (0.44, 0.26)) = (0.348, 0.245),

which generate the AIFS Ã, given by:

Ã = {(C1, (0.233, 0.311)), (C2, (0.355, 0.512)), (C3, (0.4, 0.345)),
(C4, (0.348, 0.245))}.

Notice that Ã summarizes the information of the experts of the three countries
about the companies.Moreover, since the result is anAtanassov intuitionistic fuzzy
set, a linear order is required to take a decision. In this example, we take ≤ilex1 since
it is the order used for the UAIOWA. The ranking of the alternatives is:

Company 3 better than Company 2 better than Company 4 better than Com-
pany 1.

Consequently, the best alternative in this illustrative example is to invest in
the third company.
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5 Conclusion

In the last years there has been an increasing interest in the study of linear
orders for the different extensions of Fuzzy Sets. These orders let us define some
theoretical notions which could not be trivially generalized. In particular, in this
work, we have defined a new class of aggregation functions slightly different from
OWA operators which makes use of different weight vectors for the membership
and nonmembership degrees. However, the number of linear orders for Atanassov
intuitionistic fuzzy sets in which these operators satisfy the monotonicity are
really scarce. We let for future work the study of the linear orders in these sets
generated by aggregation functions which satisfy the monotonicity.

In the context of the applications, we have only introduced an illustrative
example where the parameters are set arbitrarily. Thereby, a deep study of algo-
rithms which fine-tunes the parameters (order and weight vectors) in real appli-
cations is left to future researchs.

Acknowledgments. The work has been supported by projects TIN2013-40765-P of
the Spanish Ministry of Science and the Research Services of the Universidad Publica
de Navarra.
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Abstract. We discuss a generalization of the fuzzy (weighted) k-means
clustering procedure and point out its relationships with data aggre-
gation in spaces equipped with arbitrary dissimilarity measures. In the
proposed setting, a data set partitioning is performed based on the notion
of points’ proximity to generic distance-based penalty minimizers. More-
over, a new data classification algorithm, resembling the k-nearest neigh-
bors scheme but less computationally and memory demanding, is intro-
duced. Rich examples in complex data domains indicate the usability of
the methods and aggregation theory in general.

Keywords: Fuzzy k-means algorithm · Clustering · Classification ·
Fusion functions · Penalty minimizers

1 Introduction

Aggregation theory [14] till very recently was mainly focused on various methods
to determine individual objects that are representative to a set of n numeric
values, typically in the [0, 1] interval. Such functions are very useful, e.g., in
univariate statistics, decision making, and fuzzy control. Yet, we are currently
observing a growing interest in aggregation of more complex data types [2,12] – in
particular, on diverse ordering structures and spaces equipped with dissimilarity
measures. In the latter case, a fusion function F to aggregate n objects from a
set X , is usually required at least to:

– return an object of the same type as the type of the inputs,
– for all x ∈ X fulfill F(x, . . . ,x) = x.

In other words, it is an idempotent function like F : X n → X . Most commonly,
such fusion functions are defined as minimizers of some penalties, compare [6],
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given via a proper aggregation of dissimilarity degrees between each input obser-
vation and the representative object being sought.

In this contribution we study the role of the mentioned penalty minimizers
in partitional clustering and object proximity-based classification procedures.
First of all, let us note that Leisch in [18] and Bock in [4] – among others –
observed that the k-means [19] procedure that aims to cluster a set of n objects
in R

d, d ≥ 2, into a fixed number k > 1 of disjoint and nonempty clusters
does not necessarily have to rely on the squared Euclidean metric as a basis
for measuring the within-cluster sums of distances. These lead to a common
framework bracketing the classical k-means, k-medians, and – by extension –
the k-medoids algorithms together. What is more, Yu and Yang in [22], see
also the references therein, made similar observations concerning the relative
arbitrariness of each observation’s cluster membership degrees in the weighted
k-means (also known as fuzzy c-means) procedure, yet, this time, they were only
considering the squared Euclidean metric.

In this paper, we consider a natural generalization of the Yu and Yang [22]
fuzzy k-means procedure to spaces equipped with arbitrary dissimilarity mea-
sures. As it shall turn out, fusion functions defined as minimizers of some distance-
based penalties play a key role in its definition. We explore various examples of
clustering of complex data types, including rankings, strings, intervals, and fuzzy
numbers.

Additionally, we introduce a new classification algorithm that extends the
ideas behind the nearest centroid classifier [13,20] and incorporates the fuzzy
k-means procedure in its data pre-processing part. Such a method, similarly
as the k-nearest neighbor algorithm, works in arbitrary spaces equipped with
a dissimilarity measure, but is less time and memory demanding. Moreover,
it creates a natural and nicely interpretable data model that can be used to
understand the form of observations in each data class.

This contribution is arranged in the following manner. Sect. 2 introduces the
generalized fuzzy k-means procedure and discusses the role of distance-based
penalty minimizers in its formulation. In Sect. 3 we present various examples of
clustering of data of different complexity and discuss the importance of a proper
choice of the algorithm’s free parameters. Sect. 4 introduces the new penalty
minimizers-based classification method, which in turn is illustrated in Sect. 5.
Lastly, in Sect. 6 we conclude the paper and indicate noteworthy future research
topics.

2 Fuzzy K-Minpen Clustering

Let (X , d) be a space equipped with a pairwise dissimilarity measure, i.e., d :
X × X → [0,∞] such that for any x,y ∈ X it at least holds d(x,x) = 0 and
d(x,y) = d(y,x).
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Let us consider the following generalization of the fuzzy (weighted) k-means
[3] clustering task. For some fixed k > 1, x(1), . . . ,x(n) ∈ X , we seek:

arg min
µ(1),...,µ(k)∈X ′

k∑

j=1

n∑

i=1

ψ

(
ϑ(d(x(i),µ(j)))

∑k
l=1 ϑ(d(x(i),µ(l)))

)

ϕ
(
d(x(i),µ(j))

)
, (1)

where X ′ ⊆ X , ϑ : [0,∞] → [0,∞] is a strictly decreasing, and ϕ : [0,∞] →
[0,∞], ψ : [0, 1] → [0,∞] are strictly increasing continuous functions such that
ϕ(0) = ψ(0) = 0. In the original fuzzy k-means setting, we have X = X ′ = R

d,
ϑ(d) = d−2/(m−1) for some m > 1 called fuzzifier, ϕ(d) = d2, and ψ(d) = dm.

Note that already in [22] it was suggested that an arbitrary increasing func-
tion ϕ can be used in the fuzzy k-means algorithm. Nevertheless, the authors
were focused only on the Euclidean space, because they observed that otherwise
the results were difficult to study analytically (of course, as we indicate in the
section to follow, this does not contradict the fact that in other settings a clus-
tering task may end up with a practically meaningful solution). Moreover, it is
worth pointing out that they assumed ψ(d) = dm for some m > 1 and that ϑ is
functionally dependent on ϕ.

A typical choice of d is some relatively easily computable metric. By defin-
ition, ϕ ◦ d is then a dissimilarity measure. The choice of ϕ, ϑ, and ψ is quite
arbitrary, however, as we shall see further on, obviously not all the choices lead to
a unique solution. By changing the generator function, we may control – among
others – the level of fuzziness of the obtained partition as well as the method’s
sensitivity to outliers.

The optimization problem (1) aims to find the centers of k clusters. Let us
make a few observations. For a fixed k and a fixed set of input observations, let
µ∗(1), . . . ,µ∗(k) ∈ X ′ be the solution to (1) (assuming it exists and is unique).
Assuming that

∑k
l=1 ϑ(d(x(i),µ∗(l))) > 0, denote with wi,j the following quan-

tity:

wi,j =
ϑ(d(x(i),µ∗(j)))

∑k
l=1 ϑ(d(x(i),µ∗(l)))

. (2)

As each wi,j ≥ 0 and
∑k

j=1 wi,j = 1, we have that (wi,1, . . . , wi,k) is a weighting
vector. Thus, wi,j can be interpreted as the degree of belongingness of x(i) to
the j-th cluster.

Remark 1. In fact, the wj functions given for any x ∈ X and j = 1, . . . , k by

wj(x) = ϑ(d(x,µ∗(j)))
∑k

l=1 ϑ(d(x,µ∗(l)))
define a fuzzy pseudopartition of whole data domain,

X , into k subsets. As usual in unsupervised learning methods, its quality is
strongly related to the representativeness of a given sample x(1), . . . ,x(n).

We see that the closer x(i) is to some µ∗(j), the higher is its impact in the
computation of µ∗(j). The strength of this impact may be moderated via the
ψ function. Yet, please note that ψ(wi,j) does not possess the same appealing
interpretation as the sole wi,j .
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In the current context, it is easily seen that for each j:

µ∗(j) = arg min
µ∈X ′

ϕ−1

(
n∑

i=1

viϕ
(
d(x(i),µ)

))

, (3)

where vi = ψ(wi,j)/
∑n

l=1 ψ(wl,j). Recall that our aforementioned assumptions
on ϕ guarantee that ϕ−1 exists. In other words, each µ∗(j) is a minimizer of
a distance-based penalty function given as a weighted quasi-arithmetic mean.
Hence the name of the discussed procedure: k-penalty minimizers (k-minpen for
brevity). Each µ∗(j) is of course generated by an idempotent fusion function.

Remark 2. A common choice of X ′ is either X or {x(1), . . . ,x(n)}. In the latter
case we obtain a cluster center that in fact is a kind of a set exemplar. In
particular, in the case ϕ(d) = d such a penalty minimizer is known as the medoid
in the literature, while its unconstrained version – the 1-median. In complex
data domains (character strings, rankings, etc.), set exemplars are much easier
to compute, as exact algorithms to determine, e.g., the 1-median, may not exist
or be computationally too demanding.

Remark 3. An interesting special case is when ϑ, ϕ, ψ are power functions. Let
ϑ(d) = d−α for some α > 0, ψ(d) = dm, m > 0, ϕ(d) = dp, p > 0, p �= αm.
Then the objective function may be rewritten as

∑k
j=1

∑n
i=1 d(x

(i),µ(j))−αm+p/
(∑k

l=1 d(x
(i),µ(l))−α

)m

. Assume that for every i = 1, . . . , n, minj d(x(i),µ(j))
is unique. Let ∨ and ∧ denote the maximum and minimum operators, respec-
tively. Then we may observe that as α → 0+, we have

∑k
l=1 d(x

(i),µ(l))−α

=
(∨k

l=1 1/d(x(i),µ(l))
)α

. In such a case the objective function coincides with
∑n

i=1

∧k
j=1 d(x

(i),µ(j))p, which is in fact equivalent to the criterion used in the
generalized k-means algorithm, compare [4].

Remark 4. Investigation carried out in this paper is concerned with a possible
generalization of the fuzzy k-means through the modifications of the “centroid”
part of Eq. (1). Interestingly, a different focus can be found in [17], where the
emphasis is put on the properties and possible generalizations of the “fuzzifier”
part, i.e., the weights wij . Some examples of such a fuzzifier were also studied
in [21].

Of course, one should ask how to approximate the solution to Eq. (1) for
practical use. If X = R

d, then a nonlinear solver like, e.g., the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) or CMA-ES (Covariance Matrix Adaptation-Evo-
lution Strategy) algorithm, can be used for that purpose. In discrete spaces, e.g.,
genetic algorithms may be used. We can also rely on the following well-known
heuristic:

1. Initialize µ(1), . . . ,µ(k), e.g., randomly;
2. Based on current µ(1), . . . ,µ(k), compute the new weights according to

Eq. (2);
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3. Based on current weights, compute the new µ(1), . . . ,µ(k) using the penalty-
based fusion function from Eq. (3);

4. Go to Step 2. until some convergence criterion is met.

As usual with any iterative optimization procedure, the above should be repeated
a few times and the output leading to the least overall objective criterion should
be chosen as an approximation to the solution.

3 Clustering Examples

3.1 Aggregation of Multidimensional Real Vectors

Let us consider the most typical clustering case, i.e., X ′ = X = R
d. It is well

known that if d is the Euclidean metric and ϕ(d) = d2, then the penalty min-
imizer is the weighted centroid (componentwise weighted arithmetic mean, see
the classical k-means and fuzzy k means algorithm). Moreover, if d is the Man-
hattan distance and ϕ(d) = d, then the penalty minimizer is the componentwise
weighted median (compare the k-medians algorithm), see [4,18].

Many different instances of the k-minpen algorithm can easily be generated.
For example, let d be the Euclidean metric but this time ϕ(d) = d. The solution
to Eq. (3) is called the weighted geometric (1-)median. In general, it cannot
be expressed with an analytic formula. However, e.g., the Weiszfeld (Vázsonyi)
procedure, compare [12], may be applied in this case. Note that the 1-median
is more robust to outlying observations as opposed to the centroid. Therefore,
in some cases, one may obtain more reliable results, especially if data follow a
skewed distribution.

3.2 Aggregation of Intervals

Let X = I(R) be the space of all closed subintervals in the real line. Among
popular interval metrics, compare [2,12], we have the Moore interval metric,
given by: dM

([
x, x

]
,
[
y, y

])
= |x−y|∨|x−y|. Interestingly, if an object in I(R) is

interpreted as a point in R
2, the Moore metric is exactly the Chebyshev distance,

d∞. On the other hand, please note that each interval can be represented as a
pair (x±r), where x = (x+x)/2 is its midpoint and r = (x−x)/2 is its halfwidth.
In such a setting, this metric is the Manhattan one: it holds dM(x±rx, y ±ry) =
|x− y|+ |rx − ry|. The dM-based weighted 1-median of x ∈ I(R)n is equal to the
componentwise weighted median of the inputs’ midpoints and halfwidths, see [8,
Theorem 1].

Moreover, if we assume that dM2(x±rx, y±ry) =
√|x − y|2 + |rx − ry|2, then

the dM2-based weighted centroid of x ∈ I(R)n is equal to the componentwise
weighted arithmetic mean of midpoints and halfwidths, see [8, Theorem 3].

Let us consider a dataset representing the average low and high temperatures
(in ◦C) recorded in 860 cities all over the World, which we shall treat as interval
data. Data were web scraped on January 12, 2016 from the English Wikipedia
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Fig. 1. The partitioning obtained with the k-minpen algorithm on interval temperature
data. The color version of this figure is available at http://gagolewski.rexamine.com/
resources/data/wikiweather/.

(http://en.wikipedia.org/) and are available for download at http://gagolewski.
rexamine.com/resources/data/wikiweather/.

Let us partition the cities into k = 9 clusters using the k-minpen algo-
rithm based on the temperatures recorded in January and July. In such a
setting, X = X ′ = I(R) × I(R). During the computations we rely on the
midpoint±halfwidth representation, i.e., x(i) = {(x(i)

1 ± r
(i)
1 ), (x(i)

2 ± r
(i)
2 )} ∈ X ,

ϑ(d) = d−4, ψ(d) = d, d = dM2 , ϕ(d) = d2, i.e., a weighted centroid-based
approach. Figure 1 gives a graphical representation of the corresponding parti-
tioning. Moreover, Table 1 relates each clusters’ centroids with the well-known
Köppen climate classification. We see that the two data division schemes agree
with each other quite nicely.

Nevertheless, we observe that the choice of d, ϕ,ψ, and ϑ strongly influences
the resulting partitionings. For instance, let us compare the aforementioned set-
ting with the one based on d = dM , ϕ(d) = d, ϑ(d) = d−1, and ψ(d) = d2. The
Fowlkes-Mallows (FM-)index, a measure of the agreement between two cluster-
ings, is equal to ca. 0.652. On the other hand, if d = dM , ϕ(d) = d, ϑ(d) = d−2,
and ψ(d) = d, then the FM-index equals to ca. 0.599 (with FM = 0.765 for the
two dM -based variants).

3.3 Aggregation of Fuzzy Numbers

Let F(R) denote the space of all fuzzy numbers and let:

d2(A,B) =
√∫ 1

0
(AL(α) − BL(α))2dα +

∫ 1

0
(AU (α) − BU (α))2dα

http://gagolewski.rexamine.com/resources/data/wikiweather/
http://gagolewski.rexamine.com/resources/data/wikiweather/
http://en.wikipedia.org/
http://gagolewski.rexamine.com/resources/data/wikiweather/
http://gagolewski.rexamine.com/resources/data/wikiweather/
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Table 1. The cluster centers obtained with the k-minpen algorithm related to the
Köppen climate classification.

January July

No Ave. low◦C Ave. high◦C Ave. low◦C Ave. high◦C Köppen climate classification

1 −27.86 −20.85 0.42 6.90 Polar and alpine climates

2 −14.50 −5.77 13.76 24.46 Taiga

3 0.19 6.24 13.22 22.51 Oceanic climate

4 −4.96 2.79 16.88 27.81 Warm summer continental

5 2.05 11.10 20.95 31.14 Mediterranean climates

6 9.25 20.08 23.64 33.45 Hot desert climate

7 20.72 29.87 22.47 30.46 Tropical wet and dry

8 17.30 27.46 9.92 21.35 Cold desert climate

9 10.51 21.69 3.42 13.01 Humid subtropical climate

be the Euclidean metric on F(R), where, e.g., AL and AR denote the lower and
upper α-cut bounds, respectively. Note that in a very similar manner, arbitrary
weighted Minkowski metrics may be introduced, see [15].

The most commonly used subclass of F(R) is formed by the so-called trape-
zoidal fuzzy numbers, i.e., fuzzy numbers with linear sides, compare [1]. A mem-
bership function of a trapezoidal fuzzy number T is given by:

μT (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < t1 or x > t4,
x−t1
t2−t1

if t1 ≤ x < t2,
t4−x
t4−t3

if t3 < x ≤ t4,

1 if t2 ≤ x ≤ t3,

where t1 ≤ t2 ≤ t3 ≤ t4. Since the membership function of a trapezoidal fuzzy
number T is completely defined by these four real numbers, we denote it usually
as T = T(t1, t2, t3, t4). It is easy to show that the α-cuts have the following lower
and upper bounds: TL(α) = t1 + (t2 − t1)α, TU (α) = t4 − (t4 − t3)α. The set of
all trapezoidal fuzzy numbers is denoted by F

T (R).
Ban et al. in [1] derived an algorithm for determining a d2-based centroid of

n such fuzzy sets, i.e., t(i) = T(t(i)1 , . . . , t
(i)
4 ) for i = 1, . . . , n. It turns out that

it can be expressed as a trapezoidal fuzzy number of the form T(t̄1, t̄2, t̄3, t̄4),
where t̄i = 1

n

∑n
j=1 t

(j)
i . The weighted version can be obtained by replacing the

arithmetic mean with its weighted version.
Let us consider climate data from Sect. 3.2, in the case of 135 European

cities (the dataset size has been reduced due to missing observations). This
time, we shall represent record low, average low, average high, and record high
temperatures (in ◦C) as trapezoidal fuzzy numbers. Again, we rely on data from
January and July. Moreover, additionally we consider the average precipitation
observed during these two months. Therefore, X = X ′ = F

T (R)×F
T (R)×R

2 and
for all x = (t1, t2, p1, p2) ∈ X , the dissimilarity measure is given as a fusion of
metrics on two different spaces: d(x(i),x(j)) = λ1d

2
2(t

(i)
1 , t(j)1 ) + λ2d

2
2(t

(i)
2 , t(j)2 ) +
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Table 2. Exemplary cities clustered into k = 3 groups with the k-minpen algorithm.

Amsterdam Oslo Gijón

Luxembourg Paris Gibraltar

Bordeaux Warsaw Tunis

Oxford Saint Petersburg Tehran

Milan Tbilisi Thessaloniki

Linz Skopje Ankara

Sarajevo Samara Florence

. . . . . . . . .

λ3|p(i)1 − p
(j)
1 |2 + λ4|p(i)2 − p

(j)
2 |2. In Table 2 we present an exemplary clustering

of a rectangular World map region including Europe into k = 3 city groups,
λ1 = λ2 = 0.9, λ3 = λ4 = 0.2, ϕ(d) = d, ϑ(d) = d−2, ψ(d) = d. Note that in
this case we can rely on various other metrics on the F

T (R) space, including the
weighted ones.

3.4 Aggregation of Rankings

Let us assume that (X , d) is the space of all possible full rankings of length d ≥ 2,
where d is the Kendall rank (bubble sort) distance, i.e.,

d(x,y) = |{(k, l) : (rx(k) − rx(l))(ry(k) − ry(l)) < 0}|,
where, e.g., rx(k) denotes the rank of k in x. For instance, r(1,3,4,2,5)(2) = 4 and
d((1, 2, 3, 4, 5), (1, 5, 2, 3, 4)) = 3.

The 1-median with respect to the Kendall distance is called Kemeny optimal
aggregation. Unfortunately, the problem of computing such a fusion function is
known to be NP-complete even when n = 4 [11]. However, we can employ an
approximate weighted 1-median in the process of computing the fuzzy k-minpen
algorithm. Firstly, let us recall that the Borda count method computes the aver-
aged elements’ ranks, r =

( ∑n
i=1 rx(i)(1)/n, . . . ,

∑n
i=1 rx(i)(d)/n

)
, and then

returns as the result the ordering permutation of r. It has been shown in [9] that
the Borda count may serve as a 5-approximation to the Kemeny-optimal aggre-
gation problem. In our case, the weighted 1-median can be based on the weighted
Borda count. Additionally, we suggest to employ the following heuristic aiming at
improving the approximate result. For some l ≥ 1:

1. Let µ be the weighted Borda count computed on the input data set;
2. Generate l candidate rankings by applying on µ a single bubble sort swap at

a random position;
3. Set as the new µ the best (in terms of the 1-median objective function)

ranking among the candidate ones;
4. Go to Step 2 until there are no further improvements in terms of the objective

function;
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As usual, such a procedure should be repeated a few times.
Let us consider a set of 100 vectors, each representing the number of cita-

tions to the publications written by an author listed in the Elsevier Scopus
database (available at http://cena.rexamine.com/research). By computing the
h-index (H), the number of publications (N), and the total number of citations
(
∑

) of each agent, we obtain 3 rankings µ(1),µ(2),µ(3) of length 100.
A benchmark set, consisting of 90 rankings and 3 equal-sized classes was cre-

ated in such a way that x(j) is a version of some µ(i) disturbed by consecutively
applying l bubble sort swaps at random positions. The total Kendall distance
between the true µ(i) and the cluster centers computed with the fuzzy k-minpen
algorithm (averaged over 35 runs) equals to ca. 0.2 in the l = 50 case and 5.6 in
the l = 100 case (ϕ(d) = d, ϑ(d) = d−2, ψ(d) = d).

3.5 Aggregation of Strings

Numeric Strings. Let X = {(x1, . . . , xd) ∈ ⋃
d≥1 R

d : x1 ≥ x2 ≥ · · · ≥ xd}
denote the space of non-increasingly ordered numeric lists of arbitrary length,
e.g., citation sequences. The nature of such data may be situated “somewhere
between” multidimensional real data and the character string domain. On the
one hand, observations are real numbers but, on the other, their number is
not established a priori. In [7], the authors considered the dissimilarity measure
on X given for some p, r > 0 by dp,r(x,y) = d22(x̃, ỹ) + p|nr

x − nr
y|, where

x̃ = (x1, x2, . . . , xnx
, 0, 0, . . . ) and d2 denotes the Euclidean distance on R

∞.
Then, a fuzzy k-means-like algorithm was used to cluster real-world bibliometric
and StackExchange datasets.

Character Strings. For some finite Σ called alphabet, let X =
⋃

d≥1 Σd denote
the set of all character strings over Σ. For instance, if Σ = {a, c, t, g}, then
X is the set of all DNA sequences. In such a case, the clustering procedure
may be based on various metrics and other dissimilarity measures, including the
longest common subsequence, Levenshtein, q-gram, or Dinu rank distance, see,
e.g., [5]. In particular, the Dinu rank distance-based 1-median can be computed
in polynomial time exactly, see [10]. In other cases, we may rely on approximate
or set exemplar-based approaches, compare [12].

4 K-nearest-minpen Classification

Let us now assume that the domain X is divided into c ≥ 2 classes and together
with each input item x(i) ∈ X we also observe its true class label yi ∈ {1, . . . , c}.
The aim of a classification task, compare, e.g., [16], is to construct a model
(decision rule) that, based on {(x(i), y(i))}i=1,...,n, can be used to classify any
observation in X .

Let us recall that in the current context we deal with a space equipped with
a dissimilarity measure only. It turns out that there are only a few methods in
the literature for such a type of supervised learning task. Among them we find:

http://cena.rexamine.com/research
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– the k-nearest neighbors algorithm, compare [16], which classifies x ∈ X based
on the mode of the class labels of the k ≥ 1 closest to x observations (in terms
of d) in the input data set,

– the nearest centroid algorithm [13,20], which assigns to x ∈ X the class
label arg minj=1,...,cd(x,µ(j)), where µ(j) is the result of applying a d-based
penalty minimizer on the set {x(i) : y(i) = j, i = 1, . . . , n} (originally: the
centroid with respect to the Euclidean distance).

Unfortunately, the first method requires access to the whole data set, which –
in the big data era – makes the algorithm time-consuming if a large number of
data points is to be classified (proximity search data structures may be used but
due to the curse of dimensionality they are only advantageous in low dimensional
spaces). On the other hand, the second method is way faster (as soon as the pre-
processing stage is already performed), require significantly less storage, and
provides a data analyst with an interpretable model.

Based on the aforementioned methods, we propose the following algorithm
called k-nearest-minpen. Fix k, k1, . . . , kc ≥ 1, and ϕ, ϑ, ψ.
Pre-processing stage.

1. For all j = 1, . . . , c:
1.1. Determine the cluster centers µ(j,1), . . . ,µ(j,kj) of the set {x(i) : y(i) =

j, i = 1, . . . , n} using the fuzzy kj-minpen clustering algorithm;
Classification stage. Classify x ∈ X as follows:
1. Determine µ(j1,i1), . . . ,µ(jk,ik) – the k-nearest (w.r.t. d) to x cluster centers;
2. Return arg maxj=1,...,c|{ji : ji = j, i = 1, . . . , k}|, i.e., the mode of {j1, . . . , jk}

as result;

Note that for k = k1 = · · · = kc = 1 we get the generalized nearest centroid
algorithm. On the other hand, for kj = |{y(i) : y(i) = j, i = 1, . . . , n}|, by
idempotence of the d-based penalty minimizer, we approach exactly the k-nearest
neighbor scheme. Nevertheless, for a typical use case we recommend the use of
k = 1 as well as k1 = · · · = kc with ki being merely a fraction of the average
number of observations in each clusters.

5 Classification Examples

Table 3 gives classification accuracy over 5 exemplary data sets from the UCI
Machine Learning Repository: iris (150 observations in R

4, 3 classes), wine (178
observations in R

13, 3 classes), seeds (210 observations in R
7, 3 classes), ecoli

(327 observations in R
6, 5 classes; underrepresented classes 3,4,7 removed), and

glass (175 observations in R
9, 3 classes; classes 3,5,6 removed). Reported qual-

ity measures are computed by repeated random sub-sampling validation and were
averaged over 1000 random data splits into two parts: 80 % used as a training,
whereas the remaining 20 % as a test sample. Attributes were standardized before
performing the experiments. We set d – Euclidean distance, ϕ(d) = d2, m = 2,
ϑ(d) = dm, and ψ(d) = d−2/(m−1). Recall that (k; ki) = (1; 1) gives the nearest
centroid classifier. Not surprisingly, we observe that for k = 1, our algorithm has –
on average – a slightly better performance than the nearest centroids method.
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Table 3. Classification accuracy (in % of correct label prediction).

k-nearest neighbors (k) k-nearest minpen (k; ki)

dataset 1 3 5 7 1;1 1;3 1;5 3;5 1;7 3;7

iris 94.32 94.44 94.96 95.32 85.94 95.73 95.17 92.96 95.29 94.09
wine 95.12 95.42 96.09 96.37 96.89 96.19 96.17 96.28 95.57 95.76
seeds 92.82 91.91 92.64 91.87 92.20 91.19 91.45 90.18 91.57 91.13
ecoli 81.55 84.91 86.78 87.74 86.09 82.47 79.71 84.54 78.34 84.13
glass 80.49 79.00 76.01 74.69 67.51 76.67 77.49 62.99 76.61 67.62

average 88.86 89.14 89.30 89.20 85.73 88.45 88.00 85.39 87.48 86.55

6 Conclusion

We introduced two data analysis techniques: the fuzzy k-minpen clustering and
the k-nearest-minpen classification algorithms. Both of them employ generic
distance-based penalty minimizers and thus serve as an application of complex
data aggregation in machine learning. Let us stress that the discussed methods
are applicable in arbitrary spaces equipped with dissimilarity measures.

Future work on the introduced clustering method shall involve including a
generalized fuzzifier term, as in [17,21], and the study of its effects on the clus-
tering quality.

Acknowledgments. This study was supported by the National Science Center,
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Abstract. A new notion of adjoint fuzzy partition is introduced and
the reconstruction of a function from its F-transform components is ana-
lyzed. An analogy with the Nyquist-Shannon-Kotelnikov sampling theo-
rem is discussed.
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1 Introduction

We analyze the problem of whether a function can be reconstructed from a
countable set of its F-transform components. We prove that if a function fulfills
the same conditions as in the Nyquist-Shannon-Kotelnikov theorem (also known
as a sampling theorem), see [4,6,12], then the above mentioned reconstruction
is possible and moreover, the sampling theorem is its particular case.

Our inspiration came from the following analogy: similar to the F-transform
components, signal samples can be computed on the basis of the partition gen-
erated by Dirac’s delta function δ. On the other hand, the reconstruction is
performed with the help of another partition generated by the function sinc.
We analyzed the interconnection between δ and sinc and extracted a principal
characteristic that we call adjointness. If partitions are generated by adjoint
functions, they are called adjoint as well. Adjoint fuzzy partitions are used in
the direct and newly defined inverse F-transform so that their mutually inverse
correspondence is guaranteed for functions that fulfill the same conditions as in
the standard sampling theorem.

The F-transform is very useful in many applications such as image and signal
processing, image compression, time series prediction, etc.; see, e.g., [2,5,8,9].
The initially proposed inverse F-transform [8] is lossy; i.e., except for constant
functions, it produces a result that is different from an original object. This
fact motivated us to modify the definition of the inverse F-transform to extend
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 459–469, 2016.
DOI: 10.1007/978-3-319-40581-0 37
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the space of original functions, for which direct and inverse F-transforms are
mutually inverse.

In the proposed contribution1, we give a short overview of the F-transform
theory and its evolution. We discuss various fuzzy partitions and extend the
notion of the inverse F-transform. We introduce a notion of an adjoint fuzzy
partition and discuss its properties. Finally, we prove the main theoretical result
about reconstruction from a countable set of F-transform components.

2 Preliminaries: Nyquist-Shannon-Kotelnikov
Reconstruction

In this section, we provide a short review of the background of the sample-based
reconstruction of a band-limited signal.

We assume that a digital signal is identified with a function varying in time,
which is assumed to have a Fourier transform that is zero outside some bounded
interval (in other words, a signal is band-limited to a given bandwidth). The
sampling theorem (also known as Nyquist-Shannon-Kotelnikov theorem, see [4,
6,12]) characterizes what is sufficient for full reconstruction of a signal from a
set of its samples.

Theorem 1 (Sampling Theorem). Let x ∈ L2(R) be continuous and band-
limited, i.e., x̂(ω) = 0 for |ω| > Ω where x̂ is the Fourier transform of x and Ω
is some positive constant. Then, x can be determined by its values at a discrete
set of points:

x(t) =
∞∑

k=−∞
x

(
kπ

Ω

)
· sin(Ωt − kπ)

Ωt − kπ
. (1)

We will be using the following notation: h = π
Ω , tk = kπ

Ω = k · h and the
corresponding reconstruction formula:

x(t) =
∞∑

k=−∞
x(tk) · sinc

(
t

h
− k

)
, (2)

where

sinc(t) def=
sin(πt)

πt
.

3 The F-Transform: Short Overview and Evolution

The F-transform (originally, fuzzy transform) is a particular integral transform
whose peculiarity consists in using a fuzzy partition of a universe of discourse
(usually, R). We observe that the F-transform method was motivated by the

1 The extended version of this contribution together with the application to the prob-
lem of function “de-noising” was submitted to [11].
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ideas and techniques of fuzzy logic (see, e.g., [15]) and especially by the Takagi-
Sugeno models [14]. In addition, the idea of a fuzzy partition was derived from
observing a collection of antecedents in a fuzzy rule based system. The direct
F-transform components are possible consequents in the Takagi-Sugeno model
with singletons.

The F-transform has two phases: direct and inverse (see details in [8]). The
direct F-transform is applied to functions from L2(R) and maps them linearly
onto sequences (originally finite) of numeric/functional components. The inverse
F-transform smoothly approximates the original function.

Let us remark that almost all fuzzy approximation models, including Takagi-
Sugeno models [14], are based on linear-like combinations of fuzzy sets with
numeric or functional coefficients. The principal difference between them and the
inverse F-transform is in the computation of coefficients. In the F-transform case,
these coefficients are weighted orthogonal projections on subdomains, such that
the best approximation in a local sense is guaranteed. In Takagi-Sugeno models,
the coefficients guarantee that the corresponding approximating function is a
best approximation on a whole domain in the sense of the L2 metric. Similar
models have been considered in [1,7].

3.1 Fuzzy Partition

The notion of a fuzzy partition does not have a nonambiguous meaning in fuzzy
literature. We will not go into full detail but concentrate on an evolution of this
notion in connection with the F-transform (see [3,10,13]).

A fuzzy partition with the Ruspini condition was introduced in [8] as a collec-
tion of bell-shaped fuzzy sets A1, . . . , An on the real interval [a, b] with continuous
membership functions, such that for all x ∈ [a, b],

n∑

k=1

Ak(x) = 1.

This partition can be characterized as a “partition-of-unity”.
In [10], a generalized fuzzy partition without the Ruspini condition was pro-

posed with the purpose of obtaining a better approximation by the inverse F-
transform.

Below, in Definition 1, we introduce a particular case of a generalized fuzzy
partition that is determined by a generating function. We say that function
a : R → [0, 1] is a generating function of a fuzzy partition (a generating function,
for short), if it is non-negative, continuous, even, bell-shaped and moreover, it
vanishes outside [−1, 1] and fulfills

∫ 1

−1
a(t) dt = 1. Below, we give the example

of a generating function, which we call the raised cosine:

acos(t) =

{
1
2 (1 + cos(πt)), −1 ≤ t ≤ 1,

0, otherwise.
(3)

Generating function a produces infinitely many rescaled functions aH : R →
[0, 1] such that
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aH(t) def= a

(
t

H

)
,

where H is a positive number called a scale factor.

Definition 1. Let a : R → [0, 1] be a generating function of a fuzzy partition,
i.e., a is non-negative, continuous, even, bell-shaped, vanishes outside [−1, 1]
and fulfills

∫ 1

−1
a(t) dt = 1. Let h > 0, tk = t0 + k · h, k ∈ Z, be uniformly

distributed nodes2 in R. Let H > h
2 and aH be an H-rescaled version of a. With

each node tk, we correspond the translation ak(t) = aH(tk − t). We say that the
set {ak, k ∈ Z} establishes an (h,H)-uniform fuzzy partition of R. Functions ak

are called basic functions.

By the condition H > h
2 , each point from R is “covered” by at least one basic

function - by this we mean that the value of this function at this point is greater
than zero. By the condition h > 0, each point from R is covered by at most a
finite number of basic functions.

It is easy to see that (substituting s = t
H )

∫ ∞

−∞
aH(t) dt =

∫ H

−H

aH(t) dt =
∫ H

−H

a

(
t

H

)
dt = H ·

∫ 1

−1

a(s) ds = H. (4)

If h = H, then an (h,H)-uniform fuzzy partition is called an h-uniform fuzzy
partition.

The following lemma will be used in the sequel.

Lemma 1. Let a : R → [0, 1] be a generating function so that it is continuous,
even, bell-shaped, vanishes outside [−1, 1] and fulfills

∫ 1

−1
a(t) dt = 1. Then, the

following is valid:
1
2

≤ ‖a‖2 ≤ 1, (5)

where ‖a‖ is the norm in L2([−1, 1]).

In particular, if a = acos, then ‖acos‖2 = 3
4 .

3.2 Direct and Inverse F-Transform

In this section, we review formal notions of the direct and inverse F-transforms
as introduced in [8] and extend the latter.

Assume that x ∈ L2(R) and {ak, k ∈ Z} is an (h,H)-uniform fuzzy partition
of R, where ak(t) = aH(tk − t), aH is the H-rescaled generating function a, and
tk = k · h, k ∈ Z, are nodes. The sequence F [x] = {Xk, k ∈ Z}, where

Xk =

∫ ∞
−∞ ak(s) · x(s) ds

∫ ∞
−∞ ak(s) ds

, (6)

2 For simplicity of representation, we assume that t0 = 0.
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is called the (direct) F-transform of x with respect to {ak, k ∈ Z}. Real numbers
Xk, k ∈ Z, are called the F-transform components of x. Due to the assumption
of uniformity of the partition and by (4), the representation (6) of Xk can be
simplified as follows:

Xk =

∫ ∞
−∞ aH(tk − s) · x(s) ds

∫ ∞
−∞ aH(tk − s) ds

=
1
H

∫ ∞

−∞
aH(tk − s) · x(s) ds. (7)

It is easy to see that if x, y ∈ L2(R), α ∈ R, then

F [x + y] = F [x] + F [y], (8)
F [αx] = αF [x].

The basic idea of the F-transform is to “capture” a local behavior of an original
function and characterize it by a certain value. It follows from (6) that the F-
transform can be effectively computed for a rather wide class of functions. In
particular, all continuous functions on compact domains can be originals of the
F-transform.

Let x = (Xk, k ∈ Z) be an arbitrary sequence of reals and {ak, k ∈ Z} be
an (h,H)-uniform fuzzy partition of R with the H-rescaled generating function
a. The following inversion formula

x̂F (t) =
∑∞

k=−∞ Xk · ak(t)
∑∞

k=−∞ ak(t)
, t ∈ R, (9)

converts the sequence x into the real valued function x̂F . Because the parameter
h in an (h,H)-uniform fuzzy partition {ak, k ∈ Z} of R is greater than zero,
both sums in (9) contain only a finite number of non-zero summands. Because
H > h

2 , each point from R is covered by at least one basic function, so that the
denominator in (9) is always non-zero. Therefore, the expression in (9) is well
defined.

We say that the function x̂F is the inverse F-transform of the sequence x =
(Xk, k ∈ Z) with respect to the fuzzy partition {ak, k ∈ Z}. If the sequence
x consists of the F-transform components of some function x with respect to
{ak, k ∈ Z}, then x̂F is simply called the inverse F-transform of x.

The inverse F-transform x̂F of a continuous function x can approximate x
with an arbitrary precision. The desired quality of approximation can be achieved
by a special choice of a partition. This fact can be easily proved using the tech-
nique introduced in [8].

4 Reconstruction from the F-Transform Components

The F-transform is the result of a linear correspondence between a set of func-
tions from L2(R) and a set of sequences of reals. In general, the inversion formula
does not define the inverse correspondence. In [8], it has been shown that the
inverse F-transform can approximate a continuous function with an arbitrary
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precision. In the later publications [1,7], other smooth approximations for func-
tions from L2(R) by the inverse F-transforms were proposed.

Below, we show even more; namely, the original function can be reconstructed
from its F-transform components. Of course, this result can be established for a
narrower than L2(R) class of functions. Our motivation stems from the Nyquist-
Shannon-Kotelnikov reconstruction theorem discussed above.

4.1 Adjoint Partition

If a fuzzy partition is fixed, then both direct and inverse F-transforms are
uniquely determined by this partition. If we require the inverse F-transform
to be coincident with the original function, we shall change its main parameter –
the fuzzy partition.

Definition 2. Let {ak, k ∈ Z} be an (h,H)-uniform fuzzy partition of R, where
ak(t) = aH(tk −t), aH is the H-rescaled generating function a and tk = k ·h, k ∈
Z, are uniformly distributed nodes. We say that the set of functions {bk, k ∈ Z},
establishes an adjoint (h,H)-uniform partition of R (with respect to {ak, k ∈
Z}), if bk(t) = bH(t− tk) are translations of the continuous function bH : R → R

with the same nodes tk, k ∈ Z, and bH is determined by

âH · b̂H = 1[−Ω,Ω], (10)

where Ω > 0 is some positive constant, 1[−Ω,Ω] is a characteristic function of
[−Ω,Ω] and âH , b̂H are the Fourier transforms of aH and bH , respectively.

The lemma given below gives a necessary and sufficient condition on an
(h, 1)-uniform fuzzy partition that guarantees the existence of the adjoint one.

Lemma 2. Let {ak, k ∈ Z}, be an (h, 1)-uniform fuzzy partition of R with gen-
erating function a : R → [0, 1], such that ak(t) = a(t − tk) and tk = k · h, k ∈ Z,
are nodes. Then, the adjoint partition {bk, k ∈ Z} exists if and only if there
exists Ω > 0 such that for all ω ∈ [−Ω,Ω],

â(ω) �= 0. (11)

Moreover, the adjoint partition {bk, k ∈ Z} is determined by h-translations of
function b : R → R such that

b(t) =
1
2π

∫ Ω

−Ω

eiωt

â(ω)
dω. (12)

Remark 1. Let {ak, k ∈ Z} be an (h,H)-uniform fuzzy partition of R, where
ak(t) = aH(tk − t) and aH is the H-rescaled generating function a. Let {bk, k ∈
Z}, where bk(t) = bH(t − tk) be the adjoint (h,H)-uniform partition of R with
respect to {ak, k ∈ Z}.

In Remark 1, we discuss some particular properties of functions bk, k ∈ Z.
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(i) The function bH is a rescaled version of a certain function b : R → R in both
vertical and horizontal directions. Specifically,

bH(t) =
1

H2
· b

(
t

H

)
, (13)

where b is determined as follows:

â · b̂ = 1[−HΩ,HΩ]. (14)

Indeed, equality (13) easily follows from (14) and the scaling property of the
Fourier transform applied to the function a:

âH(ω) = Hâ(Hω).

(ii) The explicit representation of a particular function bk, k ∈ Z as a translation
and rescaling of the function b is as follows:

bk(t) = bH(t − tk) =
1

H2
· b

(
t − tk

H

)
. (15)

This representation justifies the name “partition”, assigned to the set
{bk, k ∈ Z}. Moreover, as we see in Lemma 3 below, the generating function
b fulfills the extended Ruspini condition (16).

We call b a generating function of the adjoint (h,H)-uniform partition
{bk, k ∈ Z},3, which corresponds to the (h,H)-uniform fuzzy partition {ak, k ∈
Z}, determined by a. If h = H, we simply call both partitions as h-uniform.

As the following result shows, the set of translations (without rescaling) of
a generating function of an adjoint H-uniform partition establishes the Ruspini
partition. This is an additional argument in favor of using the word “partition”
in the notion of adjoint partition.

Lemma 3. Let a : R → [0, 1] be a generating function such that for all ω ∈
[−Ω,Ω], â(ω) �= 0, where Ω > 0 is some positive constant. Let H = π

Ω and
{ak, k ∈ Z}, be an H-uniform fuzzy partition such that ak(t) = aH(t − tk), aH

is the H-rescaled generating function a and tk = k · H, k ∈ Z. Let {bk, k ∈ Z},
where bk(t) = bH(t − tk), be the adjoint H-uniform partition of R with respect
to {ak, k ∈ Z} with the generating function b. Then, for all t ∈ R,

3 We distinguish between a generating function of an adjoint partition (in this paper,
denoted by b) and a generating function of a fuzzy partition (in this paper, denoted
by a). The latter is characterized in Definition 1, while the former is associated with
an adjoint partition and can have values outside the interval [0, 1].
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∞∑

k=−∞
b

(
t

H
− k

)
= 1, (16)

∞∑

k=−∞
bk(t) =

1
H2

, (17)

∞∑

k=−∞
b2

(
t

H
− k

)
= ‖b‖2 < ∞, (18)

where ‖ · ‖ is the norm in L2(R).

At the end of this subsection, we give a particular example of an h-uniform
partition of R and its adjoint where the latter has an analytic representation.

Example 1. We consider an h-uniform partition {δk, k ∈ Z} of R, where δk(t) =
δ(t − tk), tk = k · h and δ is the Dirac’s delta function4. Although this partition
is not fuzzy (it is generated by the non-bounded delta function), it fulfills all
the assumptions of Lemma 2, including the main condition (11). The latter is
because for all ω ∈ R, δ̂(ω) = 1, so that we can choose an arbitrary bounded
interval [−Ω,Ω] where this condition is fulfilled. We choose Ω = π and apply the
proof of Lemma 2 to the partition {δk, k ∈ Z}. After substitution into (12), we
easily obtain the generating function sinc of the adjoint to {δk, k ∈ Z} partition,
so that

b(t) =
1
2π

∫ π

−π

eiωtdω =
1
πt

sin(πt) = sinc(t). (19)

The resulting adjoint h-uniform partition is given by the set of functions
{sinck, k ∈ Z}, where sinck(t) = sinc(t − tk), so that sinc is its generating
function.

In Fig. 1, we demonstrate graphs of generating functions of the two adjoint
uniform partitions of R with respect to two uniform partitions with the following
generating functions: δ (Dirac’s delta) and acos (raised cosine). The latter is given
by (3), and it is of the fuzzy type.

In almost all cases, a computation of a generating function b of an adjoint
partition cannot be performed analytically. It is a matter of a numeric compu-
tation on the basis of the expression (12). The example given Fig. 1, has been
numerically computed as well.

4.2 Main Result

In this subsection, we show that a function that fulfills the same conditions as in
the Nyquist-Shannon-Kotelnikov theorem (also known as a sampling theorem)

4 Strictly speaking, the Dirac’s delta is not a function, but a generalized function or
a linear functional. Therefore, it makes sense to use it only if it appears inside an
integral. In our paper, we always follow this restriction.



Adjoint Fuzzy Partition and Generalized Sampling Theorem 467

Fig. 1. Generating functions of the two adjoint uniform partitions of R with respect
to uniform partitions with generating functions δ (in gray) and the raised cosine acos

(in black).

can be reconstructed from a countable set of its F-transform components. More-
over, we obtain the sampling theorem as a particular case. The following theorem
explicitly describes all conditions required for the successful reconstruction. The
proof can be found in [11].

Theorem 2 (Reconstruction from the direct F-transform). Let function
x ∈ L2(R) be continuous and band-limited, i.e., x̂(ω) = 0 for |ω| > Ω, where Ω
is some positive constant. Let h = π

Ω , H > h/2 and aH an H-rescaled version
of the generating function a, such that for all ω ∈ [−Ω,Ω], âH(ω) �= 0.

Let {bk, k ∈ Z} be the adjoint (h,H)-uniform partition of R with respect to
that given by {ak, k ∈ Z}, where ak(s) = aH(tk − s) and tk = k · h, k ∈ Z.

Finally, let the sequence {Xk, k ∈ Z} consist of the F-transform components
of x with respect to the fuzzy partition {ak, k ∈ Z}.

Then, x can be uniquely determined by its F-transform components, so that
the following representation holds:

x(t) =
Hπ

Ω

∞∑

k=−∞
Xk · bk(t). (20)

Below, we give another expression for reconstruction formula (20) in terms
of generating function b of partition {bk, k ∈ Z}.

Corollary 1. Let function x fulfill the assumptions of Theorem 2. Then, x can
be reconstructed from its F-transform components so that

x(t) =
h

H

∞∑

k=−∞
Xk · b

(
t − tk

H

)
, (21)
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where b ∈ L2(R) is a generating function of the adjoint (h,H)-uniform partition
{bk, k ∈ Z}.
Remark 2. If in (21), we assume that H = h (in other words, {ak, k ∈ Z} is an
h-uniform fuzzy partition of R), then the reconstruction from the F-transform
components takes the form

x(t) =
∞∑

k=−∞
Xk · b

(
t − tk

h

)
=

∞∑

k=−∞
Xk · b

(
t

h
− k

)
, (22)

where b ∈ L2(R) is the function whose Fourier transform is equal to

b̂(ω) =
1[−π,π]

â(ω)
. (23)

Reconstruction (22) is similar to the Nyquist-Shannon-Kotelnikov formula (2).

In the below given corollary, we extend the range of applicability of Theorem 2
to the h-uniform partition {δk, k ∈ Z} introduced in the Example 1. By this, we
obtain the Nyquist-Shannon-Kotelnikov reconstruction in the form of (2), see
the proof in [11].

Corollary 2. Let the assumptions of Theorem 2 be fulfilled and the Dirac’s delta
δ and sinc be chosen as generating function of an h-uniform partition {δk, k ∈ Z}
and the corresponding adjoint h-uniform partition {sinck, k ∈ Z}. Then, after
respective substitutions the reconstruction formula (22) becomes equivalent with
the Nyquist-Shannon-Kotelnikov reconstruction in the form of (2).

Remark 3. The principal difference between the Nyquist-Shannon-Kotelnikov
and the proposed reconstruction is that the former one works as an interpolat-
ing technique, while the latter one is able to perform reconstruction even from
averaged values of a given function.

5 Conclusion

We discussed the problem of reconstruction from a set of F-transform compo-
nents. We introduced the adjoint fuzzy partition and the inversion formula and
proved that a function can be reconstructed from its F-transform components.
Moreover, we showed that if the Dirac’s delta δ is chosen as generating function
of an h-uniform partition, then the reconstruction from the F-transform compo-
nents becomes equivalent with the Nyquist-Shannon-Kotelnikov reconstruction.

Acknowledgement. This work was partially supported by the project LQ1602
IT4Innovations excellence in science.
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2. Holčapek, M., Tichý, T.: A smoothing filter based on fuzzy transform. Fuzzy Sets
Syst. 180, 69–97 (2011)
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Abstract. The aim of this paper is, first, to recall fuzzy relational
compositions (products) and, to introduce an idea, how the so-called
excluding features could be incorporated into the theoretical background.
Apart from rather natural definitions, we provide readers with a theoret-
ical investigation that provides and answer to a rather natural question,
under which conditions, in terms of the underlying algebraic structures,
the proposed incorporation of excluding features preserves the same
properties as the incorporation in the classical relational compositions.
The positive impact of the incorporation on reducing the suspicions pro-
vided by the basic “circlet” composition without losing the possibly cor-
rect suspicion, as in the case of the use of the Bandler-Kohout products,
is demonstrated on an example.

Keywords: Fuzzy relational compositions · Fuzzy relational products ·
Bandler-Kohout products · Residuated algebraic structures · Medical
diagnosis · Classification

1 Introduction and Preliminaries

1.1 Introduction

Fuzzy relational compositions1 have an important role in many areas of fuzzy
mathematics, including the formal constructions of fuzzy inference systems [1,2],
medical diagnosis [3], architectures of information processing [4] or in flexible
queries to relational databases [5]. They provide an extension of classical relational
compositions and have been firstly studied by Willis Bandler and Ladislav Kohout

M. Štěpnička—This research was partially supported by the NPU II project LQ1602
“IT4Innovations excellence in science” provided by the MŠMT.

1 Instead of the term composition, one may often encounter the term “product” denot-
ing the samemappings or objects. This terminology naturally comes from the product-
like matrix calculation of the compositions.
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between late 70’s and early 80’s. There are numerous studies deeply elaborating
various aspects of fuzzy relation compositions, see e.g. [6,7].

Thinking about the medical diagnosis problem, we show, how the “excluding
symptoms” may be incorporated into the fuzzy relational products in order to
improve and give precision to the suspicion provided the standard fuzzy rela-
tional products. The contribution of this extension will be demonstrated on an
illustrative classification example.

1.2 Background Algebraic Structure of Truth Values

Recall some basic definitions of underlying algebraic structures and some prop-
erties, that hold in these structures and that will be used in the sequel.

Definition 1. An algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 is a residuated lattice if
1. 〈L,∧,∨, 0, 1〉 is a lattice with the least and the greatest element
2. 〈L,⊗, 0, 1〉 is a commutative monoid such that ⊗ is isotone in both arguments
3. the operation → is a residuation with respect to ⊗, i.e.

a ⊗ b ≤ c iff a → c ≥ b. (1)

Let us list some of the useful properties that are immediately available to us
for any a, b, c ∈ L [8]:

a → b = 1 whenever a ≤ b, (2)
a → c ≥ b → c whenever a ≤ b, (3)
a → b ≤ a → c whenever b ≤ c, (4)

a ⊗ (a → b) ≤ b, (5)
a → (b → c) = (a ⊗ b) → c = (b ⊗ a) → c, (6)

We can define additional operations for all a, b ∈ L, namely: biresiduation
(biimplication, residual equivalence), negation, and addition, respectively:

a ↔ b = (a → b) ∧ (b → a),
¬a = a → 0,

a ⊕ b = ¬(¬a ⊗ ¬b).
Lemma 1. Let 〈L,∧,∨,⊗,→, 0, 1〉 be a residuated lattice. Then for all a, b ∈ L:

¬(a ⊗ b) ≥ ¬a ⊕ ¬b. (7)

Proof. Due to (5) and the adjunction property, we get a ≤ (a → 0) → 0. Then
using the definition of the addition, negation and the antitonicity of residual
implication → in the first argument (3), we get

¬a ⊕ ¬b = (((a → 0) → 0) ⊗ ((b → 0) → 0)) → 0
≤ (a ⊗ b) → 0 = ¬(a ⊗ b).

�
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Let us recall two more notions, that will be used in the sequel in order to
narrow the class of residuated lattices where some desirable properties will be
preserved.

Definition 2. Let 〈L,∧,∨,⊗,→, 0, 1〉 be a residuated lattice. We say that the
negation ¬ is strict, if the following holds:

¬a =

{
0, a > 0
1, a = 0.

Furthermore, we say that an element a ∈ L�{0, 1} is a zero divisor of ⊗ if there
exists some b ∈ L � {0, 1} such that a ⊗ b = 0.

Finally, let us recall the MV-algebra.

Definition 3. An MV-algebra is an algebra L = 〈L,⊕,⊗,¬, 0, 1〉 with two
binary operations ⊕,⊗, a unary operation ¬ and two constants such that
〈L,⊕, 0〉 and 〈L,⊗, 1〉 are commutative monoids and the following identities
hold:

a ⊕ ¬a = 1, a ⊗ ¬a = 0,
¬(a ⊕ b) = ¬a ⊗ ¬b, ¬(a ⊗ b) = ¬a ⊕ ¬b,

a = ¬¬a, ¬0 = 1,
¬(¬a ⊕ b) ⊕ b = ¬(¬b ⊕ a) ⊕ a.

Every MV-algebra 〈L,⊕,⊗,¬, 0, 1〉 is a residuated lattice 〈L,∧,∨,⊗,→, 0, 1〉
by putting

a ∨ b = ¬(¬a ⊕ b) ⊕ b = (a ⊗ ¬b) ⊕ b,

a ∧ b = ¬(¬a ∨ ¬b) = (a ⊕ ¬b) ⊗ b,

a → b = ¬a ⊕ b,

where → is a residuation operation with respect to ⊗.
A Heyting algebra is a residuated lattice with ⊗ = ∧, i.e., 〈L,∨,∧,→, 0, 1〉.

An MV-algebra or residuated lattice is complete if the underlying lattice is
complete.

Let us recall [8], that in a complete residuated lattice, the following holds for
any a, b, c ∈ L and for any index set I:

∨

i∈I
ai → b =

∧

i∈I
(ai → b). (8)

The following equality we immediately get as a consequence of (8) and the
definition of the negation:

¬
∨

i∈I

ai =
∧

i∈I

¬ai.
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The well known examples of residuated lattice is the �Lukasiewicz algebra,
the Gödel algebra or the Goguen algebra. The two latter ones, however, are not
MV-algebras and thus, the double negation law does not hold in these algebras.

1.3 Relational and Fuzzy Relational Compositions

Let us recall some basic facts about relational compositions, from which the fuzzy
relational compositions naturally stem. Following the original work of Willis
Bandler and Ladislav Kohout (cf. [9]), and for the sake of illustrative nature
explaining the semantic of the compositions, we assume that X be a finite set
of patients, Y be a finite set of symptoms and Z be a set of diseases. Let R be
a binary relation on X × Y and S be a binary relation on Y × Z. Then four
fundamental compositions are given by

R ◦ S ={(x, z) ∈ X × Z | ∃ y ∈ Y : (x, y) ∈ R & (y, z) ∈ S}, (9)
R � S ={(x, z) ∈ X × Z | ∀ y ∈ Y : (x, y) ∈ R ⇒ (y, z) ∈ S}, (10)
R � S ={(x, z) ∈ X × Z | ∀ y ∈ Y : (x, y) ∈ R ⇐ (y, z) ∈ S}, (11)
R�S ={(x, z) ∈ X × Z | ∀ y ∈ Y : (x, y) ∈ R ⇔ (y, z) ∈ S}. (12)

and are called basic (direct/circlet) composition, Bandler-Kohout (abbr. BK)
subproduct, Bandler-Kohout superproduct and Bandler-Kohout square product,
respectively.

The idea behind these compositions stems from the assumption that the
meaning of (x, y) ∈ R is that patient x has a symptom y and that (y, z) ∈ S
expresses the fact that symptom y belongs to diseases z. Then the semantic of
(x, z) ∈ R ◦ S is that patient x has at least one symptom belonging to disease
z and therefore, it expresses a suspicion of having this disease. The “triangle”
and square compositions (10)–(12) provide a sort of more accurate specification
or a strengthening of the initial suspicion. The fact that (x, z) ∈ R � S means
that all symptoms of patient x belong to disease z; the fact that (x, z) ∈ R � S
means that patient x has all symptoms belonging to disease z; and finally, the
meaning of (x, z) ∈ R�S is that patient x has all symptoms of the disease z
and all symptoms of the patient belong to disease z.

As mentioned above, the relational compositions have been extended for
fuzzy relations R ⊂∼ X×Y and S ⊂∼ Y ×Z in order to deal with partial connection
between elements from distinct universes X,Y , and Z. Below we recall a standard
definition of the extension of all the four above given compositions of classical
compositions.

Definition 4. Let X,Y,Z be non-empty universes, let R ⊂∼ X × Y, S ⊂∼ Y ×Z.
Then the compositions ◦,�,�,� of fuzzy relations R and S are fuzzy relations
on X × Z defined as follows:
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(R ◦ S)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) → S(y, z)) ,

(R � S)(x, z) =
∧

y∈Y

(R(x, y) ← S(y, z)) ,

(R�S)(x, z) =
∧

y∈Y

(R(x, y) ↔ S(y, z)) ,

for all x ∈ X and z ∈ Z.

For the sake of completeness, let us also mention so-called inf-S compositions
[10,11] that were neither motivated by the medical diagnosis problem nor studied
by Bandler and Kohout in their original studies in 70’s and 80’s, however, also
fit into the theory of fuzzy relational compositions and will be used in the sequel.

Definition 5. Let X,Y,Z be non-empty universes, let R ⊂∼ X × Y, S ⊂∼ Y ×Z.
Then the composition � of fuzzy relations R and S is a fuzzy relation on X ×Z
defined as follows:

(R�S)(x, z) =
∧

y∈Y

(R(x, y) ⊕ S(y, z))

for all x ∈ X and z ∈ Z.

However, as it has been noted e.g. in [12,13] one may often encounter a
situation, when the basic suspicion ◦ is high for many pairs (x, z), i.e. nearly
each patient is suspicious of having many diseases. This becomes when too many
common symptoms are shared by many diseases and thus, many patients have
at least one symptom belonging to nearly any disease. The problem mentioned
[12,13] is that the BK products �,� or � do not have to be helpful in this case
because patients may have most but not all symptoms of a given disease and,
analogously, patients may have not only symptoms of a single disease. In such
cases, the BK products give only low values and do not help to strengthen the
suspicion by excluding some of the diseases originally viewed as potential ones by
the direct product ◦. Therefore, the authors proposed to replace the existential
and universal quantifiers, represented in the Definition 4 by suprema and infima,
by generalized intermediate quantifiers [14] determined by fuzzy measure [15] in
order to build “softer” compositions searching, e.g., for pairs of patients and
diseases such that the patients has “most” of the symptoms belonging to the
given disease.

Remark 1. Besides [12,13], there were also other approaches to improve the pre-
cision of the suspicions determined by the basic compositions. We may recall
e.g. [16] where the authors introduce a sort of weight parameter in order to
emphasize distinct influence of features. However, this approach does not use
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fuzzy sets but their extensions – interval-valued fuzzy sets. Moreover, they focus
on the BK-subproduct and not the direct product and thus, their approach is
not compatible with our approach introduced below.

1.4 Excluding Symptoms

This investigation is motivated by the existence of excluding symptoms for par-
ticular diseases, i.e., symptoms, that directly exclude possibility having a par-
ticular disease, if being carried by a given patient, no matter how many other
symptoms linking the given patient with the given diseases exist. Below, we
will show how this idea can be incorporated using the fuzzy relational composi-
tions and how it can be useful. The demonstrative example will also show, that
although the implementation of the excluding symptoms does something totally
different than the use of the generalized quantifiers [13], it can be similarly help-
ful in reducing the number of suspicions and thus, potential, if being combined
with the generalized quantifiers, it may become a very efficient tool.

So, let us assume that E ⊂ Y × Z is a relation with the semantic that
(y, z) ∈ E means that y is an excluding symptom for disease z. Then we may
introduce relation R ◦ S�E ⊆ X × Z as follows

R ◦ S�E ={(x, z) ∈ X × Z | (∃ y ∈ Y : (x, y) ∈ R & (y, z) ∈ S) &
(�y ∈ Y : (x, y) ∈ R & (y, z) ∈ E)}. (13)

The proposed composition provides the desirable meanings, i.e., the fact that
(x, z) ∈ R ◦ S�E means that patient x has at least one symptom belonging to
a disease z and there is no excluding symptoms related to disease z carried by
this patient.

In the case of classical binary relations, the above introduced incorporation
of excluding symptoms may be rewritten in two alternative ways.

Lemma 2. Let X,Y,Z be non-empty universes, let R ⊆ X ×Y , S ⊆ Y ×Z and
E ⊆ Y × Z and let R ◦ S�E be given by (13). Then it holds

R ◦ S�E ={(x, z) ∈ X × Z | (∃ y ∈ Y : (x, y) ∈ R & (y, z) ∈ S) &
(∀y ∈ Y : (x, y) /∈ R ∨ (y, z) /∈ E)}, (14)

R ◦ S�E ={(x, z) ∈ X × Z | (∃ y ∈ Y : (x, y) ∈ R & (y, z) ∈ S) &
(∀y ∈ Y : (x, y) ∈ R ⇒ (y, z) /∈ E)}. (15)

Proof. It follows from the fact that, in classical case:

�y : (R(x, y) & E(y, z)) ≡ ∀y : ¬(R(x, y) & E(y, z))
≡ ∀y : (¬R(x, y) ∨ ¬E(y, z))
≡ ∀y : (R(x, y) ⇒ ¬E(y, z)).

�
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If we introduce the notation naturally symbolizing the used notations, i.e.,
let R ◦ S�E� denotes the right hand side of (14) and let R ◦ S�E� denotes the
right hand side of (15). Then we can easily write:

R ◦ S�E = (R ◦ S�E)� = (R ◦ S�E)�.

This equivalence is somehow consistent with a human intuition and thus, it is a
desirable property. However, in case of the incorporation of excluding symptoms
in the fuzzy relational compositions, the equality does not come automatically
and some additional properties have to be assumed. Investigation focusing on
this will be provided in the next section.

We present a short lemma that demonstrates that the concept of the exclud-
ing features cannot be easily avoided by using only the ◦ composition and an
appropriate choice of the fuzzy relation S.

Lemma 3. Let T = S ∩ ¬E. Then R ◦ S�E �= R ◦ T .

2 Fuzzy Relational Compositions and Excluding Features

2.1 Residuated Lattice as the Background Algebraic Structure

In this Section, we assume that the background algebraic structure is the com-
plete residuated lattice 〈L,∧,∨,→,⊗, 0, 1〉 and the R,S,E are binary fuzzy rela-
tions on X × Y an Y × Z, respectively

Definition 6. Let X,Y,Z be non-empty universes, let R ⊂∼ X×Y, S,E ⊂∼ Y ×Z.
Then R ◦ S�E is a fuzzy relations on X × Z defined as follows:

(R ◦ S�E)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗ ¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) , (16)

(R ◦ S�E)�(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗
∧

y∈Y

(R(x, y) → ¬E(y, z)) , (17)

(R ◦ S�E)�(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗
∧

y∈Y

(¬R(x, y) ⊕ ¬E(y, z)) . (18)

By the initial definition of fuzzy relational composition, expressions (16)–(18)
can be rewritten as follows:

(R ◦ S�E)(x, z) = (R ◦ S)(x, z) ⊗ ¬(R ◦ E)(x, z), (19)
(R ◦ S�E)�(x, z) = (R ◦ S)(x, z) ⊗ (R � ¬E)(x, z), (20)
(R ◦ S�E)�(x, z) = (R ◦ S)(x, z) ⊗ (¬R�¬E)(x, z), (21)

respectively.

Remark 2. Note, that (19)–(21) actually present that the fuzzy relational com-
position incorporating excluding features always as a combination of two funda-
mental compositions, either ◦ and �, or ◦ and �. This is not a new approach and
even the Bandler-Kohout products were re-defined by B. De Baets and E. Kerre
using such a combination in order to avoid trivial suspicions, see [6].
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Lemma 4. Let the underlying algebraic structure 〈L,∧,∨,→,⊗, 0, 1〉 be a com-
plete residuated lattice. Then

(R ◦ S�E)(x, z) = (R ◦ S�E)�(x, z), (22)
(R ◦ S�E)(x, z) ⊇ (R ◦ S�E)�(x, z). (23)

Proof. In order to prove (22) it is sufficient to prove that ¬(R ◦E) = (R� ¬E).
Using the fact ¬∨

i∈I a =
∧

i∈I ¬a for an arbitrary index set I and using the
property (a ⊗ b) → c = a → (b → c), we may proceed as follows:

¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) =
∧

y∈Y

¬(R(x, y) ⊗ E(y, z))

=
∧

y∈Y

((R(x, y) ⊗ E(y, z)) → 0)

=
∧

y∈Y

(R(x, y) → (E(y, z) → 0))

=
∧

(R(x, y) → ¬E(y, z)) .

The proof of (23) uses property (7):

¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) =
∧

y∈Y

¬(R(x, y) ⊗ E(y, z))

≥
∧

y∈Y

(¬R(x, y) ⊕ ¬E(y, z)).

�
Note again, that the concept of the excluding features cannot be easily

avoided and that Lemma3.

2.2 The Case of Particular Classes of Residuated Lattices

As we can see, the equality of (R ◦ S�E) and (R ◦ S�E)� is not generally pre-
served in the residuated lattice. The question is, whether adding some additional
properties narrowing the class of residuated lattices as the underlying structures
would be sufficient in order to obtain the equality. The answer is given by the
following lemma.

Lemma 5. Let the underlying algebraic structure 〈L,∧,∨,→,⊗, 0, 1〉 be a com-
plete residuated lattice such that the negation ¬a = a → 0 is strict and ⊗ has no
zero divisors. Then

(R ◦ S�E)(x, z) = (R ◦ S�E)�(x, z). (24)

Proof. First, let us prove that ¬a ⊕ ¬b = ¬(a ⊗ b) holds in the given structure.
We know, that in any residuated lattice, the following holds

¬a ⊕ ¬b = ¬(¬(¬a) ⊗ ¬(¬b)) = (((a → 0) → 0) ⊗ ((b → 0) → 0)) → 0.
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Now, let us assume that a or b equals to 0 (w.l.o.g a = 0). Then

¬a ⊕ ¬b = (((0 → 0) → 0) ⊗ ((b → 0) → 0)) → 0
= ((1 → 0) ⊗ ((b → 0) → 0)) → 0
= (0 ⊗ ((b → 0) → 0)) → 0
= 0 → 1 = 1 ≥ ¬(a ⊗ b)

and as the opposite inequality holds generally in any residuated lattice, we get
¬a⊕ ¬b = ¬(a⊗ b). Now, assume that a, b > 0. Then, as ⊗ has no zero divisors,
a ⊗ b > 0 and as ¬ is strict, we get

¬(a ⊗ b) = (a ⊗ b) → 0
= 0 ≤ ¬a ⊕ ¬b

from which, we again get the equality ¬a ⊕ ¬b = ¬(a ⊗ b).
Then the proof proceeds easily as follows:

¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) =
∧

y∈Y

¬(R(x, y) ⊗ E(y, z))

=
∧

y∈Y

(¬R(x, y) ⊕ ¬E(y, z)).

�
The following corollaries demonstrate the importance of the above results for

some of the most usual algebraic structures.

Corollary 1. Let the underlying algebraic structure 〈L,∧,∨,→,⊗, 0, 1〉 be the
complete Gödel algebra or the complete Goguen algebra. Then

(R ◦ S�E)(x, z) = (R ◦ S�E)�(x, z).

Corollary 2. Let the underlying algebraic structure 〈L,∧,∨,→, 0, 1〉 be the
complete Heyting algebra. Then

(R ◦ S�E)(x, z) = (R ◦ S�E)�(x, z).

One may also naturally ask, whether the equalities hold for the MV-algebra
〈L,⊕,⊗,¬, 0, 1〉 which is the most natural generalization of Boolean algebra.
MV-algebra is a residuated lattice, but ⊗ has zero divisors and the negation
¬ is not strict, yet it is involutive. Typical example of the MV-algebra is the
�Lukasiewicz algebra. The answer is positive.

Lemma 6. Let the underlying algebraic structure 〈L,⊕,⊗,¬, 0, 1〉 be a complete
MV-algebra. Then

(R ◦ S�E)(x, z) = (R ◦ S�E)�(x, z),
(R ◦ S�E)(x, z) = (R ◦ S�E)�(x, z).



How to Incorporate Excluding Features in Fuzzy Relational Compositions 479

Proof. The first equality holds because MV-algebra is a residuated lattice, where
the inequality holds generally. The second equality is proved analogously as in
the proof of Lemma 5 using the fact, that ¬a ⊕ ¬b = ¬(a ⊗ b) holds in any
MV-algebra. �

3 Demonstrative Example

Let us demonstrate the influence of the incorporation of the excluding features
into the fuzzy relational compositions on a short yet illustrative example. Let Z
be a set of families of animals (z1 - Bird, z2 - Fish, z3 - Dog, z4 - Equidae, z5 -
Mosquito, z6 - Monotreme, z7 - Reptile), Y be a set of animal features (y1 - flies,
y2 - feathers, y3 - fins, y4 - claws, y5 - hair, y6 - teeth, y7 - beak, y8 - scales, y9
- swims) and let X be a set of particular animals (Platypus, Emu, Hairless dog,
Aligator, Parrotfish, Puffin) we want to classify to their families. Furthermore,
let S,E ⊂∼ Y × Z be given as follows

S z1 z2 z3 z4 z5 z6 z7
y1 0.8 0 0 0 1 0 0
y2 1 0 0 0 0 0 0
y3 0 1 0 0 0 0.5 0
y4 0.9 0 1 0 0 0.8 0.3
y5 0 0 0.8 1 0 0.9 0
y6 0 0.6 1 1 0 0 0.7
y7 1 0.1 0 0 0 0.5 0
y8 0.7 0.9 0 0 0 0 1
y9 0.5 1 0.8 0.6 0.1 0.7 0.8

E z1 z2 z3 z4 z5 z6 z7
y1 0 1 1 1 0 1 1
y2 0 1 1 1 1 1 1
y3 1 0 1 1 1 0 1
y4 0 1 0 1 1 0 0
y5 0.8 1 0 0 1 0 1
y6 1 0 0 0 1 1 0
y7 0 0.1 1 1 1 0 1
y8 0 0 1 0 1 1 0
y9 0 0 0 0 0.8 0 0

and let R ⊂∼ X × Y be given as follows

R y1 y2 y3 y4 y5 y6 y7 y8 y9
Platypus 0 0 0 1 1 0 1 0 0.9
Emu 0 1 0 1 0 0 1 0.5 0.4
Hairless dog 0 0 0 1 0.2 1 0 0 0.7
Aligator 0 0 0 1 0 1 0 1 0.9
Parrotfish 0 0 1 0 0 0.9 0.8 1 1
Puffin 1 1 0 1 0 0 1 0.4 0.9

If we use the �Lukasiweicz algebra as the underlying algebraic structure then we
get the following compositions
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R ◦ S z1 z2 z3 z4 z5 z6 z7
Platypus 1 0.9 1 1 0 0.9 0.7
Emu 1 0.4 1 0 0 0.8 0.5
Hairless dog 0.9 0.7 1 1 0 0.8 0.7
Aligator 0.9 0.9 1 1 0 0.8 1
Parrotfish 0.8 1 0.9 0.9 0.1 0.7 1
Puffin 1 0.9 1 0.5 1 0.8 0.7

R � S z1 z2 z3 z4 z5 z6 z7
Platypus 0 0 0 0 0 0.5 0
Emu 0.9 0 0 0 0 0 0
Hairless dog 0 0 1 0 0 0 0.3
Aligator 0 0 0 0 0 0 0.3
Parrotfish 0 0.3 0 0 0 0 0
Puffin 0.6 0 0 0 0 0 0

R�S z1 z2 z3 z4 z5 z6 z7
Platypus 0 0 0 0 0 0.5 0
Emu 0.2 0 0 0 0 0 0
Hairless dog 0 0 0.4 0 0 0 0
Aligator 0 0 0 0 0 0 0.3
Parrotfish 0 0.3 0 0 0 0 0
Puffin 0.6 0 0 0 0 0 0

R ◦ S�E z1 z2 z3 z4 z5 z6 z7
Platypus 0.2 0 0 0 0 0.9 0

Emu 1 0 0 0 0 0 0
Hairless dog 0 0 1 0 0 0 0.5

Aligator 0 0 0 0 0 0 1
Parrotfish 0 1 0 0 0 0 0

Puffin 1 0 0 0 0 0 0

As one may see, the initial suspicion given by R ◦ S is too high for too many
pairs and does not help to classify a given animal into a correct family. The
strengthening of the suspicion given by R � S is, on the other hand, at some
cases too much restrictive and if we add also the other triangle product � and
finally calculate the square product R�S, we get nearly no more suspicion. This
is a consequence of the use of the universal quantifier and the frequent occur-
rence of animals that do not carry all the typical features fully (e.g. Hairless
dog has nearly no hair, Emu does not fly) and also the fact, that some animals
carry features, do not belong so much to the given family of animals (e.g. Par-
rotfish has a beak). However, if the concept of excluding features is incorporated
appropriately, it can help to eliminate fake initial suspicion without lowering the
membership degrees to the correct families. This requires an appropriate choice
of values in E which should not exclude the family of fishes from the suspicions
ones if a given animal has a beak or, it should not exclude the family of Birds, if
a given animal does not fly. On the other hand, if an animal has hair, it should
exclude Birds and vice-versa, if an animal has feathers, Monotreme should be
excluded.

4 Conclusions and Future Work

We have shortly recalled the definitions of relational and fuzzy relational com-
positions and motivated the incorporation of so-called excluding features into
the basic “circlet” composition. We have theoretically investigated, under which
conditions, particularly in which algebras, the incorporation of the excluding
features preserves the same property as in the classical relational compositions.
The investigated property was the equivalence of three distinct types how this
idea could be incorporated, which is undoubtedly a desirable property preventing
non-uniqueness and confusing of results. We have proved that in applications the
most often used algebras, i.e. Gödel and Goguen BL-algebras and the �Lukasiewcz
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MV-algebras are among the appropriate ones. Finally the use of the excluding
features was demonstrated on an illustrative example, which was by purpose
chosen out of the medical diagnosis practice in order to demonstrate also other
potential areas of application. This choice was not arbitrary as this investiga-
tion is motivated by an on-going interdisciplinary research leading to building a
mobile application automatically classifying a given odonata (dragonfly) based
on features inserted into the application by a volunteer biologist. This project
coincides with the goal of the city of Ostrava to support preservation biology
and technological services including citizen sciences.
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Abstract. We sketch a simple theory of fuzzy partial sets, i.e., fuzzy sets
that can have undefined membership degrees. The theory is developed in
the semantic framework of a first-order extension of the recently proposed
fuzzy partial propositional logic. We introduce a selection of basic notions
of fuzzy partial set theory, discuss their variants, and present a few initial
results on the properties of fuzzy partial class operations and relations.

Keywords: Fuzzy partial logic · Fuzzy partial set · Fuzzy set theory

1 Introduction

A simple system of fuzzy partial propositional logic, i.e., a fuzzy propositional
logic which admits undefined truth degrees, has recently been proposed in [3]. A
natural next step is to develop its first- or higher-order variants and formalize the
theory of fuzzy partial sets (i.e., fuzzy sets that can have undefined membership
degrees) within this framework. This paper presents first steps toward this goal,
in a manner similar to [6, Chap. 18] or [1]. We define the semantics of a simple
first-order extension of fuzzy partial propositional logic and a simple theory of
fuzzy partial sets of the first order; introduce a selection of basic fuzzy partial
set–theoretic notions within its framework; and present a few results about these
notions. Because of space limitation, we omit all proofs; they will be given in the
upcoming full paper. In the present paper we only develop the semantic aspects
of the proposed theory; its deductive apparatus is left for future research, as is
its extension by fuzzy partial relations and classes of higher orders.

2 Fuzzy Partial Propositional Logic

Fuzzy partial logic proposed in [3] is based on (any implicative expansion of) the
well-known fuzzy logic MTL�of left-continuous t-norms. We assume the reader’s
familiarity with MTL� (or some of its axiomatic extensions, such as �Lukasiewicz
logic with the �-operator; see, e.g., [2,6–8]).

Furhter on, let the logic L be any implicative expansion of MTL�, i.e., a
logic expanding MTL� by any set of axioms, derivation rules, and connectives

c© Springer International Publishing Switzerland 2016
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of arbitrary arities, such that each added connective c is congruent w.r.t. bi-
implication: ϕ ↔ ψ �L c(χ1, . . . , ϕ, . . . , χn) ↔ c(χ1, . . . , ψ, . . . , χn). Since L is
assumed to expand MTL�, the language S of L contains at least the connectives
∧, ∨, &, →, ↔, 0, 1, and �.

The fuzzy partial propositional logic L∗ based on L is defined as follows (for
details see [3]):

– The language (or signature) S ∗ of L∗ extends the language S of L by the
truth constant ∗ (representing the undefined truth degree of propositions),
the unary connective ! (for the crisp modality “is defined”), and the binary
connective ∧̄ (for Kleene-style min-conjunction).

– Intended algebras (of truth values) for L∗ are defined by expanding the alge-
bras for L by a dummy element ∗ (to be assigned to propositions with unde-
fined truth). In the intended L∗-algebra L∗ = L ∪ {∗} (where L is an L-
algebra), the connectives of L∗ are interpreted as described by the following
truth tables, for all unary connectives u ∈ S , binary connectives c ∈ S (and
similarly for higher arities), α, β ∈ L and γ, δ ∈ L \ {0}:

!
α 1
∗ 0

u
α uα
∗ ∗

c β ∗
α α c β ∗
∗ ∗ ∗

∧̄ 0 δ ∗
0 0 0 0
γ 0 γ ∧ δ ∗
∗ 0 ∗ ∗

(1)

– Tautologies of L∗ are defined as formulae that are evaluated to 1 under all
evaluations in all intended L∗-algebras. Entailment in L∗ is defined as trans-
mission of the value 1 under all evaluations in all intended L∗-algebras. As
usual, we write |= ϕ to indicate the tautologicity of ϕ in L∗ and Γ |= ϕ to
denote the fact that the set Γ of formulae entails the formula ϕ in L∗.

– An axiomatic system for L∗ has been proposed in [3], which extends the
(suitably modified) axioms and rules of L by 4 additional derivation rules
and 10 additional axiom schemata. The general, linear, and (if enjoyed by L)
standard completeness theorems (respectively w.r.t. L∗-algebras L∗ over all,
linear, or standard L-algebras L) can be proved for this axiomatic system.
However, since in this paper we only deal with the semantics of fuzzy partial
logic and fuzzy partial set theory, we leave the axiomatic system for L∗ aside.

The connectives of S ∗ make a broad class of derived connectives available in
L∗. The class includes all connectives determined in intended L∗-algebras by
truth-tables similar to those of (1) above, with fields delimited and filled by
S ∗-formulae (for more details see [3]). This includes several useful families of
connectives well-known from three-valued logic (see, e.g., [4]), such as:

– The Bochvar-style connectives, which treat ∗ as the annihilator. Recall that
in L∗, the connectives of the original language S of the underlying fuzzy logic
L are actually interpreted Bochvar-style: see the truth tables (1) above.
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– The Sobociński-style connectives ĉ ∈ {∧̂, ∨̂, &̂}, which treat ∗ as the neutral
element; and the Sobociński-style implication →̂ residuated with &̂:

ĉ β ∗
α α c β α
∗ β ∗

→̂ β ∗
α α → β ¬α
∗ β ∗

(2)

– The Kleene-style connectives ∧̄, ∨̄, &̄, and →̄, which keep the annihilators of
the corresponding connectives of L and are evaluated Bochvar-style otherwise;
i.e., for c ∈ {∧,&}:

c̄ 0 β ∗
0 0 0 0
α 0 α c β ∗
∗ 0 ∗ ∗

∨̄ δ 1 ∗
γ γ ∨ δ 1 ∗
1 1 1 1
∗ ∗ 1 ∗

→̄ δ 1 ∗
0 1 1 1
α α → δ 1 ∗
∗ ∗ 1 ∗

(3)

– The McCarthy-style sequential binary connectives (evaluated Kleene-style if
their first argument is defined and Bochvar-style otherwise); the Bochvar-
external style connectives (which treat ∗ as 0); the best-case (or worst-case)
connectives (which yield the largest or lowest truth value when ∗ is replaced
by any defined truth degree); etc.

Moreover, the following useful unary and binary connectives are L∗-definable:

x ?x ↓x ↑x
α 0 α α
∗ 1 0 1

x �x
γ 0
1 ∗
∗ 0

(4)

≡ β ∗
α �(α ↔ β) 0
∗ 0 1

� β ∗
α �(α ↔ β) 0
∗ 1 1

�− β ∗
α �(α → β) 0
∗ 1 1

(5)

for α, β �= ∗ and γ /∈ {1, ∗}. For more details on fuzzy partial propositional logic
(including examples of valid laws and several metamathematical results) see [3].

3 Fuzzy Partial First-Order Logic

A simple first-order variant L∀∗ of L∗ can be defined in a manner analogous
to other fuzzy first-order logics (cf., e.g., [7] or [2]). Like in propositional L∗,
the (standardly defined) first-order formulae of L∀∗ are evaluated in L∗-algebras
of truth values. The interpretation of a unary (and analogously higher-arity)
predicate symbol P in a given model M is thus a total function PM : DM →
L∗, where DM is the domain of M and L∗ is an intended L∗-algebra of truth
values. The assignment PM(a) = ∗ then represents the undefined truth of Px
in M under the evaluation x �→ a. Function symbols F of arity n ≥ 0 are
interpreted in M as usual, by functions FM :

(
DM

)n → DM. In this paper we
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do not consider undefined individuals, since the language of partial fuzzy class
theory, which is the main focus of the present paper, only contains class terms
with always well-defined values; a fuller account of fuzzy partial first-order logic
that accommodates undefined individuals is left for future work.

The Tarski conditions for terms, atomic formulae, and propositional connec-
tives are defined as usual; because of space limitations, we omit them here and
refer the reader to [7, Chap. 5] or [2, Sect. 5]. The clauses for quantifiers are
introduced in (6)–(7) below. Let the truth value (in L∗) of the formula ϕ in a
model M under an evaluation e of individual variables be denoted by ‖ϕ‖Me ;
if M and e are fixed or arbitrary, we shall write simply ‖ϕ‖. Similarly, the value
of the term t in M under e will be denoted by ‖t‖Me (or simply ‖t‖). The eval-
uation that assigns a ∈ DM to x and coincides with e on all other individual
variables will be denoted by e[x �→ a].

The primitive quantifiers ∀, ∃ of L∀∗ will be interpreted Bochvar-style, yield-
ing ∗ whenever there is an undefined instance of the quantified formula:

‖(∀x)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

infa∈DM
‖ϕ‖Me[x�→a] otherwise

(6)

‖(∃x)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

supa∈DM
‖ϕ‖Me[x�→a] otherwise

(7)

While Bochvar quantifiers ∀,∃ themselves are of limited utility, they are
sufficient for the definability of further useful quantifiers in L∀∗ by means of the
connectives of L∗. For instance, consider the Sobociński-style quantifiers with
the following Tarski conditions:

‖(∀̂x)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for all a ∈ DM

infa∈DM
‖↑ϕ‖Me[x�→a] otherwise

(8)

‖(∃̂x)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for all a ∈ DM

supa∈DM
‖↓ϕ‖Me[x�→a] otherwise

(9)

They can be defined by means of ∀,∃ and the connectives of L∗ as follows:

(∀̂x)ϕ ≡df (∀x)↑ϕ ∨ �(∀x)?ϕ (10)

(∃̂x)ϕ ≡df (∃x)↓ϕ ∨ �(∀x)?ϕ (11)

Similarly, the Kleene-style quantifiers can be defined as follows:

(∀̄x)ϕ ≡df (∀x)ϕ ∧̄ (∀̂x)ϕ (12)

(∃̄x)ϕ ≡df (∃x)ϕ ∨̄ (∃̂x)ϕ (13)
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Further useful quantifiers arise by combining these quantifiers with the con-
nectives ↑, ↓ of (4); among them, the most meaningful are the following ones:

(∀x)↑ϕ Sette ∀ (14)
(∀x)↓ϕ Bochvar-external ∀ (15)
(∃x)↓ϕ Bochvar-external ∃ (16)

The names of all the quantifiers are derived from the three-valued connectives
(see, e.g., [4]) to which they reduce in a single-element domain over the three-
valued L∗-algebra. All of the quantifiers reduce to the usual quantifiers ∀,∃ of
the first-order fuzzy logic L∀ if all instances of the quantified formula are defined.

As usual, validity in a model of L∀∗ is defined as 1-truth under all evaluations;
tautologicity as validity in all models; and entailment as transmission of valid-
ity in each model, analogously to other first-order fuzzy logics (with 1 the only
designated truth value); again we refer the reader to [7, Chap. 5] or [2, Sect. 2].
Since the focus of this paper is on the semantics, we leave the axiomatization
of L∀∗ aside. Let us just hint that L∀∗ turns out to be implicative (see [9]) w.r.t.
the connective �− of (5), so it can be axiomatized straightforwardly by adding
Rasiowa’s axioms for quantifiers (and, optionally, Hájek’s axiom (∀3) of [7] to
ensure completeness w.r.t. safe models over linear intended L∗-algebras) to the
axiomatic system for L∗: this axiomatizes the quantifiers ∀ and ∃̂, which corre-
spond to inf/sup w.r.t. the order generated by �−; the Bochvar-style quantifier ∃
is definable from ∀, ∃̂ and the connectives of L∗.

4 A Simple Theory of Fuzzy Partial Sets

Fuzzy partial logic of the first order provides the means for formalization of
the theory of fuzzy partial sets, in a similar manner as fuzzy set theory can
be formalized in fuzzy first-order logic. A simple representation of fuzzy sets
in fuzzy first-order logic L treats membership to a fuzzy set as a binary pred-
icate ∈ between two sorts of objects, representing elements of a fixed domain
and fuzzy subsets of this domain. The membership predicate ∈ is required to
satisfy the axioms of extensionality and comprehension (suitably adapted for L,
see [1, Sect. 3.1]) or the corresponding semantic conditions on the models of ∈
[6, Chap. 18.1].

A simple theory of partial fuzzy sets can be obtained by mimicking this app-
roach in fuzzy partial first-order logic L∀∗, i.e., by evaluating ∈ in L∗-algebras L∗
instead of L-algebras L. In this section we briefly introduce such a simple theory
of fuzzy sets, called PFCT1(L∗). The construction is analogous to the theory of
L-valued first-order fuzzy classes introduced in [1, Sect. 3], which we shall denote
here by FCT1(L). Further extension of PFCT1(L∗) by tuples (needed for fuzzy
partial relations) and fuzzy partial sets of higher orders (yielding a fully fledged
fuzzy partial higher-order logic L∗) can then be done analogously as in FCT1(L):
cf. [1, Sect. 4–5].



