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Preface to Second Edition

OVERVIEW

The irst edition of Statistical Intervals was published twenty-ive years ago. We believe the
book successfully met its goal of providing a comprehensive overview of statistical intervals
for practitioners and statisticians and we have received much positive feedback. Despite, and
perhaps because of this, there were compelling reasons for a second edition. In developing this
second edition, Bill Meeker and Gerry Hahn have been most fortunate to have a highly qualiied
colleague, Luis Escobar, join them.

The new edition aims to:

� Improve or expand on various previously presented statistical intervals, using methods
developed since the irst edition was published.

� Provide general methods for constructing statistical intervals—some of which have
recently been developed or reined—for important situations beyond those previously
considered.

� Provide a webpage that gives up-to-date information about available software for calcu-
lating statistical intervals, as well as other important up-to-date information.

� Provide, via technical appendices, some of the theory underlying the intervals presented
in this book.

In addition to updating the original chapters, this new edition includes new chapters on

� Likelihood-based statistical intervals (Chapter 12).

� Nonparametric bootstrap statistical intervals (Chapter 13).

� Parametric bootstrap and other simulation-based statistical intervals (Chapter 14).

� An introduction to Bayesian statistical intervals (Chapter 15).

xxv
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� Bayesian statistical intervals for the binomial, Poisson, and normal distributions (Chap-
ter 16).

� Statistical intervals for Bayesian hierarchical models (Chapter 17).

The new edition also includes an additional chapter on advanced case studies (Chapter 18).
This chapter further illustrates the use of the newly introduced more advanced general
methods for constructing statistical intervals. In totality, well over half of this second edi-
tion is new material—an indication of how much has changed over the past twenty-ive
years.

The irst edition tended to focus on simple methods for constructing statistical intervals
in commonly encountered situations and relied heavily on tabulations, charts, and simple
formulas. The new edition adds methodology that can be readily implemented using easy-to-
access software and allows more complicated problems to be addressed.

The purpose and audience for the book, however, remain essentially the same and what we
said in the preface to the irst edition (see below) still holds. We expect the book to continue
to appeal to practitioners and statisticians who need to apply statistical intervals and hope that
this appeal will be enhanced by the addition of the new and updated material. In addition, we
expect the new edition to have added attraction to those interested in the theory underlying the
construction of statistical intervals. With this in mind, we have extended the book title to read
Statistical Intervals: A Guide for Practitioners and Researchers.

We have added many new applications to illustrate the use of the methods that we present.
As in the irst edition, all of these applications are based on real data. In some of these,
however, we have changed the names of the variables or the scale of the data to protect sensitive
information.

Elaboration on New Methods

Chapters 3 and 4 continue to describe (and update) familiar classical statistical methods for
conidence intervals, tolerance intervals, and prediction intervals for situations in which one
has a simple random sample from an underlying population or process that can be adequately
described by a normal distribution. The interval procedures in these chapters have the desirable
property of being “exact”—their coverage probabilities (i.e., the probability that the interval
constructed using the procedure will include the quantity it was designed to include) are equal
to their nominal conidence levels.

For distributions other than the normal, however, we must often resort to the use of approx-
imate procedures for setting statistical intervals. Such procedures have coverage probabilities
that usually differ from their (desired or speciied) nominal conidence levels. Seven new chap-
ters (Chapters 12–18) describe and illustrate the use of procedures for constructing intervals that
are usually approximate. These procedures also have applicability for constructing statistical
intervals in more complicated situations involving, for example, nonlinear regression models,
random-effects models, and censored, truncated, or correlated data, building on the signiicant
recent research in these areas. At the time of the irst edition, such advanced methods were not
widely used because they were not well known, and tended to be computationally intensive for
the then available computing capabilities. Also, their statistical properties had not been studied
carefully. Therefore, we provided only a brief overview of such methods in Chapter 12 of the
irst edition. Today, such methods are considered state of the art and readily achievable com-
putationally. The new methods generally provide coverage probabilities that are closer to the
nominal conidence level than the computationally simple Wald-approximation (also known
as normal-approximate) methods that are still commonly used today to calculate statistical
intervals in some popular statistical computing packages.
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Other major changes in the new edition include updates to Chapters 5–7:

� Chapter 5 (on distribution-free statistical intervals) includes recently developed methods
for interpolation between order statistics to provide interval coverage probabilities that
are closer to the nominal conidence level.

� Chapters 6 and 7 (on statistical intervals for the binomial and Poisson distributions,
respectively) now include approximate procedures with improved coverage probability
properties for constructing statistical intervals for discrete distributions.

In addition, we have updated the discussion in the original chapters in numerous places. For
example, Chapter 1 now includes a section on statistical intervals and big data.

New Technical Appendices

Some readers of the irst edition indicated that they would like to see the theory, or at least more
technical justiication, for the statistical interval procedures. In response, we added a series
of technical appendices that provide details of the theory upon which most of the intervals
are based and how their statistical properties can be computed. These appendices also provide
readers additional knowledge useful in generalizing the methods and adapting them to situations
not covered in this book. We maintain, however, our practitioner-oriented focus by placing such
technical material into appendices.

The new appendices provide:

� Generic deinitions of statistical intervals and development of formulas for computing
coverage probabilities (Appendix B).

� Properties of probability distributions that are important in data analysis applications or
useful in constructing statistical intervals (Appendix C).

� Some generally applicable results from statistical theory and their use in constructing sta-
tistical intervals, including an outline of the general maximum likelihood theory concepts
used in Chapter 12 and elsewhere (Appendix D).

� An outline of the theory for constructing statistical intervals for parametric distributions
based on pivotal quantities used in Chapters 3, 4, and 14 (Appendix E).

� An outline of the theory for constructing statistical intervals for parametric distributions
based on generalized pivotal quantities used in Chapter 14 (Appendix F).

� An outline of the theory for constructing distribution-free intervals based on order statis-
tics, as presented in Chapter 5 (Appendix G).

� Some basic results underlying the construction of the Bayesian intervals used in Chap-
ters 15, 16, and 17 (Appendix H).

� Derivation of formulas to compute the probability of successfully passing a (product)
demonstration test based on statistical intervals described in Chapter 9 (Appendix I).

Similar to the irst edition, Appendices A and J of the new edition provide, respectively, a sum-
mary of notation and acronyms and important tabulations for constructing statistical intervals.

Computer Software

Many commercial statistical software products (e.g., JMP,MINITAB, SAS, and SPSS) compute
statistical intervals. New versions of these packages with improved capabilities for constructing
statistical intervals, such as those discussed in this book, are released periodically. Therefore,
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instead of directly discussing current features of popular software packages—which might
become rapidly outdated—we provide this information in an Excel spreadsheet accessible from
the book’s webpage and plan to update this webpage to keep it current.

In many parts of this book we show how to use the open-source R system (http://www.r-
project.org/) as a sophisticated calculator to compute statistical intervals. To supplement the
capabilities in R, we have developed an R package StatInt that contains some additional
functions that are useful for computing statistical intervals. This package, together with its
documentation, can be downloaded (for free) from this book’s webpage.

More on Book’s Webpage

The webpage for this book, created by Wiley, can be found at www.wiley.com/go/meeker/
intervals. In addition to the link to the StatInt R package and the Excel spreadsheet on current
statistical interval capabilities of popular software, this webpage provides some tables and
igures from the irst edition that are omitted in the current edition, as well as some additional
igures and tables, for inding statistical intervals.

We plan to update this webpage periodically by adding newmaterials and references, (numer-
ous, we hope) reader comments and experiences, and (few, we hope) corrections.

Summary of Changes from First Edition

Principally for readers of the irst edition, we summarize below the changes we have made in
the new edition. Chapters 1–10 maintain the general structure of the irst edition, but, as we have
indicated, include some important updates, and minor changes in the notation, organization, and
presentation. Also, new Chapter 11 is an update of old Chapter 13. To complement Chapter 11,
we have added the new Chapter 18 which provides advanced case studies that require use of
the methods presented in the new chapters. First edition Chapters 11 (“A Review of Other
Statistical Intervals”) and 12 (“Other Methods for Setting Statistical Intervals”) have been
omitted in the new edition. The old Chapter 12 is largely superseded and expanded upon by
the new Chapters 12–18. Our previous comments in the old Section 11.1 (on simultaneous
statistical intervals) now appear, in revised form, in Section 2.9. Some material from the old
Sections 11.4 (“Statistical Intervals for Linear Regression Analysis”) and 11.5 (“Statistical
Intervals for Comparing Populations and Processes”) is now covered in the new Sections 4.13
and 4.14, respectively. Most remaining material in the old Chapter 11 has been excluded in
the new edition because the situations discussed can generally be better addressed from both a
statistical and computational perspective by using the general methods in the new chapters. To
make room for the added topics, we have dropped from the earlier edition various tables that
are now, for the most part, obsolete, given the readily available computer programs to construct
statistical intervals. We do, however, retain those tables and charts that continue to be useful and
that make it easy to compute statistical intervals without computer software. In addition, the
webpage provides some tabulations that were in the irst edition, but not in this edition. We also
omit Appendix C of the irst edition (“Listing of Computer Subroutines for Distribution-Free
Statistical Intervals”). This material has been superseded by the methods described in Chapter 5.

Happy reading!
William Q. Meeker

Gerald J. Hahn
Luis A. Escobar

June 15, 2016

http://www.r-project.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.wiley.com/go/meeker/intervals
http://www.wiley.com/go/meeker/intervals


Preface to First Edition

Engineers, managers, scientists, and others often need to draw conclusions from scanty data.
For example, based upon the results of a limited sample, one might need to decide whether a
product is ready for release to manufacturing, to determine how reliable a space system really
is, or to assess the impact of an alleged environmental hazard. Sample data provide uncertain
results about the population or process of interest. Statistical intervals quantify this uncertainty
by what is referred to, in public opinion polls, as “the margin of error.” In this book, we show
how to compute such intervals, demonstrate their practical applications, and clearly state the
assumptions that one makes in their use. We go far beyond the discussion in current texts and
provide a wide arsenal of tools that we have found useful in practical applications.

We show in the irst chapter that an essential initial step is to assure that statistical methods
are applicable. This requires the assumption that the data can be regarded as a random sample
from the population or process of interest. In evaluating a new product, this might necessitate
an evaluation of how and when the sample units were built, the environment in which they were
tested, the way they were measured—and how these relate to the product or process of interest.
If the desired assurance is not forthcoming, the methods of this book might provide merely a
lower bound on the total uncertainty, relecting only the sampling variability. Sometimes, our
formal or informal evaluations lead us to conclude that the best way to proceed is to obtain
added or improved data through a carefully planned investigation.

Next, we must deine the speciic information desired about the population or process of
interest. For example, we might wish to determine the percentage of nonconforming product,
the mean, or the 10th percentile, of the distribution of mechanical strength for an alloy, or the
maximum noise that a customer may expect for a future order of aircraft engines.

We usually do not have unlimited data but need to extract the maximum information from
a small sample. A single calculated value, such as the observed percentage of nonconforming
units, can then be regarded as a “point estimate” that provides a best guess of the true percentage
of nonconforming units for the sampled process or population. However, we need to quantify
the uncertainty associated with such a point estimate. This can be accomplished by a statistical
interval. For example, in determining whether a product design is adequate, our calculations
might show that we can be “reasonably conident” that if we continue to build, use, and measure

xxix
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the product in the same way as in the sample, the long-run percentage of nonconforming units
will be between 0.43 and 1.57%. Thus, if our goal is a product with a percentage nonconforming
of 0.10% or less, the calculated interval is telling us that additional improvement is needed—
since even an optimistic estimate of the nonconforming product for the sampled population
or process is 0.43%. On the other hand, should we be willing to accept, at least at irst, 2%
nonconforming product, then initial product release might be justiied (presumably, in parallel
with continued product improvement), since this value exceeds our most pessimistic estimate
of 1.57%. Finally, if our goal had been to have less than 1% nonconforming product, our results
are inconclusive and suggest the need for additional data.

Occasionally, when the available sample is huge (or the variability is small), statistical
uncertainty is relatively unimportant. This would be the case, for example, if our calculations
show that the proportion nonconforming units for the sampled population or process is between
0.43 and 0.45%. More frequently, we have very limited data and obtain a relatively “huge”
statistical interval, e.g., 0.43 to 37.2%. Even in these two extreme situations, the statistical
interval is useful. In the irst case, it tells us that, if the underlying assumptions are met, the
data are suficient for most practical needs. In the second case, it indicates that unless more
precise methods for analysis can be found, the data at hand provide very little meaningful
information.

In each of these examples, quantifying the uncertainty due to random sampling is likely to
be substantially more informative to decision makers than obtaining a point estimate alone.
Thus, statistical intervals, properly calculated from the sample data, are often of paramount
interest to practitioners and their management (and are usually a great deal more meaningful
than statistical signiicance or hypothesis tests).

Different practical problems call for different types of intervals. To assure useful conclusions,
it is imperative that the statistical interval be appropriate for the problem at hand. Those who
have taken one or two statistics courses are aware of conidence intervals to contain, say, the
mean and the standard deviation of a sampled population or a population proportion. Some
practitioners may also have been exposed to conidence and prediction intervals for regression
models. These, however, are only a few of the statistical intervals required in practice. We
have found that analysts are apt to use the type of interval that they are most familiar with—
irrespective of whether or not it is appropriate. This can result in the right answer to the wrong
question. Thus, we differentiate, at an elementary level, among the different kinds of statistical
intervals and provide a detailed exposition, with numerous examples, on how to construct such
intervals from sample data. In fact, this book is unique in providing a discussion in one single
place not only of the “standard” intervals but also of such practically important intervals as
conidence intervals to contain a population percentile, conidence intervals on the probability
of meeting a speciied threshold value, and prediction intervals to include the observations in a
future sample.

Many of these important intervals are ignored in standard texts. This, we believe, is partly out
of tradition; in part, because the underlying development (as opposed to the actual application)
may require advanced theory; and, in part, because the calculations to obtain such intervals can
be quite complex.We do not feel restricted by the fact that the methods are based upon advanced
mathematical theory. Practitioners should be able to use a method without knowing the theory,
as long as they fully understand the assumptions. (After all, one does not need to know what
makes a car work to be a good driver.) Finally, we get around the problem of calculational
complexity by providing comprehensive tabulations, charts, and computer routines, some of
which were specially developed, and all of which are easy to use.

This book is aimed at practitioners in various ields who need to draw conclusions from
sample data. The emphasis is on, and many of the examples deal with, situations that we have
encountered in industry (although we sometimes disguise the problem to protect the innocent).
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Those involved in product development and quality assurance will, thus, ind this book to be
especially pertinent. However, we believe that workers in numerous other ields, from the health
sciences to the social sciences, as well as teachers of courses in introductory statistics, and their
students, can also beneit from this book.

We do not try to provide the underlying theory for the intervals presented. However, we give
ample references to allow those who are interested to go further. We, obviously, cannot discuss
statistical intervals for all possible situations. Instead, we try to cover those intervals, at least for
a single population, that we have found most useful. In addition, we provide an introduction,
and references to, other intervals that we do not discuss in detail.

It is assumed that the reader has had an introductory course in statistics or has the equivalent
knowledge. No further statistical background is necessary. At the same time, we believe that
the subject matter is suficiently novel and important, tieing together work previously scattered
throughout the statistical literature, that those with advanced training, including professional
statisticians, will also ind this book helpful. Since we provide a comprehensive compilation of
intervals, tabulations, and charts not found in any single place elsewhere, this book will also
serve as a useful reference. Finally, the book may be used to supplement courses on the theory
and applications of statistical inference.

Further introductory comments concerning statistical intervals are provided in Chapter 1. As
previously indicated, this chapter also includes a detailed discussion of the practical assumptions
required in the use of the intervals, and, in general, lays the foundation for the rest of the book.
Chapter 2 gives a more detailed general description of different types of conidence intervals,
prediction intervals, and tolerance intervals and their applications. Chapters 3 and 4 describe
simple tabulations and other methods for calculating statistical intervals. These are based on the
assumption of a normal distribution. Chapter 5 deals with distribution-free intervals. Chapters 6
and 7 provide methods for calculating statistical intervals for proportions and percentages, and
for occurrence rates, respectively. Chapters 8, 9, and 10 deal with sample size requirements for
various statistical intervals.

Statistical intervals for many other distributions and other situations, such as regression
analysis and the comparison of populations, are briely considered in Chapter 11. This chapter
also gives references that provide further information, including technical details and examples
of more complex intervals. Chapter 12 outlines other general methods for computing statistical
intervals. These include methods that use large sample statistical theory and ones based on
Bayesian concepts. Chapter 13 presents a series of case studies involving the calculation of
statistical intervals; practical considerations receive special emphasis.

Appendix A gives extensive tables for calculating statistical intervals. The notation used in
this book is summarized in Appendix B. Listings of some computer routines for calculating
statistical intervals are provided in Appendix C.

We present graphs and tables for computing numerous statistical intervals and bounds. The
graphs, especially, also provide insight into the effect of sample size on the length of an interval
or bound.

Most of the procedures presented in this book can be applied easily by using igures or
tables. Some require simple calculations, which can be performed with a hand calculator.
When tables covering the desired range are not available (for some procedures, the tabulation
of the complete range of practical values is too lengthy to provide here), factors may be
available from alternative sources given in our references. However, often a better alternative
is to have a computer program to calculate the necessary factors or the interval itself. We
provide some such programs in Appendix C. It would, in fact, be desirable to have a computer
program that calculates all the intervals presented in this book. One could develop such a
program from the formulas given here. This might use available subroutine libraries [such as
IMSL (1987) and NAG (1988)] or programs like those given in Appendix C, other algorithms
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published in the literature [see, e.g., Grifiths and Hill (1985), Kennedy and Gentle (1980),
P. Nelson (1985), Posten (1982), and Thisted (1988)], or available from published libraries
[e.g., NETLIB, described by Dongarra and Grosse (1985)]. A program of this type, called
STINT (for STatistical INTervals), is being developed by W. Meeker; an initial version is
available.

Gerald J. Hahn
William Q. Meeker
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Chapter 1
Introduction, Basic Concepts,

and Assumptions

OBJECTIVES AND OVERVIEW

This chapter provides the foundation for our discussion throughout the book. Its emphasis is on
basic concepts and assumptions. The topics discussed in this chapter are:

� The concept of statistical inference (Section 1.1).

� An overview of different types of statistical intervals: conidence intervals, tolerance
intervals, and prediction intervals (Section 1.2).

� The assumption of sample data (Section 1.3) and the central role of practical assumptions
about the data being “representative” (Section 1.4).

� The need to differentiate between enumerative and analytic studies (Section 1.5).

� Basic assumptions for inferences from enumerative studies, including a brief description
of different random sampling schemes (Section 1.6).

� Considerations in conducting analytic studies (Section 1.7).

� Convenience and judgment samples (Section 1.8).

� Sampling people (Section 1.9).

� The assumption of sampling from an ininite population (Section 1.10).

� More on practical assumptions (Sections 1.11 and 1.12).

� Planning the study (Section 1.13).

� The role of statistical distributions (Section 1.14).

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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2 INTRODUCTION, BASIC CONCEPTS, AND ASSUMPTIONS

� The interpretation of a statistical interval (Section 1.15).

� The relevance of statistical intervals in the era of big data (Section 1.16).

� Comment concerning the subsequent discussion in this book (Section 1.17).

1.1 STATISTICAL INFERENCE

Decisions frequently have to be made from limited sample data. For example:

� A television network uses the results of a sample of 1,000 households to determine
advertising rates or to decide whether or not to continue a show.

� A company uses data from a sample of ive turbines to arrive at a guaranteed eficiency
for a further turbine to be delivered to a customer.

� A manufacturer uses tensile strength and other measurements obtained from a laboratory
test on ten samples of each of two types of material to select one of the two materials for
use in future production.

The sample data are often summarized by statements such as:

� 293 out of the 1,000 sampled households were tuned to the show.

� The mean eficiency for the sample of ive turbines was 67.4%.

� The samples using material A had a mean tensile strength 3.2 units larger than those using
material B.

The preceding “point estimates” provide a concise summary of the sample results, but they
give no information about their precision. Thus, there may be big differences between such
point estimates, calculated from the sample data and what one would obtain if unlimited data
were available. For example, 67.4% would seem a reasonable estimate (or prediction) of the
eficiency of the next turbine. But how “good” is this estimate? By noting the variation in the
observed eficiencies of the ive turbines, we know that it is unlikely that the turbine to be
delivered to the customer will have an eficiency of exactly 67.4%. We may, however, expect its
eficiency to be “close to” 67.4%. But how close? Can we be reasonably conident that it will
be within ±0.1% of the point estimate 67.4%? Or within ±1%? Or within ±10%? We need
to quantify the uncertainty associated with our estimate or prediction. An understanding of this
uncertainty is an important input for decision making, for example, in providing a warranty on
product performance. Moreover, if our knowledge, as relected by the width of the uncertainty
interval, is too imprecise, we may wish to obtain more data before making an important
decision.

The example suggests quantifying uncertainty by constructing statistical intervals around the
point estimate. This book shows how to obtain such intervals. We describe frequently needed,
but not necessarily well-known, statistical intervals calculated from sample data, differentiate
among the various types of intervals, and show their applications. Methods for obtaining each of
the intervals are presented and their use is illustrated. We also show how to choose the sample
size so as to attain a desired degree of precision, as measured by the width of the resulting
statistical interval. Thus, this book provides a comprehensive guide and reference to the use of
statistical intervals to quantify the uncertainty in the information about a sampled population or
process, based upon a possibly small, but randomly selected sample. The concept of a random
sample is discussed further in Section 1.6.3.
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1.2 DIFFERENT TYPES OF STATISTICAL INTERVALS: AN OVERVIEW

Various types of statistical intervals may be calculated from sample data. The appropriate
interval depends upon the speciic application. Frequently used intervals are:

� A conidence interval to contain an unknown characteristic of the sampled population or
process. The quantity of interest might be a population property or “parameter,” such as
the mean or standard deviation of the population or process. Alternatively, interest might
center on someother property of the sampled population, such as a quantile or a probability.
Thus, depending upon the question of interest, one might compute a conidence interval
that one can claim, with a speciied high degree of conidence, contains (1) the mean
tensile strength, (2) the standard deviation of the distribution of tensile strengths, (3) the
0.10 quantile of the tensile strength distribution, or (4) the proportion of specimens that
exceed a stated threshold tensile strength value.

� A statistical tolerance interval to contain a speciied proportion of the units from the
sampled population or process. For example, based upon a random sample of tensile
strength measurements, we might wish to compute an interval to contain, with a speciied
degree of conidence, the tensile strengths of at least a proportion 0.90 of the units from
the sampled population or process. Hereafter we will generally simply refer to such an
interval as a “tolerance interval.”

� A prediction interval to contain one or more future observations, or some function of such
future observations, from a previously sampled population or process. For example, based
upon a random sample of tensile strength measurements, we might wish to construct an
interval to contain, with a speciied degree of conidence, (1) the tensile strength of a
randomly selected single future unit from the sampled process (this was of interest in the
turbine eficiency example), (2) the tensile strengths for all of ive future units, or (3) the
mean tensile strength of ive future units.

Most users of statistical methods are familiar with (the common) conidence intervals for the
populationmean and for the population standard deviation, but often not for population quantiles
or the probability of exceeding a speciied threshold value. Some, especially in industry, are also
aware of tolerance intervals. Despite their practical importance, however, most practitioners, and
even many professional statisticians, know very little about prediction intervals except, perhaps,
for their application to regression problems. A frequent mistake is to calculate a conidence
interval to contain the population mean when the problem requires a tolerance interval or a
prediction interval. At other times, a tolerance interval is used when a prediction interval is
needed. Such confusion is understandable, because statistics textbooks typically focus on the
common conidence intervals, occasionally make reference to tolerance intervals, and consider
prediction intervals only in the context of regression analysis. This is unfortunate because in
applications, tolerance intervals, prediction intervals, and conidence intervals on distribution
quantiles and on exceedance probabilities are needed almost as frequently as the better-known
conidence intervals.Moreover, the calculations for such intervals are generally nomore dificult
than those for conidence intervals.

1.3 THE ASSUMPTION OF SAMPLE DATA

In this book we are concerned only with situations in which uncertainty is present because the
available data are from a random sample (often small) from a population or process. There
are, of course, some situations for which there is little or no such statistical uncertainty. This is
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the case when the relevant information on every unit in a inite population has been recorded
without measurement error, or when the sample size is so large that the uncertainty in our
estimates due to sampling variability is negligible (as we shall see, how large is “large” depends
on the speciic application). Examples of situations in which one is generally dealing with the
entire population are:

� The given data are census information that have been obtained from all residents in a
particular city (at least to the extent that the residents could be located and are willing to
participate in the study).

� There has been 100% inspection (i.e., all units are measured) of a performance property
for a critical component used in a spacecraft.

� A complete inventory of all the parts in a warehouse has been taken.

� A customer has received a one-time order of ive parts and has measured each of these
parts. Even though the parts are a random sample from a larger population or process, as
far as the customer is concerned the ive parts make up the entire population of interest.

Even in such situations, intervals to express uncertainty are sometimes needed. Suppose, for
example, that based upon extensive data, we know that the weight of a product is approximately
normally distributed with a mean of 16.10 ounces and a standard deviation of 0.06 ounces. We
wish an interval to contain the weight of a single unit randomly selected by a customer, or by
a regulatory agency. The calculation of the resulting probability interval is described in books
on elementary probability and statistics. Such intervals generally assume complete knowledge
about the population (e.g., the mean and standard deviation of a normal distribution). In this
book, we are concerned with the more complicated problem where, for example, the population
mean and standard deviation are not known but are estimated, subject to sampling variability.
In particular, tolerance intervals and prediction intervals converge to probability intervals as the
sample size increases. On the other hand, because there is no statistical uncertainty remaining,
the width of conidence intervals converges to zero with increasing sample size.

Statistical uncertainty also exists, even though the entire population has been evaluated,
when the readings are subject to measurement error. For example, one might determine that in
measuring a particular property, 971 out of 983 parts in a production lot are found to be within
speciication limits. Due to measurement error, however, the actual number of parts within
speciications may not exactly equal 971. Moreover, if something is known about the statistical
distribution of measurement error, one can then also quantify the uncertainty associated with
the estimated number of parts within speciications (e.g., Hahn, 1982).

Finally, we note that even when there is no quantiiable statistical uncertainty, there may still
be other uncertainties of the type suggested in the discussion to follow.

1.4 THE CENTRAL ROLE OF PRACTICAL ASSUMPTIONS CONCERNING
REPRESENTATIVE DATA

We have briely described different statistical intervals that a practitioner might use to express
the uncertainty in various estimates or predictions generated from sample data. This book
presents the methodology for calculating such intervals. Before proceeding, we need to make
clear the major practical assumptions dealing with the “representativeness” of the sample data.
We do this in the following sections. Departures from these implicit assumptions are common in
practice and can invalidate any statistical analyses. Ignoring such assumptions can lead to a false
sense of security, which, in many applications, is the weakest link in the inference process. Thus,
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for example, product engineers need to question the assumption that the performance observed
on prototype units produced in the lab also applies for production units, to be built much later,
in the factory. Similarly, a reliability engineer should question the assumption that the results
of a laboratory life test will adequately predict ield failure rates. In fact, in some studies, the
assumptions required for the statistical interval to apply may be so far off the mark that it would
be inappropriate, and perhaps even misleading, to use the formal methods presented here.

In the best of situations, one can rely on physical understanding, or information from outside
the study, to justify the practical assumptions. Such evaluations, however, are principally the
responsibility of the subject-matter expert. Often, the assessment of such assumptions is far
from clear-cut. In any case, one should keep in mind that the intervals described in this book
relect only the statistical uncertainty due to limited data. In practice, the actual uncertainty
will be larger because the generally unquantiiable deviations of the practical assumptions
from reality provide an added unknown element of uncertainty beyond that quantiied by the
statistical interval. If there were formal methods to relect this further uncertainty (occasionally
there are, but often there are not), the resulting interval, expressing the total uncertainty, would
be wider than the statistical interval alone. This observation suggests a rationale for calculating
a statistical interval for situations where the basic assumptions are questionable. If it turns
out that the calculated statistical interval is wide, we then know that our estimates have much
uncertainty—even if the assumptions were all correct. A narrow statistical interval would, on
the other hand, imply a small degree of uncertainty only if the required assumptions hold.

Because of their importance, we feel it appropriate to review, in some detail, the assumptions
and limitations underlying the use and interpretation of statistical intervals before proceeding
with the technical details of how to calculate such intervals.

1.5 ENUMERATIVE VERSUS ANALYTIC STUDIES

Deming (1953, 1975, 1986) emphasizes the important differences between “enumerative” and
“analytic” studies (a concept that he briely introduced earlier in Deming, 1950). Despite its
central role in making inferences from the sample data, many traditional textbooks in statistics
have been slow in giving this distinction the attention that it deserves.

To point out the differences between these two types of studies, and some related consider-
ations, we return to the examples of Section 1.1. The statements there summarize the sample
data. In general, however, investigators are concerned with making inferences or predictions
beyond the sample data. Thus, in these examples, the real interest was, not in the sample data
per se, but in:

1. The proportion of households in the entire country that were tuned to the show.

2. The eficiency of the, as yet not manufactured, turbine to be sent to the customer.

3. A comparison of the mean tensile strengths of the production units to be built in the
factory some time in the future using material A and material B.

In the irst example, our interest centers on a inite identiiable unchanging collection of
units, or population, from which the sample was drawn. This population, consisting of all the
households in the country with access to the show, exists at the time of sampling. Deming uses
the term “enumerative study” to describe such situations. More speciically, Deming (1975,
page 147), deines an enumerative study as one in which “action will be taken on the material
in the frame studied,” where he uses the conventional deinition of a frame as “an aggregate
of identiiable units of some kind, any or all of which may be selected and investigated. The
frame may be lists of people, areas, establishments, materials, or other identiiable units that
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would yield useful results if the whole content were investigated.” Thus, the frame provides a
inite list, or other identiication, of distinct (non-overlapping) and exhaustive sampling units.
The frame deines the population to be sampled in an enumerative study.

Some further examples of enumerative studies are:

� Public opinion polls to assess the current view on some speciied topic(s) of the entire
US adult population, or some deined segment thereof, such as all registered voters in a
speciied locality.

� Sample audits to assess the correctness of last month’s bills and to estimate the total error
in such bills. In this case, the population of interest consists of all of last month’s bills.

� Product acceptance sampling to decide on the disposition of a particular production lot.
In this case, the population of interest consists of all units in the production lot being
sampled.

In an enumerative study, the correctness of statistical inferences requires a random sample
from the frame. Such a sample, is, at least in theory, generally attainable; see Section 1.6.

In contrast, the second two examples of Section 1.1 (dealing, respectively, with the eficiency
of a future turbine and the comparison of twomaterials) illustrate what Deming (1975, page 147)
calls “analytic studies.” We no longer have an existing, inite, well-deined, unchanging popula-
tion. Instead, we want to take action to improve or make predictions about the output of a, some-
times hypothetical, future process based upon data from an existing (likely different) process.

Speciically, Deming (1975) deines an analytic study as one “in which action will be taken
on the process or cause-system . . . the aim being to improve practice in the future . . . . Interest
centers in future product, not in the materials studied.” He cites as examples “tests of varieties
of wheat, comparison of machines, comparisons of ways to advertise a product or service,
comparison of drugs, action on an industrial process (change in speed, change in temperature,
change in ingredients).” We may wish to use data from an existing process to predict the
characteristics of future output from the same or a similar process. Thus, in a prototype study
of a new product, interest centers on the process that will manufacture the product in the future.

These examples are representative ofmany encountered in practice, especially in engineering,
medical, and other scientiic investigations. In fact, the great majority of applications that we
have encountered in practice involve analytical, rather than enumerative studies. It is, moreover,
inherently more complicated to draw inferences from analytic studies than from enumerative
studies because analytic studies require the critical (and often unveriiable) added assumption
that the process about which one wishes to make inferences is statistically identical to that from
which the sample was selected.

1.5.1 Differentiating between Enumerative and Analytic Studies

What one wishes to do with the results of the study is often a major differentiator between an
enumerative and an analytic study. Thus, if one’s interest is limited to describing an existing
population, one is dealing with an enumerative study. On the other hand, if one is concerned
with a process that is to be improved, or is otherwise subject to change, perhaps as a result of
the study, then one is clearly dealing with an analytic study.

Deming (1975) presents a “simple criterion to distinguish between enumerative and analytic
studies. A 100% sample of the frame answers the question posed for an enumerative study,
subject of course to the limitations of themethod of investigation. In contrast, a 100% sample . . .
is still inconclusive in an analytic problem.” This is because for an analytic study our real
interest is in a process that will be operating in the future. Deming’s rule can be useful when
the differentiation between an analytic and an enumerative study does not seem clear-cut. For
example, an “exit poll” to estimate the proportion of voters who have voted (or, at least, assert
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that they have voted) for a particular candidate, based upon a random sample of individuals
leaving the polling booth, is an example of an enumerative study. In this case, a 100% sample
provides perfect information (assuming 100% correct responses). In contrast, estimating, before
the election, the proportion of voters who will actually go to the polls and vote for the candidate
involves an analytic study, because it deals with a future process. Thus, between the time of
the survey and election day, some voters may change their minds, perhaps as a result of some
important external event—or even as a consequence of action taken by one or more of the
candidates based upon information obtained in the study. Also, extraneous factors, such as
adverse weather conditions on election day (not contemplated on the sunny day on which the
poll was conducted), might stop some going to the polls—and the “stay-at-homes” may well
differ in their voting preferences from those who do vote. Thus, even if we had sampled every
eligible voter prior to the election, we still would not be able to predict the outcome with
certainty, because we do not know who will actually vote and who will change their mind in the
intervening period. (Special considerations in sampling people are discussed in Section 1.9.)

Taking another example, it is sometimes necessary to sample from inventory to make infer-
ences about a product population or process. If interest focuses merely on characterizing the
current inventory, the study is enumerative. If, however, we wish to predict the future per-
formance of the product, perhaps after making design changes, the study is analytic. Finally,
drawing conclusions about the performance of a turbine to be manufactured in the future, based
upon data on turbines built in the past, involves, as we have indicated, an analytic study. If,
however, the measured turbines and the turbine to be shipped were all independently and ran-
domly selected from inventory (unlikely to be the case in practice), one would be dealing with
an enumerative study.

1.5.2 Statistical Inference for Analytic Studies

We do not agree with the views of some (e.g., Gitlow et al., 1989, page 558) who imply that
statistical inference methods, such as statistical intervals, have no place whatsoever in analytic
studies. Indeed, suchmethods have been used successfully for decades in science and industry in
studies that have been predominantly analytic. Many statistical methods were, in fact, developed
with such studies in mind. Instead, we feel that the decision of whether or not to use statistical
intervals in analytic studies needs to be made on a case by case basis. Use of statistical intervals
in such studies requires a keen understanding and assessment of the additional assumptions that
are being made.

1.5.3 Inferential versus Predictive Analyses

In addition to differentiating between analytic and enumerative studies, it is also useful to
differentiate between inferential and predictive analyses. Broadly speaking, the goal of an
inferential analysis is to gain an understanding of the mechanism that underlies or resulted
in the observed data. A typical example is that of a manufacturer wishing to determine how
different processing (and possibly environmental) variables impact the performance of a product
with the goal of building an improved product in the future.

In contrast, the goal of a predictive analysis is typically to predict future performance—
without necessarily understanding the underlying mechanism. In the preceding example, such
analyses might be of principal interest to the purchaser of the product who wishes to predict
future performance.

Both inferential and predictive analyses can involve either enumerative or analytic studies.
In our example, the study is analytic when the underlying conditions under which the data
were obtained differ from those under which one wishes to draw conclusions—irrespective of
whether one is interested in gaining an understanding of the impact of different processing
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variables or predicting future performance. Thus, the available data might be from in-house
testing on early production units, but the inferences or predictions to be made deal with ield
exposure of high volume production, making the study analytic in both cases. We will now
consider, in further detail, the basic assumptions underlying inferences from enumerative and
analytic studies.

1.6 BASIC ASSUMPTIONS FOR INFERENCES FROM ENUMERATIVE STUDIES

1.6.1 Definition of the Target Population and Frame

In enumerative studies there is some “target population” about which it is desired to draw
inferences. An important irst step—though one that is sometimes omitted by analysts—is that
of explicitly and precisely deining this target population. For example, the target population
may be all the automobile engines of a speciied model manufactured on a particular day, or in
a speciied model year, or over some other deined time period. In addition, one need also make
clear the speciic characteristic(s) to be evaluated. This may be a measurement or other reading
on an engine, or the time to failure of a part on a life test, where “failure” is precisely deined.
Also, in many applications, and especially those involving manufactured products, one must
clearly state the operating environment in which the deined characteristic is to be evaluated.
For a life test, this might be “normal operating conditions,” and exactly what constitutes such
conditions needs to be clearly stated.

The next step is that of establishing a frame fromwhich the sample is to be taken. Establishing
a frame requires obtaining or developing a speciic listing, or other enumeration of the population
from which the sample will be selected. Examples of frames are the serial numbers of all the
automobile engines built over the speciied time period, the complete listing of email addresses
of the members of an organization, the schedule of incoming commercial lights into an airport
on a given day, or a tabulation of all invoices billed during a calendar year. Often, the frame
is not identical to the target population. For example, a listing of land-line telephone numbers
generally corresponds to households, rather than individuals, and omits those who do not have
a telephone or who have only a cell phone, people with unlisted phone numbers, new arrivals in
the community, etc.—and also may include businesses, which are not always clearly identiied
as such. If the telephone company wishes to estimate the proportion of listed land-line phones
in working order at a given time, a complete listing of such telephones (available to the phone
company) will probably coincide with the target population about which inferences are desired.
For most other studies, however, there may be an important difference between the frame (i.e.,
the telephone directory listing) and the target population.

The listing provided by the frame will henceforth be referred to as the “sampled population.”
Clearly, the inferences from a study, such as those quantiied by statistical intervals, will be on
the frame and—when the two differ—not on the target population. Thus, our third step—after
deining the target population and the frame—is that of evaluating the differences between the
two and the possible effect that such differences could have on the conclusions of the study.
Moreover, it warrants repeating that these differences introduce uncertainties above and beyond
those quantiied by the statistical intervals provided in this book. If well understood, these
differences can, at least sometimes and to some degree, be dealt with.

1.6.2 The Assumption of a Random Sample

The data are assumed to be a random sample from the frame. Because we deal only with random
samples in this book, we will sometimes use the term “sample” to denote a random sample. In
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enumerative studies, we will be concerned principally with the most common type of random
sampling, namely simple random sampling.We briely describe other types of random samples
in Section 1.6.3.

Simple random sampling gives every possible sample ofn units from the frame the same prob-
ability of being selected. A simple random sample of size n can, at least in theory, be obtained
from a population of size N by numbering each unit in the population from 1 to N , placing
N balls bearing the N numbers into a bin, thoroughly mixing the balls, and then randomly
drawing n balls from the bin. The units to be sampled are those with numbers corresponding to
the n selected balls. In practice, tables of random numbers generated by computer algorithms
(e.g., Rizzo, 2007; Ripley, 2009; Gentle, 2009, 2013) and by statistical computing software
(e.g., R Core Team, JMP or Minitab), provide easier ways of obtaining a random sample.

The assumption of random sampling is of critical importance in constructing statistical
intervals. This is because such intervals relect only the randomness due to the sampling process
and do not take into consideration biases that might be introduced by not sampling randomly.
It is especially important to recognize this limitation because in many studies, and especially
ones involving sampling people, one does not have a strict random sample; see Section 1.9.

1.6.3 More Complicated Random Sampling Schemes

There are also other random sampling methods beyond simple random sampling, such as
stratiied random sampling, cluster random sampling, and systematic random sampling. These
are used frequently in such applications as sampling of human populations, auditing, and
inventory estimation. For such samples, rather than every possible sample of n units from the
sampled population having the same probability of being selected, each possible sample has
a known probability of being selected. Statistical intervals can also be constructed for such
more complicated sampling schemes; these intervals are generally more complicated than the
ones for simple random samples. The interested reader is referred to books referenced in the
Bibliographic Notes section at the end of this chapter.

The more complicated random sampling schemes, described briely below, need to be differ-
entiated from various nonrandom sampling schemes, which we describe in Section 1.8 under
the general heading of “convenience and judgment sampling.”

Stratified random sampling

In some sampling applications, the population is naturally divided into non-overlapping groups
or strata. For example, a population might be divided according to gender, job rank, age group,
geographic region, or manufacturer. It may be important or useful to take account of these strata
in the sampling plan because:

� Some important questions may focus on individual strata (e.g., information is needed by
geographic region, as well as for the entire country).

� Cost, methods of sampling, access to sample units, or resources may differ among strata
(e.g., salary data are generally more readily available for individuals working in the public
sector than for those working in the private sector).

� When the response variable has less variability within a stratum than across strata (i.e.,
across the entire population), stratiied random sampling provides more precise estimates
than one would obtain from a simple random sample of the same size. The increase
in precision results in narrower (but more complicated to construct) statistical intervals
concerning the entire population.
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In stratiied sampling, one takes a simple random sample from each stratum in the population.
The methods presented in this book can be used with data from a single stratum to compute
statistical intervals for that stratum. However, when stratiied sample data are combined across
strata (e.g., to obtain a conidence interval for the population mean or total) special methods are
needed, as described in textbooks on survey sampling. These books also discuss how to allocate
units across strata and how to choose the sample size within each stratum.

Cluster random sampling

In some studies it is less expensive to obtain samples by using “clusters” of “elements” (generic
terminology) that are conveniently located together in some manner, instead of taking a simple
random sample from the entire population. For example, when items are packed in boxes, it
is often easier to take a random sample of boxes and either evaluate all items in each selected
box—or take further random sampleswithin each of the selected boxes—rather than to randomly
sample individual items irrespective of the box in which they are contained. Also, it may bemore
natural and convenient to interview some or all adult members of randomly selected families
rather than randomly selected individuals from a population of individuals. Finally, it is often
easier to ind a frame for, and sample groups of, individuals clustered in a random sample of
locations rather than taking a simple random sample of individuals spread over, say, an entire
city. In other cases, only a listing of clusters, but not of the individuals or items they contain,
may be available; clusters are then the natural sampling units. In each of these cases, one needs
to deine the clusters, obtain a frame that lists all clusters, and then take a random sample of
clusters from that frame. Sometimes, as previously indicated, responses are then obtained for
all elements (i.e., individuals or items) within each selected cluster, although often subsampling
within clusters is conducted.

The value of the information for each additional sample unit within a cluster can be appre-
ciably less than that of an individual unit for a simple random sample, especially if the items
in a cluster tend to be similar and many units are chosen from each cluster. On the other hand,
if the elements in the clusters are a well-mixed representation of the population, the loss in
precision due to the use of cluster sampling may be slight; often, the lower per-element cost of
cluster sampling will more than compensate for the loss in statistical eficiency. Thus, given a
speciied total cost to conduct a study, the net result of cluster sampling can be an improvement
in overall statistical eficiency, as evidenced by narrower statistical intervals compared to those
for a simple random sample—even though the simple random sample requires a smaller total
sample size. Also, when the investigator has a say in choosing the cluster size, the loss of
eficiency might be mitigated by taking a larger sample of smaller clusters. (When clusters
contain only one element, one is back to simple random sampling.) Books on survey sampling,
such as those mentioned in the Bibliographic Notes section at the end of this chapter, provide
details of cluster sampling and sample size selection.

Systematic random sampling

It is often much easier to select a sample in a systematic manner than to take a simple random
sample. For example, because there is no readily available frame, it might be dificult to obtain
a simple random sample of all the customers who come into a store on a particular day. It
would, however, be relatively simple to sample every 10th, or other preselected number, person
entering the store. Similarly, it might be much easier and more natural to have a clerk examine
every 10th item in a ile cabinet, instead of choosing a simple random sample of all items.
In both examples, the ratio of cost incurred to information gained to conduct the study might
be appreciably smaller with systematic sampling than with simple random sampling. In both
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examples, it would usually be cost effective to use systematic, rather than simple, random
sampling. In some situations a systematic sample may, in fact, be the only feasible alternative.

Systematic samples are random samples as long as a random starting point is used. Special
methods and formulas, however, are needed to compute statistical intervals. Also, the systematic
pattern that is to be used in sampling must be chosen carefully. Serious losses of eficiency
or biases may result if there are periodicities in the sampled population and if these are in
phase with the systematic sampling scheme. For example, if a motor vehicle bureau measures
trafic volume eachWednesday (whereWednesday is a randomly selected weekday), the survey
results would likely provide a biased estimate of average weekday trafic volume. On the other
hand, if such sampling took place every sixth weekday, the resulting estimate would likely be a
lot more reasonable. Books on survey sampling, such as those mentioned in the Bibliographic
Notes section at the end of this chapter, provide details of systematic sampling.

1.7 CONSIDERATIONS IN THE CONDUCT OF ANALYTIC STUDIES

1.7.1 Analytic Studies

In an enumerative study, one generally wishes to draw inferences by sampling from a well-
deined existing population, the members of which can be enumerated, at least conceptually—
even though, as we have seen, dificulties can arise in inding a frame that adequately represents
the target population and in obtaining a random sample from that frame. In contrast, in an
analytic study one wishes to draw conclusions about a process that may not even exist—or may
not be accessible—at the time of the study. As a result, the process that is sampled is likely
to differ, in various ways, from the one about which it is desired to draw inferences. As we
have indicated, sampling prototype units, made in the lab or on a pilot production line, to draw
conclusions about subsequent full-scale production is one common example of an analytic study.

1.7.2 The Concept of Statistical Control

A less evident example of an analytic study arises if, in dealingwith amature production process,
one wishes to draw inferences about future production, based upon sample data from current or
recent production. Then, if the process is in so-called “statistical control,” and remains so, the
current data may be used to draw inferences about the future performance of the process. The
concept of statistical control means, in its simplest form, that the process is stable or unchanging.
It implies that the statistical distributions of the characteristics of interest for the current process
are identical to these for the process in the future. It also implies that the sequence of data
from production is not relevant. Thus, units selected consecutively from production are no more
likely to be alike than units selected, say, a day, a week, a month, or even a year, apart. All of
this, in turn, means that the only sources of variability are “common cause” within the system,
and that variation due to “assignable” or “special” causes, such as differences between raw
material lots, operators, and ambient conditions, have been removed.

The concept of statistical control is an ideal state that, in practice, may exist only approx-
imately, although it may often provide a useful working approximation. If a process is in
statistical control, then samples from the process are (or can be modeled as) independent and
identically distributed. When a process is in statistical control, the statistical intervals provided
in this book should yield reasonable inferences about the process. On the other hand, when the
process is not in, or near, statistical control, the applicability of the statistical intervals given here
for characterizing the process may be undermined by trends, shifts, cycles, and other variations
unless they are accounted for in a more comprehensive model.
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1.7.3 Other Analytic Studies

Although analytic studies frequently require projecting from the present to a future time period,
this is not the only way an analytic study arises. For example, practical constraints, concerns
for economy, and a variety of other considerations may lead one to conduct a laboratory scale
assessment, rather than perform direct evaluations on a production line, even though production
is up and running. In such cases, it is sometimes possible to perform veriication studies to
compare the results of the sampled process with the process of interest.

1.7.4 How to Proceed

The following operational steps are appropriate for potentially constructing statistical intervals
for many analytic studies:

� Have the engineer, scientist or subject-matter expert deine the process of interest.

� Determine the possible sources of data that will be useful formaking the desired inferences
about the process of interest (i.e., deine the process to be sampled or evaluated).

� Clearly state the assumptions that are required for the results of the study on the sampled
process to be applicable for the process of interest.

� Collect well-targeted data and, to the extent possible, check the assumed model and any
other assumptions.

� Jointly decide, in light of the assumptions and the data, and an understanding of the
underlying cause mechanism, whether there is value in calculating a statistical interval,
or whether this might lead to a false sense of security, and should, therefore, be avoided.

� If it is decided to obtain a statistical interval, ensure that the underlying assumptions are
fully recognized andmake clear that this interval represents only the uncertainty associated
with the random sampling and does not include uncertainties due to differences between
the sampled process and the process of interest. Therefore, the actual uncertainty will be
greater than that expressed by the width of the interval and in some applications, could be
substantially greater.

1.7.5 Planning and Conducting an Analytic Study

In conducting an analytic study, one typically cannot sample directly from the process of interest.
This process may, as we have seen, not yet exist. Instead, one needs to deine the speciic
process that is to be sampled and how the sampling should proceed. In so doing, as broad
an environment as possible should be considered. For example, in characterizing a production
process, one should include the wide spectrum of raw materials and operating conditions that
might be encountered in the future. This will require fewer assumptions when using the resulting
data to draw inferences about the actual process of interest. It is usually advisable to sample
over relatively long time periods because observations taken over a short period are less likely
to be representative of the process of interest with regard to both average performance and
long-run variability unless the process is in strict statistical control. For example, in studying
the properties of a new alloy, specimens produced closely together in time may be more alike
than those produced over longer time intervals due to variations in ambient conditions, raw
material, operators, machine condition, measuring equipment, etc.

In some analytic studies, one might deliberately make evaluations under extreme conditions.
In fact, Deming (1975) asserts that in the early stages of an investigation, “it is nearly always
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the best advice to start with strata near the extremes of the spectrum of possible disparity in
response, as judged by the expert in the subject matter, even if these strata are rare.” He cites
an example that involves the comparison of the speed of reaching equilibrium for different
types of thermometers. He advocates, in this example, an initial study on two groups of people:
those with normal temperature and those with high fever. In addition, it is important that
information on relevant concomitant variables is recorded, whenever feasible, for inclusion in,
possibly graphical, subsequent analyses. For example, in dealing with a production process, data
identifying operator, rawmaterial lot, ambient conditions and other factors thatmight potentially
impact the performance of the process should generally be retained for potential future analyses.

1.8 CONVENIENCE AND JUDGMENT SAMPLES

In practice, it is sometimes dificult, or impossible, even in an enumerative study, to obtain
a random sample. Often, it is much more convenient to sample without strict randomization.
Consider again a product packaged in boxes whose performance is to be characterized. If the
product is ball bearings, it might be easy to thoroughly mix the contents of a box and sample
randomly. On the other hand, suppose the product is made up of fragile ceramic plates, stacked
in large boxes. In this case, it is much easier to sample from the top of the box than to obtain
a random sample from among all of the units in the box. Similarly, if the product is produced
in rolls of material, it is often simple to cut a sample from either the beginning or the end of
the roll, but often impractical to sample from anyplace else. (This is not a systematic random
sample, because there is not a random starting point.) Also, when sampling from a production
process, it is often more practical to sample periodically, say every 2 hours during an 8-hour
shift, than to select samples at four different randomly selected times during each shift. In this,
and other applications, a further justiication for periodic sampling is the need to consistently
monitor the process for changes by the use of control charts, etc.

Selection of product from the top of a box, from either end of a roll, or at prespeciied
periodic time intervals for a production process, without a random starting point, are examples
of what is sometimes referred to as “convenience sampling.” Such samples are generally
not strictly random because some units (e.g., those not at either end of the roll) have no
chance of being selected. Because one is not sampling randomly, statistical intervals, strictly
speaking, are not applicable for convenience sampling. In practice, however, one uses experience
and understanding of the subject matter to decide on the applicability of applying statistical
inferences to the results of convenience sampling. Frequently, one might conclude that the
convenience sample will provide data that, for all practical purposes, are as “random” as those
obtained by a simple random sample. Sampling from an end of a roll might, for example, yield
information equivalent to that from simple random sampling if production is continuous, the
process is in statistical control, and there is no roll end effect. Similar assumptions apply in
drawing conclusions about a process based upon selecting samples fromproduction periodically.
Thus, treating a convenience sample as if it were a random samplemay sometimes be reasonable
from a practical point of view. However, the fact that this assumption is being made needs to
be recognized, and the validity of using statistical intervals as if a random sample had been
selected needs to be critically assessed based upon the speciic circumstances.

Similar considerations apply in “judgment” or “pseudo-random” sampling. This occurs when
personal judgment is used to choose “representative” sample units; a foreman, for example,
might by eyeball take what appears to be a “random” selection of production units, without
going through the formalities that we have described for selecting a random sample. In many
cases, this might yield results that are essentially equivalent to those obtained from a random
sample. Sometimes, however, this procedure will result in a higher probability of selecting, for
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example, conforming or nonconforming units. In fact, studies have shown that what might be
called “judgment” can lead to seriously biased samples and, therefore, invalid or misleading
results. Thus, the use of judgment, in place of random selection of sample units, invalidates the
probabilistic basis for statistical inference and could render statistical intervals meaningless.

Judgment is, of course, important in planning studies, but it needs to be applied carefully
in the light of available knowledge and practical considerations. Moreover, where possible,
judgment should not be used as a substitute for random sampling or other randomization
needed to make probabilistic inferential statements, such as constructing statistical intervals.
Thus, returning to Deming’s example of comparing the speed of reaching equilibrium for
different type thermometers, it might well be advantageous to make comparisons for strata of
people with normal temperature and with high fever. Within these two strata, however, patients
and thermometers should be selected at random, to the degree possible. This will provide the
opportunity for valid statistical inferences within strata, even though these inferences may be
in a severely limited domain.

1.9 SAMPLING PEOPLE

Inmany important applications, such as public opinion polls, marketing studies and TV program
viewing ratings, the subject of the study is not a product, but people fromwhomwewish to solicit
verbal responses. Such studies typically present added issues, including special considerations
to ensure that the frame resembles the target population as closely as possible and the added
problem of nonrespondents (e.g., individuals who choose not to participate in a study). If these
issues are not handled appropriately, they could make formally constructed statistical intervals
meaningless or even misleading. We elaborate below.

Telephone surveys are used extensively in people-response studies. However, such studies
can result in the frame seriously failing to represent the target population. This was made
evident in the 1936 US Presidential election in which telephone surveys predicted the election
of Al Landon over Franklin Roosevelt. An important reason for this erroneous prediction was
the fact that in 1936 the characteristics—and, most importantly, the voting preferences—of the
frame of the then telephone owners differed appreciably from the target population of the voting
electorate. Today, surveys of land-line telephone users can similarly miss the mark by excluding
the increasing number of households that rely only on cell phones.

Sampling people at shopping malls or other on-site locations might be used instead of, or in
addition to, telephone surveys, especially in marketing studies. If, however, one is interested in
a population beyond shopping mall visitors, such studies may again lead to a frame that fails to
adequately represent the population of interest by tending to exclude the elderly, poor people,
wealthy people, and other demographic groups that visit shopping malls infrequently.

Once deined, it is often possible to secure a random sample from the frame. For example,
in telephone surveys, random digit dialing is frequently used. However, unlike sampling a
manufactured product, the subjects selected for a people study can choose whether or not to
respond—andwhether or not to provide a truthful response.Moreover, willingness to participate
in a TV viewing survey may be correlated with a respondent’s viewing preferences. Also, the
fact that the person who answers the phone—or even who happens to be at home at the time of
the call—is unlikely to be a random family member, can create additional bias.

Alternatives to telephone surveys tend to have similar or other dificulties. For example,
response rates on mail surveys tend to be especially low. On-site studies might yield a higher
response rate, but, as already suggested, present other challenges. As already suggested, the
problemwith nonrespondents is that those who choose to respondmight differ in characteristics,
views or behavior from those who do not. In particular, people who hold strong views on a
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subject may be more likely to respond. Special inducements, such as inancial compensation,
can reduce the number of nonrespondents, but such inducements may also bias the results.

The preceding dificulties are, of course, well known to experts who conduct people-response
studies, and various procedures have been developed to mitigate the resulting problems or to
compensate for them. Thus, one approach to address the nonresponse problem is to take a
follow-up sample of nonrespondents, making a special effort to solicit a response. The results
are then compared with those of the initial sample which, if needed, are adjusted accordingly.

Another more general approach that aims to address both nonresponse and inadequacy of
the frame is to compare the demographics—especially with regard to variables that are likely
to be related to the survey response—of the respondents in the selected sample with those of
the population of interest, and then correct for disproportionalities (in a manner similar to the
analysis of results from a stratiied sample). As a consequence, the results from a particular
respondent might be weighted more heavily in the analysis than those of other respondents if
the respondent’s demographics appear to be underrepresented in the sample.

1.10 INFINITE POPULATION ASSUMPTION

The methods for calculating statistical intervals discussed in this book, except for those in
Section 6.3, are based on the assumption that the sampled population or process is ininite,
or, at least, very large relative to the sample size. However, in most enumerative studies, the
assumption of an ininite population is not met. With a inite population, the sampling itself
changes the population available for further sampling by depletion and therefore samples are
no longer truly independent. For example, if the population consisted of 1,000 units, selection
of the irst sampled unit reduces the population available for the second sample to 999 units.

Books on survey sampling show how to use a “inite population correction” to adjust,
approximately, for the inite population size. Using such a correction generally results in a
narrower statistical interval than one would obtain without such a correction. Thus, ignoring the
fact that one is sampling from a inite population usually results in conservative intervals (i.e.,
intervals that are wider than required for the speciied conidence level). In an analytic study, the
population or process is conceptually ininite; thus, no inite population correction is needed.

In practice, if the sample size is a small proportion of the population (10% or less is a
commonly used igure), ignoring the correction factor will give results that are approximately
correct. Thus, in many enumerative studies, it is not unreasonable to assume an ininite popu-
lation in calculating a statistical interval.

The preceding discussion leads to a closely related, and frequently misunderstood, point
concerning sampling from a inite population—namely, that the precision of the results depends
principally on the absolute, and not the relative, sample size. For example, say you want to make
a statement about the mean strengths of units produced from two lots from a stable production
process. Lot 1 consists of 10,000 units and lot 2 consists of 100 units. Then, a simple random
sample of 100 units from lot 1 (a 1% sample) provides more precise information about the mean
of lot 1 than a random sample of size 10 from lot 2 (a 10% sample) provides about the mean of
lot 2. We will describe methods for sample size selection in Chapters 8, 9, and 10.

1.11 PRACTICAL ASSUMPTIONS: OVERVIEW

In Figure 1.1 we summarize the major points of our discussion in Sections 1.3–1.10 and
suggest a possible approach for evaluating the assumptions underlying the calculation of the
statistical intervals described in this book. Although it is, of course, not possible to consider all
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Figure 1.1 Possible approach to evaluating assumptions underlying the calculation of a statistical interval.

See the text for explanations of the numbered items.

possible circumstances in such a diagram, we believe that Figure 1.1 provides a useful guide
for practitioners on how to proceed for many situations.

The following comments pertain to the numbers shown in parentheses in Figure 1.1:

(1) Is the purpose of the study to draw conclusions about an existing inite population (enu-
merative study) or is it to act on and/or predict the performance of a (frequently future)
process (analytic study)?

(2) Statistical intervals apply to the frame from which the sample is taken. When the frame
does not correspond to the target population, inferences about the target population could
be biased. A statistical interval quantiies only the sampling uncertainty due to a limited
sample size. Actual uncertainty will frequently be larger.

(3) Most statistical intervals in this book assume a simple random sample from the frame.
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(4) More complicated statistical intervals than those for simple random samples apply; see
Section 1.6.3 and the books on survey sampling referred to in the Bibliographic Notes
section at the end of this chapter.

(5) Statistical intervals do not apply. If calculated, they describe uncertainty to the extent that
the nonrandom sample provides an approximation to a random sample. Resulting intervals
in this case, as in other cases, do not account for uncertainty due to sampling bias.

(6) Statistical intervals apply to the sampled process, and not necessarily to the process of
interest. Thus, any statistical interval does not account for uncertainty due to differences
between the sampled process and the process of interest.

1.12 PRACTICAL ASSUMPTIONS: FURTHER EXAMPLE

We now cite, taking some liberties, a study (see Semiglazov et al., 1993) conducted for the
World Health Organization (WHO) to evaluate the effectiveness of self-examination by women
as a means of early detection of breast cancer. The study was conducted on a sample of
factory workers in Leningrad (now St. Petersburg) and Moscow. This group of women was
presumably selected for such practical reasons as the ready listing of potential participants and
the willingness of factory management and workers to cooperate. A major characteristic of
interest in this study is the time that self-examination saves in the detection of breast cancer.

Suppose, initially, that the goal was the very limited one of drawing conclusions about breast
cancer detection times for female factory workers in Leningrad and Moscow at the time of the
study. The frame for this (enumerative) study is the (presumably complete, current, and correct)
listing of female factory workers in Leningrad and Moscow. In this case, the frame coincides
with the target population, and it may be possible to obtain a simple random sample from this
frame. We suppose further that the women selected by the random sample participate in the
study and provide correct information and that the sample size is small (i.e., less than 10%),
relative to the size of the population. Then the statistical intervals, provided in this book, apply
directly for this (very limited) target population. (It is possible in an enumerative study to deine
the target population so narrowly that it becomes equivalent to the “sample.” In that case, one
has complete information about the population and, as previously indicated, the conidence
intervals presented in this book degenerate to zero width, and the tolerance and prediction
intervals become probability intervals.)

Extending our horizons slightly, if we deined the target population to be all women in
Moscow and Leningrad at the time of the study, the frame (of female factory workers) is more
restrictive than the target population. The statistical uncertainty, as expressed by the appropriate
statistical interval, applies only to the sampled population (i.e., the female factory workers),
and its relevance to the target population (i.e., all women in Moscow and Leningrad) needs to
be assessed.

In actuality, the WHO is likely to be interested in a much wider group of women and a
much broader period of time. In fact, the basic purpose of the study likely was that of drawing
inferences about the effects of encouraging self-examination for women throughout the world,
not only during the period of study, but, say, for the subsequent 25 years. In this case we are, in
fact, dealing with an analytic study. In addition to the projection into the future, we need to be
concerned with such matters as differences in self-examination learning skills and discipline,
alternative ways of detecting breast cancer, the possibility of different manifestations of breast
cancer, and many others. The unquantiiable uncertainty involved in translating the results from
the sampled population or process (i.e., female factory workers in Moscow and Leningrad at
the time of the study) to the (future) population or process of major interest (e.g., all women
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throughout the world in the subsequent 25 years) may well be much greater than the quantiiable
statistical uncertainty.

Our comments are in no way a criticism of the WHO study, the major purpose of which
appears to be that of assessing whether, under a particular set of circumstances and over a
particular period of time, self-examination can be beneicial. We cite the study only as one
example of an analytic study in which statistical intervals, such as those discussed in this book,
describe only part of the total uncertainty, and may, in fact, be of very limited relevance.

Fortunately, not all studies are as global in nature and inference as this one. It seems safe to
say, however, that in applications, the simple textbook case of an enumerative study in which the
frame is in good agreement with the target population, and in which one has a random sample
from this frame, is the exception, rather than the rule. Instead it is more common to encounter
situations in which:

� Onewishes to draw inferences concerning a process (and, thus, is dealing with an analytic,
rather than an enumerative, study).

� One is dealing with an enumerative study, but the frame differs from the target population
in important respects, and/or sampling from the frame is not (strictly) random.

As indicated, in each of these cases, we need to be concerned with the implications in
generalizing our conclusions beyond what is warranted from statistical theory alone—or, as
we have repeatedly stated, the calculated statistical interval generally provides an optimistic
quantiication of the total uncertainty, relecting only the sampling variability. Thus, in studies
like the WHO breast cancer detection evaluation, the prudent analyst needs to decide whether
to calculate statistical intervals at all—and, if so, stress their limitations—or to refrain from
calculating such intervals in the belief that they may do more harm than good. In any case, such
intervals need to be supplemented by, and often are secondary to, the use of statistical graphics
to describe the data—as illustrated in the subsequent chapters.

1.13 PLANNING THE STUDY

A logical conclusion from the preceding discussion is that it is of prime importance to properly
plan the study to help assure that:

� The target population or process of interest is well deined initially.

� For an enumerative study, the frame matches the target population as closely as practical
and the sampling from this frame is random or as close to random as feasible.

� For an analytic study, the investigation is made as broad as possible so as to reduce
the almost inevitable gap between the sampled process and the process of interest and
randomization is introduced to the degree feasible.

Unfortunately, studies are not always conducted in this way. Often, analysts are handed the
results and asked to analyze the data. This requires retrospectively deining the target population
or process of interest and the frame or process that was actually sampled, and determining how
well the critical assumptions for making statistical inferences apply. This is often a frustrating,
or even impossible, task because the necessary information is not always available. In fact,
one may sometimes conclude that in light of the deiciencies of the investigation or the lack of
knowledge about exactly how the study was conducted, it might be misleading to employ any
method of statistical inference.
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The moral is clear. If one wishes to perform statistical analyses of the data from a study,
including calculation of the intervals described here, it is essential to plan the investigation
statistically in the irst place. One element of planning the study is determining the required
sample size; see Chapters 8, 9, and 10. This technical consideration is, however, often secondary
to the more fundamental issues described in this chapter. Further details on planning studies
are provided in texts on survey sampling (dealing mainly, but not exclusively, with enumerative
studies) and books on experimental design (dealing mainly with analytic studies). See the
references in the Bibliographic Notes section at the end of this chapter.

1.14 THE ROLE OF STATISTICAL DISTRIBUTIONS

Many of the statistical intervals described in this book assume a distributional model, such
as a normal distribution, for the measured variable, possibly after some transformation of the
data. Frequently, the assumed model only approximately represents the population or process,
although this approximation is often adequate for the problem at hand. With a suficiently large
sample (say, 40 or more observations), it is usually possible to detect important departures from
the assumed model and, if the departure is large, to decide whether there is a need to reject
or reine the model. For more pronounced departures, fewer observations are needed for such
detection.When there is not enough data to detect important departures from the assumedmodel,
the model’s correctness must be justiied from an understanding of the physical situation and/or
past experience. Such understandings, of course, should enter the assessment, irrespective of
the sample size.

Some intervals—notably conidence intervals to include the population mean—are relatively
insensitive to the assumed distribution; other intervals strongly depend on this assumption. We
will indicate the importance of distributional assumptions in our discussion of speciic intervals.
Hahn (1971) discusses “How Abnormal is Normality?”, and numerous books on statistics,
including Hahn and Shapiro (1967, Chapter 8), describe graphical methods and statistical tests
to evaluate the assumption of normality. We provide a brief introduction to, and example of,
this subject in Section 4.11.

Statistical intervals that do not require any distributional assumptions are described in Chap-
ters 5 and 13 and in several of the case studies in Chapters 11 and 18. Such “nonparametric”
intervals have the obvious advantage that they do not require the assumption of a speciic dis-
tribution. Nonparametric intervals are, therefore, especially appropriate for those situations for
which the results are sensitive to assumptions about the underlying distribution. A disadvantage
of nonparametric intervals is that they tend to be wider (i.e., less precise) than the corresponding
interval under an assumed distributional model. Moreover, frequently there is not suficient data
to compute a nonparametric interval at the desired conidence level. Such intervals also still
require the other important assumptions discussed in the preceding sections.

1.15 THE INTERPRETATION OF STATISTICAL INTERVALS

Because statistical intervals are based upon limited sample data that are subject to random
sampling variation, they will sometimes not contain the quantity of interest that they were
calculated to contain, even when all the necessary assumptions hold. Instead, they can be
claimed to be correct only a speciied percentage (e.g., 90%, 95%, or 99%) of the time they are
calculated, that is, they are correct with a speciied “degree of conidence.” The percentage of
such statistical intervals that contain what one claims they contain is known as the conidence
level associated with the interval. The selection of a conidence level is discussed in Section 2.6.
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The conidence level, at least from a traditional point of view, is a property of the procedure
for constructing a particular statistical interval, and not a property of the computed interval
itself. Thus, the conidence level is the probability that, in any given study, the random sample
will result in an interval that contains what it is claimed to contain. Using this (classical)
interpretation, a particular conidence interval to, for example, contain the mean of a population
cannot correctly be described as being an interval that contains the actual population mean
with a speciied probability. This is because the mean is an unknown ixed characteristic
of the population which, in a given situation, is either contained within the interval or is
not (i.e., the probability is either one or zero). All we can say is that in calculating many
different conidence intervals to contain population means from different (independent) random
samples, the calculated conidence interval will actually contain the actual population mean
with a speciied probability—known as the coverage probability—and, due to the vagaries of
chance, will fail to do so the other times. We provide further, more speciic, elaboration in
Sections 2.2.5, 2.3.6, and 2.4.3.

For many of the best-known statistical interval procedures, because of the simplicity of the
model assumptions, (e.g., the procedures given in Chapters 3 and 4 for the normal distribution)
the coverage probability of the interval procedure is exactly equal to the nominal conidence
level that is input to the procedure. Outside this relatively narrow set of circumstances, however,
statistical interval procedures have coverage probabilities that are only approximately equal to
the nominal conidence level. Indeed, it has been a vigorous area of statistical research to
ind new and better statistical interval procedures that provide better coverage probability
approximations. The results of some of this research are used for the interval procedures
presented in Chapters 5–7 and 12–18.

Finally, we note that the philosophy of inferences in constructing Bayesian intervals that
we present in Chapters 15, 16, 17, and some of the examples in Chapter 18, differs from the
preceding non-Bayesian (sometimes referred to as “frequentist”) approach to constructing and
evaluating statistical intervals. In particular, Bayesian inference methods require the specii-
cation of a joint prior distribution to describe our prior knowledge about the values of the
model parameters (but the use of the probability distribution in this context does not imply
that the unknown parameter is random). Using conditional probability operations (known as
Bayes’ theorem), the prior distribution is combined with the data to generate a joint posterior
distribution, representing the updated state of knowledge about the parameters. Based on the
joint posterior distribution, it is possible, for example, to generate intervals to contain a speciic
parameter or a particular function of the parameters with a speciied probability. As a result,
such intervals based on Bayesian methods are often referred to as “credible intervals” and not
“conidence intervals” (and we will use such terminology in subsequent chapters). One should,
however, keep in mind that for given data the probability in the credible interval statement
comes directly from the prior distribution. The actual parameter value (ixed, but unknown) is,
again, either contained in the interval or not.

Some make a distinction between “subjective Bayesian” and “objective Bayesian” analyses.
At the risk of oversimplifying the distinction, in a subjective Bayesian approach, one uses some
combination of previous experience, expert opinion, and other subjective information to choose
the joint posterior distribution. The objective Bayesian approach, on the other hand, attempts
to specify a prior distribution that uses little or no prior information to set the prior distribution
(variously referred to as “default,” “reference,” “noninformative,” “vague,” or “diffuse” prior
distributions) that might, for example, have the objective of producing a Bayesian procedure
with good frequentist properties (e.g., that the coverage probability be close to the nominal
conidence level). Indeed, the vast majority of Bayesian analyses in practical applications use
the objective approach. In such cases one could argue that the use of the term “conidence
interval” is still warranted. In many (if not most) practical problems where an informative prior
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distribution is to be used, the analysis will involve a combination of the subjective and the
objective approaches because useful prior information may be available for only one of several
parameters.

1.16 STATISTICAL INTERVALS AND BIG DATA

Much has been said about the technological changes that have brought us into the “big data”
era. Big data is a consequence of the availability and accessibility of enormously large and
complicated data sets. “Big” is a relative term, and how big is “big” is often characterized by
the volume, variety, and velocity (know as the “three Vs”) of a data set. The arrival of big data,
as well as our ability to analyze such data and potentially gain useful information therefrom,
were made possible by advances in sensor, communications, data storage, and computational
technology.

How do statistical intervals pertain to big data? An immediate answer might be that the
conidence intervals discussed in this book have little relevance for big data. This is because
conidence intervals are used to quantify the uncertainty in estimating some characteristic(s)
of interest due to the (random) sampling of a population or process. This uncertainty is most
pronounced when one has limited sample data. In dealing with big data there is little, or
often essentially no, sampling uncertainty. In addition, as previously indicated (and as will be
discussed in more detail in Chapter 2), tolerance and prediction intervals converge to becoming
probability intervals describing a distribution as the sample size increases.

Thus, our major concern in dealing with big data needs to be not with statistical variability,
but with the “representativeness” of the data with regard to the population of processes of
interest, as discussed throughout this chapter.

So why, in this age of big data, should we be concerned with statistical intervals—much
less update a book on the subject? Our answer is simple. Even though the era of big data is,
indeed, upon us and raises numerous new challenges, there are still many, and perhaps even
most, situations in which circumstances limit us to small data. In assessing a rare disease, one
might, for example, have only a relatively few recorded cases. In conducting a sample survey,
budget limitations typically restrict us to a small sample. In new product reliability assessments,
sample availability and cost concerns often impose severe restrictions on the amount of testing
that can be conducted. And these are just a few examples. In fact, in most situations in which we
generate new data, such as designed experiments or sample surveys, as opposed to analyzing
existing data, one is restricted to relatively small samples and, therefore, it is appropriate to use
statistical intervals to quantify the associated statistical uncertainty. In summary, even though
this surely is the age of big data, let us not forget the continued need for drawing meaningful
inferences from small sets of data.

We also note that the ability to do computer-intensive analyses, which have helped bring
about the age of big data, has also led to the development of improved methods for constructing
statistical intervals for more complicated inference problems dealing mainly with small to
medium-size data, as described in Chapters 12–18, thus making our analyses appreciably more
powerful.

1.17 COMMENT CONCERNING SUBSEQUENT DISCUSSION

The assumptions that we have emphasized in this chapter apply throughout this book and
warrant restatement each time we present an interval or an example. We have decided, however,
to relieve the reader from such repetition. Thus, frequently, we limit ourselves to saying that
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the resulting interval applies “to the sampled population or process” or more generically, “to
the sampled distribution” and often we omit altogether making any such restrictive statement.
The reader needs, however, to keep in mind in all applications the underlying assumptions and
admonitions stated in this chapter.

BIBLIOGRAPHIC NOTES

General treatment of statistical intervals

Hahn (1970b) describes conidence intervals, tolerance intervals, and prediction intervals for
a normal distribution. Both Scheuer (1990) and Vardeman (1992) discuss in detail conidence
intervals, prediction intervals, and tolerance intervals that are distribution-free and also ones
that depend on the assumption of a normal distribution.

Enumerative and analytic studies

Using different terminology than Deming, the books by Snedecor and Cochran (1967, pages
15–16) and Box et al. (2005, Chapters 1–3) discuss the differences between enumerative
and analytical studies. Also, this distinction is explicitly discussed in detail in the book
by Gitlow et al. (1989). Some relevant discussion of enumerative and analytical studies appears
in Hahn and Meeker (1993), Chatield (1995, 2002), Hillmer (1996), Wild and Pfannkuch
(1999), andMacKay and Oldford (2000). Emphasis on making the distinction between enumer-
ative and analytic studies seems to have waned in recent years—which, in the authors’ opinion,
is unfortunate.

Books about survey sampling

Statistical intervals can also be constructed for random sampling schemes that are more com-
plicated than simple random sampling. Such intervals generally require special methods for
estimating variances and are described in books on survey sampling such as Cochran (1977),
Levy and Lemeshow (2008), Groves et al. (2009), Lohr (2010), Lumley (2010), and Little
(2014).

Books about experimental design

There are numerous books on the subject of experimental design. These include, for example,
Box et al. (2005), Montgomery (2009), Wu and Hamada (2009), Goos and Jones (2011), and
Morris (2011).



Chapter 2
Overview of Different Types of

Statistical Intervals

OBJECTIVES AND OVERVIEW

This chapter introduces different kinds of statistical intervals and their applications. A discussion
of the procedures for constructing such intervals is postponed to subsequent chapters. We begin
with some general comments about the choice of a statistical interval. We end the chapter with
discussions of some practical issues concerning the use of statistical intervals.

This chapter explains:

� Reasons for constructing a statistical interval and some examples (Section 2.1).

� Different types of conidence intervals and one-sided conidence bounds (Section 2.2).

� Different types of prediction intervals and one-sided prediction bounds (Section 2.3).

� Tolerance intervals and one-sided tolerance bounds (Section 2.4).

� The selection of an appropriate statistical interval (Section 2.5).

� The selection of a conidence level (Section 2.6).

� The difference between two-sided intervals and one-sided statistical bounds (Section 2.7).

� The advantages of using conidence intervals instead of signiicance tests (Section 2.8).

� The use of simultaneous statistical intervals (Section 2.9).

2.1 CHOICE OF A STATISTICAL INTERVAL

The appropriate statistical interval for a particular application depends on the application. Thus,
the analyst must determine which interval(s) to use, based on the needs of the problem. The
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General purpose of the statistical interval

Description Prediction

Characteristic
of interest

Location Conidence interval for a
distribution mean or median or a
speciied distribution quantile

Prediction interval for a future
sample mean, future sample
median, or a particular ordered
observation from a future sample

Spread Conidence interval for a
distribution standard deviation

Prediction interval for the standard
deviation of a future sample

Enclosure
interval

Tolerance interval to contain (or
cover) at least a speciied
proportion of a distribution

Prediction interval to contain all or
most of the observations from a
future sample

Probability of
an event

Conidence interval for the
probability of an observation
being less than (or greater than)
some speciied value

Prediction interval to contain the
proportion of observations in a
future sample that exceed a
speciied limit

Table 2.1 Examples of some statistical intervals.

following comments give brief guidelines for this selection. Table 2.1 categorizes the statistical
intervals discussed in this book and provides some examples. The intervals are classiied
according to (1) the general purpose of the interval and (2) the characteristic of interest.

2.1.1 Purpose of the Interval

In selecting an interval, onemust decidewhether themain interest is in describing the population
or process fromwhich the sample has been selected or in predicting the results of a future sample
from the same population or process, which we will refer to more generally as a distribution.
Intervals that describe the sampled distribution (or enclose parameters of a distribution) include
conidence intervals for the distribution mean and for the distribution standard deviation and
tolerance intervals to contain at least a speciied proportion of a distribution. In contrast,
prediction intervals for a future sample mean and for a future sample standard deviation and
prediction intervals to include all of m future observations deal with predicting the results of a
future sample from a previously sampled distribution.

2.1.2 Characteristic of Interest

There are various characteristics of interest that one may wish to enclose with a high degree of
conidence. The intervals considered in this book may be roughly classiied as dealing with:

� The location of a distribution (or future sample) as measured, for example, by its mean
or a speciied distribution quantile. Speciic examples are a conidence interval for the
distribution mean and a prediction interval for the sample mean of a future sample.

� The spread of a distribution (or future sample) as measured, for example, by its standard
deviation. Speciic examples are a conidence interval for a distribution standard deviation
and a prediction interval to contain the standard deviation of a future sample from the
distribution.
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� An enclosure interval. Speciic examples are a tolerance interval to contain at least a
speciied proportion of a distribution and a prediction interval to contain all, or most, of
the observations from a future sample.

� The probability of an event. A speciic example is a conidence interval for the probability
that a measurement will exceed a speciied threshold value.

We shall now describe some speciic intervals in greater detail.

2.2 CONFIDENCE INTERVALS

Estimates from sample data provide an approximation to some unknown truth. Conidence
intervals provide a quantiication of the precision of the approximation.

2.2.1 Confidence Interval for a Distribution Parameter

Conidence intervals quantify the precision of our knowledge about a parameter or some other
characteristic of a distribution representing a population or process, based upon a random
sample. For example, asserting that a 95% conidence interval to contain the mean lifetime of
a particular brand of light bulb is 1,000 to 1,200 hours is considerably more informative than
simply stating that the mean lifetime is approximately 1,100 hours.

A frequently used type of conidence interval is one to contain the distribution mean. Some-
times, however, one desires a conidence interval to include some other parameter, such as the
standard deviation of a normal distribution. For example, our knowledge, based upon past data,
about the precision of an instrument that measures air pollution might be expressed by a con-
idence interval for the standard deviation of the instrument’s measurement error. Conidence
intervals for parameters of other statistical distributions, such as for the “failure rate” of an
exponential distribution or for the shape parameter of aWeibull distribution, are also sometimes
desired.

2.2.2 Confidence Interval for a Distribution Quantile

Frequently, our primary interest centers on one or more quantiles (also known as percentage
points or percentiles) of a distribution, rather than the distribution’s parameters. For example,
in evaluating the tensile strength of an alloy, it might be desired to estimate, using data from a
random sample of test specimens, the loading that would cause 1% of such specimens to fail.
Thus, one would wish to construct a conidence interval for the 0.01 quantile of the tensile
strength distribution.

2.2.3 Confidence Interval for the Probability of Meeting Specifications

Many practical problems involve stated performance or speciication limits that are required to
be met. The sample data are then used to assess the probability of meeting the speciication(s).
Some examples are:

� A machined part needs to be between 73.151 and 73.157 centimeters in diameter in order
to it correctly with some other part.

� The noise level of an engine must be less than 80 decibels to satisfy a government
regulation.
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� According to the US Environmental Protection Agency, to be safe the concentration of
arsenic in drinking water needs to be less than 10 parts per billion.

� The mean lifetime of a light bulb must be at least 1,000 hours to meet an advertising
claim.

� The net contents of a bottled soft drink must be at least 32 luid ounces to conform with
the product labeling.

The preceding situations are characterized by the fact that a particular limit is stated. In such
cases, the probability of meeting this stated limit is to be evaluated. If the sampled distribution
is completely speciied (i.e., including its parameters), then elementary methods, described in
introductory probability and statistics textbooks, can be used to determine the exact probability
of meeting the speciication limit. A common example arises in dealing with a normal distri-
bution with a known mean and standard deviation. When, however, the available information
is limited to a random sample from the distribution, as is frequently the case, the probability
of, or the proportion of a distribution, meeting the speciication limit cannot be found exactly.
One can, however, construct a conidence interval for the unknown probability or proportion.
For example, from the available data, one can construct a conidence interval for the proportion
of light bulbs from a speciied population that will survive 1,000 hours of operation without
failure or, equivalently, the probability that any randomly selected bulb will operate for at least
1,000 hours. This probability is often referred to as the product’s reliability at 1,000 hours.

2.2.4 One-Sided Confidence Bounds

Much of the discussion so far has implied a two-sided conidence interval with both a inite
lower endpoint and a inite upper endpoint. Usually these intervals have an equal degree of
uncertainty associated with the parameter or other quantity of interest being located outside
each of the two interval endpoints. A two-sided interval is generally appropriate, for example,
when one is dealing with speciications on dimensions to allow one part to it with another. In
many other problems, the major interest, however, is restricted to the lower endpoint alone or to
the upper endpoint alone. This is frequently the case for problems dealing with product quality
or reliability. In such situations, one is generally concerned with questions concerning “how
bad might things be?” and not “how good might they be?” This may call for the construction of
a one-sided lower conidence bound or a one-sided upper conidence bound, depending upon
the speciic application, rather than a two-sided conidence interval. For example, the results of
a reliability demonstration test for a system might be summarized by stating, “The estimated
reliability for amission time of 1,000 hours of operation for the system is 0.987, and a lower 95%
conidence bound on the reliability is 0.981.” This “pessimistic” bound would be of particular
interest when a minimum reliability must be met.

2.2.5 Interpretations of Confidence Intervals and Bounds

Due to random sampling variation, a sample does not provide perfect information about the
sampled population. However, using the results of a random sample, a conidence interval for
some parameter or other ixed, unknown characteristic of the sampled population provides
limits which one can claim, with a speciied degree of conidence, contain the actual value of
that parameter or characteristic.

A 100(1 − α)% conidence interval for an unknown quantity θ may be formally character-
ized as follows: “If one repeatedly calculates such intervals frommany independent random sam-
ples, 100(1 − α)% of the intervals would, in the long run, correctly include the actual value θ.
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Equivalently, one would, in the long run, be correct 100(1 − α)% of the time in claiming
that the actual value of θ is contained within the conidence interval.” More commonly, but
less precisely, a two-sided conidence interval is described by a statement such as “we are

95% conident that the interval [θ
˜
, θ̃] contains the unknown actual parameter value θ.” In fact,

the observed interval either contains θ or does not. Thus the 95% refers to the procedure for
constructing a conidence interval, and not to the observed interval itself. One-sided conidence
bounds can be similarly interpreted.

2.3 PREDICTION INTERVALS

2.3.1 Prediction Interval to Contain a Single Future Observation

A prediction interval for a single future observation is an interval that will, with a speciied
degree of conidence, contain a future randomly selected observation froma distribution. Such an
interval would interest the purchaser of a single unit of a particular product and is generally more
relevant to such an individual than, say, a conidence interval to contain average performance.
For example, the purchaser of a new automobile might wish to obtain, from the data on a
previous sample of ive similar automobiles, an interval that contains, with a high degree of
conidence, the gasoline mileage that the new automobile will obtain under speciied driving
conditions. This interval is calculated from the sample data under the important assumption that
the previously sampled automobiles and the future one(s) can be regarded as random samples
from the same distribution; this assumes identical production processes and similar driving
conditions. In many applications, the population may be conceptual, as per our discussion of
analytic studies in Chapter 1.

2.3.2 Prediction Interval to Contain All of m Future Observations

Aprediction interval to contain the values of all ofm future observations generalizes the concept
of a prediction interval to contain a single future observation. For example, a traveler who must
plan a speciic number of trips may not be interested in the amount of fuel that will be needed
on the average for all future trips. Instead, this person would want to determine the amount of
fuel that will be needed to complete each of, say, one, or three, or ive future trips.

Prediction intervals to contain all of m future observations are often of interest to manu-
facturers of large equipment who produce only a small number of units of a particular type
product. For example, a manufacturer of gas turbines might wish to establish an interval that,
with a high degree of conidence, will contain the performance values for all three units in a
future shipment of such turbines, based upon the observed performance of similar past units. In
this example, the past units and those in the future shipment would conceptually be thought of
as random samples from the population of all turbines that the manufacturer might build (see
the discussion in Section 1.2).

Prediction intervals are especially pertinent to users of one or a small number of units of
a product. Such individuals are generally more concerned with the performance of a speciic
sample of one or more units, rather than with that of the entire process from which the sample
was selected. For example, based upon the data from a life test of 10 systems, one might
wish to construct an interval that would have a high probability of including the lives of all of
three additional systems that are to be purchased. Prediction intervals to contain all of m future
observations are often referred to as simultaneous prediction intervals, because one is concerned
with simultaneously containing all of the m observations within the calculated interval (with
the associated level of conidence).
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2.3.3 Prediction Interval to Contain at Least k out of m Future Observations

A generalization of a prediction interval to contain all m future observations is one to contain
at least k out of m of the future observations. We will refer to this type of interval again in
Section 2.4.1.

2.3.4 Prediction Interval to Contain the Sample Mean or Sample Standard
Deviation of a Future Sample

Sometimes one desires an interval to contain the sample mean (or sample standard deviation or
other estimated quantity) of a future sample of m observations, rather than one to contain all
(or at least k) of the future sample values. Such an interval would be pertinent, for example,
if acceptance or rejection of a particular design were to be based upon the sample mean of a
future sample from a previously sampled distribution.

Consider the following example: A manufacturer of a high voltage insulating material must
provide a potential customer “performance limits” to contain average breakdown strength of the
material, estimated from a destructive test on a sample of 10 units. Here “average” is understood
to be the sample mean of the readings on the units. The tighter these limits, the better are the
chances that the manufacturer will be awarded a forthcoming contract. The manufacturer,
however, has to provide the customer ive randomly selected units for a test. If the sample
mean for these ive units does not fall within the performance limits stated by the manufacturer,
the product is automatically disqualiied. The manufacturer has available a random sample
of 15 units from production. Ten of these units will be randomly selected and tested by the
manufacturer to establish the desired limits. The remainingive unitswill be shipped to and tested
by the customer. Based on the data from the sample of 10 units, the manufacturer will establish
prediction limits for the sample mean of the ive future readings so as to be able to assert with
95% conidence that the sample mean of the ive units to be tested by the customer will lie in the
interval. A 95%prediction interval to contain the future samplemean provides the desired limits.

Alternatively, suppose that in the preceding example the concern is uniformity of perfor-
mance, as measured by the sample standard deviation, rather than sample mean performance.
In this case, one might wish to compute a prediction interval, based upon measurements on a
random sample of 10 units, to contain the standard deviation of a future sample of ive units
from the same process or population.

2.3.5 One-Sided Prediction Bounds

Some applications call for a one-sided prediction bound, instead of a two-sided prediction
interval, to contain future sample results. An example is provided by a manufacturer who needs
to warranty the eficiency of all units (or of their average) for a future shipment of three motors,
based upon the results of a sample of ive previously tested motors from the same process.
This problem calls for a one-sided lower prediction bound, rather than a two-sided prediction
interval.

2.3.6 Interpretation of Prediction Intervals and Bounds

If all the parameters of a probability distribution are known, one can compute a probability
interval to contain the values of a future sample. For example, for a normal distribution with
mean µ and standard deviation σ, the probability is 0.95 that a single future observation will
be contained in the interval µ ± 1.96σ. In the more usual situation where one has only sample
data, one can construct a 100(1 − α)% prediction interval to contain the future observation with
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a speciied degree of conidence. Such an interval may be formally characterized as follows:
“If from many independent pairs of random samples, a 100(1 − α)% prediction interval is
computed from the data of the irst sample to contain the value(s) of the second sample,
100(1 − α)% of the intervals would, in the long run, correctly bracket the future value(s).”
Equivalently, onewould, in the long run, be correct 100(1 − α)% of the time in claiming that the
future value(s)will be containedwithin the prediction interval. The requirement of independence
holds both with regard to the different pairs of samples and the observations within each sample.

The probability that a particular prediction interval will contain the future value that it is
supposed to contain is unknown because the probability depends on the unknown parameters.
As with conidence intervals, the 100(1 − α)% refers to the procedure used to construct the
prediction interval and not any particular interval that is computed.

2.4 STATISTICAL TOLERANCE INTERVALS

2.4.1 Tolerance Interval to Contain a Proportion of a Distribution

Prediction intervals are in general useful to predict the performance of one, or a small number, of
future units. Consider now the casewhere onewishes to draw conclusions about the performance
of a relatively large number of future units, based upon the data from a random sample from
the distribution of interest. Conceptually, one can also construct prediction intervals for such
situations (e.g., a prediction interval to contain all 100, 1,000, or any number m, future units).
Such intervals would, however, often be very wide. Also, the exact number of future units of
interest is sometimes not known ormay be conceptually ininite.Moreover, rather than requiring
that the calculated interval contain all of a speciied number of units, it is generally suficient
to construct an interval to contain a large proportion of such units.

As indicated in Section 2.3.3, there are procedures for calculating prediction intervals to
contain at least k out of m future observations, where k ≤ m. More frequently, however,
applications call for the construction of intervals to contain a speciied proportion, β, of the
entire sampled distribution. This leads to the concept of a tolerance interval.

Speciically, a tolerance interval is an interval that one can claim to contain at least a speciied
proportion, β, of the distribution with a speciied degree of conidence, 100(1 − α)%. Such an
interval would be of particular interest in setting limits on the process capability for a product
manufactured in large quantities. This is in contrast to a prediction interval which, as noted, is
of greatest interest in making predictions about a small number of future units.

Suppose, for example, that measurements of the diameter of a machined part have been
obtained on a random sample of 25 units from a production process. A tolerance interval calcu-
lated from such data provides limits that one can claim, with a speciied degree of conidence
(e.g., 95%), contains the (measured) diameters of at least a speciied proportion (e.g., 0.99) of
units from the sampled process.

The two numbers in the preceding statement should not create any confusion when one
recognizes that the 0.99 refers to the proportion of the distribution to be contained, and the 95%
deals with the degree of conidence associated with the claim.

2.4.2 One-Sided Tolerance Bounds

Practical applications often require the construction of one-sided tolerance bounds. For example,
in response to a request by a regulatory agency, a manufacturer has to make a statement
concerning the maximum noise that, under speciied operating conditions, is met (i.e., is not
exceeded) by a high proportion of units, such as 0.99 of a particular model of a jet engine. The
statement is to be based upon measurements from a random sample of 10 engines and is to
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be made with 95% conidence. In this case, the manufacturer desires a one-sided upper 95%
tolerance bound that will exceed at least a proportion 0.99 of the population of jet engines,
based upon the previous test results. A one-sided upper tolerance bound is appropriate here
because the regulatory agency is concerned principally with how noisy, and not how quiet, the
engines might be.

A one-sided tolerance bound is equivalent to a one-sided conidence bound on a distribution
quantile (see Section 2.2.2). More speciically, a one-sided lower 100(1 − α)% conidence
bound on the p quantile of a distribution is equivalent to a one-sided lower tolerance bound
that one can claim with 100(1 − α)% conidence is exceeded by at least a proportion 1 − p of
the distribution. Similarly, a one-sided upper 100(1 − α)% conidence bound on the p quantile
of a distribution is equivalent to a one-sided upper tolerance bound that one can claim with
100(1 − α)% conidence exceeds at least a proportion p of the distribution. For this reason,
we will, in most parts of this book, focus on the appropriate two-sided conidence interval or
one-sided conidence bound for a quantile, instead of discussing one-sided tolerance bounds.

2.4.3 Interpretation of β-Content Tolerance Intervals

As previously noted, if the parameters of a distribution are known, one can use elementary
methods to compute a probability interval to contain a speciied proportion of the distribution.
Typically, however, the distribution parameters are unknown and the available information is
limited to a sample. The lack of perfect information about the distribution is taken into con-
sideration by the conidence statement associated with the tolerance interval. Thus, a tolerance
interval will bracket at least a certain proportion of the distribution with a speciied degree
of conidence. A tolerance interval to contain at least a proportion β of the distribution with
100(1 − α)% conidence may be formally characterized as follows: “If one calculates such
intervals from many independent random samples, 100(1 − α)% of the intervals would, in the
long run, correctly include at least a proportion β of the distribution (or, equivalently, one would,
in the long run, be correct 100(1 − α)% of the time in claiming that the actual proportion of the
distribution contained in the interval is at least β).” Such tolerance intervals are often referred
to as β-content tolerance intervals.

As with conidence and prediction intervals, the 100(1 − α)% refers to the procedure used
for constructing the tolerance interval and not to any particular computed tolerance interval. The
actual proportion of the population contained within the tolerance interval is unknown because
this proportion depends on the unknown parameters.

2.4.4 β-Expectation Tolerance Intervals

In the statistical literature, there are references to both “β-content tolerance intervals” and
“β-expectation tolerance intervals.” A β-content tolerance interval, also sometimes referred
to as a (β, 1 − α) tolerance interval, is what we call a “tolerance interval” (Section 2.4.1).
A β-expectation tolerance interval is what we call a 100β% prediction interval for a single
future observation (Section 2.3.1). Our terminology is consistent with much of the applications-
oriented literature.

2.5 WHICH STATISTICAL INTERVAL DO I USE?

In the previous sections, we differentiated among the various types of statistical intervals. It
should be clear from this discussion that the appropriate interval depends upon the problem
at hand. That is, the speciic questions that need to be answered from the data will determine
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whether a conidence interval for a distribution mean, a conidence interval for a distribution
standard deviation, a conidence interval for a distribution quantile, or some other conidence
interval or tolerance interval or prediction interval is needed. Thus, the analyst has to decide,
based upon an understanding of the nature of the problem, which speciic type of statistical
interval is needed in a particular application. Moreover, as detailed as the discussion in this book
may seem, we can provide speciic information on only a relatively small number of statistical
intervals in the forthcoming chapters. General methods for constructing statistical intervals are
given in Chapters 12–15 and these general methods can be used in many more situations, as
illustrated in these chapters and in Chapters 16–18. Other applications may require a statistical
interval that is different from any of those described here (e.g., involving a distribution or
random error structure or a correlation structure not described in this book). We hope, however,
that our discussion will help the analyst identify when this is the case, and, if necessary, call
upon a professional statistician for guidance in developing the needed interval.

2.6 CHOOSING A CONFIDENCE LEVEL

All statistical intervals have an associated conidence level. Loosely speaking, the conidence
level is the degree of assurance one desires that the calculated statistical interval contains the
value of interest. (See Sections 2.2.5, 2.3.6, and 2.4.3 for a more precise deinition.) The analyst
must determine the conidence level, based upon what seems to be an acceptable degree of
assurance, for each application. Thus, one has to trade off the risk of not including the correct
parameter, quantile, future observation, etc., in the interval against the fact that as the degree of
assurance is raised, the statistical interval becomes longer.

2.6.1 Further Elaboration

Statistical consultants are frequently requested by their clients to construct 95% conidence
intervals to contain, say, the means of different populations from which random samples have
been taken. In 95% of such cases, the calculated interval will include the actual population
mean—if the various assumptions stated in Chapter 1 hold. Due to chance, however, the client
is “misled” in 5% of the cases; that is, 5% of the time the computed interval will not contain
the population mean. Clients who are afraid of being among the unlucky 5%, and desire added
protection, can request a higher level of conidence, such as 99%. This reduces to one in
a hundred the chances of obtaining an interval that does not contain the population mean.
The client, however, pays a price for the higher level of conidence. For a ixed sample size,
increasing the conidence level results in an increase in the width of the calculated interval. For
example, the extreme width of a 99.9% conidence interval may be quite sobering. Besides this,
in most cases, the only restriction in selecting a conidence level is that it be less than 100%; to
obtain 100% conidence, the entire population must be observed. This, of course, is not possible
if our concern is with a future process.

2.6.2 Problem Considerations

The importance of any decision that is to bemade from a statistical interval needs to be taken into
consideration in selecting a conidence level. For example, at the outset of a research project,
one might be willing to take a reasonable chance of drawing incorrect conclusions about the
mean of the distribution and use a relatively low conidence level, such as 90%, or even 80%,
because the initial conclusions will presumably be corroborated by subsequent analyses. On the
other hand, in reporting the inal results of a project that may result in the building an expensive
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new plant or the release of a new drug, one might wish a higher degree of conidence in the
correctness of one’s claim.

2.6.3 Sample Size Considerations

As we shall see in subsequent chapters, narrower statistical intervals are expected with larger
sample sizes for a ixed level of conidence. This is especially the case for conidence intervals
to contain a distribution parameter. Increasing the sample size by a factor of k will have the
general effect of reducing the width of a conidence interval by a factor of (approximately) the
square root of k. For example, increasing the sample size fourfold will have the general effect
of (approximately) halving the width of a conidence interval (the result is approximate because
the width of a conidence interval is itself random).

The expected width of prediction intervals and tolerance intervals also becomes narrower
with increased sample size, but instead of shrinking to zero, converges to that of the probability
intervals that one would obtain if the model parameters were known. In Chapters 8–10 we
give simple methods for evaluating the effect that sample size has on the expected width of
a statistical interval and for inding the sample size that is needed to provide an interval that
has a speciied expected width. This information can be used to evaluate the trade-off between
sample size and choice of conidence level.

Sometimes, one might wish to use relatively high conidence levels (e.g., 99%) with large
samples, and lower conidence levels (e.g., 90% or 80%) with small samples. This implies that
the more data one has, the surer one would like to be of one’s conclusions. Also, such practice
recognizes the fact that, for small sample sizes, the calculated statistical interval is often so wide
that it has little practical meaning and, therefore, one may wish to obtain a somewhat narrower
interval at the cost of reducing one’s conidence in its correctness.

2.6.4 A Practical Consideration

As indicated inChapter 1, statistical intervals take into consideration only the vagaries of random
statistical luctuations due to sampling variation. The sample is assumed to be randomly selected
from the distribution of interest. Moreover, unless a nonparametric procedure (i.e., a procedure
that does not require a distributional assumption) is used, a statistical model, such as a normal
distribution, is assumed. As we have indicated, these assumptions hold only approximately, if
at all, in many real-world problems. Errors due to deviations from these assumptions are not
included in the conidence level. A high conidence level, thus, may provide a false sense of
security. A user of a statistical interval with 99.9% associated conidence might forget that the
interval could fail to include the value of interest because of such other factors. A similar point
could be made for an interval with 90% associated conidence, but users usually regard 90%
intervals with less reverence than 99.9% intervals.

2.6.5 Further Remarks

The 95% conidence level appears to be used more frequently in practice than any other level,
perhaps out of custom; 90% and 99% conidence levels seem to be next in popularity. However,
conidence levels such as 50%, 75%, 80%, 99.9%, and even 99.99% are also used. The lower
conidence levels are, perhaps, used more frequently with prediction and tolerance intervals
than with conidence intervals. This is so because, as we shall see, prediction and tolerance
intervals tend to be wider than conidence intervals, especially with larger samples.

There is no single, straightforward answer to the question, “What conidence level should
I select?” Much depends on the speciic situation and the desired trade-off between risk and
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interval width. One can sidestep the issue by presenting intervals for a number of different
conidence levels, and this in fact is often a reasonable approach.

2.7 TWO-SIDED STATISTICAL INTERVALS VERSUS ONE-SIDED
STATISTICAL BOUNDS

In Sections 2.2.4, 2.3.5, and 2.4.2, we described one-sided conidence bounds, prediction
bounds, and tolerance bounds, respectively. As indicated in these sections, there are many
applications for which one is primarily interested in either a lower bound or an upper bound.
Even in such situations it is often still convenient to report a two-sided interval. For example,
if one wants to predict the number of units that will be returned for warranty repair, major
concern will center on the upper prediction bound, indicating how bad things might be. In most
cases, however, there will also be at least some interest in the lower prediction bound, giving
an indication of how good things might be.

One can combine a one-sided lower and a one-sided upper conidence bound to obtain a
two-sided conidence interval. For example, 95% one-sided lower and 95% one-sided upper
conidence bounds, taken together, result in a 90% two-sided conidence interval (as shown in
Sections B.2.2 and B.6.2). Moreover, most of the commonly used two-sided conidence interval
procedures (such as those discussed in Chapters 3 and 4) have equal probabilities of the lower
endpoint being larger than the actual value and the upper endpoint being smaller than the actual
value. In developing procedures for constructing such intervals, it is generally desirable to have
this property. In such situations, the endpoints of, for example, a 90% two-sided conidence
interval can be considered to be one-sided 95% conidence bounds. The same properties hold
for prediction intervals designed to include a single future observation. We note, however,
that the preceding statement generally does not carry over, exactly, to tolerance intervals or
simultaneous prediction intervals.

2.8 THE ADVANTAGE OF USING CONFIDENCE INTERVALS INSTEAD
OF SIGNIFICANCE TESTS

Statistical signiicance (or hypothesis) tests and related p-values are frequently used to assess
the correctness of a hypothesis about a distribution parameter or characteristic using sample
data. For example, a consumer protection agency might wish to test a manufacturer’s claim (or
hypothesis) that the mean lifetime of a brand of light bulbs is at least 1,000 hours. Statistical
signiicance tests are designed so that the probability of incorrectly rejecting the hypothesis
when it is, in fact, true has a speciied small value, known as the signiicance level (or Type I
error probability), often denoted by α.

There is a close relationship between conidence intervals and signiicance tests. Indeed,
a conidence interval can generally be used to test a hypothesis. For the light bulb example,
suppose the one-sided 100(1 − α)% upper conidence bound for the actual mean lifetime,
calculated from the data, exceeds the claimed mean lifetime of 1,000 hours. Then one would
conclude that the claim has not been contradicted by the data at the 100α% signiicance level.
On the other hand, if the one-sided 100(1 − α)% upper conidence bound is less than 1,000
hours, there is evidence at the 100α% signiicance level to reject the claim. Thus, a one-sided
100(1 − α)% conidence bound generally gives the accept or reject information provided by
a one-sided signiicance test at a 100α% level of signiicance. There is a similar relationship
between a two-sided 100(1 − α)% conidence interval and a two-sided signiicance test at a
100α% signiicance level.
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In addition, conidence intervals generally provide more information and insight than sig-
niicance tests. This is because conidence intervals give quantitative bounds that express the
statistical uncertainty, instead of a mere accept or reject statement. Also, whether or not sta-
tistical signiicance is achieved is highly dependent on sample size. The width of a conidence
interval is also highly dependent on sample size. For such an interval, however, the effect of
a small sample is evident from noting the width of the interval, while this is not the case for
a signiicance test. Thus, conidence intervals are usually more meaningful than signiicance
tests. One can argue, moreover, that in most practical situations, there is no reason for the
statistical hypothesis to hold exactly. For example, two different processes generally would not
be expected to have identical means. Thus, whether or not the hypothesis of equal means for
the two processes is rejected depends upon the sample sizes and the magnitude of the actual
difference between the process means.

For example, a wide conidence interval—often resulting in failure to reject a stated null
hypothesis of a signiicant effect or difference—frequently suggests that only a relatively small
sample size was available. It may, of course, also suggest appreciable process variability. Thus,
one might conclude that the results are inconclusive and that, if possible, obtaining additional
data should be considered. Similarly, a narrow conidence interval—often resulting in the
rejection of a null hypothesis—might not necessarily imply that the effect or difference is of
practical importance. Instead, it might just be a consequence of a large sample.

In most situations, conidence intervals avoid some of the pitfalls inherent in statistical
signiicance tests. Moreover, statistical intervals are generally easier to explain to management
and those with no training in statistics than are signiicance tests.

Most applied statisticians, and especially those in business and economics and in the physical
and engineering sciences, now share the preceding viewpoint. It is, however, not universally
accepted and the use of conidence intervals versus signiicance tests remains a controversial
topic, particularly in the social sciences. The Bibliographic Notes section at the end of this
chapter gives some references that discuss this topic further.

2.9 SIMULTANEOUS STATISTICAL INTERVALS

Some practical problems require thatmore than one statistical interval (oftenmany) be computed
from the same data and be considered simultaneously. This is the case, for example, with the
prediction intervals described in Section 4.8 to contain, with 100(1 − α)% conidence, all of
m future observations from a normal distribution. We can view this as the construction of
m intervals (one for each future observation), where we want to assert with 100(1 − α)%
conidence that all of the intervals are correct. Thus, such intervals are called simultaneous
prediction intervals. Similarly, one might want to compute simultaneous conidence intervals
to contain each of the

(
k

2

)
=

k!

2!(k − 2)!

possible differences between all pairs of means from k different populations.
In practice, constructing simultaneous conidence (or prediction) intervals often make sense

because in simultaneously making m interval statements, it can become increasingly likely that
at least one of these statements does not hold as m increases, even though each of the intervals
individually has a coverage probability of 1 − α.

Miller (1981) treats, in detail, the theory and methods for making simultaneous inferences,
including general methods for computing such intervals, and easy-to-use approximate methods,
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like the Bonferroni approximation (discussed below), and their application. We review some of
the basic practical methods.

Suppose that we want to combine k conidence intervals that, individually, have conidence
levels 1 − α1 , . . . , 1 − αk . We want to know the conidence level, 1 − αJ , of the joint coni-
dence statement (or how to compute the individual intervals so that they have the desired joint
conidence level). The following three situations are of interest.

1. The intervals are functionally dependent on one another in the sense that the correctness
of any one implies the correctness of all of the others (and conversely with regard to
incorrectness). For example, a binomial distribution conidence interval for the probability
of a future binomial distribution trial is calculated directly from the conidence interval
for the binomial distribution parameter, as described in Sections 6.4. Then the coverage
probability is the same for both intervals.

2. The intervals are statistically independent (i.e., the probability that any one individual
conidence interval statement is correct is equal to the conditional probability that it is
correct, given the correctness of any combination of the other intervals). The assumption
of independence is reasonable if each interval in the set is computed separately from
independent data sets (e.g., if various studies had been conducted independently and
the data from each analyzed separately). It is, in general, not reasonable to assume
independence if some or all of the intervals involve computations from the same data
set (e.g., in the analysis of variance when conidence intervals are calculated for several
group means, using the same pooled variance estimate, calculated over all of the groups).
If the intervals are independent, then the joint conidence level is

1 − αJ = (1 − α1)(1 − α2) · · · (1 − αk).

For example, a set of three independent 95% conidence intervals would have a joint
conidence level of 0.953 = 0.8574 or 85.74%.

3. The intervals are neither functionally dependent nor statistically independent. In this
case, the coverage probability may be either less than or greater than the nominal joint
conidence level for the case of independence. For some special cases, it may be possible
to compute the exact coverage probability, but, for others, the task is often analytically
dificult or intractable or computationally intensive. Elementary probability theory, how-
ever, provides a simple, conservative lower bound on the coverage probability for a joint
conidence statement—in particular, the joint conidence level

1 − αJ ≥ 1 − α1 − · · · − αk .

