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INTRODUCTION 

One of the chief concerns of logic is the study of those relations on an 
abstract structure '% = ( A ,  R1, . . ., R,) which are explicitly definable in the 
first order language of '%. We study here the relations on '% which are 
inductively dejinable in the same language. 

Consider first a typical example of the kind of inductive definition we have 
in mind. 

Let ( G ,  -) be a group and bl, . . ., bk fixed members of G, and take 

H = [bl ,  . . ., b,] = the subgroup generated by bl ,  . . ., b,. 

There are two traditional ways of defining this notion in an algebra course. 

(1) 

(2) 
Putting 

(3) 

One is to say that H i s  the least subset of G which satisfies 

b l ,  . . ., bk E H, 
if y ,  z E H, then y - z-l E H. 

cp(x,S) E X  = b, v x = bz v . . . v x = b, 
v (3y)(3z)[y E s & 2 E s & x = y * z-11, 

we have the explicit definition 

x E H e  (VS)((Vx')[cp(x', S )  e- x' E S ]  x E S } .  

The other method is to define by induction the sets Z;, 

(4) x E I: * CP(X-, U j < n  1;) 

and put 
( 5 )  H = UnI:. 

It is an easy exercise to show that both definitions yield the same set. 
The advantage of the first method is that it yields an explicit definition for 
H-but notice that this is in the second order language over the group structure 
( G ,  a). The second approach makes clear that there is an induction involved 
in the definition and appears to be more constructive. 

1 



2 INTRODUCTION 

From our point of view the significant observation is that with either 
explication the clauses (I), (2) of the induction are in the first order language 
over (G, .). Equivalently, the formula q(x,  S )  is elementary over <G, -). 
Moreover, the relation variable S occurspositively in q(x, S ) ;  it is not hard to 
see that whenever we have clauses like (l), (2) then the formula that combines 
them will be positive in the relation variable of the induction. 

In the most general case we will study, there will be a formula 

(6) 
in the first order language of a structure 91 = ( A ,  R 1 ,  . . ., R,) ,  with n free 
variables and only positive occurrences of the n-ary relation variable S. 
The set built up by cp is defined explicitly by 

cp(% S )  = 44x1,. - *, x,, S )  

(7) 
The second approach of the example may lead to a transfinite induction in 
the general case, 

(8) 

x E I, * (VS){(VX‘)[cp(X’, S )  => X’ E S ]  => X E S } .  

2 E 1; - cp(% Uq<< qJ, 
but as in the exampIe, the two methods lead to the same set, 

(9) I ,  = UrIrp. 

These sets of the form I, that come directly from inductions are theJixed 
points of the structure %. We will call a relation R on A inductive on % if 
there is a fixed point I, and constants a = a,, . . ., ak in A such that 

R(Z) -!3 (a, X) E I,, 

i.e., the inductive relations are those reducible to fixed points. Finally the 
hyperelementary relations will be those which are inductive and have inductive 
complements. 

One meets inductive and hyperelementary relations in practically every 
field of mathematics. The examples in algebra are rather obvious, e.g. the 
algebraically closed subfield of F generated by b l ,  . . ., b k  is inductive in the 
field structure of an algebraically closed field F. 

In logic, perhaps the typical example is the truth set for arithmetic, 

T = {e: e is the Godel number of a true sentence of the structure of 
arithmetic}, 

which is hyperelementary. 

example, if 
In set theory we can cast all transfinite recursions in this form; for 

F :  A+L1 
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is the Godel function enumerating the constructible sets of order less than the 
infinite cardinal I ,  then the relation 

P(% 5) * m) E w3 
is hyperelementary on the structure ( I ,  E In). 

Finally in recursion theory, the basic definitions in the theories of con- 
structive ordinals and recursion in higher types are the most obvious 
important examples, but of course inductive definitions of various types 
pervade the whole subject. 

It is perhaps amusing that a notion which appears to be fundamental and 
widely applicable has not been explicitly isolated in any published paper that 
we can find. The very recent papers Grilliot [1971], Barwise-Gandy- 
Moschovakis [1971], Moschovakis [1970] and [1971a] come close to an 
abstract approach, but they only study rather special structures. In fact, in 
Banvise-Gandy-Moschovakis [I9711 we read “given a set A equipped with 
some recursion theoretic structure, one can attempt to formulate. . .”. 
Before these, the most general attack on the problem is Spector’s fundamental 
[1961] where he defines and studies extensively the inductive relations on the 
structure of arithmetic. 

But the preceding paragraph is very bad history. Specifically for the 
structure of arithmetic, long before Spector’s [1961] Kleene had obtained all 
the key results in the pioneering papers [1944], [1955a], [1955b], [1955c]. 
In these, Kleene is consciously studying inductive definitions, even though 
he explicitly draws back from considering all of them in [1944]. But the 
“special cases” he studies are so general, that Spector credits to Kleene the 
fact that the inductive sets on the integers are precisely the II: sets. This 
means that the hyperelementary sets are the A: sets which Kleene had already 
identified with the “hyperarithmetical” sets and which he had studied 
exhaustively. 

Thus for the special case of the structure of the integers our subject 
specializes to the fully developed and justly acclaimed theory of I’I: and 
hyperarithmetical sets. The approach to this theory through inductive 
definitions was not made explicit until Spector’s [1961] and was not followed 
up very much after that, simply because Kleene and his students and followers 
looked at the subject as recursion theorists and chose to formulate their 
results in recursion theoretic rather than model theoretic terms. 

The theory was extended to almost arbitrary structures in Moschovakis 
[1969a], [1969b], [1969c]. Here again the approach was entirely recursion 
theoretic in form, so much so that the identification of “semihyperpro- 
jective” relations with the inductive relations of the appropriate structure 
was only added as an afterthought in Remark 21 of the revised version of 
[1969b]. Nevertheless, the introduction to [1969a] says “the main technical 
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contribution of this paper is the introduction and systematic exploitation of 
existential, nondeterministic clauses in inductive definitions”, i.e. again the 
results were mostly about inductive definability even though they were cast 
in recursion theoretic terms. 

During UCLA’s Logic Year 1967-1968, Gandy argued repeatedly and 
forcefully that the key notion of abstract recursion theory should be that of 
an inductive definition. There is a counterargument to this, that recursion 
theory should have something to say about “computations”. Nevertheless, 
it was obvious that it would be useful to have a development of the theory in 
Moschovakis [1969a], [1969b], [1969c] from the point of view of inductive 
definability, as many of the recursion theoretic arguments and methods of 
these papers seemed somehow irrelevant to the main results. To do this is 
one of our aims here. 

One of the important tools for an exposition of these results from a model 
theoretic, inductive definability approach is the introduction and systematic 
exploitation of open games. There was a glimpse of this idea in the last section 
of Moschovakis [ 1969bl titled “A game theoretic characterization of semi- 
hyperprojective sets”, but some of the missing tricks did not become available 
until Moschovakis 119701 and [1971a]. This allowed for a neat exposition of 
most of the first two papers [1969a] and [1969b]. 

The present work was motivated by some further extensions of these 
game theoretic ideas which yielded fairly comprehensible proofs of the 
rather delicate theorems in the third paper [1969c]-this was where we 
generalized Kleene’s deepest results on the hyperarithmetical sets in Kleene 
[ 1959al. 

A byproduct of attempting to lecture on these matters in a seminar was 
the somewhat surprising discovery that a very substantial part of the theory 
of inductive and hyperelementary sets goes through for completely arbitrary 
structures. This comprises the first four chapters here. Afterwards we 
specialize to “acceptable” structures and then in Chapter 8 to countable 
acceptable structures, but even then the flavor is decidedly model theoretic 
and there are no explicit references to recursion theory. In Chapter 9 we prove 
a very general version of the main result of Barwise-Gandy-Moschovakis 
[1971] which is the key to many applications of the present methods to 
abstract recursion theory. 

The exercises at the end of each chapter are an integral part of the text. 
They give a stock of examples to keep in mind as we develop the general 
theory, they outline extensions of this theory and they also establish a link 
between the abstract approach here and the more familiar development of 
the theory of hyperarithmetical and II: sets of integers. 

The text is technically accessible to a student who is familiar with the basic 
notions of logic, model theory and set theory, the material usually covered 
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in the first semester of a graduate or advanced undergraduate logic course. 
Some of the exercises require a deeper knowledge of set theory. However, 
the motivation and some of the implications of the results will be better 
understood by those students who have some acquaintance with the classical 
theory of recursive and hyperarithmetical sets, e.g. as developed in Rogers 
[1967] and Shoenfield [1967]. 

I have tried hard to attribute all results and ideas to the mathematicians 
who first discovered them, but the task is difficult and I am sure that there 
are both errors and omissions. 

Much of the exciting current research in abstract recursion theory is 
concerned with very general inductions-nonmonotone inductive definitions 
and definitions in very restricted or very rich languages. We hope that this 
work will provide a point of reference by giving a neat exposition of the 
simplest and most developed part of the theory of inductive definability. 
We also have hopes that the model theorists may find something to interest 
them here, both in the results and in some of the methods. 



CHAPTER 1 

POSITIVE ELEMENTARY INDUCTIVE DEFINITIONS 

In this first chapter we introduce the classes of inductive and hyper- 
elementary relations on a structure, we prove some of their simple properties 
and we discuss briefly some important examples of the theory. 

1A. Monotone operators 

Let A be an infinite set. We use a ,  b, c, . . ., x7 y ,  z,  . . . to denote members 
of A and P,  Q,  R, . . . to denote relations on A of any (finite) number of 
arguments. Barred letters will denote finite sequences from A, e.g. 

- x = x1, * . *, X"7 F 1  = Y11, YlZ, . * * Y  Ylm. 
If P E A" is an n-ary relation and 2 an n-tuple, we write interchangeably 

x E P 0 P(Z). 

IA"I = IAI, 
The cardinal number of a set X is 1x1, so in particular for every n 2 1, 

since A is infinite. If A is an ordinal number, then 

;I+ = least cardinal number greater than A. 

An operator 
r: Power (A") +Power (A") 

is monotone if it preserves inclusion, i.e. 

s c s' => r(s) c r(s'). 

1;' = nutl<E, 1;). 

I ,  = UcG 

For each such monotone r and each ordinal 5 we define the set I$ by the 
transfinite recursion 

Of course each I: is an n-ary relation on A .  We let 

be the relation defined inductively by  r, or simply the set built up by r. 
6 



ch. 1. 1A MONOTONE OPERATORS 

It is also convenient to put 

1 2  = U q < g I ; ,  

I ;  = r(I;e). 
so that for each r,  

lA.l. THEOREM. Let A be an infinite set, let r be a monotone operator on 

(i) I f C  < g, then I: E I:. 
(ii) For some ordinal K of cardinality < IAI, 

the n-ary relations on A ,  let Zf, I ,  be de$ned as above. 

I ,  = IF = 

we call the least such rc the closure ordinal of r, ic = 11r[1. 
(iii) The set built up by r is the smallestfixedpoint of r, i.e. 

Wr) = Zr, 

Zr = n{s: r(s) = s}. 
PROOF. (i) follows directly from the monotonicity of r, since for 5 < 5, 

z; = r(p) E r(z;c) = z;. 
To prove (ii) notice that if we had 

zr's ; z; 
for every 5 < IAlf, then we could choose some 

xg E I : -  I;'< 

for each 5 < IA1+ and then the set 

x = {xg: 5 < IAI+} 

would be a subset of A" of cardinality / A [ + ,  which is absurd. Hence for some 
K < IAI+ we have 

z;r. = z;'K 
from which an immediate transfinite induction shows that for every 5 3 ic, 

I! = I;, so that Zr = Z;. 
This argument also proves part of (iii), that Zr is a fixed point of r, since if 

K is the closure ordinal we have 

]T(Z,) = r(z;.) = r(z;") = z;. = I,. 
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On the other hand, if P is any fixed point, i.e. 

r(p) = P, 

we can show by transfinite induction on 5 that 

I;‘ E P ,  

because 
15 = r(p) E r(P) = P ,  

using the induction hypothesis and the monotonicity of I?. Hence 
-I Ir = (J<I$ c P. 

1B. Relative positive inductive definability 

Again let A be an arbitrary set. We will be working with formulas of the 
lower predicate calculus with individual and relation constants from A,  call it 
Z A .  More precisely, the language 9* has an infinite list of individual 
variables x, y, z, . . ., a constant c for each element c of A ,  an infinite list 
S, T, U, . . . of n-ary relation variables for each n 3 1, a constant relation 
symbol P for each relation P on A ,  in particular the identity symbol =, 
and the usual logical symbols -I, &, v , +, 3, V. Formulas are defined as usual, 
with the quantifiers 3, V applied only to the individual variables-this is a 
first order language. Individual terms are the individual variables and 
constants and relation symbols are the relation variables and constants. 
Relation variables are always free. Formulas of LZA with no free variables of 
either kind are called sentences; they are either true or false under the natural 
interpretation of this language. 

We write 

c p = *  

to indicate that “q” and ‘‘+” are names of the same formula. This meta- 
mathematical convention is useful in defining formulas and establishing 
notation. 

Let S be a relation symbol. The class B(S) of formulas in which S occurs 
positively, briefly S-positive formulas, is the smallest collection 9 of formulas 
with the following properties: 

(i) All formulas in which S does not occur are in %. 
(ii) If S is n-ary and i = t I ,  . . ., t, is an n-tuple of individual terms, then 

(iii) If cp, i,b are in F and x is any variable, then cp & $, cp v I), (3x)cp, 

An easy induction on the length of formulas proves the following. 

the formula S(t) is in 9. 

(Vx)q are all in 9. 
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1 B. 1. MONOTONICITY PROPERTY OF POSITIVE FORMULAS. Suppose S is an 
n-ary variable which occurs positively in cp(S) and suppose no other variable of 
either kind occurs free in cp(S). V P ,  P' are n-ary relations on A,  then 

4 

Here of course q ( P )  is the result of substituting the relation constant P for 

Suppose now that A is infinite. An operator 

i f P  c P' and cp(P), then ?(PI) 

the relation variable S in cp(S) and similarly for P'. 

r: Power(A") + Power(A") 

is positive elementary in Q, ,  . . ., Q, if there is a formula 

CP r~(x, S )  ~ ( ~ 1 3  * * .> xm s, =, Q I ,  * * .) Qm) 
such that the following conditions hold: 

and the only relation variable of q ( X ,  S )  is the n-ary variable S. 
(ii) The symbols S, Q, ,  . . ., Q, all occur positively in cp(X, S).  
(iii) The free individual variables of cp(X, S )  are among xl, . . ., x,. 
(iv) The formula q(Z, S )  defines r, i.e. for each S c A", 

(i) The relation constants which occur in q(S, S )  are among = , Q,,  . . ., Q, 

r(s) = {x: cp(x, s)>. 
Notice that we allow individual constants in cp(X, S )  as well as arbitrary 

occurrences of =, but we insist that all the other relation symbols occur 
positively. 

It is immediate from the monotonicity property of positive formulas that 
if r is positive elementary, then r is monotone. If cp E cp(2, S )  defines r in 
the sense of (i)-(iv) above, it is convenient to put 

z: = I$, I;' = u11<5z;, I, = I,; 

2 E If * CP@, uq<c 1;) * rP(% I;% 

I, = Udf 

x E I, 0 cp(X, I,). 

we then have for each ordinal 5, 

and 

We call Iq the set built up by cp. 
An n-ary relation R on A is positive elementary inductively dejnable in el, .  . ., Q,, or simply inductive in Q , ,  . . ., Q,, if there are constants 

a = a,,  . . ., a, in A and an operator 

r: Power(Ak+") -+ Power(Ak+") 

- 
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which is positive elementary in Q,,  . . ., Q,, such that 

R(X) * (2,X) E Ir. 

By the definition above, we then have a formula 

cp = cp(z7, X, S )  = q(6, X, S, =, Q,, . . ., Q,) 
in which the only relation symbols that occur are those that show, and 
except for = they all occur positively, such that 

R(X) + (2,X) E I,. 

The constants ii are called the parameters of the induction, but recall that 
there may be other individual constants occurring in q. 

We can picture the construction of the fixed point I, in the ii x X plane and 
the definition of R from I, by projection along the &axis as shown in Fig. 1.1. 

R = {X: (G, H) E I,}  

I 
I 
I 

(1 U 
- 

Fig. 1.1. 

We are mostly concerned in this book with inductive de3nability on a 
structure which is a bit different from the notion above and which we will 
define in Section ID. However, the present notion is more fundamental and 
will also prove to be technically useful. 

For a typical example of an inductive definition, let P E A ,  Q E A x A be 
given and consider the transitive closure of P relative to Q, 

R(x)  e there is some sequence y,, y z ,  . . ., yn such that P(yl), and 
Q(Y1, Y A  Q(Yz, ~ 3 1 ,  - . *, Q ( Y ~ - 1 7  ~ $ 3  andx = ~i or x = Y". 

Put 

d x ,  S> = P(x> v (~Y>NY) ,-% Q(Y, 41. 
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It is easy to verify that R = I, by showing by induction on 5 that 

x E I; * R(x)  

and then by induction on n 2 1 that 

P(YJ  & Q(YI, YZ) & -  . &Q(Y~- I ,  Y J  * Y n E 1 ; O -  

Thus R is inductive in P, Q. Notice that this induction has no parameters, 
and that it closes at o, i.e. 

I, = z,o = I;*. 
For a typical example of an induction that does not close in o steps, let 

< be a linear ordering on A and take the wellordered initial segment of <, 

Put 
W(x) -+ there is no injinite sequence x > x1 > x2 > . . . . 

$(x, S )  E (Vu)[u < x * u E S ] .  

x E If * W ( x ) ;  

Again it is easy to show by induction on 5 that 

because if x E Z$, then by definition (tru)[u < x u E ZGt], so by induction 
hypothesis (Vu)[u < x * W(u)], which immediately implies W(x). On the 
other hand, 

and using the same implication on u1 we find some uz < u1 such that u2 $ Z$, 
etc., so that an infinite sequence starts with x and i W(x).  Thus 

I t  is not hard to verify that the closure ordinal of this induction is precisely 
the ordinal of the largest wellordered initial segment of <. 

We collect in one theorem some of the trivial properties of relative inductive 
definability . 

x $ I* * (3Ul"l < x u1 $ 4 1  

W(X) e x E z*. 

1B.2. THEOREM. Let A be an injinite set, and R, Ql, Q 2 ,  . . . relations on A. 
(i) The relations x = y ,  x # y ,  x = c (c aJixed element of A), x + c are 

(ii) I fR is inductive in Ql, . . ., Q, and each Q,  occurs in the list Qi, . . ., QL,, 

(iii) R is inductive in R. 

inductive (in the empty list of relations). 

then R is inductive in Q,, . . ., Qh,. 

(iv) If 
P(2)  o R 1 @ )  & R,(Z), 
Q(3 -+ R i ( 3  v R2(% 

then both P and Q are inductive in R 1 ,  R2.  
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PROOF. All of the verifications are completely trivial. For example, if 

q(x, y ,  S )  = x = Y ,  
then easily 

1; = ((x, y ) :  x = y> 

for all (, which immediately shows that the identity relation is inductive. -1 

1C. Combining inductions 

The first nontrivial result of the book is the Transitivity Theorem 1C.3 
which is the key to the closure properties of the class of inductive relations. 
Let us establish first a useful but much easier result whose proof is somewhat 
similar. 

We will be using the following convenient and natural notation. If q(S) is 
a formula in which occurs the n-ary relation symbol S (among others), if U 
is an m+n-ary relation symbol and i is an m-tuple of terms, then 

cP((U: U(f, U))) 
is the result of replacing each occurrence of S(C) in q(S) by U(f ,  6). 

1 C. 1 .  SIMULTANEOUS INDUCTION LEMMA. Suppose 

$(Y, S, T )  $(Y, = 7  QI, * * .) Q,, s, T),  

CP(% S, T )  E ~4% =, QI,  - - .7 Q,, S,  T> 
are formulas in the language over an inznite set A in which the only relation 
symbols that occur are those that show and except for =, they all occur 
positively. DeJne JO, J: by the simultaneous induction 

7 E Jb * $( j ,  J,?, J?>, 

X E JT e q(2, J:<, J:<), 

where 

J:' = U,,<r J:, J l r  = u,,<< J : .  
Then both Jo = UrJ; and J ,  = U r J f  are inductive in Q,,  . . ., Q,. 
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PROOF. Let co, c1 be distinct members of A and choosey*, X* to be sequences 
of elements of A of the same length as the sequences of variables f ,  X. Put 

x(t, y ,  X, U )  * [t  = co & $(f, { y ' :  U(c0, y', X*)>, {X': U(C1, f*, ?')})I 
v [t  = CI & q(X, {f': U(C0, f', %*)I, {X': U(c,,  y*, X')))]. 

We claim that for each 5, 
y E Jg * (co, y, X*) E I;, 

x E J ;  * (Cx, y*, X) E 1;. 
Proof is by a transfinite induction on 5 simultaneously for both equivalences, 
e.g. 

(by definition) 

(by def. of x) 

f E J$* $ ( j j ,  .I,<<, J : c )  
0 x(c,, y, I*, {(c,, j', X*): y' E Jo't)  u {(q, j*, 2'): X' E J:") 

(by ind. hyp.) 

(by def. of I:). 

Proof of the equivalence for Jf is similar. It follows that 

y E J o  * (co, 7 ,  z*> E I,, 
X E J1 * (Cl ,  y*, X) E I,, 

occur positively in x. -1 
so that bothJo andJ, are inductive in Q,, . . ., Q,, since evidently Q,, . . ., Q, 

The proof of lC.l illustrates the use of the parameters of induction in 
defining inductive relations. 

The Transitivity Theorem deals with a more complicated kind of combina- 
tion of inductions. It will be useful to codify in a fairly messy lemma the 
precise combinatory principle involved. 

1 C.2. COMBINATION LEMMA. Suppose 

II/ $(E,  7, s) $(Ul, . . -, uk, yl, - * .) yrn, s, 
is S-positive in the language over an injinite set A ,  let ii = a, ,  . . ., a, be 
constants from A and put 

Q(7) * (a, 8 E 4. 
Suppose 

CP P(% Q, T )  E q(xi,  . . ., x,, Q, T )  
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is T-positive in the language over A and Q occurs positively in cp. Let co # c1 
and ii* = u:, . . ., u,*, y* = y:, . . ., yz, X* = x:, . . ., x,* be constants from 
A and put 

X(t, u, j ,  x, U )  = [t = co & +(ii, y, ((U', j'): U(C0, ii', j', %*)})I 
v [t = c1 & q ( X ,  { y ' :  U(Co, G , j ' ,  X*)}, {X': U(c,, ii*,y*, X')})]. 

Then ,for every ordinal 5 we have 

(1) 
( 2 )  (cl ,  ii*, y*, X) E I; 2 E I;, 

(3) 

(U, j) E rg - (cg ,  ti, y ,  X*) E If, 

x E I :  * (c,, ii*, y*, X) E I , ;  

hence, in particular, 

(4) 

( 5 )  

(U, y )  I$ * (co, ti, J ,  X*> E I,, 
x E IP * (c, ,  ii", y*,  X) E I,. 

PROOF. To simplify notation, put 

550 = {(- u,  y ) :  - (COY u, y, 
J'; = (X: (c,, ii*, y*, X) E I:} 

E If}, 

and as usual 
J:' = Us<e Ja, J:' = usic J:. 

Now equivalence (1) asserts that 
1; = 56 

and is immediate by induction on 5 : 
(6 y )  E 15; * ti/(& y, 

* 4% Y, J:'> 
* x(c0, ii, y, X*, I:<> 

* (U, j) E J:. 

(by ind. hyp.) 
(by def. of x) - (co, ii, y, X*) E If 

Thus the induction determined by x imitates step-by-step in its first 
component the induction determined by I). In particular, (1) immediately 
implies (4). 

The combined induction x is not equally faithful in its second component 
which defines the stages Jf, but still in the limit, 
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To see this, compute first the transfinite recursion which determines J$ : 
X E J r  t> (cl, U*, J*, X) E If 

0 x(c,, u", y*, z, I ; < )  

0 q ( X ,  { J ' :  (a, 7') E I ; < ] ,  p )  
0 q ( X ,  { j j ' :  (co, a, J ' ,  X*) E I;E}, J:E) (by def. of x) 

(by (1)). 
Letting for each 5 ,  QC be the part of Q that is determined by Z;, 

J E Q5 e (a, J )  E Z:, 

Q - U q < < Q " 7  
<r - 

we have 

(6) X E J $  e q ( X ,  Q'<, J;'). 
It is useful to compare (6) with the transfinite recursion which determines 

the stages Z:: 
ji: E If e q ( X ,  Q,  I:<) .  

The only difference is that in defining Z i  from the preceding stages I," we 
can use the whole relation Q, while in the definition of JT from J;< we can 
only use the piece Q'E of Q. (See Fig. 1.2.) 

I - a - 
I 1  

Fig. 1.2. 

Implication (2) is also proved by induction on 5 :  
(CI, ii", y", X) E I ;  * x E JT 

* cp(% Q<', J:') (by (6)) 
* cp(% Q ,  J:'> (by monotonicity of in Q )  

* cp(% Q ,  1,") (by ind. hyp. and monotonicity) - X E zf. 
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Finally, (3) holds because eventually all of Q becomes available in the 
construction of Jf. Formally we show (3) again by induction on 5 :  
X E 1: cp(X-, Q ,  I;<) - cp(X, Q,  {Z': (c,, u*, y*,  2') E I , ) )  (by ind. hyp. 

and monotonicity) - cp(X, {J ' :  (co, a, j ' ,  X*) E Z,), {Z': (c1, u*, y*, X')  E Z,)) 
(by (4)) 
(by def. of X) 

(since Z, is a fixed point of x). 
Again (2) and (3) imrnediately imply (5). -1 

1 C.3. TRANSITIVITY THEOREM. Let A be an infinite set, let R,  Q,  Q , ,  . . ., Q, 
be relations on A .  If R is inductive in Q,  Q , ,  . . ., Q ,  and Q is inductive in 
Q , ,  . . ., Q,, then R is inductive in Ql ,  . . ., Q,. 

PROOF. By hypothesis there are formulas 

$ $(G, J ,  S )  $(@, j >  Q,,  . * )  Qm, S),  

CP ~ ( v ,  z, Q, T )  q(v3  5, Q, Q l ,  . . ern, T )  
with only the indicated relation symbols (and =) and all those occurring 
positively and constants cl, 6 such that 

Q(3 0 (5, Y) E I,, 
R(5) 9 (6,Z) E Z,. 

Let 

x x(t, W, j ,  fj,Z, u) zz X(t, W, 7, ij, 5 9  Q 1 ,  * . ., Qm, u) 
be the combination formula that is assigned to $ and cp by the Combination 
Lemma 1C.2. It has various other constants co, c l ,  a*, F*, E* = V*, Z* in it, 
but it is obvious from its definition that except for =, the only relation 
constants in x are Q , ,  . . ., Qm and they all occur positively. By (5) of 1C.2 
we then have 

(6,Z) E I, CJ (cl, a*, j " ,  V,?) E I,, 

so that 

Z E R - (c,, W*, y*, 6,Z) E I,  

and R is inductive in Ql, . . ., Q,. -1 
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1C.4. COROLLARY. The class of relations on some infinite set A which are 
inductive in fixed relations Ql, . . ., Q, is closed under the positive operations 
&, v, 3, v. 

PROOF is immediate from the Transitivity Theorem and Theorem 1B.2. 
For example, if 

and R is inductive in Ql, . . ., Q,, then P is inductive in R,  Ql, . . ., Q,, hence 
-I 

P(X) * (VY)R(Y, 3 

P is inductive in Q,,  . . ., Q,. 

1D. Inductive definability on a structure 

Suppose 
2I = ( A ,  R , ,  . . ., R,)  

is an infinite structure. The (first order) language of 'u consists of all formulas 
of the language Y A  whose only relation constants are =, R,, . . ., R,. The 
elementary relations on 'u are those which can be defined by formulas of the 
language of 2I. (Recall that we allow arbitrary constants from the domain A 
of the structure.) 

A relation P on 'u is afixedpoint if there is an S-positive formula cp = q(2, S )  
in the language of 'u such that P = Iq. A relation R is positive elementary 
inductively definable or simply inductive on 'u if there is a fixed point Iq and 
constants 

R(X) - (a, X) E Iq. 

Tracing the definitions, this means that R is inductive on 2I if and only if R 
is inductive in the relations R,, i R1, . . ., R,, i R,. 

Finally, we call R coinductive on 2I if i R is inductive on 'u and we call R 
hyperelementary on 2I if R is both inductive and coinductive. 

A functionf: A" + A" is elementary or hyperelementary if its representing 
relation (the graph) 

= a , ,  . . ., a, in A such that 

Gf(% 7)  -f(3 = 7 
is elementary or hyperelementary respectively. 

We are mostly interested in studying the inductive and hyperelementary 
relations on a structure 'u, but it is clear that in order to do that we will also 
have to look at the fixed points. These relations are interesting in their own 
right since they can be defined by the simplest inductions, without para- 
meters. 

Before going on to prove the simple closure properties of these classes of 
relations we list some of the most important examples of the theory. 
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The original and standard example is the ordinary structure of arithmetic 

N = ( 0 7  s, 0 7  

where 

S(x,  y ,  z )  - z = x + y ,  

P (x ,  y ,  z )  e- z = x * y .  

It is customary to call the elementary relations here arithmetical and the 
hyperelementary relations hyperarithmetical. One of the main efforts in the 
theory of positive inductive definability is to generalize the theory of hyper- 
arithmetical relations to arbitrary (or almost arbitrary) structures. The 
original definitions of hyperarithemetical relations in Davis [1950], Mostowski 
[1951], Kleene [1955b] were not from the point of view of inductive definability 
but rather came as direct attempts to extend the hierarchy of arithmetical 
relations on N.  It was apparently Spector in [1961] who first realized the 
significance of inductive definability. 

Another very important example is second order arithmetic or analysis. 
This is often considered as a two-sorted structure, but we will describe it 
here as a structure with a single domain so that it is covered by the general 
theory; 

R = (W U “‘0, N ,  S, P, A ) ,  

where 
N(x) 0 x E 0, 

A(y,  x7 2 )  0 Y E  & X €  0 & y (x )  = z 
and S, P are the sum and product relations, taken as false if any of the 
arguments are not in o. The elementary relations of this structure are called 
projecthe and the hyperelementary relations hyperprojective. 

The special case of the structure R was the chief motivation for the work 
reported in Moschovakis [1969a], [1969b], [1969c] which was the first system- 
atic study of inductive and hyperelementary relations on (almost) arbitrary 
structures. Because of this we used there the term “hyperprojective” for the 
hyperelementary relations of an abstract structure, but we now think that 
“hyperelementary” is more appropriate for the general case. 

As with the original development of the theory for N, the approach in 
Moschovakis [1969a], [1969b], [1969c] was not directly from the point of 
view of inductive definability but in terms of (search) computability in 
functionals. The characterization (for most structures) of “semihyper- 
projective” relations as those inductively definable by positive formulas is 
proved in Remark 21 of [1969b] but it is stated there in a particularly obscure 
notation. 



ch. 1 ,  1D INDUCTIVE DEFINABILITY ON A STRUCTURE 19 

With each ordinal A, there is naturally associated the structure 

A = (A, <) 
of 2 with its ordering. These are particularly interesting examples in studying 
abstract inductive definability, since they have very “few” elementary 
relations but (as we will see) a very rich collection of hyperelementary and 
inductive relations. 

These structures are special cases of structures of the form 

A = <A,  E 1 4 ,  
where A is any transitive, infinite set. Other interesting special cases of these 
are 

A = VA, 

the set of sets of rank less than R with A a limit ordinal, and 

A = LA, 

the set of sets constructible before A, with A again a limit ordinal. 
More examples can be constructed by adding relations to the structures 

above. 
The results of 1C give immediately the simple closure properties of the 

classes of inductive and hyperelementary relations. A relation P(X) is defined 
from a relation R(y,,  . . ., y,) by hyperelementary substitution if there are 
hyperelementary functions fi(E), . . .,f,(X) such that 

P ( 3  * R(f i (3 ,  * . - 3  fm(E))* 

lD. l .  THEOREM. The class of inductive relations on an injinite structure ‘u is 
closed under thepositive operations &, v , 3,  V andhyperelementary substitution. 

The class of hyperelementary relations OYI BI includes all elementary relations 
and is closed under all the elementary operations -I, &, v , +, 3, V and 
hyperelementary substitution. -I 

There is another very useful corollary of the Transitivity Theorem which 
is worth stating explicitly. 

1D.2. THEOREM. Let % = ( A ,  R,, . . ., R,) be an infinite structure, suppose 
Ql, . . ., Q, are hyperelementary on % and R is inductive on “ == (a, QI, * * - 9  Qm) = <A,  R,, * - Rl, Q l ,  * * *, e m > -  

Then R is inductive on %. 
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PROOF. It is enough to prove the result for m = 1, since we can then apply 
this m times for the general case. If R is inductive on ( A ,  R I ,  . . ., R,, Q, ) ,  
it is inductive in the relations R , ,  i R 1 ,  . . ., R,, i R,, Q , ,  i Q ,  by definition 
and since both i Q , ,  Q ,  are inductive in R,,  i R l , .  . ., R,, i R , ,  it must be 
that R is inductive in R 1 ,  i R , ,  . . ., R,, i R ,  by two applications of the 
Transitivity Theorem 1C.2. -I 

From this follows trivially that if Q is hyperelementary on M and R is 
hyperelementary on (?l, Q),  then R is hyperelementary on M. 

The second order language over a set A ,  LYt is obtained by allowing 
quantification of the relation variables in the language 9A. The second order 
language 9: ' for  a structure 2l = ( A ,  R, . . ., R,)  consists of those formulas in 
LYt whose relation constants are among =, R, ,  . . ., R,. The relations on A 
(even those with relation arguments) which are definable in 9: are naturally 
called second order de$nable. According to the usual classification of these 
relations, R is n: if there is an elementary formula q ( S 1 ,  . . ., S,, X) in the 
language of 21 such that 

R ( 3  - (VSd . . . (VSk)Cp(S1, * - -, Sk, 3, 
i.e. if we can define R using only a block of universal relation quantifiers 
applied directly to an elementary formula. Similarly, R is C: if i R is II: and 
R is A: if R is both ll: and C:. 

It is well known that in the structure N of arithmetic the inductive relations 
coincide with the II: relations-we will prove a generalization of this basic 
result in Chapter 8. Here we show the trivial half of this equivalence which 
holds for arbitrary structures. 

1 D.3. THEOREM. Every inductive relation on an infinite structure is ll: and 
hence every hyperelementary relation is A;. 

PROOF. If R is inductive, then for some q ( U ,  X, S )  and constants ii we have 

R(X) o (a, X;) E Zq; 

now the characterization of Iq as the least fixed point of the operator defined 
by q, given in lA, yields 

-I R(F) e (VS)[(V'u)(VX')[S(U, 2') * q(i7, X', S)]  -+ S(G, X)]. 

Exercises for Chapter 1 

1.1. Prove that if the graph of a function8 A" + Am is inductive on rU = 
-1 ( A ,  R1, . . ., R J ,  then f is hyperelementary on rU. 
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1.2. Suppose cp(S) is a formula in the language over a set A .  Prove that there 
is a formula cpt(S,, S,) in which both S1 and S, occur positively such that 

-I 

A wellfounded relation withJield B G A" is a subset < of A'" such that 
X E B e  (37){(Z, 7)  E < v ( J ,  X) E <}, 

S c B&S=!= O=>(~XES)(VJES)~ [ ( J , % ) E  < I .  
We write X .< 7 for (R, J )  E <. 

1.3. Suppose < is a wellfounded relation with field B E A" which is hyper- 
elementary on % and suppose 

f : B x  A k - + A " '  

is a function such that for some formula q(S, X, 2, J )  in the language of '$I and 
all R E B, Z E Ak,  

f ( X , 2 )  = y e c p ( { ( R ' , ~ ' , f ( x ' , ~ ' ) ) : X ' < X & z ' ~ A ~ } , X , Z , y ) .  

Prove that f is hyperelementary on '%. 
HINT : Use Exercise 1.2 and the Transitivity Theorem. -I 

This problem shows that ordinary transfinite induction along a wellfounded 
relation is a special case of the general inductions we have been studying. 

A copy of o is any structure ( N ,  <) which is isomorphic to o = (0, <). 
Relative to a fixed structure % = ( A ,  R , ,  . . ., R,),  an elementary (or hyper- 
elementary) copy of o in '% is a copy of o ( N ,  <) such that N c A ,  
< c A x A and both N and < are elementary (or hyperelementary) on '%. 
We often label the members of a copy of o by 0, 1, . . ., where 0 is the <-least 
member, 1 is the <-next member, etc. 

1.4. Let ( N ,  <) be a hyperelementary copy of o in % = ( A ,  R , ,  . . ., R,) ,  
let s: N + N be the successor function of N ,  

s ( i )  = j e i , j E N & i  < j &  i #  j &(Vk)[(k < j & k  # j )  * k  < i ] ,  

let g : A" + A"', h : A"' x N x A" + A"' be hyperelementary functions and 
assume f: N x A" + A" satisfies 

f (0 ,X)  = g ( 3 ,  
f(s(i), X) = h(f(i ,  X), i, X). 

Prove that f is hyperelementary on %. (Primitive recursion). -I 
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1.5. Prove that N = (w, S, P) and o = (0, <) have the same inductive 
relations. -I 

An elementary (hyperelementary) pair on a structure 2i = ( A ,  R 1 ,  . . ., R,)  

f: A x A -  A .  
is an elementary (hyperelementary) one-to-one function 

1.6. Prove that the structure R of analysis admits an elementary (projective) 
pair. -I 

A coding scheme on a structure 2i consists of a copy ( N ,  <) of o in 2i 
together with a mapping 

(XI, * * .) xn) ++ (XI, * . - 9  xn> 

which assigns a member of A to each finite sequence from A and which is 
one-to-one, i.e. 
(x,, . . ., x,,) = (x;, . . ., x:,,) [In = m & x1 = xi & .  . . & x, = 4. 

(The empty sequence is in the domain of ( ) by the notational convention 
(xl, . . ., x,) = 0 if IZ = 0.) 

With each coding scheme we associate the decoding relations and functions 

Seq(x) 0 x = (a) or for some xI, . . ., x,, x = (xl, . . ., x,), 
0 i f i S e q ( x ) ,  
n i fSeq(x) and x = (xl, . . ., x,,), Ilz(x) = 

x i  iffor some x,, . . ., x,, 1 < i < n and x = (xl, . . ., x,,), 
0 otherwise. q(x, i) = 

Notice that q is assumed defined on all of A x A even though only its values 
on A x N matter. It is common to use the notation 

(x)i = d x ,  9. 
A coding scheme is elementary (or Izyperelementary) if N,  <, Seq, Ih, q are 

all elementary (hyperelementary). A structure 2l is acceptable if it admits an 
elementary coding scheme. 

1.7. Prove that if there is a hyperelementary copy of o in 2I and if '3 
admits a hyperelementary pair, then 2I admits a hyperelementary coding 
scheme. Moreover, there exists an expansion 

of 41 which is acceptable and has the same inductive relations as 2i. -I 
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Problem 1.7 implies that N and R admit hyperelementary coding schemes. 
Actually both are acceptable structures-this is almost trivial for R but 
requires use of Godel's /?-function for N, e.g. see Kleene [1952]. We will 
assume that both N and R are acceptable, but one who does not want to go 
through the computations with the /?-function might as well substitute 
acceptable N', R' with the same inductive relations for them throughout this 
book. 

It is convenient and useful to introduce the customary two-sorted language 
8* for the structure R of analysis. This has variables x, y, z ,  . . . varying 
over o and another sort of variables, a, /?, y ,  . . ., varying over wco. The prime 
formulas are those of the form 

S(x, y, 2) G x + y  = z, 

P(x,  y, 2)  - x 

.(X) = y, 

y = z, 
x = y 

and more complicated formulas are constructed by applying the logical 
operations including quantification on both sorts of variables, 3x, Vx, la, Va. 

Let us observe first that this language has the same expressive power (in 
the proper meaning of this) as the elementary language on R. 

1.8. Let 
R(Z, E )  o R(x,, . . ., x,,, aI, . . ., a,) 

be a relation on o" x Prove that R is elementary on R (projective) if 
and only if R is definable in 8*. 

Similarly, R is definable by a formula of the language of R with no constants 
from % if and only if R is definable by a formula of 9* with no constants 
from -1 

For each n, m we can extend the language 5?* to the language 9 * ( S )  by 
adding a relation variable S varying over subsets of on x (%)'". If q ( X ,  E ,  S )  
is in 8*(S)  with only positive occurrences of S, the sets Z:, Zv are defined 
exactly as in 1B. 

It is obvious that we could study induction using many sorted or higher 
order languages. This is a simple case for a two-sorted language which can 
be reduced to the case of positive, elementary inductive definability on which 
we concentrate in this book. 

1.9. Let R c on x Prove that R is a fixed point of the structure R 

-1 
if and only if there is a formula q ( X ,  E ,  S )  in the language 9 * ( S )  such that 

R(Z, E )  0 (Z, E )  E Iq. 
2 
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In the next three problems we outline a proof that on N, the inductive 
relations are precisely the ll: relations. The result holds for all countable 
acceptable structures and we will prove it in that generality in Chapter 8. 
The classical proof here works only for N (and structures very much like N), 
but it is good to know and understand this fact before we go on to the more 
general theory. 

1.10. Prove that every ll: relation on N satisfies 

W) * ( V M a ,  XI, 
where cp(ci, X) is a formula of B* with no constants from ow. 

HINT: Use the elementary coding scheme on N. -I 

I faEWwandtEco,put  

E ( t )  = (a) ij-t = 0, 
E ( t )  = (a(O), . . ., a(t- 1)) ij-t > 0, 

where the sequence codes are computed relative to some fixed elementary 
coding scheme on N. 

1.1 1. Prove that for each formula cp(x,, . . ., x,,, al, . . ., a,) of 8* which 
has no quantifiers of the form la, Va and no constants from Ow, there are 
formulas $(u,  xl, . . ., x,,, ul, . . ., u,), ~ ( u ,  x l , .  . ., x,,, ul, . . ., um) of the 
language of N such that 

~ ( x , ,  . . * ?  xn, ~ 1 ,  . 

HINT: Use induction on the construction of cp. 

$ 9  am) * (VP)(lt)$(B(t), ~ 1 ,  . . *, xn, El(t>, * . *, Em(t)) 
* VP)(vt)~@(t), ~ 1 ,  . * - 9  x n ,  El(t), * * *, Z m ( t ) ) -  

-I 

1.12. Prove that every Il: relation on N is of the form 

R ( 3  * ( ~ P ) ( ~ t ) W O Y  3, 

4w), X) & t < s =2.4w(.), XI. 
where $(u, X) is a formula in the language of N and for every p, t, s, 

4 

1.13. Prove that every ll: relation on N is inductive. (Kleene [1955a], 

HINT: Use the representation of Exercise 1.12 and put 
Spector [1961].) 

cp@, X, S )  * SeStu) & [W, q v (vt)qun(t>, 91 ,  
where if u = ( u l y  . . ., u,), then un(t) = (ul, . . ., u,,,, t ) .  Show then that 

R(I) 0 ((O), 2)  E I,. -I 



ch. 1 EXERCISES 25 

These last two problems are the basic facts about II: and inductive relations 
on N. In addition to showing the identity of these two notions, Exercise 1.12 
often yields very simple proofs for the case of N of results that are quite 
hard to establish for arbitrary structures, or even for countable acceptable 
structures. We will suggest some of these easier proofs in the exercises as we 
go along, but the reader should always keep the example of N in mind and 
attempt to obtain easier proofs of the general results for this special case. 

1.14. Let 

r: Power(@ + Power(o") 

be an operator which is monotone, i.e. 

s E si r(s) E r(s'), 
and llf, i.e. 

f E r(s) G PSI) . . . (vSk)q(s,, . . - 9  s k ,  f, s), 
where rp is some elementary formula in the language of N. Prove that the 
set Ir built up by r is II: on N, hence inductive by Exercise 1.13. (Spector 
[ 196 11.) -1 

The next problem shows that we can define all inductive relations using 
very simple positive formulas. Call a formula cp simple existential if it is of the 
form (3r)+(t), where $( t )  is quantifier free. Similarly, call cp simpre universal if 
it is of the form (Vt)$(t) with a quantifier free $(t). 

1.15. Show that if R(X) is inductive on the infinite structure a, then there 
exists an S-positive formula cp(@ 2, S )  which is a finite disjunction of simple 
existential and simple universal formulas such that 

R(X-) + (G, X) E Z, 

with suitable constants G. 
HINT: Take the case that R = Z* with 

+ = W4(3t)x(s, 4 X, S )  
and x quantifier free. Define by a simultaneous recursion sets .Ti, Jf such that 

(s, X) E J$  G ( 3 t ) ~ ( s ,  t ,  X-, J:r), 

X E Jf e ('ds)(s, X) E J:<,  

and prove that 
X E I $  + X E  ur J $ .  
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Now reduce the simultaneous recursion giving 4, Jf to one induction using 
Lemma 1C. 1. 

-I For the general case, reduce first to prenex normal form. 

It is not clear who proved this result first, but the proof outlined in the hint 
is due to P. Aczel. 

The last problem of this chapter gives an example as far away from N as 
possible-here the theory is trivial. 

1.16. Let 2I = ( A )  be the structure with no relations on an infinite set. 

HINT: Prove that for each a, ,  . . ., a, E A there are only finitely many sets 
4 

Prove that every inductive relation on 2€ is elementary. 

definable by formulas whose individual constants are among a,, . . ., a,. 



CHAPTER 2 

THE STAGES OF AN INDUCTIVE DEFINITION 

The most prominent feature of an inductive definition determined by an 
S-positive formula q ( X ,  S )  in the language over some set A is the natural 
resolution of the fixed point Irp into the stages of the induction, the sets I:. 
This assigns ordinals to the members of Irp in the obvious way, 

1x1, = least such that x E I: ,  (X E I,) .  

We prove in 2A a basic regularity property of the ordinal assignment I 1, 
and then we reap some of the consequences in 2B. 

2A. The Stage Comparison Theorem 

The result of this section is in many ways the central result of the theory of 
inductive relations. Several versions and corollaries of it have played an 
important part in the development of the classical theory of hyperarithmetical 
and II: relations on o and were certainly known to Kleene and Spector- 
in particular see Spector [1955]. A version of it for almost arbitrary structures 
is Theorem 7 of Moschovakis [1969b], where it is billed as “the main tool for 
establishing the basic properties of the hyperprojective (hyperelementary) 
hierarchy”. 

My original proof of the present very general version used the methods of 
Chapter 4 and was quite complicated. The simpler argument given below 
was discovered by P. Aczel and K. Kunen, independently. 

First a simple lemma which will also be useful in Chapter 4. 

2A.1. LEMMA. Suppose p(Z, S),  $(X, S )  are formulas in the language over a 
set A such that the n-ary relation variable S occurspositively in both of them and 
such that f S  ; A“, then 

If I:, Ij are deJined as in Section IB, then for each (, 
cp(% S )  * w, S) .  

If = I f ,  

so that both cp and $ build up the same set I ,  = I#. 
21 
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PROOF is immediate by induction on 5, taking cases on whether 
I ;<  = A "  or I ; < :  A". -I 

The lemma implies that in studying the induction determined by some 
q ( X ,  S )  we may always assume that for all 2, q ( X ,  A") is true; if not take 

$(%, S )  = q ( X ,  S )  v (y'X')[X' E S],  

and then by Lemma 2A.I for each ordinal 5, 
If = '5;. 

so that $ determines the same induction as cp. 

2A.2. STAGE COMPARISON THEOREM. Let q ( X ,  S), $(j, T )  be formulas in the 
language of an injinite structure 'u, respectively positive in S, T. Define the 
relations < f,,, < z, ,  by 

x <;,, j * x E I ,  & [y $ I ,  v 1x1, < IUlJ, 
x <;,, jj 0 X E I ,  & [y 4 I ,  v 1x1, < IUIJ. 

Then both <& and <f,, arejixedpoints of the structure 'u. 

PROOF. It is convenient to extend the stage assigning functions by setting 

[ X I q  = IAl+ ifx #I,, 

IVls = IAl+ i fV#I , ,  
so that 

x E I ,  tj IX[, < IAlf; J E I* 0 < IAlf. 

We then have very simple definitions for the relations < * = < f,s, < * = 

< t , * 7  

x < * J e. x E z, & IXlP < ljq$, 
x < * jj e lXl, < I j j l $ .  

Assuming that S is n-ary and T is m-ary, we may assume without loss of 
generality that for all X, j ,  

q ( X ,  A"), $(Y, A") 

are true, by Lemma 2A. 1. 
Notice first that 

(1) x <* j e q(Z,  {Z': lx'l, < ljj&)); 
this is immediate from the definitions. 
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A less obvious equivalence which perhaps requires checking is 

(2) l j l $  < 1x1, * $( j ,  {J‘: l ( X  <* j ‘ ) ] ) .  
To see this, take cases on whether X E Iq or not. If X 4 Iq, then the left-hand 
side is automatically true and {J’:  i ( X  < * j ’ ) }  = A”, so that the right-hand 
side is also true by the assumption $( j ,  A”). If X E I, and [ X I q  = 5, then 
clearly 

1718 < 5 * $(YY { j ’ :  lU’l$ < t]) 
* +(J, {J’:  i ( 5  < IV’l$)}) - $(J ,  {J‘:  l ( X  <* j ’ ) } ) .  

We now use (I) and (2) to get a formula x whose fixed point will be <*: 
X <* j * q(x, (2’: lX’lp < I f l$})  (by (1)) 

* PG, {X’: l ( l V l $  < IX‘IJ}) 
0 q ( X ,  {X‘: i$(J, { j ’ :  i ( Z ‘  <* j ’ ) } ) } ) .  (by (2)). 

It is easy to see that there is a formula 

x = x ( % J ,  U) 
in which U occurs positively such that 

x ( X ,  Y, w * q ( X ,  {X‘: l $ ( j ,  {J’ :  1 W’, J‘)})});  
just push the negation sign in i $ ( j j ,  {p’: i U(Z’, p’)}) through all the 
quantifiers and connectives (using lower predicate calculus rules) until it 
applies only to prime formulas and then replace each i i U(X’, j’) by 
U(X’, j ’ ) .  Then the computation above proves that 

2 < * J * x ( X , J ,  <*I, 
so that <* is a fixed point of x and hence 

r, E <*, 
i.e. 

( Z , J ) € I , * X  < * j .  

z <* y - (Z, j) E I,. 

We now compIete the proof by showing 

(3) 
Proof of (3) is by transfinite induction on IZ],. Assume X <* J and 

i (2, j )  E I,, or equivalently 

1 x(% Y, Iz), 
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i.e. 

(4) 
Since X Q *  7, we have in particular X E I,,,, i.e. with ( = [XI,,, 

1 q ( X ,  {Z’: l $ ( j ,  {j’: l ( X ’ ,  7’) E I , } ) ] ) .  

( 5 )  4G,  I:‘). 

Since p(X, S )  is monotone in S, (4) and (5 )  imply that there must be some 
2‘ E I;e such that 

(6) $(Y, {Y’ : 1 @’, 7‘) E I , ] ) ;  

I ; <  E {X‘: -l$(j, {j’: l ( X ‘ ,  j ’ )  E I,})}, 

F’Iq < 14,,,, 

3’ Q * J’ =. (2, j’) E I,, 

otherwise 

and then ( 5 )  implies the negation of (4). For this fixed X‘ we have 

so by induction hypothesis for all j’, 

1.e. 

1 (2‘, y‘)  E I,  =3 1 (2’ Q * j‘). 