Towards Fuzzy Partial Set Theory 487

Similarly to FCT1(L), the theory PFCT1(L∗) of fuzzy partial first-order
classes is a theory in multi-sorted first-order logic L∀∗ (the multi-sorted gener-
alization of L∀∗ is defined analogously to multi-sorted L∀, cf. [1]). The language
of PFCT(L∗) consists of:

– Variables for elements, denoted by lowercase letters x, y, . . . .
– Variables for (fuzzy partial) classes, denoted by uppercase letters A,B, . . . .
– The (crisp total) equality predicate = on each sort.
– The (fuzzy partial) membership predicate ∈ between elements and classes. By

convention, the formula x ∈ A can be abbreviated by Ax.
– Class terms {x | ϕ(x)} for each variable x and each PFCT1(L∗)-formula ϕ.

Analogously to the intended models of FCT1(L) (see [1, Sect. 3.1] for details),
the intended models of PFCT1(L∗) consist of all L∗-valued membership functions
(representing fuzzy partial classes) over a given domain of elements, with the
obvious interpretation of the predicates = (as crisp identity), ∈, and class terms:

‖x ∈ A‖ = ‖A‖(‖x‖) (17)
‖{x | ϕ(x)}‖ : ‖x‖ �→ ‖ϕ(x)‖ (18)

(i.e., the truth value of membership is the degree assigned by the membership
function, and class terms denote the membership functions evaluated according
to their formulae).

Even though the theory of the intended models described above is not axiom-
atizable (as it contains classical second-order logic), we conjecture that similarly
to classical second-order logic and FCT1(L), the following Henkin-style axioms
(for all PFCT1(L∗)-formulae ϕ) are sufficient for most practical purposes:

– Equality axioms: x = x and x = y → (ϕ(x) ≡ ϕ(y)), and the same for classes
– Extensionality: (∀x)(Ax ≡ Bx) → A = B
– Class comprehension: y ∈ {x | ϕ(x)} ≡ ϕ(y)

In the subsequent sections, the framework of PFCT1(L∗) is only used as a
language for expressing statements about partial fuzzy sets. The validity of all
theorems given here can be proved semantically by considering the truth values
in all intended models of PFCT1(L∗), without employing its deductive apparatus
(which is left for future research).

5 Partial Variants of Fuzzy Set–Theoretic Notions

Since the fuzzy partial logic L∀∗ has a richer set of meaningful connectives
and quantifiers than the fuzzy logic L∀, fuzzy set-theoretic notions defined in
FCT1(L) can usually be generalized to PFCT1(L∗) in several ways, each with
its own uses. In this section we shall discuss such variations of partial fuzzy set–
theoretic notions, obtained by varying the quantifiers and connectives in their
definitions. Due to space limitations, only a few examples will be given to illus-
trate the general point. Some of the laws governing these notions will be given
in Sect. 7.
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5.1 Domains and Equality

The main difference between FCT1(L) and PFCT1(L∗) is that membership func-
tions representing fuzzy classes in FCT1(L) are total, while in PFCT1(L∗) they
can be partial (with the undefined membership degrees represented by the truth
value ∗). Several notions specific to fuzzy partial set theory thus come from the
theory of partial functions. For instance, we define the domain of a class as the
domain of its membership function:

dom A =df {x | !Ax} domain (19)

A class is total if it is defined for all elements:

Tot A ≡df (∀x)!Ax totalness (20)

Clearly domains are total (and crisp) classes: PFCT1(L∗) |= Tot(dom A).
Furthermore, like in the theory of partial functions, we can introduce several

notions of (crisp) equality for partial fuzzy classes, based on the various notions
of equality of their partial membership functions:

A = B ≡df (∀x)(Ax ≡ Bx) strong equality (21)
A � B ≡df (∀x)((Ax ≡ Bx) ∨ ?Ax ∨ ?Bx) weak equality (22)

A �= B ≡df (∀x)(Ax � Bx) subfunction (23)

Note that the strong equality predicate = is actually the primitive equality
predicate of PFCT1(L∗) governed by the axioms equality of extensionality. By
the semantics of ≡, ?, and � (see (4)–(5)), all of these notions are crisp and
defined (i.e., non-∗) for all pairs of classes; = is a (total crisp) equivalence relation;
and �= is a (total crisp) partial order on fuzzy classes. Moreover,

PFCT1(L∗) |= (A = B) ↔ ((A � B) ∧ (dom A = dom B)) (24)

PFCT1(L∗) |= (A = B) ↔ ((A �= B) ∧ (B �= A)) (25)

PFCT1(L∗) |= (A �= B) → (A � B). (26)

(Further on we omit the “PFCT1(L∗) |=” prefix when the claim of validity in
PFCT1(L∗) is clearly intended.)

5.2 Class Constants and Shifts

Like in FCT1(L), the empty class ∅ can be defined in PFCT1(L∗) as the class to
which all elements belong to degree 0:

∅ =df {x | 0} empty class (27)
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In PFCT1(L∗), we can define another class which also contains no elements to
any defined positive degree (so, in this sense, is also ‘empty’), namely:

λ =df {x | ∗} totally undefined class (28)

Clearly λ �= ∅ (though λ �= ∅, and so by (26), λ � ∅; in general, λ �= A and λ � A
for any class A). The property of having no elements to any defined positive
degree is shared by all subfunctions of ∅; we can call these classes uninhabited;
the class λ is the smallest and ∅ the largest uninhabited class w.r.t. �=.

The universal class is the class which contains all elements to degree 1:

V =df {x | 1} universal class (29)

Clearly, dom V = dom ∅ = V, while domλ = ∅. Observe that λ is the unique
class with empty domain.

Recall the connectives ↓ and ↑ of (4), which reinterpret ∗ respectively as 0
and 1. The corresponding class operations turn out to be quite useful:

⇑A =df {x | ↑Ax} up-shift (30)
⇓A =df {x | ↓Ax} down-shift (31)

The up- and down-shifts of all classes are total: dom⇑A = dom ⇓A = V. Obvi-
ously ⇑λ = V and ⇓λ = ∅. For total classes, ⇑A = ⇓A = A.

5.3 Height and Plinth

For totally defined fuzzy classes, the fuzzy set–theoretic notions of height and
plinth are defined in FCT1(L) as follows:

Hgt A ≡df (∃x)Ax height ‖Hgt A‖ = supx ‖A‖(x) (32)
Plt A ≡df (∀x)Ax plinth ‖Plt A‖ = infx ‖A‖(x) (33)

As we have seen in Sect. 3, in L∀∗ we have a choice of several meaningful exis-
tential and universal quantifiers, yielding several different notions of height and
plinth for partial fuzzy classes:

Hgt A ≡df (∃x)Ax Plt A ≡df (∀x)Ax Bochvar height and plinth (34)

Ĥgt A ≡df (∃̂x)Ax P̂lt A ≡df (∀̂x)Ax Sobociński height and plinth (35)
H̄gt A ≡df (∃̄x)Ax P̄lt A ≡df (∀̄x)Ax Kleene height and plinth (36)

Further meaningful notions of height and plinth can be obtained by combin-
ing the quantifiers with shifts, cf. (14)–(16): Bochvar-external height Hgt ⇓A,
Bochvar-external plinth Plt⇓A, and Sette plinth Plt⇑A.

For total fuzzy classes, all of these notions coincide with the usual notions of
height (32) and plinth (33) known from fuzzy set theory; however, they differ for
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non-total classes: Bochvar height and plinth yield ∗ for any non-total class, while
Sobociński heights and plinths ignore the undefined values and only yield ∗ for
the totally undefined class λ (see Fig. 1). Kleene height coincides with Bochvar
heihgt except for classes with Sobociński height 1 (and dually for Kleene plinth).
Bochvar-external height and Sette plinth, respectively, coincide with Sobociński
height and plinth, save for the class λ (where Hgt ⇓λ ≡ 0 and Plt⇑λ ≡ 1, while
Ĥgt λ ≡ P̂ltλ ≡ ∗). Bochvar-external plinth is 0 for any non-total class.

Fig. 1. Bochvar and Sobociński heights and plinths

5.4 Kernels and Supports

There are several meaningful ways of defining kernels and supports of par-
tial fuzzy sets. The Bochvar-style kernel ker A =df {x | �Ax} and support
suppA =df {x | ¬�¬Ax} are undefined whenever Ax is undefined, and coincide
with the usual notions of kernel and support on the domain of A. Consequently,
dom(ker A) = dom(suppA) = dom A.

Another meaningful option is to regard elements outside domA as not
belonging to the kernel (nor support) of A. This variant is definable as ker⇓A
and supp⇓A (or equivalently, ⇓ ker A and ⇓ suppA). Since these notions treat ∗
as 0, a fitting name for them is Bochvar-external kernel and support.

Another useful notion of support is the following:

‖(supp∗ A)x‖ =

{
1 if ‖Ax‖ /∈ {0, ∗}
∗ otherwise

It can be defined in PFCT1(L∗) as supp∗ A =df {x | (¬�¬Ax) ∨ �(�¬Ax)}.
An analogous notion of kernel is ker∗ A =df supp∗ ker A. The domains of supp∗

and ker∗ are Bochvar-external kernels and supports: dom(ker∗ A) = ⇓ ker A and
dom(supp∗ A) = ⇓ suppA. The three notions of kernel and support are illus-
trated in Fig. 2.
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(a) Kernels (b) Supports

Fig. 2. Various notions of kernel and support. Bold lines indicate the degree 1, dotted
lines indicate the degree 0, and empty lines indicate the undefined degree ∗.

5.5 Basic First-Order Class Operations

Like in the theory of total fuzzy or crisp sets, basic partial fuzzy class operations
result from combining the membership degrees by propositional connectives of
L∗. Again, different families of propositional connectives give rise to different
families of class operations. Thus, e.g., we have the following variants of min-
intersection of partial fuzzy classes:

A ∩ B =df {x | Ax ∧ Bx} Bochvar min-intersection (37)
A ∩̂ B =df {x | Ax ∧̂ Bx} Sobociński min-intersection (38)
A ∩̄ B =df {x | Ax ∧̄ Bx} Kleene min-intersection (39)

Similar class operations can be derived from all propositional connectives of all
families of L∗-definable connectives introduced in Sect. 2: for example, Bochvar
strong intersection A ·∩B =df {x | Ax & Bx}, Sobociński max-union A ∪̂ B =df

{x | Ax ∨̂ Bx}, etc. Again, for total fuzzy classes they coincide with the corre-
sponding operations known from fuzzy set theory, but their behaviors differ for
non-total operands: for instance, observe that

dom(A ∩ B) = dom A ∩ dom B (40)
dom(A ∩̂ B) = dom A ∪ dom B (41)

(and analogously for the domains of all Bochvar and Sobociński operations).
An even greater variation is found in PFCT1(L∗)-notions defined by more

complex formulae, such as graded inclusion, fuzzy equality, etc., in which the vari-
ants of connectives and quantifiers occurring in the definition can be freely com-
bined (as, e.g., in Bochvar–Sobociński graded inclusion (∀x)(Ax →̂ Bx)). Many
of these combinations express meaningful ways of handling undefined member-
ship degrees. However, due to the number of possible variants, we leave a more
detailed discussion of such combined notions aside here.
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6 Representation of Fuzzy Partial Classes

Like ordinary fuzzy sets, a fuzzy partial set A can be represented by the system
of crisp horizontal level sets Aα = {x | ‖Ax‖ = α} for each α ∈ L∗, which
partition the universe of elements; the only difference from ordinary fuzzy sets is
the presence of an extra level set A∗ of elements x such that ‖Ax‖ = ∗. Obviously
A∗ is the complement of dom A. A fuzzy partial class A is thus determined by a
crisp domain X = dom A and a fuzzy subset F of X (represented in a model of
PFCT1(L∗) by a membership function ‖F‖). This agrees very well with Zadeh’s
original conception of fuzzy set [10], specified as a membership function on a
crisp domain. Partial fuzzy set theory such as PFCT1(L∗) thus renders Zadeh’s
notion of fuzzy set more faithfully than common fuzzy set theories formalized
in fuzzy first- or higher-order logic (incl. FCT of [1]): in the models of the latter
theories, all fuzzy sets are total, and so restricted to a single fixed crisp domain.

In models of PFCT1(L∗), partial fuzzy classes can thus be represented by
pairs 〈X,F 〉 of total fuzzy classes (where X is moreover crisp). Given X and F ,
the represented partial fuzzy class can be reconstructed as A = F ∩ supp∗ X.
Conversely, given a partial fuzzy class A, the representing pair of total classes
can be defined as 〈dom A,⇓A〉. This correspondence makes it possible to emulate
partial fuzzy set theory within the framework of ordinary fuzzy set theory (such
as FCT: a formal syntactic interpretation of PFCT1(L∗) in FCT is left for future
work). An advantage of PFCT1(L∗) over such emulation is that its relations
and operations handle both components 〈X,F 〉 simultaneously, in a variety of
predefined manners. For example, Bochvar and Sobociński max-unions perform
the following FCT1(L)-operations on the representing pairs (cf. (40)–(41)):

〈X1, F1〉 ∪ 〈X2, F2〉 =df 〈X1 ∩ X2, F1 ∪ F2〉 (42)
〈X1, F1〉 ∪̂ 〈X2, F2〉 =df 〈X1 ∪ X2, F1 ∪ F2〉 (43)

7 Theorems on Elementary Relations and Operations

Like in the case of FCT, the formal apparatus of PFCT1(L∗) enables proving
schematic theorems on the laws governing its defined notions. As an example, we
will give an analogue of the metatheorem of FCT [1, Theorem 33], which provides
a correspondence between propositional laws of L∗ and the laws (of certain forms)
governing fuzzy partial class relations and operations in PFCT1(L∗).

In this section, the expression ϕ(p1, . . . , pn) will imply that all variables
of the propositional formula ϕ are among p1, . . . , pn. The formula resulting
from ϕ(p1, . . . , pn) by substituting ψi for pi (for each i ≤ n) is denoted by
ϕ(ψ1, . . . , ψn).

Definition 1. Let ϕ(p1, . . . , pk) be a propositional formula of L∗. The elemen-
tary class operation generated by ϕ is defined in PFCT(L∗) as:

Opϕ(A1, . . . , Ak) =df {x | ϕ(A1x, . . . , Akx)}.
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Furthermore, the k-ary elementary class relation generated by ϕ and Q ∈ {∀, ∀̂,

∀̄,∃, ∃̂, ∃̄} is defined as:

RelQϕ (A1, . . . , Ak) ≡df (Qx)ϕ(A1x, . . . , Akx).

We may write just Opc or RelQc if ϕ is c(p1, . . . , pk) for c a (primitive or defined)
connective of L∗. Thus, e.g., Op� is ker, Op∧̂ is ∩̂, Rel∀≡ is =, etc.

Theorem 1. Let ϕ(p1, . . . , pn) and ψi(pi,1, . . . , pi,ki
), 1 ≤ i ≤ n, be proposi-

tional formulae of L∗ and Q ∈ {∀, ∀̄, ∀̂,∃, ∃̄, ∃̂}. Then the following conditions
are equivalent:

1. L∗ |= ϕ(ψ1, . . . , ψn)
2. PFCT1(L∗) |= RelQϕ

(
Opψ1

(A1,1, . . . , A1,k1), . . . ,Opψn
(An,1, . . . , An,kn

)
)

Theorem 1 effectively reduces elementary class relations between class operations
to propositional logic. We give just a few examples of its corollaries:

PFCT1(L∗) MTL∗

|= A ·∩(B ·∩C) = (A ·∩B) ·∩C by |= p & (q & r) ≡ (p & q) & r

�|= ∅ ⊆ A by �|= 0 → p

|= λ �= A by |= (∗ ≡ p) ∨ ?∗
|= dom(A ∩̂ B) = dom A ∪ dom B by |= !(p ∨̂ q) ≡ (!p ∨ !q), etc.

8 Conclusion

In this paper we proposed a (simplistic) system of first-order fuzzy partial logic
and fuzzy partial set theory, extending usual fuzzy logics (e.g., MTL�, BL�,
�L�, �LΠ, etc.) by an extra truth value ∗ for undefined truth (not unknown truth,
though: cf. [5]). This makes it suitable, e.g., for handling non-denoting linguistic
terms, non-applicable fuzzy conditions, or various error states in fuzzy contexts
(for motivation see [3, Sect. 1]; envisaged applications are left for future work).
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Abstract. We present and analyze inference method called Perception-
based Logical Deduction (PbLD) aimed at the treatment of fuzzy IF-
THEN rules as linguistically expressed genuine logical implications. We
analyze two variants of PbLD (original and balancing) that differ in the
selection of fired IF-THEN rules. We concentrate on a situation when
inputs into inference are fuzzy sets (fuzzy inputs). We study the condi-
tions under which both variants fulfill the interpolativity property.

Keywords: Perception-based Logical Deduction · Fuzzy interpolation ·
Inference mechanism · Implicative fuzzy rules · �Lukasiewicz algebra

1 Introduction

1.1 Fuzzy Rules and Inference Mechanisms

Consider a finite set of fuzzy IF-THEN rules (a fuzzy rule base):

Ri := IF X is Ai THEN Y is Bi, i = 1, . . . , n, (1)

where X,Y are linguistic variables and Ai,Bi are linguistic labels (e.g., “small”,
“around ten” etc.). The interpretation of expressions Ai,Bi is modeled by appro-
priate antecedent and consequent fuzzy sets Ai, Bi defined on some non-empty
universes U, V , respectively. For our purposes, we can restrict our choice of U, V
to closed real intervals. There exist two standard approaches to modelling a given
fuzzy rule base by an appropriate fuzzy relation, namely by Ř, R̂ ∈ F(U × V ):

Ř(u, v) =
n∨

i=1

(Ai(u) ∗ Bi(v)) , R̂(u, v) =
n∧

i=1

(Ai(u) → Bi(v)) (2)

where ∗ is a t-norm and → is a fuzzy implication, jointly usually forming an
adjoint pair. For further details we refer to relevant sources [1–3].
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c© Springer International Publishing Switzerland 2016
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There are many inference mechanisms that, with the help of fuzzy rules,
deduce an appropriate output B0 ∈ F(V ) based on a given observation (input)
A0 ∈ F(U). Let us restrict our focus on the fuzzy relational inference systems
that directly use an image of a fuzzy set under the fuzzy relation as a model of
the inference mechanism. Most often, the direct image ◦ (also CRI [4]) is used,
however, the Bandler-Kohout subproduct � was proposed in [5] and later on, in
[6], it was shown that both inference mechanisms are equally good. Recall that

(A0◦R)(v) =
∨

u∈U

(A0(u)∗R(u, v)), (A0�R)(v) =
∧

u∈U

(A0(u) → R(u, v)). (3)

1.2 Motivation

Models of fuzzy rule bases and inference mechanisms described in the previous
subsection based on CRI or BK-subproduct are well suited for the purpose of
approximation of an unknown function characterized imprecisely by fuzzy rules.
The fuzzy sets Ai, Bi, which interpret linguistic labels Ai, Bi, are usually of one
of standard shapes, e.g., triangular, trapezoidal etc. Further, they are usually
uniformly distributed along the intervals U and V , forming a fuzzy partition.

If we are interested in capturing the meaning of linguistic labels, which are
used by humans most often, we have to search for another model of these
labels. We argue that, according to intuition shared by humans, if something
is extremely small, it is, at the same time, small. Therefore, the interpretation
of “extremely small” should be a fuzzy subset of the interpretation of “small”.
Typical shapes of interpretations of these linguistic expressions are depicted in
Fig. 1. If we accept that a model of these linguistic expressions should possess
this property, we find that inference mechanisms and fuzzy rule base models
described above are not well suited for it.

Sm
Bi

Me

1 ML Sm

Ex Sm

ML Me

Fig. 1. Graphical representations of fuzzy sets that interpret linguistic expressions
extremely small, small, more or less small, more or less medium, medium and big.

A fuzzy relational model is interpolative (correct) if and only if it models a
certain type of continuous behavior [7]. In general, this can be viewed as a feature
rather than a disadvantage, but there are situations where even a smooth fuzzy
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model should be able to provide a discontinuous jump [7]. Consider the following
fuzzy rule base RB1:

R1 := IF X is small THEN Y is − big,

R2 := IF X is extremely small THEN Y is + big,

where X is a distance of a vehicle from a traffic signal when the yellow light
appears on it and Y is a desired change of speed of that vehicle. Obviously, the
change from braking to speeding up (big negative and positive changes in speed)
is something that cannot be provided by a correct (consistent) model using a
fuzzy IF-THEN rule base within a fuzzy relational inference [7]. Moreover, if
interpretations of extremely small and small are as in Fig. 1 and the observation
is u0 = 0, we expect that the rule R2 has to be used, and the result has to
correspond to linguistic expression +big. However, results of both fuzzy relational
interpretations (2) are unsatisfactory. The reason is that both rules R1 and R2

are fired and consequents of these rules are very different. Thus, the inference
mechanism either put both contradictory consequents into the conclusion, or it
annihilates both consequents into the empty fuzzy set.

Based on these considerations, a method called Perception-based Logical
Deduction (abbr. PbLD) has been developed [8,9]. Perception-based, because to
an input we assign only the most fitting linguistic expression(s) from antecedents
of a fuzzy rule base, call them perceptions and fire the corresponding rules. Log-
ical, because it understands IF-THEN rules as logical implications and it has
been developed within a formal logical theory. It can be shown that for the
PbLD method it is no problem to provide conclusions based on the fuzzy rule
base RB1 in accordance with human intuition.

As we mentioned above, PbLD fires the rules whose antecedents fit the
observation best. But what does it mean? Consider again the fuzzy rule base
RB1. There is a substantial difference between consequents corresponding to
antecedents small (rule R1) and extremely small (rule R2). Intuitively, if an
observation is extremely small, only R2 should be used. Similarly, if an obser-
vation is small (but not extremely small), only R1 should be used. So, we use
the rule with the maximal membership degree of the observation in fuzzy sets
interpreting antecedent linguistic expressions.1 If there are more such rules, then
we use the rule whose antecedent is most specific.2

The study and applications of Perception-based Logical Deduction have been
conducted mainly for the case of crisp observations and in [10] extended for the
case of fuzzy observations that occur, for instance, in hierarchical fuzzy systems.
However, as we will show below, the generalized firing degree proposed in [10]
had a certain drawback that requires to revisit the topic and to investigate
theoretical properties for fuzzy inputs based on the newly axiomatically defined
generalized firing degree. By the theoretical properties, we mean, mainly, the

1 We will call this degree a firing degree of the observation uo in fuzzy rule Ri.
2 E.g., extremely small is more specific than small.
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preservation of modus ponens that directly leads to the interpolativity. Briefly,
it says that if a fuzzy input (observation) is equal to the antecedent of fuzzy rule
Ri, then the inferred conclusion should be equal to the consequent of Ri.

2 PbLD Revisited

2.1 Mathematical Background

We fix the �Lukasiewicz algebra L = 〈[0, 1],∧,∨, ∗,→, 0, 1〉 as the background
algebraic structure. Let U be a universe and A,B ∈ F(U). We say that A is a
subset of B and denote it by A ⊆ B if for all u ∈ U , A(u) ≤ B(u). By ∅ we
denote the empty fuzzy set on U , that is, ∅(u) = 0 for all u ∈ U . Let u0 ∈ U . By
χu0 we denote the fuzzy set (fuzzy singleton) at point u0 defined as χu0(u0) = 1
and χu0(u) = 0 for u = u0.

Major components of systems of fuzzy IF-THEN rules are evaluative lin-
guistic expressions, evaluative expressions for short [11]. A simple form of an
evaluative expression has the following structure:

〈linguistic hedge〉〈atomic evaluative expression〉.
An atomic evaluative expression is one of the canonical adjectives: small, medium
and big, which we abbreviate in the following as Sm, Me and Bi, respectively.

Linguistic hedges are specific adverbs that make the interpretations of atomic
expressions more or less precise. We may distinguish between hedges with a
narrowing effect and with a widening effect, (a special case is the empty hedge).
Of course, the number of hedges is limited in practical applications. Without
loss of generality, we use the hedges introduced in Table 1. Note that our hedges
are of the so-called inclusive type, which means that the interpretations (fuzzy
sets) of more specific evaluative expressions are included in those of less specific
ones, as shown in Fig. 1. Note also that we always suppose the interpretations of
evaluative expressions to be normal fuzzy sets, i.e., their kernels are non-empty.

Table 1. Linguistic hedges and their abbreviations.

Narrowing effect Widening effect

very (Ve) more or less (ML)

significantly (Si) roughly (Ro)

extremely (Ex) quite roughly (QR)

Whenever we use the above recalled theory of evaluative linguistic expres-
sions with linguistic hedges of an inclusive type, the use of a single fuzzy rela-
tion – either R̂ or Ř – is not appropriate anymore, as we argued in Sect. 1.2. In
order to distinguish the situation from the, say, “standard” fuzzy rule base,
which deal with fuzzy partitions and may use a single fuzzy relation as a
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model, the set of rules (1) will be called linguistic description and denoted by
LD = {R1, . . . ,Rn}.3 The following conventions will be kept in this paper: Nn

will denote the set {1, . . . , n} of natural numbers; if LD is given, then Ai and
Bi, i ∈ Nn, will denote antecedent and consequent evaluative expressions from
the i-th fuzzy IF-THEN rule Ri, respectively; Ai ∈ F(U) and Bi ∈ F(V ) will
denote their interpretations (fuzzy sets on the closed real intervals U, V ).

A specificity ordering relation on the set of evaluative expressions is defined
in order to allow us to state the relationships (inclusions) among evaluative
expressions (or their models). First, let us define the ordering ≤H on the set of
hedges that can be defined on the hedges from Table 1 as follows:

Ex ≤H Si≤H Ve ≤H〈empty〉≤H ML≤H Ro ≤H QR.

Based on ≤H, we define the ordering ≤LE of evaluative expressions. Let A1 :=
〈hedge〉1A and A2 := 〈hedge〉2A, where A is an atomic expression. Then,

A1 ≤LE A2

if 〈hedge〉1 ≤H〈hedge〉2. So, evaluative expressions of the same type (with iden-
tical atomic expressions) are ordered according to their specificity (i.e., hedges),
A1 and A2 with different atomic expressions cannot be ordered by ≤LE.

Further, we adopt the extension of the theory of evaluative expressions by
the following two axioms, namely the partition axiom and inclusion axiom [9],
and newly we add the uniqueness axiom.

Axiom 1 (Partition Axiom). Let A1,A2 be evaluative expressions with dif-
ferent atomic expressions that are modeled by A1, A2 ∈ F(U). Then, for all
u ∈ U :

A1(u) + A2(u) < 2.

Axiom 2 (Inclusion Axiom). Let A1,A2 be two nonequal evaluative expres-
sions ordered as A1 ≤LE A2 and modeled by fuzzy sets A1, A2, respectively. Then,

A1 ⊆ A2 and Ker(A1) ⊂ Ker(A2),

where Ker(A) denotes the kernel of a fuzzy set A.

Axiom 3 (Uniqueness Axiom). Let LD be given. Then

(∀i ∈ Nn)(∀j ∈ Nn)((i = j) ⇒ (Ai = Aj)). (4)

It should be noted that antecedents of a linguistic description usually con-
tain more than one variable. In this case, antecedent variables are compounded
by conjunction and the ordering ≤LE of compound evaluative expressions is
extended in a straightforward way.

3 LD is viewed as a set, hence we omit multiple occurrences and each rule can be
contained in LD only once.
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2.2 PbLD with Fuzzy Inputs

In this section we describe the PbLD with inputs formed by fuzzy sets (we call
it PbLD with fuzzy inputs). For formal treatment of PbLD with crisp inputs,
see [10, Sects. 2.2–2.3].

We start with a generalization of the firing degree. Recall that the firing
degree of a crisp input u0 associated with the rule Ri from LD is simply Ai(u0).
In [10, Sect. 2.4], we proposed to use as a generalized fired degree operations ◦
and � derived from (3) and defined as follows:

A1 ◦ A2 =
∨

u∈U

(A1(u) ∗ A2(u)) , A1 � A2 =
∧

u∈U

(A1(u) → A2(u)) . (5)

However, we showed in [10, Sect. 3] that using ◦ as the generalized firing degree
does not provide satisfactory results from the point of view of interpolativity.
Results with � were much more promising, but later we noticed a certain draw-
back of this operation for our purposes, namely that if there is an u ∈ U such
that A1(u) = 1 and A2(u) = 0, then A1 � A2 = 0. This is a problem for bal-
ancing PbLD. Consider, for example, fuzzy sets A1, A2 being interpretations of
evaluative expression small and more or less medium, respectively (see Fig. 1).
Then A1�A2 = A2�A1 = 0. But this is not in accordance with the idea behind
balancing PbLD (see the discussion below). Therefore, we searched for less strict
operations similar to �. For this purpose, let us introduce an inclusion measure
by the following axiomatic definition.

Definition 1. Let U be a universe. We say that the operation Im : F(U) ×
F(U) → [0, 1] is an inclusion measure if it fulfills the following axioms for all
A1, A2, A3 ∈ F(U) and all u0 ∈ U :

(Ax1) Im(A1, A2) = 1 iff A1 ⊆ A2,
(Ax2) if A1 = ∅, then Im(A1, A2) = 0 iff A1 ∩ A2 = ∅,
(Ax3) if A1 = χu0 , then Im(A1, A2) = A2(u0),
(Ax4) if A2 ⊆ A3, then Im(A1, A2) ≤ Im(A1, A3).

Remark 1. 1. The first axiom (Ax1) says that A1 being a subset of A2 is a nec-
essary and sufficient condition for an inclusion measure to attain the highest
possible degree. The second axiom (Ax2) states that an inclusion degree is
equal to zero if and only its arguments are disjoint (the exception is the empty
fuzzy set as the first argument, because the empty fuzzy set is a subset of any
fuzzy set, hence the axiom (Ax1) applies). The correct behavior of inclusion
measures with respect to fuzzy singletons is guaranteed by (Ax3). Finally, by
(Ax4) we require the monotonicity of Im in the second argument. Naturally,
if we expand A2, but A1 does not change (hence, the size of the intersection
of A1 and A2 may increase), we do not want the decrease of Im(A1, A2).

2. The class of operations that fulfill axioms (Ax1)–(Ax4) can be also under-
stood as a subclass of the class of generalized fuzzy quantifiers of type 〈1, 1〉.
Recall that this class is formed, given a universe U , just by all mappings
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F(U) × F(U) → L, where L is a structure of truth values, see [12]. The oper-
ation � applied on fuzzy sets A1, A2 corresponds to the fuzzy quantifier all A1

are A2. From the point of view of the theory of generalized fuzzy quantifiers,
inclusion measures are related to fuzzy quantifier many [13].

Example 1. Let U be finite. Define RC : F(U) × F(U) → [0, 1] as follows. If
A1 = ∅, then RC(A1, A2) := 1. Otherwise,

RC(A1, A2) :=
∑

u∈U (A1 ∩ A2)(u)
∑

u∈U A1(u)
.

It is easy to see that RC (relative cardinality) is an inclusion measure according
to Definition 1.

Example 2. � given in (5) is not an inclusion measure with respect to Defini-
tion 1. It fulfills axioms (Ax1), (Ax3) and (Ax4), but it does not fulfill (Ax2).

Definition 2. Let Ai, A0 ∈ F(U) and let Im : F(U)×F(U) → [0, 1] be an inclu-
sion measure. The generalized firing degree of the observation A0 with respect
to the IF-THEN rule Ri is defined as Im(A0, Ai). If the operation Im is fixed,
we write Ai(A0) instead of Im(A0, Ai).

In the rest of this paper, we suppose that Im is a fixed inclusion measure for
a given universe U and write Ai(A0) instead of Im(A0, Ai).

Now we present two variants of the PbLD with fuzzy inputs, namely the
original PbLD and the balancing PbLD. They differ in the selection of fired IF-
THEN rules. The original PbLD chooses the rule with the maximal firing degree
among all rules from a given LD . The balancing PbLD chooses the rule with
the maximal firing degree in any group of rules with the same atomic evaluative
expression. The reason for introducing this variant is an effort to use all available
information in situations when the fuzzy input is, for example, placed in-between
antecedent fuzzy sets modeling evaluative expressions small and medium, see
Example 3. The only formal difference between two variants of PbLD is in the
definition of the ordering of antecedent fuzzy sets with respect to a given fuzzy
input.

Definition 3. Let LD be a linguistic description. Let A0 ∈ F(U).

1. We write (the O in ≤O
A0

stand for original PbLD)

Ai ≤O
A0

Aj

either if Ai(A0) > Aj(A0),
or if Ai(A0) = Aj(A0) and Ai ≤LE Aj .

2. Let Ai, Aj be such that Ai := 〈hedge〉iA and Aj := 〈hedge〉jA, where A is
an atomic expression. We write (the B in ≤B

A0
stand for balancing PbLD)
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Ai ≤B
A0

Aj

either if Ai(A0) > Aj(A0),
or if Ai(A0) = Aj(A0) and Ai ≤LE Aj .

The local perception with respect to a given linguistic description LD and a
given fuzzy input A0 will then be given as follows.

Definition 4. Let LD be a linguistic description. Let T ∈ {O,B}. The local
perception is a mapping PLD

T : F(U) → P(Nn) that assigns to each fuzzy set
A0 ∈ F(U) the set

PLD
T (A0) = {i ∈ Nn | Ai(A0) > 0 & (∀j ∈ Nn)((Aj ≤T

A0
Ai) ⇒ (Aj = Ai))}.

Now we can define the deduction rule of PbLD.

Definition 5. Let LD be a linguistic description. Let T ∈ {O,B}. Let @ ∈
{◦,�} (cf. formulas (3)). Let us be provided with an observation A0 ∈ F(U).
Then, the rule of PbLD (rTPbLD) is given as follows:

rTPbLD :
PLD
T (A0),LD
A0@ R̂A0

, (6)

where for all u ∈ V and all v ∈ V ,

R̂A0(u, v) =
∧

i∈PLD
T (A0)

(Ai(u) → Bi(v)).

One can easily check that, in case of a crisp (singleton) input, the above
definitions are equivalent to Definitions 1–4 from [10].

Example 3. Let us demonstrate the behavior of the PbLD with fuzzy inputs on
the following linguistic description RB2:

R1 := IF X is Ve Sm THEN Y is Bi,
R2 := IF X is Ro Sm THEN Y is ML Me,
R3 := IF X is Ro Me THEN Y is QR Sm,

R4 := IF X is Me THEN Y is Ro Bi.

Let us consider two fuzzy inputs A01 and A02 (see Fig. 2(a)). The fuzzy sets
interpreting the consequent evaluative expressions from RB2 are on Fig. 2(b).
In Table 2, we can see generalized firing degrees Ai(A0j), i = 1, . . . , 4, j = 1, 2,
computed using the inclusion measure RC from Example 1. The greatest values
in both rows are marked by bold font, the second greatest by italics. For the
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(a) Input fuzzy sets A01 and A02.
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(b) Consequent fuzzy sets.
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(c) Results for the original PbLD.
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(d) Results for the balancing PbLD.

Fig. 2. Example of PbLD for the linguistic description RB2. (Color figure online)

Table 2. Generalized firing degrees of fuzzy inputs A01 and A01.

Ai(A0j) A1 A2 A3 A4

A01 0.006 0.764 0.219 0.031

A02 0 0.414 0.536 0.115

original PbLD, the rule with the greatest generalized firing degree is used, that
is, for the fuzzy inputs A01 and A02, the rules R2 and R3 are used, respectively.
Results for the original PbLD, marked as C01 and C02, are depicted in Fig. 2(c).
For the balancing PbLD, we use rules with the greatest non-zero generalized
firing degrees among rules whose antecedents have the same atomic evaluative
expression. In our case, for both fuzzy inputs A01 and A02, rules R2 and R3 are
used. Results for the balancing PbLD are depicted in Fig. 2(d).

We can see that for the original PbLD, the resulting fuzzy sets that corre-
spond to fuzzy inputs A01 and A02 are, in fact, modified consequent fuzzy sets
B2 and B3, respectively. For the balancing PbLD, both consequent fuzzy sets
B2 and B3 are “mixed”, but for the fuzzy input A01, the influence of the rule R2

is stronger (the result is “more like medium”). Analogously, for the fuzzy input
A02, the influence of R3 is stronger (the result is “more like small”).

3 Fuzzy Interpolation

Each inference mechanism should possess a fundamental property—preservation
of modus ponens. If an input fuzzy set A0 ∈ F(U) is equal to one of the
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antecedents, say to the Ai, then the inferred output B0 ∈ F(V ) should be equal
to the respective consequent Bi. This requirement leads to the following system
of fuzzy relational equations

Ai@R = Bi , i = 1, . . . , n, (7)

where R ∈ F(U × V ) is unknown. An R satisfying (7) is called a solution of
the system. Solution R interpolates pairs (Ai, Bi) and can be seen as a correct
model of the given fuzzy rule base in the given fuzzy inference system.

Obviously, not all systems (7) are solvable, i.e., not for all sets of pairs
(Ai, Bi)ni=1 there exists a fuzzy relation that interpolates them. The question of
solvability of such systems was addressed by many researchers. In this section,
we recall only the most fundamental results [14–16].

Theorem 1. System (7) with @ = ◦ (@ = �) is solvable if and only if R̂ (Ř) is
a solution of this system. In case of solvability, R̂ (Ř) is the greatest (the least)
solution of (7) with @ = ◦ (@ = �).

Theorem 1 actually states that the implicative model R̂ (Mamdani-Assilian
model Ř) should be the first choice whenever dealing with the inference mod-
elled by ◦ (�). If there exist some reasons (e.g., robustness, low computational
complexity or the existence of hierarchical inference that is identical to the non-
hierarchical one [6]), why the combination of Mamdani-Assilian model Ř and
the CRI inference ◦ (or the combinations of the implicative model R̂ and the
BK-subproduct inference �) should be preferred, one should first of all check
whether the interpolativity is preserved also in this case. The answer to this
question is provided by the following theorems that collect results from [15,17].

Theorem 2. Let all Ai, i ∈ Nn, be normal. Then Ř (R̂) is a solution of (7)
with @ = ◦ (@ = �) if and only if the condition

∨

u∈U

(Ai(u) ∗ Aj(u)) ≤
∧

v∈V

(Bi(v) ↔ Bj(v)) (8)

holds for any i, j ∈ Nn.

Due to the monotonicity of images, namely:

A@R1 ⊆ A@R2, @ ∈ {◦,�}
for any R1, R2 ∈ F(U × V ) such that R1 ⊆ R2, we can state the following
corollary.

Corollary 1. Let R1, R2 ∈ F(U ×V ) be two solutions of system (7) with @ = ◦
(@ = �). Then any R ∈ F(U ×V ), such that R1 ⊆ R ⊆ R2, is a solution of this
system, too.

3.1 Interpolativity in Case of the Original PbLD

The interpolativity of the PbLD turns into an investigation of the following
problem: Given LD and the antecedent Ai ∈ F(U) of the i-th rule, i = 1, . . . , n,
it should hold that after the application of rPbLD:
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rTPbLD :
PLD
T (Ai),LD
Ai@ R̂Ai

,

the conclusion Ai@ R̂Ai
is equal to the consequent Bi ∈ F(V ) of this i-th rule.4

Lemma 1. Let LD be a linguistic description, let i ∈ Nn. Then PLD
O (Ai) = {i}.

Sketch of the Proof: We search for PLD
O (A0) for A0 = Ai. Due to (Ax1), Ai(A0) =

1. If there does not exist any other j ∈ Nn such that A0 ⊆ Aj , then i is the only
index for which Ai(A0) = 1 and thus PLD

O (A0) = 1.
Now, let us assume that there exists j ∈ Nn such that A0 ⊆ Aj and thus

Aj(A0) = 1. But as Ai = A0, we also have Ai ⊆ Aj , which consequently means
that Ai ≤LE Aj and together with the Uniqueness axiom gives Ai = Aj and
therefore, j ∈ PLD

O (A0). As this holds for any j = i, PLD
O (Ai) = {i}. ��

Corollary 2. Let LD be a linguistic description and let rOPbLD be used. Then
the interpolativity is preserved for both @ = ◦ and @ = �.

One may see that with the original PbLD, the interpolativity is obtained
automatically and thus, the method is somehow safe from the logical point of
view (preservation of modus ponens). However, the question is for what price
we get this safety. In particular, whether this approach is not too restrictive in
situations, when more5 rules should be fired. Therefore, naturally we continue
with investigating the same problem for the balancing PbLD.

3.2 Interpolativity in Case of the Balancing PbLD

For the case of the balancing PbLD, there is no such a strong result as the one
for the original PbLD provided by Lemma 1. However, at least a weaker result
of the similar nature may be provided also here.

Lemma 2. Let LD be a linguistic description, let i ∈ Nn. Then i ∈ PLD
B (Ai).

Sketch of the Proof: The proof is analogous to the proof of Lemma 1. ��
The interpolativity problem in the setting of PbLD differs from the fuzzy

relational one by solving each of the n fuzzy relational equations separately.
Hence, we may focus on a single equation

Ai@R = Bi (9)

for a fixed yet arbitrarily chosen i ∈ Nn.

4 Compared to (7), where a single fuzzy relation has to be a solution of the whole
system, here not all rules are fired and each equation is solved separately.

5 When A0 �= Ai, not necessarily a single rule is fired. However, the original PbLD,
compared to the fuzzy relational approach, notably reduces the number of fired rules.
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Lemma 3. Let i ∈ Nn and rBPbLD is used. The sufficient condition for R̂Ai

being the solution of (9) is the following one
∨

u∈U

(Aj(u) ∗ Ai(u)) ≤
∧

v∈V

(Bi(v) → Bj(v)) (10)

for all j ∈ PLD
B (Ai), regardless of @ = � or @ = ◦.

Sketch of the Proof: Let us fix any i ∈ Nn. The corresponding fuzzy relational
equation

Ai � R = Bi (11)

is always solvable and (8) holds. Thus, according to Theorem 2, R̂i(u, v) =
Ai(u) → Bi(v) is a solution of the equation (11) and, according to Theorem 1,
the least solution of this equation is Ři(u, v) = Ai(u) ∗ Bi(v).

In order to prove that R̂Ai
defined as

R̂Ai
(u, v) =

∧

j∈PLD
B (Ai)

(Aj(u) → Bj(v))

is a solution of the equation (11), it is sufficient to prove that it lies between Ři

and R̂i (cf. Corollary 1).
Since i ∈ PLD(Ai), obviously R̂Ai

⊆ R̂i holds. As Ři is the least solution, R̂Ai

will become a solution if and only if the second inclusion Ři ⊆ R̂Ai
is preserved.

The inclusion can be expanded as follows

Ai(u) ∗ Bi(v) ≤
∧

j∈PLD
B (Ai)

(Aj(u) → Bj(v)) ∀u∀v

and will be preserved if and only if for all j ∈ PLD
B (Ai), the following inequality

will be preserved

Ai(u) ∗ Bi(v) ≤ Aj(u) → Bj(v) ∀u∀v

which, using adjunction, associativity of ∗ and again adjunction, turns to be
equivalent to the preservation of inequality (10). The proof for @ = ◦ proceeds
analogously, the fact that the role of R̂i and Ři is switched is irrelevant, again,
both fuzzy relations are solutions of the given equation, and we prove that R̂Ai

lies in between of them. ��
Despite the positive result given by Lemma 3, one may expect to get a more

comfortable condition at least for the case of ◦, which is more appropriate for the
implicative interpretation of rules. The problem of (10) comes from the fact that
it is not so straightforward and easy to check. The so-called finitary condition
[18,19], that firstly appeared in [20] under the name boundary condition, is such
a type of comfortable condition that is easy to check or even to ensure the
solvability in advance, because it focuses on the antecedent fuzzy sets only.

But first of all, let us present a result that we could obtain due to Lemma 2.
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Lemma 4. Let LD be a linguistic description, let i ∈ Nn. If rBPbLD is used then

Ai ◦ R̂Ai
⊆ Bi. (12)

Sketch of the Proof: Due to Lemma 2 we get R̂Ai
⊆ R̂i, where R̂i(u, v) = Ai(u) →

Bi(v) solves the equation. Then the monotonicity of ∗ proves (12). ��
Now, we introduce a modified finitary condition. Recall that in [18–20] it

was always defined as the existence of exclusive points, that is, points, that
fully belong to a single antecedent fuzzy set and do not belong at all to any
other antecedent fuzzy set. For the evaluative linguistic expressions, which are
modelled by fully overlapping fuzzy sets, this condition does not hold. However,
as we will show below, due to the use of the PbLD inference, it is sufficient if
such points exist only for all the antecedent fuzzy sets of the fired rules.

Definition 6. Let LD be given. We say that fired rules fulfill the modified fini-
tary condition if for all i ∈ Nn there exists ui ∈ U such that Ai(ui) = 1 and
Aj(ui) = 0 for all j ∈ PLD

B (Ai), j = i.

Proposition 1. Let LD be given and the antecedent fuzzy sets fulfill the modified
finitary condition. Then the following holds for any i ∈ Nn

Ai ◦ R̂Ai
= Bi. (13)

Sketch of the Proof: Let us fix i ∈ Nn and choose the ui ∈ U such that Ai(ui) = 1
and Aj(ui) = 0 for any j ∈ PLD

B (Ai), j = i. Using the equality a ∗ (a → b) = b
and the normality of antecedents, we get

(Ai ◦ R̂Ai
)(v) =

∨

u∈U

⎛

⎝Ai(u) ∗
∧

j∈PLD
B (Ai)

(Aj(u) → Bj(v))

⎞

⎠

= · · · = Bi(v) ∧

⎛

⎜⎜
⎝1 ∗

∧

j∈PLD
B

(Ai)
j �=i

(0 → Bj(v))

⎞

⎟⎟
⎠ = Bi(v).

��
It is important to note that using fuzzy sets modeling the evaluative linguistic

expressions ensures the fulfillment of the modified finitary condition and thus,
the interpolativity property (preservation of the modus ponens), whenever we
deal with the balancing PbLD with ◦.

4 Concluding Remarks

We revisited the PbLD inference method for fuzzy inputs firstly defined in [10]
and redefined the generalized firing degree in order to capture the intuitive
behaviour form the crisp input case. This led to a new investigation of mathe-
matical properties of the PbLD. We showed that using the redefined generalized
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firing degree, the preservation of modus pones, as the most fundamental property
of any inference system, is preserved under much weaker conditions than before
and moreover, under weaker conditions than in the case of the fuzzy relational
inference systems.
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Abstract. The aim of the paper is to propose a graded dominance for
fuzzy sets that assigns to each pair of fuzzy sets a degree in which one
fuzzy set has less cardinality than another one or the cardinalities of both
fuzzy sets are approximately equal. The graded dominance for fuzzy sets
is a natural generalization of the dominance relation for sets. The graded
dominance is then used for the introduction of a fuzzy class equivalence
that satisfies a graded version of the Cantor-Bernstein theorem.

Keywords: Fuzzy set theory · Fuzzy sets · Fuzzy classes · Graded dom-
inance · Graded equipollence · Cantor-Bernstein theorem

1 Introduction

In classical set theory, we say that a set x is dominated by a set y (symbolically,
x � y) if there exists a one-to-one function of x to y. Further, we say that x
and y are equipollent (symbolically, x ∼ y) if there exists a one-to-one corre-
spondence (bijection) between x and y. The Cantor-Bernstein theorem (CBT for
short) states the famous relationship between the dominance relation and the
equipollence of sets, namely,

x � y & y � x ⇒ x ∼ y.

The concept of dominance and equipollence of sets has been generalized
for fuzzy sets by Wygralak in [9]1. He proved, among others, that the Cantor-
Bernstein theorem is satisfied for the proposed concepts. A more complex task
appears in the case when the both concepts should be designed in a graded style.
It means that a degree of truth to which one fuzzy set is dominated by another
one or two fuzzy sets are approximately equipollent should be specified in a
natural way. The first definition of graded (many-valued) equipollence of fuzzy
sets has been also introduced by Wygralak in [9] by means of the �Lukasiewicz
biresiduum and generalized (fuzzy) cardinals. Unfortunately, this concept has
1 More precisely, Wygralak studied in [9] more general objects called “vaguely defined
objects”, where fuzzy sets form a special case.
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not been fully elaborated to obtain a serious graded cardinal theory of fuzzy
sets. A different approach to the graded equipollence of fuzzy sets based on
one-to-one correspondences between fuzzy sets has been proposed by Holčapek
and Turčan in [7] (see also [6]). Since this approach follows the Cantor’s idea of
comparing sizes of sets, we will refer to this equipollence as the graded Cantor
euipollence. In [5], a graded generalization of one version of the CBT2 has been
proved for fuzzy sets with finite supports and membership degrees interpreted
in a linearly ordered residuated lattice. Unfortunately, this graded version of the
CBT does not remain true for fuzzy sets with infinite supports, because one-
to-one correspondences between fuzzy sets are too “sensitive” to neglect certain
membership degrees.3

The failure of the graded Cantor’s equipollence in proving one of the essen-
tial theorems of set theory motivates us to introduce another type of graded
equipollence for fuzzy sets that satisfies the graded generalization of the CBT.
We will refer to this equipollence as the graded Cantor-Bernstein equipollence.
To introduce the graded Cantor-Bernstein equipollence, it is reasonable to begin
with a simpler concept of graded dominance for fuzzy sets that expresses degrees
of truth to which one fuzzy set can be embedded into another one. The graded
Cantor-Bernstein equipollence is then defined using the conjunction of degrees
of truth to which one fuzzy set is dominated by another one and vice versa. As
a simple consequence of this definition, we obtain the satisfaction of the graded
generalization of the CBT.

The paper is organized as follows. Section 2 is devoted to preliminaries, where
we introduce algebraic structures of truth values and basic elements of fuzzy set
theory in a universe of sets. Sections 3 and 4 are devoted to the graded dominance
and the graded Cantor-Bernstein equipollence, respectively, and their properties.
The last section is a conclusion.

2 Preliminaries

2.1 Algebraic Structures of Truth Values

In this paper, the truth values are interpreted in a complete linearly ordered
residuated lattice. Recall that an algebra L = 〈L,∧,∨,⊗,→ ⊥,�〉 with four
binary operations and two constants is said to be a residuated lattice provided
that

(i) 〈L,∧,∨,⊥,�〉 is a bounded lattice, where ⊥ is the least element and � is
the greatest element of L, respectively,

(ii) 〈L,⊗,�〉 is a commutative monoid,
(iii) the pair 〈⊗,→〉 forms an adjoint pair, i.e.,

a ≤ b → c if and only if a ⊗ b ≤ c (1)

holds for each a, b, c ∈ L (≤ denotes the corresponding lattice ordering).
2 See, Theorem 4 on p. 518 in this paper.
3 See, Example 2 on p. 518 in this paper.
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We say that a residuated lattice is complete (linearly ordered) if 〈L,∧,∨,⊥,�〉 is
a complete (linearly ordered) lattice. Details and examples of residuated lattices
can be found in [1] or [8].

2.2 Fuzzy Sets and Fuzzy Classes in a Universe of Sets

Fuzzy Sets. A fuzzy set is standardly defined as a function from a fixed non-
empty universe of discourse to a set (lattice) of truth values. Nevertheless, a
theory of fuzzy sets that admits the constructions like power fuzzy sets or expo-
nentiation of fuzzy sets naturally requires a system of universes of discourse
rather than one fixed universe (cf., [3]). Therefore, we proposed in [7] (see also
[6]) a universe of sets over a complete residuated lattice and introduce the fuzzy
sets and the fuzzy classes in such a way that their universes of discourse are ele-
ments and subclasses of the universe of sets, respectively. The both definitions
were introduced to imitate the position of sets and classes (auxiliary objects) in
the Zermelo-Fraenkel axiomatic theory with the axiom of choice (ZFC for short).
In what follows, we use x ∈ y to denote that the set x is a member of set y,
further, we use P (x), D(f) and R(f) to denote the power set of a set x, the
domain and the range of a function f , respectively.

Definition 1. Let L be a complete linearly ordered residuated lattice. A universe
of sets over L is a non-empty class U of sets in ZFC satisfying the following
properties:

(U1) x ∈ y and y ∈ U, then x ∈ U,
(U2) x, y ∈ U, then {x, y} ∈ U,
(U3) x ∈ U, then P(x) ∈ U,
(U4) x ∈ U and yi ∈ U for any i ∈ x, then

⋃
i∈x yi ∈ U,

(U5) x ∈ U and f : x −→ L, then R(f) ∈ U,

where L denotes the support of L.

Basic examples of the universes of sets are the classes of all or finite sets. If the
ZFC is extended by the axiom admitting the existence of strongly inaccessible
cardinals, one can introduce a universe of sets over L to be a Grothendieck
universe.

Definition 2. Let U be a universe of sets over L. A function A : z −→ L (in
ZFC) is called a fuzzy set in U if z ∈ U.4

A consequence of (U5) is that any fuzzy set in U belongs to U. Let A : z −→ L be
a fuzzy set in U. The set D(A) is called the universe of discourse of A (universe
of A for short). The set S (A) = {x ∈ z | A(x) > ⊥} is called the support of
fuzzy set A. An element x ∈ z such that x �∈ S (A) is said to be negligible in A.
A fuzzy set A is said to be crisp and referred to a crisp set if A(x) ∈ {⊥,�} for

4 For simplicity, we use in the definition the term of “fuzzy sets”, although, a more
convenient denotation should be L-fuzzy sets with reference to the lattice L.
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any x ∈ z. One can see that the empty function as a vacuous fuzzy set is crisp,
since the assumption on a crisp set is trivially satisfied. If x ⊆ y are sets in U, we
use χx to denote the characteristic function of x on y, i.e., χx : y −→ L, which
is defined by χx(z) = � if z ∈ x, and χx(z) = ⊥, otherwise. Obviously, a fuzzy
set is crisp if and only if it is a characteristic function of a set. We write A ⊆ B
provided that D(A) ⊆ D(B) and A(a) ≤ B(a) for any a ∈ D(A). One can check
that ⊆ is a partial ordering on the class F(U) of all fuzzy sets in U.

In literature on fuzzy set theory, a function that assigns ⊥ to each element
of its domain is usually referred to the empty fuzzy set. In our theory, we use a
different interpretation of the empty fuzzy set as follows.

Definition 3. The empty function ∅ : ∅ −→ L is called the empty fuzzy set.

Identity up to Negligibility. We say that two fuzzy sets A and B are identical
if their domains are identical, i.e., D(A) = D(B), and A and B coincide as the
functions, i.e., A(a) = B(a) for any a ∈ D(A). Another essential predicate in
our theory of fuzzy sets that generalizes the concept of identity for fuzzy sets is
a binary relation saying that two fuzzy sets are identical up to their negligible
elements.

Definition 4. We say that fuzzy sets A and B are identical up to negligibility
(symbolically, A ≡ B) if S (A) = S (B) and A(a) = B(a) for any a ∈ S (A).

Obviously, if S (A) = ∅, then the previous definition states that a fuzzy set B
is identical with A up to negligibility if and only if S (B) = ∅. It is easy to see
that the relation “to be identical up to negligibility” is an equivalence on F(U).
We use cls(A) to denote the equivalence class of all fuzzy sets from F(U) that
are identical with A up to negligibility.

Example 1. One can simply verify that ∅ ≡ {0/a, 0/b} and {0/a, 0/b} ∈ cls(∅),
or {0.9/a} ≡ {0.9/a, 0/b} and {0.9/a} ∈ cls({0.9/a, 0/b}).

Fuzzy Set Relations. Let I be a non-empty set of indices, and let
∏

i∈I zi be
the Cartesian product of sets zi from U. A fuzzy set R :

∏
i∈I zi → L is called a

fuzzy set relation (or fuzzy relation for short). In fuzzy set theory, the concept of
fuzzy equivalence belongs among the most important concepts (see, e.g., [1,4]).

Definition 5. A fuzzy relation R : z × z −→ L is called a fuzzy equivalence
provided that the following axioms hold for any a, b, c ∈ z:

(FE1) R(a, a) = �,
(FE2) R(a, b) = R(b, a),
(FE3) R(a, b) ⊗ R(b, c) ≤ R(a, c).

Axioms (FE1) and (FE2) straightforwardly generalize the definition of reflexiv-
ity and symmetry of relations, axiom (FE3) generalizes the transitivity where
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the operation of multiplication ⊗ of the residuated lattice L is used for the inter-
pretation of the conjunction. A fuzzy partial ordering has been established and
studied by Bodenhofer in [2]. The following definition is a slight modification of
Bodenhofer’s definition.

Definition 6. Let R be a fuzzy equivalence on z. A fuzzy relation S : z × z → L
is called an R-fuzzy partial ordering provided that the following axioms hold for
any a, b, c ∈ z:

(FPO1) S(a, a) = �,
(FPO2) S(a, b) ⊗ S(b, a) ≤ R(a, b),
(FPO3) S(a, b) ⊗ S(b, c) ≤ S(a, c).

Functions in Certain Degrees of Truth. We use Func to denote the class of
all functions in U and Func(x, y), Func1-1(x, y) and Func1-1corr(x, y) to denote the
set of all functions, one-to-one functions and one-to-one correspondences of x
onto y, respectively, provided that x, y ∈ U. Further, we use [f ∈ Func(x, y)] to
denote the truth value (i.e., ⊥ or �) expressing that f is a member of Func(x, y),
and similarly for [f ∈ Func1-1(x, y)] and [f ∈ Func1-1corr(x, y)].

Definition 7. Let A,B ∈ F(U), and let f ∈ Func. We say that f is approxi-
mately a function of A to B in the degree α provided that

α = [f ∈ Func(D(A),D(B))] ⊗
∧

(a,f(a))∈D(A)×D(B)

(A(a) → B(f(a)). (2)

We use [f : A −→ B] to denote the degree of truth in which the function f
is approximately a function of A to B. Let us emphasize that if f is not a
function of D(A) to D(B), then [f : A −→ B] = ⊥ even if the infimum in (2)
is greater than ⊥. Similarly we define degrees of truth for one-to-one functions
and correspondences.

Definition 8. Let A,B ∈ F(U), and let f ∈ Func. We say that f is approxi-
mately a 1-1 function of A to B in the degree α provided that

α = [f ∈ Func1-1(D(A),D(B))] ⊗ [f : A −→ B]. (3)

We say that f is approximately a one-to-one correspondence between A and B
in the degree α provided that

α = [f ∈ Func1-1corr(D(A),D(B))] ⊗
∧

(a,f(a))∈D(A)×D(B)

(A(a) ↔ B(f(a)). (4)

We use [f : A 1-1−→ B] and [f : A 1-1
corr−→ B] to denote the degree of truth to which f

is a one-to-one function of A to B and a one-to-one correspondence between A
and B, respectively.
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Fuzzy Classes. Although the fuzzy sets in U are the major objects in our
theory, it seems to be useful, analogously to set theory, to introduce the concept
of fuzzy class in U.

Definition 9. Let U be a universe of sets over L. A class function A : Z −→ L
(in ZFC) is called a fuzzy class in U if Z ⊆ U.

Note that each fuzzy set is a fuzzy class because of (U1), but not vice versa.
Hence, a fuzzy class A is said to be proper if there is no fuzzy set which is identical
to A up to negligibility (the relation ≡ is extended here to fuzzy classes).

Fuzzy Class Relations. Fuzzy class relations are defined similarly to fuzzy set
relations, only fuzzy sets are replaced by fuzzy classes. For the purpose of this
paper, we introduce the fuzzy class equivalence and fuzzy class partial ordering.

Definition 10. A fuzzy class relation R : Z × Z −→ L is called a fuzzy class
equivalence if it satisfies (FE1)-(FE3) of Definition 5.

Definition 11. Let R be a fuzzy class equivalence. A fuzzy class relation S :
Z × Z −→ L is called an R-fuzzy class partial ordering if it satisfies (FPO1)-
(FPO3) of Definition 6.

3 Graded Dominance of Fuzzy Sets

As we have mentioned in Introduction, a set x is dominated by a set y if there
exists a one-to-one function of x to y. A straightforward generalization of the
dominance relation for sets to a graded dominance for fuzzy sets (symbolically,
�) should consist in seeking of a one-to-one function which is approximately a
one-to-one function of one fuzzy set to another fuzzy set with the highest degree
of truth. Formally, it means that

A � B ⇔ (∃f ∈ Func)(f : A 1-1−→ B). (5)

Thus, the fuzzy set A is approximately dominated by the fuzzy set B in the
degree of truth, which is equal to the supremum of all degrees of truth in which
functions are approximately one-to-one functions of A to B. Nevertheless, this
generalization is insufficient to well describe the graded dominance. Indeed, con-
sidering fuzzy sets with different cardinality of their domains, we can find the
problem that no one-to-one function of one fuzzy set to another one can be
constructed even if they are identical up to negligibility. This motivates us to
rewrite (5) into the following more complex formula:

A � B ⇔ (∃A′ ∈ cls(A)∃B′ ∈ cls(B)∃f ∈ Func)(f : A′ 1-1−→ B′). (6)

One can see that the previous definition is free of the choice of fuzzy sets that
are identical up to negligibility, which seems to be a natural requirement. Since
the all quantifications used in (6) are made over proper classes, which means to
compute the supremum over these classes, first, we prove a useful lemma that
enables a restriction of the evaluation to sets.
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Lemma 1. Let A,B ∈ F(U) be such that

(i) |D(A)| ≤ |D(B)|,
(ii) |S (A)| ≤ |D(B)\S (B)|
and let

α =
∨

f∈Func1-1(D(A),D(B))

[f : A 1-1−→ B]. (7)

Then, it holds [f : C 1-1−→ D] ≤ α for any C ∈ cls(A), D ∈ cls(B) and f ∈ Func.

Proof. Let A,B ∈ F(U) satisfy (i) and (ii). If D(A) = ∅, the statement is trivially
satisfied, since α = �. Let D(A) �= ∅. Since ⊥ → β = � holds for any β ∈ L,
we may assume, without loss of generality, that D(A) = S (A). Let C ∈ cls(A),
D ∈ cls(B) and f ∈ Func. If f �∈ Func1-1(D(C),D(D)), then [f : C 1-1−→ D] =
⊥ ≤ α. Let f ∈ Func1-1(D(C),D(D)). It is easy to see that

[f : C 1-1−→ D] =
∧

a∈D(C)

(C(a) → D(f(a))) =
∧

a∈S (C)

(C(a) → D(f(a))). (8)

Let g be the restriction of f to x = S (C) = D(A). Further, let y = g(x) (the
image of x under g), y1 = y ∩S (D) and y2 = y\y1. By assumption (ii), we find
that |y2| ≤ |S (A)| ≤ |D(B)\S (B)|. Hence, there exists a one-to-one function
h : y → D(B) such that h(a) = a for any a ∈ y1 and h(a) ∈ D(B)\S (B) for
any a ∈ y2. Obviously, h ◦ g : D(A) −→ D(B) is a one-to-one function such that
D(f(a)) = B(h ◦ g(a)) holds for any a ∈ S (A). Due to the equality in (8), we
obtain

[f : C 1-1−→ D] =
∧

a∈S (C)

(C(a) → D(f(a))) =

∧

a∈D(A)

(A(a) → B(h ◦ g(a))) = [h ◦ g : A 1-1−→ B] ≤ α,

which concludes the proof. ��
Remark 1. An open problem is whether the statement in Lemma 1 remains valid
without the assumption (ii). We cannot find an example showing the importance
of (ii), but also we do not know how to prove the statement without (ii).

If A,B ∈ F(U) are fuzzy sets that satisfy (i) and (ii) from the previous lemma,
we say that A is cardinal separable in B. It is easy to see that to each fuzzy set
A there exists a fuzzy set B such that A is cardinal separable in B. Now, we
can proceed to the definition that specifies the degree in which one fuzzy set is
approximately dominated by another fuzzy set.

Definition 12. Let A,B ∈ F(U). We say that A is approximately dominated by
B to the degree α provided that

α =
∨

f∈Func(D(A),D(C))

[f : A 1-1−→ C], (9)

for C ∈ cls(B) such that A is cardinal separable in C.
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From Lemma 1, one can see that the definition does not depend on the choice
of C ∈ cls(B), it is sufficient to consider that A is cardinal separable in C. We
use � to denote the fuzzy class relation to be approximately dominated in a
certain degree and [A � B] to denote the degree to which A is approximately
dominated by B.

Definition 13. The fuzzy class relation � is called the graded dominance.

Theorem 1. If A,B,C,D ∈ F(U) such that A ≡ C and B ≡ D, then

[A � B] = [C � D].

Proof. Without loss of generality, we assume that A and C are cardinal separable
in B and D, respectively. Let X ∈ cls(A) such that D(X) = S (X). Since X ⊆ A,
X has to be cardinal separable in B. From the rule ⊥ → β = �, one can see
that [X � B] = [A � B]. Similarly X ⊆ C implies that X is cardinal separable
in D, whence [X � D] = [C � D]. According to the definition of the graded
dominance, we find that [X � B] = [X � C], which implies the desirable
equality. ��
Theorem 2. The graded dominance is a fuzzy class preordering on F(U), i.e.,
� satisfies (FE1) and (FE3) of Definition 6.

Proof. Obviously, (FE1) is true. To prove the transitivity, let A,B,C ∈ F(U).
Without loss of generality, we assume that A is cardinal separable in B and
simultaneously B is cardinal separable in C. One can simply prove that for
arbitrary f, g ∈ Func such that g ◦ f ∈ Func, it holds

[f : A 1-1−→ B] ⊗ [g : C] ≤ [g ◦ f : A 1-1−→ C].

Then,

[A � B] ⊗ [B � C] =
∨

f∈Func(D(A),D(B))

[f : A 1-1−→ B] ⊗
∨

g∈Func(D(B),D(C))

[g : B 1-1−→ C] =

∨

f∈Func(D(A),D(B))

∨

g∈Func(D(B),D(C))

[f : A 1-1−→ B] ⊗ [g : B 1-1−→ C] ≤
∨

f∈Func(D(A),D(B))

∨

g∈Func(D(B),D(C))

[g ◦ f : A 1-1−→ C] ≤
∨

h∈Func(D(A),D(C))

[h : A 1-1−→ C] = [A � C],

where we used the distributivity of ⊗ over
∨

, which holds in each complete
residuated lattice. ��
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4 Graded Cantor-Bernstein Equipollence

In [7], we introduced the concept of graded (Cantor) equipollence. Let us recall
its definition. We say that fuzzy sets A, B are cardinal separable if A is cardinal
separable in B and vice versa. Obviously, to each pair of fuzzy sets, there are
cardinal separable fuzzy sets that are identical to original ones up to negligibility.

Definition 14. Let A,B ∈ F(U), and let C ∈ cls(A) and D ∈ cls(B) be fuzzy
sets that are cardinal separable. We say that A and B are approximately Cantor
equipollent to the degree α provided that

α =
∨

f∈Func(D(C),D(D))

[f : C 1-1
corr−→ D]. (10)

We use c≈ to denote the fuzzy class relation to be approximately Cantor equipol-
lent to a certain degree and [A c≈ B] to denote the degree to which the fuzzy
sets A and B are approximately Cantor equipollent.

Definition 15. The fuzzy class relation c≈ is called the graded Cantor equipol-
lence (or the graded C-equipollence for short) of fuzzy sets.

A simple consequence of the definition of C-equipollence is the following fact.

Theorem 3. If A,B,C,D ∈ F(U) such that A ≡ C and B ≡ D, then

[A c≈ B] = [C c≈ D].

One can show that the C-equipollence is a fuzzy class equivalence.5 More-
over, the following graded version of the Cantor-Bernstein theorem (GCBT) has
been proved in [5] for fuzzy sets with finite supports. Note that the linearity of
residuated lattice is here an essential assumption.

Theorem 4. Let A,B,C,D ∈ F(U) be fuzzy sets with finite supports such that
C ⊆ A and D ⊆ B. Then,

[A c≈ D] ∧ [C c≈ B] ≤ [A c≈ B]. (11)

Note that a special case of the previous theorem is the following statement:
if C ⊆ A ⊆ B, then [C c≈ B] ≤ [A c≈ B]. Nevertheless, the GCBT is false for
arbitrary fuzzy sets, as the following example demonstrates.

Example 2. Let ω denote the set of natural numbers. Let o and e be the sets
of all odd and even numbers, respectively. Define A : ω −→ L, where L is the
support of a residuated lattice L with an element α �∈ {⊥,�}, by

A(n) =

{
�, n ∈ o;
α, n ∈ e.

5 The proof can be designed similarly to the proof of Theorem 5.6 in [5] for finite fuzzy
sets.
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It is easy to see that [χo
c≈ χω] = �, where χo and χω are the characteristic

functions of o and ω on ω, respectively, and χo ⊂ A ⊂ χω. But, one can simply
show that [χo

c≈ A] = [A c≈ χω] = α ↔ � = α < �.

A relationship between the graded dominance and the graded C-equipollence
of fuzzy sets is described in the following statement.

Theorem 5. Let A,B ∈ F(U). Then,

[A � B] =
∨

C∈F(U)
C⊆B

[A c≈ C].

Proof. Without loss of generality, assume that D(A) �= ∅ and A is cardinal
separable in B.6 Let f ∈ Func(D(A),D(B)). Obviously, it is sufficient to restrict
ourselves to the cases when [f : A 1-1−→ B] > ⊥. In what follows, we will define
C ⊆ B such that

[f : A 1-1−→ B] = [f : A 1-1
corr−→ C]. (12)

Recall that L is linearly ordered. Let x = f(D(A)), and let C : x −→ L be
defined by

C(b) =

{
B(b), A(f−1(b)) > B(b),
A(f−1(b)), otherwise,

(13)

for any b ∈ x. Obviously, C ⊆ B. Moreover, it holds

A(a) → B(f(a)) = (A(a) → C(f(a)) ∧ (C(f(a)) → A(a)) = A(a) ↔ C(f(a))

for any a ∈ D(A); therefore, (12) is satisfied. Since [f : A 1-1
corr−→ C] ≤ [A c≈ C], we

simply find that
[A � B] ≤

∨

C∈F(U)
C⊆B

[A c≈ C].

Let C ⊆ B. If [A c≈ C] = ⊥, we obtain trivially [A c≈ C] ≤ [A � B].
Assume that [A c≈ C] > ⊥. Let A′ ∈ cls(A) and C ′ ∈ cls(C) be fuzzy sets
that are cardinal separable. Moreover, let B′ ∈ cls(B) such that C ′ ⊆ B′. From
the assumption on A′ and C ′, we obtain that A′ is cardinal separable in B′.
Moreover, for any a ∈ D(A′), we have

A′(a) ↔ C ′(f(a)) ≤ A′(a) → C ′(f(a)) ≤ A′(a) → B′(f(a));

therefore, [f : A′ 1-1
corr−→ C ′] ≤ [f : A′ 1-1−→ B′]. Using Theorems 1 and 3 and the

previous inequality, we find that

[A c≈ C] = [A′ c≈ C ′] =
∨

f∈Func(D(A′),D(C′))

[f : A′ 1-1
corr−→ C ′] ≤

∨

f∈Func(D(A′),D(B′))

[A′ 1-1−→ B′] = [A′
� B′] = [A � B].

Since [A c≈ C] ≤ [A � B] holds for any C ⊆ B, the inequality remains valid also
after the application of the supremum over all fuzzy subsets of B. ��
6 We assume D(A) �= ∅ to avoid the empty function.
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As a simple consequence of the previous theorem, we obtain

[A c≈ B] ≤ [A � B] ∧ [B � A], (14)

which is another demonstration that the GCBT fails in a full generality. To
ensure the satisfaction of the GCBT, we need a fuzzy class equivalence on F(U)
such that arbitrary two fuzzy sets are equivalent in a degree that is not less than
the conjunction of degrees to which fuzzy sets dominate each other. On the other
hand, no fuzzy set can be dominated by another fuzzy set to a degree, which is
less than the degree in which these fuzzy sets are equivalent. Hence, we obtain
a unique fuzzy class relation satisfying the both requirements.

Definition 16. Let A,B ∈ F(U). We say that A and B are approximately
Cantor-Bernstein equipollent to the degree α provided that

α = [A � B] ∧ [B � A]. (15)

We use cb≈ to denote the fuzzy class relation to be approximately Cantor-
Bernstein equipollent to a certain degree and [A cb≈ B] to denote the degree in
which the fuzzy sets A and B are approximately Cantor-Bernstein equipollent.

Definition 17. The fuzzy class relation cb≈ is called the graded Cantor-
Bernstein equipollence (or the graded CB-equipollence for short) of fuzzy sets.

From the inequality in (14), one can see that [A c≈ B] ≤ [A cb≈ B]. Moreover,
there are fuzzy sets (see Example 2) for which we get the strict inequality. The
both types of equipollence coincide on fuzzy sets with finite supports.

Theorem 6. Let A,B ∈ F(U) be fuzzy sets with finite supports. Then,

[A c≈ B] = [A cb≈ B]. (16)

Proof. Let A,B ∈ F(U). Without loss of generality, assume that A,B are cardinal
separable, and let |D(A)| = |D(B)| = n for a natural number n. Since the both
domains are finite and the lattice is linearly ordered, we find that

[A � B] = [f : A 1-1−→ B] and [B � A] = [g : B 1-1−→ A]

for suitable one-to-one functions. Let x = {g(b) | b ∈ D(B)&B(b) > A(g(b))}
and y = {f(a) | a ∈ D(A) &A(a) > B(f(a))}. Define C as the restriction of A
to x and D as the restriction of B to y. Obviously, we have C ⊆ A and D ⊆ B.
Moreover, we find that

[A � B] = [f : A 1-1−→ B] = [f : A 1-1
corr−→ D] ≤ [A c≈ D]

and similarly [B � A] ≤ [C c≈ B]. Using the graded version of the Cantor-
Bernstein theorem (Theorem 4), we obtain

[A cb≈ B] = [A � B] ∧ [B � A] ≤ [A c≈ D] ∧ [C c≈ B] ≤ [A c≈ B].

Since the opposite inequality is true by (14), we obtain the desirable equality. ��
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Theorem 7. The graded CB-equipollence is a fuzzy class equivalence on F(U).

Proof. Obviously, (FE1) and (FE2) are satisfied. The transitivity of cb≈ is a
simple consequence of the transitivity of the graded dominance. ��
Theorem 8. The graded dominance is a cb≈-fuzzy class partial ordering on F(U).

Proof. According to Theorem 2, the graded dominance is a fuzzy class preorder-
ing on F(U), i.e., (FPO1) and (FPO3) are satisfied. (FPO2) follows immediately
from the definition of cb≈ and the fact that α ⊗ β ≤ α ∧ β, where α, β ∈ L. ��

5 Conclusion

In this paper, we introduced the concept of graded dominance for fuzzy sets and
showed some of its basic properties. Motivated by the satisfaction of the Cantor-
Bernstein theorem, we introduced a new type of graded equipollence based on the
graded dominance of fuzzy sets. We proved that the original definition of graded
equipollence based on one-to-one correspondences between fuzzy sets coincides
with the new graded equipollence assuming fuzzy sets with finite supports.

Acknowledgments. This work was supported by the project LQ1602 IT4Innovations
excellence in science.
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6. Holčapek, M.: Graded equipollence and fuzzy c-measures of finite fuzzy sets. In:
Proceedings of 2011 IEEE International Conference on Fuzzy Systems, pp. 2375–
2382, DnE Taiwan (2011)
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Abstract. This paper is a kind of continuation of the paper by G.
Deschrijver ‘Uninorms which are neither conjunctive nor disjunctive in
interval-valued fuzzy set theory’, which was published in Information
Sciences in 2013. In that paper he constructed uninorms whose neutral
element is arbitrary of the type e = (e, e) and annihilator, a, is arbitrary
point that is incomparable with e. In the present paper we intend to
show what are all possibilities of the position of the pair (e,a).

Keywords: Interval-valued fuzzy set · Uninorm · Uninorm neither con-
junctive nor disjunctive

1 Introduction and Preliminaries

Uninorms, or more general, associative commutative and monotone (binary)
operations on the unit interval, due to their associativity, can be straightfor-
wardly extended to n-ary operations for arbitrary n ∈ N. This means that
they are special types of aggregation functions. As such they have proven their
importance in various fields of applications. It is important to have many fam-
ilies of such operations to be at hand for researchers. Studying their behaviour
is interesting also from the theoretical point of view. Associative commutative
and monotone operations are recently studied also on bounded lattices (see,
e.g., [2,11,18,19]). This paper is a contribution to the theory of uninorms on
bounded lattices showing what are possible positions of the neutral element and
annihilator of a uninorm within the framework of interval-valued fuzzy sets.

1.1 Uninorms

Uninorms appeared for the first time in the paper by Dombi [9] under the name
‘aggregative operators’. Dombi’s aggregative operators were constructed with
the aim to fuzzify evaluation of objects in the theory of multicriteria decision-
making. With the help of aggregative operators, objects can be divided into two
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 522–531, 2016.
DOI: 10.1007/978-3-319-40581-0 42
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classes – those which satisfy given criteria at least at a threshold level α, and
those which do not. Aggregative operators introduced by Dombi are nowadays
known under the name representable uninorms.

Independently of Dombi, also in the paper by Czoga�la and Drewniak [4]
uninorms (but also other associative operations) were studied. In 1996 Yager
and Rybalov [24] re-introduced uninorms as a natural generalisation of both
t-norms and t-conorms (for details on t-norms and their duals, t-conorms, see,
e.g., [20]). Since that time researchers study properties of several distinguished
families of uninorms.

Definition 1. A uninorm U is a function U : [0, 1]2 → [0, 1] that is increasing,
commutative, associative and has a neutral element e ∈ [0, 1].

Remark 1. If U : [0, 1]2 → [0, 1] is a uninorm and e = 0 is its neutral element
then U is a t-conorm. If e = 1 is its neutral element then U is a t-norm. For
more information on t-norms and t-conorms see, e.g., [20].

Example 1. Basic t-norms which will be important for our purposes, are

– minimum t-norm, TM (x, y) = min{x, y},
– drastic product,

TD(x, y) =
{

0, if max{x, y} < 1,
min{x, y}, if max{x, y} = 1.

The basic t-conorms (dual to the above t-norms) are:

– maximum t-conorm, SM (x, y) = max{x, y},
– drastic sum,

SD(x, y) =
{

1, if min{x, y} > 0,
max{x, y}, if min{x, y} = 0.

Remark 2. If e /∈ {0, 1} is the neutral element of U , we say that U is a proper
uninorm.

Every uninorm U has a distinguished element a called annihilator, for which
the following holds U(a, x) = U(0, 1) = a ∈ {0, 1}. A uninorm U is said to be
conjunctive if U(x, 0) = 0, and U is said to be disjunctive if U(1, x) = 1, for all
x ∈ [0, 1].

There are only conjunctive and disjunctive uninorms on [0, 1].

Conjunctive and disjunctive uninorms are dual in the following way

Ud(x, y) = 1 − Uc(1 − x, 1 − y),

where Uc is an arbitrary conjunctive uninorm and Ud its dual disjunctive uni-
norm. Assuming Uc has a neutral element e, the neutral element of Ud is 1 − e.

Some special classes of uninorms were studied, e.g., in papers [11–13,17,21–
23]. An overview of basic properties of uninorms is in [3]. Because of lack of
space we provide only a very brief introduction to uninorms.

For an arbitrary uninorm U with neutral element e ∈ ]0, 1[ and arbitrary
(x, y) ∈ ]0, e[× ]e, 1]∪ ]e, 1]× ]0, e[ we have

min{x, y} ≤ U(x, y) ≤ max{x, y}. (1)
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1.2 Interval-Valued Fuzzy Sets and Uninorms on Interval-Valued
Fuzzy Sets

Interval-valued fuzzy set theory [16,25] is an extension of the fuzzy set theory
such that to each element of the universe a closed subinterval of the unit interval
is assigned as its membership grade (or, is an approximation of the unknown
membership grade). Another extension of the fuzzy set theory is the so-called
IF-set theory [1] where, instead of a closed interval, a membership grade and non-
membership grade are assigned. In [7] it is shown that IF-sets and interval-valued
fuzzy sets are equivalent structures and they both are equivalent structures to
L-valued fuzzy sets in the sense of Goguen [14] with respect to a special lattice
L. In our considerations we will use pairs (u1, u2) ∈ [0, 1]2 such that u1 ≤ u2

instead of closed intervals.

Definition 2. Denote L = {(u1, u2) ∈ [0, 1]2;u1 ≤ u2} and for (u1, u2) ∈
L, (v1, v2) ∈ L define (u1, u2) ≤L (v1, v2) if u1 ≤ v1 and u2 ≤ v2. Then
L = (L,≤L) is a lattice. If X is a universal set, then any mapping A : X → L
is an interval-valued fuzzy set.

Let L̃ = (L̃,≤L̃, 0L̃, 1L̃) be arbitrary bounded lattice. We will write u ‖ v for
elements u, v ∈ L̃ which are incomparable with respect to ≤L̃.

Similarly as on the unit square, also uninorms on L2 can be defined. Namely,
a mapping U : L2 → L is a uninorm if it is associative, commutative, increasing
and has a neutral element. To distinguish uninorms (t-norms, t-conorms) defined
on L2 from those defined on [0, 1]2, we will call the former ones interval-valued
uninorms (interval-valued t-norms, interval-valued t-conorms, respectively) and
the latter ones uninorms (t-norms, t-conorms) on [0, 1]. Similarly, for η ∈ L we
will call a t-norm with its domain [0, η]2 a [0, η]-valued t-norm, and a t-conorm
with its domain [η,1]2 an [η,1]-valued t-conorm.

In [19] the authors have shown the following theorem.

Theorem 1 [19]. Let L̃ = (L̃,≤L̃, 0L̃, 1L̃) be a bounded lattice and e ∈ L̃ \
{0L̃, 1L̃} is arbitrary element. If Te : [0L̃, e]2 → [0L̃, e] is a lattice-valued t-norm
and Se : [e, 1L̃]2 → [e, 1L̃] a lattice-valued t-conorm, then the functions defined
by

U(u, v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Te(u, v) if (u, v) ∈ [0L̃, e]2,
u ∨L̃ v if (u, v) ∈ [0L̃, e] × [e, 1L̃] ∪ [e, 1L̃] × [0L̃, e],
u if v ∈ [0L̃, e] and u ‖ e,
v if u ∈ [0L̃, e] and v ‖ e,
1L̃ otherwise

and

U(u, v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Se(u, v) if (u, v) ∈ [e, 1L̃]2,
u ∧L̃ v if (u, v) ∈ [0L̃, e[ × [e, 1L̃] ∪ [e, 1L̃] × ]0L̃, e],
u if v ∈ [e, 1L̃] and u ‖ e,
v if u ∈ [e, 1L̃] and v ‖ e,
0L̃ otherwise

are uninorms on L.
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As Theorem 1 shows, we can choose arbitrary element e ∈ L̃ \ {0L̃, 1L̃} and
we find a conjunctive and a disjunctive proper uninorm U whose neutral element
is e.

From now on, by L we will always denote the set L = {(u1, u2) ∈ [0, 1]2;u1 ≤
u2}, 0 = (0, 0) and 1 = (1, 1).

In [6] Deschrijver has proven the following theorem for interval-valued uni-
norms.

Theorem 2 [6]. Denote D = {(u, u);u ∈ [0, 1]}. Let ε = (e, e) ∈ D \ {0,1},
α ∈ L, T1, T2 be t-norms and S1, S2 t-conorms on [0, 1] such that

– α ‖ ε,
– there exist t-norms T1a and T1b on [0, 1] such that T1 = (〈T1a, 0, a1

e 〉, 〈T1b,
a1
e , 1〉),

– there exist t-conorms S2a and S2b on [0, 1] such that S2 = (〈S2a, 0, a2−e
1−e 〉,

〈S2b,
a2−e
1−e , 1〉),

– T1(u1, u2) ≤ T2(u1, u2) and S1(u1, u2) ≤ S2(u1, u2) for all (u1, u2) ∈ [0, 1]2.

For all u = (u1, u2) ∈ L and v = (v1, v2) ∈ L define the following mappings
Ux : L2 → L and Uy : L2 → L

Ux(u,v) =

⎧
⎨

⎩

a1 if u1 < a1 and v1 ≥ a1 and v2 > e
or v1 < a1 and u1 ≥ a1 and u2 > e,

U1(u1, v1) otherwise,

Uy(u,v) =

⎧
⎨

⎩

a2 if u2 > a2 and v2 ≤ a2 and v1 < e
or v2 > a2 and u2 ≤ a2 and u1 < e,

U2(u2, v2) otherwise,

where for all u1, u2, v1, v2 ∈ [0, 1]

U1(u1, v1) =

⎧
⎪⎨

⎪⎩

e · T1

(
u1
e , v1

e

)
if max(u1, v1) ≤ e,

e + (1 − e)S1

(
u1−e
1−e , v1−e

1−e

)
if min(u1, v1) ≥ e,

min(u1, v1) otherwise,

U2(u2, v2) =

⎧
⎪⎨

⎪⎩

e · T2

(
u2
e , v2

e

)
if max(u2, v2) ≤ e,

e + (1 − e)S2

(
u2−e
1−e , v2−e

1−e

)
if min(u2, v2) ≥ e,

max(u2, v2) otherwise.

Then U(u,v) = (Ux(u,v),Uy(u,v)) is an interval-valued uninorm with neutral
element ε and annihilator α.

2 Construction of Interval-Valued Uninorms

First, we consider conjunctive uninorms with arbitrary neutral element ε �= 0.
We provide here a construction which is slightly different from that in Theorem1.



526 M. Kalina and P. Král

Proposition 1. Let ε = (e1, e2) �= 0 be any arbitrary element of L. Assume that
S : [ε,1]2 → [ε,1] is an [ε,1]-valued t-conorm. Choose t-norms T1, T2, T3, T4

and T5 on [0, 1] such that T1 ≤ T4 and T2 ≤ T5. We will consider the following
ordinal sums of t-norms

Tl = (〈T1, 0, e1〉, 〈T2, e1, e2〉, 〈T3, e2, 1〉) , Tr = (〈T4, 0, e1〉, 〈T5, e1, e2〉, 〈T3, e2, 1〉) .
(2)

Then

U(x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

S(x,y) if x ≥ ε and y ≥ ε.
x if y ≥ ε and x �≥ ε,
y if x ≥ ε and y �≥ ε,
(Tl(x1, y1), Tr(x2, y2)) otherwise,

(3)

is a conjunctive interval-valued uninorm whose neutral element is ε.

Dually we have the following assertion for disjunctive interval-valued
uninorms.

Proposition 2. Let ε = (e1, e2) �= 1 be any arbitrary element of L. Assume
that T : [0, ε]2 → [0, ε] is a [0, ε]-valued t-norm. Choose t-conorms S1, S2, S3,
S4 and S5 on [0, 1] such that S2 ≤ S4 and S3 ≤ S5. We will consider the following
ordinal sums of t-conorms

Sl = (〈S1, 0, e1〉, 〈S2, e1, e2〉, 〈S3, e2, 1〉) , Sr = (〈S1, 0, e1〉, 〈S4, e1, e2〉, 〈S5, e2, 1〉) .
(4)

Then

U(x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

T (x,y) if x ≤ ε and y ≤ ε.
x if y ≤ ε and x �≤ ε,
y if x ≤ ε and y �≤ ε,
(Sl(x1, y1), Sr(x2, y2)) otherwise,

(5)

is a disjunctive interval-valued uninorm whose neutral element is ε.

Now, we present a conjunctive and a disjunctive interval-valued uninorm with
their neutral element equal to (0, 1). The two uninorms defined in the following
lemma are different from those introduced in Propositions 1 and 2, respectively.