This is known as the Bonferroni bound, which is discussed further in Section D.7.1. It
provides a useful way for combining conidence statements to give a conservative lower
bound for the coverage probability. For example, in combining three 95% conidence
intervals, the joint conidence level, as calculated from the Bonferroni bound, is at least
1 − 0.05 − 0.05 − 0.05 = 0.85 or 85%. Similarly, when combining two 99% intervals,
we have a joint conidence level of at least 1 − 0.01 − 0.01 = 0.98 or 98%. In the latter
case, theBonferroni lower bound is close to the joint conidence level that one has under the
assumption of independence, 0.992 = 0.9801. The Bonferroni inequality is conservative
in the sense that it provides conidence intervals with coverage probabilities that are larger
than the nominal conidence levels. The Bonferroni inequality works especially well (i.e.,
usually gives a close approximation to the nominal conidence level) when k is small (i.e.,
relatively few individual conidence statements) and the (1 − α) values are close to 1.
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BIBLIOGRAPHIC NOTES

Specific areas of application

Katz (1975) provides a discussion involving the use of conidence intervals in courtroom
testimony. Altman et al. (2000) argue for the use of conidence intervals in medical research.
For some other medical applications, Hall (1989) argues that “statistical models and conidence
intervals emphasize parameters rather than distributions.” We would suggest that a tolerance
interval is often useful to describe the breadth of a distribution.

As described in Section 2.2.2, conidence intervals for reliability are widely used in product
life analyses. Nelson (1982) and Meeker and Escobar (1998) describe numerous such applica-
tions.

Statistical intervals versus significance testing

The debate between researchers advocating for and against signiicance tests (versus conidence
intervals) continues to be heated. Harlow et al. (1997) present viewpoints on both sides of the
controversy. Krantz (1999), in a review of Harlow et al. (1997), defends the use of signiicance
tests in psychological research. Our view is that his arguments do not apply in most other
application areas, including the biological, physical, engineering and environmental sciences
and in business and economics.

One-sided confidence intervals

Boyles (2008) argues against the use of one-sided conidence intervals because such intervals
include extreme values of the quantity of interest that are implausible. We also favor reporting
two-sided intervals (see Section 2.2.4), but recognize that in some applications all, or almost
all, of the concern for error is on one side or the other of the quantity of interest (e.g., when
there is concern for safety). Thus we present methods for constructing one-sided (lower or
upper) conidence bounds. Agreeing with Boyles’s basic concern, we suggest avoiding the term
“one-sided conidence interval.”

Balancing error probabilities

Fraser (2011, bottom of page 300) supports, for slightly different reasons, our argument (in
Section 2.7) for constructing two-sided statistical intervals that balance the error probabilities in
the two sides of the interval—allowing one to usefully interpret, with an appropriate adjustment
in conidence level, the endpoints of such intervals as one-sided bounds.

Choosing a coverage probability

Landon and Singpurwalla (2008) discuss choosing a coverage probability for prediction inter-
vals by using decision-theoretic considerations.



Chapter 3
Constructing Statistical

Intervals Assuming a Normal
Distribution Using Simple

Tabulations

OBJECTIVES AND OVERVIEW

This chapter presents, tabulates, and compares factors for calculating the different kinds of
intervals, based upon a sample of size n from a normal distribution with unknown mean µ and
unknown standard deviation σ. Speciically, we present factors for:

� Two-sided conidence intervals and one-sided conidence bounds to contain the distribu-
tion mean μ and the distribution standard deviation σ.

� Two-sided tolerance intervals and one-sided tolerance bounds to contain at least a propor-
tion β of the distribution values, for β = 0.90, 0.95, and 0.99.

� Two-sided prediction intervals and one-sided prediction bounds to contain the values of
all of m = 1, 2, 5, 10, 20, and m = n randomly selected future observations, and the
sample mean and standard deviation of m = n future observations.

For each kind of interval or bound, the tables provide factors for both 95% and 99% conidence
levels. We also present examples illustrating the use of these factors.

The chapter presents:

� The normal distribution, justiication for its use, and background information about the
factors (Section 3.1).
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� The circuit pack voltage application that will be used to illustrate the use of the factors
(Section 3.2).

� Use of the factors for two-sided statistical intervals (Section 3.3).

� Use of the factors for one-sided statistical bounds (Section 3.4).

3.1 INTRODUCTION

3.1.1 The Normal Distribution

The normal distribution is the best known and most frequently used statistical model. Its theo-
retical justiication is often based on the “central limit theorem” (CLT). The CLT says that the
distribution of the sum of random variables can be approximated by a normal distribution. This
result justiies the normal distribution as an appropriate model for phenomena that arise directly
as a sum or mean, such as the number of motor vehicle accidents per week in a large city. The
CLT also justiies the use of the normal distribution for phenomena that arise as a consequence
of the impact of many small factors. Examples of these include the height or weight of men or
women. The sensitivity of an interval to the assumption of normality depends on the speciic
type of interval, the population or process being studied, and the sample size (see Section 4.10).

The normal distribution probability density function (pdf) is

f(x;μ, σ) =
1

σ
√

2π
exp

[
−1

2

(x − μ

σ

)2
]
, −∞ < x < ∞,

where −∞ < μ < ∞ is the mean (and also the median and mode) and σ > 0 is the standard
deviation of the distribution. The normal pdf is graphed in Figure 3.1 for mean μ = 0 and
several values of σ. The corresponding cumulative distribution function (cdf) for the proportion
of a distribution below x is

F (x;μ, σ) = Pr(X ≤ x) =

∫ x

−∞
f(y;μ, σ)dy.
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Figure 3.1 Normal distribution probability density function.
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This can also be computed from Pr(X ≤ x) = Φ((x − μ)/σ), where Φ(z) = F (z; 0, 1) is
the cdf of the standard normal distribution (i.e., the normal distribution with mean μ = 0 and
standard deviation σ = 1). This function is tabulated in most introductory books on statistics
or can be evaluated from statistical calculators in computer packages or on the Web (e.g.,
pnorm(0.25) in R gives Pr(Z ≤ 0.25) = 0.5987). When the normal distribution is used as a
model for a population or process, μ and σ are usually unknown and must be estimated from
sample data. Section C.3.2 contains more information about the normal distribution.

3.1.2 Using the Simple Factors

The tables of factors described in this chapter were computed from the more familiar t, χ2 ,
and F -distribution tables, using standard formulas, which we review in Chapter 4. The simpler
factors given here serve several purposes:

� Statistical intervals can be computed with slightly less computation than required with
the more general formulas given in Chapter 4.

� Interval widths can be compared directly, providing insight into the differences among
the various types of statistical intervals.

� One can easily assess the effect of sample size and conidence level on the width of a
particular statistical interval.

In the rest of this chapter we will illustrate the construction, describe the interpretation,
and compare the widths of some of the most commonly used statistical intervals for a normal
distribution. Chapter 4 discusses, in more detail and generality, the computations for these and
some other statistical intervals.

To construct intervals from these factors, it is assumed that a random sample of size n
with values xi , i = 1, . . . , n, has been taken from the population or process of interest, and
that the sample mean x̄ and the sample standard deviation s have been computed from these
observations using the expressions

x̄ =

∑n
i=1 xi

n
and s =

[∑n
i=1(xi − x̄)2

n − 1

]1/2

.

3.2 CIRCUIT PACK VOLTAGE OUTPUT EXAMPLE

This section introduces an example that we will use to illustrate the computation of statistical
intervals based on an assumption of a normal distribution.

Example 3.1 Circuit pack voltage output problem and data. A manufacturer wanted to
characterize empirically the voltage outputs for a new electronic circuit pack design. Five
prototype units were built and the following measurements were obtained: 50.3, 48.3, 49.6,
50.4, and 51.9 volts. Figure 3.2 is a dot plot of the ive voltage measurements.

The sample size for this study was small, as it often is in practice, because of the high cost
of manufacturing such prototype units. In this case, the experimenters felt that a sample of ive
units would be suficient to answer some initial questions. Other questions might require more
units; see Chapters 8–10 for a discussion of the choice of sample size.

From previous experience with the construction and evaluation of similar circuit packs and
from engineering knowledge about the components being used in the circuit, the experimenters
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Volts

49 50 51 52

Figure 3.2 Dot plot of the circuit pack output voltages.

felt it would be reasonable to assume that the voltage measurements follow a normal distribution
(with an unknown mean and standard deviation).

The sample mean and standard deviation of the voltage output readings are

x̄ =
50.3 + 48.3 + · · · + 51.9

5
= 50.10,

s =

[
(50.3 − 50.10)2 + · · · + (51.9 − 50.10)2

5 − 1

]1/2

= 1.31.

Example 3.2 Validity of inferences for the circuit pack voltage output application. The
experimenters were most interested in making inferences about the circuit packs that would be
manufactured in the future. Thus, in the terminology of Chapter 1, this is an analytic study.
The statistical intervals assume that the ive sample prototype circuit packs and the future
circuit packs of interest come from the same stable production process and that the unit-to-
unit variability in the voltage readings can be adequately described by a normal distribution
with a constant mean μ and standard deviation σ. If the process changes (e.g., because of a
component substitution) after the sample units are made, inferences about the new state of the
process or predictions about future units might not be valid. The assumption of normality can
often be assessed from the sample data. This, however, generally requires a sample of at least
20–30 observations to have any reasonable degree of sensitivity. Thus, for the present example,
there are not enough data to properly check the assumption of normality, and its justiication
needs to be based on the experimenter’s knowledge of the process and previous experience
in similar situations. One can and should, however, evaluate the sensitivity of the conclusions
to the assumption of normality and repeat the analysis under alternative assumptions. For
example, transforming the response variable, or comparing inferences made with and without
distributional assumptions, and with different distributional assumptions can be informative, as
illustrated in Section 4.12.

3.3 TWO-SIDED STATISTICAL INTERVALS

3.3.1 Simple Tabulations for Two-Sided Statistical Intervals

Tables J.1a and J.1b provide factors c(1−α ;n) , where n is the number of observations in the given
sample and 100(1 − α)% is the conidence level associated with the calculated interval, so that
the two-sided interval

x̄ ∓ c(1−α ;n)s

is (in turn):

� A two-sided conidence interval for the distribution mean μ.

� A two-sided tolerance interval to contain at least a speciied proportionβ of the distribution
for β = 0.90, 0.95, and 0.99.
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� A two-sided simultaneous prediction interval to contain all of m future observations from
the previously sampled normal distribution for m = 1, 2, 5, 10, 20, and m = n.

� A two-sided prediction interval to contain the sample mean ofm = n future observations.

Tables J.2a and J.2b provide factors cL(1−α ;n) and cU (1−α ;n) , where n is the number of
observations in the given sample and 100(1 − α)% is the associated conidence level, so that
the interval

[cL(1−α ;n)s, cU (1−α ;n)s]

is (in turn):

� A two-sided conidence interval for the distribution standard deviation σ.

� A two-sided prediction interval to contain the standard deviation of m = n future obser-
vations.

The tabulated values are for n = 4(1)10, 12, 15(5)30, 40, 60, and∞. Tables J.1a and J.2a are
for conidence levels of 100(1 − α)% = 95% and Tables J.1b and J.2b are for 100(1 − α)% =
99%. Methods for obtaining factors for other values of n and for other conidence levels are
given in Chapter 4.

We will use [θ
˜
, θ̃] to denote a two-sided statistical interval that is constructed for θ, some

quantity of interest. Thus, θ
˜
is the lower endpoint of the interval and θ̃ is the upper endpoint

of the interval. If only a lower or an upper statistical bound is desired, we compute either θ
˜

or θ̃, which we call a one-sided lower or upper bound for θ. For example, [s
˜

m , s̃m ] denotes a
two-sided prediction interval to contain the sample standard deviation for a future sample of
size m and μ̃ denotes an upper conidence bound for the distribution mean μ.

3.3.2 Two-Sided Interval Examples

Using the sample values x̄ = 50.10 and s = 1.31, based on n = 5 observed voltage measure-
ments, we can use the factors given in Table J.1a to construct the following statistical intervals:

� A two-sided 95% conidence interval for the mean μ of the distribution of sampled circuit
packs is

[μ
˜
, μ̃] = 50.10 ∓ 1.24 × 1.31 = [48.5, 51.7].

Thus, we are 95% conident that the interval 48.5 to 51.7 volts contains the unknown
mean μ of the distribution of circuit pack voltage readings. It is important to remember,
as explained in Section 2.2.5, that “95% conident” describes the success rate of the
procedure (i.e., the percentage of time that a claim of this type is correct).

� A two-sided 95% tolerance interval to contain at least a proportion β = 0.99 of the
sampled distribution of circuit pack voltages is

[T
˜

0.99 , T̃0.99 ] = 50.10 ∓ 6.60 × 1.31 = [41.5, 58.7].

Thus, we are 95% conident that the interval 41.5 to 58.7 volts contains at least a proportion
β = 0.99 of the distribution of circuit pack voltage readings.

� A two-sided (simultaneous) 95% prediction interval to contain the voltage readings of all
of 10 additional circuit packs randomly sampled from the same distribution is

[Y
˜

10 , Ỹ10 ] = 50.10 ∓ 5.23 × 1.31 = [43.2, 57.0].
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Thus, we are 95% conident that the voltage readings of all 10 additional circuit packs
will be contained within the interval 43.2 to 57.0 volts.

� A two-sided 95% prediction interval to contain the sample mean of the voltage readings
of ive additional circuit packs randomly sampled from the same distribution is

[Ȳ
˜ 5

, ˜̄Y5 ] = 50.10 ∓ 1.76 × 1.31 = [47.8, 52.4].

Thus, we are 95% conident that the sample mean of the voltage readings of ive additional
circuit packs will be in the interval 47.8 to 52.4 volts.

Using the factors in Table J.2a, we can construct the following 95% statistical intervals:

� A two-sided 95% conidence interval for the standard deviation σ of the distribution of
sampled circuit pack voltage readings is

[σ
˜
, σ̃] = [0.60 × 1.31, 2.87 × 1.31] = [0.8, 3.8].

Thus, we are 95% conident that the interval 0.8 to 3.8 volts contains the unknown standard
deviation σ of the distribution of circuit pack voltage readings.

� A two-sided 95% prediction interval to contain the standard deviation of the voltage
readings of ive additional circuit packs randomly sampled from the same distribution is

[S
˜

5 , S̃5 ] = [0.32 × 1.31, 3.10 × 1.31] = [0.4, 4.1].

Thus, we are 95% conident that the standard deviation of the voltage readings of ive
additional circuit packs will be in the interval 0.4 to 4.1 volts.

3.3.3 Comparison of Two-Sided Statistical Intervals

Figure 3.3 provides a comparison of some of the preceding factors for computing two-sided
95% statistical intervals. It illustrates the large differences in interval width between the various
interval types. Thus, Figure 3.3 and Tables J.1a and J.1b show that, for a given sample size
and conidence level, a conidence interval for the distribution mean is always narrower than
a prediction interval to contain all m future observations or a tolerance interval to contain a
proportion β = 0.90, 0.95, or 0.99 of the distribution. On the other hand, whether or not a
particular prediction interval is narrower than a particular tolerance interval depends on the
number of future observations to be contained in the prediction interval and the proportion
of the distribution to be contained in the tolerance interval. Moreover, the relative widths of
different prediction intervals depend on the number of future observations to be contained in
the prediction interval, and the relative widths of different tolerance intervals depend on the
proportion of the distribution to be contained in the tolerance interval, for a given sample size
and conidence level. Finally, conidence intervals to contain the distribution mean and the
distribution standard deviation are narrower, respectively, than the corresponding prediction
intervals to contain the sample mean and standard deviation of a future sample of any size.

3.4 ONE-SIDED STATISTICAL BOUNDS

3.4.1 Simple Tabulations for One-Sided Statistical Bounds

Tables J.3a and J.3b provide factors for calculating one-sided statistical bounds similar to those
in Tables J.1a and J.1b (presented in Section 3.3) for calculating two-sided statistical intervals.
Thus, Table J.3a (for 100(1 − α)% = 95%) and Table J.3b (for 100(1 − α)% = 99%) provide
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Figure 3.3 Comparison of factors for calculating some two-sided 95% statistical intervals. A similar igure

irst appeared in Hahn (1970b). Adapted with permission of the American Society for Quality.

factors c′(1−α ;n) , where n is the number of observations in the given sample and 100(1 − α)%
is the associated conidence level, so that the one-sided lower bound

x̄ − c′(1−α ;n)s

or the one-sided upper bound

x̄ + c′(1−α ;n)s

is (in turn):

� A lower (or upper) conidence bound for the distribution mean μ.

� A lower (or upper) tolerance bound to be exceeded by (or exceed) at least a speciied
proportion β of the distribution for β = 0.90, 0.95, and 0.99.

� A one-sided lower (or upper) simultaneous prediction bound to be exceeded by (or
exceed) all of m future observations from the previously sampled normal distribution for
m = 1, 2, 5, 10, 20, and m = n.

� A one-sided lower (or upper) prediction bound for the sample mean of m = n future
observations.

Tables J.4a and J.4b provide factors for calculating one-sided statistical bounds similar to
those in Table J.2a and Table J.2b (presented in Section 3.3) for calculating two-sided intervals.
Thus, Table J.4a (for 100(1 − α)% = 95%) and Table J.4b (for 100(1 − α)% = 99%) provide
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factors c′L(1−α ;n) and c′U (1−α ;n) , where n is the number of observations in the given sample and

100(1 − α)% is the associated conidence level, so that the one-sided lower bound

c′L(1−α ;n)s

or the one-sided upper bound

c′U (1−α ;n)s

is (in turn):

� A lower (or upper) conidence bound for the distribution standard deviation σ.

� A lower (or upper) prediction bound for the standard deviation of m = n future observa-
tions.

The tabulations are again for n = 4(1)10, 12, 15(5)30, 40, 60, and ∞. Methods for obtaining
factors other than those tabulated are given in Chapter 4.

3.4.2 One-Sided Statistical Bound Examples

Using the sample values x̄ = 50.10 and s = 1.31, based on n = 5 observations, we can use
the factors given in Table J.3a to construct the following one-sided statistical bounds:

� A one-sided lower 95% conidence bound for the mean μ of the distribution of sampled
circuit pack voltage readings is

μ
˜

= 50.10 − 0.95 × 1.31 = 48.9.

Thus, we are 95% conident that the unknown mean μ of the distribution of circuit pack
voltage readings exceeds the lower conidence bound of 48.9 volts.

� A one-sided upper 95% tolerance bound to exceed at least a proportion β = 0.99 of the
sampled distribution of circuit pack voltage readings is

T̃0.99 = 50.10 + 5.74 × 1.31 = 57.6.

Thus, we are 95% conident that at least a proportion β = 0.99 of the distribution of
circuit packs have voltage readings less than 57.6 volts.

� A one-sided lower 95% prediction bound to be exceeded by the voltage readings of all of
10 additional circuit packs randomly sampled from the same distribution is

Y
˜

10 = 50.10 − 4.42 × 1.31 = 44.3.

Thus, we are 95% conident that the voltage readings of all 10 additional circuit packs
will exceed 44.3 volts.

� A one-sided lower 95% prediction bound to be exceeded by the sample mean of the
voltage readings of ive additional circuit packs from the same distribution is

Ȳ
˜

5 = 50.10 − 1.35 × 1.31 = 48.3.

Thus, we are 95% conident that the sample mean of the voltage readings of ive additional
circuit packs will exceed 48.3 volts.
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Using the factors in Table J.4a, we can construct the following one-sided 95% statistical
bounds:

� A one-sided upper 95% conidence bound for the standard deviation σ of the distribution
of sampled circuit pack voltage readings is

σ̃ = 2.37 × 1.31 = 3.1.

Thus, we are 95% conident that the unknown standard deviation σ of the distribution of
circuit pack voltage readings is less than 3.1 volts.

� A one-sided upper 95% prediction bound to exceed the standard deviation of the voltage
readings of ive additional circuit packs randomly sampled from the same distribution is

S̃5 = 2.53 × 1.31 = 3.3.

Thus, we are 95% conident that the standard deviation of the voltage readings of ive
additional circuit packs will be less than 3.3 volts.

3.4.3 Comparison of One-Sided Statistical Bounds

Figure 3.4 provides a comparison of some of the preceding factors for calculating one-sided
95% statistical bounds. Inspection of this igure and the tabulations leads to conclusions about
the relative magnitudes of the factors for calculating different types of one-sided bounds that
are similar to those for the two-sided case discussed previously.



Chapter 4
Methods for Calculating
Statistical Intervals for a

Normal Distribution

OBJECTIVES AND OVERVIEW

This chapter extends the results of Chapter 3 and gives general methods for calculating various
statistical intervals for samples from a population or process that can be approximated by a
normal distribution.

The chapter explains:

� How to compute a conidence interval for a normal distribution mean, standard deviation,
or quantile (Sections 4.2, 4.3, and 4.4).

� How to compute a conidence interval for the distribution proportion less (greater) than a
speciied value for a normal distribution (Section 4.5).

� How to compute a tolerance interval to contain a speciied proportion of a normal distri-
bution (Section 4.6).

� How to compute a prediction interval to contain a single future observation or the mean
of a speciied number of future observations from a normal distribution (Section 4.7).

� How to compute a prediction interval to contain at least k of m future observations from
a normal distribution (Section 4.8).

� How to compute a prediction interval to contain the standard deviation of a speciied
number of future observations from a normal distribution (Section 4.9).

� The importance of the assumption of a normal distribution and when the construction of
an interval is (and is not) robust to this assumption (Section 4.10).
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� How to assess the validity of the assumption of a normal distribution and methods for
constructing statistical intervalswhen the data cannot be described by a normal distribution
(Section 4.11).

� How to transform the data to achieve approximate normality and draw inferences from
transformed data (Section 4.12).

� Statistical intervals for linear regression analysis (Section 4.13).

� Statistical intervals for comparing populations and processes (Section 4.14).

The methods described in this chapter are of interest for situations not covered in the
tabulations in Chapter 3 (especially Sections 4.4, 4.5, and 4.8), for developing computer
programs to construct statistical intervals, and for gaining general understanding of the
methodology. For each case, we describe the construction of both a two-sided interval and
one-sided lower and upper bounds. We continue to use the numerical example from Chapter 3
to illustrate the methods.

4.1 NOTATION

The following notation will be used in this chapter:

� Φnorm(z) is the standard normal cumulative distribution function, giving Pr(Z ≤ z),
where Z is a normally distributed random variable with mean μ = 0 and standard
deviation σ = 1. This cumulative distribution function is tabulated in many elemen-
tary statistics textbooks. Computer programs for obtaining Φnorm(z) are also available
(e.g., pnorm(0.25) in R gives Pr(Z ≤ 0.25) = 0.5987).

� z(p) = Φ−1
norm(p) is the p quantile of the standard normal distribution (i.e., the value below

which a normally distributed variate with mean μ = 0 and standard deviation σ = 1 falls
with probability p). For example, z(0.05) = −1.645 and z(0.95) = 1.645. Standard normal
distribution quantiles are tabulated in many elementary statistics textbooks. Computer
programs for obtaining z(p) are also available (e.g., qnorm(0.05) in R gives −1.645).

� t(p ;r) is the p quantile of Student’s t-distribution with r degrees of freedom. For example,
t(0.05;5) = −2.015 and t(0.95;5) = 2.015. Student’s t-distribution quantiles are tabulated
in many elementary statistics textbooks. Computer programs for obtaining t(p ;r) are also
available (e.g., qt(0.95,5) in R gives 2.015).

� t(p ;r,δ) is the p quantile of the noncentral t-distribution with r degrees of freedom and non-
centrality parameter δ. For example, t(0.05;5,4) = 2.120 and t(0.95;5,4) = 9.025. Although
tables for noncentral t-distribution quantiles exist, they are not commonly available. Com-
puter programs for obtaining t(p,r,δ) values are available (e.g., qt(0.95,5,4) in R gives
9.025).

� χ2
(p ;r) is the p quantile of the chi-square (χ2) distribution with r degrees of freedom.

For example, χ2
(0.05;5) = 1.145 and χ2

(0.95;5) = 11.07. Chi-square distribution quantiles

are tabulated in many elementary statistics textbooks. Computer programs for obtaining
χ2

(p ;r) are also available (e.g., qchisq(0.95,5) in R gives 11.07).

� F(p ;r1 ,r2 ) is the p quantile of the Snedecor’s F -distribution with r1 numerator and r2

denominator degrees of freedom. For example, F(0.95;5,2) = 19.30. F -distribution quan-
tiles are tabulated in many elementary statistics textbooks. Computer programs for obtain-
ing F(p ;r1 ,r2 ) are also available (e.g., qf(0.95,5,2) in R gives 19.30).
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Web-based applets are also available for computing quantiles and probabilities from these
commonly used probability distributions. Technical details about these distributions are given
in Appendix C.

In this chapter, we will, as in Chapter 3, assume that the data consist of a random sample of
size n from a normal distribution with sample mean x̄ and sample standard deviation s.

4.2 CONFIDENCE INTERVAL FOR THE MEAN OF A NORMAL DISTRIBUTION

A two-sided 100(1 − α)% conidence interval for the mean µ of a normal distribution is

[µ
˜
, µ̃] = x̄ ∓ t(1−α/2;n−1)

s√
n

. (4.1)

One-sided 100(1 − α)% conidence bounds are obtained by replacing α/2 by α (and ∓ by
either− or+) in the above expression. The factors c(1−α ;n) and c′(1−α ;n) for conidence intervals

and bounds forµ given in Tables J.1a, J.1b, J.3a, and J.3bwere computed from these expressions:
c(1−α ;n) = t(1−α/2;n−1)/

√
n and c′(1−α ;n) = t(1−α ;n−1)/

√
n. When n − 1 is large (say greater

than 60), t(1−α ;n−1) ≈ z(1−α) . Thus, normal distribution quantiles provide a generally adequate
approximation for t-distribution quantiles when n is large and 1 − α/2 is not too large. For
example, t(0.975;60) = 2.000 and z(0.975) = 1.960.

Most elementary textbooks on statistical methods discuss conidence intervals for the mean
of a normal distribution. The underlying theory involves Student’s t-distribution and is given in
Section E.3.1.

Example 4.1 Conidence Interval for Mean Voltage Output. For the circuit pack output
example, presented in Section 3.2, n = 5, x̄ = 50.10 volts, s = 1.31 volts, t(0.975;4) = 2.776,
and t(0.95;4) = 2.132. Then c(0.95;5) = t(0.975;4)/

√
5 = 1.241 and c′(0.95;5) = t(0.95;4)/

√
5 =

0.953. These are the values given in Tables J.1a and J.3a. A two-sided 95% conidence interval
for µ is

[µ
˜
, µ̃] = 50.10 ∓ 1.241 × 1.31 = [48.47, 51.73].

Using R as a calculator gives

> 50.10 + c(-qt(0.975,4), qt(0.975,4))*1.31/sqrt(5)

[1] 48.47 51.73

A lower 95% conidence bound for µ is

µ
˜

= 50.10 − 0.953 × 1.31 = 48.85.

4.3 CONFIDENCE INTERVAL FOR THE STANDARD DEVIATION OF A
NORMAL DISTRIBUTION

A two-sided 100(1 − α)% conidence interval for the standard deviation σ of a normal distri-
bution is

[σ
˜
, σ̃] =

⎡
⎣s

(
n − 1

χ2
(1−α/2;n−1)

)1/2

, s

(
n − 1

χ2
(α/2;n−1)

)1/2
⎤
⎦.
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One-sided 100(1 − α)% conidence bounds are obtained by replacing α/2 by α in the above
expressions. The factors cL(1−α ;n), cU (1−α ;n), c′L(1−α ;n) , and c′U (1−α ;n) for obtaining conidence

intervals and bounds for σ given in Tables J.2a, J.2b, J.4a, and J.4b were computed from these
expressions. For example, cL(1−α ;n) = [(n − 1)/χ2

(1−α/2;n−1)]
1/2 and c′L(1−α ;n) = [(n − 1)/

χ2
(1−α ;n−1)]

1/2 .

Many introductory textbooks on statistical methods discuss conidence intervals for the
standard deviation (or variance, i.e., the square of the standard deviation) of a normal distribution.
The underlying theory involves the chi-square distribution and is given in Section E.3.2.

Example 4.2 Conidence Interval for Standard Deviation of Voltage Output. For
the example, n = 5, s = 1.31 volts, χ2

(0.975;4) = 11.14, χ2
(0.025;4) = 0.484, and χ2

(0.05;4) =

0.711. Then cL(0.95;5) = {4/χ2
(0.975;4)}1/2 = 0.60, cU (0.95;5) = {4/χ2

(0.025;4)}1/2 = 2.87, and

c′U (0.95;5) = {4/χ2
(0.95;4)}1/2 = 2.37. These are the values given in Tables J.2a and J.4a. A

two-sided 95% conidence interval for σ is

[σ
˜
, σ̃] = [1.31 × 0.60, 1.31 × 2.87] = [0.79, 3.76].

Using R as a calculator gives

> 1.31*sqrt(c(4/qchisq(p=0.975,df=4), 4/qchisq(p=0.025,df=4)))

[1] 0.7848 3.7644

An upper 95% conidence bound for σ is σ̃ = 1.31 × 2.37 = 3.10.

4.4 CONFIDENCE INTERVAL FOR A NORMAL DISTRIBUTION QUANTILE

This section presents methods for constructing conidence intervals for a normal distribution
quantile. Conidence intervals for distribution quantiles are typically not presented in textbooks
on statistical methods. Note that the methods in this section can also be used to obtain one-sided
tolerance bounds. This is due to the equivalence of one-sided tolerance bounds and one-sided
conidence intervals for a quantile discussed in Sections 2.2.2 and 4.6.

Computational method

A two-sided 100(1 − α)% conidence interval for xp , the p quantile of the previously sampled
normal distribution, is

[
x
˜

p , x̃p

]
=

[
x̄ − t(1−α/2;n−1,δ)

s√
n

, x̄ − t(α/2;n−1,δ)
s√
n

]
, (4.2)

where t(γ ;n−1,δ) is the γ quantile of a noncentral t-distribution with n − 1 degrees of freedom
and noncentrality parameter δ = −√

nz(p) =
√

nz(1−p) . The special case when p = 0.50 (so
δ = 0) corresponds to a conidence interval for the median (or mean) given in Section 4.2.
The underlying theory for this interval is given in Section E.3.3. A one-sided lower or upper
conidence bound is obtained by substituting α for α/2 in the appropriate endpoint in (4.2).

Example 4.3 Conidence Interval for 0.90 Quantile of Voltage Output. Using the sample
data from Example 4.1, suppose that the manufacturer wants a two-sided 95% conidence
interval for x0.90 , the 0.90 quantile of the distribution of circuit pack voltage readings. Using
p = 0.90 and δ = −

√
5z(0.90) = −2.865, the required factors in (4.2) can be obtained by using

R as a calculator:
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> -qt(0.975, 4, -2.865636)

[1] 0.868865

> -qt(0.025, 4, -2.865636)

[1] 9.316001

Then the desired conidence interval is

[
x
˜

0.90 , x̃0.90

]
=

[
50.10 − 0.8689 × 1.31/

√
5, 50.10 − 9.316 × 1.31/

√
5
]

= [50.61, 55.56].

Putting all of the above together and using R as a calculator gives

> 50.10 + c(-qt(0.975, 4, -2.865636), -qt(0.025, 4, -2.865636))

*1.31/sqrt(5)

[1] 50.60902 55.55778

Example 4.4 One-Sided Upper Conidence Bound for 0.90 Quantile of Voltage Output.

Similar to Example 4.3, suppose that themanufacturerwanted a one-sided upper 95%conidence
bound for x0.90 , the 0.90 quantile of the distribution of circuit pack voltage readings. Using R
as a calculator gives

> 50.10 -qt(0.05, 4, -2.865636)*1.31/sqrt(5)

[1] 54.56269

That is, x̃0.90 = 54.6. This bound is equivalent to a 95% upper tolerance bound to exceed at
least a proportion 0.90 of the distribution of voltage outputs.

Tabular method

A two-sided 100(1 − α)% conidence interval for xp , the p quantile of a normal distribution, is

[
x
˜

p , x̃p

]
=

[
x̄ − g′

(1−α/2;p,n)s, x̄ − g′
(α/2;p,n)s

]
(4.3)

for 0.00 < p < 0.50 and

[
x
˜

p , x̃p

]
=

[
x̄ + g′

(α/2;1−p,n)s, x̄ + g′
(1−α/2;1−p,n)s

]
(4.4)

for 0.50 ≤ p < 1.0, where the factors g′
(γ ;p,n) are given in Tables J.7a–J.7d for values of

p ranging between 0.01 and 0.40. As suggested above, tables for p > 0.50 are not needed
because of the relationship g′

(γ ;p,n) = −g′
(1−γ ;1−p,n) .

Related to the computational method given in the irst part of this section, the factors g′
(γ ;p,n)

can also be computed using the noncentral t-distribution quantile function. In particular, using
notation deined in Section C.3.9, g′

(γ ;p,n) can be obtained for any value of 0 < p < 1 by using

g′
(γ ;p,n) = t(γ ;n−1,z( 1−p )

√
n)/

√
n,

where t(γ ;n−1,z( 1−p )

√
n) is the γ quantile of the noncentral t-distribution with n − 1 degrees of

freedom and noncentrality parameter z(1−p)

√
n.
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Example 4.5 Conidence Interval for 0.10 Quantile of Voltage Output. Using the sample
data from Example 4.1, suppose that the manufacturer wanted a two-sided 95% conidence
interval for x0.10 , the 0.10 quantile of the distribution of circuit pack voltage readings. Thus,
p = 0.10, and from Table J.7a, g′

(0.025;0.10,5) = 0.389 and from Table J.7c, g′
(0.975;0.10,5) =

4.166. Then a two-sided 95% conidence interval for x0.10 is

[x
˜

0.10 , x̃0.10 ] = [50.10 − 4.166 × 1.31, 50.10 − 0.389 × 1.31] = [44.64, 49.59].

One-sided lower (upper) 100(1 − α)% conidence bounds forxp are obtained by substituting
α for α/2 in the appropriate endpoint of either (4.3) or (4.4), depending on whether p is less
than or greater than 0.50.

Example 4.6 One-Sided Lower Conidence Bound for 0.10 Quantile of Voltage Output.

Similar to Example 4.5, suppose that themanufacturerwanted a one-sided 95% lower conidence
bound for x0.10 , the 0.10 quantile of the distribution of circuit pack voltage readings. Thus,
from Table J.7c, g′

(0.95;0.10,5) = 3.407. Then a lower 95% conidence bound for x0.10 is

x
˜

0.10 = 50.10 − 3.407 × 1.31 = 45.64.

This bound is equivalent to a 95% lower tolerance bound to be exceeded by at least a proportion
0.90 of the distribution of voltage outputs.

4.5 CONFIDENCE INTERVAL FOR THE DISTRIBUTION PROPORTION LESS
(GREATER) THAN A SPECIFIED VALUE

The probability of an observation from a normal distribution with known mean µ and
known standard deviation σ being less than a speciied value x can be computed as
pLE = Pr(X ≤ x) = Φnorm [(x − μ)/σ], where Φnorm(z) is the standard normal distribu-
tion cdf. Similarly, the probability of such an observation being greater than a speciied value
x is pGT = Pr(X > x) = 1 − Φnorm [(x − μ)/σ] = Φnorm [−(x − μ)/σ]. Equivalently, pLE

and pGT are the proportions of the distribution less than x and greater than x, respectively.
When μ and σ are unknown, we obtain point estimates p̂LE and p̂GT by substituting x̄ for μ
and s for σ, respectively, in these formulas.

A two-sided 100(1 − α)% conidence interval for pLE is

[p
˜

LE , p̃LE ] = [normTailCI(α/2; k, n), normTailCI(1 − α/2; k, n)], (4.5)

where k = (x − x̄)/s and the function normTailCI from the StatInt R package is described
in Section E.3.4.

Similarly, a two-sided 100(1 − α)% conidence interval for pGT is

[p
˜

GT , p̃GT ] = [1 − p̃LE , 1 − p
˜

LE ]

= [1 − normTailCI(1 − α/2; k, n), 1 − normTailCI(α/2; k, n)]

= [normTailCI(α/2;−k, n), normTailCI(1 − α/2;−k, n)]. (4.6)

One-sided lower and upper 100(1 − α)% conidence bounds for pLE are obtained by replacing
α/2 by α in (4.5). Similarly, replacing α/2 by α in (4.6) yields one-sided lower and upper
100(1 − α)% conidence bounds for pGT .
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These normal distribution intervals for probabilities are typically not considered in textbooks
on statistical methods. The underlying theory involves the noncentral t-distribution and is given
in Section E.3.4.

Example 4.7 Conidence Interval for theProportion ofCircuit PackswithOutputGreater

than 48 Volts. For the example, n = 5, x̄ = 50.10 volts, and s = 1.31 volts. The manufacturer
wanted to obtain a two-sided 95% conidence interval to contain pGT , the proportion of units
in the distribution with voltages greater than x = 48 volts (or equivalently, the probability
that the voltage of a single randomly selected unit will exceed x = 48 volts). A point estimate
for this proportion is p̂GT = Pr(X > 48) = 1 − Φnorm [(48 − x̄)/s] = 1 − Φnorm(−1.60) =
0.9452. Then, using k = (48 − 50.10)/1.31 = −1.60 and (4.6), a two-sided 95% conidence
interval for pGT is

[p
˜

GT , p̃GT ] = [normTailCI(0.025; 1.60, 5), normTailCI(0.975; 1.60, 5)]

= [0.57, 0.9984],

and a one-sided lower 95% conidence bound for pGT is

p
˜

GT = normTailCI(0.05; 1.60, 5) = 0.65.

A one-sided upper 95% conidence bound for pLE , the proportion of units less than x = 48
volts, is

[p̃LE ] = 1 − p
˜

GT = normTailCI(0.95; 5,−1.6) = 0.35.

Using R as a calculator with the function normTailCI from the StatInt R package gives

> normTailCI(0.025, 1.6, 5)

[1] 0.5745519

> normTailCI(0.975, 1.6, 5)

[1] 0.9984031

> normTailCI(0.05, 1.6, 5)

[1] 0.6492924

> normTailCI(0.95, -1.6, 5)

[1] 0.3507077

4.6 STATISTICAL TOLERANCE INTERVALS

4.6.1 Two-Sided Tolerance Interval to Control the Center of a Distribution

This section describes methods for computing a normal distribution tolerance interval to control
the center of the distribution. Section E.5.1 describes the underlying theory.

Tabular method

A two-sided 100(1 − α)% tolerance interval to contain at least a proportion β of a normal
distribution is

[T
˜

β , T̃β ] = x̄ ∓ g(1−α ;β ,n)s,

where the factors g(1−α ;β ,n) are given in Tables J.1a, J.1b, J.5a, and J.5b. Two-sided tolerance
intervals to control the center of a distribution are given in some statistical textbooks.



54 CALCULATING STATISTICAL INTERVALS

Computational method

For values of g(1−α ;β ,n) that are not in our tables, the functionnormCenterTI from theStatInt
R package can be used to compute the required factors.

Example 4.8 Tolerance Interval to Contain at Least a Proportion 0.90 of Circuit Pack

Output Voltages. For the example, n = 5, x̄ = 50.10 volts, and s = 1.31 volts. Suppose now
that the manufacturer wanted a two-sided 95% tolerance interval to contain a proportion 0.90
of the distribution.

We use g(0.95;0.90,5) = 4.291 from Table J.5b (also c(0.95;5) = 4.29 from Table J.1a). A two-
sided 95% tolerance interval to contain at least a proportion 0.90 of the sampled distribution
is

[T
˜

0.90 , T̃0.90 ] = 50.10 ∓ 4.291 × 1.31 = [44.5, 55.7].

Using R as a calculator with function normCenterTI from the StatInt R package gives

> 50.10+c(-1,1)*normCenterTI(conf.level=0.95, sample.size=5,

beta=0.90)*1.31

[1] 44.47931 55.72069

4.6.2 Two-Sided Tolerance Interval to Control Both Tails of a Distribution

The two-sided tolerance interval in Section 4.6.1 and Chapter 3 contains, with speciied coni-
dence, at least a certain proportion, β, of the distribution between its two endpoints, irrespective
of how the proportion of the distribution below the lower endpoint and above the upper endpoint
is apportioned. Sometimes, it is more appropriate to use an interval that will separately control
the distribution proportions in each of the two tails of the distribution. This type of tolerance
interval would, for example, be useful if the cost of being above the upper endpoint were dif-
ferent from that of being below the lower endpoint. The two speciied distribution proportions
need not be equal. A 100(1 − α)% tolerance interval to control the proportion in both tails of

the distribution will be denoted by [T
˜

p t L
, T̃p t U

]. Then

Pr(Y < T
˜

p t L
) ≤ ptL and Pr(Y > T̃p t U

) ≤ ptU

with 100(1 − α)% conidence, where ptL is the speciied maximum proportion of the distri-
bution in the lower tail of the distribution, and ptU is the speciied maximum proportion in the
upper tail of the distribution. Often, in practice, ptL = ptU = p. The tolerance interval is

[
T
˜

p t L
, T̃p t U

]
=

[
x̄ − g′′

(1−α ;p t L ,n)s, x̄ + g′′
(1−α);p t U ,ns

]
,

where the factors g′′
(1−α,p,n) are given in Tables J.6a and J.6b. Section E.5.2 describes the

underlying theory.

Example 4.9 Tolerance Interval to Contain No More than a Proportion 0.05 in Each Tail

of the Distribution of Circuit Pack Output Voltages. For the example, we again have n = 5,
x̄ = 50.10 volts, and s = 1.31 volts. Suppose now that the manufacturer wanted a two-sided
95% tolerance interval to contain no more than a proportion 0.05 in each tail of the distribution.
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We use g′′
(0.95;0.05,5) = 4.847 (from Table J.6b). A two-sided 95% tolerance interval to have

a proportion less than 0.05 in each distribution tail is
[
T
˜

0.05t L
, T̃0.05t U

]
= 50.10 ∓ 4.847 × 1.31 = [43.8, 56.4].

This interval is wider than the control-the-center tolerance interval from Example 4.8 that does
not control each tail of the distribution. This is because simultaneously controlling both tails is a
more stringent requirement than just controlling the total proportion of the distribution outside
the interval.

4.6.3 One-Sided Tolerance Bounds

As indicated in Section 2.4.2, a one-sided lower 100(1 − α)% tolerance bound to be exceeded
by at least a proportionp of a normal distribution is equivalent to a one-sided lower100(1 − α)%
conidence bound on the 1 − p quantile of the distribution. A one-sided upper 100(1 − α)%
tolerance bound to exceed at least a proportion p of the distribution is equivalent to a one-
sided upper 100(1 − α)% conidence bound on the p quantile of the distribution. A technical
demonstration of this result is given in Section B.5. The computation of such one-sided tolerance
bounds was illustrated in Examples 4.4 and 4.6.

4.7 PREDICTION INTERVAL TO CONTAIN A SINGLE FUTURE OBSERVATION
OR THE MEAN OF m FUTURE OBSERVATIONS

A two-sided 100(1 − α)% prediction interval to contain the mean of m future, independently
and randomly selected observations, based upon the results of a previous independent random
sample of size n from the same normal distribution, is

[
Ȳ
˜

m , ˜̄Ym

]
= x̄ ∓ t(1−α/2;n−1)

(
1

m
+

1

n

)1/2

s. (4.7)

An important special case arises when m = 1; this results in a prediction interval to contain
a single future observation. One-sided lower and upper 100(1 − α)% prediction bounds are
obtained by replacingα/2 byα (and∓ by either− or+) in the appropriate part of the preceding
expression. The factors for two-sided prediction intervals given in Tables J.1a and J.1b, and the
factors for one-sided prediction bounds in Tables J.3a and J.3b for the cases when m = 1 and
m = n were computed from these formulas.

Few textbooks consider prediction intervals, except in the context of regression analysis. The
theory underlying these methods is given in Section E.6.1.

Example 4.10 Prediction Interval to Contain the Voltage Output of a Future New Circuit

Pack. Suppose that the manufacturer needs to provide a consumer with a prediction interval
that will, with high conidence, contain the voltage of a future circuit pack. From the previous
sample, n = 5, x̄ = 50.10 volts, and s = 1.31 volts. Also t(0.975;4) = 2.776. Thus, a two-sided
95% prediction interval to contain the voltage of single future unit is

[
Y
˜

, Ỹ
]

= 50.10 ∓ 2.776

(
1

1
+

1

5

)1/2

1.31 = [46.12, 54.08].

Using R as a calculator gives

> 50.10 + c(-qt(0.975,4), qt(0.975,4))*sqrt(1+1/5)*1.31

[1] 46.12 54.08.
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An upper 95% prediction bound to exceed the voltage of the future unit is

Y
˜

= 50.10 + 2.132

(
1

1
+

1

5

)1/2

1.31 = 53.16.

Example 4.11 Prediction Interval to Contain the Mean Voltage Output of Three New

Circuit Packs. Suppose now that the manufacturer needs to predict the mean voltage of a
future random sample of m = 3 circuit packs. From the previous sample, n = 5, x̄ = 50.10
volts, and s = 1.31 volts. Also t(0.975;4) = 2.776 and t(0.95;4) = 2.132. Thus, a two-sided 95%
prediction interval to contain the mean voltage of the sample of three future units is

[
Ȳ
˜

3 ,
˜̄Y3

]
= 50.10 ∓ 2.776

(
1

3
+

1

5

)1/2

1.31 = [47.44, 52.76].

Using R as a calculator gives

> 50.10 + c(-qt(0.975,4), qt(0.975,4))*sqrt(1/3+1/5)*1.31

[1] 47.44 52.76.

A one-sided upper 95% prediction bound to exceed the mean of the three future units is

Ȳ
˜

3 = 50.10 + 2.132

(
1

3
+

1

5

)1/2

1.31 = 52.14.

4.8 PREDICTION INTERVAL TO CONTAIN AT LEAST k OF m FUTURE
OBSERVATIONS

4.8.1 Two-Sided Prediction Interval

A two-sided 100(1 − α)% simultaneous prediction interval to contain the values of at least k
of m (1 ≤ k ≤ m) future randomly selected observations from a previously sampled normal
distribution is [

Y
˜

k :m , Ỹk :m

]
= x̄ ∓ r(1−α ;k,m,n)s,

where the r(1−α ;k,m,n) has not been tabulated in general, but can be computed by the methods
shown in Section E.6.4, which also provides the underlying theory. Section B.7 shows how to
use simulation to compute simultaneous prediction interval coverage probabilities for location-
scale distributions and Section 14.6 shows how to use such simulations to compute the required
factors for these simultaneous prediction intervals.

The factors r(1−α ;m,m,n) for prediction intervals to contain all m of m future observations
are given in Table J.8. The factors for obtaining the intervals given in Tables J.1a and J.1b were
also taken from Table J.8. A conservative approximation for r(1−α ;m,m,n) is

r(1−α ;m,m,n) ≈
(

1 +
1

n

)1/2

t(1−α/(2m );n−1). (4.8)

This approximationmay be used for nontabulated values and for constructing a simple computer
program to perform the calculations. It is based on a Bonferroni inequality (see Section 2.9).
This approximation is satisfactory for most practical purposes, except for combinations of small
n, largem, and small 1 − α. Also, (4.8) is exact for the special case ofm = 1 (i.e., a prediction
interval to contain a single future observation).
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4.8.2 One-Sided Prediction Bounds

One-sided lower and upper 100(1 − α)% (simultaneous) prediction bounds to be exceeded by
and to exceed at least k ofm future observations from a previously sampled normal distribution
are, respectively,

Y
˜

k :m = x̄ − r′(1−α ;k,m,n)s

and

Ỹk :m = x̄ + r′(1−α ;k,m,n)s,

where r′(1−α ;k,m,n) has not been tabulated in general, but can be computed by the methods

shown in Section E.6.3, which also describes the underlying theory. Section B.7 shows how to
use simulation to compute simultaneous one-sided prediction bound coverage probabilities for
location-scale distributions and Section 14.6 shows how to use such simulations to compute the
required factors for these simultaneous prediction bounds.

The factors r′(1−α ;m,m,n) for one-sided prediction bounds to contain all of m future observa-

tions are given in Table J.9. The factors given in Tables J.3a and J.3b for obtaining such intervals
were taken from Table J.9. A conservative approximation for r′(1−α ;m,m,n) is

r′(1−α ;m,m,n) ≈
(

1 +
1

n

)1/2

t(1−α/m ;n−1).

This expression provides an adequate approximation in situations similar to the corresponding
expression for the two-sided prediction interval. The expression is exact for m = 1.

Example 4.12 Prediction Interval to Contain Output Voltages for 10 Future Circuit

Packs. For the example, n = 5, x̄ = 50.10 volts, and s = 1.31 volts. The manufacturer wants
a two-sided 95% prediction interval to contain the voltages of all m = 10 future circuit packs
randomly selected from the same process and an upper 95% prediction bound to exceed
the voltages of all m = 10 future units. From Table J.8, r(0.95;10,10,5) = 5.229 and from
Table J.9, r′(0.95;10,10,5) = 4.418. A two-sided 95% prediction interval to contain all 10 future

voltages is

[
Y
˜

10:10 , Ỹ10:10

]
= 50.10 ∓ 5.229 × 1.31 = [43.25, 56.95].

A one-sided upper 95% prediction bound to exceed all 10 future voltages is

Ỹ10:10 = 50.10 + 4.418 × 1.31 = 55.89.

Example 4.13 Prediction Interval to Contain Output Voltages for at Least 9 of 10 Future

Circuit Packs. For the example,n = 5, x̄ = 50.10 volts, and s = 1.31 volts. Themanufacturer
wants a 95% prediction interval to contain the voltages of at least k = 9 ofm = 10 future circuit
packs randomly selected from the same process and an upper 95%prediction bound to exceed the
voltages of at least k = 9 of m = 10 future units. Because only limited tables exist to compute
the required factors (described in the Bibliographic Notes section at the end of this chapter),
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bootstrap-based methods described in Section 14.6 were used to compute r(0.95;9,10,5) = 3.99
and r′(0.95;9,10,5) = 3.16. A two-sided 95% prediction interval to contain at least 9 of 10 future

circuit packs is

[
Y
˜

9:10 , Ỹ9:10

]
= 50.10 ∓ 3.99 × 1.31 = [44.9, 55.3].

A one-sided upper 95% prediction bound to exceed the voltages of at least 9 of 10 future circuit
packs is

Ỹ9:10 = 50.10 + 3.16 × 1.31 = 54.2.

4.9 PREDICTION INTERVAL TO CONTAIN THE STANDARD DEVIATION OF
m FUTURE OBSERVATIONS

A two-sided 100(1 − α)% prediction interval to contain sm , the standard deviation ofm future
observations based upon the results from a previous independent, random sample of size n from
the same normal distribution is

[S
˜

m , S̃m ] =

[
s

(
1

F(1−α/2;n−1,m−1)

)1/2

, s(F(1−α/2;m−1,n−1))
1/2

]
. (4.9)

One-sided lower and upper 100(1 − α)% prediction bounds are obtained by replacingα/2 byα

in the expressions corresponding to S
˜

m and S̃m , respectively, in (4.9). The factors for obtaining
two-sided prediction intervals and one-sided prediction bounds given in Tables J.2a, J.2b, J.4a,
and J.4b were computed from these expressions. The theory underlying these methods is given
in Section E.6.2.

Example 4.14 Prediction Interval to Contain the Standard Deviation of the Voltages of a

Future Sample of Circuit Packs. For the example, themanufacturer asked for a 95% prediction
interval to contain the standard deviation of the voltages for a future random sample of m = 3
circuit packs from the same process. From the previous sample, n = 5, and s = 1.31 volts.
Also,F(0.975;4,2) = 39.25,F(0.975;2,4) = 10.65, andF(0.95;2,4) = 6.944. Then a two-sided 95%
prediction interval to contain s3 , the standard deviation of the voltage of three future units, is

[S
˜

3 , S̃3 ] =

[
1.31

(
1

39.25

)1/2

, 1.31 × 10.651/2

]
= [0.209, 4.27].

Using R as a calculator gives

> 1.31*sqrt(c(1/qf(0.975,df1=4,df2=2), qf(p=0.975,df1=2,df2=4)))

[1] 0.2091 4.2749

An upper 95% prediction bound to exceed the sample standard deviation of the three future
units is

S̃3 = 1.31 × 6.9441/2 = 3.45.
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4.10 THE ASSUMPTION OF A NORMAL DISTRIBUTION

The tabulations and formulas for constructing the statistical intervals in this and the preceding
chapter are based on theory for random samples from a normal distribution. Moreover, in the
case of a prediction interval, it is also assumed that the future sample is selected randomly
and independently from the same normal distribution. Thus, the intervals are strictly valid only
under these assumptions.

A conidence interval for the distribution mean, however, tends to be insensitive to deviations
from normality in the sampled distribution, unless the sample is very small and the deviation
from normality is pronounced. In statistical terminology, a conidence interval to contain the
distribution mean is said to be “robust” to deviations from normality. This is the result of
the well-known central limit theorem, which states that the distribution of a sample mean is
approximately normal if the sample size is not too small and if the underlying distribution
is not too skewed. Thus, a conidence interval for the distribution mean, assuming a normal
distribution, may be used to construct a conidence interval in many practical situations, even if
the assumption of normality is not strictly met. In such cases, the resulting interval, instead of
being an exact 100(1 − α)% conidence interval for the distribution mean, is an approximate
100(1 − α)% conidence interval (i.e., the coverage probability for the procedure is not exactly
equal to the nominal conidence level 100(1 − α)%). The approximation becomes worse as the
desired level of conidence 1 − α increases.

For similar reasons, prediction intervals to contain the mean of a future sample are also
relatively insensitive to deviations from normality, unless either the given sample or the future
sample is very small or the deviation from normality is pronounced. This limitation, however,
includes the important case of a prediction interval for a single future observation (i.e., m = 1).
Thus, the prediction interval given here to contain a single future observation may be seriously
misleading when sampling from a nonnormal distribution.

Unfortunately, one cannot use the central limit theorem to justify the use of normal distribu-
tion based methods for most other types of statistical intervals. For example, the procedure in
Section 4.3 for obtaining a conidence interval for the distribution standard deviation is highly
sensitive to the assumption of normality, even for large sample sizes. Therefore, serious errors
could result in using the methods given there when the sampled distribution is not normal. The
same holds for a prediction interval to contain the standard deviation of a future sample.

Tolerance intervals to contain a speciied proportion of a distribution and prediction intervals
to contain all ofm future observations tend to involve inferences or predictions about the tails of
a distribution. Deviations from normality are generally most pronounced in the distribution tails.
For this reason, such intervals could be seriously misleading when the underlying distribution is
not normal, especially for high conidence levels, and for tolerance intervals when the proportion
of the distribution to be contained within the interval is close to 1.0. Similar conditions apply
to conidence intervals for a distribution tail quantile and conidence intervals to contain the
probability of exceeding an extreme speciied value. For example, an estimate of the 0.05
quantile under the assumption of a normal distribution, and, even more so, an estimate of the
0.01 quantile, based on only ive observations, is strongly dependent on the assumption of
normality in the tails of the distribution.

The intuitive reason for these results is that the parametric estimate of the p quantile of a
location-scale distribution is the sum of an estimate of a location parameter (the mean in the case
of a normal distribution) plus an estimate of a scale parameter (the standard deviation for the
normal distribution), multiplied by a factor that depends on p and the assumed distribution; that
is, ŷp = x̄ + sΦ−1

norm(p). The factorΦ−1(p) is highly distribution dependent and the dependency
becomes stronger for values of p that are in the tails of the distribution. See the references in
the Bibliographic Notes section for technical details and further discussion.
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4.11 ASSESSING DISTRIBUTION NORMALITY AND DEALING WITH
NONNORMALITY

4.11.1 Probability Plots and Q–Q Plots

Before using statistical intervals that depend heavily on the normality assumption (e.g., tolerance
intervals and conidence intervals on tail quantiles), one should assess how well a normal
distribution actually its the given data. There are a variety of formal statistical tests, described
in numerous textbooks, available for assessing normality. Normal distribution probability plots,
however, are a simple and effective, though less formal, tool for doing this, especially if there
are 20 or more observations.

Normal distribution probability plots can be constructed by plottingx(i) , the ith ordered (from
smallest to largest) observation, against the corresponding proportion pi = (i − 0.5)/n on
appropriately scaled axes (i.e., based on the normal distribution assumption), usually employing
computer software for this purpose. Normal distribution probabilities Pr(X ≤ x) versus x plot
as a straight line on such plots. The (x(i), pi) pairs are a “nonparametric” estimate (i.e., an
estimate that does not depend on an assumption of a particular parametric distribution) of
Pr(X ≤ x). Thus, systematic deviations from linearity in the plots pi versus x(i) are indicative
of a departure from normality. Similar probability plots can be constructed to assess other
commonly used distributions, such as the lognormal and Weibull. Hahn and Shapiro (1967,
Chapter 8), Nelson (1982, Chapter 3) and Meeker and Escobar (1998, Chapter 6) give theory,
methods, and examples for probability plots for the normal and other distributions. Probability
plots used to be prepared by hand using normal probability paper, but are widely available in
statistical software packages today.

Quantile–quantile (Q–Q) plots serve the same purpose as probability plots. To obtain a
normal Q–Q plot, one plots, on linear scales, the ith ordered observation against z(p i ) , the normal
distribution pi quantile, where pi = (i − 0.5)/n. The only difference between a Q–Q plot and
a probability plot is that the probability plot has a probability scale for the pi while the Q–Q plot
has a linear scale for the corresponding normal distribution quantile values z(p i ) . The probability
scales on probability plots are easier to interpret and explain. Because they use linear scales,
Q–Q plots are, however, easier to producewith unsophisticated graphics and statistical computer
packages, or with (old-fashioned) ordinary graph paper.

4.11.2 Interpreting Probability Plots and Q–Q Plots

If the plotted points on a normal probability or Q–Q plot deviate appreciably from a straight
line, the adequacy of the normal distribution as a model for the population (or process) is in
doubt. Judging departures from a straight line requires one to allow for the variability in the
sample data; this is highly sample size dependent. Also, for many models, including the normal
distribution, one would expect the observations in the tails of the distribution to vary more than
those in the center of the distribution. To help judge this variability, Hahn and Shapiro (1967)
and Meeker and Escobar (1998) give normal probability plots for simulated data with different
sample sizes and with data from both normal and nonnormal distributions. The analyst may
wish to do similar simulations, possibly developing a general computer program for routine use.

Example 4.15 Ball Bearing Failure Data. Lieblein and Zelen (1956) describe data from
fatigue endurance tests on ball bearings. The purpose of the tests was to study the relationship
between fatigue life and stress loading. The data shown in Table 4.1 are a subset of n = 23
ball bearing failure times (in millions of cycles to failure) for units tested at one level of stress,
previously reported and analyzed by Meeker and Escobar (1998) and Lawless (2003).
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17.88 28.92 33.00 41.52 42.12 45.60
48.40 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40

Table 4.1 Ball bearing failure data (millions of cycles).

Here we extend the analysis given there and in Meeker and Escobar (1998, Example 11.2).
Figure 4.1 gives a histogram and a box plot of these data; Figure 4.2 is a normal probability plot
of the data. The plotted points in the normal probability plot tend to scatter around a curve, rather
than a straight line. The deviation from a straight line might be more than one would expect due
to chance for a sample from a normal distribution—at least, from a visual evaluation. Actually,
because of the small sample size in the ball bearing example (23 observations), the statistical
evidence against a normal distribution is not terribly strong (based on a graphical goodness
of it test and simulation analysis similar to those described in Meeker and Escobar, 1998,
Chapter 6). If similar deviations from linearity were observed with a considerably larger sample
size, the evidence against the normal distribution would be considerably stronger. Nevertheless,
the curvature in the probability plot and physical considerations (the normal distribution ranges
from −∞ to ∞, but failure times must be positive) suggest that the normal distribution might
not provide an adequate model for the population (or process) from which the data were
obtained.
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Figure 4.1 A histogram and a box plot of ball bearing cycles to failure in millions of cycles.
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Figure 4.2 Normal distribution probability plot for the ball bearing failure data.

4.11.3 Dealing with Nonnormal Data

If one constructs a probability plot from the given data and determines from this that the normal
distribution is not an appropriate model for the problem at hand, there are several ways to
proceed:

� Use a smooth curve drawn through the points on a probability plot to obtain a simple
and easy-to-understand nonparametric graphical estimate of the cumulative distribution
function. For example, from Figure 4.2, we estimate that a proportion of approximately
p = 0.30 of the ball bearings will fail by the end of 50 million cycles.

� Use a “distribution-free method” for constructing the desired statistical interval, as will
be described in Chapter 5.

� Seek some other distribution (e.g., the lognormal, gamma, or Weibull) that provides an
adequate representation for the data. An alternative model may be justiied from physical
considerations. In Chapters 12 and 14 we provide further information and references
about using statistical distributions other than the normal distribution to model data and to
compute conidence intervals. For example, Lieblein and Zelen (1956) used the Weibull
distribution as a model for the ball bearing failure data.

� Transform the data in a manner that allows the normal distribution to provide an ade-
quate model for the population or process and a basis for making inferences (using the
transformed data). This is equivalent to itting an alternative distribution. For example,
analyzing the logs of a set of data as if they were normally distributed is equivalent to
itting a (two-parameter) lognormal distribution to the original data (see Section 12.4.1
for more information about the lognormal distribution). In the next section we illustrate
the use of transformed data to compute statistical intervals.
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Figure 4.3 Normal distribution probability plot of the square roots of the ball bearing failure data (left) and

a normal distribution probability plot for the ball bearing failure data on a square root axis (right).

4.12 DATA TRANSFORMATIONS AND INFERENCES FROM
TRANSFORMED DATA

4.12.1 Power Transformations

If the original sample does not appear to have come from a normal distribution, it may still be
possible to ind a transformation that will allow the data to be adequately represented by a normal
distribution. For example, the left-hand plot in Figure 4.3 is a normal distribution probability
plot of the square roots of the ball bearing failure data. The right-hand plot is identical, except
that the data axis shows the number of cycles on a (nonlinear) square root axis. Although it is
easier to make plots like the one on the left with unsophisticated plotting software, the plot on
the right is easier to interpret and explain. The two plots in Figure 4.4 are also identical except
the plot on the right shows the number of cycles on a logarithmic axis. These plots suggest that
either the square root transformation or the log transformation results in transformed data that
can be described well by a normal distribution. The it to the logs is a little better than the it to
the square roots.

The two plots in Figure 4.5 are again similar to the plots in Figures 4.3 and 4.4 but are based
on plotting the negative reciprocals of the data using normal probability scales and plotting
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Figure 4.4 Normal distribution probability plot of the natural logs of the ball bearing failure data (left) and a

normal distribution probability plot for the ball bearing failure data on a log axis (i.e., a lognormal probability

plot) (right).
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Figure 4.5 Normal distribution probability plot of the reciprocals of the ball bearing failure data (left) and a

normal distribution probability plot for the ball bearing failure data on a negative reciprocal data axis (right).

the original data on a negative reciprocal scale axis, respectively. From the curvature in the
plotted points around the straight lines on these plots, we conclude that a negative reciprocal
transformation of the data fails to lead to a good normal distribution it.

The preceding transformations are members of the power family of transformations which
is deined for x > 0 as

y(γ ) =

⎧
⎨
⎩

xγ if γ > 0,

−xγ if γ < 0,

log(x) if γ = 0,

(4.10)

where γ is a generally unknown parameter that characterizes the transformation. In practice,
one tries to ind a value (or range of values) for γ that leads to approximate normality. In
particular, one may try different values of γ (e.g., γ = 1, 0.5, 0.333, 0, and −1, corresponding
to no transformation, square root, cube root, log, and reciprocal transformations, respectively)
to seek a value (or range of values) that results in a probability plot that is nearly linear. Physical
considerations or experience may, in some cases, suggest an appropriate value of γ.

4.12.2 Computing Statistical Intervals from Transformed Data

The sample mean and standard deviation of the logs (base e) of the ball bearing data are,
respectively, ȳ(0) = 4.150 and s(0) = 0.533 log millions of cycles. These can be used to
compute statistical intervals on the log scale that, in turn, can be translated into intervals on the
original data scale.

For example, the method in Section 4.4 gives the following lower 95% conidence bound for
the 0.10 quantile of the distribution on the log scale:

y
˜

(0)
0.10 = ȳ(0) − g′

(0.95;0.90,23)s
(0) = 4.150 − 1.869 × 0.533 = 3.15.

Taking antilogs gives the desired lower 95% conidence bound for the 0.10 quantile on the
original data scale,

x
˜

0.10 = exp
(
y
˜

(0)
0.10

)
= exp(3.15) = 23.3

millions of cycles.
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Similar calculations yield conidence intervals for other quantiles, as well as tolerance inter-
vals and prediction intervals on the original data scale. To use the method in Section 4.5
to compute a conidence interval for a normal distribution tail probability, one simply com-
putes k = [log(x) − ȳ(0)]/s(0) (because Pr(X ≤ x) = Pr[log(X) ≤ log(x)]) and proceeds
as before.

Wenote, however, that a conidence interval for themean of the distribution of the transformed
data does not translate into a conidence interval for the mean on the original scale. It does,
however, provide a conidence interval for the median (i.e., 0.50 quantile) of the original
distribution. Similarly, a conidence interval for the standard deviation of the distribution of the
transformed data does not translate into a conidence interval for the standard deviation on the
original scale.

4.12.3 Comparison of Inferences Using Different Transformations

Table 4.2 shows the one-sided lower 95% conidence bounds on the 0.01 and 0.10 quantiles
and both lower and one-sided upper 95% conidence bounds on the 0.50 quantile for the ball
bearing life distribution, using the original untransformed data, three alternative reasonable
data transformations, and a distribution-free method. Recall that visual evaluation of the normal
probability plots of the original untransformed observations led us to question whether the
original untransformed data can be appropriately represented by a normal distribution. The
square root and log transformations did, however, provide reasonably good normal distribution
its. The cube root transformation is intermediate between these two transformations and also
provides a good it.

The distribution-free intervals are described inChapter 5. These require no assumptions about
the form of the underlying distribution, but are generally wider than the parametric alternatives
and sometimes a desired interval does not exist. In the ball bearing example, because there are
only 23 observations, it is not possible to ind distribution-free lower 95% conidence bounds for
the lower quantiles. These call for extrapolation outside the range of the data, and this requires
assuming a distribution form. See Chapter 5 for further discussion.

All of the transformations, as well as the untransformed data, give somewhat similar lower
and upper conidence bounds for the 0.50 quantile. The lower conidence bounds for the 0.01
quantile, however, differ substantially. In fact, itting a normal distribution to the original
(untransformed) data resulted in a physically impossible negative lower conidence bound for
the 0.01 quantile.

Sample statistics One-sided 95% conidence bounds

Transformation γ ȳ(γ ) s(γ ) x
˜

0.01 x
˜

0.10 x
˜

0.50 x̃0.50

No transformation 1 72.21 37.50 −48.0 2.11 58.8 85.6

Square root 1/2 8.234 2.146 1.82 17.8 55.8 81.0

Cube root 1/3 4.048 0.707 5.64 20.3 54.9 79.5

Log 0 4.150 0.533 11.5 23.3 52.5 76.7

Distribution-free — — — — — 51.8 84.1

Table 4.2 Comparison of one-sided 95% conidence bounds for various quantiles using

different transformations for the ball bearing life data. γ is the parameter of the power distribution

transformation.
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The preceding comparison leads to some general conclusions about itting parametric models
to data. First, it suggests that it is useful to analyze the data under alternative reasonable models.
We could have gone further and plotted the lower 95% conidence bounds for various quantiles
versus γ for the range of reasonable values of γ based on probability plots of the data. Second,
it shows that alternative models that it the data well and distribution-free methods are likely
to give similar results for inferences within the range of the data (i.e., for inferences that only
involve interpolation among data points). Inferences that call for extrapolation outside the range
of the data are, in general, much more sensitive to the assumed model. Moreover, although a
poorly itting model may provide credible inferences within the range of the data, it will often
give unreasonable answers (e.g., the negative value for x

˜
0.01) for extrapolations outside the data

range.

4.12.4 Box–Cox Transformations

The Box–Cox family of transformations is closely related to the power transformation family.
This transformation is deined for x > 0 as

y(γ ) =

⎧
⎨
⎩

xγ − 1

γ
if γ �= 0,

log(x) if γ = 0,

where γ is a (generally unknown) parameter that characterizes the transformation and xγ is a
power transformation. When γ �= 0, y(γ ) is a standardized form of the power transformation
xγ in (4.10). In this sense, the Box–Cox transformation includes all power transformations,
and when γ approaches 0 the transformation y(γ ) approaches the limit log(x). Thus, when γ
is close to 0, the Box–Cox transformation is close to a log transformation. Probability plots
can be used in the same way as for the power transformation to guide the choice of γ. As with
the power transformations, physical considerations or experience may suggest how to choose
γ. Also analytical methods have been proposed to help determine the “best” value for γ (see
references in the Bibliographic Notes section at the end of this chapter).

4.13 STATISTICAL INTERVALS FOR LINEAR REGRESSION ANALYSIS

Regression analysis is a widely used statistical technique, usually used to relate the mean
of a response variable (also sometimes known as the “dependent variable”) to one or more
explanatory variables (sometimes called “independent variables” or “covariates”). Given sample
data and an assumed relationship between the response and the explanatory variables, the
method of least squares is often used to estimate unknown parameters in the relationship. There
are many applications for regression analysis and the resulting statistical intervals. Because—
unlike many of the other topics considered in this book—regression analysis is discussed in
much detail in numerous elementary and advanced textbooks (see the Bibliographic Notes
section), our comments here will be brief.

As in other situations, the validity of statistical intervals generally depends on the correctness
of the assumed model. The commonly used linear regression model assumes that the observed
response variable y follows a normal distribution with mean

µ = β0 + β1x1 + · · · + βpxp .

Here the xj values are known values of the explanatory variables and the βj coeficients are
unknown coeficients that are to be estimated from the data using the method of least squares.
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The standard model also assumes that the observed y values are statistically independent with a
variance σ2 that does not depend on the xj values. In some applications, these xj values might
be known functions of some explanatory variables (e.g., 1/temperature, log(voltage), (time)2).

Users of regression analysis should watch for departures from the model assumptions.
Methods for doing this can involve graphical analysis of the residuals (i.e., the differences
between the observed and the predicted response values) from the itted model, as described in
textbooks on applied regression analysis. Some ways of handling possible departures from the
assumed model are:

1. If themean of y cannot be expressed as a linear function of the parameters, special (usually
iterative) nonlinear least squares methods for estimating the parameters may be required;
see, for example, Bates and Watts (1988), Seber and Wild (1989), or Ritz and Streibig
(2008).

2. If σ2 is not the same for all observations, a transformation—for example, a Box and Cox
(1964) transformation, given in Section 4.12.4—of the response variable might be appro-
priate. Sometimes the method of weighted least squares is used. Both approaches are
described in Carroll and Ruppert (1988). In other cases, it might be desirable to model
both the mean and the standard deviation as separate functions of the explanatory variable
(see Nelson, 1984, for an example).

3. If the observed response values (y) are not statistically independent, either general-
ized least squares or time series analysis methods—see, for example, Wei (2005),
Cryer and Chan (2008), Bisgaard and Kulahci (2011), or Box et al. (2015)—might be
appropriate.

4. If some of the values of the response variable are censored (i.e., the actual response is
unknown other than being less than a known left-censoring value, greater than a known
right-censoring value, or to lie between known lower and upper censoring values), or if
they do not follow a normal distribution, the method of maximum likelihood, rather than
the method of least squares, should be used for estimating the parameters. See Nelson
(1990), Meeker and Escobar (1998), or Lawless (2003) for details.

5. If the observed values of the explanatory variables contain signiicant measurement error,
the methods given by Fuller (1987), Carroll et al. (2006), or Buonaccorsi (2010) might be
appropriate.

The rest of this section provides references to methods for computing statistical intervals for
the standard linear regression model, when all of the assumptions hold. For other situations,
some of the references given above provide similar methods. Some of the procedures require
factors that are too numerous to tabulate and thus require specialized computer software (e.g.,
Eberhardt et al., 1989). In Chapter 12 we will describe some other more general methods that
can be applied to regression analysis, but these also generally require special computer software.

4.13.1 Confidence Intervals for Linear Regression Analysis

Many textbooks on statistical methods and specialized textbooks on regression analysis give
details on the construction of conidence intervals for

� The parameters (β0 , β1 , . . . , βp) of the regression model.

� The expected value or mean µ = β0 + β1x1 + · · · + βpxp of the response variable for a
speciied set of conditions for the explanatory variable(s).
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� Quantiles of the distribution of the response variable for a speciied set of conditions for
the explanatory variable(s).

� The variance σ2 (or standard deviation σ) of the observations (which may or may not
depend on a given set of xj values).

4.13.2 Tolerance Intervals for Linear Regression Analysis

Tolerance intervals for the response variable for one or more conditions of the explanatory
variable are not provided in most of the standard textbook chapters and textbooks on regression
analysis (one exception is Graybill, 1976). This may be because special factors are required to
compute these intervals.

4.13.3 Prediction Intervals for Regression Analysis

Many textbooks on statistical methods and specialized textbooks on regression analysis show
how to compute a prediction interval for a single future observation on a response variable for
a speciied set of conditions for the explanatory variable(s). In fact, in introductory textbooks,
regression analysis is the only situation in which prediction intervals are generally discussed.
The methods for a single future observation easily extend to a prediction interval for the mean
of m future response variable observations. It is also possible to construct prediction intervals
to contain at least k of m future observations, but special methods would be required.

4.14 STATISTICAL INTERVALS FOR COMPARING POPULATIONS
AND PROCESSES

Designed experiments are often used to compare two or more competing products, designs,
treatments, packaging methods, etc. Statistical intervals are useful for presenting the results
of such experiments. Most textbooks on elementary statistical methods show how to compute
conidence intervals for the difference between the means of two randomly sampled populations
or processes, assuming normal distributions and using various assumptions concerning the
variances of the two distributions, based upon either paired or unpaired observations. References
dealing with the use of statistical intervals to compare more than two normal distributions are
also provided. The statistical methods for (ixed effects) analysis of variance and analysis
of covariance models frequently used in the analysis of such data are special cases of the
more general regression analysis methods that were outlined in the previous section. See the
Bibliographic Notes section at the end of this chapter for references to some books that cover
these and related topics.

BIBLIOGRAPHIC NOTES

General theory

Odeh and Owen (1980) describe the distribution theory methods behind the computation of
many of the intervals in this chapter.

Tolerance intervals

Guttman (1970) describes the general theory behind tolerance intervals and tolerance regions
(i.e., multivariate tolerance intervals), including Bayesian tolerance intervals (covered in our
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Chapter 15). Krishnamoorthy and Mathew (2009) provide theory, methods, and references for
non-Bayesian tolerance intervals and tolerance regions.

Simultaneous prediction intervals

The simultaneous prediction interval conservative approximation for r(1−α ;m,m,n) given by (4.8)
in Section 4.8.1 is based on a Bonferroni inequality (see Section 2.9 or Miller, 1981) and was
suggested by Chew (1968), who also describes a second approximation. Both approximations
were evaluated by Hahn (1969). The one given in (4.8) was found to be satisfactory for most
practical purposes, except for combinations of small n, large m, and small 1 − α. The theory
for prediction intervals to contain all of m future observations was originally given by Hahn
(1969, 1970a). Theory and tables for more general prediction intervals to contain at least k ofm
future observations are given in Fertig and Mann (1977) for the one-sided case and Odeh (1990)
for the two-sided case. General concepts of prediction intervals and additional references are
given by Hahn and Nelson (1973). The factors for two-sided prediction intervals and one-sided
prediction bounds to contain the standard deviation of a future sample were described in Hahn
(1972b).

Normality and nonnormality

Detailed discussion and speciic evaluations of the effect of nonnormality are given by Scheffé
(1959, Sections 10.2 and 10.3). See Hahn (1971) and Canavos and Kautauelis (1984) for further
discussion of the strong sensitivity of estimates of small (or large) quantiles to departures from
the assumption of normality.

The Box–Cox family of transformations was irst described in Box and Cox (1964). Analyt-
ical methods to help determine the “best” value for the Box–Cox transformation parameter γ
are described, for example, in Draper and Smith (1981, page 225) and Atkinson (1985).

Regression analysis

Most textbooks on statistical methods devote one or more chapters to regression analysis,
and there are a number of textbooks that deal exclusively with this subject. See, for exam-
ple, Draper and Smith (1981), Kutner et al. (2005), Gelman and Hill (2006), Montgomery et al.
(2015), and Seber and Lee (2012).

Thomas and Thomas (1986) give conidence bands for the quantiles of the assumed nor-
mal distribution of the response variable for a speciied set of conditions for the explanatory
variable(s).

Lieberman and Miller (1963) give tabulations for, and examples of, simultaneous tolerance
intervals for the distribution of a response variable for a range of conditions for the explanatory
variable(s).Miller (1981, Chapter 3),Wallis (1951), Bowden (1968), Turner and Bowden (1977,
1979), and Limam and Thomas (1988a) describe other methods of computing simultaneous
tolerance bands for a regression model. Mee et al. (1991) describe a procedure for computing
simultaneous tolerance intervals for a regression model and describe applications to calibration
problems.

Approximate simultaneous prediction intervals to contain all of m future observations
for a regression model are described in Lieberman (1961). Exact intervals and improved
approximations are given by Hahn (1972a), and a related application is discussed by Nelson
(1972b). Miller (1981, Chapter 3) provides a comprehensive discussion of these and related
methods.
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Comparisons

Lawless (2003, Chapters 3–6) and Nelson (1982, Chapters 10–12) discuss methods for compar-
ing various nonnormal distributions and for making comparisons when the data are censored.

When a normal distribution cannot be assumed, distribution-free procedures may be used.
For example, Gibbons (1997) shows how to obtain a distribution-free conidence interval for
the difference between the location parameters of two distributions and on the ratio of their
scale parameters.

Hahn (1977) shows how to obtain a prediction interval for the difference between future
samplemeans from two previously sampled populations, assuming that normal distributions can
be used to describe the populations.Meeker and Hahn (1980) present similar prediction intervals
for the ratio of exponential distribution means and normal distribution standard deviations. Both
papers describe applications where one desires to make a statement about a future comparison
of two populations, based upon the results of past samples from the same populations. Such
an interval might, for example, be desired by a manufacturer who wants to predict the results
of a future comparison, to be conducted by a regulating agency, of two previously tested
products.

Tolerance intervals for a subpopulation corresponding to any particular group in a “ixed
effects” analysis of variance model can be computed by using the methods referenced in
Section 4.13, because, as indicated in Section 4.14, ixed effects analysis of variance models are
special cases of linear regression models. Mee (1989) gives a method for computing a tolerance
interval for a population, based on a stratiied sampling scheme (i.e., when samples are taken
from each subpopulation).

Random-effects models

In “random effects” analysis of variance models (see Mendenhall, 1968, Chapter 12), one
is dealing with two or more sources of random variability from a single population. These
might, for example, consist of a random sample of batches, as well as a random sample of
units within batches. Lemon (1977) gives an approximate procedure for constructing one-sided
tolerance bounds for such situations, assuming the batch means follow a normal distribution,
and Mee and Owen (1983) provide improved factors. Mee and Owen (1983) provide tolerance
bounds that are exact if the ratio of the within batch variance to the between batch variance is
known; otherwise, their factors provide approximate bounds. Mee (1984) gives similar factors
for two-sided tolerance intervals (referred to as β-content tolerance intervals) and for two-sided
prediction intervals for a single observation from the entire population (referred to as β-
expectation tolerance intervals). Limam and Thomas (1988b) provide methods for constructing
similar tolerance intervals for a one-way random-effects model with explanatory variables.

The advanced methods of interval construction given in Chapters 12–17 can also be used to
construct statistical intervals for models with random effects, and we illustrate the construction
of such intervals in Sections 18.2 and 18.3.

Other Tables

In modern practice, the use of computer algorithms has largely replaced the use of extensive
tables that once were important for computing certain kinds of statistical intervals. For some
purposes, however, the tables might still be useful.

Table 1 of Odeh and Owen (1980) gives factors g′
(γ ;p,n) used in constructing conidence

intervals for normal distribution quantiles and one-sided tolerance bounds. Factors are provided
for all combinations of p = 0.75, 0.90, 0.95, 0.975, 0.99, 0.999, n = 2(1)100(2)180(5)
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300(10)400(25)650(50)1,000, 1,500, 2,000, and γ = 0.995, 0.99, 0.975, 0.95, 0.9, 0.75,
0.50, 0.25, 0.10, 0.05, 0.025, 0.01, 0.005.

Table 3 of Odeh and Owen (1980) gives factors g(γ ;β ,n) used to construct two-sided tolerance
intervals to control the center of a distribution. Factors are provided for all combinations of β =
0.75, 0.90, 0.95, 0.975, 0.99, 0.995, n = 2(1)100(2)180(5)300(10)400(25)650(50)1,000,
1,500, 2,000, 3,000, 5,000, 10,000,∞, and 1 − α = 0.50, 0.75, 0.90, 0.95, 0.975, 0.99,
0.995. Note that Odeh and Owen (1980) use p (instead of β in our notation) for the content
probability and γ (instead of 1 − α) for the conidence level.

Table 4 of Odeh and Owen (1980) gives values of the factors g′′
(γ ,p,n) used to construct

two-sided tolerance intervals to control both tails of a distribution. Factors are provided for
all combinations of γ = 0.995, 0.99, 0.975, 0.95, 0.90, 0.75, 0.50, p = 0.125, 0.10, 0.05,
0.025, 0.01, 0.005, 0.0005, and n = 2(1)100(2)180(5)300(10)400(25)650(50)1,000,
1,500, 2,000, 3,000, 5,000, 10,000,∞.

Table 7 of Odeh and Owen (1980) provides values similar to those provided by the R func-
tion normTailCI (but parameterized in a slightly different manner) for computing coni-
dence intervals for normal distribution tail probabilities. Values are provided for all com-
binations of k = −3.0(0.20)3.0, n = 2(1)18(2)30, 40(20)120, 240, 600, 1000, 1200, and
γ = 0.50, 0.75, 0.90, 0.95, 0.975, 0.99, 0.995.



Chapter 5
Distribution-Free Statistical

Intervals

OBJECTIVES AND OVERVIEW

This chapter shows how to calculate “distribution-free” two-sided statistical intervals and one-
sided statistical bounds. Such intervals and bounds, which are based on order statistics, do
not require the assumption of a particular underlying distribution, such as the normal distri-
bution used in Chapters 3 and 4, for their construction. Moreover, as implied by the term
distribution-free, the statistical properties of these procedures, such as their coverage prob-
abilities, do not depend on the underlying distribution. This is in contrast to nonparametric
methods, such as those presented in some subsequent chapters, whose construction does not
depend on the underlying distribution, but whose statistical properties do. The subtle difference
between distribution-free and nonparametric procedures is discussed further at the beginning of
Chapter 11. In either case, the important assumption that sampling is random from the popula-
tion (or process) of interest, and, more generally, the assumptions discussed in Chapter 1, still
pertain.

The topics discussed in this chapter are distribution-free:

� Conidence intervals for a distribution quantile, such as the median (Section 5.2).

� Tolerance intervals to contain at least a speciied proportion of a distribution (Section 5.3).

� Prediction intervals to contain a speciied ordered observation in a future sample (Sec-
tion 5.4).

� Prediction intervals to contain at least k of m future observations (Section 5.5).

Corresponding one-sided bounds are also considered.

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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5.1 INTRODUCTION

5.1.1 Motivation

Onemight ask “When should I use distribution-free statistical methods?” The answer, we assert,
is “Whenever possible.” If one can do a study with minimal distributional assumptions, then the
resulting conclusions are based on a more solid foundation. Moreover, it is often appropriate to
have the data analysis begin with a nonparametric approach as, for example, provided by the
probability plots discussed in Section 4.11. Then, if needed, one can proceed to amore structured
analysis involving a particular parametric distribution, such as the normal distribution, perhaps
following a transformation chosen so that the distribution better its the data.

It is interesting and useful to compare conclusions drawn from analyses that use and do
not use an assumed distribution, as well as ones that use different assumed distributions. If an
assumed distribution its the data well, the point estimates obtained from the analyses (e.g.,
quantile estimates) within the range of the data often do not differ much from those obtained
from a distribution-free approach. If an assumed distribution does not it the data well, such point
estimates could differ substantially. In this situation it is generally inappropriate to calculate a
statistical interval assuming such a distribution. A distribution-free interval (if one exists) will
generally be wider than the corresponding interval based on a particular distribution.

In particular, let x1 , x2 , . . . , xn represent n independent observations from any continuous
distribution and let x(1), x(2), . . . , x(n) denote the same observations, ordered from smallest to
largest. These ordered observations are commonly called the “order statistics” of the sample.
The distribution-free conidence intervals, tolerance intervals, and prediction intervals discussed
in this chapter use selected order statistics as interval endpoints. A distribution-free two-sided
interval requires the use of two order statistics from the sample, such as the smallest and largest
observations. The distribution-free one-sided bounds discussed in this chapter use a single order
statistic as the bound.

Because the distribution-free statistical intervals and bounds are restricted to particular
observed order statistics, it is generally not possible to obtain an interval with precisely the
desired conidence level. Therefore, a frequent practice is to accept a somewhat larger (i.e.,
conservative) conidence level than that originally speciied. An alternative, presented here, is
to interpolate between the conservative interval (or bound) and a nonconservative interval (or
bound) to obtain an approximately distribution-free interval.

Also, we need to emphasize that, aswewill see throughout this chapter, it may not be possible,
especially for small samples, to obtain a distribution-free interval with a conidence level as
large as desired—even if one uses the extreme observations of the sample (i.e., the smallest
and/or largest order statistics for an interval centered at the median of a sample) as the interval
endpoints. Then one must settle for an interval with the largest achievable conidence level,
even though this might be less than the desired level. Sometimes it will be impossible to obtain
a meaningful distribution-free interval. For example, with a sample of size 50, it is impossible
to calculate a lower conidence bound for the 0.01 quantile of the distribution at any reasonable
conidence level without making an assumption about the form of the underlying distribution.

Another shortcoming of distribution-free intervals is that they can be much wider than
distribution-dependent intervals. Thus, relatively large samples are often needed to attain an
acceptable interval width or even to provide an interval at the desired conidence level, even if
the extreme order statistic(s) are used to construct the interval. This is part of the price that one
pays for not making a distributional assumption, and may limit the value of the distribution-free
approach.

Although distribution-free intervals have limitations, such intervals still warrant serious
consideration in many applications. This is because the alternative of using methods that
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require the assumption of a particular distribution (such as the normal distribution) can lead to
seriously incorrect intervals if the assumption is incorrect.

To obtain a distribution-free two-sided statistical interval from a random sample from a
speciied distribution one generally proceeds as follows:

1. Specify the desired conidence level for the interval.

2. Determine (from tabulations or calculations) the order statistics of the sample that—
if they exist—provide the statistical interval with at least the desired conidence level
for the given sample size. We recommend that these order statistics be chosen with
appropriate symmetry (the nature of which depends on the type of interval being computed,
as explained in detail subsequently). If no such order statistics exist, use the interval
endpoints that come closest to providing the desired conidence level. Sometimes, the
resulting conidence interval is so wide that the interval is of little practical value.

3. Determine the coverage probability, or conidence level, associated with the preceding
interval. This coverage probability will be greater than or equal to the speciied (nominal)
conidence level.

4. In those cases for which the coverage probability meets or exceeds the desired conidence
level,

(a) Use the selected order statistics as the endpoints of a distribution-free conservative
interval or,

(b) Use interpolation between the conservative interval (or bound) and a nonconservative
interval (or bound), providing an approximate distribution-free interval that has a
conidence level that more closely approximates the desired conidence level.

Distribution-free one-sided bounds are obtained in a similar manner, except that only one
order statistic is used as the desired lower or upper bound. Indeed, we recommend in Sections 5.2
and 5.4 that, operationally, a two-sided conservative (or interpolated approximate)100(1 − α)%
conidence interval be obtained by combining lower and upper one-sided conservative (or
interpolated approximate) 100(1 − α/2)% conidence bounds, thereby ensuring the symmetry
mentioned above.

The particular order statistics deining a distribution-free statistical interval or bound proce-
dure (which is equivalent to specifying the interval procedure to be used) should be determined
before noting the values of the observations. Thus, for example, one might decide, initially,
based upon the sample size and the desired conidence level, to use the extreme order statistics
(i.e., the smallest and largest observations) as endpoints for a tolerance interval, irrespective of
what their observed values turn out to be. Finally, we note that for samples from a continuous
distribution (generally the case for physical measurements made with good precision), the cov-
erage probabilities for the order-statistic based statistical intervals in this chapter are exactly as
computed and distribution-free (although, as indicated, generally different than the originally
speciied desired conidence level due to the discrete number of order statistic choices). For
samples from a discrete distribution (i.e., for which the reported data might include ties), the
resulting coverage probability is again distribution-free but somewhat larger than the coverage
probability computed under the continuous-distribution assumption.

5.1.2 Notation

This section outlines the basic notation that will be used in calculating the distribution-free
intervals and bounds provided in this chapter. The notation pertains to probability distributions
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that relate to dichotomous outcomes—that is, populations that contain units that belong to
one category or another. Following quality control terminology, we generically refer to these
units as “conforming” and “nonconforming,” respectively. Technical details about the discrete
probability distributions used in this chapter (to characterize the distribution of order statistics
from unspeciied continuous distributions) are given in Appendix C. Appendix G gives most of
the underlying theory and derivations of results used in this chapter.

The following probability distribution and quantile functions are used in this chapter:

� pbinom(x;n,π) and qbinom(p;n, π) are, respectively, the binomial cdf and quantile
functions (Section C.4.1).

� pnhyper(x; k,D,N) and qnhyper(p; k,D,N) are, respectively, the negative hyperge-
ometric “waiting time” cdf and quantile functions (Section C.4.6).

Detailed information, including the interpretation of the parameters and R functions for com-
puting probabilities and quantiles for these distributions, is given in the referenced section from
Appendix C.

The following application will be used to illustrate the intervals presented in this chapter.

Example 5.1 Amount of a Compound Present in Composite Samples from 100 Randomly

Selected Batches from a Chemical Process. A production engineer wants to evaluate the
capability of a chemical process to produce a particular compound. Measurements are available,
in parts per million (ppm), of the amount of compound present in composite samples taken from
each of n = 100 randomly selected batches from the process. Each batch was thoroughly mixed
before sampling and can, therefore, be regarded as homogeneous. Measurement error was small
enough to be ignored. If measurement error had been a problem, it could have been reduced by
taking a suficient number of independent measurements from each batch and averaging these
measurements within each batch. Table 5.1 gives the resulting readings, ordered from smallest
to largest; ordering these observations will facilitate the application of the methods given in this
chapter.

Whenever data are collected over time, it is important to check for possible time-related
dependencies. For example, measuring instruments may drift with time or use, or readings may
depend on ambient temperature which might change over the time that the readings are taken.
A time-order plot of the readings is given in Figure 5.1. The data do not exhibit any trend, cycle,

Order
index 1 2 3 4 5 6 7 8 9 10

1–10 1.49 1.66 2.05 2.24 2.29 2.69 2.77 2.77 3.10 3.23
11–20 3.28 3.29 3.31 3.36 3.84 4.04 4.09 4.13 4.14 4.16
21–30 4.57 4.63 4.83 5.06 5.17 5.19 5.89 5.97 6.28 6.38
31–40 6.51 6.53 6.54 6.55 6.83 7.08 7.28 7.53 7.54 7.68
41–50 7.81 7.87 7.94 8.43 8.70 8.97 8.98 9.13 9.14 9.22
51–60 9.24 9.30 9.44 9.69 9.86 9.99 11.28 11.37 12.03 12.32
61–70 12.93 13.03 13.09 13.43 13.58 13.70 14.17 14.36 14.96 15.89
71–80 16.57 16.60 16.85 17.18 17.46 17.74 18.40 18.78 19.84 20.45
81–90 20.89 22.28 22.48 23.66 24.33 24.72 25.46 25.67 25.77 26.64
91–100 28.28 28.28 29.07 29.16 31.14 31.83 33.24 37.32 53.43 58.11

Table 5.1 Ordered measurements of the amount of a compound (in ppm) for 100 batches from a

chemical process.
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Figure 5.1 Time-order plot of the chemical process data.

or other departure from randomness. There are several large values, but these were known to
be caused by random, uncontrollable shocks to the process. Otherwise, the process appears to
be in statistical control.

Figure 5.2 is a histogram of the data showing that the distribution of the amount of compound
in the batches is sharply skewed to the right, with values close to the lower limit of 0 occurring
most frequently. The normal distribution clearly is not a good model for these data. Applying
a Box–Cox transformation (see Section 4.12) to the measurements might lead to an improved
normal distribution approximation. In this chapter, however, we will use distribution-free meth-
ods instead to characterize the population or process from which the 100 batches are a random
sample.
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Figure 5.2 Histogram of the chemical process data.
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5.2 DISTRIBUTION-FREE CONFIDENCE INTERVALS AND ONE-SIDED
CONFIDENCE BOUNDS FOR A QUANTILE

This section shows how to obtain distribution-free two-sided conidence intervals and one-
sided conidence bounds for a distribution quantile. After providing some initial comments
about coverage probabilities, we present methods and examples showing how to calculate such
intervals and bounds. We note that when taking a distribution-free approach, one is frequently
interested in quantiles of the distribution, rather than parameters like the distribution mean or
standard deviation.

5.2.1 Coverage Probabilities for Distribution-Free Confidence Intervals or
One-Sided Confidence Bounds for a Quantile

A two-sided distribution-free conidence interval for xp , the p quantile of the distribution (where
0 < p < 1), based on a random sample of size n, is obtained from [x

˜
p , x̃p ] = [x(ℓ), x(u)]

where, as before, x(ℓ) and x(u) are, respectively, the lth and the uth ordered observations from
the given sample (see subsequent discussion). As shown in Section G.2.1, for given ℓ and u,
the coverage probability that the interval [x

˜
p , x̃p ] will contain xp is

CPXP(n, ℓ, u, p) = pbinom(u − 1;n, p) − pbinom(ℓ − 1;n, p), 1 ≤ ℓ < u ≤ n. (5.1)

A distribution-free one-sided upper conidence bound for xp is given by x̃p = x(u) . The cover-
age probability for given u is

CPXP(n, 0, u, p) = pbinom(u − 1;n, p), 1 ≤ u ≤ n. (5.2)

A distribution-free one-sided lower conidence bound is given by x
˜

p = x(ℓ) . The associated
coverage probability for given ℓ is

CPXP(n, ℓ, n + 1, p) = 1 − pbinom(ℓ − 1;n, p), 1 ≤ ℓ ≤ n. (5.3)

An equivalent expression for CPXP(n, ℓ, n + 1, p), which can be inverted to provide a direct
computation of the value of ℓ giving a desired coverage probability, is

CPXP(n, ℓ, n + 1, p) = pbinom(n − ℓ;n, 1 − p). (5.4)

Derivations of these coverage probabilities are given in Section G.2.
We refer to CPXP as providing the “coverage probability” in describing a procedure to

compute a conidence interval or bound before the order statistics are observed from a particular
data set. After the data are observed, we use the common terminology “conidence level” to
describe the associated level of conidence for the calculated conidence interval.

5.2.2 Using Interpolation to Obtain Approximate Distribution-Free Confidence
Bounds or Confidence Intervals for a Quantile

The choice of order statistic indices ℓ and u deines the distribution-free conidence interval
procedure. Because of the limited number of possibilities for choosing ℓ and u, there is a limited
number of possibilities for the coverage probability for the distribution-free interval. Suppose,
for example, that the conservative conidence interval with the lowest coverage probability that
still exceeds a desired 95% conidence level has a coverage probability of 0.982. At the same
time, say that there is another pair of order statistics that provides a coverage probability of 0.944.
This suggests a third alternative: interpolate between the preceding two intervals. The resulting
modiied procedure, though not exactly distribution-free and not necessarily conservative, is
approximately distribution-free and generally closer to the desired conidence level than the
conservative procedure.
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This type of interpolation can be similarly applied to obtain one-sided lower or upper
conidence bounds. The following subsections show how to choose ℓ and/or u and do the
interpolation. In contrast to the presentations in previous chapters, we treat one-sided conidence
bounds irst. We do this because the procedure that we recommend for obtaining a distribution-
free two-sided 100(1 − α)% conidence interval for xp is to combine one-sided lower and
upper 100(1 − α/2)% conidence bounds.

5.2.3 Distribution-Free One-Sided Upper Confidence Bounds for a Quantile

Tabular/graphical method

One can use Table J.11 to determine the appropriate order statistic to provide a distribution-free
one-sided upper conservative 100(1 − α)% conidence bound for xp with p = 0.75, 0.90, 0.95,
and 0.99, and 1 − α = 0.90, 0.95, and 0.99. Alternatively, one can use Figure 5.3a or 5.3b to
determine such an order statistic for values of p ranging from 0.5 to 0.998 for 1 − α = 0.90
and 0.95. (The table and igures use β in place of p.) This table and these igures were originally
developed to aid in the construction of distribution-free tolerance intervals and bounds, but
are also useful for inding two-sided conidence intervals and one-sided conidence bounds for
quantiles. The table is more precise, but the igures give more insight. This table and these
igures allow one to determine the value of ν (explained below) for n ranging from 10 to 1,000.

The integer ν − 1 is the number of extreme observations to be removed from the upper
end of the sample of size n to obtain the order statistic that provides the desired one-sided
upper conidence bound forxp . Thus, u = n − (ν − 1) = n − ν + 1. The coverage probability
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Figure 5.3a Proportion of the distribution enclosed by a distribution-free two-sided tolerance interval (or

one-sided tolerance bound) with 90% conidence when ν − 2 (or ν − 1) extreme observations are excluded

from the ends (end) of an ordered sample of size n. The igure is also used to obtain distribution-free two-sided
conidence intervals and one-sided conidence bounds for distribution quantiles. A similar igure irst appeared

in Murphy (1948). Adapted with permission of the Institute of Mathematical Statistics. See also Table J.11.
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Figure 5.3b Proportion of the distribution enclosed by a distribution-free two-sided tolerance interval (or

one-sided tolerance bound) with 95% conidence when ν − 2 (or ν − 1) extreme observations are excluded

from the ends (end) of an ordered sample of size n. The igure is also used to obtain distribution-free two-sided
conidence intervals and one-sided conidence bounds for distribution quantiles. A similar igure irst appeared

in Murphy (1948). Adapted with permission of the Institute of Mathematical Statistics. See also Table J.11.

is also shown for all entries in Table J.11. When this coverage probability is less than the
desired conidence level, it is marked with a ∗. In using Figure 5.3a or 5.3b, one enters the
appropriate igure (determined by the selected value of 1 − α) with the speciied values n and p
(interpolating, if necessary) to ind ν. When the result, using the igures, is between two values
of ν, as is usually the case, to be conservative one would select the line with the smaller value
of ν. The resulting upper conservative 100(1 − α)% conidence bound is x̃p = x(n−ν+1) .

Computational method

The followingmethod can be used for situations that are not covered in the igures or tabulations.
A distribution-free one-sided upper conservative 100(1 − α)% conidence bound for xp can be
obtained as x̃p = x(u) , where u is chosen as the smallest integer such that CPXP(n, 0, u, p)
in (5.2) is greater than or equal to 1 − α. More directly, one can obtain u as one plus the
1 − α quantile of the binomial distribution with sample size n and parameter π = p (i.e.,
u = qbinom(1 − α;n, p) + 1). If u = n + 1, there is no distribution-free one-sided upper
conidence bound for xp having coverage probability greater than or equal to 1 − α. The
coverage probability is given by (5.2).

Approximate interpolation method

An interpolated one-sided upper conidence bound for xp is found as follows. Suppose that
x(u c ) is the one-sided upper conidence bound having the smallest conservative coverage
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probability CPXP(n, 0, uc , p) and that x(un ) is the one-sided upper conidence bound with
the largest nonconservative coverage probability CPXP(n, 0, un , p). We can then obtain an
interpolated conidence bound between x(u c ) and x(un ) that has a coverage probability that will
generally be closer to the nominal1 − α conidence level than either of the alternatives byinding

ω =
(1 − α) − CPXP(n, 0, un , p)

CPXP(n, 0, uc , p) − CPXP(n, 0, un , p)
. (5.5)

Then the interpolated one-sided upper approximate 100(1 − α)% conidence bound for xp is

ωx(u c ) + (1 − ω)x(un ). (5.6)

Example 5.2 One-Sided Upper Conidence Bound for the 0.90 Quantile of the Compound

Amount Distribution.A distribution-free one-sided upper conservative 95% conidence bound
for the 0.90 quantile, x0.90 , for the output of the chemical process described in Example 5.1
is obtained as follows. Entering Table J.11 (with p = 0.9, 1 − α = 0.95 and n = 100) or
Figure 5.3b (for 1 − α = 0.95) and reading up to the next higher curve with n = 100 and
p = 0.9, gives ν = 5. Then u = n − ν + 1 = 96 and x̃0.90 = x(96) = 31.83 (from Table 5.1)
provides the desired upper conservative conidence bound. The coverage probability for this
bound is seen from Table J.11 to be 0.9763—which is appreciably larger than the desired
0.95. Thus, we turn to the interpolation method to obtain an improved bound. Using u = 95
gives the “neighboring” one-sided nonconservative bound x̃0.90 = x(95) = 31.14, with a cov-
erage probability (from Table J.11) of 0.9424. Interpolating between the two bounds, using
(5.5) and (5.6), gives ω = (0.95 − 0.9424)/(0.9763 − 0.9424) = 0.2242 and so x̃0.90 =
0.2242 × 31.83 + (1 − 0.2242) × 31.14 = 31.29 as an approximate distribution-free one-
sided upper 95% conidence bound for x0.90 . Alternatively, applying the computational method
with interpolation and using R as a calculator for the binomial quantile function and cdf gives

> qbinom(p=0.95, size=100, prob=0.90)+1

[1] 96

> pbinom(q=96-1, size=100, prob=0.90)

[1] 0.9763

> pbinom(q=95-1, size=100, prob=0.90)

[1] 0.9424

> omega <- (0.950 - 0.9424)/(0.9763 - 0.9424)

> omega*31.83 + (1 - omega)*31.14

[1] 31.29

The igures and tables in this book do not provide a direct means to obtain upper conidence
bounds for quantiles less than 0.50, and one needs to use the computational method instead.

Example 5.3 One-Sided Upper Conidence Bound for the 0.10 Quantile of the Compound

Amount Distribution. Following the approach at the end of Example 5.2, we ind the one-sided
upper conservative and nonconservative 95% conidence bounds and then interpolate to obtain
the approximate upper 95% conidence bound for x0.10 . Using R as a calculator for the binomial
distribution quantile function and cdf gives

> qbinom(p=0.95, size=100, prob=0.10)+1

[1] 16

> pbinom(q=16-1, size=100, prob=0.10)

[1] 0.9601
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> pbinom(q=15-1, size=100, prob=0.10)

[1] 0.9274

> omega <- (0.950 - 0.9274)/(0.9601 - 0.9274)

> omega*4.04 + (1 - omega)*3.84

[1] 3.978

Thus the one-sided upper approximate 95% conidence bound for x0.10 , based on interpolation,
is x̃0.10 = 3.98.

5.2.4 Distribution-Free One-Sided Lower Confidence Bounds for a Quantile

Tabular/graphical method

The procedure for inding distribution-free one-sided lower conidence bounds for a quantile
is similar to that for upper conidence bounds presented in Section 5.2.3 and Examples 5.2
and 5.3. One can again use Table J.11 to determine the appropriate order statistic to provide
a distribution-free one-sided lower conservative 100(1 − α)% conidence bound for xp for
p = 0.25, 0.10, 0.05, and 0.01 (using 1 − p in place of p), and 1 − α = 0.90, 0.95, and 0.99.
The coverage probability is shown for all entries in Table J.11. When this coverage probability
is less than the desired conidence level, it is marked with a ∗ in the table. Alternatively, one
can use Figure 5.3a or 5.3b to determine the appropriate order statistic for values of p ranging
from 0.002 to 0.5 (again, using 1 − p in place of p) for 1 − α = 0.90 and 0.95. This table and
these igures provide ν for values of n ranging from 10 to 1,000. In using Figure 5.3a or 5.3b,
one enters the appropriate igure (determined by the selected value of 1 − α) with the speciied
values n and p (interpolating, if necessary) to ind ν. When the result, using the igures, is
between two values of ν, to be conservative, one would select the line with the smaller value of
ν. Then the resulting lower conservative 100(1 − α)% conidence bound is x(ν ) .

Computational method

The following method can be used for situations that are not covered in the igures or tab-
ulations. A distribution-free one-sided lower conservative 100(1 − α)% conidence bound
for xp can be obtained as x

˜
p = x(ℓ) , where ℓ is chosen as the largest integer such that

CPXP(n, ℓ, n + 1, p) = pbinom(n − ℓ;n, 1 − p) is greater than or equal to 1 − α. Thus
n − ℓ = qbinom(1 − α;n, 1 − p)which implies ℓ = n − qbinom(1 − α;n, 1 − p). If ℓ = 0,
there is no distribution-free one-sided lower conidence bound for xp having coverage proba-
bility greater than or equal to 1 − α. The coverage probability is given by (5.3).

Approximate interpolation method

An interpolated one-sided lower conidence bound for xp is found as follows. Suppose that
x(ℓc ) is the one-sided lower conidence bound having the smallest conservative coverage prob-
ability CPXP(n, ℓc , n + 1, p) and that x(ℓn ) is the one-sided lower conidence bound with the
largest nonconservative coverage probability CPXP(n, ℓn , n + 1, p). We can then obtain an
interpolated conidence bound between x(ℓc ) and x(ℓa ) that has a coverage probability that will
generally be closer to the nominal 1 − α conidence level than either of the alternatives by
inding

ω =
(1 − α) − CPXP(n, ℓn , n + 1, p)

CPXP(n, ℓc , n + 1, p) − CPXP(n, ℓn , n + 1, p)
. (5.7)
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Then the interpolated one-sided lower approximate 100(1 − α)% conidence bound for xp is

ωx(ℓc ) + (1 − ω)x(ℓn ). (5.8)

Example 5.4 One-Sided Lower Conidence Bound for the 0.10Quantile of the Compound

Amount Distribution.A distribution-free one-sided lower conservative 95% conidence bound
for x0.10 for Example 5.1 can be obtained as follows. Entering Table J.11 or Figure 5.3b
with n = 100, 1 − p = 0.9, and 1 − α = 0.95 (and reading up to the next higher curve)
gives ℓ = ν = 5. Then x

˜
0.10 = x(5) = 2.29 provides the desired lower conservative conidence

bound. The coverage probability for the lower bound is seen from Table J.11 to be 0.9763. Using
instead ℓ = 6 gives the neighboring nonconservative conidence bound x

˜
0.10 = x(6) = 2.69

which has a coverage probability (again from Table J.11) of 0.9424. Interpolating between these
two bounds using (5.7) and (5.8) gives ω = (0.95 − 0.9424)/(0.97631 − 0.9424) = 0.2241;
thus x

˜
0.10 = 0.2241 × 2.29 + (1 − 0.2241) × 2.69 = 2.600 is an approximate distribution-

free 95% lower conidence bound for x0.10 .
Alternatively, applying the computational method with interpolation and using R as a calcu-

lator for the binomial quantile function and cdf gives

> 100-qbinom(p=0.95, size=100, prob=1-0.10)

[1] 5

> 1 - pbinom(q=5-1, size=100, prob=0.10)

[1] 0.9763

> 1 - pbinom(q=6-1, size=100, prob=0.10)

[1] 0.9424

> omega <- (0.95 - 0.9424)/(0.9763 - 0.9424)

> omega* 2.29 + (1 - omega)*2.69

[1] 2.6

The igures and tables available in this book do not provide a direct means to obtain lower
conidence bounds for quantiles greater than 0.50. As we have seen, however, the computational
method is easy to implement with a sophisticated calculator, such as R.