$(J ,  {j‘: ?(X’ Q * J’)]), 

IVl$ Q Ix’lq < IXlqP, 

Hence the monotonicity of $(y, T )  in T and (6) imply 

which by (2) yields 

contradicting the hypothesis X Q * J .  
The construction of some x‘ such that 

x <;,$ y - (X, y )  E I,. 

is similar and we omit it. 4 

2B. Closure ordinals and the Closure Theorem 

If q = q ( X ,  S )  is S-positive in the language with relation and individual 
constants from some infinite set A ,  we let IIqII be the closure ordinal of the 
monotone operator defined by q, i.e. 

IIqII = least 4 such that I; = I:< 

= supremum {\?],,,+I: X E Iq}. 
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For given relations Q,,  . . ., Q, on A,  we let 

K(A,  Q1,. . ., Q,,,) = supremum { llcpll: the only relation constants in rp 
are =, Q,,  . . ., Q,, and QI, 
. . ., Q, occur positively), 

and finally for a structure CU = ( A ,  R,, . . ., R,) we define the (closure) 
ordinal of '% by 

IC% = K(A,  R,, i R1, . . ., R,, 1 R,) 
= supremum { Ilrpll: rp is S-positive in the language of%}. 

The chief result of this section is that a fixed point Iv is hyperelementary on 
'% if and only if IIcpIJ < IC%, i.e. if and only if the induction determined by cp 
closes before the ordinal of the structure. 

Let us first put down an immediate corollary of the Stage Comparison 
Theorem which is very basic. 

2B.I. THEOREM. Let cp(X, S)  be S-positive in the language of an infinite 
structure 'u. For each 1 < I C ~ ,  the set Z$ is hyperelementary on (11. Zn particular, 
i f  llcpll < K", then Iv is hyperelementary on 'u. 

PROOF. If 1 < K ~ ,  then by definition there is some $ = $(j ,  T )  in the 
language of CU and a fixed j* such that 

y* E z i - z y .  

x E z; e a  x <t,& y*, 

x E 1; c> l ( y *  <$,.p Z) 

Applying the Stage Comparison Theorem to rp and $ we have 

and since <&,b is inductive so is I , .  Also 

and since ( z .1~  is inductive, Z$ is coinductive. 
The second statement follows by noticing that for each cp, 

= ~11911~ -I 9 r p  

To obtain stronger corollaries of the Stage Comparison Theorem we 
first read an estimate on the closure ordinals of formulas off the Combination 
Lemma 1C.2. 

2B.2. THEOREM. Let A be an injinite set, Q, Q , ,  . . ., Q,,, relations on A, 
suppose Q is inductive in Q,,  . . ., Q, and Q, Q,,  . . ., Q,,,, Tall  occur positively 
in the formula 

dX-, Q, 7') 5 d X - 9  =, Q, Qi,. . - 9  Q,, T)- 
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Then 

l l ( ~ l l  G K(A,  QI, * * - 9  em), 

i.e. the closure ordinal of cp is majorized by the closure ordinal of some formula 
in which only =, Q,,  . . ., Q, occur, and all except = occur positively. 

PROOF. Since Q is inductive in Ql, . . ., Q,, there is some 

$ = *(a, Y, S )  

Q(Y) * (5, Y) E 1,. 
Take x = X(t, U, j ,  X, U )  as in the Combination Lemma 1C.2. It is obvious 
that Q , ,  . . ., Q, occur positively in 1, so it will be enough to prove that 

llcpll G llxll. 

E I, * (3 < Ilxll" E GI. 

with only positive occurrences of Ql, . . ., Q,, S and constants 5 such that 

For this again it is enough to verify that 

Now, if X E I,, then by (3) of 1C.2 we have ( c l ,  ii*, Y*, X) E I,, so for some 
-1 r]  < 11x11, (c, ,  U*, Y", X) E I;, hence by (2) of 1C.2, X E I;. 

From this it follows that the ordinal of a structure does not increase if we 
add hyperelementary relations to the structure. 

2B.3. COROLLARY. Let M be an injinite structure, Q, ,  . . ., Q, inductive 
relations on ?I. I f c p ( X ,  Ql, . . ., Q,, S )  is S-positive in the language of (a, Q,,  
. . ., Q,) and Q , ,  . . ., Q, occurpositively in cp, then 

IlcpII G lP. 
I f  Q , ,  . . ., Q, are hyperelementary on M, then 

K ( % Q ~ , . . . A 2 m )  = Ka 

PROOF. Letting M = ( A ,  R, ,  . . ., R,)  and taking m = 2 for simplicity, we 
have directly by Theorem 2B.2, 
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We now prove the main result of this section. 

2B.4. CLOSURE THEOREM. Let cp(X, S )  be an S-positive formula in the language 
of an infinite structure %. The fixed point I,  is hyperelementary on % if and 
only if the closure ordinal of cp is smaller than the ordinal of a, Ilq /I < rca. 

PROOF. That Z, is hyperelementary if 1140 11 < ic = ica was proved in Theorem 
2B.1. Towards proving the converse, assume that l, is hyperelementary, 
let co # c1 be distinct elements of A and put 

$(t, X, T )  [ t  = CO & p(%, {X’: T ( c ~ ,  X’)))] 
v [t = CI & (VX‘)[X’ E Z, => T(c0, X’)]]. 

The formula $ is in the language of (%, TI, )  and 11, occurs positively in 
$ and i Z ,  is inductive on %, so by Corollary 2B.3, 

and it will be enough to prove that IIcpII+ 1 ,< IIJIII. 
1 1 * 1 1  G ic 

A trivial induction on 5 shows that 

X E 1; (co, X) E 15, 

(co,  3) E I ;  0 2 E I,. 

(cl, X) E 1;-1;2, 

so taking I -- (IqII, we have 

On the other hand, for each 
(co, X) $ l ; c .  The definition of $ then implies that for any 2, 

< 1 there is some X E Z, so that X $ I;<, i.e. 

so that II$ll > I +  1 ; in fact 11$11 = I+ 1. -I 

We end this section by computing several alternative characterizations of 
the ordinal I C ~  which suggest that it is indeed an ordinal naturally associated 
with the structure %. 

Recall that if R is a binary relation, i.e. a set of pairs, then the field of R is 
defined by 

l;ield(R) = (5: (3j)(X,  j) E R v ( 3 j ) ( j ,  X) E R}. 
We call R wellfounded if each nonempty subset of the field of R has an R- 
minimal element 

S c Field(R) & S =k 0 (3X E S)(Vj E S ) i ( j ,  %) E R.  
Thus for wellfounded R, i (x,  x )  E R, i.e. R is strict. In the context of studying 
wellfounded relations we will use symbols like “ < ” “<” to name binary 
relations and write 

X i j f o r  ( X , j ) ~ i ,  
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but there is no implication that < must be transitive or have any of the other 
properties of strict linear orderings. 

If < is welifounded, then there is a unique rank function 

p< : Field(<) -n I 
mapping Field(<) onto an ordinal I and satisfying 

p'(?) = supremum{p<(j)+ 1 : j < X}, 
where as usual 

supremum(0) = 0. 

The range I of p< is the rank of <, 
rank(<) = supremum{p<(?)+ 1 : X E: Field(<)}. 

A very special class of wellfounded relations consists of those which are 
completely determined by their rank function. We call < a prewellordering 
if it is wellfounded and if 

E < j - x, j E Field(<) & p'(X) < p<( j ) .  

Thus a prewellordering with field some set P is determined by starting with a 
function 

C7:P-/I 

mapping P onto some ordinal /I and putting 

x < j - ? , j E P & a ( x )  < o(j); 
for this < we then have 

C7 = p< 

If < is a binary relation on the set A" of all n-tuples from the space of some 
structure 42 = ( A ,  R 1 , .  . ., RJ, we call < inductive, coinductive or hyper- 
elementary according as the 2n-ary relation X < 7 on A is inductive, coinduc- 
tive or hyperelementary. 

2B.5. THEOREM. Let ?I be an infinite structure with ordinal IC = IC". Then 
IC = supremum(rank(<) : < is u hyperelementary prewellordering 

= supremum(runk(4) : < is a hyperelementary wellfounded relation 

= supremum{rank(<) : < is a coinductive wellfounded relation 

on some A"} 

on some A"} 

on some A"}.  

Moreover, none of these three suprema is attained. 
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PROOF. It is immediate from the definitions that it will be sufficient to 

(i) If q ( X ,  S )  is S-positive in the language of CU and X* E I,, then there is a 

(ii) If < is a coinductive wellfounded relation on some A", then rank(<) < 

prove the following two assertions : 

hyperelementary prewellordering of rank IZ*l, + 1. 

lP. 

Proof of (i). For fixed X* E Z,, put 
- 
x1 < 5, * Xl, X, € I, & 1511, < lXzlrp & 1x21, < [X*lV 

Clearly < is a prewellordering of rank IZ*l,+ 1. That it is hyperelementary 
follows by an application of the Stage Comparison Theorem just like that in 
the proof of Theorem 2B.1. 

Proof of (ii). As in the example of Section lB, put 

q ( X ,  S )  E (V j ) [J  < X e- j E S ] .  

This formula is S-positive in the language of (a, <) and i < = A," - < 
occurs positively in it, so by Corollary 2B.3, 

IIqll Q lP. 

X ~ I $ - = Z # F i e l d ( i )  v p<(X) < <, 
On the other hand a trivial induction on < shows that 

i.e. 
Z, = A", 

X E Field(<) 1x1, = p<(X) .  
Hence 

[Iqll = supremum{lXl,+ 1 : x E I,) 
2 supremum{p<(X)+ 1 : Z E Field(<)} 

= rank(<). 

To prove that these suprema are not attained, for each wellfounded 
relation < on A" let co, c1 be distinct objects of A and define the relation <' 
on A"+' by 

(t9 X) <' (s, J )  [t = c g  & s = co & x < j ]  

v [t = co & s = c1 & X E Field(<)]. 

It is immediate that <' is also wellfounded, that rank(<') = rank(<)+l,  
that <' is a prewellordering if < is, and that <' is hyperelementary, inductive 
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or coinductive accordingly as < is hyperelementary, inductive or coinductive. 
Thus for each candidate for the supremum in each of the three cases in the 
theorem there is another candidate with greater rank, so the suprema are 
not attained. -I 

A trivial corollary of Theorem 2B.5 is that I C ~  is always a limit ordinal. 
We will see later that for most interesting structures (those that are "accept- 

able"), lcIU = IIq 11 for some S-positive formula in the language of %. 

Exercises for Chapter 2 
2.1. Prove that if 1 is an infinite ordinal such that 

c ( v + v + l )  = 1, 
V < L  

then the structure 1 = (1, <) admits a hyperelementary pair. 
HINT: Consider the Godel wellordering on pairs, 

(5 ,  q )  < ((', q') 0 maximum{<, r }  < maximum{<', Y'} 

v [maximum{(, q }  = maximum{(', q'} 8~ < < <'I 
v [maximum{<, r }  = maximum{<', y'} & 5 = 5' r < $1. 

-I 

2.2. Prove that for every infinite ordinal 1 the structure il admits a hyper- 
elementary pair; use Exercise 1.7 to infer that 1 admits a hyperelementary 
coding scheme. -I 

2.3. Suppose < 2  are hyperelementary (on Z) wellorderings with 
fields B,  G A", B, L A" such that there is an order preserving map of 
into < 2 .  Prove that there is a hyperelementary order preserving map of 
into < 2 .  -I 

2.4. Let P(s, t ,  X) be hyperelementary on the infinite structure %. Prove 
that the relation 

R(2) + {(s, t ) :  P(s, t ,  Z)} is wellfounded 

is inductive on %. -I 

2.5. Prove that if % is infinite and 1 < K ~ ,  then for each n, 1" < rcN 
(ordinal exponentiation). -I 
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2.6. For infinite a, prove that there exist inductive nonhyperelementary 
relations on rU if and only if there is some S-positive formula q ( X ,  S) such 
that IIqII = K ~ .  -1 

2.7. Prove that 2l admits a hyperelementary coding scheme if and only if 
uu > o and there exists a hyperelementary one-to-one function f: A x A -+ A. 

i 
For each infinite ordinal 1, let 

i(') = ti <z,c  ) 

be the ordinal of the structure A = (A, <). The traditional notation for the 
case A = o is 

0 1  = d'), 

2.8. Prove that if % is infinite and A < IP, then A(') < K ~ .  -I 



CHAPTER 3 

STRUCTURE THEORY FOR INDUCTIVE RELATIONS 

The Stage Comparison Theorem is stated so that it is directly applicable 
to the study of fixed points and stages. In order to derive from it consequences 
about arbitrary inductive relations which need not be fixed points, it is 
convenient to reformulate it somewhat. We derive in Section 3A the Prewell- 
ordering Theorem and then we use it in the remainder of the chapter to 
develop a fairly rich structure theory for the class of inductive relations on 
an infinite structure. 

The astute reader will notice that in a couple of spots the proofs can be 
shortened by direct appeals to the Stage Comparison Theorem. We have 
attempted to use only the Prewellordering Theorem and the closure properties 
of inductive relations, whenever possible, partly for reasons of elegance but 
more significantly because these methods generalize directly to the study of 
other classes of relations. The extra effort will pay off in Chapter 9. 

3A. Inductive norms and the Prewellordering Theorem 

A norm on a set P is a function 
0 ;  P-J. 

which maps P onto some ordinal A, the length or rank of 0. According to the 
discussion in Section 2B, an ordinal valued function (T with domain P is a 
norm if and only if it is the rank function of some prewellordering on P. 

Each norm 0 :  P -+ A naturally resolves its domain P into a I-sequence of 
sets, 

where for each 5 < A, 
p = U<<AP2,  

PZ = (ZE P: B(X) < 5) 
= the trh resolvent of P relative to 0. 

If P is a relation on some infinite structure a, it is natural and useful to study 
those norms for which this resolution is “uniformly hyperelementary” on a. 
The following precise notion turns out to be the most interesting. 

38 
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A norm a: P + 1 is inductive (on 2I) if there exist relations J,(X, J ) ,  J,,(X, J )  
such that : 

(1) 

(2) 

5 < 1, picking some yo with o(Jo) = 5 we have 

J, is inductive and J,, is coinductive. 

r f  7 E P, then (VX) ([X E P & a(?) < a(J)] c> Ju(X, j) - JU(X, J ) } .  
The resolvents of an inductive norm are hyperelementary, since for each 

x E P: - J,(X, yo) 
* J,(% Yo). 

But the more important and useful part of the definition is the uniformity 
with which we can write down hyperelementary definitions for the resolvents. 

There is an alternative characterization of inductive norms which is also 
very useful. For any a: P --ft 1, put 
(3) x < , * y * x E P & [ y # P  v a(X)<a(y)], 

(4) X <,* J - x E P & [ y  # P v b(X) < O(J)]. 

3A.1. THEORFM. Let P be an inductive relation on an injinite structure rU. 
A norm a : P + 1 is inductive if and only if both < f, < 2 are inductive. 

PROOF. If J,, J, satisfy (1) and (2), we have 
X < , * j - X E P & [ J u ( X , y )  v l J G ( j , X ) ] ,  

x <,* J c> E E P & l J , ( j ,  X). 

On the other hand, if <:, <: are inductive, we can take 

The last two equivalences of the proof are one reason why the characteriza- 
tion of inductive norms via <:, <f is more useful-it is easier to define 
suitable J,, 1, from <:, <: than vice versa. We will tend to work with these 
relations in computations. They are also particularly suited for seeing im- 
mediately an important corollary of the Stage Comparison Theorem 2A. 1.  

3A.2. THEOREM. Let 2I be an infinite structure, cp = cp(E, S )  an S-positive 
formula in the language of 2l. The stage-assigning function 

= least 5 such that X E I, (X E I,) 

is an inductive norm on I,. 
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PROOF. Taking cp E t,h in the Stage Comparison Theorem 2A.1 and letting 

o(X) = lXl, (X E Z,), 

it is immediate from the definitions that 

X < : y o x  <$,,?, 
x < , * J O X  < $ , , j j -  

The result follows by the Stage Comparison Theorem 2A. 1, where we proved 
-1 that both <:,, and <:,, are inductive. 

3A.3. PREWELLORDERING THEOREM. Every inductive relation on an infinite 
structure admits an inductive norm. 

PROOF. Suppose 

I E P  0 (a, ") E Z,, 
where cp = q ( X ,  S )  is S-positive in the language of the structure and ii = 
a,, . . ., ak is a sequence of constants. We know that I 1, is an inductive norm 
on I,, so we would like to put 

c(") = la, "I, (2 E P). 

The trouble is that if we define c in this way, it need not be onto an ordinal, 
so we must ''collapse'' first the values of I 1, on {(a, 2): X E P}. 

Suppose I 1, maps Z, onto 1. Put 

% = ( 1 -  a, xi,: - "EP); 

now c A, so there is a unique order preserving map 

p :  G3-++/lr 

mapping %? onto an ordinal 1' < 1. The function c given by 

= P(la,"l,> 
is clearly a norm on P of length A'. It is inductive, since obviously 

2 < , * Y e ( Z , X )  <;,,(Z,jj), 

" <,* j j  - ( E ,  X) <*,,, (a, 7). -1 

There will be many consequences of the Prewellordering Theorem in the 
remainder of this chapter, but here are two of the simplest ones. 
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3A.4. REDUCTION THEOREM. Let P ,  Q be inductive n-ary relations on an 
infinite structure %. There exist inductive n-ary relations Pi, Ql such that 

(See Fig. 3.1.) 

Fig. 3.1. Reduction. 

PROOF. Let co, cl be distinct elements of A and put 

R(y, X) * [ y  = c0 & P(X)] v [ y  = c1 & Q(Z)]. 

Clearly R is inductive, so let CT be an inductive norm on R. 
Put 

E P ,  * (co, Z) <: ( C l ,  X), 

X E Qi * (ci, X) <: (co, X); 
it is trivial to check that Pi, Q ,  have the required properties. -I 

3A.5. SEPARATION THEOREM. Let P,  Q be disjoint coinductive n-ary relations 
on an infinite structure W. There exists a hyperelementary relation R which 
separates P from Q,  i.e. 

P s R ,  Q n R = 0 .  
(See Fig. 3.2). 

Fig. 3.2. Separation. 
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PROOF. Let A"-P,, A"-Ql reduce A"-P, A"-Q by 3A.4, i.e. A"-P,, 
A"- Q ,  are inductive and 

A"-P, E A"-P, 
(A"-P) u (A"- Q) = (A"-P,) u (A"- Ql )  

A"-Ql E A"-Q, 

(A"-P,) (A"- Q l )  = 0. 
De Morgan's laws and the hypothesis P n Q = 8 turn these relationships to 

P C P i ,  Q C Qi,  

P n  Q = 8 = P1 n Q,, 
P1 u Q ,  = A", 

so we can take R = Pi.  -I 

3B. Making hyperetementary selections 

The results in this section show that in certain cases we can find a nonempty 
hyperelementary subset of some inductive set, and we can do so "uniformly" 
in the parameters present. Such results are often called uniformization or 
selection theorems. 

3B. 1. HYPERELEMENTARY SELECTION THEOREM. Suppose P(X, j) is an 
inductive relation on an infinite structure. There are inductive relations P*(X, j ) ,  
P*"(X, j) suclz tlzat 
(1) P* c P, 

(2) 
(3)  

(3Y)P(% Y) * (3Y)P*(% 9, 
(3j)P(X, j) 3 (VJ)[P*(X, j) 0 lP**(X,  j)]. 

(See Fig. 3.3.) 

P 

I 
I 

\ 7 4  

Fig. 3.3. Uniformization by a set with hyperelementary sections. 
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PROOF. Let G be an inductive norm on P and put 
P*(X, j )  0 P(X, j )  & (vj')[P(X, j ' )  =- a(%, 7)  < G(X, j ')] .  

P*(X, j )  * (VJ')[(Z,  j )  <: (X, j ' ) ] .  

P**(X, j )  0 (37')[(X, 7') <: (X, j ) ] .  

Now (1) and (2) are obvious and that P* is inductive follows from 

We can prove (3) easily with 
-I 

To see what this means, consider the projection of P, 
proj(P) = {X: (3y)P(X, j ) ) .  

The theorem asserts that if P(X, j )  is inductive, then we can find an inductive 
P* E P with the same projection and such that for each X in the common 
projection, the section (j: P*(5, j ) >  is hyperelementary-and uniformly in X. 
We state separately the immediate corollaries that look more like selection 
principles. 

3B.2. COROLLARY. Let P(X ,J )  be inductive on the injinite structure rU = 
( A ,  R,, . . ., RJ, let B G A" be hyperelementary. If (VX E B)(3j)P(Z, ji), then 
there exists a hyperelementary P" G P such that (VX E B)(3j)P*(Z7 7). 

PROOF. Apply the theorem to 
P'(X, j )  o X E B & P(X, 7). -I 

3B.3. COROLLARY. Let P ( X , j )  be inductive on an injnite structure %, 
suppose that B -c A"' is hyperelementary and admits a hyperelementary 
wellordering . Then 

(VZ)(3j E B)P(X, j) (3f)[f: A" -+ B, f is Iiyperelementary and 
(VX>P@, f(jZ)l. 

(See Fig. 3.4.) 

x-+ 

Fig. 3.4. Uniformization by a function. 
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PROOF. Choose a hyperelementary P* by Corollary 3B.2 such that P* E P, 
( V X ) ( 3 j ) [ j  E B & P*(Z, J ) ]  and then put 

(2, j) E f - P*(X, J )  & (V j ’ ) [ j ’  < J => l P * ( X ,  J’)I ,  
where < is the assumed hyperelementary wellordering of B. -l 

We now apply these selection principles to the comparison of wellfounded 
relations. The main theorem is a bit technical in the most general version 
that we prove, but this is the statement with widest applicability. 

3B.4. RANK COMPARISON THEOREM. Let 2I be an injinite structure, a 
coinductice weltfounded relation on A”, < , an inductive welffounded relation 
on A’”. There exists an inductive P E A”im such that 

x E Field(<,) (vY){P(x, J )  0 [ J  E Field(<,)  & p “ ( ~ )  < p + ( ~ ) ] ] .  

PROOF. Put 

q(X, y, S )  c> j E Field(<,) & (VX’)(X’ S * (3j’)[J’ <z J & S(X’, J’)]]. 
Clearly 40 is S-positive and we will prove that for any X in Field(< 

(*I (x, j) E I ,  -7 E Field(<,) & p < ’ ( ~ )  < p + ( ~ ) .  

This will complete the proof since the relations A“ - < , , < , occur positively 
in q, so I, is inductive in A”- < <, and hence inductive on 2I by the 
Transitivity Theorem 1C.2. 

Proof of direction (=) of(*) is by induction on p<l(E). Assume for some J 
that (2, j) E I,. Then clearly j E Field(<,). By the definition of Iv and the 
induction hypothesis, 

and all J ,  

(VX’)(X’ 2 * (3 j ’ )C j ’  <, J & p<’(X’> < p + ( j ’ ) ] ) ;  
thus 

p < ’ ( ~ )  = suprernurn(p<l(z’)+ 1 : X’ <, X] 
< suprernunz{p<Z(y’)+l: J’ <, J )  = p + ( j > .  

Proof of direction (G) of (*) is again by induction on p<l(X). Assuming 
the right-hand side of (*), we know that p‘l(X) Q p<z(J),  so that by the defini- 
tion of rank, 

(VZ’){X’ < 1 z * (3j’)Cj’ <, j & p<’(X’) < p+(J’)]) 

which by induction hypothesis gives 

(VZ’){Z’ < I  X * (3j’)[j’  1 2  j (X‘, 7’) E 191) 
which implies (2, j) E I,. -I 
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3C. The Bonndedness and Covering Theorems 

The first of these results is the correct extension of the Closure Theorem 
2B.4 to all inductive relations (not just the fixed points). The second has both 
a clear geometrical meaning and wide applicability. 

3C.1. BOUNDEDNESS THEOREM. Let P be an inductive relation on some 
inJinite structure % with ordinal IC = I C ~ ,  let a; P -H 1 be an inductive norm on P.  
Then : 

(1) a G IC. 

(2) 1 < IC o P is hyperelementary on a. 

PROOF. To prove (l), for each Y E P  consider the prewellordering <y 
defined by 

- x ,  < j i  s, - x,, x, E P & O(Z,) < a(X,) & a(?,) < a(j). 

Clearly rank(+) = a(J), except for the trivial case o(J) = 1 which is 
irrelevant to the argument since IC > 1. Also <? is hyperelementary, since 
easily 

- x, <jix,e-zl < , * I , & Z ,  <,*J 

0 l(J <: X 2 )  & l (2 ,  <: Xi). 
Thus by Theorem 2B.5 for each 7, a(j) < IC, hence I < IC. 

Proof of direction (e) of (2). Put 
- 
X I  < x, * x,, x, E P & a(Z1) < a(?,). 

As before, < is a hyperelementary prewellordering with rank(<) = 1, so by 
2B.5, 1 < IC. 

Proof of direction (*) of (2). Choose a hyperelementary wellfounded 
relation < on A" with rank(<) > 1, pick a fixed j o  E Field(<) such that 
p<(jjo) = Iz  and put 

R,(J, Z)-= [J  < y o  & x E P & p < ( j )  d p(X)]. 

a@) = p+(x) 

E, <z x, -= 21, x, E P & a(?,) < 4 2 2 )  

- = X 2 E P & s 1 < , * Z , ,  

Now 

if we take for iz the inductive prewellordering 
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hence 3B.4 applies and R ,  agrees with some inductive R(3, X) whenever 
j < yo. By hypothesis, 

so by Corollary 3B.2 there is a hyperelementary R* s R such that 
( V j  < Yo)(3rr)R(Y, 3, 

( V j  < Yo)(3T)R*(L, 2). 

It is now immediate that 
P(X) e (3 j ) (3F ' )[ j  < y o  & R*(Y, Z') & a@) < a(%')] - (3j)(3x:')[-j < y o  & R*(y, 2') & l ( E '  <: X)] 

which implies that P is coinductive, hence hyperelementary. -I 

The Boundedness Theorem is a direct generahation of the Closure 
Theorem 2B.4, since by Theorem 3A.2 the stage-assigning function I I, is 
an inductive norm on the fixed point I,. 

3C.2. COVERING THEOREM. Let P be an n-ary inductive relation on some 
infinite structure with ordinal K = K%, let a: P ++ 1 be an inductive norm on P, 
let Q be a coinductive m-ary relation and assume that 

f :  A" + A "  
i s  a ltyperelementary .finnction such that f[Q] c P. Then there exists some 
5 < k such that 

Y E  Q => a(f(y)) G 5 .  
PROOF. If P is hyperelementary, then A < K by 3C.1 and we can take 

5 = 1. If P is not coinductive and all the hypotheses held but the conclusion 
failed, we would have 

E E P * (3 j ) [ j j  E Q & a(Z) Q a(f(j))] 

* (3Y)CY E Q & 1 (fW < S 211 
which implies that P is coinductive, contrary to hypothesis. (See Fig. 3.5.) 4 

Fig 3 3 .  
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Using the notation of resolvents relative to r~ that we introduced in the 
beginning of Section 3A, the Covering Theorem asserts that if a hyper- 
elementary function f maps a coinductive set Q into P, then f [Q] is wholly 
contained in one of the resolvents. We have stated this in the most general 
case suitable for applications, but it is worth putting down explicitly the 
special case when f is the identity. 

3C.3. THEOREM. Let P be an inductive relation on some infinite structure CU 
with ordinal K = uW, let 6: P + I be an inductive norm on P with resolvents 

Pz = (x: Z E P & a(?) < t], < < K .  

Then every coinductive subset of P is wholly contained in some resolvent P:. 4 

3D. Expanding a structure by an inductive relation 

If P is hyperelementary on %, then the expanded structure (Yl,  P) has the 
same inductive relations and the same closure ordinal as 9f. What happens 
if we expand rU by an inductive relation which is not hyperelementary? 
Spector [1955] proved two very pretty and useful theorems about this situation. 
His proofs were about N, but they adapt easily to the abstract case. 

3D.1. THEOREM. Zf P, Q are inductive, nonhypereleinentary relations on the 
infinite structure rU, then the expanded structures (?I, P ) ,  (a, Q )  have the 
same inductive relations; in particular, P is hyperelementary on (a, Q) and Q 
is hyperelementary on (CU, P ) .  

PROOF. It will be enough to prove the last assertion. From it we get that 
(rU, Q )  has the same inductive relations as (CU, Q, P) by Theorem 1D.2 and 
symmetrically that (a, P) has the same inductive relations as (%, P, Q), 
which proves the first assertion. 

Suppose then that 
P(2)  * (a, Z) E zv, 
Q(T) * (6, f) E I* 

and that Q is not hyperelementary. The Boundedness Theorem 3C.1 imp!ies 
immediately that 

supremum((&, J 1 + :  Q(J)> = K%, 

since from the contrary hypothesis we can easily construct an inductive norm 
on Q of rank less than K ~ .  Hence 

P(x> (3 j ) [Q( j )  & la, 4 9  Q 16, Yl*] 
* (W[Q(Y) & 16, L) <$,p G,3 ]  
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which proves P coinductive on (a, Q) by the Stage Comparison Theorem 
2A.2. Since P is inductive on cll. and hence inductive on (a, Q), this completes 
the proof. -I 

The second result says something about the ordinal of an expansion by an 
arbitrary relation. 

3D.2. THEOREM. Let Q be inductive, nonhyperelementary on the inJinite 
structure '21 = ( A ,  R,, . . ., RJ, let P be an arbitrary relation on A .  Then 

Q is hyperelementary on (a, P )  e ic' < d','). 

PROOF. Assume first that 16% < I C ( ~ * ~ ) .  If cp(2, S )  is S-positive in the language 
of ?f, then llcpll < 16% < K ( ' % ~ ) .  Since 9 is also in the language of (%, P), the 
Closure Theorem 2B.4 implies that Z, is hyperelementary on (cll.,P). Thus 
every fixed point of 2l is hyperelementary on (a, P), hence every inductive 
relation on 2I is hyperelementary on (a, P). 

Conversely, if Q is hyperelementary on (a, P), then every inductive relation 
on ?l is hyperelementary on (a, P) by Theorem 3D.1 and the Transitivity 
Theorem 1C.3, and in particular every fixed point I<,, of 2l is hyperelementary 
on (at, P). By the Closure Theorem again, this means that for each S-positive 
q ( x ,  S )  in the language of 2l we have JIcp 1 1  < I C ( % , ~ ) .  Now there must be some cp 
such that IjqI( = K ~ ,  or else every fixed point and hence every inductive 
relation on '21 is hyperelementary, contradicting the fact that Q is not; 

-I choosing such a cp, we have I C ~  = IIqII < d','). 

3E. Generalization of the theory to richer languages 

The theory of the first three chapters can be generalized directly to languages 
richer than the first order predicate calculus we have been studying. Consider 
the following two important examples, where in each case we allow the 
equality symbol = and arbitrary constants from a fixed infinite set A .  

(1) The language 9&,m which admits countable conjunctions and dis- 
junctions, with constants from A and individual and relation variables 
ranging over A .  More generally, we can take the richer classical languages 
2'!,A interpreted over A or the finer Barwise languages 9&, one for each 
admissible set M.  (For the definitions of these notions see Keisler [1971].) 

(2) The language LFA(Q) which extends Y A  by a unary quantifier Q and its 
dual Q", so that if cp is a formula, so are 

(Qx)cp, (Q"4cp. 
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We interpret Q by any nontrivial, monotone collection of subsets of A ,  i.e. 

8 $ Q 2 Power(A), 

S E Q & S E T * T E Q .  

This extends the definition of truth for this language by the clauses 

(Qx)cp is true if {x: cp(x)) E Q, 

(Q”x) is true o i ( Q x ) ~  p is true 

o A - { x :  ~cp)$Q. 
More generally, we may adjoin a monotone quantifier Q to any of the 

languages described in (1) or (2) and take, e.g., 9&,-(Q) or 9”,Q). Particular 
Q’s which have been studied include 

Q = { S  c A :  S is uncountable}, 

Q = { S  E A :  IS1 = IAI}. 

For more information about these languages see Keisler [1970]. 
There is a natural interpretation of the formulas in all these languages over 

the set A. The languages have symbols for i, &, v , 3 ,  V and extend PA.  
For each of them we can give a precise definition of the notion 

the relation symbol S occurs positively in p(S), 

so that if this holds, then 
p(S) & s _c s’ => p(S’). 

Thus if p = q ( X ,  S )  is a formula with xl, . . ., x,, the only free variables and S 
the only (n-ary) relation variable and if S occurs positively in p, we can define 
the stages I: and the set I, built up by cp exactly as we did in Section 1B. 

Let 9 be any of these languages and let R, Ql, . . ., Q, be relations on A. 
We call R positive 9-inductive in Ql, . . ., Q, if there is an S-positive 
q(2, X, S )  in 9 and constants 2 such that 

R(X) e (5, X) E Iv. 
For a structure ‘2I = ( A ,  R1, . . ., R,)  with domain A we define the positive 
8-inductive and the hyper-9-definable relations from this relative notion 
exactly as we did in Section 1D. 

With these definitions and the obvious generalizations of the other concepts 
we have defined, all the results of the first three chapters extend with the same 
proofs. (In Theorem 1D.3 we must define 9- l l i  relations using 9-definable 
relations in the matrix.) 

All one needs do is to substitute “positive 9’-inductive” for “induc~ive” 
in all the definitions and proofs. 
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A further generalization can be obtained if we notice that the only property 
of positive formulas we have used up till now is monotonicity. Letting again 
9 be Z A  or any of the languages in (l), (2), and for a fixed structure 91 = 
( A ,  R , ,  . . ., R,), let us say that the relation variable S occurs monotonically in 
cp(S) relative to 41 if in the natural interpretation on 8, 

We can use formulas q ( X ,  S) with monotone occurrences of S to build sets Iv 
and then we can define the notion 

cp(S) & S E s’ * q(s’). 

R is monotone-9-inductive on 8 
in the obvious way. Again with this definition, all the results of thejirst three 
chapters extend with the same proofs. 

The reason we have restricted ourselves to positive formulas in this book 
will become obvious in the next chapter and still more obvious in Chapter 5. 
The relation between the syntactical notion of positivity and the semantical 
notion of momtorticity is interesting but very little is known about it. (See 
Exercises 1.14 and 8.8.) 

It should be pointed out that the generalization of the results we have 
proved so far to monotone inductive definability and to positive inductive 
definability relative to infinitary languages depends on the Aczel-Kunen 
version of the proof of the key Stage Comparison Theorem 2A.2. My own 
version of this proof depended on the results about positive formulas in the 
next chapter and yielded direct extensions of the theory only for the (syntac- 
tically) finitary languages in (2) above. 

There are many other natural notions of inductive definability for which 
the theory of the first three chapters does not extend directly. For example, 
take all S-positive Cl formulas q ( X ,  S) in the language of a structure 91 and 
use these to define fixed points and positive Xi-inductive relations. Our proof 
of the Stage Comparison Theorem 2A.2 does not extend to this case, because 
it defines <&+ by an induction that has more quantifier alterations than 
either cp or $. The notions of inductive definability that usually arise in 
recursion theory are often restrictedin a like manner. Still other notions involve 
noninonotone inductions which we have not even defined here-in any case 
our proofs in both the Transitivity Theorem 1C.2 and the Stage Comparison 
Theorem 2A.2 depend heavily on monotonicity. Recently there have been 
some very exciting results about nonmonotone inductions, e.g. see Richter 
[1971], Aczel and Richter [1972], [1973], Aanderaa [1973]. 

It is often the case that when the proofs we gave here fail to extend to some 
more general notion of inductive definability, the results we have proved are 
still true. One would guess that almost any reasonable notion of inductive 
definability will satisfy appropriate versions of the very elementary structure 
properties we have been studying in these first three chapters. 
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Exercises for Chapter 3 

P(u, v, X) such that: 
3.1. Let R(X) be a rZ$ relation on N. Prove that there is an elementary 

(a) For each X, ((u, v): P(u, v, X)} is a linear ordering. 
(b) R(X) o ((u, v): P(u, v, Z)} is a wellordering. 
HINT: Use the representation of (1.12) and in the notation of that problem 

Put 
P(u, v, %) e for  suitable ul, . . ., urn, vl ,  . . ., vk, 

= (U1y . . .y urn) & v = (v1, * * .y  V k )  

& 1 I&, 2) & 1 qqv, Z) 

Lk ([Ul < V l l  

v [Zll = v 1  & u2 < l4 
v ... 
V [Ul = V 1  & 112 = V 2  & . . . & Uk = Vk & m > k]}.  4 

3.2. Using the representation in Exercise 3.1 for a rZ! relation on N, put 

o(X) = order type of ((u,  v): P(u, v, Z)} if% E R. 

Prove that o is an inductive norm on R. 
HINT. Use Exercise 3.1 and the obvious way of comparing wellorderings. i 

This is the classical easy proof for the Prewellordering Theorem on N. 
We will see in Chapter 8 that it cannot be extended to many other structures, 

3.3. Suppose <* are hyperdementary wellfounded relations on the 
infinite structure '3 such that rank(<,) < rank(<,). Prove that the relation 

P(X, j )  o Z E Field(<,)  & j  E & p"(X) = p < ' ( j )  

is hyperelementary. -I 

We will use the following convenient notation in the next two problems: 
if R E. A"xA", put 

if R is wellfounded, 
if R is not wellfounded. rank(R) = {jyt(R) 

For infinite A,  clearly 

R is wellfounded e rank(R) < IAI'. 
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3.4. Let Pl(Ul, 5,, Xl), P2(U2, C 2 ,  X2) be hyperelementary relations on the 
infinite structure 21. Prove that the relations 

Q(x,, X2) e {(El, U1): P,(Ul, C1, X1)} is wellfounded 

& rank({(U,, 5,): P(U,, 51, 2,))) 

< rank({(c2, G 2 ) :  P2&, c2, x2)}), 
R(Xl,  -fz) e {(U,, 6,): P,(ii,, cl, X,)} is wellfounded 

8L Yank({@,, 51): P l ( U l 9  51, X1))) 

< rank({(u,, 52): P2(&, 52, .2>>> 

are inductive. -I 

3.5. Prove that if P(U, 5, X) is hyperelementary on the infinite structure 9I 
and 5 < I C ~ ,  then the relation 

Q(3) o rank( { (17, 2)) : P(C, 6, X)}) < ( 
is hyperelementary. i 

3.6. Let cp(X, S )  be an S-positive formula in the language over an infinite 
set A .  Prove that the set Ip  built up by cp is the unique relation P which admits 
a norm cr: P + 2 such that for every 2, 

i x E P o cp(X, {y: j <f X}). 



CHAPTER 4 

GAMES AND GAME QUANTIFIERS 

We establish here a basic connection between positive inductive definitions 
and open, infinite games. This is useful conceptually for the new insight that 
it brings into inductive definability, but it will also prove a powerful technical 
tool. 

4A. Interpreting quantifier strings via games 
Suppose R is an n-ary relation on some set A and 

Q = Q1, Q27 . * - 7  Qn 

is a string of n quantifiers, i.e. each Qi is 3 or Q. With and R we associate 
the two person perfect information game G(Q, R), described as follows. 
There are two players, call them (3) and (Q) and a run of the game consists of 
their choosing a sequence xl, . . ., x, of elements of A .  For each i, 1 6 i < n, 
xi  is chosen by (3) if Qi = 3 and x i  is chosen by (V) if Qi = Q. The game is one 
of perfect information in that the player who chooses x i  is allowed to see 
xl,. . ., xi-l  before he makes his move. At the end of the run, (3) wins if 
R(x,, . . ., x,) and (Q) wins if i R(x,, . . ., x,). 

A winning strategy for one of the players is a systematic way of playing 
which will produce a win for that player in every run of the game. More 
precisely, a strategy for player (Q) (Q = 3 or Q = Q )  is a set 

9’ = (fi: Qi = Q }  

of functions, one for each i at which it is (Q)’s turn to play and such that f i  
has i -  1 arguments. (A function of 0 arguments is simply an element of A.)  
The player (Q) follows strategy 9 if he plays 

xi = fi(x1, . . ., Xi-1)  

for each i such that Qi = Q. We call 9’ a winning strategy for (Q) if (Q) wins 
every run in which he follows 9’. 

For example, if 
Q = 3, Q, Q, 3, 

53 
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then a winning strategy for 3 is any pair f l  E A ,  f 4 :  A x A x A 4 A such that 

@x2)(vx3)R(f1,  x2, x3, f4 ( f17  x2, x 3 ) ) 7  

i.e. any pair of Skolem functions for the assertion 

(Qx)R(x) * ~ 3 x l ~ ~ v x ~ ~ ~ v x 3 ~ ~ 3 x 4 ~ ~ ~ x 1 ~  x27 x 3 7  x4)* 

This is true for an arbitrary string Q and an arbitrary relation R, so that in 
fact 

(Qx)R(x) e (Qtx1) * * * (Qnxn)R(xl, * - *, xn) 

e (3)  has a winning strategy in G(Q, R) 

c> (3)  wins G(Q, R). 

Notice the distinction between winning a run of G(Q, R) and winning 

One nice thing about this interpretation of truth for assertions in prenex 
G(Q, R),  i.e. having a winning strategy in G(Q, R). 

form is that it works equally well for infinite strings of quantifiers. If 

Q = Qo, Qi ,  - . ., Qi,  - - 
is any infinite string and R G "A is any relation of infinitely many arguments 
on A, we may define the game G(Q, R) exactly as before, only now it is an 
infinite game: a run of it produces an infinite sequence f = (xo, x l ,  . . ., 
xi , .  . .) and (3) wins the run precisely if R(f).  Strategies are defined exactly 
as in the finite case, except of course that {i: Qi = Q }  may be infinite. And 
as before, 

(Qf)R(f) * { ( Q o ~ o ) ( Q ~ ~ ~ ~  * - * (Qixi) * * .}R(x07 XI, - - - 3  xi, * - *) 
* (3) wins G(Q, R);  

this can be taken as the definition of truth for assertions in prenex form with 
an infinite prefix, or it can be easily verified if another definition is given, 
e.g. via Skolem functions. 

Infinite strings of quantifiers and their game-theoretic interpretation have 
been studied in Henkin [I9611 and Keisler [1965]. The advantage of consider- 
ing such games is that they often provide a direct and intuitive understanding 
of complicated arguments involving strings of quantifiers, whether infinite 
or finite. As a simple example, consider the equivalence 

(Qoxo) * . . (Q"-lx"-l){(Qnxn)(Qn+~Xn+l) * . } R ( x 0 7  . . a 7  xn7 X ~ + I ,  * . 
* {(Qoxo)(Qlxl) * * * (Qnxn) * * * }  R ( x 0 7  ~ 1 7  - *7xn7 xn+1, * * - 1 7  

which asserts that our interpretation of quantification by infinite strings 
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allows for absorption of finite strings at the beginning. The left-hand side 
means that (3) wins the game 

determined by the string Qo, Q,, . . ., QnW1 and the relation 
G(Qo, . . . 7  Qn-1, P )  

P(x0, . * - 9  Xn-1) 0 ((Qnxn)(Qn+1xn+i) * * .}R(xo, XI, * . .) xn, x,+1, * . .), 
while the right-hand side means that (3) wins the game 

G(Q, R )  
determined by the string Q = Qo, Q1, . . ., Q,, Qnfl,  . . . and the relation R. 
Assume the left-hand side; now (3) can win G(Q, R )  by playing first to win 
G(Qo, . . ., Qn-l, P )  and once xo, xl, . . ., xnUl have been played, then playing 
to win the game that insures P(xo, xl, . . ., xn-J is true. Similarly, if the 
right-hand side is true, then (3) can win G(Qo, . . ., Qn-l, P )  simply by playing 
to  win G ( 0 ,  R)  for the first n moves; because once xo, x l ,  . . ., x,-~ have been 
determined in this way, then (3) can go on to play and insure that R(xo, 
xl ,  . . ., x,, x,+~, . . .) holds, which means precisely that P(xo, xl, . . ., xflp1) 
is true. 

A similar but much simpler argument shows that if P(yl , .  . ., y,), 
R(y , ,  . . ., y,, xo, xl, x2, . . .) are relations on A ,  the first m-ary, the second of 
infinitely many variables, then 

P ( Y ~ ,  . . - 3  VJ 8~ ((Qoxo)(Qix,). . .)R(yl, . . ., Y,,, xo, ~ 1 ,  . . .) 
* {(Qoxo)(Qixi) . . - } [ p ( ~ i ,  * . .> Y,) &. R ( Y ~ ,  . . .) Y,. x o ?  x i ,  . . .)I 

and similarly for disjunction, 

P(yi, . + - 9  urn) v ((Qoxo)(Qlx1). . .)R(.Y~, * . *, ~ m ,  ~ 0 ,  XI, * . .) 
* ((QoxO>(Q1xd. . .P"Y~, . . ., J],) v Wl, . . ., Y,, xo, xl ,  . . .>I. 

These simple facts suggest that we can treat infinite strings formally much 
as we manipulate finite strings. We will often use these properties tacitly, 
often with a vague reference to "ordinary logic". 

We must be careful though, because not all formal rules that are obeyed by 
finite strings hold also for the infinite ones. The main exception is the trans- 
formation which allows us to push the negation sign through a string, 

7 ( W ( 3 Y ) R ( X ,  Y )  * (3X)(WT R(x, Y l .  
We now look into this a bit more carefully. 

The dual of a finite or infinite string 
Q = Qo, Qi,. . ., Qi, .  . . 

is defined by 
0" = Qo", Q?, . . ., Qy, . . ., 

3 
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where 
3" = v, V" = 3. 

From the interpretation we have immediately 
(V) wins G(Q, R )  * (3) wins G(Q", --I R), 
(3) wins G(0, R )  - (V) wins G(Qu, i R).  

Hence if either (V) or (3) wins G(Q R), we have 
i ( Q f ) R ( f )  0 (3) does not win G(0, R )  

* (V) wins G(Q, R )  
* (3) wins G(Qu, i R )  

* ( Q " f ) l R ( f ) ,  
i.e. we can push the negation through a string of quantifiers by changing the 
string to its dual. 

If 0 is a finite string, then surely either (?.Y)R(.Y) or ( @ ' Z ) i R ( Z )  by 
ordinary logic, so that either (3) or (V) wins G(Q, R). This is not true €or all 
infinite strings and all R as is shown in Gale and Stewart [1953], but it does 
hold in the important special cases of open or closed R. 

An infinitary relation R cw A is open if €or suitably chosen Ro, R , ,  . . ., 
Ri ,  . . ., 
R ( x ~ ,  X I , .  . . , x i , .  . .) Ro(x0) v RI(X0, XI) v . . . v Ri(x0, X I , .  . . , x i )  v . . . 

0 View R j ( ~ o ,  . . ., xi), 

i.e. R can be written as an infinite disjunction of finitary relations. Similarly, 
R cw A is closed if it can be written as an infinite conjunction of finitary 
relations, 

R ( x ~ ,  X I , .  . ., x i , .  . .) 0 Ro(x0) 8C RI(X0, X I )  8C . . . 8C Ri(x0, XI,. . ., XI) 8 ~ .  . . 
Aisw R i ( ~ 0 ,  . . ., xi). 

4A. 1. GALE-STEWART THEOREM. R E "A is either open or closed and 
Q = Qo, Q1, . . ., Qi, . . . is an infinite string of quantijiers, then either (3) or 
(V) wins G(0, R )  and hence 

1 ( Q f ) R ( f )  * (Q"f )l R ( f ) .  

PROOF. It is enough to consider the case of open R ;  because if R is closed, 
then -I R is open and hence either (3) or (V) wins G(@, i R), i.e. either (V) or 
(3) wins G(Q, R).  Assume then that 

W o ,  x1, . . .) - Robe) v Rl@O, X I )  v . . ' 
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and 

(1) 7 {(Qoxo>(Qixi) - . .}[Ro(xo) v Ri(xo, xi) v . - 1 9  

i.e. (3) has no winning strategy in G ( 0 ,  R). We will describe informally a 
strategy for (V) so that at each step i of the game, when xo, xl, . . ., xi have 
been determined, 

(2) i 

(3) i 

lRo(xo),  l R l ( x 0 ,  xi), * . - 3  TRi(xo, XI, . * .) xi), 

7 {(Qi+i~i+i)(Qi+~~i+2) * . *}[Ri+i(xo, . * - 9  xi+l) 
v R i + Z ( X O ,  . . ., Xi+2) v . . .]. 

To start the game, we can pull out the first quantifier from (I), 

l(Qoxo){(Qixi)(Qzx2) - . .}[Ro(xo) v Ri(xo, XI)  v R2(xo, xi, ~ 2 )  v - * - 1 9  

whence we get by ordinary logic 

(Q$xo)7 {(Qixi)(QzxJ . . -}[Ro(xo) v R ~ ( x o ,  xi> v Rz(xo9 xi, ~ 2 )  v * * .I. 
If Qo = 3, then Qg = V, so no matter which xo (3) picks we have 

(4) 7 {(Qixi)(QzxJ . . . } [ R o ( ~ o )  v R,(xo, xi) v R ~ ( x o ,  XI, ~ 2 )  v * * -1. 
If Qo = V, then Q; = 3, so (V) can play some xo so that (4) holds. Hence at 
step 0 of the game we have (4), which by ordinary logic implies 

7 Ro(xo), 

7 ((Qixi)(Qzxz> . . -)[Ri(xo, xi) v R2(~01 xi, ~ 2 )  v . . .I, 
i.e. precisely (2)0, (3)0. 

The argument is similar for arbitrary i .  Assuming (2)i, (3)i, either Qi+l = 3 
and then no matter which xi+l is picked (2)i+l, (3)i+1 hold, or Qi+l = V and 
then (V) can pick some xi+l so (2)i+1, (3)i+1 hold. At the end of the run all 

-I (2)i hold, which implies that (V) has won. 

4B. A canonical form for positive formulas 

games is the following simple result of predicate logic. 
The key to the connection between positive inductive definitions and open 

4B.1. CANONICAL FORM FOR POSITIVE FORMULAS. Let q(S) be an S-positive 
formula in the language 5fA over a set A ,  where S is n-ary. Then there is a 
quantijier free formula 

e(z, u) = e(zl, . . ., z,, ul ,  . . ., u,,) 
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with .free variables Z, U and the free variables of rp, and a string 

Q = Q1,. . .,Q, 
of quantijiers, such that whenever S $ A", 

ch. 4, 4B 

PROOF is by induction on the definition of formulas in which S occurs 

Case 1 : S does not occur in q. Then for S ; A", 

positively. 

q - h  v W)S(U)l 
from which we get (*) by putting q in prenex normal form and bringing all 
the quantifiers in its prefix and then (VU) to the front. 

Case 2 :  q(S) = S(I). Then 

q(S) - (VU)[U # t v S(U)]. 

Case 3: q(S)  = (Qx)ll/(x, S), where Q = 3 or Q = V. By induction 
hypothesis there is some 0 and some 8 so that if S A", then 

+(x, S )  0 (Qz)(vu)[e(x, Z, U) s(ii)l, 
from which 

q(S)  - (Qx)(QZ)(VG>[B(x, 2, U) v S(U)l 
follows immediately. 

hypothesis there are O,, 02, Q1, Qz such that 
Case 4: q ( S )  = q,(S) & q2(S) or q(S) E rp,(S) v qz(S). By induction 

CP,(S) - ( Q l ~ l ) ( v ~ l ) [ e l ( ~ l ,  ul) v s(u1)i, 
(P2(S) * (Qz%>(Vuz)[e,(z2, U*) v S(U2)l: 

for S ; A", where we may assume that all the variables in the list Z1,ZZ, 
Ul, U 2  are distinct. 