Lemma 1. Let T : [0, 1]2 → [0, 1] and S : [0, 1]2 → [0, 1] be a t-norm and a
t-conorm, respectively. Then

(a)
Û((x1, x2), (y1, y2)) = (min{S(x1, y1), T (x2, y2)}, T (x2, y2))

is a conjunctive interval-valued uninorm with the neutral element ε = (0, 1),
(b)

Ũ((x1, x2), (y1, y2)) = (S(x1, y1),max{S(x1, y1), T (x2, y2)}) (6)

is a disjunctive interval-valued uninorm with the neutral element ε = (0, 1).
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Notation. Let Ud be the interval-valued uninorm defined by (6) using the maxi-
mum t-conorm SM and the minimum t-norm TM , and (a, c) ≤L (b, d) be elements
of L. Then we denote

Ũb
a(x,y) = Ud

((
x1 − a

b − a
,
y1 − a

b − a

)
,

(
x2 − c

d − c
,
y2 − c

d − c

))
+ (a, c). (7)

Next we present two constructions of interval-valued uninorms with a neutral
element ε and an annihilator α such that ε ‖ α. As we can see on Fig. 1, there
are two different possibilities for the positions of ε = (e1, e2) and α = (a1, a2).
Namely, a1 < e1 ≤ e2 < a2 (treated in Theorem 3) and e1 < a1 ≤ a2 < e2
(treated in Theorem 4).

a2

a1

e1

e2

α

ε

e2

e1

a1

a2

ε

α

Fig. 1. Possible positions of annihilator α and neutral element ε for interval-valued
uninorms

Theorem 3. Let α = (a1, a2) ∈ L and ε = (e1, e2) ∈ L be incomparable ele-
ments such that a1 < e1 ≤ e2 < a2. Let T1, T2, T3, T4 be t-norms on [0, 1] such
that T1 ≤ T3 and T2 ≤ T4. Further, let S1, S2, S3, S4 be t-conorms on [0, 1] such
that S1 ≤ S3 and S2 ≤ S4. Denote by Tx : [0, e1]2 → [0, e1], T y : [0, e2]2 → [0, e2],
Sx : [e1, 1]2 → [e1, 1] and Sy : [e2, 1]2 → [e2, 1] the respective ordinal sums

Tx = (〈T1, 0, a1〉, 〈T2, a1, e1〉),
T y = (〈T3, 0, a1〉, 〈T4, a1, e1〉, 〈TD, e1, e2〉),
Sx = (〈SD, e1, e2〉, 〈S1, e2, a2〉, 〈S2, a2, 1〉),
Sy = (〈S3, e2, a2〉, 〈S4, a2, 1〉).
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Denote by O = {(u1, u2) ∈ L;u1 ≥ e1, u2 ≤ e2}. Define the following functions

Ux(u,v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tx(u1, v1) if u ≤ ε, v ≤ ε,
or u1 < a1 and v ≤ ε,
or v1 < a1 and u ≤ ε,
or a1 ≤ u1 ≤ e1 and a1 ≤ v1 < e1,

a1 if min(u2, v2) > e2, min(u1, v1) ≤ a1,
and max(u1, v1) ≥ a1,

or (u ≤ α and v ≥ α) or (v ≤ α and u ≥ α),
min(u1, v1) if u ∈ O and v1 < e1,

or v ∈ O and u1 < e1,
or min(u1, v1) ∈ [a1, e1[ and (u ≥ ε or v ≥ ε),

Sx(u1, v1) if u ≥ ε, v ≥ ε, min(u2, v2) > e2,
or u ∈ O and v > ε, v2 > e2,
or v ∈ O and u > ε, u2 > e2,

Ũe2
e1 (u,v)x if (u,v) ∈ O2,

(8)

Uy(u,v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T y(u2, v2) if u ≤ ε, v ≤ ε, max(u1, v1) < e1,
or u ≤ ε, u1 < e1 and v ∈ O,
or v ≤ ε, v1 < e1 and u ∈ O,

a2 if max(u1, v1) < e1, min(u2, v2) ≤ a2,
and max(u2, v2) ≥ a2,

or (u ≤ α and v ≥ α) or (v ≤ α and u ≥ α),
max(u2, v2) if max(u2, v2) ∈ ]e2, a2] and (u ≤ ε or v ≤ ε),

if u ∈ O and v2 > e2,
or v ∈ O and u2 > e2,

Sy(u2, v2) if u ≥ ε and v ≥ ε,
or u2 > a2 and v ≥ ε,
or v2 > a2 and u ≥ ε,
or (u2, v2) ∈ [e2, a2]

2,
Ũe2
e1 (u,v)y if (u,v) ∈ O2.

(9)

Then U : L2 → L given by

U(u,v) = (Ux(u,v),Uy(u,v)) ,

is an interval-valued uninorm whose neutral element is ε = (e1, e2) and annihi-
lator is α = (a1, a2).

Now, we are going to treat the other possibility of general positions of annihilator
and neutral element of an interval-valued uninorm.

Theorem 4. Let α = (a1, a2) ∈ L and ε = (e1, e2) ∈ L be incomparable ele-
ments such that e1 < a1 ≤ a2 < e2. Let T1, T2 and T3 be t-norms on [0, 1]
such that T1 ≤ T2. Further, let S1, S2 and S3 be t-conorms on [0, 1] such that
S2 ≤ S3. Denote by Tx : [0, e1]2 → [0, e1] and Sy : [e2, 1]2 → [e2, 1] the following
affine transformations of T1 and S3, respectively

Tx = (〈T1, 0, e1〉),
Sy = (〈S3, e2, 1〉).
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Further denote by T y : [0, e2]2 → [0, e2] and Sx : [e1, 1]2 → [e1, 1] the respective
ordinal sums

T y = (〈T2, 0, e1〉, 〈TD, e1, a1〉, 〈T3, a1, a2〉, 〈TD, a2, e2〉),
Sx = (〈SD, e1, a1〉, 〈S1, a1, a2〉, 〈SD, a2, e2〉, 〈S2, e2, 1〉).

Denote O = {(u1, u2) ∈ L;u1 ≥ a1, u2 ≤ a2}. Define the following functions

Ux(u,v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tx(u1, v1) if u1 ≤ e1 and v1 ≤ e1,
Sx(u1, v1) if u ≥ ε, v ≥ ε,
v1 if u ‖ ε, u1 ≤ e1, v1 > e1,

or u1 < a1, u2 > a2, v1 ≥ a1,
or u ≥ (ε ∨ α), v1 > a1, v2 < e2,

u1 if v ‖ ε, v1 ≤ e1, u1 > e1,
or v1 < a1, v2 > a2, u1 ≥ a1,
or v ≥ (ε ∨ α), u1 > a1, u2 < e2,

a1 if (u ≤ α and v ≥ α) or (v ≤ α and u ≥ α),
or u ≤ α and v ∈ O,
or v ≤ α and u ∈ O

max(u1, v1) if u1 ≤ a1, u2 < e2, v1 ∈ ]e1, a1],
or v1 ≤ a1, v2 < e2, u1 ∈ ]e1, a1],

min(u1, v1) if min(u1, v1) ≥ a1, max(u2, v2) ≤ e2,

(10)

Uy(u,v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sy(u2, v2) if min(u2, v2) ≥ e2,
T y(u2, v2) if u ≤ ε, v ≤ ε,
v2 if u ‖ ε, u1 ≤ e1, v2 < e2,

or u2 > a2, u1 < a1, v2 ≤ a2,
or u ≤ (ε ∧ α), v1 > e1, v2 < a2,

u2 if v ‖ ε, v1 ≤ e1, u2 < e2,
or v2 > a2, v1 < a1, u2 ≤ a2,
or v ≤ (ε ∧ α), u1 > e1, u2 < a2,

a2 or (u ≤ α and v ≥ α) or (v ≤ α and u ≥ α),
or u ≥ α and v ∈ O,
or v ≥ α and u ∈ O

min(u2, v2) if u1 > e1, u2 ≥ a2, v2 ∈ [a2, e2[,
or v1 > e1, v2 ≥ a2, u2 ∈ [a2, e2[,

max(u2, v2) if min(u1, v1) ≥ e1, max(u2, v2) ≤ a2,

(11)

Then U : L2 → L given by

U(u,v) = (Ux(u,v),Uy(u,v)) ,

is an interval-valued uninorm whose neutral element is ε = (e1, e2) and annihi-
lator is α = (a1, a2).

Remark 3. The main idea of the construction in Theorem3 is the following: we
use the t-norm Tx for aggregating the first coordinates if they are below e1 with
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some exceptions when the result is a1, and the t-conorm Sx (or max) if the first
coordinates are above e1. Similarly the second coordinates are aggregating via
Sy if the second coordinates are above e2 with some exceptions when the result
is a2, and the t-norm Ty if the second coordinates are below e2. As a problematic
area is that one denoted as O where we use the formula (7).

The main idea of the construction in Theorem 4 is that we use min to aggre-
gate the first coordinates if they are above a1, but outside of the area which is
above ε. We use max to aggregate the first coordinates if they are from ]e1, a1],
but also only outside of the area which is above ε. If the first coordinate of one
element is below e1, of the other element is above e1, the result is aggregated
either as a1 or via max. And similarly (dually) we aggregate also the second
coordinates.

3 Conclusions

In this paper we have presented constructions of interval-valued uninorms. In
general there are three possibilities

– conjunctive uninorms with annihilator α = 0 and arbitrary neutral element
ε �= 0,

– disjunctive uninorms with annihilator α = 1 and arbitrary neutral element
ε �= 1,

– uninorms which are neither conjunctive nor disjunctive whose neutral element
and annihilator are arbitrary incomparable elements of the lattice of interval-
valued fuzzy sets.
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thyroidienne, Ph.D. thesis, Université de Marseille, France (1975)
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Abstract. The semantics of fuzzy logic is typically based on negative
totally ordered monoids. This contribution describes an algorithm gen-
erating in a step-wise fashion all finite structures of this kind.

Keywords: Discrete triangular norm · Finite negative totally ordered
monoid · Rees coextension · Rees congruence · Reidemeister closure
condition · Tomonoid partition

1 Introduction

Partially ordered monoids are structures occurring in several fields of mathe-
matics and computer sciences, in particular in logic. In non-classical logic, the
canonical set of truth values is often endowed with a binary operation making
this set into a partially ordered monoid. The monoidal operation then corre-
sponds to the conjunction.

The algebraic semantics of the fuzzy logic MTL is the variety of MTL-
algebras—commutative residuated lattices where the top element is the monoidal
identity—and every MTL algebra is a subdirect product of MTL chains (i.e.,
totally ordered MTL algebras). This makes negative totally ordered monoids
(which are, in fact, monoidal reducts of MTL chains) important structures worth
of studying.

In this contribution, we focus on finite structures as they may be used, e.g.,
in finite-valued fuzzy logics. We note that, under the additional assumption of
commutativity, the structures that we consider can be identified with linearly
ordered finite MTL-algebras; MTL-algebras are in turn the algebraic counterpart
of the fuzzy logic MTL [8].
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Further, this contribution can be seen as a practical appendix to our pre-
vious paper [13] which has yielded a method to describe all the one-element
Rees coextensions of a given finite, negative, totally ordered monoid (shortly a
f.n. tomonoid) S, that is, all the f.n. tomonoids greater by one element such that
S is their common Rees quotient. This way, starting from the trivial monoid,
one can generate all the possible f.n. tomonoids up to a given finite size. While
the cited paper has been focused on describing the coextensions and giving a
proof that all the existing f.n. tomonoids are necessarily obtained this way, this
paper intends to give a practical description of the algorithm that produces the
tomonoids. This paper can be also viewed as a continuation of our previous
result [12] where we have, however, dealt with the Archimedean case only.

2 Basic Notions

We begin with an introduction of the basic notions of the paper. A monoid
is an algebra (S;�, 1) of type 〈2, 0〉 such that (a � b) � c = a � (b � c) and
a � 1 = 1 � a = a for every a, b, c ∈ S. A total (linear) order � on a monoid
S is called compatible if a � b implies both a � c � b � c and c � a � c � b
for every a, b, c ∈ S. In such a case, we call (S;�,�, 1) a totally ordered monoid
or a tomonoid, for short. We also say that � is monotone with respect to �.
Further, S is called commutative if a � b = b � a for every a, b ∈ S. Finally, S is
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Fig. 1. Examples of f.n. tomonoids depicted by their multiplication tables.
Seeing the cells of a table as ordered pairs from S2, the level equivalence classes
correspond with the maximal sets of the cells with the same symbol. The depicted
f.n. tomonoids are actually created as one-element Rees quotients starting with the
first f.n. tomonoid of size 9. As we may observe, the one-element Rees quotient arises
by “cutting off” the column and the row indexed by the zero and by merging the zero
and the atom classes into one. Finally, we reach the trivial monoid.
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called negative if 1 is the top element. We note that in the context of residuated
lattices, usually the notion “integral” is used instead.

This paper is focused mainly on finite, negative, totally ordered monoids
which we abbreviate by “f.n. tomonoids”. In general, we do not assume the
monoids to be commutative [9], although, we deal with the commutativity, as
well. Let us remark that commutative f.n. tomonoids correspond to discrete
triangular norms [6]. The smallest monoid that consists of the monoidal identity
1 alone, is called the trivial tomonoid.

The illustrations in this paper depict f.n. tomonoids by their multiplication
tables, see Fig. 1.

3 Level Set Representation of Tomonoids

We do not work with f.n. tomonoids directly but we rather work with their level
set representations. In the the following text, by S2 we denote the Cartesian
product of the set S with itself, i.e., S2 = S × S.

For a tomonoid (S;�,�, 1) and two pairs (a, b), (c, d) ∈ S2 we define (a, b) ∼
(c, d) iff a � b = c � d and we call ∼ the level equivalence associated with S.

Let (S;�) be a totally ordered set. By � we denote the componentwise order
on S2, i.e., for every a, b, c, d ∈ S, we put (a, b) � (c, d) iff a � b and c � d. Let
1 ∈ S and let ∼ be an equivalence on S2 such that the following holds:

(P1) For every a, b, c, d, e ∈ S, (a, b)∼(1, d) and (b, c)∼(1, e) imply (d, c)∼(a, e).
(See an illustration in Fig. 2-left.)
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Fig. 2. Left: Illustration of Property (P1). Consider two rectangles such that the
first one hits the upper edge and the second one hits the right edge of the multipli-
cation table. Assume that the upper left, upper right, and lower right vertices are in
the same level equivalence classes, respectively. Then also the remaining lower left ver-
tices are elements of the same level equivalence class. This property is directly related
to the associativity of the tomonoid and corresponds to the Reidemeister condition
known from web geometry [1,5]. Middle: Illustration of (E2). For every two pairs
(a, b), (b, c) ∈ P we relate (a, e)∼̇(d, c). Right: Illustration of (E3’a). Let (a, b) ∈ Q,
let c < εr, and let (b, c)∼e. If (a, b)∼̇0 then also (a, e)∼̇0 according to the monotonicity.
If (a, b) ∼̇ α then (a, e) ∼̇ 0 according to (P1).
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(P2) For every a, b ∈ S there is exactly one c ∈ S such that (a, b)∼(1, c)∼(c, 1).
(P3) For every a, b, c, d, a′, b′, c′, d′ ∈ S, (a, b) ∼ (a′, b′) � (c, d) ∼ (c′, d′) � (a, b)

implies (a, b) ∼ (c, d).

Then we call (S2;�,∼, (1,1)) a tomonoid partition. The following two proposi-
tions show that tomonoids and tomonoid partitions are in a one-to-one corre-
spondence.

Proposition 1 [13]. Let (S;�,�, 1) be a tomonoid and let ∼ be its level equiv-
alence. Then (S2;�,∼, (1,1)) is a tomonoid partition.

Proposition 2 [13]. Let (S2;�,∼, (1,1)) be a tomonoid partition. For every
a, b ∈ S, let a � b be given as the unique c such that (a, b) ∼ (1, c) ∼ (c, 1). Then
(S;�,�, 1) is the unique tomonoid such that (S2;�,∼, (1,1)) is its associated
tomonoid partition.

In the following text, we will write (a, b) ∼ c instead of (a, b) ∼ (1, c) ∼ (c, 1).

4 Rees Quotients and Coextensions

In this section we introduce the notion of a one-element coextension of a
f.n. tomonoid.

Let (S;�,�, 1) be a f.n. tomonoid. We call its least element the zero (and
we denote it by 0), we call its second smallest element the atom (and we denote
it by α), and we call its second greatest element the coatom (and we denote it
by κ). Recall that 1 is the greatest element of S.

A tomonoid congruence on S is an equivalence relation ≈ on S such that

1. ≈ is a congruence [10] of S as a monoid and
2. each equivalence class is convex.

The operation induced by � on the quotient 〈S〉≈ we denote again by �. For
a, b ∈ S, we define 〈a〉≈ � 〈b〉≈ if a ≈ b or a < b. We may observe that (〈S〉≈;�
,�, 〈1〉≈) is a tomonoid again and we call 〈S〉≈ the tomonoid quotient with
respect to ≈. This procedure preserves the properties of finiteness, negativity,
and commutativity.

We proceed with the notion of the Rees congruence which is commonly used
for semigroups [11]. Let q ∈ S. For a, b ∈ S we define a ≈q b if a = b or a, b � q.
Then ≈q is a tomonoid congruence and we call it the Rees congruence with
respect to q. We denote the corresponding quotient by S/q and we call it the
Rees quotient of S with respect to q. Furthermore, we call S a Rees coextension
of S/q [13]. If moreover q = α, we call S/q the one-element Rees quotient of
S and we call S the one-element Rees coextension (or, shortly, the one-element
coextension) of S/q. See an illustration in Fig. 1.
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5 One-Element Rees Coextensions of f.n. Tomonoids

The algorithm we are going to present is based on a theorem [13] which we briefly
describe here. Let (S;�,�, 1) be a f.n. tomonoid. We denote S� = S � {0}.
A zero doubling extension of S is a totally ordered set S̄ = S� ∪̇ {0, α} such that
0 < α < a for every a ∈ S�. We call a ∈ S an idempotent if a�a = a. Obviously,
0 and 1 are idempotents of every f.n. tomonoid.

Let ∼1 and ∼2 be two equivalence relations on S2. We say that ∼2 is a
coarsening of ∼1 if ∼1 ⊆ ∼2, that is, if each equivalence class of ∼2 is a union
of some equivalence classes of ∼1.

Let (S;�,∼, (1,1)) be a f.n. tomonoid partition. Let S̄ be the zero doubling
extension of S. Define

P = {(a, b) ∈ S̄2 | a, b ∈ S� and there is c ∈ S� s.t. (a, b) ∼ c}, (1)

Q = S̄2
� P. (2)

Let (εl, εr) be a pair of non-zero idempotents of S and let ∼̇ be the smallest
equivalence relation on S̄2 such that the following conditions hold:

(E1) We have (a, b) ∼̇ (c, d) for every (a, b), (c, d) ∈ P such that (a, b) ∼ (c, d).
(E2) We have (d, c) ∼̇ (a, e) for every (a, b), (b, c) ∈ P and (d, c), (a, e) ∈ Q

such that (a, b) ∼ d and (b, c) ∼ e. (See an illustration in Fig. 2-middle.)
(E3’a) We have (a, e) ∼̇ 0 for every a, b, c, e ∈ S� such that (a, b) ∈ Q, (b, c) ∼ e,

and c < εr.
Furthermore, we have (d, c) ∼̇0 for any a, b, c, d ∈ S� such that (b, c) ∈

Q, (a, b) ∼ d, and a < εl. (See an illustration in Fig. 2-right.)
(E3’b) We have (a, e) ∼̇ (a, b) for every a, b, c, e ∈ S� such that (a, b) ∈ Q,

(b, c) ∼ e, and c ≥ εr.

Furthermore, we have (d, c) ∼̇ (b, c) for every a, b, c, d ∈ S� such that
(b, c) ∈ Q, (a, b) ∼ d, and a ≥ εl. (See illustrations in Fig. 3-left and
middle.)

(E3’c) We have (a, b) ∼̇ 0 for every a, b, c > 0 such that (a, b), (b, c) ∈ Q, a < εl,
and c ≥ εr.

Furthermore, we have (b, c)∼̇0 for every a, b, c > 0 such that (a, b), (b, c) ∈
Q, a ≥ εl, and c < εr. (See an illustration in Fig. 3-right.)

(E4’a) We have (1, 0) ∼̇ (0, 1) ∼̇ (a, α) ∼̇ (α, b) for every a < εl and b < εr.

Furthermore, we have (a, b) ∼̇ 0 for every (a, b), (c, d) ∈ Q such that
(a, b) � (c, d) ∼̇ 0.

(E4’b) We have (1, α) ∼̇ (α, 1) ∼̇ (εl, α) ∼̇ (α, εr).

Furthermore, we have (a, b) ∼̇ α for every (a, b), (c, d) ∈ Q such that
(a, b) � (c, d) ∼̇ α.
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Fig. 3. Left and middle: Illustration of (E3’b). Let (a, b) ∈ Q, let c � εr, and
let (b, c) ∼ e. If (a, b) ∼̇ α then, according to (P1), (a, e) ∼̇ α, as well (left figure). If
(a, b) ∼̇ 0 then, according to (P1) or monotonicity, (a, e) ∼̇ 0, as well (middle figure).
Right: Illustration of (E3’c). Let (a, b), (b, c) ∈ Q, let c ≥ εr, and let a < εl. Then
(a, b) ∼̇ 0. Indeed, if we had (a, b) ∼̇ α then, according to (P1), we would also have
(a, α) ∼̇ α which is a contradiction.

We call the structure (S̄2;�, ∼̇, (1,1)) the (εl, εr)-ramification of (S2;�,
∼, (1,1)).

Theorem 1 [13]. Let (S;�,∼, (1,1)) be a f.n. tomonoid partition and let (εl, εr)
be a pair of its non-zero idempotents. Let (S̄2;�, ∼̇, (1,1)) be the (εl, εr)-
ramification of (S2;�,∼, (1,1)).

If (1, 0) ∼̇ (1, α) then there is no one-element coextension of S2 with respect
to (εl, εr). Otherwise, let ∼̄ be a coarsening of ∼̇ such that the following holds:
the ∼̄-class of each c ∈ S� coincides with the ∼̇-class of c, the ∼̄-class of 0
is downward closed, and each ∼̄-class contains exactly one element of the form
(1, c) for some c ∈ S̄. Then (S̄2;�, ∼̄, (1,1)) is a one-element coextension of S2

with respect to (εl, εr).
Moreover, all one-element coextensions of S2 with respect to (εl, εr), if there

are any, arise in this way.

6 Representation of f.n. Tomonoids

The aim of this paper is to describe an algorithmic implementation of Theorem 1.
The crucial part is to choose a suitable representation of the f.n. tomonoids (and
the corresponding tomonoid partitions). F.n. tomonoids can be naturally repre-
sented by two-dimensional arrays representing their multiplication tables (see,
e.g., Fig. 1). However, this approach has shown as unsuitable for the imple-
mentation. Performing the algorithm, we mainly need to work with the level
equivalence classes; we need, for example, to add pairs to this classes or we need
to merge two classes into one.

Therefore we have decided to represent a f.n. tomonoid (S;�,�, 1) as a
collection of level equivalence classes of pairs from S2. Such a collection forms a
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partition of S2, i.e., every pair belongs to an (exactly one) equivalence class. Each
level equivalence class is either assigned to a unique value of the f.n. tomonoid
(which means that it must contain two pairs of the form (a, 1) and (1, a) where
a ∈ S) or it is “unassigned”. An “unassigned” class can be a singleton.

7 Methods

Two methods, that recursively call each other, create the core of the implemented
algorithm:

– a method that adds a pair (a, b) to a z-level equivalence class, we denote it
by (a, b) ∼̇ z,

– a method that relates a pair (a, b) with a pair (c, d), we denote it by (a, b) ∼̇
(c, d).

When implementing these two methods, it is first crucial that the transitivity of
∼̇ is preserved. That is, when we add a pair (a, b) to a certain level equivalence
class, we consequently need to add to the same class also all the pairs that are
already related to (a, b).

Second, it is important that the monotonicity of the constructed tomonoid
is not violated. This task is easier by the fact that (except for Part (E1), see
below) we work only with pairs that are assigned to 0, α, or unassigned. Thus,
when performing (a, b) ∼̇ z, z is either 0 or α. If z = 0 then we need to be sure
that also all the pairs lower that (a, b) are assigned to 0. If z = α we proceed
analogously for the pairs greater that (a, b). The details are described in the next
two subsections.

Method Implementing (a, b) ∼̇ z

Recall that z is either 0 or α. We delete the whole level equivalence class con-
taining (a, b) and we add all the deleted pairs to the z-level equivalence class. If
z = 0 then for every pair (x, y) in the deleted class:

– for every pair (u, v) ∈ Q such that (u, v) � (x, y):
• perform (u, v) ∼̇ 0.

If z = α then for every pair (x, y) in the deleted class:

– for every pair (u, v) ∈ Q such that (u, v) � (x, y):
• perform (u, v) ∼̇ α.

If (a, b) is already contained in a y-level equivalence class and y �= z an error is
emitted signalizing that the constructed coextension is not possible.

Method Implementing (a, b) ∼̇ (c, d)

If both the pairs (a, b) and (c, d) belong to unassigned level equivalence classes,
we simply delete one of the classes and add all its pairs to the second one.

If one of the pairs, say (a, b), belongs to a z-level equivalence class (z is either
0 or α), we perform (c, d) ∼̇ z.
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If (a, b) belongs to a z-level equivalence class and (c, d) belongs to a y-level
equivalence class then either y = z which means that both (a, b) and (c, d) belong
to the same level equivalence class and thus we do not perform anything, or y �= z
which means that it is not possible to construct such a coextension. In the latter
case an error is emitted stopping the process.

8 Algorithm

Input:

– (S2;�,∼, (1,1)) . . . tomonoid partition of a f.n. tomonoid (S;�,�, 1)
– (εl, εr) . . . pair of its non-zero idempotents

Output:

– (S̄2;�, ∼̄, (1,1)) . . . a one-element coextension of (S2;�,∼, (1,1)) with respect
to (εl, εr)

Algorithm:

Initialization:

1. Let S̄ be the zero doubling extension of S.
2. Let 0, α, and κ be the zero, the atom, and the coatom of S̄, respectively. Let

P and Q be given by (1) and (2), respectively.
3. Let ∼̇ be an equivalence relation on S̄2. (The following steps are going to

define this relation.)

Part (E1):

4. For every (a, b), (c, d) ∈ P:
– define (a, b) ∼̇ (c, d)

if (a, b) ∼ (c, d) ∼ e for some e ∈ S̄ � {0, α}.

Part (E2):

5. For every (a, b), (b, c) ∈ P:
– let d ∈ S̄ be such that (a, b) ∼ d,
– let e ∈ S̄ be such that (b, c) ∼ e,
– perform (a, e) ∼̇ (d, c).

Part (E4’):

6. Perform (1, 0) ∼̇ (0, 1) ∼̇ 0.
7. Perform (a, α) ∼̇ (α, b) ∼̇ 0 for a < εl and b < εr.
8. Perform (εl, α) ∼̇ (α, εr) ∼̇ α.
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Part (E3’a):

9. For every a ∈ S̄ such that α < a < εl:
– let b ∈ S̄ be the highest element such that (a, b) ∈ Q,
– let c ∈ S̄ be the highest element such that c < εr,
– let e ∈ S̄ be such that (b, c) ∼ e,
– if e > α then perform (a, e) ∼̇ 0.

10. For every c ∈ S̄ such that α < c < εr:
– let b ∈ S̄ be the highest element such that (b, c) ∈ Q,
– let a ∈ S̄ be the highest element such that a < εl,
– let d ∈ S̄ be such that (a, b) ∼ d,
– if d > α then perform (d, c) ∼̇ 0.

Part (E3’c):

11. For every a ∈ S̄ such that εl � a < 1:
– let b ∈ S̄ be the highest element such that (a, b) ∈ Q,
– let c ∈ S̄ be the highest element such that (b, c) ∈ Q and c < εr,
– perform (b, c) ∼̇ 0.

12. For every c ∈ S̄ such that εr � c < 1:
– let b ∈ S̄ be the highest element such that (b, c) ∈ Q,
– let a ∈ S̄ be the highest element such that (a, b) ∈ Q and a < εl,
– perform (a, b) ∼̇ 0.

Part (E3’b):

13. For every b ∈ S̄ such that α < b < 1:
– let e ∈ S̄ be such that (b, εr) ∼ e,
– if e < b then:

• for every a ∈ S̄ s.t. α < a < εl and (a, b) ∈ Q:
* perform (a, e) ∼̇ (a, b).

14. For every b ∈ S̄ such that α < b < 1:
– let d ∈ S̄ be such that (εl, b) ∼ d,
– if d < b then:

• for every c ∈ S̄ s.t. α < c < εr and (b, c) ∈ Q:
* perform (d, c) ∼̇ (b, c).

Coarsening:

15. Let ∼̄ := ∼̇.
16. For every pair (a, b) ∈ S̄2, that belongs to an unassigned level equivalence

class, perform arbitrarily either (a, b) ∼̄ 0 or (a, b) ∼̄ α.

Remark 1. Let ϕ ∈ S be the lowest non-zero idempotent of S. In Step 5 we may
omit those pairs (a, b), (b, c) ∈ P where (a, b), (b, c)� (ϕ,ϕ) since, in such a case,
(a, e), (d, c) ∈ P.

Remark 2. In order to obtain all the one-element coextensions of S we simply
repeat the procedure for every possible pair of its non-zero idempotents including
(1, 1). Furthermore, we create an additional coextension in the following way:

– Perform Steps 1 and 2.
– Perform (1, 0) ∼̄ (0, 1) ∼̄ 0.
– Perform (α, α) ∼̄ α.
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9 Example

Let us perform the algorithm taking the first f.n. tomonoid of size 9 in Fig. 1.
As we can see, it has three non-zero idempotents: y, z, and 1. We are going to
construct all the one-element coextensions with respect to (z, y).

– Initialization, Part (E1), and Part (E4’):
• We obtain the values depicted in Fig. 4a.

– Part (E3’a) (see Fig. 4b):
• Step 9:

* For (b, c) = (t, z) we perform (y, t) ∼̇ 0.
* For (b, c) = (u, z) we perform (y, u) ∼̇ 0.
* For (b, c) = (v, x) we perform (v, v) ∼̇ 0.
* For (b, c) = (w, x) we perform (v, w) ∼̇ 0.
* For (b, c) = (x, x) we perform (v, x) ∼̇ 0.
* For (b, c) ∈ {(y, u), (u, z)} we do not perform anything.

• Step 10:
* for (a, b) = (z, t) we perform (x, t) ∼̇ 0.
* for (a, b) = (z, u) we perform (x, u) ∼̇ 0.
* for (a, b) ∈ {(x, v), (x,w), (x, x), (u, y), (x, z)} we do not perform any-

thing.
– Part (E3’c) (see Fig. 4c):

• Step 11:
* For a = y we obtain b = u and c = y. Thus we perform (u, y) ∼̇ 0.
* For a = z we obtain b = u and c = y. Thus we perform (u, y) ∼̇ 0.
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Fig. 4. Illustration of the algorithm.
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• Step 12:
* For c = z we obtain b = u and a = x. Thus we perform (x, u) ∼̇ 0.

– Part (E3’b) (see Fig. 4d):
• Step 13:

* For b = t we obtain e = α and we perform (a, α) ∼̇ (a, t) for every a from
α to x.

* For b = u we obtain e = α and we perform (a, α) ∼̇ (a, u) for every a
from α to x.

• Step 14:
* For b = t we obtain d = α and we perform (α, c) ∼̇ (t, c) for every c from

α to y.
* For b = u we obtain d = α and we perform (α, c) ∼̇ (u, c) for every c

from α to y.
* For b = x we obtain d = w and we perform (w, c) ∼̇ (x, c) for every c

from α to x.
* For b = z we obtain d = y and we perform (y, c) ∼̇ (z, c) for every c from

α to u.
– Part (E2) (see Fig. 4e):

• For a = x, b = y, and c = x perform (x,w) ∼̇ (v, x).
• For a = w, b = y, and c = x perform (w,w) ∼̇ (v, x).
• For a = v, b = y, and c = x perform (v, w) ∼̇ (v, x).
• For a = x, b = y, and c = w perform (x,w) ∼̇ (v, w).
• For a = w, b = y, and c = w perform (w,w) ∼̇ (v, w).
• For a = x, b = y, and c = v perform (x, v) ∼̇ (v, v).
• For a = w, b = y, and c = v perform (w, v) ∼̇ (v, v).

– Finally, we obtain the situation depicted in Fig. 4f. As we can see, there are
three distinct one-element coextensions of the tomonoid.

10 Comparison with Existing Algorithms

We are aware that there already exists a number of results with similar goals [2–
4,7]. We have, however, decided to introduce a new algorithm; firstly, since we
wanted to have a practical support for our theoretical results [12], and secondly,
since we believe that our approach is more effective. Let us make a short com-
parison.

The algorithm by Bartušek and Navara [2,3] is based on one-element Rees
coextensions, as well, although this notion is not used. In this approach, all
the existing coextensions of a given commutative f.n. tomonoid are obtained by
checking the associativity for every newly defined (x, y) ∈ Q.

The algorithm by Bělohlávek and Vychodil [4] uses a recursive backtracking
procedure to test every possible tomonoid multiplication table on associativity.

As these two algorithms are both based on variants of the brute-force app-
roach, our algorithm promises to give a better performance.

The comparison with the algorithm by De Baets and Mesiar [7] is planned
to be made later when we have its description.
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11 Conclusion

All the steps of the algorithm run in a polynomial time (with respect to the size
of S) except for Step 16 where we, actually, obtain all the possible one-element
coextensions with respect to the given pair of idempotents (εl, εr). This step
runs in exponential time since also the number of the coextensions is bounded
from below by an exponential function depending on the size of S [12].

The validity of the algorithm’s output is assured by Theorem 1. Remark that,
since every f.n. tomonoid is a one-element Rees quotient of another f.n. tomonoid,
it follows from Theorem 1 that every existing f.n. tomonoid can be obtained by
the described procedure.

If we wish to obtain all the commutative one-element coextensions of a com-
mutative f.n. tomonoid S, we simply perform (a, b) ∼̇ (b, a) for every (a, b) ∈ Q
right after Initialization.

The algorithm has been implemented and tested in the programming lan-
guage Python; see http://cmp.felk.cvut.cz/∼petrikm/extensions.php.
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Abstract. In decision making, the suitability of decision options may
be specified by utility values for each option or by preference values
for each pair of options. This paper introduces a new approach to con-
struct a matrix of pairwise preference values from a vector of utility
values, which is called the U2P transformation. The U2P transforma-
tion satisfies reciprocity, triangle condition, weak transitivity, restricted
max–min transitivity, and restricted max–max transitivity, but it violates
(unrestricted) max–min transitivity, (unrestricted) max–max transitiv-
ity, multiplicative transitivity, and additive transitivity. Inversion of the
U2P transformation yields the P2U transformation which can be used to
construct a vector of utility values from a matrix of pairwise preference
values. Numerical experiments with movie ratings illustrate the practical
use of the U2P and P2U transformations.

Keywords: Preference relations · Utility theory · Rating · Ranking ·
Decision making · Movie ranking

1 Introduction

Consider a (finite) set O of n ∈ {2, 3, . . .} options, for example in a decision
making process. The utility [4] of each option i ∈ {1, . . . , n}, is specified by
ui ∈ [0, 1], where the best utility is ui = 1, the worst utility is ui = 0, and
ui > uj indicates that the utility of option i is higher than the utility of option
j ∈ {1, . . . , n}. The vector u = (u1, . . . , un) ⊂ [0, 1]n of utility values can be
interpreted as a vector of membership values of a fuzzy set of options, for example
ratings of movies.

A (pairwise) preference relation [5] on O × O can be defined by an n × n
preference matrix P with elements pij ∈ [0, 1], where the highest preference of
option i to option j is pij = 1, and the lowest preference is pij = 0. For a
reciprocal preference relation we require

pij + pji = 1 (1)

for all i, j = 1, . . . , n. This implies that

pii = 0.5 (2)
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 547–558, 2016.
DOI: 10.1007/978-3-319-40581-0 44
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for all i = 1, . . . , n. Hence, pij = 0.5 indicates that none of the options i or j is
preferred to the other one.

Preferences for decision options may be specified by a utility vector u or by
a (pairwise) preference matrix P , and many methods of decision making based
on utility values or preferences have been proposed in the literature, for example
fuzzy decision making [2], multi–attribute fuzzy decision making [12], decision
making based on fuzzy preference relations [11], group decision making based on
fuzzy preference relations [15], based on incomplete preference relations [6], or
based on interval fuzzy preference relations [17]. Successful applications of these
approaches include direct marketing [13], optimization of logistic processes [14],
movie rating [8], or selection of propulsion and manoeuvring systems [10].

In this paper, we consider the problem of generating preference matrices
from utility vectors and the problem of generating utility vectors from preference
matrices. Based on five assumptions we develop a so–called U2P transformation
that generates preference matrices from utility vectors (Sect. 2). We show that
the proposed U2P transformation satisfies some properties for fuzzy preference
relations taken from the literature but violates some other properties (Sect. 3).
By inversion of the U2P transformation we obtain the the P2U transformation
that generates utility vectors from preference matrices (Sect. 4). Conclusions and
possible directions for future research are summarized in Sect. 5.

2 The U2P Transformation

Our approach to generate preference matrices from utility vectors is based on
the following five assumptions:

1. If two options have the same utility, then none of these options is preferred
to the other one:

ui = uj ⇒ pij = 0.5. (3)

2. If one option has zero utility and another option has nonzero utility, then the
degree of preference of the first option to the second option is zero:

ui = 0 ∧ uj > 0 ⇒ pij = 0. (4)

3. If one option has nonzero utility and another option has zero utility, then the
degree of preference of the first option to the second option is one:

ui > 0 ∧ uj = 0 ⇒ pij = 1. (5)

4. If one option has utility one and another option has utility less than one, then
the degree of preference of the first option to the second option is one:

ui = 1 ∧ uj < 1 ⇒ pij = 1. (6)

5. If one option has utility less than one and another option has utility one, then
the degree of preference of the first option to the second option is zero:

ui < 1 ∧ uj = 1 ⇒ pij = 0. (7)
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There are infinitely many mappings from u to P and vice versa that sat-
isfy these five assumptions. In this paper we propose a mapping that appears
mathematically elegant and, as we will see in the next section, has some
interesting mathematical properties. To construct a mapping from u to P we
first consider assumptions 2 and 5, i.e. Eqs. (4) and (7). Equation (4) can be
satisfied by

pij =
ui

uj
(8)

and Eq. (7) can be satisfied by

pij =
1 − uj

1 − ui
(9)

and hence both (4) and (7) can be satisfied by

pij =
A

1
/(

ui

uj

)
+ 1

/ (
1 − uj

1 − ui

)

=
A · ui · (1 − uj)

uj · (1 − uj) + ui · (1 − ui)
for (ui, uj) ∈ [0, 1]2 \ {0, 1}2 (10)

with a suitable constant A, for example A = 1, and

(3) ⇒ pij = 0.5 for (ui, uj) = (0, 0) (11)
(4) ⇒ pij = 0 for (ui, uj) = (0, 1) (12)
(5) ⇒ pij = 1 for (ui, uj) = (1, 0) (13)
(3) ⇒ pij = 0.5 for (ui, uj) = (1, 1) (14)

We want to choose A, so that for (ui, uj) ∈ [0, 1]2 \ {0, 1}2 not only assumptions
2 and 5 but also assumptions 1, 3, and 4 are satisfied, i.e. Eqs. (3), (5), and (6).
For ui = uj (3), Eq. (10) yields

pij =
A

2
(15)

so we can achieve pij = 0.5 as required by (3) if A = 1. For ui > 0 and uj = 0 (5),
Eq. (10) yields

pij =
A

1 − ui
(16)

so we can achieve pij = 1 as required by (5) if A = 1 − ui. For ui = 1 and
uj < 1 (6), Eq. (10) yields

pij =
A

uj
(17)

so we can achieve pij = 1 as required by (6) if A = uj . To summarize, we want
to choose A so that the following three conditions hold:

A = 1 ifui = uj (18)
A = 1 − ui ifui > 0 ∧ uj = 0 (19)
A = uj ifui = 1 ∧ uj < 1 (20)
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Again, there are infinitely many choices for A that satisfy these three conditions.
Here we choose

A = 1 − ui + uj (21)

and the reader may easily verify that (21) satisfies (18)–(20). Finally, we insert
(21) into (10), take (11)–(14), and obtain what we call the U2P transformation

pij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ui·(1−uj)·(1−ui+uj)
uj ·(1−uj)+ui·(1−ui)

for (ui, uj) ∈ [0, 1]2 \ {0, 1}2
0 for (ui, uj) = (0, 1)
0.5 for (ui, uj) ∈ {(0, 0), (1, 1)}
1 for (ui, uj) = (1, 0)

(22)

The limits at the four edge points (ui, uj) ∈ {0, 1}2 are

lim
ui=0
uj→0

pij = lim
uj→0

0
uj · (1 − uj)

= 0 �= 0.5 (23)

lim
ui→0
uj=0

pij = lim
ui→0

ui · (1 − ui)
ui · (1 − ui)

= 1 �= 0.5 (24)

so pij is not continuous at (ui, uj) = (0, 0), and

lim
ui=0
uj→1

pij = lim
uj→1

0
uj · (1 − uj)

= 0 (25)

lim
ui→0
uj=1

pij = lim
ui→0

0)
ui · (1 − ui)

= 0 (26)

so pij is continuous at (ui, uj) = (0, 1), and

lim
ui=1
uj→0

pij = lim
uj→0

(1 − uj) · uj

uj · (1 − uj)
= 1 (27)

lim
ui→1
uj=0

pij = lim
ui→1

ui · (1 − ui)
ui · (1 − ui)

= 1 (28)

so pij is continuous at (ui, uj) = (1, 0), and

lim
ui=1
uj→1

pij = lim
uj→1

(1 − uj) · uj

uj · (1 − uj)
= 1 �= 0.5 (29)

lim
ui→1
uj=1

pij = lim
ui→1

0)
ui · (1 − ui)

= 0 �= 0.5 (30)

so pij is not continuous at (ui, uj) = (1, 1). Figure 1 shows a plot of the U2P
transformation function. Obviously, pij is (not strictly) monotonically increasing
with ui and (not strictly) monotonically decreasing with uj . Moreover, pij is
symmetric with respect to reflection at the plane ui = 1 − uj and symmetric
with respect to rotation by 180◦ around the line ui = uj and pij = 0.5. All
preference values pij are in the interval [0, 1].
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Fig. 1. 3D plot of the U2P transformation function.

3 Properties of the U2P Transformation

In this section we analyze some important mathematical properties of the U2P
transformation.

3.1 Reciprocity

Preference relations generated by the U2P transformation are reciprocal (1),
since for (ui, uj) ∈ [0, 1]2 \ {0, 1}2 Eq. (22) yields

pij+pji =
ui · (1 − uj) · (1 − ui + uj)
uj · (1 − uj) + ui · (1 − ui)

+
uj · (1 − ui) · (1 − uj + ui)
ui · (1 − ui) + uj · (1 − uj)

=
(1−uj)·ui·(1−ui)+ui·uj·(1−uj)+(1−ui)·uj ·(1−uj)+uj ·ui·(1−ui)

uj ·(1 − uj) + ui · (1 − ui)

=
ui · (1 − ui) + uj · (1 − uj)
uj · (1 − uj) + ui · (1 − ui)

= 1 (31)

and for the four edge points (ui, uj) ∈ {0, 1}2 we obtain

(ui, uj) = (0, 0) ⇒ pij + pji = 0.5 + 0.5 = 1 (32)
(ui, uj) = (0, 1) ⇒ pij + pji = 0 + 1 = 1 (33)
(ui, uj) = (1, 0) ⇒ pij + pji = 1 + 0 = 1 (34)
(ui, uj) = (1, 1) ⇒ pij + pji = 0.5 + 0.5 = 1 (35)
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In the following subsections we examine the U2P transformation with respect
to the eight properties of fuzzy preference relations that are listed and dis-
cussed in [7]: triangle condition [9], weak transitivity [16], max–min transi-
tivity [3,18], max–max transitivity [3,18], restricted max–min transitivity [16],
restricted max–max transitivity [16], multiplicative transitivity [16], and additive
transitivity [15,16].

3.2 Triangle Condition

The triangle condition [9] is defined as

pij + pjk ≥ pik ∀i, j, k (36)

The U2P transformation has the monotonicity properties mentioned above, and
all preference values are in [0, 1], so

uj ≤ uk ⇒ pij ≥ pik ⇒ pij + pjk ≥ pik (37)

and
ui ≤ uj ⇒ pjk ≥ pik ⇒ pij + pjk ≥ pik (38)

There are six possible situations for the order of ui, uj and uk:

ui ≤ uj ≤ uk (39)
ui ≤ uk ≤ uj (40)
uj ≤ ui ≤ uk (41)
uj ≤ uk ≤ ui (42)
uk ≤ ui ≤ uj (43)
uk ≤ uj ≤ ui (44)

For (39), (41), and (42) we have (37), and for (40) and (43) we have (38). In the
only remaining case (44) we have

pij ≥ 0.5 ∧ pjk ≥ 0.5 ⇒ pij + pik ≥ 1 ⇒ pij + pjk ≥ pik (45)

This means that the triangle condition (36) holds for all six possible orders, so
the U2P transformation satisfies the triangle condition.

3.3 Weak Transitivity

Weak transitivity [16] is defined as

pij ≥ 0.5 ∧ pjk ≥ 0.5 ⇒ pik ≥ 0.5 ∀i, j, k (46)

For the U2P transformation we have

pij ≥ 0.5 ⇔ ui ≥ uj (47)

and so

pij ≥ 0.5 ∧ pjk ≥ 0.5 ⇒ ui ≥ uj ≥ uk ⇒ ui ≥ uk ⇒ pik ≥ 0.5 (48)

so the U2P transformation satisfies the weak transitivity criterion.
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3.4 Max–min Transitivity

Max–min transitivity [3,18] is defined as

pik ≥ min(pij , pik) ∀i, j, k (49)

Consider the case
ui = 0.3, uj = 0.6, uk = 0.8 (50)

With the U2P transformation we obtain

pij ≈ 0.35, pjk ≈ 0.36, pik ≈ 0.24 (51)

and so
pik ≈ 0.24 �≥ min(pij , pik) ≈ 0.35 (52)

which violates (49), and so the U2P transformation violates max–min transitivity.

3.5 Max–max Transitivity

Max–max transitivity [3,18] is defined as

pik ≥ max(pij , pik) ∀i, j, k (53)

For (50) the U2P transformation yields (51), hence

pik ≈ 0.24 �≥ max(pij , pik) ≈ 0.36 (54)

which violates (53), and so the U2P transformation violates max–max transitivity.

3.6 Restricted Max–min Transitivity

Restricted max–min transitivity [16] is defined as

pij ≥ 0.5 ∧ pjk ≥ 0.5 ⇒ pik ≥ min(pij , pik) ∀i, j, k (55)

For the U2P transformation we have (47), so

pij ≥ 0.5 ⇒ ui ≥ uj ⇒ pik ≥ pjk (56)
pjk ≥ 0.5 ⇒ uj ≥ uk ⇒ pij ≤ pik (57)

and further

pik ≥ pij ∧ pik ≥ pjk ⇒ pik ≥ min(pij , pik) (58)

so the U2P transformation satisfies restricted max–min transitivity.
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3.7 Restricted Max–max Transitivity

Restricted max–max transitivity [16] is defined as

pij ≥ 0.5 ∧ pjk ≥ 0.5 ⇒ pik ≥ max(pij , pik) ∀i, j, k (59)

For the U2P transformation we have (56), (57), and so

pik ≥ pij ∧ pik ≥ pjk ⇒ pik ≥ max(pij , pik) (60)

so the U2P transformation satisfies restricted max–max transitivity.

3.8 Multiplicative Transitivity

Multiplicative transitivity [16] is defined as
pji
pij

· pkj
pjk

=
pki
pik

∀i, j, k (61)

For (50) the U2P transformation yields (51) and

pji
pij

· pkj
pjk

=
1 − pij
pij

· 1 − pjk
pjk

≈ 1 − 0.35
0.35

· 1 − 0.36
0.36

≈ 3.6

�= pki
pik

=
1 − pik
pik

≈ 1 − 0.24
0.24

≈ 3.2 (62)

which violates (61), and so the U2P transformation violates multiplicative tran-
sitivity.

3.9 Additive Transitivity

Additive transitivity [15,16] is defined as

(pij − 0.5) + (pjk − 0.5) = (pik − 0.5) ∀i, j, k (63)

For (50) the U2P transformation yields (51) and

(pij − 0.5) + (pjk − 0.5) ≈ (0.35 − 0.5) − (0.36 − 0.5) = −0.39
�= (pik − 0.5) ≈ (0.24 − 0.5) = −0.26 (64)

which violates (63). In this example all preferences pij , pjk, and pik are < 0.5.
However, the U2P transformation also violates additive transitivity for the fol-
lowing case

ui = 0.9, uj = 0.3, uk = 0.2 (65)

where
pij ≈ 0.84, pjk ≈ 0.58, pik ≈ 0.86 (66)

so all preferences pij , pjk, and pik are >0.5, but still

(pij − 0.5) + (pjk − 0.5) ≈ (0.84 − 0.5) − (0.58 − 0.5) = 0.42
�= (pik − 0.5) ≈ (0.86 − 0.5) = 0.36 (67)

which violates (63), and so the U2P transformation violates additive transitivity.
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Fig. 2. 3D plot of the P2U transformation function.

4 The P2U Transformation

In the previous sections we have considered the problem of generating preference
matrices from utility vectors. In this section we will consider the reverse problem:
generating utility vectors from preference matrices. The basic idea is to initially
specify a utility value for one of the options, say uj , j ∈ {1, . . . , n}, and then
compute the utility values of all the other options ui, i = 1, . . . , n, i �= j, using a
function of uj and pij . This function can be obtained by solving (the first case of)
Eq. (22) for ui and defining the values of ui for the four edges (pij , uj) ∈ {0, 1}2,
which after several conversions (omitted here due to limited space) yields

ui =

⎧
⎪⎨

⎪⎩

√
sij+pij+u2

j−1

2·(pij+uj−1) for pij , uj ∈ [0, 1], pij �= 1 − uj

pij foruj ∈ (0, 1), pij = 1 − uj

0.5 for (pij , uj) ∈ {(0, 1), (1, 0)}
(68)

with

sij = p2ij · (−4 · u2
j + 4 · uj + 1

)

+ pij · (−4 · u3
j + 10 · u2

j − 4 · uj − 2
)

+ u4
j − 2 · u2

j + 1 (69)

In a similar way as in (23)–(30) we can show that (68) is continuous at (pij , uj) ∈
[0, 1]2 \ {(0, 1), (1, 0)} and not continuous at (pij , uj) ∈ {(0, 1), (1, 0)}. Figure 2
shows a plot of the P2U transformation function.
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5 Numerical Experiments

To briefly illustrate the use of the U2P and P2U transformations we consider
two artificial data set motivated by the Netflix challenge [1] where a data set
containing movie ratings was analyzed. Here, we consider three movies with the
ratings 0, 50%, and 100%, so we have the utility vector

U = (0, 0.5, 1) (70)

Using the U2P transformation (22) we obtain the preference matrix

P =

⎛

⎝
0.5 0 1
1 0.5 0
0 1 0.5

⎞

⎠ (71)

which indicates that the second movie is completely preferred to the first movie
(p21 = 1), and the third movie is completely preferred to the second movie
(p32 = 1). If we pick the second movie as a reference, j = 2, and set the utility of
the second movie to u2 = 0.5, then the P2U transformation (68) of (71) recovers
the original utility vector from (70). Next, we consider three other movies with
the ratings 25%, 50%, and 75%, so

U = (0.25, 0.5, 0.75) (72)

and the P2U transformation yields the preference matrix

P ≈
⎛

⎝
0.5 0.3571 0.25
0.6429 0.5 0.3571
0.75 0.6429 0.5

⎞

⎠ (73)

If we pick the reference u2 = 0.5 again, then the P2U transformation of (73)
will recover the original utility vector (72). However, if we choose a different
utility value for the second movie, for example 75% (u2 = 0.75), then the P2U
transformation of (73) will yield

U ≈ (0.5, 0.75, 0.8738) (74)

which is different from the original utility vector at (72) but yields the same pref-
erence matrix (73). This example shows that the U2P transformation induces
an equivalence relation, and we call a pair of utility vectors U1 and U2 pref-
erence equivalent with respect to the U2P transformation, if and only if the
corresponding preference matrices are equal, P1 = P2.

6 Conclusions

Based on five assumptions about utilities and preferences we have developed the
U2P transformation (22) that maps utility (or membership) vectors to (fuzzy)



Constructing Preference Relations from Utilities and Vice Versa 557

preference matrices. The U2P transformation satisfies reciprocity, triangle condi-
tion, weak transitivity, restricted max–min transitivity, and restricted max–max
transitivity, but it violates (unrestricted) max–min transitivity, (unrestricted)
max–max transitivity, multiplicative transitivity, and additive transitivity. By
inversion of the U2P transformation we have also developed the P2U transfor-
mation (68) that maps (fuzzy) preference matrices to utility (or membership)
vectors. Numerical experiments with movie ratings have illustrated the practi-
cal use of the U2P and P2U transformations, and have shown that the U2P
transformation induces an equivalence relation.

Some questions are left open that may be considered interesting for future
research: What are the properties of the equivalence relation induced by the U2P
transformation? Is it possible to satisfy our five assumptions and also satisfy
(unrestricted) max–min transitivity, (unrestricted) max–max transitivity, mul-
tiplicative transitivity, or additive transitivity? Which modification will yield
a transformation that is continuous on the whole unit square? Multiplicative
transitivity is considered a very important property by some authors. How can
our five assumptions be relaxed, so that preferences are obtained which satisfy
multiplicative transitivity?
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Abstract. Recently, the Truck and Trailer Routing Problem (TTRP)
has been tackled with uncertainty in the coefficients of constrains. In
order to solve this problem it is necessary to use methods for compari-
son fuzzy numbers. The problem of ordering fuzzy quantities has been
addressed by many authors and there are many indices to perform this
task. However, it is impossible to give a final answer to the question
on what ranking method is the best in this problem. In this paper we
focus our attention on a model to characterize TTRP instances. We use
a data mining algorithm to derive a decision tree that determined the
best method for comparison based on the characteristics of the TTRP
problem to be solved.

Keywords: Fuzzy optimization · Truck and Trailer Routing Problem
(TTRP) · Fuzzy coefficients · Fuzzy constraints · Ranking function ·
Decision tree

1 Introduction

Fuzzy Optimization models and methods has been one of the most and well-
studied topics inside the broad area of Soft Computing. Particularly relevant
is the field of Fuzzy Linear Programming (FLP) that constitutes the basis for
solving fuzzy optimization problems. FLP models are classified according to the
way the fuzziness is introduced. In the last past years several kinds of FLP
models have appeared in the literature [1], but one main is: FLP models in
which coefficients of the constraints and right hand values are defined as fuzzy
numbers. This type of model can be stated in the following form:

max/min f(xj , cj)

s.t. h(xj , a
f
ij){≤f ,≥f}bf

i

xj ≥ 0

(1)

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 559–568, 2016.
DOI: 10.1007/978-3-319-40581-0 45



560 I. Torres-Pérez et al.

where xj are the decision variables, cj are the coefficients of the objective func-
tion, af

ij are the fuzzy coefficients of the constraints and bf
i are fuzzy right hand

values of the constraints. The functions f(xj , cj) and h(xj , a
f
ij) can be linear or

nonlinear functions. The first version of this problem appeared in [2] (although
supposing imprecision in the objective as well). In [3] is developed a general
solution strategy that manage the imprecision in the comparison by introduc-
ing a fuzzy number τi for each single constraint, given by the decision maker.
This value represents the allowed maximum violation in the i − th constraint.
The solution approach transforms the fuzzy model (1) in an equivalent auxiliary
traditional model that is expressed as follows.

max/min f(xj , cj)

s.t. h(xj , a
f
ij){≤g,≥g}bf

i + τf
i (1 − α)

xj ≥ 0, α ∈ [0, 1]

(2)

where the symbols ≤g and ≥g, stands for a comparison relation between fuzzy
numbers using a ranking function g for the constraints, and α is a satisfaction
level defined by the decision maker.

The ranking methods for fuzzy numbers has been used by many researchers
working in the area of ordering fuzzy quantities. Although such methods are
required in other applications. The methods for ranking fuzzy numbers in many
cases can induce different rankings. In consequence, a long list of different auxil-
iary models and set of possible different solutions are obtained according to the
comparison relation between fuzzy numbers used. In the study carried out by
[4] these methods can be classified into three classes:

– Methods based on the definition of an ordering function: is constructed a
mapping function to transform fuzzy quantities into a positive real number
and then simply ranks based on the comparison of the obtained real numbers.
In this group are the following methods: [5–9].

– Methods based on the comparison of alternatives: is defined some reference
set(s) and evaluates each fuzzy quantity by calculating and comparing the
closeness of fuzzy quantities to the reference set(s). The definition of the refer-
ence set can be done in two forms. Several methods in this class are: [10–12].

– Methods based on a relationship of preference: is constructed a fuzzy binary
preference relation to manipulate pairwise comparisons. The result of all pair-
wise comparisons are used to obtain a order relation among fuzzy quantities.
Examples of these methods are: [3,13,14].

Before such variety of methods the following question emerges: which com-
parison method is more convenient to use or which is the one that gets the
most adequate results? Studies about this topic where exist comparative analysis
are very few. More recent research is presented in [15] that investigates differ-
ences/similarities between ranking methods. However, most of the time choosing
a method rather than another is a matter of preference or is context dependent.
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The comparison methods have multiple applications in the fuzzy models of
transport problems. One of the most important kind of problems nowadays is the
intermodal freight transport which has great relevance in the research lines of the
Europe Union Research and Innovation Programme Horizon 2020. Concretely, a
real-world application is in the Truck and Trailer Routing Problem, TTRP, when
the decision-maker is willing to allow some violations in the accomplishment of
the capacity constraints and their coefficients i.e., the so-called Fuzzy TTRP.
This last problem will be focused on this paper.

Consequently the rest of the paper is organized as follows. In Sect. 2 one
presents the basic elements of the TTRP. Also, it is proposes a fuzzy model for
dealing with the imprecision in the set of constraints and a general approach
for solving this model is described. Section 3 provides a experimental study to
illustrate the usefulness of characterizing the performance of the methods of
comparison. Finally, Sect. 4 summarizes the work presented.

2 TTRP with Fuzzy Demands and Capacities

The Truck and Trailer Routing Problem (TTRP) is an optimization problem
which by its nature favors the presence of vagueness, imprecision and uncer-
tainty in the information handled. This problem consists of a heterogeneous
fleet composed of mc trucks and mr trailers to serve a set of customers dispersed
V = {v1, v2, . . . , vn} from a central depot denoted as node v0. Each customer
vi ∈ V has a non-negative demand qi > 0. The capacities of the trucks and
the trailers are Qc and Qr, respectively; and the distance c(ij) between any two
nodes vi, vj ∈ V ∪ {v0} is known. Some customers with accessibility constraints
must be served just by truck, while others can be served either by truck or by a
complete vehicle (a truck pulling a trailer). These access constraints partition the
customers into two subsets: the subset of truck customers Vc accessible only by
truck (TC), and the subset of vehicle customers Vv, accessible either by a truck
or by a complete vehicle (VC). A solution of the TTRP is generally composed of
three types of routes: Pure Vehicle Route performed by a complete vehicle and
contains only vehicle customer. Pure Truck Route performed by a truck alone
and may visit both customer type and Complete Vehicle Route consisting of a
main tour traveled by a complete vehicle, and at least one sub-tour traveled by
the truck alone [16]. One example is shown in Fig. 1 to illustrate these kinds of
route.

Also, each route is limited by capacity of vehicle used. In general, the goal
for this NP-hard problem [17] is to find a set of least cost vehicle routes that
start and end at the central depot such that each customer is serviced exactly
once; the total demand of any vehicle route does not exceed the total capacity
of the allocated vehicles used in that route; and the number of required trucks
and trailers is not greater than mc and mr, respectively.

The solution approaches published in the literature about this topic can
be divided into three groups: exact approaches [18], approximated approaches
(including heuristic and metaheuristics) [16,19–23], or a combination of these
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Fig. 1. Routes TTRP.

approaches (matheuristics) [24]. However, to the best of our knowledge, point out
that most of models and approaches used for the TTRP in the literature assume
that the data available are accurate, still when in many practical problems the
available knowledge about some data and parameters of the model involving
uncertainty.

In the reality, this problem is very complex and the information is not always
available with sufficient precision and completeness as desired for adequate plan-
ning and management. In previous works [25,26] the authors deal with a Fuzzy
TTRP modeled as a fuzzy linear programming where the decision maker toler-
ates violations in the accomplishment of the constraints; i.e. the decision maker
permits the constraints to be satisfied” as well as possible. However, there are
other situations in which the decision maker permits some violations in the con-
straints and also the data that define them (aix and bi), have a vague nature.
For example, the information regarding customer demand typically is not estab-
lished with any level of precision or is not available to the decision maker.
A similar situation occurs with truck loads. These loads depend on demand
and truck and trailers capacities as well as the numbers of units that are used
in the transport. These parameters are vague and can be expressed by means
of fuzzy numbers. In this case the capacity constraints for TTRP with fuzzy
demands and capacities can be described as:

n∑

i=0

n∑

j=1

qf
j xk1

ij +
n∑

i=0

n∑

j=1

qf
j xk0

ij ≤f Qf
c + Qf

r (3)

n∑

i=0

n∑

j=1

qf
j xk1

ij ≤f Qf
c (4)
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where xkl
ij is a binary variable equal to 1 if and only if the vehicle k with or

without trailer (l = 0 or l = 1) is used from i to j, and 0 otherwise. The cus-
tomers demand (qf

j ) and vehicle capacities (Qf
c and Qf

r ) are fuzzy numbers. Also,
both constraints are considered fuzzy and the symbol ≤f is used to indicate it.
According to (2), these constraints can be replaced by the following constraints:

n∑

i=0

n∑

j=1

qf
j xk1

ij +
n∑

i=0

n∑

j=i

qf
j xk0

ij ≤g (Qf
c + Qf

r ) + τf
1 (1 − α) (5)

n∑

i=0

n∑

j=1

qf
j xk1

ij ≤g Qf
c + τf

2 (1 − α) (6)

where τf
1 and τf

2 are fuzzy numbers that represents the tolerance levels of each
capacity constraint. Last year this model was introduced in [27]. That paper was
the first approach where demands and capacities in TTRP were modeled mak-
ing use of the concept of fuzzy number. Unlike previous contributions [25,26]
is tackled the TTRP with the set of constraints totally fuzzy. In this case, the
solution to the model is obtained by particularization of the different compari-
son methods of fuzzy numbers. However, it is important to know which of these
methods is more convenient to use or which is the one that gets the most ade-
quate results. These and other questions can arise when solving our model.
A strategy to face this problem may be to have a model that indicates the best
comparison method based on the characteristics of the problem to be solved.
This model would be able to offer knowledge on the types of instances where
each method works better or worse. This knowledge can be of great utility for
the final users.

3 Experiments

In order to generate our model, we used 21 TTRP benchmark problems reported
by [16]. These public test instances were derived from seven classical vehicle
routing problem. Table 1 shows the characteristics of problems.

The experiments were performed on a computer with an Intel Xeon running
at 2.40 GHz under Linux Ubuntu with 23 GB of RAM. We decided to use an
algorithm based on local search (Hill Climbing), which is available from the
BiCIAM library [28]. The results were obtained with 30 independent runs with
100000 fitness evaluations for each problem. The instances of TTRP were solved
for α = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The amount demand of
each customer and the limited vehicle capacities are considered triangular fuzzy
numbers. In each case were obtained in the form of 10 % variation in the modal
value. Tolerance levels τ1 and τ2 are considered fuzzy numbers.

Also, we used six ranking function to obtain a particular order relation
between fuzzy numbers. In the following, we will briefly describe each function
will be used to test our proposal.
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Table 1. Instances TTRP.

Problem Customers Trucks Trailers

Total VC TC Number Capacity Number Capacity

1 50 38 12 5 100 3 100

2 25 25

3 13 37

4 75 57 18 9 100 5 100

5 38 37

6 19 56

7 100 75 25 8 150 4 100

8 50 50

9 25 75

10 150 113 37 12 150 6 100

11 75 75

12 38 112

13 199 150 49 17 150 9 100

14 100 99

15 50 149

16 120 90 30 7 150 4 100

17 60 60

18 30 90

19 100 75 25 10 150 5 100

20 50 50

21 25 75

1. Chang in [9] proposed a ranking method based on the following index

CI(ũ) =
∫

z∈supμũ

zμũ(z)dz (7)

2. Dubois and Prade propose a set of four indices able to completely describe
the relative location of two fuzzy numbers [13]. In particular we use:

PD(ũi, ũj) = sup min(μũi
, μũj

) (8)

ND(ũi, ũj) = inf sup min(1 − μũi
, μũj

) (9)
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3. In [5,7,8], Yager proposed four ranking methods, where he does not assume
any hypothesis of normality or convexity. In this study we use the following
three methods proposed by Yager:

Y1(ũ) =

∫ 1

0
g(z)μũ(z)dz

∫ 1

0
μũ(z)dz

(10)

Y2(ũ) =
∫ α−max

0

M(Uα)dα (11)

Y4(ũ) = sup
z∈[0,1]

min(z, μũ(z)) (12)

With the results we performed Friedman test [29] with α = 0.05 as the level of
confidence. The results point out that Y4 dominates the other ranking functions
and achieved the highest rankings.

Also, we can raise the 15 hypotheses of equality among the 6 methods of our
study, and apply the post-hoc Shaffer [30] and Holm [31] to contrast them. Nine of
these hypotheses confirm the improvement of Y4 over the rest of the comparison
methods. Furthermore, the CI method was overcome by all methods considered.
Finally, only 6 hypotheses can be rejected using these procedures. Each one does
not find any significant difference between ND and PD, Y1 and Y2. Clearly, this is
visible in the graphic of the Fig. 2.
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Fig. 2. Behavior average of the comparison methods in 21 TTRP instances.
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In this point, we decide to generate a decision tree model that indicates
the best comparison method based on the characteristics of the problem to be
solved. The following figure shows the obtained model using J48 algorithm of
tool KNIME on a minable view of 231 tuples (21 instances × 11 α-cuts) (Fig. 3).

Fig. 3. Decision tree model.

This model comprise a set of rules to determine the best method for com-
parison based on the characteristics of the problem to be solved. For example,
this model suggests using the method Grade of Necessity of Dominance (ND)
when the parameter number of trucks is strictly greater than (>) 9, the number
of customers is less than or equal to (≤) 120 with no more than 30 customers of
type VC and α-cut equal to 0.0 or 0.1. Another conclusion is that the methods
First Index of Yager (Y1) and Second Index of Yager (Y2) are not adequate to
solve any of the instances. Also, it is important to note that the most impor-
tant parameters to decide the best method are number of trucks, number of
customers, number of VC and α-cuts.

4 Summary

In this paper we introduce a decision model useful for users as it allows to
define strategies for selecting comparison methods in solving the TTRP with
fuzzy demands and capacities. This knowledge can be generalized into a learning
mechanism to determine which methods to use depending on the characteristics
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of a problem. Furthermore, the model can be improved if new TTRP problems
are incorporated or comparison methods.
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Abstract. We deal with preference relations on finite sets of (condi-
tional) gambles, providing necessary and sufficient conditions for their
representability by a (conditional) Choquet expected value with respect
to a (conditional) belief function or a (conditional) plausibility function.

Keywords: Choquet expected value · Conditional belief function ·
Conditional plausibility function · Preference relation · Representation

1 Introduction

The aim of the paper is to provide axioms assuring the representability of a
preference relation on an arbitrary finite set of (conditional) gambles through a
specific functional involving a (conditional) non-additive measure of uncertainty.
The problem of dealing with preferences on a finite set of “objects” has been
studied in [5,6,8,9], in the context of decisions under risk: in [9] these “objects”
are lotteries, i.e., random quantities equipped with a probability distribution
and the decision model of reference is the expected utility, while in [5,6,8] such
“objects” are generalized lotteries [21], i.e., random quantities equipped with a
belief function or a convex capacity and the decision model of reference is the
Choquet expected utility [2,19,20].

In this paper we consider, in the setting of decisions under uncertainty
[12,24,28], situations in which a preference relation � is given on a finite set
F of gambles and the decision model of reference is the Choquet expected value
with respect to a belief or a plausibility function. For this aim we introduce two
rationality principles which are necessary and sufficient conditions for the exis-
tence of a belief function or a plausibility function ϕ such that the corresponding
Choquet integral represents �, i.e., for every f, g ∈ F ,

f � g ⇐⇒ C

∫
f dϕ ≤ C

∫
g dϕ.

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 569–580, 2016.
DOI: 10.1007/978-3-319-40581-0 46
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Nevertheless, a decision maker could be either not able or not interested in giving
preferences between gambles, but he could only express his preferences under the
hypothesis that a particular event happens. In other words, he could not be able
to express his preference relation under a generic scenario, but just under specific
scenarios, which are taken into account at the same time.

To manage the above situation, the first problem to solve is the choice of the
most suited notion of conditioning to which refer among those present in the lit-
erature [4,11,13,14,16,21,25]. Among the different proposals, the paper adopts
the axiomatic definition of conditional belief and plausibility function given in
[10,13], which generalizes the one introduced in [14], allowing conditioning to
events of null plausibility (for a discussion about the different axiomatic defin-
itions see [7]). The main reason for adopting this definition is that, in analogy
with Savage’s probabilistic framework [24], if we consider a single scenario (i.e.,
a conditioning event H) for all the gambles f ’s, the conditional preference rela-
tion between gambles conditioned to H agrees with the unconditional relation
on gambles which are null outside of H. Moreover, since this definition of con-
ditioning satisfies a form of chain rule, it allows an easy computation of the
“updated” degrees of belief.

Inside the above conditional framework, we propose two conditional rational-
ity principles, which are necessary and sufficient conditions for the existence of
a conditional belief function or a conditional plausibility function whose related
Choquet conditional expected values represent all the preferences between the
conditional acts f |H’s.

2 Preliminaries

Let S = {s1, . . . , sn} be a finite set of states of nature and denote by ℘(S) the
power set of S, whose elements are interpreted as the events of interest.

We recall that a belief function Bel [14,25] on ℘(S) is a function such that
Bel(∅) = 0, Bel(S) = 1 and satisfying the n-monotonicity property for every
n ≥ 2, i.e., for every A1, . . . , An ∈ ℘(S),

Bel

(
n⋃

i=1

Ai

)

≥
∑

∅�=I⊆{1,...,n}
(−1)|I|+1Bel

(
⋂

i∈I

Ai

)

.

The previous property implies the monotonicity of Bel with respect to set
inclusion ⊆, hence belief functions are particular normalized capacities [15]. The
dual function Pl defined, for every A ∈ ℘(S), as Pl(A) = 1 − Bel(Ac), is called
plausibility function.

A belief function Bel on ℘(S) is completely singled out by its Möbius inverse
[3], called basic (probability) assignment [25], defined for every A ∈ ℘(S) as

m(A) =
∑

B⊆A

(−1)|A\B|Bel(B).
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Such a function m : ℘(S) → [0, 1] is such that m(∅) = 0,
∑

A∈℘(S) m(A) = 1,
and, for every A ∈ ℘(S),

Bel(A) =
∑

B⊆A

m(B) and Pl(A) =
∑

B∩A �=∅
m(B).

A set A in ℘(S) is a focal element for m (and so also for the corresponding
Bel) whenever m(A) > 0. In particular, a belief function (and so its dual plau-
sibility function) is a probability measure if all its focal elements are singletons.

For a function f : S → R, if ϕ is a capacity on ℘(S) and σ is a permutation
of {1, . . . , n} such that f(sσ(1)) ≤ . . . ≤ f(sσ(n)) (see [15]), the Choquet integral
of f w.r.t. ϕ is defined, denoting Eσ

i = {sσ(i), . . . , sσ(n)} for i = 1, . . . , n and
Eσ

n+1 = ∅, as

C

∫
f dϕ =

n∑

i=1

f(sσ(i))(ϕ(Eσ
i ) − ϕ(Eσ

i+1)).

In particular, when ϕ reduces, respectively, to a belief function Bel or to a
plausibility function Pl, we have

C

∫
f dBel =

n∑

i=1

f(sσ(i))

⎛

⎝
∑

{sσ(i)}⊆B⊆Eσ
i

m(B)

⎞

⎠ ,

C

∫
f dPl =

n∑

i=1

f(sσ(i))

⎛

⎝
∑

{sσ(i)}⊆B⊆(Eσ
i+1)

c

m(B)

⎞

⎠ ,

to which a lower/upper prevision interpretation can be given (see, e.g., [23,27]).
Let H ⊆ ℘(S) \ {∅} be an additive class (i.e., a set of events closed under

finite unions). A function Pl : ℘(S) × H → [0, 1] is a conditional plausibility
function if it satisfies the following conditions:

(i) Pl(E|H) = Pl(E ∩ H|H), for every E ∈ ℘(S) and H ∈ H;
(ii) Pl(·|H) is a plausibility function on ℘(S), for every H ∈ H;
(iii) Pl(E ∩ F |H) = Pl(E|H) · Pl(F |E ∩ H), for every E ∩ H,H ∈ H and

E,F ∈ ℘(S).

Moreover, given a conditional plausibility function, the dual conditional belief
function Bel(·|·) is defined for every event E|H ∈ ℘(S) × H as

Bel(E|H) = 1 − Pl(Ec|H).

The function Bel(·|·) satisfies the following conditions (i’)–(iii’), where SP

is the probabilistic t-conorm (i.e., SP (x, y) = x + y − xy, for x, y ∈ [0, 1]):

(i’) Bel(E|H) = Bel(E ∩ H|H), for every E ∈ ℘(S) and H ∈ H;
(ii’) Bel(·|H) is a belief function on ℘(S), for every H ∈ H;
(iii’) Bel(E ∪ F |H) = SP (Bel(E|H), Bel(F |Ec ∩ H)), for every H,Ec ∩ H ∈ H

and E,F ∈ ℘(S).
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As follows by the results in [1], every conditional plausibility function Pl(·|·)
on ℘(S) × H is completely determined by a linearly ordered class of plausibility
functions on ℘(S) with disjoint sets of focal elements, which is called agreeing
class of plausibility functions. In general, if H ⊂ ℘(S) \ {∅} such class is not
unique, but uniqueness is obtained in case H = ℘(S) \ {∅}. Among the agreeing
classes giving rise to a Pl(·|·) on ℘(S) × H there is a unique agreeing class
{Pl0, . . . , P lk} of plausibility functions on ℘(S), called minimal agreeing class,
such that

– Pl0(·) = Pl(·|H0
0 ) with H0

0 =
⋃

H∈H H;
– for α > 0, Plα(·) = Pl(·|Hα

0 ) with Hα
0 =

⋃{H ∈ H : Plβ(H) = 0, β =
0, . . . , α − 1} = ∅.

The class {Pl0, . . . , P lk} is such that for every H ∈ H there is α ∈ {0, . . . , k}
such that Plα(H) > 0. Moreover, {Pl0, . . . , P lk} agrees with the conditional
plausibility Pl(·|·) on ℘(S) × H in the sense that, for every E|H ∈ ℘(S) × H,
denoting with αH the minimum index in {0, . . . , k} such that PlαH

(H) > 0, it
holds that

Pl(E|H) =
PlαH

(E ∩ H)
PlαH

(H)
.

3 Preferences on Gambles

Throughout this section we consider the following decision theoretic setting:

– S = {s1, . . . , sn} is a finite set of states of nature;
– ℘(S)0 = ℘(S) \ {∅} = {A1, . . . , A2n−1} is the set of not impossible events;
– X = {x1, . . . , xm} ⊆ [0,+∞) is a finite set of outcomes (money payoffs);
– F ⊆ XS is a finite set of gambles, where a gamble f : S → X is a state-

contingent payoff (for instance a financial asset);
– � is a complete binary relation on F , expressing the preferences of the decision

maker on the considered gambles, whose asymmetric and symmetric parts are
denoted as ≺ and ∼, respectively.

Recall that � is non-trivial if ≺ is not empty.
Usually the decision maker is uncertain about which state will be true: some-

times he/she possesses a measure of uncertainty ϕ on ℘(S), which can be, e.g.,
a probability (in this case we have lotteries [29]) or a convex capacity (in this
case we have generalized lotteries [5,6,8,21]). In both cases the aim is to find a
utility function u : X → R such that a functional Φ(u,ϕ)(·) represents �, that is,

f � g ⇐⇒ Φ(u,ϕ)(f) ≤ Φ(u,ϕ)(g).

The situation just described connotes a decision problem under risk [17,18]. In
this paper, we cope with decision problems under uncertainty where the util-
ity function u is tacitly assumed to be the identity function and the issue is
to determine the uncertainty measure ϕ, which is asked to be either a belief
or a plausibility function, where the Choquet integral is the reference decision
functional (in analogy with, e.g., [20,26]).
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Definition 1. The generalized lower and upper gambles corresponding to
a gamble f : S → X are the functions fL, fU : ℘(S)0 → X defined as

fL(Ai) = min
s∈Ai

f(s), for i = 1, . . . , 2n − 1,

fU(Ai) = max
s∈Ai

f(s), for i = 1, . . . , 2n − 1,

also denoted as the row vectors

fL = (fL(A1), . . . , fL(A2n−1)), fU = (fU(A1), . . . , fU(A2n−1)).

The following proposition is an immediate consequence of the definition of
c
∫

f dBel and c
∫

f dPl as proved in [20].

Proposition 1. Let Bel : ℘(S) → [0, 1] be a belief function with associated
plausibility function Pl and basic probability assignment m. For every gamble
f : S → X, it holds

C

∫
f dBel =

2n−1∑

i=1

fL(Ai)m(Ai) and C

∫
f dPl =

2n−1∑

i=1

fU(Ai)m(Ai).

Definition 2. A complete binary relation � on F is Bel-rational if it satisfies
the following condition:

(B-R) for every fi, gi ∈ F with fi � gi and for every λi > 0, for i = 1, . . . , h,
with h ∈ N, it holds

h∑

i=1

λig
L
i ≤

h∑

i=1

λif
L
i =⇒ fi ∼ gi for i = 1, . . . , h.

Theorem 1. For a non-trivial complete binary relation � on F the following
statements are equivalent:

(i) � is Bel-rational (i.e., satisfies (B-R));
(ii) there exists a belief function Bel : ℘(S) → [0, 1] such that, for every f, g ∈ F ,

f � g ⇐⇒ C

∫
f dBel ≤ C

∫
g dBel.

Proof. Denote R≺ = {(fi, gi) ∈ F2 : fi ≺ gi} and R� = {(fj , gj) ∈ F2 :
fj � gj and ¬(fj ≺ gj)} with n1 = card R≺ and n2 = cardR�. Note that R≺

is not empty due to non-triviality of �, but it could be R� = ∅.
We show that (ii) is equivalent to (i). Let A = [ai] and B = [bj ] be the

(n1 × (2n − 1)) and (n2 × (2n − 1)) real matrices with rows ai = gLi − fL
i , for

i = 1, . . . , n1, and bj = gLj − fL
j , for j = 1, . . . , n2. By Proposition 1, condition

(ii) is equivalent to the existence of a ((2n − 1) × 1) column vector w which is a
solution of the following system

S :

⎧
⎪⎪⎨

⎪⎪⎩

Aw > 0,
Bw ≥ 0,
w ≥ 0,
w = 0.
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Then setting m(∅) = 0 and m(Ai) = wi
∑2n−1

j=1 wj
, for i = 1, . . . , 2n − 1, we obtain a

basic probability assignment on ℘(S) whose corresponding Bel is such that the
functional c

∫
f dBel defined for every f ∈ F represents �.

By a well-known alternative theorem (see, e.g., [22]) the solvability of S is
equivalent to the non-solvability of the following system

S ′ :

⎧
⎨

⎩

yA + zB ≤ 0,
y, z ≥ 0,
y = 0,

where y and z are, respectively, (1 × n1) and (1 × n2) unknown row vectors. In
turn, the non-solvability of S ′ is equivalent to condition (B-R). Indeed, S ′ has
solution (y, z) if and only if

n1∑

i=1

yig
L
i +

n2∑

j=1

zjg
L
j ≤

n1∑

i=1

yif
L
i +

n2∑

j=1

zjf
L
j ,

with at least an index i ∈ {1, . . . , n1} such that yi > 0, for which fi ≺ gi, i.e., if
and only if condition (B-R) does not hold. �

Definition 3. A complete binary relation � on F is Pl-rational if it satisfies
the following condition:

(P-R) for every fi, gi ∈ F with fi � gi and for every λi > 0, for i = 1, . . . , h,
with h ∈ N, it holds

h∑

i=1

λig
U
i ≤

h∑

i=1

λif
U
i =⇒ fi ∼ gi for i = 1, . . . , h.

Theorem 2. For a non-trivial complete binary relation � on F the following
statements are equivalent:

(i) � is Pl-rational (i.e., satisfies (P-R));
(ii) there exists a plausibility function Pl : ℘(S) → [0, 1] such that, for every

f, g ∈ F ,
f � g ⇐⇒ C

∫
f dPl ≤ C

∫
g dPl.

Proof. The proof goes along the same line of the proof of Theorem1 considering
the (n1 × (2n − 1)) and (n2 × (2n − 1)) real matrices A = [ai] and B = [bj ] with
rows ai = gUi − fU

i , for i = 1, . . . , n1, and bj = gUj − fU
j , for j = 1, . . . , n2. �

The following example shows an application of conditions (B-R) and (P-R).

Example 1. Let S = {s1, s2, s3} and X = {1, 2, 3} (in millions of e) with the
gambles F = {f, g, h} reported below and the complete preference relation � on
F such that f ∼ h ≺ g.
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S s1 s2 s3
f 1 2 2
g 2 3 1
h 1 1 2

℘(S)0 {s1} {s2} {s3} {s1, s2} {s1, s3} {s2, s3} S
fL 1 2 2 1 1 2 1
gL 2 3 1 2 1 1 1
hL 1 1 2 1 1 1 1
fU 1 2 2 2 2 2 2
gU 2 3 1 3 2 3 3
hU 1 1 2 1 2 2 2

We show that � is Bel-rational. For that, consider a linear combination with
weights λi ≥ 0 for i = 1, . . . , 4 related to pairs in �,

λ1g
L + λ2g

L + λ3f
L + λ4h

L ≤ λ1f
L + λ2h

L + λ3h
L + λ4f

L,

where reflexive comparisons are omitted since they cancel out. Simple computa-
tions show that for no choice of λ1 > 0 or λ2 > 0 the inequality above can hold.
In turn, this implies that for every finite subset of comparisons with positive
coefficients λi’s condition (B-R) is satisfied.

A Bel whose corresponding Choquet expected value on F represents � can
be found solving the system S in the proof of Theorem 1 with

A =
[

gL − fL

gL − hL

]
and B =

[
fL − hL

hL − fL

]
,

for which a solution is w = (0, 0, 0, 2, 2, 0, 0)T . The solution w determines the
basic probability assignment m on ℘(S) such that m({s3}) = m({s1, s3}) =
1
2 and 0 otherwise. Then, the corresponding belief function Bel is such that
c
∫

f dBel = c
∫

h dBel = 1 < 3
2 = c

∫
g dBel.

With an analogous procedure it is possible to show that � is also Pl-rational,
moreover, the basic probability assignment m′ on ℘(S) such that m′({s1, s3}) =
m′({s2, s3}) = 1

2 and 0 otherwise, gives rise to the plausibility function Pl′ such
that c

∫
f dPl′ = c

∫
h dPl′ = 2 < 5

2 = c
∫

g dPl′.

4 Preferences on Conditional Gambles

Let L ⊆ ℘(S)0 be a finite set of possible scenarios and consider the set of
conditional gambles C = F × L, denoted as f |H’s, together with the family of
complete binary relations {�H}H∈L, each one defined on F × {H}, for H ∈ L.
As usual, we denote with ≺H and ∼H the asymmetric and symmetric parts of
�H , respectively.

Definition 4. For a gamble f : S → X and an event H ∈ ℘(S)0, the H-cut
lower generalized gamble is the function fL,H : ℘(S)0 → X defined as

fL,H(Ai) =
{

0 if Ai ⊆ Hc,
fL(Ai ∩ H) otherwise, for i = 1, . . . , 2n − 1,

also denoted as the row vector

fL,H = (fL,H(A1), . . . , fL,H(A2n−1)).
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The following proposition gives a characterization of the Choquet integral
w.r.t. a conditional plausibility and belief function in terms of the generalized
acts introduced in Definitions 1 and 4.

Proposition 2. Let Pl : ℘(S)×H → [0, 1] be a conditional plausibility function
generated by the minimal agreeing class of plausibility functions {Pl0, . . . , P lk}
on ℘(S) with basic probability assignments {m0, . . . ,mk}, and Bel(·|·) the dual
conditional belief function. For every gamble f : S → X and every H ∈ H with
αH ∈ {0, . . . , k} the minimum index such that PlαH

(H) > 0, it holds

C

∫
f dPl(·|H) =

1
PlαH

(H)

2n−1∑

i=1

(fIH)U(Ai)mαH
(Ai),

C

∫
f dBel(·|H) =

1
PlαH

(H)

2n−1∑

i=1

fL,H(Ai)mαH
(Ai).

Proof. By the representation of Pl(·|H) and Bel(·|H) through {Pl0, . . . , P lk},
we have that

C

∫
f dPl(·|H) =

1
PlαH

(H)
C

∫
f dPlαH

(· ∩ H)

=
1

PlαH
(H)

C

∫
fIH dPlαH

(·)

=
1

PlαH
(H)

2n−1∑

i=1

(fIH)U(Ai)mαH
(Ai),

C

∫
f dBel(·|H) =

1
PlαH

(H)
C

∫
f d[PlαH

(H) − PlαH
((·)c ∩ H)]

=
1

PlαH
(H)

n∑

i=1

f(sσ(i))(Pl((Eσ
i+1)

c ∩ H) − Pl((Eσ
i )c ∩ H))

=
1

PlαH
(H)

2n−1∑

i=1

fL,H(Ai)mαH
(Ai).

�

We first cope with the representation of a family of complete binary rela-
tions {�H}H∈L by means of a Choquet integral w.r.t. a conditional plausibility
function.

Definition 5. A family of complete binary relations {�H}H∈L each one defined
on F × {H}, for H ∈ L, is CPl-rational if it satisfies the following condition:

(CP-R) for every fj |Hj , gj |Hj ∈ C with fj |Hj �Hj
gj |Hj there exists δj ≥ 0

such that δj > 0 if and only if fj |Hj ≺Hj
gj |Hj, and for every fi|Hi, gi|Hi ∈ C
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with fi|Hi �Hi
gi|Hi and for every λi > 0, for i = 1, . . . , h, with h ∈ N,

denoting H0
0 =

⋃h
i=1 Hi, it holds

max
Ak∩H0

0 �=∅

[
h∑

i=1

λi

(
(giIHi

)U − (fiIHi
)U − δiI

U
Hi

)
]

≥ 0

Theorem 3. For a family of non-trivial complete binary relations {�H}H∈L
each one defined on F×{H}, for H ∈ L, the following statements are equivalent:

(i) {�H}H∈L is CPl-rational (i.e., satisfies (CP-R));
(ii) there exists a conditional plausibility function Pl : ℘(S) × H → [0, 1], where

H is the additive class obtained closing L w.r.t. finite unions, such that, for
every f |H, g|H ∈ C,

f |H �H g|H ⇐⇒ C

∫
f dPl(·|H) ≤ C

∫
g dPl(·|H).

Proof. Denote R�H

0 = {(fi|Hi, gi|Hi) ∈ C2 : fi|Hi �Hi
gi|Hi}, with n0 =

cardR�H

0 .
We prove that (ii) is equivalent to (i). Define H0

0 =
⋃

H∈L H and let H be the
additive class generated by L. By Proposition 1 and the bijection between condi-
tional plausibility functions on ℘(S)×H and minimal agreeing classes, condition
(ii) is equivalent to the existence of a minimal agreeing class {Pl0, . . . , P lk} of
plausibility functions on ℘(S) generating a conditional plausibility Pl(·|·) on
℘(S) × H, such that c

∫
f dPl(·|H) for every f |H ∈ C represents �H .