Example 5.5 One-Sided Lower Conidence Bound for the 0.90Quantile of the Compound

Amount Distribution. Following the approach at the end of Example 5.4, we ind the one-sided
lower conservative and nonconservative 95% conidence bounds and then interpolate to obtain
the one-sided lower approximate 95% conidence bound for x0.90 . Using R as a calculator for
the binomial quantile function and cdf gives

> 100-qbinom(p=0.95, size=100, prob=1-0.90)

[1] 85

> 1-pbinom(q=85-1, size=100, prob=0.90)

[1] 0.9601

> 1-pbinom(q=86-1, size=100, prob=0.90)

[1] 0.9274

> omega <- (0.950 - 0.9274)/(0.9601 - 0.9274)

> omega*24.33 + (1 - omega)*24.72

[1] 24.45

Thus the approximate lower 95% conidence bound for x0.90 is x
˜

0.90 = 24.45.
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5.2.5 Distribution-Free Two-Sided Confidence Interval for a Quantile

Tabular method

A distribution-free two-sided conservative 100(1 − α)% conidence interval for xp , the p quan-
tile of the sampled distribution, is obtained from a sample of size n as [x

˜
p , x̃p ] = [x(ℓ), x(u)],

where ℓ andu are given for p = 0.10, 0.20, and 0.50 in Tables J.10a–J.10c, respectively, for vari-
ous values ofn and 1 − α. These tabulations provide integer values of ℓ andu that are symmetric
or nearly symmetric, around [np] + 1, where [r] is the integral part of r. This approach is used
because the distribution-free point estimate of the p quantile lies between x([np ]) and x([np ]+1) .
One can also use Tables J.10a and J.10b to ind distribution-free conidence intervals for
p = 0.80 and 0.90, respectively. In this case, one enters the table corresponding to 1 − p and uses

[x
˜

p , x̃p ] = [x(n−u+1), x(n−ℓ+1)]

as the desired interval.
As indicated in Section 5.1.1 and in the description of the computational methods, with

a limited sample size, it is sometimes impossible to construct a distribution-free statistical
interval that has at least the desired conidence level. This problem is particularly acute when
estimating quantiles in the tail of a distribution from a small sample. Situations for which a
desired conidence level cannot be met are indicated by a ∗ in Tables J.10a–J.10c.

Computational method

For situations that are not covered in the tabulations, we recommend combining a one-sided
upper 100(1 − α/2)%conidence bound (Section 5.2.3) and a one-sided lower 100(1 − α/2)%
conidence bound (Section 5.2.4) to give a two-sided 100(1 − α)% conidence interval. This
approach also facilitates the use of the interpolation method, given there, to provide a procedure
with a coverage probability that is generally closer to the desired conidence level (and provides
a somewhat narrower interval).

Example 5.6 Conidence Interval for theMedian of the Compound Amount Distribution.

Assume that a distribution-free 95% conidence interval is needed for x0.50 , the median of the
compound amount distribution in Example 5.1. For n = 100 and 1 − α = 0.95, Table J.10c
gives ℓ = 41 and u = 61. Thus, the interval enclosed by x(41) and x(61) provides the following
distribution-free conservative 95% conidence interval for x0.50 :

[x
˜

0.50 , x̃0.50 ] = [x(41), x(61)] = [7.81, 12.93].

The coverage probability for the procedure used to compute this conidence interval is given
in Table J.10c, or can be calculated as CPXP(100, 41, 61, 0.50) = pbinom(60; 100, 0.50) −
pbinom(40; 100, 0.50) = 0.9540 (i.e., the conidence level is 95.40%, instead of the desired
95%). The preceding interval is not exactly symmetric around the center of the data.

The symmetric conservative procedure uses ℓ = 40 and u = 61 and has a coverage proba-
bility of 0.9648. The symmetric nonconservative procedure uses ℓ = 41 and u = 60 and has a
coverage probability of 0.9431. Interpolating between these two conidence bounds, in a manner
similar to that in Examples 5.2 and 5.5, provides a procedure that can be expected to have a
coverage probability closer to the desired 0.95. Using R as a calculator for the binomial quantile
function and cdf gives

> # lower endpoint first

> 100-qbinom(p=0.975, size=100, prob=0.50)

[1] 40
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> 1-pbinom(q=40-1, size=100, prob=0.50)

[1] 0.9824

> 1-pbinom(q=41-1, size=100, prob=0.50)

[1] 0.9716

> omega <- (0.975 - 0.9716)/(0.9824 - 0.9716)

> omega*7.68 + (1 - omega)*7.81

[1] 7.769

> # upper endpoint

> qbinom(p=0.975, size=100, prob=0.50)+1

[1] 61

> pbinom(q=61-1, size=100, prob=0.50)

[1] 0.9824

> pbinom(q=60-1, size=100, prob=0.50)

[1] 0.9716

> omega <- (0.975 - 0.9716)/(0.9824 - 0.9716)

> omega*12.93 + (1 - omega)*12.32

[1] 12.51

Thus the approximate distribution-free 95% conidence interval for x0.50 based on interpolation
is [x

˜
0.50 , x̃0.50 ] = [7.77, 12.51].

Conidence intervals for other quantiles are found similarly.

Example 5.7 Conidence Interval for the 0.10 Quantile of the Compound Amount Distri-

bution. A 90% conidence interval for x0.10 can be obtained by combining the one-sided upper
approximate 95% conidence bound from Example 5.3 and the one-sided lower approximate
95% conidence bound from Example 5.4, giving [x

˜
0.10 , x̃0.10 ] = [2.60, 3.98].

Using the tabular method, we can ind a 95% conservative conidence interval for x0.10 by
entering Table J.10a with n = 100 and 1 − α = 0.95, giving ℓ = 4 and u = 16. Thus,

[x
˜

0.10 , x̃0.10 ] = [x(4), x(16)] = [2.24, 4.04]

is a distribution-free two-sided conservative 95% conidence interval for x0.10 . The coverage
probability for the procedure that generated this interval is shown in Table J.10a or calculated
as CPXP(100, 4, 16, 0.10) = pbinom(15; 100, 0.10) − pbinom(3; 100, 0.10) = 0.9523.

Example 5.8 Conidence Interval for the 0.90 Quantile of the Compound Amount Distri-

bution. A 90% conidence interval for x0.90 can be obtained by combining the one-sided upper
approximate 95% conidence bound from Example 5.2 and the one-sided lower approximate
95% conidence bound from Example 5.5, giving [x

˜
0.90 , x̃0.90 ] = [24.45, 31.29].

To ind a 95% conservative conidence interval for x0.90 , we again use Table J.10a with
n = 100 and 1 − p = 1 − 0.90 = 0.10. We obtain ℓ = 4 and u = 16, giving n − u + 1 =
100 − 16 + 1 = 85 and n − ℓ + 1 = 100 − 4 + 1 = 97 for the desired lower and upper order
statistic indices, respectively. Thus

[x
˜

0.90 , x̃0.90 ] = [x(85), x(97)] = [24.33, 33.24]

is a two-sided distribution-free conservative 95% conidence interval for x0.90 . The cover-
age probability for the procedure that generated this interval is CPXP(100, 85, 97, 0.90) =
pbinom(96; 100, 0.90) − pbinom(84; 100, 0.90) = 0.9523.

Note from Table J.10a that for n = 50 or less, a two-sided distribution-free 99% conidence
interval for x0.10 cannot be obtained with symmetrically chosen order statistics. Therefore, if
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one wishes to choose ℓ and u symmetrically or approximately symmetrically about [np] + 1 =
5 + 1 = 6, one must settle for the largest achievable conidence level from the irst and 11th
order statistics. In particular, for n = 50, the largest achievable conidence level for a near-
symmetric interval is 98.55%, corresponding to ℓ = 1 and u = 11. Alternatively, one may
increase the upper end of the interval and use the irst and 12th ordered observations. This would
give a nonsymmetric distribution-free conidence interval of [1.49, 3.29] with a conidence
level of 99.16% (i.e., CPXP(50, 1, 12, 0.1) = pbinom(11; 50, 0.1) − pbinom(0; 50, 0.1) =
0.9916).

5.3 DISTRIBUTION-FREE TOLERANCE INTERVALS AND BOUNDS TO
CONTAIN A SPECIFIED PROPORTION OF A DISTRIBUTION

5.3.1 Distribution-Free Two-Sided Tolerance Intervals

A distribution-free two-sided conservative 100(1 − α)% tolerance interval to contain at least a
proportion β of the sampled distribution from a sample of size n is obtained as

[T
˜

β , T̃β ] = [x(ℓ), x(u)].

To determine the speciic order statistics that will provide the desired conidence level, one
generally chooses ℓ and u symmetrically or nearly symmetrically within the ordered sample
data to provide, if possible, the desired coverage probability. The coverage probability for this
distribution-free tolerance interval procedure is

CPTI(n, ℓ, u, β) = pbinom(u − ℓ − 1;n, β), 0 ≤ ℓ < u ≤ n + 1, (5.9)

where 0 < β < 1. Derivations of this coverage probability are given in Section G.3.
Similar to our previous discussion in Section 5.2.1, CPTI refers to the tolerance interval

coverage probability prior to observing the data. After the data have been observed, the numbers
represent a conidence level.

Tabular/graphical method

Table J.11 or Figure 5.3a or 5.3b can be used to ind appropriate values of ℓ and u for various
values of β and 1 − α. Speciically, from either the table or the igure, choose the value of ν
that gives the desired level of conidence for enclosing at least a proportion β of the distribution
(reading down to the next smallest integer when using the igures). The integer ν − 2 is the
total number of observations to be removed from the extremes of the ordered sample, giving the
order statistics that deine the desired tolerance interval. To ind the particular order statistics to
be used for the tolerance interval, we need to divide ν into two parts as follows:

� Let ν1 = ν2 = ν/2 if ν is even.

� Let ν1 = ν/2 − 1/2 and ν2 = ν1 + 1 or ν1 = ν/2 + 1/2 and ν2 = ν1 − 1 if ν is odd
(either will give a tolerance interval with the same level of conidence). Then use ℓ = ν1

and u = n − ν2 + 1. The desired tolerance interval is then formed by the values of x(ℓ)

and x(u) .

When ν is an odd integer, the tolerance interval will not be exactly symmetric about the center
of the distribution.

Computational method

For situations that are not covered in the igures or tabulations, one can obtain ν directly as
ν = n − qbinom(1 − α;n, β) (see (G.6) for the derivation of this result) and then proceed
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as described for the tabular and graphical methods. If ν ≤ 1, then there is not a two-sided
distribution-free tolerance interval to contain at least a proportion β with coverage probability
greater than or equal to 1 − α. The coverage probability is given by (5.9).

Example 5.9 Two-SidedConservativeTolerance Interval toContain atLeast aProportion

0.90 of the Compound Amount Distribution. The manufacturer needs a two-sided tolerance
interval that will, with 95% conidence, contain the compound amounts for at least a proportion
0.90 of the batches from the sampled production process, based on the sample data from 100
batches. From Table J.11, using n = 100, β = 0.90 and 1 − α = 0.95, we ind ν = 5; we
choose ν1 = 2 and ν2 = 3, yielding ℓ = 2 and u = 98. Thus,

[T
˜

0.90 , T̃0.90 ] = [x(2), x(98)] = [1.66, 37.32]

is a two-sided conservative 95% tolerance interval to contain at least a proportion 0.90 of the
distribution values with (at least) 95% conidence. Alternatively, ν1 = 3 and ν2 = 2might have
been chosen, yielding ℓ = 3 and u = 99, resulting in the interval

[T
˜

0.90 , T̃0.90 ] = [x(3), x(99)] = [2.05, 53.43].

The coverage probability for this procedure (for either choice of ℓ and u) is
CPTI(100, 2, 98, 0.90) = pbinom(98 − 2 − 1; 100, 0.90) = 0.9763.

The ambiguity in the previous example is due to the odd value of ν and the resulting
asymmetry. The approximate method described next avoids this ambiguity.

Approximate interpolation method

As with the other conservative statistical interval methods that are based on order statistics,
the conservative coverage probability of the procedure may appreciably exceed the desired
100(1 − α)% conidence level. In this case, interpolation (between the closest conservative and
the closest nonconservative interval), similar to that described in Section 5.2.2, can be used to
obtain a narrower interval with a conidence level that is generally approximately equal to 1 − α.
The resulting interval will be approximately distribution-free and will no longer necessarily be
conservative.

Using this approach, we can again ind ν directly as described in the above computational
method in this section. Note that ν must be at least 2, and if it is an odd number, we subtract
1 so as to maintain the conservativeness of the procedure and so that the resulting values of
ℓ = ν/2 and u = n − ν/2 + 1 are symmetric about the center of the data set.

Let ℓc = ν/2, ℓn = ℓc + 1, and ui = n − ℓi + 1, (i = c, n), where c andn indicate “conser-
vative” and “nonconservative” order statistic indices, respectively. If we now set un = uc − 1
and ℓn = ℓc + 1, then [x(ℓc ), x(n−ℓc +1)] and [x(ℓn ), x(n−ℓn +1)] are, respectively, conserva-
tive and nonconservative tolerance intervals with coverage probabilitiesCPTI(n, ℓc , uc , β) and
CPTI(n, ℓn , un , β) given by (5.9). ThusCPTI(n, ℓn , un , β) < 1 − α < CPTI(n, ℓc , uc , β).
Now if we let

ω =
(1 − α) − CPTI(n, ℓn , un , β)

CPTI(n, ℓc , uc , β) − CPTI(n, ℓn , un , β)
,

the approximate tolerance interval based on the interpolation method is

[T
˜

β , T̃β ] = [ωx(ℓc ) + (1 − ω)x(ℓn ), ωx(u c ) + (1 − ω)x(un )].

Because of symmetry of the tolerance interval procedure, the same interpolation weight is used
for both endpoints of the interval.



88 DISTRIBUTION-FREE STATISTICAL INTERVALS

Example 5.10 Symmetric Two-SidedApproximate Tolerance Interval to Contain at Least

a Proportion 0.90 of the Compound Amounts. This example is similar to Example 5.9 except
that it uses the interpolation method to ind a symmetric approximate tolerance interval. Using
R as a calculator for the binomial quantile function and cdf gives

> # find v

> 100-qbinom(p=0.95, size=100, prob=0.90)

[1] 5 # is odd, so decrease by 1 to v=4

> # conservative indices are 4/2=2 and 100-4/2+1=99

> pbinom(q=(99-2)-1, size=100, prob=0.90) #conservative coverage

[1] 0.9922

> # nonconservative indices are 6/2=3 and 100-6/2+1=98

> pbinom(q=(98-3)-1, size=100, prob=0.90) #nonconservative coverage

[1] 0.9424

> omega <- (0.95 - 0.9424)/(0.9922 - 0.9424)

> omega*1.66 + (1 - omega)*2.05

[1] 1.99

> omega*53.43 + (1 - omega)*37.32

[1] 39.78

Thus the resulting approximate distribution-free 95% tolerance interval to contain at least a

proportion 0.90 of the distribution is [T
˜

0.90 , T̃0.90 ] = [1.99, 39.78].

5.3.2 Distribution-Free One-Sided Tolerance Bounds

Coverage probabilities for distribution-free one-sided tolerance bounds can be computed by
using (5.9). Speciically, using u = n + 1 gives the coverage probability when x(ℓ) represents
a one-sided lower tolerance bound and using ℓ = 0 gives the coverage probability when x(u)

represents a one-sided upper tolerance bound.
As described in Section 2.4.2, a distribution-free one-sided lower tolerance bound that one

can claim with 100(1 − α)% conidence is exceeded by at least a proportion 1 − p of the
distribution is equivalent to a distribution-free one-sided lower 100(1 − α)% conidence bound
on the p quantile of a distribution. Similarly, a distribution-free one-sided upper tolerance
bound that one can claim with 100(1 − α)% conidence exceeds at least a proportion p of the
distribution is equivalent to a distribution-free one-sided upper 100(1 − α)% conidence bound
on the p quantile of a distribution. Such conidence bounds were considered in Sections 5.2.3
and 5.2.4 and, therefore, will not be discussed further here.

5.3.3 Minimum Sample Size Required for Constructing a Distribution-Free
Two-Sided Tolerance Interval

As described in Section 5.1.1, a given sample size might be inadequate to construct a
distribution-free tolerance interval with a desired level of conidence, even if one uses the
extreme observations of the sample as the interval endpoints. Note from Table J.11 that a
sample of size n = 100 is not suficient to obtain a distribution-free two-sided 95% toler-
ance interval to contain at least a proportion 0.99 of a distribution. In fact, using the extreme
values of a given sample of this size gives only a coverage probability of 0.2642 for con-
taining at least a proportion 0.99 of the sampled distribution (i.e., CPTI(100, 1, 100, 0.99) =
pbinom(100 − 1 − 1; 100, 0.99) = 0.2643).

Table J.12 gives the smallest sample size n needed to provide 100(1 − α)% conidence that
the tolerance interval deined by the extreme values of the sample, [x(1), x(n)], will contain
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a proportion p of the sampled distribution for selected values of 1 − α and β. This table was
obtained by substituting u = n and ℓ = 1 into (5.9), yielding the expression

1 − α = 1 − nβn−1 + (n − 1)βn ,

which is solved for n using standard numerical techniques. To obtain a 95% conidence
interval to contain at least a proportion 0.99 of the distribution, we see from Table J.12
that a minimum of n = 473 observations are needed. The associated coverage probability
is CPTI(473, 1, 473, 0.99) = pbinom(473 − 1 − 1; 473, 0.99) = 0.9502.

Table J.13 gives the smallest sample size needed to have 100(1 − α)% conidence that the
largest (smallest) observation in the sample will exceed (be exceeded by) at least 100β% of the
distribution for selected values of 1 − α and β. This table was obtained by substituting ℓ = 0
and u = n (or equivalently ℓ = 1 and u = n + 1) into (5.9), yielding the expression

1 − α = 1 − βn .

Solving for n yields n = log(α)/ log(β). If the computed value of n is not an integer, n should
be increased to the next highest integer.

5.4 PREDICTION INTERVALS AND BOUNDS TO CONTAIN A SPECIFIED
ORDERED OBSERVATION IN A FUTURE SAMPLE

This section shows how to obtain distribution-free two-sided prediction intervals and one-sided
prediction bounds for Y(j ) , the jth ordered observation from a future sample of size m. First we
provide some general information about coverage probabilities for these prediction intervals,
followed by detailed methods and examples showing how to obtain the intervals.

General tables for prediction intervals to contain a speciied ordered observation in a future
sample would be too voluminous to include in this book. Instead, we present a computational
method that can be used with a sophisticated calculator (or a simple computer program) to
obtain the needed intervals.

As in Section 5.2, we treat one-sided prediction bounds irst because the procedure that we
recommend for obtaining a distribution-free two-sided 100(1 − α)% prediction interval for
Y(j ) is to combine one-sided lower and upper 100(1 − α/2)% prediction bounds for Y(j ) .

5.4.1 Coverage Probabilities for Distribution-Free Prediction Intervals and
One-Sided Prediction Bounds for a Particular Ordered Observation

A two-sided distribution-free prediction interval for Y(j ) , the jth ordered observation from a

future sample of size m, is obtained as [Y
˜

(j ), Ỹ(j )] = [x(ℓ), x(u)]. The coverage probability
for given ℓ and u is

CPYJ(n, ℓ, u,m, j) = pnhyper(u − 1; j,m,m + n) − pnhyper(ℓ − 1; j,m,m + n),

(5.10)

where 1 ≤ ℓ < u ≤ n.
A distribution-free one-sided upper prediction bound for Y(j ) is given by Ỹ(j ) = x(u) . The

coverage probability for a given u is

CPYJ(n, 0, u,m, j) = pnhyper(u − 1; j,m,m + n), 1 ≤ u ≤ n. (5.11)

A distribution-free one-sided lower prediction bound for Y(j ) is given by Y
˜

(j ) = x(ℓ) . The
coverage probability for a given ℓ is

CPYJ(n, ℓ, n + 1,m, j) = 1 − pnhyper(ℓ − 1; j,m,m + n), 1 ≤ ℓ ≤ n,
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where 1 ≤ j ≤ m in all of the above. An equivalent expression for CPYJ(n, ℓ, n + 1,m, j),
which can be inverted to provide a direct computation of the value of ℓ giving a desired coverage
probability, is

CPYJ(n, ℓ, n + 1,m, j) = pnhyper(n − ℓ;m − j + 1,m,m + n). (5.12)

Derivations of these coverage probabilities are given in Section G.4.
Similar to our previous discussion in Section 5.2.1, CPYJ refers to the prediction interval

coverage probability prior to observing the data. After the data have been observed, the number
represents a conidence level.

5.4.2 Distribution-Free One-Sided Upper Prediction Bound for Y(j )

Computational method

A distribution-free one-sided upper conservative 100(1 − α)% prediction bound for Y(j ) from

a future sample of size m is obtained as Ỹ(j ) = x(u) , where u is chosen as the smallest
integer such that the coverage probability CPYJ(n, 0, u,m, j) in (5.11) is greater than or
equal to 1 − α. More directly, one can obtain u as one plus the (1 − α) quantile of the
negative hypergeometric distribution with parameters k = j, D = m, and N = m + n (i.e.,
u = qnhyper(1 − α; j,m,m + n) + 1). If u = n + 1, there is no distribution-free one-sided
upper prediction bound for Y(j ) having coverage probability greater than or equal to 1 − α. The
coverage probability is given by (5.11).

Approximate interpolation method

Suppose that x(u c ) is the one-sided upper prediction bound having the smallest conservative
coverage probability CPYJ(n, 0, uc ,m, j) and that x(un ) is the one-sided upper prediction
bound with the largest nonconservative coverage probability CPYJ(n, 0, un ,m, j). We can
then ind an interpolated prediction bound between x(u c ) and x(un ) that has a coverage prob-
ability that will generally be closer to the nominal 1 − α conidence level than either of the
alternatives by letting

ω =
(1 − α) − CPYJ(n, 0, un ,m, j)

CPYJ(n, 0, uc ,m, j) − CPYJ(n, 0, un ,m, j)
.

Then the interpolated one-sided upper approximate 100(1 − α)% prediction bound for Y(j ) is

ωx(u c ) + (1 − ω)x(un ).

Example 5.11 One-Sided Upper Prediction Bound for a Future Sample Median Com-

pound Amount. A distribution-free one-sided upper conservative 95% prediction bound for
the sample median of a future sample of size 59 for the output of the chemical process described
in Example 5.1 is desired. Thus an upper prediction bound is needed for Y(30) . Using R as a cal-
culator for the negative hypergeometric quantile function qnhyper and cdf function pnhyper
from the StatInt R package gives

> qnhyper(p=0.95, k=30, D=59, N=100+59)+1

[1] 64

> pnhyper(q=64-1, k=30, D=59, N=100+59)

[1] 0.9522

showing that the desired upper 95% prediction bound is
˜̂
Y0.50 = Ỹ(30) = x(64) = 13.43 with

a conidence level of 0.9522. Although 0.9522 is close to the nominal 0.95 conidence level,
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using interpolation in (5.13) and (5.14) will provide a slightly tighter bound and a conidence
level that is closer to the nominal conidence level. In particular, the nonconservative prediction

bound
˜̂
Y0.50 = Ỹ(30) = x(63) = 13.09 is combined with the previously computed conservative

bound. Using R as a calculator gives

> pnhyper(q=63-1, k=30, D=59, N=100+59)

[1] 0.9383

> omega <- (0.950 - 0.9383)/(0.9522 - 0.9383)

> omega*13.43 + (1 - omega)*13.09

[1] 13.38

so that
˜̂
Y0.50 = 13.38.

5.4.3 Distribution-Free One-Sided Lower Prediction Bound for Y(j )

Computational method

A distribution-free one-sided lower conservative 100(1 − α)% prediction bound for Y(j ) from
a future sample of size m is obtained as Y

˜ (j ) = x(ℓ) , where ℓ is chosen as the largest integer
such that the coverage probability CPYJ(n, ℓ, n + 1,m, j) = pnhyper(n − ℓ;m − j + 1,
m,m + n) is greater than or equal to 1 − α. This gives ℓ = n − qnhyper(1 − α;m − j + 1,
m,m + n). If ℓ = 0, there is no distribution-free one-sided lower prediction bound for Y(j )

having coverage probability greater than or equal to 1 − α. The coverage probability is given
by (5.12).

Approximate interpolation method

The interpolation for a one-sided lower prediction bound forY(j ) is done in the followingmanner.
Suppose that x(ℓc ) is the one-sided lower prediction bound having the smallest conservative
coverage probabilityCPYJ(n, ℓc , n + 1,m, j) and that x(ℓn ) is the one-sided lower prediction
bound with the largest nonconservative coverage probability CPYJ(n, ℓn , n + 1,m, j). We
can then ind an interpolated prediction bound between x(ℓc ) and x(ℓn ) that has a coverage
probability that will generally be closer to the nominal 1 − α conidence level than either of the
alternatives as follows. Let

ω =
(1 − α) − CPYJ(n, ℓn , n + 1,m, j)

CPYJ(n, ℓc , n + 1,m, j) − CPYJ(n, ℓn , n + 1,m, j)
. (5.13)

Then the interpolated one-sided lower approximate 100(1 − α)% prediction bound for Y(j ) is

ωx(ℓc ) + (1 − ω)x(ℓn ). (5.14)

Example 5.12 One-Sided Lower Prediction Bound for the Future Sample Median Com-

pound Amount.A distribution-free one-sided lower conservative 95% prediction bound for the
sample median of a future sample of size 59 for the output of the chemical process described
in Example 5.1 is desired. Thus a lower prediction bound is needed for Y(30) . Using R as a
calculator for the negative hypergeometric quantile function and cdf gives

> 100-qnhyper(p=0.95, k=59-30+1, D=59, N=100+59)

[1] 37

> 1-pnhyper(q=37-1, k=30, D=59, N=100+59)

[1] 0.9522
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showing that the desired lower 95% prediction bound is Ŷ
˜ 0.50 = Y

˜ (30) = x(37) = 7.28 with
conservative coverage probability 0.9522. Using interpolation in (5.13) and (5.14) will provide
a coverage probability that is closer to the nominal conidence level. In particular, the non-

conservative bound Ŷ
˜ 0.50 = Y

˜ (30) = x(38) = 7.53 is combined with the previously computed
conservative bound. Using R gives

> 1-pnhyper(q=38-1, k=30, D=59, N=100+59)

[1] 0.9383

> omega <- (0.950 - 0.9383)/(0.9522 - 0.9383)

> omega*7.28 + (1 - omega)*7.53

[1] 7.32

so that Ŷ
˜ 0.50 = 7.32.

The similarity in the results for Examples 5.11 and 5.12 is due to symmetry in dealing with
the median.

5.4.4 Distribution-Free Two-Sided Prediction Interval for Y(j )

Adistribution-free two-sided conservative 100(1 − α)% prediction bound forY(j ) from a future
sample of sizem can be obtained by combining a one-sided upper conservative 100(1 − α/2)%
prediction bound (Section 5.4.2) and a one-sided lower conservative 100(1 − α/2)%prediction
bound (Section 5.4.3). This approach also provides the irst step for the interpolation method to
give a procedure with a coverage probability that is closer to the desired conidence level and
that results in a somewhat narrower interval.

Example 5.13 Prediction Interval for Future Sample Median Compound Amount. A

distribution-free two-sided prediction interval is needed for Ŷ0.50 , the median of a future
sample of 59 batches from the chemical process described in Example 5.1. Combining the
upper and lower one-sided conservative 95% prediction bounds from Examples 5.11 and 5.12

gives the two-sided conservative 90% prediction interval [Ŷ
˜ 0.50 ,

˜̂
Y0.50 ] = [Y

˜ (30), Ỹ(30)] =
[x(37), x(64)] = [7.28, 13.43]. Also, combining the two one-sided approximate 95% predic-
tion bounds based on the interpolation scheme gives a two-sided approximate 90% prediction

interval [Ŷ
˜ 0.50 ,

˜̂
Y0.50 ] = [7.32, 13.38].

In order to construct two-sided 95% prediction intervals we can retrace the steps in Exam-
ples 5.11 and 5.12 using one-sided nominal conidence levels of 0.975. The symmetric con-
servative procedure uses ℓ = 34 and u = 67 and has a coverage probability of 0.9597. The
symmetric nonconservative procedure uses ℓ = 35 and u = 66 and has a coverage proba-
bility of 0.9453. Interpolating in a manner similar to that done in Examples 5.11 and 5.12
provides a procedure that will have a coverage probability closer to the desired 0.95 coni-
dence level. Using R as a calculator for the negative hypergeometric quantile function and cdf
gives

> # lower endpoint first

> 100-qnhyper(p=0.975, k=59-30+1, D=59, N=100+59)

[1] 34

> 1-pnhyper(q=34-1, k=30, D=59, N=100+59)

[1] 0.9798

> 1-pnhyper(q=35-1, k=30, D=59, N=100+59)

[1] 0.9727
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> omega <- (0.975 - 0.9727)/(0.9798 - 0.9727)

> omega*6.55 + (1 - omega)*6.83

[1] 6.739

> # upper endpoint

> qnhyper(p=0.975, k=30, D=59, N=100+59)+1

[1] 67

> pnhyper(q=67-1, k=30, D=59, N=100+59)

[1] 0.9798

> pnhyper(q=66-1, k=30, D=59, N=100+59)

[1] 0.9727

> omega <- (0.975 - 0.9727)/(0.9798 - 0.9727)

> omega*14.17 + (1 - omega)*12.32

[1] 12.92

Thus the distribution-free two-sided approximate 95% prediction interval for Ŷ0.50 based on

interpolation is [Ŷ
˜ 0.50 ,

˜̂
Y0.50 ] = [6.74, 12.92]. The coverage probabilities for the lower and

upper bounds in this example are the same because the interval endpoints for the median are
symmetric around the center of the sample order statistics.

5.5 DISTRIBUTION-FREE PREDICTION INTERVALS AND BOUNDS TO
CONTAIN AT LEAST k OF m FUTURE OBSERVATIONS

5.5.1 Distribution-Free Two-Sided Prediction Intervals to Contain at Least k of
m Future Observations

A distribution-free two-sided conservative 100(1 − α)% prediction interval to contain at least
k of m future observations from a previously sampled distribution is obtained as

[Y
˜ k ;m , Ỹk ;m ] = [x(ℓ), x(u)].

To determine the particular order statistics that will provide a prediction interval with the desired
conidence level, one generally chooses ℓ and u symmetrically or nearly symmetrically within
the ordered sample data to provide, if possible, the desired coverage probability. The coverage
probability for a distribution-free prediction interval, to be based on a previous sample of n
observations, is

CPKM(n, ℓ, u, k,m) = pnhyper(u − ℓ − 1; k,m,m + n), 0 ≤ ℓ < u ≤ n + 1. (5.15)

Note that the case for which ℓ = 0 corresponds to an upper prediction bound and the case
for which u = n + 1 corresponds to a lower prediction bound. Derivation of this coverage
probability is given in Section G.5.

When the prediction interval is formed by the extreme values of the given sample (i.e.,
ℓ = 1 and u = n), the coverage probability associated with the inclusion of all k = m future
observations is

1 − α =
n(n − 1)

(n + m)(n + m − 1)
. (5.16)

As in Section 5.2.1, CPKM refers to the prediction interval coverage probability prior
to observing the data. After the data have been observed, we use the standard terminology
“conidence level.”
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Tabular method

One searches Tables J.14a–J.14c, with given n, m, and the desired conidence level 1 − α, for
the largest value of ν that provides the desired value of k shown in the body of the table. Then
one chooses ℓ and u symmetrically in a manner similar to that for constructing distribution-free
two-sided tolerance intervals, as described in Section 5.3.1 and illustrated in Example 5.9.
Tables J.14a–J.14c contain entries for selected values of 1 − α, n, m, and ν. Note that, as with
the tolerance intervals in Section 5.3.1, when ν is an odd integer, the tolerance interval will not
be exactly symmetric.

Example 5.14 Two-Sided Conservative Prediction Interval to Contain the Compound

Amount for All 5 of 5 Future Batches. Based on the previous sample of n = 100 batches, the
manufacturer wants a distribution-free 90% prediction interval to contain all the observations
from a future sample of ive batches from the same distribution (i.e., k = 5 and m = 5).
Searching Table J.14a with n = 100, m = 5, and 1 − α = 0.90 to ind the largest ν giving
k = 5 in the body of the table, we obtain ν = 2. Proceeding as in Section 5.3.1, we divide ν
into ν1 = 1 and ν2 = 1 to obtain ℓ = ν1 = 1 and u = n − ν2 + 1 = 100. Thus, the desired
90% two-sided prediction interval to contain all k = 5 of the m = 5 future observations is the
range formed by the smallest and largest observations of the given sample:

[Y
˜

5;5 , Ỹ5;5 ] = [x(1), x(100)] = [1.49, 58.11].

Because this interval uses the two extreme observations in the previous sample as the endpoints
of the prediction interval, we determine from (5.16) that the conidence level is 100(100 − 1)/
[(100 + 5)(100 + 5 − 1)] = 0.9066.

Example 5.15 Two-Sided Conservative Prediction Interval to Contain the Compound

Amount for 4 out of 5 Future Batches. Now suppose we require a 95% prediction interval to
contain at least k = 4 ofm = 5 future observations. Searching Tables J.14a and J.14b with n =
100, m = 5, and 1 − α = 0.95, we ind the largest ν such that k = 4 to be ν = 7. Partitioning
ν = 7 into ν1 = 3 and ν2 = 4 gives ℓ = ν1 = 3 and u = n − ν2 + 1 = 97, following the
procedure in Section 5.3.1. Thus, the desired 95% prediction interval to contain at least four of
ive future observations is

[Y
˜

4;5 , Ỹ4;5 ] = [x(3), x(97)] = [2.05, 33.24].

The conidence level for this interval, computed using the CPKM function in (5.15), is found to
be 0.9545. If we had partitioned ν = 7 into ν1 = 4 and ν2 = 3 instead, we would have obtained
ℓ = 4 and u = 98, and

[Y
˜

4;5 , Ỹ4;5 ] = [x(4), x(98)] = [2.24, 37.32].

The conidence level associated with this interval remains the same (i.e., 0.9545).

The ambiguity in the previous example (with regard to which of the preceding two intervals
to use) is due to the odd value of ν and the resulting asymmetry. The approximate method based
on interpolation described below avoids this ambiguity.

Computational method

Alternatively, ν can be obtained directly as ν = n − qnhyper(1 − α; k,m, n + m) where
qnhyper(·) is the quantile of the negative hypergeometric distribution (see Section G.5 for the
derivation of this result). This method can be used for combinations of m, n, k, and 1 − α not
covered by the tabulations. If ν ≤ 1, then there is not a two-sided distribution-free prediction
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interval to contain at least k out ofm future observations with coverage probability greater than
or equal to 1 − α. The coverage probability is given by (5.15).

Approximate interpolation method

As with other conservative statistical interval methods based on order statistics, the cov-
erage probability of the preceding prediction interval may appreciably exceed the desired
100(1 − α)% conidence level. In this case, interpolation, similar to that described in Sec-
tion 5.2.2, can be used to obtain a narrower approximate distribution-free interval with coverage
probability that is generally closer to 1 − α. First, we ind ν directly as in the computational
method description, given above. Note that ν must be at least 2, and if it is an odd number, we
need to subtract 1 to remain conservative and to ensure that the resulting values of ℓ = ν/2 and
u = n − ν/2 + 1 are symmetric about the center of the ordered data.

Let ℓc = ν/2, ℓn = ℓc + 1, and ui = n − ℓi + 1 (i = c, n), where c and n indicate
“conservative” and “nonconservative” order statistic indices, respectively. If un = uc − 1
and ℓn = ℓc + 1, then [x(ℓc ), x(n−ℓc +1)] and [x(ℓn ), x(n−ℓn +1)] are, respectively, con-
servative and nonconservative prediction intervals and their individual coverage proba-
bilities CPKM(n, ℓc , uc , k,m) and CPKM(n, ℓn , un , k,m) are given by (5.15). Thus,
CPKM(n, ℓn , un , k,m) < (1 − α) < CPKM(n, ℓc , uc , k,m). Also, let

ω =
(1 − α) − CPKM(n, ℓn , un , k,m)

CPKM(n, ℓc , uc , k,m) − CPKM(n, ℓn , un , k,m)
.

Then the approximate prediction interval based on the interpolation method is

[Y
˜

k ;m , Ỹk ;m ] = [ωx(ℓc ) + (1 − ω)x(ℓn ), ωx(u c ) + (1 − ω)x(un )].

Because of symmetry, the same interpolation weight is used for both endpoints of the interval.

Example 5.16 Application of the InterpolationMethod to Example 5.14.We now apply the
interpolation method to Example 5.14 to ind an improved symmetric approximate distribution-
free prediction interval. First, to obtain a 90% prediction interval to contain all of the observa-
tions from a future sample of ive batches from the same population (i.e., k = 5 andm = 5), we
interpolate between the conservative and nonconservative intervals. To do this we use the R neg-
ative hypergeometric quantile function and cdf to ind the intervals and interpolate, as follows:

# find v

> 100-qnhyper(p=1-0.10, k=5, D=5, N=100+5)

[1] 2 # is an even number, so is OK

# conservative indices are 2/2=1 and 100-2/2+1=100

> pnhyper(q=(100-1)-1, k=5, D=5, N=100+5) #conservative coverage

[1] 0.9066

# nonconservative indices are 1+1=2 and 100-1=99

> pnhyper(q=(99-2)-1, k=5, D=5, N=100+5) #nonconservative coverage

[1] 0.8203

> omega <- (0.90 - 0.8203)/(0.9066 - 0.8203)

> omega*1.49 + (1 - omega)*1.66

[1] 1.503

> omega*58.11 + (1 - omega)*53.43

[1] 57.75

yielding the 95% prediction interval [Y
˜

4;5 , Ỹ4;5 ] = [1.50, 57.75].
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To ind a 95% prediction interval to contain at least 4 of 5 observations from a future sample
of batches from the same process (i.e., k = 4 and m = 5), we similarly use R as a calculator,
proceeding as follows:

# find v

> 100-qnhyper(p=1-0.05, k=4, D=5, N=100+5)

[1] 7 # is an odd number, so need to subtract one and use v=6

# conservative indices are 6/2=3 and 100-6/2+1=98

> pnhyper(q=(98-3)-1, k=4, D=5, N=100+5) #conservative coverage

[1] 0.9652

# nonconservative indices are 3+1=4 and 98-1=97

> pnhyper(q=(97-4)-1, k=4, D=5, N=100+5) #nonconservative coverage

[1] 0.9426

> omega <- (0.95 - 0.9426)/(0.9652 - 0.9426)

> omega*2.05 + (1 - omega)*2.24

[1] 2.178

> omega*37.32 + (1 - omega)*33.24

[1] 34.58

yielding the 95% prediction interval [Y
˜

4;5 , Ỹ4;5 ] = [2.18, 34.58].

5.5.2 Distribution-Free One-Sided Prediction Bounds to Exceed or Be
Exceeded by at Least k of m Future Observations

In (5.15), using u = n + 1 corresponds to having x(ℓ) provide a one-sided lower predic-
tion bound and using ℓ = 0 corresponds to having x(u) provide a one-sided upper prediction
bound.

A one-sided lower prediction bound to be exceeded by at least m − k + 1 of m future
observations is equivalent to a one-sided lower prediction bound to be exceeded by the k largest
of m future observations, described in Section 5.4.3. Similarly, a one-sided upper prediction
bound to exceed at least k ofm future observations is equivalent to a one-sided upper prediction
bound to exceed the kth largest of m future observations, described in Section 5.4.2.

Also, a one-sided prediction bound that uses the smallest (or largest) of n observations as the
lower (or upper) limit, to be exceeded by (exceed) all of m future observations has associated
coverage probability

1 − α =
n

n + m
. (5.17)

Tables J.16a–J.16c give the necessary sample size n so that a one-sided lower (upper)
distribution-free prediction bound deined by the smallest (largest) observation from the previous
sample will be exceeded by (will exceed)

� all m,

� at least m − 1, and

� at least m − 2

observations in a future sample of size m from the previously sampled distribution using a
100(1 − α)% conidence level for selected values 1 − α and m.
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BIBLIOGRAPHIC NOTES

The theory underlying the use of order statistics and some of the distribution-free statistical
intervals presented in this chapter is outlined in Appendix G. A substantial treatment of the
theory of order statistics can be found, for example, in David and Nagaraja (2003) who also
discuss distribution-free statistical intervals.

Distribution-free confidence intervals for a quantile

Murphy (1948) irst presented charts like those in Figures 5.3a and 5.3b to construct distribution-
free two-sided tolerance intervals and one-sided tolerance bounds. Somerville (1958) gave
tabulations that are similar to Table J.11, but without the coverage probabilities.

Distribution-free confidence intervals for a quantile

Because of the equivalence of one-sided tolerance bounds and one-sided conidence bounds
on a distribution quantile (described in Section 2.4.2), the charts given by Murphy (1948) and
the tables given by Somerville (1958) can also be used to obtain distribution-free one-sided
conidence bounds and two-sided conidence intervals for a quantile.

Owen (1988) noted that the method of empirical likelihood, when applied to construct
conidence intervals for a distribution quantile, gives the classical result, described in Section 5.2,
that the interval endpoints are order statistics and that, due to their discreteness, the coverage
probability may differ appreciably from the desired nominal conidence level. Chen and Hall
(1993) give a smoothed empirical likelihood procedure, based on a kernel smoother applied to
the empirical distribution function, that has coverage probabilities that are closer to the nominal
conidence level. Adimari (1998) uses a simpler continuous approximation to the empirical
distribution function and shows via simulation that its inite sample properties are as good
as those of the Chen–Hall procedure. Beran and Hall (1993) show that simple interpolation
procedures, like those presented in this chapter, provide an effective method for improving the
classical intervals based on order statistics for both conidence intervals and prediction intervals
and that deviations of coverage probabilities from the nominal conidence level tend to be
conservative.

Gibbons (1997) shows that if the underlying (unspeciied) distribution can be assumed
to be symmetric, somewhat narrower distribution-free conidence intervals for the median
(i.e., y0.50) can be obtained. Gilat and Hill (1996) provide distribution-free conidence intervals
for quantiles of an arbitrary unknown distribution, including discontinuous distributions.

Distribution-free prediction intervals

The properties of the negative hypergeometric distribution (also known as the “inverse hyper-
geometric distribution”), used in computing distribution-free prediction intervals, are discussed
by Guenther (1975).

Danziger and Davis (1964) provide tables for prediction intervals to contain at least k of
m future observations (which they refer to as “tolerance intervals”). Hall et al. (1975) provide
tables for the coverage probability associated with distribution-free one-sided prediction bounds
and two-sided prediction intervals for the special case for which the extreme observation(s) from
the given sample is (are) used as the interval endpoint(s).

Fligner and Wolfe (1976) show how to use the probability integral transform to derive expres-
sions for coverage probabilities for certain distribution-free two-sample statistical interval pro-
cedures, including the prediction-interval procedures in this chapter. They also show that when
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the sampled distribution is discrete, the coverage probability is larger than the probability
computed by formulas (5.1), (5.9), (5.10), and (5.15). Fligner and Wolfe (1979b) describe
applications for prediction intervals for the sample median and provide tables for obtaining
such intervals. Fligner and Wolfe (1979a) provide theory and large-sample approximations for
a distribution-free prediction interval for a sample median.

Guilbaud (1983) gives more general theory for the particular problem of setting prediction
intervals for sample medians. Davis and McNichols (1999) show how to use nonparametric
prediction intervals to conduct multiple-comparisons-with-control hypothesis tests.



Chapter 6
Statistical Intervals for a
Binomial Distribution

OBJECTIVES AND OVERVIEW

This chapter describes statistical intervals for proportions or percentages. Such intervals are
used, for example, when each observation is either a “conforming” or a “nonconforming”
unit and the data consist of the number, or equivalently, the proportion or percentage, of
nonconforming units, in a random sample ofn units from a population or process. Two examples
are:

� An integrated circuit passes an operational test only if it successfully completes a speciied
set of operations after a 48-hour “burn-in” at 85◦C and 85% relative humidity. Thus, the
given data consist of the proportion of the n units that failed or passed the test. The goal
is to estimate the proportion of potentially failing (nonconforming) units in the sampled
manufacturing process.

� Federal regulations require that the level of a certain pollutant in the exhaust from an
internal combustion engine be less than 10 parts per million (ppm). If an engine fails to
meet this standard, it must undergo expensive rework. Management wants to estimate the
proportion of units from a speciied process that will require such rework. The available
data consist of the number of units that needed rework in a random sample of n engines
from the manufacturing process.

Our discussion will be mainly in terms of “nonconforming” units to suggest the common
quality control application. The applicability of the intervals is, however, much more general.
For example, a nonconforming unit could be an individual indicating a preference for a particular
candidate in a forthcoming election, the survival of an animal in a biological experiment, and
so on.

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/meeker/intervals
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The following topics are discussed in this chapter:

� Conidence intervals for π, the actual proportion nonconforming in the sampled distribu-
tion (Section 6.2).

� Conidence interval for the number of nonconforming units in a inite population
(Section 6.3).

� Conidence intervals for the probability that the number of nonconforming units in a
sample of size m will be less than or equal to (or greater than) a speciied number
(Section 6.4).

� Conidence intervals for the quantile of the distribution of the number of nonconforming
units in a future sample of size m (Section 6.5).

� Tolerance intervals and bounds for the distribution of the number of nonconforming units
in a future sample of size m (Section 6.6).

� Prediction intervals for the number of nonconforming units in a future sample of size m
(Section 6.7).

6.1 INTRODUCTION

6.1.1 The Binomial Distribution

Problems involving the proportion of nonconforming units in a random sample of size n from
a large population (or a stable process) can often be modeled with the binomial distribution. In
particular, the probability of observing x nonconforming units in a random sample of size n
independent observations, assuming a constant proportion π of nonconforming units, is given
by the binomial probability function

Pr(X = x) = dbinom(x;n, π) =
n!

x!(n − x)!
πx(1 − π)n−x , x = 0, 1, . . . , n.

The probability of observing x or fewer nonconforming units in a random sample of size n is

Pr(X ≤ x) = pbinom(x;n, π) =
x∑

i=1

dbinom(i;n, π), x = 0, 1, . . . , n.

More technical details about the binomial distribution are given in Section C.4.1.

6.1.2 Other Distributions and Related Notation

In addition to the binomial distribution, this chapter also uses the normal and F -distributions
described in Section 4.1, the beta distribution, described in Section C.3.3, and the beta-binomial
distribution, described in Section C.4.2. Sections 6.3 and 6.7 use the hypergeometric distribu-
tion, which is closely related to the binomial distribution and is described in Section C.4.5.
Notationally, phyper(x;n,D,N) is the hypergeometric distribution cdf giving the probability
ofx or fewer nonconforming units from a sample ofn units when sampling without replacement
from a inite population of size N that initially contains D nonconforming units.
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6.1.3 Notation for Data and Inference

In this chapter we will assume that the data consist of x observed nonconforming units (a
realization of the random variable X) out of a sample of size n from a binomial distribution
with an actual proportion nonconforming π. In Sections 6.4–6.7, inferences or predictions will
be made for the distribution of Y , the number of nonconforming units from a future sample or
samples of size m from the same distribution with the same proportion nonconforming π.

6.1.4 Binomial Distribution Statistical Interval Properties

For the binomial distribution problems considered here, the parameter π is unknown. In Sec-
tion 6.2 we seek a conidence interval for π based on the observed x nonconforming units from
the past random sample of size n. In subsequent sections, we show how to construct other
statistical intervals of interest from the given binomial distribution sample.

The binomial is a discrete distribution. A binomial random variable can take on only the
integer values X = 0, 1, 2, . . . , n, and cannot take on values between these integers. Because
of this, statistical interval methods given in this chapter generally do not have exactly the
desired nominal conidence level. Instead, the coverage probabilities depend on the unknown
value of π (as illustrated in Section 6.2.6). Thus, the statistical intervals given here are either
approximate or conservative (i.e., the coverage probability is larger than the nominal conidence
level), depending on the method used. There are numerous methods for computing binomial
distribution statistical intervals. In Section 6.2, we will present and illustrate four important
methods for constructing conidence intervals on π. References given in the Bibliographic
Notes section at the end of this chapter provide further description and evaluation of these and
other methods.

6.1.5 Two Examples, Motivation, and a Caution

The binomial distribution is used in a wide range of applications in science, engineering, and
business. In this section we present two examples that will be used throughout this chapter.

Example 6.1 Proportion of Defective Integrated Circuits. A random sample of n = 1,000
integrated circuits had been selected from production and x = 20 of these units failed a post-
production test. From the data, an estimate of π, the proportion of defective units generated
by the sampled production process, is π̂ = x/n = 20/1,000 = 0.02. The resulting data can
be used to make inferences or predictions about the production process, assuming that it is in
statistical control.

Example 6.2 Proportion of Nonconforming Engines. The amount of a pollutant was mea-
sured for each engine in a random sample of n = 10 engines from some deined population.
If one can assume that the pollution measurements can be described by a normal distribution,
desired statistical intervals can be obtained by using the methods in Chapter 4, based upon
the sample mean and sample standard deviation of the pollutant measurements. These were
x̄ = 8.05 ppm and s = 1.09 ppm. The assumption of a normal distribution, however, might
be questionable, and one might want to make inferences concerning the population proportion
outside speciication limits without making such an assumption. An alternative nonparametric
approach would be to simply count the number of observations outside the speciied limits,
deine this as the number of “nonconforming units,” and then use the techniques described in
this chapter to construct the desired statistical intervals. In the example, a pollutant level above
10 ppm was deemed to be nonconforming, and one of the 10 engine exhaust measurements
exceeded this value. Thus, there was x = 1 nonconforming unit in a sample of size n = 10.
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Such dichotomizing of measurement data might be especially useful when there are multiple
(possibly correlated) measurements, each of which must meet some stated speciication limit.
In that case, a nonconforming unit would simply be one that fails to meet the speciication limit
for at least one of the measurements.

As discussed in Chapter 5, the effect of abandoning the assumption of a speciic distribu-
tion, such as the normal distribution, is that information is sacriiced by not using the exact
measurements; thus the resulting intervals will generally be wider. As a result, in the second
example, a conidence interval to contain the proportion of nonconforming engines in the sam-
pled population will tend to be wider if the interval is based only on a count of the number of
such engines in the sample, rather than on the pollution measurements, assuming a particular
distribution. Such loss of precision, in some situations, is a serious concern, especially in eval-
uating a high-reliability product. Thus, one should avoid dichotomizing measurement data, if
possible. In some other examples, the data may be inherently of a binary nature. This would
be the case, for example, for the operation of a switch, the cure of a patient, and the integrated
circuit test in Example 6.1. Then one has no choice other than to use the methods of this
chapter.

As in previous chapters, to assure valid inferences, we reiterate the importance of the random
selection of sample units from the population or process of interest. The analyst must consider
the practical considerations for this to be the case; see Chapter 1.

6.2 CONFIDENCE INTERVALS FOR THE ACTUAL PROPORTION
NONCONFORMING IN THE SAMPLED DISTRIBUTION

6.2.1 Preliminaries

The sample proportion π̂ = x/n is a point estimate for π, the actual distribution proportion. The
estimate π̂, however, differs from π due to sampling luctuations. Thus, one frequently desires
to compute, from the sample data, a two-sided conidence interval or a one-sided conidence
bound for π. This section presents and motivates the use of several of the most commonly used
methods for computing conidence intervals for π. The underlying theory for the methods is
given in Sections D.6.2, D.5.6, and H.3.1. The Bibliographic Notes section at the end of this
chapter gives references to articles that describe and give technical details about the methods
for computing these and other conidence interval methods for π. As in previous chapters,
we mainly present two-sided conidence intervals; one-sided lower and upper 100(1 − α)%
conidence bounds are obtained by replacingα/2withα in the appropriate formula for obtaining
a two-sided conidence interval.

Each of the four methods for obtaining a conidence interval for a binomial proportion
presented in this section will be illustrated by either the nonconforming engine example or the
defective integrated circuit example. Tables 6.1 and 6.2 compare the conidence intervals from
all fourmethods for both examples. Table 6.2 also contains other statistical intervals described in
subsequent sections of this chapter. Section 6.2.6 compares the coverage probability properties
of the conidence interval methods and provides recommendations.

The methods discussed in this section (and Sections 6.4–6.7) assume that sampling is from a
process that is in statistical control (see Section 1.7.2) or from a inite population for which the
sample size n is small relative to the population size N or sampling with replacement. When
sampling without replacement, the guideline for “small” is typically given as n/N < 0.10. The
situation where n/N ≥ 0.10 will be discussed in Section 6.3.
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6.2.2 The Conservative Method

For x observed nonconforming units in a sample of size n, a two-sided conservative
100(1 − α)% conidence interval for π is

[π
˜
, π̃] = [qbeta(α/2;x, n − x + 1), qbeta(1 − α/2;x + 1, n − x)] (6.1)

=

[(
1 +

(n − x + 1)F(1−α/2;2n−2x+2,2x)

x

)−1

,

(
1 +

n − x

(x + 1)F(1−α/2;2x+2,2n−2x)

)−1
]
, (6.2)

where qbeta(p; a, b) is the p quantile of the beta distribution with shape parameters a and
b (described in Section C.3.3) and F(p ;r1 ,r2 ) is the p quantile of Snedecor’s F -distribution
with r1 numerator and r2 denominator degrees of freedom (see Sections 4.1 and C.3.11).
The lower endpoint is deined to be π

˜
= 0 if x = 0, and the upper endpoint is π̃ = 1 if

x = n. The derivation of this interval (see Section D.6.2) leads naturally to the use of the
beta distribution quantile for performing the computation. The equivalent formulas that use
F -distribution quantiles are derived from the relationship between the beta distribution and
the F -distribution in (C.11). Tables of Snedecor’s F -distribution quantiles are more readily
available, but the beta quantile method is more convenient when a sophisticated calculator, such
as R, is available.

This method is conservative in the sense that the coverage probability is guaranteed to be
greater than or equal to the nominal conidence level (as illustrated in Section 6.2.6). The
method is referred to in some places in the literature as the “exact” method. We avoid using
this terminology because it is misleading and conlicts with the usual meaning of an exact (as
opposed to approximate or conservative) statistical interval; see Section B.2.1.

The preceding method has been used to construct the plots in Figure 6.1. These plots provide
a simple method to obtain two-sided conservative 90% or 95% conidence intervals (or one-
sided 95% or 97.5% conidence bounds) for π. To use the charts, one computes π̂ = x/n from
the data, locates this value on the horizontal axis, draws a vertical line from this point to the
curves corresponding to the sample size n, and then draws a horizontal line to the vertical axis
to obtain the endpoint(s) of the desired interval (bound).

Example 6.3 Conservative Conidence Interval for the Proportion of Nonconforming

Engines. For the engine exhaust pollutant application, management wants a conidence interval
for π, the proportion of engines in the sampled population with pollutant levels greater than
10 ppm. Using the conservative method given by (6.2) with n = 10 and x = 1, we obtain
F(0.975;20,2) = 39.45, F(0.975;4,18) = 3.608, and F(0.95;4,18) = 2.928 from tables in various
statistics textbooks or from R. Then, substituting into (6.2), a conservative 95% conidence
interval for π is

[π
˜
, π̃] =

[(
1 +

10 × 39.45

1

)−1

,

(
1 +

9

2 × 3.608

)−1
]

= [0.0025, 0.44].

A one-sided upper conservative 95% conidence bound for π is

π̃ =

(
1 +

9

2 × 2.928

)−1

= 0.39.
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Figure 6.1 Two-sided conservative 90% conidence intervals (one-sided conservative 95% conidence

bounds) for a binomial proportion (left) and two-sided conservative 95% conidence intervals (one-sided

conservative 97.5% conidence bounds) for a binomial proportion (right). Similar igures irst appeared

in Clopper and Pearson (1934). Adapted with permission of the Biometrika Trustees.

Alternatively, using R as a calculator for the beta quantile function method in (6.1) gives

> c(qbeta(p=0.025, shape1=1, shape2=10), qbeta(p=0.975, shape1=2,

shape2=9))

[1] 0.0025 0.4450

> qbeta(0.95, 2, 9)

[1] 0.3942

for the conservative 95% conidence interval and one-sided 95% conidence bound. These
results could also have been read (approximately) from the right plot in Figure 6.1 (the left plot
for the one-sided bound).

Type of conidence interval/bound for π Lower Upper

Conservative two-sided 0.0025 0.4450
Wald two-sided −0.0859 0.2859
Agresti–Coull two-sided −0.0039 0.4260
Jeffreys two-sided 0.0110 0.3813

Conservative one-sided 0.0051 0.3942
Wald one-sided −0.0560 0.2560
Agresti–Coull one-sided 0.0059 0.3644
Jeffreys one-sided 0.0179 0.3306

Table 6.1 Two-sided 95% conidence intervals and one-sided

95% conidence bounds for π, the proportion of nonconforming

engines.
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6.2.3 The Wald (Normal Theory) Approximate Method

A two-sided approximate 100(1 − α)% conidence interval for π is

[π
˜
, π̃] = π̂ ∓ z(1−α/2)

[
π̂(1 − π̂)

n

]1/2

, (6.3)

where z(1−α/2) is the 1 − α/2 quantile of the standard normal distribution. This simple method
was especially relevantwhen computational capabilitieswere limited and still appears frequently
in elementary statistics textbooks. It is often incorrectly stated that themethod provides adequate
accuracy when both nπ̂ and n(1 − π̂) exceed 10. Unfortunately, as has been widely reported
in the more recent statistical literature (see the Bibliographic Notes section at the end of this
chapter), even when these conditions are met, the properties of this method can be extremely
poor, and we do not recommend it for general use (see Section 6.2.6). We describe the method
because of its popularity (and historical signiicance) and because it is still used in some
situations (e.g., when no appropriate software or tables are readily available, such as in an
informal conversation) and when a simple, crude approximation will sufice.

Example 6.4 Wald-Approximation Conidence Interval for the Proportion of Defective

Integrated Circuits. In Example 6.1, x = 20 nonconforming units were found in the sample
of n = 1,000 integrated circuits. Because nπ̂ = 1,000 × 0.02 = 20 and n(1 − π̂) = 1,000 ×
0.98 = 980, the commonly proposed guideline suggests that the approximate method given
by (6.3) will be adequate. An approximate 95% conidence interval for π, using π̂ = 0.02 and
z(0.975) = 1.96, is

[π
˜
, π̃] = 0.02 ∓ 1.96

[
0.02 × 0.98

1,000

]1/2

= [0.0113, 0.0287].

An upper approximate 95% conidence bound for π, using z(0.95) = 1.645, is

π̃ = 0.02 + 1.645

[
0.02 × 0.98

1,000

]1/2

= 0.027.

Using R as a calculator gives

> pihat <- 20/1000

> pihat + c(-1, 1)*qnorm(0.975)*sqrt(pihat*(1-pihat)/1000)

[1] 0.0113 0.0287

> pihat + qnorm(0.95)*sqrt(pihat*(1-pihat)/1000)

[1] 0.02728

for the approximate 95% conidence interval and upper 95% conidence bound.

6.2.4 The Agresti–Coull Adjusted Wald-Approximation Method

Due to the poor performance of the Wald method in many situations, numerous alternative
methods have been suggested with the goal of having a method that is almost as simple as
the Wald method, but with better properties. One such method adds a constant to the observed
number of nonconforming units and another constant to the sample size, where the constants
depend only on the nominal conidence level. This adjustment to the simple Wald method
provides a surprising improvement in performance. In particular, the Agresti–Coull method
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uses

x† = x + z2
(1−α/2)/2 and n† = n + z2

(1−α/2)

in place of x and n, giving the adjusted point estimate π̂† = x†/n†. Then π̂† and n† are simply
substituted for π̂ and n, respectively, in (6.3) to compute the Agresti–Coull adjusted Wald-
approximation conidence interval for π. For a 95% conidence interval, z(0.975) = 1.96 ≈ 2
so that x† = x + 2 and n† = n + 4, providing an easy-to-remember adjustment known as the
“add two” method (add two nonconforming and two conforming units to the data). This method
outperforms the simple Wald method (see Section 6.2.6) and should be used instead, when
possible.

Example 6.5 Agresti–Coull Adjusted Approximate Conidence Interval for the Propor-

tion of Defective Integrated Circuits. From Example 6.4, x† = 20 + 1.962/2 = 21.921,
n† = 1,000 + 1.962 = 1,003.84, and π̂† = 21.921/1,003.84 = 0.02184. Then

[π
˜
, π̃] = 0.02184 ∓ 1.96

[
0.02184(1 − 0.02184)

1,003.84

]1/2

= [0.013, 0.031]. (6.4)

Interval/bound type for Lower Upper

Conservative two-sided CI π 0.0123 0.0307
Wald two-sided CI π 0.0113 0.0287
Agresti–Coull two-sided CI π 0.0128 0.0309
Jeffreys two-sided CI π 0.0127 0.0301

Conservative one-sided CB π 0.0133 0.0289
Wald one-sided CB π 0.0127 0.0273
Agresti–Coull one-sided CB π 0.0138 0.0288
Jeffreys one-sided CB π 0.0137 0.0283

Conservative two-sided CI Pr(Y ≤ 2), m = 50 0.8016 0.9765
Jeffreys two-sided CI Pr(Y ≤ 2), m = 50 0.8093 0.9745

Conservative two-sided CI y0.90 , m = 1,000 17 38
Jeffreys two-sided CI y0.90 , m = 1,000 17 37

Conservative one-sided CB y0.10 , m = 1,000 9 22
Jeffreys one-sided CB y0.10 , m = 1,000 9 22

Conservative one-sided CB y0.90 , m = 1,000 19 36
Jeffreys one-sided CB y0.90 , m = 1,000 19 35

Conservative two-sided TI Control center 0.80, m = 1,000 9 36
Jeffreys two-sided TI Control center 0.80, m = 1,000 9 35

Conservative two-sided PI Y , m = 1,000 9 35
Normal two-sided PI Y , m = 1,000 7 33
Joint-sample two-sided PI Y , m = 1,000 10 34
Jeffreys two-sided PI Y , m = 1,000 10 34

Table 6.2 Two-sided 95% conidence intervals and one-sided 95% conidence bounds for

π, the proportion of defective integrated circuits, and other related intervals. CI, TI, and PI

indicate conidence, tolerance, and prediction interval, respectively. CB indicates

conidence bound.
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A one-sided upper approximate 95% conidence bound for π, using z(0.95) = 1.645, is

π̃ = 0.0213 + 1.645

[
0.0213(1 − 0.0213)

1,003.84

]1/2

= 0.029.

Equivalently, using R as a calculator gives

> xadj <- 20 + qnorm(0.975)ˆ2/2

> nadj <- 1000 + qnorm(0.975)ˆ2

> pihatadj <- xadj/nadj

> pihatadj + c(-1, 1)*qnorm(0.975)*sqrt(pihatadj*(1-pihatadj)/nadj)

[1] 0.01280 0.03088

> xadj <- 20 + qnorm(0.95)ˆ2/2

> nadj <- 1000 + qnorm(0.95)ˆ2

> pihatadj <- xadj/nadj

> pihatadj + qnorm(0.95)*sqrt(pihatadj*(1-pihatadj)/nadj)

[1] 0.02879

for the approximate 95% conidence interval and one-sided conidence bound. If one used the
simpler “add 2” rule instead, the conidence interval would be [π

˜
, π̃] = [0.01286, 0.03097]

which, after rounding to three signiicant digits, gives the same result as (6.4).

6.2.5 The Jeffreys Approximate Method

Using the Jeffreys method (see the Bibliographic Notes section at the end of this chapter
and Section H.4.1 for a description of the origin of this method), a two-sided approximate
100(1 − α)% conidence interval for π, based on x observed nonconforming units in a sample
of size n, is

[π
˜
, π̃] = [qbeta(α/2;x + 0.5, n − x + 0.5), qbeta(1 − α/2;x + 0.5, n − x + 0.5)]

=

[(
1 +

(n − x + 0.5)F(1−α/2;2n−2x+1,2x+1)

x + 0.5

)−1

, (6.5)

(
1 +

n − x + 0.5

(x + 0.5)F(1−α/2;2x+1,2n−2x+1)

)−1
]
.

The structure of the formulas for this method is the same as that for the conservative method
given by (6.1) and (6.2), but with different degrees of freedom for the F quantiles (and their
corresponding multipliers) or different parameters for the beta distribution quantiles. Unlike
the conservative method, the Jeffreys method does not guarantee a coverage probability that is
greater than or equal to the nominal conidence level for all values of π. Instead, the Jeffreys
method has excellent mean coverage properties, as we will see in Section 6.2.6.

Example 6.6 Jeffreys Conidence Interval for the Proportion of Nonconforming Engines.

In the engine exhaust pollutant application in Example 6.3, using the Jeffreys method given
by (6.5), with n = 10 and x = 1, we obtain F(0.975;19,3) = 14.181, F(0.975;3,19) = 3.903, and
F(0.95;3,19) = 3.127 from tables in statistics textbooks or by using R. Then a 95% conidence
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interval for π is

[π
˜
, π̃] =

[(
1 +

9.5 × 14.181

1.5

)−1

,

(
1 +

9.5

1.5 × 3.903

)−1
]

= [0.011, 0.38].

An upper 95% conidence bound for π is

π̃ =

(
1 +

9.5

1.5 × 3.127

)−1

= 0.33.

Using R as a calculator for the beta quantile function gives

> c(qbeta(p=0.025, shape1=1.5, shape2=9.5), qbeta(p=0.975, shape1=1.5,

shape2=9.5))

[1] 0.0110 0.3813

> qbeta(p=0.95, shape1=1.5, shape2=9.59.5)

[1] 0.3306

for the approximate 95% conidence interval and one-sided conidence bound.

6.2.6 Comparisons and Recommendations

If it is desirable to avoid arguments about the use of approximations (e.g., in court proceedings),
one should use the conservative method to assure a coverage probability that is always greater
than or equal to the nominal conidence level. When, however, nπ or n(1 − π) is small, the
conservativemethod can tend to result in intervals thatwill bewider than the competingmethods.
Otherwise we recommend the Jeffreys method for general use for constructing both two-sided
conidence intervals and one-sided conidence bounds for π, the Agresti–Coull method when
an especially simple computational method is needed, and the Wald method for situations for
which an immediate, even though crude, ballpark assessment is desired.

In the remainder of this section we compare the performance of the different methods to
provide some insight into these recommendations. Generally, one should compare the properties
of different methods and make a choice on the method to use before looking at the data, thus
avoiding any appearance of lack of objectiveness. The coverage probability for a binomial
conidence interval method depends on the actual π and can be computed by using (B.6) in
Section B.2.4.

Figures 6.2 and 6.3 show the coverage probabilities versus the actual binomial proportion π
for the 95% conidence intervals constructed using each of the four methods presented in this
section. These plots are for small sample sizes (n = 5 and 20) and larger sample sizes (n = 100
and 1,000) in the two igures, respectively. Although these plots deal only with 95% conidence
intervals, similar results hold for other conidence levels.

Note the symmetry of these plots around π = 0.5. Also shown on the plots are the mean
coverage and the minimum coverage computed at 200 equally spaced values of π between
0.001 and 0.999. The plots show that the coverage probability properties of the methods are
similar and close to the nominal 95% value when n = 1,000 (except for extreme values of π)
but can differ appreciably when sample sizes are more moderate.

The top rows of Figures 6.2 and 6.3 show that the conservative method has, as predicted
by theory (see Section D.6.2), a coverage probability that is greater than the nominal 95%
conidence level for all values of π. For small sample sizes the coverage probability is appre-
ciably larger than the nominal. In addition, as previously stated, it can be shown that intervals
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Figure 6.2 Plots of conidence interval (for π) coverage probabilities versus the actual binomial proportion

π for the conservative (top row), Wald (second row), Agresti–Coull (third row), and Jeffreys (bottom row)

nominal 95% conidence interval methods with n = 5 (left) and n = 20 (right).
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Figure 6.3 Plots of conidence interval (for π) coverage probabilities versus the actual binomial proportion

π for the conservative (top row), Wald (second row), Agresti–Coull (third row), and Jeffreys (bottom row)

nominal 95% conidence interval methods with n = 100 (left) and n = 1,000 (right).
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constructed using the conservative method tend to be wider than those calculated using other
methods.

The plots in the second row of Figures 6.2 and 6.3 show that theWald-approximation method
usually provides a coverage probability that is less, and sometimes substantially less, than the
nominal conidence level (i.e., the method is usually nonconservative). For this reason, we
recommend against use of the Wald method.

The Agresti–Coull and Jeffreys methods, shown in the bottom two rows of Figures 6.2
and 6.3, have reasonably good approximate coverage properties with mean coverage close to
(or slightly above in the case of Agresti–Coull) the nominal conidence level, even for small
samples. Because it tends to be more conservative, the Agresti–Coull method typically results in
slightly wider intervals than the Jeffreys method. In addition—as we will see in the discussion
to follow dealing with coverage probabilities for one-sided conidence bounds—the Jeffreys
method provides good balance between the error probabilities of being outside of the upper
and lower endpoints for a two-sided conidence interval, while, in contrast, the Agresti–Coull
method does not.

In contrast to Figures 6.2 and 6.3, which show two-sided conidence interval coverage
probabilities, Figure 6.4 gives one-sided conidence bound coverage probabilities (for the lower
bound on the left and the upper bound on the right), comparing the Agresti–Coull method (top)
with the Jeffreys method (bottom) for n = 20. Note that the plots for the lower conidence

n = 20 Binomial Agresti−Coull Lower
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Figure 6.4 Lower bound coverage probabilities (left) and upper bound coverage probabilities (right) for

nominal one-sided 95% conidence bounds for the binomial distribution parameter π constructed using the

Agresti–Coull (top) and Jeffreys (bottom) conidence bound methods with n = 20.
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bound on the left are mirror images of the plots for the upper conidence bound on the right.
This comparison shows that the Jeffreys method has an important advantage over the Agresti–
Coull interval of providing better balance between the lower and upper coverage probabilities.
In particular, the Agresti–Coull method one-sided lower (upper) conidence bounds tend to be
nonconservative for small (large) values of π. As explained in Section 2.7, it is usually desirable
to have the kind of balance that the Jeffreys method provides (i.e., no trend with respect to the
actual parameter value).

The Jeffreys upper conidence bound coverage has a minimum of 0.85 when π is in the
neighborhood of 0.10. This is because, with a sample size of n = 20, the expected number
nonconforming is close to 2 and thus there is little information in the data and desirable large-
sample properties are not present. In such situations, it may be preferable to use the conservative
method, but the upper bound will then be considerably larger. The behavior is similar for the
lower bound when π is in the neighborhood of 0.90.

The results of applying each of the four methods to the nonconforming engines and defective
integrated circuits were summarized in Tables 6.1 and 6.2, respectively. For the integrated
circuit example, the four methods each yielded similar conidence intervals and bounds. This is
as expected, in light of the relatively large number of nonconforming units in the sample data
(i.e., x = 20 from among n = 1,000 engines).

The preceding result is in sharp contrast to that for the engine example. In this application
there was only one defective unit in the sample of 10 engines (i.e., x = 1, n = 10) and the
four methods yielded appreciably different 95% conidence intervals and bounds. Moreover,
the Wald and Agresti–Coull methods both resulted in negative lower bounds. Such nonsensical
values are not possible using the conservative and Jeffreys methods, both of which resulted in
lower (positive) conidence bounds close to 0. In addition, the Wald method gave appreciably
lower values for the upper conidence bound than the other three methods. Further evaluations
suggest a consistently similar “shift” to larger lower conidence bounds when π is estimated to
exceed 0.5. This shift is corrected by the Agresti–Coull method, resulting in improved coverage
probabilities.

The purpose of this discussion has been to make readers further aware of the performance of
four commonly used and/or theoretically useful methods for constructing conidence intervals
and bounds on the binomial distribution parameter π—a frequently encountered problem. In
practice, we would follow our own advice for both examples—that is, decide on the method for
constructing conidence intervals or bounds before seeing the data. This would lead us to use
either the conservative method or the Jeffreys method, unless there is some special reason, per
our discussion, to do otherwise.

Finally, we note that each of the four methods gave appreciably wider 95% conidence inter-
vals and larger upper 95% conidence bounds than the interval [π

˜
, π̃] = [0.0026, 0.227]

and upper bound of π̃ = 0.18 that would be obtained using the original measurements
(n = 10, x̄ = 8.05, and s = 1.09), assuming a normal distribution and the methods presented
in Section 4.5. This is the price we pay for dichotomizing the data.

6.3 CONFIDENCE INTERVAL FOR THE PROPORTION OF NONCONFORMING
UNITS IN A FINITE POPULATION

In some applications it is desired to obtain a conidence interval for the proportion noncon-
forming when sampling from a small population, such as a batch of a manufactured product,
and estimates are needed for particular batches. To do this, we obtain a 100(1 − α)% coni-
dence interval for D, the number of nonconforming units in a batch of N units, based upon
having x nonconforming units in a random sample of n units taken from the batch without
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replacement. The resulting interval can then be translated to a conidence interval for the
proportion π = D/N of nonconforming units in the batch.

The methods presented in this section apply for any values of sample size n and population
size N . When the sample proportion n/N is less than 0.10, the simpler methods presented in
Section 6.2 generally provide a good approximation to the methods presented in this section.
Thus, the methods presented in this section are principally needed for situations in which n/N
is greater than 0.10.

6.3.1 The Conservative Method

The distribution of X , the number of nonconforming units, is hypergeometric (i.e.,
X ∼ HYPER(n,D,N)), as described in Section C.4.5, and the method to obtain a conidence
interval for D is based on this distribution. That is, a conservative 100(1 − α)% conidence

interval [D
˜
, D̃] for D can be obtained by inding the smallest value D

˜
and the largest value D̃

such that

1 − phyper(x − 1;n,D
˜

,N) >
α

2
and phyper(x;n, D̃,N) >

α

2
, (6.6)

whereD
˜

= 0 if x = 0, D̃ = N − n if x = n, and phyper(·) is the hypergeometric cumulative
distribution function, deined in Section C.4.5. One-sided lower and upper 100(1 − α)% con-
idence bounds for Y are obtained by replacing α/2 with α in the lower and upper endpoints
of (6.6), respectively. The conservative method can be derived by inverting a signiicance test
for the number of nonconforming units in a inite population or by using the equivalent method
outlined in Section D.6.2.

Example 6.7 Conidence Interval for the Number of Nonconforming Units in a Batch. A
product is shipped in batches of sizeN = 1,000 units. A customer desires a conidence interval
for D, the number of nonconforming units in a speciic batch. A random sample, without
replacement, of size n = 200 from the batch was inspected and x = 4 defects were found. The

conservative method using (6.6) yields [D
˜

, D̃] = [7, 47] for a 95% conidence interval for

D and Ỹ = 42 for an upper 95% conidence bound.
Using (6.6) and R as a calculator with function phyper2 (from R package StatInt), trying

values of D between 5 and 9 gives

> D.try <- 5:9

> 1-phyper2(q=4-1, size=200, D=D.try, N=1000)

[1] 0.00658 0.01665 0.03283 0.05555 0.08471

to be compared with 0.025. So the smallest value D
˜
meeting the left-hand restriction in (6.6) is

7. Similarly, trying values of D between 45 and 49 gives

> D.try <- 45:49

> phyper2(q=4, size=200, D=D.try, N=1000)

[1] 0.0351 0.0303 0.0260 0.0224 0.0192

again to be compared with 0.025. So the largest value D̃ meeting the right-hand restriction (6.6)
is 47. The interval for D can be translated into an interval for π:

[π
˜
, π̃] =

[
D

Ñ
,

D̃

N

]
=

[
7

1,000
,

47

1,000

]
= [0.007, 0.047].
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6.3.2 Large-Population Approximate Method

If the population size N is large enough (relative to n), the methods for proportions based on
the binomial distribution (described in Section 6.2) apply. It is commonly suggested that the
approximation will be adequate if n/N < 0.10; see also the discussion on ininite population
assumptions in Section 1.10.

Example 6.8 Approximate Conidence Interval for the Number of Nonconforming Units

in a Batch. In Example 6.7, n/N = 200/1,000 = 0.20 and, therefore applying any one
of the four methods presented in Section 6.2 would be questionable. We do so only for
illustrative purposes. It requires irst obtaining a conidence interval for π = D/N by one
of the four methods and then converting this to a conidence interval for D. In particu-
lar, using the conservative method in Section 6.2.2 gives [π

˜
, π̃] = [0.0055, 0.0504]. Then

[D
˜

, D̃] = 1,000 × [π
˜
, π̃] = [5, 50]. Using R as a calculator gives

> 1000*c(qbeta(p=0.025, shape1=4, shape2=197), qbeta(p=0.975,

shape1=5, shape2=196))

[1] 5.48 50.41

for the approximate 95% conidence interval. Because the sample size in this application is
20% of the population (more than the 10% commonly suggested for using the large-population
approximation), we note that a 95% conidence interval for D is [5, 50] is somewhat wider
than the interval [7, 47] obtained by the more appropriate, already conservative, approach used
in Example 6.7.

6.4 CONFIDENCE INTERVALS FOR THE PROBABILITY THAT THE NUMBER
OF NONCONFORMING UNITS IN A SAMPLE IS LESS THAN OR EQUAL
TO (OR GREATER THAN) A SPECIFIED NUMBER

Some applications require inferences concerning the probability that Y , the number of noncon-
forming units in a sample of size m, is less than or equal to (or greater than) some speciied
number y. For example, units may be selected at random from a production process and put
in packages of size m. Based on the information in a previous random sample of size n, the
manufacturer wants to ind a conidence interval for the probability pLE that the number of
nonconforming units in a sample of size m is less than or equal to y, where y is a prespeciied
number (which could be any integer from 0 to m).

If the proportion of nonconforming units from the distribution were known to be π, the
probability pLE that Y , the number of nonconforming units in a sample of size m, will be less
than or equal to a prespeciied number y is computed from the binomial cumulative distribution
function as

pLE = Pr(Y ≤ y) = pbinom(y;m,π), (6.7)

where pbinom(y;m,π) is the binomial cdf deined in Sections 6.1.1 and C.4.1. Usually, π is
unknown and only sample data on the number of nonconforming units x in the previous sample
of size n are available. Because pLE is a decreasing function of π (see (C.20) in Section C.4.1),
the following two-step procedure is used to ind an approximate two-sided conidence interval
for pLE :

1. Obtain a two-sided conidence interval for π, based on the data, using one of the methods
given in Section 6.2.

2. Substitute these values for π into (6.7) to obtain the desired two-sided conidence interval
for pLE .
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If [π
˜
, π̃] is a two-sided 100(1 − α)% conidence interval for π, a two-sided 100(1 − α)%

conidence interval for pLE is

[p
˜

LE , p̃LE ] = [pbinom(y;m, π̃), pbinom(y;m,π
˜
)].

Similarly, if the proportion of nonconforming units from the distribution is known to equal
π, the probability pGT that Y , the number of nonconforming units in a sample of size m, will
be greater than y is the complement of the binomial cumulative distribution function,

pGT = 1 − pLE = Pr(Y > y) = 1 − pbinom(y;m,π).

When π is unknown, because pGT is an increasing function of π, a 100(1 − α)% conidence
interval for pGT is

[p
˜

GT , p̃GT ] = [1 − p̃LE , 1 − p
˜

LE ] = [1 − pbinom(y;m,π
˜
), 1 − pbinom(y;m, π̃)].

Because the function pbinom(y;m,π) is a continuous monotone function of the parameter
π, the coverage properties of each of the preceding methods is exactly the same as that for
the corresponding conidence interval method (from Section 6.2) used to obtain a conidence
interval for π.

Example 6.9 Conidence Interval for theProbability ofTwoorFewerDefective Integrated

Circuits in a Package of Size 50. Suppose that the manufacturer of integrated circuits in
Example 6.1 ships packages of 50 units. A 95% conidence interval is desired for the probability
that a packagewill have two or fewer nonconforming units, or, equivalently, for the proportion of
packages that will have two or fewer nonconforming units. Using, for example, the conservative
95% conidence interval [π

˜
, π̃] = [0.0123, 0.0307] from Table 6.2, the desired conservative

95% conidence interval for pLE = Pr(Y ≤ 2) is

[p
˜

LE , p̃LE ] = [pbinom(2; 50, 0.0307), pbinom(2; 50, 0.0123)]

= [0.80, 0.98].

Thus, we are (at least) 95% conident that between 80% and 98% of such packages will have
no more than two defective units.

A one-sided lower conservative 95%conidence bound for pLE , using the previously obtained
one-sided upper conservative 95% conidence bound π̃ = 0.0289, is

p
˜

LE = pbinom(2; 50, 0.0289) = 0.82.

Thus, we are 95% conident that at least 82% of the packages of 50 units will have no more
than two defective units.

Using R as a calculator and the conservative conidence interval for π from Section 6.2.2
gives

> pbinom(q=2, size=50, c(qbeta(p=0.975, shape1=21, shape2=980),

qbeta(p=0.025, shape1=20, shape2=981)))

[1] 0.8016 0.9765

> pbinom(2, size=50, qbeta(0.95, 21, 980))

[1] 0.8242

for the conservative 95% conidence interval and the one-sided lower conservative 95% coni-
dence bound. Similarly, using the Jeffreys conidence interval from Section 6.2.5 gives
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> pbinom(2, size=50, qbeta(p=c(0.975, 0.025), shape1=20.5,

shape2=980.5))

[1] 0.8093 0.9745

> pbinom(2,size=50, qbeta(p=0.95, shape1=20.5, shape2=980.5))

[1] 0.8314

for the approximate 95% conidence interval and one-sided bound. The two-sided results are
summarized in Table 6.2.

This example depends heavily on the assumption that π, the proportion nonconforming, is
constant over time (i.e., that the production process is “in control”). If the process produces
varying proportions of nonconforming units during differing periods of time this assumption is
not met, and the preceding conidence interval or bound (as well as the other statistical intervals
presented in this chapter) could be misleading.

6.5 CONFIDENCE INTERVALS FOR THE QUANTILE OF THE DISTRIBUTION
OF THE NUMBER OF NONCONFORMING UNITS

Some applications require, based on the available data, a conidence interval (or a one-sided
conidence bound), for a quantile, yp , of the distribution of Y , the number of nonconforming
units in samples of m units. For example, suppose that units from a production process are put
in packages of size m and it is desired to make a statement about a value yp that exceeds a
certain proportion p of these packages, based on a past random sample of size n. This problem
is the inverse of the one in Section 6.4; there y was speciied and it was desired to obtain a
conidence interval for the probability pLE = Pr(Y ≤ y) of having y or fewer nonconforming
units in samples (e.g., packages) of size m.

The p quantile yp of a binomial distribution is deined as the smallest value of y such that
Pr(Y ≤ y) = pbinom(y;m,π) ≥ p and is denoted by qbinom(p;m,π). If the proportion of
nonconforming units from the process were known to be π, then the desired quantile could be
computed directly from qbinom(p;m,π). Usually, however, π is unknown and only sample
data on the number of nonconforming units x in the previous sample of size n are available.

6.5.1 Two-Sided Confidence Interval for yp

In a manner similar to that used in Section 6.4, because qbinom(p;m,π) is a nondecreasing
function of π, the following two-step procedure is used to ind a two-sided conidence interval
for yp :

1. Obtain a two-sided conidence interval for π, based on the data, using one of the methods
given in Section 6.2.

2. Substitute these values for π into qbinom(p;m,π) to obtain the desired two-sided coni-
dence interval for yp .

Thus, if [π
˜
, π̃] is a two-sided approximate (or conservative) 100(1 − α)% conidence interval

for π, a two-sided approximate (or conservative) 100(1 − α)% conidence interval for yp is

[y
˜

p , ỹp ] = [qbinom(p;m,π
˜
), qbinom(p;m, π̃)]. (6.8)

Unlike the conidence interval procedure for binomial probabilities in Section 6.4, the quantile
function is not a continuous function of π (it is an integer-valued step function). Therefore, the
coverage probability as a function of the actual value of π will not be exactly the same as that for
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the conidence interval method for π. The general formula (B.5) in Section B.2.4 can, however,
be used to do coverage probability evaluations and allow calibration (see Sections 6.6.4 and
B.8).

Example 6.10 Conidence Interval for the 0.90 Quantile of the Distribution of the Num-

ber of Defective Integrated Circuits in a Package of Size m = 1,000. Suppose that the
manufacturer of integrated circuits in Example 6.1 ships packages of m = 1,000 units. A
95% conidence interval is desired for y0.90 , the 0.90 quantile of the distribution of the num-
ber of defects for such packages. Using, for example, the conservative 95% conidence interval
[π
˜
, π̃] = [0.0123, 0.0307] fromTable 6.2, the resulting conservative 95% conidence interval

for y0.90 is

[y
˜

0.90 , ỹ0.90 ] = [qbinom(0.90; 1000, 0.0123), qbinom(0.90; 1000, 0.0307)]

= [17, 38].

Thus, we are at least 95% conident that the 0.90 quantile of the distribution of the number of
defects in such packages is between 17 and 38.

Using R as a calculator, the conservative conidence interval for π from Section 6.2.2 gives

> qbinom(p=0.90, size=1000, c(qbeta(p=0.025, shape1=20, shape2=981),

qbeta(p=0.975, shape1=21, shape2=980)))

[1] 17 38

as a conservative 95% conidence interval for y0.90 . Similarly the Jeffreys conidence interval
from Section 6.2.5 gives

> qbinom(p=0.90, size=1000, qbeta(p=c(0.025, 0.975), shape1=20.5,

shape2=980.5))

[1] 17 37

as an approximate 95% conidence interval for y.90 .
Because of the discreteness of the quantile function and because there is only a small

difference between the conservative and Jeffreys methods for obtaining a conidence interval
for π, the conidence intervals for the two methods in this example are nearly the same. The
preceding results are summarized in Table 6.2.

6.5.2 One-Sided Confidence Bounds for yp

A one-sided lower (upper) 100(1 − α)% conidence bound for yp is found by substituting a
one-sided lower (upper) 100(1 − α)% conidence bound for π into the appropriate endpoint of
the two-sided conidence interval in (6.8). These one-sided conidence bounds are of particular
interest because of their relationship to one-sided tolerance bounds and two-sided tolerance
intervals, to be described in Section 6.6.

Example 6.11 One-Sided 95% Conidence Bounds for the 0.10 and 0.90 Quantiles of the

Distribution of Defects in a Package of Size m = 1,000. Using the data from Example 6.1
and the one-sided lower conservative 95% conidence bound π

˜
= 0.0133 from Table 6.2 and

proceeding as in Example 6.10, a one-sided lower conservative 95% conidence bound for y0.10

is

y
˜

0.10 = qbinom(0.10; 1000, 0.0133) = 9.
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Similarly, using the one-sided upper conservative 95% conidence bound π̃ = 0.0289, a 95%
one-sided upper conidence bound for y0.90 is

ỹ0.90 = qbinom(0.90; 1000, 0.0289) = 36.

Using R as a calculator, with the conservative conidence interval method for π from Sec-
tion 6.2.2 gives the one-sided conservative 95% conidence bounds

> qbinom(p=0.10, size=1000, qbeta(p=0.05, shape1=20, shape2=981))

[1] 9

> qbinom(p=0.90, size=1000, qbeta(p=0.95, shape1=21, shape2=980))

[1] 36

for y0.10 . Similarly, using the Jeffreys conidence interval from Section 6.2.5 gives the one-sided
approximate 95% conidence bounds

> qbinom(p=0.10, size=1000, qbeta(p=0.05, shape1=20.5, shape2=980.5))

[1] 9

> qbinom(p=0.90, size=1000, qbeta(p=0.95, shape1=20.5, shape2=980.5))

[1] 35

for y0.10 . These results are summarized in Table 6.2 and will be used in the next section
to construct two-sided tolerance intervals and one-sided tolerance bounds for a binomial
distribution.

6.6 TOLERANCE INTERVALS AND ONE-SIDED TOLERANCE BOUNDS FOR
THE DISTRIBUTION OF THE NUMBER OF NONCONFORMING UNITS

Some applications require two-sided tolerance intervals or one-sided tolerance bounds for the
distribution of Y , the number of nonconforming units in samples ofm units. For example, units
from a production process are packaged in groups of size m and it is desired ind a value of y so
that one can state, with a speciied degree of conidence, that at least a proportion 0.90 of such
packages contain y or fewer nonconforming units. This statement calls for a one-sided lower
tolerance bound. Other problems may require a one-sided upper tolerance bound or a two-sided
tolerance interval. As indicated in Section 2.4.2, a one-sided tolerance bound is equivalent to
a one-sided conidence bound on a quantile of the distribution. Also, approximate two-sided
tolerance intervals can be obtained by appropriately combining one-sided lower and upper
tolerance bounds.

6.6.1 One-Sided Lower Tolerance Bound for a Binomial Distribution

A one-sided lower 100(1 − α)% tolerance bound
˜
T ′

β to be exceeded by at least a proportion

β of the distribution is the same as a lower 100(1 − α)% conidence bound on y(1−β ) , the
1 − β quantile of the distribution. Thus

˜
T ′

β = y
˜

(1−β ) , which can be computed as described in

Section 6.5.2.

Example 6.12 One-SidedLower Tolerance Bound for theNumber of Defective Integrated

Circuits. Due to the equivalence described above, the desired one-sided lower conservative
95% tolerance bound to be exceeded by a proportion 0.90 of the distribution of the number of
defective integrated circuits is, from Example 6.11,

˜
T ′

0.90 = y
˜

0.10 = 9.
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6.6.2 One-Sided Upper Tolerance Bound for a Binomial Distribution

A one-sided upper 100(1 − α)% tolerance bound T̃ ′
β to exceed at least a proportion β of the

distribution is the same as an upper 100(1 − α)% conidence bound on yβ . Thus T̃ ′
β = ỹβ ,

which can be computed as described in Section 6.5.2.

Example 6.13 One-SidedUpper Tolerance Bound for the Number of Defective Integrated

Circuits. Due to the equivalence described above, the desired one-sided upper conservative
95% tolerance bound to exceed a proportion 0.90 of the distribution of the number of defective

integrated circuits is, from Example 6.11, T̃ ′
0.90 = ỹ0.90 = 36.

6.6.3 Two-Sided Tolerance Interval for a Binomial Distribution

A method of constructing a two-sided approximate tolerance interval [
˜
Tβ , T̃β ] for a binomial

distribution with sample size m is to combine two one-sided tolerance bounds (or one-sided
conidence bounds on appropriate quantiles) for the distribution of interest. In particular, as
explained in Section D.7.4, to obtain an approximate 100(1 − α)% tolerance interval to con-
tain at least a proportion β of the distribution, one can use a one-sided lower 100(1 − α)%
conidence bound on the (1 − β)/2 quantile for the lower endpoint and a one-sided upper
100(1 − α)% conidence bound on the (1 + β)/2 quantile for the upper endpoint. That is,

[
˜
Tβ , T̃β ] = [y

˜
(1−β )/2 , ỹ(1+β )/2 ].

Example 6.14 Two-Sided Tolerance Interval for the Number of Defective Integrated

Circuits. A two-sided approximate 95% tolerance interval to contain at least a proportion 0.80
of the distribution of the number of defective integrated circuits in Example 6.1 is obtained
by using a one-sided lower 95% conidence bound on the 0.10 quantile for the lower endpoint
and a one-sided upper 95% conidence bound on the 0.90 quantile for the upper endpoint.
Taking the results based on the one-sided conservative conidence bounds y

˜
(0.10) and ỹ(0.90)

from Example 6.11 gives [
˜
T0.80 , T̃0.80 ] = [y

˜
(0.10), ỹ(0.90)] = [9, 36].

6.6.4 Calibrating Tolerance Intervals

Figure 6.5 gives plots of coverage probabilities versus the actual binomial proportion non-
conforming π for the conservative and Jeffreys two-sided tolerance interval procedures with
different nominal conidence levels. As a speciic example, we show the coverage probabilities
for these two procedures for the particular combination of n = 100, m = 100, and β = 0.80.
These plots show the procedures to be consistently, and frequently appreciably, conservative
(i.e., the coverage probability exceeds the nominal conidence level) not only for the conserva-
tive method, but also (although generally less so) for the Jeffreys method. Similar results, not
shown here, hold for other combinations of n, m, and β and for one-sided conidence bounds.

Themethod of statistical interval calibration, discussed in Section B.8, can be used to control
the coverage properties for situations in which the coverage probability consistently exceeds or
consistently falls below the nominal conidence level. In particular, if an interval procedure tends
to be too conservative, one can adjust the procedure by using a smaller nominal conidence level
as input. For example, row 3 in Figure 6.5 shows that the tolerance interval procedures based
on both the conservative method and the Jeffreys method result in mean coverage probabilities
(0.98 and 0.97, respectively) greater than the nominal conidence level 95%. If one desires a
procedure that has mean coverage that approximately equals 0.95, one could use the Jeffreys
procedure with a nominal conidence level between 90% and 92.5%.
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Figure 6.5 Coverage probabilities versus the actual binomial proportion nonconforming π for the conserva-

tive (left) and Jeffreys (right) two-sided tolerance interval methods to contain at least a proportion β = 0.80 for

n = 100 and m = 100 with nominal conidence levels 90% (top row), 92.5% (second row), 95% (third row),

and 97.5% (bottom row).
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6.7 PREDICTION INTERVALS FOR THE NUMBER NONCONFORMING IN A
FUTURE SAMPLE

Suppose, as before, that x nonconforming units have been observed in a random sample of
size n from a distribution. From these data, it is desired to ind a prediction interval that will,
with some speciied degree of conidence, contain Y , the number of nonconforming units in a
future random sample of size m from the same distribution. We assume that the two samples
are independent and that the number of nonconforming units in each sample can be described
by a binomial distribution with parameter π.

6.7.1 The Conservative Method

Consider the combined samples of size n and m and let N = n + m. Let X and Y denote
the nonconforming units in the two samples. Before observing X , the conditional distribu-
tion of X , given D = X + Y , is HYPER(D,n,N), which (see (C.26)) is equivalent to
HYPER(n,D,N). After observing X = x, then D = x + Y and the hypergeometric cdf
phyper(x;n,D,N) (deined in Section C.4.5) is nonincreasing with respect to D (as shown
in Section C.4.5). Then, using the result in Section 6.3.1, the following procedure gives a con-
servative 100(1 − α)% conidence interval for D; this, in turn, is converted into a prediction
interval for Y , the number of nonconforming units in the future sample of m units.

A conservative 100(1 − α)% prediction interval [Y
˜
, Ỹ ] for Y can be obtained by inding

the smallest value Y
˜
and the largest value Ỹ such that

1 − phyper(x − 1;n, x + Y
˜

,N) >
α

2
and phyper(x;n, x + Ỹ,N) >

α

2
, (6.9)

where Y
˜

= 0 if x = 0 and Ỹ = m if x = n. The prediction interval is conservative because
it is based on a conservative conidence interval method for D. One-sided lower and upper
conservative 100(1 − α)% prediction bounds for Y are obtained by replacing α/2 with α in
the lower and upper endpoints of (6.9), respectively.

Example 6.15 Conservative Prediction Interval for the Number of Defective Integrated

Circuits. Suppose that, based on the x = 20 nonconforming integrated circuits fromn = 1,000
randomly selected units, the manufacturer desires a 95% prediction interval to contain the
number of nonconforming units in a future sample ofm = 1,000 randomly sampled units from

the same production process. The conservative method given by (6.9) gives [Y
˜

, Ỹ ] = [9, 35]

for a conservative 95%prediction interval and Ỹ = 32 for an upper conservative 95%prediction
bound for Y . Thus, based on x = 20 nonconforming units from the n = 1,000 sample units,
one can, for example, assert, with (at least) 95% conidence, that the number of nonconforming
units in the future sample of m = 1,000 will not exceed 32 units.

The hypergeometric probabilities needed for the preceding prediction interval or bound
can be computed using R as a calculator with function phyper2 from R package StatInt.
Following (6.9), we try values of Y between 7 and 11:

> Y.try <- 7:11

> 1-phyper2(q=20-1, size=1000, D=20+Y.try, N=1000+1000)

[1] 0.0092 0.0172 0.0298 0.0481 0.0732

to be compared with 0.025. So the smallest value Y
˜
meeting the left-hand restriction in (6.9) is

9. Similarly, trying values of Y between 33 and 37 gives
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> Y.try <- 33:37

> phyper2(q=20, size=1000, D=20+Y.try, N=1000+1000)

[1] 0.0470 0.0360 0.0273 0.0206 0.0153

also to be compared with 0.025. So the largest value Ỹ meeting the right-hand restriction (6.9)
is 35.

6.7.2 The Normal Distribution Approximation Method

A large-sample approximate 100(1 − α)% prediction interval for Y , based on the assumption
that

mπ̂ − Y√
V̂ar(mπ̂ − Y )

=
mπ̂ − Y√

mπ̂(1 − π̂)(1 + m/n)
(6.10)

can be adequately approximated by a NORM(0, 1) distribution, is

[Y
˜

, Ỹ ] = mπ̂ ∓ z(1−α/2)

[
mπ̂(1 − π̂)

m + n

n

]1/2

. (6.11)

Because the coverage probabilities of this method can be nonconservative (depending on π,
n, and m), we recommend rounding in a conservative manner (i.e., round down for the lower
endpoint and round up for the upper endpoint). This approximate interval is easier to compute
than the conservative method given by (6.9). Again, one-sided lower and upper 100(1 − α)%
prediction bounds for Y are obtained by replacing α/2with α in the lower and upper endpoints
of (6.11), respectively. The interval in (6.11) is not deined if x = 0 (or x = n). In such cases
one can still use (6.11) by taking x = 0.5 (or x = n − 0.5), although in either of these cases
the assumption that the expressions in (6.10) are approximately NORM(0, 1) would not be
valid.

Example 6.16 Normal DistributionApproximation Prediction Interval for the Number of

Defective Integrated Circuits. For the problem considered in Example 6.15, the approximate
95% prediction interval for Y , using the normal distribution approximation (6.11), is

[Y
˜

, Ỹ ] = 1,000 × 0.02 ∓ 1.96 ×

[
1,000 × 0.02 × 0.98 ×

2,000

1,000

]1/2

= [7.7, 32.3],

which, when rounded in the conservative manner, gives [7, 33]. This differs somewhat, but not
appreciably, from the previously computed prediction interval using the conservative method.
Using R as a calculator gives

> 1000*0.02 + c(-1, 1)*qnorm(0.975)*sqrt(1000*0.02*0.98*2000/1000)

[1] 7.7 32.3

for the approximate prediction interval.

One-sided prediction bounds can be obtained similarly.
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6.7.3 The Joint-Sample Approximate Method

Let π̂xy = (X + Y )/(n + m). A large-sample approximate 100(1 − α)% prediction interval
for Y can be based on the assumption that

mπ̂xy − Y√
V̂ar(mπ̂xy − Y )

=
mX − nY√

mnπ̂xy (1 − π̂xy )(n + m)
(6.12)

can be adequately approximated by a NORM(0, 1) distribution. Squaring the right-hand side
of (6.12), setting it equal to z2

(1−α/2) and solving the resulting quadratic equation for the two

roots in Y gives the interval

[Y
˜

, Ỹ ] =

[
Ŷ

(
1 −

z 2
( 1−α / 2 )

m+n

)
+

mz 2
( 1−α / 2 )

2n

]
∓ z(1−α/2)

√
Ŷ (m − Ŷ )

(
1
m

+ 1
n

)
+

(mz( 1−α / 2 )

2n

)2

1 +
mz 2

( 1−α / 2 )

n(m+n)

,

(6.13)

where Ŷ = mx/n and it is best (in terms of coverage probability properties) to round the lower
endpoint upward and to round the upper endpoint downward (which we call the nonconservative
manner of rounding). In such cases one can still use (6.11) by taking x = 0.5 (or x = n − 0.5),
although in either of these cases the assumption that the expressions in (6.13) are approximately
NORM(0, 1) would not be valid.

This approximate interval is more complicated than the normal-approximation method in
(6.11), but the coverage probability properties are much better, as described in Section 6.7.5.
Again, one-sided lower and upper 100(1 − α)% prediction bounds for Y are obtained by
replacing α/2 with α in the lower and upper endpoints of (6.13), respectively.

Example 6.17 Joint-SampleApproximatePrediction Interval for theNumber ofDefective

Integrated Circuits. For the application considered in Example 6.15, the 95% prediction
interval for Y using the joint-sample approximation (6.13) is

[Y
˜

, Ỹ ] =

[
20

(
1 − 1.962

2,000

)
+ 1,000×1.962

2,000

]
∓ 1.96

√
20(1,000 − 20) 2

1,000
+

(
1,000×1.96

2,000

)2

1 + 1,000×1.962

1,000×2,000

= [9.44, 34.2],

which when rounded in the nonconservative manner gives [10, 34]. This compares reasonably
well with the intervals based on the other methods.

Using R as a calculator gives

> Yhat <- 20

> zvalue <- qnorm(0.975)

> YhatFactor <- (1-zvalueˆ2/(2000))

> YhatAdd <- 1000*zvalueˆ2/(2000)

> varAdd <- ((1000*zvalue)/(2000))ˆ2

> denom <- 1+1000*zvalueˆ2/(1000*2000)

> YhatCenter <- Yhat*YhatFactor+YhatAdd

> YhatSE <- sqrt(Yhat*(1000-Yhat)*(2/1000)+varAdd)
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> (YhatCenter+c(-1,1)*zvalue*YhatSE)/denom

[1] 9.44 34.24

for the approximate prediction interval.

One-sided lower or upper prediction bounds can be obtained similarly by replacing 1 − α/2
with 1 − α and using the appropriate interval endpoint.

6.7.4 The Jeffreys Method

The Jeffreys method for obtaining a binomial distribution prediction interval is an extension
of the Jeffreys method for obtaining a conidence interval for π, given in Section 6.2.5, and
is based on quantiles of the beta-binomial distribution, which can be viewed as a Bayesian
binomial predictive distribution (see Section H.6.1 for technical details). Thus, given x observed
nonconforming units in a sample of size n, a two-sided approximate 100(1 − α)% Jeffreys
prediction interval for Y is

[Y
˜

, Ỹ ] = [qbetabinom(α/2;m,x + 0.5, n − x + 0.5),

qbetabinom(1 − α/2;m,x + 0.5, n − x + 0.5)], (6.14)

where qbetabinom(p;n, a, b) is the p quantile of the beta-binomial distribution (see Sec-
tion C.4.2) with sample-size parameter n and shape parameters a and b.

Example 6.18 Jeffreys Prediction Interval for the Number of Defective Integrated Cir-

cuits. For the problem in Examples 6.15 and 6.16 a Jeffreys approximate 95%prediction interval
for Y using (6.14) is

[Y
˜

, Ỹ ] = [qbetabinom(0.025; 1000, 20.5, 980.5),

qbetabinom(0.975; 1000, 20.5, 980.5)] = [10, 34].

Using R as a calculator, the beta-binomial quantile function qbetabinom (in R package
StatInt) gives

> qbetabinom(p=c(0.025, 0.975), size=1000, shape1=20+0.50,

shape2=1000-20+0.50)

[1] 10 34

for the approximate prediction interval. This interval again differs, but not appreciably, from
the intervals obtained using the two previous methods.

6.7.5 Comparisons and Recommendations

The recommendations in this section are based on evaluations of coverage probabilities that
are not shown here. Equation (B.24) in Section B.6.4 provides an expression for computing the
coverage probabilities.

If having at least the nominal level of conidence is important (e.g., to avoid arguments about
the use of approximations), the conservative method should be used. The conservative method,
however, tends to be overly conservative, resulting in prediction intervals that are excessively
wide, especially when any of x, n − x, mπ̂, or m(1 − π̂) is small (e.g., less than 10).

Computations have shown that the joint-sample interval has a coverage probability close to
the nominal conidence level as long as x, n − x, mπ̂, and m(1 − π̂) are all larger than 5.
The Jeffreys method tends to be a little more conservative than the joint-sample method. Thus
we recommend the joint-sample method when an approximate prediction interval method (as
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opposed to the conservativemethod) is acceptable. If an easy-to-computemethod is desired (e.g.,
because appropriate software is not readily available), the normal-approximation method can
be used as a crude approximation, but should otherwise be avoided. More generally, we would
recommend comparing the coverage properties of different intervals for particular situations
(before looking at the data) to help decide which method to use.

BIBLIOGRAPHIC NOTES

Basic textbooks on probability, such asRoss (2012) andRoss (2014), provide detailed treatments
of the properties and applications of the binomial distribution.

Below we present references that give original sources or further details about the various
methods that we have presented in this chapter. We also provide references that present yet
additional methods for calculating binomial distribution conidence intervals. We do not discuss
these further methods here for space considerations and because we feel that the intervals that
we do present provide readers ample useful choices.

Confidence intervals

Numerousmethods have been suggested to compute conidence intervals for a binomial distribu-
tion proportion. The conservative method is due to Clopper and Pearson (1934) who presented
charts similar to those in Figure 6.1. Odeh and Owen (1983) provide extensive tabulations for
these binomial conidence intervals with values of n ranging from 20 to 1,000.

Fujino (1980) recognized the poor performance of the Wald (normal distribution approxima-
tion) method and suggested a simple correction, depending on the desired conidence level, that
is similar to the “add two” method later suggested by Agresti and Coull (1998). Blyth and Still
(1983) and Blyth (1986) did further early work comparing different methods and suggesting
improved alternative methods.

Leemis and Trivedi (1996) review the literature on binomial conidence interval methods and
compare the accuracy of two approximate methods (theWald method and amethod based on the
Poisson distribution). Newcombe (1998) compared the properties of seven different methods
of computing binomial conidence intervals. Agresti and Coull (1998) also compared several
methods and showed that the most commonly used methods (at the time) had poor coverage
performance. In particular, the Wald method has erratic coverage properties that can be far
from the nominal value and the conservative method can be extremely conservative (resulting
in overly wide conidence intervals). They then recommended an alternative method, based on
the inversion of the score test, irst proposed by Wilson (1927). The formula for this method is,
however, considerably more complicated than the Wald approximation. So they suggested, as a
compromise, the “add two” modiication for 95% conidence intervals (add two successes and
two failures to the data) of the Wald method. Brown et al. (2001) deined the closely related
method that we give in Section 6.2.4 and called it the Agresti–Coull method. This method is
motivated by having the same center point as the Wilson score method.

Brown et al. (2001) provide a detailed overview and comparison of different methods for
constructing binomial conidence intervals. They conirm the poor performance of the Wald
method earlier reported byAgresti and Coull (1998) and others and recommend theWilson score
method and the Jeffreys method. The Jeffreys method given in Section 6.2.5 is derived from a
Bayesian method based on what is known as a Jeffreys prior distribution (see Sections 16.1.2
and H.4.1, respectively, for more applications of Bayesian methods for the binomial distribution
and technical details). Brown et al. (2002) use asymptotic expansions for coverage probabilities
to compare the performance of ive different binomial conidence interval methods. Their
approach conirms the conclusions of Brown et al. (2001). Brown et al. (2003) extend the results
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of Brown et al. (2002) to other members of the exponential family of distributions (Poisson and
negative binomial).

Cai (2005) focuses on the development of methods to evaluate and construct conidence
interval methods that have good one-sided properties. This is in line with our philosophy of
recommending two-sided conidence interval methods that have nearly equal error probabilities
for each side of the interval (see Section 2.7). The results show that the Jeffreys method is far
superior to the Wilson score method in this important regard and thus the Jeffreys method is
especially recommended when computing one-sided conidence bounds.

Confidence intervals when sampling from a finite population

Chung and De Lury (1950) give charts for obtaining conservative conidence intervals for a
proportion when sampling from a inite population forN larger than 500. Katz (1953) provided
alternative approximatemethods that were used at the time (when tables or computer routines for
hypergeometric probabilities did not exist). The conservativemethod is also presented byKonijn
(1973) and Tomsky et al. (1979) who provide tables for population sizes N from 2 to 100, for
various values of the observed number of nonconforming units (x in our notation) and sample
sizes (n in our notation). Odeh and Owen (1983) provide tables for N = 400(200)2,000.
Buonaccorsi (1987) investigates and compares the conservative method for constructing such
conidence intervals with an alternative method that he shows to be inferior.

Tolerance intervals

Tolerance intervals and one-sided tolerance bounds for the binomial (and Poisson)
distribution were irst given by Hahn and Chandra (1981) and are also presented in
Krishnamoorthy and Mathew (2009). Wang and Tsung (2009) describe methods for evaluat-
ing the coverage probabilities of binomial (and Poisson) distribution tolerance intervals and
present algorithms for developing methods with improved coverage probability properties. In
particular, evaluation of the coverage properties of the Hahn and Chandra (1981) method shows
that the method is highly conservative. Cai and Wang (2009) present methods for construct-
ing one-sided approximate tolerance bounds (equivalent to one-sided conidence bounds on a
quantile) for discrete distributions based on “probability matching” that use high-order approx-
imations for the coverage probability and match these to the desired conidence level. Then they
show how to combine two one-sided tolerance bounds to provide two-sided approximate toler-
ance intervals. Their method tends to have coverage probabilities that are closer to the nominal
conidence level than those of other proposed methods. Finally, Krishnamoorthy et al. (2011)
provide a simple approximate method for constructing binomial (and Poisson) distribution
tolerance intervals.