The case for conjunction is trivial, since for S 2 A" we clearly have 

CPm 8c C p m  - ( ~ 1 ~ 1 ~ ( ~ 2 ~ 2 ) ( V U ) ~ t e l ( ~ ~ ,  .ci) &L w&, U l l  v fm). 
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For the case of disjunction, first verify by direct inspection that if S 
then 

A", 

S(U,) v S(U2)*(3z)(Vii){[(z = zi, v z = U 2 )  & Z  # U ]  v S(U)); 

e(z,z,, ~ , , 2 ~ ,  ziz, u) - e,(z,, ul) v e2(z2, u2) v [(z = u, v z = uz)  &z z ii1 

q,(S) v P2(S) * ( Q l ~ l > ( Q , ~ , ) ( ~ u , ) ( ~ ~ 2 ) ( 3 ~ ) ~ ' i Z ) [ ~ ( ~ ,  51, "1,225 CZ, 4 

here 5, ii are fresh lists of variables of length n. Now take 

and verify directly that for S 2 A", 

v S(ii)]. -I 

The restriction in equivalence (*) to S 2 A" is essential, since the right-hand 
side is automatically true if S = A" while the left-hand side may be false, e.g. 
if q(S) is a false formula in which S does not occur. However, Lemma 2A.1 
implies that for the purpose of studying the induction determined by a 
formula q(I, S )  we may as well assume that q ( X ,  A") is true, in which case 
q ( X ,  S )  is equivalent to a formula in canonical positive form for all S .  

4C. Explicit formulas for inductive relations 

4C.1. THEOREM. Let A be an infinite set and 

q(x, S )  = (Qz)(vu)[e(x, z, ii) v S(U)] 

a formula in the language PA over A ,  where I = xl, . . ., x,,, Z = z,, . . ., z,, 
ii = El, . . ., u,, S is an n-ary relation symbol and Q = Q,, . . ., Q, is a string 
of m quantijiers, let I, be the relation built up by q. Then 

(1) I E I,  o ((Qz,)(vu,)(Q~,)(vuZ) . . .)[e(x,z,, u,) v e(u,, z2, ~ 1 ~ )  

v e(ii2, z,, 2,) . . .I. 

PROOF. We first prove direction (e) of (1) by showing its contrapositive, 

z 4 I, => 7 ((QI,)(vo~)(Qz~)(vu~) . . .)[e(x, zl, u,) v e(%, 52, t j 2 )  v . . .I. 
For this it will be sufficient to assume X f$ I ,  and then describe a winning 
strategy for (V) in the game determined by the right-hand side of (l), call it G. 

Since I,  is a fixed point of the operator defined by q(I, S),  we have 

X E 1, * qG7 4J7 

I 6 I ,  0 ( ~ u z ) ( q l  e(x, z, u) & ii 4 I,]. 

so taking negations and using the canonical form for q ( X ,  S ) ,  

(2) 
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Now by assumption the right-hand side of (2) holds, so (3) has a winning 
strategy for the finite game determined by it. Let (V) pluy by this strategy in G 
until ?,, are determined. We then have 

-IQ(X,Z,, E l )  & E l  # I,, 
so the right-hand side of (2) holds with X = Ul and (V) can play again follow- 
ing (3)'s winning strategy in this game until Z,, U2 are determined so that 

le(u,,z,,  u2) & u2 4 I,. 
It is clear that if (V) continues to play in this manner by the strategies 
guaranteed to him by (2), he will insure that 

lo(.?, zl, ii,) & l e ( u l ,  z,, u2) & lqu,, 53, u3) & . . . 
and hence win G. 

Putting 

R(X) (=> {(Qz,)(vu,)(Qz,)(vu,) . . .}[e(x, zl, ul) v qcl,  z2, u2) v . . .I, 
we have now shown that 

(3) R E I,. 

To complete the proof it will be enough to verify that R is a fixed point of 
p(X, S),  since Iq is the least fixed point of q ( X ,  S ) ,  so that we will then also 
have I, E R. We compute: 

q ( X ,  R) (Q.?)(Vi)[8(X, Z, U) v R(u)] 
.=> (Qz)(vii)[o(x, z, U) v {(Q5,)(VB1) . . .}[d(U, zl, GI)  

v e(ul,z2, u2) v . . .I] 
(~z)(vi)[{(~z,)(vu,) . . .)[e(x, z, U) v e(u, zl, u,) v . . .I] 
{(Q~)(VG)(G,)(VU,) . . .}[e(x, 2, ii) v e(u, zl, ul) v . . .I 

* W), 
where the last two steps are by the trivial logical properties of infinite 

-1 quantifier strings which we discussed in Section 4A. 

As an immediate corollary of this theorem we get an elegant characteriza- 

Recall that P is a fixed point on 2l = <A,  R l ,  . . ., R,)  if there is some 
tion of inductive relations on a structure. 

S-positive formula q ( X ,  S )  in the language of 'u such that P = I,. 

4C.2. FIXED POINT NORMAL FORM THEOREM. A relation P on an infinite 
striictiire '% is afixedpoint if and only if there is a formula 

o(x,z, U) = qx,, . . ., x,, zl, . . ., z,, ul, . . ., u,,) 
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PROOF. If P is a fixed point, then P = Iq and we can assume by 4B.I and 
the Stage Comparison Theorem 2A. 1 that 

(4) V(x, S )  e (Qz)(vu)[e(x, z, U) v S(G)] 
for some quantifier free 8, from which (*) follows by 4C.1. On the other 
hand, if (*) holds with any 8, then we can take p(X, S )  to be defined by (4) 

-1 and (*) follows again by Theorem 4C.1. 

The result of course gives immediately a normal form for inductive 
relations which is a bit more complicated than that for fixed points. 

These normal forms are in terms of infinite formulas, but we should 
emphasize the regularity of the infinite strings of quantifiers and the infinite 
disjunctions involved. Looking at (*), the infinite string is repeating, i.e. of 
the form 

Q, V", Q, V", Q, V", . . 
where Q is a string of length m and V" = VV . . . V (n times). The matrix is an 
infinite disjunction of substitution instances of the same elementary formula, 
the substitutions themselves being of an obvious regular pattern. It is this 
canonical form of the infinitary expression in (*) which allows us to prove 
that any P thus defined is a fixed point. 

Exercises for Chapter 4 

4.1. Prove that every II: relation P(Z) on the structure N satisfies 

P ( X )  + ((~z,~(vy,)(Qz,)(~y,~ . . .}rw, x, zl, yl) v wl, z2, Y,) v . . .I 
with a string Q = Q1, . . ., Q, of quantifiers, a sequence ii = a , ,  . . ., ak of 
integers and a quantifier free formula 

e ( ~ ,  z, 1) - e(ul ,  . . ., ul,  zl, . . ., z,, Y ~ ,  . . ., Y J  

built up only from the symbols =, d and variables. -1 
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4.2. Let I bc an infinite cardinal, let 
F:  A + L n  

be some canoiiical mapping of I onto the sets constructible before 1, e.g. the 
function F in Godel 119401. Prove that the relation 

P(% 5 )  * FW E F(5) 
is inductive on = (A, <). (You will need a bit of set theory to do this.) -I 

4.3. Prove that if x is a set of ordinals, then 
x is constructible * (3I)  [x is hyperelementary on ( A ,  <)I. i 

4.4. Prove that iff:  A -+ A is hyperelementary on 2I = ( A ,  R,, . . ., R,), 
-I then for each a E A the set Orbit(f, a) is inductive. 

We outline the proofs of some simple model theoretic facts which will be 
useful for the construction of examples and counterexamples. 

A type on x over a structure 'u is a collection CD of formulas in the language 
of ?I such that every formula 'p E q(x) in CD has no free variables, except 
perhaps x. We say that @ is finitely satisfiable in 2l if for every finite set 
'p,, . . ., 'pn of formulas in CD there is some c in A so that 

CP~(C) & (P~(c) & * 1 * & cPn(c) 
is true. We say that @ is realized in ?I if there is a fixed c in A such that 
~ ( c )  is true for every ~ ( x )  in CD. 

If F is a collection of types over 21, we call ?I F-saturated if every type in 
.Y which is finitely satisfiable is realized. This is the interesting and useful 
notion. For example, 2l is K,-saturated if 2I is F-saturated with 

CD E .Y o there arefixed constants a,, . . ., a, such that the constants 

There are many theorems on the existence of saturated models, but for 

in every 'p E @ are among a,, . . ., a,. 

our purpose two simple ones will suffice. 

4.5. Letf: A )-H A be apermutation on A (one-to-one, onto function) such 
that for each a E A both Urbit(f,  a)  and Urbit(f-', a) are infinite and there 
are infinitely many distinct orbits. Prove that the structure 2I = ( A ,  G,) is 
KO-saturated, where 

G,(x, Y )  0 Y = . f W .  
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HINT: Use the Compactness Theorem to prove that if a, ,  . . ., are the 
only constants in ~ ( x ,  a,, . . ., a k )  and { x :  q(x ,  a,, . . .) a,)] contains infinitely 
many members of Orbit(f, ai) v Orbit(f-', ui), then for every b not in 
Orbit(f, a j )  v Orbit(f-l, aj), j = 1, . . ., k, we have Orbit(f, b)  v Orbit(f-', b) 
c {x: q(x, a,, . ., a,>>. -I 

A collection of formulas Y is a pretype on x, ul ,  . . ., u, over CU if every 
formula cp in Y has its free variables among x,  u , ,  . . ., uk.  For each a,, . . ., a k  

in A ,  Y then defines the type 

{cp(x, a17 . -7  ak): v(x, ult - . - 3  E y]- y a t ,  , . ., ak = 

If X is a collection of pretypes in the language of 'u, then the collection of 
types generated by .% is defined by 

~ ( a )  = {ym,. . ., ak: Y is a pretype in .% on x, u l , .  . ., uk and 
a,, . . ., a k  E A ) .  

4.6. Let CU be a countable structure and X a countable collection of 
pretypes on CU. Prove that there is a countable elementary extension b of 2l 
which is .%(B)-saturated. 

HINT: Use the Henkin-type argument of adding witnesses for the proof of 
the Completeness Theorem to obtain a complete theory which extends the 

-I theory of CU and defines the needed structure. 

We now come to the result which ties up  these ideas with inductive 
definitions. 

4.7. Prove that there is a fixed countable collection X of pretypes in the 
language with relation constants R,, . . ., R, and no individual constants such 
that whenever CU = ( A ,  R,,  . . ., R,)  is .%(%)-saturated, then for every 
Spositive cp(2, 5') in the language of CUy 

I ,  = Un&. 
If we put cp in canonical form, 

q(x, s) - (Qz)(vEi>[e(s, z, U) v E q, 
the above equation becomes 

(*I x E I ,  - (Qz,)(viil)e(z, z,. ii,) 
" ( Q z , > ~ U l ) ( Q ~ , > ~ U 2 ) t e ( ~ ,  81, El) v w,, 22, S2ll 
v . . . .  

(Keisler [ 19651.) 



64 GAMES A N D  GAME QUANTIPIERS ch. 4 

HINT: Prove first that (*) holds if % is KO-saturated and then check your 
-I proof to see how many types you actually needed realized. 

We will call % induction saturated if it is %?(%)-saturated with some X 
satisfying problem 4.6. Clearly KO-saturated structures are induction saturated. 

4.8. Prove that there is a couiitable structure 2I such that every hyper- 
elementary relation on ' .  is elementary but there are nonelementary inductive 
relations on 4t. 

-I HINT: Use an induction saturated structure. 

4.9. Let G be a group, a, ,  . . ., ak E G and let [a,, . . ., ak] be the subgroup 
generated by a, ,  . . ., a,. Prove that [a,, . . ., ak] is inductive in the structure 
(C, P>, where 

P(x ,  y, 2)  e 2 = x * y. 

Give examples of infinite groups where [a,, . . ., a,] is always hyperelementary 
-I and where [a,, . . ., a,] need not be hyperelementary. 

4.10. Let F be an algebraically closed field, a,, . . ., ak E F and let [a,, . . ., ak] 

be the smallest algebraically closed subfield of Fcontaining al, . . ., a,. Prove 
that [a,, . . ., ak] is inductive in the obvious field structure of F. Give examples 
where [a,, . . ., ak] is always hyperelementary and where [a,, . . ., ak] need 
not be hyperelementary. -I 

In these two examples from algebra the inductions in question close at w. 
The next problem gives a natural and useful example of an inductive definition 
in group theory which in general will not close at w. It is due to K. J. Barwise. 

4.1 1.  A p-group is an abelian group G in which every element has order 
some power p" of the prime number p .  We call G divisible if for every x there 
is some y such that p y  = x. Every p-group has a largest divisible subgroup H ;  
show that this H is coinductive in the natural group structure (G,  P), but 
not in general hyperelementary. -1 

The natural coinductive definition of the largest divisible subgroup plays 
a central role in the study ofp-groups-e.g. see Kaplansky [1954]. 



CHAPTER 5 

ACCEPTABLE STRUCTURES 

The first four chapters just about cover all that is known now about 
positive elementary inductive definability on completely arbitrary structures. 
In order to prove some of the deeper and more interesting results of the 
theory, we must restrict ourselves to structures that satisfy certain definability 
conditions. For example, it is possible that every inductive set on % is 
elementary (see Exercise 1.15) and hence we must place restrictions on 9 l  to 
ensure the existence of nontrivial inductive sets. 

The useful hypothesis seems to be that we can code finite sequences from 
A by single elements of A so that both the coding and decoding functions are 
elementary. We introduce here acceptable structures where this can be done 
and prove that in such structures there exist nontrivial hyperelementary sets 
as well as "universal" inductive relations. 

Some of the ideas of this chapter have been introduced in the exercises at 
the end of Chapter 1. 

5A. Coding schemes 
A coding scheme for a set A is a triple 

%? = (N", <", ( >"> 
such that: 

(1) 

(2) 

N" c A ,  <" is an ordering on N" and the structure (N", <") is 
isomorphic to the integers (0, 1,2, . . .> with their usual ordering, 
( )" is a one-to-one function mapping the set U n > 0  A" of all finite 
sequences from A into A .  

In the second condition we include the empty sequence in the domain of 

With each coding scheme there are naturally associated the following 

Seq"(x) o for Some x l ,  . . ., x,,, x = ( x l ,  . . ., x,,)" (where the case 
x = (0)u: of the code of the empty sequence is covered by the con- 
vention that xl, . . .) x,, = 0 if n = 0). 

{ )', as the only sequence of length 0, i.e. Ao = (0). 

decoding relations and functions : 

(3) 

65 
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Here lhw maps A into "e, so that 0, 1 , .  . . are the elements of Ng which 
correspond to the integers 0, 1 , .  . . under the unique isomorphism of 
< N e ,  GV) with the integers. 

xi i f for  some x l ,  . . ., x,, 
x = ( x l ,  . . ., x,)" and I < i < n, (5) i 0 otherwise. 

qg(x,  i) = (x)? = 

We call the coding scheme %? elementary (or hyperelementary) on a structure 
91 = ( A ,  R 1 ,  . . ., R , )  if the relations and functions NQ, Ge, Seqw, Ih%, q" 
are all elementary (or hyperelementary). It follows then that each of the 
functions 

P ~ ( x , ,  . * *, x n )  = ( X I , .  . ., xn> 

is elementary or hyperelementary accordingly, since 

p:(x,, . . ., x,) = u e Seqe(u) & Ihw(u) = n 
& q y u ,  1) = x1 & . . . & qyu,  n) = x,. 

We call % acceptable if it admits an elementary coding scheme. 
tn practice we will be working with a fixed coding scheme in a given situa- 

tion and we will not bother to put in the superscripts in the objects N,  <, ( ), 
Seq, Ih, q. It is, however, a sticky technical point that some of the definitions 
and results we will state for acceptable structures make explicit reference to 
a particular coding scheme, while others are coding free, i.e. they only depend 
(for their proof) on the availability of some elementary coding scheme. It is 
sometimes important to keep this clearly in mind. 

Relative to a fixed coding scheme we have the obvious successor function 
on N ,  

s(n) = n+ 1 = m c> [n < rn & (Vi < m)(i < n)], 
which is of course elementary if %? is elementary. One of the nice things about 
acceptable structures is that functions defined by recursion on N are elemen- 
tary. 

5A. I .  THEOREM. Let ?I be an acceptable structure, let %? be aJixed elementary 
coding scheme on 21, let g : A" + A, h :  An+2 --f A be elementaryjiinctions and 
define f :  A"+I + A by the following recursion on N :  

f ( t ,  X )  = 0 i f t  $ N,  
f(0,  3 = 9(3, 

f(k+ I ,  3) = h(f(k, X), k ,  2). 
Then ,f' is elementary. 
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PROOF. Check that 

f ( k ,  5) = z - [k $ N & 2 = 01 

v ( ~ w ) ( ( w ) ,  = g(5) & (Vi < k)[(w)i+, = h((w)i+l, i, 3 1  
& ( 4 k + l  = Z I ,  

where the abbreviations are obvious. This implies trivially thatfis elementary. 
-I 

It  follows easily from this that all recursive functions on N to N are 
elementary, and then that all arithmetical relations and functions on N are 
elementary, where these notions are relative to a fixed elementary coding 
scheme on an acceptable structure. We will not need these facts in their 
full generality, but we will use them in simple specific cases without apology, 
e.g. to assert that addition or multiplication is elementary. 

We have already mentioned in the exercises of Chapter 1 that the structures 
N and [w of arithmetic and analysis are acceptable. There are many other 
interesting structures, however, which are not acceptable, e.g. 

Nl = (K,, <>. 
But all of these are almost acceptable, in the sense that there is a finite list 
R;, . . ., R:, of hyperelementary relations such that 2l’ = (CU, Ri, . . ., R;) is 
acceptable. We know then that the expanded structure CU’ has the same 
inductive and hyperelementary relations as N, it has the same closure ordinal, 
and for all practical purposes we can substitute 2l’ for !!I in studying inductive 
definability on 2L We leave these results for the exercises since they are not 
hard, but some of them are very important for the applications of the theory. 

5B. Satisfaction is hyperelementary 

We code here the formulas of the language of an acceptable structure, 
using a fixed coding scheme, and we show that the satisfaction relation is 
hyperelementary but not elementary. 

Suppose then that %? is an elementary coding scheme on 2l = ( A ,  R1, . . ., 
RJ, where for 1 < i d I, Ri is ni-ary. Recall that the language of N has a 
constant c for each c E A .  Let us assume for definiteness and simplicity that 
the variables of the languages are vl, v2, . . . and that the only logical symbols 
are i, &, 3, the others being abbreviations. 

To each variable vi we assign (0, i )  as code and to each constant c we 
assign (1, c) as code. In symbols, 

r ~ ;  = (0,  i), 
rc’ = (1, c:. 
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For the prime formulas, put 

rRi( t l ,  . . ., tnJ1 = (2, i, rtll, . . ., rtn,’) 

‘t = s’ = (3, rt’, ‘s’). 

(1 < i < I) 

Finally, for more complicated formulas we proceed by induction, 

r l ( p ’  = (4, ‘40’>> 

‘40 *’ = ( 5 ,  ‘40; rP)Y 
‘(3ui)q1 = ( 6 ,  i, ‘40’). 

Of course these definitions are relative to the fixed scheme V, but we will 
indicate this (by a subscript) only when we need to emphasize it. 

5B. 1. LEMMA. Let %? be a fixed elementary coding scheme on the acceptable 
structure Z, put 

Fml@(a) e a is the code of some formula. 

Then Fml” is elementary. 

PROOF. It is easy to verify that 

PrFml(a) e a is the code of some prime formula 

is elementary. We then have by the usual analysis of induction, 

Recall that 
X I ,  x2, x3,. . - rp 

means that rp is true if we interpret u1 by x l ,  u2 by x2, etc. 

5B.2. THEOREM. Let %? be a j x e d  elementary coding scheme on the acceptable 
structure Z, put 

Sate(a, x) e LZ is the code of some fortnrda (p & Seq(x) and 
( X ) I ,  (x)2, . . - 3  (X)Zh(x) ,  0, 0, * . * 9- 

Then Sat is hyperelementary but not elementary. 
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PROOF. Put 

Val(a, x, t )  0 a is the code of some formula v, and Seq(x) and 

( [ t  = 0 & (x);, (x>;, . . . kv,] v [ t  = 1 &L (x);, (x);, . . . k l v , ] } ,  

where we have used the convenient notation 
( X ) i  i f i  d Zh(x), { 0 i f i  > Zh(x). (x); = 

We will prove that Val is inductive. From this the theorem follows im- 
mediately, since 

Sat(a, x) e Val(a, x, 0) 

e Fml(a) & i Val(a, x, 1). 

It is easy (though tedious) to verify that the relation 

PrVal(a, x, t )  e a is the code of some prime formula v, and 

{".>;, (x);, * * . b) & t = 01 
v [((x);, (x>;, * * - b l v , )  &L t = 13) 

is elementary. We will omit this computation. 
Put 

x(a, x, r, S )  o Fml(a) & (PrVal(a, x, t )  

v [a = (4, ( 4 2 )  & W),, x, 1) & t = 01 

v [a = (4, ( a ) J  & w 4 2 ,  x, 0) & t = 11 

v [a = ( 5 ,  ( 4 2 ,  ( 4 3 )  & W),, x, 0) S((43,  x, 0) & t = 01 

v [a = ( 5 ,  ( 4 2 %  ( 4 3 )  & [S((a)*, x, 1) v S((43, x, 1)1& t = 11 

v [a = (6 ,  ( 4 2 ,  ( 4 3 )  

v [a = <6, (a),, ( 4 3 )  

& (3Y"Vi # (a)z)[(v): = ( 4 1  & S(W3, Y ,  011 

& (~Y'Y>[(Vi # (a),)[(v): = (x)fl =- S((43, Y ,  111 & t = 11). 

t = 01 

Clearly x is S-positive in the language of 91. It is easy to check 

(a ,  x, t )  E V U ~ ( U ,  x, t) 

by induction on 4, and 
Val(a, x, t )  * (a, x, t )  E I, 

by induction on the complexity of the formula that a codes. 



70 ACCEPTABLE STRUCTURES ch. 5,  5C 

To see that Sat is not elementary, consider the relation 

R(x) e ~ S a t ( x ,  ( x ) ) ;  

if Sat were elementary, R would be elementary, so letting a be the code of 
some formula 'p which defines R with the free variable v l ,  we would have for 
all x 

R(x) e Sat(u, ( x ) )  

which is absurd for x = u. -I 

From this we get immediately: 

5B.3. COROLLARY. If 2l is an acceptable structure, then there exists a 
-I relation on 2l which is hyperelementary but not elementary. 

This is a coding-free result, i.e. its statement does not refer to any coding 
scheme for the structure. 

5C. The quantifier G 

. . ., R,) and for each n f  1-ary relation R(z, X) on A put 
Let %? be a fixed coding scheme on the acceptable structure 2l = <A, R,, 

(*) (G'z)R(z, X) {(vs'sl)(3tl)(vs~sz>(3t2) . - .}[R(<0), 2) v R((s1, tl), 

v R((si, ti ,  SZ, f2), X) v . - .I 
@ ((vSl)(~rl)(vs2>(3t2) * . .I 

V m s m  R(<si, t l ,  . . ., sm, t,), X). 

This defines a quantifier G = G" which is associated with the structure 21 
and the coding scheme V. We proceed to show that if %? is elementary on 'u, 
then the inductive relations are precisely those of the form (Gz)R(z, 2) with 
R elementary. 

5C.1. THEOREM. Let %? be an elementary coding scheme on 2l = ( A ,  R1, . . ., 
R,), let R E Anil be elementary, put 

P ( 2 )  o (Gz)R(z, X) 

* {(Vsl)(3t,)(Vs2)(3t2) . . .} V m e m  R((s1, t l ,  - . ., s,, t,), X). 

Then P is inductiue. 
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PROOF. Choose cp so that 
cp(w, X, S) o Seq(w) & [Ih(w) is even] & {R(w, X) v (Vs)(3t)S(wn(s, t ) ,  Z)}, 

where wnu is the obvious concatenation function, 

z = wnu e Seq(w) & Seq(u) & Seq(z) & Ih(z) = Zh(w) + Zh(u) 

& ("i < W w ) ) [ ( Z ) i + l  = ( w ) i + l l  

& (Vi < Ih(w)+Ih(u))[lh(w) < i 3 (Z)i+l = ( u ) i - l h ( w ) + l l .  

We will prove 

(1) (Gz)R(z, 3 * (<0>, 3 E 1, 
in two steps. 

Step 1: ((sl, t l ,  . . ., s,, t k ) ,  X) E Z i  

* { ( v s k + l ) ( 3 t k + l ) .  . .} V m E O  R ( ( s 1 ,  t l ,  . .? sk+m, f k + m ) ,  

Proof is by induction on <. The hypothesis gives 

(2) R(<sl, t l ,  * . . I  sk, ? k ) ,  

v ( v s k + l ) ( 3 f k + l ) ( < S 1 ,  l l ,  * . ., s k + l ,  t k + - l ) >  U s < c  
which by the induction hypothesis and ordinary logic yields 

(\ilSk+l)(3fk+l){(vsk+2)(3tk+2) * ~ ) [ ~ ( < ~ l ,  tl, . * - 9  s k ,  tk), jZ> 

vmCm R(<sl, t l ,  . * )  S k + l + m ,  t k + l + m ) ,  x)l 
which in turn gives the right-hand side of Step 1 by absorbing ( v s k + l ) ( 3 f k + l )  

into the infinite string. 
Now taking k = 0 in Step 1 we get 

(3) (<0>, 3 E 4 p  (Gz)R(z, 3 
which is half of the equivalence (1). 

Step 2: ((@), X) $ Zq 
ProoJ: We show that if ((@), Z) $ Zv, then (V) wins the game determined by 

i ( G z ) R ( z ,  3). 

(Gz)R(z, Z), i.e. (3) wins the game determined by 

{ ( 3 s l > ( v t 1 ) ( 3 s 2 > ( v t , )  * . * }  A m  ~ R ( < s l :  t i ,  * * * >  s m ,  t m > ,  2). 

Since (<0), 2) Zv, we have i cp(<@), X, I,), which immediately implies 

7R((0), 82 ( W ( V t J ( s 1 ,  t l ) ,  # 1,. 

( ~ ~ 1 ) ( ( ~ 1 , ~ 1 > ,  3 $ 1,. 

Let (3) play some s1 such that 
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For any t l  that (V) plays, we have ((sl, t l ) ,  2) 4 I,, so again icp((sl, tl>, 
X, Z,,,), hence 

1R((s,, t l>, 3 & ( 3 2 )  (Vtz)(<s,, t l ,  s2, f 2 ) ,  2) 4 1,. 

Now let (3) play some s2 such that 

(Vt2)((Sl, t l ,  8 2 ,  t2>, 3 4 I,, 
etc. Clearly (3) will win by this strategy. -I 

5C.2. THEOREM. Let %? be an elementary coding scheme on 'u, let P s A" 
be inductive. Then there exists an elementary R G A"+l such that 

P(X) * (Gz)R(z, 2). 

PROOF. Assume first that P is a fixed point. By 4C.2 we know that there is 
an elementary O(%,Z, J )  and a finite string Q SO that 

P ( x )  .=> {(Qz,)(V~l>(Qz,)(vjj2) . . .}[e(?, zl,jjl) v Vg=1 K V m ,  z m + 1 ,  Ym+l) I .  

By adding extraneous quantifiers we can assume that Q is alternating of 
even length starting with V, i.e. 

W) * {(VU1)(3Ul) . * * ( ~ ~ t ) ( W ~ - V l )  . - * ( b n ) W t + l ) ( % + l )  . ' 
( V U A ~ ~ ~ ~ ) . .  .H@, ~ 1 ,  ~ 1 , .  . ., u,, u t , y l ,  . . .,vn) v V%1..  .I. 

Now the obvious idea is to introduce n vacuous quantifiers in each of the 
blocks of the form ( V j m )  so that the string becomes alternating, like that in 
the definition of G, and then check what happens to the matrix. What does 
happen is that we can take 

R(z, X) Q Seq(z) & (3i){Zh(z) = (i+ 1)(2t+2n) & [R,(i, z,  X )  v R2(i, z ,  Z)]}, 

where 

Rl(i, z,  2) * i = 0 & G (z)1, ( ~ 1 2 ,  . . ., ( ~ 1 2 ~ ~  ( ~ ) 2 ~ + 1 ,  (Z)2 t+3, .  . ., (~ )2~+2 , , -1 ) ,  

RZ(i, Z, X) * i > 0 & 8((Z)2it+2(i-1)n+l, (Z)2it+2(i-l)n+3, . - - 7  (Z)2it+2in-1, 

( ~ ) 2 i t + 2 i n + l ,  (z)Zit+~in+2, * . .? ( ~ ) 2 i t + 2 i n + 2 t ,  

(~)2 i t+2in+2t+1> (~)2it+2in+2t+3, . . - 3  (~)2i t+2in+2t+2n-J,  

and then verify immediately as soon as we manage to read this formula that 
P(x)  0 (Gz)R(z, 2) 

with this R. We leave the verification as an exercise. 
If P is not a fixed point, then 

P(X) - Q(C,  S) 
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with Q a fixed point and fixed constants 5, hence 

P(X) o (Gz)R(z, 5, 2) 
with R elementary, so that if 

R*(z, X) o R(z, ii, X), 

then 
P(X) o (Gz)R*(z, X), 
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A relation P is called G ,  if it satisfies 

P(X) (Gz)R(z,  X) 

with an elementary R and G = G' for some elementary coding scheme %?. 
Thus the two theorems of this section assert that on an acceptable structure 
the G, relations are precisely the inductive relations. It will turn out that this 
version of 5C.2 is not only elegant but also very useful. 

The quantiJer G" dual to G is naturally defined by 

(G"z)R(z7 X> * ((3sl>(vtl)(3sz)(vt,) * - .> Am,, R((s1, t l ,  - . ., sm7 tm>, z) 
o i (Gz)  i R(z, X). 

Then the coinductive relations on an acceptable structure are precisely the 
GY relations, where GY is defined relative to any elementary coding scheme. 
The hyperelementary relations are those which are both G I  and GY, i.e. 
G ,  n Gy. 

5D. Parametrizations and universal sets 

If G E S x Y, then for each x E 3 we define the x-section of G by 

G, = ( y  E %: (x, y )  E 3). 

(See Fig. 5.1 .) 

L I 
x I 

Fig. 5.1. 
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We say that G parametrizes a collection % of subsets of g if 

9 = ( G , : X E % } ;  
in this case % is often called the domain of G and we call G an %-para- 
metrization of 9. 

It is a very common problem in many areas of mathematics to search for 
"nice" parametrizations of interesting classes of sets. We solve this problem 
here for the elementary, hyperelementary and inductive relations on an 
acceptable structure. 

5D. 1 .  THEOREM. Let '2l be an acceptable structure. For each n 2 1, there is a 
hyperelementary En E: A"+l which parametrizes the elementary n-ary relations 
on 91; i.e., if R c A", then 

R is elementary o for some a E A ,  R = E," = {X E A": (a, 2) E En} .  

PROOF. Let %' be a fixed elementary coding scheme for QI and put 

E"(a, X )  o Satv(a, (X)). 

Now for each fixed a, the section E," is elementary, since either a does not 
code a formula and E," = 0 or a codes some formula (p(vl,  . . ., 0,) whose free 
variables are among u l ,  . . ., v, and 

X E E: o ( a ,  X) E E" o Safe(a,  (X)) 

cp((<X>>;, (<X>)L  * * - 7  ((2));). 

On the other hand, if R(Z) is elementary, we can take a to be the code of 
some cp(vl, . . ., v,) which defines R with free variables vl, . . ., v, and we have 

i R(Z) o Sat(a,  (X)) o E"(a, X) o Ez(X). 

We can consider this result as a coding-free version of the fact that SatQ 
is hyperelementary, no matter which elementary coding scheme % we choose. 

It is easier to parametrize the inductive sets before we go to the hyper- 
elementary case. 

5D.2. PARAMETR~ZATION THEOREM (for inductive relations). Let '2l be an 
acceptable structure. For each n 3 1 there is an inductive U" C_ A"" which 
parametrizes the inductive n-ary relations on '2L 

PROOF. Choose hyperelementary E" 5 A"+l which parametrize the elemen- 
tary relations by 5D.1 and set 

U"(a, X )  o (Gz)E"+'(a, z ,  Z), 

where of course G is defined relative to some elementary coding scheme %? 
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Now the coding scheme %? is elementary on the structure (%, E"+l), hence 
U" is inductive on % by Theorem 1D.2. On the other hand, if P is inductive 
on a, then 

for some elementary R by 4C.2, hence for some fixed a E A ,  
P(Z) e (Gz)R(z, X )  

P(X) o (Gz)E"+'(a, z, X )  o U"(a, 5). -I 

The relations U" that satisfy this theorem are called universal inductive sets. 
The idea is that U" is inductive and every n-ary inductive relation is "reducible" 
to it. 

5D.3. COROLLARY. Let % be acceptable, let U" E A"+l be a universal 
inductive set; then U" is not hyperelementary, so in particular not every 
inductive relation on (11 is hyperelementary. 

PROOF. Put 
P(x1, . . ., X") - 1 u y x 1 ,  X I ,  x2, . . ., x.). 

If U" were hyperelementary, then P would be inductive, so that for some a 
P ( x l ,  . . ., x,) - U"(a, xl, . . ., x,) 

which is absurd if x1 = a. -I 

The construction of parametrizations for the hyperelementary relations 
is a bit more complicated, partly because we want a very strong result. The 
key tool is the Covering Theorem 3C.2. 

5D.4. PARAMETRIZATION THEOREM (for hyperelementary relations). Let 91 
be acceptable. For each n 2 1 there is an inductive H" E A"+l which para- 
metrizes the n-ary hyperelementary relations on %. Moreover, there is an 
inductive, non-hyperelementary set I" E A and a coinductive €?' E A"+l, such 
that: 

(i) I f R  -C A" is hyperelementary, then R = H," for some a E I". 
(ii) If a E I", then H: = 8;. 

PROOF. For simplicity we assume n = 1 ,  the general case being only a 
notational variant. Let U' E A2 be a universal inductive set, let 6: U' + K 
be an inductive norm on U1 by 4A.3, and let < $, c be the inductive relations 
associated with 6 in Section 4A. Put 

I Y a )  - W ( U ) l ?  (a),), 

m a ,  x) [ ' (a) tk ((a),, x) <: ((all, (U)A 

m a ,  x) - 1 K ( U ) l 2  (a)2) <*, ((a),, .)I. 
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It is immediate that f' and H' are inductive, that 1' is not hyperelementary 

For every a, either i Z ' (a )  and H,' = 0 or P(a)  and in this case 
by 5D.3 and that l?l is coinductive. 

HXx) * o((a>3, XI G o((a),, (a121 

* ((a13, x) G :  ((a113 (a121 

* lC((a>lY (a>z> <: ((U13Y XI1  
u fi;(x). 

This proves that each H,' is hyperelementary and it also proves (ii). 
To complete the proof it will be enough to prove (i)y so let R G A be a 

hyperelementary set. Since R is in particular inductive and U' is universal, 
there is a fixed b such that for all x, 

R(x) o U'(b, x). 

Now the function 

f(x) = (b, 4 
is elementary, so the Covering Theorem 3C.2 applies and there must exist 
some (c,  d )  E U' such that 

R(x) o(b, x) < ~ ( c ,  d) .  
Put 

a = (c, d, b ) ;  

now 

H,'(x) 0 U'(c, d )  & (by x) <: (c,  d )  
0 U'(b, x) 

e R(x) .  -i 

The coinductive set I?' together with H" give a hyperelementary definition 
of H i ,  "uniformly" for a E I". 

Exercises for Chapter 5 

5.1. Prove that a structure 2I = ( A ,  R 1 , .  . ., R,) is acceptable if and only 
if 2f has an elementary copy of o, (21 admits an elementary pair and the class 
of elementary functions on '21 is closed under definition by primitive recursion 

-i on the copy of o (see Exercise 1.4). 
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5.3. Prove that if 2l = ( A ,  R1,. . ., R,)  is acceptable, then there exist 
disjoint inductive subsets P, Q of A which cannot be separated by a hyper- 
elementary R, i.e. there is no hyperelementary R such that P E R, Q n R 
= 0. (Inseparability Theorem.) 

HINT: Take P = {a: ((&,a) E U1>, Q = {a:  ( ( U ) ~ , U )  E U 1 >  and then 
-1 reduce P and Q by 3A.4, where U' is a universal inductive set. 

If C is a set of finite sequences (of any length) from A and %? is a coding 
scheme on A ,  put 

(Z)% = { ( x , ,  . . ., xn)": ( X I ,  . . ., x,) E c> 

5.4. Prove that if %',, %'z are elementary coding schemes on 2I and C is a 
set of finite sequences on A ,  then (C)"l is elementary if and only if (C)ez is 
elementary. -I 

Given '2I = ( A ,  R1, . . ., RJ, let us call 23 = ( B ,  P , ,  . . ., P,) an acceptable 
extension of 2l if 23 is acceptable, A _c B and A ,  R1,. . ., Rl are all hyper- 
elementary on 23. It is easy to characterize the relations on A which are 
inductive on every acceptable extension of '2I in the following manner. 

Choose some object 0 6 A and a pairing function so that neither 0 nor 
any element of A is a pair, i.e. a set B 2 A u (0) and a one-to-one function 

p : B x B - + B  

such that 0 $ p [ B  x B],  A n p[B x B] = 0. Let A* be the closure of A u (0) 
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under p ,  i.e. A* is the smallest set containing A u (0) and closed under p .  
We associate an element n* of A* with each integer n by the induction 

o* = 0, 

(n+ I)* = p(n*, 0) 

and we put 

N *  = {O*, 1*, 2*, . . .}. 
Let 

O,l* = (A* ,  A, R1,. . ., R,, N*, Gp),  

where G, is the graph of the pairing function p ,  

(4 Y ,  4 E G, *Ax, Y )  = z. 

5.5. Prove that for each infinite %, the structure %* admits a hyper- 
elementary coding scheme. Moreover, a relation R on A is inductive on %* 
if and only if R is inductive on every acceptable extension of 2t. 

HINT: It will be enough to show that every acceptable extension of 2l 
-1 contains a hyperelementary copy of %*. 

The problem implies in particular that if ?t is acceptable, then a relation 
R on A is inductive on 2t if and only if it is inductive on %*. 

In the papers Moschovakis [1969a], [1969b],, [1969c] we took the point of 
view that in  constructing inductive definitions on a structure % we should 
be allowed to quantify over finite sequences of A, or (what comes to the same 
thing) we should be free to use the first order language over %*. Thus a 
relation on A is semihyperprojective on CLI in the terminology of [1969b] if and 
only if it is inductiue on 21* in the present terminology. This was a reasonable 
approach from the recursion theoretic point of view and it leads to the same 
class of relations for acceptable structures by Exercise 5.4. Our approach 
here is more suited to comparing explicit with inductive definability on 
arbitrary structures and it is, of course, more general. 

5.6. Give an example of an infinite structure % = ( A ,  R1,. . ., R , )  and a 
-I set P c A which is hyperelementary on %* but not inductive on %. 



CHAPTER 6 

INDUCTIVE SECOND ORDER RELATIONS 

We have been studying ordinary relations of finitely many arguments on 
some fixed set A ,  i.e. subsets of A", for some n. Even if these are our ultimate 
objects of interest, their study naturally leads to certain collections of sets, 
or more generally second order relations (with relation arguments). For 
example, take a fixed structure 2l and consider the class 

%b'(%) = { S  c A :  S is hyperelementary on 21.) 

We will see that with the proper definition, Yfb'(21) is an inductive class of 
sets (if 2 l  is acceptable) and that this fact is useful in understanding the 
structure of hyperelementary relations on a. Another interesting relation on 
binary relations is wellfoundedness, 

W%l(X) e X is a wellfounded binary relation on A ;  

this too will be inductive. 
The definition of inductive relations of relations depends on the simple 

but important method of relativization. We will give it in Section 6A, where 
we will also look at some examples. In Section 6B we prove some basic 
transitivity and substitutivity results about inductive second order relations 
and in Section 6C we review the theory we have developed and establish 
that practically all the results extend directly to this wider class of relations. 
In Section 6D we study the class YZ'b'(2l) for acceptable 2l. 

6A. Relativization of inductive definitions; examples 

We introduce a new crop of variables over finitary relations, 

x7 '7 z, xl, '1, z17 * * * * 

In a given context each of these will vary over the n-ary relations over some 
set A .  As before, barred letters name sequences, 

- 
Y = Y,, . . .) Y,, 

where of course we allow k = 0 so that P is the empty sequence. 
19 
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Suppose Y(2, F)  is a second order relation over some set A .  A formula 
cp = q ( X ,  P) in the language LFA (see Section 1B) deJines B if X, 5 are the 
only free variables of cp and 

(1) Y(E, P) e cp(2, F). 
If all the relation constants in cp are among the relations of a structure 2I = 
( A ,  R,, . . ., RJ, we then call Y elementary on a. 

For example, the following second order relations are elementary : 

P ( X ,  Y)- W), 
9(X, Y ) e X c  Ye(Vt ) [ tEX*tE  Y ] ,  

9 ( X ) e R ,  n X =  0 e ( V t ) [ t 4 R I  v t $ X ] ,  

where in the last example R, is one of the relations in the structure 2I = 
< A ,  R , ,  . . -, R,). 

This is the simplest example of relutiuizution-the term is used because we 
obtain a new object, a relation of relations, by considering as variable 
(relativizing) objects which up until now we have always kept fixed, i.e. some 
of the relation symbols in cp. 

We now define inductive second order relations by carrying this relativiza- 
tion process through the stages of the induction. 

Suppose then that 

~p q(y ,  Y, S )  ~p(x1 , .  . ., x,, Y,, * * * >  Y,, S, = >  Qi, . ., Q,> 
is a formula in the language LYA over a set A,  where Q,, . . ., Q, are relation 
constants, Y,, . . ., Y, relation variables, S is n-ary and occurs positively. To 
each ordinal 5 and each sequence 5 of relations we assign the set Z$(P) by 
the induction 

and we put 
r p )  = (2: cp@, p, uq<< r;<a>, 

1 ; v )  = Uv<$;(F), 
ZJF) = U r  r;(F). 

Of course each I,$(P) depends on 5, F and Q,, . . ., Q,, but we choose to 
regard Q , ,  . . ., Q, as held constant for the discussion and Y,,. . ., Y, as 
variable. 

Each I ,$(P)  is an n-ary relation on A .  We obtain a second order relation 
on A for each 5 by putting 

Y; = ((X, Y): X E Ii<P>>, 
3z5 = Us<&, 
4, = Lh $5- 
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We call 9 ( Z , P )  inductive in Ql, . . ., Q, if there is a formula 

~p q(c, I, P, S, =, €!I, * - ., ern) 

S(Z, P) 0 (a, x, P) E Xq 
0 (Z, X) E qY). 

in which S, Ql, . . ., Q, occur positively and constants a from A such that 

Suppose 2I = ( A ,  R1, . . ., R , )  is an infinite structure. A second order 
relationB(2, H) is afixedpoint of 2I if there is an S-positive formula q ( X ,  P, S )  
in the language of 2l (i.e. with relation constants among = , R 1 ,  . . ., R,) such 
that B = Yq. We call 9’ inductive on 2I if there is a fixed point 9q and con- 
stants 5 such that 

B(2, P) 0 (a, x, P) E Xq, 
i.e. if B is inductive in R 1 ,  i R1,  . . ., R,, 1 R,. We call 9 coinductive if 19 
is inductive and we call B hyperelementary if it is both inductive and co- 
inductive. 

A common and succinct way of summarizing the relativization process 
involved here is to say that B(Z,  P) is inductive if for each P the relation 

Pi;(%) - B(i, P) 
is inductive and uniformly in P. “Uniformly” simply means that all the 
relations Py are defined inductively by the same S-positive formula cp, in 
which Y occur as parameters. This picture becomes a bit blurred if the 
relation 9 has only relation arguments, as each Pr is then a constant! 

Consider first some important and nontrivial examples. 

6A.1. THEOREM. The class W P  of wellfounded binary relations on an 
infinite structure 2I is inductive. 

PROOF. Letting Y vary over binary relations on A, choose distinct elements 
coy c1 of A and choose cp so that 

dt, x~ y~ s> * ( t  = cO & (vy)[(Y~ * (‘07 Y )  S1> 
v { t  = c1 & (Vy)[y E Field(Y) 3 (co, y )  E S ]  & x = c1 >. 

Here of course 
y E Field( Y )  0 (3z)[(y, z)  E Y v (z,  y )  E Y ] .  

We now claim that 

(*I Y E W P  - (c1, c1) E Zq( Y )  - (c1, c1, Y )  E Ya, 
so that W P  is inductive. 
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Proojof  direction (*) of (*). Let p = p y  be the rank function of Y. An 
easy transfinite induction on p(x) proves that 

x E Field( Y )  (co, x) E I,( Y ) ,  
so that eventually for some ordinal A we have 

y E Field( Y )  * (co, y )  E I;( Y ) .  

Now by the definition of p we have (c l ,  c l )  E Itf1 ( Y ) .  

Proof of direction ( G )  of (*). Since (cl, cl) E I,( Y ) ,  by definition we have 
d C 1 ,  c1, y, I,(Y))> i.e. 

(WCY E Field( Y )  * (co, Y )  E I,( Y)1. 
This induces a norm on Field( Y )  by 

a(y) = least 5 such that (co, y )  E I:( Y )  ( y  E Field( Y)) .  

To show that Y is wellfounded, it will be enough to prove 

(v, 4 E y * O(Y) < 44; 
but this is evident, since if O(X) = 5 ,  we have (co, x) E I$( Y ) ,  hence p(co, x, 
Y, I;<( Y ) ) ,  hence by the definition of q, 

(bY ' ) [ (Y ' ,  E y * (co, Y ' )  E I;v)], 
which implies o(y) < 5 = a(x). -I 

This proof is rather typical of many arguments about inductive second 
order relations. Notice that Y was carried along as a parameter throughout 
the proof. 

Another interesting and typically inductive class of sets is that correspond- 
ing to the game quantifier G on an acceptable structure. 

hA.2. THEOREM. Let be an elementary coding scheme on the structure '8, 
Put 

G' = { X  c A :  ((Vsd(3td * * - >  V m s u  [(sly t l ,  * . - 3  sm,  tm> E XI>, 
where ( ) is the tuple-coding of %?. Then Gw is an inductive class. 

PROOF. Choose p so that 

p(w, X ,  S )  0 Seq(w) & [Ih(w) is euen] 

& [w E x v (Vs)(3t)[w"(s, t )  E S ] ]  
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as in the proof of Theorem 5C.1. It is now simple to prove by the method of 
that proof that 

X E Ge o (9) E I,(X) 

* (<0), X )  E $,, 
so that GYP is inductive. -I 

6B. Transitivity, substitutivity and positive induction completeness 

We give here some basic results about second order inductive relations 
whose proofs depend on combining inductions, as in the Combination 
Lemma 1C.2 and the Transitivity Theorem 1C.3. First comes a direct 
relativization of that result. 

6B.l. TRANSITIVITY THEOREM. Let A be an injnite set, Q, el,. . ., Q, 
relations on A ,  and 9 a second order relation on A .  ZfW is inductive in Q, el, 
. . ., Q, and Q is inductive in Q,, . . ., Q,, then W is inductive in Q,, . . ., Q,. 

PROOF. By the hypothesis there are formulas 

$ $(g, 72 T )  

d c i  f, P, Q, S )  

$(g, J y  = y  Q l ,  * * * y  ern, T),  

CP ~ ~ ( 6 3  2 9  F, =, Q, Ql i  * . *, Qml 8) 

in which Q, el, . . ., Q,, T, S occur positively, and constants 6, ii such that 

7 E Q * (6, Y) E 
(E, P) E B 0 (Z, x, P) E 9, - (a, E) E IJY).  

Let x be the formula that is assigned to cp and $ by the Combination Lemma 
1C.2. There are various constants in x, but Q1,. . ., Q, occur positively in 
x and 

has the variables t ,  U, J ,  U, E, P.  By (5) of 1C.2, for each Y, 
x = x(t, U, J7 ij, x, Y 7  U )  

(3,  x) E Z,(F) 0 (c l ,  U*, j * ,  5, E) E Z,(Y). 
Hence 

(X, Y) E W e (a, E, F) E Yq 0 ( e l ,  u*, y*, ii, x, r) E 4,, 
and 2 is inductive in el, . . ., Q,. -I 

This is the most obvious way to relativize the proof of 1C.2 and obtain 
a result about second order relations. But there are other ways of looking 
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at that proof which lead to substitution theorems, of particular interest for 
second order relations. 

Suppose g ( X ,  Z,  Y )  is inductive in Q , ,  . . ., Q,, where Z varies over j-ary 
relations on A .  We say that 9 depends positively on Z if there is a formula 

(1) q(’7, X, Z, Y ,  S) = ~(5, X, Z, Y, S, =, Ql, . . ., Q,) 
in which Z ,  S ,  Ql, . . ., Q, all occur positively and constants ii such that 

(2) 
It would be more proper linguistically to say that ‘‘B depends positively on 
its first (or nth) relation argument,” but no confusion will be caused by this 
slight abuse of syntactical terminology. 

The idea is that we can substitute inductive relations for the variables on 
which 9 depends positively and the result is still inductive. In order to get 
the most mileage out of this idea we prove a simple representation theorem 
which allows us to deal with “negative” or even arbitrary dependence. 

9(?, z, P)  0 (a, ?, 2, P)  E 9q. 

6B.2. THEOREM. Suppose%?(?, 2, F) is inductive in$xedrelations el, . . ., Q, 
on an infinite set A .  There exists a relation 9 + ( Z ,  Z,, Z2,  P), positively 
dependent on Z,, Z2 and inductive in Q,,  . . ., Q,, such that 

9(?,2, Y ) e W + ( l , Z ,  l Z ,  7 )  
e 9 + ( X Y  z, {jj: 7 4 Z} ,  F). 

PROOF. We first assign to each formula q ( Z )  and variable 2 a formula 
qt(Z1, Z,) in which Z,, Z ,  both occur positively and such that 

4 G )  .3 cPt(Z, 1 Z ) ;  
we do this by pushing the negation sign 1 through all the logical symbols 
until it applies only to prime formulas and then replacing each Z(Z) by Z,(t) 
and each iZ(i)  by Z,(t). If 

q(Z> _= 44% z, S) 

X E & ( Z ) e  x E I,+(Z,lZ). 

9(?, z, F) - (5, x, 2, P) €9q 

is S-positive, it follows by a trivial induction on that 

Hence ii‘ 

is inductive in Ql, . . ., Qm, we can take 

9 ’ t ( X ,  z,, z,, F)  .3 (a, X ,  z,, z2, Y )  E .Yp+ 

-I and we have the desired equivalence. 
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6B.3. SUBSTITUTION THEOREM. Suppose W(X, Z, B), b(J, X, 7) are second 
order relations on the infinite set A, where Z varies over j-ary relations and J 
varies over j-tuples, consider the substitution 

B(X, r) e W(X, {y: q y ,  2, P)}, P). 
If 9, B are inductive in Q,, . . ., Q, on A and W depends positively 011 2, 

If W is inductive in Q,,  . . ., Q, on A and 9 is hyperelementary in Q,, . . ., 
then B is inductive in Q,,  . . ., Q,. 

Q,, then W is inductive in Q,, . . ., Q,. 

PROOF. It is convenient to first prove the following slightly different- 

Lemma. If 9(Z, 7, Y), W(3 ,  2, Y) are inductive in Q,, . . ., Q, and W 

looking substitution rule, 

depends positively on Z,  and $9 is defined by 

P(Z, x, P) * W ( f ,  {y: 2(Z, y, F)}, F), 
then B is inductive in Ql, . . ., Q,. 