In turn, this is equivalent to the compatibility of the following sequence of
systems S0, . . . ,Sk, where for every fi|Hi, gi|Hi ∈ C with fi|Hi �Hi

gi|Hi we
have a parameter δi ≥ 0 such that δi > 0 if and only if fi|Hi ≺Hi

gi|Hi. The
first system has the form

S0 :

⎧
⎪⎪⎨

⎪⎪⎩

A0w0 > 0,
B0w0 ≥ 0,
w0 ≥ 0,
w0 = 0,

with A0 = [IU
H0

0
] and B0 = [bi] the (1 × (2n − 1)) and (n0 × (2n − 1)) real

matrices with rows bi = (giIHi
)U − (fiIHi

)U − δiI
U
Hi

, for i = 1, . . . , n0, and w0

a ((2n − 1) × 1) unknown column vector.
For α > 0, define Hα

0 =
⋃ {

H ∈ L :
∑

Ai∩H �=∅ wβ
i = 0, β = 0, . . . , α − 1

}
,

R�H
α =

{
(fj |Hj , gj |Hj) ∈ R�H

α−1 :
∑

Ai∩Hj �=∅ wβ
i = 0, β = 0, . . . , α − 1

}
, and let

nα = cardR�
α . The system Sα has the form

Sα :

⎧
⎪⎪⎨

⎪⎪⎩

Aαwα > 0,
Bαwα ≥ 0,
wα ≥ 0,
wα = 0,
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with Aα = [IUHα
0
] and Bα = [bi] the (1×(2n−1)) and (nα×(2n−1)) real matrices

with rows and bj = (gjIHj
)U − (fjIHj

)U − δjI
U
Hj

, for j = 1, . . . , nα, and wα a
((2n − 1) × 1) unknown column vector.

Given a sequence of solutions w0, . . . ,wk, setting mα(∅) = 0, mα(Ai) = 0
for Ai ⊆ (Hα

0 )c, and otherwise mα(Ai) = wα
i

∑

Aj∩Hα
0 �=∅ wα

j
, for i = 1, . . . , 2n −1 and

α = 0, . . . , k, we obtain a class of basic probability assignments {m0, . . . ,mk} on
℘(S) giving rise to the searched minimal agreeing class of plausibility functions
{Pl0, . . . , P lk} on ℘(S).

For α = 0, . . . , k, by the same alternative theorem quoted in the proof of The-
orem 1, the solvability of Sα is equivalent to the non-solvability of the following
system

S ′
α :

⎧
⎨

⎩

yαAα + zαBα ≤ 0,
yα, zα ≥ 0,
yα = 0,

where yα and zα are, respectively, (1 × 1) and (1 × nα) unknown row vectors.
In turn, the non-solvability of S ′

α is equivalent to condition (CP-R). Indeed, S ′
α

has solution (yα, zα) if and only if

yα
1 IUHα

0
+

nα∑

j=1

zα
j ((gjIHj

)U − (fjIHj
)U − δjI

U
Hj

) ≤ 0,

with yα
1 > 0 and zα

j ≥ 0, for j = 1, . . . , nα. That is, the solvability of Sα is
equivalent to

max
Ai∩Hα

0 =∅

nα∑

j=1

zα
j ((gjIHj

)U − (fjIHj
)U − δjI

U
Hj

) ≥ 0,

which is equivalent to condition (CP-R). �

We turn then to the representation of a family of complete binary relations
{�H}H∈L by means of a Choquet integral w.r.t. a conditional belief function.

Definition 6. A family of complete binary relations {�H}H∈L each one defined
on F ×{H}, for H ∈ L, is CBel-rational if it satisfies the following condition:

(CB-R) for every fj |Hj , gj |Hj ∈ C with fj |Hj �Hj
gj |Hj there exists δj ≥ 0

such that δj > 0 if and only if fj |Hj ≺Hj
gj |Hj, and for every fi|Hi, gi|Hi ∈ C

with fi|Hi � gi|Hi and for every λi > 0, for i = 1, . . . , h, with h ∈ N, denoting
H0

0 =
⋃h

i=1 Hi, it holds

max
Ak∩H0

0 �=∅

[
h∑

i=1

λi

(
gL,Hi

i − fL,Hi

i − δiI
U
Hi

)]

≥ 0

Theorem 4. For a family of non-trivial complete binary relations {�H}H∈L
each one defined on F×{H}, for H ∈ L, the following statements are equivalent:
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(i) {�H}H∈L is CBel-rational (i.e., satisfies (CB-R));
(ii) there exists a conditional belief function Bel : ℘(S) × H → [0, 1], where H is

the additive class obtained closing L w.r.t. finite unions, such that, for every
f |H, g|H ∈ C,

f |H �H g|H ⇐⇒ C

∫
f dBel(·|H) ≤ C

∫
g dBel(·|H).

Proof. The proof goes along the same line of the proof of Theorem 3 considering,
for α = 0, . . . , k, the (1 × (2n − 1)) and (nα × (2n − 1)) real matrices A = [IUHα

0
]

and B = [bi] with rows bj = g
L,Hj

j − f
L,Hj

j − δjI
U
Hj

, for j = 1, . . . , nα. �

Let us stress that all conditions (B-R), (P-R), (CB-R) and (CP-R) imply
that all the considered preference relations are transitive and so are weak orders.

In [28] a rationality condition assuring the representability of a preference
relation on conditional gambles (also with different conditioning events) through
a conditional expected value has been provided. Limiting to the decision theoretic
setting of this paper, the condition in [28] implies both (CB-R) and (CP-R).

5 Conclusions

We introduce rationality conditions which are necessary and sufficient for the
existence of a (conditional) belief or plausibility function, whose (conditional)
Choquet expected value represents a preference relation on a set of (conditional)
gambles. The main difference with the existing literature is that we focus on
a finite setting, which is the most common situation in real decision problems.
An open issue is to extend the present results to the infinite case, but excluding
restrictive requirements both on the set of gambles and on the preference relation.
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17, 263–283 (1989)

4. Chateauneuf, A., Kast, R., Lapied, A.: Conditioning capacacities and Choquet
integrals: the role of comonotony. Th. Dec. 51, 367–386 (2001)

5. Coletti, G., Petturiti, D., Vantaggi, B.: Choquet expected utility representation of
preferences on generalized lotteries. In: Laurent, A., Strauss, O., Bouchon-Meunier,
B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 444–453. Springer,
Heidelberg (2014)



580 L. Caldari et al.

6. Coletti, G., Petturiti, D., Vantaggi, B.: Rationality principles for preferences on
belief functions. Kybernetika 51(3), 486–507 (2015)

7. Coletti, G., Petturiti, D., Vantaggi, B.: Conditional belief functions as lower
envelopes of conditional probabilities in a finite setting. Inf. Sci. 339, 64–84 (2016)

8. Coletti, G., Petturiti, D., Vantaggi, B.: Decisions under risk and partial knowledge
modelling uncertainty and risk aversion. In: Proceedings of the 9th International
Symposium on Imprecise Probability: Theories and Applications, pp. 77–86 (2015)

9. Coletti, G., Regoli, G.: How can an expert system help in choosing the optimal
decision? Th. Dec. 33(3), 253–264 (1992)

10. Coletti, G., Scozzafava, R.: From conditional events to conditional measures: a new
axiomatic approach Ann. Math. Art. Int. 32(1–4), 373–392 (2001)

11. Coletti, G., Scozzafava, R.: Toward a general theory of conditional beliefs. Int. J.
Int. Sys. 21, 229–259 (2006)

12. Coletti, G., Vantaggi, B.: Representability of ordinal relations on a set of condi-
tional events. Th. Dec. 60(2), 137–174 (2006)

13. Coletti, G., Vantaggi, B.: A view on conditional measures through local repre-
sentability of binary relations. Int. J. Approx. Reas. 47, 268–283 (2008)

14. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Stat. 38(2), 325–339 (1967)

15. Denneberg, D.: Non-additive Measure and Integral. Theory and Decision Library:
Series B, vol. 27. Kluwer Academic, Dordrecht (1994)

16. Fagin, R., Halpern, J.Y.: Uncertainty, belief and probability. Comput. Int. 7(3),
160–173 (1991)

17. Gajdos, T., Tallon, J.M., Vergnaud, J.C.: Decision making with imprecise proba-
bilistic information. J. Math. Econ. 40(6), 647–681 (2004)

18. Gajdos, T., Hayashi, T., Tallon, J.M., Vergnaud, J.C.: Attitude toward imprecise
information. J. Econ. Th. 140(1), 27–65 (2008)

19. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math.
Econ. 18(2), 141–153 (1989)

20. Gilboa, I., Schmeidler, D.: Additive representations of non-additive measures and
the Choquet integral. Ann. Op. Res. 52, 43–65 (1994)

21. Jaffray, J.-Y.: Linear utility theory for belief functions. Op. Res. Let. 8(2), 107–112
(1989)

22. Mangasarian, O.L.: Nonlinear Programming. Classics in Applied Mathematics, vol.
10. SIAM, Philadelphia (1994)

23. Miranda, E., de Cooman, G., Couso, I.: Lower previsions induced by multi-valued
mappings. J. Stat. Plan. and Inf. 133, 173–197 (2005)

24. Savage, L.: The Foundations of Statistics. Wiley, New York (1954)
25. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,

Princeton (1976)
26. Schmeidler, D.: Subjective probability and expected utility without additivity.

Econometrica 57(3), 571–587 (1989)
27. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc.

97(2), 255–261 (1986)
28. Vantaggi, B.: Incomplete preferences on conditional random variables. Repre-

sentability by coherent conditional previsions. Math. Soc. Sci. 60, 104–112 (2010)
29. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior.

Princeton University Press, Princeton (1944)



A New Vision of Zadeh’s Z-numbers

Sebastia Massanet(B), Juan Vicente Riera, and Joan Torrens

University of the Balearic Islands, Crta. Valldemossa km 7.5, 07122 Palma, Spain
{s.massanet,jvicente.riera,jts224}@uib.es

Abstract. From their introduction Z-numbers have been deeply stud-
ied and many investigations have appeared trying to reduce the inherent
complexity in their computation. In this line, this paper presents a new
vision of Z-numbers based on discrete fuzzy numbers with support in
a finite chain Ln. In this new approach, a Z-number associated with a
variable, X, is a pair (A, B) of discrete fuzzy numbers, where A is inter-
preted as a fuzzy restriction on X, while the estimation of the reliability
of A is interpreted as a linguistic valuation based on the discrete fuzzy
number B. In this non-probabilistic approach an aggregation method is
proposed with the aim of applying it in group decision making problems.

Keywords: Z-numbers · Discrete fuzzy number · Aggregation function ·
Decision making · Computing with words

1 Introduction

The human brain is characterized by its capability to do many tasks without the
necessity to make any specific measurement or calculation. Indeed, it is able to
reach precise decisions just from its own perceptions and by using quite inaccu-
rate data. It was from this fact that L. Zadeh introduced the idea of Computing
With Words (CWW) [25], as a computation based on words, or perceptions, or
even sentences of the natural language, instead of the traditional computation
based on numbers. There are cases where CWW is specially adequate and even
necessary because of two reasons. Namely, computing with words becomes a
necessity when the available information is too imprecise to justify the use of
numbers, and also in situations where there is a tolerance for imprecision which
can be exploited to achieve tractability, robustness, low solution cost, and better
rapport with reality.

On the other hand, uncertainty is a common factor in a wide range of real-
world decision-making problems and the task of handling it properly us a tough
task. This uncertainty often comes from the vagueness of meanings that are used
by experts in problems where qualitative information is used. This fact has moti-
vated that computation with words have turned into a usual resource in the field
of decision making. For this reason, several different linguistic models have been
presented in the literature with the purpose of modelling experts’ opinions. In
[13] it is presented a systematic review process about multi-granular fuzzy lin-
guistic model approaches (FLM) considering six different categories: Traditional
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 581–592, 2016.
DOI: 10.1007/978-3-319-40581-0 47
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multi-granular FLM based on fuzzy membership functions [9], Ordinal multi-
granular FLM based on a basic Linguistic Term Set [5], Ordinal multi-granular
FLM based on 2-tuple FLM [6], Ordinal multi-granular FLM based on hierarchi-
cal trees [8], Multi-granular FLM based on qualitative description spaces [21],
and Ordinal multi-granular FLM based on discrete fuzzy numbers, or dfn for
short [12,16,17].

Following with the previous ideas, that is, the accurate modelling of natural
language, Zadeh [26] in 2011, introduced the concept of Z-number as an ordered
pair of fuzzy numbers (A,B). Thus, when a Z-number is associated with a real-
valued uncertain variable X, the ordered triple (X,A,B) is referred to as a
Z-valuation, where the first component A is interpreted not as a value of X, but
as a restriction on the values which X can take; and the second one, B is referred
to as certainty (sureness, confidence, reliability, probability, possibility. . . ) about
the value of A. For instance, the opinion it is very likely that the investment risk
is very lowcan be modelled as the Z-valuation (investment risk, very low, very
likely). Since then, many researchers have focused their studies on Z-numbers
from different aspects (theoretical knowledge or practical applications). In this
way, Yager [24] assumes that X is a random variable and considers a particular
kind of parametrized distributions (normal and uniform) in order to simplify the
computations. Pal et al. [14] propose an algorithm for CWW using Z-numbers.
Patel et al. [15] provide an applied model of Z-numbers and implement this
model into an expert system shell for CWW. Aliev et al. [1,3] introduce the
idea of discrete Z-numbers (Z-numbers whose components are discrete fuzzy
numbers) and present an approach to decision making based on Z-information.
Kang et al. [10] give a method of converting Z-numbers to classical fuzzy numbers
according to the fuzzy expectation of fuzzy set, and finally, we wish to highlight
also the monograph [2] that presents a comprehensive and self-contained theory
of Z-arithmetic and its applications.

Zadeh [26] pointed out “Problems involving computation with Z-numbers are
easy to state but far from easy to solve”. This complexity has led to the proposal
of many approaches in the literature (see [1,14,24]). Moreover, it should be
noted that when we consider a Z-valuation (X,A,B) the underlying probability
distributions are not known in general or it is necessary to fix them previously
to simplify computations. Thus, the modelling of an expert opinion in a decision
making problem becomes more rigid, since probability distributions previously
determined by the expert system must be used.

Therefore, we propose in this article another vision of Zadeh’s Z-numbers
in which similarly to [1] we consider Z-information expressed as couples of dis-
crete fuzzy numbers. However, we do not regard the second component from a
probabilistic point of view but as a dfn-evaluation [12,16] that represents the
sureness or confidence of the first component. This approach not only increases
the flexibility of the expert opinions, but it also eases the management and the
operations between Z-valuations by using aggregation operators in the set of
dfns [4,17–19]. These advantages allow this theory to be considered for decision
making problems.
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2 Preliminaries

In this section we will present the main concepts related to discrete fuzzy num-
bers that will be used later.

By a fuzzy subset of R, we mean a function A : R → [0, 1]. For each fuzzy
subset A, let Aα = {x ∈ R : A(x) ≥ α} for any α ∈ (0, 1] be its α-level set (or
α-cut). By supp(A), we mean the support of A, i.e., the set {x ∈ R : A(x) > 0}.

Definition 1 [23]. A fuzzy subset A of R with membership mapping A : R →
[0, 1] is called a discrete fuzzy number, or dfn for short, if its support is finite,
i.e., there exist x1, ..., xn ∈ R with x1 < x2 < ... < xn such that supp(A) =
{x1, ..., xn}, and there are natural numbers s, t with 1 ≤ s ≤ t ≤ n such that:

1. A(xi)= 1 for all i with s ≤ i ≤ t. ( core)
2. A(xi) ≤ A(xj) for all i, j with 1 ≤ i ≤ j ≤ s.
3. A(xi) ≥ A(xj) for all i, j with t ≤ i ≤ j ≤ n.

In Fig. 1, a graphical representation of a general discrete fuzzy number is
displayed.

x1
. . .xs−1 xs

. . . xt xt+1
. . . xn

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 1. Graphical representation of a general discrete fuzzy number with support
{x1, . . . , xn} and core {xs, . . . , xt}.

From now on, we will denote by Ln the finite chain Ln = {0, 1, . . . , n} and
by ALn

1 the set of discrete fuzzy numbers whose support is a subinterval of the
finite chain Ln. Note that in this case, any α-cut is also a subinterval of Ln that
will be denoted by Aα. Aggregation functions defined on Ln have been extended
to ALn

1 (see for instance [4,17]) according to the next result.

Theorem 1 [4,17]. Consider a binary aggregation function F on the finite
chain Ln. The binary operation on ALn

1 defined as follows

F : ALn
1 × ALn

1 −→ ALn
1

(A,B) �−→ F(A,B)

being F(A,B) the discrete fuzzy number whose α-cuts are the sets

{z ∈ Ln | F (min Aα,min Bα) ≤ z ≤ F (max Aα,max Bα)}
for each α ∈ [0, 1] is an aggregation function on ALn

1 .
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2.1 Linguistic Model Based on Discrete Fuzzy Numbers

In this section we recall the fuzzy linguistic model based on discrete fuzzy num-
bers in ALn

1 that was presented in [12].
First of all, note that we can consider a bijective mapping between the ordinal

scale L = {s0, . . . , sn} and the finite chain Ln which keeps the original order.
Furthermore, each normal discrete convex fuzzy subset defined on the ordinal
scale L can be considered like a discrete fuzzy number belonging to ALn

1 , and
vice-versa.

For example, consider the linguistic hedge

L = {N,V L,L,M,H, V H, T} (1)

where the letters refer to the linguistic terms None, Very Low, Low, Medium,
High, Very High and Total and they are listed in an increasing order:

N ≺ V L ≺ L ≺ M ≺ H ≺ V H ≺ T

and the finite chain L6. Thus, A = {0.5/2, 0.75/3, 1/4, 0.75/5} ∈ AL6
1 can be also

expressed as A = {0.5/L, 0.75/M, 1/H, 0.75/V H}. Note that this discrete fuzzy
number, A, can be interpreted as a possible flexibilization of the linguistic label
High H (see Fig. 2(a)). The previous discrete fuzzy number would be suitable for
an expert who hesitates about his opinion. He thinks that the best grade would
be the linguistic label H but he cannot discard other grades around it in some
degree. On the other hand, the discrete fuzzy number A = {1/4}, or equivalently
A = {1/H}, would be used by an expert who is completely sure of his opinion.
This fact shows that the model based on discrete fuzzy numbers generalizes any
linguistic model where the experts’ evaluations are limited to choose a single
linguistic label.

Furthermore, in [7,16] it was shown that the evaluations based on discrete
fuzzy numbers generalize also the concept of Interval-valued evaluations or Hes-
itant Fuzzy Linguistic Term Sets (HFLTS) (see [20,22] for details). In this way,
it is possible to define different flexibilizations of a linguistic expression through
the following subjective evaluations:

Between si and sj = {A ∈ ALn
1 | core(A) = [si, sj ]}

Worse than si = {A ∈ ALn
1 | core(A) = [s0, si−1]}

Better than si = {A ∈ ALn
1 | core(A) = [si+1, sn]}

(2)

for all 0 ≤ i, j ≤ n. Thus, discrete fuzzy numbers A ∈ ALn
1 with core(A) =

[si, sj ], but with a different support, can be interpreted as flexibilizations of the
subjective evaluation “between si and sj”, and similarly with the other expres-
sions. For instance, the discrete fuzzy number B = {0.5/1, 1/2, 1/3, 1/4, 0.25/5},
that can be also expressed as B = {0.5/V L, 1/L, 1/M, 1/H, 0.25/V H}, is a pos-
sible flexibilization of the HFLTS “between Low and High” (see Fig. 2(c)). On the
other hand, if in these evaluations the core coincides with the support, we retrieve
HFLTS or interval-valued evaluations. For instance, B = {1/L, 1/M, 1/H}, or
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(a) A possible flexibilization of H
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(b) A possible flexibilization of “between
Low and High”

Fig. 2. Different types of experts’ evaluations using discrete fuzzy numbers.

equivalently B = {1/2, 1/3, 1/4}, corresponds to the interval-valued evaluation
or HFLTS given by [L,H].

From the above discussion, we introduce the following definition.

Definition 2 [12]. Let Ln = {0, . . . , n} be a finite chain. We call a dfn-
evaluation to each discrete fuzzy number A belonging to ALn

1 .

3 A Review on Zadeh’s Z-numbers

In this section we recall the main concepts about this topic and we also analyse
some of the most interesting ideas published in this framework.

Definition 3 [26]. An ordered pair of fuzzy numbers (A,B) is a Z-number. A
Z-number is associated with a real-valued uncertain variable, X, with the first
component, A, playing the role of fuzzy restriction on X, while the fuzzy number,
B is an imprecise estimation of reliability of A. The ordered triple (X,A,B) is
referred as a Z-valuation and it is equivalent to an assignment statement, X is
(A,B).

Remark 1. When X is a random variable, X is (A,B) can be interpreted as
Prob(X is A) is B where Prob(X is A) is the probability measure of the fuzzy
event A in the sense of [26].

Operations with Z -numbers: Let Z1 = (A1, B1) and Z2 = (A2, B2) be Z-
numbers describing values of uncertain real-valued variables X1 and X2 respec-
tively. The inference rule is represented as follows:

Z1 is (A1,B1)
Z2 is (A2,B2)

Z1 ∗ Z2 is (A1 ∗ A2, B1 ◦ B2)
(3)

where ∗ represents an arithmetical operation and A1 ∗A2 is computed according
to Zadeh’s extension principle and B1 ◦ B2 is computed applying the version
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of the extension principle which relates to probabilistic restrictions (for more
details see [26]).

Note that the complexity of this operation is well known and usually yields
a very complex non-linear variational problem (see [1,15]). To avoid or relax
this complexity some different perspectives in the field of Z-numbers have been
proposed to simplify the operations as well as the computational cost of their
implementation. Let us highlight below some of them.

Yager [24] proposes to consider a Z-valuation (X,A,B) in terms of a pos-
sibility distribution G over the space P of all probability distributions on X,
and the relation between Z-numbers and linguistic summaries. Moreover, he
suggests an alternative formulation of Z-information in terms of a Dempster-
Shafer belief structures which involves type-2 fuzzy sets. In this approach only
typical distributions are considered (exponential and uniform). However, if the
second component models the degree of credibility (certainty, security, sureness)
about the values on the first component, it is always difficult to think that such
certainty can be modelled by a known probability distribution function or a
previously fixed one.

In [15] the authors present an applied model of Z-numbers and implement
this model into an expert system shell for CWW called CWShell. The main idea
of this model is to limit the number of probability distributions deemed appro-
priate by the domain expert (so-called pool of distributions) and convert them
into a discrete form for an easier calculation. Again the number of distribution
functions and the number of parameters to be chosen by the experts are reduced
in order to simplify the process and the computational cost.

Pal et al. [14] propose an algorithm for CWW and describe simulation exper-
iments of CWW using Z-numbers. Another interesting aspect of this work is an
analysis of the strengths and the challenge about this topic suggesting some pos-
sible solutions. In this sense, the identification of appropriate fuzzy set models
for the perceptions of words in both components are analysed.

Aliev et al. [1] present a new vision of Z-numbers, the discrete Z-numbers,
where the two components of a Z-valuation are discrete fuzzy numbers. In this
approach basic arithmetic operations and a ranking method are proposed. Fur-
thermore, the authors justify this model on three main aspects. Firstly, the com-
putation with discrete fuzzy numbers and discrete probability distributions has
a significantly lower computational complexity than that with continuous fuzzy
numbers and density functions. The second consideration is due to the fact that
linguistic information is always described by a set of meaningful linguistic term
sets which can be represented by ordinal linguistic scales. Finally, in this case
it is not necessary to assume a type of distribution constraining the modelling
ability, but one can consider a general case.

From the previous analysis we highlight the following:

(i) Z-numbers can be conceptualized as a formidable tool in the design of
discourse-oriented decision-making systems, risk assessments, etc.
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(ii) It is necessary to find new linguistic models based on fuzzy sets to collect the
main ideas established by Zadeh [26] in order to reduce the computational
cost of the inference process.

It is clear that this second point is the central idea that generates all the above
mentioned papers. In the same direction, we propose in the next section a new
interpretation of Z-numbers based on discrete fuzzy numbers in ALn

1 .

4 A New Look of Zadeh’s Z-numbers

In the previous section we have seen that Zadeh’s original concept can be a very
appropriate tool to model the reasoning with words. However this idea presents
some problems when we want to compute with Z-valuations. The different pro-
posals previously analysed consider the second component from a probabilistic
point of view according to the original idea of Z-numbers. However, in the sem-
inal paper [26], Zadeh also states that the second component, B, is a measure of
reliability (certain) of the first component, and closely related to certainty there
are many concepts as: sureness, confidence, reliability, probability. That is, B
can be interpreted from different points of view.

From this idea we present in this section a new approach to Z-numbers
based on discrete fuzzy numbers in ALn

1 , where the second component is also
interpreted as a discrete fuzzy number, avoiding in this way the probabilistic
aspect considered in the previous approaches. This second component represents
the sureness or confidence of the first component. Thus, we present Z-numbers
as a couple of discrete fuzzy numbers where each component takes values in a
different finite chain. In this sense, each one of these chains will refer to the
linguistic terms set used by the experts in their valuations. Formally,

Definition 4. Let us consider Ln and Lm two finite scales. An ordered pair of
discrete fuzzy numbers (A,B) with A ∈ ALn

1 , B ∈ ALm
1 is a (Ln, Lm)-discrete Z-

number. An (Ln, Lm)-discrete Z-number is associated with an uncertain variable,
X, with the first component, A, playing the role of fuzzy restriction on X, while
the discrete fuzzy number, B is an imprecise estimation of reliability of A. The
ordered triple (X,A,B) is referred as a Z-valuation and it is equivalent to an
assignment statement, X is (A,B).

Example 1. Unlikely, the investment risk in this country is low can be inter-
preted as the Z-valuation Z = (investment risk, low, unlikely). For instance if we
consider the linguistic term sets

S = {Very High, High, Neutral, Low, Very Low},
S′ = {Impossible, Very Unlikely, Unlikely, Maybe or Maybe Not, Likely,

Very Likely, Sure},

to express the first and second components of Z respectively, the Z-valuation
can be expressed by the couple Z = (A,B) where

A = {0.5/H, 0.8/N, 1/L, 0.7/V L} = {0.5/1, 0.8/2, 1/3, 0.7/4} ∈ AL4
1 ,

B = {0.3/V U, 1/U, 0.8/M, 0.5/L} = {0.3/1, 1/2, 0.8/3, 0.5/4} ∈ AL6
1 .
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Remark 2. In our approximation we have supposed a linguistic interpretation
of each component. However, discrete fuzzy numbers whose support is a finite
chain Ln can also be understood from a numerical point of view. Next sen-
tence shows an example of a Z-valuation where the first component is read as a
numerical value (about 30 millions) but the second one (not sure) as a linguistic
interpretation:

It is very unlikely that the anticipated budget deficit will be about 30 millions,
can be interpreted as the Z-valuation Z = (anticipated budget deficit, about 30
millions, very unlikely).

Now, if Zi = (Ai, Bi) for i = 1, . . . , k are (Ln, Lm)-discrete Z-numbers
describing values of an uncertain variable X and we want to aggregate them, the
inference rule represented as in (3) can be used similarly. Specifically, if G1,G2 are
aggregation functions on ALn

1 and ALm
1 respectively (obtained according to The-

orem 1), we will denote by G = (G1,G2) the resulting operation on Z-valuation
given by G(Z1, . . . , Zk) = (G1(A1, . . . , Ak),G2(B1, . . . , Bk)). Note that the oper-
ational complexity pointed out in previous sections is considerably reduced in
contrast to the classical approaches.

Example 2. Following with the Z-valuation Z = (A,B) given in Example 1, if
we consider another valuation Z ′ = (Investment risk, High, Likely) showed by
the pair Z ′ = (C,D) where

C = {0.5/0, 1/1, 0.9/2, 0.7/3} ∈ AL4
1 , D = {0.8/2, 0.9/3, 1/4, 0.5/5} ∈ AL6

1 ,

respectively, these two Z-valuations can be aggregated using for instance the
extension of the kernel aggregation function [11] with parameter k = 3 in L4

and L6, respectively, obtaining

Investment Risk is (Low, UnLikely)
Investment Risk is (High, Likely)

Z = (High, Unlikely)
(4)

where

High = {0.5/0, 1/1, 0.9/2, 0.7/3}, Unlikely = {0.3/1, 1/2, 0.8/3, 0.5/4}.

From the previous considerations, let us propose now a method of getting
a final decision on a specific problem by aggregating the opinions given by
some experts when these opinions are expressed through Z-valuations based
on (Ln, Lm)-discrete Z-numbers. Suppose that we have k experts that give their
opinions on r different variables Xj for j = 1, . . . , r.

1. Each expert chooses the linguistic scales that he will use to make his/her
Z-valuations for each variable, that we will denote by (L1

ij , L
2
ij) for 1 ≤ i ≤ k

and 1 ≤ j ≤ r. Let us also denote by (Aij , Bij) the Z-valuation given by
expert i with respect to the variable Xj for each 1 ≤ i ≤ k and 1 ≤ j ≤ r
(see Table 1).
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Table 1. Expert opinions expressed as Z-valuations.

Variables

X1 X2 ... Xr

E1 (A1,1, B1,1) (A1,2, B1,2) ... (A1,r, B1,r)

E2 (A2,1, B2,1) (A2,2, B2,2) ... (A2,r, B2,r)

...
...

...
...

...

Ek (Ak,1, Bk,1) (Ak,2, Bk,2) ... (Ak,r, Bk,r)

Table 2. Valuation for each variable and Final Valuation (FV).

Variables

X1 ... Xr

E1 Z11 = (Ã1,1, B̃1,1) ... Z1r = (Ã1,r, B̃1,r)

E2 Z21 = (Ã2,1, B̃2,1) ... Z2r = (Ã2,r, B̃2,r)

...
...

...
...

Ek Zk1 = (Ãk,1, B̃k,1) ... Zkr = (Ãk,r, B̃k,r)

G1(Z11, · · · , Zk1) ... Gr(Z1r, · · · , Zkr)

FV G(G1(Z11, · · · , Zk1), ...,Gr(Z1r, · · · , Zkr))

2. In order to reduce to a common linguistic scale the valuations of all experts
with respect to all variables, we choose two linguistic scales (L1, L2) and we
convert all Z-valuations (Aij , Bij) for 1 ≤ i ≤ k and 1 ≤ j ≤ r to Z-valuations
(Ãi,j , B̃i,j) expressed all of them into the common linguistic scale (L1, L2),
according to the process stated in [12].

3. To obtain a global valuation for each variable Xj with 1 ≤ j ≤ r accord-
ing to the experts’ opinions, we construct the operations Gj , where each Gj

is obtained by Gj = (Gj1,Gj2) with Gj1,Gj2 aggregation functions on ALn
1

and ALm
1 , respectively (obtained from Theorem 1). Finally, the final valua-

tion about the considered problem will be obtained using a (possibly new)
operation G (see Table 2).

Example 3. Let us suppose that a company considers to invest in a foreign coun-
try and it decides to hire three experts E = {E1, E2, E3} who are specialists
in assessing the following variables {X1,X2}, where X1=Laboral unrest and
X2=Political instability in the medium and long term, respectively. The com-
pany will take a final decision using the global variable X = {Invesment risk},
that will be obtained via the aggregation method of X1 and X2 explained in
this section. To simplify the example we will suppose that all valuations have
already been reduced to the linguistic scale (L1, L2) given by

L1 = {N, V L, L, N, H, V H, T}, L2 = {I, V U, U, MN, L, V L, S},
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where items in L1 stand for Null, Very Low, Low, Neutral, High, Very High,
Total and items in L2 stand for the labels used in the scale S′ in Example 1.

Thus, all the Z-valuations given by the experts in both components can be
interpreted as discrete fuzzy numbers in AL6

1 . Let us suppose that they are given
by

Z11 = (L = {0.5/1, 1/2, 0.8/3, 0.7/4}, L = {0.3/2, 0.6/3, 1/4, 0.8/5})
Z21 = (V L = {0.6/0, 1/1, 0.7/2, 0.7/3}, V L = {0.4/3, 0.6/4, 1/5, 0.8/6})
Z31 = (N = {0.6/1, 0.7/2, 1/3, 0.6/4}, L = {0.5/3, 0.7/4, 1/5, 0.6/6})

for the variable X1 and

Z12 = (H = {0.5/2, 0.8/3, 1/4, 0.7/5}, V L = {0.8/4, 1/5})
Z22 = (L = {0.6/0, 0.7/1, 1/2, 0.6/3}, L = {0.4/3, 1/4, 0.7/5, 0.5/6})
Z32 = (V L = {0.6/0, 1/1, 0.7/2, 0.6/3}, L = {0.5/2, 0.8/3, 1/4, 0.6/5})

for the variable X2. These valuations can be viewed in Table 3. Now, according
to point 3 in the proposed method, let us choose the same aggregation function
in all cases. In particular, we will consider G the extension to AL6

1 of the kernel
aggregation function on L6 with parameter k = 3 (see [11]) and the operations
G,G1 and G2 are obtained as G = G1 = G2 = (G,G).

Thus, we get the global evaluations for the variables X1 and X2

G1(Z11, Z21, Z31) = ({0.6/0, 1/1, 0.7/2, 0.7/3}, {0.3/2, 0.6/3, 1/4, 0.8/5}),
G2(Z12, Z22, A32) = ({0.6/0, 1/1, 0.7/2, 0.6/3}{0.5/2, 0.8/3, 1/4, 0.6/5}),

respectively. Finally, the final valuation is obtained as:

G(G1(Z11, Z21, Z31),G2(Z12, Z22, A32)) =
({0.6/0, 1/1, 0.7/2, 0.6/3}, {0.3/2.0.6/3.1/4, 0.8/5}) = (V ery Low, Likely).

Then it is likely that the investment risk is very low.

Table 3. Z-valuations expressed by the experts on L = (L1, L2).

Variables

X1 X2

E1 Z11 = (Low,Likely) Z12 = (High, V ery Likely)

E2 Z21 = (V ery Low, V ery Likely) Z22 = (Low,Likely)

E3 Z31 = (Neutral, V ery Likely) Z32 = (V ery Low,Likely)
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5 Conclusions and Future Work

In this paper we have presented a new approach on Z-numbers based on discrete
fuzzy numbers with support in a finite chain Ln. In this approach a Z-number
associated with a variable, X, is interpreted as a pair (A,B) of discrete fuzzy
numbers, where A is considered as a fuzzy restriction on X, while the estimation
of the reliability of A is modelled as a linguistic valuation based on the discrete
fuzzy number B. Thus, the known arithmetic on discrete fuzzy numbers can
be used for avoiding or reducing the natural computational complexity of usual
Z-numbers. In addition, an aggregation method of these Z-numbers based on
aggregation functions defined on the set of discrete fuzzy numbers ALn

1 has been
proposed. An example illustrating this method has also been included.

As a future work, we want to use this new interpretation of Z-numbers and
the proposed aggregation method in the solution of group decision making prob-
lems. As it is well known, decision making problems usually consist in two phases:
Aggregation phase of linguistic information and Exploitation phase. The first one
could be managed using the aggregation method described in this paper. The
second one will require the study of a rank ordering method among the alterna-
tives according to the collective Z-valuation obtained through the aggregation
method in order to choose the best alternatives. This will be precisely our next
goal in the topic.

Acknowledgments. This paper has been partially supported by the Spanish Grant
TIN2013-42795-P.
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Abstract. In the last decade, numerous proposals have been made to
deal with imprecision in estimation problems. Those approaches, many
of which involve dealing with interval-valued outputs, deal with the sub-
tle difference between uncertainty and imprecision. One of the crucial
points − which to our knowledge has never been addressed − is “how to
compare an interval-valued method with a precise valued method?”

The usual way to compare two estimation methods is to use bench-
mark data with ground truths and to compute a distance between the
estimates of each method and the ground truth. However, most of the
mathematical available extensions of distances are either biased in favor
of a precise approach or in favor of an imprecise approach.

This paper proposes a new tool, the weighted variation of the mid-
point distance (WVD), that is more suitable to achieve this kind of
comparison, dealing with imprecision with a particular semantic. After
reviewing existing distances, we introduce the WVD, first from an intu-
itive perspective, then from a more mathematical point of view. Its very
satisfactory properties are highlighted through an experiment.

Keywords: Interval-valued data · Imprecise probabilities · Engineering

1 Introduction

Scientists willing to consider imprecise data and methods in their analysis (such
as [1,2] or [3]) face the problem of comparing methods with interval-valued
output with methods with precisely valued outputs. In this paper, we consider
imprecise valued regression methods producing interval valued estimates of a
precise reference. One of the most usual ways for assessing a preference between
one method and another is to use a set of benchmark data to compute a dis-
tance between the output of each method and the known ground truth, the
current fashion in engineering problems being to rather use the L1 distance
(see [4] for example). However, if comparing two interval-valued methods or two
precise valued methods is straightforward, a comparison between an interval-
valued method and a precise valued method is more intricate since any existing
extension of the L1 distance is either biased towards or against imprecision: the
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 595–604, 2016.
DOI: 10.1007/978-3-319-40581-0 48
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supremum (or Hausdorff1) distance tends to disfavor imprecise valued estimates
while the infimum distance promotes immoderately imprecision.

In order to establish a preference between methods we need to compute the
distance between the reference (precise) and the estimate (precise or imprecise).
This preference must express as wisely as possible the intricate pros and cons of
using an imprecise estimation versus using a precise estimation. Figure 1 illus-
trates the kind of situation we could fall into. A reference (plain line) is estimated
(dotted line) in four different settings.

(1) (2)

(3) (4)

Fig. 1. Precise estimations (1,4) and imprecise estimation (2,3). Plain line is the ref-
erence, dotted lines are estimations.

Probably (2) would be preferred to (1). The estimation of (2) is imprecise but
informative. It describes the possible variations of the reference. On the other
hand the precise estimation of (1) gives an inaccurate description of the data.
Again (3) is better than (2), because it has narrower bounds while still being
informative. But (4) should be preferred among all, because it is both precise
and accurate.

In this paper, we propose a nice candidate to achieve this kind of ordering.
The rest of the paper will be organized in three main sections: after reviewing
existing metrics, we introduce the WVD, first from an intuitive perspective, then

1 The Hausdorff distance is also called the Pompeiu-Hausdorff distance. Here we sim-
ply refer to it as the Hausdorff distance.
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from a more mathematical point of view. Finally some experiments highlight its
very nice properties.

2 A Review of Existing Distances Between Points
and Intervals

2.1 Notations

Let R be the real line and IR be the set of closed intervals of R. X will denote a
closed interval of IR, x ∈ R its lower element, x ∈ R its upper element, x̃ = x+x

2

its center, and r = x+x
2 its radius.

Here we are interested in defining distances between a finite sequence of points
(scalar vector) and a finite sequence of intervals (interval vector). In the following
we will consider distances from a reference vector of scalars s = (s1, . . . , sN )
to an indexed collection (vector) of intervals X = (X1, . . . , XN ) where ∀i ∈
{1, . . . , N},Xi = [xi, xi]. We also denote by x̃ the vector of the center values of
X. The literature includes different alternatives to compute the distance between
pairs of intervals of the real line. Based on each of those proposals, one can
define the distance from a point s ∈ R to an interval X ∈ IR as the distance
between the singleton {s} (which is in turn an element in IR) and X. We can
therefore define the distance from s = (s1, . . . , sN ) to X as the arithmetic mean
of the distances between their components. We next review different proposals
of distances between pairs of real intervals from the literature, and construct
their associated distances from vectors of points to vectors of intervals.

2.2 Hausdorff Distance

Let (U, d) be a complete metric space. Let K(U) denote the family of non-empty
compact subsets of U . The Hausdorff distance between two non-empty compact
subsets A,B ∈ K(U) is

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

In particular, we can define the Hausdorff distance from s ∈ R to X ∈ IR as the
Hausdorff distance2 between {s} and X, i.e.:

dH(s, I) = max{sup
x∈I

d(s, x), inf
x∈I

d(s, x)} = sup
x∈I

d(s, x), (1)

The Hausdorff distance is one the most widely used distances from points to sets
[5]. If d is the L1 distance, Eq. (1) can be simplified in:

dH(s, I) = |s − x̃| + r, (2)
2 We will use the same notation dH in order to denote the mapping defined on R× IR

derived from dH : K(R) × K(R) → R. Obviously this new mapping does not satisfy
metric properties. It is not even applied to objects of the same kind.
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where x̃ and r respectively denote the mid-point and the radius of the closed
interval X = [x̃−r, x̃+r]. Computation of the distance from s ∈ R

N to X ∈ IR
N

is obtained by averaging Expression (2) on their components:

dH(s,X) =
1
N

N∑

i=1

(|si − x̃i| + ri). (3)

2.3 Mid-Spread Distance

Expression (2) considers the interval X as a pair composed of its centre x̃ and
its radius r like in the mid-spread distance approach [6], where the distance is
computed as a linear combination of the distance between the two centers and
the distance between the two radii (the radius of s being equal to 0). The mid-
spread distance between two intervals X = [x̃ − r, x̃ + r] and Y = [ỹ − r′, ỹ + r′]
is defined as:

dγ
ms(X,Y ) = |x̃ − ỹ| + γ|r − r′|.

According to it, we can define the mid-spread distance from s to X = [x̃+r, x̃+r]
as:

dγ
ms(s,X) = |s − x̃| + γr.

Based on it we can calculate the mid-spread distance from s to X as:

dγ
ms(s,X) =

1
N

N∑

i=1

(|si − x̃i| + γri), (4)

where γ ∈ R
+ is a weight given to the radius w.r.t. the mid. This approach can

be seen as a generalization of the Hausdorff distance since dH = d1ms.

2.4 Mid-Point Distance

The mid-point distance leads to a less technical distance. It is just the L1 distance
between s and x̃. Within this approach the intervals are reduced to points and
the imprecision is simply ignored. This approach is easy both conceptually and
computationally. For this reason it is used a lot in practice [7]. It is defined as:

dm(s,X) =
1
N

N∑

i=1

|si − x̃i|. (5)

It can also be considered either as a special case of the mid-spread distance,
where γ = 0 or as a two step Hausdorff distance. In this last interpretation, the
method consists of choosing, as a representative single point of the interval X,
the precise value that minimizes the Hausdorff distance of the L1 distance, i.e. its
center x̃, and then compute the usual distance between s and this representative.
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2.5 Infimum Distance

The classical way to define the distance from a point s to a set X in topology is
to consider the shortest distance from s to any point in X, i.e.:

dinf (s,X) = inf
x∈X

d(s, x). (6)

When, in particular, d denotes the L1 distance from a point s to a closed
interval X = [x̃ − r, x̃ + r], Expression (7) reduces to:

dinf (s,X) =

{
0 if x ∈ X

|x̃ − s| − r if x /∈ X
(7)

Based on this definition, we can compute the distance from s to X by averaging
expression (7) on the N components:

dinf (s,X) =
1
N

N∑

i=1

dinf (si,Xi). (8)

This definition captures the notion of imprecision, but does not have enough sep-
arating power. As a long as a point is included in the interval, the distance will be
zero. It means that an estimation consisting of intervals of the form (−∞,+∞),
i.e. a completely vacuous estimation, would always have a distance of zero to
any precise estimation, because it contains them all. This distance has exactly
the opposite flaw than the Hausdorff distance: the wider the interval, the lower
the distance. Thus an interval-valued estimation will always be considered as
less distant from a reference value than an equivalent precise-valued estimation:
∀y ∈ X, d(s,y) ≥ dinf (s,X).

3 Weighted Variation of the Mid-Point Distance

3.1 Definition

A perfect candidate would be an extension which would not penalize imprecision
when it conveys information, for example when it reflects coherently the vari-
ability of the quantities under consideration. This is in line with the guaranteed
approach of [8] and the confidence interval interpretation of imprecision [9].

The weighted variation of the mid-point distance is simply defined as the
mean of deviations from the center of the intervals weighted by the inverse of
the radius of the interval:

dw(s,X) =
1
N

N∑

i=1

r

ri
|si − x̃i|, (9)
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with

r =
1
N

N∑

i=1

ri.

It can be seen as a mid-point distance computed on a space where the imprecision
is uniform (usually unitary). It is then back-projected to the original space by
multiplying the result by the mean radius of the intervals. The weights of the
weighted extension are proportional to the inverses of the radii of the intervals.
Thus for a certain index, the wider the radius, the lower will be the impact of an
important deviation from the center of the interval. It is a very straightforward
way of translating the idea that if an interval estimation suitably describes the
variability of the reference, then it should be less penalized. Still, having wide
radii will be penalized by increasing the mean radius r.

Obviously the WVD does not satisfy metric properties. The main problem is
that if the vector X contains both intervals of strictly positive radii and degen-
erated intervals (i.e. singletons) then the WVD we propose is not defined. It
thus does not formally stand as an extension of the L1 distance. However we
shall insist that the aim of this tool is to propose a practical solution to the
unsolved problem of computing distances between points and intervals. When
we restrict its use to cases where X contains only non-degenerated intervals −
which happens most of the time in practical cases − then the WVD fulfills its
role in a way that is both very simple computationally and that makes sense
from a formal point of view.

3.2 Formal Interpretation

Let us consider a regression problem where XX : Ω → R
n denotes the vector

of attributes and Y : Ω → R represents the response variable. Let us consider
a sample of size N ((x1, y1), . . . , (xN , yN )) . Let us consider a regression model
f : RN → R and let ŷi = f(xi) be the punctual estimation of yi based on it. The
average distance d = 1

N |yi − ŷi| can be used to estimate the degree of goodness
of our model, in terms of L1 loss function. Let now Xi,α = [ŷi − cαri, ŷi + cαri]
represent a prediction interval, with (exact) confidence level 1 − α, based on xi

for the value of the response variable of another individual, randomly picked in
the subpopulation of those whose vector of attributes coincides with the vector
of attributes of the ith individual of our initial sample, xi. Due to the variability
of this subpopulation, such a response value does not necessarily coincide with
the observed yi. The length of prediction intervals in linear regression problems,
under the usual normality assumptions, takes this form of cαri. The average
radius of the N prediction intervals calculated from the sample is cαr. Let us
now consider another test sample of size N of pairs of the form (xi, y

′
i). An

unbiased estimation of 1 − α based on this test sample is:

1 − α̂ =
1
N

#{i| |ŷi − y′
i| ≤ cαri} =

1
N

#{i| |ŷi − y′
i|

ri
≤ cα}.
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Let the random variable D denote the average L1 distance between the true
values y′

i and their estimations ŷi based on the xi’s. Let us prove that the WVD
from the vector of responses y′

i to the sequence of confidence intervals Xi,α is an
unbiased estimation of the expectation of D. According to above assumptions,
for every j = 1, . . . , N, the probability that Dj is less than cα ·rj is 1−α. Further-
more, as we have shown, the relative cumulative frequency 1

N #{i| |y′
i−ŷi|
ri

≤ cα}
is an unbiased estimation of 1 − α. In other words, F̂ (cα) = 1

N #{i| |y′
i−ŷi|
ri

≤ cα}
is an unbiased estimation of the cumulative probability FDj

rj

(cα). Therefore the

relative frequency p̂(x) = 1
N

∑N
i=1 1 |y′

i
−ŷi|
ri

(x) is an unbiased estimation of the

probability P
(

Dj

rj
= x

)
= P (Dj = rj · x). Thus, the expectation of Dj is unbi-

asedly estimated by Ê(Dj) = 1
N

∑N
i=1

|y′
i−ŷi|
ri

rj . Therefore, the expectation of

D, E(D) = 1
N

∑N
j=1 E(Dj) can be unbiasedly estimated by:

Ê(D) =
1
N

N∑

i=1

|y′
i − ŷi|
ri

r.

4 Experiment

4.1 Experimental Procedure

This section aims at comparing the behavior of the proposed WVD of the L1 dis-
tance to the four other extensions we have presented in Sect. 2. The experiment
is based on a data set composed of K = 3900 8×8 subsampled patches extracted
from a 2117×3006 high resolution image of the painting La Joconde by Leonardo
Da Vinci. The reduction factor is set to 5. The subsampling procedures aims at
simulating acquisitions of images of this painting using different imagers having
the same numerical resolution but different point spread functions.

To do so, we used the so-called imprecise filtering sub-sampling method [10].
It consists of replacing the smoothing anti-aliasing kernel used to transform a
high resolution image into a low resolution image by a capacity that represents a
convex set of bell-shaped smoothing kernels. Filtering a patch with this method
leads to an interval-valued subsampled patch that represent the convex set of all
the patches that would have been obtained by subsampling the original patch
with all the kernels belonging to the so-defined convex set (here a set of uni-
modal centered smooth kernels whose support is lower than 8). Practically, each
interval-valued patch is composed of an upper patch P k and a lower patch P k

(for the kth patch).
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4.2 How Consistent Is the Weighted Variation of the Mid-Point
Distance?

This experiment aims at illustrating the fact that the extension we propose
behaves consistently. Ideally an imprecise patch contains the information of sev-
eral precise patches. Therefore a distance between imprecise and precise patches
which wisely uses the information of imprecision would behave the same way as
the L1 distance would when used to compare precise patches drawn randomly
inside the imprecise patches. The comparison is achieved by computing a ratio
of imprecise-to-precise L1 distances on various configuration of patches. If the
distribution of this ratio is centered around 1 for a large number of samples, it
means that the considered extension is consistent, because it reflects the infor-
mation conveyed by the imprecise patches in a way that is consistent with how
the L1 distance would behave on a set of precise patches. Moreover, the lower
the variance, the more consistent is the extension.

Fig. 2. Box-plot results of the first experiment computed on the four extensions.
Weighted extension is WVD.

Table 1. Moments of the ratios.

Hausdorff Infinimum Mid-points Weighted

mean 1.54 0.503 0.95 0.99

median 1.71 0.32 0.99 1.01

standard deviation 0.36 0.27 0.14 0.16
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The experiment is carried as follows. We divide the set of 3900 patches into
two subsets of 1950 patches. The motivation for separating our data into two
subsets is to compare patches having non-null distances (even if some patches
bear some similarities).

We take the first subset (k = 1, . . . , 1950) to define references by con-
sidering the mid patches P̃k = 1

2 (P k + P k). We take the second subset
(j = 1951, . . . , 3900) to define the imprecise estimations defined by their upper
(P j) and lower (P j) patches. For each imprecise patch of the second subset, we
draw 300 precise patches Pn

j (n = 1, . . . , 300) included in the imprecise patch
[P j , P j ] (300 offers a good tradeoff between a statistically meaningful sampling
of the interval and a reasonable computation time). We then compute, for each
(k, j, n) ∈ [1, 1950] × [1951, 3900] × [1, 300], a ratio-distance which is defined as:

re =
de(P̃k, [P j , P j ])

d(P
n
j , P̃k)

, (10)

where d is the (precise) L1 distance between two patches and de is one of the
extensions of the L1 distance (e ∈ {Hausdorff, infinimum, mid, weighted }. The
distribution of the ratios for the different extensions are presented as a box-plot
in Fig. 2. Table 1 shows the mean, median and standard deviation of the ratios
distributions for each extension.

As might have been expected, the Hausdorff distance always leads to an
over-evaluated distance, while, on contrary, the infimum distance leads to an
under-evaluated distance. WVD and mid-point distance seem to provide dis-
tances that are consistent in that the means of their ratios are close to 1. For
these extensions, comparing the imprecise patch with a precise one is statisti-
cally equivalent to comparing this precise patch with any patch contained in
the imprecise patch. Although the ratios computed for the WVD have a slightly
higher standard-deviation (which can be explained by the divergent behavior
it has when some intervals tend to points) a Wilcoxon test applied on all the
extensions showed the distribution of ratios of the WVD to be the closest to 1.

5 Conclusion

In this article we have introduced a new mathematical tool, the weighted vari-
ation of the mid-point distance, that allows to compare the performances of an
interval-valued method with those of a conventional precise-valued method. We
have presented its behavior through an experiment, where we compared it with
other possible alternatives, namely the Hausdorff, mid-point and infimum dis-
tances. The WVD has some problems, such as its divergent behavior when some
of the intervals radii tend to zero. However when considering a case of imprecise
estimations where the imprecision has to be informative, meaning that the radius
of the intervals should reflect the quality of the information provided, the new
tool we proposed proved itself to have the best tradeoff between informativeness
and consistency with the L1 distance.
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Abstract. We investigate here two questions, first in a Boolean setting
and then in a gradual setting: Can we give a formal meaning to “being at
odds” (in the sense of being an outlayer) with regard to a subset and, as
a dual problem, can we give a meaning to “being even” (in the sense of
conforming to a given set of values). Is there a relation between oddness
and evenness? Such questions emerge from recent proposals for using
oddness or evenness measures in classification problems. This paper is
dedicated to a formal study of the oddness and evenness indices in the
case of subsets with three or four elements, which are at the basis of
the associated measures. Triples are indeed the only subsets such that
adding an item that conforms to the triple minority, if any, destroys
the majority. It appears that the notions of oddness and evenness are
not simple dual of each other; a third notion of being “balanced” inter-
plays with the two others. This is discussed in the setting of squares and
hexagons of opposition. The notions of oddness and evenness are related
to the study of homogeneous and heterogeneous logical proportions that
link four Boolean variables through the conjunction of two equivalences
between similarity or dissimilarity indicators pertaining to pairs of these
variables. Although elementary, the analysis provides an organized view
of new notions that appear to be meaningful when revisiting the old ideas
of similarity and dissimilarity in a new perspective. As a side result, it is
also mentioned that the logical proportion underlying the idea of being
balanced corresponds to the logical encoding of Bongard problems.

Keywords: Similarity · Dissimilarity · Logical proportion

1 Introduction

The similarity, or the dissimilarity of two items is often a matter of degree, when
items are described in terms of graded features, or when one counts the number
of features having identical values. The idea of dissimilarity is then closely related
to the idea of distance [8].

For two items, judging the similarity or dissimilarity between the values of a
given Boolean feature reduces to check identity or difference. For three or more
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items, the set of possible situations becomes richer: all values may be identical,
all values except one may be identical, values may be balanced, etc.

The idea of classifying an object into a class in such a way that the newcomer
is as little as possible an outlayer with respect to the items in the class [7], or
such that the class augmented with the newcomer remains as homogeneous as
possible [5,6], has motivated the introduction of oddness and evenness measures
based on Boolean-valued indices. The oddness index indicates if a new value is at
odds (or not) among a multiset of three or more values. The evenness index says
if a multiset of three values remains homogeneous (or not), when introducing
a fourth value. Oddness and evenness indices constitute the basis for defining
oddness and evenness measures of an item with respect to a multiset.

The special interest in subsets of four elements has its roots in the recent
study of logical proportions [14], and more particularly of homogeneous ones
(which includes analogical proportion) and heterogeneous ones [15]. Logical pro-
portions connect four ordered Boolean variables a, b, c, d through a conjunction of
two equivalences between similarity or dissimilarity indicators pertaining respec-
tively to the pairs (a, b) and (c, d). The eight existing homogeneous or heteroge-
neous logical proportions are the only ones that are independent from the way
the features are encoded in terms of what is true and what is false.

The aim of this paper is to provide a logical study of oddness and evenness
indices, of their relations, of how they relate to logical proportions, and of how
they can be generalized to graded features. Section 2 offers a short background
on homogeneous and heterogeneous proportions and then, an informal discussion
of the different situations encountered when a new item is added to a singleton,
a pair or a triple. This leads to a new reading of logical proportion. Section 3
discusses the logical expressions of oddness and evenness in the Boolean case.
Section 4 investigates the logical relation between oddness and evenness indices
which does not reduce to a simple binary opposition. This relation, which involves
the third notion of being balanced, is discussed in the setting of square and
hexagonal opposition. A logical proportion, known as inverse paralogy, encodes
balancedness and turns out to be at the basis of the logical encoding of Bongard
problems [4] (which are a particular type of intelligence puzzle). Section 5 studies
the extension of oddness and evenness indices in the case of graded features.

2 Logical Proportions and Conformity

Considering n Boolean features, a single item is described as an element of Bn.
We focus on a particular feature. We consider the process where a new item with
feature value x is added to a singleton {a}, or a pair {a, b}, or a triple {a, b, c} of
values of the same feature for another, two other, three other items respectively.
In case of triples, what is obtained can be related to the notion of (homogeneous
and heterogeneous) logical proportions, that we first briefly recall.
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2.1 Logical Proportions: Brief Background

Logical proportions [14,15] connect four Boolean variables through a conjunc-
tion of two equivalences between similarity or dissimilarity indicators pertaining
respectively to two pairs (a, b) and (c, d). There are two similarity indicators,
namely a∧ b and a∧ b, and two dissimilarity indicators a∧ b and a∧ b. A proto-
typical logical proportion is the analogical proportion, which expresses that “a
is to b as c is to d”, or more formally that “a differs from b as c differs from d
(and b differs from a as d differs from c)”, which is logically expressed as [12] by
the quaternary connective (where x = 1 if x = 0 and x = 0 if x = 1):

Ana(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
Beyond distinctive properties (Ana(a, b, a, b) = 1; Ana(a, b, c, d) = Ana(c, d, a, b);
Ana(a, b, c, d) = Ana(a, c, b, d)), Ana also satisfies Ana(a, b, c, d) = Ana(a, b, c, d)
which is a remarkable property, namely “code independency”, expressing inde-
pendency with respect to the way the considered feature is encoded in terms of
what is true or what is false. It has been established [14] that there exist eight
logical proportions satisfying “code independency”, which split into four homo-
geneous logical proportions (they include the analogical proportion) and four
heterogeneous ones. The names and expressions of the three other homogeneous
logical proportions are given below:

– reverse analogy : Rev(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
– paralogy : Par(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
– inverseparalogy : Inv(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))

Rev(a, b, c, d) reverses the analogy into “a is to b as d is to c”. Par(a, b, c, d)
expresses that what a and b have in common (positively or negatively), c and
d have it also, and conversely; Inv(a, b, c, d) states that what a and b have in
common, c and d do not have it. All logical proportions (not only the code
independent ones) have the property to be true for exactly 6 patterns among
24 possible ones. In Table 1 below, we give the 6 patterns that make true the
four homogeneous logical proportions. The four heterogeneous logical propor-
tions that are code independent have a quite different semantics. They express
that there is an intruder among {a, b, c, d}, which is not a (H1), which is not b
(H2), which is not c (H3), and which is not d (H4) respectively. Their logical
expressions are given below:

– H1(a, b, c, d) = (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)
– H2(a, b, c, d) = (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)
– H3(a, b, c, d) = (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)
– H4(a, b, c, d) = (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

together to the six patterns that make them true in Table 2.
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Table 1. Analogy, Reverse analogy, Paralogy, Inverse Paralogy truth tables

Ana Rev Par Inv

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1

1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0

0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1

1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0

Table 2. H1, H2, H3, H4 Boolean truth tables

H1 H2 H3 H4

1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0

1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1

0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0

1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1

0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0

2.2 Conformity Analysis Within 2, 3 and 4-Elements Multisets

Considering a Boolean item, a and another one x to be added to build a pair
(a, x), there are only two situations. Either they are identical namely (a, x) =
(1, 1) or (0, 0) and a = x, or they are different (a, x) = (1, 0) or (0, 1) and
a �= x. Now, dealing with two Boolean items a, b, and a third one x to be
added to build a triple (a, b, x), there are still two situations. Either they are
all identical, i.e. (a, b, x) = (1, 1, 1) or (0, 0, 0) and a = b = x, or not, i.e.
(a, b, x) = (1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0) or (0, 0, 1). Since (a, b, x)
results from the process of adding x to (a, b), one should make a difference
between the multisets (1, 1, 0), (0, 0, 1) where a = b �= x and the four other
multisets (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0) where a �= b.

If we now consider three Boolean items a, b, c, and then x is added, the
situations become richer. Apart from the situation where all are identical, namely
(a, b, c, x) = (1, 1, 1, 1) or (0, 0, 0, 0) and a = b = c = x, there are two very distinct
situations, the one where truth and false values are equally balanced between
a, b, c, x, i.e. (a, b, c, x) = (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1),
or (0, 1, 1, 0), and the situation where there is an intruder among a, b, c, x,
i.e. (a, b, c, x) = (1, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (0, 1, 0, 0), (1, 1, 0, 1), (0, 0, 1, 0),
(1, 1, 1, 0), or (0, 0, 0, 1). Moreover, as in the previous ternary case, considering
that (a, b, c, x) is obtained by the addition of x to (a, b, c), the last set can be
split into two groups, namely the last two 4-tuples (1, 1, 1, 0), (0, 0, 0, 1) where x
does not respect the preexisting identity a = b = c, and the 6 others, where there
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is an intruder but which is not the latest entrant, which means that x agrees
with the majority in {a, b, c} (note that majority makes sense as soon as there
are three elements a, b, c).

Note that for larger subsets S, having 4 elements only (rather than 3), such
as {a, b, c, d}, it becomes possible that the newcomer x increases the minority
(e.g., going from one ‘0’ to two ‘0’), without changing the majority (e.g., made of
three ‘1’). Indeed, the majority value that may be shared by 3 elements in the 4-
elements subset will then remain unchanged in the 5-elements subset {a, b, c, d, x}
resulting from the arrival of a fifth element whatever its value. A similar phe-
nomenon takes place if we start with larger subsets S having 5 elements or more.
So we are losing a distinctive property of 3-elements subsets which have a differ-
ent behavior depending if x conforms or not to the minority in the 3-elements
subset {a, b, c} when the triple is not fully homogeneous. Triples are the only
subsets such that adding an item that conforms to the triple minority, if any,
destroys the majority. Thus, 3-elements subsets are able to clearly discriminate,
among different x those that conform to the majority of the triple. This discus-
sion highlights the particular place of 3-elements multisets regarding the idea
of conformity. When adding a fourth element, we are back to the pattern of a
logical proportion, but with a new reading.

3 Oddness and Evenness Measures

A recent series of papers has reported promising experiments on benchmarks
with classifiers based on the simple ideas that a new item should go in the class
where this item is the less at odds with the members of the class, or where the
class augmented with the new item should remain as even as possible. These
classifiers are making use of an oddness measure for an item with respect to a
class [7], or of an evenness measure [5,6] of a set of items. The global oddness
measure is built, up to a normalization factor, by first adding the values of a
Boolean oddness index over the n features describing the items, and then by
cumulating the results obtained for all the subsets of items of a given size in
the class. Similarly, the global evenness measure of a class is computed by a
double cumulation of the values of a Boolean evenness index over features and
over subsets with three items (up to normalization). In this section, we restate
the expressions of the oddness index and of the evenness index. As we shall see,
both of them have expressions that are based on heterogeneous proportions.

3.1 An Oddness Index for Boolean Data

The oddness index can be defined from heterogeneous proportions. Let us
remember the meaning of Hi: Hi(a, b, c, d) holds if and only if there is an
intruder among a, b, c, d and the value in position i is not this intruder. Thus,
H1(a, b, c, d) = H2(a, b, c, d) = H3(a, b, c, d) = 1 means that there is an intruder
which is out of the multiset {a, b, c}. This has led to the definition of the oddness
index of x with respect to {a, b, c} as follows:

Odd({a, b, c}, x) =def H1(a, b, c, x) ∧ H2(a, b, c, x) ∧ H3(a, b, c, x) (1)
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Table 3. H1, H2, H3 and Odd truth values

a b c d H1 H2 H3 Odd

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 1 0 1 1 0 0

0 0 1 1 0 0 0 0

0 1 0 0 1 0 1 0

0 1 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 1 0 1 1 0

1 0 0 0 0 1 1 0

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 1 0 1 0

1 1 0 0 0 0 0 0

1 1 0 1 1 1 0 0

1 1 1 0 1 1 1 1

1 1 1 1 0 0 0 0

Since H1(a, b, c, d) ∧H2(a, b, c, d) ∧H3(a, b, c, d) ∧H4(a, b, c, d) is a contradiction
(as can be seen on the truth tables), we have Odd({a, b, c}, x) → ¬H4(a, b, c, x).
It can be checked that the right hand side of this definition is stable with respect
to any permutation of a, b, c which means that the multiset notation on the left
hand side is justified. The truth table of Odd is given in Table 3. It is clear that
Odd({a, b, c}, x) holds only when the value of x is seen at odds among the other
values, i.e. when x is the intruder. Moreover Odd({a, b, c}, x) does not hold in
the opposite situation where there is a majority among values in a, b, c, x and x
belongs to this majority (e.g., Odd({0, 1, 0}, 0) = 0), or when there is no majority
at all (e.g., Odd({0, 1, 1}, 0) = 0).

A simple examination of Table 3 shows that Odd({a, b, c}, x) is equivalent to

Odd({a, b, c}, d) ≡ ((a ∧ b ∧ c) �≡ d)) ∧ ((a ∨ b ∨ c) �≡ d) (2)

More precisely, given a multiset of three identical Boolean values a, b, c,
Odd({a, b, c}, x) can act as a flag indicating if the 4th value x is different from
the common value of a, b, c. Then the value x is at odds with respect to the other
values. Moreover, such a definition can be easily generalized to the expression
of the oddness of x with respect to any subset S (instead of just {a, b, c}) by
replacing a ∧ b ∧ c (resp. a ∨ b ∨ c) by the conjunction (resp. disjunction) of all
elements in S in (2).
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3.2 An Evenness Index for Boolean Data

Contrary to the oddness definition, where all Hi, i = 1, 2, 3, are involved in
defining the measure, only H4 is useful for defining Even4({a, b, c, x}). Adopting
an opposite viewpoint, we want to know if adding a new element to a given
subset of items, keeps this subset as homogeneous, as even as it was before (i.e.,
x does not appear as an intruder in subset {a, b, c}).

Let us consider three Boolean variables a, b, c. Then, there are two possibil-
ities, either a = b = c, or only two of the three are equal. In both cases, a strict
majority takes place. Let m denote the majority value.

Now consider the newcomer x, either x = m, and m remains the majority
value in {a, b, c, x}, or x �= m, and there is no longer any majority in {a, b, c, x}
(i.e., two values are equal to 1 and two values to 0) if a, b, c are not identical. Only
if x = m, x conforms to the majority. This idea of majority helps us to define an
evenness index via an heterogeneous proportion. Since Hi(a, b, c, d) = 1 holds
if and only if there is an intruder among a, b, c, d and the value in position i
is not this intruder, Hi(a, b, c, d) = 1 implies that there is a majority of values
among (a, b, c, d) and the value in position i conforms to the majority of values
appearing among the three other positions (i.e. the multiset of values {a, b, c, d} is
more or less even). But the reverse implication does not hold since when the four
parameters have identical value, ∀i ∈ [1, 4],Hi(a, b, c, d) = 0. In order to have
a Boolean definition for “there is a majority of values among the parameters
a, b, c, x and the parameter in position i belongs to this majority of values”, we
need to consider the case where all the values are identical, which leads to:

Eveni({a, b, c, d}) =def Hi(a, b, c, d) ∨ Eq(a, b, c, d) (3)

where Eq(a, b, c, d) =def (a ≡ b) ∧ (b ≡ c) ∧ (c ≡ d). Thus, with Eveni we take
into account the special case where all the values are equal. The truth table of
Even4 is given in Table 4.

It is clear that Even4({a, b, c, x}) holds only when the value of x belongs to
a majority of the feature values. Even4({a, b, c, x}) does not hold in an oppo-
site situation where there is no majority among values as it is the case for
Even4({0, 0, 1, 1}) or Even4({0, 1, 1, 0}).

The situations where Even4({a, b, c, x}) = 1 exactly cover the two cases
already mentioned where x is identical to the majority value in the triple {a, b, c}
(x is not the intruder), namely either a = b = c = x, or two of the three a, b, c are
equal to x. So the fact that x joins the subset {a, b, c}, when Even(a, b, c, d) = 1,
leaves the resulting subset at least as even as it was, hence the name, and in fact
the majority is reinforced by the arrival of x. Note also that Even4(a, b, c, d) is left
unchanged by any permutation of {a, b, c}. This means that the ordering inside
triples does not matter. Besides, Even4(a, b, c, d) = 1 entails Even4(a, b, c, d) =
1, expressing that Even4(a, b, c, d) does not depend on the information encoding:
both Odd and Even4 are code-independent.
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Table 4. H4, Eq and Even4 truth values

a b c d H4 Eq Even4

0 0 0 0 0 1 1

0 0 0 1 0 0 0

0 0 1 0 1 0 1

0 0 1 1 0 0 0

0 1 0 0 1 0 1

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 1 0 1

1 0 0 0 1 0 1

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 1 0 1

1 1 0 0 0 0 0

1 1 0 1 1 0 1

1 1 1 0 0 0 0

1 1 1 1 0 1 1

4 Relation Between Oddness and Evenness Indices

The oddness and evenness Boolean indices have been proposed independently.
Despite the fact that their name might suggest that oddness and evenness cap-
ture dual concepts, it is not the case that Even4(a, b, c, d) ≡ ¬Odd({a, b, c}, d),
as it can be easily seen on truth tables. However, these two indices exhibit notice-
able links that we are going to lay bare in the setting of structures of opposition.
Indeed Odd({a, b, c}, d) and Even(a, b, c, d) (from now on we omit the subscript
4) interplay with a third entity whose truth table coincides with the one of inverse
paralogy Inv(a, b, c, d), as shown below. The last part of the section shows that
Inv(a, b, c, d) makes sense by itself and is the cornerstone of Bongard problems,
logically speaking.

4.1 Oddness, Evenness and Balancedness: A Hexagon of Opposition

First, let us notice that Odd and Even are mutually exclusive. It can be easily
checked on truth tables that the complement of their disjunction is nothing but
the inverse paralogy introduced in Sect. 2, namely

¬Even(a, b, c, d) ∧ ¬Odd({a, b, c}, d) ≡ Inv(a, b, c, d).

This reflects the fact that Odd and Even and Inv are mutually exclusive and
cover the 16 possible Boolean 4-tuples of values for (a, b, c, d) (i.e., the disjunction
Even(a, b, c, d) ∨ Odd({a, b, c}, d) ∨ Inv(a, b, c, d) is a tautology). Thus, we have
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Even(a, b, c, d) ≡ ¬Odd({a, b, c}, d) ∧ ¬Inv(a, b, c, d)
Odd({a, b, c}, d) ≡ ¬Even(a, b, c, d) ∧ ¬Inv(a, b, c, d)

Let us also note that Even(a, b, c, d) → ¬Odd({a, b, c}, d),
¬Even(a, b, c, d) → ¬H4(a, b, c, d),
Odd({a, b, c}, d) → ¬H4(a, b, c, d).

which exhibits the opposite nature of Odd and Even. Their structure of opposi-
tion may be better understood using a hexagon of opposition which generalizes
the classical square of opposition as explained now.

The square of opposition is an old graphical device which exhibits three
different forms of opposition between pairs of logical statements among four ones
(contradiction, not being true together, not being false together). The reader is
referred to [1,13] for details. Starting in the middle of the XXth century, a revival
of interest has led to the introduction of a hexagon of opposition which involves
three squares of opposition [2,3]. It has been noticed that such a structure can
be displayed as soon as we have at hand a partition with three elements [9].

In Fig. 1, we display such a hexagon based on the partition made of the three
mutually exclusive quaternary connectives whose patterns that make them true
are exhibited. We recognize Eq(a, b, c, d) expressing that a, b, c, d are identical,
the disjunction H1(a, b, c, d) ∨ H2(a, b, c, d) ∨ H3(a, b, c, d) ∨ H4(a, b, c, d) which
expresses that there is an intruder among a, b, c, d, and the inverse paralogy
Inv(a, b, c, d) which corresponds to the six patterns where true and false are
equally balanced. In a hexagon of opposition, diagonals feature contradiction
via negation. Thus ¬(H1(a, b, c, d) ∨ H2(a, b, c, d) ∨ H3(a, b, c, d) ∨ H4(a, b, c, d))
is nothing but Ana(a, b, c, d) ∨ Rev(a, b, c, d) ∨ Par(a, b, c, d) ∨ Inv(a, b, c, d)),
known as Klein’s operator [14]. Arrows −−−−−−>> define logical entailments, the
operators that are at vertices where two arrows arrive are the disjunction of
the operators associated with the other extremities of the two arrows, while the
operators that are at vertices from which two arrows start are the conjunction
of the operators at the other extremities of the two arrows.

In Fig. 2 below, we display a hexagon based on the partition made by
Odd({a, b, c}, d), Inv(a, b, c, d) and Even(a, b, c, d). Diagonals and arrows have
the same respective logical meaning as in the previous hexagon, namely contra-
diction and entailment. While in Fig. 1 the underlying partition was reflecting
the number of truth values that are equal in the patterns (4, 3, and 2 respec-
tively), Fig. 2 is based on a partition with a more subtle meaning: either the
fourth element is at odds with the three others, or the set {a, b, c} remains even
after the addition of d, or the addition of d makes {a, b, c, d} equally balanced
with regard to truth or falsity.

4.2 Inverse Paralogy and Bongard Problems

The inverse paralogy operator Inv(a, b, c, d), which can be viewed as expressing
that the addition of d makes {a, b, c, d} equally balanced between truth and
falsity, has another more static reading expressing that what a and b have in
common, c and d do not have it, and conversely as said in subsect. 2.2. This
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1 1 1 1
0 0 0 0

unbalanced
¬Inv(a, b, c, d) 0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

non identity
¬Eq(a, b, c, d

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

Klein’s operator

Fig. 1. Hexagon induced by Eq(a, b, c, d), Inv(a, b, c, d) and
∨

i Hi(a, b, c, d)

1 1 1 0
0 0 0 1

unbalanced
¬Inv(a, b, c, d) 1 1 1 1

0 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0
1 1 0 1
1 0 1 1
0 1 1 1

non odd
¬Odd(a, b, c, d)

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 1
0 1 1 0

uneven
¬Even(a, b, c, d)

Fig. 2. Hexagon induced by Odd({a, b, c}, d), Inv(a, b, c, d) and Even(a, b, c, d)
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Fig. 3. A Bongard problem

second understanding is the one we should have in mind for understanding and
showing that Inv(a, b, c, d) is at work in Bongard problems.

In such visual puzzles, which first appeared in the appendix of a book pub-
lished by Bongard [4] (see also [10,11]), you are in presence of two sets of simple
diagrams A and B. All the diagrams from set A have a common feature, which
is lacking in all the diagrams of set B. The problem is to identify this common
factor in A. Figure 3 shows an example of such a problem [10], where A (on the
left) and B (on the right) are both made of six boxes with simple drawings.
As usual with visual problems, a part of the difficulty is to identify the rele-
vant features. Having non relevant features is not a problem, but missing a key
feature will forbid you to find the solution. In the example of Fig. 3, features
are pretty obvious (being a triangle (t), being a quadrangle (q), being black (b),
being white (w), and maybe we may add information about being small, in a
corner, including the center of the box (c), having some orientation, and so on.
Difficult problems come from the fact that some relevant feature may be difficult
to identify (e.g., some cardinality condition).

Assume we use the Boolean features (t, q, b, w, c). Let us denote the left boxes
Bli and right boxes Bri numbered from 1 to 6 in the reading order. Then Br1 is
encoded by (1, 0, 0, 1, 1), Br2 by (1, 0, 1, 0, 0), while Bl1 is (0, 1, 1, 0, 0), and Bl2
(0, 1, 0, 1, 0). If we consider two left boxes and two right boxes, we may expect
that they satisfy an inverse paralogy relation on a number of features. Table 5
shows the patterns linking the above boxes for five features.

As can be seen, for features t, q, b, w we have patterns that validate an
inverse paralogy. In particularly, the first two patterns are characteristic of the
inverse paralogy. The first one identifies t (being a triangle) as corresponding
to a property that is possessed by Bl1 and Bl2 and by none of Br1 and Br2.
This is a feature which is common to Bl1 and Bl2 and lacking in both Br1 and
Br2. So the procedure is to check it for any two pairs of left boxes and any two
pairs of right boxes, we have always this pattern for a common feature (here t
is the only candidate). Observe also that feature c introduces some noise, since
the corresponding pattern in Table 5 is of the intruder type and is satisfied by
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Table 5. Example of partial encoding of the Bongard problem

Br1 Br2 Bl1 Bl2

t 1 1 0 0

q 0 0 1 1

b 0 1 1 0

w 1 0 0 1

c 1 0 0 0

H2, H3, and H4, but not by Inv. This is unavoidable when it happens in such
problem for some “ill-chosen feature”.

5 Extension to Numerical Features

We briefly discuss the extension of oddness and evenness indices to graded values.
Feature values are now assumed to belong to [0, 1] after suitable normalization.

Oddness A direct translation of formula (2), taking min for ∧, max for ∨, and
1 − | · − · | for ≡ as in �Lukasiewicz logic, leads to:

Odd({a, b, c}, d) = min(|max(a, b, c) − d|, |min(a, b, c) − d|) (4)

First, it is easy to check that Odd remains code independent, changing graded
values into their complement to 1. Let us examine some situations to get a precise
understanding of the formula for numerical data and to check that this oddness
measure fits with the intuition. We have

– Odd({u, u, u}, v) = |u − v|
Indeed the larger |u − v|, the more v is at odds with regard to {u, u, u}.

– Odd({v, u, u}, v) = 0 which is consistent with the expected semantics of Odd.
– Odd({u, v, w},max(u, v, w)) = Odd({u, v, w},min(u, v, w)) = 0, and in any

case, Odd({u, v, w}, u) ≤ 0.5.

This suggests that the proposed definition fits with the initial intuition and
provides high truth values when d appears Odd with regard to the multiset
{a, b, c} and low truth values when d is not very different from the other values.

It is also worth noticing that this oddness index is not limited to multi-
sets {a, b, c} with 3 elements, and can be extended to the oddness Odd(S, x)
of an item x with regard to a multiset S of any size. as follows: Odd(S, x) =
min(|max(S) − x|, |min(S) − x|). As can be seen, we only compare x to the
upper and lower values in S, which may be considered as a meaningful summary
of S only if S is very small (when we have no additional information about the
distribution of values in S), i.e. |S| = 1, 2, 3, or may be 4.
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Evenness A translation of formula (3), taking min for ∧, max for ∨, and 1−|·−·|
for ≡, leads to the following expression for Even4(a, b, c, d):

max(min(1 − |min(a,b) −min(1 − c, d)|, 1 − |min(1 − a, 1 − b) −min(c, 1 − d)|),
1 − |max(a, b, c, d) −min(a, b, c, d)|)

Let us examine the behavior of this definition. Let us consider f(x) =
Even(0, x, x, x): we would expect f to get the constant value 1, since, whatever
its value, the last element x, cannot be considered as an intruder in the multiset
{0, x, x}; and g(x) = Even(0, x, x, 0): here we expect a function decreasing from 1
to 0 when x goes from 0 to 1. Indeed, the smaller x, the closer to 1 Even(0, x, x, 0)
should be, while the larger x the more 0 appears to be equal to the minority
value in the multiset {0, x, x}. As can be checked, f is not a constant function
and g is not monotonically decreasing. This contrasts with Odd({0, x, x}, x) = 0
and Odd({0, x, x}, 0) = 0. Since a direct translation of the Boolean definition (3)
does not fit with the expected meaning of evenness in the case of graded truth
values, we may try to start from the property Even ≡ ¬Odd∧¬I to get another
translation as: Even(a, b, c, d) = min(1 − Odd({a, b, c}, d), 1 − I(a, b, c, d)). This
new definition leads to Even(0, x, x, x) = 1−x if x ≤ 0.5 and 1−min(x, 2− 2x)
when x ≥ 0.5. Then g(x) = Even(0, x, x, 0) is satisfactory since we get the
decreasing function 1 − x. However f(x) = Even(0, x, x, x) may be far from 1
(in particular, Even(0, 2

3 ,
2
3 ,

2
3 ) = 1

3 ). Such a behavior for f is not satisfactory.
It is an open question to find a better definition for Even in the graded case,
which would coincide with the Boolean case when a, b, c, d ∈ {0, 1}.

6 Concluding Remarks

This paper has provided an organized view of two logical indices referring to the
ideas of evenness or of oddness of an item with respect to a multiset, and their
relationship in the setting of logical proportions. In particular, we have shown
that a third notion, expressing that a set of truth values is balanced between
truth and falsity, complements them in the Boolean case. While analogical pro-
portion has been shown to be useful in solving analogical puzzles and Raven
progressive matrix tests, heterogeneous logical proportions for solving “pick up
the one which does not fit” quizzes, it is of interest to notice that the third logical
operator underlies another type of puzzle, Bongard problems.
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3. Blanché, R.: Structures Intellectuelles. Essai sur l’Organisation Systématique des
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Abstract. In reliability analysis, comparing system reliability is an
essential task when designing safe systems. When the failure probabili-
ties of the system components (assumed to be independent) are precisely
known, this task is relatively simple to achieve, as system reliabilities are
precise numbers. When failure probabilities are ill-known (known to lie
in an interval) and we want to have guaranteed comparisons (i.e., declare
a system more reliable than another when it is for any possible proba-
bility value), there are different ways to compare system reliabilities. We
explore the computational problems posed by such extensions, providing
first insights about their pros and cons.

Keywords: System design · Reliability analysis · Imprecise
probability · Comparison

1 Introduction

Being able to compare system reliabilities is essential when designing systems.
Provided the structure function mapping single component reliabilities to the
overall system reliability is known, this step poses no particular problem (at least
from a theoretical standpoint) when failure probabilities are precisely known.

However, in practice, it may be difficult to provide precise assessments of such
probabilities, for example because little data exist for the components (they may
be issued from new technologies), or because they are given by expert opinions.
This typically happens in early-stage phase design of new systems. In such a
case, the problem of comparing system reliabilities become much more difficult,
both conceptually and computationally speaking.

In this paper, we explore what happens when the component probabilities
of functioning are ill-known, that is are only known to lie in an interval. Several
aspects of reliability analysis have been extended to the case of ill-known prob-
abilities, such as importance indices [8], multi-state systems [4], common cause
failure problems [9], . . . Yet, to our knowledge the problem of system reliability
comparison remain to be formally studied within this setting.

In Sect. 3, we extend usual system comparisons (recalled in Sect. 2) to
interval-valued probabilities in two different ways, discussing the theoretical and
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 619–629, 2016.
DOI: 10.1007/978-3-319-40581-0 50
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practical pros and cons of each extension. Section 4 provides a more complex
examples than the very simple, illustrative ones provided along the paper. The
necessary basics of reliability as well as notations are briefly recalled in Sect. 2.

2 System Modelling and Comparison: Basics

In this paper, we assume that we want to compare the designs of K systems
S1, . . . , SK in terms of reliability, in order to choose (one of) the safest among
them. The kth system will be composed of a set of rk components, and a given
component can belong to one of T populations (types) of components, all com-
ponents of a population being assumed to have the same stochastic behaviour
(i.e., same failure rate).

We will denote by pj ∈ [0, 1] the possibly ill-known probability that a compo-
nent of type j is functioning, and 1 − pj the probability that it is inoperative or
malfunctioning. We will also denote by xk

i,jik
∈ {0, 1} both the ith component of

kth system, which is of type jik, as well as its state (xk
i,jik

= 0 if malfunctioning,
1 if working). pjik

is then the probability of xk
i,jik

= 1. Table 1 summarises these
notations.

Table 1. Notation summary

Variable Domain Meaning

K Z Number of systems

rk Z Number of components in the kth system

T Z Number of component types (of possible stochastic
behaviors)

pj [0, 1], j ∈ {1, . . . , T} Probability that a component of type j will be
working

xk
i,jik

{0, 1} ith component of kth system, of type jik, and its
state

In this paper, we will assume that we know the structure function φk :
{0, 1}rk → {0, 1} of the kth system and that it is written in the “simple” follow-
ing way:

φk(xk
1,j1k

, . . . , xk
rk,jrkk

) =
∑

A⊆{1,...,rk}
dk

A

∏

i∈A

xk
i,jik

(1)

with dk
A real-valued coefficients (some subsets A can receive dA = 0) that can

either be positive or negative. At least in principle, every system and structure
function can be put in the form of Eq. (1), that is a multi-linear form [2]. We also
make the classical assumption in reliability that each system is coherent, meaning
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that φk is increasing1 and that we have the boundary conditions2 φk(0, . . . , 0) =
0, φk(1, . . . , 1) = 1. Going from the structure function to the reliability Rk of
the system is then quite simple, as it simply consists in replacing xi,jik

by the
corresponding probability pjik

, that is

Rk(pj1k
, . . . , pjrkk

) =
∑

A⊆{1,...,rk}
dk

A

∏

i∈A

pjik
(2)

To simplify notations, we will simply note Rk(pj1k
, . . . , pjrkk

) by Rk. Note that
Rk is a function of the probabilities pj , that can appear multiple times for one
subset A. Note that being a coherent system means that the functions Rj are
increasing in every variable pj .

Example 1. Assume we have two (very) simple series system (K = 2), a first
with two components, a second with three, and three different component types
(T = 3). The two first components of each system are of the same type (1 and
2, respectively). The systems are illustrated in Fig. 1, and we do have

R1 = p1 · p2

R2 = p1 · p2 · p3

x1
1,1 x1

2,2

System 1

x2
1,1 x2

2,2

System 2

x2
3,3

Fig. 1. Two simple series systems

Comparing two systems (say, the kth and �th) then comes down to compare
their reliabilities Rk and R�. System Sk is then said to be preferred to system
S�, denoted by Sk � S�, if and only if

Rk > R� (3)

or, equivalently when probabilities pj are precisely known, if and only if

Rk − R� > 0. (4)

Example 2. Let us continue Example 1 by using the precisely valued probabilities
p1 = 0.8, p2 = 0.9 and p3 = 0.8. We then have

R1 = 0.72 and R2 = 0.576
1 If one component goes from failing to working, then the system state can only

improve.
2 The system works (fails) if all components work (fail).
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meaning that system S2 should be discarded. We also have

R1 − R2 = p1 · p2 − p1 · p2 · p3 = p1 · p2 · (1 − p3) = 0.144.

We can also notice that whatever the values of p1, p2, p3, we will always have
S1 � S2 (since R1 − R2 is a product of positive terms).

Let us now investigate what becomes of such a comparison when probabilities
pj ∈ [p

j
, pj ] are only known to lie in intervals.

3 Comparing Systems with Interval Probabilities

In this section, we investigate the most natural extensions of Eqs. (3) and (4) to
an imprecise setting. We will see that in the imprecise case, they do no longer
coincide, and the first extension only provides an approximation of the second
one, but is computationally more tractable.

Note that in this paper, we are interested in guaranteed comparisons, that
is we want to assess that Sk is more reliable than S� when this is true for any
values of pj within [p

j
, pj ] and for j = 1, . . . , T . For convenience, we will denote

by P = ×T
j=1[pj

, pj ] the Cartesian product of those intervals.

3.1 Interval Comparison: Definition

A first way to extend the comparison is to compute bounds over Rk, obtaining
the interval [Rk, R

k
] such that

Rk = inf
pjik

∈[p
jik

,pjik
]
Rk =

∑

A⊆{1,...,rk}
dk

A

∏

i∈A

p
jik

(5)

and
R

k
= inf

pjik
∈[p

jik
,pjik

]
Rk =

∑

A⊆{1,...,rk}
dk

A

∏

i∈A

pjik
. (6)

where the fact that probability values can be replaced by their corresponding
bounds follows from the increasing monotonicity of reliability functions. We
can then straightforwardly extend Eq. (3) by saying that system Sk is interval-
preferred to system S�, denoted Sk �IC S�, if and only if

Rk > R
�
, (7)

that is we are absolutely certain that Sk is more reliable than S�. In this case,
comparing two systems just come down to make four computations instead of
two to get the corresponding intervals. If the two intervals overlap, then systems
Sk and S� are incomparable according to this criterion.

However, comparison (7) is very rough, in the sense that it will often result
in incomparability of systems, even if it is obvious that one system is preferable
to another, as Example 3 shows.
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Example 3. Let us consider the systems of Example 2 with the following bounds

p1 ∈ [0.7, 0.9], p2 ∈ [0.8, 1] and p3 ∈ [0.7, 0.9].

We then obtain the intervals

R1 ∈ [0.56, 0.9] and R2 ∈ [0.392, 0.81]

meaning that the system are not comparable according to �IC .