Prediction intervals

Thatcher (1964) suggested the conservative method based on the hypergeometric distribution
in (6.9). Hahn and Nelson (1973) suggested the method in (6.11) based on a normal distribution
approximation. The Jeffreys prediction interval is derived from a Bayesian method, based on
the posterior predictive distribution of the number of nonconforming units in a future sample of
size m, assuming a Jeffreys prior distribution for π, as described in Sections 16.1.5 and H.6.1.
Wang (2008) shows how to compute the coverage probabilities of prediction interval procedures
for discrete distributions. Krishnamoorthy and Peng (2011) describe earlier methods, suggest
other simple closed-form methods for prediction intervals (especially the joint-sample method)
for the binomial (and Poisson) distributions, and compare these methods with respect to their
coverage probability properties.



Chapter 7
Statistical Intervals for a

Poisson Distribution

OBJECTIVES AND OVERVIEW

This chapter describes statistical intervals for the number of events over some interval of
time or region of space, assuming independent events and a constant event-occurrence rate.
Such situations can often be modeled by the Poisson distribution. For example, the Poisson
distribution might provide an adequate description of the number of laws on the surface of a
product. This would require (among other technical conditions) that the product units are all
of the same size and that laws occur at random and independently of each other at a constant
rate λ. Similarly, the number of unscheduled shutdowns of a computer system over some
speciied period of time might be described by a Poisson distribution. This would require that
unscheduled shutdowns occur independently of one another and that the event-occurrence rate
be constant over time and from one system to another. This assumption would not be correct
if, for example, environmental factors that cause failure (e.g., lightning) simultaneously affect
more than one system or if the failure rate changes with time (this might be the case if some
system components are subject to wearout). In this chapter, our discussion will frequently be in
terms of x, the number of events (e.g., unscheduled shutdowns of a computer system) in a given
time interval of length n. We could similarly have discussed variables that describe events over
constant length, area, or volume, such as the number of defects per foot of wire or the number
of laws per square meter of a inished surface.

The following topics are discussed in this chapter:

� Conidence intervals for λ, the (actual) event-occurrence rate of the sampled population
or process (Section 7.2).

� Conidence intervals for the probability that the number of events in a speciied amount of
exposure will be less than or equal to (or greater than) a speciied number (Section 7.3).

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.
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� Conidence intervals for a quantile of the distribution of the number of events in a speciied
amount of exposure (Section 7.4).

� Tolerance intervals and one-sided tolerance bounds for the distribution of the number of
events in a speciied amount of exposure (Section 7.5).

� Prediction intervals for the number of events in a future amount of exposure (Section 7.6).

The preceding are analogous tomost of the topics that were considered inChapter 6 for statistical
intervals for proportions and percentages (binomial distribution) and the discussion that follows
resembles that of the previous chapter.

7.1 INTRODUCTION

7.1.1 The Poisson Distribution

As indicated, problems involving the number of occurrences of independent, randomly occurring
events per unit of space or time can often be modeled with the Poisson distribution. The
probability function for the Poisson distribution (i.e., the probability of exactly x events), is

Pr(X = x) = dpois(x;λ) =
exp(−λ)λx

x!
,

where the parameter λ is the mean event-occurrence rate (i.e., E(X)). Also, if the number of
events per unit exposure has a Poisson distribution with occurrence rate λ, the number of events
in n units of exposure (where n is not necessarily an integer) has a Poisson distribution with
expectation nλ.

The function

Pr(X ≤ x) = ppois(x;λ) =
x∑

i=0

exp(−λ)λi

i!

denotes the cumulative Poisson probability of observing x or fewer events in a unit of exposure,
where λ is the constant event-occurrence rate per unit of exposure. See Section C.4.4 for more
technical details about the Poisson distribution.

7.1.2 Poisson Distribution Statistical Interval Properties

In the problems considered here, λ, the Poisson distribution event-occurrence rate per unit of
exposure is unknown. Instead, all that is known is that over a past n units of exposure, there
were x events of interest. One of our problems, then, is to obtain a conidence interval for λ.

The Poisson, like the binomial, is a discrete distribution. A Poisson random variable can take
on the integer values x = 0, 1, 2, . . . (with no theoretical upper limit). Because the distribution
of x is discrete, statistical intervals do not generally have exactly the desired conidence level.
Instead, the coverage probabilities of the statistical interval methods given in this chapter
depend on the unknown value of the mean number of events nλ (as illustrated in Section 7.2.6).
Thus, the statistical intervals given here are either conservative (i.e., the coverage probability
conidence level is larger than the nominal conidence level) or approximate, depending on the
method that is used. There are numerous methods for computing Poisson distribution statistical
intervals. In Section 7.2.1 we will present and illustrate four important methods for constructing
conidence intervals on λ. References given in the Bibliographic Notes section at the end of this
chapter provide further description and evaluation of these and other Poisson statistical interval
methods.
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Example 7.1 Number of Unscheduled Shutdowns for a Group of Computing Systems. In
n = 5.0 system-years of operation of a group of computing systems there have been x = 24
unscheduled shutdowns. We assume that unscheduled shutdowns occur independently of one
another at a constant rate from one system to the next and from one year to the next, according
to a Poisson distribution. (Such assumptions can be assessed from the observed unscheduled
shutdown times; see Ascher and Feingold, 1984). The mean number of unscheduled shutdowns

per year (or unscheduled shutdown rate) is then estimated from the given data as λ̂ = x/n =
24/5.0 = 4.8. We note that in this example a system-year of operation was taken to be the unit
of exposure.

7.2 CONFIDENCE INTERVALS FOR THE EVENT-OCCURRENCE RATE OF A
POISSON DISTRIBUTION

7.2.1 Preliminaries

The observed event-occurrence rate λ̂ = x/n is a point estimate of the actual event-occurrence

rate λ. The estimate λ̂, however, differs from λ due to random sampling luctuations. Thus,
one frequently desires to compute, from the sample data, a two-sided conidence interval or a
one-sided conidence bound for λ.

This section presents and motivates the use of four of the most commonly used methods for
computing conidence intervals for the Poisson distribution parameter λ. The underlying theory
for the methods is given in Sections D.6.2, D.5.6, and H.3.2. The Bibliographic Notes section at
the end of this chapter gives references to articles that describe and give more technical details
for these and other conidence interval procedures for λ. As in previous chapters, we mainly
present two-sided conidence intervals; one-sided lower and upper 100(1 − α)% conidence
bounds are obtained by replacing α/2 with α in the appropriate formula for obtaining a two-
sided conidence interval.

Each of the fourmethods for obtaining a conidence interval forλ presented in this sectionwill
be illustrated by the computing system unscheduled shutdown example. Table 7.1 compares and
Section 7.2.6 discusses the conidence intervals obtained by applying each of the four methods
to this example. Table 7.1 also contains results for other intervals presented later in this chapter.

7.2.2 The Conservative Method

Forx observed events inn units of exposure, a two-sided conservative 100(1 − α)% conidence
interval for λ is

[λ
˜
, λ̃] = [qgamma(α/2;x, n), qgamma(1 − α/2;x + 1, n)] (7.1)

=

[
0.5χ2

(α/2;2x)

n
,

0.5χ2
(1−α/2;2x+2)

n

]
, (7.2)

where qgamma(p;α, n) is the p quantile of the gamma distribution with shape parameter α and
rate parameter n (as mentioned in Section C.3.5, the gamma distribution can be parameterized
with either a rate parameter or a scale parameter) andχ2

(p ;r) is the p quantile of a chi-square distri-
bution with r degrees of freedom. The lower limit is deined to beλ

˜
= 0 ifx = 0. The derivation

of this interval (see Section D.6.2) leads directly to the use of the gamma distribution quantile for
performing the computation. The equivalent formulas that use chi-square distribution quantiles
follow from the close relationship between the gamma distribution and the chi-square distri-
bution (see Section C.3.6). Tables of chi-square quantiles are more readily available, but the
gamma quantile method is more convenient when a sophisticated calculator, such as R, is used.
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This method is conservative in the sense that the coverage probability is guaranteed to be
greater than or equal to the nominal conidence level (see Section 7.2.6). It has been referred to
in many places in the literature as the “exact” method. We avoid this terminology because it is
misleading and conlicts with the usual meaning of an exact (as opposed to an approximate or
conservative) statistical interval; see Section B.2.1.

Example 7.2 Conservative Conidence Interval for the Computer Systems Unscheduled

Shutdown Rate. For the computer systems unscheduled shutdown application introduced
in Example 7.1, management wants a conidence interval for λ, the actual or long-term
rate of unscheduled shutdowns for the computer systems. Using the conservative method
given by (7.2) with x = 24 unscheduled shutdowns in n = 5 years of operation, we obtain
χ2

(0.025;2×24) = 30.75, χ2
(0.975;2×24+2) = 71.42, and χ2

(0.95;2×24+2) = 67.50 from tables in

numerous statistics textbooks or from R. Then a conservative 95% conidence interval for
λ is obtained by substituting into (7.2), giving

[λ
˜
, λ̃] =

[
0.5 × 30.75

5
,

0.5 × 71.42

5

]
= [3.075, 7.142].

Interval/bound type For Lower Upper

Conservative two-sided CI λ 3.075 7.142
Wald two-sided CI λ 2.880 6.720
Score two-sided CI λ 3.226 7.143
Jeffreys two-sided CI λ 3.155 7.022

Conservative one-sided CB λ 3.310 6.750
Wald one-sided CB λ 3.188 6.412
Score one-sided CB λ 3.550 6.818
Jeffreys one-sided CB λ 3.393 6.634

Conservative two-sided CI Pr(Y ≤ 5), m = 0.50 0.848 0.995
Jeffreys two-sided CI Pr(Y ≤ 5), m = 0.50 0.856 0.994

Conservative two-sided CI y0.90 , m = 2 9 19
Jeffreys two-sided CI y0.90 , m = 2 10 19

Conservative one-sided CB y0.10 , m = 2 3 9
Jeffreys one-sided CB y0.10 , m = 2 4 9

Conservative one-sided CB y0.90 , m = 2 10 18
Jeffreys one-sided CB y0.90 , m = 2 10 18

Conservative two-sided TB Control center 0.80, m = 2 3 18
Jeffreys two-sided TB Control center 0.80, m = 2 4 18

Conservative two-sided PI Y , m = 4 9 33
Normal two-sided PI Y , m = 4 8 31
Joint-sample two-sided PI Y , m = 4 10 32
Jeffreys two-sided PI Y , m = 4 9 32

Table 7.1 Two-sided 95% conidence intervals and one-sided 95% conidence bounds for λ, the
Poisson distribution computer systems unscheduled shutdown rate, and other related intervals. CI and PI

denote conidence and prediction interval; CB and TB denote conidence bound and tolerance bound.
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A one-sided upper conservative 95% conidence bound for λ is λ̃ = (0.5 × 67.50)/5 = 6.750.
Alternatively, using R as a calculator for the gamma quantile function, (7.1) gives

> qgamma(p=c(0.025, 0.975), shape=c(24, 24+1), rate=5)

[1] 3.075 7.142

> qgamma(p=0.95, shape=24+1, rate=5)

[1] 6.75

for the conservative 95% conidence interval and one-sided upper 95% conidence bound.

7.2.3 The Wald (Normal Theory) Approximate Method

A simple two-sided approximate 100(1 − α)% conidence interval for λ, based on the assump-
tion that the so-called “Wald quantity”

λ − λ̂√
λ̂/n

(7.3)

can be approximated by aNORM(0, 1) distribution, is obtained by inverting aWald signiicance
test (i.e., setting (7.3) equal to z(1−α) and solving for λ), giving

[λ
˜
, λ̃] = λ̂ ∓ z(1−α/2)

(
λ̂

n

)1/2

, (7.4)

where z(1−α/2) is the 1 − α/2 quantile of the standard normal distribution.
This simple method was especially relevant when computational capabilities were limited

and still appears frequently in elementary statistics textbooks. It is often incorrectly stated that
the method provides adequate accuracy when x exceeds 20. Unfortunately, even when x is as
large as 40 or 50, the performance of this procedure is poor, and we do not recommended it
for general use (see Section 7.2.6 for more details). We describe the Wald method because of
its popularity (as well as historical signiicance) and because it is still used in some situations
(e.g., when no appropriate software or tables are readily available, such as in an informal
conversation) and when a simple, crude approximation will sufice.

Example 7.3 Wald-Approximation Conidence Interval for the Computer Systems

Unscheduled Shutdown Rate. For the computer systems shutdown application (Example 7.1),
management wants a conidence interval for λ, the rate of unscheduled shutdowns for the
computer systems. Using the Wald method given by (7.4) with x = 24 unscheduled shutdowns
in n = 5 years of operation, we obtain an approximate 95% conidence interval for λ, using
z(0.975) = 1.960, as

[λ
˜
, λ̃] = 4.8 ∓ 1.96

(
4.8

5.0

)1/2

= [2.88, 6.72].

A one-sided upper approximate 95% conidence bound for λ is obtained by using z(0.95) =
1.645 in place of z(0.975) = 1.960, giving 6.41. Using R as a calculator gives

> lambdahat <- 24/5

> lambdahat + c(-1,1)*qnorm(0.975)*sqrt(lambdahat/5)

[1] 2.88 6.72

> lambdahat + qnorm(0.95)*sqrt(lambdahat/5)

[1] 6.41

for the approximate 95% conidence interval and one-sided 95% conidence bound.
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7.2.4 The Score Approximate Method

An improved (relative to the Wald method) two-sided approximate 100(1 − α)% conidence
interval for λ is based on the assumption that the so-called “score quantity”

λ − λ̂√
λ/n

(7.5)

can be approximated by a NORM(0, 1) distribution and is obtained by inverting a score
signiicance test (i.e., setting (7.5) equal to z(1−α) and solving for λ), giving

[λ
˜
, λ̃] =

̂̂
λ ∓ z(1−α/2)

1√
n

(
λ̂ +

z2
(1−α/2)

4n

)1/2

, (7.6)

where
̂̂
λ = (x + z2

(1−α/2)/2)/n is an alternative center of the interval and z(1−α/2) is again the

1 − α/2 quantile of the standard normal distribution. This method is slightly more complicated
than the Wald method, but has much improved properties (see Section 7.2.6). A derivation of
the score method is given in Example D.10.

Example 7.4 Score Approximate Conidence Interval for the Computer Systems

Unscheduled Shutdown Rate. For the computer systems unscheduled shutdown application
(Example 7.1), an approximate 95% conidence interval forλ is obtained using the scoremethod
by substituting x = 24, n = 5, and z(0.975) = 1.960 into (7.6) giving

̂̂
λ = [24 + 1.962/2]/5 = 5.184

[λ
˜
, λ̃] = 5.184 ∓ 1.960

1√
5

[
4.8 +

1.9602

4 × 5

]1/2

= [3.23, 7.14].

An upper approximate 95% conidence bound for λ, using z(0.95) = 1.645 in place of 1.960, is
6.82. Using R as a calculator gives

> lambdahat <- 24/5

> lambdahathat <- (24+qnorm(0.975)ˆ2/2)/5

> lambdahathat + c(-1,1)*qnorm(0.975)*(1/sqrt(5))*

sqrt(lambdahat+qnorm(0.975)ˆ2/(4*5))

[1] 3.226 7.143

> lambdahathat + qnorm(0.95)*(1/sqrt(5))*

sqrt(lambdahat+qnorm(0.95)ˆ2/(4*5))

[1] 6.818

7.2.5 The Jeffreys Approximate Method

Using the Jeffreys method (see the Bibliographic Notes section at the end of this chapter
and Section H.4.2 for a description of the origin of this method), a two-sided approximate
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100(1 − α)% conidence interval for λ, based on x observed events in n units of exposure, is

[λ
˜
, λ̃] = [qgamma(α/2;x + 0.50, n), qgamma(1 − α/2;x + 0.50, n)] (7.7)

=

[
0.5χ2

(α/2;2x+1)

n
,

0.5χ2
(1−α/2;2x+1)

n

]
. (7.8)

The structure of the formulas for this method is the same as that for the conservative method
given by (7.1) and (7.2), but with different parameters for the gamma distribution quantiles or
different degrees of freedom for the chi-square quantiles. Unlike the conservative method, the
Jeffreys method does not guarantee a coverage probability that is greater than or equal to the
nominal conidence level for all values of λ. Instead, the Jeffreys method has excellent mean
coverage properties, as we will see in Section 7.2.6.

Example 7.5 Jeffreys Conidence Interval for the Computer Systems Unscheduled Shut-

down Rate. For the computer systems unscheduled shutdown application introduced in Exam-
ple 7.1, to calculate a conidence interval for λ based on the Jeffreys method given by (7.8),
with x = 24 unscheduled shutdowns in n = 5 system-years of operation, we irst obtain
χ2

(0.025;2×24+1) = 31.55, χ2
(0.925;2×24+1) = 70.22, and χ2

(0.95;2×24+1) = 66.34 from tables in

statistics textbooks or by using R. Then a 95% conidence interval for λ is

[λ
˜
, λ̃] =

[
0.5 × 31.55

5
,

0.5 × 70.22

5

]
= [3.16, 7.02].

An upper 95% conidence bound for λ is

λ̃ =
0.5 × 66.34

5
= 6.63.

Using R as a calculator for the gamma quantile function in (7.7) gives

> qgamma(p=c(0.025,0.975), shape=24+0.50, rate=5)

[1] 3.155 7.022

> qgamma(p=0.95, shape=24+0.50, rate=5)

[1] 6.634

7.2.6 Comparisons and Recommendations

We have presented four different approximate methods for constructing a conidence interval or
conidence bound for the Poisson distribution parameter λ. Which method do we recommend
for a speciic application?

If it is necessary to avoid any arguments about the use of approximations (e.g., in court
proceedings), one should use the conservative method to assure a coverage probability that
is always greater than or equal to the nominal conidence level. When nλ is small, however,
the conservative method typically results in intervals that will be wider than the competing
methods. The score method is useful when a simple computational procedure is needed, and
the Wald method could be used in situations for which an immediate, even though crude,
ballpark assessment is desired. Otherwise we recommend the Jeffreys method for general use
for constructing both two-sided conidence intervals and one-sided conidence bounds for λ.

In the remainder of this section we compare the performance of the different methods to
provide some insights into the basis for these recommendations. Because the different methods
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Poisson Wald Approximate Two−Sided
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Poisson Score Approximate Two−Sided
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Poisson Jeffreys Approximate Two−Sided
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Figure 7.1 Plots of conidence interval (for λ) coverage probabilities versus the expected number of events

nλ for the conservative and Wald (top row) and score and Jeffreys (bottom row) methods for a nominal 95%

conidence level.

for constructing a conidence interval on the Poisson occurrence rate λ have different coverage-
probability behaviors, one should compare the properties of these procedures before deciding
which one to use (this should be done before looking at the data to avoid any appearance of
lack of objectiveness). The coverage probability depends on nλ, the expected number of events
in n units of exposure, and can be computed by using (B.7) in Section B.2.4. The following
results deal with 95% conidence intervals and bounds, but similar results are obtained for other
conidence levels.

Figure 7.1 shows the coverage probabilities versus nλ, the expected number of events in
n units of exposure, for the 95% conidence intervals for each of the four conidence interval
methods presented in this section. The plots also show the mean coverage and the minimum
coverage probabilities computed at 200 equally spaced values of nλ between 2 and 50.

The top left-hand plot in Figure 7.1 shows that the conservative method has (as expected
from theory; see Section D.6.2) a coverage probability that is, for all values of nλ, greater (and
for small nλ, appreciably greater) than the nominal 95% conidence level. The top right-hand
plot shows that the Wald-approximation method almost always provides a coverage probability
that is less than (and for small values of nλ, substantially less than) the nominal conidence level
(i.e., the method is nonconservative). This method, in fact, tends to remain (at least slightly)
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Poisson Score Approximate Lower
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Figure 7.2 Plots of one-sided lower (left) and upper (right) conidence bound (for λ) coverage probabilities
versus the expected number of events nλ for the score (top) and Jeffreys (bottom) methods for a nominal 95%

conidence level.

nonconservative for values of nλ between 30 and 50 (and even above 50). For this reason, we
recommend against use of the Wald method except for situations in which a hand-calculated
interval is needed and a ballpark approximation will sufice.

The score method in the bottom left-hand plot and the Jeffreys method in the bottom right-
hand plot of Figure 7.1 have reasonably good approximate coverage properties (i.e., coverage
probabilities close to the nominal 95% conidence level), even for fairly small values of nλ.
In addition—as we will see in the discussion to follow dealing with coverage probabilities for
one-sided conidence bounds—the Jeffreys method provides good balance between the error
probabilities of being outside of the upper and lower endpoints for a two-sided conidence
interval, while the score method does not.

Figure 7.2 gives one-sided conidence bound coverage probabilities (lower bound on the
left and upper bound on the right), comparing the score method (top) with the Jeffreys method
(bottom), for values of nλ between 2 and 50. These plots show that the score method one-sided
lower (upper) conidence bounds are generally nonconservative (conservative), and especially
so for small values of nλ. This comparison shows that the Jeffreys method has the advantage
over the score method because it provides better balance between errors in the lower and upper
endpoints of a two-sided interval. As explained in Section 2.7, it is preferable to have the kind
of balance that the Jeffreys method provides.
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In summary, the preceding comparisons show that the Jeffreys method possesses the best
statistical properties among the three approximate methods presented for constructing both
two-sided conidence intervals and one-sided conidence bounds. This is especially so for small
values of nλ.

7.2.7 Comparison of Results from Applying Different Methods

The two-sided 95% conidence intervals and one-sided 95% conidence bounds obtained for λ
using each of the four methods are compared in the top half of Table 7.1. This tabulation also
shows the one-sided lower 95% conidence bounds. We note that for this example the results
obtained using these different methods are quite similar.

7.3 CONFIDENCE INTERVALS FOR THE PROBABILITY THAT THE NUMBER
OF EVENTS IN A SPECIFIED AMOUNT OF EXPOSURE IS LESS THAN OR
EQUAL TO (OR GREATER THAN) A SPECIFIED NUMBER

Some applications require inferences concerning the probability that Y , the number of events in
m units of exposure, will be less than or equal to (or greater than) some prespeciied nonnegative
integer y. In particular, based on the information in a previous exposure amount n, an analyst
might want to ind a conidence interval for the probability pLE that the number of events in a
speciied exposure amount m is less than or equal to y, where y is a prespeciied nonnegative
integer.

If the rate of occurrence of events from the distribution were known to be λ, the probability
pLE that Y , the number of events in a sample of m units of exposure, will be less than or equal
to a prespeciied number y is computed from the Poisson cumulative distribution function as

pLE = Pr(Y ≤ y) = ppois(y;mλ), (7.9)

where ppois is the Poisson cdf deined in Section 7.1.1 and Section C.4.4. Usually, λ is
unknown and only sample data on the number of events x in n units of exposure are available.
Because pLE is a decreasing function of λ (see (C.24) in Section C.4.4), the following two-step
procedure is used to ind an approximate two-sided conidence interval for pLE :

1. Obtain a two-sided conidence interval for λ, based on the data, using one of the methods
given in Section 7.2.

2. Substitute these values for λ into (7.9) to obtain the desired two-sided conidence interval
for pLE .

Thus, if [λ
˜
, λ̃] is a two-sided 100(1 − α)% conidence interval for λ, a two-sided

100(1 − α)% conidence interval for pLE is

[p
˜

LE , p̃LE ] = [ppois(y;mλ̃), ppois(y;mλ
˜
)].

Similarly, if the rate of occurrence of events from the distribution is known to equal λ, the
probability pGT that Y , the number of events in a speciied amount of exposure m, will be
greater than y is the complement of the Poisson cumulative distribution function

pGT = 1 − pLE = Pr(Y > y) = 1 − ppois(y;mλ).
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When λ is unknown, because pGT is an increasing function of λ, a 100(1 − α)% conidence
interval for pGT is

[p
˜

GT , p̃GT ] = [1 − p̃LE , 1 − p
˜

LE ] = [1 − ppois(y;mλ
˜
), 1 − ppois(y;mλ̃)].

Because the function ppois(y;m) is a continuous monotone function of λ, the coverage
properties of each of the preceding procedures is exactly the same as that for the corresponding
conidence interval procedure (from Section 7.2) used to obtain a conidence interval for λ.

Example 7.6 Conidence Interval for the Probability of Five or Fewer Unscheduled Com-

puter Shutdowns in 6 Months. Suppose that in Example 7.1 we would like to compute a 95%
conidence interval for the probability that y = 5 or fewer unscheduled shutdowns will occur
in the next m = 1/2 year of system operation. In Example 7.2, a conservative 95% conidence

interval for λ was found to be [λ
˜
, λ̃] = [3.075, 7.142]. Thus, a conservative 95% conidence

interval for pLE = Pr(Y ≤ 5) is

[p
˜

LE , p̃LE ] = [ppois(5; 0.50 × 7.142), ppois(5; 0.50 × 3.075)] = [0.848, 0.995].

Thus, we are 95% conident that the probability of ive or fewer unscheduled shutdowns in the
next half year of operation is between 0.848 and 0.995. Similarly, a one-sided lower conservative
95% conidence bound on pLE is

p
˜

LE = ppois(5; 0.50 × 6.750) = 0.874.

This example depends heavily on the assumption that the actual Poisson occurrence rate λ does
not change in the next half year from what it was during the previous 5 years.

UsingR as a calculator, based on the conservative conidence interval forλ fromSection 7.2.2,
gives

>ppois(q=5, 0.50*qgamma(p=c(0.975, 0.025), shape=c(24+1, 24), rate=5))

[1] 0.8481 0.9950

> ppois(q=5, 0.50*qgamma(p=0.95, shape=c(24+1), rate=5))

[1] 0.8737

Similarly, using the Jeffreys conidence interval from Section 7.2.5 gives

> ppois(q=5, 0.50*qgamma(p=c(0.975, 0.025), shape=24+0.50, rate=5))

[1] 0.8561 0.9943

> ppois(q=5, 0.50*qgamma(p=0.95, shape=24+0.50, rate=5))

[1] 0.8808

The preceding two-sided conidence intervals are displayed in Table 7.1.

7.4 CONFIDENCE INTERVALS FOR THE QUANTILE OF THE DISTRIBUTION OF
THE NUMBER OF EVENTS IN A SPECIFIED AMOUNT OF EXPOSURE

Some applications require a conidence interval (or a one-sided conidence bound) for a quantile
yp of the distribution of Y , the number of events in m units of exposure. For example, suppose
that a characterization of the distribution of the number of computer system unscheduled
shutdowns for exposure periods of length m is needed, and it is desired to make a statement
about a value yp that exceeds a certain proportion p of such exposure periods. This problem
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is the inverse of the one in Section 7.3; there y was speciied and it was desired to obtain a
conidence interval for the probability pLE = Pr(Y ≤ y) of having y or fewer events in m
units of exposure.

The p quantile yp of a Poisson distribution is deined as the smallest value of y such that
Pr(Y ≤ y) = ppois(y;mλ) ≥ p and is denoted by qpois(p;mλ). If the event-occurrence
rate were known to be λ, then the desired quantile could be computed directly from
qpois(p;mλ). Usually, however, λ is unknown and only sample data on the number of
events x in a previous exposure of size n are available.

7.4.1 Two-Sided Confidence Interval for yp

In a manner similar to that used in Section 7.3, because qpois(p;mλ) is an increasing function
of λ, the following two-step procedure is used to ind an approximate two-sided conidence
interval for yp :

1. Obtain a two-sided conidence interval for λ, based on the data, using one of the methods
given in Section 7.2.

2. Substitute these values forλ intoqpois(p;mλ) to obtain the desired two-sided conidence
interval for yp .

Thus, if [λ
˜
, λ̃] is a two-sided approximate (or conservative) 100(1 − α)% conidence interval

for λ, a two-sided approximate (or conservative) 100(1 − α)% conidence interval for yp is

[y
˜

p , ỹp ] = [qpois(p;mλ
˜
), qpois(p;mλ̃)]. (7.10)

Unlike the conidence interval procedure for Poisson probabilities in Section 7.3, the quantile
function is not a continuous function of λ (it is an integer-valued step function). Therefore, the
coverage probability as a function of the actual value of λ will not be exactly the same as that
for the conidence interval procedure for λ. The general formula (B.5) in Section B.2.4 can,
however, be used to conduct such coverage probability evaluations and perform calibration,
discussed in Section B.8.

Example 7.7 Conidence Interval for the 0.90 Quantile of the Distribution of the Number

ofUnscheduledComputer Shutdowns in 2Years ofOperation.The operators of the computer
systems in Example 7.1 desire a 95% conidence interval for y0.90 , the 0.90 quantile of the
distribution of the number of unscheduled shutdowns in m = 2 years of operation. Using the

conservative 95% conidence interval [λ
˜
, λ̃] = [3.155, 7.022] from Table 7.1, the resulting

conservative 95% conidence interval for y0.90 is

[y
˜

0.90 , ỹ0.90 ] = [qpois(0.90; 2 × 3.075), qpois(0.90; 2 × 7.142)]

= [9, 19].

Thus, we are at least 95% conident that the 0.90 quantile of the distribution of the number of
unscheduled shutdowns is between 9 and 19.

UsingR as a calculator, based on the conservative conidence interval forλ fromSection 7.2.2,
gives

>qpois(p=0.90, 2*qgamma(p=c(0.025, 0.975), shape=c(24, 24+1), rate=5))

[1] 9 19

as a conservative 95% conidence interval for y0.90 . Similarly, using the Jeffreys conidence
interval from Section 7.2.5 gives
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> qpois(p=0.90, 2*qgamma(p=c(0.025,0.975), shape=24+0.50, rate=5))

[1] 10 19

as an approximate 95% conidence interval for y0.90 .
The preceding results are summarized in Table 7.1. Because of the discreteness in the

quantile function and because there is only a small difference between the conservative and
Jeffreys methods for obtaining a conidence interval for λ, the conidence intervals for the two
methods in this example are almost identical.

7.4.2 One-Sided Confidence Bounds for yp

Aone-sided lower (upper) 100(1 − α)% conidence bound for yp is found by substituting a one-
sided lower (upper) 100(1 − α)% conidence bound for λ into the appropriate endpoint of the
two-sided conidence interval in (7.10). These one-sided conidence bounds are of particular
interest because of their relationship to one-sided tolerance bounds and two-sided tolerance
intervals, to be described in Section 7.5.

Example 7.8 One-Sided 95% Conidence Bounds for the 0.10 and 0.90 Quantiles of the

Distribution of the Number of Unscheduled Computer Shutdowns in 2 Years of Opera-

tion. For the computer systems unscheduled shutdown application introduced in Example 7.1,
using the one-sided lower conservative 95% conidence bound λ

˜
= 3.310 from Table 7.1 and

proceeding as in Example 7.7, a conservative 95% lower conidence bound for y0.10 for m = 2
years of operation is

y
˜

0.10 = qpois(0.10; 2 × 3.310) = 3.

Similarly, using the one-sided upper conservative 95% conidence bound λ̃ = 6.750, a one-
sided upper conservative 95% conidence bound for y0.90 for m = 2 years of operation is

ỹ0.90 = qpois(0.90; 2 × 6.750) = 18.

Using R as a calculator, based on the conservative conidence interval method for λ from
Section 7.2.2, gives the conservative 95% one-sided conidence bounds

> qpois(p=0.10, 2*qgamma(p=0.05, shape=24, rate=5))

[1] 3

> qpois(p=0.90, 2*qgamma(p=0.95, shape=24+1, rate=5))

[1] 18

for y0.10 and y0.90 , respectively. Similarly, using the Jeffreys conidence interval for λ from
Section 7.2.5 gives the one-sided approximate 95% conidence bounds

> qpois(p=0.10, 2*qgamma(p=0.05, shape=24.5, rate=5))

[1] 4

> qpois(p=0.90, 2*qgamma(p=0.95, shape=24.5, rate=5))

[1] 18

for y0.10 and y0.90 , respectively. The preceding results are summarized in Table 7.1 and will
be used in the next section to construct two-sided tolerance intervals and one-sided tolerance
bounds.
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7.5 TOLERANCE INTERVALS AND ONE-SIDED TOLERANCE BOUNDS FOR
THE DISTRIBUTION OF THE NUMBER OF EVENTS IN A SPECIFIED
AMOUNT OF EXPOSURE

Some applications require two-sided tolerance intervals or one-sided tolerance bounds for the
distribution of Y , the number of events in m units of exposure. Thus, in Example 7.1 one may
want to ind a value y so one can state, with a speciied degree of conidence, that at least
a proportion 0.90 of computing systems experience y or fewer unscheduled shutdowns in m
units of operation. This statement calls for a one-sided lower tolerance bound. Other problems
may require a one-sided upper tolerance bound or a two-sided tolerance interval. As indicated
in Section 2.4.2, however, a one-sided tolerance bound is equivalent to a one-sided conidence
bound on a quantile of the distribution.

Also, approximate two-sided tolerance intervals can be obtained by appropriately combining
one-sided lower and upper tolerance bounds. We provide further details below.

7.5.1 One-Sided Lower Tolerance Bound for a Poisson Distribution

A one-sided lower 100(1 − α)% tolerance bound
˜
T ′

β to be exceeded by at least a proportion

β of the distribution is the same as a lower 100(1 − α)% conidence bound on y(1−β ) , the
1 − β quantile of the distribution. Thus

˜
T ′

β = y
˜

(1−β ) , which can be computed as described in

Section 7.4.2.

Example 7.9 One-Sided Lower Tolerance Bound for the Number of Unscheduled Com-

puter Shutdowns in 2Years ofOperation.Due to the equivalence described above, a one-sided
lower conservative 95% tolerance bound to be exceeded by a proportion 0.90 of the distribution
of the number of computer unscheduled shutdowns inm = 2 years of operation in Example 7.1
is, from Example 7.8,

˜
T ′

0.90 = y
˜

0.10 = 3.

7.5.2 One-Sided Upper Tolerance Bound for a Poisson Distribution

A one-sided upper 100(1 − α)% tolerance bound T̃ ′
β to exceed at least a proportion β of the

distribution is the same as an upper 100(1 − α)% conidence bound on yβ , the β quantile of

the distribution. Thus T̃ ′
β = ỹβ , which can be computed as described in Section 7.4.2.

Example 7.10 One-Sided Upper Tolerance Bound for the Number of Unscheduled Com-

puter Shutdowns in 2 Years of Operation. A one-sided upper conservative 95% toler-
ance bound to exceed a proportion 0.90 of the distribution of the number of computer
unscheduled shutdowns in m = 2 years of operation in Example 7.1 is, from Example 7.8,

T̃ ′
0.90 = ỹ0.90 = 18.

7.5.3 Two-Sided Tolerance Interval for a Poisson Distribution

A method of constructing a two-sided approximate tolerance interval [
˜
Tβ , T̃β ] for a Poisson

distribution is to combine two one-sided tolerance bounds (or one-sided conidence bounds
on appropriate quantiles) for the distribution of interest. In particular, as explained in Sec-
tion D.7.4, to obtain an approximate two-sided 100(1 − α)% tolerance interval to contain
at least a proportion β of the distribution, one can use a one-sided lower 100(1 − α)%
conidence bound on the (1 − β)/2 quantile for the lower endpoint and a one-sided upper
100(1 − α)% conidence bound on the (1 + β)/2 quantile for the upper endpoint. That is,

[
˜
Tβ , T̃β ] = [y

˜
(1−β )/2 , ỹ(1+β )/2 ].
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Example 7.11 Two-Sided Tolerance Interval for the Number of Unscheduled Computer

Shutdowns in 2 Years of Operation. For Example 7.1, a 95% two-sided tolerance interval to
contain at least a proportion 0.80 of the distribution of the number of computer unscheduled
shutdowns in m = 2 years of operation is obtained by using a one-sided lower 95% conidence
bound on the 0.10 quantile for the lower endpoint and a one-sided upper 95% conidence
bound on the 0.90 quantile for the upper endpoint. Using the results from Example 7.8 gives

[
˜
T0.80 , T̃0.80 ] = [y

˜
(0.10), ỹ(0.90)] = [3, 18].

7.5.4 Calibrating Tolerance Intervals

Figure 7.3 gives plots of coverage probabilities versus nλ, the expected number of events in
n units of exposure, for the conservative and Jeffreys two-sided tolerance interval methods for
four nominal conidence levels, ranging from 90% to 97.5%, for n = m, and β = 0.90.

Figure 7.3 shows that both methods tend to give highly conservative results. The plots
show that these methods are conservative for not only small values of nλ but up to nλ = 50.
Although these results are for one special case, they also hold for other combinations of n, m,
and β.

As a consequence of the preceding consistent conservativeness of both the conservative
and Jeffreys methods for constructing Poisson tolerance intervals, these methods are espe-
cially appropriate candidates for adjustment by applying the statistical interval calibration
method, introduced in Section 6.6.4 and described further in Section B.8. In particular, if an
interval procedure tends to be consistently too conservative, one can adjust the procedure by
using a smaller nominal conidence level as input. For example, the third row in Figure 7.3
shows that the procedures for calculating tolerance intervals based on both the conserva-
tive method and the Jeffreys method are both consistently conservative with mean coverage
probabilities (0.98 and 0.97, respectively) appreciably greater than the nominal conidence
level of 95%. If one desires a procedure that has mean coverage that approximately equals
0.95, one could use the Jeffreys procedure with a nominal conidence level between 90%
and 92.5%.

7.6 PREDICTION INTERVALS FOR THE NUMBER OF EVENTS IN A FUTURE
AMOUNT OF EXPOSURE

Suppose, as before, that x events have been observed in n units of exposure. From this informa-
tion, it is desired to ind a prediction interval that will, with some speciied degree of conidence,
contain Y , the number of events in m future units of exposure. Also, as before, we assume that
the two exposures are independent and that the number of events in each can be described by a
Poisson distribution with the same rate parameter λ.

7.6.1 The Conservative Method

Let X and Y denote the number events during exposures of n and m units, respectively,
from a Poisson distribution with event-occurrence rate λ. Prior to observing X, the conditional
distribution of X, given X + Y, is BINOM(X + Y, π), where π = n/(n + m). After observ-
ing X = x, pbinom(x;x + Y, π) (the binomial cumulative distribution function, deined in
Section C.4.1) is nonincreasing in x + Y . Then the following procedure gives a conservative
100(1 − α)% conidence interval for x + Y that can then be converted (because x is known)
into a prediction interval for Y, the number of events in the future exposure of m units.
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Figure 7.3 Coverage probabilities versus nλ, the expected number of events in n units of exposure for the

conservative (left) and Jeffreys (right) two-sided tolerance interval methods to contain at least a proportion

β = 0.80 for n = m with nominal conidence levels 90% (top), 92.5% (second row), 95% (third row), and

97.5% (bottom).
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A conservative 100(1 − α)% prediction interval [Y
˜
, Ỹ ] for Y is obtained by inding the

smallest value Y
˜
and the largest value Ỹ such that

1 − pbinom(x − 1;x + Y
˜

, π) >
α

2
and pbinom(x;x + Ỹ, π) >

α

2
, (7.11)

where Y
˜

= 0 if x = 0. The prediction interval is conservative because it is based on a con-
servative conidence interval procedure for x + Y . One-sided lower and upper 100(1 − α)%
prediction bounds for Y are obtained by replacing α/2with α in the lower and upper endpoints
of (7.11).

From the relationships between the binomial cdf and the beta cdf (given in Section C.4.1)
and that between the binomial cdf and Snedecor’s F -distribution (given in Section C.3.11), the
inequalities in (7.11) are equivalent to the following inequalities:

pbeta(π;x, Y
˜

+ 1) >
α

2
and 1 − pbeta(π;x + 1, Ỹ ) >

α

2
,

pf

(
Y
˜

+ 1

x
×

n

m
; 2x, 2Y

˜
+ 2

)
>

α

2
and pf

(
Ỹ

x + 1
×

n

m
; 2x + 2, 2Ỹ

)
>

α

2
(7.12)

where again π = n/(n + m).
By inverting (7.12), the same conservative prediction interval given by (7.11) can be obtained

by inding the smallest value Y
˜
and the largest value Ỹ such that

m

Y
˜

+ 1
<

n

x
F(1−α/2;2Y

˜
+2,2x) and

Ỹ

m
>

(
x + 1

n

)
F(1−α/2;2x+2,2Ỹ ). (7.13)

The preceding approach, as opposed to the use of (7.11), is useful when tables of Snedecor’s
F -distribution quantiles are available and a sophisticated calculator like R is not.

Example 7.12 Conservative Prediction Interval and One-Sided Prediction Bound for

the Number of Unscheduled Computer Shutdowns in 4 System-Years of Operation. In
Example 7.1, a 95% prediction interval to contain the number of unscheduled shutdowns in
m = 4 future years of system operation is desired.

The conservative method given by (7.11) yields [Y
˜

, Ỹ ] = [9, 33] as a 95% prediction

interval and Ỹ = 31 as an upper 95% prediction bound for Y . Thus, based on x = 24 past
unscheduled shutdowns inn = 5 system-years of operation, one can, for example, assert with (at
least) 95% conidence that the number of unscheduled shutdowns inm = 4 future system-years
of operation will not exceed 31.

The binomial probabilities needed for the preceding prediction interval or bound can be
computed with the R function pbinom. Thus, using R as a calculator with function pbinom and
trying values of Y between 7 and 11, gives

> Y.try <- 7:11

> 1-pbinom(q=24-1, size=24+Y.try, prob=5/(5+4))

[1] 0.00996 0.01893 0.03311 0.05391 0.08249

to be compared with α/2 = 0.025. So the smallest value Y
˜
meeting the left-hand restriction in

(7.11) is 9. Similarly, trying values of Y between 31 and 35 gives

> Y.try <- 31:35

> pbinom(q=24, size=24+Y.try, prob=5/(5+4))

[1] 0.0506 0.0379 0.0281 0.0206 0.0150
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also to be comparedwithα/2 = 0.025. So the largest value Ỹ meeting the right-hand restriction
(7.11) is 33. One-sided prediction bounds are computed in a similar manner.

Example 7.13 Conservative One-Sided Upper Prediction Bound for the Number of

UnscheduledComputer Shutdowns inOneHalfYear ofOperation.Suppose that a consumer
who is installing one of the computer systems in Example 7.1 wants to use the manufacturer’s
data to obtain an upper 95% prediction bound for Y , the number of unscheduled shutdowns
during a future half year of operation (i.e., m = 0.5). Using R as a calculator with function
pbinom and trying values of Y between 4 and 8 gives

> Y.try <- 4:8

> pbinom(q=24, size=24+Y.try, prob=5/(5+0.5))

[1] 0.247208598 0.118135409 0.050078636 0.019143740 0.006689431

to be compared with α = 0.05. So the largest value Ỹ meeting the right-hand restriction (7.11)
is 6, giving the desired upper prediction bound.

7.6.2 The Normal Distribution Approximation Method

A large-sample approximate 100(1 − α)% prediction interval for Y , based on the assumption
that

mλ̂ − Y√
V̂ar(mλ̂ − Y )

can be adequately approximated by a NORM(0, 1) distribution, is

[Y
˜

, Ỹ ] = mλ̂ ∓ z(1−α/2)m

[
λ̂

(
1

n
+

1

m

)]1/2

. (7.14)

This approximate interval is easier to compute than that using the conservative method given
by (7.11) or (7.13). Again, one-sided lower and upper 100(1 − α)% prediction bounds for Y
are obtained by replacing α/2 with α in the lower and upper endpoints of (7.14).

Example 7.14 Normal Distribution Approximation Prediction Interval for the Number

of Unscheduled Computer Shutdowns in 4 System-Years of Operation. For Example 7.1,
a 95% prediction interval for Y in m = 4 future system-years of operation, using the normal
distribution approximation (7.14), is

[Y
˜

, Ỹ ] = 4 × 4.8 ∓ 1.96 × 4.0

[
4.8

(
1

5
+

1

4

)]1/2

= [7.7, 30.7],

which, after rounding to the nearest integer gives [8, 31]. This interval compares reasonably
well with the interval calculated using the conservative method in Example 7.12.

Using R as a calculator gives

> lambdahat <- 24/5

> Yhat <- 4*lambdahat

> Yhat + c(-1,1)*qnorm(0.975)*4*sqrt(lambdahat*(1/5+1/4))

[1] 7.7 30.7

One-sided prediction bounds can be obtained similarly.
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7.6.3 The Joint-Sample Approximate Method

Let λ̂xy = (X + Y )/(n + m) and suppose that

mλ̂xy − Y√
V̂ar

(
mλ̂xy − Y

) =
mX − nY√
mn(X + Y )

(7.15)

can be adequately approximated by a NORM(0, 1) distribution. Then squaring the right-hand
side of (7.15), setting it equal to z2

(1−α/2) , and solving the resulting quadratic equation for the

two roots in Y gives the following large-sample 100(1 − α)% prediction interval for Y :

[Y
˜

, Ỹ ] = mλ̂ +
mz2

(1−α/2)

2n
∓ z(1−α/2)

[
mλ̂

(
1

n
+

1

m

)
+

(mz(1−α/2)

2n

)2
]1/2

. (7.16)

This method is known as the “joint-sample (approximate) method.” It has been shown that
in using this method, the best agreement between coverage probabilities and the nominal
conidence level 1 − α is obtained by rounding in a nonconservative manner (i.e., rounding
the noninteger lower endpoint upward to the next integer and rounding the noninteger upper
endpoint downward to the next integer).

This approximate interval is a more complicated than the normal-approximation method in
(7.14), but the coverage probability properties are much better (as described in Section 7.6.5).
Again, one-sided lower and upper 100(1 − α)% prediction bounds for Y are obtained by
replacing α/2 with α in the lower and upper endpoints of (7.16), respectively.

Example 7.15 Joint-Sample Approximate Prediction Interval for the Number of

Unscheduled Computer Shutdowns in 4 System-Years of Operation. In Example 7.1, the
95% prediction interval for Y using the joint-sample approximation (7.16) is

[Y
˜

, Ỹ ] = 4 × 4.8 +
4 × 1.962

2 × 5
∓ 1.96

[
4.0 × 24

5

(
1

5
+

1

4

)
+

(
4 × 1.96

2 × 5

)2
]1/2

= [9.1, 32.4],

which when rounded in the nonconservative manner gives [10, 32]. This interval compares
reasonably well with the intervals calculated using the conservative method in Example 7.12
and the normal-approximation method in Example 7.14. Using R as a calculator gives

> lambdahat <- 24/5

> Yhat <- 4*lambdahat

> Yhat + (4*1.96ˆ2)/(2*5) +

c(-1,1)*qnorm(0.975)*sqrt(4*Yhat*(1/5+1/4) +

((4*1.96)/(2*5))ˆ2)

[1] 9.1 32.4

One-sided prediction bounds can be obtained similarly.

7.6.4 The Jeffreys Method

The Jeffreys method for obtaining a Poisson distribution prediction interval is an extension of
the Jeffreys method for obtaining a conidence interval for λ, given in Section 7.2.5, and is based
on quantiles of the negative binomial distribution, which can be viewed as a Bayesian Poisson
predictive distribution (see Section H.6.2 for technical details). Thus, given x observed events



146 STATISTICAL INTERVALS FOR A POISSON DISTRIBUTION

in n units of exposure, a two-sided approximate 100(1 − α)% Jeffreys prediction interval for
Y in m future units of exposure is

[Y
˜

, Ỹ ] = [qnbinom(α/2;x + 0.5, n/(n + m)),

qnbinom(1 − α/2;x + 0.5, n/(n + m))], (7.17)

where qnbinom(p; k, π) is the p quantile of the negative binomial distribution with “stopping
parameter” k and “proportion parameter” π.

Example 7.16 Jeffreys Prediction Interval for the Number of Unscheduled Computer

Shutdowns in 4 System-Years of Operation. For Example 7.1, a Jeffreys approximate 95%
prediction interval for the number of unscheduled shutdowns Y in m = 4 system-years of
future operation, using (7.17), is

[Y
˜

, Ỹ ] = [qnbinom(0.025; 24 + 0.5, 5/(5 + 4)), qnbinom(0.975; 24 + 0.5, 5/(5 + 4))]

= [9, 32].

Using R as a calculator, the negative binomial quantile function qnbinom gives

> qnbinom(p=c(0.025, 0.975), size=24+0.5, prob=5/(5+4))

[1] 9 32

This interval again differs, but not appreciably, from the intervals obtained using the three
previous methods.

7.6.5 Comparisons and Recommendations

The recommendations in this section are based on evaluations of coverage probabilities that
are not shown here. Equation (B.25) in Section B.6.4 provides an expression for computing
coverage probabilities.

If having at least the nominal level of conidence is important (e.g., to avoid arguments about
the use of approximations), the conservative method should be used. The conservative method,
however, can be overly conservative, resulting in prediction intervals that are excessively wide,
especially when either nλ or mλ is small (e.g., less than 10).

The joint-sample method was found to have coverage probabilities close to the nominal
conidence level when nλ and mλ were both 10 or larger. Thus we recommend the joint-
sample method when an approximate prediction interval method (as opposed to the conservative
method) is acceptable. The Jeffreys method tends to be somewhat more conservative than the
joint-sample method, especially when the ratio m/n is small (say, less than 1), but not as
conservative as the conservative method. The normal-approximate method requires that nλ
and mλ both be 30 or larger for the coverage probabilities to be reliably close to the nominal
conidence level.More generally, we recommend, if possible, comparing the coverage properties
of different intervals for particular situations to help decide which method to use.

BIBLIOGRAPHIC NOTES

Basic textbooks on probability, such asRoss (2012) andRoss (2014), provide detailed treatments
of the properties and applications of the Poisson distribution.

We present below references that provide original sources or further details about the various
methods presented in this chapter.We also provide references that present yet additionalmethods
for calculatingPoisson distribution conidence intervals.Wedonot discuss these furthermethods
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here for space considerations and because we feel that the intervals that we do present provide
readers ample choices.

Confidence intervals

Garwood (1936) initially proposed the conservative conidence interval method for the Poisson
distribution. Nelson (1972a) gives charts to ind upper conidence bounds for the Poisson
distribution parameter λ. The Jeffreys conidence interval method given in Section 7.2.5 derives
from Bayesian estimation with a Jeffreys prior distribution, as illustrated in Sections 16.2.2 and
H.4.2. Byrne and Kabaila (2005) compare different methods for obtaining conidence intervals
for λ. Brown et al. (2003) present conservative, Wald, score, and Jeffreys conidence intervals
for the distribution parameter of distributions in the exponential family—which includes the
Poisson distribution as a special case—and evaluate the coverage probabilities of the various
procedures.

Tolerance intervals

One-sided tolerance bounds for the Poisson distribution were irst given by Hahn and Chandra
(1981) and are also presented in Krishnamoorthy and Mathew (2009). Wang and Tsung (2009)
describe methods for evaluating the coverage probability of Poisson (and binomial) distribu-
tion tolerance intervals and present algorithms for developing methods with improved coverage
probability properties. Cai and Wang (2009) presentmethods for constructing one-sided approx-
imate tolerance bounds (equivalent to one-sided conidence bounds on a quantile) for discrete
distributions that are based on “probability matching” that use high-order approximations for
the coverage probability and match these to the desired conidence level. Then they show how
to combine the two one-sided tolerance bounds to provide approximate two-sided tolerance
intervals. Their methods, when compared to other methods, tend to have coverage probabilities
that are closer to the nominal conidence level. Krishnamoorthy et al. (2011) provide a further
simple approximate method for constructing Poisson (and binomial) tolerance intervals.

Prediction intervals

Nelson (1970) describes the equivalent of the conservative Poisson distribution prediction inter-
val method given in Section 7.6.1. Nelson (1982) also gives the normal distribution approx-
imate method described in Section 7.6.2. The Jeffreys prediction interval method given in
Section 7.6.4 derives from Bayesian prediction with a Jeffreys prior distribution, as illustrated
in Sections 16.2.5 and H.6.2. Wang (2008) gives expressions for the coverage probability for
prediction intervals for discrete distributions and suggests an alternative method for construct-
ing prediction intervals. Krishnamoorthy and Peng (2011) review various existing methods and
suggest other simple closed-form methods for prediction intervals for both the Poisson and
binomial distributions, including the joint-sample method given in Section 7.6.3. They also
compare coverage probabilities and expected length properties.



Chapter 8
Sample Size Requirements for

Conidence Intervals on
Distribution Parameters

OBJECTIVES AND OVERVIEW

This chapter addresses the frequently asked question “How large a sample do I need to obtain
a conidence interval?” To determine sample size requirements, one generally starts with a
statement of the needed precision (e.g., in terms of interval width) and then uses the procedures
for constructing statistical intervals described in the previous chapters “in reverse.”

This and the following two chapters are concerned with data quantity (sample size). We
need, however, to reiterate that the issue of data quantity is often secondary to that of the quality
of the data. In particular, in making a statistical estimate or constructing a statistical interval,
one assumes that the available data were obtained by using a random sample from a deined
population or process of interest. As stated previously, when this is not the case, all bets are
off. Just increasing the sample size—without broadening the scope of the investigation—does
not compensate for lack of randomness; all it does is allow one to obtain a possibly biased
estimate with greater precision. Putting it another way, increasing the sample size per se usually
improves the precision of an estimate, but not necessarily its accuracy.

Section 8.1 describes basic requirements for sample size determination. Subsequent sections
of this chapter deal with sample size determination methods to estimate a:

� Normal distribution mean (Section 8.2).

� Normal distribution standard deviation (Section 8.3).

� Normal distribution quantile (Section 8.4).
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� Binomial proportion (Section 8.5).

� Poisson occurrence rate (Section 8.6).

In this chapter and the following two chapters we present sample-size-determinationmethods
for a variety of situations described in this book. Sometimes, these methods will lead to the
inding that to attain the needed degree of precision, one requires a larger sample than is
practical. Discouraging as this may be, it is better to know before starting an investigation than
at its conclusion.

8.1 BASIC REQUIREMENTS FOR SAMPLE SIZE DETERMINATION

To determine the required sample size, one generally requires:

� A speciication of the objectives of the investigation.

� A statement of the needed precision.

� A decision of what statistical distribution, if any, is to be assumed, and, frequently initial
guesses or estimates, to be referred to as “planning values,” for one or more parameters
of that distribution.

8.1.1 The Objectives of the Investigation

Before one can determine how large a sample is needed, one must specify what is to be
computed from the resulting data. This could, for example, be a conidence interval for a
speciied parameter, such as the mean or standard deviation of a normal distribution, a binomial
proportion, a Poisson occurrence rate, a tolerance interval to contain a speciied proportion of
the distribution, or a prediction interval to contain one or more future observations. One also
needs to decide whether a two-sided interval or a one-sided bound is to be constructed and the
desired conidence level.

8.1.2 Statement of Needed Precision

Statisticians are often asked how many observations are needed to estimate some quantity
(e.g., the mean of a sampled distribution) with “95% conidence.” Such a question, however, is
generally insuficient per se. In fact, a literal answer is often one or two observations, depending
upon the speciic quantity being estimated. Unfortunately, the resulting precision is often so
poor (relected by a very wide interval) that the resulting interval has little value.

For example, suppose a vendor wants to provide a customer an interval that contains, with
95% conidence, the proportion of conforming units in a large manufacturing lot. Such an
interval can be computed even if one has only a single randomly selected unit. If the unit is in
conformance, the 95% conidence interval for the proportion of conforming units in the lot is
[0.025, 1.00] (see Section 6.2). Similarly, if two units were randomly selected and both are
found to be conforming, the calculated 95% conidence interval is [0.16, 1.00]. In these cases,
a statistical conidence interval has been found, but it is of little practical value.

As a second example, suppose that the mean of a normal distribution is to be estimated from
a sample of two observations. A random sample of two units has resulted in readings of 15.13
and 15.25. A 95% conidence interval to include the distribution mean is [14.4, 15.95] (see
Section 4.2). The 99% conidence interval is much wider still: [11.37, 19.01]!
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These examples illustrate that it is often possible to compute conidence intervals from a
sample of two and, in some cases, even a single observation. The resulting intervals, however,
are, because of their immense width, generally of little value (except to demonstrate how little
the data tell us about the characteristic of interest).

Thus, to determine the sample size required to obtain a useful interval, one must specify not
only the desired conidence level, but also the needed precision. Such precision is measured,
for example, by the allowable error in the resulting estimate or the half-width of the statistical
interval that is to be constructed from the data. For example, for a product packaged in jars
labeled to contain “one pound net weight,” one might desire a suficiently large sample to be
able to estimate the actual mean content weight within 0.1 ounce with 95% conidence.

8.1.3 Assumed Statistical Distribution and Parameter Planning Values

Chapters 4, 6, and 7 describe statistical intervals for a normal distribution, a binomial distri-
bution, and a Poisson distribution, respectively. The problem context should make clear which
of these models apply. There are also many other distributions that might be appropriate in a
particular situation, as illustrated in Chapters 12–18. Also, Chapter 5 describes distribution-free
intervals as an alternative to those for the normal, or some other speciic, distribution.

The formulas for computing statistical intervals depend on the assumed distribution. Thus,
the assumed distribution, if any, must be speciied before the required size of the sample can
be determined. Moreover, if a particular distribution is assumed, the sample size determination
often requires a “planning value” for an unknown distribution parameter. For example, to
determine the sample size:

� To estimate the mean of a normal distribution will require a “planning value” of the
distribution standard deviation.

� To estimate the proportion of nonconforming units in a binomial distribution requires a
planning value of the proportion to be estimated.

In general, such information is unknown before the investigation. If it were known, the inves-
tigation would be unnecessary in many cases, such as the second example. One can, however,
usually provide conservative planning values. These, in turn, will usually result in conservative
(i.e., larger than needed) sample sizes. We will use the superscript � to indicate a planning
value.

8.2 SAMPLE SIZE FOR A CONFIDENCE INTERVAL FOR A NORMAL
DISTRIBUTION MEAN

8.2.1 Introduction

This section shows how to choose a sample size large enough to estimate, with a speciied pre-
cision, the mean of a normal distribution. The width (or half-width) of the resulting conidence
interval (described in Section 4.2) is a convenient way to specify the needed precision. We will
show how to choose the sample size n such that the resulting conidence interval for μ has the
form x̄ ± d, where d is the desired conidence interval half-width.

The irst few methods described here require a planning value for the distribution standard
deviation. Alternative methods, briely described at the end of this section, use two-stage
sampling to avoid having the width of the conidence interval depend on a planning value.
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8.2.2 Tabulations and a Simple Formula for the Case when σ is Assumed to
Be Known

Table J.17a gives the sample size needed to estimate μwithin±kσ with conidence level 1 − α,
when σ� = σ is assumed to be known. Speciically, the table provides the sample size needed
to obtain a conidence interval that has a half-width of d = kσ� , as a function of k and 1 − α.
The table provides entries for values of 1 − α from 0.50 to 0.999 and for k from 0.01 to 2.00.

The quantities in Table J.17a were computed from the simple approximate formula

n =

[
z(1−α/2)σ�

d

]2

(8.1)

and then rounding n to the next largest integer. One can also use (8.1) directly in place of the
tabulations or for nontabulated values of k and α.

Example 8.1 Sample Size to Estimate Mean Alloy Tensile Strength. An experiment to
estimate the mean tensile strength of a new alloy is to be conducted. The experimenters must
decide how many specimens to test so that the 95% conidence interval for µ will have a
half-width of 1,500 kilograms (i.e., d = 1,500). Experience with similar alloys suggests that
variability in specimen strength can be modeled by a normal distribution. A conservative (high)
guess for the standard deviation of the distribution of tensile strength is σ� = 2,500 kilograms.

From the preceding, we calculate d = kσ� = 1,500. Then k = d/σ� = 1,500/2,500 =
0.60, and we ind from Table J.17a that the necessary sample size is 11. As a check, (8.1) gives

n =

[
1.96 × 2,500

1,500

]2

= 10.67

which, when rounded up to 11, agrees with the value obtained from Table J.17a.

8.2.3 Tabulations for the Case when σ is Unknown

When σ is unknown, the situation is more complicated because the conidence interval half-
width is now itself a random variable, and therefore cannot be determined exactly ahead of time.
Many elementary textbooks give (8.1) as a simple way to determine the approximate sample
size needed to obtain a conidence interval that will be close to the speciied half-width. In this
case, a planning value σ� is used in place of σ as a prediction of s, the estimate of σ that will
be obtained from the sample. At the time the study is planned, neither σ nor s is known. To be
on the safe side, however, one can use a conservatively large planning value σ� for σ.

Even if the planning value σ� is exactly the same as the actual value σ, there is a substantial
probability (generally greater than 0.50) that using (8.1) will result in a conidence interval with
half-width that is larger than the needed value d. The main reason for this is that the sample
standard deviation s obtained from the sample, and used in (4.1), is likely to be larger than σ.

As we have indicated, the width of the conidence interval is a random variable. Thus it
is appropriate to select the sample size so that, with a prespeciied probability, the resulting
interval half-width is not more than d, assuming that the planning value σ� is, indeed, equal
to σ. Table J.17b provides a means for doing this by making an upward adjustment to the
sigma-known sample size provided by (8.1). The table is used as follows. Suppose that we want
the future sample to yield a 100(1 − α)% conidence interval that has a half-width that is no
larger than d with 100(1 − γ)% probability if σ = σ� . First one uses Table J.17a or (8.1) to
get an initial value n, based again upon a planning value σ� for σ. Then one enters Table J.17b
with this value and the values of 1 − α and 1 − γ and reads the adjusted sample size from the
body of the table. The γ′ column in Table J.17b gives the probability that the conidence interval
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half-width is less than d when the initial sample size from the simple formula in (8.1) is used
if indeed σ� = σ, but the sample estimate s, subsequently obtained from the data, is used for
σ� in (8.1).

Example 8.2 Tabular Method to Find the Sample Size to Estimate Mean Alloy Tensile

StrengthwithUnknownSigma.Herewe continuewith Example 8.1, where (8.1) gaven ≈ 11.
Entering Table J.17b with 1 − α = 0.95 and 1 − γ = 0.90, interpolating between n = 10 and
15 for n = 11, gives a inal sample size of about 19. Thus, the price one pays to be 90% sure
that the half-width of the conidence interval does not exceed d = 1,500, as compared to using
the simpler, less conservative method (that does not provide such assurance), is an increase
in the sample size from 11 to 19. We note, moreover, from Table J.17b that if σ were indeed
equal to σ� , then the probability is only 0.34 that the half-width of the conidence interval will
be less than d if a sample of size n = 11 were used.

8.2.4 Iterative Formula for the Case when σ is Unknown

For situations not covered in Table J.17b, and to explain how the table works, we give the
following iterative method of inding the sample size for unknown σ.

We want to ind the smallest sample size that allows us to be 100(1 − γ)% sure that the
resulting 100(1 − α)% conidence interval will have a half-width less than d (assuming that the
planning value σ� > σ). A suitably modiied version of (8.1) can be obtained by substituting

t(1−α/2;n−1) for z(1−α/2) and S̃ for σ� in this expression, where S̃ is the upper 100(1 − γ)%
prediction bound for S, the sample standard deviation of the future sample of size n that we
wish to determine. Thus, we start with the expression

n ≥

[
t(1−α/2;n−1)S̃

d

]2

. (8.2)

The upper 100(1 − γ)% prediction bound for S (assuming that σ� is the actual value of
σ) is

S̃ = σ�

[
χ2

(1−γ ;n−1)

n − 1

]1/2

.

Substituting this for S̃ in (8.2) gives

n ≥

[
t(1−α/2;n−1)σ�

d

]2
[

χ2
(1−γ ;n−1)

n − 1

]
. (8.3)

Because n appears on both sides of (8.3), iteration is required to ind a solution. In particular,
we need to ind the smallest value of n such that the left-hand side is greater than the right-hand
side. It is easy to write a computer program or a simple R function to do this using standard
numerical methods. Working manually, one can use the following steps:

1. Use (8.1) to get a starting value n1 for n, based upon the planning value σ� .

2. Use the formula

n2 =

[
t(1−α/2;n1 −1)σ�

d

]2
[

χ2
(1−γ ;n1 −1)

n1 − 1

]

and round to the next higher integer to obtain an adjusted sample size value n2 .
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3. Obtain successive additional values for n by using the recursion formula

ni =

[
t(1−α/2;n i−1 −1)σ�

d

]2
[

χ2
(1−γ ;n i−1 −1)

ni−1 − 1

]

and round up at each stage until ni = ni−1 or ni = ni−1 − 1.

Generally no more than about ive to seven iterations are required.

Example 8.3 Iterative Method to Find the Sample Size to Estimate Mean Alloy Tensile

Strength with Unknown Sigma. As in Example 8.2, suppose that we want to be 90% sure
that the half-width of the 95% conidence interval to contain μ does not exceed 1,500, and our
planning value for σ is 2,500. Thus, as before, σ� = 2,500, d = 1,500, 1 − α = 0.95, and
1 − γ = 0.90. Our irst guess is n1 = 11—the solution for the case for which σ is known.
Then, using t(0.975;10) = 2.228 and χ2

(0.90,10) = 15.99 in (8.3), we obtain

n2 =

(
2.228 × 2,500)

1,500

)2
15.99

10
= 22.047.

Rounding up to n2 = 23 and using t(0.975;22) = 2.074 and χ2
(0.90;22) = 30.81 gives

n3 =

(
2.074 × 2,500

1,500

)2
30.81

22
= 16.73.

The next three iterations give, after rounding up, n4 = 19, and n5 = 18, and n6 = 19, allowing
us to terminate the iterations. Thus n = 19 is the smallest integer such that the left-hand side
of (8.3) is greater than the right-hand side. This also agrees with the value obtained from
Table J.17b in Example 8.2.

8.2.5 Using an Upper Prediction Bound from a Previous Sample when
σ is Unknown

If one has an estimate of σ from a previous random sample from the same distribution, one can
obtain an alternative sample size formula by using the upper prediction bound for σ (described
in Section 4.9) instead of the planning value σ�.

In particular, ifσ�

ℓ is a planning value (in this case, replaced by the sample standard deviation)
based on a previous sample with ℓ − 1 degrees of freedom, one needs to solve

n ≥

[
t(1−α/2;n−1)σ�

ℓ

d

]2

F(1−γ ;n−1,ℓ−1)

for the smallest value of n such that this inequality holds. This can be done by using a root-
inding algorithm (or simple trial and error). A simple (large-sample) approximation for the
required sample size is

n ≈ n1F(1−γ ;n1 −1,ℓ−1),

where n1 is obtained from (8.1) or (8.2), using σ�

ℓ for σ�.

8.2.6 A Two-Stage Sampling Method

When an investigation can be conducted in two stages, it is possible to obtain a conidence
interval with exactly the needed half-width d, even if σ is unknown. This is done by using
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the sample standard deviation of the irst stage to compute a conidence interval, and ignoring
the sample standard deviation of the second stage in constructing the conidence interval. The
sample size n1 for the irst stage should be chosen as large as possible, but smaller than
the anticipated total sample size. Speciically, obtain n1 , say, from (8.1) using a planning value
for σ� , which now need not be conservative. The sample size for the second stage of the
investigation is then

n2 =

[
t(1−α/2;n1 −1)s1

d

]2

− n1 ,

where s1 is the sample standard deviation from the irst stage. The resulting 100(1 − α)%
conidence interval for μ is

x̄ ± d,

where x̄ is the mean of the n1 + n2 observations from both stages. If n2 turns out to be negative,
then the data from the irst stage will give an interval with a half-width that is less than d. In
this case the second sample is not needed.

This two-stage sampling procedure has been rightfully subject to criticism because, though
exact, it does not, as previously indicated, use the information from the second stage to estimate
σ. This, however, will not be a serious practical concern if the sample size in the irst stage is
suficiently large (e.g., n1 > 30).

Example 8.4 Use of Two-Stage Sampling to Estimate Mean Alloy Tensile Strength. We
continue with Example 8.1, but now use d = 500. Suppose that an initial sample of 20 units
yielded s1 = 2,500. Then, using t(0.975;19) = 2.093, the investigation would require a total of

n1 + n2 =

(
2.093 × 2,500

500

)2

≈ 110

observations; that is, n2 = 110 − 20 = 90 observations in the second stage.
If an initial sample of size 10, instead of size 20, had been taken, and had again given s1 =

2,500, the total sample size requirements would have been estimated, using t(0.975;9) = 2.262,
to be

n1 + n2 =

(
2.262 × 2,500

500

)2

≈ 128

instead of 110.

8.3 SAMPLE SIZE TO ESTIMATE A NORMAL DISTRIBUTION STANDARD
DEVIATION

8.3.1 Introduction

This section gives easy-to-usemethods for choosing the sample size needed to estimate a normal
distribution standard deviation σ.
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Figure 8.1 Sample size needed to estimate a normal distribution standard deviation for various probability

levels. This igure is based on methodology described by Greenwood and Sandomire (1950).

8.3.2 Computational Method

The exact upper probability bound giving the percent error for estimating σ from a sample of
size n is computed as

100p = 100

⎡
⎣1 −

(
χ2

(α ;n−1)

n − 1

)1/2
⎤

⎦. (8.4)

Solving 8.4 for n gives the sample size needed so that, with a speciied probability 1 − α, σ will
be underestimated by no more than 100p%. One can use a root-inding algorithm (or simple
trial and error) to ind the needed value of n for speciied p and α.

8.3.3 Graphical Method

Figure 8.1 gives solutions of (8.4) for n for 1 − α = 0.70, 0.80, 0.90, 0.95, 0.99, and 0.999
for values of percent error 100p between 0.10 and 100 and n up to 100,000. These curves can
be used in reverse to ind n for a given 100p. In particular, to ind n, enter Figure 8.1 on the
“bound on percent error” axis with needed percent error 100p to the curve with the speciied
conidence level. Then read down from that curve to obtain the needed sample size n.

8.3.4 Tabular Method

Table J.18 gives solutions of (8.4) for n for 1 − α = 0.80, 0.85, 0.90, 0.95, 0.99, and 0.999 for
22 values of percent error (100p) from 0.70 to 100.
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Example 8.5 Sample Size Needed to Estimate the Measurement Error of a Chemical

Assay Procedure. An experiment is to be conducted to estimate σ, the standard deviation of
the measurement error of a chemical assay procedure. From previous experience with similar
procedures, one can assume that the measurement error is normally distributed. The experiment
will be conducted with specimens that are known to contain exactly the same amount of
a chemical and that are destroyed during the assay. The experimenters need to know how
many specimens to prepare so that, with 95% probability, the sample standard deviation s will
underestimate the actual measurement error standard deviation σ by no more than 20%.

To ind the needed sample size, enter Figure 8.1 on the “bound on percent error” axis with
100p% = 20% and read down from the 95% curve, giving n ≈ 36. As a check, using (8.4)
with n − 1 = 35 and χ2

(0.05;35) = 22.46 gives the 95% upper bound on the percent error for
estimating σ as

100

[
1 −

(
22.46

35

)1/2
]

= 19.8%,

or approximately 20%. For another check, the tabular method, entering Table J.18 with
100p% = 20% and 1 − α = 0.95, gives n ≈ 36. Using R as a calculator yields a similar
result:

> 100*(1-sqrt(qchisq(p=0.05,df=36-1)/(36-1)))

[1] 19.88

8.4 SAMPLE SIZE TO ESTIMATE A NORMAL DISTRIBUTION QUANTILE

As described in Section 2.4.2, a one-sided conidence bound on a distribution quantile is
equivalent to a one-sided tolerance bound. Methods for sample size determination for a one-
sided tolerance bound are given in Section 9.1 and will not be repeated here.

8.5 SAMPLE SIZE TO ESTIMATE A BINOMIAL PROPORTION

8.5.1 Introduction

This section shows how to determine the approximate sample size needed to estimate a popu-
lation proportion, with speciied precision. More speciically, we want the resulting conidence
interval to be no larger than π̂ ± d, where d is the conidence interval half-width. To make
this determination, one must provide a “planning value,” to be denoted by π� , for the sample
estimate π̂ of π that will be obtained from the data. A conservative planning value for π� (in
the sense that, if incorrect, it will tend to overestimate the required sample size) is the value
closest to 0.50 that still appears plausible.

8.5.2 Graphical Method

As explained in Section 6.2, Figure 6.1 can be used to obtain conidence intervals or bounds
for a population proportion π. The igures can be used in reverse to determine the required
sample size for estimating π. To do this, one must irst choose a planning value π� . One then
uses Figure 6.1 and sets the observed proportion π̂ = π� on the horizontal axis. The resulting
conidence intervals, for various sample sizes, are read on the (vertical) π axis. Thus, at a glance,



158 SAMPLE SIZE REQUIREMENTS FOR CONFIDENCE INTERVALS

one can readily assess the effect on the conidence interval half-width of using different sample
sizes.

8.5.3 A Simple Computational Procedure

The expression

n = [π� (1 − π� )]
[z(1−α/2)

d

]2

(8.5)

rounded to the next largest integer gives the approximate sample size needed to obtain a
100(1 − α)% conidence interval for π with half-width d. This normal distribution large sample
size approximation is generally satisfactory if both nπ and n(1 − π) exceed 10. Like the
graphical procedure, use of this expression requires a planning value π� . The most conservative
(largest) n is again obtained by choosing π� = 0.50.

Example 8.6 Sample Size Needed to Estimate the Proportion of Incorrectly Assembled

Devices. Some unknown proportion π of a large number of ield-installed devices were assem-
bled incorrectly and need to be repaired. To assess the magnitude of the problem, the manu-
facturer of the devices needs to estimate π, the proportion of incorrectly assembled devices in
the ield. In particular, the manufacturer needs to know how many units to sample at random so
that π̂ will be within±0.08 of π with 90% conidence (i.e., so that the 90% conidence interval
around the estimate π̂ should be no larger than ±0.08). It is possible that π is close to 0.50,
and, therefore, π� = 0.50 will be taken as the planning value for π.

In Figure 6.1, using π� = 0.50, we see that a sample of size 10 gives a 90% conidence
interval of [0.22, 0.78], a sample of size 30 gives a 90% conidence interval of [0.34, 0.66],
a sample size of 100 gives a 90% conidence interval of [0.41, 0.59], and, using interpolation,
a sample size of 200 gives a conidence interval of [0.44, 0.56]. Thus, to estimate π within
±0.08 with 90% conidence requires a sample size somewhat above 100 if π� is taken to be
0.50. After the sample has been taken, one generally uses the resulting sample estimate π̂, in
place of π� in obtaining the needed 90% conidence interval to contain π, and this interval
would have a smaller half-width than 0.08 unless π̂ = 0.50. Note also that if π� is taken either
smaller or larger than 0.50, the required sample size to achieve an interval of the same half-width
would be somewhat smaller.

Using (8.5) with d = 0.08, 1 − α = 0.90 (or 1 − α/2 = 0.95), π� = 0.50, and z(0.95) =
1.645, the required sample size is

n = [0.50(1 − 0.50)]

(
1.645

0.08

)2

≈ 106.

This approximation is reasonable because both nπ� = n(1 − π� ) = 53 appreciably exceed 10.
Suppose, on the other hand, one expects π̂ to be less than 0.20 (or to be greater than 0.80).

Then using the planning value π� = 0.20, the required sample size to obtain a 90% conidence
interval for π with half-width d = 0.08 is only

n = [0.20(1 − 0.20)]

(
1.645

0.08

)2

≈ 68.
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8.6 SAMPLE SIZE TO ESTIMATE A POISSON OCCURRENCE RATE

8.6.1 Introduction

In this section, we will be dealing with observed events, where the number of such events is
assumed to follow a Poisson distribution with parameter λ (constant rate per unit of exposure),
which we wish to estimate. This section shows how to choose the approximate sample size
to estimate a Poisson occurrence rate λ with a speciied precision. That is, we require the
sample to be suficiently large so that the upper or lower conidence bound does not differ
from the sample estimate by more than a prespeciied percentage. It is necessary to provide

a “planning value” λ� for λ̂, the sample estimate of λ. A conservative approach (tending to
result in a larger sample size than actually needed) is to take λ� to be the largest value expected

for λ̂.

8.6.2 Graphical Method

For a speciied conidence level, 100(1 − α)%, Figure 8.2a shows the percentage by which the
one-sided lower conidence bound for a Poisson occurrence rate is less than the sample estimate
as a function of the number of occurrences in the sample. In particular, curves are given for
1 − α = 0.70, 0.80, 0.90, 0.95, 0.99, and 0.999. Similarly, Figure 8.2b shows the percentage by
which the one-sided upper conidence bound for a Poisson occurrence rate exceeds the sample

estimate. In Figure 8.2a, the percent error was computed as 100[1 − (λ
˜
/λ̂)] and for Figure 8.2b,

the percent error was computed as 100[(λ̃/λ̂) − 1].
To use these igures to determine the needed sample size, enter the graph on the vertical

axis at the point corresponding to the needed bound on the percent error in the estimate of the
occurrence rate. Then draw a line horizontally to intersect the line corresponding to the needed
degree of conidence. Now move down from the point of intersection to read x, the “needed”
number of occurrences, from the horizontal axis. Using a planning value λ� for the occurrence
rate λ, the approximate required sample size is n ≈ x/λ� .

Example 8.7 Sample Size to Compute an Upper Conidence Bound on the Flaw Occur-

rence Rate. Flaws on the painted surface of an appliance occur independently of one another
at a constant rate λ per appliance. This implies a Poisson distribution for the number of laws
per constant surface area. A new improved process that is believed to have a law rate λ of not
more than 0.10 laws per appliance has been developed. A study is to be conducted to estimate
this mean law rate precisely enough so that the one-sided upper 95% conidence bound on

λ will exceed the sample estimate λ̂ by not more than 20%. It is needed to determine how
many appliances must be selected at random from the process to meet this criterion. This exam-
ple calls for the use of Figure 8.2b because we wish to construct an upper conidence bound
on λ.

From Figure 8.2b, we note that the one-sided upper 95% conidence bound λ̃ will exceed

λ̂ by about 20% if we observe 82 laws. Using the planning value λ� = 0.10, the study will
require approximately n = x/λ� = 82/0.10 = 820 test units. If this problem had instead
called for a lower 95% conidence bound λ

˜
, Figure 8.2a tells us that λ

˜
would be about 20%

less than λ̂ if we had observed 63 laws, and thus the study would have required approximately
630 appliances. The large sample size required to obtain the desired level of precision in this
example is daunting—but, as previously observed, it is important to have this information before
starting the study so that we can act appropriately.
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8.6.3 A Simple Approximate Computational Procedure

The expression

n = λ�

[z(1−α/2)

d

]2

(8.6)

rounded to the next larger integer gives the approximate sample size needed to obtain a
100(1 − α)% conidence interval with a half-width d for the Poisson occurrence rate. For

a one-sided bound, replace 1 − α/2 with 1 − α. This approximation, based on the fact that λ̂
follows approximately a normal distribution in large samples, is often adequate for practical
purposes when the sample size n is large enough to yield at least 10 occurrences.

Example 8.8 Sample Size to Compute an Upper Conidence Bound on the Flaw Occur-

rence Rate. Continuing with Example 8.7, λ� = 0.10, z(0.95) = 1.645, and d = 0.02 (20% of
λ� ). Thus, to construct the desired upper 95% conidence bound on λ, the study will require

n = 0.10

(
1.645

0.02

)2

≈ 677

appliances. The difference between this result and the previous approximate sample size of
630, even though nλ� = 677 × 0.10 ≈ 68, is due to the lack of symmetry in the sampling

distribution of λ̂ and the fact that Figure 8.2b is based on a different conidence interval procedure
than (8.6).

BIBLIOGRAPHIC NOTES

Much has been written about how to choose a sample size in a statistical study. A considerable
amount of this work focuses on the power of hypothesis tests, but some of it is concerned with
the width of conidence intervals. The many books devoted to this topic include Mace (1964),
Brush (1988), Mathews (2010), Desu and Raghavarao (2012), and Ryan (2013). The books
Odeh and Fox (1975), Odeh et al. (1977), and Odeh and Owen (1980, 1983) provide tables
giving conidence and tolerance intervals, one-sided bounds, and sampling plans for a range of
different statistical applications, and many of these tables and charts can be used to help design
statistical studies (and choose a sample size). In addition, the more general books Natrella
(1963), Beyer (1968), and Dixon and Massey (1969) also contain tables, charts, and igures that
can be used to determine the necessary sample size for various problems.

Adcock (1997) provides a review of methods for determining a sample size and compares
Bayesian and non-Bayesian approaches. Lindley (1997) and Sahu and Smith (2006) also outline
Bayesian methods for determining a sample size. Lenth (2001) discusses some practical matters
and describes a computer package interface for such problems.

Kupper and Hafner (1989) show that even if the planning value σ� were exactly the same as
the actual value σ the chances are (i.e., with a probability between 0.53 and 0.87 for the cases
considered) that in using (8.1) the half-width of the resulting conidence interval will be larger
than the desired value d. Table J.17b was patterned after a similar igure in Kupper and Hafner
(1989). The two-stage sampling procedure in Section 8.2.6 was irst suggested by Stein (1945).

Meeker and Escobar (1998) give a general approach for determining the sample size needed
to estimate a function of parameters (e.g., a distribution quantile) with a given degree of
precision.The approach is based on maximum likelihood estimation theory and illustrated with
(log-)location-scale distributions.

A igure similar to Figure 8.1 was given in Greenwood and Sandomire (1950).



Chapter 9
Sample Size Requirements for
Tolerance Intervals, Tolerance

Bounds, and Related
Demonstration Tests

OBJECTIVES AND OVERVIEW

This chapter shows how to determine sample size requirements for tolerance intervals and for
related demonstration tests concerning the proportion of product that exceeds (or is exceeded
by) a speciied value. This chapter explains sample size determination methods for:

� Normal distribution tolerance intervals and bounds (Section 9.1).

� A one-sided demonstration test based on normally distributed measurements to give a
desired probability of successful demonstration (Section 9.2).

� Minimum sample size for distribution-free two-sided tolerance intervals and one-sided
tolerance bounds (Section 9.3).

� Distribution-free two-sided tolerance intervals and one-sided distribution-free tolerance
bounds with a speciied amount of precision (Section 9.4).

� A one-sided demonstration test based on binomial data to give a desired probability of
successful demonstration (Section 9.5).

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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9.1 SAMPLE SIZE FOR NORMAL DISTRIBUTION TOLERANCE INTERVALS
AND ONE-SIDED TOLERANCE BOUNDS

This section provides simple methods for inding the sample size needed to achieve a speciied
level of precision when the data are to be used to compute a two-sided tolerance interval or
a one-sided tolerance bound to contain at least a speciied proportion of a sampled normal
distribution. As the sample size increases, the computed tolerance interval will approach the
probability interval that actually contains the speciied distribution proportion. Small sample
sizes can, however, result in a tolerance interval that is much wider than this limiting probability
interval.

9.1.1 Criterion for the Precision of a Tolerance Interval

We will use the following criterion for inding the sample size to control the size of a tolerance
interval. Choose the sample size to be large enough such that both the following hold:

1. The probability is 1 − α (large) that at least a proportion β of the distribution will be
included within the tolerance interval.

2. The probability is δ (small) that more than a proportion β∗ of the distribution will be
included, where β and β∗ are speciied proportions and β∗ is greater than or equal to β.

The idea is that, with ixed β∗ > β, and probability

1 − α = Pr(interval will contain at least a proportion β of the distribution),

the probability

δ = Pr(interval will contain at least a proportion β∗ of the distribution)

is a decreasing function of the sample size n. That is, δ, the probability that the interval is so
wide that it will contain a proportion β∗ of the distribution, will decrease to zero as n increases.
This criterion can be used for both two-sided tolerance intervals and one-sided tolerance bounds.
As we will see in subsequent sections in this chapter, when a one-sided tolerance bound (or a
one-sided conidence bound on a quantile) is used as a criterion for a demonstration test, the
probability of successful demonstration will be 1 − δ.

9.1.2 Tabulations for Tolerance Interval/Bound Sample Sizes

Tables J.19 and J.20 give, respectively, the necessary sample sizes for two-sided tolerance
intervals and one-sided tolerance bounds for a normal distribution for β = 0.50, 0.75, 0.90,
0.95, 0.99, 1 − α = 0.80, 0.90, 0.95, 0.99, δ = 0.20, 0.10, 0.05, 0.01, and several values of
β∗ > β, depending on β.

Example 9.1 Sample Size for a Normal Distribution Two-Sided Tolerance Interval for a

Part Dimension. The engineers responsible for a machined part want to establish limits for a
critical dimension so that, for marketing purposes, they can claim, with 95% conidence, that
the interval contains the dimension for a large proportion of the parts. Based on experience with
similar processes, the engineers feel that the dimensions can be adequately modeled by a normal
distribution. The measurements on the dimensions for a random sample of the parts will be used
to compute a two-sided tolerance interval to contain a proportion 0.90 of the distribution of
parts produced from the process with 95% conidence, and this will provide the desired limits.

If the sample size is too small, the tolerance interval providing the desired coverage with the
speciied level of conidence may be so wide that it will appreciably overestimate the scatter
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in the distribution of the dimensions. Thus, in addition to the requirement that the tolerance
interval contain at least a proportion β = 0.90 of the distribution with 95% conidence (i.e.,
1 − α = 0.95), the manufacturer wants to choose the sample size n suficiently large so that
the probability is only δ = 0.10 that the interval will actually contain a proportion β∗ = 0.96
or more of the dimensions of the manufactured parts. From Table J.19, the sample size needed
to accomplish this is n = 91 units. After the sample has been obtained, the desired tolerance
interval is calculated using the methods given in Section 4.6.1.

Example 9.2 Sample Size for a Normal Distribution One-Sided Lower Tolerance Bound

for Component Strength. The designers of a system want a one-sided lower 95% tolerance
bound for the strength of a critical component. Again, the normal distribution model is felt to
adequately describe the distribution of strengths. An experiment is to be conducted to obtain
data to compute a lower tolerance bound that will, with 95% conidence, be exceeded by the
strengths of at least 99% of the components in the sampled product population. As described
in Section 4.6.3, this lower tolerance bound is equivalent to a one-sided lower 95% conidence
bound on the 0.01 quantile of the strength distribution.

If the chosen sample size is too small, the resulting lower tolerance bound for strength will
be unduly conservative. Thus, in addition to the requirement that the lower tolerance bound
be exceeded by at least a proportion β = 0.99 of the components in the population, with 95%
conidence (i.e., 1 − α = 0.95), the engineers want to choose a sample large enough so that
the probability is only δ = 0.01 that the resulting lower tolerance bound will be exceeded by
the strengths of a proportion β∗ = 0.997 or more of the components in the population. From
Table J.20, the necessary sample size isn = 370. After the sample has been obtained the desired
tolerance bound is found using the methods of Section 4.6.3.

9.2 SAMPLE SIZE TO PASS A ONE-SIDED DEMONSTRATION TEST BASED
ON NORMALLY DISTRIBUTED MEASUREMENTS

9.2.1 Introduction

A one-sided tolerance bound (or equivalently a one-sided conidence bound on a quantile) is
often used to conduct a demonstration test. This section shows how to ind the sample size
needed to conduct a test to demonstrate, with 100(1 − α)% conidence, that the p† quantile of a
normal distribution, denoted by xp† , is less than or equal to a speciied value x† (i.e., xp† ≤ x†).

The value x† is often an upper speciication limit that most of the product values (denoted by
x) should not exceed. The demonstration will be successful if the one-sided upper conidence
bound for the quantile is less than x† (i.e., if x̃p† ≤ x†).

This problem is equivalent to inding the sample size needed to demonstrate that p =
Pr(X ≤ x†) is greater than or equal to p† for speciied x† and p†. The demonstration will be
successful if the lower one-sided conidence bound for p is greater than or equal to p† (i.e., if
p
˜
≥ p†). We want the demonstration to be successful with high probability pdem when the actual

probability p is a speciied value that exceeds p†.An expression for computing pdem is derived in
Section I.1.1.

In reliability applications, it is often necessary to demonstrate that xp† ≥ x†, where p† is

typically small, corresponding to a small quantile of the life distribution. In this case, x† is
a lower, rather than an upper, speciication limit (e.g., minimum life). This situation can be
handled by the same methods as those to be described for an upper speciication limit. This is
because the sample size needed to demonstrate 1 − p = Pr(X ≥ x†) ≤ 1 − p† is the same as
that needed to demonstrate p = Pr(X ≤ x†) ≥ p†.
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Example 9.3 Sample Size for a Normal Distribution One-Sided Tolerance Bound to

Demonstrate Compliance with a Noise-Level Standard. A federal standard requires that the
measured noise level of a particular type of machinery not exceed 60 decibels at a distance of
20 meters from the source for at least a proportion 0.95 of the units. A manufacturer of such
machinery needs to test a random sample of the many units in the ield to show compliance. This
requires a demonstration test with x† = 60 and p† = 0.95 (i.e., it is required to demonstrate
that x0.95 = xp† < x† = 60).

The resulting data will be used to ind an upper 90% conidence bound (1 − α = 0.90)
on x0.95 , the 0.95 quantile of the distribution of noise emitted from the population of units
in the ield. The demonstration will be successful with 90% conidence if the upper 90%
conidence bound on the 0.95 quantile of the population (i.e., x̃0.95) does not exceed x† = 60
decibels. Equivalently, the demonstration requires p

˜
≥ p†, where p

˜
is a lower 90% conidence

bound for p = Pr(X ≤ x†), the proportion of units with noise levels less than or equal to x†

decibels. In addition, the manufacturer wishes the sample size to be suficiently large so that
the probability of a successful demonstration is pdem = Pr(p

˜
≥ p†) ≥ 0.95 when the actual

proportion nonconforming is p = 0.98.

9.2.2 Graphical Method

Figures 9.1a–9.1d show pdem , the probability of successfully demonstrating that the proportion
nonconforming in the distribution is greater than p† at a 100(1 − α)% conidence level. This
probability is a function of the actual proportion nonconforming p, the sample sizen, conidence
level 100(1 − α)%, and the probability to be demonstrated p†, assuming a normal distribution.
These charts were developed from theory based on the noncentral t-distribution, described in
Section I.1, and cover all combinations of 1 − α = 0.90 and 0.95, and p† = 0.95 and 0.99.

Example 9.4 Graphical Method to Find the Sample Size Needed to Demonstrate Com-

pliance with a Noise-Level Standard. For Example 9.3, we use Figure 9.1a, designed for
determining the required sample size for demonstrating with 100(1 − α)% = 90% conidence
that p > p† = 0.95. In particular, we enter the horizontal scale at p = 0.98 and move up, and
simultaneously enter the vertical scale at the desired pdem = 0.95 and move to the right, to ind
the point of intersection. We then ind the closest curves and interpolate between them to ind
the needed value of n. In this case, we interpolate between 100 and 150 to get n ≈ 140.

9.2.3 Tabular Method

The tabular method to determine the required sample size for such problems uses Table J.20.
Table J.20 is in terms of the previously discussed equivalent problem of setting a one-sided
conidence bound on a quantile (equivalent to a one-sided tolerance bound) and uses the
equivalent terminology where β = p† corresponds to the probability to be demonstrated, β∗

is the unknown actual probability, and δ = 1 − pdem is the complement of the probability of
successful demonstration. This table provides the required sample size for all combinations of
1 − α = 0.80, 0.90, 0.95, and 0.99,β = 0.50, 0.75, 0.90, 0.95, and 0.99, δ = 1 − pdem = 0.01,
0.05, 0.10, and 0.20, and various values of β∗, depending on β.

Example 9.5 Tabular Method to Find the Sample Size Needed to Demonstrate Compli-

ance with a Noise-Level Standard. For the application described in Example 9.3, we want to
show, with 90% conidence (1 − α = 0.90), that the conforming proportion is p > p† = 0.95,
while having a probability of successful demonstration pdem = 0.95 (δ = 0.05)when the actual
conforming proportion is p = β∗ = 0.98. From Table J.20, we ind the necessary sample size
to be n = 138. The demonstration will be successful if ỹ0.95 = x̄ + 1.826s, the resulting upper



SAMPLE SIZE TO PASS A ONE-SIDED DEMONSTRATION TEST 167

1.000.990.980.970.960.95

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
b
a
b
ili

ty
 o

f 
a
 S

u
c
c
e
s
s
fu

l 
D

e
m

o
n
s
tr

a
ti
o
n
 p

d
e
m

Actual Proportion Conforming p

n = 5
678

1012
15

20
2530

40
50

75
100

150
200300

5001000
2000
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sample sizes (normal distribution).
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Figure 9.1c Probability of successfully demonstrating that p > p† = 0.95 with 95% conidence for various

sample sizes (normal distribution).
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conidence bound for y0.95 , is less than 60. Here ỹ0.95 is calculated as shown in Section 4.4,
using interpolation in Table J.7c to obtain g′

(0.90;0.05,138) = 1.83. Alternatively, using R as a

calculator gives

> qt(p=0.90,df=138-1,ncp=qnorm(0.95)*sqrt(138))/sqrt(138)

[1] 1.826222

9.2.4 Computational Method

The probability of successful demonstration for given n, 1 − α, p†, and p is derived in Sec-
tion I.1.1 to be

pdem = pt[qt(α;n − 1, δp†);n − 1, δp ],

where pt and qt are, respectively, the cdf and quantile functions of the noncentral t-distribution
given in Section C.3.9. Section I.1.3 gives a procedure to ind the smallest sample size n to
provide the desired pdem .

Example 9.6 Computational Method to Find the Sample Size Needed to Demonstrate

Compliance with a Noise-Level Standard. For the application described in Example 9.3, we
want to show, with 90% conidence (1 − α = 0.90), that the conforming proportion is p >
p† = 0.95, while having a probability of successful demonstration pdem = 0.95 (δ = 0.05)
when the actual conforming proportion is p = β∗ = 0.98. One can use the above graphical or
tabular methods or trial and error to get a starting range of possible values for n. Using R as a
calculator and trying values of n between 135 and 140 gives

> ntry <- 135:140

> pt(qt(0.10, ntry-1, -qnorm(0.95)*sqrt(ntry)), ntry-1,

-qnorm(0.98)*sqrt(ntry))

[1] 0.9468584 0.9480746 0.9492642 0.9504277 0.9515657 0.9526787

suggesting that a sample size of n = 138 will meet the requirement.

9.3 MINIMUM SAMPLE SIZE FOR DISTRIBUTION-FREE TWO-SIDED
TOLERANCE INTERVALS AND ONE-SIDED TOLERANCE BOUNDS

9.3.1 Minimum Sample Size for Two-Sided Tolerance Intervals

Section 5.3 describes how to compute two-sided distribution-free tolerance intervals. As indi-
cated there, Table J.12 gives the smallest sample size needed to provide 100(1 − α)% con-
idence that the interval deined by the range of sample observations will contain at least a
proportion β of the sampled distribution for 1 − α = 0.50, 0.75, 0.90, 0.95, 0.98, 0.99, 0.999
and β = 0.50(0.05)0.95(0.01)0.99, 0.995, 0.999.

Example 9.7 MinimumSample Size for aDistribution-FreeTwo-SidedTolerance Interval

for a Part Dimension. Suppose that for the application in Example 9.1, the manufacturer now
wants a tolerance interval that does not require the assumption that the dimensions follow a
normal distribution. We still, however, must assume that we are dealing with a random sample
from the population of interest. Now themanufacturer wants to ind the smallest sample size that
will use the minimum and the maximum observations for a two-sided distribution-free tolerance
interval to contain, with 95% conidence, the critical dimension for at least a proportion 0.90 of
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the units in the sampled population. From Table J.12 we see that a minimum random sample of
size n = 46 units is needed.

One might be surprised that the required sample size for a distribution-free tolerance interval
(n = 46) is smaller than that when normality is assumed (n = 91 from Example 9.1). The
two intervals, however, are not comparable. The normal distribution-based interval is more
demanding because, in addition to specifying that we wished to construct a tolerance interval to
include at least a proportion 0.90 of the population with 95% conidence, we also required the
probability to be no more than δ = 0.10 that the interval will cover a proportion 0.96 or more of
the population values. On the other hand, the sample size determination for the distribution-free
case did not have this second requirement and the distribution-free interval can be expected to
be much wider than the interval that is based on the assumption of normality. In fact, it called
for the smallest possible sample size to include at least a proportion 0.90 of the population
with 95% conidence, irrespective of the interval’s precision (see Section 9.4 for sample size
determination that controls the precision of a distribution-free tolerance interval).

9.3.2 Minimum Sample Size for One-Sided Tolerance Bounds

A distribution-free one-sided tolerance bound is equivalent to a one-sided distribution-free
conidence bound for a quantile of that distribution (see Section 2.4.2 for details). Methods
for constructing such distribution-free bounds are given in Sections 5.2.3, 5.2.4, and 5.3.2. As
indicated in Section 5.3.3, Table J.13 gives the smallest sample size needed to obtain a one-sided
tolerance bound that will, with 100(1 − α)% conidence, be exceeded by (exceed) at least a
proportion β of the distribution. This table is based on the expression n = log(α)/ log(β),
which can be used directly for nontabulated values. Then the lower (upper) bound will be the
smallest (largest) observed value in the sample.

Example 9.8 Minimum Sample Size for a Distribution-Free One-Sided Tolerance Bound

for Bearing Life. A group of reliability engineers is planning a test to estimate the life of a
newly designed engine bearing. They wish to use the test results to compute a lower tolerance
bound that they can claim, with 95% conidence (i.e., 1 − α = 0.95), will be exceeded by the
lifetimes of at least a proportion β = 0.99 of the population of bearings. This tolerance bound
is equivalent to a one-sided lower 95% conidence bound for the 0.01 quantile of the bearing
lifetime distribution.

The engineers want to know the minimum required sample size to obtain the desired lower
boundwith no distributional assumptions. This requires using the irst bearing failure time as the
bound. In this case, if the bearings are placed on test simultaneously, the test can be terminated
after the irst failure. The practical usefulness of the results will depend on the magnitude of
the irst failure. In particular, if the irst failure occurs very early, all we know is how little we
know. From Table J.13, we note that 299 bearings need to be tested. Equivalently, we ind that
n = log(0.05)/ log(0.99) ≈ 299. One then uses the irst bearing failure time as the desired
one-sided lower tolerance bound. Moreover, assuming that all bearings are put on test at the
same time, one could terminate testing after the irst failure. However, it is often good practice
to continue the test to get added results.

9.4 SAMPLE SIZE FOR CONTROLLING THE PRECISION OF TWO-SIDED
DISTRIBUTION-FREE TOLERANCE INTERVALS AND ONE-SIDED
DISTRIBUTION-FREE TOLERANCE BOUNDS

Distribution-free tolerance intervals based on the smallest possible sample size, as described in
the preceding section, are often too wide for the intended application. Thus, in Example 9.1,
a 95% tolerance interval to contain at least a proportion β = 0.90 of the distribution, based
on the smallest possible sample size (n = 46), results in a distribution-free interval that is so
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wide that the probability is 0.554 (computed using (5.9)) that the tolerance interval will, in fact,
contain more than a proportion 0.96 of the distribution.

Table J.21 is similar to Tables J.19 and J.20 for the normal distribution tolerance intervals
and bounds. It provides the sample size needed to control the precision of distribution-free two-
sided tolerance intervals and one-sided tolerance bounds, using the same criterion described in
Section 9.1.1. For the distribution-free case, the criterion results in the same sample size for
both two-sided tolerance intervals and one-sided tolerance bounds. This is because the level of
conidence for the distribution-free tolerance intervals and bounds depends on the total number
of observations that are removed from the end(s) of the ordered sample values to make the
interval and not the end(s) from which they are removed.

Example 9.9 Sample Size for a Distribution-Free Two-Sided Tolerance Interval for a Part

Dimension. Consider the application in Examples 9.1 and 9.7. Suppose that the distribution-
free tolerance interval to contain a proportion β = 0.90 of the population with 95% conidence
(i.e., 1 − α = 0.95) should, in addition, be suficiently narrow so that the probability is only
δ = 0.10 that the interval will contain more than a proportion β∗ = 0.96 of the population.
From Table J.21, the necessary sample size is n = 154. Section 5.3.1 shows how to obtain
the interval. In particular, we note that increasing the sample size from n = 46 (Example 9.7)
to n = 154 (i.e., a 235% increase) reduces the probability that the distribution-free tolerance
interval (formed by the range from the smallest to the largest observed value) will contain more
than a proportion 0.96 of the population from δ = 0.554 to δ = 0.091 (computed exactly using
(5.9)). We also note that the sample size of n = 154 is about 70% larger than the sample of
n = 91 which was required to achieve the same coverage probabilities under the assumption
that the measured dimension is normally distributed (see Example 9.1).

Example 9.10 Sample Size for a Distribution-Free One-Sided Tolerance Bound for Bear-

ing Life. Continuing from Example 9.8, suppose that, in addition to requiring that the tolerance
bound be exceeded by the lifetimes of at least a proportion β = 0.99 of the population of
bearings with 95% conidence (i.e., a lower 95% conidence bound on the 0.01 quantile of the
bearing lifetime distribution so 1 − α = 0.95), we now require that the sample size also should
be large enough so that the probability is only δ = 0.10 that the bound is exceeded by more
than a proportion β∗ = 0.997 of the population. From Table J.21, we note that the required
sample size is n = 1,050. Section 5.2.4 shows how to obtain the resulting interval. Moreover,
using (5.9), we ind that increasing the sample size from n = 299 (Example 9.8) to n = 1,050
reduces the probability that the bound will be exceeded by a proportion β∗ = 0.997 of the
population from δ = 0.593 to δ = 0.0995.

Example 9.11 Sample Size for a Distribution-Free One-Sided Lower Tolerance Bound

for Component Strength. For Example 9.2—which assumed a normal distribution—we note
that a sample size of n = 370 was required to obtain a tolerance interval with the desired
probabilities. If no distributional assumption is made, we enter Table J.21 instead, with β =
0.99, 1 − α = 0.95, δ = 0.01, and β∗ = 0.997, and we ind that the required sample size
is n = 1,941. The substantial increase in the required sample is the price paid for dropping
the normality assumption and is due to the high degree of precision required in the tail of the
distribution (which, unfortunately, is the part of the distribution where the normality assumption
is most likely to be in doubt).

9.5 SAMPLE SIZE TO DEMONSTRATE THAT A BINOMIAL PROPORTION
EXCEEDS (IS EXCEEDED BY) A SPECIFIED VALUE

This section shows how to ind the sample size needed to demonstrate, with a speciied con-
idence 100(1 − α)%, that the population proportion conforming (or nonconforming) to a
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speciied requirement, denoted by π, is greater than or equal to (less than or equal to) a speciied
value, denoted by π†. Assuming that conforming units occur independently of each other and
with a constant probability implies that the binomial distribution is an appropriate model for the
number of conforming (nonconforming) units in a random sample of units. The demonstration
requires that a one-sided lower (upper) conidence bound for π be greater than or equal to
(less than or equal to) π†. We want to choose the sample size so that there is a speciied high
probability pdem of a successful demonstration when π ≥ π†. Note that demonstrating that
1 − π ≤ 1 − π† is equivalent to demonstrating that π ≥ π†. Thus the methods in this section
can be used for both the conformance and the nonconformance problems. Expressions for pdem

are derived in Sections I.2.1 and I.2.2.
In amanner similar to the normal distribution demonstration tests described in Section 9.2, the

demonstration test described in the previous paragraph is basically equivalent to a demonstration
test based on a distribution-free one-sided tolerance bound (or a distribution-free one-sided
conidence interval on a quantile). Therefore, Table J.21 can be used to ind the needed sample
size for both problems.

Example 9.12 Distribution-Free Demonstration Test for Integrated Circuit Confor-

mance. A new electronic integrated circuit chip must pass a battery of diagnostic tests to
conform to speciications. Suppose that the producer of the chips must demonstrate, with 90%
conidence, that at least a proportion 0.99 of the manufactured units conform to speciications
(i.e., show that π ≥ π† = 0.99). This is done by obtaining π

˜
, a lower 90% conidence bound

for π, based upon the results of a random sample of chips (using methods in Section 6.2). The
demonstration will be successful if π

˜
≥ π†. Assuming that a proportion 0.999 of the units in

the sampled population are actually in conformance, how large does the sample size n have
to be so that the probability of passing the demonstration is 0.95? In our notation, π† = 0.99,
1 − α = 0.90, and we want the probability of a successful demonstration to be pdem = 0.95
when π = 0.999.

9.5.1 Graphical Method

Figures 9.2a–9.2d show pdem , the probability of a successful demonstration that π ≥ π† at the
100(1 − α)% conidence level as a function of the actual proportion nonconforming π, and the
sample size n for all combinations of 1 − α = 0.90 and 0.95, and π† = 0.95 and 0.99. These
can be used to determine n for speciied values of π†, π, pdem , and 1 − α. The igure also
shows c, the maximum number of nonconforming units in the resulting random sample that are
allowable for the demonstration to be successful.

Note that each line corresponds to the discrete maximum number of nonconforming units in
the sample. When entering the igure, one generally will not ind a line at exactly the desired
point. Rather than interpolating, one will generally go to the next higher line, in order to be
conservative.

Example 9.13 GraphicalMethod to Find the Sample Size for a Distribution-Free Demon-

stration Test for Integrated Circuit Conformance. For the application in Example 9.12, we
use Figure 9.2b which was designed speciically for demonstrating with 100(1 − α)% = 90%
conidence that π ≥ π† = 0.99. Enter the horizontal scale at the value π = 0.999 and move
up from that point. Simultaneously enter the vertical scale at pdem = 0.95 and move to the
right. After inding the point of intersection, read the values n = 531 and c = 2 from the line
immediately above this point. Thus, the required sample size is n = 531, and the demonstration
will be successful if there are c = 2 or fewer nonconforming units in the sample.
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Figure 9.2c Probability of successfully demonstrating that π > π† = 0.95 with 95% conidence for various

sample sizes (binomial distribution).
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9.5.2 Tabular Method

The tabular method to determine the required sample size for such problems uses Table J.21,
as illustrated in the following example.

Example 9.14 Tabular Method to Find the Sample Size for a Distribution-Free Demon-

stration Test for Integrated Circuit Conformance. For the application in Example 9.12,
enter Table J.21 with 1 − α = 0.90, β = π† = 0.99, β∗ = π = 0.999, and δ = 1 − pdem =
1 − 0.95 = 0.05, and read the sample size to be n = 531.

9.5.3 Computational Method

The probability of successful demonstration that π ≥ π† in a binomial-distribution-based
demonstration test for given n, 1 − α, π†, and π is derived in Sections I.2.1 and I.2.2 to be

pdem = pbinom(c;n, 1 − π),

where the demonstration is successful if the number of nonconforming units is less than or
equal to

c = n − qbinom(1 − α;n, π†) − 1.

Section I.2.3 gives a procedure to ind the smallest sample size n to provide the desired pdem .

Example 9.15 Computational Method to Find the Sample Size for a Distribution-Free

Demonstration Test for Integrated Circuit Conformance. For the application in Exam-
ple 9.12, it is desired to demonstrate with 90% conidence (so (1 − α) = 0.90) that the propor-
tion of conforming integrated circuits is at least π† = 0.99. Moreover, there is a requirement
that the probability of successful demonstration pdem be at least 0.95 when the true conformance
probability is π = 0.999. One can use the above graphical or tabular methods or trial and error
to get a starting range of possible values for n. Using R as a calculator and trying values of n
between 528 and 535 gives

> ntry <- 528:533

> pbinom(ntry-qbinom(1-0.10, ntry, 0.99)-1, ntry, 1-0.999)

[1] 0.9012626 0.9009509 0.9006390 0.9832133 0.9831304 0.9830473

>

> 531-qbinom(1-0.10, 531, 0.99)-1

[1] 2

indicating that the needed sample size is n = 531 and that the demonstration will be successful
if the number of nonconforming integrated circuits is fewer than c = 2.

BIBLIOGRAPHIC NOTES

Faulkenberry and Weeks (1968) suggested the criterion for inding the sample size to control
the size of a tolerance interval given in Section 9.1.1. Tables like Table J.19 and J.20 were irst
presented by Faulkenberry and Daly (1970). Wilks (1941) suggested an alternative criterion
based on the “stability” of the repeated-sampling probability within a tolerance interval. Jı́lek
(1982) suggests some other criteria.

McKane et al. (2005) provide methods for computing the probability of successful demon-
stration for any (log-)location-scale distribution, allowing for censoring that often arises in life
tests.