Proof. By hypothesis there are formulas 
*=*( -  - - - 61, z, YY y Y S),  
cp = q(6 ,  X, 2, Y, T), 

1 ( Z ,  y, P) 0 (6, I, j j )  E Zfi(Y), 
W(X, 2, Y) - (2, X) E ZJZ, F). 

and constants 6, c^ such that 

The proof hinges on the observation that we can relativize the proof of the 
Combination Lemma 1C.2 not only by adding relation variables throughout, 
but also by considering both the relation Q and the constants U as variables. 
Substitute then throughout the proof of 1C.2, 

z f o r  Q, 
6,Z for G. 

x = x(t, ii, Z, y, ij,z, Y, U )  
We get a formula 

with several additional constants in which Q,,  . . ., Q, occur positively and 
which has the following property: for each fixed Z, P, if 

Q ~ , Y ( J )  * (ti,% J )  E Z&), 
then 

(G, X) E I+,(&,?, P) 0 ( ~ 1 ,  f*, Z*, y*, ij, Z) E Zx(F). 
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Taking ij = C, we get 
W(X, Q Z , ~ ,  L) 0 ( ~ 1 ,  U * ,  Z*, y*,  E ,  X, F) E .YX, 

which completes the proof of the lemma, since 
9 ( Z ,  X, P)  * 9(Z7 { J :  Q(Z, J ,  L)}, P) 

*W(X, { y :  (6, Z, J )  E I*(T)}, Y) 
* +@(% QF,?, F). 

The first assertion of the theorem follows easily from the lemma by 
verifying directly from the definition that if 2(j ,  X, r) is inductive in Q,, . . ., 
Q,, the11 so is 2'(2, j ,  P)  defined by 

2'(X,  y ,  P)  0 2(j ,  x, F) 

Pyx, P )  - 9 ( X ,  x,r>. 
and that if 9 ( T ,  X, P) is inductive, then so is Y ( X ,  H) defined by 

Both of these are trivial. 

6B.2. We have 
The second assertion follows from the first by an application of Theorem 

9(X,Z, F>*B~(x-,Z, l Z ,  L). 
Now by the first assertion, 

Yl(Z7 z*, f7) * 9 t ( x ,  { J :  2(J, x, P)}, z,, L) 
is inductive and by the first assertion once more, applied to 12, 

.P*(X, P) c > P l ( X ,  {y: 12( j ,X ,  P)}, L)  
-B?f(x, { J :  q y ,  x, P)}, { y :  1 2 ( y 7  x, Y)}, Y )  

is also inductive. But trivially, 

.P,(x-, P) 0 W(X, { J :  9(j, x, P))). 4 

This theorem of course applies to the special cases when 2 has no relation 
arguments: If 9(i, 2, P), Q ( J ,  X) are inductive in Ql, . . ., Q,, and W 
depends positively on 2, then 

Y(Z, 7) 0 W(X, { J :  Q ( j ,  T)}, F) 
is also inductive in el,. . ., Q,. Similarly, if Q(J)  does not depend on the 
variables X and is inductive in el, . . ., Q, and if 9(i, 2, L) is inductive in 
Q,, . . ., Q, and depends positively on 2, then 

P(?, F) o W(2 ,  Q, P) 
is inductive in Q1, . . ., Q,. 
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For some applications it is not convenient to quote directly 6B.3, but we 
must combine it with Theorem 6B.2 to prove that a particular complicated 
substitution leads to an inductive relation. 

If 9 ( Z ,  2) is inductive in Ql, . . ., Q, and depends positively on Z and if 
X varies over n-tuples and 2 over n-ary relations, we can define an operator 

I?: Power(A") -+ Power(A") 

r(z) = {x: a ( ~ ,  z)}. 
Such operators are called positive, inductive in Q, ,  . . ., Q, and it is easy to 
verify that they are monotone. Our next result establishes that their fixed 
points are also inductive in el, .  . ., Q,. In recursion theoretic treatments of 
these matters, this result is called a Recursion Theorem, see Exercise 6.2. It is 
in truth a completeness result, since it shows that the monotone operators 
defined by positive, elementary inductions lead to no more fixed points than 
the positive elementary inductions themselves. 

6B.4. POSITIVE INDUCTION COMPLETENESS THEOREM. Let el , .  . ., Q, be 
fixed relations on the infinite set A ,  let 9 ( Z ,  2) be inductive in Q , ,  . . ., Q, 
and positively dependent on Z ,  put 

r(z) = {z: w(x, z)}. 
Then r is a monotone operator, the set Ir built up by r is inductive in Q , ,  . . ., Qm 

and the closure ordinal of r is < K(A, Q,, . . ., Q,). 

PROOF. By hypothesis there is a formula 

CP(% X, Z,  S )  d e ,  % Z  S, =, Qi, . - a ,  Q3 
in which Z ,  S, Ql,  . . ., Q, all occur positively and constants a such that 

x E r(z) 0 (a, Z) E IJZ). 

Let 1; be the stages of r as in Section IA, 

1; = N J q < g  13 = {x: d a ,  I, z, u4<c IF)}, 
p = u q < c I ; .  

Here of course, for any 2, 
I $ ( Z )  = {(U, Z): q ( U ,  x, z, r;r(z))}, 
I , (Z)  = U$$(Z). 

It is worth pointing out that each 1: is monotone as an operator on 2, 

z, c zz - fi(Z,) c z:(z2); 
4 
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this is easily proved by induction on 5, using the hypothesis that Z occurs 
positively in cp. 

Put now 
$(U, x, S )  0 cp(ii, 2, {X': (Z, 2') E S } ,  S). 

The theorem will follow easily from the following two steps. 

Step 1 : For every U, X, 

(U, X) E 1; - (ii, X) E z$(Ifr). 

Proof of Step 1 is by transfinite induction on 5. Assume the induction 
hypothesis and notice that for every 5 < 5, 

(a, X) E I:, * (a, X) E I$(Z>{) 

* (a, 2) E I,(I;[) 
3% € I $  

(by ind. hyp.) 

(by def. of I , (Z))  

(by def. of I;). 

(by def. of I f )  

(by the remark above 
and monotonicity) 

(by ind. hyp. and 
monotonicity) 

(by monotonicity of 
in Z )  

(by def. of I i ( Z ) ) .  

Now compute: 

(U, X) E 1; cp(U, X, (2': (a, 2)  E 

* cp(U, x, I:<, I;r) - cp(% 2, GC, U*<C I ; ( G " )  

* cp(U, X, I:<,  Us<e Z;(Z;<)) 

* (U, X) E z$(I;C) 

Step 2: For every U, I, 

(U, 2) E I;({%': (a, 2') E I , } )  * (U, 2) E I,. 

Proof of Step 2 is also by induction on 5 .  Put for convenience 

J$ = (Z': (Z, X') E I,) 
and compute: 

@ 7  3 E Ig(J,) * dfi, 2, J,, &=TJ,)) (by def. of I:@)), 
(by ind. hyp. and 
monotonicity of cp in S )  
(by def. of 5,) 
(by def. of I)) 

* cp(K 2, J,,  1,) - cp(U, X, (2': (Z, X') E I , } ,  I*) - +(U, 2, 1,) - (U, X) E I,. 



Ch. 6, 6B TRANSITIVITY, SUBSTITUTMTY AND POSITIVE INDUCTION COMPLETENESS 89 

Now by Step 1,  using monotonicity repeatedly, 
x E J ,  * (a, X) E I ,  

=- (a, X) E I$ ,  for some 5, 
* (a, Z) E z;(l;e) 
* (a7 3 E I+Xzr) 
* Z E  I, ,  

and by Step 2 
X E r(J,) * (6, Z) E IJJ,) 

=> (a, 2) E z, 
* X E J # ;  

i.e. J+ c Ir and r(J,) c J,, so that J, = Ir, and Ir is therefore inductive in 

Also, if 1 = 11i)II is the closure ordinal of $, then the equation Zr = J,  
Q,, - - *, Qm. 

implies 
x E I ,  * (a, X) E 15, for some 5 < /I 

=> (a, x) E Zi(Ir'5) 

* (a, 2) E I,(Zr'5) 

* Z E  I ; ,  

so that the closure ordinal of I' is Q 1 < K(A,  el,. . ., Q,). 4 

We now collect in one theorem the simple properties of inductive second 
order relations on an infinite structure. Proofs are immediate from the 
preceding results and the methods of Section 1D. 

6B.5. THEOREM. The class of inductive second order relations on an inznite 
structure 'ill is closed under the positive operations &, v , 3,  V, it is closed under 
A-valued hyperelementary substitution 

q x ,  P) s- B(fI(2, Y), . . .,f,(X, F), P) 

P(Z, P) - W(X, { y :  1(J, x, P)}, P), 
and it is closed under the operation of relation substitution 

(*I 
whenever W(X, Z ,  P) depends positively on Z or 1 is hyperelementary. 

The class of hyperelementary second order relations on CLZ includes all 
elementary second order relations and is closed under all the elementary 
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operations 1, &, v , 3,  V and A-valued hyperelementary substitution as well 
as (*). 

If  Q,, . . ., Q, are hyperelementary on 'u, then the structure (a, Ql,  . . ., Q,) 
has the same inductive second order relations as the structure 'u. 

If 9 ( E ,  Z )  is inductive on 'u and positively dependent on Z,  then the operator 

r(z) = 1%: 9 ( ~ ,  z)> 
is monotone, the set Zr built up by it is inductive on 'u and its closure ordinal 
is < K % .  

Every inductive second order relation is II: on 'u and hence every hyper- 
4 elementary second order relation is A: on 'u. 

Here of course Il: second order relations are those of the form 
P(X, F) 0 (VZ)L%(X, P, Z), 

where 9 is elementary. 

6C. Extension of the theory to second order relations 

We list here versions for second order relations of the most significant 
theorems in Chapters 1-5. In most cases the old proofs work with very 
minor modifications (mostly notational) and we shall omit them. 

If (X, F) E 4, for some fixed point 4,, we naturally put 
Ix, Fl, = least 5 such that (2, L) E 4: 

= least 5 such that x E Iz(F). 
Notice that if q ( X ,  Y, 5') is in the language of an infinite structure 2l and 
(2, Y )  E 4,, then 

This is immediate from the definition, since for each fixed P the sequence of 
stages (I:(Y)}  is defined by an ordinary first order induction on the structure 

IX, PI, < rC(",F). 

( ' u 7  n. 
The Stage Comparison Theorem follows exactly as before. 

6C. 1. STAGE COMPARISON THEOREM. Let q ( X ,  P, S), I&, V, T )  be formulas 
in the language of an infinite structure 21, respectively positive in S, T. Define 
the relations <:,$, <& by 

(2, Y) <;,$ (2, W )  + (E, Y) E 4, & [(Z, W) 4 4, v 12, q, < 1.5, Vl,], 
(X, Y) <f,$ (5, W ) e ( X ,  P ) d ,  & [(Z, W ) # 4 $  v IF, PI, < 15, TI$]. 

Then both <:,,, <:,, are fixedpoints of the structure 'u. i 
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From this we get immediately the extended version of Theorem 2B. 1. 

6C.2. THEOREM. Let q ( X ,  P, S )  be S-positive in the language of an inJnite 
structure %. For each I < K", the set §$ is hyperelementary on %. In particular, 

4 if Jlcpj/ < K", then 4, is hyperelementary on a. 
Here 

I[qII = least l such that = .Y; = ,9;c 

= supremum{(x, PI, + 1 : (x, P) E $,}. 
The supremum in this definition of 119 I/ is over a set of cardinality 21%1 and 

we may very well have )1q111 = JQlJ+. Thus for these second order inductions 
the Closure Theorem 2B.4 may fail. It is worth stating as a theorem the 
existence of such examples since they will be useful later on. 

6C.3. THEOREM. There are structures % in which the class$f%'-' of well- 
,founded binary relations is elementary. On such structures there are formulas 
q(?, F, S )  such that 9, is elementary but IIqI/ = l%l+  > K". 

PROOF. Take % = ( V  , E r Va), where I is a limit ordinal with coJnaZity(2) 
> o and VJ. is the set of sets of rank less than I .  We then have 

Y d W 9 '  * Y has no infinite descending chains 

* ( V f )  { [f is a function & Domain( f )  = w 

& Range(f) E Field( Y)]  -+ (3i)(f(i+ l ) , f ( i ) )  $ Y } .  

Following the idea of the proof of Theorem 6A.1, put 

q(x ,  Y, S )  c> x E Field( Y )  & (Vy)[(y, x) E Y * y E S ] .  

It is easy to prove by induction on 5 that 

(*) 
where 

From this it follows immediately that ll(pll = IPIJ+. But if WF'  is elementary 
on %, surely 4, is elementary on a, 

-1 

We will prove later that the extended Closure Theorem for second order 
inductions does hold for countable, acceptable structures. This depends on 
the fact that for such structures all I l j  relations are inductive, which fails for 
structures in which VF1 is elementary. 

(x, Y )  E 4; e- x E Field(Y) & Y r x i s  well founded of rank < (, 

Y f x = {(u, u )  E Y :  (u, x) E Y } .  

(x, Y )  E 4, o Y t x is wellfounded. 
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Going on to the structure results of Chapter 3, we call a norm 

0 : P - A  

on a second order relation9 inductive if there exist relations y,,, ju9 inductive 
and coinductive respectively such that 

q x ’ ,  Y ’ )  3 (VX, Y)([P(X, Y) & b(X, Y) < b(X’, P‘)] 0 $& P, X’, P’) 
-j,,(Z, Y, X’, Y)}. 

We associate with a norm 0 the relations <;, <: defined by 

(X, Y) <: (X’, Y’) 0 9 ( X ,  r) & [19(X’, r’) v o(X, Y) < b(X‘, P’)]¶ 
(X, P )  <: (X’, F’) * 9 ( X ,  Y) & [-i9(F’, Y ’ )  v 0(X, F) < b(X’, F’)]. 

The same proof as in Theorem 38.1 shows that if 9 is inductive, then a norm 
CT on 9 is inductive if and only if <:, <: are inductive. Theorem 3A.2 
extends directly and leads immediately to the extended version of the Prewell- 
ordering Theorem. 

6C.4. PREWELLORDERING THEOREM. Every inductive second order relation 
-I on an infinite structure 2€ admits an inductive norm. 

The Reduction Theorem for inductive second order relations and the 
Separation Theorem for coinductive second order relations foIIow as in 
3A.4, 3A.5 and we will not bother to state them explicitly. 

There are partial (but significant) extensions of 3B.1, 3B.2, 3B.3. 

6C.5. HYPERELEMENTARY SELECTION THEOREM. Suppose 9 ( X ,  Y, Z) is an 
inductive second order relation on an infinite structure Ql, where Z varies over 
m-tuples from A .  There are inductive relations 9 * ( X ,  P, Z), B**(X, P, Z) 
such that 

(1) 9’ G P, 

(2) 

(3) (VZ)[Y*(X, F, 2) * l P * * ( X ,  Y, Z)]. 

exists a hyperelementary 9* c 9 such that (VX, P)(3Z)9*(X, F, Z). 

(3Z)Y(X, Y, Z) =3 (3Z)Y*(X, Y, Z), 
(32)9(X, P, Z) 

In particular, i f 9 ( X ,  P, 2) is inductive and (VX, P)(35)9(X, Y, Z), then there 
-I 

The reason why 3B.I does not extend to the case where Z may vary over 
relations is that Z is quantified in the proof of 3B.1. 
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The Rank Comparison Theorem 3B.4 does not extend to wellfounded 
relations on sets because of a similar quantification over the field of the 
relations in the formula q of the proof. 

The Boundedness and Covering Theorems also do not extend directly to 
second order relations since they are generalizations of the Closure Theorem. 

The various extensions of the theory discussed in Section 3D relativize 
directly and yield extensions of the second order theory. No great ingenuity 
is needed for this. 

From Chapter 4, it is worth putting down the relativized version of 4C.2. 

6C.6. FIXED POINT NORMAL FORM THEOREM. A second order relation 9 on 
an infinite structure % is a fixed point if and only if there is an elementary 
formula e(3, P,  Z, ii) in the language of 2I and a string of quantifiers Q such 
that 

(*) P(X, 7) - {(~z,)(vii,)(~z,)(vtrz> . . .}[e(z, P, z,, 21,) 

0 { ( ~ ~ , ~ ( v i i , ~ ( ~ ~ , ) ( ~ i i , ) .  . . p ( x ,  w,, ul) 
v e(ul, P,z,, ii,) v . . .I 

v v i3 e(iii, P, z ~ + ~ ,  iii+4. 

In fact, everyfixedpoint on rU satisfies (*) with a quantiJSer free 0. 
Moreover, B depends positively on Y j  if and only if (*) holds with some 

-I O(X, L, 3, ii) in which Yj  occurs positively. 

This again gives a normal form for inductive second order relations which 
we will not bother to put down. 

Suppose now that 91 is acceptable. The results of 5A and 5B extend 
trivially to second order relations and we will not bother to list them 
explicitly. It is worth, however, putting down the extensions of 5C.1, 5C.2 
and the Parametrization Theorems 5D. 1, 5D.2. 

6C.7. THEOREM. Let % be an elemeatary coding scheme on 2l, let G = GQ 
be the game quantiJier associated with % by (*) of 5C. A second order relation 
P(Z, P)  is inductive on 2I if and only if there is an elementary relation W(Z, X, 7 )  
such that 

(*) 9 ( X ,  L) e- (Gz)W(z, X, P) 
* 

+ . -1 V r n s w g ( ( s 1 ,  t l ,  - . *, sm, tm>, X, PI. 
Moreover, 9 depends positively on Y j  if and only if (*) holds with some 
W(z, X, F)  which is definable by a formula O(z, X ,  y )  in which Yj  occurs 
positively. -I 
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If 

g(x, 7) a @(XI, . . ., X", Y1, . -3 Yk) 
is a second order relation, where Y j  is rj-ary, we call the sequence 

v = (n, r l ,  . . ., r,) 
the signature of P; we then call B v-ary. We also call (r l ,  . . ., rk) the signature 
of the sequence of variables Y,, . . ., Y,. 

6C.8. THEOREM. Let 2I be acceptable. For each signature v = (n, r,, . . ., rk) 
there is a hyperelementary relation Q" of signature (n + 1, r l ,  . . ., rk) which para- 
metrizes the elementary second order relations of signature v, i.e. for each 92 of 
signature v, 

is elementary -for some a E A ,  

w = 8:: = ((2, T): (a, X, 7 )  E S"}. 

For each v, there is u universal inductive relation W of signature (n+ 1, r l ,  
. . ., rk), i.e. an inductiue W suclz that for each 92 of signature v, 

9 is inductive 0 for  some a E A, 

9 = = ((3, P): (a, X, H) E@;). 

Sitnilurly, there is a universal l l i  relation 9' of signature (n + 1,  r,, . . ., rk) 
i.e. a relation 9" suclz that for  each W of signature v, 

92 is o for  some a E A ,  
3 = 9'; = ((2, F): (a, X, F ) E ~ ' } .  

PROOF is by direct relativization of the proofs of 5D.1 and 5D.2. To define 
8" for a signature v = (n, r l ,  . . ., rk), we look at the definition of E" as given 
in the proof of 5D.2 relative to the structure (a, y) ,  for any fixed P of 
signature ( r , ,  . . ., rk), i.e. we put 

€"(a, X, F) e Sat%(a, ( x ) )  is true, for (Z, F). 
Looking back to the inductive definition of Satv: in 5B.2, it is easy to see that 
it is uniform in the particular relations of the structure involved and depends 
only on the number of arguments they have, i.e. the signature of the sequence 
R, ,  . . ,, R,, Y , ,  . . ., Y,, if '% = ( A ,  R1,. . ., R,) .  By this we mean that the 
formula x in the proof of 5B.2 written down for the structure (a, P) will 
simply carry 7 as parameters and hence 

Sat'c(a, (X), 7 )  .c> Sat%(a, (2)) holds for  (a, P) 
is hyperelementary and so is 8". 
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From this the result about W follows immediately as before, by using the 
quantifier G. 

We can use the same method with the quantifier V to get the result for 
if we show that every Ill second order relation of signature v is of the form 

(W9(Z, 2 7  Y), 
where 9 is elementary and Z varies over subsets of A ,  i.e. if we show how to 
reduce a prefix of the form 

(=l)(vz2) - * . (~GI), 
where Zi varies over k,-ary relations to just ('42) keeping the matrix elemen- 
tary. But this follows immediately from the equivalences 

(vz c A r ) 2 ( z ) - ( v Y G  A)9({(t1,...7tr): ( t l , . ' .  , t J E  Y}) ,  

( V X c  A)(VYE A)d(X ,  Y ) e ( V Z  E A)9({t:  < c 0 , t ) ~ Z ) ,  { t :  < c l , t ) ~ Z ) ) .  

-I 

A trivial relativization of the proof of 5D.4 yields a version of that theorem 
which is uniform in relation parameters. 

6C.9. PARAMETRIZATION THEOREM (for relatively hyperelementary rela- 
tions). Let CU be acceptable. For each v = (n, rl ,  . . ., rk) there is an inductive 
second order relation 

S v ( a ,  x, P) e- Z v ( a ,  xl, . . ., x,,, Y17 . . ., Yk) 

such that for each F the n+ 1-ary relation 
H V ( Q  = {(a, Z): (a, 2, 7) Q X v )  

parametrizes the n-ary relations which are hyperelementary on (a, F). More- 
over, there is an inductive $"(a, F) and a coinducfive S v ( a ,  X, P) such that for 
all P : 

(i) If R E A" is hyperelementary on (8, F), then for some a E A such that 
JTa, TI7 

R(X) o &@(a, X, 7). 
(ii) I f Y ( a ,  P ) ,  then for every X, 

SV(U, X, Y) o 2v(a ,  Z, P). 4 

The proof of 5D.4 does not relativize to yield a parametrization of the 
second order hyperelementary relations because it depends on the Covering 
Theorem. There is, however, a representation theorem which appears weak 
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but can often substitute for a parametrization theorem in applications. Its 
proof depends on the following covering-type result. 

6C.10. THEOREM. Let ‘2I be acceptable, let GV be universal for  the v-ary 
inductive relations on a, where v = (n, r l ,  . . ., rk) is a signature with n > 1 ,  
and suppose IS: W -H A is an inductive norm on 42”. If  for  some a the relation 

g(2, F) c> (2, F) E @; e (a, X, F) E aV 
is hyperelementary, then there is a sequence of constants c, X* such that for  
every P, (c, X*, F) E W and for every 5, P, 

&?(x, Y) o [(a, 2, Y) E %V & o(a, X, Y) < a(c, x*, F)]. 

PROOF. Put 
2 ( ~ ,  F) c> (3x’){(a, x’, 7 )  E qV & [(xl, X, F) E aV 

& o(xl, X, Y) < o(a, x’, P)]} 
c> (3X’){W(X’, Y) & i ( a ,  X’, F) < Z  (xl, 2, F)}, 

where X = xl, . . ., x,. Since .% is hyperelementary, 22 is coinductive (in fact 
it is hyperelementary), hence there is a fixed c such that 

9 (X,  F) 0 (c, x, Y) 4 @ V .  

Now choose X* = x:, . . ., x: so that x: = c. 
by contradiction. If not, then by 

the choice of c we would have 9(X*, P) and this implies immediately that 
(c, P, P) E W contrary to hypothesis. 

Now that we know (c, X*, Y) E aV, we have i 9 ( X * ,  F) by the choice of c, 
and this means 

We prove that for every F, (c, X*, F) E 

(VX’)[(a, x‘, Y) E qV o(a, x’, F) < o(c, X*, F)] 
which is what we wanted to show. -I 

The result can be considered as a Uniform Covering Theorem in the follow- 
ing sense. Suppose .% is hyperelementary, 42 is inductive but not hyperelemen- 
tary, o is an inductive norm on 4Y and f(X) is a hyperelementary function 
such that 

( X , L ) E 9 * ( f ( X ) , Y ) E a .  

The Covering Theorem 3C.2 easily implies in these circumstances that for 
each 5 such that {U: %(U, Y)} is not hyperelementary on (a, P), there 
exists some Zr such that 

(R, 5 )  E 9 * o(f(X), 5 )  < a(Ty, F). 
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Now Theorem 6C. 10 says that in the special case when % is universal inductive 
and 

we can find a single 5, independent of  P, such that 
f ( X )  = (a, 3, 

(I, P) E w =3 ay-(I), P) < o(E, Y). 

6C.11. THEOREM. Let % be an acceptable structure and % a universal 
inductive set for inductive second order relations of signature (n+ 1 , r,, . . ., rk), 
let (T be an inductive norm on Q. A relation w(I,T) of signature v = (n, r,, . . ., 
rk) is hyperelementary on % ifand only if there exist constants a,, a2, c,, c2, X* 
such that 

for all P, (c,, c2, I*, P) E % 

and 

a(X, P )  e (a,, a2, X, P )  E % 

o {(a,, a,, X, P )  E % & o(a,, a,, I, P )  < o(c,, c2, I*, P)} .  

PROOF. Pick some a, and put 

W’(t, X, P )  e t = a2 &a(%, Y), 
choose a,  so that 

%’(t, 3, H) o (a l y  t ,  X, Y) E !& 

and apply Theorem 6C.10. This proves the “only if” part, the “if” part 
being Theorem 6C.3. -I 

6D. The class of hyperelementary relations 

We collect in this section some interesting structure properties of the class 
of hyperelementary relations on an acceptable structure which involve 
inductive second order relations in their statements or proofs. Some of these 
are “the easy halves” of deeper and harder results that we will establish in the 
next chapter. 

The key tool is the following computation estimate which for the case 
% = N is due to Kleene [1959a]. 

For each m 2 1, put 

&’bm(21) = { Y c A“: Y is hyperelementary on a}, 
*a(%) = Urn #L?”(a), 

where we will simply write 28” or 2 8  when % is clearly determined by the 
context. 
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6D. 1 .  THEOREM. Suppose 

P ( Z ,  I ,P)oP(Z,X, Y, ,  . . .) Y,) 

is inductive on the acceptable structure 91, where Z varies over the m-ary 
relations on 'u, let j < k and put 

a(X, Y )  o (3Z)[Z E *&(au, Y ,  , . . .) Y j )  & 9 ( Z ,  I, P)]. 
Then is indirctive on BI. 

PROOF. Letting v = (~Jz, r l ,  . . ., rj ) ,  by the Parametrization Theorem 6C.9 
we have 

9(?, Y) - (3a)((a, Y , ,  . . ., Y j )  E 4'' 

&P((i i :  (a, E, Y, ,  . . ., Y j )  E Sv>, E, Y)]. 
By 6B.2 there is an inductive Bt(Z,, Zz, X, Y ) ,  positively dependent on 
Z , ,  Z,, such that 

Y ( Z , X , F ) e 9 + ( Z , 1 z , ? , F ) ;  

using 6C.9 again, 

8 ( ~ ,  Y )  o (3a){(a, Yl, . . ., Yj)  €9" 

&p+((ii: (a, U, Y , ,  . . ., Yj )  E PV>, 

{u: (a, U, Y, ,  . . ., yj)  +$v>, E, F)>, 
so that 9 is inductive by the Substitution Theorem 6B.3. -i 

Of course, in the casej  = 0 the result says that the relation 

9 ( X ,  Y )  - ( 3 2  E &?8)9(Z, I, P) 
is inductive and we only need appeal to 5D.4 for the proof. 

From this follows immediately : 

6D.2. THEOREM. If 'u is acceptable, then the class 

28'"(2l) = { X  E A": X is hyperelernentarv, m-ary) 

is inductive. 

PROOF. Take 

and notice that 

P(2, X ) e Z  = x 

x E X8 (32 € &?&)9(Z, X ) .  
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Theorem 6D. 1 is already interesting in the special case when B is elementary. 
One of its consequences is that if 

R(X) o (32 E &'&)9(Z, 2) 

with elementary 9, then R is inductive. In the next chapter we will prove that 
in fact every inductive R can be represented in this form. 

6D.3. COLLECTION THEOREM. Let B(t, Z, X )  be inductive on the acceptable 
structure a, where Z varies over m-ary relations on A ;  then 

(*) (Vt)(3Z E &'6")9(t, Z, X) o ( 3 2  E &'&"+')(Vt)(3a)9(t, Z,, 2). 

PROOF. The implication from right to left is trivial, so assume the left-hand 
side of (*) for a fixed X. By the Parametrization Theorem 5D.4 we know that 

(2)  (Vt)(3a)(a E I" & P(t, If:, X)}, 

using the notation of 5D.4. Keeping X fixed, put 

(3) 

inductive Bt(t, Z,, Z,, X ) ,  positively dependent on Z,, Z,  and such that 

R(t,  a )  o a E I" & 9 ( t ,  H,", X). 

We first verify easily that R is inductive, as in the proof of 6D.l: choose an 

B(t, z, X) o @ ( t ,  z, l Z ,  X ) ,  

and then apply the Substitution Theorem 6B.3 and the obvious equivalence 

R(t, a) o a E I" & Bt(t, {s: Hm(a, s)}, {s :  i B " ( a ,  s)} ,  X ) .  

We know from (2) that (Vt)(3a)R(t, a), hence by the Hyperelementary 
Selection Theorem 3B.2 there is a hyperelementary R* such that 

(4) 
Put 

R* G R, (Vt)@a)R*(t, a). 

B = {a:  (3t)R*(t, a )} ;  

B is hyperelementary and by the definition of R, B E I". Moreover, 
(Vt)(3a)R*(t, a), hence by the definition of B and the fact that R* E R, 

(5 )  (Vt)(3a)(a E B & P(t, H,", X ) } .  

(a, j j )  E Z e a E B & H"(a, J )  

o a E B & H"(a, j j ) ;  

We now put 

2 is evidently hyperelementary and (5) implies trivially that (Vt)(3a)P(t, Z,, 2). 
-I 
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Some of the most important consequences of the last three theorems can 
be summarized neatly in terms of models for theories in the second order 
language over a structure 21. We can consider a collection F of relations on A 
as a structure for interpreting second order formulas over 21 in the natural 
way, i.e. by interpreting the relation variables in the formulas as ranging 
over F (rather than over all the relations on A).  

The schema of Xi-Collection on the structure rU is the class of all formulas 
of the form 

(z:-Coll) (Vf)(32)cp(i, Z, L) e (3 W)(Vf)(3a)cp(t, W,, P) 
where q is in the first order language over the structure 'u, with no relation 
quantifiers. Similarly, the schema of A:-Comprehension on rU is the class of 
all formulas of the form 

(A:-comP) (vx){(3z,)cp(x7 2 1 ,  H) * (VZ,)*(X, 2 2 ,  PI} 
=- (3 W)(VX)[X E w * (3Z,)cp(X, z,, P)], 

where again cp, are in the first order language over 'u. A class F of relations 
on A satisjies Xi-Collection on 91 if all the formulas Xt-Coll are true when the 
variables H are given values in 9 and the set quantifiers are interpreted as 
ranging over 9. SimiIarly for At-Comprehension on a. 

6D.4. THEOREM. If 'u is an acceptable structure, then S & ( r U )  is a model of 
both Xi-Collection and At-Comprehension. 

PROOF. Take Xi-Collection first. We must show that if P = Y,, . . ., Y, 
are hyperelementary on 'u, then 

(Vt)(3Z E Sb)cp(i, 2, x, P) * (32 E S&)(Vf)(3a)cp(t7 z,, x, P); 

9(i, z, x) e q(f,  z, X, Y) 
but this is an immediate consequence of the Collection Theorem, if we put 

and notice that 9 is hyperelementary by 6B.5. 

elementary and for all X, 
For A;-Comprehension, assume the hypothesis, i.e. that Y are hyper- 

( 3 2 ,  E &b)rp(Z, z,, P) - (VZ, E Sb)>ll/(Z, z,, P), 
and put 

R(2) e (3Z1 E S&)cp(X, Z1, P). 
Now 6D.1 implies immediately that R is both inductive and coinductive, 
hence the conclusion. i 
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Exercises for Chapter 6 

6.1. Let Xvary over A2" and Y vary over A2". Prove that there are relations 
P ( X ,  Y) ,  9 ( X ,  Y) ,  inductive and coinductive, respectively, such that whenever 
Y is wellfounded, 

X is wellfounded & rank(X) < rank( Y )  e 9(X, Y )  

- 9 ( X ,  Y ) .  -I 

6.2. Let 

G ( f ,  -3 = G(f, x1, . . 0 ,  x,> 

be a partial function with arguments n-ary partial functions and n-tuples from 
A and values in A .  We call G positive inductive on 'ill = ( A ,  R1, . . ., R,) if 
there is an inductive relation a(2, R, y), positively dependent on 2, such that 
for every partial function f, 

G ( f ,  3 = Y * W<G,, X, Y) ,  
where Gf is the graph off. 

Prove that each positive inductive GUY X) is monotone, i.e. 

[fi E fi G(fIY3 = YI * W 2 Y  3 = YY 

and that it has a least jixed point, i.e. a partial function f * such that 

(W[G(f*Y = f*(R)l, 
(VX)[G(f, X) = f(X)] *f* E f. 

Prove that this least fixed point f * has inductive graph. (The First Recursion 
-1 Theorem for positive inductive definability.) 

6.3. Suppose < is a wellfounded relation with field some B E A" which is 
hyperelementary on 'LI, let f(X, 2) be a function defined for X E B with values 
in some A" such that for some inductive relation 92, 

f(X, 2) = J - B({(X', Z',f(X', 2')): X' < X}, x, Z, J) .  

Prove that f is hyperelementary. i 

6.4. Suppose < is a wellfounded relation with field some B E A" which is 
hyperelementary on 'ill, let f(X, 2) be a function defined for X E B with values 
subsets of some A" and such that for some hyperelementary 2, 

J E f (R, Z) - W( { (Z', Z', J ' )  : X' < R & J' Ef(X', Z')}, 2, 5, J) .  
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Prove that each f(X, 5) is hyperelementary and that the relation 

Y Ef(% 5) 

is hyperelementary. -I 

6.5. Suppose 9I is acceptable, @ ( X ,  Y )  is inductive with X,  Y varying over 
n-ary relations and X,, is a fixed hyperelementary n-ary relation. Prove that 

(VX E %&)(I Y E  f l 6 p 2 ( X ,  Y )  

(3  FV E #b){ W(O,O> = Xo & (Vn)(Va)(Vb)~~w<,,,), W++ 1,a))). 

(Dependent Collection Theorem.) -I 



CHAPTER 7 

SECOND ORDER CHARACTERIZATIONS 

In the last section of Chapter 6 we showed that the class Xcpb('2l) of hyper- 
elementary relations on an acceptable structure % satisfies certain properties 
which are formally expressible in the second order language over 21. We show 
here that these results can be turned around to give elegant, model theoretic 
representation theorems and characterizations of the inductive and hyper- 
elementary relations. Except for the trivial, folklore observations of Section 
7A, the theorems of this chapter are essentially from Moschovakis [1969b], 
[1969c] and they extend to all acceptable structures work of Spector [1960], 
Gandy [1960], Kreisel [1961] and particularly Kleene [1959a] for the structure 
of arithmetic N. The proofs, however, are from a very different point of view 
than that of Moschovakis [1969b], [1969c] and the classical work, the main 
new ingredient being the systematic exploitation of the game theoretic ideas 
introduced in Chapter 4. 

7A. Inductive and Ci relations 
We have already observed that inductive relations are II: and we will 

show in Chapter 8 that on countable acceptable structures the converse 
holds. On certain uncountable structures, however, it may be that inductive 
relations are also Xi and in this case Theorem 6C.8 easily implies that not 
all II: relations are inductive. The key computation is in the next easy result. 

For n Z 1, let Y vary over 2n-ary relations on A (which we view as binary 
relations on A") and put 

The proof of 6A.1 easily extends to show that on an infinite 21 each W P  
is an inductive class of relations. 

YP'""( Y )  0 Y is wellfounded. 

7A.l. THEOREM. f f q ~ ( X ,  S )  is S-positive in the language of an injinite structure 
8, where X varies over n-tuples and S over n-ary relations, then there is an 
elementary formula e( Y, X) such that 

x E z,,, - (3 Y )  {WF( Y )  & e( Y, z)} - (3 Y ) {  Y E  sqa) & w q y )  & e(y, 
I03 
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PROOF. Put 

O( Y, X) c> X E Field( Y )  & (VZ)[Z E Field( Y )  * q ( Z ,  (2':  (F', 5) E Y } ) ] .  

To prove 
x E zq * ( 3  Y ) {  YE 2&('u) & W F (  Y )  & O( Y, Z)}, 

y = {(F,, Xz): x,, xz €Iq & l%lq < lXZlo < Ixlq} 
we take 

and apply the Stage Comparison Theorem 2A.2. 
To prove 

WFn( Y )  & O( Y, X) * x E Io, 
we verify by an easy transfinite induction on py(Z)  (= the rank of Z for 
5 E Field( Y ) )  that 

Z E Field( Y )  Z E Io. -1 

From this and the version of 6A.1 for WF",  all n 3 1, we get immediately: 

7A.2. THEOREM. The relations WF" on an injnite structure 'u are Xi if and 
-I only if all inductive relations on 'u are Xi. 

Theorem 6C.3 constructs examples of such structures. 

7B. Quasistrategies 

Recall from Section 4A that a game is determined by an infinite string 

(1) Q = Qo,  Q i ,  Q z ,  . . 
of quantifiers and a relation R ( f )  on infinite sequences on the relevant set A .  
Moreover, the game is open if 

(2)  R(x0, ~ 1 ,  ~ 2 ,  . . -1 * V i Ri(Xo, . . - 9  xi), 

and the game is closed if 

(3) 
for suitable finitary relations Ro, R , ,  Rz ,  . . . . 

Suppose '21 is acceptable and % is a fixed elementary coding scheme on %. 
We call an open or closed game G = G(Q, R )  elementary (or hyperelementary) 
if (1) and (2) or (3) hold with a string Q and relations R,, R , ,  Rz,  . . . such 
that the function 

R(xo, x l ,  xZ, . . .) c> A Ri(xo, . . ., x i )  

0 i f Q i  = 3, 
1 i f Q i  = V ,  
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and the relation 

RG(z) * Seq(z) 8c (3i)[lh(z) = i+ 1 8c Ri((z),, ( z ) ~ ,  . . ., ( z ) ~ + ~ ) ]  

are elementary (or hyperelementary). It is easy to verify that this notion is 
independent of the particular elementary coding scheme chosen to define it, 
see Exercise 5.4. 

If G is an elementary game on % and we know that (3) wins G,  it is natural 
to ask whether (3) has a definable (in particular hyperelementary) winning 
strategy. It may be the case that this fails, even though (3) can clearly win 
in a more or less trivial manner-this is roughly because (3) must choose 
each time one move out of many equally good moves and he may lack a 
definable choice function for a, see Exercise 7.2. It is more natural to 
reformulate the question whether (3) can win definably in the context of 
quasistrategies, multiple-valued strategies which avoid the issue of choices. 

A quasistrategy Z for (3) in the game G(Q, R)  is a set of finite sequences 
such that 

(*) i"'"' if Qi = 3 and (x,, . . ., x i - l )  E Z, then (3x)(x0, . . ., xi- , ,  x) E t;, 
if Qi = V and (xo, . . ., xi-l) E E, then (Vx)(xo, . . ., x i - l ,  x) E Z. 

We call t; winning for (3) if for all f :  o + A,  

V'i)[if(O),f(l), * - . , f ( i ) )  E 4 * RU). 
Quasistrategies and winning quasistrategies for (V) are defined in the 

obvious dual manner. The idea is that a winning quasistrategy gives the 
player some good moves each time it is his turn, perhaps more than one of 
them. If he plays one of the good moves each time (and he must make 
choices to do this), then he is certain to win. 

7B.l. THEOREM. Let G = G(Q, R)  be a game on some set A .  Player (3) wins 
G if and only i f (3)  has a winning quasistrategy for G, and similarly for (V). 

PROOF. If (3) wins G, let 

Y = {fi: Qi = 3} 

be a winning strategy for (3) in the notation of Section 4A and put 

Z = {(x,, xl, . . ., xJ: i f i  < n and Qi = 3, then x i  = f i ( x o , .  . ., xi- , )} .  

It is trivial to verify that Z is a winning quasistrategy for (3). 
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Conversely, suppose C is a winning quasistrategy for (3) and let 

h:  Power(A)- (0) --+ A 

be a choice function which assigns to each nonempty subset of A one of its 
elements, 

X c A & X +  0* h(X)E X .  

We define a sequence of functions fi,  one for each i, such that Qi = 3 using 
the choice function, 

f i ( X 0 ,  . . ., X i - 1 )  = h( { t :  ( ~ 0 ,  X I ,  X i - 1 9 2 )  E C)), 

and it is trivial to verify that {A:  Qi = 3) is a winning strategy for (3). 4 

To measure the definability of a quasistrategy Z relative to a coding scheme 
%', we put 

We call C elementary, hyperelementary, inductive or coinductive according as 
(C)4 is, where % is any elementary coding scheme. As with games, those 
notions are independent of the particular elementary coding scheme %? used 
to define them, see Exercise 5.4. 

(C)W = { ( x , ,  . . .) x,):  ( X I ,  . . ., x,) E C}. 

7B.2. THEOREM. If (3) wins a closed hyperelementary game on an acceptable 
structure '11, then (3) has a coinductive winning quasistrategy. 
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We will see in the exercises that this is the best possible for closed hyper- 
elementary games, but that if (3) wins an open hyperelementary game, then 
(3) has a hyperelementary winning quasistrategy. 

The next result is easy, but it is very useful for the applications of closed 
games that we give in this chapter. 

7B.3. THEOREM. Let a = Qo, Q1, . . . be an injinite string of quant$ers 
such that the function qG describing it is elementary on a structure CU, let V 
be an elementary coding scheme on a, let R(x, 7) be elementary and for each 
3 dejine the closed game 

cy = G(Q, Rp), 

where 

R~(x0 ,  X I ,  . * -) A i R(<xo, * * - 9  xi), J)*  
Then the second order relation 

9(X, J )  o X = (Z), for some quasistrategy Z, winning for (3)  in Cy 

is elementary. Hence the relation 

Q(J) - (3) wins Gy 

is Xi. 

PROOF. We compute: 

9(Xy J )  o (Vx)[x E X * Seq(x)] 

& (8) E x 
& (Vx)[(x E X & m(lh(x)) = 0) (3t)[xn(t) E XI] 
& (VX)[(X E X & qa(lh(x)) = 1) * (Vt)[xn(t) E XI] 

& (Vx)[x E X R(x, J)] .  -I 

Again we will see in the exercises that this result fails for open games. 
It is worth putting down explicitly a useful, immediate corollary of 

Theorems 7B.2 and 7B.3. For CU = N this is due to Kleene. 

7B.4. THEOREM. If R(F) is a coinductive relation on an acceptable structure 
'u, then there exists an elementary 9( Y, F) such that 

R(Z) e (3 Y)9(  Y, Z) 

e (3 Y){ Y is coinductive & ,9( Y, X)]. 
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PROOF. By the Normal Form Theorem 5C.2, if R(X) is coinductive, then 
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there is an elementary P(Z, X) such that 

R(x) * (G”z)P(z, 2) 

Q {@si)(Vt,). . . } ( W ( ( s , ,  t 1 ,  . . ., si, ti>, 9 
One easily constructs a P*(z, .Y) such that with the elementary string 

Q = 3,v,3, . . .  
we have in the notation of 7B.3, 

R(2) 0 (3) wins the closed game G(Q, P:). 

By 7B.3 then, we have an elementary Y( Y, X) such that 

9’( Y, X) e Y codes a winning guasistrategyfor (3) in G(Q, P:). 

Hence 

and by 7B.2, 
R(X) 0 (3 Y)B( Y, X), 

R(X) Q (3 Y)(  Y is coinductioe & Y( Y, Z)}. i 

7C. The Second Stage Comparison Theorem 

The result of this section is the key computational estimate of the chapter. 
It is essentially the same as Lemma 17 of Moschovakis [1969c], where the 
proof is quite different. 

Going back to the notation of the Stage Comparison Theorem 2A.2, 
suppose q ( X ,  S) ,  t+b(j, T )  are respectively S and T positive in the language of 
some structure 9X. For each 5 < K = K ~ ,  put 

(1) (x, j )  E H$,$ 0 x E I ,  & j E I ,  & lXi, < 171, < (. 
The relation H;,, is the restriction of the relation <:,, to those X, j with 
ordinals (X(+,, lj& no greater than 5 .  We let 

(2) H:,, = <H;**? HS,,, Hf,,, H$,,) 
be the quadruple of these relations that come by considering all ordered 
pairs from the doubleton {q, $}. 

Notice that many complicated relations involving the ordinals lZlq, ljl, 
are elementary in the expanded structure (a, IT$,$). E.g., if 5 < llqll, then 

X E I ,  & ]XI, < 5 0 (3X’)[(X, X’) E H$,, & I(%’, X) E H;,,,]. 

When the structure % is fixed, we call a relation P elementary in as,$ if 
P is elementary on (W, &). 
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7C. 1 .  SECOND STAGE COMPARISON THEOREM, Let q ( X ,  S), $(j, T )  be formulas 
in the language of an acceptable structure % which are respectively positive in 
S, T, let 

B' = IT;,* 
be the quadruple of relations assigned to each r < IC = I C ~  by (1) and (2) above. 

There is an elementary second order relation 9'(Z7 X, J )  such that 

(3) 

(4) 

( 5 )  

J <;,, x * (VZ)lP(Z, X, J ) ,  

x <;,* 7 & 1x1, = * (~z)(Z is elementary in Rr & 9(Z,  X, 7)). 
Similarly, there is an elementary second order relation 9(Z, X, J )  such that 

J < ;,, x * (VZ)l9(Z, x, Y), 
(6) 3 <;,* J 8~ JXl, = 5 =+ (3Z)(Z is elementary in IT' & 9(Z, X, j)). 

Moreover, for each 5 < IC the relations in the quadruple Re are hyper- 
elementary on %, so that we also have 

(7) 

(8) 

X < ;,* J * (32 E Yf&)P(Z, X, j), 

x < ;,$ J * ( 3 2  E Yf&)9(2, X, 7). 

PROOF. Let us first dispense with the last part of the theorem, which follows 
trivially from the first Stage Comparison Theorem 2A.2. If 5 < K ,  choose 
some x and some Z* E Z, such that (Z*(, = < and notice that 

(X, J )  E H$,* e J <$,, Z* & X < :,* J ;  

now two applications of 2A.2 imply easily that H$,$ is hyperelementary. 

having a very similar proof. 
We proceed to define 9' and prove (3), (4), the second part of the theorem 

The idea is to assign to each X, J a closed game G(X, J )  and put 

9(Z,  X, J )  0 Z = ( C )  for some quasistrategy Z which is winning for (?) 
in G(X, 7). 

We will have to show that 

G(% 1) = G(Q, &,j), 

in the notation of 7B.3, for some elementary string Q and an elementary 
relation R(z, X, J )  and also that 

(7) 

(8) 

J <$,, X s. (V) wins G(X, y), 
X <:,* J & IXl" = 5 3 (3 )  has a winning quasistrategy in G(X, J )  

which i s  elementary in IF. 
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In view of the game theoretic analysis of fixed points in Chapter 4, we 
must have done something similar in the proof of the Stage Comparison 
Theorem 2A.2. Because to prove that X <G,+J is a fixed point means precisely 
to associate with each X, J an open game G*(X, 7)  such that 

(9) 

Notice that (9) cannot hold with (canonically assigned) closed games G*(X, J) ,  
because it would imply that <:,+ is coinductive, which in general it is not. 
Instead we will prove implications (7), (8), which together are a bit weaker 
than equivalence (9), except that we can find a simple bound for the com- 
plexity of the winning quasistrategy in (8). 

X <:,+ J - (3) wins G*(X, j ) .  

We may assume that cp, $ are in canonical form, 

cp(X, S )  = (Q5)(vu)[e(X, 2, 5) v S(E)], 

$(J,  T )  = ( R T ) ( V C ) [ T ( J ,  w, 5) v T(V)]. 

Take G(X, j )  to be the closed game corresponding to the infinitary formula 

(10) { ( G I ) ( V G l ) (  P"W1)(3ij1)(Q52)(vU2)( P"W,)(3ij,) . . .} 
A ~ E W  [ l T ( f i k ,  w k + l ,  &+l) v i S k  e (u i?5 i+l ,  ui+l>l, 

where we have used the notation convention 
- - 
uo = x, V o  = J .  

This means that we define G(2, J )  so that 

(3) wins G(3, J )  o (10) is true. 

To motivate this game, recall the normal forms for the fixed points Zq, Zfi: 

X E zq - {(Qz1)(vE,)(Q2,)(vE2) . . .} v i 6(Gi, .5 i+ l ,  iii+I), 

? {(~~1) (vE1) (~W2)(vV2)  . . * }  v k T S ( f i k ,  iiik+l, Vk+l), 

where again U o  = X, Oo = 3. Let G(X), G(J)  be the open games determined 
by these formulas. We can think of G(X, 7)  as a closed combination of these 
two games played by players X ,  Y as follows. First X ,  Y play in G(X), with 
X making the moves of (3) and Y making the moves of (V) until .El, El are 
determined; then they play in G(J)  with X making the moves of (V) and Y 
making the moves of (3) until W1, ijI are determined; then they go back to 
C(X) and play similarly until Z2, U 2  are determined, etc. Since G(X) and G ( j )  
are open games, if the player making (3)'s moves in one of them wins, we 
know this at a finite stage of the game. Now X wins the combined game 
G(2, j )  if either Ize wins G(J),  where he makes (Vys moves, or if he wins G(2) 
no later than the stage at which he loses G(J). 
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There is a rather obvious modification of this idea which yields an open 
combination G*(Z, 3) of G(2) and G(T), where X wins if he actually wins G(Z), 
and no later than any stage at which he loses G(7). This is the G*@, 7 )  for 
wllich the exact equivalence (9) holds, see Exercise 7.6. Here we are interested 
in a closed game, so we can apply 7B.3, and we are also interested in esti- 
mating the complexity of the winning quasistrategies-the fact that we lack 
the full force of the exact equivalence (9) can be circumvented in the appli- 
cations at the expense of some technical complications. 

It is easy to see that the infinite string o* in (10) is elementary and that 
G(2, J )  = G(Q*, RE,?) in the notation of 7B.3 for some elementary relation R. 
All that is needed is a routine computation coding these games in terms of a 
fixed elementary coding scheme on a. It remains to prove (7) and (8). 

Proof of (7). Although it is not necessary to take cases for this proof, it 
will help understand the game if we first consider the possibility 

j j E I * & Z $ I , ;  

now the hypothesis of (7) holds, so we must show that (V) wins G ( Z , j ) .  
Using the canonical expressions for I,, 4, it is obvious that (V) can play in 
this case so that on the one hand 

k z(5k7 Wkfl, E k + l )  

since J = Uo E I#, and on the other hand 

A i l @ i ,  5 i+17  ci+l) 

since 2 = Go $ I,. This play will surely win G(2, j) for (V). 
The other possibility, if the hypothesis of (7) holds, is that 

ZEI, ,  Y E & ,  I& < 121,. 
We will utilize the following two equivalences which hold for every 

ordinal 5 < IC and every ii: 

(1 0, 
(121, 

[GI, G t - (Qz)(vu’)[e(ii, Z, u’) v ~sq, < ti, 
lul, > t + (QUz)(w)rle(c, s, u‘) & t G lu’l,]. 

The first is immediate by the definition of lUl, and the second follows by 
taking negations. Let (1 l)#, (12), be the corresponding equivalences for $. 

Assume towards a contradiction that (3) wins G(2, j), consider a run of 
this game where (3) plays to win and (V) plays as follows. 

Let 
t o  = lUl@. 

( Q u ~ l ) ( 3 u l ) t l ~ ( % ~ , ,  U1) &L 50 l ~ l l r p l  
Since to < 121v7 we have 
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by (12), and (V) can play in G(2, J )  so that when Z,, ii, are determined we have 

(1 3) 

Also El$ d 5 0 ,  so by (ll)JI, 

lQ(2,5,, U l )  & 50 < lullp. 

( k ) W f i l ) [ ~ ( J ,  w 1 ,  fill v Ifill$ < 501, 

so (V) can continue playing until El, C1 are determined and we have 

(14) 

(15) 

4 Y , @ l ,  fill v Ifill$ < 50. 

lz(y, wl, fi,) v e(x,zl, ul). 

l o w , ,  ul), la, a,, f i ~ ,  ifi1i6 < to G iulip. 