3.2 Difference Comparison:definition

Interval comparison somehow extends Eq. (3), but a second way to extend the
precise comparison is to extend Eq. (4). Before doing so, let us simplify notations
by adopting the convention that Rk−� := Rk −R�. We can then say that system
Sk is difference-preferred to system S�, denoted Sk �DC S�, if and only if the
value

Rk−� = inf
pjik

∈[p
jik

,pjik
]

pji�∈[p
ji�

,pji�
]

Rk − R� (8)

= inf
pjik

∈[p
jik

,pjik
]

pji�
∈[p

ji�
,pji�

]

∑

A⊆{1,...,rk}
dk

A

∏

i∈A

pjik
−

∑

A⊆{1,...,r�}
d�

A

∏

i∈A

pji�
(9)

is positive, i.e., Rk−� > 0. In practice, this comes down to ask Rk to be higher
than R� for all possible values of pj , hence it also gives a guaranteed comparison.
Example 4 and Corollary 1 show that this way of comparing systems is actually
better than the previous, in the sense that it still gives guarantee but is less
conservative. Yet, computing Rk−� can be far from straightforward (in contrast
with the case of interval comparison), and we try to characterize in the next
section when this task will be easy.

Example 4. Let us apply Eq. (7) to Example 3. In this case we have from Exam-
ple 2 that R1−2 = p1 · p2 · (1 − p3) and so

R1−2 = inf
p1∈[0.7,0.9],
p2∈[0.8,1],
p3∈[0.7,0.9]

p1 · p2 · (1 − p3) = 0.7 · 0.8 · 0.1 = 0.056

which is indeed quite low, but still higher than zero, hence S1 �DC S2, allowing
us to reach a decision where we could not before.

And indeed, we always have the following relation between the two notions:
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Proposition 1. Rk−� ≥ Rk − R
�

Proof. The inequality infx∈D f(x) + g(x) ≥ infx∈D f(x) + infx∈D g(x) with x a
vector of values and D a convex set is known to be true. If we define x as the
vector of probability values p1, . . . , pT , and take f = Rk, g = −R�, D = P, we
get

inf
x∈P

Rk(x) − R�(x) ≥ inf
x∈P

Rk(x) + inf
x∈P

−R�(x) ≥ inf
x∈P

Rk(x) − sup
x∈P

R�(x)

We then get the following corollary, showing that if Sk �IC S�, then Sk �DC

S�, but not the reverse. Actually, a similar problem is known under the name
“dependency problem” in interval arithmetic, for which many solutions have
been proposed [3].

Corollary 1. If Rk − R
�
> 0, then Rk−� > 0

So Rk−� is definitely a more accurate way of comparing systems. Let us now
study a bit the problem of actually computing it.

Remark 1. In imprecise probability theory, a similar relation exists between the
maximality decision rule and the interval dominance decision rule [10]. However,
two main differences, in terms of optimization problems, between imprecise prob-
abilities and our study are that P is here an hypercube and that optimization
has to be done over non-linear functions in general, while imprecise probabili-
ties is concerned with bounds of expectations over a subset of the unit simplex.
Note that we could also search to adapt other imprecise probability decision
rules: maximin and maximax extend directly by using Eqs. (5) and (6), while
the notion of E-admissibility may require more involved investigation, especially
as it is not based on a pairwise comparison scheme.

3.3 Computing Rk−�

In general, Rk −R� will be a polynomial in variables pj that is neither decreasing
nor increasing in those variables. Computing bounds over such polynomials when
variables lie in a hyper-cube (which is our case) is known to be NP-hard [6],
hence infeasible in practice. Two solutions are then to look for approximations
that remain close to Rk−� but are more tractable (using interval bounds provides
a crude approximation), or to identify those sub-cases for which the solution will
be easier to find. In this paper, we explore the second alternative, and leave the
first for future works.

Before studying in detail how Rk−� can be computed, we have to recall
the notions of global monotonicity and of local monotonicity of a function [5]
f(x1, . . . , xn) in a variable xi

Definition 1 (Global monotonicity). Function f(x1, . . . , xn) is globally
increasing (decreasing) in xi if it is always increasing (decreasing) in xi, irre-
spectively of the other variable values.
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If f is globally increasing in xi, then its lower and upper bounds are known
to be obtained for xi = xi and xi = xi when xi ∈ [xi, xi], respectively.

Definition 2 (Local monotonicity). Function f(x1, . . . , xn) is locally
increasing (decreasing) in xi if it is either increasing or decreasing in xi when
the other variables x1, . . . , xi−1, xi+1, . . . , xn values are fixed.

If f is locally monotonic in xi, then its bounds are known to be obtained for
xi = xi or xi = xi, but which value to take between these two ones depends on
the other variable values, in contrast with global monotonicity (where the value
to consider is fixed, whatever the other variable values). A function will be said
to be non-monotone in xi if it is not locally or globally monotone in it.

Example 5. Consider the following functions of x1, x2 with xi ∈ [−2, 1], then the
functions

f1(x1, x2) = x1 − x2, f2(x1, x2) = −(x1 · x2), f3(x1, x2) = x2
1 · x2

2

are respectively globally, locally, and not monotone in each of their variables. x1

(x2) is globally increasing (decreasing) in f1. f2 is decreasing in x1 (x2) when x2

(x1) is positive, and increasing when x2 (x1) is negative (hence the monotonicity
depends on the value of the other variables). f3 is neither locally nor globally
monotone in both variables (i.e., f

3
= f3(0, 0)).

Given two systems Sk and S�, we now define the following subsets of com-
ponent types:

– The subsets

Tk = {j ∈ {1, . . . , T}|∀pji�
, i = 1, . . . , r�, ji� �= j}

T� = {j ∈ {1, . . . , T}|∀pjik
, i = 1, . . . , rk, jik �= j}

that denote the types of components that are encountered only in system Sk

(Tk) or S� (T�).
– The subset

T�∩k,1 = {j ∈ {1, . . . , T}|∃pji�
, pji′k

s.t. ji� = ji′k = j ∧
∃!i s.t. ji� = j ∧
∃!i′ s.t. ji′k = j}

that includes all component types that are in both systems, but only once in
each of them.

– The subset

T�∩k,+ = {j ∈ {1, . . . , T}|∃pji�
, pji′k

s.t. ji� = ji′k = j ∧
(∃i, i′ s.t. ji� = ji′� = j ∨
∃i, i′ s.t. jik = ji′k = j)}

that includes all component types that are in both systems and appear more
than once in at least one of the two systems.
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The subsets Tk, T�, T�∩k,1, T�∩k,+ form a well-defined partition of the component
types in systems Sk and S�. We can then show a first property

Proposition 2. Rk − R� is a globally monotonic function in variables pj, j ∈
Tk ∪ T�. It is increasing (decreasing) in variables pj , j ∈ Tk (pj , j ∈ T�)

Proof. Without loss of generality, let us assume that p1, . . . , pi ∈ Tk and
pi+1, . . . , pj ∈ T�. By assumption, we have

Rk − R� = Rk(p1, . . . , pi, pj+1, . . . , pT ) − R�(pi+1, . . . , pT ),

therefore the monotonicity with respect to p1, . . . , pi (pi+1, . . . , pj) depends only
of their monotonicity with respect to Rk (R�), which are known to both be
increasing in those variables.

This means that if pi ∈ Tk or T�, we know for which value of pi the lower
bound is obtained (p

i
if pi ∈ Tk, else pi ) . Also note that in the particular case

where Tk∩�,1 = Tk∩�,+ = ∅, the following result follows:

Lemma 1. if Tk∩�,1 = Tk∩�,+ = ∅, then Rk − R
�
= Rk−�

Proof. When Tk∩�,1 = Tk∩�,+ = ∅, there are no shared variables between Rk and
R�, meaning that j = T in proof of Proposition 2 and that

inf
p1,...,pi

inf
pi+1,...,T

Rk − R� = Rk(p
1
, . . . , p

i
) − R�(pi+1, . . . , pT

)

Proposition 3. Rk − R� is a locally monotonic function in variables pj, j ∈
Tk∩�,1.

Proof. (sketch) We know that both Rk and R� are equivalent to replacing the
xk

i,jik
in Eq. (1) by their probability types. If a type pi of component is present

once (and exactly once) in each system, this means that for every subset A, pj

power will be either zero or one in the products
∏

i∈Ak pjik
and

∏
i∈A� pji�

of
Eq. (2). Therefore, Rk −R� will be a sum of products where pj has power zero or
one, meaning that if the other variables p1, . . . , pj−1, pj+1, . . . , pT are fixed, the
derivative of Rk − R� with respect to pj will be a constant (whose positivity or
negativity will depend of p1, . . . , pj−1, pj+1, . . . , pT values), hence that Rk − R�

is either decreasing or increasing in pj .

x1
1,1 x1

2,2

System 1

x2
1,2 x2

2,3

System 2

Fig. 2. Two simple series systems with common component
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Example 6. Let us consider the series systems of Fig. 2 with three types of com-
ponents, where p2 ∈ T1∩2,1. We have

R1 − R2 = p1 · p2 − p3 · p2 = p2 · (p1 − p3)

which is indeed locally, but not globally, monotone in p2 (it is increasing if
p1 > p3, decreasing if p1 < p3).

This means that, if we have N = |Tk∩�,1| variables pj for which we are locally
monotone, we know that the lower bound is obtained for one of the 2N vertices
of the corresponding hypercube ×i∈Tk∩�,1 [pi

, pi]. If N is not too high, then we
can think of simply enumerating the set of possible values.

Finally, we cannot guarantee any kind of monotonicity for the variables
pj , j ∈ T�∩k,+. However, if the cardinality of T�∩k,+ is not too high, it is always
possible to make a random search within its defined area.

Example 7. Let us consider the very simple case depicted in Fig. 3, where we
have

R1 = p21 and R2 = p1

hence R1−2 = p21 − p1 = p1(p1 − 1), which will always be negative. However, if
p1 ∈ [0.4, 0.6], the bound R1−2 = −0.25 is obtained for p1 = 0.5, which does not
correspond to one of the bounds p

1
, p1.

x1
1,1 x1

2,1

System 1

x2
1,1

System 2

Fig. 3. Two simple series systems with redundancy

It means that when confronted with too much components present in both
systems and multiple times in at least one of them, computing the bound may
quickly become intractable in practice. This becomes even truer if the monotonic-
ity of other variables (those in T�∩k,1) depends on those variables in T�∩k,+.

An easy solution is to “duplicate” each variable pj in T�∩k,+ with variables
having the same interval bound, so that each variable is present at most once in
each system. In the case of Fig. 3, this means considering a variable p′

1 for the
second component of System 1. Such a straightforward approach has two poten-
tial drawbacks: the increase of the number of component types in T�∩k,1, and
the fact that the approximation can be quite loose. Such a strategy is therefore
likely to be useful only when the number of component types.
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4 A More Complex Example

Let us now consider two slightly more complex systems, where we want to chose
the most reliable design. The systems are depicted by Fig. 4, and consider three
types of components, with p1 ∈ [0.9, 1], p2 ∈ [0.8, 0.9] and p3 ∈ [0.85, 0.95],
where one hesitates between choosing a 2 out of 3 architecture with slightly less
reliable components, and a parallel architecture with potentially more reliable
components. The reliabilities of the systems are

R1 = p1 · p22 · (3 − 2p2)

and
R2 = p1 · p3 · (2 − p3).

Intervals [R1, R
1
] and [R2, R

2
] intersect, hence interval comparison is not suffi-

cient to tell us whether S1 is better than S2, or the reverse. We have T1∩2,1 = {1},
T1 = {2} and T2 = {3}, therefore if we want to compute R1−2, our previous
results tell us that

R1−2 = p∗
1 · p2

2
· (3 − 2p

2
) − p∗

1 · p3 · (2 − p3)

with p∗
1 ∈ {p

1
, p1}. The result is obtained for p1 (the function is decreasing in

p1 for p2 = p
2

and p3 = p3), and R1−2 = −0.1015, meaning that we cannot
conclude that S1 �DC S2. Following a similar line of reasoning for R2−1 (which
is increasing in p1), we get R2−1 = 0.00495 and are able to tell that S2 �DC S1.

x1
1,1

x1
2,2

x1
3,2

x1
4,2

2/3

A: System S1

x2
1,1

x2
2,3

x2
3,3

B: System S2

Fig. 4. Two system designs to compare.

5 Conclusion

In this paper, we have studied how comparisons of system reliabilities can be
extended when probabilities are ill-known, or interval-valued. In particular, we
have focused on comparison notions that allows for incomparability when the
information is too weak to be certain that one system is more reliable than
another.
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We have seen that computing the lower bound over the difference of reli-
abilities is less conservative, but more computationally demanding than just
comparing reliability bounds of each systems taken individually. While we have
pointed out ways to reduce the complexity of such computations (by focusing
on global and local comonotonicity), it remains to investigate how to approxi-
mate Rk−� with a lower bound better than Rk − R

�
, but computationally more

tractable than computing Rk−�. A first way to do so is to exploit bounds used
when the reliability probabilities are precisely known, but when computing the
output probability is computationally prohibitive, see e.g., [7].

An additional interesting problem to explore is to formalize which infor-
mation we should query to make two incomparable systems comparable. For
instance, we may formulate it as an expert elicitation problem [1].

References

1. Abdallah, N.B., Destercke, S.: Optimal expert elicitation to reduce intervaluncer-
tainty. In: Proceedings of the Thirty-First Conference on Uncertainty in Artificial
Intelligence, UAI 2015, pp. 12–21, 12–16 July, 2015, Amsterdam, The Netherlands
(2015)

2. Borgonovo, E.: The reliability importance of components and prime implicants
in coherent and non-coherent systems including total-order interactions. Eur. J.
Oper. Res. 204(3), 485–495 (2010)

3. De Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer.
Algorithms 37(1–4), 147–158 (2004)

4. Ding, Y., Lisnianski, A.: Fuzzy universal generating functions for multi-state sys-
tem reliability assessment. Fuzzy Sets Syst. 159(3), 307–324 (2008)

5. Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy
interval analysis. IEEE Trans. Fuzzy Syst. 16(2), 388–402 (2008)

6. Kreinovich, V., Lakeyev, A., Rohn, J.: Computational complexity of interval alge-
braic problems: some are feasible and some are computationally intractable-a sur-
vey. Math. Res. 90, 293–306 (1996)

7. Mteza, P.Y.: Bounds for the reliability of binary coherent systems. Ph.D. thesis
(2014)

8. Sallak, M., Schon, W., Aguirre, F.: Extended component importance measures
considering aleatory and epistemic uncertainties. IEEE Trans. Reliab. 62(1), 49–
65 (2013)

9. Troffaes, M.C., Walter, G., Kelly, D.: A robust bayesian approach to modeling
epistemic uncertainty in common-cause failure models. Reliab. Eng. Syst. Saf. 125,
13–21 (2014)

10. Troffaes, M.: Decision making under uncertainty using imprecise probabilities. Int.
J. Approximate Reasoning 45, 17–29 (2007)



Machine Learning



Visualization of Individual Ensemble
Classifier Contributions

Catarina Silva1,2(B) and Bernardete Ribeiro1

1 Center for Informatics and Systems, University of Coimbra, Coimbra, Portugal
{catarina,bribeiro}@dei.uc.pt

2 School of Technology and Management,
Polytechnic Institute of Leiria, Leiria, Portugal

Abstract. Ensembles of classifiers are usually considered a valuable
approach in different scenarios. A broad range of methods to deal with
the construction, diversity and combination of multiple predictive mod-
els have been extensively studied. While the focus is often to obtain more
accurate and robust predictions than single models seldom the individual
contribution of classifiers which could contribute to a better understand-
ing of the uncertainty associated with ensembles’ outputs is taken into
account. In this work we look into this issue and focus on evaluating the
individual ensemble classifier contributions using several scenarios. We
propose a visual web model that allows for the evaluation of both indi-
vidual contributions as well as their interactions. We apply the proposed
approach on a benchmark dataset and show how it can visually be used
to better understand the uncertainty associated with the construction of
ensembles, presenting some insight on the individual contributions and
interactions.

Keywords: Ensembles · Classification · Visualization

1 Introduction

In the last decades the need to construct classifiers that include some degree
of transparency has increased exponentially, due to the increased demand of
users to understand the decisions automatic classifiers propose, specially in deci-
sion support systems [1]. As a consequence, there is an ever-increasing need for
frameworks that despite the use of black-box algorithms exhibit some degree of
transparency, in applications such as, medical support systems, data process-
ing and visualization, text/web mining, digital information search, and patent
analysis.

The task in visualization approaches can be described as bridging information
from the algorithm feature space to the user feature space. This task is usually
non-trivial, since there seldom exists a direct transform/interpretation of results.
However, the potential advantages of visual data exploration/results interpre-
tation is that the user is directly involved in the learning/classification [2].

c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 633–642, 2016.
DOI: 10.1007/978-3-319-40581-0 51
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Different methods have been proposed and selected according to experiments
on a particular problem instance [3], but interesting methods should be suffi-
ciently generic to be applied to at least a set of problems.

In classification scenarios, on a particular problem different algorithms may
obtain different results, but over all problems, they are indistinguishable [4]. It
follows that if an algorithm achieves superior results on some problems, it must
pay with inferiority on other problems, i.e. the probability distribution on prob-
lem instances is such that all problem solvers have similarly distributed results
[5]. Hence, we propose the combination of different and heterogeneous models
in an ensemble, e.g. Support Vector Machines (SVM) [6], Fuzzy Rules [7], K-
Nearest neighbors (KNN) [8] or Naive Bayes [9]. Such an ensemble approach
circumvents the problems associated with making a specific algorithm transpar-
ent, moving the research issue to a more generic one of making the ensemble
more transparent (or less opaque).

In this work we propose a general framework for visualization of individ-
ual ensemble classifier contributions. We explore the different and similar error
patterns to correlate the baseline models presenting a visual interpretation of
results. The proposed framework can be adapted to any ensemble, despite the
number and nature of the underlying models and combination algorithms.

The rest of the paper is organized as follows. In Sect. 2 we present the back-
ground that supports our approach and describe current approaches. In Sect. 3
we detail the proposed framework for visualization of individual ensemble classi-
fier contributions. In Sect. 4, we describe the experimental setup used, including
performance metrics and benchmark datasets, including also the main results
and analysis. Finally, Sect. 5 addresses the conclusions and future research lines.

2 Background

In this section we will introduce the background on ensemble systems and on
visualization, including current approaches.

2.1 Ensembles

Ensemble based systems (also known under various other names, such as multiple
classifier systems, committee of classifiers, or mixture of experts) have shown
favorable results compared to those of single-expert systems for a broad range of
applications requiring automated decision making under a variety of scenarios.

In matters of great importance that have financial, medical, or other implica-
tions, we often seek a second opinion before making a decision, sometimes more
[10]. In doing so, we analyze each one, and combine them using some implicit
process to reach a final decision that is apparently the best informed one. This
process of consulting several experts before making a final decision is perhaps sec-
ond nature to us; yet, the extensive benefits of such a process in classification sys-
tems is still being discovered by the computational intelligence community [11]. In
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[12], a sample of the vast literature on classifier combination can be found, on both
the theory and implementation of ensemble based classifiers.

According to [13] there are three main reasons to use ensembles: statistical,
representational and computational. Regarding statistical ones, either there is
not sufficient data to find the optimal hypothesis or there are many different
hypothesis with limited data. In the representational set of reasons, unknown
functions may not be present in the hypotheses space or even a combination
of present hypotheses may expand it. For the computational issue, the learning
algorithms may stuck in local minima, therefore using an ensemble might be
useful.

In summary, an ensemble rationale is that, given a task that requires specific
knowledge, k experts may perform better than one, given that their individual
responses are duly combined. A classifier committee is then characterized by
(i) a choice of k classifiers, and (ii) a choice of a combination function [14,15],
usually denominated voting algorithm. The classifiers should be as independent
as possible to guarantee a large number of inductions on the data [16].

A common voting algorithm is majority voting, where each base classifier
(expert) votes on the class the example should belong to and the majority wins
(in two-class problems an odd number of classifiers should be used).

2.2 Visualization

As previously referred, recently there has been a growing demand for more trans-
parent classifiers that offer users with some degree of information and involve-
ment in the classification process. Progress in this area has been accelerated when
users can readily access visualization techniques relevant to the given problem.
To achieve this goal different approaches can, and have been, followed, usually
focusing on explaining a specific model or algorithm, like in [17] where an app-
roach to visualize high-dimensional fuzzy classification rules is presented.

Current research results are usually mapped to a myriad of different pos-
sibilities, given that the human interaction and understanding is under-rated.
Amongst those methodologies, one can find interactive visualization by using
multi-level pie charts, multi bar charts, histograms, scatter plots, tree maps and
dataflow diagrams. The different visualization techniques help in understanding
different levels of information hidden in very large data sets [21].

In [23], a classification of information visualization and visual data mining
techniques based on the data type to be visualized, on the visualization tech-
nique, and on the interaction and distortion technique is proposed.

In [21], visual data mining applications for enhancing business decisions are
discussed. The visual data mining concept is implemented by presenting results
in the form of visual interpretation.

In [18], methods for visualizing multidimensional data are shown to augment
clinical disease risk assessment by providing reduced-dimensional displays which
stratify patient data points according to risk level while providing additional
insight into clinically important individual risk factor variables.
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Visualization is currently one of the key research trends. Data are continu-
ously acquired for a variety of purposes. The ability to make timely decisions
based on available data is crucial in various scenarios, e.g., business success, clini-
cal treatments, cyber and national security, and disaster management [24]. Visu-
alization frameworks are beginning to provide decision-makers powerful tools
that will certainly evolve in the next years.

3 Proposed Approach

Figure 1 generically depicts the proposed ensemble approach that constitutes the
base of the framework for visualization of individual ensemble classifier contri-
butions.

Training Dataset

a1 a2 ... ai

h1 h2 hi
...

f

Fig. 1. Ensemble approach.

Considering a D training dataset:

D = {xn,yn}Nn=1, (1)

with N examples, where xn are the input feature vectors and yn is the label
vector, the ensemble is constructed by a set of T inducers:

AT = {ai(.)}Ti=1 (2)

This set of inducers will generate a set of T hypothesis (models or classifiers):

HT = {hi(.)}Ti=1 (3)
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These models will then produce output classifications:

hi : X �→ Y,Y = {0, 1}, (4)

assuming two classes {0, 1} with no loss of generality. Having these T classifiers,
then an aggregation function f must be defined, for instance a majority voting
function.

These T baseline classifiers should convey the diversity needed to assure that
different views on the training data exist, and hence different error patterns that
can be exploited to improve the final classification. An error pattern is character-
ized by two sets: for a given example, the set of classifiers that correctly classify
it and the set of classifiers that do not correctly classify it. Such heterogeneity
can be achieved with different data splits for each classifier and/or with different
algorithms in the creation of the models.

The ensemble can result of any combination and, as referred in Sect. 2.1, the
majority voting is a common and simple choice for f .

Using both the individual classifications of each baseline classifier and the
final majority voted ensemble classification, our framework constructs a radial
web with the q most frequent co-occurring error patterns, given insight on the
individual contribution of baseline classifiers, as we will show in the following
section.

An error pattern is defined as a subset of test examples Dtest where the same
subset of baseline classifiers, Hfail, fails to deliver the correct classification (and
hence the same subset of classifiers delivers the right classification).

The resulting visual representation is a radial web with one radial section for
each q selected error patterns, depicting: (i) the number of examples in the set
Dtest by the radius of the graph; and (ii) which classifiers are part of Hfail by
presenting a representation in their radial slot.

Figure 2 presents an example of the visual representation. In this example
the radial web includes 8 sections (q = 8) and the ensemble is composed by 5
baseline classifiers (T = 5). Here, we only show hypothetical results for one of the
error patterns, represented by the radial sections in quadrant 1. In this scenario,
we can see that baseline classifiers h1, h2 and h5 have failed in the same Dtest.
Moreover, by the radius of the radial colored sections one can visually infer that
the number of testing examples in Dtest is relevant (it is in fact around 80 % of
the errors).

In the next section we are going to present the deployment of the proposed
approach to a specific scenario, showing its effectiveness in providing users with
helpful aid in visualization of individual ensemble classifier contributions.

4 Experimental Setup and Results

To test the proposed visualization of individual ensemble classifier contributions
approach we first define the performance metrics and introduce a binary case
study: the Pima Diabetes dataset, available at https://archive.ics.uci.edu/ml/
datasets/Pima+Indians+Diabetes and described in following. The experimental

https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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Fig. 2. Example of the visualization using the proposed framework (Color figure
online).

setup also includes the construction of a majority voting ensemble with its baseline
classifiers and the depiction and analysis of the visual result of the framework.

4.1 Performance Metrics

In order to evaluate a binary decision task we first define a contingency matrix
representing the possible outcomes of the classification, as shown in Table 1.

Table 1. Contingency table for binary classification.

Class Positive Class Negative

Assigned Positive a b

(True Positives) (False Positives)

Assigned Negative c d

(False Negatives) (True Negatives)

4.2 Diabetes Dataset

The Pima Diabetes dataset corresponds to a binary problem of the diagnostic
of diabetes, i.e. given a set of attributes about a patient the ground truth is the
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definition of whether that person has (or does not have) diabetes. The dataset
includes patient records with 8 attributes and the target class. The dataset
includes 768 examples, of which 500 are negative and 268 are positive. The
numeric attributes, including the class, are:

1. Number of times pregnant
2. Plasma glucose concentration a 2 h in an oral glucose tolerance test
3. Diastolic blood pressure (mm Hg)
4. Triceps skin fold thickness (mm)
5. 2-Hour serum insulin (mu U/ml)
6. Body mass index (weight in kg/(height in m)2)
7. Diabetes pedigree function
8. Age (years)
9. Class variable (0 or 1)

The division in train and test sets was carried out as defined in Table 2, using
a random 66/33 split.

Table 2. Split train/test defined for the Diabetes dataset.

Class Positive Class Negative

Train 179 333

Test 89 167

4.3 Ensemble Classifiers and Performance Results

The heterogeneous baseline classifiers defined to test the framework were:

– Support Vector Machine (SVM)
– Fuzzy Rules
– K-Nearest Neighbor (KNN)
– Naive Bayes (NB)

These baseline classifiers were constructed using Weka 3.7.13 (http://www.cs.
waikato.ac.nz/ml/weka/) with default parameters. The baseline individual per-
formance is shown in Table 3 together with the final ensemble classification per-
fomance.

As can be gleaned from Table 3, the ensemble result outperforms the best
of the classifiers as usually expected, and analyzing the table, one can perceive
that the gain is specially significant in Recall values, i.e., there are less examples
classified as False Negatives.

However, regarding evaluation of the individual contribution this type of
quantitative results alone does not offer much help. In the following section we
will show how more information can be extracted.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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Table 3. Performance results on Diabetes dataset.

Accuracy Precision Recall F1

SVM 78.52 % 81.48 % 49.44 % 61.54 %

Fuzzy 79.69 % 74.19 % 51.69 % 60.93 %

KNN 79.69 % 54.26 % 57.30 % 55.74 %

Naive Bayes 79.69 % 81.48 % 49.44 % 61.54 %

Ensemble 79.69 % 75.34 % 61.80 % 67.90%

4.4 Visualization of Individual Contributions

Following the case study introduced in the last section, the settings for deploy-
ment of the proposed framework were defined as:

– number of baseline classifiers: T = 5
– number of frequent error patterns: q = 8

These heuristically defined parameters should be tuned for each application.
In the future we will pursue the semi-automatic definition of such parameters.
The resulting radial web is presented in Fig. 3. Analyzing this web several aspects
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Fig. 3. Combination of error patterns in classifiers in the Diabetes dataset (Color figure
online).
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of both individual contribution of classifiers, as well as, as of correlation between
error patterns are evident.

Quadrants 0, 4, and 5 show the distinctiveness in error patterns of KNN,
Fuzzy and NB. In these examples, these classifiers did not predict well the output
class, but all others were correct. On the opposite, quadrants 2, 3, and 6 show
particularity in accuracy for KNN, NB and SVM. In each set of examples in these
quadrants only these specific classifiers had the correct prediction, determining
that their distinction could be better explored.

Finally, quadrant 1 shows that in the hard to classify examples all classifiers
make mistakes, and in fact these represent a considerable part of the errors. For
a researcher this information can be extremely valuable, stating that probably
the baseline classifiers should be further enriched.

5 Conclusions and Future Work

In this paper we presented a framework for visualization of individual ensemble
classifier contributions.

A radial web model was proposed to both evaluate individual contributions
and interactions between classifiers. We applied the proposed approach on a
benchmark dataset and the results show it can visually be used to better under-
stand the uncertainty associated with the construction of ensembles, presenting
conclusions on the radial webs that were constructed, namely on the evaluation
of the heterogeneity of baseline classifiers.

Future lines of research will consist in automatically determining the thresh-
old for the number of q and generalizing the framework for any classification
problem, namely multi-label, multi-classification scenarios.
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Abstract. With the rapid growth of high dimensional data, feature
selection has become a substantial task for several machine learning
problems. In fact, it is regarded as an important process for classification
performance owing to its ability to remove redundant and inconsistent
features. The rough set theory is regarded as a well known tool allowing
relevant feature selection. As the task of attribute selection using rough
sets is an NP-hard problem to solve it, several heuristic algorithms have
been introduced. The Johnson’s algorithm, handling data characterized
by certain and precise attribute values, is one of the most known ones.
In this paper, we propose to extend this latter algorithm to an uncer-
tain context, precisely where data contain uncertain condition attribute
values represented within the belief function framework. We test the per-
formance of our belief Johnson’s algorithm through several experiments
on synthetic databases.

Keywords: Classification · Feature selection · Rough set theory ·
Heuristic algorithms · Belief function theory

1 Introduction

Classification is regarded as a substantial problem in the fileds of machine learn-
ing and data mining and it has become increasingly challenging owing to the
exponential data growth in both sample size and dimensionality [21]. Dimen-
sionality reduction techniques such as feature selection are widely used to deal
with high-dimensionality [15,20]. In fact, they allow to exclude as much as possi-
ble irrelevant and redundant attributes from the original set of attributes for the
purpose of reducing the computational cost and the dimensionality space of huge
data sets as well to improve the classification accuracy. Mainly, there exist three
feature selection approaches: wrapper, filter and embedded. Wrapper methods
incorporate classification algorithms to search and select a subset of attributes,
while filter methods select a subset of attributes independently of any classifica-
tion algorithm. In contrast to filter and wrapper, embedded methods performed
c© Springer International Publishing Switzerland 2016
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the learning and the feature selection levels together. As the classification of
each attribute or subsets of attributes is costly in term of computation time, we
resort, in this investigation, to filter approaches. Rough set theory is considered
as one of the most efficient filter methods allowing to find out the minimal set of
relevant attributes also called reduct [14]. The main advantages of the reduct is
its ability to predict the decision concepts as well as the whole set of attributes.
Basically, finding the set of all reducts or finding the optimal reduct is regarded
as an NP-hard problem which has led to the introduction of several heuristic
approaches such as the QuickReduct algorithm [3], the Johnson’s algorithm [8],
etc. In this paper, we propose to adapt this latter heuristic algorithm thanks to
its capacity to discover only one reduct with the minimal number of attributes
generally close to the optimal from a given data. It is substantial to note that
Johnson’s algorithm handles only the case of perfect data. However, real world
databases may be susceptible to imprecision, incompleteness and uncertainty.
Such cases require to adapt the concept of rough sets heuristic algorithms to
an uncertain environment. In several domains, uncertainty may exist either in
decision attributes or in condition attributes or in both decision and condition
attributes. For instance, in medicine, patients’ symptoms (condition attributes)
or patients’ diseases (decision attribute) can be uncertain. Therefore, in this
paper, we propose to adapt the Johnson’s heuristic algorithm to an uncertain
environment. Several theories have been discussed in the literature to handle
uncertainty such as the bayesian theory [1], the fuzzy theory [6], the belief func-
tion theory [5], etc. As this latter formalism has the advantage to deal with
partial or even total ignorance, we propose a belief Johnson algorithm to find
reducts from a partially uncertain decision table. More precisely, we tackle the
problem where uncertainty exists only in the condition attributes. This paper is
organized as follows. Section 2 is dedicated to hightailing the basic concepts of
the rough set theory. We detail Johnson’s algorithm in Sect. 3. Section 4 provides
an overview of the fundamental concepts of the belief function theory. Our novel
approach for feature selection based on the belief Johnson’s algorithms has been
presented in Sect. 5. Section 6 describes the experimental results yielded from
several uncertain databases under the classifier fusion framework, in order to
evaluate the performance of our novel approach. In Sect. 7, we draw conclusion
and we highlight some future works.

2 Rough Set Theory

Rough Sets (RS), introduced by Pawlak [14], is a valid mathematical tool for
dealing with imperfect knowledge (vague, imprecise and uncertain) in variety of
applications related to machine learning area which mainly includes the prob-
lems of knowledge discovery, clustering [13], classification [7,10], feature selection
[2,11], etc. This latter paradigm consists of extracting the smallest subsets of
relevant features, also called reducts, from the original set of features of a given
data. In a practical point of view, information and knowledge are represented
by a decision information system which is defined as a pair A = (U,R), where
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U = {O1, . . . , On} is a non-empty, finite set of objects called the universe and
R = C ∪ D is a finite set of attribute, C = {c1, . . . , cK} is a non-empty, finite
set of K condition attributes, vck is a non-empty set of values of ck ∈ C, D =
{d} is the decision attribute set and vd is the decision attribute value [23].

Given a subset of condition attributes B ⊆ C, an indiscernibility relation,
denoted by IND(B), is defined as follows:

IND(B) = U/B = {(Oi, Oj) ∈ U × U |∀ck ∈ B, vck(Oi) = vck(Oj)} (1)

The indiscernibility relation based on the decision attribute {d}, denoted by
IND({d}), is set to:

IND({d}) = U/{d} = {Oj ∈ U |[Oj ]{d}} (2)

Let B ⊆ C and X ⊆ U . We can approximate X by using only the informa-
tion contained by constructing the B-lower and B-upper approximations of X,
denoted respectively by B(X) and B(X) and defined by:

B(X) = {Oj |[Oj ]B ⊆ X} (3)

and

B(X) = {Oj |[Oj ]B ∩ X = ∅} (4)

where

[Oj ]B = {Oi|∀ck ∈ B, vck(Oi) = vck(Oj)} (5)

The positive region, embracing all objects of U that can be classified to blocks
of U/{d} by means of the condition attributes B, is defined as :

PosB({d}) =
⋃

X∈U/{d}
B(X) (6)

Keeping only attributes that preserve the positive region is regarded as a
practical way for feature reduction. It is noteworthy that there exist several
subsets of condition attributes and those which are minimal are called reducts.
A subset B ⊆ C is a reduct of C with respect to D, if B is minimal and:

PosB(D) = PosC(D) (7)

In other terms, the attributes that do not belong to any reduct are unneces-
sary for the classification of the universe elements. Authors in [17], have intro-
duced the notation of discernibility matrix and function as other ways for finding
reducts for a decision table DT . The discernibility matrix of DT , denoted by M ,
is a |U |× |U | matrix, in which the element M(Oi, Oj) for an object pair (Oi, Oj)
is defined by:

M(Oi, Oj) = {vc ∈ C|vc(Oi) �= vc(Oj) and vd(Oi) �= vd(Oj)}∀i, j = {1, . . . , n}
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The matrix element M(Oi, Oj) represents the set of all condition attributes
discerning objects Oi and Oj that do not have the same value of the decision
attribute d. The notion of discernibility function can be defined from the dis-
cernibility matrix as follows:

f(M) = ∧{∨(M(Oi, Oj))|∀Oi, Oj ∈ U,M(Oi, Oj) = ∅} (8)

Reducts may be yielded by transforming the discernibility function from
conjunctive normal form into disjunctive normal form. The major shortcoming
of this solution is its costly operation which makes it impractical for medium
sized or large sized data sets. Therefore, several heuristic algorithms have been
discussed to overcome this drawback. The best known of them is the Johnson’s
heuristic algorithm [8].

3 Johnson’s Heuristic Algorithm

Johnson’s algorithm proposed in [8] is an heuristic algorithm that uses a greedy
search technique which consists of picking out attributes having the most fre-
quency appearing in the discernibility matrix. Algorithm 1 below underlines the
main steps of the Johnson algorithm.

Algorithm 1. Johnson’s Algorithm(U,C ∪ d)
1: input:U: a finite set of instances, C: a set of conditional attributes, d: a set of

decision attributes
2: Output: R:reduct, R ⊆ C
3: R ← ∅
4: M ← DiscernibilityMatrix (U,C ∪ d)
5: repeat
6: c ← SelectAttributeWithMaxWeight(M)
7: R ← R ∪ {c}
8: for i=1 to |U | do
9: for j=1 to |U | do

10: if c ∈ M(Oi, Oj) then
11: M(Oi, Oj) = ∅
12: end if
13: end for
14: end for
15: until (M(Oi, Oj) =∅ ∀ i,j)

Johnson’s algorithm begins by setting the reduct candidate, denoted by R,
to an emptyset. Subsequently, it computes the number of occurrences of each
attribute in the discernibility matrix. The attribute that has the highest count
of appearances will be added to R and all cells containing this attribute will be
removed from the discernibility matrix. This process should be repeated until all
non empty cells are removed. Then, the algorithm returns R as a final reduct.
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Though Johnson’s algorithm guarantees to uncover a single reduct, it is unuseful
in the case where data sets are characterized by uncertain attributes. Thus, we
propose to extend this algorithm to an uncertain context, more particulary to
the context of the belief function theory.

4 Belief Function Theory

The belief function theory, also known as Dempster-Shafer Theory (DST) or
theory of evidence [16], is considered as a useful theory for representing and
managing uncertain knowledge. In what follows, we briefly introduce the main
concepts of the belief function theory as interpreted in the Transferable belief
Model (TBM) [19].

Let Θ be a finite non-empty set of N elementary events related to a given
problem, these events are assumed to be exhaustive and mutually exclusive.
Such Θ is called the frame of discernment. The power set of Θ, denoted by 2Θ,
is composed of all the subsets of Θ.

The impact of evidence assigned to each subsets of the frame of discernment
Θ is named basic belief assignment (bba) and is defined as:

m : 2Θ → [0, 1]
∑

A⊆Θ

m(A) = 1 (9)

The amount m(A), known as basic belief mass (bbm), expresses the degree
of belief committed exactly to the event A.

To make decision within the belief function framework, we must transform
the bba into a probability measure called pignistic probability denoted BetP
and defined as follows [18]:

BetP (A) =
∑

B⊆Θ

|A ∩ B|
|B|

m(B)
1 − m(∅)

∀A ∈ Θ (10)

5 Belief Johnson’s Algorithm for Partially Uncertain
Data

This Section is devoted to describing our heuristic approach for feature selection
form partially uncertain decision table. Our proposed solution, namely belief
Johnson’s algorithm, aims to extract the subset of relevant attributes which
enables the same classification ability as the entire set of attributes. In what fol-
lows, we provide firstly a brief description of a partially uncertain decision table
under the belief function framework and then we detail our heuristic approach.
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5.1 Partially Uncertain Decision Table

Our partially uncertain decision table will be defined as a pair UDT=(U , uC
∪ d) where U is a finite set of n objects U={O1,. . .,On} described by a set of
K uncertain condition attributes denoted by uC={c1, . . ., cK} and a certain
decision attribute denoted by {d}. In this work, we suggest to represent the
uncertainty of each condition attribute within the belief function framework.
Thus, a basic belief assignment mΘk

i , defined on the frame of discernment Θk

which represents all possible values of a condition attribute ck ∈ uC, will be
assigned to each condition attribute value vck of an instance Oi. These bbas can
be induced by one or several agents and they may express the case of total cer-
tainty (mΘk

i ({vck}) = 1 and mΘk
i (Θk) = 0) or even the case of total ignorance

(mΘk
i ({vck}) = 0 and mΘk

i (Θk) = 1).

Example: Let Table 1 be our uncertain decision table composed with eight
instances characterized by three uncertain categorical condition attributes uC =
{Hair,Eye,Height} and a certain decision attribute d with possible values {d1,
d2}. To simplify the notations, we will use 1, 2 and 3 instead of Hair, Eye
and Height. The basic belief assignments, which are randomly affected to the
condition attribute values, will be defined on the frame of discernments Θ1 =
{Blond,Dark}, Θ2 = {Brown,Blue} and Θ3 = {Short,Middle, Tall}.

Table 1. Uncertain decision table

Hair Eye Height d

O1 mΘ1
1 ({Dark})=0.5
mΘ1

1 (Θ1)=0.5
mΘ2

1 ({Brown})=1
mΘ2

1 (Θ2)=0
mΘ3

1 ({Middle})=0.95
mΘ3

1 (Θ3)=0.05
d1

O2 mΘ1
2 ({Blond})=0.1
mΘ1

2 (Θ1) = 0.9
mΘ2

2 ({Blue})=0.82
mΘ2

2 (Θ2)=0.18
mΘ3

2 ({Middle})=1
mΘ3

2 (Θ3)=0
d1

O3 mΘ1
3 ({Blond})=0.6
mΘ1

3 (Θ1) = 0.4
mΘ2

3 ({Brown})=0.2
mΘ2

3 (Θ2)=0.8
mΘ3

3 ({Tall})=0.55
mΘ3

3 (Θ3)=0.45
d2

O4 mΘ1
4 ({Dark})=0.7
mΘ1

4 (Θ1) = 0.3
mΘ2

4 ({Brown})=0
mΘ2

4 (Θ2)=1
mΘ3

4 ({Short})=1
mΘ3

4 (Θ3)=0
d1

O5 mΘ1
5 ({Blond})=1
mΘ1

5 (Θ1) = 0
mΘ2

5 ({Blue})=0.18
mΘ2

5 (Θ2)=0.82
mΘ3

5 ({Middle})=0.15
mΘ3

5 (Θ3)=0.85
d2

O6 mΘ1
6 ({Blond})=0.3
mΘ1

6 (Θ1) = 0.7
mΘ2

6 ({Brown})=0.13
mΘ2

6 (Θ2)=0.87
mΘ3

6 ({Tall})=0.8
mΘ3

6 (Θ3)=0.2
d2

O7 mΘ1
7 ({Dark})=1
mΘ1

7 (Θ1) = 0
mΘ2

7 ({Brown})=0.8
mΘ2

7 (Θ2)=0.2
mΘ3

7 ({Tall})=0.25
mΘ3

7 (Θ3)=0.75
d1

O8 mΘ1
8 ({Dark})=0.5
mΘ1

8 (Θ1) = 0.5
mΘ2

8 ({Blue})=0.22
mΘ2

8 (Θ2)=0.78
mΘ3

8 ({Short})=0.1
mΘ3

8 (Θ3)=0.9
d1
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5.2 Reducts for Partially Uncertain Decision Table

Let us remind that the reduct, using Johnson’s algorithm, is constructed by
sequentially adding the most discernable attributes for a given decision attribute.
Therefore, the computation of the discernibility matrix M will be a preliminary
step in Johnson’s algorithm. However, computing M from partially uncertain
decision table UDT=(U , uC ∪ d) remains really a challenging task which has
not attracted great attention yet. To cope with this problem, we propose to adapt
Johnson’s heuristic algorithm to an uncertain environment, precisely to the belief
function framework. Our belief Jonson’s algorithm tackles mainly the problem
where the uncertainty exists only in the condition attributes and represented
within the framework of belief functions. In such cases, dissimilarity metrics must
be used to discern all pairs of objects with different decision values. Consequently,
entries of the discernibility matrix should be set as follows ∀ i, j ∈ {1, . . . , n}
and k ∈ {1, . . . , K}:

M ′(Oi, Oj) = {ck ∈ C|dist(mΘk
i ,mΘk

j ) > S and vd(Oi) �= vd(Oj)} (11)

where S denotes a tolerance threshold and dist corresponds to a distance mea-
sure between two bbas. Different distance metrics have been investigated in the
literature such as the Tessems distance [22], the Euclidean distance [4], the Jous-
selme distance [9], etc. This latter is one of the most commonly used distances.
Given two bbas m1 and m2, the Jousselme distance measure is computed as
follows:

dist(m1,m2) =

√
1
2
(m1 − m2)T D(m1 − m2) (12)

with D is the Jaccard index matrix, the elements of which are calculated as
follows:

D(A,B) =

⎧
⎨

⎩

1 if A=B= ∅
|A ∩ B|
|A ∪ B| ∀ A,B ∈ 2Θ

(13)

Once the discernibility matrix is computed, the reduct will be incremen-
tally composed by adding the condition attribute that occurs with the most
frequency and then removing any cells contain this attribute. This procedure
must be repeated until all non-empty cells will be eliminated.

Example: In order to extract the reduct relative to our partially uncertain
decision table (see Table 1), we start by computing the discernibility matrix
M ′ where the threshold S is setting to 0.1 (see Table 2). To simplify, we
use the notations Ha, E and He respectively for Hair, Eye and Height.
For instance, M ′(O1, O2)=∅ due to the fact that vd(O1) = vd(O2). Another
example, M ′(O1, O5) = {Ha,E,He} because dist(mΘ1

1 ,mΘ1
5 ) = 0.5 > 0.1,

dist(mΘ2
1 ,mΘ2

5 ) = 0.7185 > 0.1, dist(mΘ3
1 ,mΘ3

5 ) = 0.6532 > 0.1 and vd(O1) �=
vd(O5).
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Table 2. Discernibility matrix M ′

O1 O2 O3 O4 O5 O6 O7 O8

O1 -

O2 - -

O3 E, He Ha, E, He

O4 - - Ha, E, He

O5 Ha, E, He Ha, E, He - Ha, E, He -

O6 Ha, E, He Ha, E - Ha, He - -

O7 - - Ha, E, He - Ha, E, He Ha, E, He

O8 - - E, He - Ha, E, He Ha, E, He - -

Table 3. Description of databases

Databases #Instances #Attributes

Tic-Tac-Toe 958 9

SPECT Heart 267 22

Lymphography 148 18

Voting Records 435 16

Zoo 101 17

Let us now compute the reduct using our belief Johnson’s algorithm. Firstly,
we count the number of occurrences relative to each condition attribute and the
feature with the highest frequency will be added to the reduct. In our discerni-
bility matrix (Table 2), the attributes Eye and Height appear 14 times, while
the attribute Hair appears 13 times. As attributes Eye and Height have equal
weights, we randomly add one among them to the reduct R. If the attribute
Eye is chosen then we remove all cells containing Eye from M ′ and the next
best feature will be selected. By removing Eye, we still have Hair and Height
with weights equal to 1. As Hair and Height have equal weights, we add either
Hair or Height to R and then we remove the chosen attribute from M ′: if
we remove the attribute Hair, R will be set to R = {Eye,Hair} and M ′ will
be empty. By against, if we remove the attribute Height, R will be equal to
R = {Eye,Height} and M ′ will be empty.

6 Experimentations

In order to evaluate the performance of our heuristic feature selection approach,
we propose to carry out several experimental tests on real world databases
obtained from the U.C.I. repository [12]. Table 3 gives a brief description of
the databases where #Instances and #Attributes denote respectively the total
number of instances and the total number of condition attributes.
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As all these databases do not contain uncertain condition attributes repre-
sented within the belief function framework, we propose to generate synthetic
databases by taking into account the original database D and a degree of uncer-
tainty P to transform actual condition attribute value vck of each object Oi,
where ck ∈ uC, into a basic belief assignment as follows:

mΘk
i ({vck}) = 1 − P

mΘk
i (Θk) = P (14)

The degree of uncertainty P takes value in the interval [0,1]: Certain Case
(P=0), Low Uncertainty (0 ≤ P < 0.4), Middle Uncertainty (0.4 ≤ P < 0.7)
and High Uncertainty (0.7 ≤ P ≤ 1).

To check the validity of our proposed heuristic approach, we try to per-
form an empirical comparison in terms of dimensionality space and classification
accuracy criterion (PCC) between results yielded by our initial databases and
those obtained by our belief Johnson’s algorithm in both certain and uncertain
cases. In order to compare PCCs, we resort to three well known classification
algorithms, namely the Decision Tree classifier (DT), the Naive Bayes classifier
(NB) and the k-Nearest Neighbor classifier (k-NN) with k equals to 1. As these
classification algorithms cannot handle data characterized by uncertain condition
attributes represented within the framework of belief functions, we perform the
pignistic transformation, using Eq. 9, to make decision about condition attribute
values which should be chosen. Once computing the pignistic probability of all
condition attribute beliefs, we run the three mentioned classifiers using the leave
one out cross validation approach which divides a data set with N instances into
N -1 instances for training and the remaining instance for testing. This procedure
will be repeated N times where each existing instance is used once as a test set.
Experimental results are given from Table 4–6 where #F denotes the number
of selected attributes. Note that, for the sake of simplification, we have replaced
the attribute names in the reduct by numbers according to their order in the
databases.

We remind that our ultimate objective is to reduce dimensionality space as
well as the computational time and keep or increase the classification accuracy.
Let us note that in certain case our belief Johnson’s algorithm gives exactly

Table 4. Classification accuracy (%) without dimensionality reduction

Databases NB DT 1-NN

Tic-Tac-Toe 82.04 69.41 99.16

SPECT Heart 84.64 79.40 82.39

Lymphography 79.05 83.78 82.43

Voting Records 96.55 91.37 90.84

Zoo 92.07 95.04 96.03
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Table 5. Belief Johnson’s algorithm: certain case

Databases Reduct #F PCC (%)

NB DT 1-NN

Tic-Tac-Toe R={1, 2, 3, 4, 5, 6, 8, 9} 8 80.58 71.71 81.41

SPECT Heart R={1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 16,
19, 20, 21, 22}

16 79.40 79.77 80.52

Lymphography R={2, 13, 14, 15, 16, 18} 6 77.02 80.40 81.75

Voting Records R=1, 2, 3, 4, 11, 13, 15, 16 8 96.12 93.96 94.82

Zoo R={4, 7, 9, 11, 14} 5 94.05 90.09 96.03

the same results as the original Johnson’s algorithm. From the results given in
Tables 4, 5 and 6, we have deduced that in both certain and uncertain cases,
our belief Johnson’s algorithm allows a significant dimensionality reduction. For
instance, applying our belief Johnson’s algorithm to the Lymphography database
containing 18 condition attributes we obtain 6 selected features in certain case,
while applying this proposed algorithm to synthetic Lymphography database
we obtain 5 selected features for both low and middle uncertainty cases and 6
selected feature for high uncertainty case.

In terms of the PCC criterion, we emphasize that for our certain case fea-
ture reduction allows the improvement of the PCC criterion compared to those
yielded by initial databases, though not always. However, the PCCs yielded fol-
lowing to the feature reduction process are often close to those obtained with
the initial databases. For example, for the initial Spect-Heart database, we have
84.64 %, 79.40 % and 82.39 % as PCCs relative to respectively DT, NB and 1-NN
classifiers, while applying our belief Johnson’s algorithm in certain case, we get
79.40 %, 79.77 % and 80.52 % as PCCs relative to respectively DT, NB and 1-NN
classifiers. Consequently, we can admit that feature reduction allows not only to
reduce dimensionality space and computational time, but also to provide sig-
nificant classification accuracies and thus, it is worth applying belief Johnson’s
algorithm to partially uncertain databases. Concretely, we have tackled three
levels of uncertainty: Low, Middle and High. From Table 6, we can deduce that
the Decision Tree, the Naive Bayes and the 1-Nearest Neighbors classifiers have
yielded interesting PCC values for the different synthetic databases obtained by
using the three levels of uncertainty. For instance, for Voting Records database,
we have gotten 95.68 %, 94.39 % and 96.12 % as PCCs obtained respectively by
the DT, the NB and the 1-NN classifiers in low uncertainty case, for the mid-
dle uncertainty case, we have obtained 95.68 %, 95.25 % and 96.12 % as PCCs
relative respectively to the DT, the NB and the 1-NN classifiers. Also, we have
reported 96.55 %, 94.39 % and 95.68 % as PCCs obtained respectively by the
DT, the NB and the 1-NN classifiers in high uncertainty case.
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7 Conclusion

In this paper, we have proposed a new heuristic approach for relevant feature
selection from partially uncertain decision table, precisely where uncertainty
exists only in the condition attributes and represented within the belief function
framework. Our experimental tests have shown the efficiency of our proposed
method in terms of dimensionality reduction and classification accuracy. The
major limitation of our proposed approach consists on the one hand of its inabil-
ity to give optimal reducts and, on the other hand of the adaptation of classical
machine learning to handle what is called uncertain databases. So, as a future
work, we look forward to improving our proposed method by allowing the opti-
mal reduct. We also regard to use learning algorithms adapted to uncertain data
in order to check the validity of our approach. We further intend to introduce
uncertainty in both condition and decision attributes.
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Abstract. One of the challenges in data mining practices is that the datasets vary
in complexity and often have different characteristics such as number of attributes,
dependent variables characteristics etc. In terms of regression problems, the
features that describe the dataset will vary in their complexity, sparseness verses
coverage in relation to the decision space, and the number of outcome classes.
Fuzzy Decision trees are well-established classifiers in terms of building robust,
representative models of the domain. In order to represent different perspectives
of the same domain, fuzzy trees can be used to construct fuzzy decision forests
to enhance the predictive ability of singular trees. This paper describes an empir‐
ical study which examines the applicability of fuzzy tree regression forests to
seven different datasets which have complex properties. The relationship between
dataset characteristics and the performance of fuzzy regression tree forests is
debated.

Keywords: Fuzzy decision trees · Fuzzy regression forests

1 Introduction

It is a known problem that the complexity of data is becoming increasing challenging
for traditional machine learning algorithms to deal with, especially in the Big Data arena
where data variety, veracity and volume have to be taken into consideration. However,
the debate continues on whether the focus should be on developing better algorithms or
to generate models using more data [1]. In the context of Big Data, Kwona and Simb [2]
performed a comprehensive study on the performance of classification algorithms in
relation to a datasets features. The experimental study found that legacy classification
algorithms performed differently depending on how the data was structured, its content
and context in which it was applied [2]. For example, the number of features in any data
set not only affects the time to produce an optimal model, but also influences the
performance when using classification algorithms [3–5].

Fuzzy decision trees allow data instances to simultaneously fire multiple branches
of a node with different degrees of membership whereby allowing all information to
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contribute towards the final classification [6, 7]. More specifically, fuzzy regression trees
are used where there is a non-linear relationship between input and output variables.
Fuzzy decision tree forests have been shown to improve the predictive power of a
singular fuzzy trees by allowing numerous insights and interpretations of the datasets
that are being modelled [8–13]. Fuzzy Forests designed for classification problems have
also be shown to be tolerant to noisy data [9].

The study presented in this paper investigates the relationship between the datasets
characteristics, number of features, and datasets sizes and the performance of fuzzy
regression tree forests in the context of regression tree problems. An empirical study on
seven known datasets and generates for each fuzzy decision forests comprising each of
five fuzzy trees using the Elgasir algorithm [13]. Fuzzification is optimised in each case
by using the adapted version of an artificial immune network model (opt-aiNet [14]). A
series of experiments is conducted to determine whether the characteristics of the data
affects the performance of the fuzzy regression forests. This is determined through a
comparison with singular crisp regression trees. This paper is structured as follows:
Sect. 2 provides an overview of related work in the field of fuzzy regression trees and
forests. Section 3 describes the algorithm for constructing type-1 fuzzy forests using the
Elgasir algorithm. The characteristics of the dataset are described in 4, with the exper‐
imental methodology and results in Sect. 5. Finally, conclusions are presented in Sect. 6.

2 Related Work

Regression tree induction algorithms [15] are a technical approach which are used to
construct a set of rules that will predict events in a given domain. Regression tree induc‐
tion algorithms induce rules from the knowledge of a set of examples, known as a
training dataset, whose predicted outcome is already known. The process of regression
tree induction involves selecting [15]. CHAID provides a set of rules that can be applied
to a new (unseen) dataset to predict the target or outcome. The CHAID algorithm stops
growing a tree before overfitting occurs, as a result of using its unique dynamic branching
strategy for determining the optimal number of branches. This strategy merges together
attribute values that are shown to be statistically homogenous (similar), retaining the
values that are heterogeneous (dissimilar). Trees generated from traditional tree induc‐
tion algorithms are often referred to as “crisp” and suffer from sharp decision boundaries
which results of using the strict partitioning for regression trees induction [7] and values
are restricted to a limited number of discrete values as a result of using a discrete function
to generate the tree output.

Fuzzy decision tree rule induction algorithms overcome such problems by allowing
gradual transitions to exist between continuous attributes at tree nodes and utilizing
fuzzy inference to combine information throughout the tree rather than following a single
root to leaf node path. Early methods of fuzzy decision tree development replied on
experts in the domain to pre-fuzzify the data prior to induction – a task that introduced
a further uncertainty through subjectivity. Specific to this paper is attempts to fuzzily
the CHAID algorithm. First achieved by Fowdar et al. [6], the Fuzzy CHAID Induction
Algorithm produced robust fuzzy trees with significantly higher accuracies than its crisp
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counterpart. The fuzzy regression tree algorithm known as Elgasir, also based on
CHAID, incorporated degrees of uncertainty typical in data through the use of trape‐
zoidal membership functions and Takagi-Sugeno fuzzy inference is applied to aggregate
a final continuous output value. Elgasir alleviates Fowdar’s defuzzification problem as
a result of using Takagi-Sugeno fuzzy inference to aggregate fuzzy regression tree output
as a single numeric value [16].

Fuzzy decision tree forests or assembles allow the concepts of fuzzy decision trees
to be applied to allow different models of the same domain to be combined. Of signifi‐
cance in the field was Bonissone et al. [12] approach which used a fuzzy learning algo‐
rithm to create singular fuzzy trees using Breiman’s metholdogy and then applied
different configurations of combining leaf information. A different approach described
in Crockett et al. [7] involved the use of creating multiple fuzzy C4.5 decision trees from
non-fuzzy really world data by selecting as the root attributes with high to low infor‐
mation content. Cadenas et al. [11] showed used a fuzzy random forest assemble method
to select features for classification problems thus reducing dimensionality and improving
classification accuracy. Work in this field has focused on classification and little work
has reported on regression problems.

3 An Algorirthm for Constructing Type-1 Fuzzy Decision Tree
Forests

This section outlines the Elgasir fuzzy regression tree rule induction algorithm and
describes how it is used to generate fuzzy regression tree forests.

3.1 The Elgasir Algorithm

The aim of the fuzzy regression tree algorithm Elgasir [13] was to apply appropriate
membership functions to all branch split points in order to master the weakness of crisp
decision trees, by allowing all the information used throughout the tree to contribute
towards the outcome. Elgasir’s foundations were based on Kass’s CHAID Algorithm
[15]. CHAID is a highly efficient statistical technique used to induce standard regression
trees that are easy for humans to interpret. In order to reduce the strict partitioning at
nodes and represent uncertainty, Elgasir combined principles of fuzzy theory and
Takagi-Sugeno fuzzy inference technique to produce type-1 fuzzy regression trees. [16].
In order to optimise fuzzy set boundaries throughout the tree, an adapted version of an
artificial immune network model (opt-aiNet [13]) was applied. A brief overview of the
algorithm is provided below and a full description can be found in [13].

1. Randomization and Partition the dataset into training and test data using multi-fold
cross validation.

2. Apply CHAID Crisp Regression Trees rule induction algorithm for the first subset
data.
a. Generate optimal crisp CHAID regression tree from the training dataset by

empirically applying various values to CHAID regression parameters.
b. Evaluate performance of crisp tree using test dataset.
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3. Convert near-optimal crisp tree into a set of IF-THEN rules.
4. Fuzzification of crisp CHAID regression tree.

a. Repeat until the near-optimal performance of the fuzzy regression tree is reached.
(i) Apply adapted opt-aiNet to determine optimal amount of fuzzification to

membership functions in all branch split points within the antecedent rules
and Repeat

(ii) Parameterize consequent part of IF-THEN rules, where n is the total
number of IF-THEN rules converted from the near-optimal crisp tree (step
2.a).

(iii) Identification of consequent parameters using the training dataset.
(iv) Evaluation of grades of membership.

.
5. Repeat steps 2 to 4, until each subset has been used once as a test dataset.

Step 6. Report on overall average error rate.

3.2 Constructing Forests

The Elgasir algorithm described in Sect. 3.1 can be used to create fuzzy decision forests
comprising of n fuzzy regression trees from one training sample where each tree repre‐
sents a different perspective of the training sample. This allows better coverage of the
domain which is less sensitive to noise in the data. The methodology reported in [13]
comprises of three stages. Stage 1 generates n crisp regression trees using the CHAID
algorithm and converts in to a fuzzy rule base; Stage 2 involves determination of fuzzy
sets around each tree node and associated membership functions; Stage 3 requires opti‐
mization of fuzzy membership functions using the immune network opt-aiNet. In this
work optimal forests are conducted for all datasets in this study.

4 Characteristics of Data

Seven known datasets are used in this study. Based in three criterion: the number of
instances, number of attributes and number of unique values. They were selected the
Boston Housing dataset is used to predict the median value of owner occupied homes,
in $1,000’s, as collected by the U.S Census Service concerning housing in the area of
Boston, Massachusetts [17]. The Abalone dataset is concerned with predicting the age
of abalone from physical measurements and has 28 unique outcome values [17]. The
Compactiv dataset [18] is a collection of computer systems activity measures where the
prediction task is to predict the variable usr, the portion of time that CPUs run in user
mode. The Elevators dataset [17] is obtained from the task of controlling an F16 aircraft,
and the goal variable is related to an action taken on the elevators of the aircraft. The
Stock prices dataset [17] contains daily stock prices, from January 1988 through to
October 1991, for ten aerospace companies. The task is to approximate the price of the
10th company, given the price of the others. The Concrete Compressive Strength Dataset
comprising of 938 attributes is used to predict the concrete compressive strength [18].
Finally, the Communities and Crime dataset (120 attributes) is used to predict the per
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capita violent crime, 121 instances were left after the instances with missing attributes
were remove [18]. This dataset has 120 attributes describing various social, economic
and criminal factors. Table 1 presents a summary of the characteristics of these datasets.

Table 1. Dataset Characteristics

Name Number of instances Number of attributes Unique Values
Boston housing 506 14 229
Abalone 4177 9 28
Compactiv 8192 21 56
Elevators 16599 18 61
Stock prices 950 9 203
Crime 121 120 115
Concrete 1030 8 938

5 Experimental Methodology

For each dataset in Table 1, stratified 10-fold cross validation was applied. The training
cases were partitioned into 10 equal-sized blocks with similar class distributions. Each
block in turn is used to evaluate singular CHAID decision trees and the optimised fuzzy
trees which were incrementally added the fuzzy forest. The singular CHAID trees were
first optimised through parameter tuning to prevent any bias occurring. To create the
second and subsequent trees in the forest, the attribute having the lowest p-value (the
highest ranking) was constrained from formulating the root of the second tree. Five fuzzy
trees were induced and compiled into each forest as it has been shown that increasing
the number of trees further would result in an increase in the error rate [13]. Fuzzification
was optimised across each forest using opt-aiNet.

6 Results and Discussion

Table 2 present the result the average error rate of five Crisp CHAID regression trees
for seven datasets and Table 3 shows the results the average of each of five fuzzy
regression tree forests for all datasets. The best result was obtained from the Concrete
dataset where the error rate of fuzzy regression tree forests was reduced by 42 %
compared to Crisp CHAID regression trees which obtained a P-Value 0.0203. The
Abalone dataset results show that fuzzy regression tree forests reduced the error rate by
41 % compared to Crisp CHAID regression trees with P-Value 0.0213. The reduction
of the error rate was 34 % on the Stock Price dataset by fuzzy regression tree forests
compared to Crisp CHAID regression trees obtaining a P-Value of 0.0265. For the Crime
dataset, the error was reduced by 27 % by fuzzy regression tree forests compared to
Crisp CHAID regression trees (P-Value 0.0422). The reduction of the error rate was
27 % on the Compactiv dataset by fuzzy regression tree forests compared to Crisp
CHAID regression trees with P-Value 0.0393. Whilst a 26 % reduction in the error rate
was achieved for the Boston housing dataset by fuzzy regression tree forests compared
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to Crisp CHAID regression trees which obtained a P-Value 0.0395. The Elevators
dataset results show that fuzzy regression tree forests reduced the error rate by 24 %
compared to Crisp CHAID regression trees obtaining a P-Value of 0.0412. Results of
applying a paired t-test between results obtained from the singular crisp CHAID tree
and Fuzzy regression tree forests can be found in Table 4. These results of all datasets
show a statistically significant (P < 0.05) in performance of fuzzy regression tree forests
comparing with Crisp CHAID regression trees.

Table 2. Result the average of the five Crisp CHAID regression trees

Dataset Training dataset Test dataset
(error value) (error value)

Boston housing 21.0576 21.4086
Abalone 4.4833 4.4982
Compactiv 25.4945 25.7666
Elevators 0.0000140389 0.0000140794
Stock prices 7.6938 7.849
Crime 0.3419 0.3451
Concrete 0.1401 0.1492

Table 3. Result the average of the five fuzzy regression tree forests

Dataset Training dataset Test dataset
(error value) (error value)

Boston housing 13.4618 15.8973
Abalone 2.41916 2.6545
Compactiv 17.9268 18.84
Elevators 0.0000106117 0.0000106593
Stock prices 5.1245 5.1959
Crime 0.2489 0.2515
Concrete 0.0802 0.0863

Table 4. Results of paired t-test and Test Dataset of Crisp regression tree and Fuzzy regression
tree forests

Dataset Crisp regression tree (error
value)

FRTF (error value) P-Value

Boston housing 21.4086 15.8973 0.0395
Abalone 4.4982 2.6545 0.0213
Compactiv 25.7666 18.84 0.0393
Elevators 0.0000140794 0.0000106593 0.0412
Stock Prices 7.849 5.1959 0.0265
Crime 0.3451 0.2515 0.0422
Concrete 0.1492 0.0863 0.0203

On the Suitability of Type-1 Fuzzy Regression 661



According to Tables 1 and 4, the number of attributes of dataset have been found to
be significantly correlated to the performance of fuzzy regression tree forests. The
biggest improvement in performance was obtained on the Concrete dataset, Abalone
dataset and Stock Price dataset which have the smallest number of attributes 8,9 and 9
respectively compared with the rest of datasets. Based on these results, the number of
attributes have inverse proportional relationship with the performance accuracy of the
proposed method. On the other hand, the other dataset characteristics such as dataset
size and unique outcome value been found not to be significantly correlated to the
performance of fuzzy regression tree forests.

7 Conclusion

This empirical study has shown that fuzzy regression tree forests, once optimized, can
outperform singular crisp regression trees regardless of the number of instances, number
of attributes and number of unique values. Optimization of each individual forest was
domain dependent. As Elgasir is based on CHAID, the Chi-Square test of significance
is used to evaluate all values of the predictor variable to select at each tree node the most
significant attribute based on significance. Therefore, insignificant attributes are
removed prior to the crisp trees fuzzification which typically reduces the number of
attributes in the dataset that are modelled. In this study the relationship between dataset
characteristics and the performance of fuzzy regression tree forests have been high‐
lighted. The empirical results of seven datasets have shown that the number of attributes
in a dataset have been found to be significantly correlated to the performance of fuzzy
regression tree forests.
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Abstract. Graph-based data formats are popular ways of representing informa‐
tion, while graph-processing engines and graph databases become preferable
tools for handling data of different size. World Wide Web Consortium has intro‐
duced a graph-based data format called Resource Description Framework (RDF)
as the part of its Semantic Web initiative. The intrinsic features of RDF, i.e., its
interconnectivity and simplicity of expressing information as triples containing
two entities connected by a property, provide new possibilities of analyzing and
absorbing information.

The participatory learning of propositional knowledge is an attractive way of
integrating and updating knowledge bases built based on symbolic data equipped
with uncertainty. In such context, an idea of considering RDF triples as proposi‐
tions allowed us to use the principles of participatory learning for assimilating
RDF triples and handling different levels of uncertainty associated with them.

The paper examines the RDF-based participatory learning process from the
perspective of its dynamics. The emphasis is put on aspects related to handling
certainty, accepting new pieces of information, and dealing with contradicting
information. The learning process is presented, and the results of analysis are
provided.

1 Introduction

The web’s role as data repository is fully established. The users access it on regular
basis, process the encountered data, and extract valuable information from it. More and
more often the users anticipate that such tasks should be done in an automatic way
resulting in ‘ready-to-use’ knowledge repositories. At the same time, the web data is
stored in multiple locations, is associated with different levels of certainty, and could
contain contradicting pieces of information.

In the recent years, a number of graph-based data formats have emerged as a very
attractive and promising way of representing data and express its semantics. One of the
most popular methods of representing web data as graphs is Resource Description
Framework (RDF) [10]. RDF has been proposed and standardized by W3C [11]. It
denotes information as triples, where each triple is a single piece of information. Multiple
triples are connected between each other constituting graphs. RDF is a fundamental data
format used in Semantic Web [1] and Linked Open Data [2, 6].
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A paradigm of participatory learning has been introduced in [7], and successfully
applied in multiple areas, for example [3, 4]. Its fundamental principle is based on a
simple, yet very realistic idea of ‘conditional’ learning where a process of accepting new
information depends on the already known information. The ‘original’ version of the
participatory learning has been adopted to deal with propositions [8], and further to
handle RDF triples [5].

The RDF version of participatory learning [5] brings quite a different view at the
process of collecting data and information. The process of collecting new pieces of
information, i.e., RDF triples, and assimilating them resembles a realistic learning
activity. Especially attractive are methods used to determine a degree of compatibility
between the new and known data, as well as procedures governing acceptance of the
new data.

We foresee a scenario where software agents can collect a new data, and then
depending on the already known data they can accept the new ‘findings’ to a degree. It
is important to understand how this acceptation process looks like and what factors
influence it. This paper addresses these issues. It analyzes the RDF-based participatory
learning from the point of view of its dynamics, i.e., from the perspective of its ability
to accept a new data via the process of updating levels of certainty associated with the
known data. Additionally, we investigate a mechanism of handling contradicting infor‐
mation.

The paper includes a very short introduction to RDF data format and its character‐
istics (Sect. 2), as well as a brief description of basic steps of participatory learning
(Sect. 3). In this case the emphasis is put on the explanation of fundamental ideas of
participatory learning with RDF triples. The main contributions of this paper are related
to the analysis of behavior of RDF-based learning (Sect. 4). In particular, we examine:

– important features of a human-like learning process that are inherently present in
participatory learning, i.e., learning without previous knowledge (Sect. 4.1), and
learning via exposure to facts equipped with different levels of confidence (Sects. 4.2
and 4.3);

– ‘quickness’ of a learning process and its influence on the ability to assimilate new
facts and to determine confidence in them (Sect. 4).

Overall, this paper shows how the RDF-based participatory leaning mimics a human-
like learning process, and how this process can be perceived as an experience-based
learning. Assimilation of data is governed by a degree of difference in confidence
(possibility values) between known and new pieces of information.

2 Background

2.1 Introduction to RDF

The most important, and yet simple, idea introduced with RDF is to represent any piece
of information as a triple < subject-property-object > where the subject
is an entity that is being described/defined, the property represents a relation that
exists between the subject and the object, and the object is another entity or a
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literal (number or string) that is ‘linked’ via the property to the subject [10]. An
example of a set of triples that share the same object – dbpedia.org/page/
The_Beatles – is shown in Fig. 1. All these triples constitute a description of the
entity ‘Beatles’. Some of these features are: < -genre-Pop_Band > , < -genre-
Rock_Band > , < -name-TheBeatles > , < -activeYearStart-
Year-1960 > , < -homeTown-Liverpool > , < -artistOf-Help > , < -
bandMember-John_Lennon > , and < -bandMember-Paul_McCartney > .
As we can see, each RDF triple is perceived as a single feature of the entity composed
of two elements: a property and a object. In other words, a property ‘defines’ a type of
relation between a given subject and a object. A set of triples that share the same subject
represents a set of features of this subject – a definition of the entity.

Fig. 1. RDF-based description of Berkeley

Quite often subjects and objects of one triple can be involved in multiple other triples,
i.e., they can be objects or subjects of other triples. In such a case, multiple definitions
– RDF-stars – can share features, and some features can be centers of another RDF-stars.
Such interconnected triples constitute a network of interleaving definitions of entities.

2.2 RDF Triples as Propositions

The ability to perceive a single feature of an entity as an RDF triple leads to a very
important observation that becomes a basic idea of the application of participatory
learning to RDF data. We state that each RDF triple is a single proposition defined on
the domain of values that the RDF triple’s property can assume. For example, the high‐
lighted RDF triple in Fig. 1:

<dbpedia.org/page/The_Beatles – MPMember – John>
can be expressed into a proposition with a fuzzy subset S

P: VMPMember is S: {
1.0

John
, 0.0

other values of VMPMember

}

where VMPMember is a variable representing the most popular member of a band, and John
as its value is associated with the possibility of 1.0, while all other possible values of
VMPMember (alternatives) have the possibility of 0.0 [8]. This means that the most popular
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member of the British band The Beatles is John. At this stage it is very important to
contrast this with the proposition

P: VMPMember is S: {
1.0

John
, 1.0

other values of VMPMember

}

that represents a statement ‘do not know’. The value of 1.0 is associated with John as
well as with other values of VMPMember – this means that everything is possible and there
is no indication that some values are more or less possible then others. With such an
approach, a set of RDF triples that defines a given entity can be treated as a knowledge
base with propositions denoting features of the entity.

3 Participatory Learning with RDF

3.1 Introduction

A description of the same entity can exist in multiple places on the web. We can state
that collecting such sets of RDFs can be perceived as a learning process. In such a case,
accumulating descriptions of one and the same entity is equivalent to a repetitive process
of acquiring information and eventually gaining confidence in gathered descriptions,
i.e., RDF triples. This idea is a pivotal aspect of the learning approach described here.
As the result, the information about an entity is composed of triples associated with
different levels of confidence (possibility values assigned to different alternatives) [8].

Before we analyze dynamics of the RDF participatory learning, let us take a look at
a formal description of this learning involving RDF triples. Here, we present only the
most essential aspects; we recommend [5, 8] for more detailed descriptions. The
presented equations show a process of determining consistencies and compatibilities of
known and new information represented as RDF triples, and a mechanism of combining
both knowledge bases. Let the known knowledge base, KB, be a set of propositions Pi
built based on RDF triples (NOTE: we will use the subscript i for propositions)

P
i
:V

i
is Si is 𝛼i − certain (1)

They can be represented as equivalent propositions:

P
i
:V

i
is [Fi(xi

) = Max(Si(xi
), (1 − 𝛼i))] (2)

where x
i
∈ X

i
, and X

i
 is a domain of the variable V

i
.

3.2 Consistency and Compatibility

The consistency Con of the KB is determined based on propositions, in the form of
Eq. 2, in the following way:

Con(KB) = Con(KB) = Min{Max
X1

[F1(x1)], … , Max
X

i

[Fi(xi
)],…} (3)
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The same approach is used for representing propositions of a new knowledge base
(Eq. 4) and consistency of this base (Eq. 5):

NP
p
:V

p
is NFp(xp

) = Max(NSp(xp
), (1 − 𝛼p)) (4)

(NOTE: for the new knowledge base we will use the subscript p propositions).

Con(NKB) = Min{Max
X1

[NF1(x1)],… , Max
X

p

[NFp(xp
)],…} (5)

Right now, we can determine a compatibility level ρ between the known and new
knowledge bases:

Comp(KB) =
Con(KB ∪ NKB)

Con(KB)
= 𝜌 (6)

where

Con(KB ∪ NKB) = Min{ if X
i
= X

p
: Max

X
i

[Fi(xi
) ∧ NFp(xp

)] ,… ,

otherwise: Max
X

i

[Fi(xi
)], Max

X
p

[NFp(xp
)] ,…}

(7)

3.3 Learning Coefficients

As we can see, the consistency of a combined sets of propositions, i.e., KB ∪ NKB, is
determined by finding the maximum of intersection of fuzzy sets on the same domain.
Now we are ready to adjust values of two parameters: a compatibility ratio ρ and an
arousal level δ. An adjusted value of δ is:

𝛿∗ = 𝛿 + Comt(NKB) ⋅ Con(NKB) ⋅ 𝛽 ⋅ ((1 − 𝜌) − 𝛿) (8)

where Comt is the commitment of the observation [8]:

Comt(NKB) = 1 − Max(Min
X

i

[Fi(xi),…]), Min
X

p

[Fp(xp),…]),…) (8a)

and β is a learning rate set up by a user/individual. The modified value of ρ is:

𝜌+ = 𝜌 ∨ (𝛿∗ ∧ Con(NKB)) (9)

Once we determine the values of δ* and ρ+ we can combine the known and new
knowledge bases. The updated knowledge base KB* is built using the following
approach:

KB∗ = (KB, (1 − 𝛿∗)) ∪ (NKB, 𝜌+) = (Fi(x) ∨ 𝛿∗) ∧ (NFp(x) ∨ (1 − 𝜌+)) (10)
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4 Dynamics of Learning Process

The dynamics of participatory learning process – the main attention of this paper – is
governed by three parameters: the compatibility ratio ρ between the known and new
knowledge bases, the arousal level 𝛿 indicating a repetitive degree of mismatch between
the known and new knowledge bases, and the learning rate β that determines a ‘speed’
of a learning process. Among these three parameters, the user is controls only the
learning rate β. Based on the Eqs. (8) and (9), we can say that β also influences the rate
of change of the arousal δ* and impacts, indirectly, the value of the compatibility ρ+.

In our analysis of the learning process we focus on effects the value of learning rate
β has on the agent’s ability to learn new facts (propositions), as well as on the reaction
to changes of these facts. A set of experiments have been conducted in order to learn
how the known knowledge base changes regarding confidence in facts (possibility
values associated with alternatives) – due to encountering new pieces of information.

4.1 Learning Without Prior Knowledge

The first of the presented experiments (e1) illustrates the scenario when an agent does
not know anything about popularity of members of the band The Beatles. It means, the
known knowledge base KBknown contains the following proposition:

Pe1
KBknown

:V
MPMember

is
{

1
V

MPMember
= Paul

, 1
V

MPMember
= John

, 1
V

MPMember
= other

}
𝛼e1

KBknown
= 0.0 (11)

The agent, in its process of collecting data, encounters different facts related to the
popularity of the band’s members. In this paper, we consider two propositions PKBnew1
and PKBnew2 related to the property MPMember that are a new knowledge base KBnew:

PKBnew1:V
MPMember

is
{

0
V

MPMember
= Paul

, 1
V

MPMember
= John

, 0
V

MPMember
= other

}
𝛼KBnew1 = 1.0 (12)

PKBnew2:V
MPMember

is
{

1
V

MPMember
= Paul

, 0
V

MPMember
= John

, 0
V

MPMember
= other

}
𝛼KBnew2 = 1.0 (13)

The agent is ‘exposed’ to these two propositions in a temporal fashion, i.e., is sees
them in a sequence presented in Fig. 2. The PKBnew1 is seen in time steps 1-5 and 15-25,
while PKBnew2 is seen in time steps 6-14.

Fig. 2. The agent’s exposure to the propositions PKBnew1 and PKBnew2 at different moments of time
in the experiment no. 1 (x: time steps, y: possibility value of alternatives)
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The changes in possibility values in the proposition Pe1
KBknown

 are examined for two
values of the learning rate β: 0.95, Fig. 3; and 0.25, Fig. 4. The figures illustrate changes,
at each time step, in the values of possibilities associated with different alternatives of
this proposition after assimilation of new proposition. The updated (U) proposition is
of the form:

UPe1
KBknown

:V
MPMember

is
{

A

V
MPMember

= Paul
, B

V
MPMember

= John
, C

V
MPMember

= other

}
(14)

(a)

(b)

Fig. 3. Learnt possibility values for three alternatives of the proposition UPe1
KBknown

(a) and the
values of δ (b) for β = 0.95 (x: time steps, y: possibility values)

The values of A, B, and C change depending on the encounter propositions. If we
take a look at Fig. 3 (a) we can observe that the agent – which has a high value of the
learning rate of 0.95 – very quickly adopts the changes. We can see that the value of
arousal δ ‘jumps’ very quickly to 1.0, and once the ‘change’ in the possibility values
associated with alternatives occurs, it quickly goes back to 0.0. The values of A, B and
C at 25th time step are 0.00, 0.95 and 0.00, respectively. The situation looks quite differ‐
ently for a ‘slow’ learner – a small value of the learning rate: 0.25, Fig. 4. The possibility
values, i.e., the values of A, B, and C are quite different now: 0.00, 0.31 and 0.00. Addi‐
tionally, the value of arousal changes differently, Fig. 4 (b). All this is affected by the
learning rate: a lower rate leads to a slower assimilation process and lower possibility
values. We can say that the agent with a lower learning rate reacts to changes with delay,
and possibility levels of alternatives are lower after the new information is assimilated.
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4.2 Learning Based on High Confidence Knowledge

In the second experiment (e2), the known knowledge base contains the proposition:

Pe2
KBknown

:V
MPMember

is
{

0
V

MPMember
= Paul

, 1
V

MPMmember
= John

, 0
V

MPMember
= other

}
𝛼0 = 1.0 (15)

It means that the agent knows who is the most popular member of the band, and is
fully confident (possibility value = 1.0 for John, 0.0 for others) in this knowledge. The
agent encounters the same facts as in the previous experiment (Eqs. 12 and 13) but in a
different temporal sequence, Fig. 5.

Fig. 5. The agent’s exposure to the propositions PKBnew1 and PKBnew2 at different moments of time
in the experiment no. 2 (x: time steps, y: possibility value of alternatives)

The results for β = 0.95 are shown in Fig. 6 (left side). There is some delay in the
agent’s reaction to different propositions, but overall the agent follows the changes
encountered during an information collection process. The changes happen despite the
agent’s high confidence in the proposition Pe2

KBknown
 of the known knowledge base.

(a)

(b)

Fig. 4. Learnt possibility values for three alternatives of the proposition UPe1
KBknown

(a) and the
values of δ (b) for β = 0.25 (x: time steps, y: possibility values)
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(a)

(b)

Fig. 6. Learnt possibility values for three alternatives of the proposition UPe2
KBknown

 (a) and the
values of δ (b) for β = 0.25 (left side), and for β = 0.25 (right side); (x: time steps, y: possibility
values)

The learning process leads to quite different results when the agent’s learning rate
is just 0.25, Fig. 6 (right side). The low learning rate makes the possibility values asso‐
ciated with alternatives much smaller. The new knowledge base proposition ‘seen’ in
the last three time steps:

PKBnew2:V
MPMember

is
{

1
V

MPMember
= Paul

, 0
V

MPMember
= John

, 0
V

MPMember
= other

}
(16)

leads to the following possibility values associated with alternatives from the proposition
of the known knowledge base:

UPe2
KBknown

:V
MPMember

is
{

0.39
V

MPMember
= Paul

, 0.04
V

MPMember
= John

, 0.04
V

MPMember
= other

}
(17)

For the case of β = 0.95, these values have been 0.95, 0.00, and 0.00, respectively.
We could postulate that a low learning rate makes the agent more sensitive to changes
in the propositions’ possibility values. Eventually, this leads to lower confidence in the
propositions after the assimilation process. Overall, the knowledge base becomes also
less consistent.

4.3 Learning Based on Low Confidence Knowledge

The third experiment (e3) illustrates the scenario when the agent’s known knowledge
about popularity of the band’s most popular member consists of the proposition:

Pe3
KBknown

:V
MPMember

is
{

1
V

MPMember
= Paul

, 0
V

MPMember
= John

, 0
V

MPMember
= other

}
𝛼0 = 1.0 (18)
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However, in the process of collecting data, the agent encounters propositions repre‐
senting ‘do not know’ condition, i.e., possibility values associated with different
alternatives are quite high and comparable, Sect. 2.2. The two propositions are:

PKBnew3:V
MPMember

is
{

0.8
V

MPMember
= Paul

, 1
V

MPMember
= John

, 0.8
V

MPMember
= other

}
(19)

PNBnew4:V
MPMember

is
{

0.5
V

MPMember
= Paul

, 1
V

MPMember
= John

, 0.5
V

MPMember
= other

}
(20)

These encountered propositions are ‘seen’ by the agent according to the temporal
sequence presented in Fig. 7.

Fig. 7. The agent’s exposure to the propositions PKBnew3 and PKBnew4 at different moments of time
in the experiment no. 3 (x: time steps, y: possibility value of alternatives)

As in the case of the previous two experiments, also here we perform learning with
two values of the learning rate: β = 0.95 and β = 0.25. The obtained results are presented
in Fig. 8 left and right side, respectively.

(a)

(b)

Fig. 8. Learnt possibility values for three alternatives of the proposition UPe3
KBknown

 and the values
of δ (b) for β = 0.25 (left side), and for β = 0.25 (right side); (x: time steps, y: possibility values)

An interesting observation is that the possibility value for the alternative
VMPMember = Paul (the initial state of the known knowledge of the agent) decreases with
the agent’s exposure to different information. This decrease is bigger when the possi‐
bility value for VMPMember = John is higher, i.e., 0.5 versus 0.8 (Eqs. 19 and 20).
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This decrease is the same no matter what is the value of the learning rate. However, the
increase in the possibility value for the alternative VMPMember = John depends on the
learning rate. As we can see in Fig. 8 (a, left side) the learning rate of 0.95 leads to the
possibility value of 0.36 for the VMPMember = John. For the learning rate of 0.25, Fig. 8
(a, right side), the possibility value for VMPMember = John increases only to the value of
0.10. As we can see in Fig. 8 (b) the values of arousal are influenced by the learning
rate, and this influences the increase in the possibility value for VMPMember = John.

5 Conclusion

The paper focuses on presentation and analysis of a participatory learning process
involving RDF data. The emphasis is put on evaluation of dynamics of the learning. We
show how the learning activity depends on the identified rate of learning (learning rate
β). We compare the learning process of ‘quick learner’ with the learning behavior of
‘slow learner’. We investigate how the learning rates influence confidence levels in the
assimilated new pieces of data. The RDF-based participatory learning is an example of
a learning activity we could label ‘not everything is learned at once’. This is a process
of discovering new information, and accepting it in a piece-by-piece manner. This
process can be a bit faulty at the beginning but eventually it leads to determining an
adequate level of certainty in the known data based on a newly collected data. We would
like to postulate that the observed dynamic behavior of the participatory learning is
comparable with elements of a human-like experience-based learning process.
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Abstract. Community and cluster detection is a popular field of social
network analysis. Most algorithms focus on static graphs or series of
snapshots.

In this paper we present an algorithm, which detects communities
in dynamic graphs. The method is based on the shortest paths to high-
connected nodes, so called hubs. Due to local message passing, we can
update the clustering results with low computational effort.

The presented algorithm is compared with the Louvain method on
large-scale real-world datasets with given community structure. The
detected community structure is compared to the given with NMI scores.
The advantage of the algorithm is the good performance in dynamic
scenarios.

1 Introduction

Social network analysis has become very popular in recent years, e.g. for friend-
ship analysis, disease transmission or detection of interesting entities. One part
of this scientific field is cluster or community detection. A cluster, or synony-
mous community, in a social network is a group of entities, which have a higher
connection inside the group than to other entities. As a popular example, we
consider the famous Karate club example from [23], which will be used to illus-
trate the algorithm results. The Zachary karate club contains 34 members. One
day there was a conflict between the leader and the trainer of the club, so the
club split up into two sub-clubs. The community analysis based on the relations
can predict which subgroup each member chose.

Most algorithms in community detection focus on a single analysis of a static
graph, e.g. [4,15]. In real-world, most of these graphs are dynamic [10]. So nodes
appear or disappear and relations evolve over time. To handle these dynamics,
the developed algorithms were used on several snapshots of the same graph.
Changes in the clustering could be tracked with different algorithms, e.g. the
FOCUS [9], DEMON [8] or MONIC [19] framework. There is also work done on
dynamic graphs, e.g. the DENGRAPH algorithm [5,6].

In this paper we present an online algorithm to find communities based on
high-connected hubs. It is based on the assumption that there exists some highly
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 678–689, 2016.
DOI: 10.1007/978-3-319-40581-0 55
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connected nodes, called hubs, which will group people around them. The pro-
posed algorithm detects these hubs and assigns to all non-hub elements the
closest hub as a cluster label.

The rest of the paper is structured as follows. First, in Sect. 2 we give a brief
overview about cluster and community structure and related algorithms. Next,
we present the proposed algorithm in Sect. 3 and experiments in Sect. 4. The
paper will end with a conclusion in Sect. 5.