Chapter 10
Sample Size Requirements for

Prediction Intervals

OBJECTIVES AND OVERVIEW

This chapter provides guidelines for choosing the sample size required to obtain a prediction
interval to contain a future single observation, a speciied number of future observations, or some
other quantity to be calculated from a future sample from a previously sampled distribution.
The topics discussed in this chapter are:

� The factors that determine the width of a prediction interval (Section 10.1).

� Sample size determination for a normal distribution prediction interval (Section 10.2).

� Sample size determination for a distribution-free prediction interval for at least k of m
future observations (Section 10.3).

10.1 PREDICTION INTERVAL WIDTH: THE BASIC IDEA

There are two sources of imprecision in statistical prediction: First, there is the random variation
in the future sample. Second, because the given data are limited, there is uncertainty with respect
to the characteristics (e.g., parameters) of the previously sampled distribution. Say, for example,
that the results of an initial sample of size n from a normal distribution with unknown mean
μ and unknown standard deviation σ are to be used to predict the value of a single future
randomly selected observation from the same distribution. The sample mean X̄ of the initial
sample will be used to predict the future observation. First, X̄ = μ + ε1 , where ε1 , the random
variation associated with the mean of the given sample, is itself normally distributed with mean
0 and variance σ2/n. The future observation to be predicted is Y = µ + ε2 , where ε2 is the
random variation associated with the future observation, and is normally distributed with mean
0 and variance σ2 , independently of ε1 . Thus, the prediction error is Y − X̄ = ε2 − ε1 , and

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/meeker/intervals

177

www.wiley.com/go/meeker/intervals


178 SAMPLE SIZE REQUIREMENTS FOR PREDICTION INTERVALS

has variance σ2 + σ2/n. The width of a normal-theory prediction interval to contain Y will
be proportional to the square root of the estimate of this quantity (see Section 4.7). Increasing
the size of the initial sample will reduce the uncertainty associated with the sample mean X̄
(i.e., σ2/n), but it will reduce only the sampling error in the estimate of the variation (σ2)
associated with the future sample. Thus, an increase in the size of the initial sample beyond the
point where the inherent variation in the future sample tends to dominate will not materially
reduce the width of the prediction interval.

10.2 SAMPLE SIZE FOR A NORMAL DISTRIBUTION PREDICTION INTERVAL

10.2.1 Introduction

This section deals with selecting the size of the initial sample that will be used to construct a
prediction interval to contain the mean of a future sample of sizem from the previously sampled
normal distribution. Figures for the frequently encountered special case where the future sample
size is m = 1, and also for m = 10, are provided, followed by a numerical example. Finally, it
is shown how these ideas can be applied to assessing sample size requirements for some other
prediction intervals.

Unlike a conidence interval to contain a distribution parameter, which converges to a point
(generally the actual parameter value) as the sample size increases, a prediction interval con-
verges to an interval. This limiting interval is, as previously indicated, the probability interval
(introduced in Section 2.3.6) that one would obtain from a past sample of very large size (i.e.,
essentially from knowledge of the normal distribution parameters μ and σ). It is thus not possi-
ble to obtain a prediction interval consistently narrower than this limiting interval, irrespective
of how large an initial sample is taken. Thus, we suggest that the criterion for assessing the
effect of sample size on prediction interval width be expressed in terms of this limiting interval.
More speciically, because the width of the calculated prediction interval is an observed value
of a random variable, we propose that one decide on the initial sample size based on either of
the following two relative widths:

� The expectation of the ratio between the prediction interval width and the width of the
limiting interval or

� The ratio of an appropriate upper prediction bound on the prediction interval width,
relative to the width of the limiting interval.

10.2.2 Relative Width of the Prediction Interval

The ratio of the width of the two-sided 100(1 − α)% prediction interval for the mean of a
future sample of size m from an initial sample of size n, given by (4.7). to that of the limiting
(or probability) interval assuming an ininite initial sample size (i.e., µ ± z(1−α/2)σ/

√
m) is

given by

W =

[
t(1−α/2;n−1)Sn

z(1−α/2)σ

](
1 +

m

n

)1/2

, (10.1)

where t(1−α/2;r) is the 1 − α/2 quantile of the Student’s t-distribution with r degrees of
freedom.

The relative width W involves the random variable Sn—the estimated standard deviation
of the initial sample—and, therefore, is itself a random variable. The expected value of W is
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obtained by substituting the expected value of Sn into (10.1) to obtain

E(W ) =

[
t(1−α/2;n−1)

z(1−α/2)

](
2

n − 1

)1/2

⎡
⎢⎢⎣

Γ
(n

2

)

Γ

(
n − 1

2

)

⎤
⎥⎥⎦

(
1 +

m

n

)1/2

, (10.2)

where Γ(·) is the gamma function (deined in Appendix A). We propose E(W ), the expected
value of the relative width of the prediction interval to the limiting interval, as one criterion for
selecting the initial sample size n.

One can also obtain a one-sided upper bound on the ratio of the prediction interval width to
the limiting interval width. In particular, a one-sided upper 100γ% prediction bound on W is
obtained by substituting an upper 100γ% prediction bound for Sn/σ into (10.1), as described
in Section 4.9. Thus

W̃U =

[
t(1−α/2;n−1)

z(1−α/2)

](
χ2

(γ ;n−1)

n − 1

)1/2(
1 +

m

n

)1/2

, (10.3)

where χ2
(γ ;r) is the γ quantile of the chi-square distribution with r degrees of freedom. The

interpretation of W̃U is that, in repeated constructions of a 100(1 − α)% prediction interval for
ȳm using (10.1), from independent samples of size n, the relative width of the interval W will

exceed this bound only 100(1 − γ)% of the time. We propose W̃U as an alternative criterion
for choosing the initial sample size n.

10.2.3 Figures for Two-Sided Prediction Intervals

Figure 10.1 gives the expected relative width of a two-sided prediction interval for a single future
observation (i.e., m = 1) from a normal distribution, as a function of the initial sample size
for the conidence levels 1 − α = 0.5, 0.8, 0.9, 0.95, and 0.99 associated with the prediction
interval. Figure 10.2 gives upper 95% prediction bounds on the relative widths for the same
values of 1 − α. Figures 10.3 and 10.4 provide information similar to that in Figures 10.1
and 10.2 for two-sided prediction intervals to contain the mean of m = 10 future observations.
These igures were calculated from (10.2) and (10.3), respectively. They can be used to assess
the effect of the initial sample size on (1) the expected relative width and (2) the upper prediction
bound for the relative width of prediction intervals. They can be used in reverse to determine
the required size of the initial sample.

Example 10.1 Sample Size for a Prediction Interval to Contain the Thrust-Delivery Time

for a Future Engine. A rocket engine is to be used in a critical, self-destructive operation. An
experiment is being planned on a random sample of engines to determine how long they can
deliver a certain amount of thrust for a speciied amount of fuel. The delivery time is assumed
to follow a normal distribution with unknown mean and standard deviation. It is desired to
determine the effect of initial sample size on a two-sided 90% prediction interval to contain the
thrust-delivery time for a subsequently randomly selected single future engine, using as criteria
(a) the expected relative width and (b) the upper 95% prediction bound on the relative width of
the two-sided prediction interval.

� From Figure 10.1, to obtain, for a single future observation, a two-sided 90% prediction
interval whose expected width is 20% (i.e., expected relative width 1.2) larger than that
of the smallest achievable interval would require an initial sample size close to n = 7.
An exact computation using (10.2) gives E(W ) = 1.21 (i.e., 21% larger) for n = 7
and E(W ) = 1.18 (i.e., 18% larger) for n = 8. Note, from examining the curves in
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Figure 10.1 Prediction interval expected width relative to the limiting interval for m = 1 future observation.

A similar igure irst appeared in Meeker and Hahn (1982). Adapted with permission of the American Society

for Quality.

Figure 10.1, that precision improves only slightly beyond n = 20. This is because beyond
this point, the major part of the variability is not in the uncertainty in the initial sample
but in that for the single future observation.

� From Figure 10.2, to obtain, for a single future observation, a two-sided 90% prediction
interval whose width we can expect with 95% conidence to be no more than twice as
wide as the smallest achievable interval width would require an initial sample size of

n = 6. An exact computation using (10.3) gives W̃U = 1.97 for n = 6.
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Figure 10.2 Upper 95% prediction bound on prediction interval width relative to the limiting interval for

m = 1 future observation. A similar igure irst appeared inMeeker and Hahn (1982). Adapted with permission
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Figure 10.3 Prediction interval expected width relative to the limiting interval for the mean of m = 10
future observations. A similar igure irst appeared in Meeker and Hahn (1982). Adapted with permission of

the American Society for Quality.

Example 10.1 dealt with sample size determination for a prediction interval for a single
future observation (m = 1)—the case most frequently encountered in practice. The results also
apply, however, for sample size determination for a prediction interval for the mean of m > 1
future observations. As previously indicated, Figure 10.3 and 10.4 can be used for sample size
determination for a prediction interval for the mean of m = 10 future observations. One can
use (10.2) and (10.3) to construct similar curves for other values of m—as well as for other
situations not covered in the tabulations, such as other values of 1 − α—or to use directly in a
particular application.
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10.2.4 One-Sided Prediction Bounds for a Future Sample Mean

The procedure for evaluating the initial sample size for a one-sided normal distribution prediction
bound is similar to that for a two-sided prediction interval. In this case, however, relative width
deals with that part of the interval (below or above the mean) of interest, and one uses t(1−α ;n−1)

and z(1−α) in place of t(1−α/2;n−1) and z(1−α/2) in (10.2) and (10.3). As a result, in Figures 10.1
and 10.2 the conidence levels 0.5, 0.8, 0.9, 0.95, and 0.99 are replaced by conidence levels of
0.75, 0.90, 0.95, 0.975, and 0.995, respectively.

10.2.5 Other Prediction Intervals

The concepts presented in the previous sections can be readily applied to determine the initial
sample size for other types of prediction intervals. Some speciic cases are discussed below.

Simultaneous prediction intervals to contain all of m future observations

Using results from Section 4.8.1, the limiting width of a simultaneous two-sided prediction
interval to contain all m future observations from a normal distribution, as the initial sample
size n becomes large (i.e., known µ and σ), is

µ ± z(δ)σ,

where δ = (1 − α/2)1/m . Thus, the ratio of the prediction interval width to the limiting interval
width is

r(1−α ;m,m,n)Sn

z(δ)σ
,

where r(1−α ;m,m,n) is the conservative approximate factor deined in (4.8) for obtaining a
simultaneous two-sided prediction interval to contain all of m future observations from a
normal distribution. As before, the expected relative width and upper prediction bound on the
relative width can be obtained, respectively, by replacing Sn/σ by its expected value and by
its appropriate upper prediction bound. The resulting expressions can then be used to assess
the effect of the sample size on the relative width of the desired two-sided prediction interval,
and to guide sample size determination (iteratively). A one-sided prediction bound is handled
similarly, but now one uses δ = (1 − α)1/m .

Prediction interval to contain the standard deviation of a future sample

Using results fromSection 4.9, the limiting two-sided probability interval to contain the standard
deviation of a future sample from a normal distribution as the initial sample size n becomes
large (i.e., resulting in known σ) is

⎡
⎣σ

(
χ2

(α/2;m−1)

m − 1

)1/2

, σ

(
χ2

(1−α/2;m−1)

m − 1

)1/2
⎤
⎦.

Thus, the ratio of the width of the prediction interval to its limiting width is

Sn [(F(1−α/2;m−1,n−1))1/2 − (F(α/2;m−1,n−1))1/2 ]

σ[(χ2
(1−α/2;m−1))

1/2 − (χ2
(α/2;m−1))

1/2 ]/(m − 1)1/2
,
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where F(γ ;r1 ,r2 ) is the γ quantile of the F -distribution with r1 numerator and r2 denominator
degrees of freedom. Expressions for the expected relative width and for an upper prediction
bound on this width can be obtained by replacing Sn/σ by its expectation and by its upper
prediction bound, respectively, as above. These results can then be used for sample size deter-
mination.

10.3 SAMPLE SIZE FOR DISTRIBUTION-FREE PREDICTION INTERVALS FOR
AT LEAST k OF m FUTURE OBSERVATIONS

10.3.1 Tabular Method for Two-Sided Prediction Intervals

As indicated in Chapter 5, Table J.15 gives the sample size n so that a two-sided prediction
interval, that has as its endpoints the largest and the smallest observations of this initial sample,
will enclose all m observations in a future sample of size m with 100(1 − α)% conidence,
for 1 − α = 0.50, 0.75, 0.90, 0.95, 0.98, 0.99, 0.999 and m = 1(1)25(5)50(10)100. These
tables can be used directly to help choose the size of an initial sample that is to be used to set a
prediction interval to contain all, or almost all, observations in a future sample from the same
distribution.

These distribution-free sample size criteria are inherently different from those discussed in
the preceding two sections, dealing with normal distribution prediction intervals, in that they
provide information about theminimum size sample that is needed to construct any such interval
with the desired level of conidence. As noted in Chapter 5, if the initial sample is too small it is
not possible to construct a distribution-free interval at the desired conidence level. Moreover,
because the interval uses the endpoints of the initial sample, it may be unsatisfactorily large. In
contrast, in our earlier discussion of normal distribution prediction intervals, we were concerned
with taking a suficiently large sample to satisfy speciied requirements on precision relative to
the ideal situation of having so large a sample that the distribution parameters are essentially
known.

Example 10.2 Sample Size for aPrediction Interval toContain theConcentrationAmount

for Five Future Batches. Based on the measured values of the sample of n = 100 units given
in Table 5.1, the manufacturer wants to ind a distribution-free prediction interval to contain all
of the measured values of a future sample of m = 5 units from the same distribution, without
making any assumptions about the form of the distribution. From Table J.15, we note form = 5
that, even if one uses the extreme observations of the past sample, a minimum sample of size 193
would be required to obtain a 95% prediction interval. Thus, the past sample of size 100 would
be inadequate. However, Table J.15 indicates that a 90% prediction interval can be obtained. In
that case an initial sample of 93 observations would sufice.

10.3.2 Tabular Method for One-Sided Prediction Bounds

As indicated in Section 5.5.2, Tables J.16a–J.16c give the sample sizen so that a one-sided lower
(upper) prediction bound deined by the smallest (largest) observation of this initial sample will
be exceeded by (will exceed)

� all m,

� at least m − 1, and

� at least m − 2

observations in a future sample of size m with 100(1 − α)% conidence, for selected values of
1 − α and m. These tables can be used directly to help choose the size of an initial sample for
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setting a one-sided upper (lower) distribution-free prediction bound to exceed (to be exceeded
by) all, or almost all, observations in a future sample from the same distribution.

Example 10.3 Sample Size for a Lower Prediction Bound for Future Battery Lifetimes.A
satellite will contain 12 rechargeable batteries of which 10 must survive for a time that is to be
determined. The manufacturer needs a lower prediction bound that will, with 99% conidence,
be exceeded by at least 10 of 12 failure times for the batteries that will be installed in a future
single satellite. Because the batteries have at least two causes of failure and little is known
about the life distribution, a distribution-free bound is to be used. Also, the batteries are very
expensive, thus, only a limited number can be procured for the life test. The time of the irst
failure will be used for the lower prediction bound. The manufacturer needs to know how many
randomly selected batteries to test to be 99% conident that at least 10 of the batteries in the
future shipment of 12 will not fail prior to the time of the irst failure in the initial sample.
From Table J.16c, we obtain n = 40; thus, the irst failure in a sample of n = 40 batteries will
provide the desired prediction bound. We note that, in this example, testing can be terminated
after the irst failure. However, the results may be of limited value if the irst failure occurs too
early—other than telling us how little we know.

BIBLIOGRAPHIC NOTES

The criteria used in this chapter for choosing the sample size needed for a prediction interval
when sampling from a normal distribution were initially given in Meeker and Hahn (1982).
Straightforward extensions include determining sample size requirements for constructing:

� A prediction interval to contain the mean of a future sample from an exponential distri-
bution (Hahn, 1975).

� A prediction interval to contain the difference between the means of two future sam-
ples (Hahn, 1977).

� A prediction interval to contain the ratio of two future sample standard deviations for
a normal distribution, or the ratio of two future sample means from an exponential
distribution (Meeker and Hahn, 1980).



Chapter 11
Basic Case Studies

OBJECTIVES AND OVERVIEW

This chapter presents a series of case studies that illustrate the methods in the irst 10 chapters
of this book. They are a representative sample of frequently occurring problems that we have
encountered recently. We present these problems as they were presented to us, rather than in a
“clean” textbook style. Then we describe our proposed solution. We stress the basic underlying
assumptions and the practical aspects of using and interpreting statistical intervals.

We illustrate some of the most important topics covered in the earlier chapters. Thus, there
is some repetition of techniques, but each example has some new feature. In some of the
case studies we compare different approaches for answering a question. In one example we
use methods from Section 4.5 to estimate the probability that an observation will exceed a
threshold, assuming that the data came from a normal distribution. Then, without making the
normal distribution assumption, we show how to estimate the same probability by using as
data only the number of observations that exceed the threshold (a nonparametric method using
binomial distribution methods from Section 6.2).

The following applications are discussed in this chapter:

� Demonstration that the operating temperature of most manufactured devices will not
exceed a speciied value (Section 11.1).

� Forecasting future demand for spare parts (Section 11.2).

� Estimating the probability of passing an environmental emissions test (Section 11.3).

� Planning a demonstration test to verify that a radar system has a satisfactory probability
of detection (Section 11.4).

� Estimating the probability of exceeding a regulatory limit (Section 11.5).

� Estimating the reliability of a circuit board (Section 11.6).
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� Using sample results to estimate the probability that a demonstration test will be successful
(Section 11.7).

� Estimating the proportion within speciications for a two-variable problem (Section 11.8).

� Determining the minimum sample size for a demonstration test (Section 11.9).

Appendix A outlines and deines notation used in this book. Bringing together parametric
and nonparametric methods for some of the examples in this chapter exposes a minor, but
unavoidable, conlict in our choice of notation. We consistently use p to denote a particular
quantile of a distribution or the tail probability of a distribution. In Chapter 6 (and in some
other chapters) we use π to denote the Bernoulli or binomial distribution probability of a single
randomly selected unit being nonconforming (or having some other characteristic of interest)
and p to denote a particular quantile of a binomial distribution or the tail probability of a binomial
distribution. In some of the applications in this chapter we use notation such as pGT to denote
the probability of a particular event (e.g., the probability of being greater than a speciication
limit) that could be described by either a normal (or some other parametric) distribution or a
binomial distribution.

Relatedly, as described in the introduction to Chapter 5, nonparametric methods for con-
structing statistical intervals do not require speciication of a particular parametric distribution.
Additionally, some nonparametric statistical interval methods (e.g., the ones presented in Chap-
ter 5) are distribution-free because their coverage probabilities do not depend on the form of
the actual underlying distribution. Distribution-free procedures are nonparametric, but not all
nonparametric methods are distribution-free.When we use the methods in Chapter 5 to compute
a conidence interval for a quantile, the method is nonparametric and distribution-free. When
we use methods in Chapter 6 to estimate a tail probability of a distribution, the method is
nonparametric, but not distribution-free. In general, if the endpoints of a statistical interval are
deined by order statistics (as in Chapter 5), the method is distribution-free. Otherwise (e.g.,
conidence intervals for tail probabilities based on a binomial distribution), the method is not
distribution-free.

11.1 DEMONSTRATION THAT THE OPERATING TEMPERATURE OF MOST
MANUFACTURED DEVICES WILL NOT EXCEED A SPECIFIED VALUE

11.1.1 Problem Statement

The designers of a solid-state electronic device wanted to “demonstrate that the surface temper-
ature of most devices will not exceed 180◦C in operation,” based on measurements on a sample
of such devices.

11.1.2 Some Basic Assumptions

To make the demonstration, it is necessary that the selected devices be a random sample
from the production process. This assumption deserves careful scrutiny. If, for example, early
prototype devices are used in the demonstration test, inferences from the test might not apply to
subsequent production. In this example, special care was taken to assure that the test units were
randomly selected from those made in a pilot production process that closely simulated actual
manufacturing conditions. For example, raw materials were obtained from the same sources
as those used in production. Also, the operating conditions and performance measurements
for the demonstration test must be the same as those to be encountered in operation. Thus,
additional efforts were made to have the test condition simulate as closely as possible the actual
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ield environment, and to use comparable measuring instruments. We also assume that the
production process is stable, now and in the future. One should keep in mind that, as indicated
in Chapter 1, if these assumptions are not met, the resulting statistical intervals (in this analytic
study) express only one part of the total uncertainty and are likely to be too narrow.

11.1.3 Statistical Problem

After discussion with the device designers, the following more statistically precise problem
statement was agreed upon. It is desired to show, with 90% conidence, that pC , the proportion
of units produced by the process with surface temperatures less than or equal to L = 180◦C, is
at least p†

C = 0.99 (or some other high proportion); that is, to show with high conidence that

pC = Pr(Temp ≤ 180) ≥ 0.99.
There are two general methods of making such a demonstration:

1. Make no assumption about the form of the statistical distribution of the surface tempera-
tures. In this case, one dichotomizes the data by classifying each sampled device as either
conforming (temperature less than or equal to 180◦C) or nonconforming (temperature
greater than 180◦C). Then one can use the procedures for proportions (i.e., those based
on the binomial distribution) given in Chapter 6 to compute a one-sided lower conidence
bound on pC .

2. Assume that the operating temperatures (or some transformation of the operating temper-
atures) have a particular probability distribution (such as the normal distribution) and use
the temperature readings to ind a one-sided lower conidence bound for pC . Thus, for a
normal distribution, one would use the procedures given in Section 4.5.

In either case, if the one-sided lower 90% conidence bound for pC exceeds 0.99, the needed
demonstration is achieved.

The second method provides a more eficient use of the data—especially if all, or the great
majority, of the values are well within bounds—if one can assume an appropriate distribution
for the operating temperatures. Of course, when one can only observe that a unit is conforming
or nonconforming, the second approach is not applicable. This occurs, for example, with a
detonator which, when tested, either works or does not. We will use both approaches and
compare the indings.

11.1.4 Results from a Preliminary Experiment

The available data were limited to a random sample of only six devices from the pilot production
process. These yielded the following surface temperature readings (in ◦C):

170.5, 172.5, 169.5, 174.0, 176.0, 168.0.

A normal probability plot of these data is shown in Figure 11.1. There is no obvious deviation
from normality (i.e., the points in the plot tend to scatter around a straight line). The sample,
however, is clearly too small to draw any deinitive conclusions about the underlying distribution.
We observe that none of the six observations was above the 180◦C threshold. From the data,
we calculate the sample mean and standard deviation to be

x̄ =
170.5 + 172.5 + · · · + 168.0

6
= 171.75
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Figure 11.1 Normal probability plot of device surface temperature readings.

and

s =

[
(170.5 − 171.75)2 + · · · + (168.0 − 171.75)2

6 − 1

]1/2

= 2.98.

We will use a nonparametric method based on the binomial distribution as well as a method
that assumes an underlying normal distribution to obtain one-sided lower conidence bounds
for pC , the proportion of conforming devices (i.e., those with operating temperatures less than
180◦C) for the sampled process.

11.1.5 Nonparametric One-Sided Lower Confidence Bound on the Proportion
Conforming

Because there were x = 6 conforming devices in a sample of size n = 6, the point estimate
of the proportion conforming is p̂C = x/n = 6/6 = 1.0. Using (6.1) from Section 6.2, a one-
sided lower 100(1 − α)% conidence bound for pC , based on the binomial distribution, is
computed as

p
˜

C = qbeta(α;x, n − x + 1)

where qbeta(p; a, b) is the p quantile of the beta distribution with shape parameters a and b
(see Section C.3.3). With n = x = 6, a one-sided lower 90% conidence bound for pC is

p
˜

C = qbeta(0.10; 6, 1) = 0.68.

This value can also be obtained from (6.2). Thus, all we can say with 90% conidence, using
a nonparametric approach, is that at least a proportion 0.68 of the devices for the sampled
process have temperatures less than or equal to 180◦C. More generally, the second column of
Table 11.1 compares nonparametric one-sided lower conidence bounds for various conidence
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One-sided lower conidence bound on pC

Conidence level Nonparametric (binomial) Normal distribution

75% 0.79 0.98
90% 0.68 0.93
95% 0.61 0.88
99% 0.46 0.74

Table 11.1 One-sided lower conidence bounds on the proportion of

conforming devices for various conidence levels.

levels. Therefore, even though all of the test units were in conformance, we cannot claim that the

actual pC exceeds the speciied proportion p†
C = 0.99with 90% (or even with 75%) conidence.

This, of course, is not surprising due to the small sample size (i.e., n = 6). Indeed, these results
are the best that one can obtain with a sample of six devices, using nonparametric methods.
This fact, however, was known before taking the sample. (See Sections 9.5 and 11.1.8.)

11.1.6 One-Sided Lower Confidence Bound for the Proportion Conforming
Assuming a Normal Distribution

We now assume that a normal distribution with an unknown mean and standard devi-
ation adequately describes the distribution of the surface temperatures of the manufac-
tured devices. We can use the sample estimates x̄ = 171.75 and s = 2.98 to compute a
point estimate for pC = Pr(X ≤ 180). Substituting x̄ for the mean and s for the standard
deviation of the normal distribution, we get the point estimate p̂C = Φnorm [(L − x̄)/s] =
Φnorm [(180 − 171.75)/2.98] = Φnorm(2.77) = 0.9972. Also, under the normal distribution
assumption, one can use the methods given in Section 4.5 to compute a one-sided lower 90%
conidence bound for pC , the process proportion less than 180◦C. This would also be a one-
sided lower 90% conidence bound on the probability that a single randomly selected device
will have a surface temperature less than or equal 180◦C. To proceed, we irst compute

k =
L − x̄

s
=

180 − 171.75

2.98
= 2.77.

Then a one-sided lower 90% conidence bound is obtained from p
˜

C = normTailCI(0.10;

2.77, 6) = 0.93. Thus we are 90% conident that the proportion of devices less than or equal
to 180◦C is at least 0.93. The third column of Table 11.1 shows one-sided lower conidence
bounds based on the normal distribution assumption for various conidence levels.

Even though these bounds are more favorable than those computed without making any
distributional assumptions, they are still not good enough to achieve the desired demonstration.
We need to emphasize that the limited data do not contradict the claim that 99% of the devices
from the process are in conformance, because, after all, our point estimate is 0.9972. Rather, in
this example, in which the burden of proof was placed on the designers, the limited sample of
size n = 6 was just not big enough to achieve the desired demonstration with 90% conidence.
(Unlike the nonparametric case, this was not known prior to obtaining the data.) Moreover,
under the normal distribution assumption the data do allow one to claim with 75% conidence
that at least a proportion 0.98 of the devices in the sampled population have temperatures less
than or equal to 180◦C.
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11.1.7 An Alternative Approach: Confidence Interval for a Normal Distribution
Quantile for Device Temperatures

It was not possible to demonstrate with 90% conidence that at least a proportion 0.99 of the
devices from the sampled process meet the 180◦C requirement, based on the sample of six
devices, even under normal distribution assumptions. Thus, the designers asked: What surface
temperature value can be demonstrated with 90% conidence to be met by at least a proportion
0.99 of the devices? This new question calls for a one-sided upper 90% conidence bound
on the 0.99 quantile. One now uses the methods described in Section 4.4, with n = 6, x̄ =
171.75, s = 2.98, p = 0.99, 1 − α = 0.90 and g′

(0.90;0.01,6) = 4.243 from Table J.7c. Then a

one-sided upper 90% conidence interval for the 0.99 quantile for the distribution of surface
temperatures (equivalent to a one-sided upper 90% tolerance bound to exceed the surface
temperatures for at least a proportion 0.99) of the devices from the sampled process is

x̃0.99 = T̃0.99 = x̄ + g′
(1−α ;1−p,n)s = 171.75 + 4.243 × 2.98 = 184.4.

Thus we can claim, with 90% conidence, that at least a proportion 0.99 of the devices from the
sampled process have surface temperatures that are less than 184.4◦C.

11.1.8 Sample Size Requirements

The analyses failed to demonstrate that 99% of the devices from the sampled process have
surface temperatures less than or equal to 180◦C. Thus it is clear that a larger sample will be
required to achieve the desired demonstration. The designers now need to know how large a
random sample from the process is required for this purpose.

Assuming that pC is really greater than the speciied value p†
C = 0.99 to be demonstrated,

we need a sample that is large enough to demonstrate this fact with some speciied probability

(i.e., to have Pr(p
˜

C ≥ p†
C ) ≥ pdem ). A very large sample is required if the actual (unknown)

pC is close to (but greater than) p†
C = 0.99. On the other hand, the sample size could be smaller

if pC is very close to 1 (e.g., pC = 0.9999).
For analysis method 1 (the nonparametric approach, based on the binomial distribution),

Figure 9.2b shows pdem , the probability of a successful demonstration at the 90% conidence

level that pC is at least p†
C = 0.99, as a function of π = pC , the actual process proportion

conforming, and the sample size n. For example, if the actual proportion of units less than or
equal to 180◦C in the sampled process is really π = pC = 0.996, a sample size of n = 1,538
has a probability pdem = 0.95 of resulting in a successful demonstration at the 90% conidence
level. Moreover, for the demonstration to be successful, it is necessary that no more than c = 10
of the 1,538 sampled devices have measured temperatures greater than 180◦C. That is, using
(I.4), Pr(X ≤ 10) = pbinom(10; 1538, 1 − 0.996) = 0.9511.

Graphs like Figure 9.2b are easy to construct with a computer program. We provide such

graphs for several combinations of problem parameters (i.e., conidence level and p†
C , the

speciied proportion conforming to be demonstrated) in Chapter 9. As described in Section 9.5.2,
the needed sample size can also be found from Table J.21. In particular, we enter Table J.21 to
determine the necessary sample size so as to demonstrate with conidence level 1 − α = 0.90
that the conformance probability is greater than β = p†

C = 0.99, subject to the requirement that
δ = 1 − pdem ≤ 0.05 when the actual conformance probability is β∗ = 0.996. The table gives
the necessary sample size as 1,538.

For analysis method 2 (i.e., assuming that the temperatures have a normal distribution with
unknown mean µ and standard deviation σ), the probability of a successful demonstration,
pdem , again depends on the conidence level to be associated with the demonstration test, on
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the sample size n, and on pC , the unknown actual proportion conforming. Figure 9.1b shows
the probability of a successful demonstration at the 90% conidence level as a function of the
actual proportion conforming, for various sample sizes. In this case, the demonstration would
be successful if x̃0.99 , the one-sided upper 90% conidence bound for x0.99 (computed as in
Sections 4.4 or 11.1.7) is less than 180◦C or, equivalently, if p

˜
C (computed as in Sections 4.5 or

11.1.6) is greater than 0.99. For example, we can see from Figure 9.1b that a sample of n ≈ 325
units gives pdem ≈ 0.95 when pC = 0.996.

The required sample size using method 2 is considerably smaller than that required for
method 1 (n = 1,538) which, however, did not require the assumption of a normal distribution.
More generally, comparison of Figures 9.2b and 9.1b shows the potential gain from using the
actual measurements and assuming a normal distribution when this assumption is warranted, as
compared to the nonparametric approach based on the binomial distribution.

As described in Section 9.2.3, the needed sample size under a normal distribution assumption
can also be found from Table J.20. We enter Table J.20 with conidence level 1 − α = 0.90,
to demonstrate that the conformance proportion is greater than β = p†

C = 0.99 so that δ =
1 − pdem ≤ 0.05 when the actual conformance proportion is β∗ = 0.996. The table gives the
necessary sample size as 329. The slight difference between this and the sample size 325
obtained from Figure 9.1b is due to our inability to interpolate much more than two signiicant
digits from the graph.

Using results from Section 4.4, we now obtain an expression for x̃0.99 , the one-sided upper
90% conidence bound for the 0.99 quantile of the distribution of surface temperatures that will
be used in the demonstration test. To compute the needed factor g′

(0.90;0.99,329) we can use R to

obtain

> qt(p=0.90, df=329-1, ncp=qnorm(0.99)*sqrt(329))/sqrt(329)

[1] 2.470618

or use interpolation in Table J.7c. The demonstration will be successful if the one-sided upper
conidence bound, calculated from the future sample of 329 randomly selected devices,

x̃0.99 = x̄ + 2.471s,

is less than the speciied limit of 180◦C.

11.2 FORECASTING FUTURE DEMAND FOR SPARE PARTS

11.2.1 Background and Available Data

A company manufactures replacement bearings for an electric motor. Demand has been stable
over recent years. The company, however, is planning to discontinue production of this product.
Before so doing, they want to produce and stockpile enough bearings so they can claim, with
95% conidence, that demand can be met for at least 7 years. The numbers of bearings sold in
each of the past 5 years (in thousands of units) were

27.7, 37.1, 35.7, 30.8, 32.7.

These data are graphed against time in Figure 11.2.
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Figure 11.2 Yearly bearing sales in units of thousands.

11.2.2 Assumptions

Based on previous historywith similar products and fromphysical considerations, it was deemed
reasonable to assume that:

� The number of units sold per year has a normal distribution with a mean and standard
deviation that are constant from year to year, and will continue to be so.

� The number of units sold each year is statistically independent of the number sold in any
other year.

Under these assumptions, the number of units sold in each of the past 5 years and each of the
next 7 years can be regarded as independent observations from the same normal distribution.

Often, a time series (i.e., a sequence of observations taken over time) will exhibit some trend
or correlation among consecutive observations. In such cases, the preceding assumptions would
not be true. One might then account for trend by using regression analysis (if extrapolation
of the trend appears to be justiied) or, more generally, by using special techniques for the
statistical analysis of time series; see, for example, Box et al. (2015). Generally, however, one
needs much more data than available here to obtain meaningful estimates of the nature of the
trend or general correlation structure.) Although there are statistical tests and informal graphical
methods to check for departures from the important stated assumptions (e.g., Kutner et al., 2005,
Chapter 4), it is possible to detect only very extreme departures with just 5 observations. No
such gross departures are evident in Figure 11.2. We need to emphasize, however, that these
assumptions are critical for our analysis, and are often not satisied in practice. Also, even if
such assumptions were reasonable in the past, theymight not hold in the future. For example, the
fact that the producer is stopping production might itself impact future demand. In the problem
at hand, however, sales of the product containing the bearing had been without a signiicant
trend for many years and the bearings in motors that are less than 7 years old (which would be
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less heavily represented in the ield in the future) rarely failed. Thus, demand for replacement
bearings could be expected to remain fairly constant over the next 7 years.

11.2.3 Prediction and a One-Sided Upper Prediction Bound for Future Total
Demand

From given data for the past 5 years, the sample mean is

x̄ =
27.7 + 37.1 + 35.7 + 30.8 + 32.7

5
= 32.80,

and the sample standard deviation is

s =

[
(27.7 − 32.80)2 + · · · + (32.7 − 32.80)2

5 − 1

]1/2

= 3.77.

Under the stated assumptions, x̄ provides a prediction for the average yearly demand. Thus,
7 × 32.8 = 229.6 provides a prediction for the total 7-year demand (in thousands of units)
for the replacement bearings. However, because of statistical variability in both the past and
the future yearly demands, the actual total demand would be expected to differ from this
prediction. Using the method outlined in Section 4.7 and t(0.95;4) = 2.132, a one-sided upper
95% prediction bound for the mean of the yearly sales for the next m = 7 years is

˜̄Y = x̄ + t(1−α ;n−1)

(
1

m
+

1

n

)1/2

s,

= 32.80 + 2.132

(
1

7
+

1

5

)1/2

3.77 = 37.5.

Thus, a one-sided upper 95% prediction bound for 7 × Y , the total 7-year demand, is 7 × Ỹ =
7 × 37.5, or 262,500 bearings. That is, although our point prediction for the 7-year demand
is 229,600 bearings, we can claim, with 95% conidence, that the total demand for the next
7 years will not exceed 262,500 bearings. At the same time, if the producer actually built
262,500 bearings, we would predict that the inventory would, most likely, last for 262.5/32.80
or approximately 8 years. In passing, we note that a one-sided lower 95% prediction bound for
the total demand for the next 7 years is 196,700 bearings.

11.2.4 An Alternative One-Sided Upper Prediction Bound Assuming a Poisson
Distribution for Demand

An alternative one-sided upper prediction bound for the total demand in the next 7 years can
be obtained by assuming that yearly demand can be modeled with a Poisson distribution with a
constant rate (at least for the past 5 years) and that this will continue to be so (at least for the next

7 years). In this case, λ̂ = x̄ = 32.80 is an estimate for the yearly demand rate. Thus, a point
prediction for the demand (in thousands of units) in the next 7 years is again 7 × 32.80 = 229.6.
Using the normal distribution approximationmethod given in Section 7.6.2,withn = 5, m = 7,
and z(0.95) = 1.645, an approximate one-sided upper 95% prediction bound for total demand
for the next 7 years is

Ỹ = mλ̂ + z(1−α)m

[
λ̂

(
1

m
+

1

n

)]1/2

= 7 × 32.80 + 1.645 × 7

[
32.80

(
1

7
+

1

5

)]1/2

= 229.6 + 38.6 = 268.2.
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73.2 67.8 68.5 73.8 69.3 70.9 65.4 71.2 72.4 69.6
67.1 69.2 66.5 72.9 75.4 74.2 69.1 64.0 68.9 70.2

Table 11.2 Engine emissions measurements. Measurements are in

manufacturing sequence (reading across).

These results agree reasonably well with those obtained under the assumption that yearly
demand has a normal distribution. One would, of course, not expect full agreement because
somewhat different models have been assumed. As frequently happens, it is not clear from
the underlying situation, or the limited data, which model is more appropriate. Therefore, in
this case, as in many others, it is useful to compute intervals under various plausible models
and compare the results. We should note, however, that for this problem, the Poisson distri-
bution approach is subject to restrictive assumptions similar to those described for the normal
distribution in Section 11.2.2.

11.3 ESTIMATING THE PROBABILITY OF PASSING AN ENVIRONMENTAL
EMISSIONS TEST

11.3.1 Background

A manufacturer must submit three engines, randomly selected from production, for an envi-
ronmental emissions test. To pass the test, the measurement for a particular pollutant on each
of three engines to be tested must be less than L = 75 ppm. Based on the measurements in
Table 11.2 from a previous test, involving 20 (presumably randomly selected) engines, the
manufacturer wants to construct a one-sided lower (i.e., worst case) 95% conidence bound for
the probability of passing the test.

11.3.2 Basic Assumptions

We make the important assumption that the 20 past engines and the three future engines are all
randomly selected from the same “in statistical control” production process. The reasonableness
of this assumption needs to be carefully evaluated based on an understanding of the problem
and, possibly, a plot of the available data against manufacturing order. In this case, such a plot,
shown in Figure 11.3, indicates no obvious trends or other nonrandom behavior.

11.3.3 Nonparametric Approach

The following approach requires no assumptions about the form of the underlying distribution
of emissions measurements. Because the values for 19 out of 20 of the previously tested engines
did not exceed the 75-ppm threshold, an estimate of the proportion of conforming engines is
p̂C = 19/20 = 0.95. Thus, a point estimate of the probability that all three future engines will
meet the speciied limit of 75 ppm is p̂dem = (p̂C )3 = 0.953 = 0.86.

A one-sided lower 95% conidence bound on pC can be obtained by using one of the
conidence interval methods for proportions described in Section 6.2. For x = 19 and n = 20
and conidence level 1 − α = 0.95, using R as a calculator for the beta quantile formula (6.1)
in Section 6.2.2 gives

> qbeta(p=0.05, shape1=19, shape2=20-19+1)

[1] 0.7839
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Figure 11.3 Time-ordered plot of engine emission measurements.

so p
˜

C = 0.784 is a one-sided lower conservative 95% conidence bound. Thus, under the stated

assumptions, we can claim with 95% conidence that the proportion of conforming engines is at
least 0.784. The one-sided lower 95% conidence bound on the probability that all three future
engines will conform is then

p
˜

dem = (p
˜

C )3 = 0.7843 = 0.48.

Thus, based on the limited available data, we are 95% conident that the probability of passing
the test is at least 0.48—unfortunately, not a very high number.

11.3.4 Normal Distribution Approach

Figure 11.4 is a normal probability plot of the data in Table 11.2. This plot suggests that a nor-
mal distribution adequately describes such emission measurements. From the data, x̄ = 69.98
and s = 3.04. A point estimate for pC = Pr(X ≤ 75), assuming that the emission measure-
ments have a normal distribution, is p̂C = Φnorm [(L − x̄)/s] = Φnorm [(75 − 69.98)/3.04] =
Φnorm(1.65) ≈ 0.95. Under the same normal distribution assumption, one can use the methods
of Section 4.5 to compute a one-sided lower 95% conidence bound for the proportion of con-
forming units. This would also be a one-sided lower 95% conidence bound on the probability
that a single randomly selected unit conforms to the speciied limit. First, compute

k =
L − x̄

s
=

75 − 69.98

3.04
= 1.65.

Based on the n = 20 observations, a one-sided lower 95% conidence bound on Pr(X ≤ 75),
the probability that a single engine will meet the speciied limit, is

p
˜

C = normTailCI(0.05; 1.65, 20) = 0.856.
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Figure 11.4 Normal probability plot of engine emission readings.

Then a one-sided lower 95% conidence bound on the probability of all three units meeting
speciications is

p
˜

dem = (p
˜

C )3 = 0.8563 ≈ 0.63.

Thus, we can say, with 95% conidence, that the probability that all three engines will conform
to the speciication is at least 0.63—still not a very high value.

This method gives a somewhat more precise bound on the desired probability than does the
nonparametric method. The price paid for this gain is the need to assume that the measurements
have a normal distribution. Needless to say, neither conidence bound was very comforting to
the experimenters. Greater assurance might be gained by increasing the sample size, or possibly
by decreasing the measurement error associated with the pollution readings (i.e., reducing σ).

11.3.5 Finding a One-Sided Upper Prediction Bound on the Emission Level

Because it was not clear that all three submitted engines would pass the emissions test at a
threshold of 75 ppm, it was desired to determine a new threshold value for which we could be
highly conident of passing the test for all three future engines. This calls for inding a one-sided
upper prediction bound that will, with a speciied degree of conidence, not be exceeded by the
future measurement on each of the three engines.

For the distribution-free approach given in Section 5.5.2, one can use (5.17) to compute
the conidence level associated with using the largest of the n = 20 previous observations as
a one-sided upper prediction bound to exceed the m = 3 future observations. The conidence
level is

1 − α =
n

n + m
=

20

20 + 3
= 0.87.
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Thus we can be 87% conident that the emission levels of all three future observations will be
less than x(20) = 75.4 ppm.

We note that the preceding distribution-free approach does not allow us to construct a one-
sided upper 95% prediction bound to exceed the next three observations, unless we take a larger
sample. If, however, we can assume that the emission readings can be adequately described
by a normal distribution, the methods outlined in Section 4.8.2 can be used to compute such
a bound. For this example, using n = 20, k = m = 3, and 1 − α = 0.95, Table J.9 gives
r′(0.95;3,3,20) = 2.331. Then

Ỹ3:3 = x̄ + r′(0.95;3,3,20)s = 69.98 + 2.331 × 3.04 = 77.1.

That is, we are 95%conident that all three future engineswill have emissions less than 77.1 ppm.

11.4 PLANNING A DEMONSTRATION TEST TO VERIFY THAT A RADAR
SYSTEM HAS A SATISFACTORY PROBABILITY OF DETECTION

11.4.1 Background and Assumptions

The manufacturer of an aircraft radar system needs to demonstrate with a high degree of
conidence that the system can, under speciied conditions, detect a target at a distance of

35 miles with a probability of detection pD that exceeds the speciied value p†
D = 0.95. The

veriication test consists of a sequence of passes under the speciied conditions between the radar
equipped airplane and an approaching target plane, both traveling approximately the same path
for each pass. The pass is deemed to be a success if detection occurs before the planes are 35
miles apart, and a failure otherwise. The demonstration involves calculating a one-sided lower
conidence bound (p

˜
D ) for pD , the probability of detection at a distance exceeding 35 miles,

and will be deemed successful if p
˜

D ≥ p†
D = 0.95. The problem is to determine the required

number of passes (i.e., the sample size). It is assumed that each pass will give an independent
observation of miles to detection from the deined process consisting of all similar passes (i.e.,
approximately the same direction, weather, system coniguration, etc.) As always, properly
deining this process to assure that it really represents the situation of interest, and planning
the passes accordingly, is critical. After the passes have taken place, one might consider two
possible methods for computing p

˜
D :

1. Make no assumption about the form of the distribution of miles to detection and use
the observed proportion of successes (i.e., the proportion of passes exceeding 35 miles).
In this case, one uses the binomial distribution as a basis to compute a one-sided lower
conidence bound on pD , the probability of detection, using one of the procedures outlined
in Section 6.2.

2. Assume that miles to detection (or some transformation, such as log miles) has a normal
distribution, and use one of the methods described in Section 4.5 to compute p

˜
D .

It was decided to base the sample size on the irst method because (a) there was little prior
information about the form of the distribution of miles to detection and (b) it leads to a more
conservative procedure (i.e., fewer assumptions, but a larger sample size). If the resulting data
supported the assumption of a normal distribution, then the second method might be used in
the subsequent data analysis (thus giving more precise assessments).
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11.4.2 Choosing the Sample Size

Suppose that it is desired to demonstrate, with 90% conidence, that the probability of detection

pD is greater than p†
D = 0.95. One would clearly want to have a successful demonstration if pD

“appreciably exceeds” 0.95, where the term “appreciably exceeds” still requires elaboration.
Using the methods outlined in Section 9.5, based on the nonparametric binomial distribution

model, the probability of a successful demonstration is graphed in Figure 9.2a as a function of
n, the actual probability of detection for various number of passes. Thus we see, for example,

if n = 77 passes are used, the demonstration that p†
D ≥ 0.95 will be successful if there are

no more than c = 1 passes that fail to detect the target at a distance of 35 miles or more.
Further, if the actual probability of detection is π = pD = 0.98 (and, thus, the probability of an
unsuccessful pass is 0.02), then the probability of a successful demonstration (i.e., c = 0 or 1)
for n = 77 is

pdem = Pr(p
˜

D ≥ 0.95) = Pr(X ≤ 1) = pbinom(1; 77, 0.02) = 0.543,

where X is the number of unsuccessful passes. A probability of 0.543 of successful demonstra-
tion would generally not be regarded as adequate. Similarly, we determine from Figure 9.2a that
if we felt that the actual probability of detection is really as high as 0.995, the probability of a suc-
cessful demonstrationwithn = 77 is 0.94, whichwould likely be regarded as satisfactory. Thus,
the required sample size to achieve a high probability of successful demonstration when π = pD

exceeds 0.95 depends heavily on the actual (but unknown) probability of detection π = pD .
We also note from Figure 9.2a that for the probability of successful demonstration to be about

0.90 when the actual probability of detection is π = pD = 0.98, n = 234 passes are required.
In this case, the demonstration will require that there be 7 or fewer unsuccessful passes. The
probability of successful demonstration when π = pD = 0.98 (i.e., the probability of obtaining
seven or fewer passes without a detection in the 234 passes) is

pdem = Pr(p
˜

D ≥ 0.95) = Pr(X ≤ 7) = pbinom(7; 234, 0.02) = 0.89998.

Alternatively, we can use Table J.21 to determine the required sample size. Entering this table,
(a) to demonstrate with conidence level 1 − α = 0.90 that the probability of detection pD

is greater than β = p†
D = 0.95, while (b) assuring that the probability of failing to achieve

demonstration is δ = 1 − pdem < 0.10 when the actual probability of detection is β∗ = 0.98,
gives the required sample size as n = 258. This is greater than the sample size indicated by
Figure 9.2a because n = 234 gives only pdem = 0.89998 (slightly less than the desired pdem of
0.90), whilen = 258 is the smallest sample size to give pdem ≥ 0.90, and gives an actual pdem of

pdem = Pr(p
˜

D ≥ 0.95) = Pr(X ≤ 8) = pbinom(8; 258, 0.02) = 0.923.

Also, a sample of n = 258 will permit demonstration as long as there are eight or fewer, rather
than seven or fewer, unsuccessful passes.

11.5 ESTIMATING THE PROBABILITY OF EXCEEDING A REGULATORY LIMIT

11.5.1 Background and Assumptions

A company has taken readings on the concentration level of a chemical compound at a particular
point in a river. One reading (each reading is actually an average of ive measurements) was
taken during the irst week of the quarter in each of the past 27 quarters. The data are given
in Table 11.3 (which also shows the day of the week when the measurement was taken) and
are plotted against time in the top row of Figure 11.5. The company was asked to use the past
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Day Chemical
Observation (during the irst week concentration
number Quarter of the quarter) (in ppm)

1 Q2 Monday 48
2 Q3 Wednesday 94
3 Q4 Monday 112
4 Q1 Friday 44
5 Q2 Wednesday 93
6 Q3 Thursday 198
7 Q4 Tuesday 43
8 Q1 Monday 52
9 Q2 Wednesday 35

10 Q3 Friday 170
11 Q4 Monday 25
12 Q1 Wednesday 22
13 Q2 Tuesday 44
14 Q3 Thursday 16
15 Q4 Friday 139
16 Q1 Tuesday 92
17 Q2 Friday 26
18 Q3 Monday 116
19 Q4 Thursday 91
20 Q1 Thursday 113
21 Q2 Friday 14
22 Q3 Monday 50
23 Q4 Wednesday 75
24 Q1 Friday 66
25 Q2 Monday 43
26 Q3 Tuesday 10
27 Q4 Friday 83

Table 11.3 Chemical concentration readings.

data to estimate the probability that a future reading will exceed the regulatory limit of 300
ppm, even though all of the 27 past readings have been appreciably below this value. In order
to respond, it will be necessary to use a statistical model to describe the relationship between
the past and future readings. The simplest such model assumes that all past and future readings
are random observations from the same process. However, because we are dealing with a time
series, generated by a process that might change over time (due to changes in production level,
pollutant processing methods, etc.), this model may not be appropriate. The physical process
must be reviewed and the data carefully checked to assess the existence of a trend, a cyclical
or a seasonal pattern, or other correlations, among the observations. A trend might be present
if the mean of the process is changing with time, due, for example, to changes in production
level or pollution abatement measures. Seasonal effects might occur because of differences in
concentration due to seasonal variations in production or the impact of changes in weather
conditions. Differences might arise due to varying levels of production on different days of the
week. Fortunately, there were no physical reasons to expect the simple model not to apply in this
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Figure 11.5 Time series plots (top row, with log axis on the right), histograms (middle row, plotting logs

on the right), and probability plots (bottom row, with normal on the left and lognormal on the right) for the

concentration readings.

example. It is hoped, however, that there might be a reduction in pollution levels in the future. In
this case, the results obtained under the assumed model would tend to be overly conservative in
the sense that they are likely to overpredict future levels of pollution. In any case, an empirical
assessment of the validity of the assumptions, based on the past data, is in order.

11.5.2 Preliminary Graphical Analysis

The top row of Figure 11.5 shows time series plots of the concentration readings on a linear
axis (on the left) and on a log axis (on the right). The plots show that there is appreciable
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variability in the readings (when compared to past experience with similar studies), there are
several large extreme observations (checks at the original source of the data did not suggest
any recording errors), the possibility of a downward trend, but no clear indication of cyclical
or periodic behavior. The middle row of Figure 11.5 provides histograms of the concentration
readings (on the left) and the logs of the concentration readings (on the right).

The bottom row of Figure 11.5 shows a normal probability plot (on the left) and a lognormal
probability plot (on the right). The plots on the left indicate that the distribution of concen-
tration readings is appreciably skewed to the right and, especially because the points on the
normal probability plot deviate importantly from a straight line, there is evidence that such
readings are not normally distributed. In particular, there are some large extreme observations.
The plots on the right, based on a log transformation, indicate approximate symmetry of the
distribution, suggesting that the readings may be better approximated by a lognormal, than by a
normal, distribution. (A lognormal distribution is frequently found to be an appropriate model
in pollution assessment problems.) A log transformation, moreover, also tended to accommo-
date the extreme observations. Thus, henceforth, we will consider the logs of the concentration
readings.

11.5.3 Formal Tests for Periodicity and Autocorrelation

Checks for periodicitywereirst performed by using an analysis of variance to test for differences
among the four quarters of the year and among the different days of the week. No statistically
signiicant differences were found.

For a time series with a constant mean and standard deviation (often referred to as “sta-
tionary”), let rk denote an estimate of the correlation between observations that are k time
periods apart. The set of values rk , k = 1, 2, 3, . . . , is known as the sample autocorrelation
function (ACF) and is an important tool for modeling time series data. Figure 11.6 is a plot of
the sample ACF for the log chemical concentration readings. The value of r0 is, by deinition,
equal to 1. The ACF can be computed easily with many of the popular data analysis computer
programs (e.g., R). Although exact sampling theory for these statistics is complicated, in large
samples of independent observations (say, n > 60), the rk can be assumed to be approximately
normally distributed with a standard error approximated by Bartlett’s formula (e.g., Chapter 2
of Box et al., 2015). Although crude for the current sample of size 27, this approximation can
be used to roughly assess the statistical signiicance of the correlations or to construct approx-
imate conidence intervals to contain the actual correlations. This provides an approximate
formal check for the assumption that the readings are uncorrelated. The dashed lines shown in
Figure 11.6 indicate approximate limits outside of which a sample autocorrelation would be
statistically signiicant at a 5% signiicance level. We note that the estimated autocorrelations
are all contained within their bracketed bounds (equivalently, conidence intervals for the actual
correlations all enclose 0). Thus there is no evidence of autocorrelation within the quarterly data.

11.5.4 Formal Test for Trend

Formal statistical procedures can be used to supplement the graphical analyses. As mentioned
earlier, the top row of Figure 11.5 might suggest to some that there is a linear (downward) trend
over time in the plotted values. A formal check for such a time trend can be done by itting a
simple linear regression of the readings (in this case, the logs of the readings) versus time. If a
trend is present and can be assumed to continue into the future, the regression model—or some
further generalization, such as those discussed in books on time series analysis such as Wei
(2005), Bisgaard and Kulahci (2011), and Box et al. (2015)—might be used for forecasting.
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Figure 11.6 Sample autocorrelation function of the log chemical concentration readings.

Figure 11.7 gives a summary of the simple regression analysis for the log of concentration
versus time. The assumed model for this analysis is

log(concentration) = β0 + β1(time) + ε,

where time = 1, 2, . . . , 27 (i.e., the 27 quarters for which data were available) and ε is a random
noise (or error) term which is assumed to have a normal distribution with a mean of 0 and a
standard deviation that is constant over time. We also assume that the ε values are independent
of each other. A two-sided 95% conidence interval for β1 , the slope of the regression line, is

β̂1 ∓ t(1−α/2;n−2)sβ̂1
= −0.0214 ± 2.060 × 0.0190 = [−0.060, 0.018],

where β̂1 is the least squares estimate of β1 , sβ̂1
the standard error of this estimate, and

t(1−α/2;n−2) the 1 − α/2 quantile of Student’s t-distribution with n − 2 degrees of freedom
(e.g., qt(0.975,25) in R gives 2.060); see the brief discussion in Section 4.13.1. Because this
conidence interval for the slope coeficient contains the value 0, there is no statistical evidence
of a trend in the data.

Coefficients:

Estimate Std. Error t ratio Pr(>|t|)

(Intercept) 4.3087 0.3042 14.16 <0.001

time -0.0214 0.0190 -1.13 0.27

Residual standard error: 0.769 on 25 degrees of freedom

Multiple R-squared: 0.0482

Figure 11.7 Summary of regression analysis of the log chemical concentration readings versus time.
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If any of the above tests had given positive results, it would be an indication that more
sophisticated time series analyses might be required. In this case, all tests came out negative,
as expected from physical considerations, and so it seems satisfactory to proceed using simple
methods. At the same time, we need to note that:

� The power of a statistical test to establish signiicance is highly dependent upon sample
size (n = 27 is quite modest).

� The fact that certain patterns were not exhibited in the past does not guarantee that they
will not happen in the future.

11.5.5 Nonparametric Binomial Model

Without making any assumptions about the form of the distribution of the readings, it is possible
to estimate pGT , the probability of exceeding the regulatory limit of L = 300 ppm. We assume
only that both the past and the future readings are independently and randomly chosen from the
same stationary process. Because none of the 27 past quarterly readings exceeded 300 ppm, an
estimate of this probability is p̂GT = 0/27 = 0. The methods given in Section 6.2, based on
the binomial distribution, can be used to compute a one-sided upper conidence bound on this
probability. In particular, using the conservative method outlined in Section 6.2.2, a one-sided
upper 95% conidence bound on the probability of exceeding the regulatory limit on a randomly
selected day (at least in the irst week of a forthcoming quarter) is

p̃GT = qbeta(0.95; 1, 27) = 0.105.

Thus, we are 95% conident that pGT is less than p̃GT = 0.105. Alternatively, we could have
obtained this value from Figure 6.1.

The result might seem a little disappointing, in light of the data. Even though there were no
readings above, or even close to, 300 ppm for the sampled day in each of the past 27 quarters, the
data have not established with 95% conidence that the probability is satisfactorily small, even if
we assume that there will be no change in the process. This analysis, however, ignores the actual
values of the readings (other than whether or not they exceed 300 ppm). An alternative analysis
(see below) that assumes a distributional model would be expected to be more informative (i.e.,
provide a tighter bound for pGT ).

11.5.6 Lognormal Distribution Model

Our graphical analyses of the 27 readings indicated that the logs of the readings might be mod-
eled adequately by a normal distribution. The sample mean and standard deviation of the log
readings are x̄ = 4.01 and s = 0.773, respectively. A point estimate for the proportion of days
that the limit will be exceeded, assuming that the logs of the chemical concentration readings

have a normal distribution, is p̂GT = P̂r[X ≥ log(300)] = 1 − Φnorm [(log(L) − x̄)/s] =
1 − Φnorm [(5.70 − 4.01)/0.773] = 1 − Φnorm(2.19) = 0.0143. Under the same normal dis-
tribution assumption, one can use the methods given in Section 4.5 to compute a one-sided
upper 95% conidence bound for the proportion of days that the limit will be exceeded. This
would also be a one-sided upper 95% conidence bound on the probability that the limit will be
exceeded on a single randomly selected day. Speciically, irst compute

k =
log(L) − x̄

s
=

5.70 − 4.01

0.773
= 2.19.
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Then, using (4.6), the one-sided upper 95% conidence bound for pGT is p̃GT =
normTailCI(0.95;−2.19, 27) = 0.05620. Thus, we are 95% conident that the probabil-
ity of a reading exceeding 300 ppm is less than 0.056. This value is smaller and, thus, more
satisfactory than the one-sided upper 95% conidence bound of 0.105, which was obtained with
the nonparametric binomial distribution model. This improvement was obtained in return for
the (not unreasonable) assumption that the readings have a lognormal distribution.

In passing, we note that if we had incorrectly assumed a normal (rather than a lognormal)
distribution for the readings, we would have obtained the one-sided upper 95% conidence
bound for pGT to be p̃GT = 0.00015 or 0.015%. The contrast between 0.00015 and 0.05620
(a ratio of about 375) illustrates our statement in Section 4.10, that conidence bounds on
probabilities in the tail of a distribution are not robust to an incorrect distributional assumption.

11.6 ESTIMATING THE RELIABILITY OF A CIRCUIT BOARD

11.6.1 Background and Assumptions

A company manufactures a circuit board that contains 110 similar integrated circuit chips that
must operate in a ield environment for 30,000 hours. Successful operation requires that all
chips in a board operate without failure in service. It is reasonable to assume that chips on
the same board fail independently of one another. This assumption would be incorrect if, for
example, failures are caused by shocks that affect more than one chip, or if failure of one chip
increases the stress on the others. The assumption appears reasonable, however, because failure
from internal defects in the chips is the dominant failure mode. Thus, one can assess life in
service from tests on chips, rather than requiring tests on boards. In fact, an accelerated test
on individual chips has been developed for this purpose. This test simulates the 30,000 hours
of operation in a normal service environment by a 1,000-hour dynamic high temperature–high
humidity exposure at 85◦C and 85% relative humidity.

Due to a (hopefully) one-timemanufacturing problem, some of the chips in a special shipment
of 50,000 chips may be prone to failure during ield service (such chips will, henceforth, be
referred to as being “defective”). To estimate pC , the proportion of defective chips in the
shipment, a random sample of 1,000 chips was selected from the inventory of 50,000 chips, and
these chips were subjected to the 1,000-hour accelerated test. Two chips failed the test.

We note that in this example, unlike most of the others in this chapter, the sample is from
a well-deined population concerning which we wish to draw inferences—namely, the 50,000
chips in inventory from this shipment. Thus, in this sense, using the terminology of Chapter 1,
this is an enumerative study. This would not be the case if we had wished to draw inferences
about future chips from the process from which this shipment came. However, because (a) the
chips are being tested in an accelerated test environment that is meant to simulate operational
conditions, and (b) testing on chips is to be used to draw conclusions about results on boards
under the assumption of independent failures, onemight argue that, in totality, this is an analytic,
rather than an enumerative, study. We will not get hung up in this discussion on terminology
but simply emphasize the importance of these fundamental assumptions to drawing conclusions
from this evaluation.

We also note that we are dealing here with a inite population of 50,000 chips. Our sample of
1,000 chips is, however, a small percentage of the population (appreciably less than 10%), and,
therefore, the initeness of the population can be ignored for practical purposes, as indicated in
Chapter 1. If this had not been the case (e.g., there had been only 5,000 chips in the shipment) then
the methods described in Section 6.3 could be applied to draw inferences about the unsampled
chips, instead of those to be described below. The “inite population correction factor” method
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mentioned in Section 1.10, if it were applied using (6.3), would not provide an adequate
approximate conidence interval, in this case. This is because (6.3) is based upon a normal
distribution approximation to the sampling distribution of p̂, and the approximate conidence
interval method using (6.3) is inappropriate for a situation with only two nonconforming units;
see Section 6.2.3.

The following information is desired for the in-service operating conditions, together with
appropriate statistical bounds:

� An estimate of the proportion of defective chips in the shipment.

� An estimate of the proportion of boards (each containing 110 chips from the shipment)
that will contain one or more defective chips.

� An estimate of the probability that at least 9 of 10 boards that use chips from the shipment,
and are to be installed in a system, will operate successfully in service.

11.6.2 Estimate of the Proportion of Defective Chips

Anestimate of the actual proportion (pC ) of defective chips for the shipment is p̂C = 2/1,000 =
0.002, or 0.2%. Using the conservative method given in Section 6.2.2, a two-sided 90% coni-
dence interval for pC is

[p
˜

C , p̃C ] = [0.0003555, 0.006282].

Thus, we are 90% conident that the proportion of defective chips in inventory is between
0.00036 and 0.0063.

11.6.3 Estimating the Probability that an Assembled Circuit Board Will Be
Defective

A board is defective if it contains one or more defective chips. The number of defective chips on
a board has a binomial distribution with parameters pC and n = 110. Because the circuit board
contains 110 chips, the probability that a board is not defective is the probability that none of
the 110 chips is defective, assuming that the only reason for board failure is the independent
failure of the chips. Under the previously stated assumption of independence, this probability is

(1 − pC )110 .

Thus, the probability that the board is defective (i.e., has one or more defective chips) is

pB = 1 − (1 − pC )110 .

An estimate of this probability is, therefore,

p̂B = 1 − (1 − p̂C )110 = 1 − (1 − 0.002)110 = 0.20.

Because pB is a monotonic increasing function of pC , conidence bounds for pB can be obtained
directly from those for pC (see Section 6.4). In particular, the endpoints of a 90% conidence
interval for the probability that a circuit board will be defective are

p
˜

B = 1 − (1 − p
˜

C )110 = 1 − (1 − 0.0003555)110 = 0.038,

p̃B = 1 − (1 − p̃C )110 = 1 − (1 − 0.006282)110 = 0.50.

Thus, we are 90% conident that the proportion of defective boards constructed from chips in
inventory is between 0.038 and 0.50. This wide interval is not surprising when we recognize
that the available data are on the equivalent of only about nine boards.
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11.6.4 Estimating System Reliability

A system that contains 10 circuit boards requires at least 9 such boards to operate successfully.
We assume that the number of boards that fail in service has a binomial distribution with
parameters n = 10 and pB . This model would apply under assumptions similar to those stated
in Section 11.6.1.

Following the approach outlined in Section 6.4, the probability of successful systemoperation
is

pD = Pr(0 boards fail) + Pr(1 board fails) (11.1)

= (1 − pB )10 + 10(pB )1(1 − pB )9 .

Because pD is a monotonically decreasing function of pB , a one-sided lower (upper) conidence
bound on pD is obtained by substituting the corresponding one-sided upper (lower) conidence
bound for pB into (11.1). That is,

p
˜

D = (1 − p̃B )10 + 10p̃B (1 − p̃B )9

= (1 − 0.50008)10 + 10(0.50008)(1 − 0.50008)9 = 0.011,

p̃D = (1 − p
˜

B )10 + 10p
˜

B (1 − p
˜

B )9

= (1 − 0.038357)10 + 10(0.038357)(1 − 0.038357)9 = 0.946.

Thus, based on the fact that the random sample of 1,000 chips contained 2 defective units, we
can say, with 90% conidence, that the probability of successful system operation is between
0.011 and 0.946! Thus, our evaluation has been highly uninformative. This is not very surprising
because the available data on 1,000 chips are used to draw conclusions, with a high degree of
conidence, about a system involving 1,100 chips.

11.7 USING SAMPLE RESULTS TO ESTIMATE THE PROBABILITY THAT A
DEMONSTRATION TEST WILL BE SUCCESSFUL

Audio quality performance scores have been obtained on a random sample from production
of 16 high idelity speakers. The data are shown in Table 11.4. A future demonstration test
will be successful if the score for each of 32 additional randomly selected speakers exceeds
L = 450. We need to estimate pdem , the probability of passing the demonstration test. The
speaker manufacturing process has been established to be stable (i.e., in statistical control) and
our analysis is based on the important assumption that this will continue to be the case.

11.7.1 Nonparametric Binomial Model Approach

Because all of the initial 16 units had performance scores greater than 450, an estimate of pGT ,
the proportion of units from production with scores above 450, is p̂GT = 16/16 = 1.0. Using
the method discussed in Section 6.2.2, a one-sided lower conservative 90% conidence bound
for pGT is

p
˜

GT = qbeta(0.10; 16, 1) = 0.866.

That is, we are 90% conident that at least a proportion 0.866 of the units from production
would, if measured, score above 450.

552 586 702 722 742 790 800 838
838 921 960 981 994 1,035 1,110 1,405

Table 11.4 Audio quality performance measurements in increasing order.
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The probability that all 32 future units will score higher than 450 is pdem = (pGT )32 ,
and, because p̂GT = 1.0, the resulting point estimate is also p̂dem = 1.0. Because pdem is an
increasing function of pGT , a one-sided lower 90% conidence bound for p

˜
dem can be obtained

by using p
˜

GT in this formula in place of pGT . That is,

p
˜

dem = (p
˜

GT )32 = 0.86632 = 0.010.

Thus, we are 90% conident that the probability of passing the demonstration test is at least
0.01! This result is not very useful except to tell us that we cannot be assured of a successful
demonstration about 32 future units from successful go/no-go data on only 16 past units.

11.7.2 Normal Distribution Approach

Figure 11.8 is a normal probability plot of the 16 scores for the initially tested units. Except
for the largest observation (1,405), the data seem to be well represented by a normal distri-
bution. Thus, this distribution may provide a reasonable model, at least for the lower tail of
the distribution of audio performance scores—and it is this lower tail that is of concern to
us. Sample statistics for these data are x̄ = 873.5 and s = 211.5. Note, however, that both of
these values may be inlated estimates if the largest observation is erroneous—a topic that we
will investigate further in Section 11.7.3. A point estimate for the probability that the perfor-
mance of a single randomly selected unit will exceed 450, assuming that the performance

scores have a normal distribution, is p̂GT = P̂r(X ≥ 450) = 1 − Φnorm [(450 − x̄)/s] =
1 − Φnorm [(450 − 873.5)/211.5] = 1 − Φnorm(−2.002) ≈ 0.9773. Under the normal distri-
bution assumption, one can use the method given in Section 4.5 to compute a one-sided lower
90% conidence bound for pGT = Pr(X ≥ 450). In particular, with

k =
L− x̄

s
=

450 − 873.5

211.5
= −2.002,

and n = 16, p
˜

GT = normTailCI(0.10; 2.002, 16) = 0.9207. That is, assuming that the data

are a random sample from a normal distribution, we can be 90% conident that the proportion
of units with scores above L = 450 is at least 0.9207.
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Figure 11.8 Normal probability plot of audio quality performance measurements.
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As in Section 11.7.1, we compute a one-sided lower 90% conidence bound for pdem as

p
˜

dem = (p
˜

GT )32 = 0.920732 = 0.07.

We can similarly calculate the upper 90% conidence bound on pdem to be p̃dem = 0.84,
resulting in a two-sided 80% conidence interval of 0.07 to 0.84. This tells us that the available
data are insuficient for our purposes, and suggests that additional sampling is needed to be able
to draw any deinitive conclusions about passing the demonstration test.

11.7.3 Testing Sensitivity of the Conclusions to Changes in the Extreme
Observation(s)

Because the largest observation (i.e., 1,405) was suspiciously large for the performance scores,
it is worthwhile to investigate the sensitivity of our conclusions to this observation. Thus, the
following alternative analyses were performed:

1. The largest observation was ignored altogether and the analysis was repeated. This would
be a reasonable approach if the extreme observation were totally incorrect (e.g., due to
a data recording mistake that is completely independent of the actual value) and if the
correct observation could not be recovered. It would not be correct otherwise.

2. The largest observation was treated as a “right-censored” observation with a value equal
to or larger than the second largest observation (a value of 1,110). In this case, we assume
that we do not know the exact value of the largest observation, but believe that its value
was no less than that of the second largest observation. This (like the next method) may
be a reasonable approach if we do not want one, or a few, large extreme observations in
the upper tail of the distribution to unduly affect the inferences concerning the lower tail
of the distribution (where the normal distribution seems to provide a good model).

3. The largest observations were assumed to have been right censored at several other
scores: 800, 900, 1,000, and 1,100. Such censoring might provide reasonable estimates in
the lower tail of the distribution (as desired here) if one felt that the normal distribution
provides a good representation of that part of the distribution, but not of the distribution
as a whole. See Oppenlander et al. (1988) for further exposition of this approach.

When analyzing censored data, maximum likelihood (ML) is generally used to estimate
model parameters and functions of model parameters; see Nelson (1982), Meeker and Escobar
(1998), or Lawless (2003) for a description of the theory and methods for analyzing censored
data. ML methods will be discussed and illustrated in Chapter 12. The analyses for methods 2
and 3 were conducted using ML.

The results of these alternative analyses are compared with those of the original analyses
in Table 11.5. This tabulation, in addition to the estimates and approximate 80% conidence
intervals for pGT and pdem , also provides ML estimates and 80% conidence intervals for the
normal distribution parameters μ and σ. The estimates for pGT and pdem in Table 11.5 differ
slightly from those computed in Section 11.7.2. This is because the ML estimates of σ (dividing
by n instead of n − 1) used in Table 11.5 differ slightly from those computed in Section 11.7.2
so as to make the results directly comparable with those for the other analyses, which require
the ML method.

The results, at irst glance, suggest a fairly large difference among the estimates and con-
idence intervals for pdem . This is, however, overshadowed by the continued large statistical
uncertainty, relected by the widths of the conidence intervals.
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Estimates using µ σ pGT pdem

Original data
(16 observations)

874
[808, 939]

205
[163, 257]

0.981
[0.933, 0.996]

0.536
[0.110, 0.874]

Largest observation
ignored

838
[786, 890]

157
[124, 198]

0.993
[0.965, 0.999]

0.806
[0.315, 0.973]

Censored at 1,110
(1 censored
observation)

860
[804, 916]

175
[138, 222]

0.990
[0.956, 0.999]

0.736
[0.239, 0.955]

Censored at 1,000
(3 censored
observations)

857
[801, 914]

171
[132, 223]

0.991
[0.956, 0.999]

0.755
[0.236, 0.964]

Censored at 900
(7 censored
observations)

861
[795, 927]

178
[127, 249]

0.990
[0.943, 0.999]

0.713
[0.153, 0.962]

Censored at 800
(9 censored
observations)

826
[765, 887]

144
[98, 211]

0.996
[0.960, 1.000]

0.866
[0.272, 0.992]

Table 11.5 Maximum likelihood estimates and approximate two-sided 80% conidence intervals

(in brackets) for µ, σ, pGT and pdem for audio quality performance measurements.

One disadvantage of the censoring procedure used here is that some subjectivity is needed
to choose a censoring point. A good rule of thumb for doing this, when interest centers on the
lower (upper) tail of the distribution, is to let a normal probability plot serve as a guide, and
to censor those observations that cause departure from linearity in the upper (lower) tail in the
plot (note that it would be totally inappropriate to extrapolate into the region where data were
censored). Of course, whenever possible, physical considerations should enter into the choice
of the censoring point.

In practice, we frequently do not know which speciic model is appropriate and which
analysis is best. Thus, performing a variety of analyses, as we have done here, provides useful
insights into the “robustness” of the results under varying assumptions. Examination of the ML
estimates and 80% conidence intervals for pdem in Table 11.5 leads us to the same conclusion
irrespective of the approach used (i.e., the available data are insuficient to allow us to draw any
deinitive conclusions about the outcome of the demonstration test).

11.8 ESTIMATING THE PROPORTION WITHIN SPECIFICATIONS FOR A
TWO-VARIABLE PROBLEM

11.8.1 Problem Description

Speciications for an electronic device require:

� Forward voltage must exceed 0.50 volts,

� Reverse breakdown voltage must exceed 95 volts,

� A device may not have both forward voltage below 0.55 volts and reverse breakdown
voltage below 100 volts.
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Device Forward Reverse breakdown Meet all
number voltage voltage criteria

1 0.52 101 Yes
2 0.65 110 Yes
3 0.57 97 Yes
4 0.53 98 No
5 0.59 105 Yes
6 0.64 107 Yes
7 0.60 100 Yes
8 0.48 93 No
9 0.60 105 Yes
10 0.54 102 Yes

Table 11.6 Electronic device forward and reverse breakdown voltage measurements.

The available data consist of a sample of ten devices randomly selected from the process that
builds the device. This has resulted in the measurements given in Table 11.6. Based upon
this information, it is desired to obtain an upper 95% conidence bound on the proportion of
devices outside of speciications (i.e., the proportion nonconforming) from the sampled process.
Assumptions concerning the “representativeness” of the sample, similar to those described for
the previous examples, apply here also.

11.8.2 Nonparametric Approach

If one can represent the measurements by a bivariate normal distribution, one can then use
statistical methods for this distribution to get a point estimate of the process proportion noncon-
forming (using the sample estimates in place of the unknown distribution parameters). However,
obtaining a conidence interval or bound on this proportion, based on bivariate normal distri-
bution assumptions, is a complex problem, especially because the forward voltage and reverse
breakdown voltage measurements are clearly correlated. Thus, we propose instead a much
simpler, irst-cut, nonparametric solution that, though less eficient statistically, also does not
require any assumptions about the form of the statistical distribution.

We note that two of the ten sampled devices are nonconforming (in particular, device number
4 fails to meet the third requirement, and device number 8 fails on all three requirements). Thus,
the observed proportion of nonconforming units is 0.2. From this information, we use Figure 6.1
or methods in Section 6.2 to obtain the desired upper 95% conidence bound on the process
proportion nonconforming to be 0.51.

As in previous examples, the information lost by ignoring the actual measurements, and
using only the information on whether or not a device is nonconforming, depends on the
speciic situation. Thus, if all devices had been well within the acceptance region, this irst-cut
simple approach would have resulted in a greater loss of information than was the case with
the data at hand.

11.9 DETERMINING THE MINIMUM SAMPLE SIZE FOR A DEMONSTRATION
TEST

11.9.1 Problem Description

A manufacturer feels that a production process provides essentially zero nonconforming units,
with regard to a long list of speciications, some of which require a destructive test to evaluate.
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An unconvinced customer, however, before accepting the product, requires the manufacturer to
demonstrate “with 95% conidence” that the process results in no more than a proportion 0.05
nonconforming units.

Thus, each unit in a random sample from the process is to be evaluated and classiied as con-
forming or nonconforming. Because this involves an expensive series of tests, the manufacturer
wants to minimize the required random sample size to achieve the desired demonstration.

11.9.2 Solution

Because the manufacturer is conident that the process yields essentially no nonconforming
units, a random sample would also be free of such units. Then one can use the methods given
in Chapter 6 to obtain an upper conidence bound on the process proportion nonconforming,
based upon the selected sample size. Thus, one can use the results of Chapter 6 in reverse to
ind how large a sample is needed.

In particular, from Figure 6.1 one notes that a one-sided upper 95% conidence bound of
0.05 is achieved with a sample of about size 60—if that sample, indeed, has no nonconforming
units. Thus, the minimum required sample size is approximately 60. Actually, more precise
methods lead to a required sample size of 59 units (as can also be seen from Table J.13).

11.9.3 Further Comments

The desired demonstration will be achieved only if the sample really results in zero noncon-
forming units. For this to be likely, the actual process proportion nonconforming must, indeed,
be quite small. In fact, from the lowest curve in Figure 9.2a (which is expressed in terms of the
process proportion conforming), we note that even if the process proportion conforming is as
large as 0.99, there is only a probability 0.64 of successful demonstration with a sample of 45
conforming units. In fact, we see from this curve that a process conformance rate of close to
0.998 is required for there to be a 0.90 probability of successful demonstration. This is why in
discussing sample size requirements in Section 9.5, we did not use a “minimum sample size”
approach. Instead, we required speciication not only of the process proportion conforming
that is to be demonstrated, but also of the proportion conforming for which we desire a high
probability that the demonstration test be successful.



Chapter 12
Likelihood-Based Statistical

Intervals

OBJECTIVES AND OVERVIEW

Previous chapters dealt with statistical intervals for complete samples (i.e., no censoring or
truncation) from common statistical distributions, focusing on the normal distribution (Chap-
ters 3 and 4), the binomial distribution (Chapter 6), and the Poisson distribution (Chapter 7). In
addition, Chapter 5 provided methods for constructing distribution-free intervals. This chapter
and subsequent chapters describe and illustrate more general methods for constructing statistical
intervals that can be applied to many other distributions and to more complicated models and
types of data.

The following topics are discussed in this chapter:

� The motivation for likelihood-based inference and model selection (Sections 12.1).

� The construction of a likelihood function and maximum likelihood (ML) estimation for a
parametric model for different types of data (Section 12.2).

� Likelihood-based conidence intervals for a single-parameter distribution, illustrated by
the exponential distribution (Section 12.3).

� Likelihood and ML estimators for location-scale and log-location-scale distributions,
illustrated by the lognormal and Weibull distributions (Section 12.4).

� Likelihood-based conidence intervals for location-scale and log-location-scale distribu-
tions, illustrated by the lognormal and Weibull distributions (Section 12.5).

� Conidence intervals based on computationally simpler Wald approximations of the
likelihood-based intervals (Section 12.6).

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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� Brief comments on the likelihood-based and Wald conidence intervals for other mod-
els and brief introductions to likelihood-based tolerance and prediction intervals (Sec-
tion 12.7).

This chapter emphasizes concepts, methods, examples, and interpretation of data. Due to
the nature of the material, the discussion in this and subsequent chapters is somewhat more
technical than that in earlier chapters. In addition, Section D.5 outlines the general underlying
theory of likelihood andWald methods for constructing conidence intervals. The Bibliographic
Notes section at the end of this chapter identiies sources of more detailed technical information.

12.1 INTRODUCTION TO LIKELIHOOD-BASED INFERENCE

12.1.1 Motivation for Likelihood-Based Inference

There are numerous situations in practice that involve continuous distributions other than the
normal distribution (such as the lognormal and Weibull distributions). In addition, the available
data are frequently incomplete (i.e., the exact value of an observation is not known). This is
the case, for example, in dealing with censored data (i.e., data for which one knows only that the
observed value is below some lower observation limit or above some upper observation limit) or
with binned data (i.e., grouped or interval censored). For example, in dealingwith environmental
data, one frequently encounters left-censored observations for which one knows only that an
observation is below some threshold detection limit. Similarly, for life data, observations on
unfailed units are right censored because all that is known about such units is that their failure
times exceed their current survival times. In this chapter, we describe general approaches, based
on the likelihood function, for constructing intervals for such situations.

ML is a highly versatile method for itting statistical models to data. Roughly speaking, the
MLmethod provides that model it to the data—from among all possible model its—that makes
the data most probable. Inmost applications, theMLmethod is applied to a parametric statistical
model (as opposed to the distribution-free nonparametric methods in Chapter 5) to describe
a set of data or a process or population that generated the data. The appeal of ML methods
stems from the fact that they can be applied to a wide variety of statistical models and types of
data (e.g., continuous, discrete, categorical, censored, and truncated) for which other popular
methods, such as least squares, are not, in general, applicable. In particular, ML methods are
used extensively in life data analysis; see Meeker and Escobar (1998, Chapter 8). Moreover,
statistical theory shows that, under standard regularity conditions, ML estimators are “optimal”
in large samples. That is, ML estimators are consistent and asymptotically eficient as the
sample size (number of failures in the case of right-censored failure-time data) increases. Thus,
among consistent competitors to ML estimators, none has a smaller large-sample approximate
variance. Software that use ML methods has over recent years become increasingly accessible
through commercially available products, thereby tremendously expanding the feasible areas
of application.

Example 12.1 Time between α-Particle Emissions of Americium-241. Berkson (1966)
investigated α-particle emissions of americium-241 (which has a half-life of about 458 years).
Physical theory suggests that, over a short period of time, the observed interarrival times of
particles from a specimen are independent of one another and come from an exponential
distribution with cumulative distribution function (cdf)

F (t; θ) = 1 − exp

(
−

t

θ

)
, (12.1)
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Interarrival times
Time Frequency of occurrence

Interval endpoints All times Sample of frequencies

Lower Upper n = 10,220 n = 200
i ti−1 ti di di

1 0 100 1,609 41
2 100 300 2,424 44
3 300 500 1,770 24
4 500 700 1,306 32
5 700 1,000 1,213 29
6 1,000 2,000 1,528 21
7 2,000 4,000 354 9
8 4,000 ∞ 16 0

Table 12.1 Binned α-particle interarrival time data.

where θ is the mean time between arrivals. The corresponding homogeneous Poisson process
model that describes the number of emissions over time has an arrival rate with intensity
λ = 1/θ. For the interarrival times of α-particles, λ is proportional to the americium-241
decay rate. The value of λ depends on the size of the specimen, the size and eficiency of the
detector/counter, and various other factors. See Section C.3.7 or Meeker and Escobar (1998,
Section 4.1) for more information about the exponential distribution. See Ross (2012, Chapter 4)
for more information about the homogeneous Poisson process.

The original data consisted of 10,220 interarrival times of α-particles (the time unit is equal
to 1/5,000 second throughout this example). The interarrival times were placed into intervals
(or bins) running from 0 to 4,000 time units with interval lengths ranging from 100 to 2,000
time units, and with one additional interval for observed times exceeding 4,000 time units. For
purposes of illustration, we will suppose that the 10,220 times represent a population and we
will consider samples from this population.

Initially, consider a random sample of n = 200 interarrival times, binned as described previ-
ously. This reduced sample size is more typical of what one encounters in common applications.
The n = 200 sample interarrival times were obtained by sampling from a multinomial distri-
bution with probabilities equal to the proportion of interarrival times in each of the bins. The
counts in the bins for the 10,220 interarrival times and n = 200 sample interarrival times are
shown in Table 12.1. We focus on estimating θ, the mean time between arrivals, and the rate of
arrivals λ = 1/θ, using the n = 200 sample observations.

12.1.2 Model Selection

Applications of ML methods typically involve a tentatively assumed statistical model for the
data, often aided by a graphical analysis. In practice, the search is for a physically reasonable
model that adequately describes the population or process of interest, without being unnecessar-
ily complicated. Usually the search involves iteratively assessing alternative models. Tentative
models may be suggested by physical theory, previous experience with similar data, and other
expert knowledge. Meeker and Escobar (1998, Chapter 6) explain and illustrate the use of prob-
ability plots to help identify a suitable distribution, providing more detail than our introduction
to the subject in Section 4.11.
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Figure 12.1 Exponential probability plot of the n = 200 sample observations for the α-particle interarrival
time data with simultaneous nonparametric approximate 95% conidence bands.

The selection of the scales for a probability plot results in assuming a particular probability
distribution. The adequacy of an assumed distribution can be assessed subjectively by the
degree to which the plotted points scatter around a straight line. More formally, Nair (1981)
shows that if one can draw an arbitrary straight line with a positive slope all the way within
the simultaneous conidence band that has been constructed from the data (i.e., a straight line
that falls within the simultaneous conidence bands), then one can conclude that the data are
consistent with the distribution assumed by the probability scale of the plot. If, on the other
hand, one cannot draw a straight line within the calculated simultaneous conidence band, then
there is statistical evidence that the data did not come from the distribution used to construct
the probability plot. Meeker and Escobar (1998, Chapters 3 and 6) show how the preceding
simultaneous conidence bands are calculated and then used on probability plots for purposes
of distributional assessment.

Example 12.2 Exponential Distribution Probability Plot for the α-Particle Data. Fig-
ure 12.1 shows an exponential probability plot (i.e., a plot using special probability scales for
which an exponential cdf is a straight line, similar to other probability plots in Section 4.11.1).
The plot shows a nonparametric estimate of the interarrival time cdf, together with simultane-
ous nonparametric approximate 95% conidence bands. This plot does not include the interval
from 2,000 to 4,000 because an exponential distribution probability plot cannot accommodate
a probability estimate of 1. The approximate linearity of this plot indicates that the exponential
distribution provides a good it to the data. This is reinforced by noting that one is able to draw
a straight line within the area between the simultaneous nonparametric conidence bands in
Figure 12.1.

12.2 LIKELIHOOD FUNCTION AND MAXIMUM LIKELIHOOD ESTIMATION

In this sectionwe formally deine the likelihood function and themethod ofmaximum likelihood
for estimating model parameters (and functions of model parameters). The following section
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applies such concepts to the single-parameter exponential distribution. This will be followed,
in Section 12.4, by a discussion and examples involving probability distributions with two
parameters.

12.2.1 Probability of the Data

The likelihood is a function of the data and a model’s (unknown) parameter(s), which we
will henceforth denote as θ. The likelihood function must be equal to or proportional to the
probability of the observed data. For simple parametricmodels (i.e., models without explanatory
variables), the number of parameters is usually small (e.g., less than 3). The exponential
distribution has only one parameter. The normal, lognormal and Weibull distributions have two
parameters.

For a set of n independent observations, the (total) likelihood function can be written as the
joint probability

L(θ) = L(θ; DATA) = C

n∏

i=1

Li(θ; datai), (12.2)

where Li(θ; datai) is the likelihood of observation i. The factor C in (12.2) is a constant that
may depend on the data but generally does not depend on θ. Thus, for computational purposes,
we can let C = 1.

Let T denote a random variable from the probability distribution of interest. If an observation
is known to have occurred between ti−1 and ti (interval-censored or binned data), the probability
of the observed event (i.e., its likelihood) is

Li(θ; datai) = Li(θ) = Pr(ti−1 < T ≤ ti) =

∫ ti

ti−1

f(t;θ) dt = F (ti ;θ) − F (ti−1 ;θ),

(12.3)

where f(t;θ) is the pdf and F (t;θ) is the cdf of T . Such interval-censored data arise, for
example, when (typically a large number of) observations are “binned” into a (usually small)
number of intervals (or bins), generally to compress data. If an interval is small or the observation
is reported as ti an (exact observation), then

Li(θ; datai) = Li(θ) = f(ti ;θ)

is approximately proportional to the probability of the observed event and can be used instead
of (12.3).

If an observation is known only to be greater than ti (right censored), the probability of the
observed event (i.e., its likelihood) is

Li(θ; datai) = Li(θ) = Pr(T > ti) =

∫ ∞

ti

f(t;θ) dt = 1 − F (ti ;θ).

Right-censored observations occur, for example, when the value of a measurand is greater than
the upper limit of a measuring instrument or in a lifetime study when a unit has not failed by
the end of the study.

If an observation is known only to be less than or equal to ti (left censored), its probability
(i.e., its likelihood) is

Li(θ; datai) = Li(θ) = Pr(T ≤ ti) =

∫ ti

−∞
f(t;θ) dt = F (ti ;θ).
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Left-censored observations occur, for example, when the value of a measurand is less than the
lower limit of a measuring instrument (resulting in a non-detect observation) or in a lifetime
study when a unit has failed before the unit’s irst inspection time.

For a given set of data, L(θ) is viewed as a function of θ. The dependence of L(θ) on the
data is understood and is suppressed in the notation. Values of θ for which L(θ) is relatively
large are more plausible than values of θ for which the probability of the data is relatively small.

The method of ML provides an estimate θ̂ of θ by inding the value of θ that maximizes
L(θ). Values of θ with relatively large L(θ) can be used to deine conidence regions for θ, as
described in subsequent sections. ML is also used to estimate functions of θ such as distribution
quantiles or probabilities associated with the model.

12.2.2 The Likelihood Function and its Maximum

For a sample of n independent observations, denoted generically by datai , i = 1, . . . , n, and a
speciied model, the total likelihood L(θ) for the sample is given by (12.2). For some purposes,
it is convenient to use the log-likelihood L(θ) = log[L(θ)]. For example, some theory for ML
is developed more naturally in terms of sums like

L(θ) = log[L(θ)] =
n∑

i=1

log[Li(θ)] =
n∑

i=1

Li(θ)

instead of the product in (12.2). BecauseL(θ), for any ixed value of θ, is a monotone increasing
function of L(θ), the maximum of L(θ), if one exists, occurs at the same value of θ as the
maximum of L(θ). Also, for practical problems, L(θ) can be represented in computer memory
without special scaling. This may not be the case forL(θ) because of possible extreme exponent
values. For example, the values of some likelihoods may be less than 10−400 .

Example 12.3 Likelihood for the α-Particle Data. The α-particle example, because it
involves only a single unknown parameter θ, provides a simple illustration of the basic concepts.
Substituting (12.1) into (12.3) and (12.3) into (12.2), and letting C = 1 results in the following
exponential distribution likelihood function for the interval-censored data in Table 12.1:

L(θ) =
n∏

i=1

Li(θ) =
n∏

i=1

[F (ti ; θ) − F (ti−1 ; θ)]

=
8∏

i=1

[F (ti ; θ) − F (ti−1 ; θ)]
d i =

8∏

i=1

[
exp

(
−

ti−1

θ

)
− exp

(
−

ti

θ

)]d i

, (12.4)

were di is the number of interarrival times in interval i. Note that in the irst line of (12.4), the
product is over the n = 200 observed times. In the second line, the product is over the eight
bins into which the data were grouped.

TheMLestimate ofθ is found bymaximizingL(θ).When there is a unique globalmaximum,

θ̂ denotes the value ofθ that maximizesL(θ). In some applications, themaximum is not unique.
The functionL(θ)may havemultiple local maxima or can have relatively lat spots along which
L(θ) changes slowly, if at all. Such lat spots may or may not be at the maximum value ofL(θ).

The shape and magnitude of L(θ) relative to L(θ̂) over all possible values of θ describe the
information about θ that is contained in datai, i = 1, . . . , n. The relative likelihood function is

deined as R(θ) = L(θ)/L(θ̂). R(θ) allows one to assess the probability of the data for values
of θ, relative to the probability at the ML estimate. For example, R(θ) = 0.1 implies that the

probability of the data is 10 times larger at θ̂ than at θ.
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Figure 12.2 Relative likelihood function R(θ) = L(θ)/L(θ̂) for the n = 200 α-particle interarrival times.

The tall vertical line indicates the ML estimate of θ based on all 10,220 interarrival times (considered to be the

population mean). The short vertical lines show the likelihood-based approximate 95% conidence interval for

θ from the n = 200 sample data.

Example 12.4 Relative Likelihood for the α-Particle Data. Figure 12.2 shows the relative
likelihood function for the n = 200 sample data. The maximum of R(θ) in Figure 12.2 is at

the ML estimate θ̂ = 572.3. The tall vertical line at 596.34 shows the ML estimate of θ based
on all of the 10,220 arrival times. Section 12.3.1 explains the right-hand-side vertical axis and
shows how to use R(θ) to compute conidence intervals for θ.

After computing the ML estimate of a distribution F (t; θ), it is good practice to plot this
estimate along with parametric conidence intervals for F (t; θ) on a probability plot. This
provides a visual comparison with the nonparametric estimate of the cdf (i.e., the plotted
points). Such a plot is also useful for presenting the results of the analysis and providing an
assessment of distributional goodness of it.

Example 12.5 Summary of Estimates for the α-Particle Data. Figure 12.3 is another expo-
nential probability plot for the n = 200 sample observations. The solid line is the ML estimate,

F (t; θ̂), of the exponential cdf F (t; θ). The dotted lines are drawn through a set of pointwise
likelihood-based approximate 95% conidence intervals for F (t; θ); these intervals will be
explained in Section 12.3.3. These intervals can be compared with the nonparametric simulta-
neous conidence bands shown in Figure 12.1.

Table 12.2 summarizes the results from itting an exponential distribution to the 200 sample
arrival times, showingML estimates, standard errors, and approximate 95% conidence intervals
for θ, the mean of the exponential interarrival time distribution, and for λ = 1/θ, the arrival
intensity rate, using three different methods described in Sections 12.3 and 12.6. Due to the
relatively large sample size in this example (n = 200), there is little difference in the results
among the three methods.
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Figure 12.3 Exponential probability plot of the n = 200 sample observations for the α-particle interarrival
time data. The solid line is the ML estimate of the exponential distribution F (t; θ) and the dotted lines are

pointwise approximate 95% conidence intervals for F (t; θ).

12.3 LIKELIHOOD-BASED CONFIDENCE INTERVALS FOR
SINGLE-PARAMETER DISTRIBUTIONS

The likelihood function is a versatile tool for assessing the information that the data contains on
parameters or on functions of the parameters that are of practical interest, such as distribution
quantiles and values of the cdf. Most importantly, it provides a useful method for inding
approximate conidence intervals for parameters and functions of parameters.

Mean time between
arrivals θ Arrival rate λ × 105

ML estimate θ̂ 572.3 ML Estimate λ̂ × 105 175

Standard error ŝeθ̂ 41.72 Standard error ŝeλ̂×105 13

Approximate 95% Approximate 95%
conidence intervals conidence intervals

Likelihood-based [498, 662] Likelihood-based [151, 201]

Wald Zlog(θ̂) ∼̇NORM(0, 1) [496, 660] Wald Zlog(λ̂) ∼̇NORM(0, 1) [152, 202]

Wald Zθ̂ ∼̇NORM(0, 1) [490, 653] Wald Zλ̂ ∼̇NORM(0, 1) [149, 200]

Table 12.2 Results of itting an exponential distribution to the n = 200 observations for the

α-particle interarrival time data.
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12.3.1 Confidence Intervals for the Exponential Distribution Mean

An approximate 100(1 − α)% likelihood-based conidence interval [θ
˜
, θ̃] for the exponential

distribution mean θ is the set of all values of θ such that

−2 log[R(θ)] ≤ χ2
(1−α ;1)

or, equivalently, the set deined by

R(θ) ≥ exp
[
−χ2

(1−α ;1)/2
]
, (12.5)

where χ2
(1−α ;1) is the 1 − α quantile of the chi-square distribution with 1 degree of freedom.

The theoretical justiication for this interval is given in Section D.5.

Example 12.6 Likelihood-BasedConidence Interval for theMeanTimebetweenArrivals

of α-Particles. Figure 12.2 shows the likelihood-based approximate 95% conidence interval
for θ, based on the n = 200 sample observations. In particular, in this igure the interval
determined by the intersections of the relative likelihood function R(θ) with the horizontal line
at exp[−χ2

(0.95;1)/2] = 0.147 (corresponding to 0.95 on the conidence level axis), provides

an approximate 95% conidence interval for θ. Thus, the two short vertical lines drawn down
from this intersection give the endpoints of this conidence interval as [498, 662], as shown in
Table 12.2.

An approximate one-sided conidence bound can be obtained by using the appropriate
endpoint of a two-sided conidence interval and appropriately adjusting the conidence level.
In particular, a one-sided 100(1 − α)% lower or upper conidence bound is the corresponding
endpoint of a two-sided 100(1 − 2α)% conidence interval.

Example 12.7 Likelihood-Based One-Sided Conidence Bounds for the Mean Time

between Arrivals of α-Particles. In Figure 12.2, the intersections of the relative likelihood
function R(θ) with the horizontal line at exp[−χ2

(0.95;1)/2] = 0.147 provide approximate one-

sided 97.5% conidence bounds for θ. For approximate one-sided 95% conidence bounds, the
horizontal line would be drawn at exp[−χ2

(0.90;1)/2] = 0.259 (corresponding to 0.90 on the

right-hand scale of Figure 12.2).

12.3.2 Confidence Intervals for a Monotone Function of the Exponential
Distribution Mean

The arrival rate λ = 1/θ is a monotone decreasing function of θ. As a consequence, the

conidence interval [1/θ̃, 1/θ
˜
] for λ will contain λ if and only if the corresponding conidence

interval for θ contains θ. Thus this conidence interval for λ has the same conidence level as
the corresponding conidence interval for θ. Conidence intervals for other monotone functions
of θ can be obtained in a similar manner.

Example 12.8 Likelihood-Based Conidence Interval for the Arrival Rate of α-Particles.
The ML estimate of the arrival rate λ is obtained from the n = 200 sample observations as

λ̂ = 1/θ̂ = 0.00175. The likelihood-based approximate 95% conidence interval for λ is

[λ
˜
, λ̃] =

[
1

θ̃
,

1

θ
˜

]
= [0.00151, 0.00201],

as given in Table 12.2.
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12.3.3 Confidence Intervals for F (t; θ)

Because the exponential cdf F (t; θ) is a decreasing function of θ, a conidence interval for
F (te ; θ) at time te is

[F
˜

(te), F̃ (te)] = [F (te ; θ̃), F (te ; θ˜
)]. (12.6)

Example 12.9 Conidence Intervals for the cdf of the α-Particle Time between Arrivals.

The dotted lines in Figure 12.3 show pointwise likelihood-based approximate 95% conidence
intervals for F (t; θ), based on the n = 200 sample observations, computed using (12.6).

12.3.4 Effect of Sample Size on the Likelihood and Confidence Interval Width

Statistical theory shows that, for most statistical models, the variance (not the standard error)
of an estimator is inversely proportional to the sample size. Thus, increasing the sample size

by a factor k approximately reduces the width of a conidence interval by a factor 1/
√

k. For
example, we need to increase the sample size by a factor of 4 to cut the expected width of a
conidence interval approximately in half.

Example 12.10 The Effect of Sample Size on the Width of Conidence Intervals for the

α-Particle Mean Time between Arrivals. To illustrate the effect of sample size on the like-
lihood function and the resulting likelihood-based conidence intervals, we have constructed,
and shown in Table 12.3, binned pseudo-samples of size n = 20, n = 2,000 and n = 20,000,
in addition to the previous sample of size n = 200, from the complete α-particle data, which
consisted of n = 10,220 observations. These pseudo-samples were constructed to have a con-
stant proportion of observations within each bin so that the ML estimate of θ is the same for
each of the four samples (this is why we call them “pseudo”-samples).

Figure 12.4 is a plot ofR(θ) for then = 20, 200 and 2,000 samples.R(θ) for then = 20,000
sample is not shown; it is too narrow. The vertical line at the center of the igure shows the
estimate of the mean of the n = 20,000 sample. For each sample, the short vertical lines drawn
from the intersections of the horizontal line with the corresponding relative likelihood give the
likelihood-based approximate 95% conidence interval for θ. We note from Figure 12.4 that the

Interarrival times
Time Frequency of occurrence

Interval endpoints Samples of frequencies

Lower Upper n = 20,000 n = 2,000 n = 200 n = 20
Interval ti−1 ti di di di di

1 0 100 3,000 300 30 3
2 100 300 5,000 500 50 5
3 300 500 3,000 300 30 3
4 500 700 3,000 300 30 3
5 700 1,000 2,000 200 20 2
6 1,000 2,000 3,000 300 30 3
7 2,000 4,000 1,000 100 10 1
8 4,000 ∞ 0 0 0 0

Table 12.3 Alpha-particle pseudo-samples constructed to have a constant proportion

within each bin.
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Figure 12.4 Relative likelihoods R(θ) = L(θ)/L(θ̂) for the n = 20, 200, and 2,000 pseudo-samples from

the α-particle data, showing the likelihood-based 95% conidence intervals for θ (short vertical lines) and the

mean of the n = 20,000 sample (long vertical line).

spread of the likelihood function for a sample size of 2,000 is much tighter than that for the
smaller samples, indicating that the larger samples contain much more information about θ.

12.4 LIKELIHOOD-BASED ESTIMATION METHODS FOR LOCATION-SCALE
AND LOG-LOCATION-SCALE DISTRIBUTIONS

This section describes methods for computing likelihood-based conidence intervals for com-
mon distributions with more than one parameter. The methods presented in this section and
Section 12.5 will be illustrated by the two-parameter Weibull and lognormal distributions, but
they apply to many other distributions.

12.4.1 Background on Location-Scale and Log-Location-Scale Distributions

The location-scale and log-location-scale families of distributions include the continuous prob-
ability distributions used most frequently in practical applications. They include the normal
(location-scale), lognormal (log-location-scale), and Weibull (log-location-scale) distributions.
The general cdf and pdf for the location-scale distribution family are

F (x)= Pr(X ≤x)=Φ
(x−µ

σ

)
and f(x)=

dF (x)

dx
=

1

σ
φ
(x−µ

σ

)
, −∞<x<∞,

where µ is the location parameter and σ is the scale parameter of the distribution of X . If,
for example, Φ(z) and φ(z) are replaced by the standard normal cdf and pdf, Φnorm(z) and
φnorm(z), respectively (deined in Section 3.1.1), then the distribution of X is normal with
mean (location parameter) µ and standard deviation (scale parameter) σ.
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The general cdf and pdf for the log-location-scale distribution family are, respectively,

F (t) = Φ

[
log(t) − μ

σ

]
and f(t) =

dF (t)

dt
=

1

σt
φ

[
log(t) − µ

σ

]
, t > 0.

If, for example, Φ(z) and φ(z) are replaced by the standard normal cdf and pdf, Φnorm(z)
and φnorm(z), respectively, then the distribution of T is lognormal. In this case, exp(µ) is
the lognormal distribution median (also a scale parameter) and σ is the lognormal distribution
shape parameter. If Φ(z) and φ(z) are replaced by the standard smallest extreme value dis-
tribution (also known as the Gumbel distribution of minima), Φsev(z) = 1 − exp[− exp(z)]
and φsev(z) = exp[z − exp(z)], respectively, then the distribution of T is Weibull. Thus the
Weibull cdf is

Pr(T ≤ t;µ, σ) = F (t;µ, σ) = Φsev

[
log(t) − µ

σ

]
= 1 − exp

[
−
(

t

η

)β
]
, t > 0,

where β = 1/σ is the Weibull distribution shape parameter and η = exp(µ) is the Weibull
distribution scale parameter. Section C.3.1 provides further deinitions and properties of these
and other location-scale and log-location-scale distributions.

12.4.2 Likelihood Function for Location-Scale Distributions

The likelihood function for a sample x1 , . . . , xn from a location-scale distribution,
F (x;µ, σ) = Φ[(x − µ)/σ], consisting of a combination of left-censored, exact (i.e., uncen-
sored), and right-censored observations, is

L(µ, σ) =
n∏

i=1

Li(µ, σ; datai)

=
n∏

i=1

[F (xi ;µ, σ)]
κ i [f(xi ;µ, σ)]

δ i (1−κ i )[1 − F (xi ;µ, σ)]
(1−δ i )(1−κ i )

=
n∏

i=1

[
Φ
(xi − µ

σ

)]κ i

×
[

1

σ
φ
(xi − µ

σ

)]δ i (1−κ i )

×
[
1 − Φ

(xi − µ

σ

)](1−δ i )(1−κ i )

,

(12.7)

where

δi =

{
1 if xi is an exact observation

0 if xi is a left- or right-censored observation

and

κi =

{
1 if xi is a left-censored observation

0 if xi is an exact or a right-censored observation.

When there is no censoring, the normal distribution likelihood function simpliies and the values

of µ and σ that maximize it are µ̂ = x̄ and σ̂ = [
∑n

i=1(xi − x̄)2/n]
1/2

, where x̄ is the sample
mean of the observations x1 , . . . , xn .

12.4.3 Likelihood Function for the Lognormal, Weibull, and Other
Log-Location-Scale Distributions

Because the logarithms of lognormal, Weibull, and other log-location-scale random variables
are location-scale random variables, the likelihood functions for these distributions can also be
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written in terms of the standardized location-scale distributions. In particular, for a sample con-
sisting of a combination of left-censored, exact, and right-censored observations, the likelihood
function is

L(μ,σ) =
n∏

i=1

{
Φ

[
log(ti) − µ

σ

]}κ i

×

{
1

σti

φ

[
log(ti) − µ

σ

]}δ i (1−κ i )

×

{
1 − Φ

[
log(ti) − µ

σ

]}(1−δ i )(1−κ i )

, (12.8)

where δi and κi are as deined in Section 12.4.2.
Some computer programs omit the 1/ti term in (12.8). Because this term does not depend on

the unknown parameters, this has no effect on the ML estimates or the likelihood ratio. It does,
however, affect the reported value of the likelihood (or more commonly the log-likelihood) at
the maximum (and elsewhere). Thus readers need to be cautious when comparing values of
maximum (log-)likelihoods from different software.

12.4.4 Maximum Likelihood Estimation and Relative Likelihood for
Log-Location-Scale Distributions

As discussed in Section 12.2.1, ML methods provide estimates from an assumed distribution,
even with censored data. Similar to the distribution itting in Chapter 4, itting a lognormal
(Weibull) distribution is equivalent to itting a straight line through the nonparametric estimate
of the cdf on a lognormal (Weibull) probability plot, using ML to it the line. Comparison
of the nonparametric estimate of the cdf with the itted line provides an assessment of the
distributional it. For initial exploratory evaluations of data and models, it is useful to plot the
relative likelihood R(µ, σ) = L(µ, σ)/L(µ̂, σ̂) or a similarly deined R[exp(µ), σ]. With two
parameters, a contour plot of the relative likelihood (see Example 12.11) provides a helpful
initial assessment of the plausible region of parameter values.

Example 12.11 Atrazine Concentration Data Weibull and Lognormal ML Estimates.

Atrazine is a herbicidewidely used in theUnited States and other parts of theworld. Experiments
with animals have suggested adverse health effects of exposure to atrazine (e.g., Tillitt et al.,
2010). Use of atrazine has been banned in the European Union since 2004.

Junk et al. (1980) compared June 1978 readings (taken before the growing season) from a
sample of 24 Nebraska wells with similar readings obtained in September (after the growing
season). The data were also analyzed by Helsel (2005). We consider the June 1978 data. Our
analyses to characterize atrazine concentration at that time will be based on the assumption that
the 24 Nebraska wells are a random sample from a deined larger population of Nebraska wells.
The data are shown in Table 12.4. For nine of the wells, the concentration of atrazine was below

0.38 0.04 < 0.01 0.03 0.03 0.05
0.02 < 0.01 < 0.01 < 0.01 0.11 0.09

< 0.01 < 0.01 < 0.01 < 0.01 0.02 0.03
0.02 0.02 0.05 0.03 0.05 < 0.01

Table 12.4 Atrazine concentration data. Concentration is in

units of µg/L. The nine observations identiied by < 0.01
were below the detection limit of 0.01 µg/L.
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Figure 12.5 Event plot of the atrazine data with left-censoring (denoted by left-pointing triangle) for obser-

vations below the detection limit.

the detection limit of 0.01 μg/L. Thus these observations are left censored. Figure 12.5 is an
event plot that displays both the observed values and the left-censored data.

Figure 12.6 is a lognormal distribution contour plot of the relative likelihood function
R[exp(μ), σ] = L[exp(µ), σ]/L[exp(µ̂), σ̂] for these data. The plot indicates plausible ranges
of values for exp(µ) and σ. The relative likelihood surface exhibits a unique maximum at the
ML estimates [exp(µ̂) = 0.01747 and σ̂ = 1.3710].