51 = Ifill$ < 50 

Since (3) is playing to win, we also know that at this stage 

Clearly (1 3), (14) and (1 5) yield 

Put 

and repeat the argument, substituting U l  for X and U1 for J .  AfterZ,, iiz, W2, fi2 
are determined we will again have 

7 w , , z , ,  UJ, 14%, W2, fi2L I f i Z l $  < 51 G I & l p ,  

5 2  = Ifi2lg < 5 1  

and we can put 

and continue repeating indefinitely. The process yields an infinite descending 
sequence lo  > t1 > . . . of ordinals, which is absurd. 

Proof of (8). We assume that 

2 <f,$Y & 1x1, = 5 
and we describe informally how (3) can win G ( i , j ) .  Afterwards we will 
argue that the quasistrategy we are defining is elementary in Rc. 

Since lXlp < 5, the right-hand side of (11), holds with ii = i and (3) can 
play to produce Zl, iil and insure that 

(16) 

If the first conjunct holds, he can continue playing trivially since he has 
already won the game-i.e. no matter what gi, Ui, W i ,  fii are played after that, 
8(X,Z1, El )  insures that the matrix of formula (10) will be true. 

G , Z l ,  E l )  v lullp < 5. 

If the second disjunct of (16) holds, we know 

lfillp < lA$; 
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so taking 5 = IUll,+, in (12)$, (3) can continue to play so that W1, V ,  are pro- 
duced and 

(17) lT(Y7 @l, Vl) tk Flip < lGl$. 
Now we are in a situation exactly as in the beginning of the game. We have 

U17 U1 determined and by (16) and (17) easily 

E l  <;,$GI 8-c lU1lq = 51 < 5 ,  
-qx7 zl, ul), l r ( ~ ,  w17 ul). 

The same method can be followed by (3, until he produces Z2, U2 such that 
8(iil, z2, iiz) and he can play trivially from then on, or he goes on to get 
w,, 2), so that i r ( V l ,  W,, Vz) and - -  

5 2  <;,* 62 tk I&l,+, = 5 2  5 1 .  

Continuing in this manner, (3) eventually reaches a point from which he can 
win by playing trivially, since otherwise he will be defining an infinite decreas- 
ing sequence 

of ordinals. 
Let ,Z be the quasistrategy for (3) described above and consider the first 

part of Z which produces Z1, Ul. This came out of (1 I),+,, i.e. for this part (3) 
was simply trying to win the finite game determined by 

5 > 51 > r z . . .  

(oz,)(vii,)[e(x, zl, ul)  v iGl ip  < 51. 
This finite game is easily elementary in Rc and surely (3) can win it by follow- 
ing a quasistrategy which is elementary in Bc. For example, if 0 = 3, V, 3, so 
that the assertion looks like 

(3s)(vt)(3r>~Ul>[e(X, s, t ,  r7 fill " lull,+, < 51, 

(01 

such a quasistrategy is given by 

u ((s): @t)(3r)(vUi)[0(?7 s7 t, r, 51) v lEil,+, < 51) 
u {(s, t ) :  (3r)(vui)te(% s, t7 r, E l )  v 1511, < tl} 
LJ {(s, t ,  r): (VG,)[@G, s, t ,  r, C1) v lull,+, < el} 

LJ {(s, t7 r7 21): w 7  s, t7 r, i l l  v l&lp < 5 ) .  
u . . .  

The idea is that (3) each time can play any move from which he can go on to 
win, and the set of all possible moves is elementary in Rt. 
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Having won this first part of the game, (3) asks if the first or second 
disjunct of (16) holds. This is an elementary in question, and then it leads 
him into either a trivial game or another finite game determined by (12), 
which is also elementary in Bc. 

To actually put down a definition of ( E )  (relative to a coding scheme) 
which is elementary in Rc requires a very messy formula, because to check 
whether (so, sl, . . ., s,,) E Z we must split up so, sly . . ., s, into a sequence of 
blocks Z , ,  El ,  Wl, 5, . . . with a tail left, and then put down the conditions 
guaranteeing that at each point of this sequence (3) is on a winning quasi- 
strategy for the appropriate finite game determined by (1 l), or (12)$. But it is 
clear that some formula in the language of (217 Rc) will do the trick, and we 
will omit the details. -I 

It is clear from the proof of 7C.1 (and the proof of 7B.3 which we utilized) 
that the elementary formula defining 9 so that (3) and (4) hold was con- 
structed explicitly from the given formulas q, $ using only a fixed elementary 
coding scheme on the structure QI. This means that we may allow relation 
variables in cp, $ and the same proof works, so we get the second order 
version of the theorem. Of course we need to relativize the definition of IT:,$. 

Switching to the notation of the relativized Stage Comparison Theorem 
6C.1, let cp(X, Y, S) ,  I)(.?, W ,  T )  be respectively S and T positive in the 
language of a structure 41. To each Y, W and each 5 < K ( ~ + ~ , * )  we assign 
the relation Hi,$ (Y, W )  defined by 

(18) (X, 2) E H i , @  (P, W) e X E I,(Y) & 5 E < t. 
Put also 

& IX, PI, < 12, 

(19) a$,$(y, W )  = (ff$,$(Y, W), H$,,(P, y), ff$,,(W, P), H $ , $ ( V ,  W)>. 
Extending the terminological conventions in the obvious way, 

Z is elementary in Jf i ,$ (Y,  W), P, W - z i s  elementary on (91, Ri,$(F', W),  7, W). 

7C.2. SECOND STAGE COMPARISON THEOREM (relativized). Let cp(X, P, S),  
I)@, W , T )  be formulas in the language of an acceptable structure rU respectively 
positive in S, T, let Bc(Y, W )  be de$ned for each 7, W and 5 < da,Cw) by 
(1 8), ( 1  9) abooe. 

There is an elementary second order relation Y ( Z ,  2, y ,  2, W )  such that 

(20) (2 ,  W )  E 9, & 12, WI$ < IX, PI, * (VZ)19(Z7 x, P, 2, W), 
(21) (X, r?)  E 9, & 12, q, = 5 d 12, WI$ 

3 ( ~ z ) ( z  is elementary in Ri,,(Y, W), Y, W & P(z, X, Y, Z, W)}. 
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Similarly, there is an elementary second order relation 9(Z, X, P, Z, W )  
such that 

(22) (Z, W )  E 9, & 12, Wl, < IT, PI, * (VZ)ld(Z, 2, P, Z, W ) ,  
(23) (Z, 5)  E 9, & IX, PI, = 5 < JZ, Wl,  

* ( ~ z ) { Z  is elementary in H%,,(P, VIP, W & d(z, 2, P, Z, W)}. 
Moreover, for  each Y , W and each 5 < I @ , ~ * ~ )  the relations in the quadruple 

(X, y )  E 9, & IX, yl, < 12, W 1, * (3Z)(Z is hyperelementary on 

(2, 5 )  E 4, & lX,PI, < 12, w 1, => (3Z)(ZLs hyperelementary on 

_ -  
- -  a%,,(P, w )  are hyperelementary on (a, Y , W ) ,  so that we also have 

(24) 
(a, P, W )  &P(Z, x, F,5, W)}, 

(25) 
(a, P, W )  & 9(Z, x, P, Z, W)}. -I 

7D. The Abstract Spector-Gandy Theorem 

Let 2l = ( A ,  R , ,  . . ., R,)  be a structure, R(X) a relation on A ,  9 a 
collection of relations on A .  R will be called Xi-definable (on a) with range % 
if there exists an elementary second order relation P( Y, X) such that Y ranges 
over subsets of A and 

(1) 
R is called X:-definable (on ‘$I) with basis B if there exists an elementary 
second order 9( Y, X) such that 

(2) R(X) - (3 Y)9(  Y, Z) e (3 Y E  %)9( Y, X). 

If R is Xi-definable with basis %, then clearly R is also Xi-definable with 
range %. The converse need not hold, roughly because definitions of the 
form (1) allow us to utilize the structure of 9 and extract information from 
it. In particular, if R is XC:-definable with basis %, then R is C: on a, no 
matter what % is; on the other hand every R E A is Xi-definable with range 

R(2) -s (3 YE %)9( Y, 2). 

9~ = ({x}: X E  R } ,  

since clearly 
R(x) c> (3 Y E  %)[x E Y ] .  

In this terminology the trivial Theorem 7A.1 easily implies that if the class 
W%l of wellfounded binary relations is elementary on the acceptable 
structure a, then every inductive relation on is Xi-definable with basis 
&’&‘(‘?I). This result fails for countable acceptable structures. We prove in 
this section two weaker results which hold for all acceptable structures and 
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which are basic to the theory : that hyperelementary relations are Ci-definable 
with basis 2 8  and that inductive relations are Ci-definable with range SC?. 

Actually a stronger, relativized version of the first of these assertions holds 
and is easier to apply. 

7D. 1 .  THEOREM. I j - g ( X ,  Y) is hyperelementary on an acceptable structure a, 
then there exists an elementary 9 ( Z ,  X, F) such tlzat 

(3) B(I, Y) * (32)8(Z, x, P) 
e (32)(Z is hyperelementary on (a, P) & 9(2, x, P)). 

In particular, every hyperelementary Jirst order relation is CC:-de$nable with 
basis 2 8 .  

PROOF. By Theorem 6C.11 we know that if B(E, F) is hyperelementary, 
if @ is a universal inductive set of the appropriate signature and if ci is any 
inductive norm on @, then there exist a,, a2, cl, c2, X* such that for all P, 
(cl, c2, E*, P) E @, and 

%'(E, 7 )  - [(a,, a2, 2, F) E @ & ci(al, a,, I, P) < (z(cl, c2, x*, L)]. 

Since @ is inductive, there is a formula cp and a constant d such that 

(U, P) E %! - (d, U, P) E 9,, 

and it is easy to verify (as in the proof of the Prewellordering Theorem 3A.3) 
that there is an inductive norm ci on %! such that 

- 
a@,, PI) e 4 U 2 ,  Y,) .=> Id, GI, FII, d I4  u2, K I P .  

9(I, 7 )  - "d, a,, a2, I, Y )  €9, l% Id, a,, a,, x, TI, d Id, c1, c2, x*, Q,I 
Using this ci, we get the representation 

- 

0 [(e, I, Y) €4, & [e, I, PI, Q If, x*, PI,] 
after renaming the constants, where 

(4) (VF)(f, x*, P) E 9,. 

Now applying 7C.2 with cp 2 $ we obtain an elementary 9' such that by 
(24) of 7C.2, 

9 ( X ,  P) - ( lZ) [Z is hyperelementary on (a, 7 )  
& 9'(Z, e, x, Y J ,  x*, P)] 

3 ( X ) [ Z  is Izyperelementary on (a, Y )  & P(Z, 2, Y)] 
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with B defined in the obvious way. On the other hand, by the contrapositive 
of (20) of 7C.2, 

by (4). -I 

We will see in the exercises that there is an almost trivial proof of this 
result for the structure N of arithmetic. 

The second theorem of this section was first established for N by Spector 
[1960] and then by Gandy [1960]. The present abstract result is essentially 
Theorem 15 of Moschovakis [1969b]. 

7D.2. ABSTRACT SPECTOR-GANDY THEOREM. A relation R(E) is inductive on 
an acceptable structure 53 i f  and only if it is Zi-dejinable with range 28'(%), 
i.e. if and only if there is some elementary second order 9'( Y, E) such that 

(5) R(Z) - (3 YE %8)9( Y, E). 

PROOF. The "if" part is covered by Theorem 6D.1. 
Assume then that 

R(X) 0 (a, X) E I ,  

for some formula q ( U ,  X, S )  and constants 5; we must define an elementary 
B( Y, Z) so that (5 )  holds. 

By Theorem 6D.2, the class SLP of hyperelementary subsets of A is 
inductive. It is conjectured that S&'l is not coinductive, but we can only 
establish this for countable, acceptable 53 at this time. So our proof will 
split into two cases, to cover the possibility that the natural conjecture is 
false and that for some 53, S8' might be hyperelementary. 

Case 1 : The class %gl is not coinductive. 

Proofin Case 1. Since 28' is inductive, there is some fixed $(5, Y, S )  and 
constants b such that 

Y € S s o ( 6 ,  Y ) E 9 $ .  

Theorem 6C.3 implies that if rc = I C ~  is the ordinal of the structure, then 

supremum()6, Yl#: YE%&'} 2 rc 

or else 2 8  would be hyperelementary. This means that 

(6) R(Z) * (3YE %&){la, El, < (6, q]. 
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We apply the Second Stage Comparison Theorem 7C.2 to the formulas cp, II/ 
where the list r of relation variables in cp is empty and w = Y. There is then 
an elementary 9(2, ii, X, C, P) such that by (24) 

(7) (G, 2) E I,,, & Iii, XI,,, < 16, YI, - (3Z){Z is Izyperelementary on ((U, Y )  

and by the contrapositive of (20), 
& P(2, u, x, u, Y ) }  

(8) 

(9) 

(3Z)P(Z, ii, x, u, F) * (6, Y ) $ Y ,  v l U ,  XI9 d 16, Y&. 

R(2) 0 (3 Y E  &?&)(32 E %"Q)P(Z, ii, x, 6, Y ) .  

We now claim that 

If R(X), then there is some Y E  2 8  such that 15, 21, < 16, YI, by (6), and 
for this Y, by (7) there is some Z such that P(Z, 5, X, 6, Y )  and 2 is hyper- 
elementary on (%, Y ) ;  but then this Z must be hyperelementary, so the right- 
hand side of (9) holds. 

If the right-hand side of (9) holds, fix a hyperelementary Y such that 
(32)9"(Z, a, F, 6, Y )  and apply (8 ) .  Since (6, Y )  E 9,, we must have lii, E,I d 
16, YI, which implies (a, X) E I,, i.e. R(x). 

The theorem follows by contracting the set variables in (9). Choose 
co f c, and put 

Y( Y, X) 9 q t :  (cg, t )  E Y ] ,  a, I, 5, ( t :  (C', t )  E Y ] ) .  
Then 9" is elementary and easily 

(3 Y E  &?&)P'( Y, 2) 0 ( 3  YE &8)(32 E Yi/ea)P(Z, a, x, 6, Y )  - R(I). 

Case 2: The class Ye€' is hyperelementary. 

Proof in Case 2. In this case we will show that R(x) is actually Xi-definable 

Let Z' be the inductive index set for &€' defined in the Parametrization 
with basis 28' .  

Theorem 5D.4 and choose a fixed do E Z'. Put 

(10) 2 ( Y , d ) - = - [ Y $ 3 f & & d =  do] 

v [ Y E 2 & & d E z l & Y = H J ] ,  

still using the notation of 5D.4. It is easy to verify that A?( Y, d )  is inductive, 
since 

d €  I' & Y = If: * d E  I' & (Qt)[t E Y * H'(d, t ) ]  

& (Vt) [ i ' (d,  t )  3 t E Y ] ,  
where B is chosen coinductive by 5D.4. On the other hand, 

(V Y)(W=% y, 4, 
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so by the Hyperelementary Selection Theorem 6C.5 there is a hyperelementary 
9* such that 

(11) 2*( y, 4 a( y, 4, 
(12) (V Y)(3d)2*( Y, d). 

(13) d €  I' 0 (C, d )  E I,. 

Since I' is inductive, there is a formula ~(5, d, S )  and constants C such that 

We claim that for every d, 

(14) 
To prove (14), notice that if it failed, then there would be a fixed d* E I' 
such that 

d E I' * (3 Y E  X"6)(3d'){2*( Y, d') & (2 ,  dl, d I ? ,  d'\,). 

(V Y E X€)(Vd'){9"( Y, 8) =+ IC, 81, < I?, d*l,} 

(VY€ #6)(3d){(Z, dl, < 12, d*( ,  & Y = H i ) .  

which by the definition of 2 and (ll),  (12) implies 

(15) 

This implies that the class If&' can be parametrized on the hyperelementary 
index set 

id: IZ.,dl, < 12, d*l,), 
which leads easily to a contradiction by the usual diagonal argument: the set 

is hyperelementary but cannot be HJ for any d such that IC, dl, < I?, d*l,, 
because then we would have 

d E H J - = d E  Y - d g H , ' .  

The assertion (14) is the key to the proof in this case. Using it we first 
establish that 

(16) R(X) * (3 Y)(3d){9*( Y, d )  & 1% XI, < icy 4,) 
0 (3 YE X&)(3d){2*( Y, d)  & (5, XI, < /C, dl,}. 

First assume R(X) and let t = la, XI,. Since I' is not hyperelementary by 
5D.4, suprernurn{lc, dl,: dE I'} = K by 2B.1, hence by (14) there is some 
Y E  #& and some d' such that 2*( Y, d') and 12, $1, > (, which proves the 
right-hand side of (1 6). 

On the other hand, if for some Y, d we have 2*( Y, d) & la, TIq < (Z, dl,, 
then (C, d )  E I, and hence (Z, X) E Z,, i.e. R(X). 

5 
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Having (16), we apply 7D.1 to get an elementary 9,(Z, Y, d)  such that 

(17) 9"( Y ,  d )  * (32)91(2, Y, d )  

(3Z){Z is hyperelementary on (%, Y )  & gl(Z, Y, d) }  

and we apply 7C. 1 on the formulas cp, x to get an elementary PZ(Z, U, X, W, d) 
such that 

We now claim that 

(21) (3 Y)(3d){(3Z)P1(Z, Y, d)  & (3Z).(P,(2, a, X, r ,  d ) ]  * R(2).  

Of these, (20) follows trivially from (16), (17) and (18). To prove (21), choose 
Y ,  d so that the matrix of the hypothesis holds. From (3Z)gl(2, Y, d )  and 
(17) we gel P( Y,  d )  and hence that d E I' by the definition of 2, so that 
(7, d )  E I,. From (3Z)P2(2, a, X, i;, d) and (19) we get (2, d)  $ I, v (5, XIe < 
I F ,  dl,, so that we have altogether 2*( Y, d )  & la, XIq < IF, dj,, i.e. R(X) by (16). 

To complete the proof we contract variables, i.e. we put 

Y( Y,  -U) 0 (3d)[P1(( t :  ( C ' ,  t )  E Y } ,  { t :  ( C Z ,  t )  E Y } ,  d)  

9 2 ( { t :  (c,, t>  E y>, 5, 2, 2, 4 1 ,  
and we verify easily that 

R(X) * (3 Y ) 9 (  Y, X )  0 (3  Y E  %e?)9( Y, X ) .  -I 

7E. The hierarchy of hyperelementary sets 

It is immediate from 7D.1 and 6D.1 that a relation R(X) is hyperelementary 
on an acceptable structure 'i?l if and only if it is A:-de$nable with basis %b('i?l), 
i.e. if and only if both R and i R are El-definable with basis %&(a). In this 
section we will impose a hierarchy on %&(a) by showing that each hyper- 
elementary relation is A:-de$nable with basis the class of previously con- 
structed hyperelementary relations and previously constructed relations as 
parameters. 
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To make this precise, fix an acceptable structure and call a relation 
R(Z) Xi-definable with basis 8 andparameters from % if there is an elementary 
relation 9'(2,Z, Y,,  . . ., Yk) and relations Y, ,  . . ., Yk in F such that 

R(Z) c> (3Z)Y(Z, Z, Yl ,  . .) Yk) 
( 3 2  E 8)9(z, x, Yl ,  . . ., Yk). 

Put 

(1) A ( 9 )  = { R :  R is A:-definable with basis F andparameters from F} 

= {R: both R and -I R are Z:-definable with basis F and para- 
meters from F}. 

Clearly A is a monotone operator on classes of relations, i.e. 

8, z F2 => A ( F , )  E A ( F J ,  

and by 6D.1, 2& is a fixed point of A ,  

d ( X & )  = X&. 

To each ordinal 5 we assign the (th stage of A by the induction 

(2) go = the class of elementary relations on a, 
(3) w = A ( U , < & W ,  if5 > 0, 
where the special case for 5 = 0 is needed to get the induction started since 
the usual logical conventions imply that A(0)  = 0. 

The main result of this section is that the sequence ( 9 t ) C < K  of classes of 
relations on A is properly increasing and closes at IC, i.e. 

(4) gK = U C < E 9 C  = 2&, 

where IC = 18' is the ordinal of the structure a. In particular, X& is the 
smallest (nonempty) fixed point of A .  In the next section we will apply this 
to get several elegant model theoretic characterizations of the class Xd?. 

In Section 7 of Moschovakis [1969c] we argued that this result justifies 
identifying the hyperelementary relations on an acceptable structure with 
the predicatively definable relations on a, as we intuitively understand this 
notion. This is in analogy with Church's Thesis, the identification of  the 
recursive relations on the structure N with the eflectively decidable relations 
on N, intuitively understood. The crux of the argument was that if a predica- 
tivist accepts every relation in some class F, then he must also accept every 
relation in A ( 9 ) ,  even if he does not understand the class 8 as a completed 
totality. The suggestion was not received very favourably by people who have 
worked on the foundational problems posed by the notion of predicative 
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definability ; in particular see Feferman’s review [ 19711 of Moschovakis 
[1969c]. In any case, the present result gives a step-by-step construction of 
2 8 ,  where each of the steps is presumably simpler to understand than the 
construction of all of 2 8  in one move via inductive definitions. It would be 
interesting to find other natural operators which construct 2 8  like A but 
which may be accepted as more “predicative.” 

For the structure N of arithmetic the results of this section are in the 
pioneering paper Kleene [1959a]. Some similar results which also imply the 
chief corollaries in the next section were proved by Kreisel [ 19611. 

7E. 1. THEOREM. Let (21 be an acceptable structure and let @ be defined for 
each 5 by (2), (3)  aboue. Then 

9 K  = U<<# = 2&(21), 

where K = ii2‘ is the ordinal of ‘u. 

PROOF. An easy induction on < (using 6D.l) shows that 5@ c 2 8 ,  so it 
will be enough to prove that every hyperelementary relation occurs in some 
9c with 5 < K .  The main tools are the Normal Form Theorem 5C.2 for 
inductive relations on an acceptable structure in terms of the quantifier G and 
the Second Stage Comparison Theorem 7C. 1. 

Let P be any inductive set. By 5C.2 there is an elementary R(z, X) such that 

P(,U) * (Gz)R(z, Z), 

where G is defined relative to a fixed elementary coding scheme on a. Put 

q(w, X, S )  o [Seq(w) & Z/z(w) is even & [R(w, 2) v (Vs)S(w”(s), Z)]] 

v [Seq(w) & l/7(w) is odd & (3t)S(wn(t) ,  X)]. 

This is a different inductive analysis of the application of the quantifier G 
than we gave in 5C.1, but it is very simple to modify that proof and show 

(5) (Gz)R(z, X) - ((0>, X) E Z,. 

i.e. 
For each ( < K ,  let H i  = HZ,, as we defined this relation in Section 7C, 

(w1, XI, w2, X2) E H: * (w2, a,) E 1; Iw1, %Ilp < Iwz, Zzl,. 

We will prove: 

(*) i f  5 = 2+m < 119 I/, where 2 = 0 or 2 is a limit ordinal, then H$ is 
elementary on (X, Q )  for some Q E W. 
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Before going to the proof of (*), let us show that it will establish the theorem. 
We apply (*) to the case that P = U" is a universal inductive set in the sense 
of 5D.2, so we know that 1/p1) = IC. If R is hyperelementary, then for some a, 

R(%) (a, 2) E U", 

and the Covering Theorem 3C.2 implies that for some 5 < IC, 

R(X) * ((O), a, X) E 1; 

* ((0h a, 2, < O h  a, E H:; 
so by (*), R is elementary on (a, Q )  with Q in gA for some A B 5 .  But then 
R E W+l. 

Proof of (*) is by transfinite induction on 5. 
Case 1: 5 = 0. In this case H$ is trivially elementary, 

( ~ 1 3  XI, w 2 7  X2) E H$* c ~ ( ~ 2 ,  'z>@) ( ~ ( " 1 ,  '13 0). 
Case 2 : 5 = A+ m + 1 is a successor ordinal. We have by the definition 

(w1, 21, wi!, 2 2 )  E H i  * [lw,, 121, B A+m 8L H;+m(wl ,  XI, w2, %)I 
v [Iw,, X& = I+m+l & (w1, X1/, B A+m+l],  

where we can substitute successively 

lw2, X,l, < I+m - H a + m ( ~ z ,  X2, w2,  X2), 

Iwz, Xzl, B A+m+ 1 * p(w,, az, { (w,  a): Ha+yw, X, w, X))), 

(w2,  X21, = A + m + l  * Iw,, Xzl, B A+m+l & i ( ( w 2 ,  X z l a  < 1+rn), 

Iw l ,  X1l, < A + m + l  * cp(w,, al, {(w, 2): Ha+m(w, X, w, x))). 
Hence H$ is elementary on (a? Hi+m),  and by the induction hypothesis it is 
elementary on (a, Q )  for some Q E W. 

Case 3: 5 = A is limit. We know that 

(6) A = (w* ,  X*(, 

for some (w*,  X*) E P. Now the structure of the formula cp is such that we 
must have 

(7) 
because the only other possibilities for cp(w*, X*, Urea 1;) to hold are that 
either R(w*, :*),in which case Iw*, X*J, = 0, or Ih(w*) is odd & (3t)[(w*^(t), 
X*) E us<a I;] from which it follows immediately that for some 5 < I ,  

Seq(w*) & Ih(w*) is even & ( Y S ) ( W * ~ ( S ) ,  X) E Us<n 1;; 

Iw*, X*l0 = < + I  < A. 
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This is where we use the very special form of 9. The assertions (6) and (7) 
yield 

(8) (W[lw*"(s), X*l, < 4, 
(9) A = supremum(Iw*n(s), ?*I,: s E A } ,  

so that we have a uniform way of "assigning codes" to an unbounded subset 
of the limit ordinal 2. Put 

(10) Q ( ~ 7 1 , X i ,  wz, Xz, s ) ~  Iwi, XiI, d Iwz, ?ZIP 8~ IWz, Z Z I ~  G Iw*"(s>, %*I,. 
We aim to show that this Q is in W ,  and from this it will be easy to complete 
the proof. 

The Stage Comparison Theorem 7C. 1 with $ 5 40 guarantees an elementary 
Y ( Z ,  wl, X I ,  w,, Xz) such that the following two implications hold: 

(1 1) (wi ,  TI )  E I,,, & IW1, 211~ = 5 G b z ,  Xzlrp 

=> ( ~ z ) ( z  is elementary on (21, W) & 9 ( Z 7  w1, ? l 7  wz, Ql, 
(12) @z)Y'(z, w i ,  21, w2, 2 2 )  a (wz, 22) 4 1, v [ I W i ,  211, IW29 zzlrp < 
We claim that 

(13) Q<wi,  %I7 w ~ > X Z >  s) * (3Z)[Ze ( J < < I . ~ '  &9(Z7 W I ~  '17 WZ, X Z ) ~  

&(3Z)[Z€ (J<<n9' &9(Z,w,,X,,w*"(s),X*)]; 

this is obvious from (lo), (1 I), and the induction hypothesis which guarantees 
that 

5 < 2 & Z is elementary on (a, HC) => Z E 9 E + I  

Also, 

(14) (3Z)Y(Z, w1, Ti, w,, X,) & (3Z)9(Z7 U'Z, x,, W*"(S),  T*> 

* Q < W 1 7  '17 w27 %Z); 

this is because the second conjunct in the hypothesis with (12) and (8) yields 
IwZ,  Xzlp < Iw*"(s), X*l,,, and then the first conjunct in the hypothesis with 
this yields Iw,, Xlla d Iw,, Z&. 

From (13) it follows that with co # e l ,  

€!("'I, X i ,  w27 XZ, s) => ('ZE ( J~<~g ' ) [g ( { t :  <CO, t )  E Z ] ,  W 1 >  WZ> ' 2 )  

& s({t: ( C l ,  t )  E Z ] ,  w1,% W*"<S), X*)I, 

since obviously 
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Also 

(3Z)fP({t: (co, t> E Z},  w1, XI, wz, X2) &B({t:  (Cl, t >  EZ} ,  w2, x2, w*(s),x*)] 

=> Q(wi, xi, w2,Xz, S )  

is trivial, hence Q is Xi-definable with basis ut;<a 9c. 
A very similar argument using the second part of 7C.1 shows that i Q 

is Xi-definable with basis U r c a 9 t ,  hence Q is A:-definable with basis 
and Q EW. 

Now 
(w1, 21, w2, XJ E Ha * lwlr 511, < Iwz, %Ip < 1. 

” h 1 ,  %Ip < 2 l ( I W 2 ,  %I, < 41, 
so to show that Ha is elementary on (a, Q) it will be enough to show that the 
three relations 

Iw1, Xilp < Iwz, zzl,+, < A, Iw, XIrp < I-, lM1, 21 d I b  

are elementary on (a, Q). But obviously 

lwi,  X1lp G Iwz, s21p < 2 * (3s)Q(wi, Xi, wz, Xz, s), 

Iw, XIrp < A * (WQ(w, X, w, x, 4, 
Iw, XI, G n * cp(w, X,{(w’, X’): Iw’Xqp < A}), 

so the proof is complete. -1 

In order to prove that the sequence { 9 c } r < K  is properly increasing, i.e. 
that the induction defining {9 t>r<K closes exactly at K ,  it will be convenient to 
establish a much stronger result. This is that every hyperelementary set occurs 
in the ramijied second order hierarchy over ‘iX at a stage below K ,  and that this 
hierarchy does not close below IC. The idea of this proof is simple but there is a 
lot of computation, which we will only outline. 

Let us specify that for each n >, 1, the n-ary relation variables of the 
second order language 2’y over a structure 21 are 

v;, I/;, v;, . . . . 
When it is convenient we can rename the individual variables v I ,  v2 ,  v3, . . . 
as Vp, Vq, V g , .  . . . 

To interpret a formula cp of 9 y  we must be given members xl, xz, x3, . . . 
of A interpreting the individual variables v l ,  v2,  v3, . . . which are free in 
cp, n-ary relations Yf, Y;, Y;, . . . for each n which interpret the n-ary relation 
variables Vz, V;, V:, . . . which are free, and a collection 9 of relations on A 
to serve as the range of the relation variables in cp. Of course we may have 

9 = all relations on A ,  
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the standard interpretation, but we will be looking at much smaller ranges. 
The basic satisfaction relation for formulas of 9 y  is then 

?I, F, {Y~},21,i~l, {xi}iaihp e ip i s  true when interpreted on 
with 9 as the range of the relation 
variables and V l  = Yl ,  ui = x i .  

If 2l is acceptable, then we can code collections of relations by simple 
subsets of A using some elementary coding scheme. For each Z _c A ,  each 
a E A and each integer n (in the copy of o that is part of the coding scheme), 
let 

(15) 2:) = f(xl, . . ., x,): ( n ,  a ,  x,, . . ., x,) E Z}. 

Now every double sequence { Y?),al,iai of relations on A ,  Y/ being n-ary, 
can be coded into a single Y such that 

y? = Yj"', 

Also any collection of relations of the same cardinality as A is of the form 
{z;): n 3 1, a e A }  

for some Z E A .  
We will not bother to define explicitly codings for the formulas of 9 Y  and 

prove in detail that the natural syntactical and semantical relations of 9: 
are hyperelementary. However, the following lemma can be proved easily by 
the methods of Section 5B, relativized. 

7E.2. LEMMA. Let G3 be an elementary coding scheme on some acceptable 
structure 21. We can assign codes (relative to U) to the formulas of the second 
order language 9; over ?I so that the following relations are hyperelementary: 

Fm12(a) 0 a codes a.formula (of 9?), 
Free,(a, n, i )  o a codes a formula q and Vf is free in cp, 

Sat,(a, Z, Y, x) o a codes a formula ip 

& 21, {z?): n 2 1, a E A } ,  { Y P } , , ~ ~ ,  i a l ,  { ( ~ ) ~ ) ~ > ~ k c p .  -i 

A relation R(x, ,  . . ., x,) on A is second order dejinable with range F and 
parameters from F if there are relations XI, . . ., X,  in 9 and a formula cp of 
9'; whose only free individual variables are v,, . . ., v, such that 

R ( x , ,  . . .) x,) -3 a, 9, { Y l } ,  : I ,  . . ., x,kq, 

where the double sequence of relations {YF) assigns each X j  to a relation 
variable of the appropriate number of arguments and assigns the empty 
relation to all other relation variables. 
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Let 

r(F) = all relations on 2l which are second order definable with range 
9 and parameters from 9, 

and by induction on 5, 
(16) 8; = all elementary relations on a, 
(17) sf = r(U,,<,a;) i f <  > 0. 
The sequence {b$}c of classes of relations is the ramiJied second order 
hierarchy over 2l. 

7E.3. THEOREM. If% is acceptable with ordinal IC = I C ~ ,  then for every 5 < IC, 
(18) 9 c  E 85 ZX8(%); 

hence for every 5 < K, 
(19) 9 $ %+I, 

and the sequence ( 9 c } c < K  is properly increasing. 

PROOF. The inclusion 
9 c  G sr, 

is proved by transfinite induction on 5; assuming 9 V  E U,,<< &;, 
if R is in 9c then R must be Xi-definable with basis u,,<c 82 and parameters 
from U,,., 9, hence it is Xi-definable with range u,,<, 8; and parameters 
in uqCc 81, hence it is in Bf .  Then (19) follows trivially from (18), because if 

= 9c for some t < IC, then 9" = 9<, hence 2 8  = gK E 85 contra- 
dicting (1 8). 

The nontrivial part of the theorem is the proper inclusion 
(20) 8% gX€. 

To simplify the computation, let us first notice that each class &%is 
determined by the unary relations (sets) in it, 

85," = { X  E A :  XE8$}. 

This is because each 85 is obviously closed under elementary definability, 
and if R E A" is in &$, then its unary contraction P defined by 

(21) P f x )  * R((x)l? * * .> (x)n> 
is in ~ 7 5 , ~  and we can recover R from P by 

(22) R(x, ,  . . - 3  x,) - P ( ( X ~ ,  . - .? x,>). 
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Moreover, the transfinite sequence {&$,u}c of the unary relations in the 
ramified second order hierarchy over '$I can be defined directly by the induc- 
tion 

@,, = all unary elementary relations on '$I, 

&:,,, = all unary relations which are second order dejinable with 
range Us<< a!,,, and parameters from ull<c 6'z,u, by a 
formula of 9; which has only unary relation variables, if < > 0. 

This is because we can replace n-ary variable quantification by an equivalent 
unary quantification using again the coding of (21), (22). 

After these preliminaries, we establish the proper inclusion (20) by out- 
lining a proof that for each < < K, there is a hyperelementary set E< E A x A 
which parametrizes &.,, i.e. 

Z E & $ , , - f o r s o m e a E A ,  z = { t : ( a , t ) E E c } .  

This yields immediately that c?$,~ E XC?'', and the properness of the 
inclusion follows by the usual diagonal argument that 

{a :  (a, 4 $ Ec> 
is hyperelementary but not in 8;. 

U E Field(<) the binary relation Ee by the following recursion on p<(U): 

(23) 

Fix any hyperelementary wellfounded relation < and assign to each 

(a, x) E E" c> there exist b, a,, UI, a,, U,, . . ., a,, u,, such that a = 
( b ,  a,, El ,  a2, U2,. ..,a,, U,) and b is the code of a 
formula with only unary relation variables in which v 1  is 
the only free individual variable and U1 < U, U, < ii, . . ., 
ii, < U and 

Sat,(b, {( 1, (U ' ,  a') ,  x ' ) :  U' < E & (a', x') E E"}, 

- 

(( 1 ,  i, t ) :  1 < i 6 n & (ai, t )  E PI}, (x)). 

It is not hard to prove by induction on p<(U) that 

(24) 
Also it is not hard to construct a hyperelementary second order relation 
9(Z, U, a, x )  such that 

(25) (a, x )  E EU - 9?( { (U ' ,  a', x'): U' < U & (a', x') E Eu'], U, a, x). 

It then follows from Exercise 6.4 that each Eu is hyperelementary, and this 
completes the proof, since for each 5 < K there is a hyperelementary well- 

-I 

i f i i  E Field(<) & 5 = p'(ii), then Eeparametrizes a:,,. 

founded < and some U E Field(<) so that 5 = p<(ti). 
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It should be pointed out that the hierarchy {8$}e does not close at K, 
since by the Abstract Spector-Gandy Theorem 7D.2 and 7E.2, if R is 
inductive not hyperelementary, then 

R E 82- uc<K dg. 

7F. Model theoretic characterizations 

Recall the schemata of Xi-Collection and A:-Comprehension on a structure 
'% that we introduced in Section 6D. In the same spirit, the schema of A%- 
Comprehension on % consists of all formulas of the form 

(A",Comp) (3Z)(VX)[X E z 0 q(2, L)], 
where q is in the (first order) language over CU. 

7F.l. THEOREM. r f  '% is acceptable, then %'6?(9I) is the smallest class of 
relations on A which satisfies the schema of A:-Comprehension on 91. Also 
Afd(2I) is the smallest class of relations on '% which satisfies the schemata of 
X+Collection and A%-Comprehension. 

PROOF. By Theorem 6D.4, 3 8  satisfies both Xi-Collection and At -  
Comprehension, and A:-Comprehension trivially implies A%-Comprehension. 

For the converse to the first assertion, suppose 9 is a class of relations on 
A which satisfies A:-Comprehension. A trivial induction on shows that 
9 8  c_ 9, hence by 7E.1, Af&' = gK E 9. 

The easiest way to prove the converse to the second assertion is to prove 
(essentially following Kreisel [ 19621) that the schemata of Xi-Collection and 
A%-Comprehension imply A:-Comprehension. Because from the hypothesis 

(v3{(3z,)cp(~7 z1, 

(V2)(W{q(% z, 7 )  v l$(% z, v>, 

(VX)(W{qP(% z,, v 7$(27 20, n>, 

* (V-W@, z2, L>> 
we get immediately 

so by Xi-Collection there is a fixed Z such that 

and we can put 

W = {z: (3a)q(Z, Z,, a)> 
using A%-Comprehension. It is an easy exercise to verify that 

2 E w e  (3z&(X, z1, r). 
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For the structure N, these results were announced in Kreisel [1961] but at  
least the first of them is also implicit in Kleene [1959a]. Another result of 
Kreisel[1961] which is implicit in Kleene [1959a] is the following characteriza- 
tion of %€(91) in terms of invariant definability (for ?I = N). 

7F.2. THEOREM. If  ?I is acceptable, then a relation R(2) is hyperelementary 
on 91 if and only if there exist first order formulas q(Z,  F), $(Z, 2) in the 
language of 91 such that for every class % of relations which satisJies A:- 
Comprehension on 91, 

(1) R(F) 0 ( 3 2  E F)q(Z, X) * (VZ E F)$(Z, 2); 
i.e. if and on1.y if R is A; invariantly definable over all models of A{-Compre- 
hension on CU. 

PROOF. If R satisfies (1) for every model 9 of A:-Comprehension, then we 
can prove that R is hyperelementary by taking % = 2 8  and applying 
6D. 1. On the other hand, if R is hyperelementary, then both R and i R are 
Xi-definable with basis A?&' by 7D.1 and we get the representations (1) 
immediately by 7F. 1. -I 

Exercises for Chapter 7 

W F "  are Xi on A = (A, <), so that all inductive relations are C: on A. 
7.1. Prove that if 1 is a cardinal with cofinality(2) > w, then the relations 

HINT: Notice that if X c A'", then 

X is wellfoundede (V< < 1)[X n 12" is wellfounded]. -i 

7.2. A game G(0, R) is finite if there is a k-ary relation P(xo,  . . ., Xk--l)  

such that 

i.e. if the outcome of the game is known after the first k moves with a fixed, 
predetermined k. 

Give an example of a structure 21 = ( A ,  R , ,  . . ., R,) and a finite elemen- 
tary game G on A such that (3) wins G, but (3) has no winning strategy which 
is definable in the second order language over %. Show that 2l can be chosen 
acceptable. 

HINT: (V) plays a finite set B G A ,  (3) plays some x E A and wins if x 4 B. 
-I 

R(x0, X I ,  x2, f * .) * p(xO, x1, * . * 7  xk - l ) ,  

7.3. Let ?I be acceptable, let G = G(Q, R )  be an open hyperelementary 
game. Prove that if (3) wins C, then (3) has a hyperelementary winning 
quasistrategy . 
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HINT: Assign ordinals to the set of winning positions for (3) by the 
induction 

(XO,  x 1 7  . * X i - 1 )  E C O  Ri-l(x09 X I ,  . * - 7  Xi-1) v (Qixi)[(xo, . * .) x i )  E C ] ,  
of the proof of (5C.1). Now have (3) play so that he is always in a winning 
position and he continues decreasing the ordinal stage of his position in this 
induction. -I 

7.4. Prove that for some open, elementary game G on the structure N of 

9 ( X )  9 X = (Z), for some quasistrategy Z, winning for (3)  in G 

HINT: Show that the contrary hypothesis implies that every inductive 

arithmetic the relation 

is not hyperarithmetical. 

relation is Xi. -I 

7.5. Prove that if is acceptable, then there exists a closed elementary 
game G on 2l such that (3) wins G but (3) has no hyperelementary winning 
quasistrategy . -I 

7.6. In the notation of the Stage Comparison Theorems, let 
+, s) = (Qz)(vu)[e(z, 2, U) v S(U)], 
$(J,  T )  = (FZ)(Vfi)[T(J, 5, 6) v T(6)] 

{Q(zl)(vu,)(P"5~)(3~,)(Qzz)(Vu,)(PU~2)(3~2) . . .} 
be two formulas in canonical positive form. Prove that 

X < f , $ J  
i [e(ui, z i+ l ,  ui+l)  & A k <  i -7T(vk, % k + l ?  z i k + l ) l .  

Find a similar infinitary formula for I < g,,@j.  -I 

7.7. Give a trivial proof of Theorem 7D.l for the structure of arithmetic N.  
HINT: By the relativized version of Exercise 3.1, if B(I, P) is IT: on N7 

then 
B(X, F) o {(u, v): 9 ( u ,  v, X ,  H)} is a wellordering, 

with 9 elementary. Prove first that if W is also Xi, then 
supremum{rank({(u, v): P(u, v, 2, P)}): W(Z,  F)} < K N .  

Then use the fact that if <1, <, are linear orderings and iZ is a well- 
ordering, then 

< l  is a wellordering of rank < rank(<,) 
o (3f)[f is a similarity of <1 with an initial segment of -4 
o (3!f)[f is a similarity of il with an initial segment of < ,I. -I 



CHAPTER 8 

COUNTABLE ACCEPTABLE STRUCTURES 

There are two basic theorems about countable, acceptable structures. 
We prove these in Sections 8A and 8B and we also derive some of their 
consequences in these two sections and in Section 8C. In Section 8D we look 
briefly at some special properties of the structure N of arithmetic which do 
not generalize. (The method of constructing these counterexamples uses an 
infinitary language with game quantifiers which is interesting in itself.) The 
last section examines the status in the abstract theory of the Suslin-Kleene 
Theorem, the basic result about hyperarithmetical relations on o. 

$A. The Abstract Kleene Theorem 

For the case of N, this was the chief result of Kleene [1955a]. The strong 
version given there was the basis of Kleene’s approach to the theory of 
hyperarithmetical sets. The theorem was extended to structures of the form 
( A ,  E f A )  with A a countable, transitive set closed under pairing, in Barwise- 
Gandy-Moschovakis [1971]. For the abstract version here we follow 
Moschovakis [ 19701 (which was written after Barwise-Gandy-Moschovakis 
[ 197 11). 

8A.1. ABSTRACT KLEENE THEOREM. Every l3: second order relation on a 
countable acceptable structure is inductive. 

PROOF. We give the argument for first order relations since the version for 

Suppose then that CU = ( A ,  R , ,  . . ., R , )  is countable, acceptable and R 
second order relations follows by a trivial relativization. 

satisfies an equivalence 

R(2) (3Y,)  * . . (3 Ym)V(Y,, . . - 9  Ym, 9, 
with cp elementary. If we bring cp into prenex normal form and then apply 
repeatedly the trivial equivalence 

(V2)(36)P(U, 6) 0 (3X)((VU)(3O)X(U, 6) & (VU>(V6)[X(U, 6) = P(U, U)]), 
132 
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we obtain an equivalence of the form 

(1) R(R) = (3 Y,)  . . . (3 Ym)(VH)(3V)$( Y, ,  . . .) Y,, u, 6, Z), 
where $ now is quantifier free. Let 

ti = a,, . . ., ak 

be the individual constants that occur in $. Notice that we can evaluate the 
truth or falsity of $(Y,, . . ., Y,, U, 5, R) if we know U, V ,  Z and the truth 
value of each Yj(t , , .  . ., tnj)  when t l ,  . . ., tnj are chosen from the finite 
sequence 5, U, zi, X. 

For each 2 = x,, . . ., x,, consider alljnite structures of the form 

23 = ( B , Z 1 , .  . . ,Z , )  

such that 

a, ,  . . ., a,, x,, . . ., x,, E B 

and such that each relation Zj has the same number of arguments as the 
relation variable Yj  in (1). We can think of such structures as providing 
approximations Z,, . . ., 2, to relations Y,,  . . ., Y, such that (Vii)(3V)$ 
(Y, ,  . . ., Y,, U, V ,  X). Of course in general we cannot expect that any finite 
structure will make (V11)(3zi)$( Y,,  . . ., Y,, U, zi, X) true, since this sentence 
may be satisfiable only by infinite Y, ,  . . ., Y,. 

As usual, 8 ,  c 8, means that 23, is a substructure of %,, i.e. the domain 
of 23, is a subset of the domain of 8, and the relations of%, agree with those 
of 23 on the domain of 23 , . 

We will use the much stronger relation of extension for structures, where 
B1 -= 8, implies that 23, has witnesses ij for each U in 8, verifying $(Zl, . . ., 
Z,, is, zi). Let 

8 I= *(C, 6) 

abbreviate $(Z,, . . ., Z,, 6 ,  V ,  X), if 23 = (B,  Z , ,  . . ., 2,) and the sequences 
ii, V lie in 23, and put 

8,  < 23, cs- 8 1  E 8, 8L (Vii E 8,)(3V E 232)[%, I= * (11, V)] .  

If So < 23, < 23, < . . . is an infinite sequence of finite structures each 
containing a, R and each extending the preceding, it is immediate that the 
structure 

8 = U i B i  

(VU E 23)(3zi E 8)[8 != *(U, V ) ] .  

satisfies 
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If the domain of B is all of A ,  this easily implies R(X). We wish to verify that 
whether such a sequence of finite structures exists for a given Xis a coinductive 
relation of 2. 

For each X consider the game Ga, where I plays members of A and I1 plays 
finite structures 23 containing 5, X as follows: 

I I1 

At the end of the run, I1 wins if 
A i [ ~ i  E Bi & 23, < 2 3 i + 1 ] .  

The game is obviously open for I and closed for 11. We prove 

(*) 
Proof of direction (*) of(*). If R(Z), then there exist Y,, . . ., Ym such that 

(VU)(36)il/( Y,, . . ., Y,, 27, 6, X). We instruct II to play on finite substructures 
of the structure 

R(E) c> I1 has a winning strategy in Ga. 

<A,  Yl, * . - 7  Ym>- 
It is a simple matter to verify that given any such Bi and any zi+,  that I plays, 
II can find another such Bi+,, with zi+, E Bi+, and Bi < Bi+,:  he simply 
adds to B i  the element zi+, and he throws in for each U in Bi  some ij such 
that i l / (  Y,, . . ., Y,, 2, 6, 2). 

Proof of direction (e) of (*). Have I enumerate A against 11’s winning 
strategy. The resulting sequence B0 < Bl < . . . of finite structures has 
union UiBi whose domain is precisely A and it satisfies (Vis)(3C)$(U, ij). 

Thus if the relations of uiBi  are Y,, . . ., Y,, we have (VG)(36)$(Y1,. . ., 
Y,, 11, 6, Z), which implies I?(%). 

To finish the proof using (*), we code all finite structures so that the 
following relation is elementary: 

= (B,  Z1, . . ., Z,) 
and B2 = (C ,  W, ,  . . ., W,) such that 5, X E B, z E B 
and 23, < S2. 

Q(b,, b2, z ,  F) 0 bl,  b, code finite structures 

This is a bit messy but obviously possible. Now from (*), 
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The Kleene Theorem establishes for countable acceptable structures 
several results which fail for arbitrary acceptable structures. We list two of 
these here and leave the rest for the exercises. 

8A.2. SECOND ORDER CLOSURE THEOREM. Let cp(X, P, S )  be S-positive in 
the language of a countable acceptable structure 2l. Then the $xed point 4, 
determined by  cp is hyperelementary on 2l if and only if the closure ordinal 1140 / I  
of cp is smaller than K ~ .  

PROOF. If I[cpII c K, then 4, = .Fj'll is hyperelementary by Theorem 
6C.3. Towards proving the converse by contradiction, assume that 9, is 
hyperelementary but I(cp11 2- x91, let $( j ,  7') be any T-positive formula in the 
language of 2l. Since ! ! t j l l  < K ~ ,  we obviously have 

j E Z@ c> (33)(3Y)[(X, Y) E 4, & ljq@ < 13, PI,] 
9 (3X)(3P)[(X, P) E & l ( ( X ,  P) < ;,@ j ) ] .  

Now <f,@ is inductive by the Stage Comparison Theorem 6C.2, so that we 
have an equivalence 

j E Z@ 0 (3X)(P)&?(?, P, j )  

with a coinductive 2. Since coinductive relations are C: by 6B.5, this implies 
that Z$ is Z:, hence coinductive by the Kleene Theorem. Thus every inductive 

-I relation on 2l is coinductive, contradicting 5D.3. 

8A.3. THEOREM. If% is countable, acceptable, then the class X&'(BI) of 
hyperelementary subsets of A is inductive but not coinductive. 

PROOF. In the proof of the abstract Spector-Candy Theorem 7D.2, we 
showed that if %&'(2l) is hyperelementary, then every inductive relation on 
2l is Z:-definable with basis %&"-in particular every inductive relation on 
% is C:. By the Abstract Kleene Theorem every inductive relation is then 

-I coinductive, once more contradicting 5D.3. 

8B. The Perfect Set Theorem 

In addition to the Kleene Theorem, there is one more hard fact about 
countable acceptable structures which is interesting in itself and rich in its 
consequences. The strong version we need is due to Mansfield [I9701 for the 
structure N of arithmetic, but weaker versions for N can be traced to classical 
work in Descriptive Set Theory. Our proof is an elaboration of the Mansfield 
proof. 
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8B.1. PERFECT SET THEOREM. Let 2l = ( A ,  R1, . . ., R , )  be a countable 
acceptable structure and let 9 c Power(A) be a C: class of sets. Ij-9 contains a 
nonhyperelenientary set, then 9 has 2x0 members. 

PROOF. If 9 is C:, so is 
( X :  XEB & X $  %€} 

by 6D.2. Hence it will be enough to prove that if B is C:, nonempty and 
without hyperelementary members, then B has 2x0 members. 

As in the proof of 8A.1, we may assume that there is a quantifier free 
formula $( Y , ,  . . ., Y,,, X ,  ii, 6) in the language of rU such that 

XE 9 0 (3 Y,)  . . . (3 Y,)(VU)(%)$( Y, ,  . . .) Y,, x, u, 6). 
We now consider all finite structures of the form 

23 = (B ,  Z , ,  . . ., Z,, W> 
which contain all the constants a,, . . ., a, in I) and which give approximations 
to some X E ~  and to Y, ,  . . ., Y, which verify that X E ~  by satisfying 
(Vii)(3V)$( Y, ,  . . ., Y,, X, 17, 6). Recall that 

23, < 23’ * 23, E 113’ & (VU E 113,)(3fi E 23J113’ I= $(G, 731. 
Call 23 good if i t  does give a desired approximation, i.e. 