2 Related Work

In this section, we introduce the term of cluster and community structure. Also,
we present two properties of social networks which are important for this work.
First, the typical community structure of these networks and second, the scale-
free property which is used to determine hubs. In the second part of this section,
we give a brief introduction into related algorithms. These algorithms are used
to compare the results of our algorithm.

Fig. 1. Cluster structure of a network with three clusters

2.1 Cluster- and Community Structure

Social networks have the property that there are subgroups of nodes which are
more densely connected to each other than to the rest of the network. For exam-
ple, this could be a group of friends, see also Fig. 1. These subgroups are called
communities or clusters, which should be detected by community detection algo-
rithms. These entities will be modeled as nodes in graphs. The relationship
between them will represent edges between the nodes.

In social network analysis we can distinguish between a graph partition and
covering. The partition is related to the cluster structure. Every node is assigned
to exactly one cluster. Covering is more advanced, communities (or fuzzy clus-
ter [12,13]) can overlap, and their nodes can be assigned to more than one com-
munity at a time. The evaluation of the quality of the overlapping community
structure is difficult, so we focus on crisp assignments.

Two simple measures for evaluating the quality of a partition are the
intra-cluster density and the inter-cluster sparseness. The intra-cluster density
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describes the ratio of existing and possible edges within the clusters. If this
measure is high, clusters are strongly connected. The inter-cluster sparseness
describes the ratio of the number of existing edges and the number of all pos-
sible pairwise edges between nodes of different clusters. This value should be
small, to get good separations between the clusters [7].

Another very popular measurement is the q-modularity proposed by Newman
and Girvan [16]. The basic idea is that graphs with the same degree distribution,
but randomly connected nodes, should have no cluster structure. The observed
density within a cluster should be higher than the density in such a random
graph. A maximization of the q-modularity should yield into a good clustering,
because densely connected nodes are grouped together. This maximization is the
main approach of the Louvain method.

In our experiments we use datasets with a known community structure. There
are several measures to compare the quality of an artificial partition with the
true community structure of a graph. First we use the Normalized Mutual Infor-
mation score [20], which is a normalized form of the Mutual Information created
by Cover and Thomas [3].

In 1999, Barabási et al. [1] introduced the idea of scale free networks. This
means that the node degree distribution of all nodes follow a power-law function.

P (k) ∼ k−γ ,

where P (k) is the probability of the degree k of a node. For most observed social
networks, γ is between 2 and 3.

From this distribution we get a lot of nodes with a low node degree and only
a few nodes with higher degrees. These highly connected nodes are called hubs.

A plausible assumption is that these hubs are distributed equally over the
whole network. As they have a lot of connections, they group a lot of entities
around each other which will result in local clusters. In our algorithm, we use
these hubs as starting points for the clusters and all surrounding nodes will be
assigned to the closest hub.

2.2 Related Algorithms

In this section two common graph partition algorithms will be briefly introduced.
Spectral Clustering is a common graph-based clustering algorithm, while the
Louvain method is one of the best community detection algorithms.

Spectral Clustering. Spectral clustering [18] uses an eigenvalue analysis of
the normalized Laplacian matrix. As input, we use the connectivity matrix of
our graphs. The first k eigenvectors are used for a dimension reduction.

On the lower-space data, we use either k-means [17] as partition algorithm
or the discretization proposed by Yu and Shi [22].

Due to the eigenvalue decomposition, this algorithm has a runtime complexity
of O(n3). If the discretization approach is used, the results are deterministic,
otherwise not.



Online Fuzzy Community Detection by Using Nearest Hubs 681

Louvain Method. In 2008 Blandel et al. [2] proposed an algorithm to extract
community structure from large datasets. The method is based on heuristics and
q-modularity optimization. The main idea is, that firstly each node is assigned
an individual community. Then iteratively, for every node, a q-modularity gain
for switching to adjacent communities is calculated. If there is a positive q-
modularity gain, the node will be put into the corresponding community with
the highest q-modularity gain. This process is done until no further increment
is possible.

Finally, there is a new graph built on the community structure of the input
graph. Each community becomes a node. The edges in the new graph represent
the sum of edges between two communities.

The procedure will be repeated until there is no q-modularity gain after
merging.

This algorithm is a greedy approach with almost linear runtime. The results
are not deterministic, so the algorithm should be run multiple times.

3 An Online Algorithm for Dynamic Community
Detection

Our dynamic nearest hub clustering algorithm (NHC) is based on two steps.
First, we determine all hubs in the network, which will be used as cluster centers.
Starting from them, we can propagate the shortest paths through the whole
network.

For the dynamic scenario, we start with the first graph, then iteratively
change the resultant clustering by applying changes. Allowed modifications are
adding or removing nodes or edges.

In the following, we start with a formal definition and the selection of hub
nodes. Afterwards, we present the basic algorithm.

3.1 Formal Algorithm Results

The algorithm is based on two major values for each node. First we define the
distance to the closest hub disthub as follow:

disthub(x) =

{
0 if x ∈ hubs
min ({ω(x, y) + disthub(y) : y ∈ neighbors(x)}) otherwise

where ω(x, y) is the weight of the (x, y)-edge.
The second value is the fuzzy membership μh(x) of the node x to the hub

h which is based on P (x) = {y : y ∈ neighbors(x) ∧ ω(x, y) + disthub(y) =
disthub(x)}, as follow:

μh(x) =

⎧
⎪⎨

⎪⎩

1 if x ∈ hubs ∧ x = h

0 if x ∈ hubs ∧ x �= h
1

|P (x)|
∑

p∈P (x) μh(p) otherwise
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The partition representing membership is the result algorithm.

3.2 Determine Nodes as Hubs

As mentioned in Sect. 2.1, hubs are highly connected nodes. The simplest method
to detect hubs is to determine the n most connected nodes. The main drawback
of this method is, that all hubs have to be tracked and a decision if another node
gets a hub could be done only with these tracked hubs.

To decide whether a node is a suitable hub individually, we introduce a
threshold dmin as minimal node degree. Every node with deg(node) ≥ dmin will
be marked as a hub node. A good threshold is dependent from the underlying
graph structure as well as from the expected cluster size. This has the advantage
that not all hubs have to be known for the decision, so the analysis can be
performed without having the full graph. This enables the algorithm to be run
in parallel.

3.3 Basic Algorithm

The algorithm is based on passing hub information through the network. Impor-
tant changes in the network structure are propagated to all relevant nodes.

Each node stores a hub information table T with the tuple entries (h, p, α),
where h represents the corresponding hub and p the parent node, with the short-
est path to the hub. α represents a weight of this information. Additionally, we
store the hub distance d.

The Message. Mx→y(T ′, d′) sent from a node to the neighbor nodes contains
the basic hub information table

T ′ =

{(

h,
α

∑|T |
i=1 αi

)

: (h, p, α) ∈ T

}

.

where αi is the α-value of entry i. The distance is set to

d′ = d + ω(x, y),

where ω(x, y) is the weight of the (x, y)-edge. For unweighted graphs ω(x, y) = 1
if the edge exists, 0 otherwise. For weighted graphs, the weight must not be lower
then 0.

Processing Messages. Mx→y(T ′, d′) in the target node. We focus on three
different cases. First, if d′ < d the new node distance in lower than the current
distance. The hub information table is set to the table from the message, where
p is set to the sending node. Also the distance is updated to the new distance.
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The second case is, that the message has the same distance value than the
current one d′ = d. In this case we remove all tuples concerning the sending node
and append the new information.

Tnew =

⎛

⎝
⋃

(h,p,α)∈T∧p�=x

(h, p, α)

⎞

⎠ ∪ {(h, x, α) : (h, α) ∈ T ′}

In both cases, the new hub information table will be propagated to all other
neighbors.

If d′ ≥ d + ω(y, x), the sender has a worse connection than the receiver. In
this case, the table is not updated, but the current table is propagated to the
sender, so the sending node can update its distances.

Otherwise the message is dropped, with no further steps.

Altering the Graph. Changes in the graph structure are handled as follows:
If a new edge (x, y) is added, node x sends an information message to y. Due to
message processing, either y will update its hub information or send its informa-
tion to x. Additionally, the new structure is propagated through the network.

Whenever an edge is removed, we have to check which of the nodes was the
connection to the parent node. Associated hub information tuples have to be
removed. If this clears the table, the distance is set to d = ∞. Changes have to
be propagated to all neighbors.

If a node is removed, then all connected edges also have to be removed and
processed. Pure node creation does not influence the structure and does not have
to be handled, because they have no connections.

Defining New Hubs. If a node n gets higher connected and becomes a hub,
the distance value is set to d = 0 and the hub information table is set to T =
(n, nil, 1). The information has to be propagated to all neighbors.

Removing Hubs. If a node n loses its hub state, the distance is set to d = ∞
and the information table is cleared. After propagating this information, all
neighbor nodes send alternative hub information.

Calculate Membership Values µ. Based on the α value in the hub infor-
mation table of each node, we can calculate the membership for each node and
hub as a fraction of the sum of membership-assignments to a given hub and the
total membership assignment as follows:

μh(x) =

∑
(h∗,p,α)∈T∧h∗=h α
∑

(h∗,p,α)∈T α

If a crisp partition is needed, we use argmaxhμh(x) as defuzzification of the
cluster assignment. On tie, we use the hub with the lower index.
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The algorithm runs almost linear as a function of the number of edges. The
resulting membership values are deterministic and the results are optimal, with
respect to the hub distance.

4 Experiments

We will do a two step evaluation of our presented algorithm, first, a static and
second, a dynamic case. In the static experiment, we compare the clustering
results with other algorithms. The dynamic experiment checks the performance
for dynamic graphs.

4.1 Static Experiment

First we check the algorithm in a static experiment setting. We take well-known
datasets to evaluate and compare clustering results with the spectral clustering
and Louvain method.

We start with a deeper view on the karate dataset from Zachary [23]. He
observed the relationship of the members of the club, after the club has split up
into two groups.

(a) Nearest Hub Clustering (b) Louvain (c) Membership
of a single node

Fig. 2. Clustering of karate club dataset

Figure 2a shows the results of the clustering with our Nearest Hub Clustering.
The outer circle of a node describes the community membership distribution
of the different communities. The inner circle is the crisp cluster association
described in Sect. 3. In Fig. 2c, a single node is shown where the membership
distribution is more visible. The solid lines describe connections, which are used
for next hub propagation. The dotted lines do not carry nearest hub information,
but they are still in the dataset.

Figure 2a shows the two cluster center when using NHC. The nodes 9, 14,
20, and 32 are exactly in-between the two center nodes. Due to crisp partition,
they are associated to cluster 34, but they could also be assigned to cluster 1.
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Fig. 3. Modularity comparison for different number of clusters (karate dataset)

Figure 2b shows the same graph clustered with the Louvain method. This
method offers four clusters, where the two main clusters are similar to the NHC
results.

In Fig. 3 we show the reached q-modularity for NHC, spectral clustering, and
the Louvain method for different number of clusters. The Louvain method only
offers results for four and six clusters. A more detailed structure is not possible.
NHC outperforms the spectral clustering with k-means for every number of clus-
ters. Especially for a small number of clusters, the spectral clustering with dis-
cretization and the Louvain method produce good results for the q-modularity.
For 10 and more clusters, NHC produces similar results to discretized spectral
clustering. The lower values for lower number of clusters might be caused by the
assignment method for equal distributed memberships.

In Fig. 4 we present the q-modularity for the dolphins network [14]. The
dataset represents the social structure of 62 dolphins. NHC does not reach the
q-modularity of the other methods for lower number of clusters, but for higher
numbers, the values are similar to spectral clustering with discretization. Again,
the Louvain method could not produce results for finer structures.

Large Scale Networks. Yang and Leskovec [21] provide a set of large scale
online communities including a ground truth. We used the DBLP, YouTube, and
Amazon dataset to check the cluster prediction performance of our algorithm.
These datasets contain from 300, 000 to 1, 100, 000 nodes and from 925, 000
to almost 3, 000, 000 edges. The dataset contains from 8, 300 to 75, 000 non-
overlapping communities.

We use the NMI-score to evaluate the cluster performance. Due to the com-
putational complexity of this measure, especially for a large amount of clusters,
we use the top 5000 communities provided by Yang and Leskovec. The selection
was done by different community measures.
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Fig. 4. Modularity comparison for different number of clusters (dolphins dataset)

Due to the complexity of spectral clustering and the fact we have to check
a lot of different number of communities, we skip this algorithm for this experi-
ment. We will compare Louvain results with our proposed algorithm.

Table 1. Large scale network comparison for Louvain and Nearest Hub Clustering

DBLP Amazon YouTube

Number of nodes 317, 080 334, 863 1, 134, 890

Number of edges 1, 049, 866 925, 872 2, 987, 624

Number of communities 13, 477 75, 149 8, 385

Top 5000 communities - nodes 112, 228 67, 462 72, 959

Louvain - time 98,7s 81.7s 252,2s

Louvain - NMI-score 0.530 0.871 0.510

Louvain - q-modularity 0.818 0.926 0.710

NHC - time 135.35s 168.31s 154,8s

NHC - min-degree 12 16 4

NHC - NMI-score 0.746 0.945 0.842

NHC - q-modularity 0.432 0.613 0.297

Table 1 shows detailed experiment results. The Louvain method is a fast
greedy approach to optimize the modularity. So it produces good cluster results
under the assumption that the q-modularity is a good cluster evaluation measure.
If, within a given cluster, there exists more edges than expected from the node
degree distribution, the q-modularity yields into larger values.
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As expected, the Louvain method gets much higher values for q-modularity.
But a comparison to the given ground truth shows that this is not correlated to
better cluster similarity scores. NHC get NMI-scores from 0.746 to 0.945, while
Louvain get NMI-scores from 0.510 to 0.871. This indicates that a large amount
of community structure could be found by our algorithm.

The required runtime shows that NHC requires a similar amount of time as
the Louvain method.

4.2 Dynamic Experiment

In this section we check the dynamic behavior of the presented algorithm. We
generate random clustered powerlaw-graphs with the algorithm proposed by
Holme and Kim [11]. As parameters we chose n = 1000 nodes, which are con-
nected each to m = 10 other nodes. With a probability of p = 0.7 the model will
create a triangle to increase the cluster coefficient of the resulting network.

The analysis will focus on the amount of messages which have to be processed
during adding and removing nodes. The quality of the resulting partition is
not checked because the algorithm produces optimal results with respect to the
target function of finding closest hubs. The quality of this objective function is
already checked in the static case.

Adding Edges. To investigate the adding edges behavior, we generated 100
graphs and added 100 random edges to each graph. This yields into 10000 adding
edged events. In Fig. 5a, we show a logarithmic histogram of the processed mes-
sages distribution. If a new edge does not create a new shorter path to the
hubs, which happens in 63.3% of the cases, only two messages between the two
new connected nodes have to be processed. On average 7.73 messages (standard
deviation of 10.88) and maximal 549 messages have been sent.

Due to the low amount of messages needed to update the clustering dur-
ing adding edges to the network, the presented algorithm performs well when
dynamically adding nodes and edges.

(a) Add Edges (b) Remove Edges

Fig. 5. Logarithmic histogram of messages sent during 10000 events.
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Removing Edges. We performed similar experiments for removing edges.
Again we created 100 graphs and removed randomly 100 existing edges from
each graph, so we get 10000 removing events. Figure 5b presents a logarithmic
histogram of the distribution of sent messages. If the removed edge does not
destroy the shortest path to a hub, we do not have to sent any messages at
all, which happens in 60.1% of the events. On average we need 14.2 messages
(standard deviation of 42.15). Maximally 674 messages have been sent. This is
a very rare case where the structure near the hubs is changed.

Also the removing process works with a low amount of sent messages. This
shows that the presented algorithm performs well on dynamic graph structures.

5 Conclusion

We presented an algorithm for graph clustering. In static experiments it produces
high q-modularity results for a finer structure. In contrast to the Louvain method
or the spectral clustering with discretization, the algorithm did not reach the
global optimum of q-modularity.

Promising experiments on large-scale real-world datasets show that large
parts of the underlying community structure can be found by our algorithm.

The main advantage of the algorithm is the dynamic behavior. If the graph
changes over time, only a small amount of processing steps have to be done to
update the clustering. This enables it for online cluster and community analysis.

The algorithm itself generates overlapping communities and provides fuzzy
membership degrees. These results are deterministic. Randomness influences
only the crisp cluster assignment.

In the future we will extend our experiments, e.g. directly compare the results
of different cluster algorithms or the investigation of more datasets. A larger
range of datasets could also provide more insights in the effective runtime behav-
ior. Furthermore, a hierarchical version of the algorithm is in progress. The main
idea is that all possible hub thresholds are processed at the same time, so the
user can adjust the value afterwards, without recalculating the partition.
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Abstract. The gender information of a Twitter user is not known a
priori when analysing Twitter data, because user registration does not
include gender information. This paper proposes an approach for creating
extended gender labelled datasets of Twitter users. The process involves
creating a smaller database of active Twitter users and to manually label
the gender. The process follows by extracting features from unstructured
information found on each user profile and by creating a gender classifica-
tion model. The model is then applied to a larger dataset, thus providing
automatic labels and corresponding confidence scores, which can be used
to estimate the most accurately labeled users. The resulting databases
can be further enriched with additional information extracted, for exam-
ple, from the profile picture and from the user location. The proposed
approach was successfully applied to English and Portuguese users, lead-
ing to two large datasets containing more than 57 K labeled users each.

Keywords: Gender classification · Twitter users · Gender database ·
Text mining

1 Introduction

Existing social networking services provide means for people to communicate
and express their feelings in a easy way. Such user generated content contains
clues of user’s behaviors and preferences, as well as other metadata information
that is now available for scientific research. Twitter, in particular, has become
a relevant source for social networking studies, mainly because: it provides a
simple way for users to express their feelings, ideas, and opinions; makes the
user generated content and associated metadata available to the community; and
furthermore provides easy-to-use web interfaces and application programming
interfaces (API) to access data. For many studies, the different attributes about
a user may be relevant. However, Twitter registration does not explicitly include
relevant information such as, for example, gender (not even optionally). For that
reason, many previous studies involving Twitter had to rely on small manually
labelled datasets of users. Manual labelling represents a labor-intensive task and
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40581-0 56
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Table 1. Twitter labelled datasets reported in the literature.

Study Users Tweets Languages Geography

Rao et al. (2010) [18] 1000 405 k English India

Burger et al. (2011) [5] 183729 4.1M Several

Bergsma et al. (2013) [3]

Liu et al. (2012) [11] 400 N/A English Canada

Bamman et al. (2012) [2] 14464 9.2M English United States

Deitrick et al. (2012) [7] N/A 3031 English

Fink et al. (2012) [8] 11155 18.5M English Nigerian

Miller et al. (2012) [14] 3000 N/A English

Al Zamal et al. (2012) [1] 400 N/A English Canada

Liu and Ruths (2013) [12] 8000 8M English

Ciot et al. (2013) [6] 8118 N/A Several

Kokkos and Tzouramanis (2014) [10] N/A 10000 English

Ugheoke (2014) [19] 1000 N/A English

van Helteren and Speerstra (2014) [9] 600 N/A Dutch

Nguyen et al. (2014) [15] 3000 N/A Dutch

Van Zegbroeck (2014) [20] 8791 N/A Flemish

Vicente et al. (2015) [22] 1464 English, Portuguese

is a very demanding challenge when analysing social media given the usual huge
number of users.

The creation of Twitter datasets is commonly reported in the literature, and
researchers have built databases of Twitter users for many geographic regions
and languages, including English [13,17] and Portuguese [4]. Due to the above
reason, most of the reported databases are not labelled with user attributes
like gender or age (user age was also not available on Twitter until late 2015).
Previous studies reported the task of labelling users with their gender to be
demanding, labor-intensive and in many cases not reusable. Table 1 presents a
summarised list of labelled datasets reported in the literature, revealing that
most of the studies use small labelled datasets when compared to the number
of existing users. These studies involve several languages but in the reported
literature, English represents 66.7 % of the users, Portuguese represents 14.4 %
and Spanish represents about 6 %. In [18], 1000 profiles were manually annotated
through the gender/name association using the Twitter profile information (user
name and screen name). Burger et al. [5] report the most extensive database,
which was created by following the blogging website links available in the profile
of Twitter users, and extracting the gender from the corresponding profiles.
To evaluate the accuracy of their method, the authors randomly selected 1000
Twitter users and manually validated them. Only 15 % of the sample had explicit
gender information. In this case, filtering only Twitter users with blogs may bias
the dataset, but also filters bots and spammers. Liu and Ruths [12] labelled
their data using the Amazon Mechanical Turk platform, a platform developed
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for the distribution of tasks to human workers where each human intelligence task
(HIT) is performed by an individual in exchange for a small fee. The reliability
of such method is uncertain, even when the same task is performed by more
than one person. In [5], the accuracy of Amazon Mechanical Turk human gender
classification was only of 68.7 %, when averaged across workers. In [1,6,7,10,11,
14–16,19,21], Liu et al. manually labelled users to produce datasets, observing
either user name, screen name, profile picture, tweets or a combination of those
attributes. Information available in social media profiles such as Facebook and
LinkedIn and associated blogging websites, when provided by Twitter users was
also used by [15,21,22].

This paper describes a method for creating extended gender labelled datasets
in a semi-automatic fashion. The proposed methodology is language indepen-
dent, but the focus was currently given to Portuguese and English users. Based
on the proposed methodology, two extended labelled datasets of English and
Portuguese Twitter users have been created, which can be used, not only to
provide additional information for further processing stages, but also to create
gender models based on the users’ generated content and profile information.
This paper is structured as follows: Section summarises the whole process of
creating gender labelled datasets, while Sects. 2 and 3 provide details about two
major stages: the creation of core extended labelled datasets, and the enrich-
ment the datasets previously created, respectively. Section 5 describes the data
validation. Finally, Sect. 6 summarises our work and presents the conclusions.

2 Proposed Approach

The approach to create extended labelled datasets is depicted in Fig. 1. The
first step in the pipeline consists of extracting data from the Streaming API. It
involves restricting tweets to a given geolocation, to the set of languages under
consideration, and also involves filtering the data in order to remove undesirable
users, such as companies and chat bots.

The second step uses a small dataset of labelled users in order to create a
gender classification model. The model is based on a set of features extracted

Fig. 1. Semi-automatic gender labelled dataset creation diagram.
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from unstructured information found on two profile attributes: user name(up
to 15 characters), screen name (up to 20 characters). The feature extraction
process, detailed in [21,22], considers a number of normalisation steps, such as:
repeated vowels (e.g.: “eriiiiiiiiic” → “eric”), and leet speak (e.g.: “3ric” →“eric”).
After finding one or more names, the following elements are addressed in each
feature: “case”, “boundaries”, “separation” and “position”. E.g.: Considering
the screen name “johnGaines”, three names can be extracted: “john”, “aine”
and “ines”. The name “aine” has no valid boundaries, since is preceded and
succeeded by alphabetic characters. The feature found is weak and the size of
the name is lower than the previously defined threshold. Consequently, the name
is discarded. The name “ines” has a valid end boundary, as it is not succeeded
by alphabetic characters. Finally, the name “john” has a valid end boundary
and starts at the beginning of the screen name. Different thresholds have been
defined for specific features, e.g. names with such type of boundary (valid end
boundary) and such position (start of the screen name) must contain at least
3 characters. At the end of this process 192 features are extracted, includ-
ing examples such as: “male name correct beginning separation and case”,
“female name beginning no separation” [21]. The classification model is then
applied to the large dataset, where users having a classification accuracy below
a given threshold may be discarded in order to minimise the number of classi-
fication errors and improve data quality. The procedure may include optional
manual steps to remove other undesirable users that were not detected previ-
ously.

Finally, the dataset created can be enriched with additional information that
includes, for example, attributes derived from the profile picture and from the
user location.

In the scope of this paper, two datasets of Twitter users have been created: a
dataset of English users, and a dataset of Portuguese users. The English dataset
was extracted from one year of tweets, collected from January 2014 to December
2014 using the Twitter streaming/sample API. The data was restricted to active
users that have produced at least 100 tweets in English language, either in the
United Kingdom or in the United States. From those we kept around 100 K
users. The Portuguese dataset is the full dataset of the data described in [4],
and corresponds to a database of Portuguese users, restricted by users that have
tweeted at least 100 tweets in Portuguese language, geolocated in the Portuguese
mainland. After creating the datasets we have partially validated the data in
order to assess its quality, and split it into train, development and evaluation
subsets. The Twitter streaming/sample API is technically limited to about 1 %
of the actual public tweets, but since the amount of geolocated tweets filtered for
the Portuguese language within the country geographical area is under 1 % of
the total number of tweets, the limitations imposed by Twitter are not relevant.

3 Dataset with Core Gender Labels

As previously stated, we have automatically produced two core datasets con-
taining gender labels, based on 192 features extracted from the screen name
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Table 2. Number of users that have triggered a given number of gender features.

Dataset Number of users No features 1 to 10 features > 10 features

English 100000 27110 27 % 65559 66% 7331 7%

Portuguese 105450 44559 42 % 57440 55% 3451 3%

Fig. 2. Automatic gender classification-features per users. (Color figure online)

and from the user name. This approach was applied to both English and Por-
tuguese users leading to two datasets. Table 2 and Fig. 2 present the distribution
of the users according to the number of features they positively trigger, reveal-
ing a higher portion of English users that did not trigger any of the features
(42 %) and that were, therefore, discarded from the data. The considerably high
proportion of discarded users signal two situations: (i) the profile of such users
information provide little or no clues for gender detection; (ii) the feature set
can be improved in order to take into account other possible gender detection
clues.

In order find the profile attribute that mostly contributes with features to
the gender classification task, we have analysed the distribution of features that
were extracted either from the screen name or from the user name. Table 3
shows the obtained results, where columns user name and screen name repre-
sent users activating only features extracted from the corresponding attribute.
Results reveal that the two attributes are equally relevant for gender detection.

Based on the extracted features, we have applied supervised machine learning
in order to automatically guess the gender label of each user. Different methods
have been tested, including: Naive Bayes variants, Logistic Regression, Sup-
port Vector Machines, Fuzzy c-Means clustering and k-means, but Multinomial
Naive Bayes (MNB) turned out to achieve the best performance [21]. We have
used two existing MNB models for English and Portuguese gender classification,
previously created from the smaller datasets manually labelled with gender [22].
In the absence of any previously annotated datasets, an alternative approach
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Table 3. Number of users that have triggered gender features per profile attribute.

Dataset None User name Screen name Both

English 27110 27 % 20845 21% 20580 21 % 31465 31 %

Portuguese 44599 42 % 17776 18% 18443 17 % 24672 23 %

Table 4. Some of the gender indicative words.

English Portuguese

Male Female Male Female

Father Mother pai mãe

Boy Girl rapaz rapariga

Boyfriend Girlfriend Namorado namorada

Grandfather Grandmother avô avó

would be to use an unsupervised gender classification procedure based on Fuzzy
C-means clustering [21], which performed almost as well as MNB (96 % classifi-
cation accuracy). After the automatic gender classification stage, users with no
features or with features, but classified with a confidence score lower than 95 %
were discarded in order to minimise the number of classification errors. All the
remaining users were added to a dataset, as well as the text of their 100 most
recent tweets.

In order to further improve the quality of the data, we have manually vali-
dated a subset of the data as follows: (i) we have randomly selected a sample of
the labeled dataset to manually validate and correct data; and (ii) we selected a
sample of the labelled dataset by searching for gender related words in the users’
descriptions. Concerning the second task, Table 4 describes some of the words
more informative about the gender. Some of these words are associated to the
opposite gender when preceded by possessive determiners (e.g.: “my husband”
is considered female1, while “husband” is male). This second task may be con-
sidered as biased, since the probability of finding wrong classification is higher,
but it improves the quality of the dataset.

Finally, each one of the resulting datasets were randomly partitioned into 3
subsets: (i) train – includes 60 % of the users and can be used to train models;
(ii) development – includes 20 % of the users and can be used to train or to tune
models, minimising problems, such as overfitting; (iii) test – includes 20 % of
the users and can be used to assess the performance of the final models. Table 5
shows the number of tweets and users included in each one of the subsets.

1 Gay and transsexual users, as profiles from companies, are not in the scope of this
study.
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4 Enriching the Datasets with Additional Information

In order to further enhance the datasets, we have added information about two
new features for each user: gender recognition from profile picture, and detailed
geographical information based on the last known location. The first attribute
provides useful information for improving or confirming the gender classification
performed previously, while the second attribute may be relevant for tackling
region specific phenomena in further automatic processing.

4.1 Gender Based on the Profile Picture

To the best of our knowledge, the use of the gender attribute extracted from
the profile picture has not been reported in previous work. However, the profile
picture might contain clues regarding the gender of the user.

Face++ 2 is a recent facial recognition API that is publicly available and can
be used to analyse the users’ profile picture. We have used it through its API
to extract the gender and the corresponding confidence, and the resulting info
was stored in the datasets. The API was invoked with the profile picture URL
extracted from the last stored tweet of each user. Figure 3 illustrates the usage
of Face++, where the first picture was correctly classified. Many of the users
were correctly classified using this method, but it still presents the following
limitations: (i) our datasets contains data back from 2014, and some of the users

Table 5. Split of the obtained semi-automatic gender labelled datasets.

Dataset #tweets Train Development Test Total

English 6.5M 39043 13015 13015 65073

Portuguese 5.8M 34625 11540 11540 57705

Fig. 3. Face++ gender detection examples.

2 http://www.faceplusplus.com/.

http://www.faceplusplus.com/
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Table 6. Number of users involved when Face++ was applied to guess the user gender.

English Portuguese

Image unavailable 31076 54 % 28605 44 %

No face detected 9777 17 % 12995 20 %

Male 9156 16 % 10805 17 %

Female 7857 14 % 12649 19 %

Table 7. Examples of geolocation information.

United States United Kingdom Portugal

New York, NY North East, United Kingdom Lisboa, Portugal

St. James, NY Westminster, London Paços de Ferreira, Porto

New York, US Cardiff, Wales Vila Nova de Gaia, Portugal

New Jersey, USA

have changed their profile picture in the meanwhile; (ii) some of the pictures do
not contain faces; (iii) Face++ is sometimes unable to correctly detect the face
in the picture, as exemplified in the second picture presented in the figure.

Table 6 summaries the gender data retrieved from the Face++ API, showing
that 54 % of the English users and 44 % of the Portuguese users do not have a
profile picture or have removed it since 2014. From the users with an existing
profile picture, no face was detected for 36 % in both datasets. In the English
dataset, more male than female users have a profile picture with a face, but
the opposite occurs in the Portuguese dataset. The gender information provided
based on the profile picture could be combined with our previous labels in order
to enhance the classification prediction of the whole system. However, it was not
used for that purpose in the scope of this paper.

4.2 Geographical Location

People may write differently according to their location, and Twitter provides
geolocation within each tweet as long as the user allows it. Despite not providing
additional clues about the user gender, in order to better characterise our data
and provide extended usage, we have added geographical information to our
datasets based on the existing metadata.

We took different approaches depending on the dataset. The English dataset
contains tweets in English from more than 200 countries. Adding state or district
information for each country would be almost impossible and in most cases
unnecessary, since for more than 100 countries the dataset contains only a few
number of users, sometimes less than 10. From the entire labelled dataset, 78 %
users’ last geographical location was the United States and 11 % the United
Kingdom. For the United States’ users, we added the information regarding the
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Fig. 4. Labelled users in the United States and in the United Kingdom.

Table 8. Manual validation of the automatic gender classification.

Dataset Users Incorrect classification

Total Female Male Total Female Male

English 3030 1883 62.2 % 1147 37.9 % 274 9.0 % 187 68.3 % 87 31.8 %

Portuguese 3028 1754 57.9 % 1274 42.1 % 93 3.1 % 76 81.7 % 17 18.3 %

location’s state. We extracted the last location from the users and searched for a
city or state. The first and second columns of Table 7 shows examples of possible
values for geolocation for the United States and United Kingdom, where bold
represent states and countries. Twitter usually provides the state code for tweets
geolocated in the United States (from the standard INCITS 383). When the code
was not found, we extracted the location and mapped it to the corresponding
state code. For the United Kingdom labelled users, the distinction added was
the country: Scotland, Northern Ireland, England and Wales. We extracted the
last location from the users and searched for a city, a state or a country. Figure 4
shows the distribution of the labelled users in the United States and in the
United Kingdom.

In the Portuguese dataset, we added a feature with the district of the location.
We extracted the last location from the user and searched for a city or district.
After finding the cities, they were mapped to the corresponding district. The
third column of Table 7 shows possible values for geolocation for the Portuguese
territory, where districts are represented in bold, and cities or locations and
represented in italics. In the case of the Portuguese archipelagos, we aggregated
each location in its archipelago, Madeira and Azores. Finally, we added the

3 http://geonames.usgs.gov/domestic/download data.htm.

http://geonames.usgs.gov/domestic/download_data.htm
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Fig. 5. Labelled Portuguese users per district and gender.

district information to each user. Figure 5 shows the geographical distribution of
Portuguese labelled users by district.

5 Data Validation

In order to independently assess the quality of the data, a manual validation was
performed. About 3000 users were randomly selected from each labelled dataset,
and the gender label was validated using both the Twitter profile content and the
blogging sites (when available). We looked for names both in the user name and
in the screen name of the profile, analysed the profile picture of the user and, if
the user had blogging sites associated to their profile, we followed those URLs and
cross validated the data found with their gender classification. Table 8 summaries
the results obtained. We were expecting classification accuracy around 97.3 %
for the English dataset [22], which was the accuracy achieved for the test set
of the smaller dataset, but we have detected around 9 % of incorrectly classified
users. In the Portuguese dataset only 3 % of the users were considered incorrectly
classified. That was an expected results because the Portuguese language has a
construction of names with more clues to gender than English. The difference
in the accuracy may be also related to the higher number of features triggered
for English users, probably due to noise found in the attributes. Most of the
incorrect classifications in the datasets were due to the four unavoidable reasons:
(i) Twitter profile was not of a person; (ii) user was transsexual; (iii) profile was
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removed and the manual validation was impossible to perform; (iv) gender was
incorrectly assigned. By looking at the profiles that were incorrectly classified,
we noticed that female names represent a higher percentage in both datasets.
In the English dataset the percentage (68 %) is in accordance with variation of
the sample. In the Portuguese dataset the difference is noticeable. Female users
represent 82 % of the errors, even though the random sample contained only 58 %
of female users. The overall result is very satisfactory and, to the best of our
knowledge, these results are much better than any other reported non-manual
gender dataset.

6 Conclusion

This paper presents an approach for creating extended gender labelled datasets
of Twitter users in a semi-automatic fashion. The proposed approach was suc-
cessfully applied to English and Portuguese users, and two large datasets of
labeled users were created. The creation of datasets of Twitter users in commonly
reported in the literature. However, most of the datasets are either not labeled
with user gender or they are rather small in size. Labelled datasets reported
in this paper are only surpassed in size by the work reported by Burger et al.
[5], but we have employed less effort and more limited resources. The datasets
obtained using the presented procedure constitute a valuable resource that can
be used either for creating gender models or to perform gender dependent analy-
ses of Twitter content. As ongoing work, we have already explored supervised
and unsupervised gender classification models using the developed datasets and
obtained an accuracy of 93.2 % with English users and an accuracy of 96.9 %
with Portuguese users in our test sets.

Despite the encouraging results, the proposed approach has still several lim-
itations that will be addressed in the near future: (i) Twitter users might not
use their real names and for that reason the reliability of self-declared names
is uncertain (e.g.: a male user can have a female gender associated user name);
(ii) The proposed approach is not robust when facing profiles of companies and
other organisations; (iii) Twitter metadata might be incorrect. For example, a
tweet identified by Twitter as being written in Portuguese may be written in a
different language.
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Abstract. In this paper, we provide a theoretical justification for the
application of higher degree fuzzy transform in time series analysis. We
demonstrate that the higher degree fuzzy transform technique can be
used for the suppression of high frequencies in time series, which belongs
among the essential assumptions for a successful extraction of the trend
(trend-cycle) of time series. More precisely, if a time series can be addi-
tively decomposed into a trend-cycle, a seasonal component and a noise,
we show that high frequencies appearing in the seasonal component can
be arbitrarily suppressed using the fuzzy transform of higher degree with
a reasonable adjustment of parameters of a generalized uniform fuzzy
partition.

Keywords: Fuzzy transform · High frequency · Seasonal component ·
Time series

1 Introduction

The fuzzy transform (F-transform) theory has been introduced by Perfilieva in
[2] and then generalized to a higher degree in [3]. An application of fuzzy trans-
form to the time series analysis was published in [5,6]. The trend (trend-cycle)
extraction is one of the major tasks in the time series analysis. In literature, for
a review some modern methods, we refer to [7], we can find different approaches
for the trend extraction like a model-based approach (an ARIMA model or a
state space model), nonparametric linear filtering (the Henderson, LOESS, and
Hodrick-Prescott filters), or singular spectrum analysis. A successful extraction
of the trend-cycle requires a significant suppression or better elimination of high
(positive or negative) frequencies and random fluctuations. In the case of the
higher degree F-transform technique, the problem of trend-cycle extraction has
been partially solved in [1,9], where a suppression of high frequencies in seasonal
components has been demonstrated for the F0- and F1-transform with respect
to the triangle and raised cosine uniform fuzzy partitions. This paper is a con-
tinuation of our research of the suppression of high frequencies in time series
using the higher degree F-transform technique, where the particular cases are
now replaced by more general ones. The results should bring us a unified view
on the trend-cycle extraction possibilities using the higher degree F-transform
technique.
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 705–716, 2016.
DOI: 10.1007/978-3-319-40581-0 57
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2 Preliminaries

Let N, Z, R and C denote the set of natural numbers, integers, reals and complex
numbers, respectively. For any complex number c ∈ C, we use |c| to denote the
absolute value of c. i.e., |c| = (c · c̄)

1
2 , where c̄ is the complex conjugate of c.

2.1 Generalized Uniform Fuzzy Partition

A fuzzy partition of an interval or the real line is a core of the (higher degree)
F-transform. In this paper, we restrict ourselves to fuzzy partitions that are
uniformly spread along the real line and are determined by a generating function,
which definition is as follows.

Definition 1. A real–valued function a : R → [0, 1] is said to be a generating
function provided that a is a continuous and even function that is non-increasing
in [0, 1] and vanishing outside of [−1, 1].

Basic examples of generating functions frequently appearing in applications
of the F-transform technique are the triangle a and raised cosine functions.

Example 1. Functions atr, arc : R → [0, 1] defined by

atr(t) = max(1 − |t|, 0) (1)

arc(t) =
{

1
2 (1 + cos(πt)), −1 ≤ t ≤ 1;
0, otherwise, (2)

for any t ∈ R, are called the triangle and raised cosine generating functions,
respectively.

The triangle generating function is a special case of B-spline generating func-
tions that were used in a little modified form in [10,11].

Example 2. Let us define a rectangular pulse β0 as follows:

β0(t) =

⎧
⎪⎨

⎪⎩

1, − 1
2 < x < 1

2 ,
1
2 , |x| = 1

2 ,

0, otherwise.
(3)

A central B–spline of degree n denoted by βn is constructed from the (n+1)-fold
convolution of the rectangular pulse β0:

βn(t) = β0 � β0 � · · · � β0(t)
︸ ︷︷ ︸

(n+1) times

. (4)

A B–spline generating function of degree n is denoted by abs,n(t) and defined by
rescaling the support of βn(t), precisely,

abs,n(t) = βn

(
(n + 1) · t

2

)
. (5)

Obviously, abs,1(t) = atr(t).
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Let a be a generating function, and let h and r be positive constants. The
parameters h and r are called the bandwidth and the shift, respectively. Define
by tk = k ·r, k ∈ N, the k-th node of the real line. The function ah,r,k : R → [0, 1]
given by

ah,r,k(t) = a

(
t − tk

h

)
(6)

is said to be a scaled generating function placed at the k-th node of the real line.
Now, we can proceed to the definition of a generalized uniform fuzzy partition
of R as has been proposed in [4].

Definition 2. Let a be a generating function, and let h and r be positive con-
stants. A generalized uniform fuzzy partition of the real line determined by the
triplet (a, h, r) is the collection {ah,r,k}k∈Z of scaled generating functions placed
at all nodes tk = k · r, k ∈ Z, which satisfies a la Ruspini condition:

∑

k∈Z

ah,r,k(t) = 1 (7)

for any t ∈ R.

In what follows, we provide a sufficient condition for a generalized uniform
fuzzy partition to be determined from a generating function, bandwidth and
shift.

Theorem 1. Let a be a generating function, and let γ =
∫ 1

−1
a(t)dt. If a satisfies

the γ–symmetry condition, i.e.,
∑

k∈Z

a(t − kγ) = 1, t ∈ [0, 1], (8)

and γh
r ∈ N for h, r > 0, then the triplet

(
r

γh · a, h, r
)

determines a generalized
uniform fuzzy partition of R.

Proof. Let us assume that γh
r = m ∈ N. We show that a la Ruspini condition is

satisfied for the triplet
(

r
γh · a, h, r

)
. For any t ∈ R, we have

∑

k∈Z

r

γh
· a

(
t − kr

h

)
=

1
m

∑

n∈Z

a

(
t

h
− kγ

m

)
=

1
m

m−1∑

i=0

∑

�∈Z

a

(
t

h
− iγ

m
− �γ

)
,

where we used the fact that any integer n can be uniquely expressed as �m + i
for a certain integer � and i = 0, . . . ,m−1. Moreover, for any i = 0, 1, . . . , m−1,
there exists �i ∈ Z such that

t

h
− iγ

m
− �iγ ∈ [0, 1]. (9)
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Indeed, let s = t
h − iγ

m . If s − �γ �∈ [0, 1] for any � ∈ Z, then γ > 1, but this is a
contradiction with the definition of the generating function. By the γ–symmetry
condition, for any i = 0, . . . , m − 1, we find that

∑

�∈Z

a

(
t

h
− iγ

m
− �γ

)
=

∑

n∈Z

a

(
t

h
− iγ

m
− �iγ − nγ

)
= 1.

Hence, we obtain

∑

k∈Z

r

γh
· a

(
t − kr

h

)
=

1
m

m−1∑

i=0

∑

�∈Z

a

(
t

h
− iγ

m
− �γ

)
= 1.

��
As a straightforward consequence of this theorem we obtain a sufficient condi-

tion for the determination of the raised cosine and B–spline generalized uniform
fuzzy partitions.

Corollary 1. If h
r ∈ N for h, r > 0, then the triplet

(
r
h · arc, h, r

)
determines a

raised cosine generalized uniform fuzzy partition.

Corollary 2. If 2h
r(n+1) ∈ N for h, r > 0, n is a positive natural number, then

the triplet
(

r(n+1)
2h · abs,n, h, r

)
determines a B–spline generalized uniform fuzzy

partition of degree n.

In the sequel, when we consider a raised cosine or B–spline generalized uni-
form fuzzy partition, we assume that it is determined by the respective triplet
of parameters stated in the mentioned above corollaries.

2.2 Higher Degree Fuzzy Transform

In the original paper [3] on the higher degree F-transform, an orthogonal basis
of polynomials derived by the Gram-Schmidt orthogonalization process with
respect to the basic functions of a given fuzzy partition were used to find the
components of its direct phase. In this paper, we consider another approach
based on the monomial basis and special matrices.

Definition 3. Let {ah,r,k}k∈Z be a generalized uniform fuzzy partition of the real
line determined by the triplet (a, h, r), and f be a piecewise continuous function.
The direct fuzzy transform of m-th degree (Fm–transform) of f with respect to
{ah,r,k}k∈Z is the collection F→

m [f ] = {Qk | k ∈ Z} where

Qk(t) = βk,0 + βk,1(t − tk) + . . . + βk,m(t − tk)m (10)
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determined by (βk,0, βk,1, . . . , βk,m)T = H−1 · C−1 · Y where H =
diag(1,h, . . . ,hm), and C = (Cij) and Y = (Yi) are matrices of the sizes
(m + 1) × (m + 1) and (m + 1) × 1, respectively determined as follows

Cij =
∫ 1

−1

ti+j−2a(t)dt, (11)

Yi =
∫ 1

−1

f(th + tk) · ti−1a(t)dt. (12)

The polynomial F→
m,k[f ] = Qk is called the k-th component of direct Fm–

transform of f with respect to {ah,r,k}k∈Z.

The inverse phase of the higher degree F-transform is linear like combination
of basic functions with coefficients represented by the F-transform components
(polynomials).

Definition 4. Let F→
m [f ] = {Qk | k ∈ Z} be a direct fuzzy transform of m-th

degree of a function f with respect to. The inverse fuzzy transform of f of m-th
degree with respect to a generalized uniform fuzzy partition {ah,r,k}k∈Z is defined
as follows

f̂(t) =
∑

k∈Z

Qk(t)ah,r,k(t), t ∈ R. (13)

In what follows, we omit the reference to the degree of the direct F-transform
in all cases when no confusion can appear.

3 Suppression of High Frequencies in Time Series

In this section, the k-th component of direct Fm-transform of a function f with
respect to the generalized uniform fuzzy partition {ah,r,k}k∈Z

determined by
a triplet (a, h, r) will be denoted by F→

m,k,a[f ] to stress the type of generating
function.

3.1 Assumptions on Time Series

Let X(t), t ∈ R, be a time series, i.e., a realization of a random process.1 Similarly
to the papers [1,9], we assume that X(t) can be additively decomposed and
written in the following form

X(t) = TC(t) + S(t) + R(t), t ∈ R, (14)

where TC(t), S(t), R(t) denote the trend-cycle, seasonal and noise component,
respectively. Further, we assume that the seasonal component S(t) is the sum of
a finite number of waves as follows

S(t) =
s∑

k=0

pkeiωkt, (15)

1 The set of real numbers R can be replaced here by any real interval, e.g., [0, T ].
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where pk is a complex number, ωk is the k–th frequency, and i denotes the
imaginary unit.

In this paper, we show that each summand in (15) can be arbitrarily sup-
pressed by the application of the higher degree fuzzy transform with respect to
a generalized uniform fuzzy partition, where the bandwidth h and a number N
of derivatives of respective generating function are major parameters. A con-
sequence of this fact is that the higher degree fuzzy transform technique can
arbitrarily suppressed the seasonal component.

3.2 General Justifications

Let p(ω, t) = eiωt, where t, ω and i denotes the time, frequency and imaginary
unit, respectively. The complex-valued function p(ω, t) represents a summand in
(15). The following theorem states that the size of each component F→

m,k,a[p(ω, t)]
of direct higher degree F-transform of p(ω, t) at each point t ∈ [tk − h, tk + h]
can be arbitrarily small. Before, let us recall the well known Riemann-Lebesgue
lemma in the Fourier analysis (see, e.g., [8]).

Lemma 1 (Riemann–Lebesgue). Let f be a function of L1[a, b]. Then, the
following integrals

∫ b

a

f(x) cos λxdx and
∫ b

a

f(x) sin λxdx

tend to zero as |λ| → ∞.

Theorem 2. Let {ah,r,k}k∈Z be a generalized uniform fuzzy partition deter-
mined by the triplet (a, h, r), and let ω ∈ R and d = ωh. Then, for any m ∈ N

and t ∈ [tk − h, tk + h], it holds

lim
|d|→∞

∣∣F→
m,k,a[p(ω, t)](t)

∣∣ = 0. (16)

Proof. From the definition of the direct Fm-transform; (Definition 3), we have

F→
m,k,a[p(ω, t)](t) = βk,0 + βk,1(t − tk) + · · · + βk,m(t − tk)m,

determined by

βk = (βk,0, · · · , βk,m)T = H−1 · C−1 · Y,

where H = diag(1, h, . . . , hm), and C = (Cij) and Y = (Yi) are matrices of the
sizes (m + 1) × (m + 1) and (m + 1) × 1, which are determined by

Cij =
∫ 1

−1

ti+j−2a(t)dt and Yi =
∫ 1

−1

p(ω, th + tk) · ti−1a(t)dt,

respectively. Then, one can simply find that

∣∣F→
m,k,a[p(ω, t)](t)

∣∣ ≤
m∑

j=0

|t − tk|j |βk,j |.
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Moreover, putting T = C−1, we obtain

|βk,j | ≤ ‖T‖
hj

m∑

�=0

|Y�+1|

for any j = 0, 1, . . . ,m, where ‖T‖ = max{|Tij ||i, j = 1, 2, . . . ,m + 1}. Hence

∣∣F→
m,k,a[p(ω, t)](t)

∣∣ ≤ ‖T‖
m∑

j,�=0

∣
∣∣∣
t − tk

h

∣
∣∣∣

j

|Y�+1| ≤ (m + 1)‖T‖
m∑

�=0

|Y�+1|.

In addition, for any � = 0, 1, . . . ,m, we have

Y�+1 =
∫ 1

−1

p(ω, ht + tk)t�a(t)dt =
∫ 1

−1

eiω(ht+tk)t�a(t)dt

= eiωtk

∫ 1

−1

t�a(t)eiωhtdt = eiωtk

∫ 1

−1

t�a(t)eitddt

= eiωtk

(∫ 1

−1

t�a(t) cos(td)dt + i

∫ 1

−1

t�a(t) sin(td)dt

)

Using Lemma 1 and the previous equality, we obtain the desirable results. ��
From this theorem, one can see that if a generalized uniform fuzzy partition

is fixed, i.e., we do not change the generating function and its bandwidth h,
then the absolute value of F→

m,k[p(ω, t)](t) converges to zero for large (positive or
negative) frequencies, more precisely, for the frequencies that go in the absolute
value to infinity. On the other hand, if a frequency ω is fixed, then the same effect
is obtained by considering large bandwidths. Hence, we can assert that the high
frequencies, which appear in the seasonal component of a time series, can be
significantly suppressed by a reasonable setting of the bandwidth of a generating
function from which a generalized uniform fuzzy partition is constructed.

Although, the previous theorem has a major importance for the high fre-
quency suppression, it says nothing about the speed of the convergence. The
following theorem shows that the speed of convergence depends on the differen-
tiability of generating functions.

Theorem 3. Let {ah,r,k}k∈Z be a generalized uniform fuzzy partition deter-
mined by the triplet (a, h, r), and let ω ∈ R and d = ωh. If a ∈ CN (R), i.e., a is
N -times differentiable and its N derivatives are continuous on R, then

∣∣F→
m,k,a[p(ω, t)](t)

∣∣ = O(d−N ) as |d| → ∞, (17)

for any m ∈ N and t ∈ [tk − h, tk + h].

Proof. By the same arguments used in the proof of Theorem 2, we find that

∣
∣F→

m,k,a[p(ω, t)](t)
∣
∣ ≤ (m + 1)‖T‖

m∑

�=0

|Y�+1|, (18)
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where

|Y�+1| =
∣∣∣
∣

∫ 1

−1

t�a(t)eitddt

∣∣∣
∣ .

Since a ∈ CN (R), we have t�a ∈ CN (R). Using the integration by parts, we
obtain

∫ 1

−1

t�a(t)eitddt =
(−1)N

(i · d)N
·
∫ 1

−1

(t�a(t))(N) · eitddt

+ eitd
N−1∑

j=0

(−1)j

(i · d)j+1
· (t�a(t))(j)

∣
∣∣∣∣∣

t=1

t=−1

.

Form the continuity of a(j) for any j = 0, 1, . . . , N , we have (t�a(t))(j)
∣∣
t=±1

= 0
for any j = 0, 1, . . . , N − 1. Therefore,

∫ 1

−1

t�a(t)eitddt =
(−1)N

(i · d)N
·
∫ 1

−1

(t�a(t))(N) · eitddt.

Furthermore,

|Y�+1| =
∣∣∣∣

∫ 1

−1

t�a(t)eitddt

∣∣∣∣ ≤ 1
|d|N ·

∫ 1

−1

∣∣∣(t�a(t))(N)
∣∣∣ dt.

From this inequality and (18), we obtain the desirable statement.

��

3.3 Particular Cases of Generating Functions

In Theorem 3, we showed that the speed of the convergence is d−N provided that
the fuzzy partition is based on a generating function a belonging to CN . The
following theorems state that in particular cases, the speed of the convergence
can be even higher.

Theorem 4. Let {ãrc
h,r,k}k∈Z be a raised cosine generalized uniform fuzzy par-

tition determined by a triplet (ãrc, h, r), where ãrc = r
h · arc, and let ω ∈ R and

d = ωh. Then, for any m ∈ N and t ∈ [tk − h, tk + h], it holds
∣∣F→

m,k,ãrc [p(ω, t)](t)
∣∣ = O(d−3) as |d| → ∞. (19)

Proof. Using the integration by parts, for any � = 0, 1, . . . ,m, we obtain
∫ 1

−1

t�ãrc(t)eitddt =
(−1)3

(i · d)3

∫ 1

−1

(t�ãrc(t))(3)eitddt

+ eitd ·
2∑

j=0

(−1)j

(i · d)j+1
· (t�ãrc(t))(j)

∣∣∣∣
∣∣

t=1

t=−1
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By a straightforward computation, we find that (t�ãrc(t))(j)
∣∣
t=±1

= 0 for any
j = 0, 1. Hence, we obtain

∫ 1

−1

t�ãrc(t)eitddt =
1

i · d3

∫ 1

−1

(t�ãrc(t))(3)eitddt

− eid

i · d3
· (t�ãrc(t))′′(1) +

e−id

i · d3
· (t�ãrc(t))′′(−1).

Therefore,
∣∣
∣∣

∫ 1

−1

t�ãrc(t)eitddt

∣∣
∣∣ ≤

1
|d|3

(∫ 1

−1

∣∣
∣(t�ãrc(t))(3)

∣∣
∣ dt + |(t�ãrc(t))′′(1)| + |(t�ãrc(t))′′(−1)|

)
.

By similar arguments used in the proof of Theorem3, we obtain the desirable
statement.

��
Theorem 5. Let

{
ãbs,n

h,r,k

}

k∈Z

be a B-spline generalized uniform fuzzy partition

of degree n determined by the triplet
(
ãbs,n, h, r

)
, where ãbs,n = r(n+1)

2h · abs,n,
ω ∈ R and d = ωh. Then,

∣∣∣F→
m,k,ãbs,n [p(ω, t)](t)

∣∣∣ = O(d−(n+1)) as |d| → ∞, (20)

for any m ∈ N and t ∈ [tk − h, tk + h].

Proof. Let f = − d
2π . Recall that the Fourier transform (unitary with ordinary

frequency) of βn(t) is the function sincn+1(f), where f is the frequency, and
sinc(f) = sin(πf)

πf . By the definition of ãbs,n and the basic properties of the
Fourier transform, for any � = 0, 1, . . . ,m, we obtain

∫ 1

−1

t�ãbs,n(t)eidtdt =
r(n + 1)

2h

∫ 1

−1

t�βn

(
(n + 1)t

2

)
e−i2πtfdt

=
r(n + 1)

2h
· F

[
t�βn

(
(n + 1)t

2

)]
(f) =

r

h
·
(

i

2π

)�

· d�

df �
sincn+1

(
2f

n + 1

)
.

Moreover, one can prove that

d�

df �
sincn+1

(
2f

n + 1

)
= O(f−(n+1)) as |f | → ∞,

for any � = 0, 1, . . . ,m. Therefore,
∣∣∣∣

∫ 1

−1

t�ãbs,n(t)eidtdt

∣∣∣∣ = O(d−(n+1)) as |d| → ∞.
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By similar arguments used in the proof of Theorem3, we obtain the desirable
statement. ��

As we have mentioned in Example 2, the triangular generalized uniform fuzzy
partition is a B-spline generalized uniform fuzzy partition of degree n = 1. The
following statement is a consequence of the previous theorem.

Corollary 3. Let {ãtr
h,r,k}k∈Z be a generalized uniform fuzzy partition deter-

mined by a triplet (ãtr, h, r), where ãtr = r
h · atr, and let ω ∈ R and d = ωh.

Then, ∣
∣F→

m,k,ãtr [p(ω, t)](t)
∣
∣ = O(d−2) as |d| → ∞. (21)

for any m ∈ N and t ∈ [tk − h, tk + h].

From a comparison of Theorems 3 and 4, one can see that the use of B-spline
generalized uniform fuzzy partitions determined by B-splines of higher degrees
(n ≥ 3) should be favorable in the high frequencies suppression against the
application of the raised cosine uniform fuzzy partition.

3.4 Illustrative Examples

In this subsection, we provide an example demonstrating how the higher degree
F-transform can suppress the high frequencies in time series.

We consider an artificial time series X(t), t ∈ {0, 1, . . . , 100} defined as

X(t) = 20 sin(0.063t) + 5 sin(0.63t + 1.5) + 5 sin(1.26t + 0.35)
+ 15 sin(2.7t + 1.12) + 7 cos(0.41t + 0.79).

One can see that the functions 20 sin(0.063t) and 7 cos(0.41t + 0.79) are two
waves in X(t) corresponding to the lowest and the second lowest frequency in the
time series, respectively. Firstly, we apply the F2-transform that is considered
with respect to three types of fuzzy partitions, namely, the triangle, raised cosine
and B-spline (of degree 3) uniform fuzzy partition with the same bandwidth
h = 10. In Fig. 1, the dark curves depict the results of the inverse F2-transforms
of X(t) with respect to the all considered fuzzy partitions. In Fig. 1c, one can
see that the F2-transform with respect to the B-spline uniform fuzzy partition
of degree 3 filters out almost all of high frequencies in X(t) except the lowest
frequency in the wave expressed by the function 20 sin(0.063t). On the other
hand, the lowest and the second lowest frequencies are not filtered out by the
F2-transform with respect to the remaining uniform fuzzy partitions as one can
see in Fig. 1a, b. More precisely, in these figures, the inverse F2-transforms of
X(t) coincide approximately with the sum of waves expressed by the functions
20 sin(0.063t) and 7 cos(0.41t+0.79) and depicted by the gray curves. If we want
to suppress also the wave with the second lowest frequency in X(t), i.e., the wave
expressed by the function 7 cos(0.41t+0.79), we have to increase the value of the
bandwidth h. In Fig. 2, one can see the effect when the bandwidth h is increased
for 10 to 16, namely, the F2-transform with respect to the triangle and raised
cosine uniform fuzzy partitions significantly suppressed the wave with the second
lowest frequency.
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(a) using the triangle uniform fuzzy partition

(b) using the raised cosine uniform fuzzy partition

(c) using the B-spline uniform fuzzy partition of degree 3

Fig. 1. Suppression of high frequencies in X(t) (broken line) by the F2-transform with
respect to various fuzzy partitions. The dashed curve and the gray curve are the plots
of functions 20 sin(0.063t) and 20 sin(0.063t) + 7 cos(0.41t + 0.79), respectively. The
inverse F2-transform of X(t) is depicted by the dark curve.

Fig. 2. Suppression of the second lowest frequencies in X(t). The dashed curve is the
plot of the wave corresponding to the lowest frequency 20 sin(0.063t). The gray and
dark curves depict the inverse F2-transform of X(t) with respect to the triangle and
raised cosine uniform fuzzy partitions, respectively.
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4 Conclusions

In this paper, we proved that the high frequencies in time series (presented in
the seasonal component) can be successfully suppressed by setting of parameters
of higher degree F-transform. Namely, the bandwidth and the choice of the
generating function with respect to its differentiability are the most important
parameters. The results provide a theoretical justification of the application of
higher degree fuzzy transform in time series analysis focusing on the trend (trend-
cycle) extraction.
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Abstract. In many decision making scenarios, fuzzy expert systems
have been useful to deduce a more conceptual knowledge from data.
With the emergence of the Internet of Things and the growing presence
of cloud-based architectures, it is necessary to improve fuzzy expert sys-
tems to support higher level operators, large rule bases and an abundant
flow of inputs.

In this paper, we present a modular fuzzy expert system which takes
data or event streams in input and which outputs decisions on the fly. Its
architecture relies on both a graph-based representation of the rule base
and the cooperation of four customizable modules. Stress tests regarding
the number of rules have been carried out to characterize its efficiency.

Keywords: Fuzzy expert system · Complex event processing · Data
stream processing · Rule base representation · Policies

1 Introduction

The emergence of connected objects and of the Internet of Things is leading
towards a continuous data acquisition from different devices and sensors. Before
this recent phenomenon, the data were stored in data warehouse, queried at
once and manipulated by algorithms as a whole. With such data in motion,
the use cases have changed: for instance, new database management paradigms
are introduced, special efforts are made on data compression to avoid networks
overload, and supervised or unsupervised learning algorithms are rethought.

Cugola and Margara [8] define the Information Flow Processing (IFP)
domain as the domain of tools capable of processing information as it flows.
Usually, the flow is coming from multiple sources and processed in order to
extract relevant knowledge. They also distinguish two subdomains: Complex
Event Processing (CEP) and Data Stream Processing (DSP). On the one hand,
DSP consists in processing data flows and in producing a new data flow as out-
put. The Federal Standard defines a data stream as a “sequence of digitally
encoded signals used to represent information in transmission”. Algorithms for
processing such data have to be fast and incremental [21]. In [12], the authors
are revealing the open challenges which must be addressed in the domain of data
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 717–728, 2016.
DOI: 10.1007/978-3-319-40581-0 58
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stream mining, including privacy issues, developing a methodology for stream
preprocessing, developing online monitoring systems and balancing resources.
On the other hand, CEP differs by the type of data items it considers: an
item is a notification of event [15]. CEP aims at managing thousands of events
per second [23], for instance, up to 125000 events for a financial software [22].
In this domain, processing mainly consists in filtering, gathering and combin-
ing those events in order to build a higher level information [2]. In many real
world cases, DSP and CEP have became usual considerations. We can cite for
example: system monitoring and fault detection, home automation, security and
finance [8].

Whatever the type of items in the stream, i.e. either data or events, the
information may be incomplete and imprecise by nature [3]. For instance, sen-
sors may be out of order or inaccurate, and data may be noisy. Fuzzy logic
[24] has been specifically designed to mathematically represent uncertainty and
vagueness and is a popular tool for dealing with imprecision in many real world
problems. Taking advantage of fuzzy logic, fuzzy expert systems allow to easily
represent human knowledge about data and phenomena and have been success-
fully applied to many domains [9,20].

Comparing with boolean logic expert systems, fuzzy expert systems are often
associated with a higher computational cost. Indeed, the whole rule base has to
be evaluated in order to compute the outputs, whereas in classical expert sys-
tems, a subset of the rules are applied one by one to produce the inference.
Moreover, it has been showed that fuzzy rule bases need to be more compli-
cated if only piecewise-linear functions (e.g. trapezoids...) are used instead of
non-linear membership functions (e.g. sigmoids...) [5]. Consequently, expensive
functions in terms of computation are needed to evaluate the aggregation and the
defuzzification [13]. Moreover, in real-world applications, it is possible to have
very large rule bases which require a great amount of processor time [1]. Fuzzy
controllers have been introduced to overcome these drawbacks and are able to
process inputs in real-time [18]. Other papers address the acceleration of fuzzy
computation either with dedicated hardware [4] or with the help of Graphics
Processing Units (GPU) [10].

To our experience, fuzzy expert softwares which run on CPU platforms are
more convenient for many reasons. Firstly, they are easier to interface with an
existing system than electronic chipsets. Then, DSP and CEP both rely on soft-
ware intensive architectures. In terms of scalability, it is possible to use from
a single core of a machine to several machines and it can all be done trans-
parently for the user; for instance, it can take advantage of the virtualization
as in cloud-based services. To the best of our knowledge, current fuzzy expert
systems, both open source or commercial, rely on straightforward architectures
which only manage the classical fuzzy operators (and, or, not). To describe the
relations between the data or the events, more sophisticated operators are needed
for temporal [7,16], space [6,19] or even spatio-temporal [14] reasoning. These
operators imply a higher computation cost. Moreover, traditional fuzzy expert
systems compute output values only when input values have changed. This is
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not compliant with event streams whose events are potentially arriving in an
irregular manner: in such a case, expressions may change before the next event
arrival (see Sect. 2.3).

Using the terminology of Cugola and Margara, we aim at developing a fuzzy
expert system to process information flows, handling the imprecision brought
by noisy data, sensors or network problems with fuzzy logic. The motivation of
our work is to provide an efficient fuzzy expert system in operational contexts.
To enable human experts to author more complex rules, our system is able to
efficiently evaluate complex fuzzy relations [16]. To ensure it can interface easily
with the various information systems of our partners, we chose to avoid specific
architectures (like GPU) and to develop a software for data and event streams
processing on regular CPU platforms. Finally, in industrial applications, the
efficiency is important not only because there must be a lot of rules, but also
because the rules can be applied to a huge number of objects or events per
second.

The paper is structured as follows: Sect. 2 describes the architecture of our
fuzzy expert system. Section 3 presents the protocol and the results of experi-
ments on synthetic data. Finally, Sect. 4 points out the conclusions.

2 Architecture Description

During fuzzy inference, when a group of inputs change at a time t, all the rules
containing at least one of those inputs have to be reevaluated. In information
streams, inputs may change several times per second, or rules must be applied on
thousands of incoming events per second; the evaluation of the whole rule base
may thus need a huge computation time. We introduce an architecture which
tends to avoid the system saturation.

2.1 Architecture Overview

Figure 1 presents the overview of the proposed architecture. The modularity is
ensured by a separation of the tasks and a customization provided by the use
of policies. A policy is a set of parameters which customize the behavior of
each module. The combination of the behaviors of all the modules enable to
address a lot of applications and issues: regular or irregular data rate, delay
before inference, etc. The architecture is composed of several modules:

– the active input queue gathers the input and group them by timestamp,
– the scheduler is able to monitor the system (via the operating system) and

to decide which inputs group has to be processed,
– the evaluator is in charge of the evaluation of the rules,
– the output change broadcaster informs the user about outputs changes.

The different modules are supposed to avoid an overload of the system (for
instance, the active input queue selects the inputs which should be treated) or
user overfeeding (for instance, the output change broadcaster displays only the
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Fig. 1. Architecture overview.

relevant information). We first introduce how we optimize the rule base repre-
sentation by common subexpression elimination and the concept of expiration
of expressions. We then describe each module of the architecture and give some
examples of policies.

2.2 Rule Base Representation

The rule base in-memory model plays a major role in the efficiency of the fuzzy
expert system. Expressions are usually modeled with a tree [17], as in Fig. 2(a).
However, some expressions can be included in several rules or other expressions:
thus, in a tree representation, it is difficult to check the redundancy of such
expressions, and it is necessary to evaluate them several times when a group of
inputs changed. This problem is known as common subexpression elimination
(CSE).

To address the CSE problem in our architecture, we chose to represent each
expression by a unique node: thus, the rule base is not represented by a tree
anymore but by a graph (Fig. 2(b)). More precisely, we use an acyclic directed
graph to avoid loops during the evaluation. In the graph, an edge A −→ B
means that if the value of the node A changes, it affects the node B and B has
to be evaluated again. A node can represent fuzzy expressions (including fuzzy
propositions) or rules, and we consider particular nodes for defuzzification and
aggregation. Thus, the changes propagate from input nodes to output nodes. The
propagation stops if there are no changes during the evaluation of the current
node.

The propagation is achieved as particular breadth-first traversal of the graph.
However, for a fuzzy n-ary expression, it is necessary to evaluate its n prede-
cessors before its own evaluation, otherwise it would be evaluated n times, and
worst, at a certain time, its value would be inconsistent. To avoid this effect, we
added a priority information to the nodes. Before starting the fuzzy inference
engine, the graph is traversed and a recursive function priority : Node → integer
is applied. Let N be the current node to be treated, the function priority is
defined as follow:

– if N is an input node, then priority(N) = 0,
– otherwise, let si be the successors of N , priority(N) = maxi(priority(si))+1.
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(a) Tree-based representation
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(b) Graph-based representation

Fig. 2. Representations of a base of two rules.

Let X, Y and Z be three input linguistic variables, and A, B, C a term
from respectively X, Y , Z. Let D1 and D2 be two terms of an output linguistic
variable O. Then, the rule base is composed of two rules:

– IF (X is A AND Y is B) OR NOT Z is C THEN O is D1,
– IF (X is A AND Y is B) OR Z is C THEN O is D2.

In Fig. 2(b), numbers in brackets represent the evaluation priority of each node;
the three inputs are at the bottom of the figure and have a null priority, which
means they need to be evaluated first. We will develop in Sect. 2.6 the use of the
priority during evaluation.

To the best of our knowledge, current fuzzy expert system does not implement
CSE. This is due to the fact that they only use classical fuzzy logic operators
which are really fast to evaluate.

2.3 Expiration

Among the sophisticated relations we have implemented, temporal operators
[16] and those which depend from them need a special attention when applied
on event streams. The particularity of event streams is that the system is noticed
of events irregularly. For instance, let consider the fact “the temperature was too
hot on Monday from 2 am to 3 am”. The system has received two events: at 2 am,
a temperature high enough to activate the fuzzy proposition “the temperature is
too hot”, and at 3 am, a lower temperature such as “the temperature is too hot”
is false. Now, we consider the temporal operator “occurrence” from [7] which
indicates that a phenomenon has occurred on a certain scope in the past: for
instance, it can express that “the temperature was too hot during the last 24 h”.
Until the next Tuesday 3 am, the degree of truth of this occurrence is strictly
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greater than 0. After 24 h, its degree of truth equals 0, whereas the system inputs
have not changed since Monday 3 am.

Classical fuzzy expert systems cannot perform this trick since they need that
inputs change to compute the outputs. We thus introduce in our system the
notion of expiration. Some expressions in the rule base are marked as “expirable”
and signal to the scheduler (see Sect. 2.5) that they need to be evaluated again.
Expirable components must provide an expiration frequency and a set of criteria
to stop the expiration. The expiration frequency is a parameter which depends
on the application and the set of criteria depend only on the definition of the
operator. To implement expiration, the values of all the expressions are stored
in memory to allow partial recalculation.

2.4 Active Input Queue

Sensor networks are a particular case of information stream. Some sensors mea-
sure (data stream) and some others detect (event stream), but they usually work
in an asynchronous way. Moreover, some delays can appear in such networks.
The active input queue is thus in charge of:

– listening to the information stream,
– fetching the interesting values inside,
– grouping those values by timestamp,
– enqueueing those groups of inputs,
– signaling the scheduler that a new group has been enqueued.

Different policies can be conceived for this component. For instance, in some
applications, it is necessary to wait for delayed sensors or delayed network packets
before signaling the scheduler. Conversely, it can ignore delays and late arrivals,
and thus filter these data. It may also be seen as a firewall which protects the
scheduler from irrelevant inputs.

2.5 Scheduler

The scheduler has an important role to play in order to limit the delay between
the arrival of the data and the decision making. When a new input set is
announced, it decides, regarding its own policy, whether it is important to eval-
uate it immediately, later or not at all.

In the simplest implementation, the scheduler just gets the first element in
the active input queue, asks the evaluator to evaluate this group of inputs and
gives the results to the broadcaster. With the use of policies, his behavior can be
more sophisticated. For instance, one particular implementation can monitor the
system to determine how busy the CPU cores are and to decide whether a group
of inputs can be skipped. Moreover, the scheduler implements the expiration.
All the expirable components of the rule base whose evaluation has changed are
placed in another queue, waiting to expire.

Another implementation may consist in evaluating on different processor
cores of the machine. Each core receives a sub-part of the input set. A simple
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algorithm based on the graph representation of the rule base is used to sepa-
rate independent inputs on different sub-parts: this is simply achieved by finding
connected components of graph with well-known algorithms of graph theory [11].

2.6 Evaluator

The evaluator is the component which evaluates the different expressions and
rules in the rule base. For a set of inputs, it gives a particular set of outputs. It
also takes advantage of the rule base representation to perform the computation
only when necessary.

In order to evaluate the different nodes of the graph representing the rule
base, the evaluator traverses the graph in a certain order. To ensure the right
order, we use a priority queue Q. The priority queue Q is implemented such
as the nodes with the lowest priority are placed first and such as it contains
only one occurrence of each node. The general evaluation algorithm is given
below:

Q ← changed inputs
while Q �= ∅ do

current ← first(Q)
Q ← dequeue(Q)
Evaluate(current)
if current has changed then

for all child of current do
Q ← enqueue(Q, child)

end for
end if

end while
return all the values
The priority is important in some cases. In Fig. 2(b), the priority queue

ensures the node “(X is A AND Y is B) OR Z is C” is evaluated at the right
time. It ensures that if several paths lead to the same node N , all nodes on the
paths are assessed before N .

In fuzzy logic, different functions can be used for operators (conjunction, dis-
junction, negation, implication) evaluation. The policies of the evaluator indicate
which version of the operators must be used.

2.7 Output Change Broadcast

The broadcaster is also an important module because it is in charge of building
the output stream. The last step is indeed to inform on the fly the calling system
or the user that some outputs have changed. The policies are used to determine
when and how the outputs have to be broadcast, for instance:

– the changes can be gathered and sent at regular time intervals,
– only outputs which have changed are broadcast with their new value,
– the changes can be sent with a trace of the activated rules.

It may gather information from the graph and the evaluation of its node to
build justifications (to explain why the decision has been made).
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3 Experiments

The experiments aim at comparing the performances of the evaluation of differ-
ent rule bases regarding two different policies of the evaluator module:

– full recalculation mode: all the expressions and nodes are reassessed each time
an input changes,

– partial recalculation mode: last values of the nodes are kept in memory and
are reassessed only when needed.

The second mode is the one on which our architecture relies. Its modularity,
through the use of policies, allows to easily switch between the two modes. In
both cases, we only consider the graph-based representation of a rule base, whose
evaluation is indeed faster than with a tree-based representation.

3.1 Protocol

These experiments have been carried out on artificial rule bases and data sets
whose generation is described hereafter. Let {vi}1≤i≤n be n input linguistic vari-
ables, each defined by p terms T 1

i , . . . , T
p
i . Let w be an unique output linguistic

variable whose terms are W1, ...,WK . Those input variables combine into rules
by the full conjunctive combination principle:

IF v1, isT
l1
1 and . . . and vn isT

ln
n THENw isWk

where T li
i refers to a term of vi with 1 ≤ li ≤ p and k =

∑n
i=1 li−n+1. Thus,

for a given couple (n, p), there are pn possible combinations of those inputs (i.e.
rules) and w has K = n(p − 1) + 1 terms.

For the sake of simplicity, the terms T li
i of each variable vi are defined by

triangular membership functions on the domain [0, p + 1]. By construction, the
support of each term T li

i is [li − 1; li + 1] and its kernel is {li}. The same con-
struction is used for the terms Wk of w. Figure 3 shows an example of a linguistic
variable characterized by 3 terms.

Each input variable vi receives a data stream of 20 values, which have been
generated following an uniform distribution U([0, p + 1]).

The architecture has been configured as follows: the active input queue is
set in DSP mode, i.e. it waits to receive a value for each input. The scheduler
evaluates this group as soon as possible, then the new value of the output is
broadcast. This is the most simple configuration of these modules. The two
modes of evaluation of the architecture have been obtained by configuring the
policy of the evaluator: in one case, it uses its memory functionality; in the other
case, it has to compute all the values of the nodes again. The same input data
streams have been used for both cases.

Finally, by varying both the number of inputs n and the number of terms p
from 2 to 10, we are able to assess the performance of the architecture on large
rule bases and to draw some conclusions. Due to the computational cost, the
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Fig. 3. Linguistic variable with 3 terms defined on the domain [0, 4]. (Color figure
online)

largest configuration was obtained with 6 input variables and 9 linguistic terms.
This represents a set of 531441 rules to compute the value of the output w. Even
if this is not a realistic case, it is useful to benchmark the proposed system.

3.2 Results

In this section, we first compare the average number of nodes being reevaluated
in each mode and then compare the average evaluation time of the rule base.
The averages are computed over the 20 values of the data stream in order to
decrease the possible biases.

Figure 4 shows the number of evaluated nodes regarding the number of rules,
in both modes (full and partial recalculation); the two axes are shown in log-
scale. Point clouds confirm the intuition: storing the value of each node allows
to stop propagating the changes, and strongly decreases the number of nodes
to evaluate. For a rule base with 16807 rules, from n = 5 linguistic variables
and p = 7 terms, 36449 nodes may be evaluated in the full recalculation mode,
whereas in the partial one, only 120 nodes in average are evaluated.

The drastic reduction of the number of nodes to be evaluated can be explained
by a theoretical analysis. Indeed, the number of nodes Ng of the graph-based
representation can be evaluated by the following equation:

Ng(n, p) = n
︸︷︷︸

inputs

+ n× p
︸ ︷︷ ︸

propositions

+

n
∑

i=2

pi

︸ ︷︷ ︸

conjunctions

+ pn
︸︷︷︸

implications

+ 1
︸︷︷︸

aggregation

+ 1
︸︷︷︸

defuzzification

The fuzzy partitions used to create the terms of the linguistic variables
explain why, at each time, for each variable, at most 2 terms out of p are acti-
vated. Thus, at most Ng(n, 2) nodes have to be evaluated: for n = 5, at most
109 nodes will be activated. But a large number of them are null because of
the conjunctive combination of the inputs. Now, in order to count the num-
ber of needed reevaluations, we should consider the worst case: all the active



726 J.-P. Poli and L. Boudet

Fig. 4. Average number of reevaluated nodes in function of the number of rules
(log-scale) for both modes.

Fig. 5. Computation time (in ms) in function of the number of rules (in log scale).

elementary propositions become null, and the same number of propositions get
a non-null value. This gives 2 × Ng(n, 2) as a pessimistic upper bound of the
number of nodes that need to be reevaluated.

Figure 5 shows the duration of the evaluation of the rule bases in both modes.
These tests have been processed on only one core of an Intel Xeon X5650 at
2.67 GHz on a Windows server. The system is implemented in C#. With the
same example as before, to evaluate 16807 rules, full recalculation mode needs
approximately 106.8 ms whereas the partial one needs only 17.1 ms, i.e. the latter
one is more than 6 times faster than the former one on this rule base structure.
It seems that saved computational time is not as high as we could expect con-
sidering the saved computations shown just before. But saved computations
correspond to the evaluation of a null value by a quite simple function (mainly
either by the membership function evaluation or by a conjunctive combination
of two expressions) and to affect it to nodes that were already null. Considering
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this remark, a gain of approximately half an order of magnitude is a good result
by only avoiding the computation of null values of graph nodes.

These tests are good stress tests because all the inputs change at the same
time. For rule bases of conventional sizes, for instance 300 rules, the engine needs
only 0.67 ms in the partial recalculation mode. Thus, we can handle inputs which
change more than 1000 times per second on only one core.

4 Conclusion

In this paper, we have presented a modern architecture for a fuzzy expert system
designed to handle information streams (data streams or event streams). The
architecture relies on two aspects. Firstly, the graph representation of the rule
base indicates the dependency between inputs, expressions, rules and outputs.
Secondly, the use of four cooperating modules permits to filter and to decide
when it is possible to process a set of inputs. The introduction of policies in
the four modules allows to customize their behaviors regarding the addressed
projects or issues.

The described architecture has been implemented and used in several indus-
trial projects in different domains: home automation, decision making in indus-
try and home care services. All projects needed to process either data stream or
event stream, sometimes both of them at the same time.

Uncertainty and imprecision are real-world challenges, but others emerge.
Users need more fuzzy relations to be able to describe their scenarios or to
characterize what they want to extract from the streams. Considering CEP and
several thousands of inputs per second, we should parallelize the computations.
Finally, online rule base optimization will allow users to sketch first rules and
then let the system evolve.
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Abstract. Process-aware information systems are typically used to log
events in a variety of domains (e.g. commercial, logistics, healthcare)
describing the execution of business processes. The analysis of such logs
can provide meaningful knowledge for organizations to improve the qual-
ity of their services as well as their efficiency. The prediction of activity
durations, based on historic data from execution logs, allows the cre-
ation of feasible plans for business processes. However, a problem arises
when there are discrepancies between execution logs and the actual
execution. When event logs are partially human-generated there is an
underlying uncertainty related to the time at which events (recorded by
means of user interaction) are logged. If not taken into account, this
uncertainty can lead to wrong predictions of activity durations. In this
paper, we focus on creating assumptions to estimate activity durations
and analyse their impact in the stochastic characterization. A partially
human-generated logistics database is used as example.

Keywords: Event logs · Stochastic characterization · Business
processes

1 Introduction

As information systems are becoming more intertwined with the operational
processes they support, multitudes of events (e.g., transaction logs or audit
trails) are recorded. These execution logs can be extracted from almost every
process aware information system (PAIS) and provide a chronological record of
events referring to the business activities that have been carried out. This gives
a detailed overview about the process history [1,2]. However, despite the increas-
ing amount of sensors and respective data, many PAIS still lack of a completely
automated log process. Instead, they rely on the interaction of users to log activ-
ities that the system can not keep track of. As an example, in transportation
processes, drive activities can be easily detected by analysing GPS coordinates
but load and unload tasks, which represent the core of logistic processes, are
c© Springer International Publishing Switzerland 2016
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commonly manually introduced since they are performed outside of the PAIS
environment. When event logs are partially human-generated there is an under-
lying uncertainty related to the time at which events (introduced by means of
user interaction) are logged [3]. In other words, users are able to log events before,
or after, the execution of such occurrences. This behaviour may lead to wrong
estimations while assessing the duration of activities that were manually logged
[4]. As a consequence, process planning often leads to violated time windows,
unnecessary delays and underutilized resources. The real-world complexity of
planning is caused by the high level of detail that is required to get executable
plans and the large volumes of data that must be collected and processed to
gather the information required to create the planning. Nonetheless, the value
of such analysis is strongly dependent on the quality and suitability of the input
event log data [5]. This paper provides an analysis of the temporal uncertainty
inherent to partially human-generated event logs and its impact on stochastic
activity durations. Moreover, we present a technique to correct temporal inac-
curacies that arise from inaccurate log of events by users.

Activity logs can be derived from lower-level data modification logs by means
of event log schema transformation techniques such as trace segmentation [6].
Users may provide different pieces of data that, when clustered, constitute a
single activity [7]. A lot of work have been done in conformance checking by
measuring the alignment between event logs and process models, [8–12], since
it is common to find that the execution of a certain process does not conform
to the plan that was made in advance [8]. However, to our best knowledge,
there is no similar approach to quantify the discrepancies between execution logs
and the actual execution of business processes. We have developed techniques
for detecting and characterizing such discrepancies by using activity timelines
to describe the execution logs and estimate the duration of activities that are
executed out of the environment context. Estimation hypothesis are created
based on common sense assumptions and there impact on the stochastic results
is analysed using a partially human-generated logistics database as example.

2 Preliminary Considerations

A business process is a collection of related and structured activities that produce
a specific service, or product, for a particular customer. A complex business
process may be decomposed into several sub-processes, which have their own
attributes, but also contribute to achieving the goal of the super-process. The
analysis of a business process typically includes the mapping of processes and
sub-processes down to the activity level [13]. Depending on which activities are
meant to be characterized, we divide the overall process into sub-processes of
interest delimited by [tj , tn], where tj and tn are the start time and end time of
a sub-process, respectively. Activities performed outside the interval [tj , tn] are
not considered during the estimation process.
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Activity 1 Activity 5Activity 2 Activity 
3

Activity 4

tj tnts,1 tf,1 ts,2 ts,3 ts,4 ts,5tf,2 tf,3 tf,4 tf,5

Fig. 1. Activity timeline

2.1 Activity Timelines

Each sub-process is described by an activity timeline. A graphical way of showing
the performed activities in chronological order. Each bar represents a performed
activity and its duration is given by the length of the corresponding bar. However,
in the majority of the cases, information systems do not support the explicit
notion of activities/tasks. Instead, they only log and support low-level events.
Based on the work of [14], we assume events are logged in a way such that
(i) each event refers to a specific occurrence, (ii) each event has an associated
performer ID (the entity executing or initiating the occurrence), (iii) events
have a time-stamp and are totally ordered, (iv) all activities performed during
the process have an associated event(s) that makes the logging possible, (v) all
activities performed during the process are logged and (vi) there is no activity
concurrency. Table 1 shows an example of a low-level event log from a logistic
process. To derive activity logs from low-level event logs, we define an activity
as follows.

Definition 1. Activity - an activity, ai, is defined as a finite sequence of
events, e, in chronological order over a finite period of time, where each event
in the activity is a documented occurrence at a given time stamp t, defined as:

ai =
〈
e
tj=ts,i
j , e

tj+1
j+1 , . . . , e

tf,i
f

〉
(1)

The duration of an activity, Δtai
, is given by the elapsed time between its first

and last event.
Δtai

= tf,i − ts,i (2)

If the event descriptions in the event log are known to be correct (as shown
in Table 1), the activity recognition process is straightforward: simply identify
the events that indicate the start and end of an activity and group in between
events into one activity. Otherwise, more complex approaches such as [6] or [7]
are needed. In order to clarify the setting in which these approaches can be of
interest, one needs to reflect on how discrepancies between the execution and its
log may emerge. The lack of alignment between them is assumed to be caused
by users when logging activities. In that sense, we define two sets of activities
depending on how they are logged. The definitions are given bellow:

Definition 2. System activities, S - activities which log is automatically done
by the system. They are assumed to be correctly logged, from a temporal perspec-
tive, since the system is fully aware of the current state: performed id, time and
knowledge about the activity taking place.
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Table 1. Example of a low-level execution log from a logistic process

PID Timestamp Description Events Activities

A1 14:57:58 Start of Break e
t1=ts,1
1

A1 15:21:45 End of Break e
t2=tf,1
2 a1 ∈ U

A1 15:21:46 Cancellation of et33 -

A1 15:22:21 Start of Drive e
t4=ts,2
4

A1 15:23:15 End of Drive e
t5=tf,2
5 a2 ∈ S

. . . -

A1 18:24:56 Start of Unload e
t6=ts,3
6

A1 18:26:29 Contact OFF et77
A1 18:28:52 Contact ON et88
A1 18:28:53 Task Finished et99 a3 ∈ U

A1 18:30:46 End of Unload e
t10=tf,3
10

. . . -

System crashes, errors, skewed system clocks and timezone problems are not
considered.

Definition 3. User activities, U - activities which log is dependent on the
interaction between user and system. Only the user has knowledge about which
activity is taking place. The time at which the activity took place is uncertain
since users are able to log activities before, while or after the actual activity take
place.

3 Stochastic Characterization of Process Activities

The estimation process for the activities duration (i.e. user activities) is done
based on the dead time (timespan where no activity was logged) available on the
neighbourhood of such activities. However, it is not reasonable to assume that
all sub-processes have their user activities wrongly logged. In order to quantify
how good is a log of a sub-process, we make use of the logged ratio. The logged
ratio, φ, represents the amount sub-process time that was logged. If the logged
ratio, φ, is bigger than a threshold value, θ, the user activities of the sub-process
are assumed to have been correctly logged and the estimation process skips the
activity timeline. If the logged ratio does not meet the threshold value, the start
or end times of the user activities must be corrected. In that case sub-processes
are divided into time slots formed by the system activities. The amount of dead
time is calculated and assigned to the user activities according to the formulated
hypothesis. These steps are described in the following sections.
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3.1 Logged Ratio

The existence of dead time in between the log of two activities does not strictly
indicate that such user activities were incorrectly logged. Referring to the
assumption made in the previous section - that the system supports the log
of all activities performed during the process - activity timelines should be ful-
filled up to at least a certain degree, since an activity is always being performed.
Thus, in order to consider if a sub-process should have the duration of its user
activities estimated, we evaluate the amount of dead time through the logged
ratio. If the logged ratio is 1, there is no dead time in between activities and we
can assume they were correctly logged. The likelihood of activities being cor-
rectly logged diminishes as the amount of dead time increases (and the logged
ratio decreases). The logged ratio of a sub-process is obtained as follows:

φ =
∑i=h

i=1 (tf,i − ts,i)
tn − tj

, (3)

where tj and tn represent the start time and end time of a sub-process, respec-
tively, h is the total number of activities in the sub-process and ts,i and tf,i
indicate the start and end time of a performed activity ai.