Figures 12.7 and 12.8 are lognormal and Weibull probability plots, respectively, of the data,
with ML estimates of F (t) shown by straight lines. The small-dashed curves in Figures 12.7
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and 12.8 are drawn through a set of pointwise likelihood-based approximate 95% conidence
intervals for F (t) (computed as described in Section 12.5.4). The long-dashed curve on the
Weibull probability plot in Figure 12.8 is the ML estimate of the lognormal distribution F (t).

Table 12.5 shows ML estimates for μ, exp(μ), σ, t0.90 (the 0.90 distribution quantile), and
F (0.30), for the itted lognormal and Weibull distributions. The parameters µ and σ for the
lognormal and Weibull distributions are not directly comparable because these parameters have
different interpretations for these two distributions. The tabulation also shows standard errors
and likelihood-based and Wald-approximation 95% conidence intervals that will be discussed
subsequently.

Figure 12.8 and Table 12.5 show that inferences with the lognormal andWeibull distributions
are in good agreementwithin the range of the data, as seen, for example, by the estimates of t0.90

and F (0.30). Figure 12.8, however, shows increasing differences between the two distributions
when extrapolating outside the range of the data (especially in the lower tail of the distribution).
This illustrates the importance of exercising extreme caution in making inferences about the
tails of an assumed distribution outside the data range. Such extrapolations tend to be highly
dependent on the assumed distribution and may differ appreciably even between models that
seem to it well within the range of the data, as in this example. We also note that the conidence
intervals shown in Figures 12.7 and 12.8 are based on the assumption of a lognormal and a
Weibull distribution, respectively, and do not relect possible departures from these distributional
assumptions. Subsequent discussion of the atrazine data will focus on the lognormal it to
the data.

12.5 LIKELIHOOD-BASED CONFIDENCE INTERVALS FOR PARAMETERS
AND SCALAR FUNCTIONS OF PARAMETERS

This section describes methods for computing likelihood-based conidence intervals for distri-
butions or models with more than one parameter. Our examples will deal with two-parameter
location-scale and log-location-scale distributions with parameters µ and σ (per our discussion
in Section 12.4) in general and the Weibull and lognormal distributions in particular. The meth-
ods, however, also apply to other distributions and models with a relatively small number of
parameters (e.g., two or three).

12.5.1 Relative Likelihood Contour Plots and Likelihood-Based Joint
Confidence Regions for µ and σ

Using the large-sample chi-square approximation for the distribution of the likelihood-ratio
statistic (see Section D.5.1), each of the constant-likelihood contour lines in a relative likeli-
hood function contour plot, such as that shown for the atrazine data in Figure 12.6, deines
an approximate joint conidence region for µ and σ with coverage probability close to its
nominal value 100(1 − α)%, even in moderately small samples (e.g., 15–20 uncensored obser-
vations, as established in simulation studies). In particular, for a two-dimensional relative likeli-
hood, the regionR(θi , θj ) > exp[−χ2

(1−α ;2)/2] = α provides an approximate likelihood-based

100(1 − α)% joint conidence region for θi and θj , where θi and θj are the parameters of a
two-parameter distribution.

Example 12.12 Joint Conidence Region for the Atrazine Data Lognormal Distribu-

tion Parameters (µ,σ). The region R(µ, σ) > exp(−χ2
(0.90;2)/2) = 0.05 in Figure 12.6

provides a joint likelihood-based approximate 95% conidence region for μ and σ for the
atrazine data. Figure 12.9, similar to Figure 12.6, plots contours of constant values of
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Distribution

Lognormal Weibull

ML estimate μ̂ −4.047 −3.488

Standard error ŝeμ̂ 0.3096 0.3383

Approximate 95%
conidence intervals for μ

Likelihood-based [−4.785, −3.467] [−4.984, −3.351]

Wald Zμ̂ ∼̇NORM(0, 1) [−4.654, −3.441] [−4.151, −2.825]

ML estimate exp(μ̂) 0.01747 0.01759

Standard error ŝeexp(μ̂) 0.005407 0.006897

Approximate 95%
conidence intervals for exp(μ)

Likelihood-based [0.00836, 0.0312] [0.006847, 0.03507]

Wald Zexp(μ̂) ∼̇NORM(0, 1) [0.006870, 0.02807] [0.004074, 0.03111]

Wald Zμ̂ ∼̇NORM(0, 1) [0.009522, 0.03204] [0.008158, 0.0379]

ML estimate σ̂ 1.3710 1.5078

Standard error ŝeσ̂ 0.2752 0.2820

Approximate 95%
conidence intervals for σ

Likelihood-based [0.965, 2.141] [1.089, 2.294]

Wald Zlog(σ̂ ) ∼̇NORM(0, 1) [0.925, 2.032] [1.045, 2.175]

Wald Zσ̂ ∼̇NORM(0, 1) [0.832, 1.910] [0.955, 2.061]

ML estimate t̂0.90 0.1012 0.1075

Standard error ŝet̂0 . 9 0
0.04004 0.03481

Approximate 95%
conidence intervals for t0.90

Likelihood-based [0.05332, 0.2849] [0.0609, 0.2423]

Wald Zlog( t̂0 . 9 0 ) ∼̇NORM(0, 1) [0.04662, 0.2198] [0.0570, 0.2028]

Wald Zt̂0 . 9 0
∼̇NORM(0, 1) [0.02275, 0.1797] [0.03929, 0.1757]

ML estimate F̂ (0.30) 0.9810 0.9894

Standard error ŝeF̂ (0.30) 0.01911 0.01351

Approximate 95%
conidence intervals for F (0.30)

Likelihood-based [0.9046, 0.9982] [0.9235, 0.9995]

Wald Ẑe ∼̇NORM(0, 1) [0.8975, 0.9980] [0.9275, 0.9996]

Wald ZF̂ ∼̇NORM(0, 1) [0.9435, 1.0185] [0.9629, 1.0159]

Table 12.5 Atrazine concentration data ML estimates, standard errors and likelihood-based and

Wald-approximation 95% conidence intervals.
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Figure 12.9 Contour plot of the lognormal joint likelihood-based conidence regions for exp(μ) and σ for

the atrazine data. The ML estimates are indicated by the dot.

100Pr{X2
(2) ≤ −2 log[R(µ, σ)]}, giving approximate conidence levels for joint likelihood-

based conidence regions for µ and σ. Figure 12.9 is identical to Figure 12.6, except that the
contours are labeled with nominal conidence levels and each represents an approximate joint
conidence region for exp(µ) and σ.

12.5.2 The Profile Likelihood and Likelihood-Based Confidence Intervals for µ
and exp(µ)

In practice, for models that have more than one parameter, we frequently focus on just a single
parameter (or a single scalar function of multiple parameters, to be discussed shortly). Then
we use a proile likelihood to provide information about—and construct a conidence interval
for—the focus parameter. Proile likelihoods are based on the theory of likelihood-ratio tests
(see Section D.5.5). The proile likelihood gets its name from the maximization operation,
described below, that deines the proile function. If there are two parameters, the likelihood
can be visualized as a mountain and the proile likelihood as the projection of the mountain
against the background from the direction of the parameter of interest. The proile likelihood is
then used to construct a conidence interval for the focus parameter in a manner similar to the
relative likelihood for a one-parameter distribution (e.g., Figure 12.2).

In particular, for a two-parameter location-scale or log-location-scale distributionwith param-
eters µ and σ, the proile likelihood for µ is

R(µ) = max
σ

[
L(µ, σ)

L(µ̂, σ̂)

]
. (12.9)

The interval overwhichR(µ) > exp[−χ2
(1−α ;1)/2] is an approximate 100(1 − α)% conidence

interval for µ (see Section D.5.5 for the underlying theory). A conidence interval for µ includes
all values of µ that have a relatively high proile likelihood. Using (12.9), for every ixed value
of µ, we ind the point of highest relative likelihood by maximizing R(µ,σ) with respect to
σ. This gives the proile likelihood value for that value of µ. Values of µ with relatively high
proile likelihood are more plausible than those with low proile likelihood.
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Figure 12.10 Lognormal distribution proile likelihood R[exp(μ)] for the median atrazine concentration.

Due to the invariance property of ML estimators (e.g., if μ̂ is the ML estimate of μ, then
exp(μ̂) is the ML estimate of exp(μ)), a proile likelihood for μ can be translated directly into a
proile likelihood for exp(μ), corresponding to the lognormal median or Weibull scale parame-
ter. Likelihood-based conidence intervals translate in a similar manner. For example, if [μ

˜
, μ̃]

is a likelihood-based conidence interval for μ, then [exp(μ
˜
), exp(μ̃)] is the corresponding

likelihood-based conidence interval for exp(μ).

Example 12.13 Proile Likelihood and Conidence Interval for the Lognormal Median

Atrazine Concentration and the Lognormal Distribution Scale Parameter. Figure 12.10
shows the proile likelihoodR[exp(μ)] for the atrazine data, assuming a lognormal distribution,
and also the likelihood-based 95% conidence interval for the distribution median exp(μ). The
right-hand scale of Figure 12.10 gives the conidence level for the likelihood-based conidence
interval (the relationship between the proile relative likelihood scale and the conidence level
scale is based on (12.5)). To obtain a two-sided conidence interval for exp(μ) one draws
a horizontal line at the desired conidence level and then, at the two points at which this line
intersects the proile likelihood curve, one draws vertical lines down to themedian concentration
axis to determine the lower and upper endpoints of the resulting conidence interval. Thus, one
obtains a two-sided 95% conidence interval for exp(μ) given by [0.00836, 0.0312], as shown
in Table 12.5. The likelihood-based 95% conidence interval for μ is [−4.785, −3.467]; these
values are the natural logs of the endpoints of the likelihood-based conidence interval for
exp(μ), and are also shown in Table 12.5. These interval endpoints can also be obtained from
the proile likelihood in a manner similar to that described for Figures 12.2 and 12.4.

12.5.3 Likelihood-Based Confidence Intervals for σ

For two-parameter location-scale and log-location-scale distributions with parameters µ and σ,
the proile likelihood for σ is

R(σ) = max
µ

[
L(µ, σ)

L(µ̂, σ̂)

]
.
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Figure 12.11 Lognormal distribution proile likelihood R(σ) for the atrazine data.

The interval over which R(σ) > exp[−χ2
(1−α ;1)/2] is a likelihood-based approximate

100(1 − α)% conidence interval for σ. A 95% conidence interval for the Weibull shape

parameter β = 1/σ is [β
˜
, β̃] = [1/σ̃, 1/σ

˜
].

Example 12.14 Proile Likelihood R(σ) and Conidence Interval for σ for the Atrazine

Concentration Data. Figure 12.11 shows the proile likelihood R(σ) for σ for the atrazine
data, assuming a lognormal distribution. This plot also shows the construction of the likelihood-
based 95% conidence interval for σ, which was found to be [0.965, 2.141], as shown in
Table 12.5.

12.5.4 Likelihood-Based Confidence Intervals for Scalar Functions of µ and σ

The parameterization of a statistical model is typically chosen for some combination of tradi-
tion, scientiic meaning, and numerical/computational convenience. The location parameter µ
and the scale parameter σ are commonly used to describe location-scale distributions and the
corresponding log-location-scale distributions such as the lognormal and Weibull distributions
(although the Weibull scale parameter η = exp(µ) and shape parameter β = 1/σ are com-
monly used for that distribution). Prime interest, however, often centers on functions of these
distribution parameters such as cdf probabilities p = F (t) = Φ[(log(t) − µ)/σ] and distribu-
tion quantiles tp = F−1(p) = exp[µ + Φ−1(p)σ]. Such quantities could also be considered to
be alternative “parameters” of the distribution.

In general, the ML estimator of a function g(µ, σ) of (µ, σ) is ĝ = g(µ̂, σ̂). Due to the
invariance property of ML estimators, likelihood-based methods can, in principle, be readily
applied, to make inferences about such functions. In particular, for a scalar function, say
g1(µ, σ), this can be done by deining a one-to-one transformation (or reparameterization),
g(µ, σ) = (ω1 , ω2),where ω1 = g1(µ, σ) and ω2 = g2(µ, σ) are functions of µ and σ, deined
or chosen such that g(µ, σ) is a one-to-one transformation. In the case thatω1 is a newly deined
parameter, it sometimes sufices to take ω2 = σ or ω2 = µ. The likelihood in terms of the new
parameters (ω1 , ω2) isL∗(ω1 , ω2) = L(µ, σ),where (µ, σ) = g−1(ω1 , ω2).This approach can
be used to compute conidence intervals for the elements of g(µ, σ) if the irst partial derivatives
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of g(μ,σ)with respect to µ and σ are continuous. ThenML itting can be conducted and proile
plots obtained for the reparameterization using the approach previously described for µ and for
σ. This, in turn, leads to a procedure for obtaining likelihood-based conidence intervals for
any scalar or vector function of µ and σ. The method is simple to implement if one can readily
compute g(µ, σ) and its inverse, as is the case for lognormal and Weibull distribution quantiles
or cdf values. Otherwise, iterative numerical methods are needed for obtaining the required
inverse function.

Confidence interval for tp

The proile likelihood for the p quantile of a location-scale distribution tp = exp[µ + Φ−1(p)σ]
is

R(tp) = max
σ

{
L∗(tp , σ)

L∗(t̂p , σ̂)

}
= max

σ

{
L[log(tp) − σΦ−1(p), σ]

L(µ̂, σ̂)

}
.

This, in turn, allows calculation of a conidence interval for tp , in a manner that is similar to
that used for the parameters µ and σ, as described in Sections 12.5.2 and 12.5.3.

Example 12.15 Proile Likelihood and Conidence Interval for the 0.90 Quantile for the

Lognormal Distribution Fit to the Atrazine Concentration Data. Figure 12.12 shows a
contour plot for the relative likelihood R(t0.90 , σ), where t0.90 is the 0.90 quantile of the
atrazine concentration distribution. This plot provides a sense of the plausible ranges of val-
ues for t0.90 and σ. Figure 12.13 shows the corresponding proile likelihood for t0.90 . The
resulting likelihood-based 95% conidence interval for t0.90 , calculated in a manner similar
to that in Figure 12.10, is [0.05332, 0.2849]. This interval is shown in Figure 12.13 and in
Table 12.5.
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Figure 12.12 Contour plot of lognormal distribution relative likelihood R(t0 .90 , σ) for the atrazine data.
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Figure 12.13 Lognormal distribution proile likelihood R(t0 .90 ) for the atrazine data.

Confidence interval for F (te)

The proile likelihood for F (te) = Φ{[log(te) − μ]/σ}, the cdf of a location-scale distribution
at a speciied value te , is

R[F (te)] = max
σ

⎧
⎨
⎩

L∗[F (te), σ]

L∗
[
F̂ (te), σ̂

]

⎫
⎬
⎭ = max

σ

{
L[log(te) − Φ−1 [F (te)]σ, σ]

L(µ̂, σ̂)

}
.

This allows calculation of a conidence interval for F (te) like that for µ and σ, as described in
Sections 12.5.2 and 12.5.3.

Example 12.16 Proile Likelihood and Conidence Interval for F (0.30) for the Lognor-
mal Distribution Fit to the Atrazine Concentration Data. Figure 12.14 gives the proile
likelihood for F (0.30), the population fraction of wells for which the atrazine concentration
is less than te = 0.30µg/L. The likelihood-based 95% conidence interval for F (0.30) is
[0.9046, 0.9982]. This interval is shown in Figure 12.14 and Table 12.5. The width of this
interval is explained by the fact that an atrazine concentration of 0.30 is above all but one of the
24 observations in Table 12.4.

12.6 WALD-APPROXIMATION CONFIDENCE INTERVALS

This section describes Wald-approximation conidence intervals both with and without trans-
formations to improve the approximation and illustrates their application to the atrazine data.
These intervals can be viewed as large-sample approximations of likelihood-based conidence
intervals.

Wald conidence intervals—also known as normal-approximation conidence intervals—are
generally easy to compute from ML estimates for the model parameters and the corresponding
estimates of their standard errors (information typically provided by computer programs). Wald
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Figure 12.14 Lognormal distribution proile likelihood R[F (0.30)] for the atrazine data.

conidence intervals are provided by many statistical computer packages. As a result, these
intervals have been in common use much longer than the likelihood-based intervals discussed
so far in this chapter. Therefore, they are better known, especially among those who received
their formal statistical training some time ago. With moderate to large samples, Wald intervals
can provide useful approximations that can be computed easily.

Wald conidence intervals, however, can have major shortcomings. Simulation studies have
shown that in some applications, especially with small sample sizes, heavy censoring, and
nonnormal distributions, Wald interval procedures can have coverage probabilities that are
appreciably different from their nominal conidence levels. Thus, although the likelihood-based
intervals and the Wald intervals are both based on large-sample approximations, the likelihood-
based procedures generally give an appreciably better approximation.

Wald conidence regions and intervals are based on a quadratic approximation to the proile
log-likelihood. This approximation tends to be adequate when the proile log-likelihood is
approximately quadratic over the conidence region.With large samples, and the usual regularity
conditions (see Section D.3.2), a proile log-likelihood is approximately quadratic. Then the
Wald and the likelihood-based intervals will be in close agreement. In other situations, however,
theWald approximation can be seriously inadequate. Moreover, the sample size required to have
an adequate Wald approximation is dificult to determine because it depends on the model and
on the particular quantity that is to be estimated. Thus, when the quadratic approximation to
the log-likelihood is poor, likelihood-based conidence intervals, simulation-based conidence
intervals (Chapter 14), or Bayesian credible intervals (Chapters 15 and 16) should be used
instead of Wald-approximation intervals.

For censored data or data from truncated distributions, (see Meeker and Escobar, 1998,
Section 11.6, for a discussion differentiating these two types of situations), the adequacy of the
Wald approximation (and other “large-sample” approximations) also depends principally on the
amount of censoring and/or truncation. In particular, for censored data, the adequacy of a large-
sample approximation is more a function of the expected number of uncensored observations,
rather than the actual sample size. In fact, in some extreme examples, with heavy censoring
and estimation in the distribution tail, sample sizes in the thousands may still be insuficient for
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a good approximation. This also holds for large-sample approximations, including likelihood-
based intervals, in general. But the approximation provided by a likelihood-based procedure is
usually better, and sometimes much better, than the Wald approximation.

An additional dificulty with Wald conidence intervals is that, unlike likelihood-based con-
idence intervals, they are not transformation invariant. Thus, the choice of a transformation
can have a substantial effect on the resulting interval. A good choice for a transformation is one
that results in a proile likelihood that is approximately symmetric.

12.6.1 Parameter Variance-Covariance Matrix

Section D.5.6 describes the general theory for computing Wald conidence intervals. This
requires an estimate of the variance-covariance matrix for the ML estimates of the model
parameters. For a location-scale distribution (with location and scale parameters μ and σ,

respectively), one computes the local estimate Σ̂
θ̂
of Σ

θ̂
as the inverse of the observed infor-

mation matrix

Σ̂µ̂ ,σ̂ =

[
V̂ar(µ̂) Ĉov(µ̂, σ̂)

Ĉov(µ̂, σ̂) V̂ar(σ̂)

]
=

⎡
⎢⎢⎣
−

∂2L(µ, σ)

∂µ2
−

∂2L(µ, σ)

∂µ∂σ

−
∂2L(µ, σ)

∂σ∂µ
−

∂2L(µ, σ)

∂σ2

⎤
⎥⎥⎦

−1

,

where the partial derivatives are evaluated at µ = µ̂ and σ = σ̂. The intuitive motivation for
this estimator is that the partial second derivatives describe the curvature of the log-likelihood,
evaluated at theML estimate. A higher degree of curvature in the log-likelihood surface near the
maximum implies a concentrated likelihood near (µ̂, σ̂), implying better precision (i.e., smaller
variance) in the estimates.

Example 12.17 Estimate of the Variance-Covariance Matrix for the Atrazine Concen-

tration Data Lognormal ML Estimates. For the atrazine data and the lognormal distribution
model,

Σ̂µ̂ ,σ̂ =

[
0.095828 −0.024867

−0.024867 0.075726

]
.

An estimate of the correlation between µ̂ and σ̂ is

ρ̂µ̂ ,σ̂ = Ĉov(µ̂, σ̂)/
[
V̂ar(µ̂)V̂ar(σ̂)

]1/2

= −0.024867/(0.095828 × 0.0757)1/2 = −0.292.

This negative correlation is relected by the orientation of the likelihood contours in
Figure 12.6.

12.6.2 Wald-Approximation Confidence Intervals for µ and exp(µ)

Approximating the distribution of Zµ̂ = (µ̂ − µ)/ŝeµ̂ by a NORM(0, 1) distribution yields
a Wald 100(1 − α)% conidence interval for the location parameter µ of a location-scale
distribution as

[µ
˜
, µ̃] = µ̂ ∓ z(1−α/2) ŝeµ̂ , (12.10)

where ŝeµ̂ =

√
V̂ar(µ̂). As noted previously, a one-sided (lower or upper) approximate

100(1 − α)% lower (or upper) conidence bound for µ is obtained by replacing z(1−α/2)

with z(1−α) and using the appropriate endpoint of the two-sided conidence interval.
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One can readily construct a conidence interval for a monotone function (or transformation)
of a parameter by applying the function to the endpoints of the conidence interval calculated for
the parameter. For example, an approximate 100(1 − α)% conidence interval for the median
t0.50 = exp(µ) of a lognormal distribution (still based on the Zµ̂ ∼̇NORM(0, 1) approxima-

tion) is [t
˜0.50 , t̃0.50 ] = [exp(µ

˜
), exp(µ̃)]. Similarly, for theWeibull distribution, a conidence

interval for the scale parameter η (approximate 0.63 quantile) is [η
˜
, η̃] = [exp(µ

˜
), exp(µ̃)].

Example 12.18 Wald-Approximation Conidence Interval for the Median Atrazine Con-

centration and Lognormal Distribution Scale Parameter. Again using a lognormal distri-
bution for the atrazine data, substituting µ̂ = −4.047 and ŝeµ̂ =

√
0.095828 = 0.30956 into

(12.10) gives

[µ
˜
, µ̃] = −4.047 ∓ 1.960 × 0.30956 = [−4.654, −3.441],

which is an approximate 95% conidence interval for µ (the mean of the logs of the atrazine
concentrations). From this, the corresponding approximate 95% conidence interval for the
lognormal distribution median (which is also the lognormal distribution scale parameter t0.50 =
exp(µ)) is

[t
˜0.50 , t̃0.50 ] = [exp(µ

˜
), exp(µ̃)] = [exp(−4.6537), exp(−3.4403)]

= [0.009522, 0.03204].

This interval indicates that we are approximately 95% conident that the interval [0.009522,
0.03204] µg/L contains the actual exp(µ). Recall that exp(µ) is the median of the lognormal
distribution, interpreted in this application as the concentration level exceeded by 50% of the
wells in the sampled population.

12.6.3 Wald-Approximation Confidence Intervals for σ

Because σ must be positive, we follow the common practice of using the log transforma-
tion to obtain a conidence interval for this parameter. Approximating the sampling distribu-
tion of Zlog(σ̂ ) = [log(σ̂) − log(σ)]/ŝelog(σ̂ ) by a NORM(0, 1) distribution, an approximate
100(1 − α)% conidence interval for σ is

[σ
˜
, σ̃] = [σ̂/w, σ̂ × w],

where w = exp[z(1−α/2) ŝeσ̂/σ̂] and ŝeσ̂ =

√
V̂ar(σ̂).

Example 12.19 Wald-Approximation Conidence Interval for σ for the Atrazine Concen-

tration Data. For the lognormal distribution itted to the atrazine data, the shape parameter σ is
estimated to be σ̂ = 1.3710, an estimate of its standard error is ŝeσ̂ =

√
0.075726 = 0.2752,

and w = exp[1.960 × 0.2752/1.3710] = 1.4821. Thus, an approximate 95% conidence
interval for σ based on the approximation Zlog(σ̂ ) ∼̇NORM(0, 1), is

[σ
˜
, σ̃] = [1.3710/1.4821, 1.3710 × 1.4821] = [0.9251, 2.0319].

The comparison, given in Table 12.5, shows that the preceding conidence interval for σ based
on theWald approximationZlog(σ̂ ) ∼̇NORM(0, 1) agrees reasonably well with the likelihood-
based conidence interval. In contrast, the untransformed Wald conidence interval based on
the approximation Zσ̂ ∼̇NORM(0, 1) (computed as σ̂ ∓ 1.960 × ŝeσ̂ ), and also shown in
Table 12.5, differs considerably from both of these intervals. This provides further support for
the common practice of using the log transformation in computing conidence intervals for
distribution parameters that need to be positive.
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12.6.4 Wald-Approximation Confidence Intervals for Functions of μ and σ

Following the general theory in Section D.5.6, aWald conidence interval for a function ofµ and
σ, say g1 = g1(µ, σ), can be based on the large-sample approximateNORM(0, 1) distribution
of Zĝ1

= (ĝ1 − g1)/ŝeĝ1
. Then an approximate 100(1 − α)% conidence interval for g1 is

[g1

˜
, g̃1 ] = ĝ1 ∓ z(1−α/2) ŝeĝ1

,

where, using a special case of (D.28) in Section D.5.6 (and also an implementation of the delta
method, described in Section D.2),

ŝeĝ1
=

√
V̂ar(ĝ1)

=

[(
∂g1

∂µ

)2

V̂ar(µ̂) + 2

(
∂g1

∂µ

)(
∂g1

∂σ

)
Ĉov(µ̂, σ̂) +

(
∂g1

∂σ

)2

V̂ar(σ̂)

]1/2

. (12.11)

The partial derivatives in (12.11) are evaluated at µ = µ̂ and σ = σ̂.

Confidence interval for tp

An approximate 100(1 − α)% conidence interval for the distribution quantile tp = exp[µ +
Φ−1(p)σ] based on the large-sample approximate NORM(0, 1) distribution of Zlog( t̂p ) =

[log(t̂p) − log(tp)]/ŝelog( t̂p ) is

[tp

˜
, t̃p ] = [t̂p/w, t̂p × w], (12.12)

where w = exp[z(1−α/2) ŝet̂p
/t̂p ]. Applying (12.11) gives

ŝet̂p
=
[
V̂ar(t̂p)

]1/2

=
{

t̂2
pV̂ar[log(t̂p)]

}1/2

= t̂p

{
V̂ar(µ̂) + 2Φ−1(p)Ĉov(µ̂, σ̂) + [Φ−1(p)]2V̂ar(σ̂)

}1/2

. (12.13)

Example 12.20 Wald-Approximation Conidence Intervals for the 0.90 Quantile for the

Lognormal Distribution Fit to the Atrazine Concentration Data. The lognormal distribution
ML estimate of t0.90 is

t̂0.90 = exp
[
µ̂ + Φ−1

norm(0.9)σ̂
]

= exp[−4.0474 + 1.2815 × 1.3710] = 0.101

and substituting into (12.13) gives

ŝet̂0 . 9 0
= 0.1012

[
0.095828 + 2 × 1.2815 × (−0.024867) + 1.28152 × 0.075726

]1/2

= 0.040042.

An approximate 95% conidence interval for t0.90 based on Zlog( t̂0 . 9 0 ) ∼̇NORM(0, 1) is
obtained by substituting into (12.12), giving

[t
˜0.90 , t̃0.90 ] = [0.1012/2.1712, 0.1012 × 2.1712 = [0.0466, 0.220],

where w = exp[1.960 × 0.04004/0.1012] = 2.1712.



WALD-APPROXIMATION CONFIDENCE INTERVALS 239

An approximate 95% conidence interval for t0.90 based onZt̂0 . 9 0
∼̇NORM(0, 1) (no trans-

formation) is

[t
˜0.90 , t̃0.90 ] = [t̂0.90 ∓ z(0.975) ŝet̂0 . 9 0

]

= [0.10123 − 1.960 × 0.040042, 0.10123 + 1.960 × 0.040042]

= [0.0227, 0.180].

The preceding results are compared in Table 12.5. The two Wald intervals for t0.90 devi-
ate moderately and appreciably, respectively, from the likelihood-based interval. Also, both
deviate in the same direction. This is related to the left-skewed shape of R(t0.90), as seen in
Figure 12.13. The log transformation on t0.90 improves the symmetry of the proile likelihood

for t̂0.90 . Thus, the Wald interval based on a log transformation again does a better job approx-
imating the likelihood-based interval than does the Wald interval that does not employ this
transformation.

Confidence interval for F (te)

Let te be a speciied value for which an estimate of the cdf F (t) is desired. The ML esti-

mate for F (te) is F̂ (te) = F (te ; μ̂, σ̂) = Φ(ẑe)where ẑe = [log(te) − µ̂]/σ̂. An approximate
conidence interval for F (te) can be obtained from

[F
˜

(te), F̃ (te)] = F̂ (te) ∓ z(1−α/2) ŝeF̂ , (12.14)

where applying the delta method in (12.11) gives

ŝeF̂ =
φ(ẑe)

σ̂

[
V̂ar(µ̂) + 2ẑeĈov(µ̂, σ̂) + ẑ2

e V̂ar(σ̂)
]1/2

. (12.15)

The interval in (12.14) is based on the NORM(0, 1) approximation for ZF̂ = [F̂ (te) −
F (te)]/ŝeF̂ . This approximation may, however, be poor with a small to moderate number
of (uncensored) observations; the endpoints of the interval might even fall outside the range
0 ≤ F (te) ≤ 1.

Aswith otherWald approximations, an appropriate transformation g1 = g1(F )will generally
result in a procedure having a coverage probability that is closer to its nominal value if Zĝ1

=
(g1 − ĝ1)/ŝeĝ1

has a distribution that is closer than ZF̂ to NORM(0, 1). An interval of this
type that usually performs much better than the interval (12.14) is based on the assumption that

Ẑe = [log(te) − µ̂]/σ̂ approximately follows a NORM(0, 1) distribution; this is known as the
ẑ procedure. We irst construct a conidence interval for ze = [log(te) − µ]/σ as

[z
˜e , z̃e ] = ẑe ∓ z(1−α/2) ŝeẑe

, (12.16)

where ẑe is the observed value of Ẑe (i.e., computed from data). Using the delta method (see
Section D.2), we obtain

ŝeẑe
=

1

σ̂

[
V̂ar(µ̂) + 2ẑeĈov(µ̂, σ̂) + ẑ2

e V̂ar(σ̂)
]1/2

. (12.17)

Then the conidence interval for F (te) = Φ(ze), found by applying the monotone transforma-
tion Φ(z) to the endpoints of the [z

˜e , z̃e ] interval from (12.16), is

[F
˜

(te), F̃ (te)] =
[
Φ(z
˜e), Φ(z̃e)

]
. (12.18)

The endpoints of this interval will always be between 0 and 1.
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Example 12.21 Wald-Approximation Conidence Intervals for F (0.30) for the Lognor-
mal Distribution Fit to the Atrazine Concentration Data. Table 12.5 gives two Wald coni-
dence intervals forF (te) for te = 0.30μg/L (i.e., the probability that the atrazine concentration

will be less than 0.30μg/L) based, respectively, on assuming that Ẑe and ZF̂ are approxi-
mately NORM(0, 1) distributed. For the no-transformation method, we irst compute ẑe =

[log(0.30) + 4.0474]/1.3710 = 2.074 from which F̂ (0.30) = Φ(2.074) = 0.9810. Then,
from (12.15),

ŝeF̂ =
φ(2.074)

1.3710

[
0.095828 + 2 × 2.074 × (−0.024867) + 2.0742 × 0.075726

]1/2

= 0.019112;

and from (12.14),

[F
˜

(0.30), F̃ (0.30)] = 0.9810 ∓ 1.960 × 0.019112 = [0.944, 1.018]. (12.19)

For the ẑ procedure, using (12.15) and (12.17) gives

ŝeẑe
= ŝeF̂ /φ(ẑe) = 0.019112/φ(2.074) = 0.41158.

Then, using (12.16),

[z
˜e , z̃e ] = 2.074 ∓ 1.960 × 0.41158 = [1.2673, 2.8807].

Finally, using (12.18) gives

[F
˜

(0.030), F̃ (0.030)] = [Φ(1.2673), Φ(2.8807)] = [0.897, 0.998]. (12.20)

The comparison in Table 12.5 shows that the ẑ Wald interval from (12.20) agrees well with the
likelihood-based interval, but the Wald interval from (12.19) has an endpoint exceeding 1.0, a
clear indication of an inadequate large-sample approximation.

12.6.5 Using the Wald Approximation to Compute a Confidence Interval for a
Correlation Coefficient

The correlation coeficient is frequently used to describe the linear association between two con-
tinuous random variables. Formally, the correlation coeficient between two random variables
X and Y is deined as

ρ =
E[(X − µX )(Y − µY )]

σX σY

,

where (µX , µY ) and (σ2
X , σ2

Y ) are, respectively, the means and variances of X and Y . The
correlation coeficient is also a parameter of the well-known bivariate normal distribution (e.g.,
Johnson and Wichern, 2002, Chapter 4). For a random sample (xi , yi), i = 1, . . . , n, from
jointly normally distributed variables (X,Y ), the ML estimator of the correlation coeficient is

ρ̂ =

∑n
i=1(xi − x̄)(yi − ȳ)

[
∑n

i=1(xi − x̄)2 ]
1/2

[
∑n

i=1(yi − ȳ)2 ]
1/2

, (12.21)

where x̄ and ȳ are the samplemeans of the observed xi and yi values, i = 1, . . . , n, respectively.
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A commonly used method to construct a conidence interval for ρ is to use a Wald approxi-
mation on the so-called Fisher’s z-transformation scale; that is,

ẑ =
1

2
log

(
1 + ρ̂

1 − ρ̂

)
. (12.22)

This transformation maps the ∓1 range of ρ̂ into a range of ∓∞ for ẑ. A commonly used

estimate of the standard error of ẑ is ŝeẑ =
√

1/(n − 3) and an approximate 95% conidence
interval for z = 1

2
log[(1 + ρ)/(1 − ρ)] is

[z
˜
, z̃] = ẑ ∓ z(1−α/2) ŝeẑ . (12.23)

Then a Wald conidence interval for ρ is obtained by inverting the z-transformation using

[ρ
˜
, ρ̃] = [tanh(z

˜
), tanh(z̃)],

where tanh(z) = [exp(2z) − 1]/[exp(2z) + 1] is the hyperbolic tangent function.

Example 12.22 Wald-Approximation Conidence Interval for the Correlation between

Body Weight and Pulse Rate. Table 12.6 gives pulse rate and body weight measurements for
a, presumably random, sample of 20 middle-aged male members of a health itness club. The
data set (which includes several further response variables) is from Jackson (1991, page 267)
and is attributed to Professor A.C. Linnerud from North Carolina State University. Figure 12.15
is a scatter plot of the observations. The investigators desired a conidence interval for the
coeficient of correlation between body weight and pulse measurement.

Body weight (pounds) Pulse rate (beats/minute)

191 50
189 52
193 58
162 62
189 46
182 56
211 56
167 60
176 74
154 56
169 50
166 52
154 64
247 50
193 46
202 62
176 54
157 52
156 54
138 68

Table 12.6 Body weight and pulse rate measurements for

a sample of 20 middle-aged men.
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Figure 12.15 Scatter plot of pulse rate versus bodyweightmeasurements for a sample of 20middle-agedmen.

Using (12.21) yields ρ̂ = −0.365762. Substituting into (12.22) gives

ẑ =
1

2
log

(
1 − 0.365762

1 + 0.365762

)
= −0.3835218,

and because n = 20, ŝeẑ =
√

1/(20 − 3) = 0.2425356. Then substituting into (12.23) gives

[z
˜
, z̃] = −0.3835218 ∓ 1.959964 × 0.2425356 = [−0.8588828, 0.09183933].

Thus, the Wald 95% conidence interval for ρ is

[ρ
˜
, ρ̃] = [tanh(z

˜
), tanh(z̃)] = [−0.696, 0.092].

The resulting rather wide interval can be attributed to the relatively small sample size. Also,
we note that, because the 95% conidence interval includes the value 0 (although barely), the
correlation is not statistically signiicantly different from 0 at the 5% signiicance level. The
preceding interval will be compared in Chapter 13 to similar conidence intervals computed
using nonparametric bootstrap methods.

The preceding conidence interval applies to the population from which the sample was
assumed to be randomly selected (in this case the health club members). The investigators’
interest, however, is likely to be not in the middle-aged men from this particular health club,
but in the general population of middle-aged men that belong to health clubs, or even middle-
agedmen in general. It warrants repeating that statistical inferences about a population or process
of interest apply only to the degree that the observations can be regarded as a random sample
from the population or process of interest. In this case, this requires assuming that the health
club members are “representative” of the larger population of interest. As a consequence—and
as we have tried to emphasize in Chapter 1—the calculated statistical interval describes only
the statistical uncertainty due to taking a (presumably) random sample from the population or
process of interest. The actual uncertainty is larger due to likely departures from assumptions
that were (implicitly or explicitly) made in computing the interval.
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12.7 SOME OTHER LIKELIHOOD-BASED STATISTICAL INTERVALS

12.7.1 Likelihood-Based and Wald-Approximation Confidence Intervals for
Other Distributions

The discussion in much of this chapter has focused on the construction of approximate con-
idence intervals for location-scale and, especially, log-location-scale distributions in general,
and for lognormal and Weibull distributions in particular. The concepts presented, however,
apply for a wide range of statistical models; see Meeker and Escobar (1998, Chapter 11) for
examples.

12.7.2 Likelihood-Based One-Sided Tolerance Bounds and Two-Sided
Tolerance Intervals

We describe in Section 2.4.2 how a one-sided lower (upper) tolerance bound to be exceeded
by (to exceed) at least a proportion p of a population is equivalent to a one-sided conidence
bound for the 1 − p (for the p) distribution quantile. We can, therefore, use likelihood-based or
Wald-approximation one-sided conidence bounds on quantiles (see Sections 12.5.4 and 12.6.4)
to construct one-sided tolerance bounds.

Furthermore, as explained in Section D.7.3, an approximate two-sided tolerance interval
to contain p can be obtained by combining a lower 100(1 − α/2)% conidence bound for
the (1 − p)/2 distribution quantile with an upper 100(1 − α/2)% conidence bound for the
(1 + p)/2 distribution quantile. For example, to construct an approximate 95% tolerance inter-
val to contain at least a proportion 0.90 of the population, one would combine a lower 97.5%
conidence bound for the distribution quantile t0.05 with an upper 97.5% conidence bound
for the t0.95 quantile. The coverage probability for this approximate tolerance interval will be
conservative (i.e., greater than the nominal conidence level) if the conidence intervals for the
quantiles are exact. The justiication for this approximation (based on a Bonferroni inequality)
is described in Section D.7.3.

12.7.3 Likelihood-Based Prediction Intervals

Likelihood-based prediction intervals are constructed by using a likelihood function that is
proportional to the joint probability distribution of the unknown parameters and the quantity
to be predicted (future random variable), treating the quantity to be predicted as an unknown
parameter. Then methods analogous to those presented earlier in this chapter can be applied to
construct a proile likelihood for the future value of the random variable and from this obtain the
desired likelihood-based prediction interval. Theory and technical details for likelihood-based
prediction intervals are provided in Butler (1986, 1989) and Bjørnstad (1990). Some simple
applications are described by Nelson (2000) and Nordman and Meeker (2002).

BIBLIOGRAPHIC NOTES

Most textbooks on mathematical statistics—for example, Casella and Berger (2002) and
Boos and Stefanski (2013)—give a simple introduction to likelihood and maximum likelihood
estimation. Several books, including Edwards (1985), Kalbleisch (1985), Severini (2000),
and Pawitan (2001), place special emphasis on the subject of likelihood. Meeker and Escobar
(1995) describe some of the important concepts underlying proile likelihood plots and how
Wald conidence intervals can be used as approximations to likelihood-based conidence
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intervals. Hong et al. (2008a) demonstrate the potential high degree of sensitivity that Wald
intervals can have to the chosen transformation and provide a method to construct such inter-
vals for distribution probabilities. Hong et al. (2008b) prove that a set of pointwise conidence
intervals for F (t) for a range of t values is equivalent to a set of pointwise conidence intervals
for tp for any corresponding range of p, if the intervals are based on likelihood (and this is not
generally true for other conidence interval methods). Jeng and Meeker (2000) report simulation
results comparing the coverage probabilities of likelihood, Wald, and parametric bootstrap con-
idence interval procedures (to be described in Chapter 14) for estimating quantiles of Weibull
and lognormal distributions.

Nair (1981, 1984) and Meeker and Escobar (1998, Chapters 3) show how to compute simul-
taneous conidence bands for a cdf, such as those used in probability plots.



Chapter 13
Nonparametric Bootstrap

Statistical Intervals

OBJECTIVES AND OVERVIEW

This chapter describes and illustrates computationally intensive nonparametric bootstrapmeth-
ods to compute statistical intervals, primarily for continuous distributions. These methods
require obtaining a sequence of simulated bootstrap samples, based on the given data. Then
these bootstrap samples are used to generate corresponding bootstrap estimates.

As mentioned in the introduction to Chapter 5, nonparametric implies that no particu-
lar parametric distribution needs to be speciied when applying the statistical method. The
distribution-free methods introduced in Chapter 5 were also nonparametric. The nonparamet-
ric methods presented in this chapter, however, are not distribution-free because the statistical
properties (e.g., coverage probabilities) of the procedures depend on the unspeciied underlying
probability distribution.

Although nonparametric bootstrap procedures do not require speciication of a particular
parametric distribution for the underlying data, they generally do not work well with small
samples (e.g., fewer than ten observations for some applications) in the sense that the procedures
have coverage probabilities that might be far from the speciied nominal conidence level.

The alternative parametric bootstrap methods presented in Chapter 14 require one to specify
the form of a parametric distribution for the given data. Such methods can lead to excellent
approximate, or sometimes exact, procedures for computing statistical intervals, even for small
samples, when the chosen distribution is correct. Parametric bootstrap methods may, however,
result in misleading answers if the chosen distribution is seriously in error.

The topics discussed in this chapter are:

� The basic concept of using nonparametric bootstrapmethods to obtain conidence intervals
(Section 13.1).

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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� Nonparametric methods for generating bootstrap samples and obtaining bootstrap esti-
mates (Section 13.2).

� Choice of the number of bootstrap samples and how to manage such samples (Sec-
tion 13.3).

� How to obtain nonparametric bootstrap conidence intervals (Section 13.4).

13.1 INTRODUCTION

13.1.1 Basic Concepts

In Chapter 4, we presented exact methods for computing conidence intervals for a normal dis-
tribution. The computer-intensive nonparametric bootstrap methods described in this chapter
provide alternatives for constructing approximate conidence intervals for distribution charac-
teristics such as the mean and standard deviation, without having to make an assumption about
the underlying distribution.

The general idea behind the nonparametric bootstrap procedures presented in this chapter (as
well as the parametric simulation/bootstrap procedures presented in Chapter 14) is to replace
mathematical approximations or intractable distribution theory with Monte Carlo simulation,
taking advantage of the power of modern computer hardware and relatively recent developments
in statistical theory. This approach, like other methods, needs to be implemented with much
care and should be guided by the theoretical statistical principles that we outline later in this
chapter. Improper application can result in poor or seriously incorrect results.

13.1.2 Motivating Example

We use the following example to illustrate the nonparametric bootstrap methods for computing
statistical intervals.

Example 13.1 Estimating Total Tree Volume. Table 13.1 gives calculated tree volume mea-
surements for a, presumed random, sample of n = 29 trees from a much larger population
of 25-year-old loblolly pines (Pinus taeda L.). The data were obtained from the Southwide
Seed Source Study described in Poudel and Cao (2013) (and given to us by Professor Quang
Cao from Louisiana State University). The original observations provided tree diameters at
breast height (dbh, 4.5 feet above ground) in centimeters (cm) and the total tree height in
meters (m). The tree volumes, V , in cubic meters (m3) were then estimated using the equation
V = 0.00017 + 0.0000281 × (dbh)2h proposed by Matney and Sullivan (1982).

Figure 13.1 is a histogram of the data. The volume measurement of 0.307 m3 seems to be
an outlier which, however, was conirmed to be a correct measurement. It is desired to estimate
the total volume of the trees in the sampled population. To do so, it is necessary to estimate
mean tree volume; this was found to be x̄ = 0.1091. To quantify the statistical uncertainty of
this estimate, a conidence interval is required. Figure 13.1 suggests that a normal distribution

0.149 0.086 0.149 0.194 0.044 0.104
0.156 0.122 0.117 0.079 0.179 0.307
0.049 0.165 0.043 0.079 0.109 0.102
0.195 0.063 0.068 0.029 0.079 0.124
0.151 0.115 0.023 0.016 0.067

Table 13.1 Tree volumes in cubic meters (m3 ).
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Figure 13.1 Histogram of the tree volume data.

does not provide a good representation of the tree volume distribution and, in fact, the form of
this distribution is uncertain. Therefore, we construct a conidence interval that does not require
any distributional assumptions.

13.2 NONPARAMETRIC METHODS FOR GENERATING BOOTSTRAP
SAMPLES AND OBTAINING BOOTSTRAP ESTIMATES

Statistical intervals are computed as a function of the available data, consisting ofn observations
denoted by DATA. Bootstrap interval procedures employ, in addition, a set of B bootstrap
samples, DATA∗

j , j = 1, . . . , B, generated by Monte Carlo simulation that, in some sense
(depending on the type of bootstrap procedure) mimics the original sampling procedure. For
each of theB bootstrap samples, one ormore bootstrap statistics are computed. There are several
different methods for generating nonparametric bootstrap samples. This section describes two
methods and reasons for using each of them. Section 13.4 shows how the resulting bootstrap
samples and statistics are used to compute nonparametric conidence intervals.

13.2.1 Nonparametric Bootstrap Resampling

Figure 13.2 illustrates the nonparametric bootstrap resampling method. In this method a point

estimate, θ̂, of the scalar quantity of interest θ (or a particular function of interest computed
from θ) is obtained initially directly from the data. Then B bootstrap samples (also called
resamples), each of size n, are obtained by sampling, with replacement, from the n cases in
the given data set. Speciically, to obtain the jth bootstrap sample DATA∗

j , we select with
replacement a sample of size n from the n original observations in DATA. Each observation in
DATA has an equal probability of being chosen on each draw. Because each draw from the n
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original observations is replaced before the next draw, some observations in the originalDATA
may be selected more than once and others not at all in a single bootstrap sample (as will be
illustrated in columns 2, 3, and 4 of Table 13.2).

For each bootstrap resample, an estimate of the desired distribution characteristic of interest
θ (or a function of interest related to θ) is computed from the n resample values, giving

θ̂∗j , j = 1, . . . , B. The resulting B values of θ̂∗ can then be used to compute the desired
statistical interval or intervals as described in Section 13.4.

Example 13.2 Nonparametric Bootstrap Samples for Mean Tree Volume. We illustrate
nonparametric bootstrap resampling with the mean tree volume estimation problem (Exam-
ple 13.1). First, B = 200,000 samples, each of size n = 29, were resampled with replacement
from the 29 tree volumes given in Table 13.1. The mean (the quantity of interest here) of
each of these B samples was then calculated. Figure 13.3 is a histogram of the resulting B
nonparametric bootstrap sample means. The solid vertical line in the center of the igure shows
the median of the 200,000 bootstrap sample means, while the tall dotted line is the mean of the
original data. The closeness of these two lines indicates that there is almost no median bias in
the bootstrap estimates of the mean. The short vertical lines in the tails of the igure indicate
the 0.025 and 0.975 quantiles of the empirical distribution of bootstrap sample means (i.e., the
sample means computed for each of the B bootstrap samples). We will see in Section 13.4.2
that these two quantiles provide a crude but simple approximate 95% nonparametric bootstrap
conidence interval for the population mean tree volume.
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Uniform Uniform

Multinomial distribution Dirichlet distribution

Integer weights Continuous weights

Tree volume j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

0.149 1 1 0 1.839 0.829 1.626

0.086 1 1 1 0.344 0.920 0.135

0.149 0 1 0 0.230 4.115 1.708

0.194 0 1 1 0.400 0.199 0.483

0.044 0 2 2 0.340 0.681 0.908

0.104 4 3 0 0.099 0.132 1.714

0.156 1 0 1 0.546 0.467 0.344

0.122 0 0 1 1.208 1.057 4.715

0.117 2 1 1 3.495 0.268 0.542

0.079 2 0 1 1.245 0.139 0.168

0.179 0 3 2 1.176 0.796 0.244

0.307 2 1 0 1.638 3.473 0.265

0.049 2 3 1 0.132 0.603 1.201

0.165 1 1 0 1.961 0.601 1.043

0.043 1 0 0 0.917 1.072 3.113

0.079 0 0 1 0.608 0.198 0.084

0.109 1 2 1 1.045 2.040 0.323

0.102 2 0 0 0.207 0.463 0.160

0.195 0 0 2 1.219 0.697 2.600

0.063 1 1 2 2.316 0.501 0.181

0.068 2 0 1 1.289 0.302 3.126

0.029 2 1 3 1.042 0.172 0.666

0.079 0 2 0 2.118 1.807 0.073

0.124 1 1 2 0.386 0.227 0.136

0.151 1 2 1 0.177 3.453 0.662

0.115 0 1 3 0.188 1.170 0.592

0.023 0 0 1 0.505 0.686 1.038

0.016 1 0 1 0.782 1.289 0.417

0.067 1 1 0 1.549 0.643 0.734

Mean μ̂ = 0.1091 μ̂∗
j = 0.105 0.115 0.100 0.115 0.135 0.107

Standard deviation σ̂ = 0.0624 σ̂∗
j = 0.067 0.059 0.056 0.067 0.078 0.056

Standard error ŝe = 0.0116 ŝe∗j = 0.012 0.011 0.010 0.012 0.014 0.010
Bootstrap-t ratio t∗j = (µ̂∗

j − µ̂)/ŝe∗j = −0.322 0.513 −0.909 0.491 1.778−0.228

Table 13.2 Examples of integer and continuous random-weight bootstrap sampling from the tree

volume data.

13.2.2 Nonparametric Random-Weight Bootstrap Sampling

The resampling method described in Section 13.2.1 can also be viewed as a random-weight
method of sampling where n integer weights (ω1 , . . . , ωn), one for each observation in the
data set, are a sample from an n-cell multinomial distribution with equal probability 1/n for
each of the n cells. Some of the original observations will be resampled more than once (and
thus have integer weights greater than 1) and others will be not be sampled at all (and thus will
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Tree Volume Mean Bootstrap Estimates (m3)
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Figure 13.3 Histogram of the sample means for B = 200,000 bootstrap resamples from the tree volume

data, showing the mean of the original data (tall dotted vertical line), the median or 0.50 quantile (tall solid

vertical line), and the 0.025 and 0.975 quantiles (short vertical lines) of the empirical distribution of the bootstrap

sample means.

have weight 0). A potential problem with the resampling method described in Section 13.2.1
is that, in some applications, certain resamples of n observations may not be able to estimate
the quantity of interest (in the case of nonparametric bootstrap) or all of the model parameters
(in the case of parametric bootstrap), even if the original data are able to do so. Situations for
which this is likely to happen include:

� When data are censored and there are only a limited number of noncensored observations.
In such cases, it is possible to obtain resamples with all observations censored.

� Evenwhen data are not censored,we have encountered applicationswith small tomoderate
sample sizes where the resampling method resulted in noticeable instability in estimating
parameters from resampled data. See Section 14.7.3 for an example.

� Logistic regression applications for which the probability of a response tends to have either
a high or a low probability of a “success.” For example, in an experiment to estimate the
probability of a success as a function of dose and if successes and only successes occur
above a given dose level, resamples will not be able to estimate the model parameters.

� The analysis of data from designed experiments for which the number ofmodel parameters
is close to the number of observational units. In this case resamples will often contain
repeats at certain conditions (and no observations at others), making it impossible to
estimate all model parameters.

Random-weight bootstrap sampling is an appealing alternative to the method described in
Section 13.2.1 that can be applied when the estimation method allows noninteger weights (e.g.,
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maximum likelihood or least squares). In particular, nonnegative weights can be generated from
a continuous distribution of a positive random variable that has the same mean and standard
deviation (usually taken to be equal to 1). Weights generated independently from an exponential
distribution with mean 1 is a common choice. Another alternative is to generate the weights
from a uniform Dirichlet distribution, which can be achieved by standardizing the independent
exponential weights to sum to n. In either of these cases bootstrap estimates are obtained by
applying an appropriate weighted estimation method, using theB sets of randomweights. Then
if the original data were capable of doing the desired estimation, the estimation will usually be
successful for each set of random weights.

Generating the random weights does not require any assumptions about the underlying
distribution of the data, and thus this method is a nonparametric method of generating bootstrap
samples. The random-weight bootstrap method can, however, be used in both nonparametric
and parametric (see Chapter 14) bootstrap applications. In situations for which there is little or
no risk of estimation problems with resampling, the resampling (integer weight) method and
the random continuous weight method will give similar bootstrap results.

Standard weighted-observation estimation formulas can be used to compute the random-
weight bootstrap estimates for some simple statistics. For example, let x1 , . . . , xn denote a
random sample from a distribution of interest. Random-weight bootstrap estimates of the mean
and standard deviation would be

μ̂∗ =
1∑n

i=1 ωi

n∑

i=1

ωixi and σ̂∗ =

[
1∑n

i=1 ωi

n∑

i=1

ωi(xi − µ̂∗)2

]1/2

. (13.1)

Note that the formula for σ̂∗ corresponds to the formula for unweighted data that divides the
sum of squares by the sample size n (which is the maximum likelihood estimator for a normal
distribution), and we will use such estimates of standard deviations throughout this chapter.

To get the complete set of bootstrap estimates, the generation of the n random weights and
the computation of the estimates from (13.1) would be repeated B times. Note that the data are
constant and the random weights induce randomness in the computed bootstrap statistics.

Table 13.2 contrasts the generation of bootstrap estimates from simple resampling discussed
in Section 13.2.1 (equivalent to multinomial generation of integer weights) and Dirichlet distri-
bution continuous weights, showing three bootstrap samples and bootstrap statistics from each
method.

The important difference between the integer and continuous weight methods of generating
bootstrap samples illustrated in Table 13.2 is that some of the integer weights are 0, indicating
that the associated observations are completely ignored in computing the bootstrap statistics
using this method. In contrast, when the continuous weights are used, each of the original
observations has a contribution to the computation of the bootstrap statistics.

In addition to the situations listed above, the random-weight bootstrap method has been
applied most commonly in situations with complicated data and/or a complicated parametric
model and when maximum likelihood estimation is used. For maximum likelihood estimation,
the weighted likelihood is

L(θ) = L(θ; DATA) = C

n∏

i=1

[Li(θ; datai)]
ω i

where, as in (12.2), Li(θ; datai) is the likelihood contribution for observation i. This weighted

likelihood is maximized just like a regular likelihood to obtain bootstrap estimates θ̂
∗
of the

model parameters in θ. Use of the random-weight bootstrap will be illustrated in Chapter 14.
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13.3 BOOTSTRAP OPERATIONAL CONSIDERATIONS

13.3.1 Choosing the Number of Bootstrap Samples

As we have seen, bootstrap methods are based on Monte Carlo simulation. Thus, if a procedure
is repeated, one should expect to obtain different answers due to Monte Carlo sampling error
(i.e., variability in the generation of bootstrap samples). This variability may be small or large
in magnitude, depending on B, the number of bootstrap samples, and the sampling variability
in the estimates. One can, however, make the Monte Carlo sampling error arbitrarily small by
choosing B to be suficiently large. Therefore, if it is easy to generate samples, analysts might
decide to play it safe and set B to be large so as not to have to be concerned with this source
of variability. There has, in fact, been some inlation in suggested bootstrap sample sizes with
the growth of computing power over the years. We have seen recommendations to use values
of B = 1,000,000, or even larger, to obtain intervals that, for all practical purposes, eliminate
Monte Carlo sampling error altogether in most applications. In our examples, we have generally
used B = 200,000 so as to obtain statistical intervals with small Monte Carlo sampling error
(resulting in some variability in the third signiicant digit of an interval endpoint in most cases).

If the application requires an estimation method that is computationally intensive, smaller
values of B will be favored. The speciic number will depend on the goal of the computation.
Historically, bootstrap sample sizes as small as B = 200 have been suggested for estimating
the bias or standard error of an estimate andB = 2,000 orB = 4,000 samples for constructing
conidence intervals (and a larger number for higher conidence levels). For some applications,
such as constructing conidence intervals on a distribution tail quantile, values of B need to be
larger than those for, say, constructing conidence intervals for the median. Today, with more
computer power than ever available, the recommendations have generally increased to values
likeB = 10,000 toB = 50,000. One argument for the smaller values ofB being acceptable is
that even with smallB, Monte Carlo error is generally small relative to the width of the interval,
and thus may be of little practical importance. One should, however, strive to avoid reporting
digits that are mostly or completely in error. Another possible approach is to automatically
review the results every b bootstrap samples (where b might be 1,000 or 10,000) and stop
sampling when the interval endpoints have stabilized.

13.3.2 Saving Bootstrap Results

It is often useful, especially for parametric and computationally intensive bootstrap procedures,
to retain the individual simulated sample results for possible future use and assessment. This
will, for example, allow one to perform graphical assessment of the Monte Carlo simulation
results (which we highly recommend for new and unfamiliar situations) and to quickly compute
alternative intervals for different quantities or intervals with different conidence levels. Thus,
when using a parametric bootstrap approach to estimate functions of a parameter vector θ,

one might retain in a computer ile, the parameter estimates θ̂
∗

j , j = 1, . . . , B, and, in some
cases, the lower-triangular elements of the corresponding variance-covariance matrices of the
parameter estimates.

13.3.3 Calculation of Quantiles of a Bootstrap Distribution

Bootstrap inference generally requires one to calculate quantiles of the empirical distribution of
bootstrap estimates of the quantity of interest (or of a particular function related to this quantity).
We deine the p quantile of an empirical distribution as the kth order statistic, where k = pB
when pB is an integer and k is equal to pB rounded to the next largest integer when pB is not
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an integer. There are, however, alternative deinitions for the p quantile (e.g., rounding to the
nearest integer). Hyndman and Fan (1996) describe nine suchmethods used in various statistical
packages. All nine of these methods are available, by option, in the quantile function in R.
Most of these methods use more sophisticated interpolation than the simple method employed
in this book. When B is large (as in our examples), however, the differences in the results
obtained among the alternative methods tend to be small.

13.4 NONPARAMETRIC BOOTSTRAP CONFIDENCE INTERVAL METHODS

As in other chapters, our discussion in this and subsequent sections in this chapter deals primarily
with two-sided conidence intervals. As described in Section 2.7, however, one can obtain a
one-sided lower (or upper) conidence bound from the corresponding two-sided interval by
substituting α for α/2 in the expression for the lower (or upper) endpoint of the two-sided
interval.

13.4.1 Methods for Computing Nonparametric Bootstrap Confidence Intervals
from the Bootstrap Samples

One classic approach for constructing a nonparametric bootstrap conidence interval for a
quantity of interest is to use “appropriate” quantiles of the empirical bootstrap distribution of
that quantity. There are a number of ways to select such quantiles. We present three of these:
the simple percentile method, the bias-corrected and accelerated (BCa) percentile method, and
the bias-corrected (BC) percentile method. We also present the nonparametric “bootstrap-t”
method, based on the idea of an approximate pivotal quantity (see Appendix E) which is an
extension of the nonparametric “basic bootstrap” method, which we also discuss.

The simple percentile method is attractive due to its ease of application and intuitive appeal.
Bootstrap large-sample theory shows, however, that the BCa and bootstrap-t methods tend to
have a coverage probability that is closer to the nominal conidence level. We, therefore, advise
practitioners to use one of these two methods, when possible, rather than the simple percentile
method. The BC method also gives better results than the simple percentile method; it is useful
when it is dificult or impossible to use the BCa or the bootstrap-t method. More details are
given in the next ive subsections.

13.4.2 The Simple Percentile Method

Description of the method

The simple percentile method is a straightforward approach for using the generated empirical
bootstrap distribution (described in Sections 13.2.1 and 13.2.2) to obtain nonparametric boot-
strap conidence intervals. It uses the α/2 and 1 − α/2 quantiles of the empirical bootstrap
distribution of the estimates of the quantity of interest as the estimated endpoints of the desired
conidence interval. That is,

[
θ
˜
, θ̃

]
=

[
θ̂∗(α/2), θ̂∗(1−α/2)

]
, (13.2)

where θ̂∗(p) is the p quantile of the empirical distribution of bootstrap estimates for θ, the quantity
of interest. If, for example, a conidence interval for the mean of a distribution is desired, then
one uses the α/2 and 1 − α/2 quantiles, respectively, of the empirical distribution of bootstrap
sample means as the lower and upper bounds of the desired conidence interval.
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Method Section Interval

Parametric traditional normal distribution 4.2 [0.085, 0.133]
Nonparametric simple percentile bootstrap 13.4.2 [0.087, 0.133]
Nonparametric BCa percentile bootstrap 13.4.3 [0.089, 0.135]
Nonparametric BC percentile bootstrap 13.4.4 [0.088, 0.134]
Nonparametric basic 13.4.5 [0.085, 0.131]
Nonparametric bootstrap-t 13.4.6 [0.082, 0.130]
Parametric Wald using an assumed Weibull distribution 12.6.4 [0.089, 0.134]
Parametric GPQ bootstrap using an assumed Weibull distribution 14.4.3 [0.088, 0.138]

Table 13.3 Approximate 95% conidence intervals, using different methods, for mean tree volume.

Example 13.3 The Simple Percentile Bootstrap Conidence Interval for Mean Tree Vol-

ume. Consider again the data in Example 13.1. The histogram of the 200,000 bootstrap sample
mean tree volumes displayed in Figure 13.3 is approximately symmetric and centered near the
mean of the simulated data (indicated by the tall vertical line). This leads us to expect that in this
application, the simple percentile method will provide an acceptable conidence interval for the
mean. Applying this method to construct a 95% conidence interval for mean tree volume based
on the 200,000 bootstrap means displayed in the histogram, one takes the 0.025 and 0.975 quan-
tiles of this empirical bootstrap distribution as the desired lower and upper conidence bounds,
respectively. Using the method in Section 13.3.3 leads to the 5,000th (i.e., 0.025 × 200,000)
and 195,000th (i.e., 0.975 × 200,000) ordered observations, resulting in the 95% conidence
interval of [μ̂∗

(0.025) , μ̂∗
(0.975)] = [0.087, 0.133] for the mean tree volume. It might be argued

that for this example one does not need bootstrap methods to construct a conidence interval
for mean tree volume because such an interval can be easily obtained using the well-known
traditional method, assuming an underlying normal distribution (see Section 4.2). Moreover,
due to the central limit theorem and the sample size (n = 29), the assumption of normality of
the sampled population is not expected to be critical. However, because there is evidence of
skewness in the original data (Figure 13.1), the nonparametric bootstrap method is more accu-
rate and requires little or no extra cost of computation. Thus, both 95% conidence intervals were
calculated for this application and are compared in Table 13.3, alongwith other conidence inter-
vals that will be discussed shortly. The differences among the intervals in this example might,
however, be judged to be suficiently small so as to be of little practical importance.

Adequacy of simple percentile method

Statistical theory suggests that the simple bootstrap percentile method works well when there
exists a monotone transformation of the point estimator of the quantity of interest (although
the speciic form of this transformation does not need to be known) and the distribution of this
transformed estimator has a normal distribution with a median equal to the transformed median
of the bootstrap distribution of the quantity of interest. Furthermore, it is required that the
variance of this transformed estimator does not depend on the value of the quantity of interest.
When such a transformation does not exist, a bootstrap-based conidence interval using the
simple percentile method could be incorrect in one or both of two ways:

� The coverage probability differs from the speciied nominal conidence level. For example,
a nominal 95% simple percentile bootstrap conidence interval procedure may have a
coverage probability that differs appreciably from 0.95.
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� The two tail probabilities differ appreciably. Then, even though a 95% simple percentile
bootstrap conidence intervalmay have a coverage probability close to 0.95, one calculated
tail probability is appreciably less than 0.025, while the other is correspondingly greater
than 0.025. This problem is of particular concern when using the simple percentile method
to construct one-sided conidence bounds.

Much research has addressed the preceding concerns (see the Bibliographic Notes section at the
end of this chapter). This research has yielded more sophisticated approaches for constructing
conidence intervals from the empirical bootstrap distribution, such as the methods described
next.

13.4.3 The BCa Percentile Method

Motivation for the method

The theory for the simple percentile method described briely in the preceding subsection
requires the existence of a normalizing, unbiasing, and variance-stabilizing transformation.
The bias-corrected and accelerated (BCa) method was developed for situations for which the
assumptions for use of the simple percentile method are not, at least approximately, satisied.
The BCa method is more complicated to implement than the simple percentile method, but it
adjusts for both bias and variance dependency in the distribution of the estimator. Thus, the BCa
method provides an improved way to construct nonparametric bootstrap conidence intervals,
as compared to the simple percentile method. Technical details are in references given in the
Bibliographic Notes section at the end of this chapter.

Description of the method

The basic idea of the BCa method is to replace the quantiles α/2 and 1 − α/2 used in the
simple percentile method by the adjusted quantiles α1 and α2 . In particular, the conidence
interval using the BCa percentile method is given by

[
θ
˜
, θ̃

]
=

[
θ̂∗(α1 ), θ̂∗(α2 )

]
,

where the adjusted quantiles are

α1 = Φnorm

[
z(b̂) +

z(b̂) − z(1−α/2)

1 − â[z(b̂) − z(1−α/2)]

]
, (13.3)

α2 = Φnorm

[
z(b̂) +

z(b̂) + z(1−α/2)

1 − â[z(b̂) + z(1−α/2)]

]
. (13.4)

Here z(α) is the α quantile of the standard normal distribution, and b̂ is the fraction of the B

values of θ̂∗ that are less than θ̂. In the preceding expressions, z(b̂) is the bias-correction value

that corrects for median bias in the distribution of θ̂∗ (on the standard normal scale) and â is the
acceleration constant that corrects for the dependence on θ of the variance of the transformed

value of θ̂∗.
Different methods have been suggested for computing â. It can be shown that the acceleration

constant is related to the skewness of the sampling distribution of the estimator of the quantity of
interest. One frequently used and relatively simple method employs the delete-one-observation-
at-a-time “jackknife method” of estimating the skewness coeficient (i.e., the standardized third
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central moment) of the distribution of the estimator of the quantity of interest. This estimate of
the acceleration constant is described, for example, in Efron and Tibshirani (1993, Chapter 11)
and is given by

â =

∑n
i=1(θ̂[.] − θ̂[i])3

6[
∑n

i=1(θ̂[.] − θ̂[i])2 ]3/2
, (13.5)

where θ̂[i] is the estimate of θ, calculated from the original sample with the ith data point

deleted and θ̂[.] =
∑n

i=1 θ̂[i]/n is the jackknife sample mean. When the jackknife method is
not appropriate for computing the acceleration constant (e.g., when there is censoring), a more
complicated method, such as Monte Carlo simulation, is required to estimate its value.

Example 13.4 The BCa Percentile Bootstrap Conidence Interval for Mean Tree Vol-

ume. For the tree volume example, b̂ = 0.5115926. Thus, z(0.5115926) = 0.02906232 and
â = 0.0296337. These two estimates suggest, respectively, only a small amount of positive

bias and right-skewness in the empirical bootstrap distribution of θ̂∗. Then using 1 − α = 0.95
and z(0.975) = 1.959964 and substituting into (13.3) and (13.4) gives

α1 = Φnorm

[
0.02906232 +

0.02906232 − 1.959964

1 − 0.0296337(0.02906232 − 1.959964)

]
= 0.03614,

α2 = Φnorm

[
0.02906232 +

0.02906232 + 1.959964

1 − 0.0296337(0.02906232 + 1.959964)

]
= 0.98393.

Thus, the BCa percentile bootstrap conidence interval for the mean tree volume is given by

the 0.03614 and 0.98393 quantiles of the empirical distribution of θ̂∗, namely the 7,228th and
196,786th ordered values of the empirical bootstrap distribution, resulting in a 95% conidence
interval for mean tree volume of [0.089, 0.135]. As expected from the relatively small correc-
tions needed, the conidence interval endpoints for the BCa method are, in this example, close
to those from the simple percentile method (see Table 13.3).

13.4.4 The BC Percentile Method

Motivation for the method

In some applications (e.g., when some observations are censored) it might be dificult to compute
the value â required for the BCa method. In such cases, using the BCa method with â = 0 can
still provide an important improvement over the simple percentile method with little additional
effort. This approach is called the bias-corrected percentile (BC) method.

Description of the method

Setting â = 0 in (13.3) and (13.4) gives

α1 = Φnorm

[
2z(b̂) − z(1−α/2)

]
, (13.6)

α2 = Φnorm

[
2z(b̂) + z(1−α/2)

]
. (13.7)
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Example 13.5 The BC Percentile Bootstrap Conidence Interval for Mean Tree Volume.

Using the same inputs as in Example 13.4 and substituting into (13.6) and (13.7) gives

α1 = Φnorm [2 × 0.02906232 − 1.959964] = 0.02860,

α2 = Φnorm [2 × 0.02906232 + 1.959964] = 0.97821.

Thus, the BC percentile conidence interval for the mean tree volume is given by the 0.02860

and 0.97821 quantiles of the empirical distribution of θ̂∗, namely the 5,719th and 195,641th
ordered values of the empirical bootstrap distribution, resulting in a 95% conidence interval for
mean tree volume of [0.088, 0.134]. As expected from the relatively small correction needed,
the conidence interval endpoints for the BC method are again close to those from the simple
percentile method. We also note that, even though the resulting conidence intervals are very
similar, the correction in α values is more moderate using the BC method, as compared to the
BCa method (see Table 13.3).

13.4.5 The Nonparametric Basic Bootstrap Method

Motivation for the method

The bootstrap method described here is sometimes called the “basic bootstrap method” and is
a method as easy to apply as the simple percentile bootstrap method. Suppose that the quantity

of interest is θ and that the estimator of θ is θ̂. This basic method assumes that the distributions
of θ̂ − θ and θ̂∗ − θ̂ are approximately the same.

Description of the method

The conidence interval using the basic bootstrap method is
[
θ
˜
, θ̃

]
=

[
2θ̂ − θ̂∗(1−α/2), 2θ̂ − θ̂∗(α/2)

]
,

where the quantiles θ̂∗(α/2) and θ̂∗(1−α/2) are the same quantiles of the empirical distribution of

bootstrap estimates used in (13.2) for the simple percentile method.

When the sampling distribution of θ̂ is skewed, the distribution of θ̂ − θ will depend strongly
on the value of θ and thus the motivating assumption given above will not hold. For this reason,
this bootstrap method is not recommended for general use.

Example 13.6 The Basic Bootstrap Conidence Interval for Mean Tree Volume. Using
µ̂ = 0.1091 (from Table 13.2) and the same quantiles from Example 13.3, the basic bootstrap
method gives

[
µ
˜
, µ̃

]
=

[
2µ̂ − µ̂∗

(0.975), 2µ̂ − µ̂∗
(0.025)

]

= [2 × 0.1091 − 0.1329, 2 × 0.1091 − 0.0873] = [0.085, 0.131],

again comparing well with the conidence intervals obtained using the other methods (see
Table 13.3).

13.4.6 The Nonparametric Bootstrap-t Method

Motivation for the method

The bootstrap-tmethod is an extension of the basic bootstrapmethod described in Section 13.4.5

that corrects for skewness of the sampling distribution of θ̂. The bootstrap-t method does
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not require speciication of an acceleration constant and is thus conceptually simpler and
more broadly applicable than the BCa method. Also, theoretical assessments have shown the
bootstrap-t method to be a strong competitor to the BCa method in providing a coverage
probability that is close to the nominal conidence level. In order to use the bootstrap-t method
it is, however, necessary to be able to estimate the standard error of the estimate of the quantity
of interest from each bootstrap sample.

Description of method

Suppose that the quantity of interest is θ and that from the given data one can compute the

estimate θ̂ and ŝeθ̂ , a corresponding estimate of the standard error of θ̂. Then the bootstrap

estimates θ̂∗j and their corresponding estimated standard errors ŝeθ̂∗,j are computed from each

bootstrap sample j = 1, . . . , B. From these, the bootstrap-t (studentized) statistics

z∗

θ̂ ,j
=

θ̂ − θ̂∗j
ŝeθ̂∗,j

, j = 1, . . . , B, (13.8)

are computed. The bootstrap-t conidence interval is
[
θ
˜
, θ̃

]
=

[
θ̂ + z∗

θ̂(α / 2 )
ŝeθ̂ , θ̂ + z∗

θ̂( 1−α / 2 )
ŝeθ̂

]
,

where z∗

θ̂(α )
is the α quantile of the empirical distribution of the z∗

θ̂ ,j
, j = 1, . . . , B, values.

Intuitively, the bootstrap-t method can be thought of as a reinement of the Wald method
described in Section 12.6. Instead of using a normal distribution approximation to the t-like
statistic, the distribution is approximated by a bootstrap simulation. Like the Wald method,
the conidence intervals generated by the bootstrap-t method depend on the transformation
scale used in constructing the intervals. Thus, unlike the simple percentile and the BCa and
BC percentile methods, the bootstrap-t method does not have the important property of being
transformation invariant.

Example 13.7 The Bootstrap-t Conidence Interval for Mean Tree Volume. The sample
mean and standard deviation of the tree volume data were previously calculated as µ̂ = 0.1091
and σ̂ = 0.0624. Then ŝeµ̂ = 0.0624/

√
20 = 0.0116. Using (13.8), the bootstrap-t statistics

z∗
µ̂ ,j =

µ̂ − µ̂∗
j

ŝeµ̂∗,j

were computed for j = 1, . . . , 200,000. The 0.025 and 0.975 quantiles of the empirical distri-
bution of the z∗

µ̂ values are z∗
µ̂ ( 0 . 0 2 5 )

= −2.3677 and z∗
µ̂ ( 0 . 9 7 5 )

= 1.8266. Note that these quantiles

differ appreciably from the ∓1.96 quantiles of the standard normal distribution used in the tra-
ditional normal distribution and Wald methods. Then the 95% bootstrap-t conidence interval
for the mean tree volume is
[
µ
˜
, µ̃

]
=

[
µ̂ + z∗

µ̂ ( 0 . 0 2 5 )
ŝeµ̂ , µ̂ + z∗

µ̂ ( 0 . 9 7 5 )
ŝeµ̂

]

= [0.1091 − 2.3677 × 0.0116, 0.1091 + 1.8266 × 0.0116] = [0.082, 0.130].

As previously observed, the various nonparametric bootstrap conidence intervals for esti-
mating the mean in the tree volume example turned out to besimilar to each other (and were



NONPARAMETRIC BOOTSTRAP CONFIDENCE INTERVAL METHODS 259

Tree Volume Standard Deviation Bootstrap Samples (m3)

0.02 0.04 0.06 0.08 0.10

0

10000

20000

30000

F
re

q
u
e
n
c
y

Figure 13.4 Histogram of the sample standard deviations fromB = 200,000 bootstrap resamples for the tree

volume data, showing the sample standard deviation of the original data (tall dotted vertical line), the median

or 0.50 quantile (tall solid vertical line), and the 0.025 and 0.975 quantiles (short vertical lines) of the empirical

distribution of the bootstrap sample standard deviations.

also close to the traditional normal distribution conidence interval and to the parametric boot-
strap conidence intervals still to be discussed). This similarity is despite the differences in
the manner in which the bootstrap samples were used to compute the conidence intervals,
as seen from Table 13.3. This is not always the case, as demonstrated by the following
example.

Example 13.8 BootstrapMethods for Computing a Conidence Interval for the Standard

Deviation of Tree Volume. To calculate the bootstrap conidence interval for σ, we again
draw B = 200,000 bootstrap resamples of size n = 29 (with replacement) from the original
data. We then compute σ̂∗ for each resample. Figure 13.4 is a histogram of the resulting σ̂∗

j ,
j = 1, . . . , 200,000. The solid and dotted vertical lines in the middle of Figure 13.4 are the
sample median of the σ̂∗ values and σ̂, the sample standard deviation of the original data,
respectively. The short vertical lines indicate the 0.025 and 0.975 quantiles of the empirical
distribution of the σ̂∗ values, and show the simple percentile bootstrap 95% conidence interval
for σ. This interval is [0.042, 0.082].

The distance between the two vertical lines in the center of Figure 13.4 suggests somemedian
bias in the bootstrap sample estimates and the likely need for a bias correction. Applying the BCa
method for determining the adjusted quantiles of the empirical bootstrap distribution, we obtain

b̂ = 0.579733 and z(0.579733) = 0.20121, indicating some positive median bias in the estimate.
From (13.5), the jackknife estimate of the acceleration factor is â = 0.131735, indicating
some right-skewness in the sampling distribution of σ̂∗. Then using z(0.975) = 1.959964 for
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Method Section Interval

Parametric traditional normal distribution 4.2 [0.050, 0.086]
Nonparametric simple percentile bootstrap 13.4.2 [0.042, 0.082]
Nonparametric BCa percentile bootstrap 13.4.3 [0.047, 0.094]
Nonparametric BC percentile bootstrap 13.4.4 [0.045, 0.086]
Nonparametric basic bootstrap 13.4.5 [0.043, 0.083]

Table 13.4 Approximate 95% conidence intervals, using different methods, for σ,
the population standard deviation of tree volume.

1 − α = 0.95 and substituting into (13.3) and (13.4) gives

α1 = Φnorm

[
0.20121 +

0.20121 − 1.959964

1 + 0.131735(0.20121 − 1.959964)

]
= 0.109966,

α2 = Φnorm

[
0.20121 +

0.20121 + 1.959964

1 + 0.131735(0.20121 + 1.959964)

]
= 0.999365.

Thus the BCa percentile bootstrap conidence interval is given by the 0.109966 and 0.999365
quantiles, or the 21,993th and 199,872th ordered observations, of the empirical distribution
of σ̂∗. This yields a 95% conidence interval for σ of [0.047, 0.094]. Similarly, the BC
percentile bootstrap conidence interval is given by the 0.0596707 and 0.9909211 quantiles, or
the 11,934th and 198,184th ordered observations, of the empirical distribution of σ̂∗, yielding a
95% conidence interval for σ of [0.045, 0.086]. The basic method, using simple computations
similar to those used in Example 13.6, with σ̂ = 0.06242 gives a 95% conidence interval for
σ of [0.043, 0.083]. We did not use the bootstrap-t method in this example because of the
dificulty of obtaining a nonparametric estimate for the standard error of σ̂.

The preceding results, together with the traditional normal distribution conidence interval
(see Section 4.3) are shown in Table 13.4. We note that the various bootstrap conidence
intervals vary considerably from each other and also from the traditional normal distribution
interval. Following our discussion in Section 13.4.1 (and lacking an interval calculated using the
bootstrap-t method), we suggest that the practitioner seeking a single interval use the interval
obtained by the BCa percentile bootstrap method.

13.4.7 Nonparametric Bootstrap Confidence Intervals for a Correlation
Coefficient

Section 12.6.5 showed, with the body weight and pulse rate data in Example 12.22, how
to construct a conidence interval for a correlation coeficient using the Wald-approximation
method. This approach assumed a joint normal distribution for body weight and pulse rate—
an assumption that seems reasonable from physical considerations, but could not be veriied
with much conidence from the given sample of only 20 observations. We also note that
the Wald method for computing a conidence interval for the correlation coeficient requires
the knowledge that the Fisher z-transformation is an appropriate normalizing and variance-
stabilizing transformation, thus allowing this Wald approximation to be reasonably accurate.
The BCa method for obtaining a conidence interval for a correlation coeficient method works
automatically without such assumptions, knowledge, or other inputs and also has a higher
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degree of theoretical accuracy.We, therefore, now construct nonparametric bootstrap conidence
intervals for the correlation coeficient for this example.

Example 13.9 Nonparametric Bootstrap Methods for Computing a Conidence Interval

for the Correlation between Body Weight and Pulse Rate. To apply the bootstrap method
to obtain a conidence interval for the correlation between body weight and pulse rate for the
population sampled in Example 12.22, we again begin by drawing B = 200,000 resamples of
sizen = 20 (with replacement) from the original data and compute ρ̂ ∗ for each such resample. A
histogram of the resulting bootstrap sample values of ρ̂ ∗ (not shown here) was again reasonably
symmetric and centered near ρ̂, suggesting that the simple percentile method should be adequate
for selecting the appropriate bootstrap distribution quantile. Thus, applying thismethod to obtain
a 95% conidence interval, we use the 0.025 and 0.975 quantiles (the 5,000th and 195,000th
ordered observations) of the empirical distribution of the ρ̂ ∗ values to obtain a 95% conidence
interval for ρ of [−0.660, −0.0001].

Applying the BCamethod for determining the appropriate quantile of the empirical bootstrap

distribution, we obtain b̂ = 0.521788 and z(0.519576) = 0.05464061, indicating a small amount
of positive bias, and â = −0.03051945, indicating a small amount of left-skewness in the
distribution of ρ̂ ∗. Then using z(0.975) = 1.959964 for 1 − α = 0.95 and substituting into
(13.3) and (13.4) gives

α1 = Φnorm

[
0.05464061 +

0.05464061 − 1.959964

1 + 0.03051945(0.05464061 − 1.959964)

]
= 0.02452,

α2 = Φnorm

[
0.05464061 +

0.05464061 + 1.959964

1 + 0.03051945(0.05464061 + 1.959964)

]
= 0.97456.

Thus the BCa percentile bootstrap conidence interval is given by the 0.02452 and 0.97456
quantiles, or the 4,903th and 194,912th ordered observations, of the distribution of ρ̂ ∗, yield-
ing a 95% conidence interval for ρ of [−0.661, 0.0019]. Similarly, the BC percentile
bootstrap conidence interval is obtained from the 0.03211 and 0.98074 quantiles, or the
6,421th and 196,147th ordered observations, of the distribution of ρ̂ ∗, yielding a 95% con-
idence interval for ρ of [−0.645, 0.0260]. Finally, the bootstrap-t method when based on
Fisher’s z-transformation (computational details not shown here), results in a conidence inter-
val of [−0.660, −0.0001]. Interestingly, this interval is identical to the interval obtained by
the simple percentile method. This equivalence arises because for Fisher’s z-transformation,
ŝeẑ = [1/(n − 3)]1/2 does not depend on ẑ (see Section 12.6.5).

The preceding results, together with the Wald interval, are summarized in Table 13.5.
Note that the Wald method used in Section 12.6.5 required the knowledge that Fisher’s
z-transformation was an appropriate normalizing and variance-stabilizing transformation,
allowing the Wald method to provide a reasonably accurate procedure for computing a con-
idence interval for the correlation coeficient. The BCa method works automatically without
such knowledge or other inputs and also has a higher degree of theoretical accuracy. Again, as
expected from the small corrections needed, the 95% conidence intervals obtained by the sim-
ple percentile, BCa, and bootstrap-tmethods are all similar to one another. The 95% conidence
interval obtained using the BCmethod is somewhat different from the other nonparametric boot-
strap conidence intervals because, in this application, the bias correction and the acceleration
correction in the BCa method correct in opposite directions. However, all of the nonparametric
bootstrap 95% conidence intervals for ρ differ somewhat from the interval obtained using the
Wald method.
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Method Section Interval

Wald 12.6.5 [−0.696, 0.0916]
Nonparametric simple percentile bootstrap 13.4.2 [−0.660, −0.0001]
Nonparametric BCa percentile bootstrap 13.4.3 [−0.661, −0.0019]
Nonparametric BC percentile bootstrap 13.4.4 [−0.645, 0.0260]
Nonparametric basic method 13.4.5 [−0.731, −0.0720]
Nonparametric bootstrap-t 13.4.6 [−0.660, −0.0001]

Table 13.5 Approximate 95% conidence intervals for the correlation between body

weight and pulse rate.

Finally, we observe that the 95% conidence intervals on ρ using the Wald and the BC
bootstrap methods include the value ρ = 0 and those obtained by the other methods do not.
Thus ρ would be deemed statistically signiicantly different from 0 at the 5% signiicance level
using the simple percentile, BCa, basic, and bootstrap-t methods, but not using the Wald or BC
bootstrap methods.

13.4.8 Cautions on the Use of Nonparametric Bootstrap Confidence Interval
Methods

A key advantage of using nonparametric bootstrap methods to construct statistical intervals,
as compared, for example, to parametric bootstrap methods (to be discussed in Chapter 14) is
that they do not require one to assume a statistical distribution underlying the observed data.
The statistical theory that justiies the use of nonparametric bootstrap methods does, however,
depend on several other conditions. These include that:

� The observations come from a distribution with a inite variance.

� The observations are statistically independent.

� The number of observations in the given data set is suficiently large.

� The statistic being bootstrapped is a smooth function of the observations.

� An appropriate scale, depending on the possible use of a transformation, has been chosen
for computing the interval.

The parametric bootstrap methods in Chapter 14, as we shall see, have fewer restrictions and
thus are more lexible than the nonparametric bootstrap methods, at the cost of requiring one to
assume a particular parametric distribution.

Finite variance requirement

The requirement that the observations come from a distribution with inite variance is met in
most practical applications.

Independence assumption

Data froma simple random sample froma population generally result in statistically independent
observations. Unfortunately, in many applications one does not have a random sample from the
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population or process of interest. Also, times series data are often autocorrelated and, therefore,
do not provide statistically independent observations. Similarly, spatial data generally have
spatial correlations. Special bootstrap methods have been developed for applications involving
correlated data. These use sample blocks that retain the approximate correlation structure of the
data; see the references given in the Bibliographic Notes section at the end of this chapter for
further details.

Sample size requirements

In general, to obtain comparable precision, nonparametric statistical methods require larger
samples than do parametric methods. To effectively use bootstrap resampling methods, more-
over, requires that the sample size be large enough so that the number of possible unique
resamples is suficiently large. Thus, it is generally suggested that one have a sample size of
at least n = 10 observations. For a detailed discussion of this issue, see Hall (1992, Appendix
I). Another reason for needing a suficiently large sample is that the theoretical basis for the
bootstrap procedures depends on large-sample theory (as do the methods in Chapter 12). This
theory states that, under certain conditions, a bootstrap procedure has a coverage probability that
approaches the nominal conidence level as the sample size increases. The theory, depending
on speciied conditions, can also give the rate of convergence.

Smoothness

A further requirement for nonparametric bootstrap methods to provide accurate results for mod-
erate size samples is that the statistic being estimated be a smooth function of the observations.
This is the case for moment statistics such as sample means, variances, correlations and ordinary
least squares regression estimators.

Unfortunately, many other statistics that are often desired to be calculated from the data, such
as sample quantiles, are not smooth functions of the observations. Figure 13.5 is a histogram
of sample medians computed from B = 200,000 bootstrap resamples generated from the 29
tree volumes in Table 13.1. This plot is in sharp contrast to the smooth empirical bootstrap
distribution of the sample means in Figure 13.3. The fact that over 80,000 resample medians are
between 0.10 and 0.11 and over 20,000 are between 0.08 and 0.09, and yet none are between
0.09 and 0.10, seems, at irst glance, hard to believe. Yet there is a simple explanation. Because
n = 29 is odd, the sample median will be one of the observations in the given data. But
examining the original 29 observations in Table 13.1, we note that there are no observations
between 0.09 and 0.10. Therefore, it is impossible for a resample median to be between 0.09
and 0.10. We note that some small changes in the observed data (e.g., the observed value of
0.102 being changed to 0.098) could result in an appreciable change in the form of the empirical
bootstrap distribution shown in Figure 13.5.

The nonsmooth or discrete-like nature of the nonparametric bootstrap distribution for the
sample median suggests that application of bootstrap methods may yield erroneous results in
constructing a conidence interval for the distribution median, even with n = 29 observations,
and undoubtedly would be worse for smaller n or if we were estimating a tail quantile.

With larger samples, the problem is less severe, but convergence to yield well-behaved results
may be slow and, for some situations (e.g., estimating distribution tail quantiles), sample sizes
that only moderately exceed 29 may be insuficient to provide a procedure that has a coverage
probability close to the nominal conidence level. Methods to improve nonparametric bootstrap
methods by introducing smoothing into the bootstrap procedure have been developed. Again,
these are discussed in some of the references given in the Bibliographic Notes section at the end
of this chapter. As an alternative to bootstrap methods in obtaining nonparametric conidence
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Figure 13.5 Histogram of the sample medians from B = 20,000 nonparametric bootstrap resamples from

the tree volume data.

intervals for a distribution tail quantile, we recommend the simple order statistics method with
interpolation described in Section 5.2.

Transformation choice

The simple percentile, BCa, and BCmethods are transformation invariant (also known as trans-
formation preserving). This implies that if you construct a conidence interval for a transformed
scale (such as the log of concentration) and then convert the endpoints back to the original scale,
you obtain the same interval that you would get by applying the method without the transforma-
tion. The basic bootstrap and percentile-t methods, however, are not transformation preserving.
Thus, as with Wald intervals, one must decide on which scale to use. Generally a transfor-
mation that transforms a bounded parameter range to an unbounded range is a good choice
(e.g., log of a positive quantity or Fisher’s z-transformation for a quantity bounded between
−1 and 1).

BIBLIOGRAPHIC NOTES

History

This chapter provides only an introduction to the bootstrap methods for constructing statistical
intervals. Since the irst paper on bootstrapmethods by Efron (1979), numerous, frequentlymore
advanced, bootstrap and relatedmethods have been proposed. Also, entire books about bootstrap
methods in general, and computing statistical intervals using such methods in particular, have
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been written. One recent book (Chernick, 2008) devotes 86 and 54 pages, respectively, of its
329 pages (excluding the index) to references prior to 1999 and from 1999 to 2007, respectively;
although not all of these references deal with bootstrap methods, many do.

General introductions

Chernick (2008) provides an introduction to bootstrapmethods aimed at practitioners. This book
begins with a discussion of bootstrap history and of the variety of applications, including some
relatively advanced methods, such as nonlinear regression, time series analysis, and spatial data
analysis. Each chapter ends with a section containing historical notes. As already mentioned,
this book also includes an extensive bibliography. Hesterberg (2015) provides an overview and
description of nonparametric bootstrap methods, providing intuitive and graphical explanations
of situations for which bootstrap methods do not work well.

Theory

Efron and Tibshirani (1986) provide a reasonably accessible overview of bootstrap
methods. Efron and Tibshirani (1993) is a more detailed book-length treatment. Also
Davison and Hinkley (1997) give a comprehensive presentation of bootstrap and related meth-
ods, along with a large number of applications and special topics, such as applying bootstrap
methods to correlated data. Hall (1992) and Shao and Tu (1995) present the theory of bootstrap
methods and related topics. DasGupta (2008, Chapter 18) provides a concise summary of many
of the important theoretical results related to bootstrap methods. Lahiri (2003) describes theory
andmethods of applying bootstrap methods to problems involving correlated data. Beran (2003)
and Efron (2003) are somewhat more recent review articles on bootstrap methods. Efron (2003)
provides a retrospective view of bootstrap methods, 25 years after the initial publications on the
subject.

A few classic theoretical papers deserve special note. Efron (1987) describes the theory
behind the BCa method and shows that the method has second-order correctness over a range
of different situations. Hall (1988) presents a theoretical framework for comparing the prop-
erties of different bootstrap procedures. His results show that both the BCa percentile and the
bootstrap-t methods are second-order correct as parametric bootstrap methods for the multi-
variate exponential family of distributions and as nonparametric bootstrap methods in situations
for which the estimators can be written as a function of a multivariate vector of means. This
paper also shows that simpler nonparametric bootstrap methods, such as the simple percentile
method, have inferior asymptotic properties, compared to more advanced methods, such as the
BCa percentile method.

Hall and Martin (1989) showwhy the standard nonparametric bootstrapmethods do not work
well for calculating conidence intervals for distribution quantiles. Ho and Lee (2005) provide
theoretical arguments demonstrating that reinements such as smoothing and iterated bootstrap
can be used to obtain nonparametric bootstrap conidence interval procedures for distribution
quantiles that have improved performance. The reinements and amount of improvement, how-
ever, depend on the speciication of appropriate bandwidth values for the required smoothing
operations. The need for specifying these values make practical implementation dificult.

Random-weight bootstrap

Rubin (1981) presents a Bayesian analog to nonparametric bootstrap sampling. In his method,
log-likelihood terms are randomly weighted to obtain simulated posterior distributions.Weights
are generated from a uniform Dirichlet distribution. Newton and Raftery (1994) apply similar
ideas to a sequence of parametric inference examples. Even though these random-weight
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bootstrap methods were developed within a nonparametric Bayesian framework, they also
apply to non-Bayesian and parametric inference problems, as will be illustrated in Chapter 14.
Jin et al. (2001) show that random-weight bootstrap estimators have good properties if positive
independent and identically distributed weights are generated from a continuous distribution
that has the same mean and standard deviation (e.g., an exponential distribution with mean 1).
Chatterjee and Bose (2005) present a generalized bootstrap for which the traditional resampling
and various weighted likelihood and other weighted estimating equation methods are special
cases. Barbe and Bertail (1995) provide a highly technical presentation of the asymptotic the-
ory of various random-weight methods for generating bootstrap estimates. They show how to
choose the distribution of the random weights by using Edgeworth expansions. Chiang et al.
(2005) apply random-weight bootstrap methods to a recurrent events application with informa-
tive censoring in a semi-parametric model. Hong et al. (2009) apply random-weight bootstrap
methods to a prediction interval application involving complicated censoring and truncation.



Chapter 14
Parametric Bootstrap and
Other Simulation-Based

Statistical Intervals

OBJECTIVES AND OVERVIEW

This chapter describes and illustrates computationally intensive parametric bootstrap and other
simulation-based methods to compute statistical intervals, primarily for continuous distribu-
tions. These methods, like the nonparametric bootstrap methods in Chapter 13, require obtain-
ing a sequence of simulated bootstrap samples based on the given data that are then used to
generate corresponding bootstrap estimates. The parametric bootstrap procedures presented in
this chapter (like all of the other chapters in this book other than Chapters 5 and 13) require
one to specify a parametric distribution for the given data. These methods can lead to excellent
approximate, or sometimes exact, procedures for computing statistical intervals, even for small
samples, when the chosen distribution is correct. Parametric bootstrap methods may, however,
result in misleading answers if the chosen distribution is seriously in error.

The topics discussed in this chapter are:

� The basic concept of using simulation and parametric bootstrap methods to obtain coni-
dence intervals (Section 14.1).

� Methods for generating parametric bootstrap samples and obtaining bootstrap estimates
(Section 14.2).

� How to obtain parametric conidence intervals by using the simulated distribution of a
pivotal quantity (Section 14.3).

� How to obtain parametric conidence intervals by using the simulated distribution of a
generalized pivotal quantity (Section 14.4).

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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� Methods for using simulation to compute parametric tolerance intervals (Section 14.5).

� Methods for using simulation to compute parametric prediction intervals (Section 14.6).

� Discussion of other simulation and parametric bootstrap methods and applications for
other than the (log-)location-scale distributions discussed in the preceding sections
(Section 14.7).

14.1 INTRODUCTION

In Chapter 12 we presented approximate likelihood-based and commonly used normal distribu-
tion approximation (Wald) statistical intervals for situations for which exact procedures may be
unavailable or dificult to obtain. The computer-intensive parametric bootstrap and simulation-
based methods described in this chapter provide alternatives for constructing approximate (and,
for some special cases, exact) conidence intervals for distribution parameters, as well as for
other characteristics that are functions of distribution parameters (such as the mean, quantiles,
and probabilities). Parametric bootstrap procedures can also be used to compute tolerance and
prediction intervals.

Speciically, when exact methods for obtaining statistical intervals are not readily available,
one generally employs an approximatemethod, resulting in a procedure that will have a coverage
probability that is approximately equal to the desired nominal conidence level (see Appendix B
for details). The popular Wald conidence interval procedures described in Section 12.6 may be
adequate for initial casual or informal analyses, particularly when the sample size is large. But,
as discussed in Chapter 12, likelihood-based methods for constructing conidence intervals,
in general, outperform the Wald methods. Bootstrap methods provide useful alternatives to
both Wald and likelihood-based methods and may yield more accurate approximate conidence
interval procedures. We can, in addition, sometimes apply bootstrap methods for situations for
which other reasonable alternatives do not exist (e.g., when likelihood-based conidence interval
methods are too demanding computationally).

As in other chapters, our discussion in this section (and subsequent sections in this chapter)
deals primarily with two-sided conidence intervals. As described in Section 2.7, however, one
can obtain a one-sided lower (or upper) conidence bound from the corresponding two-sided
interval by substituting α for α/2 in the expression for the lower (or upper) endpoint of the
two-sided interval.

14.1.1 Basic Concepts

The general idea behind the parametric bootstrap and simulation-based procedures presented
in this chapter is to replace mathematical approximations or intractable distribution theory with
Monte Carlo simulation, taking advantage of the power of modern computers and relatively
recent developments in statistical theory.

As explained in Section 2.2, a key criterion for judging an approximate procedure for
constructing a statistical interval is how well the procedure would perform if it were repeated
over and over. The coverage probability (i.e., the probability that the procedure provides an
interval that contains the quantity of interest) should be equal or close to the chosen nominal
conidence level 1 − α. Moreover, we generally favor two-sided intervals for which the error
probability α is split equally or approximately equally between the upper and lower interval
bound; that is the probability of being incorrect is close to α/2 for each side of the interval.

In practice, we usually cannot actually repeat the sampling process over and over. We
can, however, simulate the sampling process to create bootstrap samples. Then the empirical
sampling distribution of the appropriate statistics from the resulting bootstrap samples is used to
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0.289 0.281 0.315 0.319 0.311 0.323 0.296 0.323 0.311 0.266
0.259 0.345 0.330 0.304 0.293 0.248 0.304

Table 14.1 Pipeline thickness measurements (inches).

compute the desired statistical interval, reducing the reliance on sometimes crude large-sample
approximations.

For a simple example, consider again the discussion in Section 12.5.2. There the Wald
conidence interval for μ was based on the fact that in large samples the distribution of
Zμ̂ = (μ̂ − μ)/ŝeμ̂ can be approximated by a NORM(0, 1) distribution. An alternative to this
approximation is to use a bootstrap approach. Bootstrap methods using a suficiently large num-
ber of bootstrap samples can provide improved approximations to the actual distribution of Zμ̂

and, therefore, a better conidence interval procedure forμ—especially when dealing with small
data sets.

Some important operational considerations for using bootstrap methods are given in the
nonparametric bootstrap chapter (Section 13.3); these considerations also apply to the simulation
and parametric bootstrap methods given in this chapter.

14.1.2 Motivating Examples

Example 14.1 Estimating Pipeline Thickness. Table 14.1 shows pipeline thickness measure-
ments taken at n = 17 randomly selected one-foot segments along a multi-mile-long pipeline.
The recorded value for each segment is the minimum thickness found for that segment. To
assess the risk of a leak, it was desired to estimate the probability that the minimum thick-
ness of a randomly selected one-foot segment taken from the entire pipeline will be less than
0.15 inches, as well as the 0.0001 quantile of the one-foot segment minimum thickness distri-
bution, together with conidence intervals on these estimates. Based on previous experience and
extreme value theory (e.g., Coles, 2001), the Weibull distribution was believed to provide an
adequate description of the distribution of minimum thickness for such one-foot segments. This
assumption is critical in light of the extreme extrapolations from the data required to obtain the
desired estimates. Figure 14.1 shows a Weibull probability plot for the n = 17 pipeline thick-
ness measurements. The plot and maximum likelihood (ML) line itted to the plotted points
suggest that the Weibull distribution provides an excellent it to the distribution of minimum
pipeline thickness for one-foot segments, at least within the range of the data. Equivalently, the
smallest extreme value (SEV) distribution (see Section C.3) provides an excellent it to the logs
of the measurements. The ML estimates of the parameters of the SEV distribution it to the
logs of the thickness values are μ̂ = −1.16406 and σ̂ = 0.07003. The corresponding Weibull

distributionML estimates are η̂ = exp(μ̂) = 0.3122 and β̂ = 1/σ̂ = 14.28. For simplicity we
henceforth use the term “pipeline thickness” to denote the minimum thickness within each of
the one-foot segments that make up the entire pipeline.

Example 14.2 Fracture Strengths of a Carbon-Epoxy Composite Material. Table 14.2
gives data described in Dirikolu et al. (2002) on the fracture strengths of a random sample of
19 specimens of a carbon-epoxy composite material from a speciied population. The Weibull
probability plot of the data, shown in Figure 14.2, suggests that theWeibull distribution provides
an adequate it to fracture strength within the range of the data. A Weibull distribution is also
suggested on physical grounds because the compositematerial is brittle and failures tend to occur
at the weakest part of the structure. The ML estimates of the Weibull distribution parameters

are η̂ = 510.2 and β̂ = 18.86.
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Figure 14.1 Weibull probability plot of the pipeline thickness data described in Example 14.1 and corre-

sponding pointwise 95% parametric bootstrap conidence intervals for F (t), as described in Example 14.7.

14.2 PARAMETRIC BOOTSTRAP SAMPLES AND BOOTSTRAP ESTIMATES

Statistical intervals are computed as a function of the available data, consisting ofn observations
denoted by DATA. Similar to the nonparametric bootstrap methods in Chapter 13, parametric
bootstrap and other simulation-based interval procedures employ, in addition, a set ofB samples,
DATA∗

j , j = 1, . . . , B, generated by Monte Carlo simulation, based on the given data, that,
in some sense (depending on the type of bootstrap/simulation procedure) mimics the original
sampling procedure.

Sections 13.2.1 and 13.2.2 show how to generate nonparametric bootstrap samples. Non-
parametric bootstrap samples can also be used with parametric bootstrap methods. As explained
and illustrated in Section 14.7, there are often important advantages to using one of the non-
parametric bootstrap sampling methods when data are complicated (e.g., involving censoring
or truncation).

This section describes a parametric simulation-basedmethod of generating bootstrap samples
that can be used in situations for which there is no censoring or when censoring is easy to
simulate. Using this method will, in some cases, lead to statistical interval procedures that are
exact.

532.7 502.5 442.0 47.03 519.0 502.7 477.0 510.0 522.0 552.0
522.0 439.0 513.6 497.5 521.6 450.9 476.5 507.3 463.5

Table 14.2 Fracture strength of carbon-epoxy composite material specimens (megapascals).
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Figure 14.2 Weibull probability plot of carbon-epoxy composite material fracture strengths and pointwise

95% parametric bootstrap conidence intervals for F (t).

Figure 14.3 illustrates the parametric bootstrap sampling method of obtaining bootstrap
samples and bootstrap estimates. With parametric bootstrap sampling, one initially uses the n

data cases to compute the ML estimate θ̂ of the unknown parameter vector θ. An estimate of

the assumed underlying parametric distribution F (t;θ) is F (t; θ̂). Then B bootstrap samples

of size n are simulated from F (t; θ̂) and these are denoted by DATA∗
j , j = 1, . . . , B. For

each of these B samples, the ML bootstrap estimate of the parameter vector, denoted by θ̂
∗
j , is

computed.
Let v(θ) denote a scalar quantity of interest to be estimated (e.g., a mean, standard devia-

tion, probability, or distribution quantile). Bootstrap estimates of v(θ) are denoted by v(θ̂
∗
j ),

j = 1, . . . , B. The values of v(θ̂
∗
j ) and/or θ̂

∗
j can be used, in a variety of ways, to construct

parametric bootstrap statistical intervals. Some of the most important methods for doing this
are described and illustrated in the remaining sections of this chapter.

The adequacy of the statistical interval procedure obtained using the parametric bootstrap
approach could be questionable if the distributional assumption is inadequate. Also, when
dealingwith data involving censoring or truncation (or some other special feature), it is necessary
to completely specify (in a probabilistic model sense) how the censored and/or truncated data
were generated so that the bootstrap data can be properly simulated. The advantage of the
parametric bootstrap approach is that it can lead to excellent approximate or exact statistical
intervals, even for small sample sizes, if the assumed distribution is correct. Also the method
is easy to implement when the sampling is simple (e.g., statistically independent observations
with no censoring or truncation).

Example 14.3 Parametric Bootstrap Samples for Estimating the Distribution of Pipeline

Thickness. Figure 14.4 is a scatter plot of the irst 1,000 (out of 200,000) generated pairs ofML
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Figure 14.3 Illustration of parametric bootstrap sampling for obtaining bootstrap samples DATA∗ and
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Figure 14.4 Scatter plot of 1,000 pairs of ML estimates μ̂∗ and σ̂∗ from simulated samples of size n = 17
from the SEV(µ̂, σ̂) distribution with µ̂ = −1.16406 and σ̂ = 0.07003.



BOOTSTRAP CONFIDENCE INTERVALS BASED ON PIVOTAL QUANTITIES 273

estimates μ̂∗
j and σ̂∗

j , j = 1, . . . , B, from samples of size n = 17 (the sample size for the

pipeline thickness data) simulated from an SEV(µ̂, σ̂) distribution with µ̂ = −1.16406 and
σ̂ = 0.07003 (i.e., the ML estimates obtained in Example 14.1). These simulated values will
be used to construct statistical intervals in a series of examples in Sections 14.3–14.6.

14.3 BOOTSTRAP CONFIDENCE INTERVALS BASED ON
PIVOTAL QUANTITIES

14.3.1 Introduction

Simulation-basedmethods for constructing statistical intervals based on pivotal quantities (PQs)
pre-date bootstrap methods. With modern computing capabilities (both hardware and software),
however, these methods are much more accessible. Because of their similarity to the more
general parametric bootstrap methods, these simulation-based methods are often also referred
to as parametric bootstrap methods.

Chapter 4 presented different types of statistical intervals for the normal distribution. The
well-known intervals there are based on PQs, as described in Appendix E. For example, if X̄ is
the sample mean and S is the sample standard deviation computed from a sample of size n from
a normal distribution with population mean µ and standard deviation σ, then (µ − X̄)/(S/

√
n)

has a t-distribution with n − 1 degrees of freedom. Then, using the deinition of quantiles of
the t-distribution,

Pr

[
t(α/2;n−1) ≤

µ − X̄

S/
√

n
≤ t(1−α/2;n−1)

]
= 1 − α. (14.1)

Because the distribution of (µ − X̄)/(S/
√

n) does not depend on any unknown parameters, we
say that it is a PQ. This terminology arises because using simple algebra to pivot the inequality
in (14.1) (i.e., arrange to have µ by itself in the center of the inequality) we obtain

Pr
[
X̄ + t(α/2;n−1)S/

√
n ≤ µ ≤ X̄ + t(1−α/2;n−1)S/

√
n
]

= 1 − α.

This probability statement is a special case of the more general statement (B.1) from Sec-
tion B.2.1 and implies that

[
µ
˜
, µ̃

]
=

[
x̄ + t(α/2;n−1)s/

√
n, x̄ + t(1−α/2;n−1)s/

√
n
]

is a 100(1 − α)% conidence interval for µ, where x̄ is the observed value of X̄ and s is the
observed value of S.

As shown in Appendix E and illustrated in subsequent examples in this chapter, a PQ can also
be used to construct other kinds of statistical intervals (e.g., tolerance intervals and prediction
intervals) and for other distributions. For distributions other than the normal (and lognormal),
however, or when censoring is involved, tables or computer functions for the needed quantiles
of the distributions of PQs are generally not available. In these cases one can instead use
parametric bootstrap methods, as described in this section, to obtain the desired distribution
quantiles. Moreover, in contrast to the likelihood orWald methods in Chapter 12, the parametric
bootstrap simulation methods used in this chapter are exact when they are based directly on
PQs and the parametric bootstrap samples described in Section 14.2. Moreover, when the
methods are not exact (e.g., because they are based on a generalized PQ, as presented briely in
Section 14.4, or an otherwise approximate PQ), the coverage probability will generally be close
to the nominal conidence level, with the approximation improving with larger sample sizes.
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14.3.2 Confidence Intervals for the Location Parameter of a Location-Scale
Distribution or the Scale Parameter of a Log-Location-Scale
Distribution

As described in Section 12.4.1, μ is a location parameter for a location-scale distribution and
exp(μ) is a scale parameter for a log-location-scale distribution. In a manner similar to the
discussion in Section 14.3.1 (see also Section E.7.2), Zμ̂ = (μ − μ̂)/σ̂ is a PQ, where µ̂ and σ̂
are ML estimators of the location-scale distribution parameters. Then an exact 100(1 − α)%
conidence interval for µ can be computed as

[
µ
˜
, µ̃

]
=

[
µ̂ + zµ̂ (α / 2 ;n )

σ̂, µ̂ + zµ̂ ( 1−α / 2 ;n )
σ̂
]
, (14.2)

where zµ̂ (γ ;n )
is the γ quantile of the distribution of Zµ̂ for a sample of size n. The correspond-

ing 100(1 − α)% conidence interval for the log-location-scale distribution scale parameter
η = exp(μ) is

[
η
˜
, η̃

]
=

[
exp(μ

˜
), exp(μ̃)

]
.