23 = { B ,  Z, ,  . . ., Z,, W )  is good 

0 (3 Y , )  . . . (3  Ym)(3X){(VG)(3fi)I)( Y , ,  . . .) Y,, X ,  zc, 6) 

& Y ,  C B = Z , &  . . .  & Y , f B = Z , & X r B =  W } .  

The following is immediate from the definition: 

(i) If23 is good, then for every z there is some good 113‘ such thaz 

z E 23’ and 23 < 23’. 

Call 23, and !B2 incompatible if their respective approximations to some 
member of 9’ differ at  some point: 

{ B ’ ,  Z : ,  . . .,ZA, W ‘ ) ,  ( B 2 ,  ZI,. . ., 212, W’) are incompatible 

c> for some t E E’ n B’, i ( t  E W’ - t E W’). 

The key to the proof is the following observation: 

(ii) I f  23 is good, then there exist incompatible good B1, 113, such that 

23 < B1, % <  23,. 
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Proof of (ii). Let B = (B ,  Z1, . . ., Z,, W )  and assume that 23 is good but 
any two good extensions of 23 are compatible. This implies immediately that 

(VY,). . . (vY,)(vx)(vYl,). . . (VYk)(VX){[B -c { A ,  Yl, . . .) Y,, X )  

& 23 E ( A ,  Y ; ,  . . ., Yk,  X ' )  & (VG)(35)$(Y,, . . ., Y,, x, u, 6 )  

& (vu)(3V)$(Y;, . . ., Yk,  X ' ,  u, a)] * x = X'), 

i.e. 23 gives an approximation to exactly one X* EP. But then we have a A; 
definition of this X*,  

t E x* - (3  Y , )  . . . (3 Ym)(3X){23 E ( A ,  Yl ,  . . ., Y,, x> 

- (V Y, )  . . . (V Ym)(VX){[B -c ( A ,  Y1, . . .) Y,, X )  

& ('v'ii)(%)$( Y, ,  . . ., Y,, X ,  zi, 5) & t E X }  

& (vu)(35)$( Y1, . . ., Ym, x, 6, fi)] t E x}, 
so that X* is a hyperelementary member of 9 contrary to hypothesis. 

By combining (i) and (ii) we immediately get 
(iii) If B is good, then for every z there exist incompatible good B1, B2 such 

that 
z E 8 , , z  E B2, B < 231, B < 23,. 

We simply first get B' such that z E 23', B < 8' by (i) and then we get 
incompatible good %,, B2 extending 8' by (ii). 

Let z,,, z l ,  . . . be a fixed enumeration of A and construct a binary tree of 
finite good structures by repeated applications of (iii). This is shown in Fig. 
8.1. 

23 0 .  .. .. .. .. .. .. .. 
Fig. 8.1. 
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All structures at the 0th level of the tree contain zo, all those at the 1st level 
contain z,, etc. Moreover, if 23' is below 23 in the tree, we have 23 < B', and if 
%, 23' do not lie on the same branch coming down, then they are incompatible. 

Every infinite branch Bo < 23' < 23' < . . . through the tree determines 
relations Y, ,  . . ., Y,, X such that (VU)(36)$(YS, .  . ., Y,, X ,  U, 6, Z), so in 
particular X E Y .  Since distinct branches determine distinct X's by the 
incompatibility condition and since there are 280 branches, there are at least 
2x0 members of 9. -1 

The theorem gets its name from the fact that we have actually constructed 
a perfect subset of 9, i.e. a subset of 9 which is closed and with no isolated 
points in the topology on Power(A) generated by the neighbourhoods 

N(a,, . . ., a,; b,, . . ., b,) = (X: a,, . . ., a, E X & b,, . . ., b, 4 XI. 
We do not pursue here the topological or descriptive set theoretic aspects of 
this result. 

Most of the applications of the Perfect Set Theorem use the following 
trivial consequence of its contrapositive : 

8B.2. COROLLARY. If '21 = ( A ,  R,, . . ., R,) is countable, acceptable and 
9 is a countablr, 1: collection of n-ary relations on A ,  then 9 contains only 
Iijperelemcntai~~ relations. -i 

8C. The intersection of all ?I-models of second order comprehension 

The main result of Gandy-Kreisel-Tait [ 19601 is that the intersection of all 
w-models of second order number theory consists precisely of (w and) the 
hyperarithmetical relations. Barwise and Grilliot have extended this theorem 
to all countable acceptable structures using a version of the Omitting Types 
Theorem. We prove here this result by a very different method which is more 
in  the spirit of our approach to inductive definability in this book. The key 
idea is the next lemma which is due to Kechris [1972] for the case 2I = N. 

8C. 1, LEMMA. Let 'tl be countable, acceptable, let 9 be a countable, inductive 
collection of' n-as,v relations such that 

[f Y E  9 and X is liypeselernentary on (a, Y) ,  then X E 9. 

Then either 9' E .Xf8(2l) or 9 contains all inductive n-ary relations. 

PROOF. We may assume that 9 # 8 and hence that P contains all hyper- 
elementary relations. 
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Let Y be a fixed inductive, nonhyperelementary relation. If there is some 
X E B such that Y is hyperelementary on (%, X ) ,  then Y E  9 by hypothesis. 
The other possibility is that for every X E 9, Y is not hyperelementary on 
(N, X). By Theorem 3D.2, we know then that 

(*I X E  9 * K ( % , X )  < K = KI, 

Since B is inductive, there is some I) 5 $(C, X ,  S )  and parameters 5 such 
We complete the proof by showing that (*) implies B E %b(%). 

that 

x E B o ( a ,  X)E$,. 

9 = U I < K  (1: 15, XI, G A}, 

Now for each X E ~ ,  15, XI, < < K ;  hence 

and since each { X :  la, XI, G A} is hyperelementary by 6C.3 and countable 
by hypothesis, it contains only hyperelementary relations by 8B.2, i.e. 
B c #€(%). i 

Lemma 8C. 1 gives an obvious method for attempting to prove that certain 
countable inductive sets have only hyperelementary members. For the case 
% = N, Kechris [1972] actually shows under the same hypotheses that 
B E #€. It is not known whether this stronger result holds for arbitrary 
countable acceptable a, so that applying the lemma is a bit more complicated 
in the general case. 

We have already considered some theories in the second order language 
9: over a structure %, e.g. the theory of Xi-Collection or the theory of 
A:-Comprehension. By a theory in 9: we simply mean a collection of sen- 
tences in 9:. Another such interesting theory is that of full second order 
comprehension over %, i.e. the collection of (universal closures of the) formulas 

(Ak-Comp) (3Z)(VX)[X E z - q ( X ,  F)], 
where q ( X ,  F) is in 2’;. 

By an %-model of a theory Y in 9; we always understand a collection 9 
of relations on a, such that all sentences in F are true when we interpret 
them on % with range F, as in section 7E. A theory F is inductiue, coinductive, 
Hi,  etc., if the set 

Cod(F) = {a :  a codes a sentence of S }  

is inductive, coinductive, TI:, etc., where the coding is assumed reasonable so 
that Lemma 7E.2 holds. 

It is trivial to  check that the theory of full second order comprehension 
over N is hyperelementary when % is acceptable. 
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The next result is due to Gandy-Kreisel-Tait [1960] for N, to Barwise 
(unpublished) and Grilliot [ 19721 for arbitrary ?I. 

8C.2. BARWISE-GRILLIOT THEOREM. Let % be a countable acceptable 
structure, let 9- be an inductive theory in 97 which contains all instances of 
A:-Comprehension and has an %-model. Then the intersection of all %-models 
of F is precisely Xg(91). 

PROOF. Since every ?[-model of < is closed under elementary definability, 
the model is completely determined by the unary relations in it. Thus it will 
be enough to show that the set 

9 = ( X  E A :  X belongs to every %-model of .Y) 

is precisely the set of hyperelementary sets. 
First we verify that B satisfies the hypotheses of Lemma 8C. 1. 
(i) 9 is countable. This is because by the Skolem-Lowenheim Theorem F 

(ii) 9 is inductive. The relation 
has countable '2L-models. 

ModF(Z) 0 ( Z t ) :  n > 1, a E A }  is an ?[-model of F 

is Xi, since 

Modr(Z) - (Vb)[b E C o d ( Y )  => Sat,(b, Z ,  0, (S})], 
(We are using the notation of Lemma 7E.2.) Now 

x E 9 c> ( V Z ) [ M O ~ ~ ( Z )  =. ( 3 a ) [ x  = z:')]], 
so that B is Hi. 

(iii) If Y E  P and X is hyperelementary in Y, then X E 8. This is because 
F extends the theory of A:-Comprehension. Since we allow relation para- 
meters in that schema, every '%-model of .Y satisfies A:-Comprehension on 
the expanded structure (?I, Y ) ,  for Y E  9, and it must contain all sets hyper- 
elementary on (2I, Y )  by Theorem 7F.1. 

Now Lemma 8C.1 applies, and to complete the proof it is sufficient to 
derive a contradiction from the hypothesis that B contains every inductive set. 

Suppose R is an arbitrary coinductive relation. By 7B.4 we know that there 
is an elementary 2?( Y, X) such that 

R(2) 0 (3 Y)9(  Y, X) 

0 ( 3  Y ) {  Y is coinductive & 9( Y, X)}. 

If 9 contains all inductive sets, then 9 contains all coinductive sets. Hence 

R(Z) e (3 Y)[  Y E .9 & R( Y, X)f. 
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Substituting the definition of B we have 

R(Z)  o (VZ)[ModT(Z) (3a)L%(Z$'), X)] 

which implies that R is ll!. This is a contradiction, since R was an arbitrary 
coinductive relation. -I 

8D. Counterexamples to special properties of arithmetic; the language 2'o,,~ 

There are some very special properties of induction on the structure N of 
arithmetic which cannot be extended to all countable, acceptable structures. 
We discuss two of them here and we also give a general method of obtaining 
countable structures which reflect many of the features of induction on given 
uncountable structures. In Section 8E we will look at the Suslin-Kleene 
Theorem, the most important special property of N. 

Consider first the fact that the closure ordinal of N is the supremum of all 
arithmetical wellorderings on w.  We prove something a bit stronger. 

8D. 1. THEOREM. Let w 1  = IP be the ordinal of the structure of arithmetic N. 
Then there is a $xed arithmetical relation P(u, u, x) such that for all x, the 
relation 

<x  = {(u, 4: P(x, u>> 

is a (strict) linear ordering and 

(I) 

In fact, P can be chosen recursive, so that w 1  is the supremum of order types of 
recursiue wellorderings on 0. (Spector [ 19611.) 

w1 = supremum{rank(<,): <* is a wellordering). 

PROOF. We outline how to obtain an arithmetical P with the properties in 
the theorem. Those who are familiar with the simple properties of recursive 
relations will recognize that our argument actually yields a recursive P. 

Let R(x) be some II: relation which is not Xi. By Exercise 3.1 there is an 
arithmetical relation P(u, u, x) such that for all x the relation 

<x = { (u, 4 : P(U, u,x )>  
is a linear ordering and 

R(x) o <, is a wellordering. 

If there were a g < w1 such that 

supremum (rank( < : R(x) )  < t, 
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then 

R(x) - rank( < < t 
and by Exercise 3.5, R would be hyperarithmetical; hence (1) holds. 

It is easy to check that P can be chosen recursive by following up the 
-I hints given for the exercises leading up to 1.12 and 3.1. 

In contrast to this, we have the following general result for structures on 
which wellfoundedness is elementary. 

8D.2. THEOREM. Let be an acceptable structure on which the class WB' 
of wellfounded binary relations is elementary. For every hyperelementary 
relation P, 

supremum{vank(<): < is wellfounded and elementary on (a, P ) }  < urn. 

PROOF. Choose a hyperelementary E 2  E A3 which parametrizes the binary 
relations elementary on (a, P)- this exists by 5D.1. For each a E A,  put 

and assume towards a contradiction that 

( 3 )  

Now the relation 

supremum{rank(<,): <a is wellfounded} = K%. 

(a, u) < (b, u )  c> a = b & <a is wellfounded & u <, v 
is hyperelementary, wellfounded and has rank K ~ ,  which contradicts 2B.5. -I 

Theorem 6C.3 gives us examples of structures in which WF'  is elementary, 
but they are all uncountable, as they must be by 7A.2 and 8A.1. The natural 
way to define countable structures on which 

(4) 

is to find a language which is rich enough so that we can express (4) in it but 
which is nice enough so that it has the Skolem-Lowenheim property. We can 
then use countable, elementary substructures of the counterexamples given 
by 8D.2. From the several available languages which are known to have these 
properties, we prefer to  use one with game quantijiers, in which we find 
natural explicit definitions for inductive relations. The same language has 
been studied by Barwise [1972]. 

rcrn > supremum of ranks of elementary wellfounded relations 
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For each set A ,  the language 2 & , ~  is defined by adding to the symbols 
and formation rules for the first order language .YA the following four 
infinitary formation rules. Recall that we allow individual and relation con- 
stants and variables in the formation rules of BA. 

If@ is a countable collection of formulas all of whose free individual and 
relation variables are contained in some fixed finite list, then 

A@, VQ, 

are also formulas. 
We often have indexed sequences of formulas, 

@ = ( c p j : j E f ) ,  

in which case it is natural to write the infinite conjunctions and disjunctions 
using the indexing, 

A@ = A j c p j ,  

va) = vjcpj. 
In many cases the indexing itself is by formulas. For example we may put 
down the conjunction 

A rp (WcP@, 3, 
where cp varies over all formulas of the form 

4) d U 1 ,  . * - 3  uk, x1, . . - )  xn) 

(k  may vary with cp) which have no individual constants from A and whose 
relation constants are included in some fixed finite list. Some such restrictions 
are necessary to ensure that the conjunction is over a countable set. 

If cpo(xo), cpl(xo, x ~ ) ,  cpz(xo, x l ,  x2),  . . . is a sequence offormulas such that 
the free variables of each qi(x0,  . . ., xi) are among xo, . . ., xi and the variables 
in some fixed finite list, and if Qo, Q I ,  Q z ,  . . . is an infinite sequence of 
quantifiers, then 

( 5 )  
(6) {(Qox,)(Qlx,) + . - >  V i * - 9  X i )  

( ( Q o x o ) ( Q ~ x ~ )  * . * }  A i ~pi(x0, . - 9  xi), 

are also formulas. 
It is understood that the free variables of AQ, or V@ are the variables 

which are free in some cp E@. Similarly, the free variables of the game 
formulas in (5)  or (6) are the variables which are free in some cpi(xo, . . .7 xi) ,  
exclusive of xo, x l ,  . . . which are all bound by the infinite quantifier string. 
The restrictions in the formation rules ensure that every formula has finitely 
many free variables of either type. 
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As usual, sentences are formulas with no free variables. We define truth for 
sentences by extending the truth definition of 2’A in the obvious way. Thus 
A@ is true if every cp in Q, is true and V@ is true if some cp in @ is true. For 
the game sentences we use the game interpretation of infinite quantifier 
strings that we discussed in Chapter 4: The sentence in (5) is true if (3) has 
a winning strategy in the closed game determined by (5) and similarly for (6). 

If ‘L[ = ( A ,  R,, . . ., R , )  is a structure with domain A ,  then the formulas 
of ~ Z , , G  are those formulas of 9$, ,~  whose relation constants are among 

A second order relation P(2, Y) is 9 ~ , , ~ - d e j n a b l e  (on a) if there is a 
formula q(x, Y) of 2’2,,c with the appropriate free individual and relation 
variables such that 

=, R , ,  . . ., R,. 

9yx, Y) e q(Z, F). 
The Fixed Point Normal Form Theorem 6C.6 implies immediately that all 
inductive relations are S?;,,c-definable. Hence coinductive relations, con- 
junctions of inductive and coinductive relations, etc., are all 22,,G-definable. 
Thus 2’?:,,c is quite powerful and we can express in it a good part of the 
theory of inductive definability on ?t. 

To be precise, let us assign to each q ( X ,  Y ,  S )  in the language of a structure 
‘LI which is S-positive in canonical form a fixed formula “(2, 7 )  €9,” of 
2 ? z l , G  which defines the fixed point 4,. We will naturally write “Z E ZV” if cp 
has no relation variables. It is also useful to notice that every inductive 
relation 9(xl,  . . ., x,, Y, ,  . . ., Y,) on 2t satisfies 

$g(xl> . . .) xn, Y , ,  . . .> ‘“1) 0 . . *, a,, x1, . . .7 xn, Y1, . . *, Ym) E ~ V ,  

with suitable constants a, ,  . . ., ak and some cp(E, X, Y, S )  which has no 
indiiiuidiral constants; we do this by counting any individual constants that may 
occur in cp among the parameters of the induction. This is useful because 
there are only countably inany formulas of the first order language 2% with 
no constants from a. 

Notice that 

X is elementary - V (3i)(VdF)[% E X - ~ ( i i ,  3 1 ,  
where X is an n-ary relation variable and x varies over the countably many 
formulas of which have no individual constants and whose free variables 
u,,  . . ., uk, xl, . . ., x, include xlr . . ., x,. It is only slightly more complicated 
to define the class of hyperelementary n-ary relations, 

X is hyperelementary - V V $ (321)(3fi)(VE)[x E X - (ii, Z) E 1, 
& x E x o  (5, Z) f$ z$]; 

here cp varies over the constant-free S-positive formulas of the form cp(ul, . . ., 
irk, xl ,  . . ., xn, S )  and similarly for $. 
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We can say that “every inductive relation is elementary” by 

A rp (VU) V (3V)(VZ)[(G, Z) E I,,, - x ( V ,  %)I, 
where the ranges of q and $ are as above and countable. It is only a bit 
more complicated to say in 9 Z 1 , ~  that “every hyperelementary relation is 
elementary”, 

A,,, A~(Vii)(Vij){(VZ)[(U, Z) E I,,, e (6, %) ef I$] 

* v (3f)(V%)[(G, X) E I, * X(f,  31).  
These simple tricks which allow us to quantify over all elementary, hyper- 

elementary or inductive relations in 5%,,~ are very useful. They make it 
conceptually easy if a bit messy to write down explicit sentences of this 
language which assert that 

is acceptable” 
or 

“CLI admits a hyperelementary coding scheme”. 

For example, the first of these can be expressed by 
“there is an elementary relation d which is an ordering such that every 
initial segment is finite and for each n 2 0 there are elementary maps of 
“ A  into A ,  one-to-one with disjoint ranges and such that there are elemen- 
tary relations Seq(x), Ih(x) = t ,  q(x, i )  = y having the appropriate 
properties”. 

In fact the formal version of this sentence does not have any infinite alter- 
nating quantifier strings. 

Using Exercise 6.1 and the explicit definitions of inductive relations in 
92fl,~, it is easy to find a formula X < Y of this language such that 

X 4 Y e  X ,  Y are wellfounded binary relations and rank(X) d rank( Y) .  

Now the sentence 

v rp v $ (3~)(3ij){(VS’s)(Vt)[(uL, s, t )  E I,,, * (V, s, t )  4 IJtl 
& ((s, t ) :  (U, s, t )  E I,) < {(s, t ) :  (C, s, t )  E I,,,) 

L?z A, (W[{ (S ,  0 :  X(Z, s, t>> i {(s, 0:  X P ,  s, Q> 
=3 ( (8 ,  0 :  X(Z, s, t )>  G {(s, t ) :  (U, s, t>  E IJ1) 

asserts that “some wellfounded hyperelementary binary relation has rank 
greater than or equal to the rank of every elementary wellfounded relation.” 
Of course we must interpret correctly the ranges of cp, $, x as above. This 
assertion is equivalent to (4) above for acceptable structures. It is only a bit 
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messier to put down a single sentence II/ of YE,,c with no individual constants 
such that 

(7) $ is true in ‘2I o ?I is acceptable &for  every hyperelementary P, 

lcZt > supremum{rank(<): < is wellfounded, 

elementary on (%, P)}.  

Consider all structures ?I = ( A ,  R1,. . ., R,) of a given signature (n,, . . ., 
n,), i.e. whereeach Riisni-ary. If ‘LI = ( A ,  R1,. . ., Rl), 23 = ( B ,  P,, . . . ,PI>  
are of the same signature and cp is a formula of ~ E , . c  all of whose individual 
constants are in the intersection A n B, it is natural to associate with cp the 
formula cpv of 92f,,c obtained by replacing each P i  by Ri  in cp. In this notation 
cp” = cp. I f  cp is a sentence, it is customary to write 

“?l 1 cp”.for “cppt is true.” 

A common situation where we apply this notation is when 23 is a sub- 
structure of ?I, B G %, in which case every cp in 9Z , , c  has some cp” associated 
with it. 

If B E ?I and cp(x,, . . ., xm) is a formula of S?$,,G with the indicated free 
variables, we call cp absolute for 23 if the individual constants of cp are in 23 and 

(Vb,, . . ., b, E 23)[B k ~ ( b l ,  . . ., b,) 0 2l k q(b1, . . ., bJ].  

In the special case that cp is a sentence, this means that cp holds in 23 if and 
only if it holds in ?I. 

The next result was independently noticed by Barwise. It is a special case 
of very general theorems of Barwise [1972]. 

8D.3. SKOLEM-LOWENHEIM THEOREM FOR g a , , ~ .  Let 21 = ( A ,  R1, . . ., R,) 
be an infinite structure, let @ be a countable set of formulas of 2‘$,,~. There 
exists a countable substructure 23 of 21 which contains all the individual 
constants occurring in formulas of @ andsuch that every cp in@ is absolute for 23. 

PROOF. If cp is a formula of Y2f,,c, a set of Skolem functions for cp is any set 
9’ of functions of any number of arguments such that cp is absolute for every 
substructure of ?I which is closed under all the functions in 9’. 

Here we allow individual constants in 9, call them 0-ary functions, and a 
substructure B = (B ,  P,, . . ., P,) is closed under a k-ary f if 

b,, . . ., b, E B * f ( b I ,  . . ., bk) E B. 

To prove the theorem, we assign to each formula cp of 9E,,c a countable set 
of Skolein functions 9’(cp).  This will surely do it, because given a countable 
set @ of formulas we can take B to be the smallest set closed under UqEm Y(q) 
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and let 23 be the restriction of 'u to B. Surely 23 is countable and it satisfies 
the conclusion of the theorem. 

The assignment of Y(q) to cp is by induction on the construction of cp and 
is completely trivial, except perhaps for the sentences introduced by the game 
quantifiers. For example, if 

~ o ( x , ,  * . xn) ( 3 ~ ) $ ( y ,  X I ,  * . .) Xn), 

a c p )  = W$) u ( I} ,  

(3~)$(y7 X I ,  * * xn) => $(f(x1, . * xn), * . .7 Xn). 

we can take 

where f is n-ary and chosen so that in 'u, 

To consider one of the formation rules that involves game quantifiers, 
suppose 

d ~ )  E {(Qoxo)(Q,x1) * . a )  A i q i (~7  XO, . .> xi), 

where we have exhibited all the free variables and for simplicity we have 
assumed that cp has only y free. For each y E A ,  either (3) or (V) wins the 
game determined by cp(y); let (Qy) be the winning player and choose a 
winning strategy for him, a collection of functions 

P = {fiy: Qi  = QY}, 

where as in Chapter 4 eachJ;.y is i-ary. For each i, put 

where a is some fixed element of A ,  and set 

Y(cp) = { f i :  i = 0, I, 2 , .  . .} u Ui Y(qi). 

If B is closed under Y(q) and ?I I= cp(y) for some y E B, then by the definition 
B is closed under some winning strategy for (3) in the associated game. If we 
follow this strategy, we can ensure that for all plays of (V), 'u k A cpi(y, xo, 
. . ., xi), and since B is also closed under Skolem functions for all the (p i ,  we 
have by induction hypothesis B b A cpi(y, xo, . . ., xi),  so q ( y )  holds in 23. 
The argument is similar if iu k i q ( y )  and both the construction and the 

-I proof are similar for the open game quantifier. 

If ?I, 23 are related as in the theorem, we call 23 an 2'u,,&enientary 

This result yields immediately counterexamples to the possibility of 
substructure of iu with respect to @. 

extending 8D. 1 to all countable acceptable structures. 
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8D.4. THEOREM. There is a countable acceptable structure such that for every 

IC~' > supremum{rank(<): < is wellfounded, elementary on (23, P)} .  

hyperelementary P, 

(8) 

PROOF. Choose an BI such that (8) holds by 8D.2, then choose a countable 
-I structure 23 for which the sentence II/ satisfying (7) above is absolute. 

It is clear that the same method can be used to obtain countable structures 
that reflect many complicated properties of induction on uncountable 
structures. Some caution is needed since no truly second order property is 
expressible in 92,,c-this is why we cannot construct a countable acceptable 
structure on which every inductive relation is Xi .  However, we can often get 
very close to reflecting second order properties by a bit of trickery, as in the 
next example. 

The following important basis property for C: sets of sets of integers is due 
to KIeene. 

8D.5. BASIS THEOREM FOR SETS ON N. If  _C Power(o) is nonempty and 
Ci on the structure N, then B contains a set X which is arithmetical in some 
Ci set R G w. 

In fact, under the same hypothesis, B contains a set X which is recursive in 
some X i  set R c w. 

PROOF. As in the proof of 8B. 1 ,  we have 

x E 9 0 (3  Y,) . . . (3  Y,J(VC)(3)Ij( Y,, . . .) Y,, x, i7, U ) ,  

where $ is quantifier free in the language of N. Again we consider finite 
structures of the form 

23 = ( B ,  z,, . . ., z,, W )  

which give approximations to Y, ,  . . ., Y,, X such that (VU)(3)II/(Y1,. . ., 
Y,, X ,  U, 6). The relation 

3, < 8 2  

is that defined in the proof of 8B.1, and again as in that proof 

23 = <B, Z1,. . ., Z,, W )  is good 

0 (3 YJ  . . . (3 Ym)(3X){(VZl)(3U)Ij( Y,, . . ., Y,, x, U, i7) 

8~ Y1 [ B =  Z1 &. . . & Y, r B = Z,,,&xt B = W } .  
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It is easy to code all finite structures of this signature using integers, so that 

and b, codes some 23, and 23, < 23, 
as in the proof of 8A.1 the relation 

Q(b,, b,, z) o b, codes some 
and z E 23, 

is arithmetical. For any reasonable coding, the relation 

G(b) o b codes some good 23 
will be Zi. 

induction 
Let bo be the code of the empty (good) finite structure and define by 

(9) b,+l = (least W(@ &k Q@,, b, 41. 

f ( n )  = bfl 

The function 

is arithmetical in the relations Q, G,  in fact it is recursive in Q, G. It deter- 
mines a sequence 

230 < 23, < . . . 
of good structures whose union is of the form (a, Y, ,  . . ., Y,,, X )  and 
satisfies (VU)(3V)$( Y, ,  . . ., Y,, X ,  zi, I?). Moreover this X is arithmetical (in 
fact recursive) in Q, G and it satisfies (3 Y , )  . . . (3 Yn,)(Vii)(3ij)$( Y , ,  . . ., Y,, 

-I X,  U, V), so that X E  P. 

We have put down a version of this classical argument which uses as few of 
the special properties of N as possible, so that at  first glance it looks as if the 
theorem may hold for more general structures. However, the definition of 
bfl+l in (9) uses the basic property of N that we can arithmetically enumerate 
o, so that in fact the argument works only for structures of the form (N, R1, 
. . ., RJ.  

8D.6. THEOREM. There is a countable acceptable structure 23 and an elemen- 
tary set 9 c Power(B) which is nonempty but contains no set which is elementary 
in Xi sets. In fact we can choose 23 so that it admits an elementary wellordering 
of its domain. 

PROOF. Let A be any uncountable cardinal, for example il = N,, take 

'ill = (A, <, R1, . - ., RJ, 
where the Ri are hyperelementary on (A, <) and chosen so that '%?I is accept- 
able. Since 1 is uncountable, there is no function with domain o enumerating 
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2. This is a second order property, but it is simple to find a sentence cp of 
Y Z , , G  which asserts that 

there is no function from o onto the structure which is elementary in 
coinductive relations. 

Let $ assert that % is acceptable and take a countable substructure 23 of ‘$I 
for which both cp and rl/ are absolute. 

Clearly 23 is acceptable, it admits an elementary wellordering of its domain 
and it admits no enumeration of its domain by a function elementary in 
coinductive (i.e. Xi) relations. Thus the elementary set 9 defined by 

X E 9 c> ( (u ,  v) : (ti, u )  E X }  maps o onto B 

contains no such set, although it is nonempty since 23 is countable. -I 

8E. The Suslin-Kleene Theorem 

Perhaps the most significant single result in the theory of inductive relations 
on N is the theorem of Kleene [1955b], [1955c] which identifies the classes of 
A! and “hyperarithmetical” relations on o. It has been recognized as a 
construction principle, since it allows us to “construct” the A; sets by iterating 
the elementary operations on N. I t  is known today as the Suslin-Kleene 
Theorem, because it is the effective analog of Suslin’s classical theorem 
identifying the Bore1 with the analytic-coanalytic sets of reals. In fact it is 
not too hard to show that both the Kleene and the Suslin theorems are 
simple corollaries of one unifying principle. 

We put the word “hyperarithmetical” in quotation marks above because 
Kleene’s definition of this term was quite involved. Similar definitions of the 
hyperarithmetical relations had been given by Davis [ 19501 and Mostowski 
[1951], and eventually Spector [I9611 pointed out explicitly that these are 
precisely the inductive-coinductive relations on N. Because of this, it is 
tempting to understand the Suslin-Kleene Theorem as saying simply that 

(1) II; = inductive, 

what we called the “Kleene Theorem” in Section 8A. This was my own 
approach in Moschovakis [1970], and of course it is satisfying that (1) holds 
for all countable accep?able structures. 

Nevertheless, when we examine the proof in Kleene [1955c] or any other 
known proof of this result expressed in terms of Kleene’s original definition of 
“hyperarithmetical”, it becomes obvious that soinething much stronger than 
(1) is established. This was obvious to Kleene who tried very hard to prove 
this theorem although he had already established (1) in Kleene [1955a]. 
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We shall formulate and prove here a version of the Suslin-Kleene Theorem 
which is very close to Kleene’s version, although free of the notational 
complications of the theory of constructive ordinals. It is essentially the 
version given in Shoenfield [1967]. It turns out that this is indeed much 
harder to establish than (1) and that it cannot be extended to all countable 
acceptable structures. 

Since we will use recursive functions both in the statement and in the proof 
of the Suslin-Kleene Theorem, we assume just for this section the very basic 
facts of recursion theory. 

For each n 2 1,  there is an enumeration of all n-ary recursive partial 
functions 

VO(X)Y PIG), d x i  - - - - 
so that the (n+ 1)-ary partial function 

~ ( e s  3 V e ( 3  

is recursive. (Enumeration Theorem.) 
Moreover, there are total recursive functions S:(e, y l ,  . . ., y,) such that 

$ 2  = S:(e, y l ,  . . ., y,,,), then for every xl, . . ., x,,,, 
V&1, ’ * *, x,) = qe(y1, . . ., y,, XI,  . . .) XJIh 

(Zteration Theorem.) 

some fixed number e* such that for all X, 
If f ( e ,  Z) is a recursive partial function of n+ 1 arguments, then there is 

f(e*, X )  = 9,*(Z). 

(Second Recursion Theorem.) 
Except for these basic facts which can be found easily in Kleene [ 19521 (or 

any other elementary text in recursion theory), we will only need to assume 
that certain functions whose definitions are obviously effective are in fact 
recursive. 

The motivation for this formulation of the Suslin-Kleene Theorem lies in 
taking seriously the contention that it should be the effective analog of the 
classical Suslin Theorem. “Analytic-coanalytic” clearly corresponds to 
“A:” and the Bore1 sets are the smallest O-ring of sets of reals which contains 
all the intervals. Assuming that the intervals in this definition simply give us 
a starting point of very simple sets, we aim to show that the A; subsets of 
o form the smallest effective O-ring of sets of integers which contains all 
singletons. 

Let W be a family of subsets of o. A coding for ~?3 is any mapping 

‘~t : 38 --+ Power(o) 
6 
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which assigns to every X E g a nonempty set of integers n ( X )  such that 

X # Y =  n ( X ) n  n(Y)  = 0. 

We call the members of z ( X )  the codes of X (in the coding n) and if n E n ( X )  
we say that X is in B with code n. Thus a coding of 9? assigns at least one 
integer code to each X E  g and does not assign the same code to two distinct 
members of B. 

A family 9 of subsets of w is un efSective o-ring (containing the singletons) 
if there is some coding n of 29 so that the following three conditions hold: 

(i) There is a recursive function zl(n) so that for each n the singleton { n }  
is in  B' with code zl(n). 

(ii) There is a recursive function zz(x) so that if Xis  in g with code x, then 
(0- Xis in B with code zz(x). 

(iii) There is a recursive function z3(e) such that whenever the recursive 
partial function qe(n)  is defined for each n and codes for each n a member X,, 
of B, then u,,,, X,, is in B with code z3(e). 

Speaking loosely, B is an effective o-ring if it admits a coding relative to 
which B contains all singletons (effectively) and g is effectively closed under 
cornplernentation and recursive union. 

8E.1. SUSLIN-KLEENE THEOREM. The collection of A; subsets of o is the 
smallest efective o-ring. 

At this point it is not even obvious that there is an effective o-ring, much 
less that there is a smallest one and that it contains precisely the A! sets. 
Before going on to  the proof of 8E.1 we define a particular effective o-ring 
and a coding for it. 

The definition is by a simultaneous induction which determines a set of 
integers G and for each x E G, a set of integers G". There are three clauses to 
the induction. 

(a) For each n, (1, n)  E G and G(',") = {n}.  
(b) If x E G, then (2, x) E G and G(zpx> = o-G". 
(c) If the recursive partial function q,(n) is defined for each n and if for 

each n, 
q ~ e ( n )  = en E G, 

then (3, e )  E C and 
G < 3 , e >  = Un G'v. 

By (x, y )  we understand here the pair associated with some recursive coding 
scheme on w, e.g. 

(xl, . . ., x,J = 2"lf1 3"2+' - . . . - (the n'hprime)Xn+l. 
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To cast this definition as a generalized induction of the type we introduced 
in Section lA, let A be the set of all pairs (x, X )  with x E o, X 5 o and 
define I?: Power(A) +. Power(A) by 

(2) US) = {KL n>, {.I): E 0) 

u (((2, x), 0- X ) :  (x, X )  E S ]  

u f((37 e>, U n  Xn): 40, is total and (Vn)(qe(n), Xn) E S}. 
Clearly I? is a monotone operator. We interpret the definition of G, G” above 
to mean that we take 

(3) 
and for x E G, 

(4) G” = the unique X such that (x, X )  E Ir. 
This is justified since we can easily verify that 

Notice that 

G = {x: for some X ,  (x,  X )  E I r )  

(x, X), (x, Y ) E  Zr * X = Y. 

( 5 )  Ir = {(x, G”): x E G} 

and put 

(6) Y = {G”: X E G } .  

PROOF OF 8E.1 is in three lemmas. 

Lemma 1 .  The collection of sets Y is an eflective o-ring and every set in 9 

Proof. The first assertion is trivial from the definitions, taking 

is A;. 

n ( X )  = {X E G :  X = G”) 

for the coding and putting 

zl(4 = (1, n>, z z ( 4  = (2, x>, z3(e) = (3, e>. 
To prove the second assertion, let us associate with each Y E o the subset 

Y* of the basic set A defined by 

Easily, if 

(7) 

Y* = {(x, { t :  ( x ,  t +  1) E Y ] ) :  ( x ,  0) E Y } .  

2 = {(x, 0) : x E G )  u {(x, t +  1): x E G & t E G”}, 

then 
Z* = Ir. 
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We claim that for each x E C,  

(8) t E cxo (vy E w)[r(y*) = Y* (x, t + i )  E Y I .  

Proof of direction (.=) of (8) is immediate by choosing Y = 2. To prove 
direction (j), notice that if r ( Y * )  = Y", then IT E: Y*,  and this easily 
implies t E G" 5 (x, t + 1) E Y. 

Now (8) implies via a simple computation that each G" is Hi,  and since 
(for x E G) G" = w- G(2,x), each G" is A:. 

Lemma 2. f l9 is an eff'ective a-ring, then for each x E G, G" E 98. 

Proof. Let zl, z2, z3 be fixed recursive functions which satisfy conditions 
(i), (ii) and (iii) of the definition of an effective a-ring relative to some coding 
of %?. Choose m so that for every z, e, n, 

qrn(z, e, n) = cPz(qe(n>) 

f = %*, 

and using the Second Recursion Theorem choose z" such that if 

then the following equations hold: 

f(<l, n>> = T1(!2) ,  

f ((27 x>> = z,(f(x)>, 

f((3, e>> = z,(Sl(m, z*, el), 
f(x) = 0 i f x  is not of the form (i, y )  with 1 < i < 3. 

It is now easy to verify by induction on the definition of G, G" that 

x E G * G" is in 9 with code f ( x ) .  

For example, if x = (3, e) ,  then q,(n) is total and by induction hypothesis, 
for each n, Gen is in g with codef(qe(n)). Letting 

w = S:(m, z*, e), 
we have for each n, 

hencez,(w) is a code in 93' of un Gen so thatf((3, e)) has the required property. 
To complete the proof of the theorem there remains the hard part of 

showing that every A; set of integers is G" for some x E G.  We do this by an 
adaptation of a very simple classical proof of the Suslin Theorem, see 
Kuratowski [1966], 939, 111. (The observation that this proof has an effective 
version is independently due to Donald A. Martin.) 

Lemma 3. If X is a A; set of integers, then X E 9. 

qw(n> = ( ~ r n ( ~ * ,  e, n) = f(qe(n)) ; 
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Proof. By the basic representation of Exercise 1.12, suppose 

x E x -s (3u)(Vt)P(cc(t), x), 

x 6 X * (3B)(trs)Q(P(s), 4, 
where P and Q are recursive. The idea of the proof is to define a recursive 
function f such that 

(9) for  every x, f(x) E G, 

(10) x E X GJ(”) = { x } ,  

(1 1) x 6 X 3 GflX) = 0. 

From this the lemma will follow immediately, since iff = qe, then 
X = G<32e). 

In point of fact we will set 

(12) f ( x )  = h(x, <0), <0)), 
where h(x, u, u) will be a recursive function whose values will be significant 
for the proof only when u, u are sequence codes of the same length. 

(13) 
The relation 

(14) 

For each fixed x, consider the set of pairs of sequence codes 

T” = {(u, u ) :  Seq(u) & Seq(u) & I/z(u) = Zh(u) & P(u, x) & Q(v, x)). 

(u, v) >“ (u’, u’) e (u, u)  E T” 

& ur codes a one-point extension of u 

& up codes a one-point extension of u 

is obviously wellfounded, since an infinite descending chain in it would prove 
that both x E X and x # X.  We assign to each pair (u, u )  of sequence codes 
of the same length a set of integers C(x, u, u) by recursion on i” as follows: 

i fP(U,  4, 
(15) C(X, u, 4 = {XI ifW, -4 1 Q(v, 4, i“ us nt c ( x ,  U w ,  U w )  m u ,  XI & Q ( U ,  xi. 
Clearly, for all x,  u, u, 

We claim that 

(16) 

(17) 

C(x, u, u) = 0 or C(x, u, u) = {x}. 

i f x  E X, then C(x, <0), (0)) = {XI, 
i f x  6 X ,  then C(x, <0), (8)) = 0. 
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To prove (16) by contradiction, assume x E X and C(x, (0), (0)) = 0, 
choose 

such that for every I?, 

ff = so, s 1 , .  . . 

so there must be some to such that 

so there must exist some tl such that 

Proceeding in the same way we find 

such that for every n, 

C(x7 ($0 ,  . * .) sn>7 ( t o ,  . . * >  t n > )  = 0 
which by the definition implies that for all n, 

Q(<to,  t l ,  . * tn>7 x), 
so that x $ X ,  contradicting x E X.  

The proof of (17) is similar. 
The definition of the sets C(x, u, u )  is by an "effective" recursion and an 

application of the Second Recursion Theorem like that in the proof of 
Lemma 2 yields a recursive function h such that for all x, u, o with u, u 
sequence codes of the same length, 

(19) h(x, U ,  U) E G, Gh(x,tr,") = C(X, U, u). 

To be precise, choose n such that 

n E  G, G" = 0, 
choose rn such that 

(Pm(Z, x, u, u, s, 0 = (2, (PAX, u"(s), v"<t>), 
choose e such that 

v e k  x, u, v, s) = ( 2 ,  (3, W m ,  2, x, ti ,  u, 3 ) ) )  
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and by the Second Recursion Theorem choose z* such that if 

It = qz*, 

then the following equations hold : 

n ifSeq(u) & Seq(u) & lh(u) = Ih(u) & l P ( u ,  x), 
(1, x) i f  similarly and P(u, x) & i Q(u, x), 
( 3 ,  S;l(e, z*, x, u, u) )  ifsimilarly and P(u, x) & Q(u, x), i 0, otherwise. 

(20) h ( X ,  u, u)  = 

We now prove (19) with this h by induction on the wellfounded relation i" 
defined by (14). To treat one of the cases, if the third clause in the definition of 
h(x, u, u)  applies, then by induction hypothesis, for all s, t ,  

a(s, t )  = h(x, u"(s), v"(t)) E G,  

GO(SJ) = C ( X ,  u"(s), v"(t)). 

Hence, by the choice of m, for each s, 

b ( ~ )  = ( 3 ,  S:(m, z*, X, U ,  U ,  s)) E G, 

Gb(s) = IJt (w-C(X, u"(s), ~ " ( t ) ) .  

Hence, for each s, 

c(s) = (2, b(s)) E G, 

G'W = nt W, u ~ ( s ) ,  u ~ ( t > )  
and thus 

d = h(x, U ,  U) E G, 

~d = us GC(S) = us nt c(~, un(s), u n ( t ) )  = c ( ~ ,  u, u).  

Now Lemma 3 and hence the theorem follow by defining f from this 11 by 
(12). -I 

Much of the significance attributed to the Suslin-Kleene Theorem is 
because of its proof rather than just its statement. It seems clear that each 
set G" (x E G) can be "constructed" starting with the singletons and then 
iterating "effectively" the operations of complementation a d  recursive 
union. 

There are many ways to formulate the Suslin-Kleene Theorem so that it 
makes sense for arbitrary acceptable structures. We will see in the Exercises 
that none of these versions holds generally, in fact they all fail for some 
countable acceptable structures. Thus the hierarchy of Theorem 7E.1 is the 
only construction of the class of hyperelementary sets "from below" which 
is known now to hold in any generality. 
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Exercises for Chapter 8 

8.1. Prove that if 2 l  = (A, R,, . . ., R,) is countable and acceptable and if 

i c Power(A) x Power(A) 

is a C: wellfounded second order relation on A ,  then rank(<) < tia. 

HINT: Assume towards a contradiction that rank(<) 3 tia and put 

< x  = ((s, t ) :  Xg" < X(I) '  f $ 7  

where Xi1) = (x: (n ,  x) E X} as in (15) of 7E. Let p(X ,  s) be the rank of s in 
<* and prove that 

suprenzum{p(X, s): x c A ,  X:')  E Field(<)} 3 tia. 

Show then that if q ( X ,  S )  is any S-positive formula in the language of a, the 
relation 

Q(X, X ,  s) o Xj" E Field( <) &X E I,$',') 

s Xi. From this a contradiction follows easily. -I 

8.2. Let 9' be a II; second order relation on a countable acceptable 
structure 2l with ordinal K, let CJ: 9 ++ A be an inductive norm on 8, let 9 
be a C: second order relation and assume thatf is a second order function of 
the appropriate type of arguments and values whose graph is X: and such that 

f ( 9 )  c 9. 

Prove that there is some 5 < ti such that 

2(2,7) * G(f(X, y ) )  d 5.  
(Second Order Covering Theorem.) 

8.3. Lei 41 be countable and acceptable. Prove that for each signature 
v = (n, Y ~ , .  . ., rk) there is a Il: relation .%?"(a, X, T) of signature (n+ l ,  r l ,  
. . ., rk) which parametrizes the v-ary A: relations on 5%. Moreover, there is a 
II: non Ci set I" G A and a C: relation $"(a, X, P) such that whenever 9%' is 
of signature I?, 

9 is dl -,for some a E I", B = if;, 

and 
" 

a E i" 3 2; = If:. 

(Parametrization Tt'ieorem for A; second order relations.) 
HINT:  Use 6C. 1 I .  
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8.4. Prove that if 1 is a cardinal of cofinality w, then every II: relation on 
-I the structure (V,,  E r V,) is inductive. (Chang-Moschovakis [1970].) 

8.5. Prove that there is a countable structure on which not every A; 
relation is inductive. (K. Kunen.) 

HINT: Take % = ( A ,  -), where - is an equivalence relation on A with 
the equivalence classes C, ,  C2, . . ., where Cn has exactly n elements. For each 
x E A let 

f(x) = the number of elements equivalent to x, 
and put 

Easily P is A:, so it is enough to show that it is not inductive. 
m, A -f(x) < m. 

For each integer j define the equivalence relation w on tuples from A by 

(XI, * * - 9  Xn) M j ( ~ 1 ,  * - 7  Yn) 

e the mapping x i  H yi is an isomorphism of the finite substructures 
of% with domains {xl, . . ., x,], {yl, . . ., yn} andfor i = 1, . . ., n, 
i f f ( x i )  < j o r f ( y i )  < j ,  then xi  = y i .  

Call a set S of n-tuples j-closed if 

(XI, * )  xn) E S & (xl, * * - 9  xn) zj ( ~ 1 ,  * . - 3  un) * ( ~ 1 ,  * * - 9  yn) E S. 
Now show by induction on the construction of formulas v,(xl, . . ., x,, S) 
(not necessarily positive) that for each v, there is an integer k such that for 
all j 2 k and all sets of n-tuples S, 

i f S  is j-closed, then { ( x l ,  . . ., x,): v,(xl, . . ., x,, S> is j-closed. 
From this the result follows easily. i 

8.6. Let % be a countable acceptable structure, let F be an inductive theory 
in YT which has an %-model. Prove that the intersection of all 81-models of 
F is a subset of %&(%). (Barwise, Grilliot [1972].) 

HINT: Put 
x E B o (VZ)[MO~~(Z) =- (3a)r.X E%G(%, z:'')]] 

and apply 8C. 1. -I 

For each enumeration without repetitions of a countable set A ,  
? Z : O ) - + + A  

and each R E A", let R" be the pullback of R to o, 

RR(xl, * * - 7  Xn) * R(~(x,), - * *, n(xn))* 
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If '-2 = ( A ,  R1, . . ., R,) is a countable structure and R is a relation on A ,  we 
call R V-hyperarithmeticai on 53 if for every n: o >-w A ,  R" is hyperelementary 
on (N, R 1 , .  . ., Rl) .  This notion was introduced by Grilliot [1972], inspired 
by a similar notion of Lacombe's in abstract recursion theory. 

8.7. Prove that if 2l is countable and acceptable, then a relation R is 
V-hyperarithmetical on '-2 if and only if R is hyperelementary on a. (Grilliot 
[ 19721.) -i 

The next problem shows that for countable acceptable structures we may 
use monotone operators (as defined in Section 1A) rather than positive 
operators to determine the inductive relations. The result is essentially due to 
Spector [1961], see Exercise 1.14. 

8.8. Let '21 = ( A ,  R 1 , .  . ., R,) be countable and acceptable, let r: 
Power(A") + Power(A") be a monotone operator which is elementary on a, 
i.e. for some (not necessarily positive) formula q ( X ,  S) ,  

Prove that Zr is inductive. 
x E us) 0 q(z, s). 

-I 

We now consider some plausible abstract formulations of the Suslin- 
Kleene Theorem. Of course the most direct abstractions of the definition of 
an effective o-ring involve abstract recursion theory, but we can see why the 
result fails to extend by using elementary rather than recursive functions. 

3.9. Let 01 = ( A ,  R , ,  . . ., R l )  be acceptable, let E'(a, x), E2(a ,x ,y )  be 
fixed hyperelementary relations which parametrize the unary and binary 
elementary relations by Theorem 5D.1. Relative to a fixed coding scheme 
define a set G 5 A and for each x E G a set G" by the following inductive 
clauses : 

(a') For each a, (1, a )  E G and G(l+') = { x :  E1(a, x ) } .  
(b') If x E G, then (2, x) E G and G(2,x) = A -  G". 
(c') If (Vt)(3 !s)E2(a, t,  s) & (Vt)(Vs)[E2(a, t, s) * s E c;l, then ( 3 ,  a )  E G and 

Prove that each G" is hyperelementary. Prove also that if the relation 
YfF1( Y )  of wellfoundedness is hyperelementary on 'u, then there is a 
hyperelementary set which is not G" for any x E G.  

HINT: For the second part, find an elementary formula e(x)  and an elemen- 
tary function f(x, t )  such that if 

G ( 3 , R )  = u {G': (3t)E2(a, t ,  s)>. 

cp(x, s) + o w  v (vt)ij-(x, t )  E s], 
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then 
G = Ir. 

From this follows that if 9 f F 1 ( Y )  is hyperelementary, then G is hyper- 
i elementary and then the result follows easily. 

8.10. Prove that there is a countable acceptable structure 2I such that if G, 
G" are defined as in Exercise 8.9, then some A: set in 2I is not G" for any 
x E G. 

-I HINT: Use Exercise 8.9 and the technique of 8D. 

In the definition of G, G" of Exercise 8.9 we stayed as close as possible to 
the definition of the smallest effective a-ring of Section 8E. It is clear, however, 
that the proofs in Exercise 8.9, 8.10 will extend to cover any reasonable 
modifications of that definition. 

A nontrivial mod.ification in this type of construction is to allow unions 
which are elementary (in the coding) relative to some set which we have 
already constructed. This idea was introduced by Kleene and has been used 
successfully to obtain hierarchies of some interesting classes of sets which 
arise in recursion theory of higher types over w. It does not give a generaliza- 
tion of the Suslin-Kleene Theorem, but the proof that it fails is not entirely 
trivial. We outline this argument in the hint for the next exercise, which is 
meant for those familiar with Moschovakis [ 19671. 

8.1 1. Let ?I = ( A ,  R , ,  . . ., R,) be acceptable, let E'(a, x )  and d(z,l)(a, x,  
y ,  Z )  be hyperelementary relations which parametrize the unary and (2, 1)-ary 
elementary relations on ?I by 5D.1 and 6C.8. Relative to a fixed elementary 
coding scheme, define G E A and for each x E G, G" s A by the following 
inductive clauses : 

(a") For each a, (1, a)  E G and G(l,a) = {x: E'(a, x)]. 
(b") If x E G, then (2, x )  E G and G(2J)  = A -  G". 
(c") If b E G and (Vx)(3!y)C(z,1)(a, x, y, Gb) and (VX)(Q~)[&"~~')(U, x ,  y, Gb) 

+ y E GI, then <3, a, b )  E G and G<3,u,b) = u {Gy: (3x)€(2*1)(a, x, y ,  G')}. 
Prove that every G" is hyperelementary on 2I. Prove also that if 2I = R, 

the structure of analysis defined in ID, then there is some hyperelementary 
set which is not G" for any x E G. 

HINT: For the second part, use Corollary 3.1 of Moschovakis [1967] to 
prove that every G" is hyperanalytic in some CL E Ow, with the obvious definition 
of "hyperanalytic" for subsets of w u Om. Use then Theorem 10 of the same 
paper to argue that not every hyperprojective set is hyperanalytic in some 
a E Om. -1 
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8.12. Prove that there is a countable acceptable structure rU such that if G, 
G” are defined as in Exercise 8.11, then some A: set in ‘Lz is not G” for any 
x E G. -I 

The use of the parameters of induction was illustrated already in the proofs 
of the very basic facts lC.1, iC.2. Up till now, however, we have not proved 
that these parameters are necessary, i.e. that there are inductive sets which are 
not fixed points. 