3.2 Time Slots

System activities are used as anchor activities. They are the starting point for
the estimation process since their log is assumed to be correct. The time-span
which they occupy have to be preserved. A time slot can be defined in three ways:
(i) as the gap between every two consecutive system activities, (ii) as the gap
between an estimation boundary (tj or tn) and the closest system activity or (iii)
as the gap between tj and tn, if there are no system activities in the sub-process.
In other words, time slots are portions of activity timelines where no activity
was logged. They are characterized by a start and end date, in addition with the
user activities that were performed on such gap. Each sub-process contains m+1
time slots, where m is the total number of system activities in the sub-process.
Equation 4 shows how to defined the start and end dates of the time slots. t∗s
and t∗f represent the beginning and end of a system activity, respectively.

time slotsT =
[

tj t∗f,1 . . . t∗f,m
t∗s,1 t∗s,2 . . . tn

]
(4)

Figure 2 shows an example of the time slots for an activity timeline with two
systems activities. In this case, t∗s,1 = ts,2 and t∗f,1 = tf,2 since the first system
activity is the second overall activity in the timeline. The same principle applies
to the second system activity which is the fifth overall activity, t∗s,2 = ts,5 and
t∗f,2 = tf,5. The time slot lengths (i.e. duration), Δts, are given by Eq. 5.

Δtsi = time slots(i, 2) − time slots(i, 1) (5)

The information of each sub-process is summarized in a table. Time slots are
described by their length and the duration of the activities performed on it, as
seen in Table 2.
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a1  U a5 Sa2 S a3  U a4  U

tj tnts,1 tf,1 ts,2 ts,3 ts,4 ts,5tf,2 tf,3 tf,4 tf,5

time slot 1 time slot 2 time slot 3

Fig. 2. Time slots

Table 2. Time slot description

Time slot Length Δts Activities

# Dur Δta

1 t∗
s,1 − tj 1 tf,1 − ts,1

2 t∗
s,2 − t∗

f,1 2 tf,3 − ts,3

tf,4 − ts,4

3 t∗
n − t∗

f,2 0 -

3.3 Estimation Hypothesis

In order to estimate user activity durations we make use of three different
hypothesis which differ from each other in the assumptions made. All the avail-
able information about the process execution comes directly from the execution
logs, in the form of a low-level event logs. As previously explained, events belong-
ing to automatically logged activities are assumed to have correct timestamps.
The underlying uncertainty of the execution logs comes from the events logged
by users. Therefore, the only information about users activities that can be used
is the number of activities performed, their sequential order and the timespan
where they took place, given by the length of the time slot to which they belong.

tj tn

a1 S a3 Sa2  U

tj tn

a1 S a3 Sa2  U

(a) Hypothesis 1, α = 1

tj tn

a1 S a3 Sa2  U

tj tn

a1 S a3 Sa2  U

(b) Hypothesis 2

tj tn

a1 S a3 Sa2  U

tj tn

a1 S a3 Sa2  U

(c) Hypothesis 3

Fig. 3. Estimation hypothesis
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Hypothesis 1 - The first hypothesis consist in assuming the duration of all
user activities performed inside the time slot to have the same duration. Hence
the estimated duration of the user activities is given by the ratio between time
slot length, Δts, and the number of performed activities, #a.

Δt∗a = Δts/#a (6)

It is implicit to this formulation that, after the estimation, there are no dead
times in between activities since the whole time slot length Δts is assigned to
user activities. However, such definition can be relax by using only a portion of
the time slot length for estimation, αΔts. Figure 3a shows an estimation example
of a user activity with α = 1. The estimated duration of the user activity a2 is
given by the timespan from the end of activity a1 to the start of activity a3.

Hypothesis 2 - Another possibility is to assume that the starting events of
user activities were correctly logged and that a user activity ends as soon as the
next user activity starts. The original end dates of user activities are set to the
starting dates of the following activity. If the activity being estimated, ai, is the
last in the time slot (i.e. i = h), its new end date is set to tn. The amount of dead
time in each time slot, after estimation, is given by the difference between the
start time of the first user activity and the end time of the first system activity.
If there is non (i.e. a1 ∈ U), the dead time is given by ts,1 − tj instead.

Δt∗ai
=

{
ts,i+1 − ts,i if i < h

tn − ts,i if i = h
, (7)

where Δt∗ai
is the estimated duration of activity ai and h is the total number of

activities in the time slot. This hypothesis is consistent with a real scenario where
users log both start and end events of an activity right before accomplishing it.
An example of this estimation hypothesis can be seen in Fig. 3b. The end event
of activity a2 is shifted forwards so that it coincides with the start event of
activity a3.

Hypothesis 3 - Lastly, opposing to hypothesis 2, we assume that end events of
user activities were correctly logged and that user activities start as soon as the
prior user activity ends. This means that users are assumed to log both start and
end events of an activity right after accomplishing it. The original start dates of
user activities are shifted to the end dates of previously performed activities or,
if the activity being estimated is the first in the time slot (i.e. i = 1), to tj . In
this case, the amount of dead time in each time slot is given by the difference
between the start time of the last system activity and the end time of the prior
user activity. If the last activity is a user activity (i.e. ah ∈ U), the dead time is
given by tn − tf,h instead. An example of this estimation hypothesis can be seen
in Fig. 3c. The start event of activity a2 is shifted backwards so that it coincides
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with the end event of activity a1.

Δt∗ai
=

{
tf,i − tf,i−1 if i > 1
tf,i − tj if i = 1

(8)

4 Real Example: Logistic Business Process

The event log used is part of logistic data-base from a fleet of international road
transport trucks (TIR). The fleet has an integrated management system and
each truck has a terminal where users are able to log activity related events,
such as the start and end of an activity. To evaluate the performance of the
developed methodology, a comparison is made between the original and the
estimated durations of user activities for each hypothesis. Firstly, as described
in Sect. 2, the activity log is inferred from the low-level event log. Using domain
knowledge, the activity types found are divided into two sets, depending on
the logging process of the correspondent events. In this case, the activities are
divided as follows:

Systemactivites = {Sign Up, Log Out, Log In, Drive}
Useractivites = {Load, Unload, Rest, Break, Wait, Arrive, Refueling}

4.1 Defining Sub-processes

A logistic process is divided in two main sub-processes: the transportation
process and the package handling process. The first, consists essentially of drive
activities to transport cargo between locations and, the second, of activities such
as load and unload. The start time, tj , and end time, tn, of the sub-processes of
interest, in this case the handling process, can be identified by the end time and
start time of a drive activity, respectively. Figure 4 shows the activity timeline of

Duration [Hours]
-0.1 0 0.1 0.2 0.3 0.4 0.5

  STOP   Drive   Sign Up   Rest   Unload

(a) Correct log, φ ≈ 0.98

Duration [Hours]
0 0.5 1 1.5 2 2.5 3 3.5 4

  STOP   Drive   Sign Up   Load

(b) Bad log, φ ≈ 0.12

Fig. 4. Examples of activity timelines from two truck stops (Color figure online)
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two sub-processes. The black bar, delimited by tj and tn, represents the timespan
where the sub-process took place. Each additional bar represents a performed
activity. Load and unload activities are highlighted with a dotted line. The main
difference between examples, is the amount of dead time. Considering the dead
time between the load activities and the prior drive activities, the most probable
scenario is that the driver, after parking at the load site, executed the actual
load activity and, only after completion, logged the “start of activity” and “end
of activity” events, within a seconds time period.

Fig. 5. Logged ratio

To check how common this behaviour is, we evaluated the ratio between
logged time and sub-process duration. The logged ratio, φ, represents the amount
sub-process time that was logged. If φ = 0, no user activities were logged in the
sub-process. If φ = 1, all sub-process timespan was logged with user activities.
As it can be seen in Fig. 5, about 50 % of the sub-processes have a logged ratio
smaller than 0.4. In addition, 32 % of the analysed sub-processes show a logged
ratio smaller than 0.05. These numbers would be even higher if we had accounted
for sub-processes were no activity was logged, since for those the logged ratio is
equal to zero. These proves that the behaviour described by Fig. 4b is common
among the users.

4.2 Comparing Original Durations with Estimated Durations

In order to evaluate the impact of the estimation hypothesis, a random customer
was selected from the logistic data-base. A frequency analysis is made to the
original and estimated durations of load activities. The threshold value Θ was
set to zero so that all user activities are estimated independently of the logged
ratio φ. The results are shown in the form of histograms where each bar has a
width of five minutes and its height represents the percentage of load activities
whose duration is on a given duration interval. As it can be seen in Fig. 6a,
45 % of load activities have an original duration of less than five minutes. For
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0 50 100 150 200 250 300
Duration [Min]

0

0.05

0.1

0.15

0.2

0.25

P
ro

ba
bi

lit
y

Hypothesis 3 Load Times

(d) Hypothesis 3

Fig. 6. Load activity durations

this particular logistic process, load activities are not expected to be so quick
due to the largo amount of cargo. The problem of human influence in event logs
becomes even more clear by analysing the quantiles of original load durations, in
Table 3. The probability of a load activity to be smaller than 0.167 min (≈ 10 s),
which is a very improbable fact, is 10 %. The quantiles of original user activity
durations shows that this problem is not only associated with load activities, but
with every activity whose log is human influenced. Both original histograms, for
load activities, Fig. 6a, and for all user activities, reveal similar results. Even
when accounting for rest activities, whose duration is expected to be up to eight
hours, there is a 80 % confidence level of an activity to have their duration
between 0.133 min (≈ 8 s) and 117 min.

Since hypothesis 1 estimates all user activities in the time slot equally (i.e.
same duration) the histogram of estimated durations is less skewed than the
others. The amount of load activities which duration was originally shorter than
five minutes drops from 45 % to about 2 %. Estimations are higher in all quan-
tiles, when comparing with the originals, especially in the last one. In cases with
large time-slots and a single user activity logged, it is possible for activities to
be overestimated leading to higher durations in the 0.99 quantile. In any case,
there is a 80 % confidence level for an activity to the duration in the interval
[17.1, 171.2] minutes. When using hypothesis 2 for estimation, the starting events
are assumed to be correctly logged and end events are shifted to the start event
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Table 3. Quantiles of activities durations [Min]

1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%

Original Load 0.1 0.117 0.133 0.167 10.93 97.17 133.15 164.83 195.51

H1 Load 1.383 7.56 11.975 17.808 57.896 154.1 202.18 346.56 1374.2

H2 Load 0.2 0.233 0.282 0.317 18.492 110.05 149.8 197.95 594.75

H3 Load 0.233 0.267 0.3 0.333 56.167 152.68 203.87 293.3 584.16

Original User Act. 0.05 0.067 0.083 0.133 12.142 117.45 180.19 550.93 789.4

H1 User Act. 1.372 6.041 10.164 17.137 56.183 171.28 361.89 886.13 2124.8

H2 User Act. 0.146 0.2 0.233 0.3 16.483 111.26 178.53 558.01 1279.4

H3 User Act. 0.217 0.253 0.3 0.367 52.20 153.95 229.34 591 775.41

of the following activity. The obtained histogram is very similar to the original
one. Apart from the 0.99 quantile, all of them reveal estimations close to the
original ones including the mean value. Hypothesis 3, that consists in shifting
the start events to the end event of the prior activity, show similar results for
the lower quantiles. However, in the higher ones, the estimations are closer to
the ones obtained with hypothesis 1.

The obtained results clearly indicate the likelihood of users when manually
logging events. Since there is no big difference between the original durations
and the ones estimated using hypothesis 2 we can conclude that the wrongly
logged event is usually the starting one. Users log the start and end events after
accomplishing the activities, resulting in activity durations of scarce seconds in
the execution logs.

4.3 Conclusions and Future Work

When event logs are partially human-generated there is an underlying uncer-
tainty related to the time at which events (recorded by means of user interac-
tion) are logged. This leads to discrepancies between the execution logs and the
actual execution of business processes. The analysis of these logs can provide
meaningful information for companies to improve the quality and efficiency of
their services, if they are aligned with the processes they represent. Therefore,
it is essential to take into account the uncertainty of execution logs originated
by users while logging events. In this paper, we demonstrate the feasibility of
estimating activity durations based on low-level event logs and hypothesis from
real-world scenarios. Even though these type of estimation can applied to a broad
range of business processes, we focused on a particular usage scenario for a given
logistic process. We demonstrate that a simple analysis to the original execution
logs, when partially human-generated, is not enough to assess activity durations
for planning purposes. In addition, we formulate different hypothesis for esti-
mation and discuss their impact on the stochastic results. As future work, we
suggest the formulation of different hypothesis including not only the duration
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and number of the original activity but also the type. The implementation of
fuzzy intervals is off interest too since it can provide a comparison study.
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Abstract. The sampling rate of variables collected in the hospital set-
ting is dependent on several factors. Patients have different lengths of
stay in the hospital, during which distinct physiological parameters are
measured. The frequency of measurements depends ultimately in the
type of variable and in the patient condition. Hence, when performing
data based modeling for knowledge discovery in medical databases, one
should have in consideration the heterogeneity of variables. This paper
proposes an extension of a mixed fuzzy clustering algorithm in order
to handle time invariant and time variant features of unequal lengths.
Additionally, a novel approach for deriving Takagi-Sugeno fuzzy mod-
els, based on feature transformation using fuzzy c-means is implemented
and compared with approaches based on mixed fuzzy clustering. The
proposed approaches are tested on real data for mortality prediction in
intensive care units of patients diagnosed with acute kidney injury and
for ICU readmission prediction. Overall, mixed fuzzy clustering yields
better results than fuzzy c-means. Moreover, the proposed extension for
time series of unequal lengths improves previous results. Mortality is
classified with an AUC of 0.73 and readmissions with an AUC of 0.64.

Keywords: Fuzzy modeling · Classification · Mixed fuzzy clustering ·
Multivariate time series · Time variant · Time invariant

1 Introduction

Electronic Health Records (EHR) are systematic collections of longitudinal elec-
tronic patient health information generated by one or more encounters in any
care delivery setting. This information includes patient demographics, progress
notes, medications, vital signs, laboratory results, radiology reports, procedures
and diagnoses. Most of the observations present in these different sources have an
indication of the time over which the measurement was made, which is uniquely
important, as the sequentially of events may indicate some impending outcomes.
Depending on the type of variable, varying degrees of sparsity and irregularities
exist. Whilst weight (e.g.) can be registered every time the patient has a hospital
encounter, vital signs are measured continuously during his/her stay.
c© Springer International Publishing Switzerland 2016
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Medical data, if properly analyzed and interpreted, could greatly improve
the development of best clinical practices [1]. In order to make sense of data
and do data-based classification modeling, machine learning methods able to
handle heterogeneity in data are required. In fact, in any machine learning task,
data needs to be processed in order to be usable for model construction and the
quality of data processing highly influences the quality of the models created. In
EHRs, there are a lot of issues concerning the structure of data that need to be
properly investigated, in particular, the existence of varying sampling rates of
distinct variables, varying sampling rates for the same variable across different
periods of the patient stay (uneven time series), varying sampling rates for the
same variable across different patients (misaligned time series), missing data,
noise and outliers.

This paper is focused on the problem of clustering heterogeneous data
extracted from EHRs. Regarding data that has a time component, distinctions
can be made as to whether the data are discrete or real, uniformly or non-
uniformly sampled, univariate or multivariate and of equal or unequal length;
clustering is ultimately dependent on these factors [2]. Mixed Fuzzy Clustering
(MFC) [3] is a clustering algorithm that allows identification of patterns in time
variant and time invariant data. MFC can be utilized in various scenarios, as
long as there is an interest in mining time variant and time invariant data simul-
taneously. There are some challenges associated with the method, in particular
the restriction to use time series of equal lengths over different variables, which
renders the method unsuitable for a wide range of applications. This challenge is
particularly pronounced in the medical domain due to the heterogeneity of data
present in EHRs. Hence, in this paper we study MFC for modeling EHR data,
and propose a new MFC scheme to account for heterogeneity. Additionally, a
novel approach for deriving models is implemented and compared with previous
approaches.

The structure of this paper is as follows. MFC algorithm for variables with
unequal lengths is presented in Sect. 2 and Takagi-Sugeno fuzzy models in Sect. 3.
Details of the data, processing methodology and results are provided in Sect. 4.
Conclusions are presented in Sect. 5.

2 Mixed Fuzzy Clustering for Time Series with Unequal
Lengths

Mixed fuzzy clustering (MFC) is a clustering method based on Fuzzy c-means
[4] that allows the clustering of time variant and time invariant features simul-
taneously [3].

In order to extend the spatiotemporal clustering method proposed in [5]
which only deals with one time-series to the case of multiple time-series, [3]
introduced a new dimension to handle P time variant features with fixed length
Q. In this work we extend this formulation to allow clustering of multivariate
time series of different lengths, taking in consideration the distinct sampling rate
of variables.
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Input data x is characterized by features whose value is constant in time, xs,
and by features that change over time, Xt:

x = (xs,Xt), (1)

where:

xs =

⎛

⎜⎜⎜
⎝

xs
11 xs

12 · · · xs
1R

xs
21 xs

22 · · · xs
2R

...
...

. . .
...

xs
N1 xs

N2 · · · xs
NR

⎞

⎟⎟⎟
⎠

, (2)

with N equal to the number of samples and R equal to the number of time
invariant features, and:

Xt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xt
11 xt

12 · · · xt
1P

xt
21 xt

22 · · · xt
2P

...
...

. . .
...

xt
N1 xt

N2 · · · xt
NP

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (3)

with number of columns equal to the number of time variant features P , and
rows equal to the number of samples.

Each element of Xt, xt
ip, where i = {1, ..., N} and p = {1, ..., P}, is composed

of an array of values of length Q dependent on p:

xt
ip =

(
xt

i1, x
t
i2, · · · , xt

iQ(p)

)
, (4)

The main difference between MFC and the classical FCM relies on the dis-
tance function [3]. In MFC, a new pondering element λ is included, factoring
the importance to be given to the time variant component. The distance is also
calculated separately for each time-series.

The static prototypes vs
l for each cluster l and the temporal prototypes

vt
l,p for each cluster l and feature p are computed following Eqs. (5) and (6),

respectively. The matrix of temporal prototypes for cluster l is represented by V t
l .

vs
l =

∑N
i=1 um

li x
s
i∑N

i=1 um
li

(5)

vt
lp =

∑N
i=1 um

li x
t
ip

∑N
i=1 um

li

(6)

The distance function between a sample and the static and temporal proto-
type of a cluster is computed following Eq. (7), where δ2 represents the squared
euclidean distance.

d2λ(vs
l , V

t
l , xi) = ||vs

l − xs
i ||2 + λ

P∑

p=1

δ2(vt
lp,x

t
ip) (7)
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The degree of membership of an entity i to cluster l is given by Eq. (8).

uli =
1

∑C
o=1

(
dλ(vs

l ,V t
l ,xi)

dλ(vs
o,V t

o ,xi)

) 2
m−1

, (8)

where m is the degree of fuzziness. The C × N matrix U = [uli] satisfies the
following conditions:

uli ∈ [0, 1] ∀l; 0 <

N∑

i=1

uli < N ∀l, i;
C∑

l=1

uli = 1 ∀l.

Equation (9) presents the augmented FCM objective function.

J =
C∑

l=1

N∑

i=1

um
li d2λ(vs

l , V
t
l , xi) (9)

3 Modeling

3.1 Takagi-Sugeno

Fuzzy models are “grey box” and transparent models that allow the approxi-
mation of non linear systems with no previous knowledge of the system to be
modeled. Fuzzy models have the advantage of not only providing transparency,
but also linguistic interpretation in the form of rules.

In this work, Takagi-Sugeno (TS) fuzzy models (FM) [6] are derived from
data. These consist of fuzzy rules where each rule describes a local input-output
relation. With TS-FM, each discriminant function consists of rules of the type:

Ri : If x1is Ai1 and ... and xM is AiM

then y(x) = fi(x), i = 1, 2, ...,K (10)

where fi is the consequent function of rule Ri and y is the output. The degree
of activation of the ith rule is given by βi =

∏M
j=1 μAij

(x), where μAij
(x) : R →

[0, 1]. The output is computed by aggregating the individual rules contributions:

y(x) =
∑K

i=1 βifi(x)
∑K

i=1 βi

(11)

Given that this is a classification problem, a threshold γ is required to turn
the continuous output y ∈ [0, 1] into the binary output y ∈ {0, 1}. This way, a
sample x is labeled as 1 if y(x) � γ.

The number of rules K and the antecedent fuzzy sets Aij are determined
by fuzzy clustering in the product space of the input and output variables. The
consequent functions fi(x) are linear functions determined by ordinary-least
squares in the space of the input and output variables.
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3.2 Model Design

Distinct TS-FM approaches based on [3] were considered for this study. The
strategies differ in the type of input data and in the methodology used to deter-
mine the antecedent fuzzy sets. In particular, the antecedent fuzzy sets and the
number of rules of the TS-FM are determined based either on the partition
matrix generated by the FCM algorithm (FCM FM), or in the partition matrix
generated by MFC (MFC FM). The input variables consist of (i) time variant
and time invariant features or (ii) transpose of the partition matrix generated
by MFC (UMFC).

When time variant and invariant data are used as input for the fuzzy models,
each time stamp of the time series is treated as one feature, i.e., the input of the
model consists of a N × (R + Q1 + ... + QP ) matrix. When using the partition
matrix, each feature corresponds to the degree of membership of the entities
to the clusters such that the number of features equals the number of clusters
determined in the clustering step. In particular, the input becomes the N × C
matrix UT , which corresponds to the transpose of the partition matrix U = [uli]
in (8). This approach can be seen as a type of feature transformation method.

Considering the method based on feature transformation, proposed in [3],
we wanted to test if the reported improvement in results could be attributed
to using a new type of clustering scheme, to the transformation of the input
feature space, or both. For this reason, we propose a new approach based on
feature transformation using fuzzy c-means (UFCM), which is a more standard
fuzzy clustering method.

The modeling strategies are summarized in the following:

– FCM FM: Antecedent fuzzy sets determined by FCM in the product space of
the input and output variables.

– MFC FM: Antecedent fuzzy sets determined by MFC in the product space of
the input and output variables.

– FCM–UMFC FM: Antecedent fuzzy sets determined by FCM in the product
space of the partition matrix generated by MFC and output variable.

– FCM–UFCM FM: Antecedent fuzzy sets determined by FCM in the product
space of the partition matrix generated by FCM and output variable.

4 Experimental Results

4.1 Data Description

The current study made use of the Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC) II and III databases. MIMIC-III is a large, openly-
available database comprising deidentified health-related data associated with
patients who stayed in intensive critical care units of the Beth Israel Deaconess
Medical Center, in Boston, between 2001 and 2012 [7,8]. MIMIC-III is publicly
available on the PhysioNet website (http://www.physionet.org/) [8]. The data-
base includes information such as demographics, vital sign measurements, lab-
oratory test results, procedures, medications, caregiver notes, imaging reports,

http://www.physionet.org/
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and other third party clinical information systems. The MIMIC-III relational
database (version 1.3) used in this work contains data from 46,476 subjects,
corresponding to 61,532 ICU admissions [9]. This database is used to extract
information regarding patients diagnosed with acute kidney injury.

We also use MIMIC II, which is a previous version of MIMIC III that contains
32,535 patients. This database is used to assess the performance of fuzzy models
in the classification of readmissions.

Acute Kidney Injury. The cohort included adult patients (age ≥ 15 years
old) with ICU length of stay of more than 24 h, who had at least two serum
creatinine measurements and at least one interval of six hours’ urine output
observation. In addition, in order to be included in this study, the patients had a
primary ICD-9 diagnosis (code 584.9 ) of acute renal injury at the time of their
hospital admission [10,11]. Patients who underwent renal replacement therapy
(RRT) on the day of or prior to their hospital admission were excluded. Patients
were also excluded if they had end-stage renal disease (ESRD), given by ICD-9
code 585.6, or first serum creatinine level of > 4 mg/dL [11,12].

Time invariant variables selected were weight and age on admission, and time
variant variables were heart rate (beats/min), respiratory rate (breaths/min),
oxygen saturation in the blood (%), non-invasive blood pressure (NBP) mean
(mmHg) [12–14]. The output consists in the patient classification regarding mor-
tality: 1 if the patient died within one year after discharge and 0 if not. Table 1
shows the mean sampling rate of each variable in the dataset.

Readmissions. In order to exploit the advantage of using features of unequal
lengths and the advantage of feature transformation based on fuzzy c-means, we
evaluate the dataset providing worse results in [3]. This dataset was built for the
prediction of early readmissions, i.e., readmissions to the ICU within 24 to 72 h
after discharge. The same set of features was used and for comparison purposes
we select again the same number of measurements collected before discharge,
regardless of the day they were taken. We also investigate performance results
using smaller lengths of the time series per day and unequal lengths between
variables.

Table 1. Average sampling rate (samples/day) for AKI dataset.

Class 0 Class 1

Creatinine 1.3 2.1

Heart rate 35.0 29.6

NBP 27.5 26.6

Urine output 17.2 16.2

SpO2 33.3 28.6

Respiratory rate 37.3 32.4
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Table 2. Average sampling rate (samples/day) for readmissions dataset.

Class 0 Class 1

Heart rate 28.2 27.8

NBP 16.7 14.7

Temperature 6.9 6.6

Creatinine 2.1 2.0

SpO2 28.1 27.6

Platelets 2.2 2.0

Lactic acid 8.2 6.2

The selected time invariant features were age, weight, Simplified Acute Phys-
iology Score (SAPS II) and Sequential Organ Failure Assessment (SOFA) score
on admission. Gender was excluded because since it is a binary variable, it could
highly influence the finding of clusters. Time variant features were heart rate
(beats/min), temperature (◦C), platelets (cells ×103/μL), non-invasive blood
pressure mean (mmHg), oxygen saturation in the blood (%), lactic acid (mg/dL)
and creatinine (mg/dL). Table 2 shows the mean sampling rate of each variable
in the dataset.

4.2 Data Processing

In this work, all measurements regarding the chosen set of time variant features
are extracted from the database. The mean sampling rate of each variable is
calculated, and the number of samples is selected according to it. This way, each
feature is treated independently, and more information can be used.

Consider that Q measurements per day are required for variable p, and that
the observation window of variable p in a certain patient stay is given by the
time elapsed between the first and last measurements of p in one day. Measure-
ments are distributed among Q bins, according to the observation window. If
the number of measurements available exceeds the required, the median among
bins containing more than one measurement is used as the value for that time
point. On the other hand, if the number of measurements is smaller than the
required Q, there are empty bins. In this case, a zero order hold procedure is
applied so that previous values are used.

According to expert medical knowledge, considering the full stay of a patient
stay should be more informative of adverse events and outcomes, than merely
considering short time windows. Contrarily to [3], where the last 10 measure-
ments of each patient were used, this data extraction strategy allows that infor-
mation spanning a longer period can be used, and that key time periods of the
day (e.g. morning, afternoon and night) are incorporated in the models. More-
over, less missing data needs to be imputed for those variables with smaller
sampling rates.



748 C.M. Salgado et al.

Table 3. AUC performance of different fuzzy models for AKI and readmissions datasets
of varying time series lengths and observation windows. Q(p) gives the number of
samples per day for each time variant feature (see order of feature vector in Tables 1
and 2). The number of patients and percentage of patients from class 1 in each dataset
is also given. Results in bold highlight the best performer in each dataset. Results are
presented as mean (standard deviation).

AKI

Q(p) Observation

window

Patients FCM–UMFC FCM–UFCM MFC FCM

{10,10,10,10,10,10} last 10 2192 (40%) 0.70±0.03 0.70±0.02 0.73±0.01 0.69±0.02

{10,10,10,10,10,10} 1 1843 (39%) 0.69±0.03 0.68±0.04 0.72±0.02 0.67±0.04

{1,15,13,8,14,16} 1 1843 (39%) 0.69±0.03 0.69±0.03 0.71±0.02 0.66±0.05

{1,30,27,16,29,32} 1 1843 (39%) 0.67±0.01 0.68±0.02 0.70±0.05 0.64±0.03

{1,3,3,2,3,3} 2 1280 (43%) 0.70±0.04 0.68±0.05 0.72±0.04 0.69±0.04

{1,3,3,2,3,3} 3 910 (46%) 0.71±0.02 0.69±0.02 0.68±0.04 0.63±0.07

Readmissions

{10,10,10,10,10,10} last 10 2660 (7.6%) 0.56±0.04 0.56±0.04 0.57±0.02 0.58±0.07

{10,10,10,10,10,10} 1 1389 (9.5%) 0.58±0.06 0.53±0.08 0.53±0.07 0.49±0.07

{14,7,3,1,14,1,3} 1 1389 (9.5%) 0.64±0.06 0.61±0.04 0.56±0.07 0.54±0.08

{28,15,7,2,28,2,6} 1 1389 (9.5%) 0.59±0.04 0.57±0.04 0.54±0.06 0.52±0.09

{3,2,2,1,3,1,2} 2 978 (10%) 0.58±0.07 0.57±0.06 0.53±0.06 0.53±0.06

{3,2,2,1,3,1,2} 3 741 (11%) 0.56±0.05 0.58±0.05 0.55±0.07 0.56±0.06

In this work, values outside acceptable physiological ranges were deleted.
Values were normalized between 0 and 1 for clustering and modeling purposes.

4.3 Model Performance

This section presents the experimental evaluation of the fuzzy models described
in Sect. 3.2 using real EHRs data. The performance of the models is evaluated
in terms of area under the receiver operating characteristic curve (AUC) [15],
accuracy (correct classification rate), sensitivity (true positive classification rate,
also called recall) and specificity (true negative classification rate).

The dataset is initially partitioned into train and test folds, such that 80 % of
data is reserved for train and 20 % for test, using 5 fold cross validation. For each
fixed number of clusters a grid search is performed to find λ and threshold γ by
creating models using 50 % of the train data and testing them with 50 % of the
train set, i.e., new train set partitions are created from the train set to select the
model parameter λ and γ. For FCM–UMFC and FCM–UFCM, the input U used
for testing the models is obtained by calculating the distance from the test set to
the initially created cluster prototypes and updating the partition matrix using
the calculated distance. The γ giving the smaller difference between sensitivity
and specificity and the λ giving the best performance in terms of AUC, for the
test set, are selected. This model is then used to test with the 20 % test set. In
each round of the cross validation, the model giving the best performance for
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Table 4. Performance of different fuzzy models for the best AKI and readmissions
datasets performers in Table 3. The number of clusters C and average weighting para-
meter λ selected by grid search are also given. Results are presented as mean (standard
deviation).

AKI

FM C λ AUC ACC Sensitivity Specificity

FCM–UMFC 4 2.0±0.7 0.70±0.03 0.66±0.03 0.68±0.03 0.65±0.06

FCM–UFCM 3 - 0.70±0.02 0.65±0.03 0.64±0.09 0.67±0.09

MFC 2 3.4±0.5 0.73±0.01 0.66±0.01 0.67±0.04 0.65±0.03

FCM 2 - 0.69±0.02 0.63±0.02 0.63±0.03 0.63±0.06

Readmissions

FCM–UMFC 3 3.4±3.8 0.64±0.06 0.57±0.04 0.66±0.08 0.56±0.05

FCM–UFCM 4 - 0.61±0.04 0.56±0.06 0.58±0.06 0.55±0.07

MFC 3 1.6±1.3 0.56±0.07 0.49±0.06 0.57±0.08 0.49±0.06

FCM 3 - 0.54±0.08 0.51±0.06 0.57±0.07 0.50±0.06

each number of clusters is selected and the results are averaged over the rounds.
In the end, results are shown for C giving the best average.

The four modeling approaches were applied to each dataset, with the model
parameters - C, λ and γ - being selected by grid search for each method, such
that γ = 0, 0.01, ..., 1, λ = 0, 1, ..., 10 and m = 2. Cross validation is performed
separately for C = 2, 3, 4. Results in terms of AUC are shown in Table 3.

In a previous study using fuzzy modeling based on mixed fuzzy clustering
[3], the classification of readmissions yield results of maximum AUC of 0.58.
In this work, the proposed feature extraction approach is able to increase the
performance of fuzzy models to AUC = 0.64 for the method using MFC feature
transformation, when approximately half of the average sampling rate in class 1
is considered for an observation window of 1 day. In readmissions, MFC feature
transformation method performs better than FCM in 4 out of 6 datasets, equal
in 1 and worse in 1. MFC FMs perform better than FCM in 3, equal in 1 and
worse in 1. Considering AKI, MFC performs better than FCM in 6 out of 6
datasets. The best performance overall, in terms of AUC, is achieved when the
last 10 measurements per variable are used. These results are comparable with
the achieved in Celi et al. [16], where the first 72 h of ICU admission were used
(AUC of 0.74).

Note that as the observation window increases so does the ratio of patients
from the class of interest, suggesting that these patients tend to stay longer in
the ICU than patients from class 0. Also, when the last 10 measurements are
considered, measurements from any part of the patient stay can be selected, i.e.,
data might include measurements spanning 10 days of observation. On the other
hand, when a an observation period of 1, 2 or 3 days are chosen, measurements
are restricted to one day period, always starting from the last. If measurements
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in the chosen day are not available the patient is discarded, which explains the
difference in size of datasets using the same Q(p).

In both classification datasets, methods using MFC yield the best AUC. In
the case of readmissions, the best performer is FCM–UMFC with an AUC of 0.64
and in AKI the best performer is MFC with an AUC of 0.73. In Table 4, C,
AUC, accuracy, sensitivity and specificity are presented for these two datasets.
Note that readmissions is very imbalanced in terms of sensitivity and specificity,
which can be explained by the high class imbalance. Values of λ greater than
1 are able to increase the performance of fuzzy c-means rule-based models, by
increasing the relevance of the time variant component of data.

5 Conclusions

This work proposes an extension of MFC for time series of unequal lengths and
a new feature transformation approach based on FCM. In summary, this work
allowed the investigation of different observation windows (1–3 days and last 10
measurements); unequal lengths of time series across different features; differ-
ent Takagi-Sugeno fuzzy models (including feature transformation and MFC for
deriving the antecedents fuzzy sets). The proposed MFC fuzzy models are able
to improve the performance of fuzzy c-means based models.

Future work should focus in testing the algorithm in different application
domains, e.g. energy consumption, spatiotemporal applications, where different
data problems exist. In order to improve the AUC and accuracy of the models,
wrapper feature selection should be performed to find an optimum subset of time
variant and invariant features.
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Abstract. Accurate financial risk analysis has drawn considerable
attention after the recent financial crisis. Several regulatory agencies
recently documented the need for proper assessment and reporting of
financial risk for banks and other financial institutions. It is stressed
that risk analysis should take into account changing risk properties over
time. For a set of financial assets, risk analysis relies on the correlation
and covariance structure among these returns from these assets. There-
fore analyzing changes in the correlations and covariances of assets is
essential to document changing risk properties. In this paper we show
that a PFS can be used to model unobserved time-varying correlation
between financial returns. The method is applied to simulated data and
real data of daily NASDAQ and HSI stock returns. We show that the
PFS application improves over the conventional moving window approx-
imation of time-varying correlation by decreasing the sensitivity of the
results to the selection of the window length.

Keywords: Probabilistic fuzzy systems · Time-varying correlations ·
Risk analysis

1 Introduction

Assessing measures of risk for financial returns has an important role in invest-
ment decisions, portfolio analysis and for regulatory purposes [1,2]. The impor-
tance of accurate estimation of risk of asset returns have been discussed exten-
sively, particularly after the recent financial crisis [2,3]. Measures of risk often
need to be analyzed for more than one financial asset since most investment
decisions are based on a selected portfolio of multiple assets, where the investor
aims to diversify of risk [4].

For a single series of financial returns, it is well documented that the asso-
ciated risk changes substantially over time, which is denoted by time-varying
conditional volatility in asset returns [5]. Methods which avoid strong distribu-
tional assumptions prove to be useful for estimating such time-varying volatility
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-40581-0 61



Time Varying Correlation Estimation Using PFS 753

[6–10]. For multiple financial returns, an additional important feature in portfo-
lio management is the correlation between the returns of different assets, where
the portfolio risk depends on the correlation of the returns from each asset form-
ing the portfolio [11]. For example, if the portfolio is based on two negatively
correlated stocks, the portfolio is said to be ‘well-diversified’ with small risk [4].
Thus an accurate risk calculation, e.g. for a portfolio of financial assets, requires
the accurate calculation of assets’ correlation at the given decision time.

Earlier research has shown that correlations between financial returns, par-
ticularly across international markets change over time, e.g. during major finan-
cial crises [12]. Different methodologies, with different distributional assump-
tions for correlation, have been proposed to calculate time-varying correlations
for returns. Parametric models are proposed to estimate correlations between
returns as well as other model parameters [13]. Alternative methodologies are
based on moving window correlation estimates, where time-varying correlation
at a given time is approximated by a proxy, namely the sample correlation at a
selected time window. Moving window estimates have the advantage of avoiding
strong distributional assumptions and are shown to perform well particularly in
forecasting [14]. However, these estimates are also shown to be sensitive to the
selection of a window size and there is a natural trade-off between capturing
time variation in correlations and obtaining an accurate proxy for correlation
at a given time. If the selected window size is too large, proxies of correlation,
i.e. sample correlation, approaches the long run mean of correlation. Hence time
variation in correlation cannot be captured. On the contrary, if the selected win-
dow size is too small, time variation in correlation is captured, but each proxy of
correlation has high uncertainty and correlation estimation is not accurate [15].

In this paper, we propose the first PFS for modeling time-varying correlations
of financial returns and to improve moving window correlation estimates. The
method captures time varying correlation and conditional volatility without an
underlying restricted statistical model for the correlations. PFS has previously
been shown to perform well for conditional volatility and risk estimation [7,9,16].
The proposed model is different from the earlier PFS models. In the current
paper, the antecedents and the consequents of the system are based on proxies,
i.e. approximations of time-varying correlations instead of observed data. The
use of approximations of correlations instead of the actual values leads to mea-
surement errors. We show that the PFS model takes into account the imprecision
resulting from these measurement errors through the use of fuzzy sets. In addi-
tion, the trade-off between capturing time-variation in correlation and obtaining
accurate correlation estimates is mitigated using the proposed PFS model. These
features are illustrated using simulated data and a real data application.

2 Probabilistic Fuzzy Systems

Probabilistic fuzzy systems combine two different types of uncertainty, namely
fuzziness or linguistic vagueness, and probabilistic uncertainty. A probabilis-
tic fuzzy system follows an idea similar to [17,18] where the different concepts
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[19–22] of fuzzy sets and probabilities are complementary [20]. In this work we
consider that the probabilistic uncertainty relate to aleatoric variability, while
fuzzy sets are used to represent gradualness, epistemic uncertainty or bipolarity
[21,23].

The PFS consists of a set of rules whose antecedents are fuzzy conditions
and whose consequents are probability distributions. Assuming that the input
space is a subset of R

n and that the rule consequents are defined on a finite
domain Y ⊆ R, a probabilistic fuzzy system consists of a system of rules Rq,
q = 1, . . . , Q, of the type

Rq : If x is Aq then f(y) is f(y|Aq) , (1)

where x ∈ R
n is an input vector, Aq : X −→ [0, 1] is a fuzzy set defined on X

and f(y|Aq) is the conditional pdf of the stochastic output variable y given the
fuzzy event Aq. The interpretation is as follows: if fuzzy antecedent Aq is fully
valid (x ∈ core(Aq)), then y is a sample value from the probability distribution
with conditional pdf f(y|Aq).

A PFS has been described with two possible and equivalent reasoning mech-
anisms, namely the fuzzy histogram approach and the probabilistic fuzzy output
approach [24]. In this work we focus on the fuzzy histogram approach since the
pdf obtained from the approach can be used to assess the precision in correla-
tion estimates. We replace in each rule of (1) the true pdf f(y|Aq) by its fuzzy
approximation (fuzzy histogram) f̂(y|Aq) yielding the rule set R̂q, q = 1, . . . , Q
defined as

R̂q : If x is Aq then f(y) is f̂(y|Aq) . (2)

The fuzzy histogram f̂(y|Aq) for each rule is obtained from a fuzzy partition
of the compact output space Y with j = 1, . . . , J fuzzy classes Cj |Aq with
probability estimates P̂r(Cj |Aq) and the corresponding membership function
uCj

(y) [25]

f̂(y|Aq) =
J∑

j=1

P̂r(Cj |Aq)uCj
(y)

∫ ∞
−∞ uCj

(y)dy
, (3)

where the probability estimates P̂r(Cj |Aq) satisfy the conditions P̂r(Cj |Aq) ≥ 0
and

∑J
j=1 P̂r(Cj |Aq) = 1, and they can be calculated using the maximum likeli-

hood method [7]. In this paper we do not assume any particular algebraic struc-
ture for the conditional probability of fuzzy events. There are several examples
of definitions of conditional probabilities of fuzzy events that satisfy the classical
axioms of conditional probabilities, such as [26].

The interpretation of this type of reasoning is as follows. Given the occurrence
of a (multidimensional) antecedent fuzzy event Aq, which is a conjunction of
the fuzzy conditions defined on input variables, an estimate of the conditional
probability density function based on a fuzzy histogram f̂(y|Aq) is calculated.
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Given an input vector x, the output of a probabilistic fuzzy system is a
conditional density function which can be computed as

f̂(y|x) =
J∑

j=1

Q∑

q=1

βq(x)P̂r(Cj |Aq)
uCj

(y)
∫ ∞

−∞ uCj
(y)dy

, (4)

where βq(x) = uAq
(x)/

∑Q
q′=1 uAq′ (x) is the normalised degree of fulfillment

of rule Rq and uAq
is the degree of fulfillment of rule Rq. When x is n-

dimensional, uAq
is determined as a conjunction of the individual memberships

in the antecedents computed by a suitable t-norm, i.e., uAq
(x) = uAq1

(x1) ◦
· · · ◦ uAqn

(xn), where xi, i = 1, . . . , n is the i-th component of x and ◦ denotes a
t-norm.

It can be shown [24] that the conditional density output f̂(y|x) of a PFS is
a proper probability density function i.e.

∫ ∞
−∞ f̂(y|x)dy = 1 and the expected

value Ê(y|x) and the second moment Ê(y2|x), exist if the given the partitioning
of the output space, since the output membership values satisfy

∑J
j=1 uCj

(y) =
1,∀y ∈ Y, y < ∞. Under these conditions, a crisp output using the expected
value can be calculated as

μ̂y|x = Ê(y|x) =
∫ ∞

−∞
yf̂(y|x)dy =

Q∑

q=1

J∑

j=1

βq(x)P̂r(Cj |Aq)z1,j , (5)

where z1,j =
∫ ∞

−∞ yuCj
(y)dy/

∫ ∞
−∞ uCj

(y)dy is the centroid of the jth output
fuzzy set.

3 Correlation Estimation Using PFS

In this paper we consider a model for two returns yt = (y1,t, y2,t)′:

yt = H
1/2
t zt (6)

where t = 1, . . . , T indicates the time period, zt = (z1,t, z2,t)′ is such that zi,t for
i = 1, 2 are random variables with mean 0 and variance 1, Ht is a 2 × 2 positive
definite matrix and H

1/2
t denotes the Choleski decomposition of Ht. In most

models, e.g. in multivariate GARCH models, the distribution of zi,t is defined as
a standard normal distribution. We focus on two assets for illustration purposes,
but the model and the applications can be generalized to any number of assets.

The covariance of two returns in (6) is Var(yt) = H
1/2
t H

′1/2
t = Ht, i.e. the

matrix Ht represents the time-varying variance-covariances of yt, which by con-
struction are not observable. Different models have been proposed to model the
time-varying conditional variance-covariance matrix Ht in (6) [13]. A common
feature of these models is the dependency of the current covariances Ht and
past covariances Ht−1, . . . , Ht−p. Similar to univariate GARCH models, such a
dependency on past values ensure smooth changes in the variance-covariance
structure over time. In addition, any modeling approach for Ht should ensure
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that this matrix is a positive definite matrix at each time period. This necessary
condition may lead to additional parameter restrictions in models [13].

The following decomposition of the variance-covariance matrix is often used
to identify variances and correlation coefficients [13]:

Ht = DtRtDt =

(
h
1/2
1,1,t 0
0 h

1/2
2,2,t

)(
1 ρt
ρt 1

)(
h
1/2
1,1,t 0
0 h

1/2
2,2,t

)

(7)

where Dt is the diagonal matrix with variances of each series in diagonals and Rt

matrix includes the correlations of the two series ρt. Using this decomposition, Ht

is a positive definite matrix as long as the diagonal elements of Dt are positive
and ρt ∈ (−1, 1) for all t. The advantage of the decomposition in (7) is that the
diagonal elements of the matrix Dt can be estimated using a given conditional
volatility model, for example using [7] or [10], for each series y1 = (y1,t, . . . , y1,t)
and y2 = (y2,t, . . . , y2,t). This estimation can be performed independent of the
estimation of correlation coefficients in Rt since Dt defines the unconditional vari-
ance of each series at time t, which is by definition independent of correlations Rt.

For the two series in (6), moving–window (MW) correlation estimates ρ̂t using
window length m can be calculated using Pearson’s linear correlation coefficient:

μ̂i,t =
∑t

t′=t−m+1 yi,t′

m
, for i = 1, 2 (8)

σ̂2
i,t =

∑t
t′=t−m+1(yi,t′ − μ̂i,t)2

m − 1
, for i = 1, 2 (9)

ρ̂
(m)
t =

t∑

t′=t−m+1

(y1,t′ − μ̂1,t)(y2,t′ − μ̂2,t)
(m − 1)σ1,tσ2,t

. (10)

The correlation estimate in (10) has an asymptotic normal distribution with vari-
ance (1 − (ρ̂(m)

t )2)/(m − 2). However, for small m, this asymptotic property does
not necessarily hold, hence asymptotic variances do not reflect the actual vari-
ance of the correlation estimate. In all following examples we report the estima-
tion uncertainty in ρ̂ in (10) using bootstrap [27] results based on 1000 bootstrap
samples of size m/2. When the purpose is to forecast future correlations between
assets, the common method is to use past information as follows [15]:

E
(
ρ̂
(m)
t+1|y1, . . . , yt

)
= ρ̂

(m)
t , (11)

where ρ̂
(m)
t is obtained from (10).
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The PFS for correlation modeling has the following rules for q = 1, . . . , Q:

R̂q : If ρ̂
(m)
t−1 is Aq then f(ρ̂(m)

t ) is f̂(ρ̂(m)
t |Aq) , (12)

where both the antecedent (past correlation) and the consequent (current cor-
relation) are estimated using (10) with a pre-selected window size m, and
f̂(ρ̂(m)

t |Aq) is a fuzzy histogram described as [25]

f̂(ρ̂(m)|Aq) =
J∑

j=1

P̂r(Cj |Aq)uCj
(ρ̂(m)

t )
∫ ∞

−∞ uCj
(ρ̂(m)

t )dρ̂
(m)
t

, (13)

i.e. both the antecedent and the consequent variables are only approximations
of the real variable of interest, correlations.

The parameters of the probabilistic fuzzy systems are estimated using a pro-
cedure similar to [7], here briefly summarized. Following the distinction between
input and output present in the rule structure of (2), the optimization problem
is divided in two parts. First we obtain the input membership parameters by
using a fuzzy clustering heuristic, that uses the fuzzy c-means algorithm, set the
output membership parameters as Gaussian, shouldered at the edges and finally
optimize the probability parameters P̂r(Cj |Aq) using maximum likelihood esti-
mation.

4 Simulated Data with Time-Varying Correlation

In this section we illustrate the performance of the PFS model using simulated
data and compare the results with MW estimates of correlation, which are often
used as proxies for correlation [15]. In the described PFS, both the input and
the output of PFS are approximations of actual (unobserved) correlation. We
use simulation experiments to study the effect of these approximated inputs
and outputs in PFS on the approximation capability of PFS, particularly in
comparison to MW approximation. In addition, for the simulation studies, actual
correlation is known. We can therefore compare obtained results from the two
methods, MW and PFS, with actual correlation values. Such a comparison is
not possible using real data, unless a loss function is defined [15].

As an example, we simulate T = 500 observations yt = (y1,t, y2,t)′ for t =
1, . . . , T from a model with highly persistent time-varying correlations following
an auto-regressive process, described by:

yt ∼ N

((
0
0

)
,

(
1 ρt
ρt 1

))

ρt = max (−1 + ε,min (1 − ε, 0.1 + 0.8ρt−1 + ηt))
(14)

where ε = 10−5, ηt ∼ NID(0, 0.005) and the restriction ρt ∈ (−1, 1) of the
covariance decomposition (7) is satisfied. As shown in Fig. 1a, the model pre-
sented in (14) has time-varying correlations between times series y1,t and y2,t,
and furthermore, in periods of high correlation, series y1,t and y2,t have common
upward or downward movements.
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4.1 PFS Application with True Consequents and Proxies
for Antecedents

We first consider a PFS model of the form (12) where the inputs are correlation
estimates calculated from (10) and the output of PFS are the true observed
correlation (given by the simulated parameters). We again note that this appli-
cation is not realistic since correlations are unobserved in reality, but it serves
the purpose of documenting the effect of using approximations of correlation as
the input variables on the PFS results, isolating this the effect from the approx-
imation of the output variable.

Each PFS rule in (12) are adjusted such that the output of PFS is the actual
correlation at time t, ρt as the output:

R̂q : If ρ̂
(m)
t−1 is Aq then f(ρt) is f̂(ρt|Aq) . (15)

We first consider a window length of m = 10 for obtaining correlation approx-
imations in (13), for moving window forecasts and for the input variable of PFS.
Results of the MW correlation estimates and those from PFS with 4 antecedents
and 9 consequents are shown in Fig. 1b and c. MW estimates of correlation in
Fig. 1b change substantially over time, capturing changing correlation levels. In
addition, the obtained 99 % intervals around these estimates are often too wide,
covering all values within (−1, 1), indicating that the uncertainty around the
estimated values are high. Figure 1b also shows that the peaks of MW estimates
are mostly after the peaks in correlation. I.e MW estimates are often late and
inaccurate in capturing correlation changes. PFS estimates in Fig. 1c, however,
follow the increases and decreases of the actual correlation smoothly, with tighter
confidence intervals.

We next compare MW and PFS estimates for time-varying correlation by
using mean absolute error (MAE) between estimated and actual correlations to
compare the accuracy of the methods. We emphasize that such a comparison is
only possible if actual correlation is known, i.e. in a simulation setting. MAE for
the two methods are calculated as follows:

MAE(m) =
1
T

T∑

t=1

∣∣
∣ρ̂(m)

t − ρt

∣∣
∣ (16)

where PFS estimates of ρ̂
(m)
t are obtained from (5), MW estimates of ρ̂

(m)
t are

obtained from (11), and ρt is the simulated value of correlation at time t. MAE
from MW and PFS using different window sizes are shown in Fig. 2a. According
to MAE, PFS results are smaller than those of MW estimation for all window
sizes. Regardless of the window size, MAE from PFS is around 0.3 %, while
MA estimates lead to very high MAE, especially with small window sizes. It
is particularly interesting that the PFS estimates with a small window size are
still accurate. This result follows from the addition of probability parameters
in the model in PFS, which are estimated using the full sample information.
Even though the antecedent is calculated inaccurately, e.g. with a too small
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Fig. 1. MW and PFS estimates of time-varying correlation for simulated data. (Color
figure online)

Fig. 2. MAE comparisons of MW and PFS for simulated data. (Color figure online)
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window size, PFS parameters incorporate full sample information and regulate
the correlation estimates through the use of fuzzy sets. Finally, the variance of
mean absolute errors from MW estimates in Fig. 2a is 0.02 while that of PFS is
approximately 1.7e-5, i.e. PFS estimates are clearly less sensitive to the window
size selection compared to MW estimates.

4.2 PFS Application with Proxies for Antecedents and Consequents

In this section, we consider a more realistic PFS set-up compared to Sect. 4.1,
where both the antecedents and consequents in PFS are obtained from MW
estimation. Specifically, both the antecedents and the consequents of PFS are
obtained for an MW estimation in (10) with a pre-selected window size m, as
defined in (12)–(13).

The estimated time-varying correlations and the 99 % intervals for MW and
PFS applications for a single simulation study and window size m = 10 are
shown in Fig. 1d. The PFS application is based on 4 antecedents and 9 conse-
quents. We compare the results to those obtained by MW estimation, reported
in Fig. 1b. Correlation estimates and the 99 % intervals are smoother when PFS
model is used compared the MW results, even though both the antecedent and
consequent of PFS are based on the approximations of correlation instead of
actual correlation. Similarly, the uncertainty in the time-varying correlation ρt,
illustrated by the 99 % interval is much smaller using PFS. Figure 2b presents
MAE obtained from MW estimation and PFS using different window sizes. MAE
from PFS are between 0.2 and 0.3, regardless of the window size, while MAE
from MW estimation varies substantially with the window size. In addition, the
variance of the MAE from MW estimates in Fig. 2b is 0.04 while that of PFS is
approximately 0.02. Hence PFS estimates are less sensitive to the choice of the
window length used for correlation estimates, while MW performs particularly
poorly when the window length is small. In other words, PFS decreases the sen-
sitivity of the results to the choice of the window length. Furthermore, we note
that the number of antecedents and consequents in PFS has a small effect on the
obtained MAE values; for all cases PFS models provide good approximations to
actual correlations.

5 Real Data Application

For the real data illustration, we use 1463 daily percentage returns for the
Hong Kong Hang Seng Index (HSI) and NASDAQ index between 04 Janu-
ary 2006 and 15 December 2011, where returns rt at time t are calculated as
rt = 100 × (ln(pt) − ln(pt−1)) where pt is the closing price of the index at time
t. We select this period of stock returns to ensure that the recent financial crisis
is included in the data period, and thus we can analyze potential changes in
the correlation between the two indexes during the crisis. Daily returns between
04/01/2006 and 18/11/2009 are used as the estimation sample, and the remain-
ing 500 returns after 18/11/2009 are taken as the forecast sample. We note that
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Fig. 3. HSI returns, NASDAQ returns and MW correlation estimates. (Color figure
online)

Fig. 4. PFS results for HSI and NASDAQ returns. (Color figure online)

the days for which the stock market is closed are slightly different for the two
stock markets. We analyze the data during days where both stock markets were
open. Percentage returns for both indexes are shown in Fig. 3a.

We first employ the covariance decomposition in (7) on the returns, and
obtain the MW estimates of correlation using (10) with a window size of m =
10. Since the purpose is to obtain correlation estimates of these stock returns,
we do not estimate or report the variance matrix Dt in (7). Given the MW
estimates of correlation, we apply the PFS model in (12) with 4 antecedents and
9 consequents, using MW estimates of the previous day as the input variable,
and MW estimates of the current day as the output variable for PFS.

MW estimates of correlation are provided in Fig. 3b for the estimation and
forecast sample. PFS estimates, on the other hand are reported in Fig. 4a for
the estimation sample and in Fig. 4b for the forecast sample. The reported PFS
estimate corresponds to the expected value of the PFS output (5). The general
findings confirm the simulation study in Sect. 4. MW estimates of correlation
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are very volatile, and such extreme variation in correlation is counter-intuitive
for daily stock prices. In addition, the uncertainty around the MW estimates,
represented by the 99 % intervals in Fig. 3b, are very high in all periods. We
conclude that the mowing window estimation is unlikely to provide accurate
estimates of correlation. PFS estimates of correlation in Fig. 4a, on the other
hand, are more stable with smaller 99 % intervals compared to MW estimation.
We conclude that, even with this relatively small window length, the obtained
results from PFS capture time-varying correlation with substantial accuracy in
estimates. Hence the trade-off between capturing time-variation in correlation
and obtaining accurate correlation estimates is mitigated using PFS.

6 Conclusions

In this paper we show that a PFS can be used to model unobserved time-varying
correlation between financial returns. The proposed method avoids strong dis-
tributional assumptions on the correlation process and uses the conventional
approximation of time-varying correlation, namely sample correlations from
moving windows, as antecedents and consequents. The method is applied to
simulated and real data where we show that the PFS application improves over
the conventional moving window approximation of time-varying correlation in
terms of decreasing the sensitivity to the selection of the window length. In future
work, we plan to apply the PFS to intra-day correlation between different stock
prices where accurate estimation depends heavily on moving window estimates
and the sizes of the moving windows. In addition, we plan to analyze the the-
oretical foundations and study the interpretability of the rules of the proposed
methodology.
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Abstract. The use of supervised learning techniques for fitting weights
and/or generator functions of weighted quasi-arithmetic means – a spe-
cial class of idempotent and nondecreasing aggregation functions – to
empirical data has already been considered in a number of papers. Nev-
ertheless, there are still some important issues that have not been dis-
cussed in the literature yet. In the first part of this two-part contribution
we deal with the concept of regularization, a quite standard technique
from machine learning applied so as to increase the fit quality on test
and validation data samples. Due to the constraints on the weighting
vector, it turns out that quite different methods can be used in the cur-
rent framework, as compared to regression models. Moreover, it is worth
noting that so far fitting weighted quasi-arithmetic means to empirical
data has only been performed approximately, via the so-called lineariza-
tion technique. In this paper we consider exact solutions to such special
optimization tasks and indicate cases where linearization leads to much
worse solutions.

Keywords: Aggregation functions · Weighted quasi-arithmetic means ·
Least squares fitting · Regularization · Linearization

1 Introduction

In various situations, one is faced with a need to combine n ≥ 2 numeric values
in the unit interval, so that a single representative output is produced. Usu-
ally, some idempotent aggregation function, see, e.g., [7,13], is the required data
fusion tool.

Definition 1. We say that F : [0, 1]n → [0, 1] is an idempotent aggregation
function, whenever it is nondecreasing in each variable, and for all x ∈ [0, 1] it
holds F(x, . . . , x) = x.
c© Springer International Publishing Switzerland 2016
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Among useful idempotent aggregation functions we find weighted quasi-
arithmetic means.

Definition 2. Let ϕ : [0, 1] → R̄ be a continuous and strictly monotonic func-
tion and w be a weighting vector of length n, i.e., one such that for all i it holds
wi ≥ 0 and

∑n
i=1 wi = 1. Then a weighted quasi-arithmetic mean generated by

ϕ and w is an idempotent aggregation function WQAMeanϕ,w : [0, 1]n → [0, 1]
given for x ∈ [0, 1]n by:

WQAMeanϕ,w(x) = ϕ−1

(
n∑

i=1

wiϕ(xi)

)

= ϕ−1
(
wT ϕ(x)

)
.

Here are a few interesting cases in the above class:

– WAMeanw(x) =
∑n

i=1 wixi = wTx,
(weighted arithmetic mean, convex combination of inputs, ϕ(x) = x)

– WHMeanw(x) = 1
∑n

i=1 wi/xi
, (weighted harmonic mean, ϕ(x) = 1/x)

– WGMeanw(x) =
∏n

i=1 xwi
i , (weighted geometric mean, ϕ(x) = log x)

– PMeanr,w(x) = (
∑n

i=1 wix
r
i )

1/r for some r �= 0,
(weighted power mean, ϕ(x) = xr)

– EMeanγ,w(x) = 1
γ log (

∑n
i=1 wie

γxi) for some γ �= 0.
(weighted exponential mean, ϕ(x) = eγx)

Let us presume that we observe m ≥ n input vectors X = [x(1), . . . ,x(m)] ∈
[0, 1]n×m together with m desired output values Y = [y(1), . . . , y(m)] ∈ [0, 1]1×m

and that we would like to fit a model that determines the best functional relation-
ship between the input values and the desired outputs. Generally, such a task
is referred to as regression in machine learning. Nevertheless, classical regres-
sion models do not guarantee any preservation of important algebraic properties
like the mentioned nondecreasingness or idempotence. Therefore, in our case,
for a fixed generator function ϕ, we shall focus on the task concerning fitting a
weighted quasi-arithmetic mean WQAMeanϕ,w, compare, e.g., [4,7,12,21], to an
empirical data set.

Given a loss function E : Rm → [0,∞) that is strictly decreasing towards 0,
E(0, . . . , 0) = 0, the task of our interest may be expressed as an optimization
problem:

minimize E

(

ϕ−1

(
n∑

i=1

wiϕ(x(1)
i )

)

− y(1), . . . , ϕ−1

(
n∑

i=1

wiϕ(x(m)
i )

)

− y(m)

)

with respect to w, under the constraints that 1Tw = 1 and w ≥ 0. Typically,
E is an Lp norm, in particular: E(e1, . . . , em) =

√∑m
i=1 e2i (least squared error

fitting, LSE), E(e1, . . . , em) =
∑m

i=1 |ei| (least absolute deviation fitting, LAD),
or E(e1, . . . , em) =

∨m
i=1 |ei| (least maximum absolute deviation fitting, LMD).

In the weighted arithmetic mean case (ϕ(x) = x), it is well-known that an
LSE fit can be expressed as a quadratic programming task, and both LAD and



Fitting Aggregation Functions to Data: Linearization and Regularization 769

LMD fits may be solved by introducing a few auxiliary variables and then by
applying some linear programming solvers, see [6,9,12].

More generally, for arbitrary but fixed ϕ (note that if ϕ is unknown one
may rely on a notion of spline functions to model a generator function, see
[2,3,5,6,9,10]), the weight fitting task has up to now been solved approximately
via a technique called linearization, compare [5,6,8,9,19]. Observing that if y(j)

is not subject to any measurement error, i.e., we have ϕ−1
(∑n

i=1 wiϕ(x(j)
i )

)
=

y(j), instead of minimizing a function of ϕ−1
(∑n

i=1 wiϕ(x(j)
i )

)
− y(j) we may

consider a function of
∑n

i=1 wiϕ(x(j)
i ) − ϕ(y(j)). Thus, the input and output

values can be transformed prior to applying a weight fit procedure and then we
may proceed in the same manner as when ϕ(x) = x (and in fact deal with a
linear interpolation problem). However, in practice this is rarely the case.

What is more, as noted recently in [12], we usually observe that a model may
be overfit to a training data set and thus perform weakly on test or validation
samples. Also, sometimes we would like to fit a function which is nondecreasing
and idempotent but the input values need to be properly normalized prior to
aggregate them so that these two important properties are meaningful.

The aim of this two-part paper is to complement the mentioned results (and
extend the preliminary outcomes listed in [12]) concerning fitting of weighted
quasi-arithmetic means (weighted arithmetic means in particular). In Sect. 2 we
discuss possible ways to fit a weighted quasi-arithmetic mean without relying on
the linearization technique. Moreover, we perform various numerical experiments
that enable us to indicate in which cases linearization leads to a significant
decrease in the fit quality. In Sect. 3 we discuss different ways of regularizing
a model so as to prevent overfitting. One of the possible approaches consists
of adding a special penalty, which is a common procedure in machine learning.
However, as parameters of our model fulfill specific constraints (non-negative
weights adding up to 1), other ways are possible in our setting too. Section 4
concludes this part of the contribution.

Moreover, in the second part [1] we deal with the problem of properly nor-
malizing (transforming) discordant input values in such a way that idempotent
aggregation functions may be fit. We present an application of such a procedure
in a classification task dealing with the identification of pairs of similar R [17]
source code chunks.

2 Linearization

From now on let us assume that E(e1, . . . , em) =
√∑m

i=1 e2i , i.e., we would like
to find a least squares error fit. Such an approach is perhaps most common in
machine learning literature [14]. What is more, most of the ideas presented in
this paper can be quite easily applied in other settings.

Torra in [19,20] (compare also, e.g., [6,8,9]) already discussed weighted quasi-
arithmetic mean fitting tasks. Nevertheless, it was noted that the problem is
difficult in general, so one may simplify the problem assuming that the desired
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outputs are not subject to errors. In such a case, noting that a fixed generator
function ϕ is surely invertible, we have for all j:

n∑

i=1

wiϕ(x(j)
i ) = ϕ(y(j)).

Using this assumption, instead of minimizing:

‖ϕ−1
(
wT ϕ(X)

) − Y‖22
one may decide to minimize a quite different (in general) goodness of fit measure:

‖wT ϕ(X) − ϕ(Y)‖22.
Such an approach is often called linearization of inputs.

Let us suppose, however, that we would like to solve the original weight fit
problem and not the simplified (approximate) one.

Example 1 ([12]). Suppose that n = 5 and we are given m = 9 toy data points
given as below. Here Y was generated using w = (0.33, 0.43, 0.10, 0.08, 0.06) and
ϕ(x) = x2 with white noise was added (σ = 0.05).

j 1 2 3 4 5 6 7 8 9

x
(j)
1 0.12 0.48 0.65 0.07 0.37 0.22 0.29 0.57 0.84

x
(j)
2 0.73 0.41 0.45 0.79 0.92 0.23 0.90 0.40 0.57

x
(j)
3 0.43 0.84 0.70 0.96 0.81 0.86 0.72 0.53 0.42

x
(j)
4 0.52 0.75 0.48 0.40 0.62 0.28 0.80 0.92 0.79

x
(j)
5 0.69 0.70 0.24 0.22 0.92 0.34 0.15 0.50 0.50

y(j) 0.65 0.58 0.70 0.51 0.82 0.56 0.70 0.64 0.75

Here are the true d1, d2, and d∞ error measures in the case of the linearized
and the exact LSE and LAD minimization tasks.

E d1 d2 d∞

LAD – linearization 0.7385 0.4120 0.2798

LSE – linearization 0.7423 0.2859 0.1626

LAD – optimal 0.7157 0.3170 0.2044

LSE – optimal 0.7587 0.2817 0.1501

In the above example, the differences are relatively small, but not negligi-
ble. While the use of the linearization technique for least-squared error fitting of
quasi-arithmetic means will often lead to reliable results, there are clearly some
situations where such a technique may not be justified. Fitting to the transformed
dataset ϕ(X), ϕ(Y) essentially stretches the space along which the residuals are
distributed and for some functions this will have a larger impact than others.
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As an example, consider the geometric mean with generator ϕ(x) = log x. For
lower values of y, differences in the transformed residuals can become dispropor-
tionately large and pull the weights towards these data points. Further on we
shall perform a few numerical experiments to indicate the generator functions
that lead to much greater discrepancies.

2.1 Algorithms

We aim to:

minimize
m∑

j=1

(

ϕ−1

(
n∑

i=1

wiϕ
(
x
(j)
i

)
)

− y(j)

)2

w.r.t. w

subject to w ≥ 0 and 1Tw = 1. By homogeneity and triangle inequality of ‖ · ‖2
we have that this is a convex optimization problem.

A Solution Based on a Nonlinear Solver. First of all, we may consider the
above as a generic nonlinear optimization task. To drop the constraints on w,
we can use an approach considered (in a different context) by Filev and Yager
[11], see also [20]. We take a different parameter space, λ ∈ R

n, such that:

wi =
exp(λi)∑n

k=1 exp(λk)
.

Assuming that ϕ−1 is differentiable, let us determine the gradient ∇E(λ). For
any k = 1, . . . , n it holds:

∂

∂λk
E(λ) = 2

exp(λk)
∑n

i=1 exp(λi)

m∑

j=1

⎛

⎝ϕ−1

⎛

⎝

∑n
i=1 exp(λi)ϕ

(
x
(j)
i

)

∑n
i=1 exp(λi)

⎞

⎠ − y(j)

⎞

⎠

·(ϕ−1)′

⎛

⎝

∑n
i=1 exp(λi)ϕ

(
x
(j)
i

)

∑n
i=1 exp(λi)

⎞

⎠ ·
⎛

⎝ϕ
(
x
(j)
k

)
−

∑n
i=1 exp(λi)ϕ

(
x
(j)
i

)

∑n
i=1 exp(λi)

⎞

⎠ .

Assuming that Z = wT ϕ(X) and w = exp(λ)/1T exp(λ), we have:

∇E(λ) = 2 · w ·
(

((
φ−1(Z) − Y

) · (ϕ−1)′ (Z)
) × (

ϕ(X)T − Z
)
)

,

where ·,− stand for elementwise vectorized multiplication and subtraction,
respectively, × denotes matrix multiplication, and ϕ(X)T − Z means that we
subtract Z from each column in ϕ(X)T . The solution may be computed using,
e.g., a quasi-Newton nonlinear optimization method by Broyden, Fletcher, Gold-
farb and Shanno (the BFGS algorithm, see [16]). However, let us note that while
using the mentioned reparametrization, the BFGS algorithm may occasionally
fail to converge as now the solution is not unique.
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Another possible way of solving the above problem would be to rewrite the
objective as a function of n − 1 variables v1, . . . , vn−1 such that wi = vi for
i = 1, . . . , n − 1 and wn = 1 − ∑n−1

i=1 vi. This is a constrained optimization
problem, but the constraints on v are linear: v ≥ 0 and 1Tv ≤ 1. With generic
nonlinear solvers, such an optimization task is usually determined by adding
an appropriate barrier function (e.g., logarithmic barrier, see [16]) term to the
objective function.

Compensation Factors in Linearization. Another possible way is to apply
a compensation factor such that for any residual in the linearization tech-
nique v(j) =

(∑n
i=1 ϕ(x(j)

i )
)

− ϕ(y(j)), we estimate the true residual r(j) =

ϕ−1
(∑n

i=1 ϕ(x(j)
i )

)
− y(j).

We begin with an estimate of our true residual, which we denote by rest. The
estimated residual for any known v(j) is then calculated as:

est(r(j)) =
v(j)rest

ϕ(y(j) + rest) − ϕ(y(j))
.

In other words, we calculate the average rate of change between y(j) and
y(j)+rest and then use the reciprocal of this as our compensation factor. A visual
illustration of this process is shown in Fig. 1.

Where y(j) + rest is outside our domain [0, 1], we can instead use the aver-
age rate of change between y(j) and the boundary point (or very close to the
boundary if ϕ is infinite).

Obviously the average rate of change will differ depending on whether v(j)

is positive or negative, and so we can split v(j) into its positive and negative
components so that a different compensation factor can be applied.

We let v(j) = v
(j)
+ +v

(j)
− where v

(j)
+ ≥ 0, v

(j)
− ≤ 0 which we then use as decision

variables in our quadratic programming task. We optimize with respect to these,

Fig. 1. Illustration of how compensation factor is calculated. From a generating func-
tion ϕ we estimate r(j) using the average rate of change between y(j) and y(j) + rest.
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and add constraints:
(

n∑

i=1

ϕ(x(j)
i )

)

+ v
(j)
+ + v

(j)
− = ϕ(y(j)).

In summary, we have the following quadratic programming task.

minimize
m∑

j=1

(
v
(j)
+ rest

ϕ(y(j)+rest)−ϕ(y(j))

)2

+
(

v
(j)
− rest

ϕ(y(j)−rest)−ϕ(y(j))

)2

w.r.t. w,v−,v+

such that
n∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n,

(∑n
i=1ϕ(x(j)

i )
)

+ v
(j)
+ + v

(j)
− = ϕ(y(j)),

v
(j)
+ ≥ 0,−v

(j)
− ≥ 0, j = 1, . . . , m.

Since the usefulness of this method will depend on rest, we can also set up
a bilevel optimization problem such that it is optimized for the given training
set. Nevertheless, note that this time we deal with an approximate method. The
following experiments show that the method is useful for compensating for the
stretching effect of the generating function and also help us identify some specific
instances of where linearization by itself has poor performance.

2.2 Experiments

For each of the generating functions ϕ(x) = x2, x3, x1/2, log x we created data
sets with m = 20 and m = 100 test points. For each trial, we generated w
randomly and then after calculating the desired output values we added Gaussian
noise with σ = 0.05 and 0.1. We then measured the LSE using:

(i) the linearization technique where the data are transformed using

ϕ(X), ϕ(Y), i.e., the sum of
((∑n

i=1 ϕ(x(j)
i )

)
− ϕ(y(j))

)2

,
(ii) the method proposed here with rest = 0.1,
(iii) the method proposed here with rest optimized,
(iv) a general non-linear optimization solver.

The x(j) vectors were generated both from the uniform distribution on [0, 1]n

as well as an exponential distribution scaled to the interval [0, 1]. The uniform
data would be expected to result in y values distributed around the middle of
the interval, while exponentially distributed data would often result in outputs
closer to the lower end of the interval. We expect the latter case to result in
worse performance for linearization.

After obtaining the fitted weighted vectors, we calculated the total LSE and
normalized these values by expressing them as a proportion of the optimal LSE
from the weighting vector obtained from the generalized solver. The results are
shown in Table 1.
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Table 1. Relative LSE calculated as proportion of total LSE obtained using a general
nonlinear solver (iv). Results represent averages over 10 trials

Uniformly distributed X

m = 20 σ = 0.05 σ = 0.1

ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0623 0.0011 0.0005 0.0270 0.0159 0.0026

x3 0.0936 0.0114 0.0025 0.1329 0.1038 0.0131

x1/2 0.0233 0.0006 0.0004 0.0725 0.0099 0.0008

log x 0.1492 0.0042 0.0025 0.4763 0.0358 0.0055

m = 100 σ = 0.05 σ = 0.1

ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0072 0.0004 0.0003 0.0106 0.0070 0.0015

x3 0.0266 0.0017 0.0014 0.0356 0.0499 0.0080

x1/2 0.0080 0.0002 0.0001 0.0061 0.0014 0.0005

log x 0.1921 0.0013 0.0011 0.2550 0.0064 0.0017

Exponentially distributed X

m = 20 σ = 0.05 σ = 0.1

ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0479 0.0066 0.0035 0.0795 0.0946 0.0132

x3 0.1560 0.0234 0.0145 0.2345 0.3030 0.0266

x1/2 0.1048 0.0061 0.0036 0.0522 0.0204 0.0047

log x 1.0970 0.0133 0.0076 2.7748 0.0558 0.0194

m = 100 σ = 0.05 σ = 0.1

ϕ(x) (i) (ii) (iii) (i) (ii) (iii)

x2 0.0198 0.0042 0.0041 0.0273 0.0520 0.0055

x3 0.0579 0.0100 0.0040 0.0820 0.1641 0.0117

x1/2 0.0167 0.0015 0.0012 0.0204 0.0098 0.0045

log x 1.8401 0.0095 0.0049 0.7770 0.0460 0.0228

A number of observations can be made from this data. Firstly, we note that
linearization for ϕ(x) = x2 tended only to produce increases in LSE of about
2–7 %, regardless of the data distribution. On the other hand, ϕ(x) = x3 showed
increases in LSE of between 9–24 % when there were only m = 20 data instances.

The most dramatic results were obtained when fitting the geometric mean.
For exponentially distributed input vectors, the method of linearization increased
the error by up to 277 % when the noise added to y was generated using σ = 0.1.
There was large variability in these trials – in the best case using linearization
increased the error by 45 %, while at other times the difference was 10 fold
(LSE was 0.8752 compared with 0.0940 when rest = 0.1 was used, about a 3.2 %
increase on the optimal LSE). The worst results seemed to occur where the
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data set included y values equal to zero. The weight associated with the lowest
input for that instance is pulled up to try and reduce the very large error. The
compensation factor however did seem to obtain decent improvements even when
the data was exponentially distributed.

While a setting of rest = 0.1 tended to result in significant improvements for
small errors (σ = 0.05), increased error of σ = 0.1 often had optimal values that
were closer to 0.2.

3 Regularization

In this section we discuss a few possible ways to prevent a model being overfit to a
training sample. In other words, we would like that for other samples of the same
kind (e.g., following the same statistical distribution) the model performance
does not decrease drastically.

3.1 Tikhonov Regularization

The Tikhonov regularization [18] is a basis for the ridge regression [15] method.
It has a form of an additional penalty term dependent on a scaled squared L2

norm of the weighting vector.
In our case we may consider, for some λ, an optimization task:

minimize
m∑

j=1

(

ϕ−1

(
n∑

i=1

wiϕ(x(j)
i )

)

− y(j)

)2

+ λ
n∑

i=1

w2
i w.r.t. w

subject to 1Tw = 1 and w ≥ 0. Note that due to the usual constraints on w,
the use of the L1 norm instead of squared L2 (like, e.g., in Lasso regression) does
not make much sense at this point: we always have ‖w‖1 = 1.

In the simplest case (ϕ(x) = x), the above optimization problem can be
written in terms of the following quadratic programming task:

minimize 0.5wT (XXT + λI)w − (XYT )Tw w.r.t. w

subject to w ≥ 0, 1Tw = 1, which minimizes the squared error plus a λ‖w‖22
penalty term. Note that for other generator functions ϕ we can easily incorpo-
rate an appropriate penalty to an optimization task considered in the previous
section.

Remark 1. Unlike in regression problems, where we always presuppose that λ ≥
0, in our framework we are bounded with additional constraints on w which,
for large λ, tend to generate weighting vectors such that wi → 1/n. On the
other hand, in the current framework the case of λ < 0 may also lead to useful
outcomes. Yet, we should note that for λ → −∞ we observe that wj → 1 for
some j.



776 M. Bartoszuk et al.

Example 2. Let us consider a data set generated randomly with R as follows:

set.seed (321)

n <- 10; m <- 100

realw <- rbeta(n, 1, 5)

realw <- realw/sum(realw) # real weights ~ beta distribution

X <- t(matrix(runif(n*m), nrow=m))

Y <- t(realw) %*% X + rnorm (m, 0, 0.1)

Y[,] <- pmax(0, pmin(1, Y))

X <- round(X, 2) # uniform distribution , rounded

Y <- round(Y, 2) # sigma =0.1, truncated to [0,1], rounded

train <- sample (1:m, m*0.8)

X_test <- X[,-train ,drop=FALSE] # test sample

Y_test <- Y[,-train ,drop=FALSE]

X <- X[,train ,drop=FALSE] # training sample

Y <- Y[,train ,drop=FALSE]

The data points are divided into two groups: a training sample (80 % of
the observations, used to estimate the weights) and a test sample (20 %, used
to compute the error). Figure 2 depicts squared error measures as a function
of Tikhonov regularization coefficient λ. We see we were able to improve the
error measure by ca. 9 % by using λ 
 4.83.

E d1 d2 d∞

— (using realw) 1.291 0.3637 0.1915

LAD 1.488 0.4027 0.1937

LSE 1.436 0.4036 0.1931

LMD 1.475 0.4025 0.1699

LSE + regularization, λ � 4.83 1.371 0.3705 0.1891

3.2 Weights Dispersion Entropy

Similar to minimizing sum of squared weights, maximizing weights dispersion
entropy can also have benefits, measuring the degree to which the function takes
into account all the inputs, compare [9] for its use for a different purpose. It is
given by:

Disp(w) = −
n∑

i=1

wi log wi,

with the convention 0 · log 0 = 0.
In cases where fitting results in multiple solutions, for example when there

is too few data for there to be a singular minimizer, Torra proposed the use
of weights dispersion as an additional criterion to determine the best solution
[19]. It is implemented as a second level of the optimization. After obtaining a
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Fig. 2. Three error measures on a test data set from Example 2 as a function of
regularization penalty λ.

minimum A to the objective in the standard least squares fitting problem, one
then solves:

minimize
n∑

i=1

wi log wi + λ

(
m∑

j=1

(
ϕ−1

(
n∑

i=1

wiϕ(x(j)
i )

)
− y(j)

)2

− A

)2

w.r.t. w

such that
n∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , n,

for some λ > 0.
One may alternatively consider a one-level task like:

minimize
m∑

j=1

(

ϕ−1

(
n∑

i=1

wiϕ(x(j)
i )

)

− y(j)

)2

+ λ

n∑

i=1

wi log wi w.r.t. w

subject to the standard constraints.

Remark 2. In fact, weights dispersion and sum of squared weights are both exam-
ples of functions used to model income inequality in economics and evenness in
ecology. There are numerous other functions used in these fields that could also
be used as secondary objectives to achieve the task of weight regularization (e.g.,
the Gini index).

4 Conclusion

We have considered some practical issues concerning fitting weighted quasi arith-
metic means to empirical data using supervised learning-like approaches. First
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of all, we pointed out the drawbacks of the commonly applied linearization tech-
nique, which may lead to far-from-optimal solutions. Moreover, we analyzed
some ways to prevent model overfitting.

Note that the discussion can be easily generalized to other error measures
and fitting other aggregation functions parametrized via a weighting vector, e.g.,
weighted Bonferroni means and generalized OWA operators. In future applica-
tions, the compensation and regularization techniques proposed here can be used
to learn more useful and informative models.

Acknowledgments. This study was supported by the National Science Center,
Poland, research project 2014/13/D/HS4/01700.

References

1. Bartoszuk, M., Beliakov, G., Gagolewski, M., James, S.: Fitting aggregation func-
tions to data: Part II - idempotization. In: Carvalho, J.P., Lesot, M.-J., Kaymak,
U., Vieira, S., Bouchon-Meunier, B., (eds.) IPMU 2016, Part II, CCIS, vol. 611,
pp. 780–789. Springer, Heidelberg (2016)

2. Beliakov, G.: Shape preserving approximation using least squares splines. Approx-
imation Theory Appl. 16(4), 80–98 (2000)

3. Beliakov, G.: Monotone approximation of aggregation operators using least squares
splines. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10, 659–676 (2002)

4. Beliakov, G.: How to build aggregation operators from data. Int. J. Intell. Syst.
18, 903–923 (2003)

5. Beliakov, G.: Learning weights in the generalized OWA operators. Fuzzy Optim.
Decis. Making 4, 119–130 (2005)

6. Beliakov, G.: Construction of aggregation functions from data using linear pro-
gramming. Fuzzy Sets Syst. 160, 65–75 (2009)

7. Beliakov, G., Bustince, H., Calvo, T.: A Practical Guide to Averaging Functions.
STUDFUZZ. Springer, Switzerland (2016)

8. Beliakov, G., James, S.: Using linear programming for weights identification of
generalized bonferroni means in R. In: Narukawa, Y., López, B., Villaret, M.,
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Abstract. The use of supervised learning techniques for fitting weights
and/or generator functions of weighted quasi-arithmetic means – a spe-
cial class of idempotent and nondecreasing aggregation functions – to
empirical data has already been considered in a number of papers. Never-
theless, there are still some important issues that have not been discussed
in the literature yet. In the second part of this two-part contribution we
deal with a quite common situation in which we have inputs coming
from different sources, describing a similar phenomenon, but which have
not been properly normalized. In such a case, idempotent and nonde-
creasing functions cannot be used to aggregate them unless proper pre-
processing is performed. The proposed idempotization method, based on
the notion of B-splines, allows for an automatic calibration of indepen-
dent variables. The introduced technique is applied in an R source code
plagiarism detection system.

Keywords: Aggregation functions · Weighted quasi-arithmetic means ·
Least squares fitting · Idempotence

1 Introduction

Idempotent aggregation functions – mappings like F : [0, 1]n → [0, 1] being non-
decreasing in each variable and fulfilling F(x, . . . , x) = x for all x ∈ [0, 1] – have
numerous applications, including areas like decision making, pattern recognition,
and data analysis, compare, e.g., [8,11].

For a fixed n ≥ 2, let w ∈ [0, 1]n be a weighting vector, i.e., one with∑n
i=1 wi = 1. In the first unit [1] of this two-part contribution we dealt with two

important practical issues concerning supervised learning of weights of weighted
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quasi-arithmetic means with a known continuous and strictly monotone gener-
ator ϕ : [0, 1] → R̄, that is idempotent aggregation functions given for arbitrary
x ∈ [0, 1]n by the formula:

WQAMeanϕ,w(x) = ϕ−1

(
n∑

i=1

wiϕ(xi)

)

.

First of all, we observed that most often researchers considered an approximate
version of weight learning tasks and relied on a linearization of input variables,
compare, e.g., [7]. Therefore, we discussed possible implementations of the exact
fitting procedure and identified some cases where linearization leads to solutions
of significantly worse quality in terms of the squared error between the desired
and generated outputs. Secondly, we noted that the computed models may overfit
a training data set and perform weakly on test and validation samples. Thus,
some regularization methods were proposed to overcome this limitation. We
indicated that due to the typical constraints on the weighting vector (nonnegative
coefficients summing up to 1), not all the regularization techniques known from
machine learning [13] can be applied, but – on the other hand – we may consider
new, quite different ones instead.

Assume that we are given m ≥ n input vectors in a form X = [x(1), . . . ,
x(m)] ∈ [0, 1]n×m together with m desired output values Y = [y(1), . . . ,
y(m)] ∈ [0, 1]1×m. For simplicity, we shall focus only on fitting weighted arith-
metic means to (X,Y) using the least squared error criterion, noting that the
key ideas presented further on can be extrapolated to other settings. And so, we
aim to:

minimize
m∑

j=1

(
n∑

i=1

wix
(j)
i − y(j)

)2

w.r.t. w,

under the constraints that 1Tw = 1 and w ≥ 0, compare, e.g., [5].
However, let us presume that the input values represent m measurements

of the same phenomenon done via n different methods which output numeric
values that cannot be directly compared: each of them is defined up to a strictly
increasing and continuous transformation and a proper input data idempotiza-
tion scheme has to be applied prior to fitting a model.

Example 1. In the R [15] language plagiarism detection system described in [2,3],
the similarity of a source code chunk pair is assessed via n = 4 diverse methods.
Each of them reflects quite different ideas behind what plagiarism really is in its
nature:

– x
(j)
1 – is based on the so-called program dependence graphs (PDGs),

– x
(j)
2 – simply computes the Levenshtein distance between source texts,

– x
(j)
3 – determines the longest common subsequence of two corresponding token

strings,
– x

(j)
4 – compares the number of common R function calls.
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Each of the four variables is a real number in [0, 1], but the way they have
been mapped to the unit interval is quite arbitrary – in fact, initially, we should
treat them as values on an ordinal – and not interval – scale. Most common
machine learning methods (e.g., regression and classification) should work quite
well on such data, but the construction of aggregation functions does not make
much sense on raw inputs of this kind. However, if appropriate strictly monotone
transformations ϕ1, . . . , ϕ4 : [0, 1] → [0, 1] were determined, we would have the
values normalized in such a way that they can be compared to each other (x(j)

1 =
0.5 would denote the same similarity level as x

(j)
2 = 0.5, hence we could expect –

by idempotence – the aggregated similarity to be equal to 0.5 too). Moreover – by
nondecreasingness – we could be sure that any increase of a similarity level never
leads to a decrease in the aggregated similarity – a constraint not guaranteed by
any classical machine learning method.

Therefore, in this part of the contribution, we deal with the problem which
aims to construct an idempotized model for a given data set, that is we are going
to:

minimize
m∑

j=1

(
n∑

i=1

wix̃
(j)
i − y(j)

)2

w.r.t. w,

under the standard constraints on a weighting vector w, where x̃
(j)
i = ϕi(x

(j)
i ) for

some automatically generated monotone and continuous ϕ1, . . . , ϕn : [0, 1]n →
[0, 1]. This enables us to develop idempotent aggregation functions-based regres-
sion (and, as a by-product, binary classification) models [13], which – by con-
struction – fulfill some desired algebraic properties, and hence posses a better,
more intuitive interpretation than classical approaches on data sets similar to
the one in Example 1.

The paper is set out as follows. In the next section we recall the notion of B-
splines, which we shall use for modeling the ϕi functions. Section 3 discusses the
proposed idempotization and aggregation function fitting procedure, together
with some key implementation details. Note that in order to increase its per-
formance on test samples, the model employs a regularization term which we
discussed in the first part of this contribution [1]. Section 4 discusses the results
of an experimental study conducted on the aforementioned plagiarism detection
system data. Finally, Sect. 5 summarizes the paper and indicates future research
directions.

2 B-splines

In a quasi-arithmetic mean fitting task, Beliakov et al. [4,6,9,10] rely on the
notion of B-splines to model an unknown generator function.

Let p ≥ 1 and t = (t1, . . . , tk) be an increasingly ordered knot vector of length
k for some k ≥ 0 such that 0 < ti < ti+1 < 1 for all i = 1, . . . , k. For simplicity,
we presume that ti = 0 for i < 1 and ti = 1 whenever i > k.
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Definition 1. B-spline basis functions for j = 0, . . . , p and x ∈ [0, 1] are defined
recursively as:

N t
i,j(x) =

{
1 if x ∈ [ti−1, ti],
0 otherwise, (j = 0)

N t
i,j(x) =

x − ti−1

ti+j−1 − ti−1
N t

i,j−1(x) +
ti+j − x

ti+j − ti
N t

i+1,j−1(x), (j > 0)

with convention ·/0 = 0.

Note that a vector of equidistant knots is a quite common setting. Figure 1
depicts exemplary B-spline basis functions.

Additionally, let v ∈ [0, 1]η be a vector of control points, where η = p+k +1.

Definition 2. A function Bt
v : [0, 1] → [0, 1] given by:

Bt
v(x) =

η∑

i=1

viN
t
i−p,p(x) (1)

is called a nonperiodic B-spline of degree p based on a knot vector t and generated
by a control points vector v, see, e.g., [16].