The distribution of Zμ̂ (and thus quantiles of the distribution) can be readily obtained
by using parametric bootstrap methods. In particular, following the approach described in
Section 13.2, ML estimates μ̂ and σ̂ of the assumed location-scale distribution parameters μ
and σ are initially obtained using the n observations in the sample data. Then B simulated
samples of size n are generated from the resulting itted distribution (i.e., from the assumed
location-scale distribution with location parameter μ̂ and scale parameter σ̂). From each of
these B samples, we calculate bootstrap ML estimates μ̂∗

j and σ̂∗
j , j = 1, . . . , B, from which

we compute z∗
μ̂ ,j = (μ̂ − μ̂∗

j )/σ̂
∗
j , j = 1, . . . , B. The desired quantiles ofZμ̂ are then obtained

from the ordered z∗
μ̂ ,j values, as described in Section 13.3.3.

Example 14.4 Bootstrap Conidence Interval for the Pipeline Thickness Weibull Dis-

tribution Scale Parameter. In Example 14.1, the ML estimates for the Weibull distribution
scale and shape parameters for the pipeline thickness data were found, based on the sample

of n = 17 observations, to be η̂ = 0.31222 and β̂ = 14.28013. The corresponding estimated
SEV distribution location and scale parameters were found to be μ̂ = log(η̂) = −1.16406

and σ̂ = 1/β̂ = 0.07003 (which could also have been obtained by itting an SEV dis-
tribution to the logs of the data). In Example 14.3, the parametric bootstrap ML esti-
mates μ̂∗

j and σ̂∗
j , j = 1, . . . , 200,000, were simulated from the SEV(μ, σ) distribution with

μ = μ̂ = −1.16406 and σ = σ̂ = 0.07003. These simulated values were then used to compute
the values z∗

μ̂ ,j = (μ̂ − μ̂∗
j )/σ̂

∗
j , j = 1, . . . , 200,000.

To obtain an exact parametric bootstrap 95% conidence interval for μ, one irst determines
the 0.025 and 0.975 quantiles of the distribution ofZμ̂ as the 5,000th and 195,000th ordered z∗

μ̂

observations. These quantiles are zμ̂ ( 0 . 0 2 5 ;1 7 )
= −0.55841 and zμ̂ ( 0 . 9 7 5 ;1 7 )

= 0.57035. The 95%
conidence interval for μ is then obtained by substituting into (14.2):

[
μ
˜
, μ̃

]
= [−1.16406 − 0.55841 × 0.07003, −1.16406 + 0.57035 × 0.07003]

= [−1.203, −1.125].

Finally, the 95% conidence interval for the Weibull distribution scale parameter η = exp(μ)
is

[
η
˜
, η̃

]
=

[
exp(μ

˜
), exp(μ̃)

]
= [0.3002, 0.3249].
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14.3.3 Confidence Intervals for the Scale Parameter of a Location-Scale
Distribution or the Shape Parameter of a Log-Location-Scale
Distribution

Aspreviously noted,σ is a scale parameter for a location-scale distribution and a shape parameter
for a log-location-scale distribution. For the Weibull distribution, β = 1/σ is more commonly
used to represent the distribution shape parameter. Here, as described in Section E.7.3, Zσ̂ =
σ/σ̂ is a PQ, where σ̂ is theML estimator of σ. Then an exact 100(1 − α)% conidence interval
for σ can be computed as

[
σ
˜
, σ̃

]
=

[
zσ̂ (α / 2 ;n )

σ̂, zσ̂ ( 1−α / 2 ;n )
σ̂
]

(14.3)

where zσ̂ (γ ;n )
is the γ quantile of the distribution of Zσ̂ , based on a sample of size n. The

quantiles of Zσ̂ can be readily approximated with parametric bootstrap methods, in a manner
similar to that described in Section 14.3.2. Then an exact 100(1 − α)% conidence interval for
β is

[
β
˜
, β̃

]
=

[
1/σ̃, 1/σ

˜
]
.

Example 14.5 Conidence Interval for the Pipeline ThicknessWeibull Distribution Shape

Parameter. TheML estimates for the pipeline thickness data in Example 14.1 and the bootstrap
ML estimates µ̂∗

j and σ̂∗
j from Example 14.3 are used in a manner similar to Example 14.4

to compute z∗
σ̂ ,j = σ̂/σ̂∗

j , j = 1, . . . , 200,000. To obtain a 95% conidence interval for σ, one
then uses the 0.025 and 0.975 quantiles of the empirical distribution of Zσ̂ . These quantiles
are the 5,000th and 195,000th ordered z∗

σ̂ observations, zσ̂ ( 0 . 0 2 5 ;1 7 )
= 0.74582 and zσ̂ ( 0 . 9 7 5 ;1 7 )

=
1.63655. The exact 95% conidence interval for σ using this parametric bootstrap procedure is
obtained by substituting into (14.3), giving

[
σ
˜
, σ̃

]
= [0.74582 × 0.07003, 1.63655 × 0.07003] = [0.0522, 0.1146].

The corresponding 95% conidence interval for the Weibull distribution shape parameter β is

[
β
˜
, β̃

]
=

[
1/σ̃, 1/σ

˜
]

= [1/0.1146, 1/0.0522] = [8.726, 19.157].

14.3.4 Confidence Intervals for the p Quantile of a Location-Scale or a Log
Location-Scale Distribution

The p quantile of a location-scale distribution F (x;µ, σ) = Φ[(x − µ)/σ] is xp = µ +
Φ−1(p)σ, and its ML estimator is x̂p = µ̂ + Φ−1(p)σ̂. The p quantile for a log-location-scale
distribution is tp = exp[µ + Φ−1(p)σ]. As explained in Section E.7.4,

Zx̂p
=

xp − x̂p

σ̂
=

[
µ − µ̂

σ̂
+

(σ

σ̂
− 1

)
Φ−1(p)

]

is a PQ. This implies that

[
x
˜

p , x̃p

]
=

[
x̂p + zx̂p (α/2;n)σ̂, x̂p + zx̂p (1−α/2;n)σ̂

]

is an exact 100(1 − α)% conidence interval for xp , where zx̂p (γ ;n) is the γ quantile of the
distribution of Zx̂p

for samples of size n. The corresponding exact 100(1 − α)% conidence
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interval for tp = exp(xp) is

[
t
˜

p , t̃p

]
=

[
exp

(
x
˜

p

)
, exp(x̃p)

]

=
[
t̂p exp

(
zx̂p (α/2;n)σ̂

)
, t̂p exp

(
zx̂p (1−α/2;n)σ̂

)]
. (14.4)

As with the other PQs in this chapter, the quantiles of Zx̂p
can be readily calculated using

parametric bootstrap methods in a manner similar to that described in Section 14.3.2. In
particular, the ML bootstrap estimates µ̂∗

j and σ̂∗
j for j = 1, . . . , B are used to compute

z∗
x̂p ,j =

[
µ̂ − µ̂∗

j

σ̂∗
j

+

(
σ̂

σ̂∗
j

− 1

)
Φ−1(p)

]
, j = 1, . . . , B. (14.5)

The desired quantiles and conidence interval are then obtained from the ordered values of
z∗

x̂p ,j , j = 1, . . . , B, as described in Section 13.3.3.

Example 14.6 Conidence Interval for theWeibull 0.0001Quantile for PipelineThickness.

The ML estimate of the 0.0001 quantile x0.0001 for the SEV distribution of the logs of pipeline
thickness in Example 14.1 is

x̂0.0001 = µ̂ + Φ−1
sev(0.0001)σ̂ = −1.16406 − 9.21029 × 0.07003 = −1.80906.

Thus t̂0.0001 = exp(−1.80906) = 0.164 inches. This estimate involves much extrapolation
from a sample of only 17 observations, as can be seen by the extrapolation into the lower
left-hand corner of Figure 14.1. Those involved with the application believed, however, that the
Weibull distribution was justiied, even in the extreme lower tail of the distribution. This was, at
least in part, because each observation was the minimum thickness over the entire area of a one-
foot-long sampled segment. To compute a conidence interval for t0.0001 , the 0.0001 quantile
of the distribution of thickness, we proceed as in Examples 14.4 and 14.5. The bootstrap ML
estimates µ̂∗

j and σ̂∗
j from the SEV(µ̂,σ̂) distribution from Example 14.3 are used to compute

z∗
x̂0 . 0 0 0 1 , j

, j = 1, . . . , 200,000, by substituting into (14.5). Figure 14.5 is a histogram of the

resulting 200,000 simulated values of z∗
x̂0 . 0 0 0 1

.
To obtain a 95% conidence interval for x0.0001 , we use the 0.025 and 0.975 quantiles

of the empirical distribution of Zx̂0 . 0 0 0 1
, namely the 5,000th and 195,000th ordered z∗

x̂0 . 0 0 0 1

values. These quantiles are zx̂0 . 0 0 0 1 (0.025;17) = −5.972 and zx̂0 . 0 0 0 1 (0.975;17) = 2.551. The 95%
conidence interval for t0.0001 = exp(x0.0001) using this exact parametric bootstrap procedure
is then obtained by substituting into (14.4), giving

[
t
˜

0.0001 , t̃0.0001

]
= [0.1638 exp(−5.972 × 0.07003), 0.1638 exp(2.551 × 0.07003)]

= [0.108, 0.196].

Finally, we note from Figure 14.5 that the distribution of z∗
x̂0 . 0 0 0 1

is somewhat skewed to the
left. This indicates that Wald conidence intervals would, unlike in Example 14.4, result in an
inadequate approximation here. Thus the parametric bootstrap methods provide an important
improvement over the Wald approximation for constructing conidence intervals on distribution
quantiles.
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Figure 14.5 Histogram of the 200,000 simulated pivotal quantity values z∗
x̂ 0 . 0 0 0 1

for the Weibull distribution

0.0001 quantile for the pipeline thickness data.

14.4 GENERALIZED PIVOTAL QUANTITIES

Pivotal quantities are not available for all inferences of interest. In some cases for which a PQ
does not exist, there may be a generalized pivotal quantity (GPQ) that can be used to construct
a conidence interval for a distribution parameter or a function of parameters. A GPQ is similar
to a PQ in that it is a scalar function of the random parameter estimator or estimators (e.g., μ̂
and σ̂) and the parameters to be estimated (e.g., µ and σ). A GPQ differs from a PQ in that the
unconditional sampling distribution of the GPQ (i.e., the distribution that includes variability
from repeated sampling) may depend on the unknown parameters (e.g., µ and σ). To be a GPQ,
a function must have the following two properties:

1. Conditional on the data (or on the observed value(s) of the parameter estimates calculated
from the data, such as µ̂ and σ̂ for a location-scale distribution), the distribution of a GPQ
does not depend on any unknown parameters.

2. If the random bootstrap parameter estimators (e.g., µ̂∗ and σ̂∗) in a GPQ are replaced by
the corresponding observed values of the parameter estimates (e.g., µ̂ and σ̂), the GPQ
must be equal to the actual value of the function of the parameters that is being estimated.

Use of a GPQ-based procedure will, in general, lead to only an approximate conidence
interval. Research has shown, however, that GPQ methods tend to provide procedures with
a coverage probability that is very close to the nominal conidence level. Section F.4 gives
conditions under which a GPQ-based conidence interval procedure is exact. Other technical
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details about GPQs are given in Appendix F and in references given in the Bibliographical
Notes section at the end of this chapter.

As illustrated in examples in this section, the computation of a GPQ-based conidence inter-
val is similar to but simpler than the computation of a PQ interval. In particular, to obtain a
(usually approximate) 100(1 − α)% GPQ conidence interval, one simulates a large number B
of realizations of the GPQ. The conidence interval, as with the simple percentile method in Sec-
tion 13.4.2, is obtained from the α/2 and 1 − α/2 quantiles of the empirical GPQ distribution.

14.4.1 Generalized Pivotal Quantities for µ and σ of a Location-Scale
Distribution and for Functions of µ and σ

This section gives expressions for GPQs for the location parameter µ and the scale parameter
σ of a location-scale distribution. These GPQs could be used to compute conidence intervals
for µ and σ, respectively. Such intervals, however, would agree with those obtained from the
simpler pivotal quantity methods discussed in Sections 14.3.2 and 14.3.3, respectively. The
main reason for providing these GPQs here is that they are used as building blocks for obtaining
GPQs and corresponding conidence intervals for functions of µ and σ for which no PQ exists.

Generalized pivotal quantities for the location parameter µ

As shown in Section F.3.1,

Zµ̂ = Zµ̂(µ, µ̂, σ̂, µ̂∗, σ̂∗) = µ̂ +

(
µ − µ̂∗

σ̂∗

)
σ̂ (14.6)

is a GPQ for µ.

Generalized pivotal quantities for the scale parameter σ

As shown in Section F.3.2,

Zσ̂ = Zσ̂ (σ, σ̂, σ̂∗) =
( σ

σ̂∗

)
σ̂ (14.7)

is a GPQ for σ.

Generalized pivotal quantities for functions of µ and σ

As illustrated in the rest of this section, there are a number of important quantities of interest
for which no PQ exists. In such cases one can construct a conidence interval that is based
on a GPQ. As shown in Section F.2, a GPQ for a function of interest g = g(µ, σ) is obtained
by substituting the GPQ (14.6) for µ and the GPQ (14.7) for σ into the function g(µ, σ). We
provide examples in the rest of this section.

14.4.2 Confidence Intervals for Tail Probabilities for Location-Scale and
Log-Location-Scale Distributions

There does not exist a PQ that can be used directly to deine a conidence interval procedure for
(log-)location-scale distribution tail probabilities. There is, however, a GPQ for this purpose. In
particular, for a location-scale distribution (e.g., normal or SEV), a lower-tail probability is

p = Pr(X ≤ x) = F (x) = Φ
(x − µ

σ

)
. (14.8)
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For a log-location-scale distribution (e.g., lognormal or Weibull)

p = Pr(T ≤ t) = F (t) = Φ

[
log(t) − μ

σ

]
. (14.9)

ML estimates of these probabilities can be obtained from the given data by evaluating the last
two expressions using the parameter estimates µ̂ and σ̂ in place of µ and σ. Substituting (14.6)
for µ and (14.7) for σ into (14.8) or (14.9) and simplifying gives the GPQ for p = F (t),

ZF̂ = Φ

[(
σ̂∗

σ

)
Φ−1(p̂) +

µ̂∗ − µ

σ

]
,

where p̂ is the ML estimate of p, based on the given data, and µ̂∗ and σ̂∗ are the random
variables deined by the sampling distribution of the ML estimators for µ and σ. In a manner
similar to the usage in Sections 14.3.2–14.3.4 for obtaining a conidence interval from a PQ,
we use the bootstrap ML estimates µ̂∗

j and σ̂∗
j , j = 1, . . . , B, simulated from the assumed

(log-)location-scale distribution with µ and σ replaced by µ̂ and σ̂ to compute

z∗
F̂ ,j

= Φ

[(
σ̂∗

j

σ̂

)
Φ−1(p̂) +

µ̂∗
j − µ̂

σ̂

]
. (14.10)

The α/2 and 1 − α/2 quantiles of z∗
F̂
provide the endpoints of the 100(1 − α)% conidence

interval for p.
In this case, unlike the case for GPQs in general, the conidence interval procedure is exact

(see Section F.4.2 for technical details).

Example 14.7 Conidence Intervals for Pipeline Thickness Weibull Distribution Prob-

abilities. The ML estimate of p = F (0.15) = Pr(Thickness ≤ 0.15) is obtained from the
given data by substituting the ML estimates for µ and σ into (14.9), giving

p̂ = F̂ (0.15) = ΦSEV

[
log(0.15) + 1.16406

0.07003

]
= 0.0000284.

To compute a conidence interval for F (0.15), we proceed as in Examples 14.4–14.6. The
bootstrap ML estimates µ̂∗

j and σ̂∗
j from the SEV(µ̂,σ̂) distribution from Example 14.3 and the

ML estimate p̂ (previously calculated from the data) are used to compute the corresponding
200,000 values of z∗

F̂ ,j
by substituting into (14.10). For a 95% conidence interval, the 0.025 and

0.975 quantiles of the resulting empirical distribution ofZF̂ (0.15) are the 5,000th and 195,000th

ordered z∗
F̂ (0.15)

values. The resulting conidence interval for F (0.15) is

[
F
˜

(0.15), F̃ (0.15)
]

=
[
zF̂ (0.15)( 0 . 0 2 5 ;1 7 )

, zF̂ (0.15)( 0 . 9 7 5 ;1 7 )

]
= [6.20 × 10−7 , 0.00182].

The preceding conidence interval, based on the exact GPQ-based simulation method, is
compared in Table 14.3 with the intervals obtained (details not shown here) using the two
approximate methods discussed in Chapter 12 (i.e., the likelihood-ratio and Wald ẑ methods).
We recommend use of the GPQ method because the method is exact for this application.

Although, as usual, we computed two-sided conidence intervals for F (0.15), primary
interest in this application would be in the upper endpoint of the chosen interval, which could
be interpreted as a 97.5% upper conidence bound. It is interesting that the Wald-based upper
bound is closer to the GPQ-based (exact method) bound than likelihood-based bound. This is an
exception to what we usually see and is probably due to some combination of the small number
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Method Section 95% conidence interval

Exact parametric bootstrap method using GPQ 14.4.2 [6.20 × 10−7 , 0.00182]
Likelihood-ratio method 12.5.4 [3.22 × 10−7 , 0.00111]
Wald ẑ method 12.6.4 [4.83 × 10−7 , 0.00167]

Table 14.3 95% conidence intervals for the pipeline thickness Weibull probability F (0.15)
using three different methods.

of observations, large amount of extrapolation (both having a negative effect on the adequacy
of large-sample approximations), and happenstance.

The pointwise GPQ-based 95% conidence intervals for the entire cumulative distribution
function for the pipeline thickness were calculated and are shown as dashed lines in Figure 14.1.

14.4.3 Confidence Intervals for the Mean of a Log-Location-Scale Distribution

There are no known exact conidence interval procedures for the mean (expected value) of log-
location-scale distributions, such as the lognormal and Weibull. Procedures based on GPQs,
however, have coverage probabilities that are close to the nominal conidence level (see the
results of simulation studies reported in the references given in the Bibliographic Notes section
at the end of this chapter). The mean of a lognormal distribution is

E(T ) = exp
(
μ + σ2/2

)
, (14.11)

and the mean of a Weibull distribution is

E(T ) = ηΓ

(
1 +

1

β

)
= exp(μ)Γ(1 + σ). (14.12)

Expressions for the means of other log-location-scale distributions are given in Section C.3.1.
Substituting (14.6) for μ and (14.7) for σ into (14.11) or (14.12) and simplifying gives the

GPQs

ZÊ(T )(μ, σ, μ̂, σ̂, μ̂∗, σ̂∗) = exp

[
μ̂ +

(
μ − μ̂∗

σ̂∗

)
σ̂ +

1

2

( σ

σ̂∗

)2

σ̂2

]
(14.13)

for the lognormal mean and

ZÊ(T )(μ, σ, μ̂, σ̂, μ̂∗, σ̂∗) = exp

[
μ̂ +

(
μ − μ̂∗

σ̂∗

)
σ̂

]
Γ
[
1 +

( σ

σ̂∗

)
σ̂
]

(14.14)

for the Weibull mean. The empirical distributions of these GPQs, fromMonte Carlo simulation,
can be used to obtain approximate conidence intervals for E(T ) for log-location-scale distri-
butions. We note that these GPQs are not pivotal because they have distributions that depend
on the observed parameter estimates μ̂ and σ̂.

In particular, for bootstrap sample j, j = 1, . . . , B, the bootstrap ML estimates μ̂∗
j and σ̂∗

j

are substituted into (14.13) or (14.14) to obtain

zÊ(T ),j (μ̂, σ̂, μ̂∗
j , σ̂

∗
j ) = exp

[
μ̂ +

(
μ̂ − μ̂∗

j

σ̂∗
j

)
σ̂ +

1

2

(
σ̂

σ̂∗
j

)2

σ̂2

]
(14.15)



GENERALIZED PIVOTAL QUANTITIES 281

or

zÊ(T ),j (μ̂, σ̂, µ̂∗
j , σ̂

∗
j ) = exp

[
µ̂ +

(
µ̂ − µ̂∗

j

σ̂∗
j

)
σ̂

]
Γ

[
1 +

(
σ̂

σ̂∗
j

)
σ̂

]
(14.16)

for the lognormal and Weibull distribution, respectively. Similar expressions can be derived for
other log-location-scale distributions. Then an approximate 100(1 − α)% conidence interval
for the mean E(T ) is

[
E(T )

˜

, Ẽ(T )
]

=
[
zÊ(T ),α/2 , zÊ(T ),1−α/2

]
,

where zÊ(T ),γ is the γ quantile of the empirical distribution of the simulated values of zÊ(T ),j ,

j = 1, . . . , B.

Example 14.8 Conidence Interval for Tree Volume Mean Assuming a Weibull Distribu-

tion. The ML estimates of the SEV parameters it to the natural log of the tree volume data are
µ̂ = −2.0964 and σ̂ = 0.5475. Substituting these and µ̂∗

j and σ̂∗
j , j = 1, . . . , B, into (14.16)

gives the simulated distribution of zÊ(T ) . Then the endpoints of a 95% conidence interval for

the Weibull distribution mean are given by the 0.025 and 0.975 quantiles of this empirical
distribution, obtained from the 5,000th and 195,000th ordered zÊ(T ) values, resulting in the

interval

[
E(T )

˜

, Ẽ(T )
]

=
[
zÊ(T ),0.025 , zÊ(T ),0.975

]
= [0.088, 0.138].

14.4.4 Simplified Simulation and Confidence Interval Computation with PQs
and GPQs

As mentioned earlier, when the data are complete (i.e., no censoring) or censored after a
prespeciied number of lower order statistics have been observed (known as Type 2 or failure
censoring), the PQs like Zµ̂ , Zσ̂ , and Zx̂p

have distributions that do not depend on the actual
values of µ and σ. Also, GPQs such as ZF̂ and ZÊ(T )(µ, σ, µ̂, σ̂, µ̂∗, σ̂∗) have distributions

that, conditional on the observed data, do not depend on the actual values of µ and σ. In such
cases, one can arbitrarily use any value of µ and σ > 0 in the Monte Carlo simulation.

Thus, it is possible to simulate using µ = 0 and σ = 1 in place of µ = µ̂ and σ = σ̂. Then
the computing formulas for the simulation simplify and it is possible to save the simulation
results—which depend only on the assumed distribution and the sample size (and number of
noncensored observations for Type 2 censoring)—so that these can be used subsequently for
other purposes (without having to store µ̂ and σ̂). For example, if µ = 0 and σ = 1 are used in
the simulation, (14.5) is replaced by

z∗
x̂p ,j =

[
−

µ̂∗
j

σ̂∗
j

+

(
1

σ̂∗
j

− 1

)
Φ−1(p)

]
, j = 1, . . . , B,

and (14.10) can be replaced by

z∗
F̂ ,j

= Φ
[
σ̂∗

j Φ
−1(p̂) + µ̂∗

j

]
, j = 1, . . . , B.

Similar substitutions can be made for the other PQs and GPQs in this section.
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14.5 SIMULATION-BASED TOLERANCE INTERVALS FOR LOCATION-SCALE
OR LOG-LOCATION-SCALE DISTRIBUTIONS

Section 4.6 described and illustrated the use of tolerance intervals for a normal distribution.
In this section we use parametric simulation-based methods to extend these methods to other
location-scale and log-location-scale distributions.

14.5.1 Two-Sided Tolerance Intervals to Control the Center of a Distribution

From (B.14) in Appendix B, a two-sided control-the-center tolerance interval to contain at least
a proportion β of a location-scale distribution with 100(1 − α)% conidence is given by

[

˜
Tβ , T̃β

]
= [µ̂ + gL(1−α ;β ,n)σ̂, µ̂ + gU (1−α ;β ,n)σ̂].

For a log-location-scale distribution the corresponding tolerance interval is
[

˜
Tβ , T̃β

]
= [exp(µ̂ + gL(1−α ;β ,n)σ̂), exp(µ̂ + gU (1−α ;β ,n)σ̂)]. (14.17)

For a symmetric distribution gL(1−α ;β ,n) = −gU (1−α ;β ,n) , gL(1−α ;β ,n) = −gL(1−α ;1−β ,n) , and
gU (1−α ;β ,n) = −gU (1−α ;1−β ,n) .

The factors gL(1−α ;β ,n) and gU (1−α ;β ,n) are functions of quantiles of distributions of partic-
ular pivotal quantities, as shown for the normal distribution in Section E.5.1 (but the result is
more generally true for location-scale distributions). For a symmetric distribution, these factors
are obtained by choosing those values that make the coverage probability in (B.15) equal to
the nominal conidence level. The coverage probability is evaluated using parametric boot-
strap simulation, as shown in (B.16). For symmetric location-scale distributions, the values of
gL(1−α ;β ,n) and gU (1−α ;β ,n) are determined, such that

1

B

B∑

j=1

I
[
Φ

(
z∗

U j

)
− Φ

(
z∗

Lj

)
> β

]
= 1 − α, (14.18)

z∗
Lj =

µ̂∗
j + gL(1−α ;β ,n)σ̂∗

j − µ̂

σ̂
,

z∗
U j =

µ̂∗
j + gU (1−α ;β ,n)σ̂∗

j − µ̂

σ̂
,

subject to the symmetry constraints given above. Here I[A] is an indicator function which
is equal to 1 when the statement A is true and equal to 0 otherwise. For a nonsymmetric
distribution, the values of gL(1−α ;β ,n) and gU (1−α ;β ,n) are chosen subject to the constraint

1

B

B∑

j=1

Φ
(
z∗

Lj

)
= 1 − 1

B

B∑

j=1

Φ
(
z∗

U j

)
. (14.19)

This constraint assures that the error probabilities are equal for both the lower and the upper
endpoints of the tolerance interval. Note that, as described in Section 14.4.4, (14.18) and (14.19)
simplify somewhat if the simulation to obtain µ̂∗

j and σ̂∗
j , j = 1, . . . , B, can be done usingµ = 0

and σ = 0 instead of µ = µ̂ and σ = σ̂.

Example 14.9 Two-SidedControl-the-Center 95%Tolerance Interval toContain the Pro-

portion 0.80 of the Carbon-Epoxy Fracture StrengthDistribution.Example 14.2 introduced
data giving fracture strength measured on 19 specimens of a carbon-epoxy composite material
and suggested that a Weibull distribution provides an appropriate description of the fracture
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strength data for this process. We will use the data to construct a 95% tolerance interval to
contain at least a proportion 0.80 of the distribution of fracture strengths.

The ML estimates for the Weibull distribution scale and shape parameters for the data are

η̂ = 510.17855 and β̂ = 18.86249. The corresponding estimated SEV distribution location
and scale parameters (that would be obtained by itting an SEV distribution to the logs of the

data) are μ̂ = log(η̂) = 6.23476 and σ̂ = 1/β̂ = 0.05302.
Bootstrap ML estimates μ̂∗

j and σ̂∗
j , j = 1, . . . , B, were computed from B = 200,000

samples of sizen = 19 (the sample size of the fracture strength data) simulated from the standard
SEV (i.e., μ = 0 and σ = 1) distribution and used in (14.18) to determine gL(0.95;0.80,19) =
−3.198916 and gU (0.95;0.80,19) = 1.350704, subject to the constraint in (14.19). Then the 95%
control-the-center tolerance interval to contain at least a proportion 0.80 of the distribution of
fracture strengths is obtained by substituting into (14.17), giving

[exp(6.23476 − 3.198916 × 0.05302), exp(6.23476 + 1.350704 × 0.05302)]

= [430.6, 548.1].

14.5.2 Two-Sided Tolerance Intervals to Control Both Tails of a Distribution

From (B.14) in Appendix B, a two-sided tolerance interval to control both tails of a location-
scale distribution to have no more than ptL in the lower tail and no more than ptU in the upper
tail of the distribution is given by

[

˜
Tp t L

, T̃p t U

]
=

[
μ̂ + g′′

L(1−α ;p t L ,n)σ̂, μ̂ + g′′
U (1−α ;p t U ,n)σ̂

]
.

For a log-location-scale distribution the corresponding tolerance interval is
[

˜
Tp t L

, T̃p t U

]
=

[
exp

(
μ̂ + g′′

L(1−α ;p t L ,n)σ̂
)
, exp

(
μ̂ + g′′

U (1−α ;p t U ,n)σ̂
)]

. (14.20)

As with the control-the-center tolerance interval described in Section 14.5.1, for a
symmetric distribution g′′

L(1−α ;p t L ,n) = −g′′
U (1−α ;p t U ,n) , g′′

L(1−α ;p t L ,n) = −g′′
L(1−α ;1−p t L ,n) and

g′′
U (1−α ;p t U ,n) = −g′′

U (1−α ;1−p t U ,n) . The factors are obtained like those for the control-the-center

tolerance interval described in Section 14.5.1, but using the coverage probability evaluation for-
mula in (B.20). For symmetric location-scale distributions, the values of g′′

L(1−α ;p t L ,n) and

g′′
U (1−α ;p t U ,n) are determined, such that

1

B

B∑

j=1

I
[
z

′′∗
Lj ≤ Φ−1(ptL) and z

′′∗
U j ≥ Φ−1(ptU )

]
= 1 − α, (14.21)

where

z
′′∗
Lj =

μ̂∗
j + g′′

L(1−α ;p t L ,n)σ̂
∗
j − μ̂

σ̂
, z

′′∗
U j =

μ̂∗
j + g′′

U (1−α ;p t U ,n)σ̂
∗
j − μ̂

σ̂
,

subject to the above symmetry constraints. For a nonsymmetric distribution, the values of
g′′

L(1−α ;p t L ,n) and g′′
U (1−α ;p t U ,n) are chosen in a nonsymmetric manner, again subject to a con-

straint similar to (14.19), using g′′
L(1−α ;p t L ,n) and g′′

U (1−α ;p t U ,n) instead of gL(1−α ;p t L ,n) and

gU (1−α ;p t U ,n) . Note that, as described in Section 14.4.4, (14.21) simpliies somewhat if the
simulation to obtain μ̂∗

j and σ̂∗
j , j = 1, . . . , B, is done using μ = 0 and σ = 0 instead of μ = μ̂

and σ = σ̂.
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Example 14.10 Two-Sided 95% Tolerance Interval to Control Both Tails of the Distribu-

tion of Fracture Strengths for Carbon-Epoxy Specimens so that Neither Tail has a Prob-

ability of More than 0.10. A control-both-tails tolerance interval is constructed in a manner
similar to the control-the-center tolerance interval in Example 14.9. The same bootstrapML esti-
mates μ̂∗

j and σ̂∗
j , j = 1, . . . , B, are used in (14.21) to determine g′′

L(0.95;0.80,19) = −3.669778

and g′′
U (0.95;0.80,19) = 1.600181, subject to the constraint in (14.19). Then a 95% tolerance inter-

val to have no more than a proportion 0.10 in each tail of the distribution of fracture strengths
is obtained by substituting into (14.20), giving

[exp(6.23476 − 3.669778 × 0.05302), exp(6.23476 + 1.600181 × 0.05302)]

= [419.97, 555.35].

This interval is wider than the control-the-center interval in Example 14.9, due to the more
stringent constraint of controlling both tails of the distribution.

14.5.3 One-Sided Tolerance Bounds

As described in Sections 2.4.2 and 4.6.3, a one-sided lower 100(1 − α)% tolerance bound
to be exceeded by at least a proportion p of a distribution is equivalent to a one-sided lower
100(1 − α)% conidence bound for the 1 − p quantile of the distribution. Similarly, a one-
sided upper 100(1 − α)% tolerance bound to exceed at least a proportion p of a distribution
is equivalent to a one-sided upper 100(1 − α)% conidence bound for the p quantile of the
distribution.

Therefore, a one-sided simulation-based tolerance bound is obtained using the method in
Section 14.3.4. This would be done by taking the appropriate endpoint of a two-sided conidence
interval for a distribution quantile, with a suitably adjusted conidence level. For example, to
obtain a 95% lower tolerance bound to be exceeded by at least a proportion 0.90 of a population,
one would use the lower endpoint of a 90% conidence interval for the 0.10 quantile.

14.6 SIMULATION-BASED PREDICTION INTERVALS AND ONE-SIDED
PREDICTION BOUNDS FOR AT LEAST k OF m FUTURE OBSERVATIONS
FROM LOCATION-SCALE OR LOG-LOCATION-SCALE DISTRIBUTIONS

Section 4.8 presented simultaneous prediction intervals to enclose at least k of m future
observations from a normal distribution. This section extends these results to other location-
scale and log-location-scale distributions, using simulation-based methods.

14.6.1 Simultaneous Two-Sided Prediction Intervals to Contain at Least
k of m Future Observations

From (B.27) in Appendix B, a simultaneous two-sided 100(1 − α)% prediction interval to
enclose at least k of m future observations from a particular location-scale distribution is[

Y
˜

k ;m , Ỹk ;m

]
= [µ̂ + rL(1−α ;k,m,n)σ̂, µ̂ + rU (1−α ;k,m,n)σ̂].

The corresponding prediction interval for a log-location-scale distribution is[
Y
˜

k ;m , Ỹk ;m

]
= [exp(µ̂ + rL(1−α ;k,m,n)σ̂), exp(µ̂ + rU (1−α ;k,m,n)σ̂)]. (14.22)

The factors rL(1−α ;k,m,n) and rU (1−α ;k,m,n) are quantiles of distributions of particular pivotal
quantities, as shown in Section E.7 for the normal distribution, but the result is also true for other
location-scale distributions. For a symmetric distribution, rL(1−α ;k,m,n) = −rU (1−α ;k,m,n) . The
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factors can be computed so that the coverage probability (B.28) in Appendix B is equal to the
nominal conidence level.

For a nonsymmetric distribution, the values of rL(1−α ;k,m,n) and rU (1−α ;k,m,n) are chosen
such that the coverage probability in (B.28) is equal to the nominal conidence level and the
one-sided probabilities of noncoverage in each tail of the distribution are equal.

For symmetric location-scale distributions, the values of rL(1−α ;k,m,n) and rU (1−α ;k,m,n) are
then determined, such that

1

B

B∑

j=1

[
m∑

i=k

(
m

i

)
(p∗

j )
i(1 − p∗

j )
m−i

]
= 1 − α, (14.23)

where

p∗
j = Φ

(
µ̂∗

j + rU (1−α ;k,m,n)σ̂∗
j − µ̂

σ̂

)
− Φ

(
µ̂∗

j + rL(1−α ;k,m,n)σ̂∗
j − µ̂

σ̂

)
,

subject to the symmetry constraint given above. For a nonsymmetric distribution, the values of
rL(1−α ;k,m,n) and rU (1−α ;k,m,n) are chosen (in a nonsymmetric manner) subject to the constraint

1

B

B∑

j=1

[
m∑

i=k

(
m

i

)
(ω∗

j )
i(1 − ω∗

j )
m−i

]
=

1

B

B∑

j=1

[
m∑

i=k

(
m

i

)
(ν∗

j )
i(1 − ν∗

j )
m−i

]
, (14.24)

where

ω∗
j = 1 − Φ

(
µ̂∗

j + r′L(1−α ;k,m,n)σ̂
∗
j − µ̂

σ̂

)
,

ν∗
j = Φ

(
µ̂∗

j + r′U (1−α ;k,m,n)σ̂
∗
j − µ̂

σ̂

)
. (14.25)

The constraint in (14.24) assures that the error probabilities are equal for both the lower and the
upper endpoints of the simultaneous prediction interval.Note that, as described in Section 14.4.4,
(14.25) can be simpliied if the simulation to obtain µ̂∗

j and σ̂∗
j , j = 1, . . . , B, is done using

µ = 0 and σ = 0 instead of µ = µ̂ and σ = σ̂.

Example 14.11 Simultaneous Two-Sided 95% Prediction Interval to Contain at Least k
of m Future Fracture Strengths for Carbon-Epoxy Specimens. We use the carbon-epoxy
fracture strength data from Example 14.2 to illustrate the computation of a simultaneous two-
sided prediction interval to contain 4 out of 5 future observations from the fracture strength
distribution. The procedure is similar to that used in Examples 14.9 and 14.10 for obtaining
tolerance intervals using the ML estimates µ̂ = 6.23476 and σ̂ = 0.05302 calculated from
the data, and the bootstrap ML estimates µ̂∗

j and σ̂∗
j , j = 1, . . . , 2,000,000. The bootstrap

estimates are then used in (14.23) to determine rL(0.95;4,5,19) = −3.734 and rU (0.95;4,5,19) =
1.429, subject to the constraint (14.24). Thus, a simultaneous 95% prediction interval to contain
4 out of 5 future fracture strengths is obtained by substituting into (14.22), giving

[exp(6.23476 − 3.734 × 0.05302), exp(6.23476 + 1.429 × 0.05302)] = [418.6, 550.3].

Table 14.4 shows the preceding prediction interval, along with similar intervals to contain at
least k out of m future observations from the fracture strength distribution for increasing values
of k and m such that k/m = 0.80. The previously calculated 95% tolerance interval to contain
a proportion 0.80 of the sampled distribution is also shown. This tabulation indicates that the
prediction intervals become narrower as m and k increase, and ultimately converge to the
tolerance interval to contain a proportion 0.80 of the sampled distribution.
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Interval type To contain at least Interval

Prediction 4 out of 5 future observations [418.6, 550.3]
Prediction 8 out of 10 future observations [420.7, 550.1]
Prediction 40 out of 50 future observations [427.2, 548.8]
Prediction 80 out of 100 future observations [428.8, 548.5]
Prediction 400 out of 500 future observations [430.2, 548.2]
Tolerance a proportion 0.80 of the distribution [430.6, 548.1]

Table 14.4 Simultaneous two-sided 95% prediction intervals to contain at least

k of m future fracture strengths with increasing k and m and a 95% tolerance

interval to contain a proportion 0.80 of the fracture strength distribution,

calculated from the carbon-epoxy data and based on a Weibull distribution it.

14.6.2 Simultaneous One-Sided Prediction Bounds for k of m
Future Observations

A simultaneous one-sided lower 100(1 − α)% prediction bound to be exceeded by at least k
of m future observations from a location-scale distribution is

Y
˜

′
k ;m = µ̂ + r′L(1−α ;k,m,n)σ̂. (14.26)

A simultaneous one-sided upper 100(1 − α)% prediction bound to exceed at least k of m
future observations from a location-scale distribution is

Ỹ ′
k ;m = µ̂ + r′U (1−α ;k,m,n)σ̂.

The values of r′L(1−α ;k,m,n) and r′U (1−α ;k,m,n) are determined such that (14.23) holds using

p∗
j = 1 − Φ

(
µ̂∗

j + r′L(1−α ;k,m,n)σ̂
∗
j − µ̂

σ̂

)
(14.27)

for the one-sided lower prediction bound and

p∗
j = Φ

(
µ̂∗

j + r′U (1−α ;k,m,n)σ̂
∗
j − µ̂

σ̂

)
(14.28)

for the one-sided upper prediction bound. For a log-location-scale distribution the corresponding

prediction bounds are obtained by exponentiating Y
˜

′
k ;m and Ỹ ′

k ;m . Note that, as described in

Section 14.4.4, (14.27) and (14.28) can be simpliied if the simulation to obtain µ̂∗
j and σ̂∗

j ,
j = 1, . . . , B, is done using µ = 0 and σ = 0 instead of µ = µ̂ and σ = σ̂.

Example 14.12 LowerPredictionBound to beExceededby at leastk ofmFutureFracture

Strengths for Carbon-Epoxy Specimens. We again use the carbon-epoxy fracture strength
data to illustrate the computation of a simultaneous one-sided lower 95% prediction bound
to be exceeded by 4 out of 5 future observations from the fracture strength distribution. The
procedure is similar to that used in Example 14.11 using the ML estimates µ̂ = 6.23476
and σ̂ = 0.05302, calculated from the data, and the bootstrap ML estimates µ̂∗

j and σ̂∗
j ,

j = 1, . . . , 2,000,000. The bootstrap estimates are then used in (14.23) with (14.27) to deter-
mine r′L(0.95;4,5,19) = −2.922. Then the lower 95% prediction bound to be exceeded by 4 out
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Bound type To be exceeded by at least Bound

Prediction 4 out of 5 future observations 437.0
Prediction 8 out of 10 future observations 438.9
Prediction 40 out of 50 future observations 444.9
Prediction 80 out of 100 future observations 446.4
Prediction 400 out of 500 future observations 447.8
Tolerance a proportion 0.80 of the distribution 448.1

Table 14.5 Simultaneous lower 95% prediction bounds to be exceeded

by at least k of m future fracture strengths with increasing k and m and a

lower 95% tolerance bound to be exceeded by a proportion 0.80 of the

fracture strength distribution, calculated from the carbon-epoxy data and

based on a Weibull distribution it.

of 5 future fracture strengths is obtained by substituting into (14.26) and then exponentiating,
giving exp(6.23476 − 2.922 × 0.05302) = 437.0.

Table 14.5 compares the preceding lower prediction bound with similar bounds to be
exceeded by at least k out of m future observations from the fracture strength distribution
for increasing values of k and m such that k/m = 0.80. The lower 95% tolerance bound to be
exceeded by the proportion 0.80 of the sampled population is also shown. Table 14.5 shows that
the value of the prediction bound increases as k and m increase, ultimately converging to the
lower 95% tolerance bound to be exceeded by a proportion 0.80 of the sampled distribution.

Note that, as described in Section 14.5.3, the lower 95% tolerance bound to be exceeded by
a proportion 0.80 of the sampled distribution in the last line of Table 14.5 is equivalent to a
95% lower conidence bound for the 0.20 quantile of the distribution (or the lower endpoint of
a two-sided 90% conidence interval for the 0.20 quantile of the distribution) and was obtained
by using the methods described in Section 14.3.4.

14.7 OTHER SIMULATION AND BOOTSTRAP METHODS AND APPLICATION
TO OTHER DISTRIBUTIONS AND MODELS

Hall (1988) commented that “There exists in the literature an almost bewildering array of boot-
strap methods for constructing conidence intervals for a univariate parameter θ.” Since 1988,
the size of the array of bootstrap methods and applications seems to have grown explosively.

In this and the preceding chapter we have presented and illustrated the use of bootstrap and
other simulation-based methods that are most commonly used in practice and those that we
have found to be particularly useful in our own work. Some other important combinations,
not explicitly presented previously in this chapter, also deserve mention here. Many more
bootstrap/simulation-related methods are described in the textbooks and other references cited
in the Bibliographic Notes section at the end of this chapter.

14.7.1 Resampling for Parametric Bootstrap Confidence Intervals

The parametric bootstrap methods in Sections 14.3–14.6 not only assumed a particular para-
metric distribution, but also took advantage of the theoretical properties of certain pivotal (or
generalized pivotal) quantities. Where such pivotal quantities are not available, it is possible
(and theoretically justiiable) to simply adapt the nonparametric methods to generate bootstrap
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samples in Section 13.4 to obtain parametric bootstrap intervals. For example, nonparametric
resampling (Section 13.2.1) can be used to generate B bootstrap samples and for each of these
bootstrap samples the assumed parametric model can be it, giving B bootstrap estimates of a
quantity of interest. Then any of the methods in Section 13.4 (simple percentile, BC percentile,
BCa percentile, or percentile-t) could be adapted to construct the desired parametric bootstrap
conidence interval, without regard to the existence of related pivotal quantities. In itting a para-
metric distribution or model, the smoothness condition mentioned in Section 13.4.8 is met for
most important inference needs because ML estimates, under the standard regularity conditions
in parametric models, are smooth functions of the data. Thus, such methods generally work well
for estimating distribution quantiles or probabilities. As with nonparametric bootstrap methods,
the BCa percentile and percentile-t methods have superior theoretical properties and are to be
preferred over the simple percentile and BC methods. Among parametric bootstrap methods,
we recommend the bootstrap-tmethod because it requires only an estimate of the standard error
from each bootstrap sample (usually readily available when using a parametric model) and does
not require computation of an acceleration constant.

14.7.2 Random-Weight Bootstrap Sampling for Parametric Bootstrap
Confidence Intervals

Although the random-weight bootstrap sampling method (Section 13.2.2) is nonparametric
(because it does not require speciication of a particular parametric distribution), the method is
most commonly used for parametric inference problems. That is, at each bootstrap iteration, ran-
dom weights are selected (without regard to any parametric assumption) and then a parametric
distribution or model is it using the weights, as described in Section 13.2.2, to obtain bootstrap
estimates. As mentioned there, random-weight bootstrap sampling is particularly appealing
when there is a nonnegligible probability that a bootstrap resample will not allow estimation
of the parameters of the assumed parametric distribution or model or the quantity of interest.
Another class of applications for which the random-weight bootstrap has strong appeal is when
the original data or model have complications such as random censoring and truncation, where
it would be dificult to develop parametric methods to simulate bootstrap samples.

As mentioned in Section 14.7.1, once the bootstrap samples and bootstrap estimates have
been computed, any of the interval-construction methods in Section 13.4 (i.e., simple percentile,
BC percentile, BCa percentile, or percentile-t) can be adapted to construct the desired bootstrap
conidence intervals.

14.7.3 Bootstrap Methods with Other Distributions and Models

Up to this point, our presentation and examples of parametric bootstrap methods have been
based on the assumption of a (log-)location-scale distribution. Parametric bootstrap methods
can, however, be applied much more generally to other commonly used parametric distributions
such as the gamma, generalized gamma, Birnbaum–Saunders, and inverse Gaussian or any
other speciied distribution. We use a further example to illustrate how bootstrap methods can
be adapted to other distributions and kinds of data. Further examples and comparisons are given
in Chapter 18.We also describe special considerations that may be needed when using bootstrap
methods with censored data.

The following example illustrates the use of bootstrap methods for a more complicated
problem.

Example 14.13 Parametric Bootstrap Conidence Intervals for Generalized Gamma Dis-

tribution Quantiles Fitted to the Ball Bearing Failure Data. As described in Section C.3.8,
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Figure 14.6 Weibull probability plot of the ball bearing failure data with the GNG ML estimate and a set of

pointwise Wald 95% conidence intervals for the cdf.

the generalized gamma distribution has three parameters and includes the Weibull, lognormal,
Fréchet, and gamma distributions as special cases. The following example is an application for
which attempting to use the standard parametric bootstrap method caused dificulties but the
random-weight bootstrap worked well.

Consider again the ball bearing fatigue failure data given in Table 4.1 and used in Exam-
ple 4.15. We now extend the application of the generalized gamma (GNG) distribution used in
Meeker and Escobar (1998, Example 11.2) by using bootstrap methods to compute conidence
intervals for the 0.10 quantile of the bearing life distribution. The ML estimates of the GNG

distribution parameters are μ̂ = 4.230, σ̂ = 0.5100, and λ̂ = 0.3077. Figure 14.6 is a Weibull
probability plot of the data, showing the ML estimate of the GNG cdf and a set of pointwise
Wald 95% conidence intervals for the cdf. The ML estimate of the quantile t0.10 , obtained by

substituting into (C.13), is t̂0.10 = 32.08.
We initially tried to obtain bootstrap estimates with the traditional resampling method (Sec-

tion 13.2.1), but found that the ML iterations failed to converge correctly in 193 of the 4,000
(4.8%) bootstrap resamples (in particular, the ML estimates of the shape parameter λ were, in
these cases, on the boundary of the interval [−12, 12] that is commonly used to constrain λ to
practical values). That problem arose in only 8 of the 4,000 (0.2%) random-weight bootstrap
samples (an occurrence rate that is small enough to ignore).

Table 14.6 compares six different methods for constructing a conidence interval for t0.10 .
The likelihood-ratio and Wald methods were computed by direct application of the general
methods described in Chapter 12. The four bootstrap intervals were all computed based on
random-weight bootstrap ML estimates (Section 13.2.2) and applying the simple percentile and
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Method Section(s) 95% conidence interval

Random-weight bootstrap simple percentile 13.4.2 [23.4, 42.9]
Random-weight basic bootstrap 13.4.5 [21.2, 40.8]
Random-weight basic bootstrap (log transformation) 13.4.5 [24.0, 44.0]
Random-weight bootstrap-t 13.4.6 [20.9, 41.0]
Likelihood-ratio method 12.5.4 [18.4, 42.2]
Wald-approximation method 12.6.4 [20.1, 51.3]

Table 14.6 Parametric 95% conidence intervals for the ball bearing generalized gamma 0.10

quantile using six different methods.

bootstrap-t conidence interval methods (Sections 13.4.2 and 13.4.6, respectively), as well as
the basic bootstrap method (Section 13.4.5) with and without a log transformation.

Table 14.6 shows that the upper bound of the Wald interval is appreciably higher than any of
the other upper bounds, indicating skewness in the proile likelihood for t0.10 (not shown here).
The other intervals show only moderate differences. As in other examples, statistical theory
suggests that the random-weight bootstrap-t method is more reliable than the other simpler
alternatives.

14.7.4 Bootstrapping with Complicated Censoring

Methods for analyzing censored data were discussed in Section 12.2 and a more thorough
presentation is given in Meeker and Escobar (1998). Bootstrap methods require special care
when data are censored. In particular, bootstrap samples must be generated in a manner that
accurately mimics the actual data-generating process. For simple Type 1 censoring (i.e., time
censoring for which a laboratory life test is terminated at a ixed time for all units in a sample)
or Type 2 censoring (i.e., failure censoring for which a laboratory life test is terminated when
a speciied number of units have failed), simulating bootstrap samples is straightforward (e.g.,
as described in Meeker and Escobar, 1998, Section 4.13). In more complicated situations,
censoring can arise from a complicated process that may be dificult to model. This is especially
true with ield data where censoring arises due to a combination of, often random, factors that
impact how units enter and leave service, for example, the withdrawal of units from service due
to the occurrence of competing causes of failure in the analysis of a speciic failure mode.

The classic nonparametric bootstrap resampling method (Section 13.2.1) provides a method
of generating bootstrap samples that does not require explicit modeling of a censoring mech-
anism. Problems using this method can arise, however, because there is always a chance that
a bootstrap sample will contain all censored observations, making it impossible to compute
the needed bootstrap estimates. In such cases, the random-weight bootstrap sampling method
(Section 13.2.2) avoids this problem because all of the original observations are represented in
each bootstrap sample.

Example 14.14 Parametric Bootstrap Conidence Intervals for Evaluating Lifetime

Quantiles of a Rocket Motor. The rocket motor life data in Table 14.7 were irst presented in
Olwell and Sorell (2001).

The US Navy had an inventory of approximately 20,000 missiles. Each included a rocket
motor—one of ive critical components. While in storage awaiting potential use, each of these
rocket motors was subject to continuous thermal cycling. Only 1,940 of the systems had actually
been put into light over a period of time up to 18 years subsequent to their manufacture. At their
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Number Number Number
Years of motors Years of motors Years of motors

> 1 105 > 8 211 > 14 14
> 2 164 > 9 124 > 15 5
> 3 153 > 10 90 > 16 3
> 4 236 > 11 72 < 8.5 1
> 5 250 > 12 53 < 14.2 1
> 6 197 > 13 30 < 16.5 1
> 7 230

Table 14.7 Rocket motor life data (in years since manufacture).

time of light, 1,937 of these motors performed satisfactorily; but there were three catastrophic
launch failures. Responsible scientists and engineers believed that these failures were due to
the thermal cycling to which the motors were exposed continually prior to deployment. In
particular, it was believed that the thermal cycling resulted in failed bonds between the solid
propellant and the missile casing.

The failures raised concern about the previously unanticipated possibility of a sharply increas-
ing failure rate over time (i.e., rapid wearout) as the motors aged and were subjected to thermal
cycling while in storage. If this were indeed the case, a possible—but highly expensive—
remedial strategy might be to replace aged rocket motors with new ones. Thus, to assess the
magnitude of the problem it was desired to quantify the rocket motor failure probability as
a function of the amount of thermal cycling to which a motor was exposed and to obtain
appropriate conidence bounds around such estimates based on the results for the 1,940 rocket
motors—assuming these to be a random sample from the larger population (at least with regard
to their failure time distribution).

Because no informationwas directly available on the thermal cycling history of the individual
motors, the age of the motor (i.e., time since manufacture) at launch was used as a surrogate.
This was not an ideal replacement because the thermal cycling rate, or rate of accumulation of
other damage mechanisms, varied across the population of motors, depending on an individual
missile’s environmental storage history. The effect of such an imperfect time scale is to increase
the variability in the observed lifetime response, as described in Meeker et al. (2009). The
failure probability 20 years after manufacture was of particular interest.

The speciic age at failure of each of the three failed motors was not known—all that was
known was that failure, in each case, had occurred sometime prior to the time of launch—thus
making the time since manufacture at launch left-censored observations of the actual failure
times. Similarly, the information of (eventual) failure age for the 1,937 successful motors is right
censored—all that is known is that the time to the yet-to-occur failure exceeds the calendar age
at the time of launch. Thus, the availablemotor life data, which is shown in Table 14.7, contained
only left- and right-censored observations—but no known exact failure times. Figure 14.7 is an
event plot that further illustrates the structure of the data.

Because failure times are only loosely bounded and because of the very small number of
known failures, the amount of information in the data is severely limited. Nevertheless, it is
possible to estimate the Weibull distribution parameters from these data. The ML estimates
of the location and scale parameters of the underlying SEV distribution are μ̂ = 3.055 and

σ̂ = 0.123. The correspondingWeibull parameterML estimates are η̂ = 21.23 and β̂ = 8.126.
The estimate of the Weibull shape parameter β is very large for a population that is known
to have much variability. Figure 14.8 is a Weibull probability plot of the data containing a
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Figure 14.7 Event plot of the rocket motor life data.
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Figure 14.8 Weibull probability plot of the rocket motor life data showing a nonparametric estimate and the

Weibull ML estimate of the cdf.
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Method Section(s) 95% conidence interval

Random-weight bootstrap simple percentile 14.4.2 [0.014, 1.0000000]
Likelihood ratio 12.5.4 [0.023, 0.9999957]
Wald approximation 12.6.4 [0.027, 0.9999988]

Table 14.8 95% conidence intervals for F (20) for the Weibull distribution it to the rocket

motor data using different methods.

nonparametric estimate (the three plotted points) and theWeibullML estimate of fraction failing
as a function of years in service, along with pointwise Wald conidence intervals for the cdf.
The inner rectangle indicates a target of no more than a fraction 0.01 failing in 20 years.

In this example, it would be dificult or impossible to model the censoring mechanism
for parametric simulation of bootstrap samples. Also, traditional bootstrap resampling (Sec-
tion 13.2.1) would not work because of the high probability of obtaining resamples that would
be unable to estimate theWeibull parameters (e.g., the probability of obtaining all right-censored
observations in a resample of size 1,940 is approximately 0.05). Thus we use the random-weight
bootstrap method for which we were able to estimate F (20) for all 4,000 bootstrap samples.
Due to numerical dificulties, estimated standard errors were not always available. Thus we
report bootstrap results only for the simple percentile method.

The ML estimate of F (20), the fraction failing before 20 years after manufacture (or the

probability that a missile of age 20 years will not successfully ire) is F̂ (20) = Φsev [(log(20) −
3.055)/0.123] = 0.46, which appreciably exceeds the target value of 0.01.

Table 14.8 compares several different conidence intervals for F (20). The Wald and like-
lihood procedures give similar results in this example. The simple percentile method results
in an interval that is somewhat wider. These differences, however, are inconsequential when
one looks at the width of the intervals. Each provides the same practical message: due to the
limited amount of information in the data, useful bounds on F (20) are not available from the
data alone. In Section 18.7 we return to this example, supplementing the data with additional
engineering information.

BIBLIOGRAPHIC NOTES

Parametric Bootstrap

Hall (1988) presents a theoretical framework for comparing the properties of different bootstrap
procedures. His results show that both the BCa percentile and the bootstrap-t methods are
second-order correct as parametric bootstrap methods for the multivariate exponential family
of distributions.

Intervals based on pivotal quantities

Thoman et al. (1970) show how to use PQs to construct conidence intervals for Weibull dis-
tribution failure probabilities and quantiles. Lawless (2003, Section 5.1.2 and Appendix E)
provides PQs to construct exact conidence intervals for parameters, quantiles, and probabili-
ties of location-scale (and log-location-scale) distributions for complete and (failure) censored
samples. Monte Carlo simulation is generally required to obtain the distribution of the needed
PQs.
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Intervals based on generalized pivotal quantities

Tsui and Weerahandi (1989) introduced the concept of generalized p-values, which set the stage
for generalized pivotal quantities (GPQs). Weerahandi (1993) shows how to use GPQs to con-
struct approximate conidence intervals for applications for which no PQ exists, andWeerahandi
(1995) describes a broad range of applications formaking inferences (including conidence inter-
vals) with GPQs. Hamada and Weerahandi (2000) apply GPQ methods to obtain conidence
intervals for variance components and functions of variance components from gauge repeatabil-
ity and reproducibility studies. Chiang (2001) independently developed the surrogate variable
method to obtain conidence intervals on functions of the parameters of a random-effects model
that is equivalent to the GPQ method. Weerahandi (2004) applies GPQs to problems involving
repeatedmeasures and othermixed effectmodels. Krishnamoorthy and Mathew (2009) describe
GPQs for location-scale (and log-location-scale) distributions and how to compute conidence
intervals for various applications. Again, Monte Carlo simulation is generally required to obtain
the distributions of the needed GPQs. Li et al. (2009) provide an interesting application of GPQ
conidence intervals.

Relationship between generalized pivotal quantities and generalized
fiducial inference

Hannig et al. (2006) show the connection between GPQ based inference and extensions of
classical iducial inference, which is called generalized iducial inference (GFI). They show
that a wide range of GPQ conidence interval procedures could be obtained by using GFI
methods. They also proved that conidence intervals based on GFI are asymptotically exact
(i.e., have a coverage probability that approaches the nominal conidence level as the sample
size increases) and gave a condition for GFI intervals to be exact in inite samples. In addition,
they gave some general methods for constructing GPQs. Hannig (2009) provided amore general
treatment of GFI ideas, including extensions to discrete distributions. Hannig (2013) shows that
discretization of the data avoids problems of nonuniqueness of the iducial distribution while
maintaining asymptotic correctness of theGFI procedures. Hannig et al. (2016) provide a review
of GFI methods.

Tolerance and prediction intervals

Yuan et al. (2017) provide a general simulation-based approach for constructing two-sided
tolerance intervals based on data from a member of the (log-)location-scale family of distri-
butions with complete or right-censored data. They treat both the control-the-center and the
control-both-tails type of tolerance interval. The material in our Section 14.5 is based on this
paper. Xie et al. (2017) provide a general simulation-based approach for constructing two-sided
simultaneous prediction intervals to contain at least k out of m future observations and cor-
responding one-sided simultaneous prediction bounds, based on data from a member of the
(log-)location-scale family of distributions with complete or right-censored data. The material
in our Section 14.6 is based on this paper.



Chapter 15
Introduction to Bayesian

Statistical Intervals

OBJECTIVES AND OVERVIEW

This chapter presents the basic concepts behind the construction of Bayesian statistical intervals
and the integration of prior information with data that Bayesian methods provide. The use of
such methods has seen a rapid evolution over recent years. The development of the theory
and application of Markov chain Monte Carlo (MCMC) methods and vast improvements in
computational capabilities have made the use of such methods feasible.

There are, moreover, many applications for which practitioners have solid prior informa-
tion on certain aspects of their applications based on knowledge of the physical-chemical
mechanisms and/or relevant experience with a previously studied phenomenon. For example,
engineers often have useful, but imprecise, knowledge about the effective activation energy
in a temperature-accelerated life test or about the Weibull distribution shape parameter in the
analysis of fatigue failure data or the amount of variability in a measurement process. In such
applications, the use of Bayesian methods is compelling as it offers an appropriate compromise
between assuming that such quantities are known and assuming that nothing is known.

We describe three speciic methods for obtaining Bayesian intervals:

� A traditional approach based on conjugate distributions that is useful in a few particularly
simple situations.

� A simple approach based on Monte Carlo simulation that provides intuition and insight
into how Bayesian methods work.

� A general approach based on MCMC simulation that is recommended for most applica-
tions of Bayesian methods.

We then discuss the use of these methods for constructing Bayesian credible, tolerance, and
prediction intervals. (Bayesian credible intervals are analogous to non-Bayesian conidence
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intervals and a credible level is similar to a conidence level—see Section 1.15.) We apply these
methods to the binomial, Poisson, and normal distributions in Chapter 16. Then we extend
these methods in Chapter 17 to consider the construction of Bayesian intervals for the more
complicated situation involving hierarchical models and provide other examples of the use of
Bayesian methods in Chapter 18.

The topics discussed in this chapter are:

� An overview of the motivations for using Bayesian inference, how it differs from non-
Bayesian likelihood inference, a statement of Bayes’ theorem, and brief introductions to
the speciication of prior information and parameterization (Section 15.1).

� An example that illustrates a practical approach to making Bayesian inferences by intro-
ducing the speciication of a prior distribution, the characterization of a posterior distribu-
tion using simulation, and the construction of Bayesian credible intervals from the results
(Section 15.2).

� How to choose a prior distribution for a Bayesian analysis and the traditional use of
conjugate distributions (Section 15.3).

� The basic ideas of using MCMC simulation to compute estimates and credible intervals
in a Bayesian analysis (Section 15.4).

� The construction of Bayesian tolerance and prediction intervals (Section 15.5).

Some technical details about Bayesian inference methods are given in Appendix H.

15.1 BAYESIAN INFERENCE: OVERVIEW

15.1.1 Motivation

There are, depending on the application, three strong motivators for using Bayesian methods to
construct statistical intervals:

� Bayesian methods provide a formal analytical framework for an analyst to incorporate
prior information into a data analysis/modeling problem to supplement limited data, often
providing important improvements in precision (and often resulting in cost savings).

� Bayesian methods can handle, with relative ease, complicated data-model combinations
for which no software using classical non-Bayesian likelihood-based methods exists
and for which implementing non-Bayesian methods would be dificult. For example,
currently available software for doing Bayesian computations can analyze combinations
of nonlinear relationships, random effects, and censored data that cannot be handled
readily by currently available commercial software.

� When using Bayesian methods, it is generally easy to produce estimates and credible
intervals for complicated functions of the model parameters, such as the probability of
product failure or quantiles of a failure-time distribution, that might be extremely dificult
using non-Bayesian methods.

15.1.2 Bayesian Inference versus Non-Bayesian Likelihood Inference

The top diagram in Figure 15.1 shows the components of a likelihood-based non-Bayesian
inference procedure. Inputs are the data and a model for the data. The inference outputs are,
for example, point estimates and conidence intervals for quantities of interest (e.g., a quantile
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Figure 15.1 Comparison of likelihood (top) and Bayesian (bottom) inference methods.

or a failure probability associated with a failure-time distribution), or in some applications a
tolerance or a prediction interval. The bottom diagram in Figure 15.1 is a similar diagram for
the Bayesian inference procedure. In addition to the model and the data, one must also specify
a joint prior distribution that describes one’s knowledge about the unknown parameters of the
model. Bayes’ theorem is used to combine the prior information with the likelihood to produce
a posterior distribution. Similar to non-Bayesian inference, outputs are point estimates and
credible intervals, tolerance intervals, and prediction intervals.

15.1.3 Bayes’ Theorem and Bayesian Data Analysis

Bayes’ theorem is a probability rule that relates different kinds of conditional probabilities (or
conditional probability density functions) to one another. This rule is also the basis for the
Bayesian method of statistical inference which allows one to combine available data with prior
information to obtain a posterior (or updated) distribution that can be used to make inferences
about some vectorθ of unknown parameters or functions thereof. Bayes’ theorem for continuous
random variables can be written as

f(θ|DATA) =
L(DATA|θ)f(θ)∫
L(DATA|θ)f(θ)dθ

=
R(θ)f(θ)∫
R(θ)f(θ)dθ

, (15.1)
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where the joint prior distribution f(θ) quantiies the available prior information about
the unknown parameters in θ. The output of (15.1) is f(θ|DATA), the joint posterior
distribution for θ, relecting knowledge of θ after the information in the data and the
prior distribution have been combined. L(DATA|θ) is the likelihood function and R(θ) =

L(DATA|θ)/L(DATA|θ̂) is the relative likelihood (introduced in Chapter 12), and the inte-
gral is computed over the region where f(θ) > 0. Also L(DATA|θ) is a function of the
assumed model for the data and must be proportional to the probability of the data. It quantiies
the information in the data. The vector θ of unknown parameters is to be estimated. For discrete
random variables, the integrals in (15.1) are replaced by summations.

In general, it is impossible to compute the integrals in (15.1) in closed form. Numerical
methods can be computationally intensive or intractable when θ has more than two or three
elements, as is frequently the case in dealing with regression analyses and with the hierarchical
models described in Chapter 17. In the past, this was an impediment to the use of Bayesian
methods. Today, however, new statistical and numerical methods that take advantage of modern
computing power are making it feasible to apply Bayesian methods to a much wider range
of applications. Modern computing methods for Bayesian analysis make inferences on the
basis of a large number of (relatively easy-to-compute) sample draws from the joint poste-
rior distribution. This approach makes Bayesian inference computations relatively simple to
conduct.

15.1.4 The Need for Prior Information

As we can see from (15.1), the use of Bayesian methods for statistical modeling and inference
requires one to specify a joint prior distribution f(θ) to describe the prior knowledge that is
available about the unknown parameters in θ. One reason why the use of Bayesian methods
has been controversial in many applications is that it is possible that the joint prior distribution
will have a strong inluence on the resulting inferences, especially when the amount of data is
limited, as is common in many applications. When the joint prior distribution f(θ) is diffuse
(i.e., relatively lat over the range of θ values for which the likelihood is nonnegligible) and if
there is ample data, the data are likely to dominate the prior distribution. In such situations, one
can expect the likelihood L(DATA|θ) to be approximately proportional to the joint posterior
distribution. This will result in Bayesian inferences that are similar to what one would make
using non-Bayesian methods like maximum likelihood (ML). The important topic of prior
distribution selection is discussed more fully in Section 15.2.2.

15.1.5 Parameterization

Parametric statistical models have unknown parameters that are to be estimated from data
(sometimes with the aid of prior information). For example, theWeibull distribution cumulative
distribution function is often written as

Pr(T ≤ t; η, β) = F (t; η, β) = 1 − exp

[
−

(
t

η

)β
]
, t > 0, (15.2)

where β > 0 is a unitless shape parameter and η > 0 is a scale parameter that has the same
units as T . The scale parameter is (approximately) the 0.632 quantile of the distribution (e.g., in
dealing with failure-time data, the time by which a proportion 0.632 of the population will fail).
In Chapters 12 and 14, we found it useful to use the alternative parameterizationµ = log(η) and
σ = 1/β, corresponding to the parameters of the smallest extreme value distribution (a member
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of the location-scale family) of the logarithms of the Weibull random variable. For more
information about the Weibull and similar probability distributions, see Section C.3.1.

It might be, however, that neither (η, β) nor (µ, σ) is the best set of parameters to use in
Bayesian applications. For example, in itting a Weibull distribution to failure-time data, the
use of an appropriate value of the quantile tp for p other than 0.632, instead of η, together with
β is generally a better choice for the following reasons:

� Usually, engineers are more likely to have prior information on a quantile of the failure-
time distribution other than the 0.632 quantile, because one often observes only a small
fraction failing in life tests or in ield operation. It will, therefore, generally be easier
to elicit prior information about a quantile in the lower tail of the distribution than to
obtain prior information about η. In contrast, one would retain the shape parameter β
because engineers often have some information about this parameter. In particular, the
shape parameter is often indicative of a product’s failure mechanism. Knowledge of the
failure mechanism then often suggests an approximate plausible range for this parameter.

� When there is heavy censoring (i.e., only a small fraction failing), the likelihood surface
for η and β will tend to have an elongated shape, relecting the strong correlation between
the ML estimators of η and β. This strong correlation can make the computation of ML
(and also Bayesian) estimates more dificult by increasing the amount of computer time
needed or the probability of algorithmic failure. As an alternative, we propose using what
Ross (1970, 1990) calls stable parameters which generally correspond to quantities that
one can readily identify in a plot of the data.

Although it is possible to use one parameterization for prior speciication and a different
parameterization for computing parameter estimates iteratively, we generally ind that a single
alternative parameterization usefully serves both purposes.

A useful reparameterization for the Weibull distribution replaces η with a particular distri-
bution quantile that could be estimated nonparametrically directly from the available data. The

p quantile of the Weibull distribution can be written as tp = η[− log(1 − p)]
1/β

. Replacing η
with the equivalent expression η = tp/[− log(1 − p)]1/β in (15.2) provides a reparameterized
version of the Weibull distribution,

Pr(T ≤ t; tp , β) = F (t; tp , β) = 1 − exp

[
−

(
t

tp/[− log(1 − p)]1/β

)β
]

= 1 − exp

[
log(1 − p)

(
t

tp

)β
]
, t > 0.

In addition, especially when there is heavy censoring (i.e., only a small fraction failing),
estimation of (tp , β) will be more stable than estimating (η, β) for some appropriately chosen
value of p. Moreover, graphical estimates of the chosen tp and β within the range of the data
(e.g., estimated by itting a simple linear regression line through the points on a probability
plot) provide excellent starting values for either ML or Bayesian estimation. A useful rule of
thumb is to choose parameters that are near the center of the data so that the parameters can be
approximately identiied from a plot of the data. For example, if the nonparametric estimate of
the fraction failing at the largest failure time is 0.10, then choosing t0.05 would be expected to
work well.
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15.2 BAYESIAN INFERENCE: AN ILLUSTRATIVE EXAMPLE

This section uses a relatively simple (but nontrivial, due to the censoring) example of the analysis
of limited reliability ield-failure data to illustrate the basic ideas and computational methods
behind the use of Bayesian methods. In this and subsequent examples, we will compare:

� A non-Bayesian (ML) analysis

� ABayesian analysis with a diffuse (approximately noninformative) prior distribution, and

� A Bayesian analysis with an informative prior distribution.

For the application in this section, the informative prior distribution will contain information
about the Weibull shape parameter β. The comparison shows that the Bayesian analysis with
diffuse prior information provides results that are similar to the non-Bayesian analysis, but that
the Bayesian analysis with informative prior information provides more precise (i.e., narrower)
statistical intervals than the preceding two analyses.

15.2.1 Example Using Weibull Distribution ML Analysis

To illustrate the basic ideas of Bayesian inference we will use a simple example of itting
a Weibull distribution to censored ield failure data for an aircraft engine bearing cage. The
following example introduces the data and starts with a non-Bayesian ML analysis.

Example 15.1 ML Estimation for the Bearing Cage Data. The data for this example were
irst given in Abernethy et al. (1983) and were also analyzed in Meeker and Escobar (1998,
Chapters 8 and 14). Over time, 1,703 similar aircraft engines with a particular type of bearing
cage had been introduced into service. The design life speciication for the bearing cage was
that the 0.10 quantile of bearing life (also known as B10 life) should be at least 8,000 hours
of service. The longest running units had seen only 2,220 hours of service. At the time of the
analysis of the data, there had been only six failures, and a preliminary Weibull distribution
analysis of these limited data suggested that the reliability goal might not have been met.
Management needed to know if a redesign of the bearing cage would be required and also
wanted to predict how many spare parts would be needed over future years to keep the leet of
aircraft light-ready.

Figure 15.2 is a Weibull probability plot of the bearing cage failure-time data. The top right-
hand corner of the inner rectangle shows the bearing cage reliability goal of no more than a
proportion 0.10 failing by 8,000 hours of service. The ML estimate of the Weibull distribution
cdf at 8,000 hours lies appreciably above this proportion, suggesting that the reliability goal has
most likely not been met. The dotted curves in Figure 15.2 are a set of pointwise approximate
95% conidence intervals for the bearing cage lifetime distribution. The lower endpoint of the
conidence interval at 8,000 hours is about 0.03, suggesting the possibility that the proportion
of the population failing by 8,000 hours could be that low. This provides an argument for
postponing decision making until more information is available. At the same time, the upper
endpoint of the conidence interval for the failure probability suggests that the actual proportion
failing at 8,000 hours could be far more than 0.10. If this is, in fact, the case, waiting for more
information could cause a bad situation to become much worse. The problem is that there is
very little information in the available data. The use of Bayesian methods with informative prior
information could provide more precision and a better basis for decision making. Fortunately,
such prior information was available.
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Figure 15.2 Weibull probability plot of the bearing cage data with ML estimates and a set of 95% pointwise

conidence intervals.

15.2.2 Specification of Prior Information

For the sake of comparison, we will irst do a Bayesian analysis with a diffuse joint prior
distribution, followed by an analysis that uses a joint prior distribution with an informative prior
distribution containing information about theWeibull shape parameter β. Uniform distributions,
over a wide range of values, are often used to deine a diffuse prior distribution for a parameter.
A uniform prior distribution between a and b will be indicated by UNIF(a, b). A log-uniform
distribution (see Section C.3.4) over a relatively wide range is often used to specify a diffuse
prior distribution for a parameter that must be positive. The log-uniform distribution for a single
parameter θ over a range from a to b is equivalent to a uniform distribution for log(θ) between
log(a) and log(b) and will be indicated by LUNIF(a, b).

Normal distributions are commonly used to specify an informative prior distribution. One
method of eliciting prior information for an informative prior distribution for a particular
parameter is to request a range of values that would, with 0.99 probability, contain the value of
the parameter, with the understanding that the probability of being outside of the interval would
be 0.005 on each side. We will denote such a prior distribution by <NORM>(a, b). Note the
< > indicates that the (a, b) values correspond to the above-deined “soft” endpoints and not
the parameters of the distribution. Relating (a, b) to the mean and standard deviation of the
normal distribution gives

<NORM>(a, b) ≡ NORM

(
a + b

2
,

b − a

2 × z0.995

)

where z0.995 = 2.5758 is the 0.995 quantile of the standard normal distribution.
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Weibull distribution stable parameters

Analysis based on t0.10 β

Diffuse prior LUNIF(1,000, 50,000) LUNIF(0.30, 8.0)
Informative prior LUNIF(1,000, 50,000) <LNORM>(1.5, 3.0)

Table 15.1 Prior distribution speciication for the bearing cage data analyses.

Correspondingly, a lognormal distribution is often used to specify an informative prior dis-
tribution for a parameter that must be positive. Also, <LNORM>(a, b) will be used to indicate
a lognormal distribution with probability 0.99 between a and b, again with the understanding
that the probability of being outside of the interval would be 0.005 on each side. Relating (a, b)
to the usual μ,σ parameters of the lognormal distribution gives

<LNORM>(a, b) ≡ LNORM

(
log(a) + log(b)

2
,
log(b) − log(a)

2 × z0.995

)
.

Example 15.2 Choosing the Prior Distributions for the Bearing Cage Example. For the
bearing cage example, as described in Section 15.1.5, we will specify both the diffuse and
the informative prior distributions for the (more meaningful) 0.10 quantile of the failure-time
distribution (i.e., t0.10) in place of the scale parameter η. We will continue to use the Weibull
shape parameter β as the second distribution parameter. We do this not only because, as
previously suggested, it is easier to elicit prior information on these two parameters, but also
because the information on them is more likely to be approximately independent (allowing the
joint prior distribution to be speciied more simply by two marginal distributions), and because
the 0.10 quantile is the primary quantity of interest in this application. Table 15.1 summarizes
the diffuse and informative prior distributions that we will use in this example.

Because there is little or no prior information available for t0.10 , we specify our prior (lack
of) knowledge about t0.10 by a log-uniform distribution over the wide range from 1,000 to
50,000 hours for both the diffuse and the informative prior distribution. Choosing an even wider
range for this prior distribution would have little practical effect on the results.

For the diffuse-prior-distribution analysis, we use a log-uniform distribution between 0.30
and 8 to describe our lack of knowledge about the Weibull shape parameter β (i.e., a value of β
outside of this range would not be expected). Again, choosing an even wider range for this prior
distribution would have little practical effect on the inal answers. For the informative-marginal
prior distribution for β we use a lognormal distribution with 99% of its probability between
1.5 and 3.0 (denoted by <LNORM>(1.5, 3.0)). The justiication for this informative prior
distribution comes from previous ield-data experience with fatigue failures in similar bearing
cages, as well as an understanding of the underlying failure mechanism.

15.2.3 Characterizing the Joint Posterior Distribution via Simulation

For a given likelihood and prior distribution, Bayes’ theorem, as stated in (15.1), gives the joint
posterior distribution of the parameters being estimated. The joint posterior distribution can be
calculated explicitly using (15.1) only in special cases. In other situations, such computations
are intractable. Instead, we characterize the joint posterior distribution using modern simulation
methods—described further in this and subsequent sections—by obtaining a large number
of “sample draws” from the joint posterior distribution. These sample draws are then used to
construct Bayesian credible intervals for the quantities of interest, such as parameters, quantiles,
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and probabilities, as described in Section 15.2.6. Section 15.5 shows how to use the sample
draws to compute Bayesian tolerance and prediction intervals.

In particular, the basic output of modern Bayesian analysis computational tools is generally a
large number (B) of sample draws from the joint posterior distribution of the model parameters.
These sample draws are usually organized as a matrix with columns corresponding to marginal
posterior distributions for each of the unknownmodel parameters and theB rows corresponding
to individual sample draws from the joint posterior distribution. Suppose that a model has q
parameters. Then the matrix of sample draws would look like this:

⎛
⎜⎜⎝

θ∗
1

θ∗
2
...

θ∗
B

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

θ∗11 θ∗12 · · · θ∗1q

θ∗21 θ∗22 · · · θ∗2q
...

...
...

...
θ∗B 1 θ∗B 2 · · · θ∗Bq

⎞
⎟⎟⎠.

Column j from this matrix is a set of B draws from the marginal posterior distribution of
parameter θj and can be used to compute point estimates and a credible interval for θj , as
described in Section 15.2.6 and subsequent examples. The preceding matrix would have only
two columns for a (two-parameter) Weibull distribution, and would involve B rows (usually a
large number). Additional columns for other quantities that are to be estimated (i.e., functions
of the parameters v(θ) such as distribution quantiles or probabilities) can be added to the matrix
by simply computing the function of interest for each row in the matrix. The following matrix
shows two such additional columns:⎛

⎜⎜⎝

θ∗11 θ∗12 · · · θ∗1q v1(θ
∗
1) v2(θ

∗
1)

θ∗21 θ∗22 · · · θ∗2q v1(θ
∗
2) v2(θ

∗
2)

...
...

...
...

...
...

θ∗B 1 θ∗B 2 · · · θ∗Bq v1(θ
∗
B ) v2(θ

∗
B )

⎞
⎟⎟⎠. (15.3)

15.2.4 Comparison of Joint Posterior Distributions Based on Diffuse and
Informative Prior Information on the Weibull Shape Parameter β

Example 15.3 Diffuse Prior Distribution and the Resulting Joint Posterior Distribution

for the Bearing Cage Data. The points in the left-hand plot of Figure 15.3 are sample draws
from the diffuse joint prior distribution (which, because of the assumed independence of the
information sources, can be speciied as the product of marginal distributions for both param-
eters). The contours in both plots in Figure 15.3 are relative likelihood contours, obtained by
dividing the likelihood values by the value of the maximum of the likelihood. Because the like-
lihood is proportional to the probability of the data, we can, for example, say that the probability
of the data at the ML estimate (where the relative likelihood is 1) is 100 times (10 times) larger
than the probability of the data at any point on the 0.01 contour (the 0.10 contour). Also, as
described in Section 12.12, the region enclosed by the 0.01 relative likelihood contour is an
approximate 99% joint conidence region for the 0.10 quantile of the failure-time distribution
and the Weibull shape parameter β. Similar statements can be made for any of the other relative
likelihood contours. Figure 15.3 shows only points (each corresponding to a sample draw) with
values of β below 5 to provide a better view of the interesting features of the interaction between
the joint prior distribution and the relative likelihood contours.

The right-hand plot of Figure 15.3 shows sample draws from the diffuse-prior-analysis joint
posterior distribution, along with the relative likelihood contours. As expected, the sample
draws from the joint posterior distribution agree well with the likelihood contours because the
joint posterior distribution is proportional to the likelihood function when the prior distribution
is uniform (recall that the actual prior used here is uniform on the log scale).
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Figure 15.3 Sample draws from the diffuse joint prior distribution for t0 .10 and β with likelihood contours

and ML parameter estimates (left) and the corresponding sample draws from the joint posterior distribution for

t0 .10 and β with lines showing the Bayesian point estimates (right).

Example 15.4 Informative Prior Distribution and Resulting Joint Posterior Distribution

for the Bearing Cage Data. The plots in Figure 15.4 are similar to those in Figure 15.3
but are based on the prior distribution that is informative for the Weibull shape parameter β.
The points in the left-hand plot of Figure 15.4 are sample draws from the informative joint
prior distribution, restricting the Weibull shape parameter β to be in the interval 1.5 to 3 with
probability 0.99, according to a lognormal distribution. The right-hand plot of Figure 15.4
shows the corresponding sample draws from the joint posterior distribution. As expected, this
plot shows that the joint posterior distribution is concentrated in the region where the joint prior
distribution and the likelihood overlap.

There are a number of algorithms that can be used to generate the sample draws from the
joint posterior distribution. In the next section, we use a particularly simple method that can
be employed in situations for which the likelihood is easy to compute and there are only a few
parameters. The more versatile MCMCmethods described in Section 15.4 can be used both for
simple models and for models that are much more complicated and that have a large number of
parameters. The general methods that are used to compute Bayesian statistical intervals from
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Figure 15.4 Sample draws from the informative (for the Weibull shape parameter β) joint prior distribution
for t0 .10 and β with likelihood contours and ML parameter estimates (left) and the corresponding sample draws

from the joint posterior distribution for t0 .10 and β with lines showing the Bayesian point estimates (right).
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the sample draws do not, however, depend on the method that was used to compute the sample
draws.

15.2.5 Generating Sample Draws with Simple Simulation

Sample draws from the posterior distribution are easy to generate in applications such as the
preceding for which the likelihood is easy to compute and for which there is only a small
number of parameters to be estimated. In particular, the sample draws from the joint posterior
distribution are obtained by randomly iltering the sample draws from the joint prior distribution.
A point from the joint prior distribution is accepted with a probability corresponding to the value
of the relative likelihood at the point. For example, points on the 0.01 contour in the left-hand
plot in Figure 15.3 (or 15.4) would be kept with probability 0.01 and points on the 0.90 contour
would be kept with probability 0.90.

A total of 10,000–20,000 sample draws from the posterior distribution is suficient for most
practical purposes when the draws are independent and identically distributed (as they are in
this simple simulation but not in the MCMC-type simulations described in Section 15.4 and
used in subsequent examples in this chapter and Chapters 16–18). A much larger number of
draws may be needed to be certain that a given number of signiicant digits has only a small
probability of containing any errors. See the Bibliographic Notes section “How many draws.”

15.2.6 Using the Sample Draws to Construct Bayesian Credible Intervals

Bayesian point estimates for parameters and other quantities of interest can be obtained by
using a measure of central tendency for the marginal posterior distribution of the quantity of
interest (represented by a given column in a matrix, such as (15.3). Theoretically, the mean of
the marginal posterior distribution will provide (assuming a correct model) a Bayesian estimate
that minimizes the squared-error loss, relative to the value of the actual quantity being estimated.
The median of the marginal posterior distribution minimizes absolute-error loss (also known as
linear-error loss). Also, the median is less affected than the mean by the long tail of a skewed
marginal posterior distribution, and will generally agree better with the ML estimate when
using a diffuse joint prior distribution. For these reasons, we will use the sample median of
the marginal posterior distributions as a point estimate of the quantity of interest in all of our
examples.

Bayesian credible intervals can be obtained by using the appropriate quantiles of the sample
draws from the marginal posterior distribution for the quantity of interest. For example, a
95% credible interval is obtained by using the 0.025 and the 0.975 quantiles of the sample
draws from the quantity’s marginal posterior distribution. We illustrate these methods in the
following examples by computing credible intervals for distribution cumulative probabilities
and quantiles.

Example 15.5 Marginal Posterior Distributions and Credible Intervals for Bearing Cage

Failure Probabilities. As an example of the matrix in (15.3), Table 15.2 shows the irst ten
sample draws (out of the B = 100,000 that were computed) from the posterior distribution for
the parameters θ = (t0.10 , β) (the 0.10 quantile and the Weibull shape parameter, respectively)
for the bearing cage example, using the informative joint prior distributions. The table also
shows the values that were computed subsequently for the Weibull scale parameter v1(θ

∗) =
η∗ = t∗0.10/[− log(1 − 0.10)]1/β ∗

, and the cdf values, or fraction failing, at 5,000 hours of
service (i.e., v2(θ

∗) = F ∗(5,000) = 1 − exp[−(5,000/η∗)β ∗
]) and at 8,000 hours of service.

The sample draws for η, F (5,000), and F (8,000) were computed row-wise for all of the
B draws.
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t∗0.10 β∗ η∗ F ∗(5,000) F ∗(8,000)

6,558.5 1.7567 23,612.4 0.063321 0.280081
7,475.8 1.8927 24,548.5 0.048018 0.184914
3,409.1 2.3598 8,846.9 0.229044 0.066405
3,597.5 2.3448 9,392.9 0.203867 0.241618
6,648.6 1.6411 26,198.3 0.063874 0.120376
4,589.2 2.3860 11,785.5 0.121268 0.087313
4,327.9 2.0856 12,731.4 0.132705 0.607407
5,171.0 1.7262 19,043.2 0.094635 0.094925
3,628.8 1.9332 11,623.0 0.177812 0.143343
4,880.5 1.7877 17,185.8 0.104179 0.145801

Table 15.2 Ten sample draws from the joint posterior distribution of the

Weibull distribution parameters t0.10 and β and the resulting calculated

additional quantities of interest η, F (5,000), and F (8,000), based on the

bearing cage data using the informative joint prior distribution.

For the examples in this section we will suppose that there is a matrix of sample draws,
similar to those shown in Table 15.2, but with B = 100,000 rows, with columns named
t0p10, beta, eta, F5000, and F8000. This matrix (actually an R object) has the name
drawsBearingCageInformative. There is a similar matrix (R object) for draws from the
joint posterior distribution that was computed using the diffuse joint prior distribution with
name drawsBearingCageDiffuse.

Figure 15.5 shows histograms of the draws from the marginal posterior distribution of
F (5,000) (top) and F (8,000) (bottom), the fraction failing at 5,000 and 8,000 hours of service,
respectively, based on the diffuse prior distribution (left) and the informative prior distribution
(right). The vertical lines in the histograms indicate the 0.025 and 0.975 quantiles of the
empirical distribution of the marginal posterior distribution computed for each of the 100,000
draws from the joint posterior distribution. These quantiles deine the 95% credible intervals
for F (5,000) and F (8,000).

The following R commands, applied to the matrix of 100,000 sample draws, similar to those
shown in Table 15.2, give

> quantile(drawsBearingCageDiffuse[,"F5000"], probs=c(0.025, 0.975))

[1] 0.01883178 0.6775634

> quantile(drawsBearingCageInformative[,"F5000"], probs=c(0.025,

0.975))

[1] 0.05540326 0.4041599

> quantile(drawsBearingCageDiffuse[,"F8000"], probs=c(0.025, 0.975))

[1] 0.02994012 0.992824

> quantile(drawsBearingCageInformative[,"F8000"], probs=c(0.025,

0.975))

[1] 0.1261585 0.8086649

providing the 95% credible intervals for F (5,000) and F (8,000) that are summarized in the
bottom part of Table 15.3. We note that for the diffuse prior distribution, F ∗(8,000) ≈ 1 for an
appreciable number of the draws, as shown in Figure 15.5, and thus the upper endpoint of the
credible interval for F (8,000) is close to 1.
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Figure 15.5 Marginal posterior distributions and 95% credible intervals for F (5,000) (top) and F(8,000)

(bottom) using the diffuse prior distribution (left) and the informative prior distribution (right) for the bearing

cage data.

The credible bounds for this example are compared in Table 15.3 with the non-Bayesian
likelihood-based conidence intervals that were obtained in Example 15.1. The comparison
shows fairly good agreement (relative to the width of the intervals) between the credible
intervals based on a diffuse prior distribution and the likelihood-based conidence intervals. As
expected, the intervals obtained using the informative prior distribution are appreciably different
from, and much narrower than, those obtained by the other two approaches.

As shown in previous applications in Chapters 4, 12, and 14, and Figure 15.2, it is generally
useful to plot the parametric estimate of a cdf on a probability plot, along with a set of
pointwise parametric conidence intervals. When doing a Bayesian analysis it is similarly
useful to plot the Bayesian estimate and credible bounds for the cdf, as shown in the following
example.

Example 15.6 Bayesian Probability Plot of the Bearing Cage Data Failure-Time cdf

Based on the Joint Posterior Distribution. Figure 15.6 shows Weibull probability plots along
with Bayesian estimates (median of the marginal posterior distribution) of the fraction failing
as a function of time, based on the diffuse joint prior distribution (left) and the informa-
tive prior distribution (right). The estimates and credible intervals for F (t) shown in these
plots were computed using the same approach as in Example 15.5, for a large number of
values of t.
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Prior distribution Interval/bound type Interval for Lower Upper

None Two-sided conidence t0.10 2,094 22,144
Diffuse Two-sided credible t0.10 2,310 30,206
Informative Two-sided credible t0.10 2,578 6,987

None Two-sided conidence β 0.971 3.580
Diffuse Two-sided credible β 0.891 3.203
Informative Two-sided credible β 1.682 2.582

None Two-sided conidence η 4,045 213,597
Diffuse Two-sided credible η 4,807 356,554
Informative Two-sided credible η 6,530 24,636

None Two-sided conidence F (5,000) 0.0223 0.8776
Diffuse Two-sided credible F (5,000) 0.0188 0.6776
Informative Two-sided credible F (5,000) 0.0554 0.4042

None Two-sided conidence F (8,000) 0.0365 0.99998
Diffuse Two-sided credible F (8,000) 0.0299 0.9928
Informative Two-sided credible F (8,000) 0.1262 0.8087

Table 15.3 Two-sided 95% conidence intervals and credible intervals based on

diffuse and informative prior distributions for the Weibull distribution parameters and

other quantities of interest for the bearing cage data.

The credible intervals in the left-hand plot (diffuse prior) are similar to those based on ML,
shown in Figure 15.2. The width of the credible interval in the right-hand plot in Figure 15.6,
based on the informative prior distribution for the Weibull shape parameter, is much narrower.
The reason for this can be seen by looking at the sample draws from the informative joint
prior and the resulting joint posterior distributions in Figure 15.4. In particular, focusing on
the likelihood contours in the region where β is less than 1.5 and t0.10 is larger than 8,000,
we see that using the prior information that the Weibull shape parameter is larger than 1.5, the
optimism that t0.10 could be larger than 8,000 hours (or equivalently that the fraction failing by
8,000 hours could be less than 0.10) disappears. There is a similar, but less dramatic, change in
the upper credible bound for t0.10 .
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Figure 15.6 Weibull probability plots of the bearing cage failure data showing the Bayesian estimates for

F (t) and a set of pointwise 95% credible intervals for F (t) based on the diffuse-prior-distribution analysis

(left) and the informative-prior-distribution analysis (right).
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Figure 15.7 Marginal posterior distributions and 95% credible intervals for the 0.10 quantile of the bearing

cage failure-time distribution using the diffuse-prior-distribution analysis (left) and the informative-prior-

distribution analysis (right).

The methods described above for making inferences about F (t) can also be used to compute
estimates and credible bounds for quantiles or other functions of the model parameters, as
illustrated in the following example.

Example 15.7 Marginal Posterior Distributions for the Bearing Cage Failure-Time Dis-

tribution 0.10Quantile. Figure 15.7 shows histograms of themarginal posterior distribution for
t0.10 based on the diffuse-prior-distribution analysis (left) and the informative-prior-distribution
analysis (right). The vertical lines on these plots show the lower and upper endpoints of the
resulting 95% credible intervals for t0.10 .

The preceding credible intervals can be obtained easily from the sample draws by using the
following R commands:

> quantile(drawsBearingCageDiffuse[,"t0p10"], probs=c(0.025, 0.975))

[1] 2309.784 30206.46

> quantile(drawsBearingCageInformative[,"t0p10"], probs=c(0.025,

0.975))

[1] 2578.263 6986.95

These results are summarized and compared with the corresponding non-Bayesian likelihood-
based conidence interval in Table 15.3. Again, our conclusion from the informative-prior-
distribution analysis is that t0.10 is less than 8,000 hours.

15.3 MORE ABOUT SPECIFICATION OF A PRIOR DISTRIBUTION

Statistical models generally require a relatively small number of parameters (usually two if
there are no explanatory variables). As explained in Section 15.1.5, reparameterization is often
used to describe a model with quantities that are of particular interest to the analyst and we will,
henceforth, also refer to these quantities of interest as parameters.

15.3.1 Diffuse versus Informative Prior Distributions

As mentioned in Section 15.1.1, one important reason for using Bayesian methods is that the
analysis provides a formal mechanism for including prior information (i.e., knowledge beyond
that provided by the data) into the analysis. Thus, if there is prior information for one or more of
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the model parameters and if the deinition of parameters (i.e., the particular parameterization)
has been chosen such that the information about each of these parameters is approximately
mutually independent, then one can specify a joint prior distribution with separate marginal
distributions for each parameter.

Informative marginal prior distributions can be used for those parameters for which there
is appreciable prior information, while diffuse marginal prior distributions can be speciied for
the other parameters. A commonly used practice when there is little or no prior information
about the parameters, or when there is need to present an objective analysis for which the
results do not depend on prior information, is to specify diffuse marginal prior distributions for
each of the parameters. A prior distribution that is lat (or uniform) over the entire parameter
space is sometimes referred to as a noninformative prior distribution. A dificulty with this
term is that a lat (noninformative) prior distribution for a parameter implies a nonlat (and thus
informative) prior distribution for any nonlinear function of that parameter (e.g., a prior distri-
bution that is noninformative (lat) for the standard deviation σ is informative (not lat) for the
variance σ2).

In applications for which there is little or no useful prior information on any of the parameters,
one can specify a diffuse joint prior distribution (i.e., a distribution that is lat or approximately
lat over the range of the parameters where the likelihood is nonnegligible). Commonly used
diffuse prior distributions include uniform distributions with a wide (but inite) range or a
normal distribution with a large variance. It is important to note that with limited data, the
choice of a prior distribution (even a diffuse prior distribution) can have strong inluence on the
resulting inferences. When using a diffuse prior distribution, it is important to experiment with
different speciications of the prior distribution to assess the sensitivity of the analysis results
to the speciication, especially when the information in the data is limited.

15.3.2 Whose Prior Distribution Should We Use?

A major reason why the use of Bayesian methods has been controversial is the need to specify
a joint prior distribution for the unknown parameters. Analysts are faced with the question of
which or whose prior information/distribution should be used in the analysis. One generally
accepted principle for answering this question is that whoever is assuming the risks associated
with decisions resulting from the Bayesian analysis should be allowed to choose, or at least have
an important say in choosing, the prior distribution. If, however, different interested people,
groups of people, or organizations have different risk functions, there is likely to be conlict.
For example, in assessing whether or not a product is safe, customers who use the product and
producers who beneit from its sale will have different risk functions. In such cases, it may be
appropriate to use a compromise (and likely diffuse) joint prior distribution. In any case, we
strongly recommend, especially when a compromise joint prior distribution cannot be readily
agreed upon and/or one is dealing with limited data, that analyses be conducted using different
alternative reasonable (or advocated) prior distributions and then the results compared to assess
the sensitivity of the prior distribution assumption on the resulting inferences. In making this
recommendation we fully recognize the added complexity that this presents. Also, it is likely
to make it more dificult to explain indings to a nonstatistical audience—something that needs
to be done with much care, recognizing that having to explain alternative credible intervals, in
addition to the concept of credible intervals per se, will be challenging.

Finally, we need to recognize the ever-present danger that subjective prior information is
contaminated with biases arising from the risks and rewards associated with decisions that
are made on the basis of a Bayesian analysis. Pressure from top management and/or outside
political considerations—especially in situations in which government oversight or funding is
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involved—can impact opinions on what prior distribution(s) to use. We must beware of such
pressures, as well as wishful thinking masquerading as prior information.

15.3.3 Sources of Prior Information

In some applications solid prior information, based on a combination of physics or chemistry
related to the phenomena being studied, combined with previous empirical experience, is
available. This is particularly true in some engineering applications such as reliability, for which
there are known, well-understood failure mechanisms. Thus, engineers working in specialized
areas may well have previous experience with particular failure mechanisms and testing and
product-use environments that will allow them, in some situations, to provide strong (but not
precise) prior information about the failure-time model.

For a given failure mode (e.g., fracture due to fatigue crack growth), engineers will, for
example, typically have some knowledge about the Weibull distribution shape parameter. In
particular, if the primary failure mode for a component is a wearout-type failure mechanism,
we immediately know that the Weibull distribution shape parameter is greater than 1. Previous
ield data with similar products (as in the bearing cage example) may, moreover, provide tighter
speciication of the parameter. Similar knowledge is often available for the shape parameter
of a Weibull or a lognormal distribution when it is used to model the failure-time distri-
bution of microelectronic devices that fail due to certain known causes. For example, if a
component will fail only when it receives an external shock that arrives according to a homo-
geneous Poisson process, the failure-time distribution would be exponential (corresponding
to a Weibull shape parameter equal to 1). Because such an assumption is an approximation,
allowing for some uncertainty in the speciication of the Weibull shape parameter (around 1) is
appropriate.

Additionally, in product accelerated testing applications there is often available knowl-
edge about the parameter describing the relationship between life and an accelerating vari-
able. In the case of temperature acceleration of a particular chemical reaction, there is often
strong knowledge about the effective activation energy in the Arrhenius relationship that is
commonly used to describe how temperature affects the rate of the chemical reaction (or
other similar mechanisms, such as diffusion). Indeed, some reliability handbooks on elec-
tronic reliability (e.g., Klinger et al., 1990, page 59) provide approximate values of the effec-
tive activation energy for different failure mechanisms (e.g., metalization, electromigration, or
corrosion).

Sometimes, prior information is elicited from “expert opinion” panels. These typically consist
of individuals or groups of individuals with knowledge about the process being studied that
share and discuss their knowledge to, possibly, arrive at agreed-upon prior information.Methods
used by such panels are described in various references given in the Bibliographic Notes section
at the end of this chapter.

15.3.4 Implementing Bayesian Analyses Using Conjugate Distributions

For a few simple statistical models, the posterior distribution f(θ|DATA) is in the same family
of distributions as the prior distribution. Such distributions are known as conjugate distributions
and the particular form of the prior distribution is referred to as a conjugate prior distribution.
With a conjugate prior distribution, Bayes’ theorem can be used easily to update the parameters
of the prior distribution to give the posterior distribution (of the same form). For example, when
sampling from a binomial distribution, if a beta distribution (described in Section C.3.3) is used
as the prior distribution for the binomial distribution parameter π, then the posterior distribution
of π will also be a beta distribution with updated parameters (as shown in Section H.3.1).
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Conjugate prior distributions generally afford advantages in the development of theory, ease
of computation, and the possible closed-form expression for the posterior distribution. In spite
of such advantages, the use of conjugate prior distributions can in many situations be limiting.

Before modern methods of computing for Bayesian inference, as described in this chapter,
were developed, the use of Bayesian methods was, for the most part, constrained to simple
models for which conjugate distributions were available. Although we no longer have such
constraints and the main thrust of this chapter is much more general, the concept of conjugate
distributions is still useful (mainly due to its simplicity) and will be illustrated in Sections 16.1.1
and 16.2.1. Section H.3 outlines technical details of conjugate distributions for estimation, and
Section H.5 does the same for prediction.

15.3.5 Some Further Considerations in the Specification of Prior Distributions

As mentioned in Sections 15.1.5 and 15.3.1, if deinitions of approximately independent model
parameters are provided, it is possible to specify an appropriate joint prior distribution for these
parameters by specifying individual marginal prior distributions for each unknown parameter.
The parameters of these marginal prior distributions are known as hyperparameters.

Different textbooks and software packages use different parameterizations for the same
distribution. Many textbooks, for example, characterize the normal (Gaussian) distribution in
terms of its mean μ and variance σ2 . R uses the mean µ and standard deviation σ. OpenBUGS
uses the mean µ and precision, which is deined to be τ = 1/σ2 . One must take such differences
into consideration in programming Bayesian estimation methods.

There are various ways that one can specify a marginal prior distribution to describe uncer-
tainty in a model parameter. One simple method for a prior distribution with two parameters
(marginal prior distributions in our examples will usually have two parameters) is to specify the
form and the hyperparameters of the prior distribution using the distribution’s usual parameter-
ization. This approach usually is not user-friendly because some of the hyperparameters may
not have an easy-to-understand interpretation. Thus, instead of requiring the user to specify the
actual hyperparameters for a particular marginal prior distribution, one could require specii-
cation of the mean and standard deviation of the prior distribution. Such a speciication may,
however, not be meaningful when a prior distribution is highly skewed.

When a prior distribution has a inite range, an alternative is to specify the range of the
distribution, together with a shape parameter or parameters. The beta distribution can be scaled
to have any inite range and its shape parameters can be used to provide the desired prior
distribution shape (the uniform distribution is a special case of the beta distribution). When the
prior distribution does not have a inite range, another user-friendly alternative is to have the
user specify a range of the distribution that contains some large proportion of the distribution’s
probability content. For example, the speciied prior distribution range may be taken to be the
0.005 and 0.995 quantiles of the marginal prior distribution for that parameter.

The speciication of diffuse prior distributions presents some additional challenges. When
there is no longer a need to specify conjugate prior distributions, a uniform distribution over
a wide range of potential parameter values (wide enough that the likelihood is near 0 at the
extremes of themarginal prior distribution) oftenworks well. For example, one could specify the
marginal prior distribution for a distribution standard deviation by using a uniform distribution
ranging from 10−5 to 104 . If, however, the values of the proile likelihood for that parameter
are essentially 0 outside the range from 10−1 to 103 , then using a uniform distribution over
this range instead would have little or no effect on the resulting joint posterior distribution and
generally results in faster, more eficient computation of the joint posterior distribution. Another
popular diffuse prior distribution alternative is to use a normal distribution with a large variance
(poor precision).
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For distributions with only one parameter, the Jeffreys prior distributions (Section H.4) gen-
erally provide Bayesian-based statistical intervals that have coverage probabilities close to the
nominal credible level. Indeed, as mentioned in the Bibliographic Notes sections of Chapters 6
and 7, the Jeffreys conidence and prediction interval methods presented in those chapters
arise by computing corresponding Bayesian intervals based on a Jeffreys prior distribution (see
Sections H.4.1 and H.4.2 for technical details). Section H.4.3 describes a modiication to the
Jeffreys prior distribution that leads to Bayesian procedures for the normal distribution that
result in statistical intervals that coincide with the exact methods presented in Chapter 4.

15.4 IMPLEMENTING BAYESIAN ANALYSES USING MARKOV CHAIN MONTE
CARLO SIMULATION

15.4.1 Basic Ideas of MCMC Simulation

This section provides a general overview of the MCMC method. This is a powerful, versatile
method of simulating sample draws from a particular joint posterior distribution (i.e., the joint
posterior distribution resulting from a given model, data, and joint prior distribution). Because
there is no other practicable method, MCMC methods are particularly important in inference
problems that involve models with a large number of parameters. During the past 20 years there
have been many developments and much has been written about MCMC. Rather than providing
a detailed technical explanation of the method, we will treat it—and the computer software
to execute it—principally as a useful “black box” to implement Bayesian inference. Further
details and examples are provided in various books on Bayesian methods and MCMC, some of
which are referenced in the Bibliographic Notes section at the end of this chapter.

A Markov chain is a well-known stochastic process model that can be used to characterize
the probability of moving from one state to another. An important property of a Markov chain
is that the probability of going from one state to another depends only on the current state
and not on other history of the process. In the context of Bayesian inference, a Markov chain
state corresponds to a point in the model’s parameter space. MCMC simulates a sequence
of jumps from one state to another (i.e., from one point in the parameter space to another).
Numerous MCMC algorithms have been developed to simulate sample draws from a discrete-
time continuous-space Markov chain such that after reaching a steady state, the sequence of
sample draws constitutes a sample from the desired joint posterior distribution. The best-known
methods are Gibbs sampling and the Metropolis–Hastings algorithm, although combinations of
these two methods and other MCMC algorithms also exist.

Because the probability of being in a particular state at time i depends on the state at
time i − 1, simulated sample draws from a Markov chain are not, in general, independent
(as they were in the simple Monte Carlo simulation used in Section 15.2.5). Technically,
this is not a problem, as estimators of marginal posterior distribution quantities computed from
autocorrelated sample draws are still statistically consistent. The autocorrelation does, however,
imply that a larger number of sample draws from the joint posterior distribution may be needed
to adequately estimate the median and, especially, the more extreme quantiles (used to compute
Bayesian credible interval endpoints) of the marginal posterior distributions for the parameters
of interest. To address this, analysts will, in some cases, “thin” the sample draws by retaining
every kth value in the sequence, where k should be larger if the autocorrelation is stronger.
Thinned sample draws can be made to have little or no autocorrelation by making k suficiently
large. Moreover, one can use standard methods for independent samples to assess how long the
chain needs to be to adequately estimate quantities of interest. Often the draws from a joint
posterior distribution are saved after they are computed so that they can be used subsequently
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to compute estimates of functions of the parameters and statistical intervals. Thinning reduces
the space required to store the results.

MCMC simulations generally require speciication of starting values (a process that some-
times can be automated). Sample draws at the beginning of the MCMC sequence cannot be
expected to represent draws from the desired posterior distribution. Thus it is common practice
to drop some number (e.g., 1,000) of the initial sample draws, so that the remaining draws more
accurately represent a sample from the limiting distribution Markov chain (i.e., after steady
state has been reached). The discarded sample draws are referred to as “burn-in” draws.

Example 15.8 MCMC Output for the Bearing Cage Example. The plots in the top row
and the bottom left in Figure 15.8, based on the bearing cage example from Section 15.2 with
the informative prior distribution, show Metropolis–Hastings MCMC sample paths for three
different relatively short chains (1,000 sample draws) for the joint posterior distribution of the
Weibull shape parameter β and the 0.1 distribution quantile, using different starting values.
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Figure 15.8 Illustrations of sample paths from a Markov chain with different starting values, generating

samples from the joint posterior distribution of the Weibull distribution shape parameter and 0.1 quantile for

the bearing cage failure-time data.
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The plot in the bottom right-hand corner shows, on the same scales, a “inal” set of sample
draws obtained after initial “burn-in” samples have been discarded and the sample draws were
thinned. For this plot, 20,000 samples were drawn, the irst 2,000 were discarded, and then
every 20th draw was retained. The resulting thinned samples are approximately independent
and are easier to store and post-process. Additionally, because autocorrelation is generally small
or nonexistent in the thinned sample draws, it is relatively easy to assess the amount of Monte
Carlo error in estimates computed from the sample draws.

15.4.2 Risks of Misuse and Diagnostics

Although modernMCMCmethods are highly versatile and powerful, an inexperienced user can
misapply them and obtain seriously incorrect results. Putting programming errors aside, prob-
lems in applyingMCMC are especially likely to occur in dealing with diffuse prior distributions
and limited data or when a poor parameterization (i.e., a parameterization for which the sample
draws for different parameters are highly correlated with each other) is used. If an improper
prior distribution (i.e., a prior distribution that does not integrate to a inite number) is used
and the data are not suficient to identify the unknown model parameters, the joint posterior
distribution will be improper. In such cases, an MCMC algorithm will still give “answers,”
but they will generally be wrong. If a proper joint prior distribution is speciied, then the joint
posterior distribution will be proper. If, however, the proper prior distribution is diffuse and
there is limited information in the data, then posterior inferences will usually be highly sensitive
to the exact way in which the diffuse prior distribution was speciied. Sensitivity analyses are
recommended (i.e., try different diffuse joint prior distributions to assess their effect on posterior
inferences).