8.13. If 2l is countable and acceptable, then there exists a hyperelementary 

HINT: Feferman’s proof depends on a simple version of Cohen’s forcing 

Consider all finite structures of the form 

set in 9L which is not a fixed point. (Essentially Feferman [1965].) 

method. 

23 = (B ,  XI,. . ., X , , Z )  

such that 

(B ,  X I , .  . ., X i )  E X, 

and Z is a unary relation on B. We define the relation of forcing between such 
a finite structure 23 and a sentence cp in the language of 93 by induction on the 
construction of cp: 

23 It cp 0 23 f. cp, for  prime cp, 

‘1) It cp &I) 0 2 3  It cp &23 It $, 

23 It i c p  e ( V 2 3 ’  2 23) not 23‘ It- cp, 

‘23 It (3x)cp(x) e for some x E 23, 23 It cp(x). 

Call a set Z E A generic if for every sentence cp in the language of the 
structure (at, Z )  there is a finite structure 23 E (%, Z )  such that 23 It cp or 
‘23 It 140. 

Prove by induction on cp that 

23 It cp & 23 c 23’ * 23’ I t  cp, 

and then show by enumerating all sentences in the language of every 23 that 
for every finite 23 there is a generic Z such that 23 c (a, Z). Then prove that 
for generic Z and for every cp in the language of (a, Z ) ,  

(a, Z )  k cp +for somefinite 23 c (a, Z), 23 It cp. 

Use these two properties to show that no generic set can be a fixed point. 
Finally, prove that there are hyperelementary generic sets, by arguing that in 
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some appropriate codings of all the finite structures and all the sentences, the 
relation 

Q(b, a) - b codes aJinite structure B 

and a codes a formula q 

and 8 It q 

is hyperelementary. -I 

8.14. Prove that every acceptable structure admits hyperelementary rela- 
i tions which are not fixed points. 



CHAPTER 9 

THE NEXT ADMISSIBLE SET 

Our main aim in this chapter is to connect the theory of inductive relations 
as we have developed it here with recursion theory on admissible sets. We will 
give a very brief summary of the basic facts about admissible sets and we will 
establish the principal result of Barwise-Gandy-Moschovakis [I971 J : If A 
is a transitive set closed under pairing, then the inductive relations on the 
structure ( A ,  E r A )  are precisely those relations on A which are X I  on the next 
admissible set. 

Actually we will work in the axiomatic context of Spector classes of 
relations and a good part of the chapter will be devoted to  developing this 
axiomatic framework. It is the key to extending the ideas and results of this 
book to many notions of definability, including various nonmonotone 
inductive definabilities. The main result of the chapter in 9E is substantially 
stronger than the Barwise-Gandy-Moschovakis [ 197 1 J theorem and some of 
its applications are described in 9F and in the Exercises. 

9A. Spector classes of relations 

The reader with a taste for axiomatics must have noticed that the develop- 
ment of the theory of inductive relations was based on very few, key facts. 
At this point it pays to collect some of these basic properties into a definition 
and formulate axiomatic versions of the most significant results. 

Let r be a collection of relations (of all numbers of arguments) on some 
infinite set A .  We call r closed under & if whenever P, Q are n-ary relations 
in l7, then their intersection P n  Q is also in r. Closure under the other 
propositional connectives v , 7 is defined similarly. 

If P c Anfl is an (n+ I)-ary relation on A ,  let iIAP be the n-ary relation 
obtained by quantifying P in its first variable, 

x E 3AP 0 (3y)P(y, x). 
Similarly, 

x E VAP c> (Vy)P(y, 2). 
164 
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We call r closed under 3 A  if whenever P is in r so is IAP, and similarly for 
closure under VA.  

A function 
f :  A" --f A 

is trivial combinatorial if it is definable by a quantifier-free formula of the 
trivial structure ( A ) ,  i.e. if 

f(3 = Y * 4 G  v), 
where cp is built up by &, v , i from prime formulas of the form 

tl  = t2, 

where each t i  is either a variable in the list X, y or a constant from A .  We call 
r closed under trivial combinatorial substitutions if whenever P(yl ,  . . ., y,) is 
in r and f l (Z) ,  . . .,fm(X) are trivial combinatorial functions, then the relation 
Q defined by 

Q(z) * p ( f 1 ( F ) 7  * * - , f m ( @ )  

is also in r. This implies for example that if R(x, y, z )  is in r and c E A ,  then 

Q<x) * R(x, x ,  c) 

is also in r, since 

with f i ( x )  = f 2 ( x )  = x and f3 (x )  = c. Also if r is closed under trivial 
combinatorial substitutions and 3A, then easily r is closed under existential 
quantification on variables other than the first. 

A coding scheme 

= ( N @ ,  Ge, ( )") 

is in r if all the associated relations 

N"(x), x G" y ,  Seq@(x), l P ( x )  = y ,  qq(x, i )  = y 

and their negations are in I'. 
Finally, we call a class of relations r positive, elementary, rich if it contains 

equality x = y ,  inequality x # y and some coding scheme %? and if it is 
closed under the positive elementary operations &, v , P, V A  and trivial 
combinatorial substitutions. 

This is the trivial base of our axiomatization. We are interested in classes 
of relations which have all these natural closure properties and which also 
satisfy the parametrization and the prewellordering theorems. 
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A class r is parametrized if for every n 2 1 there is some U" E A"+l in r 
which parametrizes the n-ary relations in r, i.e. for P c A", 

P E r e for some a E A ,  P = U; = { X :  (a, X) E U"} .  
The dual class i r of a class r is the class of all compkments or negations 

of relations in r, 
l r  = ( R  c A": T R  = A'i-REr). 

A norm a: P + /2 is a r-norm if there are relations J,, 3b in r and i r, 

i f j  E P, then (vx){[x E P & a(?) < a(j)] e J,(x, j) c> J,,(x, j ) > .  
It follows as in 3A.1 that if r is positive, elementary rich and C T :  P --H 1 is a 
norm on some P E r, then a is a r-norm if and only if both <$, <*, are in r. 

A class r is normed if every relation in r admits a r-norm, i.e. if r satisfies 
the Prewellordering Theorem. 

Finally a class r of relations on some infinite set A is a Spector class if it 
is positive, elementary rich, parametrized and normed. 

It should be fairly obvious that the whole theory of the class of inductive 
relations on some acceptable structure 2 l  can be extended to an arbitrary 
Spector class r. The only plausible source of difficulty is the fact that from 
time to time we defined specific relations and proved them inductive-need 
they belong to an arbitrary Spector class? What makes this axiomatization 
work is the next theorem which shows that Spector classes are closed under 
relative inductive definability. The key to the proof is Exercise 3.6 and we 
first establish here a strong version of it. 

respectively, such that 

9A. 1. LEMMA. Let q ( X ,  S )  be S-positive in the language over a set A .  Then 
the $xed point I, is the unique relation P on A which admits a norm CT : P --w 1 
such that for every X, 

(1) 

(2) 1x1, 9 ff(X). 

X E P e q(X, ( y :  j7 <: X}). 
Moreover, if. is any norm for which (1) holds, then for every X E I,, 

PROOF. Clearly I, admits a norm with which (1) holds, namely o(X) = IXl,. 
Assume then that P is any relation with a norm a: P --H A such that (1) 

holds. 

Step 1 : 

Proof of Step 1 is by induction on a(%). If X E P  and a(X) = 5 ,  then by 

E P => % E I ,  & [X[, 9 a(%). 

induction hypothesis 
y < , * X * [ y d , & ] j j l l p < t ] ;  
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hence by (1 )  and the monotonicity of cp in S we have 

Cp@, {3: Y E I ,  &k IPI, < t)) 
which implies immediately 

X E I, & IXl, < 5. 
Step 2: X E I, 3 X E P. 

Proof of Step 2 is by induction on 1x1,. Suppose I E I, and assume towards 
a contradiction that I $ P. Then (3:  3 <f X> = P and since X $ P, (1) yields 

(3) 7 cpG, PI. 
On the other hand, if 5 = III,, the induction hypothesis yields I<c E P and 
the fact that X E IP yields cp(I, I,"). Now the monotonicity of cp rn S implies 
cp(X, P) which contradicts (3). 

-I Clearly (1) and (2) follow immediately from these two steps. 

9A.2. THEOREM. Let r be a Spector class, let Ql ,  . . ., Q, be in r. If R is 
inductive in e l ,  . . ., Q,, then R is in r. 

PROOF. It is enough to show that if 

40 ~ ( 2 ,  S) ~ ( z ,  Ql, * * - 9  Qm, S) 

is positive in el,. . ., Q,, S and el,. . ., Q, are in I?, then so is I,. By the 
lemma, it will be sufficient to find some P in r which admits some norm 0 so 
that (1) of the lemma holds. 

Let U*+' c An+2 be in r and parametrize the (n+ 1)-ary relations in r, let 
7 :  Un+' ++ IC 

be some r-norm on Un+' and put 

(4) ( t ,  3 E Q * ~ p @ ,  {Y: ( t ,  t ,  j9 <: ( t ,  t ,  3)). 
Clearly Q is in r and since it is (n+ 1)-ary, there is a fixed a E A such that 

( t ,  X) E Q e (a, t ,  F) E U n + l .  
Now put 

For this relation P, we have 

P(X) e (a, X) E Q 0 (a, a, Z) E Un+' .  

P(X) 0 (a, X) E Q 
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where CS: P --w i is the obvious norm on P chosen so that 

o(X) < a(j) e z(a, a, X) < z(a, a, J) .  

This establishes (1) for P with cs and completes the proof. -I 

The “tricky” part of this argument is very similar to that we used in 

One of the by-products of this theorem is an elegant structural characteriza- 
proving 6C. 10. 

tion of the inductive relations on an “almost acceptable” structure. 

9A.3. COROLLARY. Let 21 = ( A ,  R,, . . ., R , )  be a structure which admits a 
hyperelementary coding scheme. Then the collection of inductive relations on 
% is the smallest Spector class on A which contains R,, i R , ,  . . ., R,, lR,. 

-1 

We do not know any structural characterization of this type for the class 
of inductive relations on an arbitrary infinite structure %. 

The term “Spector class” derives from the relation of these ideas to the 
axiomatization of abstract computation theory in Moschovakis [I971 b]. It is 
easy to verify that a class r of relations on a set A is a Spector class if and only 
if there is a Spector computation theory 0 on A such that r consists of the 
O-semicomputable relations. 

9B. Examples of Spector classes 

The last remark in 9A suggests that many natural examples of Spector 
classes arise in abstract recursion theory. Some of these are important and 
we will list them in the exercises for those who are familiar with the theory of 
recursion in higher types introduced by Kleene [1959b]. Still more examples 
arise in the study of nonmonotone inductive definability. Here we restrict 
ourselves to two interesting Spector classes which are much closer to the 
theory of inductive relations. 

The first theorem is due (in its full generality) to P. Aczel who has obtained 
recently many interesting results about inductive definability in the language 
Yw(Q). (See also his earlier Aczel [1970].) 

9B.1. THEOREM. Let ‘21 = ( A ,  R,, . . ., R,) be an acceptable structure, let 
Q be a nontrivial, monotone unary quant$er on A and let 

r = all relations on A which are positive Y%(Q)-inductive, 

as we defined this notion in (2) of Section 3D. Then r is a Spector class. 
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PROOF. According to the discussion in Section 3D, we only need verify that 
r is parametrized. We will outline this proof omitting all details. 

It is easy to check that the methods of Section 5B extend easily to the 
language 8"(Q), so that for example the satisfaction relation for Y%(Q) is 
hyper-Y@(Q)-definable. We show then, as in 5D.1, that for every n 2 1 
there is a hyper-=!P(Q)-definable relation En E A"+' which parametrizes the 
n-ary Y5J(Q)-definable relations. 

Lemma 4B.1 also extends easily to LP(Q), so that for each S-positive 
formula cp(X, S )  in LP(Q) there is a quantifier free 6(X, zl, . . ., z,, j) and 

d% S )  * (Q,z,)(Qzzz> - . * (Qrnzrn)(vY)[e(z, 2, Y) v S(?)l, 
where each Qi is V, 3, Q or Q". Introducing vacuous quantifiers if necessary, 
we get a canonical form 

CP(X, S )  * ( ~ ~ ~ > ( 3 t l > ( Q u l > ( Q u v ~ )  * . * (~~rn)(3trn)(Qurn)(Q'~rn)(~j) 

[W, 2, t, c, 5, j) v SY)l 
and then using the hyper-Y%(Q)-definable relation E that parametrizes the 
(n+ 1 +n)-ary S%(Q)-definable relations on A ,  we finally have that each 
n-ary fixed point in this language is determined by some q(Z,  S )  which 
satisfies 

(1) CP(%,S> * (vsl)(3tl)(Qu,)(Quvl) . * * ( ~ ~ r n ) ( 3 ~ r n ) ( Q ~ r n ) ( Q u ~ , ) ( ~ ~ )  

[E(b, z, ( ~ 1 ,  t l ,  . . - 7  urn, U r n ) ,  j) v S(jj)] 

with some fixed b and m. 

(2) 

Put 

b, w,  2, T )  - S e d W )  

& {[I < j < m & (Vs)(3t)(Qu)(QUu)T(nz,j+ 1 ,  b, ~ " ( s ,  t, u, u), X)] 

v [ j  = m (~Y"(b9 X, w, $1 v T(m, 1, b, (8), Y)ll>. 
We now prove that if cp satisfies (1) with fixed b, m, then 

(3) X E rt, =t- (m,  1, b, (a>, X) E I, .  

Proof of (3) is by induction on 5 .  Assuming X E I: and towards a contradic- 
tion that (m, 1, (8), 2) 4 I* and using repeatedly the easily verified rule that 

(Qz)~i(z) & (Q"z)x&) * ( ~ z ) [ x ~ ( z )  & ~2(z)I, 

we obtain sl, t l ,  ul,vl, . . ., s,, t,, urn, urn such that on the one hand 

(VY)[E(b,  x, G I ,  t , ,  * * ., Zlmr O m ) ,  7 )  v J E 1 3  
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and on the other 

(gy)[ lE(b ,  X, (SI, tl ,  * . .> urn, urn), 3) &L (4 1, b, (0), J )  B 
which immediately contradicts the induction hypothesis. 

(4) 

so that we have 

( 5 )  
Now (5 )  implies that the n-ary fixed points are parametrized by the inductive 
relation 

A symmetric argument shows 

( m ,  1, b, (0), X) E If  - X E I,, 

x E Irp e (my 1, b, (O), X) E I*. 

R(a, X) - ((41, 1, (4% <0>, 2) E I*, 
and then it is easy to parametrize all the n-ary inductive relations. -1 

An interesting special case of the above is when we take Q to be the game 
quantifier G corresponding to a fixed elementary coding scheme on PC. 

The next example is quite different. Recall that a relation R(Z) on A is 
Ei on the structure ‘11 if there is a formula cp(Z1,. . ., Z,, Y , ,  . . ., Y,, X) in 
the language of 21 such that 

R(Z) - (32 , )  . . . (32,)(V Y,) . . . (V Yrn)(p(Z1, ~ . ., Z,, Y, ,  . . ., Y,, X). 

9B.2. THEOREM. If 21 is a countable acceptable structure, then the collection 
of all C i  relations on 2r is a Spector class. 

PROOF. Using the coding scheme on ‘2I to contract the relation variables and 
replace them by set variables, as in the proof of 7D.2, we easily show that 
every relation on 21 satisfies an equivalence 

R(X) 0 (3Z)(V Y)B?(Z, Y,  X), 
where 9(2, Y, X) is elementary and Z, Y vary over subsets of A .  Equivalently, 
(6) R(Z) o (32)9’(Z, X), 

where 9(2, X) is II: on 2l. Now the Parametrization Theorem 6C.8 for 
second order II: relations on ‘2I implies immediately that the class of C i  
relations is parametrized. 

Since the closure properties of C i  relations are easily verified, it remains to 
check that every C: relation admits a Xi-norm. 

Suppose then that R satisfies (6) with some II: relation 9’. By the Kleene 
Theorem 8A.1, 9 is inductive and by the Prewellordering Theorem 6C.4, 
9’ admits an inductive norm 

a:P-HIZ. 
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To begin with, put 
p ( x )  = in$mum(o( Y, 2): P( Y, x)}. 

Clearly p maps R into the ordinals but it need not be a norm, since it need not 
be onto some ordinal. On the other hand, if we set 

~ ( z )  = order type of {dj): ~ ( f )  < p ( X ) } ,  
then z is a norm and <: = <:, <: = <:. Hence it is enough to check that 
both <:, <p* are Xi, and this follows immediately from the equivalences 

x <; f 0 (3Y){B(Y,  Z) & (VZ)[(Y, X) <: (Z, J ) ] ) ,  
x < ; y 0 ( 3 Y ) { B ( Y , x ) & ( v z ) [ ( Y , X )  <2(Z ,Y ) ] } .  -1 

9C. Structure theory for Spector classes 

We now give a list of the most important structure properties of Spector 
classes. In almost all cases proofs can be obtair.ed by trivial modifications of 
the proofs for the class of inductive relations. 

Throughout this section we let r be a Spector class on some set A .  As usual, 

l r  = {A"-P:  P E ~ )  

A = r n l r  
is the dual class. It is also convenient to let 

be the self-dual class of relations both in and ir. 

9C.1. THEOREM. There is some relation P in r which is not in A (Hierarchy 

I fP ,  Q are in r, then there are relations P, c P, Q ,  E Q, both PI, Q,  in 

If P, Q are in i r and P n Q = 0, then there is some R in A such that 

There are P, Q in such that P n Q = 0 and there is no R in A such that 

Property for r). 

such that PI n Q ,  = 0, P, u Q ,  = P u Q (Reduction Property for r.) 
P c R and Q n R = 0 (Separation Property for ir.) 

P c R, Q n R = 0 (Inseparability Property for r.) 
PROOFS are identical to those of 5D.3, 3A.4, 3A.5 and 5.2. -1 

9C.2. A SELECTION THEOREM. Let P(X, J )  be in J?. Then there exist relations 
P* in r and P** in il- such that 

P* C P, 
(3J)P(% f )  * (3J)P*(% 717 
(3j)P(T, j )  * (Vj)[P*(X, j )  - P**(X, J ) ] .  



172 THE NEXT ADMISSIBLE SET ch. 9, 9C 

In particular, if P(%, j )  is in r, if B is in A and if (V.U E B)(3jj)P(X, I), then 
there exists some P" E P, P" in A ,  so that (VX E B)(3j)P*(X7 j j ) .  

PROOF is that of 3B.1. -I 

9C.3. RANK COMPARISON THEOREM. If X1, < 2  are wellfounded relations, 

-7 E Field(<,) 

< in -i r and <, in r, then there exists some P in r such that 

(Vj){P(X, 7)  0 [jj E Field(<,) & p"(.%) d pW)I] .  

PROOF. We can choose P inductive in i < , < by the proof of 3B.4, hence 
-I we can choose P in r by 9A.2. 

With each class of relations A there is naturally associated the ordinal 
o(A) = supremum{rank(<): < is uprewellordering in A]. 

In the case of a Spector class I?, the ordinal o(A) of the self-dual class yields 
an important measure of the complexity of r. To begin with, the Boundedness 
Theorem holds with o(d). 

9C.4. BOUNDEDNESS THEOREM. Let P be a relation in r, let a: P --H ,I be a 
I--norm on P. Then 
(1) l L  < ~ ( d ) ,  
(2) 1 < o(A) e P is in A .  

PROOF is identical to that of 3C.1. -I 

This says in particular that o(A) is the supremum of the ranks of r-norms 
on relations in r. Here are two more interesting and less trivial characteriza- 
tions of o(d). 

9C.5. THEOREM. Ij" cp(X, Q , ,  . . ., Q,, S )  is positive in Ql, . . ., Q,, S and 

If  < is wellfounded in i I7, then rank(<) < o(A). 
Q,,  ~ . ., Q, are in r, then the closure ordinal IlrpII is d o(A). 

PROOF. For the first assertion we must look into the proof of the basic 
Theorem 9A.2. We showed there that 
(3) d ? ~ I , t > ( a , a , X ) ~  Un+l, 

where U"+ * is in r, universal for the (n+ 1)-ary relations in r and a is some 
constant. Moreover there was a norm 0 on Irp chosen so that on the one hand 

(4) a(.%) d a(7) - z(a, a, .%) < z(a, a, j j ) ,  
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with z some r-norm on Un+i and on the other hand 

( 5 )  x E I ,  cp(X, { y :  y <: X}). 

E E Iq, 

Now (3) and (4) imply that CT is a r-norm on I,, hence if 0 :  I, -B A, we have 
A < o(A) by 9B.3. But (5) together with Lemma 9A.1 implies that for every 

1x1, < o(X) < o(A), 
so that 

j(cp 11 = supremum{IXl,+ 1 : X E I,) d o(A). 

The second assertion follows easily from the first and the construction in 
the proof of 2B.5. Put 

q(5, S )  * ( V j ) [ j  i 2 j E SI, 
so that by the proof of 2B.5, 

llcpll 3 rank(<). 
If < is in ir, then -I i is in r and it occurs positively in cp, so by the first 
part 

To prove that l lcp/l < o(d), it is enough to notice that there cannot be a 
wellfounded relation in i r of maximum rank. -I 

Ilcpll d o(4. 

The Covering Theorem can be proved with the same trivial argument we 
gave for 3C.2, but it is useful and worth putting down. 

9C.6. COVERING THEOREM. Let P be in r, let CT: P -+ A be a r-norm, let Q 
be in i r and assume that f is a function in A such that f [Q] c P. Then there 
is some 5 < o(d) such that 

-I 

One of the most useful tools in the theory of Spector classes is the axiomatic 
version of the parametrization theorem for the hyperelementary relations on 
an acceptable structure. Let us first notice a useful fact about parametriza- 
tions of the sets in r. 

7 E Q * o(f(Y)) d 5.  

9C.7. GOOD PARAMETRIZATION THEOREM FOR r. There is a sequence (U")n,, 
of relations in rsuch that U" s Anil, each U"parametrizes the n-ary relations 
in r and for each m, n there is a function 

S,"(a, 7)  = S,"(a, yl, . . ., P,) 
in A such that for all a, j, X = a, y , ,  . . ., y,,,, x,, . . ., x,,, 

(a, j j ,  X) E Urn+" + (S:(a, y), X) E U". 
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PROOF. Let V E A3 be a relation in r which parametrizes the binary 
relations in r and for each k put 

(a, ul,  . - * )  uk) uk * ((a)l? (a)27 ( u 1 7  * . - 9  'k)) 

Each U k  is in r and it is a trivial exercise to verify that Uk parametrizes the 
k-ary relations in r. 

To construct the functions S;, fix m, n and put 

Q(s, t )  * U m + " ( ( S ) 1 7  ( ~ 1 2 7  * . .> (s)m+17 ( t>l, .  * - 7  (t)n)* 

Q@, t1 * w, s7 0, 
Since Q is in r, there is some fixed b so that 

so that for all a, J', X, 

(a, jj, 2) E Urn+" e (b, (a, j), (Z}) E V 

Using this we can prove a very strong axiomatic version of the Para- 

A set J c A is r-complete if J is in r and for every n-ary relation R in 

R(X) .=.f(X) E J.  

Clcarly a r-complete set cannot be in A .  The second assertion in the theorem 
below yields several r-complete sets. Much stronger statements can be 
proved along those lines. 

metrization Theorem for Hyperelementary Relations 5D.4. 

there is a function f(X) in A such that 

9C.8. GOOD PARAMETRIZATION THEOREM FOR A .  For each n < 1 there is a 
respectively such set I" in r- A and (n + I)-ary relations H", f in in r and i 

that: 

(6) 

( 7 )  

If R c A", then R is in A if and only if there is some a E I" such that 

I f a  E I", then H: = A,". 
R = Hi. 

Moreover, I' is r-complete and for every J C_ 1', if J is in r and if there 
exists some to such that 

(Va)[Hi = {to> 3 a E J ] ,  

then J is also r-complete. 
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Moreover, for  each pair P(J, T), Q(j ,  jz) of relations, P in r and Q in 1 r, 
there is a function j ( j )  in A such that for every y, if 

( W [ P ( j ,  Z) * QG Sz>l, 
then 

j ( j )  E I", Hy( j )  = {x: P(7, x)}. 

PROOF. Following the proof of 5D.4, we set 

* u"((a)l, (a)2, * . - 7  (a)n+1)7 

* ZYa) & ( (a)n+z,  z) <X(a)l, (a),, H"(a, 

&"(a, 
. - 7  (a>ivi-1>, 

l[((a)l, - . - 7  (a)n+l) < X ( a ) n + , ,  591, 
where the parametrization scheme { U"},,, is good in the sense of 9C.7 and 
for each fixed n, CT: U" + IC is a r-norm on U". Proof of (6)  and (7) is exactly 
as in 5D.4. 

For the second assertion, choose a so that 
R(X) & t = to e ( a ,  3, t )  E un" 

0 @;(a, X), t )  E u' 

f(3 = ( m a ,  217 to ,  W a ,  3). 

R(x) * R(X) & to = to of@) E Z'. 

t E H:,,) - (ma,  3 7  0 <: (SXa, 9, to) ,  

and let 

It is immediate from the definition of I' that 

Moreover, if R(Z), then 

so that to E H& is immediate and 

t E =+- @;(a, X), t )  E u1 
* (a, x, t )  E U' 

=2- t = t o ,  

i.e. Hj(E) = { t o ) .  Thus if Jcontains all the codes of { t o ) ,  then 

R(X) -s f(,?) E J.  

Assume now that P ( j ,  %), Q(J,  2) are given, P in r and Q in i r, P and Q 
(m + n)-ary, where we may assume m, n 2 1. Choose a so that 

P(J ,  X) - (a, y, X) E U"+" 
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and put 

W ,  X) * (3Y')(33'){ Q(4,', 2') &. 1 [(sF(a, j'), X') <: (SF(xi, j% X)l}, 
where of course x, is the first term of the tuple X, S; the function of 9C.7 
and IS: Um+n --ft K is a r-norm on Urn+". Since R is in ir, there is a fixed b 
such that 

R(y, 2) - (b, J ,  X) 4 
notice that this b depends only on the relations P, Q, not on any particular 
values of X or 4,. 

Let 
b = b, b, . . ., b (n times), 

( t f W ( Y ,  2) Q(J ,X) l .  
and fix j so that 

For such 7 we can repeat the argument of 6C.10 and show that 

so that 

and 

The axiomatic setup deals only with first order relations, but we can use 
this parametrization theorem to introduce second order relations with 
argurnents in A .  

Fix relations {Iny H", An},,, which satisfy (6) and (7) of Theorem 9C.8. 
We say that a second order relation 

B(Z, F) eB(x*, . . ., x,s, Y1, . . .) Y,) 
of signature (n, r l ,  . . ., rk)  is r on A if the first order relation 

(8) 

is in r. This holds intuitively if for arguments in A the relation B is r in the 
codiiig . 

We say that 9' is A on A if both 9 and i B  are r on A .  Notice that this 
does not imply that 9# is a relation in A .  

It is important to notice that this definition is independent of the particular 
parametrization {Zn ,  H", ~ ~ n } n = o , l , . .  .. 

:Y#(X, y , ,  . . ., yn) * y ,  E I" & . . . & y ,  E I r k  & P ( X ,  Hi ' ,  . . ., H;;' 
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9C.9. THEOREM. If {I", H", kn},,=o,l ,... and {J", G", C?"}n=o,l ,.._ are both 
parametrizations of the A relations satisfying conditions (6), (7) of Theorem 
9C.8 and i f@(%, F) is r on A relative to {I", H", p}n=O, ,..., then P(1, Y) 
is I? on A relative to {J", G", @},= o. l  ..... 

PROOF. For each fixed r put 
Q'(z, y )  e z E J' & y E I' & GZ = H;. 

These relations Qr are all in I?, since 
@(z, y )  e z E J' & y E I' & (Vii)[&(z, ii) 3 H Q ,  U)] 

& (VU)[&(y, ii) * G'(z, t l ) ] .  

From this the theorem follows by a trivial computation. 

The closure properties of this class of relations are trivial but useful. 

9C.10. THEOREM. The class of second order relations which are 

rfP(Z, X, T) is r on A and 9(x, Y )  is dejined by 

on A is 
closed under &, v , 3A,  VA and trivial combinatorial substitutions. 

9(1, F) e ( 3 2  E A ) P ( Z ,  X, H), 
then 9 is r on A .  

dejined by 

is r on A .  

on A .  

If&?(%, Z, Y) is r on A and 9(ii, 2, Y) is A on A ,  then the relation P(x, H) 

@(1, Y) 0 a(%, { u :  9(ii, x, F)}, Y) 

IfB(X, F) is inductive in Ql, . . ., Q, and Q , ,  . . ., Q, are in r, then B is I? 

PROOF. The first two assertions are trivial, e.g. the second follows from the 
equivalence 

2#(X, j )  e (32)9#(z, X, 7). 
For the third assertion, notice first that if pZ(ii, 2, 7 )  is A on A and Y, ,  . . ., 

Yk are all in A ,  then {U: 9(ii, 2, 7) ]  E A .  This is because clearly 
9 ( G ,  z, L) 0 9#(ii, 1, j ) ,  
1 pZ(ii, 3, F) e (1 L?)#(ii, x, j ) ,  

with 7 = y, ,  . . ., yk any set of codes for Y,,  . . ., Yk in the parametrization. 
Hence 
9(F, {U: 9 ( G ,  x, F)}, 7) o (32 E A){(VU)[U E Z o 9 ( G ,  1, Y)] & 9 ( Z , Z ,  F)}, 
which implies that the substitution yields a relation l7 on A by the first two 
assertions. 
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For the last assertion, notice that by the definition of 9% and the Substitu- 
tion Theorem 6B.3, if 9 ( X ,  F) is inductive in el, . . ., Q,, then Y # ( S ,  J )  is 
inductive in el, . . ., Qm, Hrl,  PI, . . ., H'k, k r k ;  hence 8# is in r by 9A.2. 

-I 

The last assertion of the theorem often allows us to avoid lengthy computa- 
tions by appealing to known results about inductive second order relations. 
For example, the relations 

T E Y ,  x =  Y 

are A on A-this is quite easy to verify directly. But also 

W F " ( X )  * X is wellfounded, 

lFF"(X)  & YFm( Y )  & rank(X) < rank( Y )  

are r on A and direct proofs for these are not trivial. 

9D. Admissible sets 

Admissible sets were introduced by Platek [ 19661 as the natural domains 
on which to develop abstract recursion theory with a view towards applying 
it to set theory. Kripke [I9641 defined the related concept of admissible 
ordinal. Both notions have proved to be interesting and useful and a sub- 
stantial body of theory has evolved about them. 

Unfortunately, there is no exposition of the elementary theory of admissible 
sets in  the literature. Here we must confine ourselves to the definitions and 
the few basic facts which we will need in the remainder of this chapter. I am 
grateful to K. J. Barwise for patiently teaching these facts to me-the general 
approach to the subject that we follow in this section is due to him. 

Let dl be a nonempty transitive set, let R, ,  . . ., R ,  be relations on A. We 
enlarge the language of the structure (A", E 1 A?, R , ,  . . ., R , )  by adding 
the restricted qtiantij?ers (3x E y) ,  (Qx E y ) ,  i.e. if cp is a formula, so are 

(3x E Y)cp, (Vx E Y>rp. 
The interpretation of these is via the obvious equivalences 

(3x E Y)cp * (3x" E Y 91, 
(Vx Y>cp * ( W [ X  E Y * rpl. 

Following Levy [ 19651, we say that a formula in this enlarged language is 
d , ( R , ,  . . ., R,) if it can be built up from the prime formulas 

t = S, t E S, Ri( t l ,  . . ., tn, )  (i = 1,  . . .,I) 
using the propositional connectives 1, &, v , .+ and the restricted quantifiers, 
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The schema of A,-Separation on (A, E 1 A, R,, . . ., R,) is the class of 
all formulas 

(Ao-SeP) (W(VX){X E w - cx E = E2 cp(x)l), 
where q(x )  is Ao(R1, . . ., R,). The schema of A,-Collection on <A, E 1 A, 
R,, . . ., R,) is the class of all formulas 

(Ao-CO4 (VX E 4(3Y)cp(X, Y) * (W(\U'x E 4(3Y E w>rp(x, Y), 
where again q(x, y) is Ao(Rl, . . ., Rt). 

The first of these schemas is a very weak form of the classical Axiom of 
Separation in Zermelo Set Theory. It only allows us to construct Ao(R1, . . ., 
R,)-definable subsets of a given set. 

To appreciate A,-Collection, take the special case where q(x, y )  is the 
graph of a function5 

f(x) = Y 0 c p k  Y),  
whose domain contains the set z. By A,-Collection there is some w which 
contains the image 

and then we can separate this image by A,-Separation, 
fbl = {f(x): x E z), 

Y E f b I *  Y E w & (3x E z)cp(x, Y).  
Thus A,-Collection implies a very weak form of the classical Axiom of 
Replacement of Zermelo-Fraenkel set theory; it allows us to construct the 
image of a given set by a function with Ao(R,, . . ., RJ-definable graph. 
Actually A,-Collection is substantially stronger than this weak replacement 
property. 

A nonempty, transitive set A is (R,, . . ., R,)-admissible or admissible 
relative to R,, . . ., R,, if 

(1) 
(2) 
(3) 

Clearly every model of Zermelo-Fraenkel set theory is admissible (relative 
to the empty list of relations). Also, if K is a regular cardinal, then the set of 
sets of cardinality hereditarily less than K ,  

A is closed under pairing and union, 
(A, E 1 A, R,, . . ., R,) satisfies A,-Separation, 
(A, E 1 A, R,, . . ., R,) satisfies A,-Collection. 

H, = {x: the transitive closure of x has cardinality < K], 
is admissible-actually this is true even for singular K ,  but it requires proof 
in that case. It is still harder to prove that for every cardinal K the set L, (of 
sets constructible before K )  is admissible-this result is due to Kripke. 
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Many other admissible sets can be constructed starting from these and 

We say that t,b is C,(R, ,  . . ., R,) if 
applying the Skolem-Lowenheim Theorem. 

$ = Wcp, 

* = (Wcp 
where cp is Ao(R,, . . ., I?,); similarly, I) is II , (R, ,  . . ., R,)  if 

with some cp in Ao(R1,. . ., RJ. 
A relation R on J&' is Ao(R1,. . ., R J ,  Zl(R1,. . ., R,) or IT,(R,, . . ., R,) 

accordingly as R is definable by a formula in the appropriate class. We say 
that R is A,(R1, . . ., R,) if R is both C1(R1, . . ., R,) and I'I,(R,, . . ., R,). 

The class of Cl(Rl, . . ., R,) relations on a set A which is admissible 
relative to R,, . . ., R, has many nice properties. It is closed under &, v, 
restricted quantification of both kinds and existential quantification over A. 
These are all easy to prove, e.g. closure under 3@ follows from the equivalence 

( 3 X ) ( 3 Y ) c p ( X ,  v) - ( 3 Z W  E E M X ,  Y )  
which is true because A42 is closed under pairing. Similarly, closure under 
(Vx E y )  follows from the equivalence 

( V X  E Y ) ( 3 Z ) c p ( X ,  Y ,  z> - ( 3 w W  E Y ) ( 3 Z  E w)cp(x, Y ,  4 
which holds when cp is Ao(R,, . . ., R,) because A? satisfies A,-Collection. 

A,-Separation and A,-Collection. 
We illustrate the notion of admissible set by proving stronger versions of 

9D.1. THEOREM. Let A42 be admissible relative to R,, . . ., R,. 
r f  R(x) is A,(R,, . . ., R,) and z E A?, then {x E z :  R(x) }  E A (A,-Separa- 

If R(x, y )  is C,(R,, . . ., R,) and (Vx~z) (3y)R(x ,  y) ,  then there is some 
tion). 

w E A such that (Vx E z)(3y E w)R(x, y )  (XI-Collection). 
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Clearly then 

(x E z :  R(x)) = (x E 2: (3y E w)qo(x, y)> 

and the set on the right is in 4 by A,-Separation. 
For the second assertion, by hypothesis 

R(x7 Y )  * (3t)tp(x, YY t )  

(VX E z)(3y)(3t)tp(x, YY 0. 
with ~ ( x ,  y ,  t )  in Ao(R1,. . ., R,), and 

Since 4 is closed under pairing, y ,  t E A * ( y ,  t )  E A, hence 

( V X  E Z)(3U)1(3Y E 

(Vx E z)@u E s"3.Y E u)@t E u)sD(x, Y ,  t>l. 

w = u s = { y :  (3u E sly E u) .  

E u)tp(x, Y ,  03. 
Now by A,-Collection there is an s E A so that 

Since 4 is closed under union, take 

Clearly for this w, 
(Vx E Z)(3.Y E w)R(x, v), 

which completes the proof. i 

Still one more collection of formulas will be useful. We say that $ is 
X(R,, . . ., R,)  if $ can be built up from Ao(R,, . . ., R,) formulas by the positive 
connectives &, v, the restricted quantifiers (3x E y) ,  (Vx E y )  and the un- 
restricted existential quantifier (3y). For example, 

\I/ = (3Y)(VX E ~)t(3z)cp(x, v, Y ,  '4 v x(x, 0, v)l 
is X(Rl,. . ., A,), if cp, x are Ao(R1,. . ., R,). Clearly every Zl(R,, . . ., R,) 
formula is C(R1, . . ., R,) but not vice-versa. 

The remarks preceding 9D.1 make it obvious that if 4 is admissible 
relative to R, ,  . . ., Rl,  then every relation definable by a Z(R,, . . ., R,) 
formula is Cl(R,,  . . ., R,). We need these formulas for a reason other than 
definability . 

If $ is Z(Rl, . . ., R,) and w is a variable which does not occur at all in $, 
let $ ( w )  be the Ao(R1,. . ., R,) formula obtained by restricting all the un- 
bounded existential quantifiers in JI to w. For example, for the J/ above, 

$ ( w )  _= (3Y E w)(Vx E " w)dx, v, y ,  z)  v x(x, v, Y)l. 
In this transformation we do not interfere with the restricted quantifiers in $. 

The next result is simple but very useful. 
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9D.2. C-REFLECTION PRINCIPLE FOR ADMISSIBLE SETS. Let &$? be admissible 
relative to R1,  . . ,, R,, let $ be a Z(Rl, . . ., R,) formula, let w be a variable 
not occurring in $. Then 

(4) * G (3W)$('"). 

PROOF. A trivial induction on the construction of Z formulas shows that 

( 5 )  w -c z & Ip) * $ ( z )  * *; 
in particular we get direction (e) of (4). 

$. For example, 
The other direction of (4) is proved also by induction on the construction of 

(by ind. hyp.) 

taking w = u u v and using (5). Also 

(Vx E y)cp 3 (Vx E y)(3u)cp(") (by ind. hyp.) 

(by A,-Collection) 3 (Vx E y ) ( h  E z)+) for some z 

3 (3w)(Vx E y)cp(w), 

taking w = z and using again (5). i 

In addition to the simple operations of pairing and union, an admissible set 
is closed under many operations defined by constructive transfinite recursions 
of various sorts. It is these closure properties that make admissible sets a 
natural domain for abstract recursion theory. We cite here three simple 
results of this type which are typical and which we will need. 

9D.3. THEOREM. Let Jf be admissible relative to R,, . . ., R,, let < be a 
welIfounded relation which is a member of A, let Gff, x) be a Al(Rl, . . ., R,) 
function mapping Jf x A! into A. Then there is a unique function f in A such 
that 

Domain( f) = Field( <) 

and for every x E Fidd(<), 

f(4 = G({<t, f ( t ) ) :  t < XI, XI. 

PROOF. Put 

R ( f )  e f is a function & Domain( f) E Field(<) 

& ('dx E Domain(.f))[f(x) = G({ ( t , f ( t ) ) :  t < x)., x)]. 
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Here all notions are understood in the usual settheoretic manner, i.e. a 
function is a set of ordered pairs, etc. 

It takes a bit of checking to verify that R is A,(R1,. . ., R,) and we shall 
omit the computation. 

A trivial induction on < shows that 

R ( f )  & R(g) & x E Domaindf) n Domain(g) 3 f(x) = g(x). 

We now prove by induction on < that 

(Vx E Field(<))(3f)[R(f) & x E Domain(f)]. 

From the induction hypothesis, 

(Vt < x)(3f )[R( f )  & t E Domain( f 11, 
whence by Z,-Collection there is some w E & such that 

(Vt < x)(3f E w)[R(f)  & t E Domain(f)]. 

Put now 

g = ( ( t ,  f ( t ) > :  f E w 8~ Rdf) & t < X} 
which is in & by A.,-Separation and closure under union. Finally, take 

f = 9 u ((4 G(g, XI>> 

and verify immediately that Rcf)  and x E Domain(f). 
Using C,-Collection once more, there is a w E & such that 

(Vx E Field(<))(3g E w)[R(g) & x E Domain(g)]; 

the required function f is given by 

f = {<t, g(t)): 9 E w R(d1.  

The wellfounded relation < occurred as a parameter in this proof and the 
definition of the required function f was uniform in <. An examination of 
the proof shows that we have established the following more complicated but 
also more useful result. 

9D.4. THEOREM. Let A be admissible relative to R1, . . ., Rl, let G(w,f, x) 
be a Al(Rl , .  . ., R,) function mapping A3 into A?. There is a A1(R1, . . ., R,) 
function F(w, x )  such that whenever w is a wellfounded relation which is a 
member of A and x E Field(w), then 



ch. 9, 9D 184 THE NEXT ADMISSIBLE SET 

It is easy to verify that the relation 
Ord(5) - ( is an ordinal 

is A. on any admissible set A. Using this and 9D.3 we can show that if w 
is a wellfounded relation which is a member of A, then rank(w) is an ordinal 
of Ji. Hence 

o ( A )  = supremum(rank(w): w is wellfounded, w E A> 
= supremum((: Ord((), 5 E A'). 

define functions by transfinite inductions on the ordinals. 
It is worth citing explicitly an easy corollary of 9D.4 which allows US to 

9D.5. THEOREM. Let Ji' be admissible relative to R 1 ,  . . ., R,, let G(f,  5) be a 
A1(R1,  . . ., R,) function mapping A x o(A')  into A. The unique function 
F: o(J i )  x &!+A! which satisJies 

(6)  m) G(F r 5 , ~ )  
= G ( { ( v 7 0 N :  v < 51,  (1 

is A1(R1 ,  . . ., R,) .  

PROOF. For each 5 ,  let 

W(5) = { ( v 7 0 :  v < r < 5 ) .  
Clearly each W(5) is a wellfounded relation in A' and 

( k 2 rank(W(4:)) = 5. 
Moreover, the mapping W is easily A+ 

Put 
G*(w,f,  x) = G(.L -4 

and let F*(w, x) be the A1(Rl ,  . . ., R,)  function given by 9D.3 such that when 
w is wellfounded and x E Field(w), 

F*(w, X )  = G*(w, {(t, F*(w, t)): (t, X) E w ) ,  X )  

= G(( ( t ,  F*(w, t ) ) :  ( t ,  X )  E w } ,  x). 

An easy induction on ( shows that if I ,  I' > 2 and 5 < 1, I' then 

F*(W(I),  5 )  = F * ( W I ' ) ,  0, 
and then another trivial induction on 4: establishes that the function 

F(5) = F*(W(5+2), 5) 
satisfies (6). This completes the proof, since the uniqueness of the function 
satisfying (1) is obvious. -I 
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One of the consequences of this result is that the function 

t -9 L, 
which defines the constructible hierarchy is Al on every admissible set, and 
in particular, if A is admissible, 

( < O ( A ) + L < E A .  

It is a little harder to prove that if A is admissible and u = o ( A ) ,  then L, 
is admissible. 

An ordinal K is admissible if K = o ( A )  for some admissible set A!, i.e. 

K is admissible 0 L, is admissible. 

We will not use this fact here, but it is useful to keep in mind. 
There is one very basic fact about the Xl relations on an admissible set 

whose proof is quite complicated. We cite the result here and we include an 
outline for a proof in the hint for Exercise 9.5. 

9D.6. PARAMETRIZATION THEOREM FOR C1 RELATIONS. If .A?' is admissible 
relative to R, ,  . . ., R,, then for each n there is a C l ( R 1 , .  . ., R,) (n+l)-ary 
relation S" which parametrizes the n-ary C,(R,, . . ., R,) relations on A. -I 

We close this section with a brief discussion of two properties of admissible 

If A is a transitive set and z E 4, a projection of 4 on z is a function 

n: D + A  

with domain some D c z which is onto A. Notice that D need not be (and 
usually is not) an element of A. We call an admissible set A projectible on z 
relative to R , ,  . . ., R ,  if A admits a projection n: D -+ A, D E z,  which is 
A1(R,,  . . ., R,), i.e. whose graph is A 1 ( R 1 , .  . ., R,).  The domain D of a 
projection 7c which is A,(R,, . . ., R,) is C.,(R,, . . ., Rl),  since 

sets which are relevant to the construction in 9E. 

x E D =s ( 3 y ) [ ~ ( ~ )  = Y]. 

Also the inverse map 

n-'(y) = { X E Z :  .(X) = y ]  

y # z =j .-'(y) A n-'(2) = 8. 

is A,(R, ,  . . ., R,) and maps A into Piwer(z) n A, so that 

All the admissible sets which we will construct in the next section will be 
projectible. On the other hand, it is clear that H, (K regular) is not projectible. 

I* 
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Finally, a resolution of an admissible set A is a function 

5: O ( A )  -+ d@ 
such that 

We call Jt resolvable relative to R,, . . ., R, if A! admits a resolution 7 which 
is A l ( R l , .  . ., Rl) .  

Again, all the admissible sets which we will construct will be resolvable. 
But there are nonresolvable admissible sets, in fact it is possible to define an 
uncountable admissible Jz' such that o(M) and every member of A' are 
countable. 

A! = &(O. 

9E. The companion of a Spector class 

for Spector classes. 
We prove here the main result of this chapter, a representation theorem 

9E.1. THEOREM. Let A be a transitive, infinite set, let r be a Spector class 
on A such that 

E I A E A ,  

i.e. both the relation E and its negation are in r. Let &(A) be the intersection 
of all admissible sets which contain every A-subset of A ,  

(1) 

Then : 

(a) &(A) is admissible, o(.M(A)) = o(A) aizd for  every X E: A ,  

&(A) = n (dl : JZ is admissible and 
(VX)[ (X  c A & X E  A )  => X E  A]}. 

X E J Z ( A ) ~ X E A .  

Moreover, there is a relation 
R = Rr 

on Jz ' (A)  such that the following hold: 
(b) A ( A )  is admissible, resolvable and projectible on A relative to R.  
(c) A relation P E A" is in r ifaizd only i f P  is C,(R) on Ji'(A). 

PROOF. If x is a set, let 

F ( x )  = {(x,, . . ., xJ: x 3 XI 3 . , . 3 x,,) 

and for (x,, . . ., xn), (y , ,  . . ., y,) in T ( x ) ,  put 

(xl,. . ., x,) > (y , ,  . . ., y,) o n < m &x, = y ,  &.  . . & x,, = yn. 
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Clearly < is a wel2founded relation, indeed a tree. It is not hard to verify 
that the set x is completely determined by the homomorphism type of <. 
This is the basic idea of the proof: we will take all wellfounded trees in A ,  we 
will show that the sets they determine are precisely those in A ( A )  and then we 
will use this representation of A(d) to help prove the other assertions of the 
theorem. 

It will be convenient to define wellfounded trees as sets of sequence codes 
rather than sequences of elements of A .  So fix a coding scheme in A and put 

(2) T is a wellfounded tree 

o T f 0  
& (Vu)[u E T Seq(u)] 

& (Vu)(Vu)[(Seq(u) & Seq(v) & unu E T )  * u E TI 

{('dxo)(tJx,) . f .mn)K&,  * . - 3  x,> 6 TI. 

The code of the empty sequence belongs to every wellfounded tree and the 

We assign to each wellfounded tree T and to each u E T the set m(T, u )  by 
set ((0)) is a wellfounded tree. 

the following induction on the wellfounded relation 

(3) < T  = ((u, u ) :  u E T, v E T & u codes a proper extension of the sequence 
coded by v }  : 

(4) 

The set determined by a wellfounded tree is defined by 

m(T, u )  = {tn(T, u"(y)): un(y) E T} .  

( 5 )  m(T) = m(T, (0)). 

The function m(T, u )  assigns sets to the nodes of the tree T, where the set 
assigned to u is the set of all sets assigned to the immediate extensions of u. 
Then m(T) is the set that is assigned to the root (0) of T. For example, if 
T = {(0)}, then 

m(T) = m(T, (0)) = (m(T, (x)): ( x )  E T }  = 0. 
In Fig. 9.1 we picture a tree S such that m(S) = 3. 

If T is a wellfounded tree, u E T and we put 

(6) 

then T,, is a wellfounded tree and for each u, 

T,, = { u :  U"U E T} ,  

m(T,,, u) = m(T, unu); 
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in particular, taking 2, = (0), 

(7) m(T,,) = m(T, u). 

Put 

(8) 

The proof that J Z  = &(A) and that (a)-(c) hold is by a sequence of lemmas. 

.A? = (m(T): T is a wellfounded tree, T E  A ) .  

Lemma 1 .  ~ 4 2  is transitive. 

Proof. If z = m(T) is in dZ and x E z,  then x = m(T, ( y ) )  = rn(T~>)  for 
some J?, and T(v) is obviously a wellfounded tree in A. 

Leniina 2. A" G d. 

Proof. For n = 1 we proceed as in the beginning of the proof. For each 
x E A, put 

(9) T(x) = ((x,, . . .) x,) : x 3 XI 3 . . .3 x,). 

It is trivial to check that T(x) is a wellfounded tree in A ,  and an easy E- 
induction (using the fact that A is transitive) shows that for each x E A ,  

m(T(x)) = x. 

For higher n, take for simplicity the case n = 2 and put 

T = T(x, y )  = {(x, X, x,, . . ., x,): x 3 X, 3 . . .3 x,) 

u (((x, y ) ,  x, XI, . . ., x,): x 3  x, 3 . . .3 x,} 

u 
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Clearly T is a wellfounded tree in A and 

= {NT, <x>), m(T9 <<x, Y>>)l 
= { {MT,  <x, .>>I, {m(T, <(x, v>, x)), m(T, <<x, v>, Y ) ) }  1 
= {{m(T(x))},  {m(TO) ,  m(T(J9l-I 
= {{XI, { X , Y I }  

= (x,  y )  = the orderedpair of x and y. 

Lemma 3. If P c A" and P is in A, then P E A. 

Proof is similar to that of Lemma 2. For n = 1,  put 
T = T(P) = {(x, xl, . . ., x,) : x E P & x 3 X, 3 . . . 3  xn] 

and notice that T is a wellfounded tree in A and 

m(T) = {rn(T, (x)): (x) E T )  

= {m(T(x)):  x E P} 

= {x:xEP) = P. 

For higher n the tree in question is a bit more complicated, but the idea is 
simple. For example, if P c A Z ,  we can take 

T = T(P)  = {<<x, v>>"u: P(X, v) c% u E w, v)} u {<0)), 

m(T(x, Y ) )  = (x, Y).  

where T(x, y )  is defined in the proof of Lemma 2 so that 

Then T is clearly a wellfounded tree in A and 

m(T) = { m V ,  (<x, Y>>):  w, Y ) l  

= { m m ,  v)) : P(X, Y)> 

= { (x ,y ) :  P(x,y)) = P2. 

It should be pointed out that the slight complication in these proofs for 
the case n > 1 would not be necessary if we assumed that A is closed under 
the ordinary settheoretic pair so that we could take 

(x, Y> = (4 Y).  
But it may be for example that A = A is an infinite ordinal, which admits 
hyperelementary pairs but is not closed under the ordinary settheoretic pair. 