In particular, for p = 1 we get a piecewise linear function interpolating
(0, v1), (t1, v2), . . . , (tk, vη−1), (1, vη). On the other hand, for p = 3 we get a
cubic B-spline.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) p = 1, k = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) p = 3, k = 2

Fig. 1. Exemplary B-spline basis functions Nt
j−p,p(x) as a function of x, j = 1, ....., p+

k + 1; t is a vector of equidistant knots, k is the number of the internal knots, while p
is the polynomial degree (Color figure online).
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3 Proposed Idempotization Method

The proposed idempotization and weighted arithmetic mean fitting task seeks
an OMA operator-like [14] function:

Fϕ,w(x) =
n∑

i=1

wiϕi(xi),

that minimizes the total squared differences between Y and Fϕ,w(X). Here, w
stands for a weighting vector and ϕ1, . . . , ϕn : [0, 1] → [0, 1] are some strictly
increasing continuous bijections.

Of course, as there are uncountably many functions that can be used in the
model we are looking for, we should restrict the feature space in order to make
the task solvable on a computer. In our case, for a fixed p and a knot vector t of
length k, we assume that ϕi – used to normalize the i-th variable, i = 1, . . . , n –
is a nonperiodic B-spline:

ϕi(x) =
η∑

j=1

ciN
t
j−p,p(x)

for some vector of η = p + k + 1 control points c ordered increasingly. Note that
the condition 0 = c1 < c2 < · · · < cη−1 < cη = 1 guarantees that ϕi is strictly
increasing, continuous, and onto [0, 1].

Therefore, the feasible set consists of functions:

Fc,w(x) =
n∑

i=1

wix̃i =
n∑

i=1

wi

η∑

j=1

c
(i)
j N t

j−p,p(xi),

where w1, . . . , wn ≥ 0,
∑n

i=1 wi = 1, c
(i)
1 = 0, c

(i)
η = 1, c

(i)
2 − c

(i)
1 > 0, . . . ,

c
(i)
η −c

(i)
η−1 > 0 for all i = 1, . . . , n. Please observe that Fc,w is an idempotent and

nondecreasing in each variable function of each x̃(j) = (ϕ1(x
(j)
1 ), . . . , ϕn(x(j)

n )).
Also, as in the first part of our contribution [1], we would like to prevent

overfitting to the training data set, so we should consider some form of the
model regularization.

To sum up, for some fixed Tiknohov regularization coefficient λw ∈ R, in this
paper we are interested in the following optimization task:

minimize
m∑

l=1

⎛

⎝

⎛

⎝
n∑

i=1

wi

η∑

j=1

c
(i)
j N t

j−p,p

(
x
(l)
i

)
⎞

⎠ − y(l)

⎞

⎠

2

+ λw

n∑

i=1

w2
i w.r.t. w, c,

under the above-mentioned constraints.
As far as computer implementation is concerned, we can rewrite the above

equation in terms of a bi-level minimization procedure. The inner-level part, for
a fixed w, optimizes for c and in fact can be written in the form of a standard
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quadratic programming task (with linear constraints, note that we may pre-
compute the values of B-spline basis functions for each element in X and store
them for further reference). The outer-level component, optimizing for w, can be
solved via some non-linear solver – in our case we propose to rely on the CMA-
ES [12] algorithm and logarithmic barrier functions that enable us to ensure that
the constraints on w are met.

4 Experimental Results

In this section we apply the proposed method on the data set from Example 1,
that is, four different similarity measures for each (unordered) pair of R functions
in the benchmark data set discussed in [2,3]. The number of unique observations
equals to m = 30628. The benchmark data set is of the following form:

j 1 2 3 4 5 6 7 8 . . .

x
(j)
1 0.82 0.58 0.15 0.37 0.17 0.22 0.69 0.87 . . .

x
(j)
2 0.73 0.41 0.25 0.26 0.02 0.13 0.90 0.70 . . .

x
(j)
3 0.63 0.84 0.38 0.40 0.11 0.46 0.72 0.83 . . .

x
(j)
4 0.92 0.75 0.48 0.39 0.12 0.28 0.80 0.92 . . .

y(j) 1.00 0.75 0.50 0.25 0.00 0.25 0.75 1.00 . . .

The meaning of the four variables has been explained in Example 1. The
output variable, y, is a value in the set {0.0, 0.25, 0.5, 0.75, 1.0} and reflects an
expert’s assessment of a similarity degree originally provided on a linguistic scale,
one of “totally dissimilar”, “dissimilar”, “hard to say”, “similar”, or “very sim-
ilar”. We can conceive the y variable as a kind of censored data – it would of
course be impossible for an expert to provide a precise similarity degree assess-
ment in a form of a real number in the [0, 1] interval. At a design stage, an
(ordered) linguistic scale seemed a much more user-friendly choice.

We may observe that, as far as raw data are concerned, there is no weighted
arithmetic mean which returns the value of 1.00 for input values like (0.82, 0.73,
0.63, 0.92) or (0.87, 0.70, 0.83, 0.92).

We split the data set into two parts: 80 % randomly chosen observations are
used for training, while the remaining 20 % is left for testing purposes. Let us
verify the usefulness of the proposed method in the two following scenarios:

– we treat the fitted function as a regression model which describes the relation-
ship between the explanatory variables and the dependent variable,

– we partition the range of the predicted y into intervals and label the values in y
according to which interval they fall; as a result, we obtain a binary classifier.

For simplicity, we assume that the B-splines’ knots are equidistant.
In the first scenario, we are simply interested in the sum of squared differ-

ences (denoted with d22) between the predicted and desired ys. For the sake of
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comparison, we chose a classical linear regression model (to recall, there are no
constraints on the form of coefficients in its case).

In the second case, we marked the y values greater or equal to 0.5 as cases
of plagiarism (class 1) and the other ones as non-suspicious ones (class 2). In
order to be able to use the considered regression models in such a task (i.e.,
the proposed method as well as linear regression), after finding the optimal fit
we also seek for the parameter α that splits the predicted y range into two
subintervals in such a way that the two naturally obtained classes maximize the
F -measure on the training data set. To recall, the F -measure is the harmonic
mean of precision and recall. These two classifiers are compared with logistic
regression and the random forest algorithm.

The sum-of-squares error and the F -measure are negatively correlated,
although the correspondence between them is not a monotone function. There are
cases, where increasing d22 leads to an increase in the F -measure and oppositely.

Firstly, let us study the influence of the B-splines degrees and the number
of internal knots used on the model performance. We examined the polynomials
with corresponding parameters ranging from p = 1 and k = 1 up to p = 5 and
k = 5 (25 cases in total). Surprisingly, it turns out that the impact is relatively
small. What is more, we observe that higher degree polynomials may also lead
to a decreased model performance. The difference between the minimal and the
maximal F -measure value is equal to ca. 0.02. For the d22 error, the model of
the lowest quality has been obtained for p = 1, k = 1. As can be seen in Fig. 2,
fitted polynomials of higher degrees of course have shapes similar to those of
lower degrees.

Moreover, let us consider the effect of using the λw regularization coeffi-
cient. The F -measure and the d22 error as a function of λw is depicted in Fig. 3
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Fig. 2. Best B-splines of different degrees fit to the training sample.
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Fig. 3. F -measure and squared error as a function of the λw regularization coefficient.

(p = 3, k = 1 was used for F -measure and p = 1, k = 4 for d22 error). The
highest value of the F -measure was obtained for p = 3, k = 1, λw = 33, while
the smallest d22 error – for p = 1, k = 4, λw = 30.

Table 1 summarizes the performance measures of the four considered algo-
rithms. The proposed method gives a higher F -measure than linear and logistic
regression as well as a lower d22 error than linear regression. Even though we
get a lower F -measure than in the random forest case, please note that our
method comes with important algebraic properties of the resulting aggregation
function (such as idempotence and nondecreasingness in each variable), as well
as a nice model interpretability. The random forest algorithm does not posses
such advantages.

Finally, let us study the impact of introducing idempotization to a weighted
arithmetic mean-based model, by comparing the performance of the model on

Table 1. Performance of the fitted models (accuracy, precision, recall, F -measures,
squared L2 error). The proposed method is based on λw = 33, w1 = 0.35, w2 = 0.15,
w3 = 0.15, w4 = 0.35, p = 3, k = 1 for optimizing F-measure (a) and λw = 30,
w1 = 0.30, w2 = 0.16, w3 = 0.15, w4 = 0.39, p = 1, k = 4 for optimizing d22 (b).

Method Accuracy Precision Recall F d22

Proposed method (a) 0.997 0.921 0.933 0.927 106.62

Proposed method (b) 0.997 0.900 0.920 0.910 95.85

Linear regression 0.995 0.810 0.969 0.883 103.53

Logistic regression 0.997 0.885 0.960 0.921 —

Random forest 0.998 0.927 0.956 0.941 —
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Table 2. Performance measures as functions of different weighting vectors; p = 3,
k = 1, λw = 0, with and without idempotization.

w1 w2 w3 w4 Accuracy Precision Recall F d22 Idempot.

1 0 0 0 0.992 0.848 0.693 0.763 186.30 Yes

0 1 0 0 0.995 0.927 0.787 0.851 208.74 Yes

0 0 1 0 0.994 0.803 0.853 0.828 316.04 Yes

0 0 0 1 0.996 0.904 0.840 0.871 136.67 Yes

0.27 0.06 0.38 0.29 0.996 0.952 0.800 0.870 137.34 No

0.41 0.12 0.07 0.40 0.997 0.919 0.907 0.913 107.69 Yes

the raw data set and on the version transformed with optimal B-splines. Table 2
summarizes the model quality measures for a fixed λw equal to 0. We observe
that relying on a single feature does not lead to particularly good performance.
The same happens if the weighting vector is optimized for but the idempotization
scheme is not applied at all. Therefore, there is a positive impact of both factors.
Similar observations can be done for other λw coefficients.

5 Conclusion

We have discussed a supervised learning method for weights of weighted arith-
metic means in cases where data come from an ordinal scale and they have to
be properly mapped to the [0, 1] interval prior to computing an optimal fit.

The introduced method has been applied on a real-world data set consisting
of data on similarity degrees of pairs of R functions. It has many advantages:

– determining the ϕi functions enables us to normalize the input values so that
they become mutually comparable and easily interpretable to the plagiarism
detection system’s users; other machine learning methods can be applied on
the transformed sample too;

– the fitted weighted arithmetic mean serves as a regression model for our data
and explains the relationship between the individual similarity degrees and the
aggregated similarity assessment; as the weights are by definition nonnegative
and they sum up to one, we have a clear intuition of which of the four methods
has the highest impact;

– the fitted model fulfills two important properties: it is idempotent and nonde-
creasing in each variable; thus, its behavior is much more natural and under-
standable to end-users;

– the obtained regression model can be easily transformed in such a way that it
is suitable for using in, e.g., binary classification tasks.

Let us note that the introduced method can be easily extended to the case
of fitting arbitrary weighted quasi-arithmetic means, with or without known
generator functions.
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For future work, inspecting different regularization schemes could lead to
models of increased quality. In particular, one may think of introducing a regu-
larization component for the vector of control points, e.g., for some λc ∈ R, of

the form λc

∑n
i=1

∑η
j=2

(
c
(i)
j − c

(i)
j−1

)2

.
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Abstract. The Ranked Set Sampling (RSS) is an advanced sampling
method which improves the precision and accuracy of the mean esti-
mator. In RSS, the units in the random sets which are drawn from a
population are ranked by a ranking mechanism, and one of these ranked
units is sampled from each set with a specific scheme. Ranking the units
(visually or by a concomitant variable) could not be perfect because there
is an uncertainty in decision making about the rank of a unit. In this
study, we propose a fuzzy set perspective for RSS and an estimator for
the population mean based on Fuzzy Weighted Average (FWA) opera-
tor. A real data application is given to illustrate the new approach for
the single and multiple rankers.

Keywords: Ranked set sampling · Uncertainty · Fuzzy sets · Fuzzy
weighted average · Multiple rankers

1 Introduction

Ranked set sampling (RSS) is a useful and alternative sampling method where
the knowledge about the ranks (orders) of the units is used. Because of the addi-
tional information on the ranks of the units, RSS is more representative than
the simple random sampling (SRS) counterpart with equal sample size. Takahasi
and Wakimoto [1], and Dell and Clutter [2] construct the statistical background
of this method, introduced earlier by McIntyre [3], and show that the efficiency
of the mean estimator based on RSS is greater than or equal to the efficiency of
the mean estimator based on SRS. For detailed information about RSS, see the
book of Chen et al. [4] and the review of Wolfe [5]. In simple terms, RSS proce-
dure consists of three parts. Random sets are drawn from a specific population,
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the units in the sets are ranked by a mechanism, and one of these ranked units
is sampled from each set with a specific scheme. In the ranking mechanism, the
ranker could be an expert-researcher or a highly-correlated concomitant variable
and makes the decisions about the rank of the units. In practice, the decisions
of ranks should be made without actual measurement of the concerning vari-
able. Thus, these decisions could not be always perfect even if ranking is done
by a powerful criterion. This unavoidable uncertainty in the ranking mechanism
is mentioned as imprecise/imperfect ranking in the literature. Several studies,
Bohn and Wolfe [6], MacEachern et al. [7], Frey [8], Oztrk [9–11] focused on the
modeling uncertainty in a probabilistic way. According to us, fuzzy sets could be
an alternative way to dealing with the uncertainty occurs in the ranking mech-
anism. For example, the uncertain knowledge about the experience/correlation
level of the ranker could be described with linguistic terms such as fairly expe-
rienced or poor, easily. Then the uncertainty could be included in the inference
process by constructing the fuzzy sets of accuracy levels. In this study, we pro-
pose a new perspective for RSS and a Fuzzy Weighted Average (FWA) operator
for the estimation of the population mean. The basic properties of RSS and our
motivation are given in Sect. 2. General information about FWA and our FWA
operator are defined in Sect. 3. We also give a real data example for the new
method in Sect. 4. Finally, the conclusions are given in Sect. 5.

2 The Motivation and Fundamentals of RSS

Before starting the RSS procedure, the size of the sets (m) and sample size (N)
should be decided. After that there are six-steps to obtain the sample.

1. Select m units at random from a specified population.
2. Rank these m units with some expert judgment without measuring them.
3. Retain the smallest judged unit and return the others.
4. Select the second m units, rank them, retain the second smallest judged unit

and return the others. Continue to the process until m ordered units are
measured.

5. First five steps are repeated for n times to get n cycle and mn observations.

These steps are illustrated by Fig. 1 for m = 3. These mn observations are
called a standard ranked set sample. X((h)j) means hth ordered unit in a specific
set in the jth cycle for h = 1, 2, . . . ,m and j = 1, 2, . . . , n. In the probabilistic
perspective, the hth ordered units X((h)) in the random sets are the represen-
tatives of hth order statistics. Suppose that X((h)1),X((h)2), . . . , X((h)n) are the
hth ordered observations of n random sets from the same population. Then the
expected values and variances of these observations are given as follows:

E(X(h)1) = E(X(h)2) = . . . = E(X(h)n) = E(X(h). (1)

V ar(X(h)1) = V ar(X(h)2) = . . . = V ar(X(h)n) = V ar(X(h). (2)
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Fig. 1. RSS Procedure for n cycle with set size is 3

Suppose that Xh consists of X((h)j), and denotes the set of hth ranked units
for cycle size j = 1, 2, ..., n. Since these ordered units in the random sets are
drawn without actual measurement, it is expected that there is an uncertainty
in ranking of the units. In practice, we can define a fuzzy set by using observations
as the uncertain representatives of hth ranked unit obtained in RSS. If X̃h rep-
resents the fuzzy set of hth ranked unit with membership function μ( ˜Xh)

(X(h)j),
then it can be defined as follows for h = 1, 2, ...,m, and j = 1, 2, ..., n.

X̃h = {X(h)j , μ( ˜Xh)
(X(h)j) | X(h)j ∈ Xh}. (3)

On the other side, the ranking criteria, which might be the personal judg-
ment of an expert or the knowledge from the concomitant variable, also has an
uncertainty in nature. In practice, the knowledge about the accuracy level of the
ranker is uncertain and hardly measurable. However, it can be easily described
with linguistic terms and these linguistic terms can be defined as fuzzy sets with
a reasonable way. Suppose that, we have a ranker with accuracy level on the
ranking the units in one of the five level; poor, fairly poor, fair, fairly good and
good. Let Wr represent the crisp universal set of the ranking accuracy level of a
human expert r or concomitant variable r, for r = 1, 2, ...,K. Wr contains w(r,v)

values, for the sake of the simplicity v = 1, 2, 3, which represents the minimum,
most possible and maximum values of accuracy level of the ranker (see Fig. 2).
An accuracy value w(r,v) is between 0 and 1. Let W̃r represent the fuzzy set for
accuracy level of rth ranker with membership function μ

(˜Wr)
(w(r,v)). Then we

can define the fuzzy sets of rankers experience level as follows:

W̃h = {wr,v, μ(˜Wh)
(wr,v) | wr,v ∈ Wh}. (4)

for r = 1, 2, . . . ,K where K is the number of ranker. For the case of single ranker,
there is only one fuzzy set of the rankers accuracy level as:

W̃ = {wv, μ(˜W )
(wv) | wv ∈ W}. (5)

Both X̃h and W̃r are convex fuzzy sets naturally arising in the ranking part
of RSS where Xh and Wr are the crisp universal sets.

3 FWA Operator Based on RSS

With a basic definition, FWA is a fuzzy extension of classical weighted aver-
age which is commonly used in estimation and decision making. Especially in
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Fig. 2. Fuzzy sets of rankers accuracy levels (Alhumaidi, 2015)

multiple criteria decision making, the nature of the criteria are usually uncertain
and difficult to determine numerically. Let X̃i be the fuzzy set of decision i and
W̃i be the fuzzy set of the weight of decision i, then the fuzzy weighted average
Ỹ , is denoted as follows (see, Kao and Liu [16]).

Ỹ =
∑N

i=1 W̃iX̃i
∑N

i=1 W̃i

(6)

where W̃i = {wi, μ(˜Wi)
(wi) | wi ∈ Wi} and X̃i = {Xi, μ( ˜Xi)(Xi) | Xi ∈ Xi} for

i = 1, 2, . . . , N .
Generally, the membership function of the FWA formulated as a nonlin-

ear programming problem in literature. Nonlinearity of the model and non-
differentiable nature of the memberships makes the problem hard to solve. Dong
and Wong [12] introduce an α-cut approach to find an exact solution to fuzzy
weighted averages. It gives discrete solutions for each-cut level within 22n permu-
tations for n criteria. Liou and Wang [13], Guh et al. [14] and Lee and Park [15]
propose new methods to reduce the complexity and increase the efficiency in the
solution of the problem. For different aspects see also Borek and Noppen [17],
Mokhtarian [18]. In this study, we use Kao and Liu [16] fractional programming
approach to construct the membership function for FWA based on the α-cut
levels of fuzzy sets and the extension principle because of its easiness to apply.
In our motivation, each ranker has specific criteria on ranking the units. For that
reason, there are different fuzzy sets of hth ranked units, X̃(h,r), for each ranker
r. Similar to FWA given by Kao and Liu (2001), we can define a formula for
FWA of each hth ranked units as follows:

FWA
(h)
RSS =

∑K
r=1 W̃rX̃h,r
∑K

r=1 W̃r

. (7)



794 B. Cetintav et al.

where K and m are the number of rankers and the set size, respectively, for
r = 1, 2, . . . ,K and h = 1, 2, . . . ,m. Then FWA estimation of the population
mean based on RSS is given as follows:

FWARSS =
1
m

m∑

h=1

FWA
(h)
RSS . (8)

Since X̃h and W̃r are convex fuzzy sets, also FWARSS will be a fuzzy set.
If the researcher wants a crisp value for the estimation of the population mean,
some well known defuzzification methods, such as center of area, bisector of area,
should be used (see for detail, Naaz et al. [20]).

4 Real Data Application

In this section, we illustrate the new FWA operator with real data application for
two cases, single and multiple rankers. We use a real data set from a biometrical
study from Nish et al. [21] which was constructed to predict the age of abalone
from physical measurements. Generally, the age of abalone is determined by
cutting the shell through the cone, staining it, and counting the number of rings
through a microscope. However it is a time-consuming task. In the original study,
the researchers suggest to use other physical measurements, which are easier to
obtain, to predict the age of abalones. The data set contains 4177 units with
the variables, Sex, Length (mm), Diameter (mm), Height (mm), Whole weight
(grams), Shucked weight (grams), Viscera weight (grams), Shell weight (grams),
Rings (integer +1.5 gives the age in years).

4.1 Single Ranker Case

Let our objective be to obtain the mean estimation of the viscera weight, X,
which has also more time-consuming measurement process comparing with the
other physical measurements. Diameter is chosen as the concomitant variable Y
for ranking the abalones in the random sets without actual measurement of their
X values. Suppose that, we randomly select 3 units for each set and repeat the
cycle 4 times. The ranked set sample is given as Table 1.

Table 1. Ranked set sample of viscera weight of abalones based on diameter as the
concomitant variable Y

Cycle

j = 1 j = 2 j = 3 j = 4

h =1 0.1350 0.1020 0.0455 0.0585

h =2 0.1135 0.2615 0.1635 0.3110

h =3 0.0730 0.4015 0.2860 0.5145
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Fig. 3. RSS Procedure for n cycle with set size is 3

It is clear that the FWA formula defined in Eq. (8) degenerates and trans-
forms the arithmetic mean of h fuzzy numbers. For r = 1, then

FWARSS =
1
m

m∑

h=1

X̃h. (9)

By using Eq. (9), trapezoidal fuzzy number of the FWARSS is determined as
[0.0773, 0.1693, 0.255, 0.3201] (see, Fig. 3). We can defuzzify FWARSS to obtain
a crisp estimation for population mean by using the methods center of area and
bisector of area. The results are 0.2042 and 0.2100, respectively.

4.2 Multiple Rankers Case

We can extend the design given above under the same conditions, setsize = 3
and cyclesize = 4 for multiple rankers. Viscera weight is chosen as the concerning
variable X again. Y1,Y2 and Y3 are chosen as the concomitant variables diameter,
height and whole weight, respectively. It is expected that whole weight variable
is a good ranker and diameter and height variables are fairly good rankers (for
the fuzzy set representation, see Fig. 2).

Fig. 4. RSS Procedure for n cycle with set size is 3
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Table 2. Ranked set samples of viscera weight of abalones based on diameter, height
and wholeweight as the concomitant variables Y1,Y2 and Y3

Cycle

j = 1 j = 2 j = 3 j = 4

h=1 Y1 0.1350 0.1020 0.0455 0.0585

Y2 0.1350 0.1020 0.0755 0.0585

Y3 0.0880 0.1020 0.0455 0.0585

h=2 Y1 0.1135 0.2615 0.1635 0.3110

Y2 0.1135 0.3460 0.1990 0.3110

Y3 0.1135 0.3460 0.2135 0.3110

h=3 Y1 0.0730 0.4015 0.2860 0.5145

Y2 0.0730 0.4015 0.2860 0.5145

Y3 0.0730 0.4015 0.2860 0.5145

There are slight differences among the ranked set samples based on each
concomitant variable. This means different rankers (in this study concomi-
tant variables) can make different rank decisions for same units. We obtain
FWA

(h)
RSS trapezoidal fuzzy numbers for h = 1, 2, 3 by using Kao and Lius (2001)

fractional programming approach and they are [0.0491, 0.0638, 0.097, 0.1244]
and [0.1134, 0.1929, 0.2952, 0.3361] and [0.073, 0.286, 0.4015, 0.5145], respectively.
Finally, we calculate the FWA average FWARSS = [0.0785, 0.1809, 0.2646, 0.325]
and crisp estimation for population mean by using the methods center of area
and bisector of area as 0.2106 and 0.2100, respectively (see, Fig. 4). The stan-
dard ranked set sample means based on the concomitant variables Y1,Y2 and Y3

are 0.2055, 0.2180 and 0.2128, respectively. When we compare mean estimation
results of our new approach with the standard ranked set samples results given
above, they seem acceptable for both cases, single and multiple rankers (Table 2).

5 Conclusions

In this study, we introduce a new approach for modeling uncertainty in ranked set
sampling. Also, a Fuzzy Weighted Average (FWA) operator is proposed for the
estimationof populationmean.After some theoretical backgroundandmotivation,
real data application is given for single ranker andmultiple rankers. In furtherwork,
a well-rounded simulation study will be designed to reach decisive conclusions.

Acknowledgments. This study is supported by the Scientific and Technological
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Abstract. The weighted relevance aggregation operator is a modified,
flexible version of the general power mean. In this paper we discuss the
sensitivity of this operator, namely we give bounds on the change of the
output in terms of vector norms of the change of the input variables.
We apply these results to characterize to sensitivity of fuzzy signatures
which are equipped with these operators in its nodes.
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1 Introduction

Modeling of complex systems always a difficult task, particularly when human
activities, lack of data, irreproducibility are also features of the system. In these
problems the exact mathematical model is not known or too difficult.

The fuzzy signature based approach offers a users friendly solution. In this
modeling technique the complex systems is described by a set of qualitative mea-
sures, which are also arranged into a hierarchical framework expressing intercon-
nections and dependencies, and modeling the human approach to the problem.
There is a wide variety of applications, for example in economy, in the medical
field [1], and in several fields of engineering and informatics, for example robotics
[2], data mining [3] and civil engineering [4,5].

In mathematical point of view, fuzzy signatures are hierarchical representa-
tions of data structuring into vectors of fuzzy values [6]. A fuzzy signature is
defined as a special multidimensional fuzzy data structure, which is a general-
ization of vector valued fuzzy sets [7]. Vector valued fuzzy sets are special cases
of L-fuzzy sets which were introduced in [8]. A fuzzy signature is defined by

A : X → S(n), (1)
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 798–808, 2016.
DOI: 10.1007/978-3-319-40581-0 65
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Fig. 1. A fuzzy signature graph and the corresponding nested vectors.

where X is the universe of discourse, 1 ≤ n and

S(n) = ×n
i=1Si Si =

{
[0, 1]
S(m) (2)

A fuzzy signature can be represented by a nested vector value fuzzy sets and by
a tree graph also (see Fig. 1), the latter one is more expressive [7].

Values at the leaves or input values (μ-s) usually depend on the opinion
of human experts or determined by estimation methods. The final conclusion,
the output of the fuzzy signature is computed from the inputs applying suitable
aggregation functions, this is the membership value of the whole fuzzy signature.
Due to the built-in uncertainty or lack of detailed information of the complex
system that we are going to model, different human experts or different kind
of estimation methods may give different scores to the same situation. In real
applications a fuzzy signature based model should have some robustness, so the
output should not change too much if the input values change a little.

In the following we discuss the issue how the membership value of the whole
fuzzy signature changes if the membership values in the nested vectors change.
In other words, if we think of the tree graph representation, how the membership
value of the root changes if the membership values of leaves change. For answer-
ing this question we have to know the structure of the signature tree and the
applied aggregation operators. The case when the fuzzy signature has weighted
general mean aggregation operators in the nodes was discussed in [9,10] and in
[11]. The weighted relevance aggregation operator, which we analyse here, is a
kind of modification of the aggregation operator mentioned previously. With less
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strict conditions on the parameters we get an operator whose parameters we can
easily compute (more exactly, we can determine them by learning algorithms),
and on the other hand this operator is an especially useful tool. The applied
methodology is similar to the way we followed in [9], the main difference is the
investigated function.

In the remaining part of the paper in Sect. 2 we review some mathematical
definitions and theorems, in Sect. 3 the sensitivity of the weighted relevance
aggregation operator is discussed, in Sect. 4 we examine the sensitivity of fuzzy
signatures equipped with WRAOs in their nodes.

2 Basic Definitions and Theorems

First we recall the definition of the p-norm (see for example [14])

Definition 1 (p-norm). Let p ≥ 1 a real number and x = (x1, . . . , xn) ∈ R
n.

Then the p-norm of x

‖x‖p =

(
n∑

k=1

|xk|p
) 1

p

(3)

Some widely used p-norms:

– p = 1 (taxicab norm) ‖x‖1 = |x1| + . . . + |xn|
– p = 2 (euclidean norm) ‖x‖2 =

√
x2
1 + . . . + x2

n

– p = ∞ (maximum norm) ‖x‖∞ = max(|x1|, . . . , |xn|)
Two important properties of the p-norm:

– If 1 ≤ p ≤ q ≤ ∞ then ‖x‖q ≤ ‖x‖p.
– If 1 ≤ p ≤ q ≤ ∞ then ‖x‖p ≤ ‖x‖q · n1/p−1/q.

We will use the generalization of the triangular inequality, the so called
Minkowski’s inequality.

Theorem 1 (Minkowski’s inequality). (see for example [12] or [13]). Let
a, b ∈ R

n, p ≥ 1, then the following inequality holds:

‖a + b‖p ≤ ‖a‖p + ‖b‖p (4)

The generalization of the reverse triangular inequality also holds:

Corollary 1. If a, b ∈ R
n, p ≥ 1, then

∣∣‖a‖p − ‖b‖p

∣∣ ≤ ‖a − b‖p (5)

Theorem 2 (Hölder’s inequality). (see for example [12] or [13]). Let a, b ∈
R

n, r, s, t ≥ 1 and 1/r = 1/t + 1/s. Then the following inequality holds:

[
n∑

i=1

|ai · bi|r
]1/r

≤
[

n∑

i=1

|ai|t
]1/t

·
[

n∑

i=1

|bi|s
]1/s

(6)
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or in terms of p-norms:
‖a ◦ b‖r ≤ ‖a‖t · ‖b‖s (7)

where ‘◦’ denotes the element-wise product (also known as Hadamard- or Schur-
product).

The multivariate case of Lagrange’s mean value theorem:

Theorem 3. Let G be an open subset of Rn and let f : G ⊂ R
n → R. If x, y ∈ G

and f is differentiable at each point of the line segment xy, then there exists on
that line segment a point ξ between x and y such that

f(y) − f(x) = ∇f(ξ) · (y − x)

or in other form:

f(y) − f(x) =
n∑

i=1

∂f(ξ)
∂xi

· (yi − xi)

Corollary 2. Applying Lagrange’s mean value theorem and Hölder’s inequality
we get an upper estimation of the change of f , where 1/s + 1/t = 1:

∣∣f(y) − f(x)
∣∣ ≤ ‖∇f(ξ)‖t · ‖y − x‖s (8)

3 Sensitivity of the Weighted Relevance Aggregation
Operator

The weighted relevance aggregation operator was introduced by B. S. U. Mendis
(see [15,17]) as a flexible modification of the weighted general mean, with less
constrains on the weights, but very suitable for machine learning [16].

Definition 2 (WRAO). Let x1, . . . , xn ∈ [0, 1] and a1, . . . , an be nonnegative
real numbers, 0 < max{ai} ≤ 1, and α ∈ R (α �= 0). Then the weighted relevance
aggregation of x1, . . . , xn with weights a1, . . . , an and with parameter α is the
following:

Hα(x1, . . . , xn) =

[
1
n

n∑

k=1

(ak · xk)α

] 1
α

(9)

As we mentioned above, the examined weighted relevance aggregation operator
is the modification of the weighted power mean (or in general, the weighted quasi
arithmetic mean [18]) aggregation operator. The input sensitivity or lipschitzian
property of quasi arithmetic mean operators was discussed in details in [19].
Although the WRAO is closely related to the class of quasi arithmetic means,
it not belongs to this.

We note that the usual property of the weights (they sum equals 1) is omit-
ted here. This modification yields a more flexible operator, which is in fact not
an aggregation operator if the ai-s are already fixed (except for the case when
ai = 1 for all i). The usefulness was demonstrated by several examples, compared
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to other, more conventional operators. The comparison with OWA was discussed
in [20], the comparison with Choquet integral can be found in [17]. Moreover, prac-
tical applications also appear in [17] with different values of the exponent (α).

More properties of the WRAO:
The limits at ±∞ regardless to the weights are the minimum and maximum:

lim
α→∞

[
1
n

n∑

k=1

(ak · xk)α

] 1
α

= max(ai · xi) (10)

lim
α→−∞

[
1
n

n∑

k=1

(ak · xk)α

] 1
α

= min(ai · xi) (11)

The limit is the geometric mean if α → 0:

lim
α→0

[
1
n

n∑

k=1

(ak · xk)α

] 1
α

=

(
n∏

i=1

(ai · xi)

)1/n

(12)

The sensitivity of the weighted relevance aggregation operator can be exam-
ined in two stages. Namely, in the learning (or training) stage, when we search
for good ai-s for our model; and in the application stage, when ai-s are constant
values and xi-s are the inputs. We consider the second case and we discuss the
following question. If the input values x1, . . . , xn change a little, then how large
will be the change of the output H? In mathematical point of view, we search
for a Cγ , for which

|ΔH| ≤ Cγ · ‖Δx‖γ (13)

The answer naturally depends on the change of the inputs (Δx) and on the
parameter α. In the following we discuss this question on the whole range of α.

Let us introduce the following notations:

x = (x1, . . . , xn) the input vector
x∗ = (x∗

1, . . . , x
∗
n) the perturbed input vector

Δx = x∗ − x the change of the input vector

H∗ =
[
1
n

∑n
k=1(ak · x∗

k)α
] 1

α the new output
ΔH = H∗ − H the change of the output
a = (a1, . . . , an) the weighting vector
a′ = n−1/α · a the weighting vector including n

Moreover, we use the ‘◦’ symbol for element-wise product of vectors (a.k.a. Schur-
product or Hadamard-product).
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3.1 Case α ≥ 1

Since α ≥ 1 in this case the WRAO behaves like a p-norm. Because of this reason
we can apply vector norm related inequalities to estimate |ΔH|.

|ΔH| =

∣∣∣∣∣
∣

[
1
n

n∑

k=1

(ak · x∗
k)α

] 1
α

−
[

1
n

n∑

k=1

(ak · xk)α

] 1
α

∣∣∣∣∣
∣

(14)

= |‖a′ ◦ x∗‖α − ‖a′ ◦ x‖α| ≤ ‖a′ ◦ x∗ − a′ ◦ x‖α = ‖a′ ◦ Δx‖α (15)

We got an upper estimation of |ΔH|. If all of the Δxi-s are less than ε > 0, then
we have

|ΔH| ≤ ‖a′ ◦ Δx‖α ≤ ε · ‖a′‖α = ε · 1
n

· ‖a‖α (16)

Since ai ≤ 1 for all i = 1, . . . , n, it follows that 1/n · ‖a‖α ≤ 1 so |ΔH| ≤ ε
(moreover, except for extreme cases ai < 1 holds, and the upper bound is less
than ε).

If we want to measure the change of the input vector x in a vector norm,
namely in a p-norm, then by Hölder’s inequality we can give a further upper
estimation of |ΔH|:

|ΔH| ≤ ‖a′ ◦ Δx‖α ≤ ‖a′‖β · ‖Δx‖γ (17)

where 1/α = 1/β + 1/γ and β, γ ≥ 1, with the convention that 1/∞ = 0. From
this equality we get that

β =
γ · α

γ − α

This must be greater or equal to 1, so

γ ≥ α

1 − α

This inequality is fulfilled if γ > α, so we can conclude that if γ > α then the
upper estimation is

|ΔH| ≤ ‖a′‖β · ‖Δx‖γ (18)

where β = γ · α/(γ − α).
If γ ≤ α then there is no such β. Using the monotonicity property of p-norm

we get
|ΔH| ≤ ‖a′ ◦ Δx‖α ≤ ‖a′ ◦ Δx‖γ ≤ ‖a′‖∞ · ‖Δx‖γ (19)

The most widely used p-norms are the taxicab (p = 1), the euclidean (p = 2)
and the maximum (p = ∞) norms. In these cases the upper bounds are the
following:

– if γ = 1:
|ΔH| ≤ ‖a′‖∞ · ‖Δx‖1
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– if γ = 2:
• if 1 ≤ α < 2:

|ΔH| ≤ ‖a′‖β · ‖Δx‖2
where β = 2α/(2 − α)

• if α ≥ 2:
|ΔH| ≤ ‖a′‖∞ · ‖Δx‖2

– if γ = ∞
|ΔH| ≤ ‖a′‖∞ · ‖Δx‖∞

3.2 Case 0 < α < 1

We will show that in this case we cannot give a general Cγ for |ΔH| ≤ Cγ ·‖Δx‖γ .
Let us apply Corollary 2:

|ΔH| = |∇Hξ · Δx| ≤ ‖∇Hξ‖s · ‖Δx‖t (20)

The partial derivatives of H:

∂H

∂xi
=

[
n∑

k=1

aα
k

n
· xα

k

]1/α−1

· aα
i

n
· xα−1

i (21)

with this

‖∇H‖s =

[
n∑

i=1

∣∣∣∣
∂H

∂xi

∣∣∣∣
s
]1/s

=

⎡

⎣
n∑

i=1

(
aα

i

n

)s ( 1

xi

)s(1−α)

·
[
1

n

n∑

k=1

(ak · xk)
α

]1/α·s(1−α)
⎤

⎦
1/s

(22)
by the monotonicity of the WRAO this is greater or equal to the following
expression:

⎡

⎣
n∑

i=1

(
aα

i

n

)s (
1
xi

)s(1−α)

·
[

n∏

k=1

(ak · xk)1/n

]s(1−α)
⎤

⎦

1/s

(23)

If x1 = 1/K and x2 = . . . = xn = 1 then this expression can be arbitrarily
large if K is large enough. We conclude that if 0 < α < 1 then we cannot give a
general upper bound for |ΔH| in terms of ‖Δx‖γ .

3.3 Case α = 0

We define the weighted relevance aggregation operator for α = 0 by the limit.
Similarly to the previous case, will show that we cannot give a general Cγ for
|ΔH| ≤ Cγ · ‖Δx‖γ .

H = lim
α→0

[
1
n

n∑

k=1

(ak · xk)α

] 1
α

=

(
n∏

i=1

(ai · xi)

)1/n

(24)
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The partial derivatives of H:

∂H

∂xi
=

1
xi

· 1
n

·
n∏

k=1

(ak · xk)1/n (25)

The norm of ∇H:

‖∇H‖s =

[
n∑

i=1

∣∣∣∣
∂H

∂xi

∣∣∣∣

s
]1/s

=
n∏

k=1

(ak · xk)1/n ·
[

n∑

i=1

(
1

xi · n

)s
]1/s

(26)

If x1 = 1/K and x2 = . . . = xn = 1 then this expression can be arbitrarily large
if K is large enough, so if α = 0 then we cannot give a general upper bound for
|ΔH| in terms of ‖Δx‖γ .

3.4 Case α < 0

In practical application this case not occurs very often, but from mathemati-
cal point of view it is necessary to discuss the whole range of α. By series of
transformation and using the fact that the WRAO is monotone increasing we
get:

‖∇H‖s ≤ ‖a′‖∞ (27)

So the upper bound is
|ΔH| ≤ ‖a′‖∞ · ‖Δx‖γ (28)

Table 1. Values of the coefficient Cγ for |ΔH| ≤ Cγ · ‖Δx‖γ .

Value of α α < 0 0 ≤ α < 1 α = 1 α ≤ γ α > γ

Cγ ‖a′‖∞ - |a′‖∞ |a′‖α·γ/(γ−α) ‖a′‖∞

4 Sensitivity of Fuzzy Signatures

Applying the results of the previous section we can analyse the sensitivity of
fuzzy signatures in which the values are determined by a WRAO operator in
every nodes. The sensitivity bound of the whole fuzzy signature can be derived
from the bounds of the WRAOs (Table 1), according to the graph structure of
the signature. The whole computation can be carried out from the leaves of the
signature to the root.

Let us denote by C11 the bound for the WRAO applied in the root of the
signature and by Δx11 of the changing of its input vector; the bounds for their
WRAO operators are C21, . . . , C2n2 (n2 is the number of vertices to the root),
the changing of their inputs are Δx21, . . . ,Δx2n2

etc., till the end of the graph.
Let us denote the output of the fuzzy signature (the membership value) by h.
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Then the change of the output value can be estimated by the following way:

– In ‖ · ‖γ norm of the input vector:

Now it is more convenient to deal with |Δh|γ instead of |Δh|. The estimation:

|Δh|γ ≤ Cγ
11 · ‖Δx11‖γ

γ

≤ Cγ
11 · (

Cγ
21 · ‖Δx21‖γ

γ + · · · + Cγ
2n2

· ‖Δx2n2
‖γ

γ

)

...

≤
N∑

i=1

Cγ
i · |Δxi|γ ≤ max(Cγ

i ) ·
N∑

i=1

|Δxi|γ

= max(Cγ
i ) · ‖Δx‖γ

γ

where Ci is the product of the bounds from the root to the i-th leaf.
– In ‖ · ‖∞ norm of the input vector: Because of the max operator this case

behaves in a different way. The D∗∗-s are the bounds for the WRAO operators
for γ = ∞.

|Δh| ≤ D11 · ‖Δx11‖∞
≤ D11 · max

(
D21 · ‖Δx21‖∞, . . . , D2n2 · ‖Δx2n2

‖∞
)

...
≤
= max(Di) · ‖Δx‖∞

where Di is the product of the greatest bounds at every level.

5 Summary

We discussed the sensitivity of the weighted relevance aggregation operator. The
sensitivity highly depends on the value of the parameter α, and in some cases
(if 0 ≤ α < 1) the operator not behaves well, a very small change of the input
vector can cause a large deviation in the output value, so the practitioners should
avoid WRAO with 0 ≤ α < 1.

The sensitivity of fuzzy signatures with WRAOs in the nodes was also dis-
cussed. Unfortunately an elegant formula cannot be given, in general the recur-
sive method is the only choice.
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1. Wong, K.W., Gedeon, T.D., Kóczy, L.T.: Construction of fuzzy signature from
data: an example of SARS pre-clinical diagnosis system. In: Proceedings of the
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE2004), Budapest,
pp. 1649–1654 (2004)
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5. Bukovics, Á., Kóczy, L.T.: Fuzzy Signature-based model for qualification and rank-
ing of residential buildings. XXXVIII. IAHS World Congress on Housing, Istanbul,
Turkey, pp. 290–297 (2012)

6. Pozna, C., Minculete, N., Precup, R.E., Kóczy, L.T., Ballagi, Á.: Signatures: defin-
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Abstract. The extension problem is an important and interesting issue
that be addressed for many different classes of operator. For instance, one
can thing who to extend a fuzzy operator from a lattice to a bigger one
preserving its algebraic properties. In this paper we attempt to the exten-
sion of lattice-valued version of Xor (exclusive) operator using a special
method based on retractions. Also we discuss about Xor-implications end
E-implications.

Keywords: Extension · Xor-implications · E-implications

1 Introduction

It is well known that Xor connective has many application in computer science.
It is used as a primitive operation in many encryption algorithms, as in sample
threshold activated neural network, in the identification of elemental emission
spectra, in the construction of conflict-free hash functions, etc. [4].

In order to gain a more realistic framework many researchers have been
turned their attention to work on lattice structures and a very interesting issue
for lattice is state a generic way to extend operators from a lattice (sublattice)
to a bigger one.

In this paper we apply an extension method proposed in [18] for lattice-
valued fuzzy xor connective. We start presenting some preliminaries definitions
in Sect. 2. In the following section we discuss about the extension method via
retractions for t-norms, t-conorms and fuzzy negations and present the main
results on extension of xor operators, xor-implications and E-implications.

2 Some Results on Lattice Theory

In this paper we are considering definitions and properties known from the lat-
tice theory in the algebraic sense. For a detailed review of them we strongly
recommend the following references [6,9–15,20]. In the whole paper we write L
for a lattice and M for its sublattice.
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 809–820, 2016.
DOI: 10.1007/978-3-319-40581-0 66
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2.1 (r,s)-Sublattices

In general given a bounded lattice L and a nonempty subset M ⊆ L it is said
that M is a sublattice of L if for all x, y ∈ M the following conditions hold:

x ∧L y ∈ M and x ∨L y ∈ M

In other words, M equipped with the restriction of the operations ∧L and ∨L

inherits the lattice structure of L.
We would like to work with a relaxed notion of sublattice in which the con-

dition M ⊆ L is somewhat weakened.

Definition 1. [6] A homomorphism r of a lattice L onto a lattice M is said to
be a retraction if there exists a homomorphism s of M into L which satisfies
r ◦ s = idM . A lattice M is called a retract of a lattice L if there is a retraction
r of L onto M and s is then called a pseudo-inverse of r.

It is important to point out here that a retraction r as in Definition 1 is
surjective (onto) and hence s is naturally injective since r ◦ s = idM . These
properties are used in some proofs throughout this paper.

Definition 2. Let L and M be arbitrary bounded lattices. We say that M is
a (r, s)-sublattice of L if M is a retract of L (i.e. M is a sublattice of L
up to isomorphisms). In other words, M is a (r, s)-sublattice of L if there is a
retraction r of L onto M with pseudo-inverse s : M → L.

Remark 1. Throughout this paper we consider the notion of (r, s)-sublattice as
in Definition 2 instead of the ordinary notion of sublattice. Whenever the usual
definition of sublattice is used and this is not clear from the context, this sub-
lattice will be called ordinary sublattice.

Definition 3. Every retraction r : L −→ M (with pseudo-inverse s) which
satisfies s ◦ r � idL

1 (idL � s ◦ r) is called a lower (an upper) retraction. In
this case M is called a lower (an upper) retract of L.

Notice that both in Definitions 2 and 3 the pseudo-inverse s of a retraction
r needs not be unique. This is an advantage of our notion of sublattice since if
there exist more than one pseudo-inverse for the same retraction it is possible to
identify M with a subset of L in different ways. This gives us the possibility of
choosing the best one for our proposes. But it must be clear that when we say
that M is a (lower, upper or neither) (r, s)-sublattice of L we are considering the
existence of at least one pseudo-inverse s and fixing it. In any case, no matter
which pseudo-inverse is taken every result presented here holds.

Definition 4. Let M be a (r1, s)-sublattice of L. We say that

1 If f and g are functions on a lattice L it is said that f � g if and only if f(x) �L g(x)
for all x ∈ L.
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1. M is a lower (r1, s)-sublattice of L if r1 is a lower retraction. Notation:
M < L with respect to (r1, s);

2. M is an upper (r1, s)-sublattice of L if r1 is an upper retraction. Notation:
M > L with respect to (r1, s);

3. If r1 is a lower retraction and there is an upper retraction r2 : L −→ M such
that its pseudo-inverse is also s then M is called a full (r1, r2, s)-sublattice
of L. Notation: M � L with respect to (r1, r2, s).

2.2 T-norms and T-conorms on L

A short formalization for the notion of t-norm and t-conorm on bounded lattices
is presented here. Moreover, some results are demonstrated as well.

Definition 5. [2] Let L be a bounded lattice. A binary operation T : L×L −→ L
is a t-norm if for all x, y, z ∈ L it satisfies:

1. T (x, y) = T (y, x) (commutativity);
2. T (x, T (y, z)) = T (T (x, y), z) (associativity);
3. If x �L y then T (x, z) �L T (y, z), ∀ z ∈ L (monotonicity);
4. T (x, 1L) = x (boundary condition).

Dually, a function S : L×L −→ L that is commutative, associative, monotone
and has 0L as the boundary element is called a t-conorm on L.

Notice that T (x, y) �L x (or T (x, y) �L y) and x �L S(x, y) (or y �L

S(x, y)) for all x, y ∈ L. In fact, T (x, y) �L x ∧L y �L x and x �L x ∨L y �L

S(x, y).

2.3 Negations on L

There are several approaches to the notion of fuzzy negation in order to have a
generalization of the classical one [3,5,8,17,18].

Definition 6. A function N : L −→ L is called a fuzzy negation if it satisfies:

(N1) N(0L) = 1L and N(1L) = 0L;
(N2) If x �L y then N(y) �L N(x), for all x, y ∈ L.

Moreover, if a fuzzy negation N on L satisfies the involute property, namely
(N3) N(N(x)) = x, for all x ∈ L

it is called a strong fuzzy negation.
Negations satisfying Property (N4) are called frontier.

(N4) N(x) ∈ {0L, 1L} if and only if x = 0L or x = 1L
Finally, if x ∈ L is such that N(x) = x then x is said to be an equilibrium
point of N .
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2.4 Fuzzy Implications

This section is devoted to present the notion of fuzzy implication on lattices and
some properties. It is well-known that there are some different ways to interpret
fuzzy implications (see [1,5,7,16,21]) but here we consider the notion considered
in [1].
Definition 7. A fuzzy implication on bounded lattice L is a function I :
L × L −→ L such that for each x, y, z ∈ L the following properties hold:
(CC1) I(0L, 0L) = 1L (Corner condition 1);
(CC2) I(1L, 1L) = 1L (Corner condition 2);
(CC3) I(0L, 1L) = 1L (Corner condition 3);
(CC4) I(1L, 0L) = 0L (Corner condition 4).

In which follows we consider some properties for a fuzzy implication I on L:
(FPA) if x �L y then I(y, z) �L I(x, z) (First variable antitonicity);
(SPI) if y �L z then I(x, y) �L I(x, z) (Second variable isotonicity);
(LB) I(0L, y) = 1L, for all y ∈ L;
(RB) I(x, 1L) = 1L, for all x ∈ L;
(NP) I(1L, y) = y for each y ∈ L (left neutrality principle);
(L-NP) I(1L, y) �L y for each y ∈ L;
(EP) I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ L (exchange principle);
(IP) I(x, x) = 1L for each x ∈ L (identity principle);
(IBL) I(x, I(x, y)) = I(x, y) for all x, y, z ∈ L (iterative Boolean law);
(CP) I(x, y) = I(N(y), N(x)) for each x, y ∈ L with N a fuzzy negation on L

(law of contraposition);
(P) I(x, y) = 0L if and only if x = 1L and y = 0L (Positive);
(LEM) S(N(x), x) = 1L for each x ∈ L (law of excluded middle).

2.5 Fuzzy Xor Connective

Usually Xor connective is considered in order to evaluate the value with which
one and only one of its immediate antecedents is true. An usual definition of this
connective for the unit interval [0, 1] is given by

Definition 8. [4] A binary operation W : [0, 1]× [0, 1] −→ [0, 1] is called a Xor
operator if, for all x, y, z ∈ [0, 1] it follows that:
1. W (x, y) = W (y, x) (commutativity);
2. W (x,W (y, z)) = W (W (x, y), z) (associativity);
3. W (0, x) = x (0-identity);
4. W (1, 1) = 0 (boundary condition).

It follows from items 3. and 4. of Definition 8 that fuzzy Xor connective gener-
alizes the classical one.

Let’s see some properties of fuzzy Xor (see [4]):
(W1) W (x, x) = 0;
(W2) W (W (x, y), x) = y;
(W3) NW (x) = W (x, 1) is a strong fuzzy negation;
(W4) If W (x, y) = 0 then x = y;
(W5) W (NW (x), x) = 1.



Some Results on Extension of XOR, XOR-Implications and E-Implications 813

3 Extension Method via Retractions (EMR)

Let M be a complete ordinary sublattice of L and TM be a t-norm on M .
Under these conditions, Saminger-Platz et al. in [19] have proposed a method
for extending the t-norm TM from M to L. They start by describing a way to
extend this t-norm for 0L and 1L using the function

TM∪{0L,1L}(x, y) =

⎧
⎨

⎩

x ∧L y, if 1L ∈ {x, y};
0L, if 0L ∈ {x, y};

TM (x, y), otherwise.
(1)

Then, considering a function that takes an element x belonging to L and assigns
to it x∗ = supM{z | z �L x, z ∈ M ∪{0L, 1L}} it is proved that the t-norm given
by

JL
TM (x, y) =

{
x ∧L y, if 1L ∈ {x, y};

TM∪{0L,1L}(x∗, y∗), otherwise.
(2)

is an extension of TM from M to L, i.e. the restriction of JL
TM to M is equal to

TM .
Note that this is a natural but drastic and particular way to extend t-norms

since it collapses all elements of L\M on M and only considers complete sub-
lattices.

Looking for a more general and flexible extension method, Palmeira and
Bedregal presented in [18] another way to extend t-norms, t-conorms and fuzzy
negations considering (r, s)-sublattices. This method generalizes (2).

Proposition 1. [18] Let M < L with respect to (r, s). If T is a t-norm on M
then TE : L × L −→ L defined by

TE(x, y) =
{

x ∧L y, if 1L ∈ {x, y}
s(T (r(x), r(y))), otherwise.

(3)

is a t-norm which extends T from M to L.

In a similar way, it is possible to extend t-conorms as follows

Proposition 2. [18] Let M > L with respect to (r, s). If S is a t-conorm on
M then SE : L × L −→ L defined by

SE(x, y) =
{

x ∨L y, if 0L ∈ {x, y}
s(S(r(x), r(y))), otherwise.

(4)

is a t-conorm which extends S from M to L.

For negations we have

Proposition 3. [18] Let M be a (r, s)-sublattice of L and N : M −→ M be a
fuzzy negation. Then NE(x) = s(N(r(x))) for each x ∈ L is a fuzzy negation
that extends N from M to L.
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3.1 Lattice-Valued Xor Operator

Now we aim to present a definition of Xor operator on a lattice and then apply
the EMR method shown above to extend this operator from M to L.

Definition 9. A binary operation W : L × L −→ L is called a Xor operator
if for all x, y, z ∈ L it follows that:

1. W (x, y) = W (y, x) (commutativity);
2. W (x,W (y, z)) = W (W (x, y), z) (associativity);
3. W (0L, x) = x (0-identity);
4. W (1L, 1L) = 0L (boundary condition).

So naturally the following theorem holds.

Theorem 1. Let M be a (r, s)-sublattice of L. If W is a xor operator on M
then WE : L × L −→ L defined by

WE(x, y) =
{

x ∨L y, if 0L ∈ {x, y}
s(W (r(x), r(y))), otherwise.

(5)

is a xor operator on L.

Proof. It is clear from the proof of Proposition 2 that WE is associative, commu-
tative and satisfies the 0-identity property. We shall only prove that boundary
condition holds. Thus

WE(1L, 1L) = s(W (r(1L), r(1L)))
= s(W (1M , 1M )) = s(0M ) = 0L


�
Notice that in Proposition 2 one of the hypothesis is that M > L what is

not necessary for extending xor operators as one can see in Theorem 8. This fact
occur just because of assumption M > L is required to prove the monotonicity
property of t-conorms.

The following theorem shows that properties (W1) and (W5) are preserved
by the extension method of retractions.

Theorem 2. Let M be a (r, s)-sublattice of L. If W is a xor operator on M
satisfying properties (W1) and (W2) then its extension WE as defined in Theo-
rem1 satisfies properties (W1) and (W5) by considering NWE = WE(x, 1L) for
all x ∈ L.

Proof. Suppose that W satisfies property (W1) i.e. W (x, x) = 0M for all x ∈
M . Thus, if x = 0L then WE(x, x) = x ∨ x = 0L. Otherwise, WE(x, x) =
s(W (r(x), r(x))) = s(0M ) = 0L. Therefore, WE satisfies (W1).

Now assume that W satisfies (W2). In this case, we have three possibles:

(i) If x = 0L then WE(NWE (x), x) = WE(1L, 0L) = 1L;
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(ii) When x = 1L it follows that WE(NWE (x), x) = WE(0L, 1L) = 1L since
NWE (1L) = 0L;

(iii) For other cases we have
WE(NWE (x), x) =
= s(W (r(WE(x, 1L), r(x))))
= s(W (W (r(x), r(1L)), r(x))) by Def.2.1
= s(W (W (r(x), 1M ), r(x)))
= s(1M ) by (W2)
= 1L

Then, by (i), (ii) and (iii) it can be concluded that WE satisfies (W5). 
�
Proposition 4. Let M be a (r, s)-sublattice of L and W be a xor operator on
M . Thus

1. If W satisfies (W2) and r is a lower (upper) retraction then
WE(WE(x, y), x) �L y (WE(WE(x, y), x) �L y);

2. WE(x, y) = 0L implies r(x) = r(y) whenever (W4) holds for W . Moreover,
if r is a lower (upper) retraction then WE(x, y) = 0L implies x � y (x � y).

Proof. 1. It is clear that WE(WE(x, y), x) = y for all y ∈ L if x = 0L. Now
suppose that x �= 0L and r is a lower retraction, that is,

r ◦ s = IdM and s ◦ r � IdL (6)

Thus
WE(WE(x, y), x) = s(W (r(WE(x, y)), r(x)))

= s(W (W (r(x), r(y)), r(x)))
= s(W (r(y),W (r(x), r(x))))
= s(W (r(y), 0M ))
= s(r(y)) �L y

In case r is an upper retraction we have that s◦ r � IdL and hence we have that
WE(WE(x, y), x) �L y.

2. Suppose that 0L ∈ {x, y}. Without loss of generality take x = 0L. Thus,
if x ∨L y = WE(x, y) = 0L then x = y = 0L.

On the other hand, if 0L ∈ {x, y} then WE(x, y) = 0L which implies that
s(W (r(x), r(y))) = 0M , that is, W (r(x), r(y)) = 0M . Since W satisfies (W4) it
follows that r(x) = r(y). Moreover, if r is a lower retraction, by Identities (6) we
can conclude that x �L y. Dually it can be proof that x �L y if r is an upper
retraction. 
�

The Proposition 4 presents a weaker version of properties (W2) and (W4)
which shows that the extension method via retractions fails in preserving those
properties.

It is possible to obtain fuzzy xor operators from t-norms, t-conorms and fuzzy
negations. Bedregal states in Proposition 3.4 of [4] that if T is a t-norm, S is a
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t-conorm and N is a fuzzy negation then the function defined as in Eq. (7) below
is a fuzzy xor connective.

WT (x, y) = T (S(x, y), N(T (x, y))) x, y ∈ [0, 1] (7)

It is clear that W still being a xor operator if we take x, y ∈ L. Taking this
fact into account, we can prove the following proposition.

Proposition 5. Let M be a (r, s)-sublattice of L and W be a xor operator on
M . If T is a t-norm, S is a t-conorm and N is a fuzzy negation, all defined on
M , then for all x, y ∈ L

WT
E(x, y) = TE(SE(x, y), NE(TE(x, y))) (8)

is a fuzzy xor operator on L.

Proof. From commutativity and associativity of TE , SE and NE it follows that
WE is a commutative and associative operator. Notice also that

WT
E(0L, y) = TE(SE(0L, y), NE(TE(0L, y)))

= TE(y,NE(0L))
= TE(y, 1L) = y

Thus 0L is the neutral element of WE . It remains to prove that WE(1L, 1L) = 0L.
Indeed

WT
E(1L, 1L) = TE(SE(1L, 1L), NE(TE(1L, 1L)))

= TE(1L, NE(1L))
= TE(1L, 0L) = 0L


�
Another way to build a fuzzy xor from the triplet S, T,N is as follows:

WS(x, y) = S(T (N(x), y), T (x,N(y))) (9)

for all x, y ∈ L (see [4]).

Proposition 6. Let M be a (r, s)-sublattice of L and W be a xor operator on
M . If T is a t-norm, S is a t-conorm and N is a fuzzy negation, all defined on
M , then for all x, y ∈ L

WS
E(x, y) = SE(TE(NE(x), y), TE(x,NE(y))) (10)

is a fuzzy xor operator on L.

Similar to the proof of Proposition 5.
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3.2 Lattice-Valued Xor-Implications

Proposition 7. Given a t-conorm S, a fuzzy negation N and a fuzzy Xor oper-
ator W , all of them defined on a lattice L, thus the function IW,S,N : L×L → L
taken as

IW,S,N (x, y) = W (x, S(N(x), N(y))) (11)

for all x, y ∈ L, is a fuzzy implication.

Proof. Notice that
(CC1) IW,S,N (0L, 0L) = W (0L, S(N(0L), N(0L))) = W (0L, S(1L, 1L)) = 1L;
(CC2) IW,S,N (1L, 1L) = W (1L, S(N(1L), N(1L))) = W (1L, S(0L, 0L)) = 1L;
(CC3) IW,S,N (0L, 1L) = W (0L, S(N(0L), N(1L))) = W (0L, S(1L, 0L)) = 1L;
(CC4) IW,S,N (1L, 0L) = W (1L, S(N(1L), N(0L))) = W (1L, S(0L, 1L)) = 0L.

Then IW,S,N is a fuzzy implication. 
�
The fuzzy operator defined in Eq. (11) is called a lattice-valued fuzzy Xor-

implication.

Proposition 8. Let W be a xor operator on lattice L and S be a t-conorm on
L. Then

1. IW,S,NW
satisfies property (NP);

2. If W satisfies (W3) then IW,S,NW
(x, 0L) is a strong negation;

3. If W satisfies (W1) and there exists an e ∈ L such that NW (e) = e then
IW,S,N (e, 1L) = 0L.

Proof. (NP): For all x ∈ L it follows that

IW,S,NW
(1L, x) = W (1L, S(NW (1L), NW (x)))

= W (1L, S(0L, NW (x)))
= W (S(1L, 0L), NW (x))
= W (1L, NW (x)) = NW (NW (x)) = x

Let be N(x) = IW,S,NW
(x, 0L). Then

IW,S,NW
(x, 0L) = W (x, S(NW (x), NW (0L))) = W (x, S(NW (x), 1L)) = W (x, 1L)

which is a strong negation by (W3).
Finally, suppose W satisfies (W1) and there exists an e ∈ L such that

NW (e) = e. Hence, IW,S,N (e, 1L) = W (e, S(N(e), N(1L))) = W (e, S(e, 0L)) =
W (e, e) = 0L 
�
Proposition 9. Let M be a (r, s)-sublattice of L. If W is a xor operator on
lattice M and S is a t-conorm on M then

1. IWE ,SE ,NW
E is a fuzzy implication on L;

2. If W satisfies (W3) then IWE ,SE ,NW
E satisfies properties (NP) and the nega-

tion IWE ,SE ,NW
E (x, 0L) is strong;
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Proof. 1. Note that IWE ,SE ,NW
E (x, y) = WE(x, SE(N(x), NW

E(y))) for all
x, y ∈ L. Since WE is a xor operator on L (by Theorem 1), SE is a t-conorm
on L (by Proposition 2) and NW

E is a fuzzy negation on L (by Proposition 3)
then IWE ,SE ,NW

E is a fuzzy implication on L.
2. Similar to proof of Proposition 8.


�

3.3 Lattice-Valued E-implications

Proposition 10. Let S, N and W be a t-conorm, a fuzzy negation and a fuzzy
xor operator on L, respectively. Then, the function IW,S,N : L × L → L taken,
for all x, y ∈ L, as

IS,N,W (x, y) = S(N(x),W (N(x), y)) (12)

is a fuzzy implication, called lattice-valued E-implication.

Proof. It follows that,
(CC1) IS,N,W (0L, 0L) = S(N(0L),W (N(0L), 0L)) = S(1L,W (1L, 0L)) = 1L;
(CC2) IS,N,W (0L, 1L) = S(N(0L),W (N(0L), 1L)) = S(1L,W (1L, 1L)) = 1L;
(CC3) IS,N,W (1L, 0L) = S(N(1L),W (N(1L), 1L)) = S(0L,W (0L, 1L)) = 1L;
(CC4) IS,N,W (1L, 0L) = S(N(1L),W (N(1L), 0L)) = S(0L,W (0L, 0L)) = 0L;


�
Proposition 11. Let W be a xor operator on lattice L and S be a t-conorm on
L. Then,

1. IS,N,W satisfies property (NP);
2. N(x) �L IS,N,W (x, 0L), for all x ∈ L.

Proof. For all y ∈ L,

IS,N,W (1L, y) = S(N(1L),W (N(1L), y)) = S(0L,W (0L, y)) = S(0L, y) = y

i.e. property (NP) holds.
Notice also that, for all x ∈ L, we have

IS,N,W (x, 0L) = S(N(x),W (N(x), 0L)) = S(N(x), N(x)) �L N(x)


�
Proposition 12. Let M be a (r, s)-sublattice of L. If W is a xor operator on
lattice M and S is a t-conorm on M then

1. ISE ,NW
E ,WE is a fuzzy implication on L;

2. If W satisfies (W3) then ISE ,NW
E ,WE satisfies property (NP);

3. NW
E(x) �L ISE ,NW

E ,WE (x, 0L) for all x ∈ L;
4. ISE ,NW

E ,WE (x, x) = 1L whenever W satisfies (W2).
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Proof. Items 1, 2 and 3 are straightforward from the above results. In order
to show item 4, suppose that W satisfies (W2) and hence, by Theorem 2 WE

satisfies (W5). Thus

ISE ,NW
E ,WE (x, x) = SE(NW

E(x),W (NW
E(x), x)) = SE(NW

E(x), 1L) = 1L

for all x ∈ L. 
�

4 Final Remarks

The main contribution of this is paper is related to the study of extension of Xor
operator, Xor-implications and E-implications taking into account the method
EMR. Results shown that some properties of those operators can be preserved
by the extension method and there are some other that fails. In order to fix the
weakening of the extension method, for future works we wish apply the extension
method via e-operator [17] for xor operators and make a comparison of results.
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Fuzzy Implication Functions. Studies in Fuzziness and Soft Computing. Springer,
Berlin (2013)

6. Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1973)
7. Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication

operators. Fuzzy Sets Syst. 134(2), 209–229 (2003)
8. Calvo, T.: On mixed de morgan triplets. Fuzzy Sets Syst. 50, 47–50 (1992)
9. Chen, G., Pham, T.T.: Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems. CRC

Press, Boca Raton (2001)
10. De Cooman, G., Kerre, E.E.: Order norms on bounded partially ordered sets. J.

Fuzzy Math. 2, 281–310 (1994)
11. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn.

Cambridge University Press, Cambridge (2002)
12. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers,

Dordrecht (1998)
13. Klement, E.P., Mesiar, R.: Logical, Algebraic, Analytic, and Probabilistic Aspects

of Triangular Norms. Elsevier B.V., The Netherlands (2005)
14. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publish-

ers, Dordrecht (2000)



820 E. Palmeira and B. Bedregal

15. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Pren-
tice Hall PTR, NJ (1995)

16. Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implications
functions. IEEE Trans. Fuzzy Syst. 15(6), 1107–1121 (2007)

17. Palmeira, E.S., Bedregal, B.C., Mesiar, R., Fernandez, J.: A new way to extend
T-Norms, T-conorms and negations. Fuzzy Sets Syst. 240, 1–21 (2014)

18. Palmeira, E.S., Bedregal, B.C.: Extension of fuzzy logic operators defined on
bounded lattices via retractions. Comput. Math. Appl. 63, 1026–1038 (2012)

19. Saminger-Platz, S., Klement, E.P., Mesiar, R.: On extensions of triangular norms
on bounded lattices. Indagationes Mathematicae 19(1), 135–150 (2008)

20. Takano, M.: Strong completeness of lattice-valued logic. Arch. Math. Logic 41,
497–505 (2002)

21. Yager, R.R.: On the implication operator in fuzzy logic. Inf. Sci. 31(2), 141–164
(1983)



Fuzzy Block-Pulse Functions and Its Application
to Solve Linear Fuzzy Fredholm Integral

Equations of the Second Kind

Shokrollah Ziari1(B) and Reza Ezzati2

1 Department of Mathematics, Firoozkooh Branch, Islamic Azad University,
Firoozkooh, Iran

shok ziari@yahoo.com
2 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract. In this paper, a method of successive approximations based
on the fuzzy block-pulse functions is proposed to solve linear fuzzy Fred-
holm integral equations of the second kind. Moreover, the error estima-
tion of the approximation solution is given. Finally, illustrative example is
included to show the accuracy and the efficiency of the proposed method.

Keywords: Fuzzy Fredholm integral equations · Fuzzy block-pulse
functions · Modulus of continuity · Lipschitz condition

1 Introduction

Block pulse functions are a set of orthogonal functions with piecewise constant
value and usually applied as a useful tool in the analysis, synthesis identification
and other problems of control and systems sciences [18]. Many authors used
the block pulse functions to obtain numerical solutions of differential equations,
integral and integro-differential equations in the crisp case.

One of the most interesting research matters in fuzzy sets and systems is
to study fuzzy integral equations. Some authors have studied on fuzzy integral
equations from the theoretical and practical point of view. The investigation
of the existence of a unique solution for fuzzy integral equations had been car-
ried out in [5,19–21]. The Banach fixed point theorem is the important tool in
studying the existence and uniqueness of the solution for fuzzy integral equa-
tions which can be appear in numerical procedures for solving fuzzy integral
equations, based on the iterative techniques. The iterative numerical methods
for solving fuzzy integral equations can be found in [5–7] and [12–14]. The Ado-
mian decomposition method, Nystorm technique, fuzzy Bernstein polynomials
and fuzzy Haar wavelet were applied to solve the fuzzy integral equations of
the second kind in [1,3,10,23]. Bica and Popescu in [7], applied the method of
successive approximations for solving the fuzzy Hammerstein integral equation.
Ezzati and Ziari in [11], proved the convergence of the method of successive
approximations for solving nonlinear fuzzy Fredholm integral equations of the
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part II, CCIS 611, pp. 821–832, 2016.
DOI: 10.1007/978-3-319-40581-0 67
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second kind, and they proposed an iterative procedure based on the trapezoidal
quadrature. Recently, Baghmisheh and Ezzati in [4], approximated the fuzzy
function by the hybrid Taylor and block-pulse functions and estimated the error
approximation. Also, an iterative procedure is constructed based on the hybrid
Taylor and block-pulse functions for solving nonlinear Fredholm fuzzy integral
equations by them. Recently, in [24], Ziari and Bica obtained the error estimation
of the iterative method based on trapezoidal formula to solve nonlinear fuzzy
Hammerstein-Fredholm integral equations of the second kind given in terms of
uniform and partial modulus of continuity. In the present paper, we propose a
iterative numerical method based on fuzzy block pulse functions for solving fuzzy
Fredholm integral equations with Lipschitzian fuzzy-number-valued function as
a starting point. Also, We prove the convergence theorem of presented succes-
sive approximation method, and to demonstrate the accuracy of the proposed
method we present one illustrative example. This paper is organized as follows:

In Sect. 2, we review some elementary concepts of the fuzzy set theory. In
Sect. 3, we review of bloc pulse functions. Section 4 presents the fuzzy function
approximation based on fuzzy block pulse functions. The fuzzy Fredholm inte-
gral equations of the second kind based on fuzzy block pulse functions proposed
in Sect. 5. In Sect. 6, the error estimate of the numerical solution obtained by
using fuzzy block pulse functions. One numerical example for proposed method
is given in Sect. 7. Finally, Sect. 8 gives our concluding remarks.

2 Preliminaries

Definition 1. [9] A fuzzy number is a function u : R → [0, 1] having the
properties:

(1) u is normal, that is ∃x0 ∈ R such that u(x0) = 1,
(2) u is fuzzy convex set

(i.e. u(λx + (1 − λ)y) ≥ min {u(x), u(y)} ∀x, y ∈ R, λ ∈ [0, 1]),

(3) u is upper semicontinuous on R,
(4) the { x ∈ R : u(x) > 0} is compact set.

The set of all fuzzy numbers is denoted by RF .

Definition 2. [13] An arbitrary fuzzy number is represented, in parametric
form, by an ordered pair of functions (u(r), u(r)), 0 ≤ r ≤ 1, which satisfy
the following requirements:

(1) u(r) is a bounded left continuous nondecreasing function over [0,1],
(2) u(r) is a bounded left continuous nonincreasing function over [0,1],
(3) u(r) ≤ u(r), 0 ≤ r ≤ 1.
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The addition and scaler multiplication of fuzzy numbers in RF are defined as
follows:

(1) u ⊕ v = (u(r) + v(r), u(r) + v(r)),

(2) (λ 	 u) =

⎧
⎨

⎩

(λu(r), λu(r)) λ ≥ 0,

(λu(r), λu(r)) λ < 0.

Definition 3. [17] For arbitrary fuzzy numbers u = (u(r), u(r)) and v =
(v(r), v(r)), the quantity

D(u, v) = sup
r∈[0,1]

max{|u(r) − v(r)| , |u(r) − v(r)|}

is the distance between u and v.

Lemma 1. [22] The following properties are hold [11]:

(1) D(u ⊕ w, v ⊕ w) = D(u, v) ∀ u, v, w ∈ RF ,
(2) D(k 	 u, k 	 v) = |k|D(u, v) ∀ u, v ∈ RF ∀k ∈ R,
(3) D(u ⊕ v, w ⊕ e) ≤ D(u,w) + D(v, e) ∀ u, v, w, e ∈ RF ,
(4) D(u ⊕ v, 0̃) ≤ D(u, 0̃) + D(v, 0̃), ∀ u, v ∈ RF ,
(5) D(k 	 u, k 	 v) = |k|D(u, v), ∀ u, v ∈ RF , ∀ k ∈ R.

In [22], it is proved that (RF ,D) is a complete metric space.

Remark 1. The properties (4) in Lemma 1 introduce the definition of a function
‖.‖ : RF → R+ by ‖u‖ = D(u, 0̃), which has the properties of the usual norms.
In [4] the properties of this function are presented as follows:
(i) ‖u‖ ≥ 0, ∀ u ∈ RF , and ‖u‖ = 0 iff u = 0̃,
(ii) ‖λ.u‖ = |λ|‖u‖ and ‖u ⊕ v‖ ≤ ‖u‖ + ‖v‖, ∀ u, v ∈ RF , ∀ λ ∈ R,
(iii) |‖u‖ − ‖v‖| ≤ D(u, v) and D(u, v) ≤ ‖u‖ + ‖v‖ ∀ u, v ∈ RF .

Definition 4. [8] Let f, g : [a, b] → RF , be fuzzy real number valued functions.
The uniform distance between f, g is defined by

D∗(f, g) = sup {D(f(x), g(x) | x ∈ [a, b]}

Definition 5. [2] Let f : [a, b] → RF be a bounded function, then function
ω [a,b] (f, .) : R+ ∪ {0} → R+,

ω [a,b](f, δ) = sup {D(f(x), f(y))| x, y ∈ [a, b], |x − y| ≤ δ} ,

where R+ is the set of positive real numbers, is called the modulus of continuity
of f on [a, b].
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The following properties of the modulus of continuity are introduced in [13]
as follows:

Theorem 1. The following properties holds:

(1) D(f(x), f(y)) ≤ ω [a,b] (f, |x − y|) for any x, y ∈ [a, b] ,
(2) ω [a,b] (f, |x − y|) is increa sin g function of δ,
(3) ω [a,b] (f, 0) = 0,
(4) ω [a,b] (f, δ1 + δ2) ≤ ω [a,b] (f, δ1) + ω [a,b] (f, δ2) for any δ1, δ2 ≥ 0,
(5) ω [a,b] (f, nδ) ≤ nω [a, b] (f, δ)for any δ ≥ 0 n ∈ N,
(6) ω [a,b] (f, λδ) ≤ (λ + 1)ω [a,b] (f, δ)for any δ, λ ≥ 0,
(7) If [c, d] ⊆ [a, b] then ω [c,d] (f, δ) ≤ ω [a,b] (f, δ) .

Definition 6. [15] A fuzzy real number valued function f : [a, b] → RF is said
to be continuous in x0 ∈ [a, b], if for each ε > 0 there is δ > 0 such that
D(f(x), f(x0)) < ε, whenever x ∈ [a, b] and |x − x0| < δ. We say that f is fuzzy
continuous on [a, b] if f is continuous at each x0 ∈ [a, b], and denote the space
of all such functions by CF [a, b].

Definition 7. [5] Let f : [a, b] → RF . f is fuzzy-Riemann integrable to I ∈ RF

if for any ε > 0, there exists δ > 0 such that for any division P = {[u, v] ; ξ} of
[a, b] with the norms Δ(p) < δ, we have

D

(
∑

P

(v − u) 	 f(ξ), I

)

< ε,

where
∑

denotes the fuzzy summation. In this case it is denoted by I =
(FR)

∫ b

a
f(x)dx.

Lemma 2. [5] If f, g : [a, b] ⊆ R → RF are fuzzy continuous functions, then
the function F : [a, b] → R+ by F (x) = D(f(x), g(x)) is continuous on [a, b] and

D

(

(FR)
∫ b

a

f(x)dx, (FR)
∫ b

a

g(x)dx

)

≤
∫ b

a

D(f(x), g(x))dx.

Theorem 2. [16] If f, g : [a, b] → RF are (FR) integrable fuzzy functions, and
α, β are real numbers, then

(FR)
∫ 1

0

(α 	 f(t) ⊕ β 	 g(t))dt = α 	 (FR)
∫ 1

0

f(t)dt ⊕ β 	 (FR)
∫ 1

0

g(t)dt.

Definition 8. [5] A function f : [a, b] → RF is said to be L-Lipschitz if
D(f(x), f(y)) ≤ L|x − y| for any x, y ∈ [a, b].



Fuzzy Block-Pulse Functions and Its Application to Solve Integral Equations 825

3 Review of Block-Pulse Functions

Firstly, we recall definition of the crisp block pulse functions in the following
definition.

Definition 9. (see [18]). Block-pulse functions on the unit interval [0, 1) is
defined as follows:

φi(t) =
{

1 t ∈ [ i−1
n , i

n ),
0 otherwise,

(1)

where i = 1, 2, ..., n with a positive integer value for m. Also, φi is called ith

block-pulse function (BPF).
The BPFs satisfy in the properties of disjointness, orthogonality and com-

pleteness [18].
The disjointness property can be directly obtained from the definition of

BPFs:

φi(t)φj(t) =
{

φi(t) i = j,
0 i = j,

where, i, j = 1, 2, ..., n.

The orthogonality property of BPF is given by

< φi(t), φj(t) >=
∫ 1

0

φi(t)φj(t)dt =
{

1
n i = j,
0 i = j,

where < ., . > denotes the inner product form and i, j = 1, 2, ..., n.

The completeness property is as follows: For every real bounded function f(t)
which is square integrable in the interval t ∈ [0, 1), when n approaches to the
infinity, Parseval’s identity holds:

∫ 1

0

f2(t)dt =
∞∑

i=0

f2
i ‖ φi(t) ‖2,

where

fi = n

∫ 1

0

f(t)φi(t)dt.

Now, we defined the fuzzy block-pulse functions as follows:

Definition 10. For f ∈ CF [0, 1), the fuzzy block-pulse function like operator,
Φ
(F )
m (f)(t), relative to the crisp knot sequence (t1, · · · , tn) is a function from the

real line to the set of fuzzy numbers as the following form:

Φ(F )
n (f)(t) =

n∑

i=1

f(ti) 	 φi(t), n ∈ N, t ∈ [0, 1). (2)
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where φi(t),s are the crisp block-pulse basis functions defined by (1) and ti =
i−0.5

n ∀ i = 1, ..., n. It is obvious that φi(t) ≥ 0, for all t ∈ [0, 1),
φ1(t), φ2(t), ..., φm(t) are linearly independent, and

n∑

i=1

φi(t) = 1.

4 Function Approximation by Fuzzy Block-Pulse
Functions

For f in CF ([0, 1)), let us consider a fuzzy block pulse functions operator,

Φ(F )
n (f)(t) =

n∑

i=1

f(ti) 	 φi(t). (3)

where Bi(t) is defined by (1) and ti = i−0.5
n ∀ i = 1, ..., n.

Theorem 3. If f ∈ CF ([0, 1)) and f satisfies in Lipschitz condition then

D∗(Φ(F )
n (f), f) ≤ Lf

n
. (4)

Proof. Let t ∈ [0, 1), so there exists j ∈ {1, ..., n} such that t ∈ [tj−1,tj ]. Then
from Eq. (3), we observe that

D(Φ(F )
n (f)(t), f(t)) = D

(
n∑

i=1

f(ti) 	 φi(t), f(t)

)

= D

(
n∑

i=1

f(ti) 	 φi(t),
n∑

i=1

φi(t) 	 f(t)

)

.

By the properties of Lemma 2.1 we have:

D(Φ(F )
n (f)(t), f(t)) ≤

n∑

i=1

φi(t)D (f(ti), f(t)) .

It is obviously that supp(φj) = [tj−1, tj). For t ∈ supp(φj) by properties of the
modulus of continuity we obtain:

D(Φ(F )
n (f)(t), f(t)) ≤ ω(f, |tj − tj−1|) ≤ ω(f,

1
n

).

Finally we get:

D∗(Φ(F )
n (f), f) ≤ Lf

n
.

��
Remark 2. It can be easily shown that limn→∞ D∗(Φ(F )

n (f), f) = 0.
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5 Fuzzy Integral Equations

Here, we consider the linear fuzzy integral equation of Fredholm type

F (t) = f(t) ⊕ λ 	 (FR)
∫ b

a

k(s, t) 	 F (s)ds, t ∈ [a, b]. (5)

where λ > 0, K(s, t) is an arbitrary kernel function on the square a ≤ s, t ≤ b,
f, F are continuous fuzzy-number-valued functions.
In the following theorem are given sufficient conditions for the existence of an
unique solution of Eq. (5) (see e.g. [14]).

Theorem 4. Let k(s, t) be continuous for a ≤ s, t ≤ b, λ > 0, and f(t) a fuzzy
continuous of t, a ≤ t ≤ b. If

λ <
1

M(b − a)
,

where
M = max

a≤s,t≤b
|k(s, t)|,

then the iterative procedure
F0(t) = f(t),

Fk(t) = f(t) ⊕ λ 	 (FR)
∫ b

a

k(s, t) 	 Fk−1(s)ds, k ≥ 1,

converges to the unique solution F of (5). Specially,

D∗(F, Fk) ≤ Lk

1 − L
D∗(F0, F1),

where L = λM(b − a).

Remark 3. The upper bound of D∗(F0, F1) can be obtained as follows:

D(F0(t), F1(t)) = D(f(t), f(t) ⊕ λ � (FR)

∫ b

a

k(s, t) � f(s)ds ≤ λ(b − a)MD(0̃, f(t)).

Thus, we have:
D∗(F0, F1) ≤ L‖f‖F ,

and also, we have:

D∗(F, Fk) ≤ Lk+1

1 − L
‖f‖F . (6)
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Throughout this paper, we consider fuzzy Fredholm integral Eq. (5) with a =
0 and b = 1.

Now, we introduce the numerical method to find the approximate solution
of Eq. (5). In this way, we consider the following uniform partitions of the inter-
val [0, 1):

Δ : t1 < ... < tn−1 < tn (7)

with ti = i−0.5
n , 1 ≤ i ≤ n. Then the following iterative procedure gives the

approximate solution of Eq. (5) in the point t ∈ [0, 1) using fuzzy block-pulse
functions:

y0(t) = f(t),

ym(t) = f(t)⊕λ	(FR)
∫ 1

0

K(s, t)	ΦF
n (ym−1)(s)ds, ∀t ∈ [0, 1), m ≥ 1. (8)

The above recursive relation can be written in the following form:

y0(t) = f(t),

ym(t) = f(t) ⊕ λ 	
n∑

i=1

Gi(t) 	 ym−1(ti), ∀ t ∈ [0, 1), m ≥ 1, (9)

where

Gi(t) =
∫ 1

0

K(s, t)φi(s)ds.

6 Error Estimation

In this section, we investigate the convergence of the iterative proposed method
to the solution of Eq. (4).

Theorem 5. Consider the Fredholm Eq. (5) with continuous kernel K(s, t) hav-
ing constant sign on [a, b]×[a, b] and f continuous on [0, 1). Under the hypotheses
of Theorem 4, iterative procedure Eq. (8) converges to the unique solution F of
Eq. (5) and the following error estimate holds true:

D∗(F, ym) ≤ 1
1 − L

(
Lm+1‖f‖F +

L′

n

)
,

where L′ = max{Lf , Ly1 , · · · , Lym−1}.

Proof. Since

F1(t) = f(t) ⊕ λ 	 (FR)
∫ 1

0

K(s, t) 	 F0(s)ds,
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we have
D(F1(t), y1(t)) = D(f(t), f(t))

+λD

(
(FR)

∫ 1

0

K(s, t) 	 F0(s)ds, (FR)
∫ 1

0

K(s, t) 	 ΦF
n (y0)(s)ds

)

≤ λ

∫ 1

0

|K(s, t)|D
(
f(s), Φ(F )

n (f)(s)
)

ds

≤ λM

∫ 1

0

D
(
f(s), Φ(F )

n (f)(s)
)

ds.

From Theorem 4.1, we obtain:

D∗(F1, y1) ≤ L.
Lf

n
. (10)

Now, since

F2(t) = f(t) ⊕ λ 	 (FR)
∫ 1

0

K(s, t) 	 F1(s)ds,

we conclude:

D(F2(t), y2(t)) = λD

(

(FR)

∫ 1

0

K(s, t) � F1(s)ds, (FR)

∫ 1

0

K(s, t) � ΦF
n (y1)(s)ds

)

≤ λ

∫ 1

0

|K(s, t)|D
(

F1(s), Φ
(F )
n (y1)(s)

)

ds

≤ λMD∗
(

F1, Φ
(F )
n (y1)

)

≤ LD∗ (F1, y1) + LD∗
(

y1, Φ
F
n (y1)

)

.

By using Eq. (10) and Theorem 4.1, we obtain:

D∗(F2, y2) ≤ L2.
Lf

n
+ L.

Ly1

n
.

By induction, we get:

D(Fm(t), ym(t)) ≤ Lm.
Lf

n
+ Lm−1.

Ly1

n
+ · · · + L.

Lym−1

n
.

Let us consider L′ = max{Lf , Ly1 , · · · , Lym−1} therefore we have:

D∗(Fm, ym) ≤ L′(1 − Lm)
n(1 − L)

.

Since L < 1, according to 1−Lm

n(1−L) ≤ 1
n(1−L) for each m ∈ N , we get:

D∗(Fm, ym) ≤ L′

n(1 − L)
.
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Using Eq. (6), we obtain:

D∗(F, Fm) ≤ Lm+1

1 − L
‖f‖F , ∀ t ∈ [0, 1), m ≥ 1.

So we have
D∗(F, ym) ≤ D∗(F, Fm) + D∗(Fm, ym)

≤ Lm+1

1 − L
‖f‖F +

L′

n(1 − L)

≤ 1
1 − L

(
Lm+1‖f‖F +

L′

n

)
.

Remark 4. Since L < 1, it can be easily proved that

lim
m→∞, n→∞ D∗(F, ym) = 0,

that shows the convergence of the method.

7 Numerical Examples

In this section, we apply the presented method in Sect. 5 for solving the fuzzy
integral Eq. (5) in one example. The approximate solution is calculated for dif-
ferent values of m and n. Also, we compare the numerical solution obtained by
using the proposed method with the exact solution. The computations associ-
ated with the example was performed using Mathematica software.

Example 1. Consider the following linear fuzzy Fredholm integral equation:

F (t) = f(t) ⊕ (FR)
∫ 1

0

k(s, t) 	 F (s)ds, t ∈ [0, 1]

f(t, r) = rt − 1
6
rt2 − 1

12
r, t ∈ [0, 1], r ∈ [0, 1]

f(t, r) = 2t − rt − 1
3
t2 − 1

6
+

1
6
rt2 +

1
12

r, t ∈ [0, 1], r ∈ [0, 1]

and kernel

k(s, t) =
s2 + t2

3
, s, t ∈ [0, 1].

The exact solution in this case is given by

(F (t, r), F (t, r)) =
(
rt, (2 − r)t

)
.

To compare the error with m = 10, n = 10 and m = 12, n = 50, see Table 1.
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Table 1. The accuracy on the level sets for Example 2 in t = 0.5

r-level m = 10 n=10 m = 12 n = 50

|F − y
21

| |F − y22| |F − y
21

| |F − y22|
0.00 0.0000E+0 1.0548E-3 0.0000E+0 4.2225E-5

0.25 1.3183E-4 9.2292E-4 5.2782E-6 3.6947E-5

0.50 2.6369E-4 7.9108E-4 1.0556E-5 3.1669E-5

0.75 3.9554E-4 6.5923E-4 1.5835E-5 2.6391E-5

1.00 5.2739E-4 5.2739E-4 2.1113E-5 2.1113E-5

8 Conclusions

In this paper, we have presented an iterative procedure by using fuzzy block pulse
functions to solve the linear Ferdholm fuzzy integral (5). The error estimate of
the approximated function was obtained by using the fuzzy block pulse functions
for the Lipschitzian function. The error estimate of the present method is proved;
for obtaining the best approximating solution of the equation, the numbers m
and n must be chosen sufficiently large. The analyzed example illustrates the
ability and reliability of the fuzzy block pulse functions method for (5).
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