Lemma 4. If .Y is an admissible set such that for each X c A ,  
if X E  A ,  then X E N ,  

then A G N .  
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Proof. If Jlr contains all the sets in A ,  in particular it contains all well- 
founded trees in A .  Now an easy application of Theorem 9D.3 implies that Jlr 
contains m ( T )  for every wellfounded tree T i n  A ,  i.e. A' c Jlr. 

To complete the proof of (a) it will be sufficient to show that A is admis- 
sible. For this and for the proofs of (b), (c) we introduce a coding of the sets 
in 

Fix a good parametrization scheme {I", H", i?jnE0 for the relations in A 
i n  the sense of Theorem 9C.8, and to avoid superscripts let 

by a set in r. 

I = Z 1 ,  H = H ' ,  A = A'. 
Put 

(10) a E M 0 a E I & Ha is a wellfounded tree. 

Lernma 5. M is in I?, it is I?-complete and the function 

a -+ m(H,) 
maps M onto Jl. 

9C.10 if we notice that the second order relation 
Proof. The second assertion is immediate. The first follows from Theorem 

W ( T )  0 T is a wellfounded tree 

is inductive in relations in r (the coding scheme) and hence W is r on A by 
9C.10. But 

U E M e - B # ( U )  

in the notation introduced by (8) of Section 9C, hence M is in r. That M is 
r-complete follows from the second assertion of 9C.8, since M c I and 
((0)) is a wellfounded tree, so that 

U E I & H ,  = { ( @ ) ) * u E M .  
The key property of the coding of A given by M and m is embodied in 

Lemma 6. If X is a set in A ,  X E M and i fP(a,  u )  is a relation in A ,  then 

the next lemma. 

{m(Ha, u ) :  a E X & u E Ha & P(a, u)> 

is a set in A[. 
Zn particular, if X c M and X is in A ,  then 

{m(H,): a E X }  E A. 

Proof. Put 

T = ( ( 0 ) )  u { ( ( a ,  u ) ) " L ~ :  a E X & U"V E Ha &P(a,  u ) ) .  
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Clearly T is a wellfounded tree in A .  We compute: 
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m(T) = {m(T, ( ( a ,  u ) ) ) :  a E X & u E Ha & P(a, u) )  
= (m(T<(a,U>)): a E X & u E Ha & P(a, u ) )  

T<<W>> = s,, 

m(T<<w>>) = m(&) = m(Ha, u)  
which completes the proof of the first assertion. The second follows im- 
mediately. 

(by (7)). 
But if a E X & u E Ha = S, then directly from the definition of T, 

so that by (7) again, 

As an example in the use of this lemma, consider: 

Lemma 7. A is closed under pairing and union. 

Proof. I f  z = m(Ha), w = m(H,) with a, b E M ,  take X = {a, b) .  Then 

For closure under union, if z = m(Ha) with a E M, take 
(m(H,): x E X >  = {z ,  w) E A. 

X =  {a>, 
P(x, u )  e. Seq(u) & Zh(u) = 2. 

Then 

{m(Ha, u) : p(a, u) & u E Ha} = (m(Ha, <x, v)): ( x ,  U> E Ha} 
= U Z .  

Another nice property of M is that we can imbed A in it via a A function 

Lemma 8. There is a function 

i : A + M  

which is in A and which assigns to each x E A a code of x, i.e. 

m(Hqx)) = x. 
Proof. Put 

Q(x, u) seq(u) & (~11 E x (Vi < Wu))[(u)i+, E (u)iI* 

For each x, clearly 

{ u :  Q(x, u>> = T(x)  
in the notation introduced by (9), so that by Lemma 2, 

m({u: Q(x, u) ) )  = x. 
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Now by the good parametrization property, there is a function i in A such 
that for every x,  

i(x) E I ,  Hi(*) = { u :  Q(x, u)} = T(x). 
There are many natural candidates for the relation R which will satisfy 

(b) and (c) of the theorem. Here we choose one which makes the proof 
transparent. 

Let 

(1  1 )  cr: M +  o(A) 

be a fixed I?-norm on the set M and define on A?, 

( I  2) R(a, ti, 5) o a E A4 & u E Ha & 5 is an ordinal & 5 > 1 & o(a) d 5. 
We now begin the proof that d'l is admissible relative to this R. 

Lemma 9. The relations 

P+(a, U ,  6 ,  V )  o a, b E M & u E Ha & v E Hb & m(Ha, U )  = 7?Z(Hb, v), 

P-(a, u, b, v) o a, b E M & u E Ha & v E Hb & m(Ha, u) # m(Hb, v) 

are both in r. 
Proof. Choose q so that 

q(u,  v, S, T, U )  o Seq(u) & u E S & Seg(v) & Y E T 

( V 4 [ U " < X >  E S  -+ (3Y)[U"(Y> E T Lk (u"(x>, V"(Y>) E UII 

&L (W[V"(Y> E T -+ (W[U"(X> E s (u"(x>, U"(Y>) E Ull. 
If both S and T are wellfounded trees, then we can easily verify that 

( u ,  0, s, T )  E 9; ==- m(S, u )  = m(T, v) 

by induction on 5 and 

m(S, u) = m(T, v) = (u, v, S, T )  E 9, 

by induction on the wellfounded tree S. Hence the second order relation 

9 ( u ,  v, S, T )  - S, Tare  wellfounded trees and m(S, u) = m(T, v) 

is inductive in relations in r (the coding scheme) and hence W is I' on A by 
9C.10. Now we notice as in the proof of Lemma 5 that 

P+(a, u, b, v) 0 W#(u, v, a, b), 

so that P f  is in r. 
The proof for P- is similar and we omit it, 
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Lemma 10. Let R be defined by (1 l), let cp(xl, . . ., x,) be any Ao(R) formula 
on A? with the indicated free variables, put 

P,+(a,, . . ., 0,) * a,, . . ., a, E M & cp(m(H,,), . . m(H,J>, 

p,(al, . . ., a,) 0 a,, . . ., a, E M & i c p ( m ( K , ) ,  . . ., m(Han)). 

Then both P$, P; are in r. 

(or x1 = z with a constant z),  since e.g. 
Proof. The preceding lemma 9 gives the result for the case cp is x, = x2 

E ( a ,  6)  * P+(a, (O), b, (0)). 
For the €-relation we can take 

P:(a, b)  - a, b E M & (3x)(Pf(a, (0), b, (x))}, 

P;(a, b )  o a, b E M & (Vx)((x) E fib * P-(a, (O), b, (x))>. 

closed under 1, &, v and the restricted quantifiers. For example, if 
It is easy to verify that the class of formulas which satisfy the lemma is 

P(Y, 4 = (VX E Y ) W ,  Y ,  4, 
we can take 

P:(b, c) c> b, c E M & (Vx)[(x) E fib 3 (3d)[d E M & P+(b, (x), d, ($3)) 

tk P$(d, b, c)ll. 
To complete an inductive proof of the lemma, we need only treat the 

q(z) e- z is an ordinal > 1. 

By the part of the lemma we have proved, both P$, P; are in r. Also it is 
immediate that whenever c E M and m(Hc) is an ordinal 

prime formula R(x, y ,  z). Choose first a A. formula q(z) such that 

> 1, then 

t = rank{((s,, s2), 0)): +I ,  s2), (9 E Nc m w c ,  ($1, s2)) E m ( K ,  ( t ) ) } .  
Using the inductive relations P+, P- of lemma 9 it is easy to find an inductive 
and a coinductive relation which agree whenever c E M and define the binary 
relation in the braces, so by the Good Parametrization Theorem 9C.8 there is 
a fixed function j ( c )  in A such that whenever c E M and m(H,) = 5 is an 
ordinal > 1,  then 

(13) j ( c )  E z2, 5 = rank(HS(,,). 

Also if a E M and .(a) > 1, then 

o(a) = rank((s, t ) :  s <,* t <,* a}. 
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Using the definition of a r-norm and 9C.8, we can find a function k(a) in A 
such that 

a E M * [k(a)  E Z2 & H;(,) = {(s, t ) :  s <,* t <: a)]. 

Notice that if a E M and @(a) d 1, then H&a) = 0. From this and the remarks 
above, it follows that if a, c E M and m(Hc) = 5 > 1, then 

(14) o(a) < t - rank(H,&J < rank(H&)), 

where k(a ) , j ( c )  are in A .  Now the relation 

X < Y o  X ,  Y are wellfounded & rank(X) < rank( Y )  

is inductive and hence r on A .  Thus, there is afixed relation Q(a, c )  in r such 
that whenever a, c E M and m(Hc) is an ordinal > 1, then 

(15) @(a) d m(HJ 0 Ha,  c). 
Now 

P i ( a ,  b, c) 0 a, b, c E M & P,'(c) 

& (3x)(3u){x E M & m(Ha) = x 

& u E H a & m ( H b )  = u 

& o(x)  d m(H,)] 
e a, b, c E M & P,'(c) 

& (3x)(3u){x E M & Pa(a, i(x)) 

& u E Ha & PZ(b, i(u)) 

8~ Qk 4 1 ,  
so that PR+ is in r. 

i n  r to finding some Q'(a, c) in 
an ordinal > 1, then 

(16) a $ M v m(Hc) < .(a) o Q'(a, c). 

If m(Hc) is an ordinal, then m(H,) < o(A), since m(HJ is the rank of a well- 
founded relation in A .  On the other hand, 0 :  M + o(A), since M is not in A 
by lemma 5. Hence we can set 

Q'(a, c) - (3y ) {y  E M & rank(H;(,,) d runk(H.&) & y <,* u> 

A similar computation reduces the problem of showing that P i ( a ,  b, c) is 
such that whenever a, c E M and m(HJ is 

and (16) will hold. That Q' is in follows easily as before. 
From lemma 10 follows easily the main part of the theorem. 
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Lemma 11. A is admissible relative to R. 

Proof. We have already shown that A! is transitive and closed under 
pairing and union, so it remains to check A,-Separation and A,-Collection 
relative to R. 

The Good Parametrization Theorem 9C.8 implies that there is a function 
(a, s) in A such that whenever a E I’, thenj(a, s) E I’ and 

hence 
Hi(,,,) = (u: (s)”u E H,) ;  

(17) a E M a  ((Vs)[j(a, S) E MI & m(Ha) = {m(Hj(a,sJ: <S) E Ha))-  
To prove A,-Separation, suppose z = m(H,) is a set in A and q ( x )  is 

A,(R). We must show that 

w = {x E z :  cp(x)) E ”44. 

Let P,f(b), P;(b) be the relations in r associated with q(x )  by lemma 10 and 
Put 

X = { j (a ,  s): (s) E ff, & P;(j(a, s))} 

= ( j (a ,  s): (s) E Ha & i P , ( j ( a ,  s))]. 

Clearly X E M ,  Xis in A and 
(m(N,): c E X} = {x E z :  p(x)) = w, 

so that w E A! by lemma 6.  

and 

Letting again P,+(b, c) be the relation in l? associated with q(x ,  y) ,  by lemma 
10 we know that 

To prove A,-Collection, suppose z = m(H,) is a set in A!, p(x, y )  is A,(R) 

(VX E z)(3Y)cp(x, Y).  

VsIs)(<s) E Ha * ( j c ) ~ ~ ( j ( a ~  s), c)]. 

By the A Selection Theorem 9C.2, there is a A relation Q(s, c) such that 

Q(s, c )  P:(j(u, s), c), 

(vs)[(s) E N, * Vc)Q(s, c)l. 
Put 

Xis obviously in A and 
X = {c: (~s)[(s) E IT, & Q(s, c)]}. 

c E X * (3s)Q(s, c) 

* ( w ; ~ . i ( u ,  s), c) 

* C E M .  
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Hence by lemma 6,  

w = {m(H,): c E X} E 4. 

It is now trivial to check that 

(VX E E w)CP(x, v), 
which completes the proof of A,-Collection and the lemma. 

Now lemmas 11 and 3 imply immediately: 

Lemma 12. A = &(A). 

We can collect these lemmas into a proof of the theorem. 

Proof of part (c). Assume first that P is C,(R)  on A, 

P(x1, * * *, x n )  e (~Y)cP(Y ,  X I ,  * * - 9  x n ) ,  

with some AO(R) formula. Using lemmas 8 and 10, 

P(x, ,  . . .) x,) * (3a){a E M & P,f(a,  i ( x , ) ,  . . .) i(xn))], 

so that P is in r. 
To prove the converse, notice first that M is Cl(R)  since 

a E M * W)R(a ,  (0), 5). 
By lemma 5 ,  M is r-complete, so given P(X) in I-, there is a functionf(X) in 
A such that 

P(X) of(%) E M .  

Choose z E A by lemma 3 so that 

(2, v) E -f(3 = y ;  
then 

W )  * (3Y", r) E z Y E MI, 
so that P is C,(R). 

Proof of part (a). 4 is admissible by lemma 11. That o(A') = o(A) is 
obvious since every ordinal in dk' is the rank of some wellfounded relation in 
A and conversely, every wellfounded relation in A is a member of A! and 
hence has rank an ordinal of Jt'. The last assertion follows immediately from 
part (c) and lemma 3. 

Proof of part (b). 4 is admissible relative to R by lemma 11. The proof of 
resolvability and projectibility follows by an application of 9D.3. 
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{(u"(s), u) :  u"(s) E H a )  ij-a E M & 5 > 1 & a(a) < 5, 
otherwise. 

The map 

(18) G(w,f, x) = { f ( t ) :  f E Dornain(f) & ( r ,  x) E w} 

is A,,, hence by 9D.3 there is a A, function F(w, x) such that whenever w is a 
wellfounded relation, x E Field(w), 

(19) 
Put 

F(w, x )  = {F(w, t ) :  ( 2 ,  x) E w>. 



198 THEZNEXT ADMISSIBLE SET ch. 9, 9E 

We call a structure ( J L ( A ) ,  R,, . . ., R,) a companion of the Spector class 
r, if the sequence of relations 

R = R,, . . ., R ,  

on A'(d) satisfies (b), (c) of Theorem 9E. 1, in particular for P c A", 

P is in r e P is C , ( R )  on A(d). 

The next result shows that the companion is essentially unique. First a lemma. 

9E.2. LEMMA. Let A be admissible relative to both R = R,, . . ., R, and 

(a) JZL is projectible on A relative to R.  
(b) Tfiere is a coding scheme on A which is A,(@. 
(c) Ij 'P E A", then P is C, ( R )  if and only i f P  is El(R).  

Then for every P c &", P is Cl(R) if and only iJrP is C,(R') .  

- 
R' = R;, , . ., R;,, let A be a set in A such that the following hold: 

PROOF. Let 
71: D + J L  ( D  E A )  

be a A,(R) projection of J Z  on A .  If b E D, then 

a E D & n(a) E n(b) e (3y)[z(b) = y & (3x E Y)[Z(U)  = XI] 

* ('dY)[(7@) = J4 * (3X E Y)171(a) = 41. 
Using this, it is easy to verify that for each b E D, the wellfounded tree 

(22) 
is in A'. Moreover, the relation 

H(b) = {(x,, . . ., x,,): x,, . . ., X, E D & ~ ( b )  3 ~ ( x l )  3 . . .3 ~(x , )}  

(23)  w(b)  = ( ( ( ~ 1 ,  . . .) X n ,  Y>, . . .) xn)): ( X I ,  . . ., xn, Y> E H(b)} 
is also in A', and in fact the relations 

W '  (6, u, v) e b E D & ( 2 1 ,  v) E W(b), 

W-(b, u, v) 9 b E D & (u, v) $ W(b) 

are C , ( R ) ,  hence they are C,(R') .  

Since for each b E D the tree H(b) determines the set z(b), we have 
Let F(w, x) be the function defined by (18) and (19) in the proof of 9E.1. 

b E D * z(b) = F(W(b), (0)). 
Moreover, F(w, x) is A ,  on did', i.e. definable by C,, n, foriiiulas in which R 
does not occur. 
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Since D, W+, W- are all Z,(@ and hence Xl(l?'), the equivalence 

n(b) = y e b E D & ( 3 ~ ) {  W(b) = w & F(w, (0 ) )  = v >  
implies that the graph of TC is Xl(R'). 

If P(x l ,  . . ., x,,) is XI@), put 

P"(al, . . ., a,) o a,, . . ., a, E D & P(n(al) ,  . . ., n(a,,)); 

then P" is Xl(8) ,  hence Z,(R') and 

P(xl ,  . . ., x,) u (3a,, . . ., a,,)[n(a,> = x 1  & . . . & x(a,,) = x,, 

&P"(a,, . . ., a,)], 
so that P is Z,(8'). 

The same argument shows that every relation P which is X:,(l?') is also 
-I Z,(l?), so that the proof is complete. 

9E.3. THEOREM. Let r be a Spector class on the infinite transitive set A ,  let 
R, 8' be relations on A? = &(A) so that both (A?, 8), (/it, R') are com- 
panions of r. Then a relation P on A? is Z,(l?) if and only i f P  is X,(R'). 

PROOF is immediate from the definitions and the lemma. -I 

There is also the following converse to Theorem 9E. 1. 

9E.4. THEOREM. Let A be admissible and resolvable with respect to R = 
R , ,  . . ., R,, let A E ~42' be transitive and assume that d d  is projectible on A 
relative to 8 and that there is a one-to-one pairing function 

f : A x A + A  

which is in A. Let r be the collection of all relations on A which are XI(@. 
Then r is a Spector class, &'(A) = A and (4, R )  is a companion of r. 
In particular, if& is admissible, resolvable and projectible with respect to 8, 

then (4, R )  is the companion of some Spector class. 

PROOF. Choose a # b in A and put 

a, = f ( a ,  a), a, = f (ao ,  b), a2 = fh, b), . . ., a,+-, = f(a,, b), . . . . 
It is easy to check that the sequence a,, a,, a2, . . . with its natural ordering 
gives a copy of o in A ,  and from this and f we can easily construct a coding 
scheme in r. The other closure properties of r are trivial. 

To prove the parametrization property, let 

n: D --)* ~ t l  ( D  c A )  
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be a A[(R) projection of &if on A ,  for each n choose a Zl(R) relation S" E 

(/"(a, x,, . . ., x,) e a E D & S(n(a) ,  xI,  . . ., x,). 
which parametrizes the n-ary relations on Jl and put 

To prove that I' is normed let 

2 :  o(J l )  -+ dl 

be a A,(R) resolution of J&'. If P 5 A" is in 1', then there is a Ao(R) relation 
Q(y,  .?) such that 

P(X) e (3z)Q(z, 3). 

Put 
a(3) = Least 5 such that (32 E z(())Q(z, 3). 

Now ci is a r-norm on P, since 

3 <: V 0 (35)[(3z E z(S))Q(z, 2) & (VY < O(vz  E r ( q ) ) i  Q(z,  Y)], 
3 <,* Y - (35)[(3z E 2(O)Q(z,  3) & (vrl < 5)(Vz E 4 y ) > l Q ( z ,  Y)]. 

It is now sufficient to show that A ( A )  = dl, and since A' is admissible and 
A c A, it is enough to verify Jl c ,N(A),  i.e. for all N, 

JV admissible & A c .hf * dl E .hf, 

Given ~ i ( b ) ~ d i  with D E  D, define H(b) and W(b) by (22) and (23) in the 
proof of 9E.2. As we argued in that proof, H(b), W(b) are in A ,  hence in 
and 

= F(Wtb), <0)), 
where F(w,  x) is A ,  on .Ar, so that ~ ( h )  E N .  

To prove the last assertion, choose z such that Ji' is projectible on z 
relative to R, choose A 3 z such that A is transitive and closed under the 
ordinary settheoretic pairing and apply the main claim of the theorem. -I 

The representation theorem 9E.1 applies only to a Spector class r on a 
domain A which is a transitive, infinite set. It should be pointed out that this 
restriction is not essential; but if we want to extend the result to arbitrary 
Spector classes, we must allow for admissible sets which may have arbitrary 
objects (nonsets) as members. Such a theory of admissible sets with urelements 
has been developed recently by Barwise [1973]. Since the proofs in this section 
do not use any deep properties of admissible sets, they should extend to 
admissible sets with urelements. This would establish a correspondence 
between arbitrary Spector classes and admissible sets with ureleinents which 
are projectible and resolvable. 
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9F. The next admissible set 

We now establish the characterization of the class of inductive relations on 
a nice transitive set, the main result of Barwise-Gandy-Moschovakis [ 19711. 
First a lemma. 

9F. 1. LEMMA. Let A be a transitive injinite set, let R 1 ,  . . ., R, be relations on 
A,  let dl be an admissible set such that A ,  R1, . . ., R ,  E A, put  

CU = ( A ,  E r A ,  R , ,  . . ., R,). 
Then 

IP < o ( A )  

and every relation P which is inductive on CU is C, on A. 

PROOF. Let cp(X, S )  be any positive formula in the language of %. We can 
consider q ( X ,  S )  as a A. formula in A, where all the quantifiers are restricted 
to A and the relations R1, . . ., R ,  are members of A. Then the function 

G ( f ,  5 )  = (2 E A": cp(% u if($: v E D o m a W ) ) ) )  
is A. on Ji, so that by 9D.5 the function F which is determined by the recur- 
sion 

w3 = G(F r 5 , 5 )  = P: c p G 7  U1.q F(V))) 

F ( 0  = I;, 

is A, on A. Obviously, 

so in particular each stage Z; of the induction determined by qn is in A, as 
long as 5 is an ordinal of A. Moreover there is a A. relation Q(z, 5 ,  X) such 
that 

(1) 2 E I$  - (3z)Q(z, 5,X). 
Let 

Ic = o ( A )  

be the ordinal of A and assume that for a fixed tuple X E A", X E I;, i.e. the 
sentence $ satisfying 

is true. The sentence t,b is obtained from q ( X ,  S )  by replacing each occurrence 
of 

(2) 

11/ qn6 upK If) 

J E S by (%XWQ(z, 5 ,  Y ) .  
Clearly I) is X on A and the only unrestricted quantifiers in I )  are those 
introduced by (2). By the %Reflection Principle 9D.2, there is some w E A! 



202 THE NEXT ADMISSIBLE SET ch. 9,9F 

such that $Aw) is true. Now t,Vw) is obtained from ~ ( 2 ,  S )  by replacing each 
occurrence of 

(3) 
Let 1, be any ordinal in .,dl which is not in w and form x by replacing each 
occurrence of 

Y E S by (35 f w)@ E NQG, 5, Y)- 

(4) Y E S by (WQ(z, A Y) 
in q ( X ,  S). Since 

we have 
5 < 1 => 16 !z I; ,  

(35 E W z  f w)Q(z, 5 ,  Y )  * (WQk 1, j9 
and since S occurs positively in cp we know that x is true. But 

x * CPG, U < < A @ ,  

x f I., * x E I,.., 

hence X E I:. Thus we have shown 

i.e. the closure ordinal liqll of 9 is d IC = o(dz'). Also 
x E I ,  0 (35)X E 1; 

* (35 < K ) ( ~ z  E dW2(zY 5,  Z) 
and the fixed point I ,  is C, on ~2'. 

It follows immediately that every inductive relation on 91 is C, on dl. -I 

9F.2. THEOREM. Let A be a transitive, itlfinite set, let R,, ~ . ., R ,  be relations 
on A such that the structure 

'Lz = ( A ,  E 1 A, R , ,  . . ., R,) 
admits a hyperelementary coding scheme, put 

41+ = (I {A: Jl is admissible, A ,  R , ,  . . ., R ,  E A}. 

Tlien 91+ is admissible and resolvable, 'W is projectible on A and 
a(%+) = ICa. 

Moreover, i f P  s A", then 

( 5 )  
( 6 )  

an infinite ordinal. 

P is liyperelenientary on 2l- P E %+, 
P is inductive on M * P is C, on Mf. 

In particular, the theorem applies if A is closed under pairing or if A = 1 is 
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PROOF. Let r be the collection of all inductive relations on 2I. This is a 
Spector class, so choose R on 

(7) A = A ( A )  

so that (A, R )  is a companion of I7 by Theorem 9F. 1. 
It is immediate from the definitions that 

a+ E A. 

On the other hand, if X G A is in A ,  then Xis  A, on every admissible set N 
such that A ,  R , ,  . . ., R, E .Af by 9F.1, hence X is a member of every such 
admissible .Af by A,-Separation, hence X E %+. Thus 
(8) A = a+. 

We now apply Lemma 9E.2. Since (u+ is admissible relative to R and also 
relative to the empty list of relations, since %+ is projectible on A relative to 
R and since for P s A" 

P is C.,(R) - P is in r -s P is C., 
by 9E.1 and 9F.1, Lemma 9E.2 implies that for every relation P on a+, 
(9) 
The theorem follows immediately from (9) and 9F. 1. 

The last assertion, that 2I admits a hyperelementary coding scheme if A 
is closed under pairing or if A is an ordinal follows by Exercises 9.4 and 2.2. 

-1 

P is Zl(R) * P is 2,.  

We could avoid proving Lemma 9F.1 and give a slightly easier proof of 
this theorem if we were willing to use the results of Chapter 7, in particular 
the Spector-Gandy Theorem 7D.2 and the characterization of 2 8  as the 
smallest model of A:-Comprehension 7F. 1. But Lemma 9F. 1 is interesting 
in its own right and the technique we used in proving 9F.2 can be used to 
compute the companion of many interesting Spector classes, especially in 
the theory of nonmonotone inductive definability. It would take us far afield 
from the subject of this book to do this here. Instead we look briefly at the 
illuminating example of positive inductive definability in the language 9(Q).  

Let A be a transitive infinite set, R,,  . . ., R ,  relations on A and let Q c 
Power(A) be a nontrivial monotone quantifier on A ,  as in (2) of Section 3E. 
We proved in Theorem 9B.l that the class r of all relations which are positive 
LP(Q)-inductive on the structure 

91 = ( A ,  E r A ,  R , , .  . ., R , )  

is a Spector class. The problem arises of giving a concrete description of the 
companion of this r in terms of the quantifier Q. 
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Suppose dl is a transitive set, A E At', Q is a nontrivial monotone quantifier 
on A and P,, . . ., Pk are relations on 4. We enlarge the language of the 
structure (A, E 1 Jl, P,, . . ., Pk) by the restricted quantifiers (3x E y),  
(Vx E y) ,  ( Q x  E A),  ( Q u x  E A),  so that, for example, if cp is a formula, so are 

(Qx E 49, (Q"x E 49. 

These are interpreted in the natural way, 

( Q x  E A ) q  is true 0 {x  E A :  q} E Q, 

(Qux E A ) q  is true - i ( Q x  E A ) i q  is true 

e { x ~ A : i c p } $ Q .  

A formula cp is Ao(Q; P,, . . ., Pk) if it is built up from the prime formulas by 
the propositional connectives and the restricted quantifiers. The classes 
&(Q; P,, . . .,Pk), n,(Q; P I , .  . ., P,) and A,(Q; P,, . . .,Pk) relations are 
defined in the obvious way. 

We call Jl Q-admissible relative to P,, . . ., Pk if it is closed under pairing 
and union and if it satisfies the schemas of Ao(Q)-Separation and AO(Q)- 
Collection relative to PI, . . ., Pk, i.e. all formulas of the form 

(A,(Q)-Sep) (?w)(Vx){x E w 0 [x E z 8~ cp(x)l), 

(Ao(Q)-colI) (VX E z ) ( ~ Y ) ~ ( x ,  Y )  * (3w)(Vx E ZFY w)r~(x,  v), 
where q(x) and q(x, y )  are arbitrary Ao(Q;  P I ,  . . ., Pk) formulas. 

It turns out that we need a stronger property than Q-admissibility. We call 
A&' strongly Q-admissible relative to P,, . . ., Pk if it is Q-admissible and if it 
also satisfies the following two schemata of strong A,(Q)-Collection relative 
to PI, . . .) Pk, 

(Qx E A)Oy)q(x,  Y )  * (3w)(Qx E A ) ( ~ Y  E w)r~(x, v), 
(Qux E A ) ( ~ Y ) v ( ~ ,  Y )  * (3w)(Qux E 4 3 ~  E w)c~(x, Y ) ,  

where of course q(x, y )  ranges over arbitrary Ao(Q; P,, . . ., Pk) formulas. 

9F.3. THEOREM. Let A be a transitive, inJnite set, let R1, . . ., R be relations 
on A such that the structure 

'2I = ( A ,  E 1 A ,  R1, . . ., R,) 
admits a hyperelementary coding scheme, let Q be a nontrivial monotone 
quanti$er on A ,  put 

?I+(Q) = n {A: A ,  R,, . . ., R, E At & A is strongly Q-adrnissiblel. 
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Then %+(Q) is strongly Q-admissible, 

o(%+(Q)) = supremunz{ l[cp 11: cp is a positive formula in 8"(Q)) 

and %+(Q) admits a projection on A and a resolution which are A,(Q). 
Moreover, i f P  E A", then 

P is hyper-2'%(Q)-de$nable o P E '%+(Q), 

P is positive 2'%(Q)-inductive e P is Z,(Q) on %+(Q). 

PROOF is quite straightforward and we shall outline it in Exercises 9.8-9.14. 
-I 

The notions of Q-admissibility and strong Q-admissibility are not im- 
mediately transparent, but special cases of them have been studied. We will 
see in the exercises that in the case of the Suslin quantifier these notions 
(essentially) coincide with the so-called fl and strong fl properties of admissible 
sets. Theorem 9F.3 then applies and gives an inductive definability charac- 
terization of the next strongly fl set. 

Exercises for Chapter 9 

For each n 2 0, define the set T" of objects of type n over w by the induction 

To = W ,  

T"+' = all unary functions on T" to o. 

It is sometimes convenient to use variables a", p", F", . . . over T". Following 
Kleene, we let "t2E be the object of type n+2 which represents quantification 
over T", 

0 if(38")[a"+'(P") = 01, 
1 if(vp)[ff"+l(p) # 01. 

"+2E(~"+l) = 

The first exercise is simply an observation, trivial to those familiar with 
recursion theory on higher types, particularly Kleene [ 1959b1, Gandy [ 19621, 
Moschovakis [I 9671, Platek [I 9661, Grilliot [ 19671. 

9.1. Let n 2 2 and j = 0 o r j + 3  < n, let F" be afixed object of type n, put 

r = all relations P on Tj which are semirecursive in "E, F" and some 

Prove that r is a Spector class. Prove that the condition on j is necessary by 
-I 

aj E Tj. 

arguing that for j = 1, n = 3 the result fails. 
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Let Q be a nontrivial monotone unary quantifier on A and let r be a class 
of relations on A .  We naturally call closed under Q if for P E A"+I in r, 

QAP = {x: (Q~)P(Y ,  2)) E r. 
9.2. Let r be a Spector class on A closed under the nontrivial monotone 

quantifier Q and its dual Q". Prove that if Q,,  . . ., Q, are in I? and R is 
positive PA(Q)-inductive in e l , .  . ., Q,, then R is in r. Infer a corollary 
analogous to 9A.3. -I 

9.3. Let r be a Spector class on A closed under the nontrivial monotone 
quantifier Q, let P E An+' be in r and assume that 

(Qx)(WP(x ,  7). 
Prove that there is some P* E P in A ,  such that 

(Qx)(3W'*(x, 7). 
HINT: If P is in A ,  the result is trivial, so assume that P is not in A. Fix a 

R(x,  J )  - (Q"u)(Vi j ) i  [ (u,  8) <; (x, Y)]. 
r-norm 0 :  P --H o(d) and put 

Clearly R is in i I-. Prove that R 2 P and then show that we can take 

P*(X, Y )  * (x, 7) G s (s, 0, 
where (s, Z) is any fixed pair in P- R. -I 

9.4. Prove that if A is a transitive set closed under pairing, then <A,  E 1 A )  
4 admits a hyperelementary coding scheme. 

9.5. Prove the Parametrization Theorem for XI  relations on an admissible 

HINT: Assign codes to the Ao(R,, . . ., R,) formulas so that the relation 
set, 9D.6. 

Sat,(a, x )  0 a is the code of some Ao(Rl, . . ., R,)  formula cp 

& s'?q(x) &, (x)',  . . ., ( X ) l h ( x ) ,  0, 0, . . . 1 cp 

is Al(R, ,  . . ., R,)  on di. -I 

9.6. Prove that for every infinite ordinal 1, A('' = t i < L , +  is the next admis- 
-I sible ordinal, i.e. the smallest admissible ordinal greater than 1. 

9.7. Prove that if 91 is acceptable, then rc% is admissible. -I 
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In the iiext seven problems 9.8-9.14 we outline a proof of Theorem 9F.3. 
For these problems, fix 

a = ( A ,  E r A ,  R1,. . *, R J ,  
where A is a transitive infinite set and let Q be a nontrivial monotone 
quantifier on A and 

r = all positive Za(Q)-inductive relations on A .  

9.8. Let rp(2, S )  be an S-positive formula in Za(Q), let A? be a Q-admis- 
sible set such that A ,  R1, . . ., R, E A. Prove that the map 

5 -It, 
is Al(Q) on J", and in particular A is closed under this map. i 

9.9. Formulate and prove the X(Q)-Refection Principle for strongly 
-I Q-admissible sets, in the fashion of Theorem 9D.2. 

9.10. Prove that if A is strongly Q-admissible and A,  R 1 , .  . ., R ,  E A, 
then for every S-positive formula rp in P ( Q ) ,  IicpII d o(&) and every 
positive 9%(Q)-inductive relation on A is X,(Q) on 4. i 

9.11. Let (A, R )  be the companion of r. Prove that every Xl(Q; R )  

HINT: Let T C :  D ++ A be a Al(R) projection of 4 on A .  Prove that for 
relation on 4 is Xl(R). 

every Ao(Q; R) formula cp(xl, . . ., xn), the relation 

'P"(.Y~, . . ., Un) * Y I ,  * . .> U, E D & c ~ ( z ( Y ~ ) ,  * * *, ~ ( y n ) )  

on A is in r. -4 

9.12. Prove that if (A!, R) is the companion of r, then A is strongly 

HINT: Use Exercises 9.1 1 and 9.3. 4 
Q-admissible relative to R. 

9.13. Verify the version of 9E.2 for strong Q-admissibility. -I 

9.14. Prove Theorem 9F.3. 
HINT: Imitate the proof of 9F.2. 

The SusIin quantijier S is the dual of the classical operation d and has 
received some attention in the literature, see Enderton [ 19671 and especially 
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Aczel [1970], where inductive definability in the language Y(Q) on N is 
studied extensively. Relative to a fixed coding scheme on A ,  we put 

s = { x E A : {(Vs1)(Vs2) . . .}(3n)[(s1, . . ., S”) E XI} .  

It is immediate that this is a nontrivial monotone quantifier on A. 
We say that an admissible set A! has the /3 property or is p, if the relation of 

wellfoundedness is absolute for A. This means that for every binary relation 
< which is a member of d, if < is not wellfounded, then there is some z E A, 
z G Field(<), z # 0, such that z has no <-least element. 

We say that an admissible set A has the strong fl property or is strongly j?, 
if for every w E A[ and for every binary relation < E w,  if < is on A? 
and if < is not wellfounded, then there is some z e d { ,  z E Field(<), 
z # 8 such that z has no <-least element. This is simply expressed by the 
following schema in the second order language over A, where q(x, y )  
ranges over all C formulas : 

{(V4(YY)[Cp(x, I9 * x, Y E wl 
bk (3SH(3Y)S(Y) ( ~ Y > [ S ( Y >  => (WtS(x) 8L dx, Y>ll>> 

(34{(3Y)(Y E z> 6% ( W l Y  E z =$. (3x” E z )  6% d x ,  YIIJ}. 
I n  this formulation the strong fi property can be considered a repeetion 
principle. 

The next two results are due to P. Aczel for A = w. 

9.15. Let A be an admissible set, let A be a transitive infinite member of 
.A[ which admits a coding scheme that is A1 on A, let S be the Suslin quantifier 
on A relative to that coding scheme. Prove the following four propositions: 

(i) If .M is p, then Ji is S-admissible and every C,(S) relation on A’ is C1. 
( i i )  I f  A! is S-admissible and projectible on A by a Al(S) function, then 

(iii) If A is strongly /3, then A is strongly S-admissible. 
(iv) If ,K is strongly S-admissible and projectible on A by a Al(S) function, 

-I 

A‘ is p. 

then J‘L is strongly /3. 

9.14. In the notation of 9F.3 with Q = S, prove that BI+(S) is the smallest 
-I strongly p set which contains A ,  R,, . . ., R, as elements. 
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GALE, D. arid STEWART, F. M. [1953]: 56. 
Gale-Stewart Theorem 4A.l: 56. 
game 

definition of two person perfect informn- 

-closed: 56, 104, 106, 107, 131. 
-elementary open or closed: 104, 131. 
-finite: 130. 
-formulas: 143. 
- hyperelementary open or closed: 104, 

tion game: 53. 

130. 
-open: 4, 56, 103, 107, 130, 131. 
- quantificr, C : 70, 72, 77, 82, 93. 
-quantifiers: 142. 
CANDY, I<. 0.: 4. 
- [1950]: 103, 117. 
- [1962]: 205. 

Abstract Spector-Gandy Theorem 7D.2: 
117. 

BARWISE-CANDY-MOSCHOVAKIS [ 19711 : 

CANDY-KREISEL-TAIT ri96oi: 138. 140. 
3, 4, 132, 164, 201. 

- .  
generic sets: 162. 
G ~ D E L ,  K .  [1940]: 62. 
Good Parametrization Theorem 
-for a Spector claas I? 9C.7: 173. 
-for the self-dual class A of a Spector 

graph of a function: 17, 20. 
GRILLIOY, T. J.: 138. 

class 9C.8: 174. 

- [ I  9671 205. 

- [1972]: 140, 159, 160. 
- r19711: 3. 

Barwlze-Grilliot Theorem 8C.2: 140,159. 
groups: I ,  64. 

€%ENKIN, L. A,: 63. 
- [1961]: 54. 

hierarchy of hyperelementary sets: 7E, 157. 
Hierarchy Property for a Spector class 

9C.1: 171. 

hyperanalytic sets: 161. 
hyperarithmetical sets and relations: 3, 4, 

18, 27, 150. 
V-hyperarithmetical relations: 160. 

hyperelementary 
-functions: 17, 21, 46, 62, 101, 102. 
- open or closed games: 104, 130. 
- quasistrategies: 106, 107, 130, 131. 
-relations: 2. 17. 19. 20. 31-34. 37. 39. 41. 

43, 45, 47, 48, 62, 64, 65, 68, 70,13-75; 

129, 130, 135, 138, 139, 142, 144. 145, 
77-79, 95, 97, 98, 102, 116, 117, 7E, 

148, 160-163. 
-second order relations: 81, 85, 89, 91, 

92. 94. 96. 97. 
-substitution: 19, 89, 90. 
Hyperelementary Selection Theorem 3B.1: 

- second order 6C.5: 92. 
hyperprojective relations: 18. 

induction saturated structures: 64. 
inductive 
-in Q l , .  . ., Q m :  9, 11, 12, 16, 31. 
-in Q l ,  . . ., Qm, second order: 81, 83-87. 
- norm: 39, 45, 46, 51. 
- norm on a second order relation: 92, 96. 
- quasistrategies: 106. 
-relations: 2, 17, 19, 20, 24-26, 34, 37, 

40-48, 62, 64, 65, 67, 70, 73, 74, 75, 
77, 78, 101, 103, 104, 117, 130, 132, 
138,144,150,159,160,162,164,166. 

- second order relations: 79, 81, 82, 89-99, 
102, 132, 135, 138, 139. 

Inseparability Property for a Spector class 
9C.1: 171. 

Inseparability Theorem 5.3: 77. 
integers, see ari t hnietic. 
invariant definability: 130. 
Iteration Theorem: 151. 

KAPLANSKY, I. [1954]: 64. 
KECHRIS, A. S. [1972]: 135, 139. 
KEISLER, H. J. 

42. 

- [ I  9651 : 54, 63. 
- 119701: 49. 
- [1971j: 48. 
KLEENE, S. C.: 3, 27, 107, 132, 148, 150, 161, 

205. 
- [1944]: 3. 
- [1952]: 23, 151. 

- [1955b]: 3, 18, 150. 
- [1955~]: 3, 150. 

- [3959b]: 168, 205. 

- [1955a]: 3, 24, 132, 150. 

- [1959a]: 4, 97, 103, 122, 130. 

Abstract Kleene Theorem 8A.1: 132, 135, 

Suslin-Kleene Theorem 8E.1: 152,8E. 
150. 

KREISEL, G.: 121. 
- [19611: 103, 122, 130. 
- [1962]: 129.. 

Candy-Kreisel-Tait [1960]: 138, 140. 
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second order elementary relations 6C.8: 

second order hyperelementary relations, 

second order inductive relations 6C. 8: 94. 
second order A (hyperelementary) rela- 

second orderIIi relations 6C.8: 94. 
a Spector class I? 9C.7: 173. 
the self-dual class A of a Spector class 

relations on an admissible set 9D.6: 

94. 

substitute for 6C.11: 95-97. 

tions 8.3: 158. 

9C.8: 174. 

185, 206. 
parametrized class: 166. 
Perfect Set Theorem 8B.1: 136, 138. 
PLATEK, R. A. [1966]: 178, 205. 
positive 
- dependence on a relation argument: 84. 
-elementary operator: 9. 
- elementary rich class: 165, 166. 
- formulas: 8, 57. 
-inductive partial function: 101. 
- 2'-inductive relations: 49. 
- occurrence of a relation symbol: 8. 
-operators, inductive in Ql, . . ., Qm: 87. 
Positive Induction Completeness Theorem 

predicatively definable relations: 121. 
pretypes (in a language): 63. 
prewellordering: 34. 
Prewellordering Theorem 3A.3: 40, 51. 
- second order 6C.4: 92. 
primitive recursion: 21, 66, 76. 
projectible admissible sets: 185. 
projection of an admissible set: 185. 
projective relations: 18, 23. 
Q-admissible sets: 204-208. 

6B.4: 87. 

KRIPKE, S. A.: 179. 

KUNEN, K.: 27, 50, 159. 
KURATOWSKI, K. [1966]: 154. 

LACOMBE, D. : 160. 
languages 

first order: 8, 17. 
infinitary: 48-50, 143-148. 
second - ^ ^  order: 20, 79, 80, 100, 125-1 

- [1964]: 178. 

' 30, 
I J Y .  

with a generalized quantifier: 48-50. 
with the game quantifier G: 70, 72, 77, 

82, 93. 
length of a norm: 38. 
LEVY, A. [1965]: 178. 
LOWENHEIM, L. 

8D.3: 146. 
Skolem-Lowenheim Theorem for Z0,,c 

MANSFIELD, R. 119701: 135. 
MARTIN, D. A.: 154. 
monotone-9-inductive relations: 50. 
monotone operator: 6. 
Monotonicity Property of Positive Formulas 

lB.l: 9. 
MOSCHOVAKIS, Y. N. 

- [1969a]: 3, 4, 18, 78. 
- [1967]: 161, 205. 

- [1969b]: 3,4, 18, 27, 78, 103, 117. 
- ri969ci: 3.4.18.78.103.io8.121.122. 
- [1970]: 3,'4,'132. 150. 
- [1971a]: 3, 4. 
- [1971b]: 168. 

BARWISE-GANDY-MOSCHOVAKIS [1971]: 

CHANG-MOSCHOVAKIS [1970]: 159. 
MOSTOWSKI, A. [1951]: 18, 150. 

norm: 38, 39, 45, 46, 51, 52, 92, 166. 
I?-norm: 166. 

normed class: 166. 
Omitting Types Theorem: 138. 
open games: 4, 56, 104, 107, 130, 131. 
open relations: 56. 
operation 1: 207. 
Or&t(A a): 62. 
ordinal of a structure 91 ( K % ) :  31-37. 45- 

3, 4, 132, 164, 201. 

48, 52, 90, 91, 108, 109, '114, 115; 121, 
122, 125, 127, 129, 135, 142, 148, 158, 
201, 202, 206. 

ordinal structures X = (A, 9): 3, 19, 22, 
36, 37, 62, 67, 130, 149, 189, 202, 206. 

pair: 22, 36, 76. 
parameters of an induction: 10, 162. 
parametrization of a collection of sets: 74. 
Parametrization Theorem for 

elementary relations 5D.1: 74. 
hyperelementary relations 5D.4: 75. 
inductive relations 5D.2: 74. 
relatively hyperelementary relations 6C.9: 

95. 

quantifiers 
- G (game quantifier): 70. 72. 77. 82. 93. , . , , ,  
-game: 142. 
- restricted : 178. 
- unary monotone: 48-49, 203-208. 

quasistrategy: 105, 106, 107, 130, 131. 

ramified second order hierarchy : 127-1 29. 
rank 
-of a norm: 38. 
-of a wellfounded relation: 34. 
Rank Comparison Theorem 38.4: 44. 
-for a Spector class 9C.3: 172. 
rank function of a wellfounded relation: 34. 
recursion in higher types: 168, 205. 
recursion theorems: 87, 101, 151. 
Reduction Property for a Spector class 

9C.l: 171. 
Reduction Theorem 3A.4: 41. 
- second order: 92. 

reflection principles 

9D.2: 182. 
C-Reflection Principle for admissible sets 

C(Q)-Reflection Principle for strongly 
Q-admissible sets 9.9: 207. 
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relations, see also coinduciive; elementary; 

defined inductively by a monotone 

hypcr-9%-definable: 49. 
second order definable with range 3 and 

G,: 73. 
V-hyperarit hnictical : 160. 
hi:  3,20,90,150-152, 158, 159, 161, 162. 
Al(R, ,  . . ., RI): 180. 
A:-definable with basis 9: 120. 
ni: 3, 20, 24, 25, 51, 61, 90, 94, 103, 132, 

nl(R,, . . ., RI):  180. 
X i :  20, 103, 104, 130, 148, 158. 

Xi-definable with basis 9: 115. 
Xi-dcfinable with basis S a n d  parameters 

from 9: 121. 
Xi,-definable with range 9: 115. 

relativization: 79, 80. 
resolution of an admissible sct: 186. 
resolvable admissible sets: 186. 
resolvcnts of a set relative to a norm: 38. 
rcstricted quantifiers: 178. 
RICHTER, W. H. [1971]: 50. 

ROGERS, Fl., Jr. [1967]: 5. 

satisfaction predicate: 68, 94. 
saturated structures: 62-64. 
second order 
- arithmetic, see analysis. 
- Closure Theorem 8A.2: 135. 
- comprehension (theory): 139. 
-Covering Theorem 8.2: 158. 
-definable with range .F and parameters 

- Hyperelementary Selection Theorem 

-languages: 20, 79, 80, 100, 125-130, 

- Prewellordering Theorem 6C.4: 92. 
- Reduction Theorem: 92. 
- Separation Theorem: 92. 
-Transitivity Theorem 6B.1: 83. 
Second Recursion Theorem: 151. 
Second Stage Comparison Theorem 7C. 1 : 

- reiativized 7C.2: 114. 
section of a relation: 73. 
select ion theorems 

3B.1 : 42. 

Theorem 6C.5: 92. 

hyperelementary; inductive 

operator: 6. 

parameters from 9: 126, 127. 

150, 158, 159. 

X i ( R 1 , .  . ., R I ) :  180. 

ACZEL and RICHTER [I9721 
ACZEL and RICHTER [1973] 

from 9: 126, 127. 

6C.5: 92. 

139. 

109. 

Hyperelementary Selection Theorem 

second order Hyperelementary Selection 

A Selection Theorem 9C.2: 171. 
self-dual class: 171. 
scmihyperprojective relations: 3, 18, 78. 

Separation Property for the dual of a 

separation schemas 
Ao-Sep: 179. 
Ao(Q)-Sep: 204. 
A,-Sep 9D.1: 180. 

Separation Theorem 3A.5: 41. 
-second order: 92. 
set, see also relations 
-admissible, see admissible sets. 
- built up by a formula 9: 2, 9; see also 

fixed point of a structure. 
-built up by a monotone operator I?: 6. 
-constructible: 3, 19, 62, 179, 185. 
-transitive: 19, 91, 159, 164, 178, 179, 

SHOENFIELD, J. R. [1967]: 5, 151. 
signature: 94. 
simple existential formula: 25. 
simple universal formula: 25. 
Simultaneous Induction Lemma lC. l :  12. 
Skolem functions: 54, 146. 
Skolem-Lowenheim Theorem for S?P,,,G 

8D.3: 146. 
SPECTOR, C . :  3, 18, 27. 

- [1960]: 103, 117. 

Spector class 9C.1: 171. 

201, 202, 204, 206. 

- [I9553 27, 47. 

- 119611: 3, 18,24,25, 141,150, 160. 
Abstract Spector-Gandy Theorem 7D.2: 

117. 
Spector classes: 9A, 9B, 9C, 9E; 203, 

S-positive formulas: 8. 
Stage Comparison Theorem 2A.2: 28, 39, 

205, 206. 

110. 

Sneci -r - -  
205, 206. 

110. 

S-positive formulas: 8. 
Stage Comparison Theorem 2A.2: 28, 39, 

- Second 7C.1: 109. 
- second order 6C.1: 90. 
- Second (relativized) 7C.2: 114. 
stages of an induction: 27. 
STEWART, F. M. 

GALE and STEWART [1953]: 56. 
Gale-Stewart Theorem 4A.1: 56. 

strategy: 53, 56. 
strong p property: 205, 208. 
strong Ao(Q)-Collection schema: 204. 
strongly Q-admissible sets: 204. 
structure of analysis, R, see analysis. 
structure of arithmetic, N, see arithmetic. 
Substitution Theorem 6B.3: 85. 
SUSLIN, M. 

Suslin-Kleene Theorem 8E.l: 152, 58E. 
Suslin quantifier 5 :  77,207,208. 
Suslin Theorem: 154. 

TAIT, W. W. 
GANDY-KREISEL-TAIT [1960]: 138, 140. 

theory in 2;: 139, 140, 159. 
transitive closure of a set relative to a binary 

Transitivity Theorem lC.3: 16. 
- second order 6B.1: 83. 
trivial combinatorial functions: 165. 
types (over a structure): 62, 63. 

relation: 10. 
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Uniform Coverinrr Theorem 6C.10: 96. wellordered initial segment of a linear - 
universal induct& sets: 75. 
wellfounded relations: 21,33, 34,36,44, 51, 

52, 79, 81, 91, 101, 103, 104, 115, 130, 
142, 145, 148, 158, 172, 178, 182, 183, 

ordering: 11. 

131. 
winning quasistrategy: 105, 106, 107, 130, 

winning strategy: 53, 56. 
184 

wellf&nded trees: 187. x-section of a set: 73. 
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A + :  6. 
I$,  I,, I:<: 6, 7. 

9'4: 8. 
=: 8. 

N: 18. 
E4: 18. 
A: 19. 

TI!, Zt, A:: 20, 159. 

Seq(x): 22, 65. 
Ih(x): 22, 66. 
( x ) ~ :  22, 66. 
G ( t ) :  24. 
I&,: 27. 
<:,+, <:,*: 28, 90. 
IIqll: 30, 91. 

iirii: 7. 

I$ I;{ ,  I @ :  9. 

s?:, 9:: 20. 

<XI,. . ., xn>: 22, 65-66. 

K(A, Ql, . . ., Qm), K?': 31 
p<(%): 34. 
A('): 37. 
w1: 37. 
P:: 38. 
<:, <,*: 39, 92. 

- 
Q": 55. 
G :  70. 
G': 70. 
G: 73. 
S: 77, 207. 
PI*: 78. 

WS"(X): 79, 103. 
@y), I:'(?), I,+,(?): 80. 
45, 4:{, 4,: 80. 
12, ylV: 90. 
H i , $ ,  Bid: 108. 

A(%): 121. 
9t: 121. 
22): 126. 

%@yPI): 79,97. 

H;,$(E W ) ,  R;,&( r, W): 114. 

3AP, VAP: 164. 
l r :  166. 
I?-norm: 166. 
o(A): 172. 
B#: 176. 
B is r on A :  176. 

p property: 205, 208. 
I p ' :  181. 
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