If a proper joint posterior distribution exists for a given model, data, and joint prior distri-
bution, then MCMC theory assures that eventually a properly chosen MCMC algorithm will
converge and generate sample draws from the joint posterior distribution. In practice, however,
there is no guarantee that a given MCMC simulation, run for a inite number of iterations,
has converged. To gain some degree of assurance, it is necessary to use appropriate diag-
nostics to assess whether the sample draws from the chain represent draws from the limiting
distribution and that a suficient number of samples have been obtained to properly estimate
quantities of interest. This assessment will be more dificult to make when the sequence of
sample draws has high autocorrelation. Useful graphical diagnostics include trace (time series)
and autocorrelation function (ACF) plots of the MCMC sample draws from the joint posterior
distribution for each of the model parameters. It is common practice to generate three or four
sample chains simultaneously, using different starting values, and then check (using plots and
numerical diagnostics) that all of the chains have converged to the same distribution. There
are also numerical summary diagnostic tools that complement the graphical approach. These
are described in the books referenced in the Bibliographic Notes section at the end of this
chapter.

A common, but dificult-to-answer, question is “How many MCMC sample draws do I
need?” The determination of the appropriate number of MCMC sample draws depends on the
strength of the autocorrelation in the sample draws and on the inherent variability in the MCMC
output. The ACF for the sequence of draws will differ among different parameters and quantities
of interest that are functions of the parameters. Displays of the ACF of the sample draws are
helpful in assessing how long the simulated chain should be (after the burn-in sample draws
have been removed). If, however, the MCMC sample draws are thinned suficiently such that
there is little remaining autocorrelation, then standard methods of sample size determination
for independent samples can be used as a guideline. References addressing this topic are given
in the Bibliographic Notes section at the end of this chapter.
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Figure 15.9 Trace plots (left) and ACF plots (right) comparing unthinned MCMC sample draws (top) and

thinned MCMC sample draws (bottom) for the bearing cage Weibull distribution example.

Example 15.9 MCMCDiagnostics for the Bearing Cage Example. Figure 15.9 gives exam-
ples of some simple MCMC diagnostic plots from one chain corresponding to the bearing cage
example and the MCMC output shown in Figure 15.8. The top left-hand plot of Figure 15.9 is a
trace (time series) plot of the irst 1,000 of the Weibull 0.10 quantile sample draws provided by
the chain’s output, after the initial 2,000 “burn-in” sample draws were discarded. Figure 15.9
suggests that the time series contains autocorrelation. Evidence of the strong autocorrelation
can be seen more clearly in the plot of the ACF on the top right. The bottom part of the plot
is similar, but shows the irst 1,000 of the Weibull 0.10 quantile sample draws provided by
the chain’s output after the “burn-in” sample draws were discarded and after the output was
“thinned” by keeping every 20th sample draw. The effect of the thinning is to provide sample
draws that have little or no autocorrelation.
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15.4.3 MCMC Summary

In summary, for given data, assumed model, and joint prior distribution, Bayesian inference
typically involves the use of MCMC simulation implemented along the following lines.

� Using appropriate software, generate three long sequences of draws (perhaps 20,000) from
the posterior distribution, using different starting values for each of the three sequences.

� The initial draws from each of the sequences of draws will have transient behavior, due
to dependence on the starting values (as seen in the behavior shown in Figure 15.8).
Therefore, one generally drops some number of draws (e.g., 1,000) from the beginning
of each sequence.

� For each parameter look at a time series plot that superimposes the three different
sequences to see if they are “mixing” well (i.e., whether the different sequences appear to
be coming from the same marginal distribution). If the sequences are not mixing properly,
it may be an indication of an inability to estimate the particular parameter or that a much
larger number of draws will be required.

� If the different sequences seem to be mixing, then check to see if there is strong autocor-
relation. If so, then it may be advisable to use “thinning” by retaining every 1 in 10 or
1 in 50 of the sample draws (depending on the strength of the autocorrelation). Thinned
sequences will have less autocorrelation. Thinning will increase the number of draws that
need to be generated but reduce the number of draws that need to be stored.

� Look at statistical summaries of the draws (generally combining the three sequences after
the burn-in draws) to assess the precision with which Bayesian estimates and credible
interval endpoints are being obtained. If the precision is not adequate, generate additional
draws.

� Use the resulting empirically generated joint posterior distribution for the parameters of
interest to obtain the desired Bayesian estimates and associated credible intervals, using
the approach described in Section 15.2.6 and illustrated in the subsequent examples in
this chapter and in Chapters 16–18.

15.4.4 Software for MCMC

Currently, there are only limited capabilities for computing Bayesian statistical intervals in
commercial statistical software packages, butwe expect that to change in the future.As described
in Section 15.1.3, a posterior distribution (from which one can obtain Bayesian statistical
intervals) is deined by Bayes’ theorem for given data, assumed model, and prior distribution.
Currently, many (if not most) users of Bayesian methods employ one of the available software
packages that provides MCMC draws from a given posterior distribution. We used OpenBUGS
for most of our examples. Other alternatives and references are given in the Bibliographic Notes
section at the end of this chapter.

15.5 BAYESIAN TOLERANCE AND PREDICTION INTERVALS

This section provides methods for computing Bayesian two-sided tolerance intervals, two-
sided simultaneous prediction intervals, and one-sided simultaneous prediction bounds (using
the Bayesian terminology “credible level” instead of conidence level).
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The methods used here parallel the non-Bayesian methods described in Sections 14.5 and
14.6. A key difference, however, is that in the non-Bayesian approach, inferences are based on

the sampling distribution of the parameter estimates θ̂, given the actual value of θ, using the

B simulated values of θ̂∗ to approximate the sampling distribution of θ̂. Under the Bayesian
method, inferences are instead based on the posterior distribution of θ, given the data. This is
generally done by using the sample draws from the posterior distribution in a manner that is

similar to, but different from, the use of the simulated θ̂∗ values in the non-Bayesian approach.

15.5.1 One-Sided Bayesian Tolerance Bounds

Extending the discussion in Section 2.4.2 to Bayesian tolerance intervals, we note that a one-
sided lower 100(1 − α)% Bayesian tolerance bound to be exceeded by at least a proportion
p of a distribution is equivalent to a one-sided lower 100(1 − α)% credible bound for the
1 − p quantile of the distribution, and this equivalence can be used to construct Bayesian one-
sided lower tolerance bounds. Similarly, a one-sided upper 100(1 − α)% Bayesian tolerance
bound to exceed at least a proportion p of a distribution is equivalent to a one-sided upper
100(1 − α)% credible bound for the p quantile of the distribution, and this equivalence can be
used to construct Bayesian one-sided upper tolerance bounds. For this reason, we discuss only
two-sided Bayesian tolerance intervals in this chapter.

15.5.2 Two-Sided Bayesian Tolerance Intervals to Control the Center
of a Distribution

A two-sided 100(1 − α)% control-the-center Bayesian tolerance interval to contain at least a
proportion β of a distribution F (x) is denoted by

[

˜
Tβ , T̃β

]
=

[

˜
Tβ (β, 1 − α), T̃β (β, 1 − α)

]
.

The interval endpoints depend on the data, the assumed distributional form F (x), and the
prior distribution, through the posterior distribution of the parameter vector θ. For the sake
of simplicity, however, this dependency is not relected in the notation. For a continuous
distribution, the tolerance interval endpoints are determined such that

Prθ|DATA

[
F (T̃β ;θ) − F (

˜
Tβ ;θ) > β

]
= 1 − α,

where 1 − α is the speciied credible level and θ|DATA indicates that the probability is
evaluated with respect to the joint posterior distribution of θ, given the data.

Operationally, the interval endpoints
˜
Tβ and T̃β are chosen such that

1

B

B∑

j=1

I
[
F (T̃β ;θ∗

j ) − F (
˜
Tβ ;θ∗

j ) > β
]

= 1 − α (15.4)

and

1

B

B∑

j=1

F (T̃β ;θ∗
j ) =

1

B

B∑

j=1

[
1 − F (

˜
Tβ ;θ∗

j )
]
. (15.5)

The second constraint assures that the error probabilities are equal for both the lower and
upper endpoints of the tolerance interval. Here I[A] is an indicator function that is equal to
1 when the statement A is true and equal to 0 otherwise. For the important special case of a
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(log-)location-scale distribution,

F (
˜
Tβ ;θ∗

j ) = Φ

(
˜
Tβ − μ∗

j

σ∗
j

)
and F (T̃β ;θ∗

j ) = Φ

(
T̃β − μ∗

j

σ∗
j

)
. (15.6)

For (log-)location-scale distributions, Yuan et al. (2017) describe an algorithm that can be
used to solve (15.4) subject to (15.5) that requires only a simple root-inding procedure (such as
uniroot inR). Themethod could, however, be adapted to non-(log-)location-scale distributions.

For discrete distributions (e.g., the binomial and Poisson distributions) the solution of (15.4)
subject to (15.5) would have to be done with approximations, as will be illustrated in Exam-
ple 16.5.

15.5.3 Two-Sided Bayesian Tolerance Intervals to Control Both Tails
of a Distribution

A two-sided 100(1 − α)% control-both-tails Bayesian tolerance interval to contain at least a
proportion β of a distribution F (x) is given by

[

˜
Tp t L

, T̃p t U

]
=

[

˜
Tp t L

(β, 1 − α), T̃p t U
(β, 1 − α)

]
.

These interval endpoints again depend on the data, the assumed distribution F (x), and the
prior distribution, through the posterior distribution of the parameter vector θ. For the sake
of simplicity, however, this dependency is not relected in the notation. For a continuous
distribution, the tolerance interval endpoints are determined such that

Prθ|DATA

[
F (

˜
Tp t L

;θ) < (1 − β)/2 and 1 − F (T̃p t U
;θ) < (1 − β)/2

]
= 1 − α,

where 1 − α is the speciied credible level and θ|DATA indicates that the probability is
evaluated with respect to the joint posterior distribution of θ.

Operationally, the interval endpoints
˜
Tp t L

and T̃p t U
are chosen such that

1

B

B∑

j=1

I
[
F (

˜
Tp t L

;θ∗
j ) < (1 − β)/2 and 1 − F (T̃p t U

;θ∗
j ) < (1 − β)/2

]
= 1 − α, (15.7)

with a symmetry constraint similar to (15.5). For the important special case of a (log-)location-
scale distribution, expressions similar to those in (15.6) are again used. The only changes

needed are to replace
˜
Tβ and T̃β with

˜
Tp t L

and T̃p t U
, respectively. The algorithm described in

Yuan et al. (2017) can also be used to ind Bayesian control-both-tails tolerance intervals for
continuous distributions.

As with the control-the-center Bayesian tolerance intervals in Section 15.5.2, for discrete
distributions (e.g., the binomial and Poisson distributions), the solution of (15.7) will have to
be obtained with approximations in a manner similar to that illustrated in Section 16.5.

Example 15.10 BayesianTolerance Intervals for theBearingCage Failure-TimeDistribu-

tion. Following the approach described in Section 15.5.2, two-sided 95% Bayesian control-the-
center tolerance intervals were computed using the draws from the joint posterior distribution,
like those illustrated in Table 15.2, for both the diffuse and the informative prior distributions.
Two-sided 95%Bayesian control-the-tails tolerance intervals were also computed following the
approach described above. The results are given in Table 15.4, along with prediction intervals
and bounds to be described in Section 15.5.4.

The upper endpoints of these particular tolerance intervals have little or no practical meaning
(and are highly dependent on the assumed distributional model) due to the large amount of
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Type of prior
distribution Interval/bound type Interval for Lower Upper

Diffuse Two-sided tolerance Control center 0.90 2,298.1 920,576.1
Informative Two-sided tolerance Control center 0.90 2,552.3 40,883.5

Diffuse Two-sided tolerance Control tails 0.90 1,908.3 3,169,140.6
Informative Two-sided tolerance Control tails 0.90 1,986.5 105,957.8

Diffuse Two-sided prediction at least 9 of 10 1,872.4 705,701.8
Informative Two-sided prediction at least 9 of 10 1,830.1 38,809.7

Diffuse One-sided prediction at least 9 of 10 2,280.9 402,159.5
Informative One-sided prediction at least 9 of 10 2,212.6 31,890.4

Table 15.4 Two-sided 95% tolerance and prediction intervals and one-sided 95% prediction

bounds for bearing cage life.

extrapolation needed to make inferences in the upper tail of the distribution (given that the
nonparametric estimate of the fraction failing goes only up to 0.05). We note, however, that, as
onewould expect, the upper endpoints computedwith the informative prior distribution aremuch
closer to the center of the distribution than those calculated using the diffuse prior distribution.
The lower endpoints of the tolerance intervals that were computed with the informative prior
distribution are larger (i.e., closer to the center of the distribution) than those computed with
the diffuse prior distribution. The differences, however, are not nearly as large as they were
for the upper endpoints. This is because computing the lower endpoints does not involve
extrapolation.

15.5.4 Bayesian Simultaneous Prediction Intervals to Contain at Least k out
of m Future Observations

In a manner that is similar to (but in some respects different from) the development in Sec-
tion B.7, a two-sided 100(1 − α)% simultaneous prediction interval to contain at least k out of
m future observations from a previously sampled distribution F (x;θ) is given by

[
Y
˜

k ;m , Ỹk ;m

]
=

[
Y
˜

k ;m (1 − α; k,m), Ỹk ;m (1 − α; k,m)
]
.

These interval endpoints depend also on the data, the assumed distribution F (x;θ), and the
prior distribution, through the posterior distribution of the parameter vector θ. For the sake of
simplicity, however, this dependency is not relected in the notation. The prediction interval
endpoints are determined such that

Eθ|DATA

[
m∑

i=k

(
m

i

)
pi(1 − p)m−i

]
= 1 − α.

Here

p = Pr
[
Y
˜

k ;m (1 − α; k,m) < Y ≤ Ỹk ;m (1 − α; k,m)
]

= F
[
Ỹk ;m (1 − α; k,m);θ

]
− F

[
Y
˜

k ;m (1 − α; k,m);θ
]
,

where F (y;θ) is the cdf of Y, a single future observation from the previously sampled dis-
tribution, 1 − α is the speciied credible level, and θ|DATA indicates that the probability is
evaluated with respect to the joint posterior distribution of θ.
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The two-sided simultaneous prediction interval endpoints Y
˜

k ;m and Ỹk ;m are chosen such
that

1

B

B∑

j=1

[
m∑

i=k

(
m

i

)
(p∗

j )
i(1 − p∗

j )
m−i

]
= 1 − α, (15.8)

where

p∗
j = F

[
Ỹk ;m (1 − α; k,m);θ∗

j

]
− F

[
Y
˜

k ;m (1 − α; k,m);θ∗
j

]
,

and

1

B

B∑

j=1

[
m∑

i=k

(
m

i

)
(ω∗

j )
i(1 − ω∗

j )
m−i

]
=

1

B

B∑

j=1

[
m∑

i=k

(
m

i

)
(ν∗

j )
i(1 − ν∗

j )
m−i

]
, (15.9)

where

ω∗
j = 1 − F

[
Y
˜

k ;m (1 − α; k,m);θ∗
j

]
,

ν∗
j = F

[
Ỹk ;m (1 − α; k,m);θ∗

j

]
.

The constraint given by (15.9) assures that the error probabilities are equal for both the lower
and upper endpoints of the two-sided prediction interval. For the important special case of a
(log-)location-scale distribution,

F (Y
˜

k ;m ;θ∗
j ) = Φ

(
Y
˜

k ;m − µ∗
j

σ∗
j

)
and F (Ỹk ;m ;θ∗

j ) = Φ

(
Ỹk ;m − µ∗

j

σ∗
j

)
.

For (log-)location-scale distributions, Xie et al. (2017) describe an algorithm to solve (15.8)
subject to (15.9) that requires only a simple root-inding procedure (such as uniroot in R).
The method could, however, be adapted to non-(log-)location-scale distributions.

One-sided simultaneous prediction bounds are deined in a similar manner, following the
outline in Section B.7, but taking expectations with respect to the joint posterior distribution of
θ instead of the sampling distribution of the data. In particular, for one-sided prediction bounds
one can use (15.8) with

pj = Pr
[
Y > Y

˜
k ;m (1 − α; k,m)

]
= 1 − F

[
Y
˜

k ;m (1 − α; k,m);θ∗
j

]

for a one-sided lower prediction bound and

pj = Pr
[
Y ≤ Ỹk ;m (1 − α; k,m)

]
= F

[
Ỹk ;m (1 − α; k,m);θ∗

j

]

for a one-sided upper prediction bound.

Example 15.11 Bayesian Prediction Intervals for a Bearing Cage Failure Time. Following
the approach described above, two-sided 95% Bayesian prediction intervals to contain the
failure times of at least k = 9 out of m = 10 future bearing cages from the same population
were computed using the draws from the joint posterior distribution (like those illustrated in
Table 15.2) for both the diffuse and the informative prior distributions. Corresponding one-sided
prediction bounds were also computed. The results are given in Table 15.4.

As with the tolerance intervals discussed in Example 15.10, the upper endpoints of these
prediction intervals have little or no practical meaning due to the large amount of extrapolation
needed to make inferences in the upper tail of the distribution (given that the nonparametric
estimate of fraction failing goes only up to 0.05).
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As expected, the lower endpoints of the prediction intervals computed using the diffuse prior
distribution are larger (i.e., closer to the center of the distribution) than those computed with
the informative prior distribution.

15.5.5 An Alternative Method of Computing Bayesian Prediction Intervals

The Bayesian prediction interval methods described in Section 15.5.4 are based on using the
draws from the joint posterior distribution to approximate the posterior predictive distribution
for the random variable(s) to be predicted. That method is dificult to apply in situations with
more complicated models for which the distribution of the random variable cannot be computed
explicitly (e.g., hierarchical models to be considered in Chapter 17).

An alternative method is to use another layer of Monte Carlo simulation to generate draws
from the posterior predictive distribution, simulating copies of the randomvariable (or variables)
to be predicted for each of the draws from the joint posterior distribution. This approach is more
general, but requires a much larger number of draws from the posterior predictive distribution,
relative to the method described in Section 15.5.4.

Suppose that it is desired to ind a prediction interval for a scalar random variable Y that has
a cdf F (y;θ). Based on observed data, the speciied distribution, and a prior distribution, draws
θ∗

j , j = 1, . . . , B, from the joint posterior distribution are computed (e.g., by using an MCMC
algorithm as described in Section 15.4). ThenB draws from the posterior predictive distribution
of Y are obtained by simulating a draw from F (y;θ) for each value of θ∗

j , j = 1, . . . , B. For
continuous distributions, this can be done by using

Y ∗
j = F−1(Uj ;θ

∗
j ), j = 1, . . . , B,

where F−1(p;θ) is the quantile function of the random variable Y and Uj , j = 1, . . . , B, are
independent and identically distributed UNIF(0, 1) random variables.

For some distributions there may be a more direct method of generating the random draws
fromF (y;θ). Then two-sided prediction intervals and one-sided prediction bounds forY can be
obtained from the empirical distribution of the draws from the posterior predictive distribution of
Y in amanner that is similar to the computation of credible intervals for parameters and functions
of the parameters. For example, a two-sided 100(1 − α)% Bayesian prediction interval would
be obtained as the α/2 and 1 − α/2 quantiles of the empirical distribution of the draws from
the posterior predictive distribution.

This simulation approach to computing draws from a posterior predictive distribution can
be extended to more complicated prediction problems such as a prediction interval to contain
at least k out of m future observations. In this case, the values for m future observations
are computed for each draw from the joint posterior distribution of the parameters. For each
such simulated sample, information about the location of the order statistics would have to be
tabulated.

BIBLIOGRAPHIC NOTES

General literature
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(2006) and others.

The simple simulation method for generating sample draws from a posterior distribution
used in Section 15.2.5 is a slight modiication of the method described in Smith and Gelfand
(1992).

Bayesian tolerance and prediction intervals

Aitchison (1964) deines Bayesian tolerance intervals and compares them with non-Bayesian
tolerance intervals. Guttman (1970) describes both Bayesian and non-Bayesian tolerance and
prediction intervals. Hamada et al. (2004) explain the differences between Bayesian tolerance
and prediction intervals and illustrate both kinds of intervalswith an example using a hierarchical
linear model.

Software for MCMC

Software packages to generateMCMC draws from a given posterior distribution, based on given
data, an assumed underlying statistical model for the data, and assumed prior distributions for
the distribution parameters, includeWinBUGS described in Lunn et al. (2000), JAGS described
in Plummer (2003), and OpenBUGS described in Spiegelhalter et al. (2014). All three of these
packages use similar model-speciication languages and are available at no cost. Available
packages for R (R Core Team, 2016) provide a convenient interface that allows one to use these
MCMC packages directly from R. Lunn et al. (2012) provides an introduction to OpenBUGS.
Stan (Stan Development Team, 2015a,b) is another open-source package that has powerful
Bayesian modeling capabilities.

It is also possible to programMCMC algorithms directly. Numerous books provide guidance
for doing this, including Albert (2007), Rizzo (2007), and Robert and Casella (2010).

How many draws?

An important question facing users of Bayesian methods is “How many MCMC draws are
required?” The answer to this question requires an assessment of Monte Carlo error. Much of
the literature on this subject concerns estimating the mean of a marginal posterior distribution.
Examples include Flegal et al. (2008) and Koehler et al. (2009). Raftery and Lewis (1992) show
how to choose the number of MCMC trials to estimate the probability in the tail of a marginal
posterior distribution. Liu et al. (2016) describe a method to choose the number of MCMC
draws needed to estimate quantiles of a marginal posterior distribution to a desired degree of
accuracy. Their method was designed to make it possible to report a Bayesian credible interval
with a speciied number of correct signiicant digits.



Chapter 16
Bayesian Statistical Intervals for

the Binomial, Poisson, and
Normal Distributions

OBJECTIVES AND OVERVIEW

This chapter describes the construction of Bayesian intervals for data generated from the distri-
butions discussed in Chapters 3 and 4 (normal distribution), Chapter 6 (binomial distribution)
and Chapter 7 (Poisson distribution). We extend these methods (for the same distributions) in
Chapter 17 to consider the construction of Bayesian intervals for the more complicated situation
involving hierarchical models.

The topics discussed in this chapter are:

� The construction of Bayesian intervals for the binomial distribution (Section 16.1).

� The construction of Bayesian intervals for the Poisson distribution (Section 16.2).

� The construction of Bayesian intervals for the normal distribution (Section 16.3).

In each section we show how to compute credible intervals for the distribution parameter(s),
functions of the parameter(s), and Bayesian tolerance and prediction intervals.

As we saw in Chapter 15, Bayesian methods using appropriately chosen diffuse prior distri-
butions result in credible intervals that are close to the conidence intervals obtained using non-
Bayesian methods. For particular examples, in Chapters 6 and 7 we used non-Bayesian methods
to construct conidence intervals for the parameters of the binomial and Poisson distributions,
respectively (or functions thereof). One of these methods—and one which we recommended
for practical use—was the Jeffreys approximate method. Moreover, in the Bibliographic Notes
section at the end of Chapters 6 and 7, we observe that this method is derived from a Bayesian
method based on a Jeffreys prior distribution. We will elaborate on this comment shortly.

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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In addition, as shown in Section H.4.3, for the normal distribution mean, using a modiied
Jeffreys prior results in Bayesian credible intervals that are exactly the same as the non-Bayesian
conidence intervals presented in Chapter 4. Thus, because of the preceding equivalence (or
near-equivalence) of results obtained by using non-Bayesian intervals and Bayesian intervals
constructed using diffuse prior distributions, we will in this chapter focus mainly on comparing
Bayesian credible intervals constructed using diffuse versus informative prior distributions.
We also note that due to this equivalence (or near equivalence), we can refer to Bayesian
intervals constructed fromdiffuse prior distributions as either “conidence intervals” or “credible
intervals.” We will use the term “credible interval” in this chapter.

16.1 BAYESIAN INTERVALS FOR THE BINOMIAL DISTRIBUTION

This section presents Bayesian methods for the binomial distribution that extend the (mostly)
non-Bayesian methods given in Chapter 6. In some applications involving the binomial dis-
tribution, there is prior information on the parameter π. Using this information will generally
result in a credible interval for π—and in some cases other statistical intervals of interest—that
are narrower than the intervals that one would obtain without taking such prior information into
consideration. We will illustrate the methods with the application introduced in Example 6.1.
More speciically, wewill compare the statistical intervals computedwith a diffuse Jeffreys prior
distribution (described in Sections 6.2.5 and H.4.1) with those obtained using an informative
prior distribution. Bayesian statistical intervals based on a Jeffreys prior distribution generally
have coverage probabilities that are close to the nominal credible level. In this section, the
number of nonconforming (e.g., defective) units x out of n trials is the data and the actual
proportion π (i.e., binomial distribution parameter) is the parameter of interest.

16.1.1 Binomial Distribution Conjugate Prior Distribution

The binomial distribution is one of the distributions that has a conjugate prior distribution. In
particular, suppose that we have observed x nonconforming units out of n trials and that the
prior distribution for π can be expressed as a beta distribution with parameters a and b (i.e.,
BETA(a, b)). Then, as shown in Section H.3.1, f(π|x), the posterior distribution for π, is
a BETA(x + a, n + b − x) distribution (i.e., a beta distribution with parameters x + a and
n + b − x). We note that the prior distribution BETA(a, b) can be interpreted as having prior
information about π that is equivalent to previous data consisting of a − 1 nonconforming units
out of a total of a + b − 2 sampled units (as shown in Section H.3.1).

Example 16.1 Prior Distributions for the Defective Integrated Circuits Application. Con-
tinuing with the application introduced in Example 6.1, there were x = 20 defective (non-
conforming) integrated circuits in a sample of size n = 1,000. To use Bayesian methods, we
must specify a prior distribution for the binomial distribution parameter π. For the informative
prior distribution, we use a conjugateBETA(25, 975) distribution (i.e., a beta distribution with
parameters a = 25 and b = 975), which can be interpreted as information equivalent to having
24 defective integrated circuits in 998 past observations. For the diffuse prior distribution we
use a Jeffreys prior distribution (Section H.4.1) which has a BETA(0.50, 0.50) density. In the
examples we will illustrate the use of both the conjugate distribution approach and Markov
chain Monte Carlo (MCMC) simulation to construct statistical intervals. For the MCMC exam-
ples, drawsICJeffreys and drawsICInformative are vectors (and R objects) containing
B = 80,000 draws from the posterior distribution of π for the Jeffreys prior and the informative
prior distributions, respectively.



BAYESIAN INTERVALS FOR THE BINOMIAL DISTRIBUTION 327

16.1.2 Credible Interval for the Binomial Distribution Parameter

Using the conjugate distribution approach, a 100(1 − α)% credible interval for π can be
obtained from the α/2 and 1 − α/2 quantiles of the beta posterior distribution. Alternatively,
with the same inputs (i.e., data and prior distribution), an MCMC algorithm could be used
to generate B draws from the posterior distribution f(π|x). Then a two-sided 100(1 − α)%
Bayesian credible interval for π is obtained as the α/2 and 1 − α/2 quantiles of the empirical
distribution of the B MCMC draws from the posterior distribution of π. The advantage of the
MCMC approach over the conjugate prior distribution approach is that one can specify a prior
distribution in a form other than a beta distribution. For example, the prior distribution for π
might be speciied to be a normal distribution with 99% of its probability between 0.4 and 0.6.

Example 16.2 Credible Interval for the Proportion of Defective Integrated Circuits. In
Example 6.1, a conidence interval was calculated on the binomial distribution parameter π,
based on x = 20 defective units from a random sample of n = 1,000 integrated circuits. The
density functions for the Jeffreys prior distribution and the informative prior distribution are
compared in the top row of Figure 16.1. The bottom row of Figure 16.1 shows histograms of the
corresponding B = 80,000 sample draws from the posterior distributions for π, the proportion
of defective integrated circuits. The vertical lines indicate the 95% credible interval.

0.0 0.2 0.4 0.6 0.8 1.0
π

0.0 0.2 0.4 0.6 0.8 1.0
π

Draws from the Posterior Distribution of π

0.00 0.01 0.02 0.03 0.04

Draws from the Posterior Distribution of π

0.00 0.01 0.02 0.03 0.04

Figure 16.1 Comparison of prior distributions (top) and corresponding sample draws from the posterior

distributions (bottom) of the proportion defective for the Jeffreys prior (left) and the informative prior (right)

distributions for the integrated circuit data. The vertical lines indicate the 95% credible interval.
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Type of prior Interval/bound type Interval for Lower Upper

Jeffreys Two-sided credible π 0.0127 0.0301
Informative Two-sided credible π 0.0165 0.0295

Jeffreys One-sided credible π 0.0137 0.0283
Informative One-sided credible π 0.0173 0.0282

Jeffreys Two-sided credible Pr(Y ≤ 2), m = 50 ICs 0.8100 0.9743
Informative Two-sided credible Pr(Y ≤ 2), m = 50 ICs 0.8175 0.9507

Jeffreys Two-sided credible y0.90 , m = 50 ICs 2 3
Informative Two-sided credible y0.90 , m = 50 ICs 2 3

Jeffreys Two-sided tolerance Control center 0.80, m = 1,000 9 34
Informative Two-sided tolerance Control center 0.80, m = 1,000 12 34

Jeffreys Two-sided prediction Y , m = 50 ICs 0 3
Informative Two-sided prediction Y , m = 50 ICs 0 4

Jeffreys Two-sided prediction Y , m = 1,000 ICs 10 34
Informative Two-sided prediction Y , m = 1,000 ICs 12 35

Table 16.1 Two-sided 95% credible intervals and one-sided 95% credible bounds for π, the binomial

distribution proportion of defective integrated circuits, and other related intervals.

Using vectors of draws from the posterior distributions of π, the credible intervals for π can
be obtained simply by using the following R commands:

> quantile(drawsICJeffreys, probs=c(0.025, 0.975))

[1] 0.0127 0.0301

> quantile(drawsICInformative, probs=c(0.025, 0.975))

[1] 0.0165 0.0295

These results and the results for all of the other examples in this section are summarized in
Table 16.1.

Because we are using conjugate prior distributions for π, the 95% credible intervals for
the Jeffreys prior and the informative prior distributions can also be obtained from the 0.025
and 0.975 quantiles of the BETA(20 + 0.5, 1000 + 0.5 − 20) and BETA(20 + 25, 1000 +
975 − 20) posterior distributions, respectively. Taking this approach, the credible intervals for
π can be obtained by using the following simple R commands:

> qbeta(p=c(0.025, 0.975), shape1=20+0.5, shape2=1000+0.5-20)

[1] 0.0127 0.0301

> qbeta(p=c(0.025, 0.975), shape1=20+25, shape2=1000+975-20)

[1] 0.0165 0.0294

The slight difference in the upper bound using the informative prior distribution is due to Monte
Carlo error for the B = 80,000 sample draws that were used for this example. This Monte
Carlo error could be reduced by using a larger number of sample draws (we will see similar
Monte Carlo error in some other examples in this chapter, but will not always point them out).
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As expected (and previously noted in Chapter 6—see Table 6.2), the credible interval
endpoints and bounds based on the Jeffreys prior distribution are close to those obtained
using the non-Bayesian methods in Examples 6.4 and 6.5. In comparing the results using the
Jeffreys prior distribution with those using the informative prior distribution, we ind noticeable
differences in the lower endpoints of the credible intervals (as well as the one-sided lower
credible bounds), but little difference in the upper endpoints of the credible intervals (or the
one-sided upper credible bounds). All in all, we conclude that even though the Jeffreys prior
and the informative prior distributions are strikingly different (as seen in Figure 16.1), the prior
distribution does not have a large effect on the credible intervals in this example. This is because
there is a large amount of data and reasonably good agreement between the data and the prior
distributions.

16.1.3 Credible Intervals for Functions of the Binomial Distribution Parameter

To ind Bayesian credible intervals (or one-sided credible bounds) for a function of π, one can
use the approach described in Section 15.2.6. That is, one can compute the function of interest
for each sample draw from the posterior distribution of π to generate sample draws from the
marginal posterior distribution of the quantity of interest. Then the 100(1 − α)% credible
interval for the quantity of interest can be obtained from the α/2 and 1 − α/2 quantiles of the
empirical distribution of these draws. In the two examples below, we want to make inferences
or predictions about a future sample from a binomial distribution having the same value of π but
with a different sample size m. The random variable for this distribution will be denoted by Y .

If the function of interest is a nondecreasing (nonincreasing) function of π, then one can, as
in Chapter 6, compute the lower and upper endpoints of the credible interval for the function of
interest by just substituting the lower and upper (upper and lower) credible interval endpoints
for π into the function of interest.

Example 16.3 Credible Interval for the Probability of Two or Fewer Defects in a Package

of m = 50 Integrated Circuits. Figure 16.2 is a histogram of the B = 80,000 sample draws
from the posterior distribution of the binomial probabilityPr(Y ≤ 2) for a package ofm = 50
integrated circuits based on the Jeffreys prior distribution (left) and the informative prior
distribution (right) for π. The vertical lines in Figure 16.2 indicate the endpoints of the 95%

Draws from the Posterior Distribution of Pr(Y ≤ 2)

0.6 0.7 0.8 0.9 1.0

Draws from the Posterior Distribution of Pr(Y ≤ 2)

0.6 0.7 0.8 0.9 1.0

Figure 16.2 Histograms of 80,000 draws from the posterior distribution of the binomial Pr(Y ≤ 2) for a

package of m = 50 integrated circuits based on a Jeffreys prior distribution (left) and an informative prior dis-

tribution (right). The vertical lines indicate the endpoints of the 95% Bayesian credible interval for Pr(Y ≤ 2).
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Bayesian credible interval for Pr(Y ≤ 2). These endpoints were obtained by taking the 0.025
and 0.975 quantiles of the empirical distribution of the B = 80,000 sample draws from the
marginal posterior distributions of Pr(Y ≤ 2) shown in Figure 16.2. Using vectors of draws
from the posterior distribution of π, one can compute the corresponding set of draws from the
posterior distribution ofPr(Y ≤ 2) and the quantiles of that distribution by using the following
R commands:

> quantile(pbinom(q=2, size=50, prob=drawsICJeffreys), p=c(0.025,

0.975))

2.5% 97.5%

0.8100 0.9743

> quantile(pbinom(q=2, size=50, prob=drawsICInformative), p=c(0.025,

0.975))

2.5% 97.5%

0.8175 0.9507

giving the credible intervals based on the Jeffreys prior and the informative prior distribution.
Alternatively, because there is only one unknown parameter in the model, we can, as in the

non-Bayesian Example 6.9, substitute the credible interval endpoints fromExample 16.2 into the
function of interest. Thus, becausePr(Y ≤ 2) is a decreasing function ofπ (Casella and Berger,
2002, page 426), we substitute the upper (lower) endpoint of the credible interval for π to obtain
the lower (upper) endpoint for the credible interval for Pr(Y ≤ 2). In particular, the interval
endpoints can be obtained by using the following R commands for the Jeffreys prior and the
informative prior distributions:

> pbinom(q=2, size=50, prob=qbeta(p=c(0.975, 0.025),

shape1=20+0.5, shape2=1000+0.5-20))

[1] 0.8093 0.9745

> pbinom(q=2, size=50, prob=qbeta(p=c(0.975, 0.025),

shape1=20+25, shape2=1000+975-20))

[1] 0.8179 0.9506

As expected, the credible interval computed with the informative prior distribution is narrower
than the one computed from the Jeffreys prior distribution. The small difference between
the intervals (e.g., [0.8179, 0.9506] computed above using the exact conjugate posterior
distribution ofPr(Y ≤ 2) and [0.8175, 0.9507] computed from sample draws of the posterior
distribution of Pr(Y ≤ 2)) is due to Monte Carlo error, which could be reduced by using a
larger value of B.

Example 16.4 Credible Interval for the 0.90 Quantile of the Distribution of the Number

of Defects in Packages of m = 50 Integrated Circuits. Figure 16.3 shows histograms of the
B = 80,000 draws from the posterior distribution of y0.90 , the 0.90 quantile of the distribution of
Y , the number of defects in packages of m = 50 integrated circuits, based on the Jeffreys prior
and the assumed informative prior distribution, respectively. We note that the preponderance of
draws in both cases resulted in either 2 or 3 defects. A small number of draws (hardly visible in
Figure 16.3) yielded 1 or 4 defects.

A 95% credible interval for y0.90 , the 0.90 quantile of the distribution of Y , the number
of defects in packages of m = 50 integrated circuits, can be obtained by using the 0.025 and
0.975 quantiles of the empirical distribution of the draws from the posterior distribution of y0.90 .
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4321

Draws from the Posterior Distribution

of the 0.9 Quantile

4321

Draws from the Posterior Distribution

of the 0.9 Quantile

Figure 16.3 Histograms of 80,000 draws from the posterior distribution of y0 .90 , the binomial 0.90 quantile

of the distribution of the number of defects in packages of m = 50 integrated circuits based on the Jeffreys

prior (left) and the informative prior distributions (right) for π.

The 95% credible intervals for y0.90 can be computed for both prior distributions by using the
following R commands:

> quantile(qbinom(p=0.90, size=50, prob=drawsICJeffreys),

probs=c(0.025,0.975))

[1] 2 3

> quantile(qbinom(p=0.90, size=50, prob=drawsICInformative),

probs=c(0.025,0.975))

2 3

Alternatively, applying a conjugate prior (beta) distribution, one can use instead the quan-
tiles from the analytically computed posterior distribution of y0.90 . For the informative prior
distribution, the following R commands can be used:

> qbinom(p=0.90,size=50, prob=qbeta(p=c(0.025, 0.975),

shape1=20+0.5, shape2=1000+0.5-20))

[1] 2 3

> qbinom(p=0.90,size=50, prob=qbeta(p=c(0.025, 0.975),

shape1=20+25, shape2=1000+975-20))

[1] 2 3

In words, we are 95% conident that a proportion 0.90 of future packages of 50 integrated
circuits will have either 2 or 3 defective units. For this example, there is no difference between
the credible intervals using the Jeffreys prior and the informative prior distributions due to the
discreteness of the distribution of y0.90 and because there is little difference in the marginal
posterior distributions for π (as seen in the bottom row of Figure 16.1).

16.1.4 Tolerance Intervals for the Binomial Distribution

In this section we use a procedure that is similar to that used in Section 6.6.4 and explicitly illus-
trate the use of interval calibration suggested there and explained more generally in Section B.8.
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Figure 16.4 Bayesian coverage probability as a function of the input nominal credible level. The horizontal

dashed line is the desired credible level.

In particular, as explained in Section D.7.4, an approximate 100(1 − α)% control-the-center
tolerance interval to contain a proportion β can be obtained by combining a one-sided lower
100(1 − α)% credible bound on the (1 − β)/2 quantile of the distribution and a one-sided
upper 100(1 − α)% credible bound on the (1 + β)/2 quantile of the distribution. Evaluation
of the Bayesian coverage probability for such approximate tolerance intervals using (15.4)
shows that the intervals tend to be somewhat conservative. Using the calibration approach, one
can adjust the input nominal credible level 1 − α to obtain an interval that has a Bayesian
coverage that is closer to what is desired.

Example 16.5 Bayesian Tolerance Interval to Contain at Least a Proportion 0.80 of the

Distribution of Defects in Batches ofm = 1,000 Integrated Circuits with 95%Conidence.

Using the methods presented in Section 16.1.3, similar to Example 16.4, using the Jeffreys prior
distribution draws, a one-sided lower 95%credible bound on the 0.10 quantile of the distribution
is 9 and a one-sided upper 95% credible bound on the 0.90 quantile of the distribution is 35. The
Bayesian coverage probability for this interval is computed from (15.4) to be 0.9613. Figure 16.4
shows the Bayesian coverage probability as a function of nominal credible interval input values
between 0.90 and 0.99. We note from Figure 16.4 that the Bayesian coverage probability is
a step function of the nominal credible level 1 − α. This is because of the discreteness of
the interval endpoints (which results from the discreteness of the sample space). As 1 − α
increases, the lower endpoint will decrease and the upper endpoint will increase—but only at
certain points. The larger jumps in the coverage probability function occur when the lower
endpoint decreases. The coverage probability irst crosses 0.95 when 1 − α is approximately
0.936, as shown in Figure 16.4, and at that point the tolerance interval is [9, 34]. The following
R commands illustrate the computations that were used to compute the initial interval endpoints
(before calibration) and the associated Bayesian coverage probabilities for the intervals [9, 35]
and [9, 34]:

> quantile(qbinom(p=0.10, size=1000, prob=drawsICJeffreys),

probs=0.05)

5%

9
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> quantile(qbinom(p=0.90, size=1000, prob=drawsICJeffreys),

probs=0.95)

95%

35

> sum(pbinom(q=35, size=1000, prob=drawsICJeffreys)-

pbinom(q=9, size=1000, prob=drawsICJeffreys) > 0.80)/

length(drawsICJeffreys)

[1] 0.9613

> sum(pbinom(q=34, size=1000, prob=drawsICJeffreys)-

pbinom(q=9, size=1000, prob=drawsICJeffreys) > 0.80)/

length(drawsICJeffreys)

[1] 0.9528

The computations show that the calibration provides an alternative narrower interval [9, 34]
(instead of [9, 35]) that is still conservative. Similar computations using the informative prior
distribution (with just a change in the object containing the MCMC draws) give a calibrated tol-
erance interval [12, 34], providing a somewhat larger lower interval endpoint, when compared
to the Jeffreys prior tolerance interval.

16.1.5 Prediction Intervals for the Binomial Distribution

Either of the two general methods described in Sections 15.5.4 and 15.5.5 can be used to
construct Bayesian prediction intervals for a future outcome of a binomial random variable
involvingm future independent and identically distributed Bernoulli trials. As with the binomial
credible intervals described in Sections 16.1.2 and 16.1.3, using sample draws from the posterior
predictive distribution (i.e., the distribution of the future random variable Y given the data)
provides an easy-to-implement method that can be used with an arbitrary prior distribution.

If one uses a beta conjugate prior distribution for π, then a simple analytical expression
for the posterior predictive distribution of Y can be used, as described in Section H.5.2. In
this case, a Bayesian prediction interval is obtained by using the appropriate quantiles of the
beta-binomial distribution (described in Section C.4.2). In particular, if the prior distribution
for π is a BETA(a, b) distribution, then the prediction interval for the number nonconforming
Y in m future trials is computed from

[Y
˜

, Ỹ ] = [qbetabinom(α/2;m,x + a, n − x + b),

qbetabinom(1 − α/2;m,x + a, n − x + b)]. (16.1)

For a Jeffreys prior distribution one uses a = b = 0.50 (see Section H.6.1 and our earlier
discussion), as illustrated in Section 6.7.4.

Example 16.6 Bayesian Prediction Interval for the Number of Defective Integrated

Circuits. Using the alternative method described in Section 15.5.5 we return to the preceding
example to compute prediction intervals for the number of defects in packages of m = 50 and
m = 1,000 integrated circuits, assuming diffuse (Jeffreys) and informative prior distributions
for π.

The top row of plots in Figure 16.5 gives scatter plots of the 1,000 draws from the posterior
distribution for π versus the corresponding draws from the predictive distribution of Y , the
number of defective components from a package of m = 50 integrated circuits based on the
Jeffreys prior distribution on the left and the informative prior distribution on the right. A small
amount of jitter was used around the integer prediction values so that one can see the density of
the plotted points. The plots in the bottom row are similar to those in the top row, except that they
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Figure 16.5 Scatter plots of 1,000 draws from posterior distribution of π versus the posterior predictive

distributions of Y , the number of defects in packages of m = 50 (top) and m = 1,000 (bottom) integrated

circuits, based on the Jeffreys prior (left) and the informative prior distributions (right). The vertical dashed

lines indicate the Bayesian 95% prediction intervals for Y .

are for packages ofm = 1,000 integrated circuits. The vertical lines indicate the 95% prediction
interval endpoints (approximately 2.5% of the plotted points fall to the left (right) of the lower
(upper) endpoint) for the number of defective units in the future sample. In the m = 1,000
plots in the bottom row, we can see the positive correlation (as expected) between the draws
from the distribution of π and the corresponding prediction. There is also positive correlation
for the m = 50 plot, but it is not as strong (and less evident in the plots) because the range of
the draws from the predictive distribution of the future number of defective units is smaller.

The following R commands generate draws from the posterior predictive distribution of
the number of defects in packages of m = 50 integrated circuits and then calculate the 0.025
and 0.975 quantiles of the empirical distribution of these draws, giving the corresponding 95%
Bayesian prediction intervals using both the Jeffreys prior and the informative prior distributions:

> quantile(rbinom(n=length(drawsICJeffreys), size=50,

prob=drawsICJeffreys), probs =c(0.025, 0.975))

2.5% 97.5%

0 3

> quantile(rbinom(n=length(drawsICInformative), size=50,

prob=drawsICInformative), probs =c(0.025, 0.975))

2.5% 97.5%

0 4
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The following R commands use the diffuse (Jeffreys) and informative beta conjugate prior
distributions from the previous examples using (16.1) and the beta-binomial quantile function
qbetabinom (in package StatInt), giving

> qbetabinom(p=c(0.025, 0.975), size=50, shape1=20+0.50, shape2=1000+

0.5-20)

[1] 0 3

> qbetabinom(p=c(0.025, 0.975), size=50, shape1=20+25, shape2=1000+

975-20)

[1] 0 4

The prediction interval results are summarized in the bottom part of Table 16.1. Note that,
unlike the case for the credible interval for π, the Bayesian prediction interval using the
informative prior distribution for π is, when compared to that obtained using the Jeffreys prior,
only slightly narrower for the future sample size of m = 1,000. This is because, as we have
seen for some other prediction interval examples, the width of the interval is due primarily to
the variability in the future sample, as opposed to uncertainty in the model parameter π.

For the future sample size of m = 50 the prediction interval using the informative prior
distribution for π is a little wider than that obtained using the Jeffreys prior. This is because the
informative prior distribution suggested a slightly larger value of π than the data, causing the
upper endpoint of the interval to increase from 3 to 4.

16.2 BAYESIAN INTERVALS FOR THE POISSON DISTRIBUTION

This section presents Bayesian methods for constructing statistical intervals for the Poisson
distribution. These methods extend the non-Bayesian methods given in Chapter 7. In some
applications involving the Poisson distribution, there is prior information on the parameter λ.
Using this information will generally result in a credible interval for λ—and in other statistical
intervals of interest—that are narrower than the intervals that one obtains without taking such
information into consideration. We will illustrate the methods with the example introduced in
Example 7.1.

For the binomial distribution examples in Section 16.1, we provided plots showing the shape
of the marginal posterior distributions. Because the plots would be similar for the Poisson
distribution examples, we do not present such plots here. They are, however, easy for the reader
to construct using a computing/graphics environment like R.

Our discussion will proceed as in the preceding section and we will again compare the statis-
tical intervals computed using a diffuse Jeffreys prior distribution (described in Section H.4.2)
with those obtained using an informative prior distribution. As described in Chapter 7, the
number of events x in n units of exposure is the data and the actual rate of occurrence of events
per unit of exposure λ is the parameter of interest.

16.2.1 Poisson Distribution Conjugate Prior Distribution

The Poisson distribution is another distribution that has a conjugate prior distribution. Suppose
that we have observed x events in n units of exposure and that the prior distribution for λ is
a gamma distribution (described in Section C.3.5) with shape parameter a and rate parameter
(the reciprocal of a scale parameter) b (i.e., GAMMA(a, b)). Then, as shown in Section H.3.2,
the posterior distribution f(λ|x) is a GAMMA(x + a, n + b) distribution (i.e., a gamma
distribution with shape parameter x + a and rate parameter n + b). We note that the prior
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distribution GAMMA(a, b) can be interpreted as having prior information about λ that is
equivalent to previous data consisting of a − 1 events in b units of exposure, as shown in
Section H.3.2.

Example 16.7 Prior Distributions for the Unscheduled Computer Shutdown Applica-

tion. In Example 7.1, there were x = 24 unscheduled shutdowns in n = 5 system-years of
operation. To use Bayesian methods, we must specify a prior distribution for the Poisson
parameter λ. For the informative prior distribution, we use a conjugate GAMMA(32, 5)
distribution (i.e., a gamma distribution with shape parameter α = 32 and rate parameter
b = 5). This can be interpreted as the information equivalent to having previously observed
31 unscheduled shutdowns in 5 system-years of exposure. For the diffuse prior distribution
we use a Jeffreys prior distribution (Section H.4.2) that can be approximated by a conjugate
GAMMA(0.50, 0.00001) distribution. In the examples we will illustrate the use of both conju-
gate distributions andMCMC simulation to construct statistical intervals. For theMCMC exam-
ples, drawsComputerShutDownJeffreys and drawsComputerShutDownInformative

are vectors (and R objects) containing B = 80,000 draws from the posterior distribution of
λ for the Jeffreys prior and the informative prior distributions, respectively.

16.2.2 Credible Interval for the Poisson Event-Occurrence Rate

Using the conjugate distribution approach, a 100(1 − α)% credible interval for the Poisson
event-occurrence rate λ can be obtained from the α/2 and 1 − α/2 quantiles of the resulting
gamma posterior distribution. Alternatively, with the same inputs (i.e., data and prior distribu-
tion), an MCMC algorithm could be used to generate B draws from the posterior distribution
f(λ|x). Then a two-sided 100(1 − α)% credible interval for λ is obtained as the α/2 and
1 − α/2 quantiles of the empirical distribution of the B MCMC draws from the posterior dis-
tribution of λ. The advantage of the MCMC approach over the conjugate distribution approach
is that one can specify a prior distribution in a form other than a gamma distribution. For
example, the prior distribution for λ might be speciied to be a normal distribution with 99% of
its probability between two speciied numbers.

Example 16.8 Credible Interval for the Rate of Occurrence of Unscheduled Shutdowns

for a Group of Computing Systems. Here we illustrate the use of both the diffuse (Jeffreys)
and the informative GAMMA(32, 5) prior distributions in Example 16.7. We combine these
prior distributions with the data (24 unscheduled shutdowns in 5 system-years of operation)
to obtain the 95% credible intervals directly from the conjugate posterior distribution of λ by
using the following R commands:

> qgamma(p=c(0.025, 0.975), shape=24+0.5, rate= 5)

[1] 3.155 7.022

> qgamma(p=c(0.025, 0.975), shape=24+32, rate=5+5)

[1] 4.230 7.159

Alternatively, the empirical quantiles of the sample of draws from the MCMC-computed pos-
terior distribution of λ can be used to obtain the 95% credible intervals, using the following
R commands:

> quantile(drawsComputerShutDownJeffreys,probs=c(0.025,0.975))

2.5% 97.5%

3.151 7.021

> quantile(drawsComputerShutDownInformative, probs=c(0.025,0.975))

2.5% 97.5%

4.233 7.181
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Type of prior Interval/bound type Interval for Lower Upper

Jeffreys Two-sided credible λ 3.155 7.022
Informative Two-sided credible λ 4.230 7.159

Jeffreys Two-sided credible Pr(Y ≤ 5), m = 0.50 years 0.8561 0.9943
Informative Two-sided credible Pr(Y ≤ 5), m = 0.50 years 0.8469 0.9789

Jeffreys Two-sided credible y0.90 , m = 1 years 6 11
Informative Two-sided credible y0.90 , m = 1 years 7 11

Jeffreys Two-sided tolerance Control center 0.80, m = 2 years 3 18
Informative Two-sided tolerance Control center 0.80, m = 2 years 5 18

Jeffreys One-sided prediction Y , m = 0.50 years 0 5
Informative One-sided prediction Y , m = 0.50 years 0 6

Jeffreys Two-sided prediction Y , m = 4 years 9 32
Informative Two-sided prediction Y , m = 4 years 12 34

Table 16.2 Two-sided 95% credible intervals for λ, the Poisson distribution mean number of

unscheduled shutdowns per year, and other related statistical intervals.

The small differences in results between the two methods are due to Monte Carlo error. These
results and the results from other examples in this section are summarized in Table 16.2.

16.2.3 Other Credible Intervals for the Poisson Distribution

To compute a Bayesian credible interval (or one-sided credible bound) for a function of λ one
can use the approach described in Section 15.2.6. That is, one can use direct evaluation of
the function of interest for each of the B sample draws from the posterior distribution of λ
to generate sample draws from the posterior distribution of the function of interest. Then the
100(1 − α)% credible interval for the quantity of interest can be obtained from the α/2 and
1 − α/2 quantiles of the empirical distribution of these draws.

If the function of interest is a nondecreasing (nonincreasing) function of λ, then one can, as
in Chapter 7, compute the lower and upper endpoints of the credible interval of interest by just
substituting the lower and upper (upper and lower) endpoints for λ into the function of interest.

Example 16.9 Credible Interval for the Probability of Five or Fewer Unscheduled Shut-

downs in 6 Months of Operation (m = 0.5 year). Applying the MCMC approach, sam-
ple draws from the posterior distribution of Pr(Y ≤ 5) can be computed from each of the
B = 80,000 sample draws from the posterior distribution of λ. Then the desired 95% credible
interval for Pr(Y ≤ 5) in 6 months (i.e., half a year) of operation is obtained from the 0.025
and 0.975 quantiles of the empirical distribution of these draws. For the Jeffreys prior and the
informative prior distributions, this is done with the following R commands:

> quantile(ppois(q=5, lambda=drawsComputerShutDownJeffreys*0.5),

probs=c(0.025, 0.975))

2.5% 97.5%

0.8562 0.9944

> quantile(ppois(q=5, lambda=drawsComputerShutDownInformative*0.5),

probs=c(0.025, 0.975))

2.5% 97.5%

0.8454 0.9789
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Alternatively, using directly the credible intervals for λ, obtained as described in Sec-
tion 16.2.2, the credible interval for Pr(Y ≤ 5) in 6 months (i.e., half of a year) of operation
is obtained, applying the conjugate distribution approach. This is done by using the following
R commands:

> ppois(q=5, lambda=qgamma(p=c(0.975, 0.025), shape=24+0.5, rate=5)

*0.50)

[1] 0.8561 0.9943

> ppois(q=5, lambda=qgamma(p=c(0.975, 0.025), shape=24+32, rate=5+5)

*0.50)

[1] 0.8469 0.9789

The preceding results (using the conjugate distribution approach) are shown in Table 16.2.

Example 16.10 Credible Interval for the 0.90 Quantile of the Distribution of the Number

of Unscheduled Computer Shutdowns in 1 Year of Operation (m = 1 year). In a manner
similar to that used in the previous example, using the MCMC method, sample draws from
the posterior distribution of the Poisson distribution quantile y0.90—the 0.90 quantile of the
distribution of the number of unscheduled shutdownsY in 1 year of operation—can be computed
for each of the B = 80,000 draws from the posterior distribution of λ. Then the desired 95%
credible interval for y0.90 is obtained from the 0.025 and 0.975 quantiles of the empirical
distribution of these draws. For the Jeffreys prior and the informative prior distributions, this is
done with the following R commands:

> quantile(qpois(p=0.90, lambda=drawsComputerShutDownJeffreys*1.0),

probs=c(0.025, 0.975))

2.5% 97.5%

5 11

> quantile(qpois(p=0.90, lambda=drawsComputerShutDownInformative*1.0),

probs=c(0.025, 0.975))

2.5% 97.5%

7 11

Alternatively, using the conjugate distribution approach, a credible interval for y0.90 , can
be computed by evaluating the Poisson quantile function at the credible interval endpoints.
For the Jeffreys prior and the informative prior distributions this is done with the following
R commands:

> qpois(p=0.90, lambda=qgamma(p=c( 0.025, 0.975),

shape=24+0.5, rate=5)*1.0)

[1] 6 11

> qpois(p=0.90, lambda=qgamma(p=c( 0.025, 0.975),

shape=24+32, rate=5+5)*1.0)

[1] 7 11

The preceding results (using the conjugate distribution approach) are shown in Table 16.2.

16.2.4 Tolerance Intervals for the Poisson Distribution

This section uses a procedure that is similar to that used in Section 7.5.3 and Section 16.1.4.
In particular, as explained in Section D.7.4, an approximate 100(1 − α)% control-the-center
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tolerance interval to contain a proportion β can be obtained by combining a one-sided lower
100(1 − α)% credible bound on the (1 − β)/2 quantile of the distribution and a one-sided
upper 100(1 − α)% credible bound on the (1 + β)/2 quantile of the distribution. Evaluation
of the Bayesian coverage probability for such approximate tolerance intervals using (15.4)
shows that the intervals tend to be somewhat conservative.

Example 16.11 Bayesian Tolerance Interval to Contain at Least a Proportion 0.80 of the

Distribution of the Number of Unscheduled Computer Shutdowns in 2 Years of Operation

(m = 2 years). From the methods presented in Section 16.2.3, similar to Example 16.10,
using the Jeffreys prior distribution draws, a one-sided lower 95% credible bound for the 0.10
quantile of the distribution is 4 and a one-sided upper 95% credible bound for the 0.90 quantile
of the distribution is 18. The corresponding Bayesian coverage probability for the resulting
two-sided tolerance interval, computed from (15.4), is 0.9463. By increasing the input coverage
probability 1 − α above 0.95, the lower endpoint decreases from4 to 3when 1 − α ≈ 0.956, the
Bayesian coverage probability increases sharply to 0.9867, and the tolerance interval becomes
[3, 18]. The following R commands illustrate the computations that were used to obtain these
results:

> quantile(qpois(p=0.10, lambda=drawsComputerShutDownJeffreys*2),

probs=0.05)

5%

4

> quantile(qpois(p=0.90, lambda=drawsComputerShutDownJeffreys*2),

probs=0.95)

95%

18

> sum(ppois(q=18, lambda=drawsComputerShutDownJeffreys*2)-

ppois(q=4, lambda=drawsComputerShutDownJeffreys*2) > 0.80)/

length(drawsComputerShutDownJeffreys)

[1] 0.9463

> sum(ppois(q=18, lambda=drawsComputerShutDownJeffreys*2)-

ppois(q=3, lambda=drawsComputerShutDownJeffreys*2) > 0.80)/

length(drawsComputerShutDownJeffreys)

[1] 0.9867

Similar computations (with just a change in the object containing the MCMC draws) give
the calibrated tolerance interval for the informative prior distribution with the results [5, 18],
shown in Table 16.2.

16.2.5 Prediction Intervals for the Poisson Distribution

Either of the two general methods described in Sections 15.5.4 and 15.5.5 can be used to
construct Bayesian prediction intervals for a future outcome of a Poisson random variable
involving m future units of exposure. As with the Poisson credible intervals described in Sec-
tions 16.2.2 and 16.2.3, using sample draws from the posterior predictive distribution provides
an easy-to-implement method that can be used with an arbitrary prior distribution.

If one uses a gamma conjugate prior distribution for λ, then an analytical expression for the
posterior predictive distribution can be used, as described at the end of Section H.5.3. In this
case, a Bayesian prediction interval is obtained from the appropriate quantiles of the negative
binomial distribution (described in Section C.4.3). In particular, if the prior distribution for λ
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is GAMMA(a, b), then the prediction interval for the number events Y in m future units of
exposure is computed as

[Y
˜

, Ỹ ] = [qnbinom(α/2; a + x, (b + n)/(b + n + m)),

qnbinom(1 − α/2; a + x, (b + n)/(b + n + m))], (16.2)

where qnbinom(p; k,π) is the p quantile of the negative binomial distribution with “stop-
ping parameter” k and “proportion parameter” π. For a Jeffreys prior distribution one uses
a = 0.50 and b = 0 (see Section H.6.2), as illustrated in Section 7.6.4. The following two
examples illustrate the computation of Bayesian prediction intervals and bounds for the number
of unscheduled computer shutdowns with a given amount of future exposure using both the
Jeffreys prior and the informative prior distributions and both the simulation method and the
conjugate prior prediction-distribution methods.

Example 16.12 Bayesian Prediction Interval for the Number of Unscheduled Computer

Shutdowns in 4 Years of Operation (m = 4 years). Using the MCMC method described
in Section 15.5.5, we will compute prediction intervals for Y , the number of unscheduled
computer shutdowns in 4 years of operation. Thus, for each of the B = 80,000 draws from
the posterior distribution of λ, multiplied by 4 to get the rate for 4 years of exposure, we
generate a Poisson random variable. The resulting collection of B Poisson variates are draws
from the posterior predictive distribution of Y . Then the Bayesian 95% prediction interval for
Y is obtained from the 0.025 and 0.975 quantiles of the empirical distribution of these draws.
For the Jeffreys prior and the informative prior distributions, this is done with the following
R commands:

> quantile(rpois(n=length(drawsComputerShutDownJeffreys),

lambda=drawsComputerShutDownJeffreys*4.0), probs=c

(0.025, 0.975))

2.5% 97.5%

9 32

> quantile(rpois(n=length(drawsComputerShutDownJeffreys),

lambda=drawsComputerShutDownInformative*4.0), probs=c

(0.025, 0.975))

2.5% 97.5%

12 34

The conjugate predictive distribution approach in (16.2), using the prior distributions from the
previous examples, can be implemented with the following R commands:

> qnbinom(p=c(0.025, 0.975), size=24+0.5, prob=5/(5+4))

[1] 9 32

> qnbinom(p=c(0.025, 0.975), size=24+32, prob=(5+5)/(5+5+4))

[1] 12 34

Again, the preceding results are shown in Table 16.2.

Example 16.13 Bayesian Upper Prediction Bound for the Number of Unscheduled Com-

puter Shutdowns in 6 Months of Operation (m = 0.50 year). Similarly to Example 16.12,
we can use the MCMC method to construct a Bayesian one-sided upper prediction bound on
the number of unscheduled shutdowns in the next 6 months of operation. The only difference is
that we multiply the draws from the posterior distribution of λ by 0.50 instead of by 4, and use
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only the 0.95 quantile of the empirical distribution of the draws from the posterior predictive
distribution of Y . For the Jeffreys prior and informative prior distributions used in previous
examples in this section, this is done by using the following R commands:

> quantile(rpois(n=length(drawsComputerShutDownJeffreys),

lambda=drawsComputerShutDownJeffreys*0.5), probs=0.95)

95%

5

> quantile(rpois(n=length(drawsComputerShutDownInformative),

lambda=drawsComputerShutDownInformative*0.5), probs=0.95)

95%

6

The conjugate predictive distribution approach in (16.2), using the prior distributions from the
previous examples, can be implemented with the following R commands:

> qnbinom(p=0.95, size=24+0.5, prob=5/(5+0.5)))

[1] 5

> qnbinom(p=0.95, size=24+32, prob=(5+5)/(5+5+0.5)))

[1] 6

16.3 BAYESIAN INTERVALS FOR THE NORMAL DISTRIBUTION

In some applications involving the normal distribution, there is prior information on the dis-
tribution parameters μ and σ. In this section, we describe the use of such information, using
MCMC methods, to construct Bayesian statistical intervals.

16.3.1 Normal Distribution Conjugate Prior Distribution

The normal distribution is another distribution that has a conjugate prior distribution from
which one can readily determine an appropriate (normal) conjugate posterior distribution. One
can then compute statistical intervals directly from the resulting joint posterior distribution,
from the parameters of that distribution, or (for complicated intervals) from iid draws from
the distribution. Technical details are given in Section H.3.3. In this section, however, we will
use the more general MCMC sample-draws method for constructing statistical intervals, which
allows one to specify an arbitrary joint prior distribution.

16.3.2 MCMC Method

In what follows, the observed values x1 , . . . , xn from a sample of sizen is the data and the mean
µ and standard deviation σ are the parameters. It will be assumed that, based on a given prior
distribution and data, that B sample draws µ∗

j and σ∗
j , j = 1, . . . , B, from the joint posterior

distribution of the normal distribution parametersµ andσ have been generated, using anMCMC
method.

Example 16.14 Prior Distributions and Draws from the Joint Posterior Distribution of

the Normal Distribution Parameters for the Circuit Pack Output Voltage Application. The
examples in this section are based on the circuit pack output voltage application introduced
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in Example 3.1. This application was used to illustrate the computation of statistical intervals
based on an assumption of a normal distribution, as described in Chapters 3 and 4.

To obtain a diffuse prior distribution for the normal distribution mean μ, we follow common
practice and use a lat (i.e., uniform) prior distribution over the entire real line (i.e., from
−∞ to ∞). Although this is an improper prior distribution, the joint posterior distribution
for (μ,σ) will be proper (in general if there are at least two observations). We also follow
common practice in deining the diffuse prior distribution for the standard deviation σ. In
particular, the uncertainty in the reciprocal of the variance 1/σ2 (known as “precision”) is
described by a gamma distribution with a shape parameter a = 0.001 and a rate parameter
b = 0.001. This distribution has a mean of 1 and a variance of 1,000 and is thus diffuse. This
implicit diffuse prior forσ is popular because it is easy to specify in the commonly usedBayesian
software packages and because it is approximately proportionate to the Jeffreys prior distribution
for σ.

For the informative prior distribution, we continue to use a lat prior distribution for µ. To
describe our prior knowledge about the standard deviation σ, however, we assume that there is
strong belief that σ is between 1.0 and 1.6. and, therefore, use a lognormal prior distribution
with probability 0.99 that σ is between 1.0 and 1.6. More precisely, the lognormal distribution
is chosen such that the probability that σ is less than 1.0 is 0.005 and that it is greater than 1.6
is 0.005. This prior distribution is denoted by <LNORM>(1.0, 1.6).

All of the Bayesian intervals computed in this section are based on matrices of
sample draws from the joint posterior distribution of µ and σ, stored in R objects
drawsOutputVoltageDiffuse and drawsOutputVoltageInformative, based on the
assumed diffuse prior and informative prior distributions, respectively. Both of these objects
contain B = 60,000 draws (i.e., 60,000 rows). The irst two columns of Table 16.3 show the
values of µ and σ for the irst ten sample draws using the informative joint prior distributions
taken from drawsOutputVoltageInformative. Table 16.3 also shows the irst ten sample
draws, that were computed subsequently, for Pr(Y > 48) and the 0.10 quantile of the distri-
bution of voltage outputs, based on the informative joint prior distribution and to be discussed
further subsequently.

µ∗ σ∗ Pr(Y > 48)∗ x∗
0.10

49.36 1.1230 0.8871 47.92
49.61 0.9872 0.9485 48.34
49.54 1.1260 0.9143 48.10
50.18 0.8066 0.9966 49.15
49.37 1.1650 0.8802 47.88
49.91 1.0320 0.9679 48.59
50.01 1.0090 0.9768 48.72
49.86 1.1560 0.9462 48.38
50.01 1.1210 0.9635 48.57
50.04 1.1350 0.9639 48.59

Table 16.3 First ten sample draws from the joint posterior

distribution of µ and σ and the marginal posterior

distributions of Pr(Y > 48) and x0.10 for the circuit pack

voltage output data with the informative joint prior

distribution for µ and σ.
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Figure 16.6 Scatter plots of draws from the joint posterior distribution of μ (top), x0 .10 (middle), and

Pr(Y > 48) (bottom) versus σ for the circuit pack voltage output data with the diffuse (left) and informative

(right) joint prior distributions.

Figure 16.6 shows scatter plots of the draws from the joint posterior distributions of µ and σ
(top), of x0.10 and σ (middle) and of Pr(Y > 48) and σ (bottom), using the Jeffreys (left) and
informative (right) prior distributions for σ. These plots show the appreciable impact that the
choice of the prior distribution for σ has on the inferences of interest. Table 16.4 summarizes
the numerical results from this section, comparing the Bayesian methods results based on the
diffuse and informative assumed prior distributions. The diffuse prior results are very close
to (if not exactly the same as) the results that were obtained using the classical non-Bayesian
methods in Chapter 4. This is as expected, given the theoretical results outlined in Sections H.4.3
and H.5.4.
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Type of Prior
Distribution Interval/bound type Interval for Lower Upper

Diffuse Two-sided credible μ 48.5 51.7
Informative Two-sided credible μ 49.0 51.1

Diffuse Two-sided credible σ 0.785 3.76
Informative Two-sided credible σ 0.890 1.51

Diffuse Two-sided credible x0.10 44.6 49.6
Informative Two-sided credible x0.10 47.4 49.6

Diffuse One-sided credible x0.90 50.8 54.6
Informative One-sided credible x0.90 50.7 52.6

Diffuse Two-sided credible Pr(X > 48) 0.571 0.998
Informative Two-sided credible Pr(X > 48) 0.797 0.998

Diffuse Two-sided tolerance Control center 0.90 44.4 55.7
Informative Two-sided tolerance Control center 0.90 47.4 52.8

Diffuse Two-sided tolerance Control tails 0.05 43.7 56.5
Informative Two-sided tolerance Control tails 0.05 46.9 53.2

Diffuse Two-sided prediction Y 46.1 54.1
Informative Two-sided prediction Y 47.5 52.6

Diffuse Two-sided prediction Ȳ , m = 3 47.4 52.7

Informative Two-sided prediction Ȳ , m = 3 48.4 51.8

Diffuse Two-sided prediction all 10 43.2 57.0
Informative Two-sided prediction all 10 46.4 53.9

Diffuse One-sided prediction all 10 44.3 55.9
Informative One-sided prediction all 10 46.7 53.5

Diffuse Two-sided prediction at least 9 of 10 44.9 55.4
Informative Two-sided prediction at least 9 of 10 47.3 53.0

Diffuse Two-sided prediction S, m = 3 0.211 4.32
Informative Two-sided prediction S, m = 3 0.181 2.32

Diffuse One-sided prediction S, m = 3 0.302 3.46
Informative One-sided prediction S, m = 3 0.258 2.08

Table 16.4 Bayesian two-sided 95% statistical intervals and some one-sided 95% statistical

bounds for normal distribution quantities of interest for the circuit pack output voltage example.

16.3.3 Credible Intervals for the Normal Distribution Parameters

To ind a Bayesian credible interval (or one-sided credible bound) for either of the normal
distribution parameters, one can use the simple approach described in Section 15.2.6. That is,
the 100(1 − α)% credible interval for the parameter of interest can be obtained from the α/2
and 1 − α/2 quantiles of the sample draws from the posterior distribution for that parameter.

Example 16.15 Credible Interval for the Mean of the Distribution of Output Voltages.

A 95% credible interval for the mean of the distribution of output voltages in Example 3.1 is
computed from the 0.025 and 0.975 quantiles of the empirical marginal posterior distribution
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of μ. These quantiles are obtained for the diffuse prior and informative prior distributions by
using the following R commands:

quantile(drawsOutputVoltageDiffuse[,"mu"], probs=c(0.025,0.975))

2.5% 97.5%

48.45 51.72

> quantile(drawsOutputVoltageInformative[,"mu"], probs=c(0.025,0.975))

2.5% 97.5%

49.05 51.14

As expected, the credible interval for μ, based on the diffuse prior distribution, is in good
agreement with the non-Bayesian conidence interval found in Example 4.1. This type of
agreement is also true for all of the other examples in this sectionwhen comparedwith the similar
example in Chapter 3, so we will not repeat the statement for the other examples, and instead
focus on the difference between the results from the diffuse and informative prior distributions.

The credible interval for μ, based on the informative prior distribution, is slightly narrower
due to the assumed prior information about σ. This difference is as expected and can be
explained and understood by comparing the two plots in the top row of Figure 16.6.

Example 16.16 Credible Interval for the StandardDeviation of theDistribution ofOutput

Voltages.A95%credible interval for the standard deviation of the distribution of output voltages
is computed from the 0.025 and 0.975 quantiles of the empirical marginal posterior distribution
of σ. These quantiles are obtained for the diffuse prior and informative prior distributions by
using the following R commands:

> quantile(drawsOutputVoltageDiffuse[,"sigma"], probs=c(0.025, 0.975))

2.5% 97.5%

0.7846 3.7630

> quantile(drawsOutputVoltageInformative[,"sigma"], probs=c(0.025,

0.975))

2.5% 97.5%

0.890 1.515

The credible interval for σ based on the informative prior distribution is considerably narrower
than that for the diffuse prior distribution, as expected, due to the informative prior information
that was used forσ. The reason for this difference can be explained and understood by comparing
the pairs of plots in any of the rows of Figure 16.6.

16.3.4 Other Credible Intervals for the Normal Distribution

To ind a Bayesian credible interval (or one-sided credible bound) for a function of normal
distribution parameters, one can use the simple approach described in Section 15.2.6. That is,
one uses direct evaluation of the function for each of theB sample draws from the joint posterior
distribution of µ and σ to generate sample draws from the marginal posterior distribution of the
function of interest. Then the 100(1 − α)% credible interval for the function can be obtained
from the α/2 and 1 − α/2 quantiles of the empirical distribution of these draws.

Example 16.17 Credible Interval for x0.10 , the 0.10 Quantile of the Distribution of Out-

put Voltages. To compute a Bayesian credible interval (or one-sided credible bound) for
x0.10 = µ − 1.645σ, the 0.10 quantile of the distribution of output voltages, one computes
draws from the marginal posterior distribution of x0.10 . This is done by irst computing
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x∗
0.10,j = μ∗

j − 1.645σ∗
j , j = 1, . . . , B. Then the 95% credible interval for x0.10 is obtained

from the 0.025 and the 0.975 quantiles of the empirical distribution of these draws. These are
computed for the diffuse prior and informative prior distributions by using the following R

commands:

quantile(drawsOutputVoltageDiffuse[,"mu"]+

qnorm(0.10)*drawsOutputVoltageDiffuse[,"sigma"],

probs=c(0.025, 0.975))

2.5% 97.5%

44.62 49.59

> quantile(drawsOutputVoltageInformative[,"mu"]+

qnorm(0.10)*drawsOutputVoltageInformative[,"sigma"],

probs=c(0.025, 0.975))

2.5% 97.5%

47.41 49.64

The credible interval for x0.10 based on the informative prior distribution is considerably
narrower than the diffuse prior distribution counterpart, as expected.More speciically, the lower
endpoint of the informative prior credible interval is considerably larger than the corresponding
endpoint of the diffuse prior interval (the upper endpoints are the same to three signiicant digits).
The reason for this difference can be understood by comparing the two plots in the middle row
of Figure 16.6. In particular, because the value of σ is constrained from above by the informative
prior information about σ, the marginal posterior distribution of x0.10 is constrained from above
due to the negative correlation between σ and x0.10 in the joint posterior seen in Figure 16.6.

Example 16.18 One-SidedUpperCredibleBound for the 0.90Quantile of theDistribution

of Output Voltages. Similar to previous examples, a one-sided upper credible bound for
x0.90 , the 0.90 quantile of the distribution of output voltages, can be obtained by computing
sample draws from the marginal posterior distribution of x0.90 . This is done by irst computing
x∗

0.90,j = µ∗
j + 1.645σ∗

j , j = 1, . . . , B. Then the desired 95% upper credible bound for x0.90

is the 0.95 quantile of the empirical distribution of these draws. This is calculated for the diffuse
prior and informative prior distributions by using the following R commands:

quantile(drawsOutputVoltageDiffuse[,"mu"]+

qnorm(0.90)*drawsOutputVoltageDiffuse[,"sigma"], probs=0.95)

95%

54.55

> quantile(drawsOutputVoltageInformative[,"mu"]+

qnorm(0.90)*drawsOutputVoltageInformative[,"sigma"], probs=0.95)

95%

52.57

The upper credible bound for x0.90 obtained by using the informative prior distribution is
considerably smaller (i.e., closer to the center of the distribution) than the upper credible bound
obtained by using the diffuse prior distribution. This is caused by an effect similar but opposite
to the movement of the lower endpoint of the credible interval for x0.10 in Example 16.17.
The effect is due to a strong positive dependency between x0.90 and σ and the restrictive
informative prior distribution that was used for σ. That is, because σ is constrained to be small
in the informative prior distribution, x0.90 will be constrained to be small.

Example 16.19 Credible Interval for Pr(X > 48) from the Distribution of Output Volt-

ages. Similar to previous examples, a credible interval forPr(X > 48) can be obtained from the
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distribution of output voltages obtained by computing draws from the marginal posterior distri-
bution ofPr(X > 48). This can be done by computingPr(X > 48)∗j = Φnorm [(μ∗

j − 48)/σ∗
j ],

j = 1, . . . , B. Then the 95% credible interval is given by the 0.025 and 0.975 quantiles of the
empirical distribution of these draws. These are computed for the diffuse and informative prior
distributions by the following R commands:

> quantile(pnorm(q=48, mean=drawsOutputVoltageDiffuse[,"mu"],

sd=drawsOutputVoltageDiffuse[,"sigma"], lower.tail=FALSE),

probs=c(0.025, 0.975))

2.5% 97.5%

0.5709 0.9984

> quantile(pnorm(q=48, mean=drawsOutputVoltageInformative[,"mu"],

sd=drawsOutputVoltageInformative[,"sigma"], lower.tail=FALSE),

probs=c(0.025, 0.975))

2.5% 97.5%

0.7975 0.9977

The lower endpoint of the credible interval for Pr(X > 48) based on the informative prior
distribution is considerably larger than the lower endpoint based on the diffuse prior distribution.
This is due to the dependency of Pr(X > 48) on σ and the informative prior information that
was used for σ. The reason for this difference can be understood by comparing the two plots in
the bottom row of Figure 16.6.

16.3.5 Tolerance Intervals for the Normal Distribution

A Bayesian tolerance interval for a normal distribution can be obtained by using the general
approach described in Sections 15.5.2 and 15.5.3. The basic input for both of these procedures
is the sequence of draws from the joint posterior distribution of µ and σ used for the other
statistical intervals in this section.

Example 16.20 Bayesian Control-the-Center Tolerance Interval to Contain at Least a

Proportion 0.90 of the Distribution of Output Voltages. The results of implementing the
procedure in Section 15.5.2 to construct control-the-center tolerance intervals for output voltage
using both the diffuse prior and the informative prior distributions are shown in Table 16.4.
The tolerance interval using an informative prior distribution is considerably narrower than the
diffuse prior interval due to the informative prior information that was used for σ.

Example 16.21 Bayesian Control-Both-Tails Tolerance Interval to Contain at Least a

Proportion 0.90 of the Distribution of Output Voltages. The results of implementing the
procedure in Section 15.5.3 to construct control-both-tails tolerance intervals for output voltage
using both the diffuse prior and the informative prior distributions are shown in Table 16.4.
The tolerance interval using the informative prior distribution is considerably narrower than the
diffuse prior interval due to the informative prior information that was used for σ.

16.3.6 Prediction Intervals for the Normal Distribution

Bayesian prediction intervals for a normal distribution can be obtained by using the general
approaches described in Section 15.5.4 or 15.5.5. The basic input for both of these procedures
is the sequence of MCMC draws from the joint posterior distribution of µ and σ used for the
other statistical intervals in this section.
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For situations in which it is relatively easy to simulate the random variable to be predicted,
we will use the additional-layer-of-MC method described in Section 15.5.5 because it is easier
to implement using simple R commands (even though this method generally requires a larger
number of draws from the posterior predictive distribution to achieve the same amount of MC
precision). For the simultaneous prediction interval/bounds applications, we will use the direct
method described in Section 15.5.4.

Example 16.22 Bayesian Prediction Interval to Contain a Single Future Observation

from the Distribution of Output Voltages. Draws from the posterior predictive distribution of
Y can be obtained by generating one normal random variable for each of theB pairs of MCMC
sample draws (μ∗, σ∗) from the joint posterior distribution of µ and σ. Then the Bayesian
95% prediction interval for Y is obtained from the 0.025 and 0.975 quantiles of the empirical
distribution of these draws. For the diffuse prior and informative prior distributions, this is done
using the following R commands:

> quantile(rnorm(n=nrow(drawsOutputVoltageDiffuse),

mean=drawsOutputVoltageDiffuse[,"mu"],

sd=drawsOutputVoltageDiffuse[,"sigma"]), probs=c(0.025, 0.975))

2.5% 97.5%

46.07 54.11

> quantile(rnorm(n=nrow(drawsOutputVoltageInformative),

mean=drawsOutputVoltageInformative[,"mu"],

sd=drawsOutputVoltageInformative[,"sigma"]), probs=c(0.025,

0.975))

2.5% 97.5%

47.53 52.65

As expected, the Bayesian prediction interval using the informative prior distribution is narrower
than the prediction interval using the diffuse prior distribution.

Example 16.23 BayesianPrediction Interval toContain theMeanofm = 3FutureObser-

vations from the Distribution of Output Voltages. Following the approach described in Sec-
tion 15.5.5, sample draws from the posterior predictive distribution of the future sample mean
Ȳ can be obtained by generating a corresponding sample mean of m = 3 observations for
each of the B pairs of MCMC sample draws (µ∗, σ∗) from the joint posterior distribution of µ
and σ. Then the Bayesian 95% prediction interval for Y is obtained from the 0.025 and 0.975
quantiles of the empirical distribution of these draws. For the diffuse prior and informative prior
distributions, this is done using the following R commands:

> quantile(apply(matrix(rnorm(n=3*nrow(drawsOutputVoltageDiffuse),

mean=drawsOutputVoltageDiffuse[,"mu"],

sd=drawsOutputVoltageDiffuse[,"sigma"]), ncol=3),

MARGIN=1, FUN=mean), probs=c(0.025, 0.975))

2.5% 97.5%

47.40 52.74

> quantile(apply(matrix(rnorm(n=3*nrow(drawsOutputVoltageInformative),

mean=drawsOutputVoltageInformative[,"mu"],

sd=drawsOutputVoltageInformative[,"sigma"]), ncol=3),

MARGIN=1, FUN=mean), probs=c(0.025, 0.975))

2.5% 97.5%

48.39 51.79
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As expected, the Bayesian prediction interval based on the informative prior distribution is
somewhat narrower than that based on the diffuse prior distribution. Moreover, as expected, the
prediction interval for the mean of m = 3 future observations is narrower than the interval to
contain a single future observation obtained in Example 16.22.

Example 16.24 Bayesian Prediction Interval to Contain Allm = 10 Future Observations

from the Distribution of Output Voltages. A 95% Bayesian prediction interval to contain all
ofm = 10 future observations from the distribution of output voltages is based on theB pairs of
MCMC sample draws (μ∗, σ∗) from the joint posterior distribution of µ and σ and is computed
as described in Section 15.5.4. The corresponding Bayesian upper (lower) prediction bound to
exceed (be exceeded by) allm = 10 future observations from the distribution of output voltages
is computed in a similar manner. The results are given in Table 16.4. As expected, the prediction
interval based on the informative prior distribution is appreciably narrower than that based on
the diffuse prior distribution. Also, as expected, the Bayesian prediction interval to contain all
10 future observations is considerably wider than the prediction interval to contain only one
future observation in Example 16.22.

Example 16.25 Bayesian Prediction Interval to Contain at Least k = 9 ofm = 10 Future

Observations from the Distribution of Output Voltages.A 95% Bayesian prediction interval
to contain at least k = 9 ofm = 10 future observations from the distribution of output voltages
is based on the B pairs of MCMC sample draws (µ∗, σ∗) from the joint posterior distribution
of µ and σ and is computed as described in Section 15.5.4. The results are given in Table 16.4.
As expected, the Bayesian prediction interval based on the informative prior distribution is
appreciably narrower than that based on the diffuse prior distribution. Also, as expected, the
Bayesian prediction interval to contain at least k = 9 of m = 10 future observations is a little
narrower than the corresponding prediction interval to contain all m = 10 future observations
in Example 16.24.

Example 16.26 Bayesian Prediction Interval to Contain the Sample Standard Deviation

of m = 3 Future Observations from the Distribution of Output Voltages. Following the
approach described in Section 15.5.5, a prediction interval for the future sample standard
deviationS can be obtained fromMCMCsample draws from the posterior predictive distribution
of S. For a future sample of size m, S has the same distribution as

σ
√

X2
(m−1)/(m − 1),

where X2
(m−1) is a chi-square random variable with m − 1 degrees of freedom. Then sam-

ple draws from the posterior predictive distribution of S can be computed from S∗
j =

σ∗
j

√
X2

(m−1)/(m − 1), j = 1, . . . , B, where independent values of X2
(m−1)/(m − 1) need

to be simulated for each value of j. Then the Bayesian 95% prediction interval for S is obtained
from the 0.025 and 0.975 quantiles of the empirical distribution of these draws. For the diffuse
prior and informative prior distributions, and a future sample of size m = 3, this is done using
the following R commands:

> quantile(sqrt(rchisq(n=nrow(drawsOutputVoltageDiffuse),df=2)/2)*

drawsOutputVoltageDiffuse[,"sigma"], probs=c(0.025,0.975))

2.5% 97.5%

0.211 4.319

> quantile(sqrt(rchisq(n=nrow(drawsOutputVoltageInformative),df=2)/2)*

drawsOutputVoltageInformative[,"sigma"], probs=c(0.025,0.975))

2.5% 97.5%

0.181 2.322
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When compared to the prediction interval for S using the diffuse prior distribution, the cor-
responding prediction interval using the informative prior distribution is narrower and shifted
downwards. This is due to the dependency of the distribution of S on σ and the restrictive
informative prior distribution that was used for σ.

BIBLIOGRAPHIC NOTES

The technical results related to the conjugate prior distributions used in this chapter are given
in Gelman et al. (2013) and summarized in Section H.3 of this book. Methods for computing
MCMC draws from the posterior distribution for the distributions in this chapter are given in
Lunn et al. (2012). Liu et al. (2016) describe a method to choose the number of MCMC draws
needed to estimate quantiles of a marginal posterior distribution to a desired degree of accuracy.
Their method was designed to make it possible to report a Bayesian credible interval with a
known number of correct signiicant digits.



Chapter 17
Statistical Intervals for Bayesian

Hierarchical Models

OBJECTIVES AND OVERVIEW

This chapter extends the introductory discussion of Bayesian statistical models presented in
Chapters 15 and 16, and shows how to compute statistical intervals for more complicated sta-
tistical models and/or data structures. It provides an introduction to the analysis of hierarchical
(or multilevel) statistical models using Bayesian analysis—to be referred to as “Bayesian hier-
archical models” for short. We describe basic concepts underlying such analyses and illustrate
their use in several different applications. The following topics are discussed:

� The basic ideas for modeling data from multilevel (hierarchical) studies (Section 17.1).
� Hierarchical models for data that can be described by a normal distribution (Section 17.2).
� Hierarchical models for data that can be described by a binomial distribution (Section 17.3).
� Hierarchical models for data that can be described by a Poisson distribution (Section 17.4).
� The analysis of data when repeated measurement are taken on a sample of units over time,
which can also be viewed as a hierarchical model (Section 17.5).

As indicated in Section 15.1.1 and illustrated by various examples in Chapters 15 and 16,
one important motivation for using Bayesian methods is to incorporate prior information into a
data analysis/modeling problem, especially to supplement limited data. In this chapter, however,
the primary motivation is that Bayesian methods are particularly convenient for modeling data
when there are multiple sources of variability, as in hierarchical models (see the references given
in the Bibliographic Notes section at the end of this chapter). Indeed, all of the examples in this
chapter use only diffuse prior distributions—although informative prior distributions could have
been used if informative prior information had been available. In particular, the diffuse prior
distributions for random effects used here and in Chapter 18 are those recommended by Gelman
(2006b).

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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17.1 BAYESIAN HIERARCHICAL MODELS AND RANDOM EFFECTS

Figure 17.1 shows a traditional three-level hierarchical structure; the corresponding statistical
model and analysis will be discussed in the next section. Hierarchical structures with varying
shapes and size are encountered in practice, but are handled similarly. Also, we adopt a modern
Bayesian-oriented interpretation of the concept of a hierarchical model in the examples in
this chapter. Further examples are provided in the references given in the Bibliographic Notes
section at the end of this chapter.

Figure 17.1 illustrates the structure of a hierarchical study of baseball players’ batting
averages. At the bottom of the hierarchy are batting averages for individual players “nested”
within teams—which are at the second level. Each team belongs to a division, shown at the
top level. The three levels (or tiers) in this example are, therefore, division, team and player.
To provide a simple example, we consider data from the two US baseball divisions: American
League Central (AL-C) and National League Central (NL-C).

Suppose that the primary goal of the study depicted in Figure 17.1 is to use the available
data to estimate the mean batting average for each team, together with the associated statistical
uncertainty of the estimate—to be quantiied by a credible interval.

The simplest approach for estimating a team’s mean batting average is to simply compute
the mean of the individual batting averages of the team’s players for each team. An alternative
and more complex—but also potentially more informative—approach uses a hierarchical model
and Bayesian methods, taking into consideration the common features of the data across the
different teams in estimating the mean for each team. This approach implicitly recognizes some
similarity among the teams and does what is sometimes referred to as “partial pooling” to
capitalize on these similarities to provide better estimation precision.

Division

1

21 n1

2

21 n2

3

21 n3

K

21 nK

Teams

Players

Figure 17.1 Illustration of a hierarchical study involving K baseball teams with nk players’ batting averages

nested within team k, where k = 1, 2, . . . , K .
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We will illustrate and compare the preceding two approaches for constructing credible
intervals for the baseball and other examples in the subsequent sections.

A third, and more extreme, approach would be to pool the batting averages of all the players,
irrespective of team and, possibly, division to obtain a single mean batting average across all
teams. This approach assumes that there is a single common distribution that describes all of
the teams, without any team differentiation. We will not employ this approach for constructing
a statistical interval in the subsequent sections, but will calculate the overall or pooled mean of
the data.

17.2 NORMAL DISTRIBUTION HIERARCHICAL MODELS

This section illustrates the use of Bayesian methods for obtaining statistical intervals for char-
acteristics of a hierarchical model when the resulting data are assumed to follow a normal
distribution.

Example 17.1 Baseball batting averages for teams in the American League Central and

the National League Central divisions. This example deals mainly with obtaining credible
intervals on individual team batting averages for each of the ten AL-C and NL-C teams. A
summary of the data is shown in Table 17.1.

Team Team
90% credible

sample standard
intervals for team mean θk

mean error Number
Individual Hierarchical

Team x̄k sx̄k
of batters Division Lower Upper Lower Upper

Chicago White

Sox (CHW)

0.281 0.0325 5 AL-C 0.20 0.32 0.24 0.30

Cleveland Indians

(CLE)

0.271 0.0382 5 AL-C 0.21 0.33 0.25 0.30

Detroit Tigers

(DET)

0.294 0.0304 5 AL-C 0.24 0.34 0.25 0.30

Kansas City

Royals (KC)

0.270 0.0122 7 AL-C 0.22 0.31 0.25 0.30

Minnesota Twins

(MIN)

0.266 0.0204 4 AL-C 0.22 0.33 0.25 0.30

Chicago Cubs

(CHC)

0.268 0.0390 6 NL-C 0.21 0.34 0.25 0.29

Cincinnati Reds

(CIN)

0.250 0.0445 7 NL-C 0.19 0.30 0.24 0.29

Milwaukee Braves

(MIL)

0.262 0.0256 4 NL-C 0.23 0.31 0.25 0.29

Pittsburgh Pirates

(PIT)

0.251 0.0229 6 NL-C 0.23 0.35 0.25 0.30

St. Louis

Cardinals (STL)

0.289 0.0369 7 NL-C 0.24 0.31 0.25 0.29

Table 17.1 Batting averages in 2014 for teams in the American League Central (AL-C) and the

National League Central (NL-C) divisions. The pooled point estimate of the players’ mean batting

average for both the AL-C and NL-C is 0.272.
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The second and third columns in Table 17.1 show the sample mean x̄k and the corresponding
standard error sx̄k

of the 2014 team batting averages for each team’s batters who had at least
300 at-bats. The standard error for each team was computed using the well-known expression
taking the sample standard deviation for the team divided by the square root of the number of
eligible batters on the team (see Section 4.2).

As indicated in Section 17.1, one approach to characterizing the batting strength of the teams
is to use the data from each team’s players to estimate separately the team’s mean batting
average using the assumption

Xik ∼ NORM(θk , σk)

where Xik , i = 1, . . . nk , is the batting average for team member i from team k, nk is the
number of batters in team k, while θk and σk are the unknown mean and standard deviations
for the batting average for team k for k = 1, 2, . . . , 10. (The normal distribution assumption is
justiied by the central limit theorem because each Xik is the average of at least 300 at-bats for
each player). Separate individual 90% credible intervals for themean batting average θk for each
team were computed using the methods in Section 16.3.3, with diffuse joint prior distributions
for each θk and σk pair. The results are given in the right-hand columns in Table 17.1. This
approach requires estimating a total of 20 parameters (θk and σk for k = 1, . . . , 10).

Alternatively, to recognize the similarities among teams, we use the hierarchical model

x̄k ∼ NORM(θk + β1ALk , sx̄k
), θk ∼ NORM(μθ , σθ),

k = 1, . . . , 10. Here θk is taken to be a “random effect” term that describes team-to-team
variability within the two divisions, while μθ and σθ are known as hyperparameters, describing
the distribution of the θk values. To take into consideration the difference between divisions,
we deine ALk = 0.50 for the American League Central and ALk = −0.50 for the National
League Central, and use the parameter β1 to quantify the estimated difference in batting
averages between the two divisions. Thus, this model assumes that the batting averages for the
two divisions may have different means, but are subject to the same team-to-team variability.

To conduct a Bayesian analysis using the preceding model, we then use the following
independent diffuse prior distributions for the unknown model parameters:

μθ ∼ UNIF(−∞,∞), σθ ∼ UNIF(0, 20), β1 ∼ UNIF(−∞,∞).

As described in Section 15.1.4, use of this model and diffuse prior distributions generally
provides results close to those that one would get in a non-Bayesian analysis.

AnMCMC algorithmwas used to generate 40,000 draws from the joint posterior distribution
of μθ , σθ , β1 , and θk , k = 1, . . . , 10, for this hierarchical model. The draws for the θk values
were used to compute the 90% credible intervals for each team average, using the same approach
as in the examples in Chapter 15. The results are shown in the last two columns of Table 17.1.
The draws for β1 were used to compute a 90% credible interval for β1 , giving [−0.029, 0.031],
indicating that the observed difference between the two divisions is not statistically signiicant
at the 10% level of signiicance (because the interval includes zero).

Figure 17.2 provides a graphical summary of the data analyses. The solid vertical lines show
point estimates and 90% credible intervals for each team average, based on the hierarchical
model; the dashed vertical lines are individual credible intervals based on the method from
Section 4.2. The long horizontal dotted lines indicate the sample mean batting averages based
on pooling all of the data within each of the two divisions. These two sample means, based on
26 batters in the AL-C and 30 batters in the NL-C, when rounded to three signiicant digits, are
both equal to 0.272.

These plots show two (not unexpected) differences between the results from the data analyses
using the individual Bayesian credible intervals and the Bayesian credible intervals based on
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Figure 17.2 Individual 90% credible intervals (dashed vertical lines) and hierarchical model 90% credible

intervals (solid vertical lines) for the mean batting averages for each of 10 teams. The horizontal dotted lines

are the means for each division.

the hierarchical model. First, the credible intervals are considerably narrower than the intervals
based on the individual analyses. Second, the hierarchical model point estimates (along with
the intervals) are shifted toward the overall mean for the division. These shifts are known as
“shrinkage toward the mean” and the effect is stronger for those teams that have wider intervals.
This is because the teams with less information “borrow” more strength from the other teams.
As described in references in the Bibliographic Notes section of this chapter (e.g., Gelman,
2006a), the shrunken estimators have better statistical properties than the individual-analysis
estimators (assuming appropriateness of the assumed model) because the hierarchical model
assumption allows the information in the data to be used more eficiently.

17.3 BINOMIAL DISTRIBUTION HIERARCHICAL MODELS

This section illustrates the use of Bayesian methods for obtaining statistical intervals for char-
acteristics of a hierarchical model when the resulting data are assumed to follow a binomial
distribution.

Example 17.2 Assessing the Performance of Sales Agents.A study was conducted to assess
the probability of making a successful sale for a particular product, based on “warm leads.” A
warm lead is a potential customer who is known to have an interest in purchasing the particular
product. The company’s sales force is divided into two different geographical regions, each
having nine sales agents. The warm leads were randomly assigned to one of the sales agents in
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Number of Number of Sample 90% credible intervals

attempts successes proportion Individual Hierarchical

Sales Agent Region nk xk xk/nk Lower Upper Lower Upper

Agent A Region 1 12 6 0.50 0.28 0.72 0.60 0.75

Agent B Region 1 30 21 0.70 0.55 0.82 0.62 0.76

Agent C Region 1 20 18 0.90 0.75 0.97 0.64 0.79

Agent D Region 1 26 15 0.58 0.42 0.72 0.60 0.75

Agent E Region 1 24 17 0.71 0.54 0.84 0.62 0.76

Agent F Region 1 17 11 0.65 0.45 0.81 0.61 0.76

Agent G Region 1 38 25 0.66 0.53 0.77 0.62 0.75

Agent H Region 1 20 16 0.80 0.63 0.91 0.63 0.77

Agent I Region 1 17 12 0.71 0.51 0.86 0.62 0.76

Agent J Region 2 24 16 0.67 0.50 0.81 0.59 0.73

Agent K Region 2 27 18 0.67 0.51 0.80 0.59 0.73

Agent L Region 2 19 11 0.58 0.39 0.75 0.57 0.73

Agent M Region 2 14 9 0.64 0.42 0.82 0.58 0.73

Agent N Region 2 10 8 0.80 0.55 0.94 0.59 0.75

Agent O Region 2 17 13 0.76 0.57 0.90 0.59 0.75

Agent P Region 2 33 21 0.64 0.49 0.76 0.58 0.73

Agent Q Region 2 28 20 0.71 0.56 0.84 0.59 0.74

Agent R Region 2 14 7 0.50 0.29 0.71 0.56 0.72

Table 17.2 Sales successes based on warm leads from two different regions. The hierarchical model

credible intervals are based on a logistic regression model. For region 1, the pooled point estimate of π
is 0.69, and for region 2, the pooled point estimate of π is 0.66.

the appropriate region at the time of arrival. If the selected agent was not available (e.g., because
of vacation or illness), the lead would be assigned to an agent who was available.

The third and fourth columns in Table 17.2 give the number of warm leads nk in the assigned
batch and the number of successful sales xk for each of the 18 agents in the company. The ifth
column gives the sample proportion xk/nk . We want to use these data to compute credible
intervals to characterize the sales ability of each of the 18 different agents and for the two
different sales regions.

One approach to carrying out the desired characterization of sales agents is to use the binomial
distribution model

Xk ∼ BINOM(nk , πk), (17.1)

for k = 1, . . . , 18, to separately estimate sales success probability πk for each of the 18 agents.
Using this approach, the individual 90% credible intervals in Table 17.2 were computed using
the binomial distribution method described in Sections 6.2.5 and 16.1.2 based on a Bayesian
approach with a Jeffreys diffuse prior distribution (see Section H.4.1). The results are shown in
the sixth and seventh columns in Table 17.2.

A second extreme approach would be to pool the data within each region and compute an
estimate of the probability of a successful sale within each region. We computed such estimates
and present them as dotted horizontal lines in the plots given in Figure 17.3.

A compromise between the individual analyses and pooling is to use (17.1) in a hierarchical
model where πk is assumed to be a random quantity (called a “random effect”) that is allowed
to vary from sales agent to sales agent according to some probability distribution. Using the
beta distribution

πk ∼ BETA(a, b), k = 1, . . . , 18, (17.2)
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is natural for this purpose because the beta distribution has outcomes that range between 0 and
1 with a wide range of shapes depending on the parameters a and b. The combination of (17.1)
and (17.2) is known as the beta-binomial hierarchical model. The unknown model parameters a
and b can be estimated from the available data. In particular, to implement Bayesian estimation
for this model we specify diffuse prior distributions for the beta distribution parameters a and
b. A common choice is to use gamma distributions with a very large variances, such as

a ∼ GAMMA(0.001, 0.001), b ∼ GAMMA(0.001, 0.001).

We it these models separately for both regions, based on the belief that the associated success
probabilities could differ for the two regions, resulting in four parameters (two beta distribution
parameters for each region). For each region, an MCMC algorithm was used to generate 10,000
draws from the joint posterior distribution of a, b, and πk , k = 1, . . . , 9, and these were used
in the usual way (described and illustrated in the examples in Chapter 15) to compute point
estimates (from the median of the draws) and 90% credible intervals (from the 0.05 and 0.95
quantiles of the empirical distribution of the draws) for each πk . The results are shown in the
last two columns of Table 17.2.

The top plot of Figure 17.3 compares the 90% credible intervals from the individual analyses
(dashed vertical lines) with those from the hierarchical model in (17.2) (solid vertical lines)
for both of the regions. The horizontal dotted lines indicate point estimates based on pooling
all of the data within each region to estimate the overall proportion for that region. For the
individual analyses, πk is estimated separately for each sales agent/region combination. This
is in contrast to the hierarchical model for which there is partial pooling within each region,
linking the πk through the beta distribution parameters a and b (separate values of a and b for
each region). This partial pooling results in estimates that in all cases have better (and in some
cases appreciably better) precision (i.e., narrower credible intervals). Also, the point estimates
have shrunk toward the pooled estimate within each region.

An alternative hierarchical model again uses (17.1) but links the two different regions through
a logistic regression model in which

logit(πk) = log

(
πk

1 − πk

)
= β0 + β1 × Regionk + αk , (17.3)

where Regionk = 0.50 for region 1 and Regionk = −0.50 for region 2. As a result, β1 describes
the region effect and the term

αk ∼ NORM(0, σ)

describes the agent-to-agent variability. Again, we use diffuse independent prior distributions,

β0 ∼ UNIF(−∞,∞), β1 ∼ UNIF(−∞,∞), σ ∼ UNIF(0, 20),

to describe the uncertainty in the unknownmodel parameters. AnMCMC algorithmwas used to
generate 10,000 draws from the joint posterior distribution of β0 , β1 , σ, and αk , k = 1, . . . , 18.
Then, using the inverse logit function, these draws were used to compute corresponding draws
from the marginal posterior distributions of

πk =
exp(β0 + β1 × Regionk + αk)

1 + exp(β0 + β1 × Regionk + αk)
,

for k = 1, . . . , 18. Point estimates and credible intervals for each of the πk values are then
obtained from the empirical quantiles of the respective set of draws.

The bottom plot in Figure 17.3 is similar to the top plot (the pooled estimate and the individual
credible intervals are the same in the two plots) except that the bottom plot shows instead the
hierarchical model credible intervals for the logistic regression model in (17.3). The credible
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Figure 17.3 Individual 90% credible intervals (dashed vertical lines) and hierarchical model 90% credible

intervals (solid vertical lines) for warm-lead sales success probability using different models. The horizontal

dotted lines are the means for each region.
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intervals frommodel (17.3) are somewhat narrower than those frommodel (17.2) because of the
partial pooling across all 18 agents and because there are only three parameters in model (17.3)
compared with four parameters in model (17.2). The draws for β1 were used to compute a 90%
credible interval for β1 , giving [−0.24, 0.52], indicating that the observed difference between
region 1 and region 2 is not statistically signiicant (because the interval includes the value
0). With this result, one could justify combining the data from the two regions to it a single
model for both regions with just two parameters (the beta parameters in (17.2)) to describe the
differences among the agents.

17.4 POISSON DISTRIBUTION HIERARCHICAL MODELS

This section deals with using Bayesian methods for obtaining statistical intervals for char-
acteristics of a hierarchical model when the resulting data are assumed to follow a Poisson
distribution.

Example 17.3 Credit Card and ATM Fraud Rates in Rural Iowa. The second column in
Table 17.3 gives xk , the number of credit card and ATM fraud incidents reported in 2009 in a
random sample of ten rural counties (deined as counties with fewer than 25,000 residents) in
Iowa. The third column gives nk , the county population size, stated in thousands. The fourth
column gives xk/nk , the fraud-incident rate per 1,000 people in each of the sampled counties.
We want to use these data to construct credible intervals for the fraud-incident rate, under the
assumption of stationarity, for each of these ten counties. Such intervals quantify the uncertainty
due to the random variability in the limited available sample data.

One approach for obtaining the desired statistical intervals is to use the Poisson distribution
model

Xk ∼ POIS(λknk)

and the data from each county to compute individual estimates of fraud-incident rates λk ,
k = 1, . . . , 10. This analysis can be done using the methods in Chapters 7 or 16. In particular,

Reported Population Fraud-incident rate
90% credible intervals for λk

fraud incidents (×1,000) per 1,000 Individual Hierarchical

County xk nk xk/nk Lower Upper Lower Upper

Adams 0 3.988 0.00 0.00049 0.48 0.012 0.33

Emmet 7 10.384 0.67 0.35 1.2 0.21 0.92

Hardin 1 17.193 0.06 0.010 0.23 0.022 0.23

Jones 1 20.331 0.05 0.0087 0.19 0.020 0.21

Lyon 2 8.740 0.23 0.068 0.65 0.060 0.44

O’Brien 2 13.927 0.14 0.041 0.40 0.046 0.32

Poweshiek 9 18.536 0.49 0.27 0.81 0.20 0.67

Taylor 0 6.218 0.00 0.00032 0.31 0.011 0.28

Washington 1 21.384 0.05 0.0082 0.18 0.019 0.20

Winneshiek 6 20.841 0.29 0.14 0.54 0.12 0.44

Table 17.3 Credit card and ATM fraud-incident counts reported in 2009 from a random sample of 10

rural counties in Iowa and credible intervals for the corresponding fraud-incident rates. The pooled

point estimate of the fraud-incident rate λ is 0.21 per thousand population.
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Figure 17.4 Individual 90% credible intervals (dashed vertical lines) and hierarchical model 90% credible

intervals (solid vertical lines) for 2009 credit card and ATM fraud-incident rates in ten Iowa rural counties.

credible intervals were obtained, using a simple diffuse Jeffreys prior distribution, as described
in Sections 7.2.5 and 16.2.2. The results are shown in the ifth and sixth columns of Table 17.3.

Another alternative extreme approach would be to pool the data from all 10 counties to
estimate an overall fraud-incident rate for rural Iowa counties. The dotted horizontal line in
Figure 17.4 indicates the pooled mean fraud-incident rate. Because such pooling can obscure
important information in the data, we do not pursue this approach further and suggest, instead,
the following analysis.

A third alternative is to use a compromise between the preceding two extremes that allows
the fraud-incident rates in different rural Iowa counties to vary (as we know they do), using
partial pooling through a Poisson distribution hierarchical model. In particular, let

Xk ∼ POIS(μk), (17.4)

where

μk = λknk = nk exp(β0 + θk), (17.5)

θk ∼ NORM(0, σθ),

for k = 1, . . . , 10. In this model, μk is the 2009 fraud-incident rate for county k, λk =
exp(β0 + θk) is the fraud-incident rate per m = 1,000 people in county k, and the θk val-
ues are random effects describing the county-to-county variability. We can interpret exp(β0)
to be a baseline (average) fraud-incident rate per m = 1,000 across all rural Iowa counties.
Appropriate diffuse prior distributions for the model parameters are

β0 ∼ UNIF(−∞,∞), σθ ∼ UNIF(0, 20).
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An MCMC algorithm was used to generate 27,000 draws from the joint posterior distribution
of β0 , σθ and θk , k = 1, . . . , 10, and these were used to compute corresponding draws from the
marginal posterior distributions of λk , the fraud-incident rates per 1000 people in county k for
k = 1, . . . , 10. Then these draws were used in the usual manner to compute credible intervals
for each of the λk values shown in the last two columns of Table 17.3.

Figure 17.4 compares the 90% credible intervals from the individual analyses (dashed vertical
lines) with those from the hierarchical model in (17.4) and (17.5) (solid vertical lines). The
horizontal dotted line shows the average fraud incident rate for all ten sampled rural Iowa
counties.

The widths of the credible intervals based on the individual analyses depend on both the
number of fraud incidents and the population size. Because the expected value and the variance
of a Poisson random variable are the same (see Section C.4.4), the counties with larger fraud-
incident rates tend to have wider credible intervals. For counties with the same number of fraud
incidents, thosewith larger populations have narrower credible bounds. Formost of the counties,
the hierarchicalmodel point estimates and the associated credible intervals are shifted toward the
estimated overall mean (as in other examples in this chapter), due to the partial pooling. Also, for
more than half of the counties (especially those with high fraud-incident rates), the hierarchical
model credible intervals are narrower than those obtained by the individual analyses; this is also
due to the partial pooling that is implicit in the hierarchical model.

17.5 LONGITUDINAL REPEATED MEASURES MODELS

In this section we describe an example in which units are measured repeatedly over time. Such
data are known as “longitudinal repeated measures data” and are typically represented by a
hierarchical model with measurements over time nested within the observed units.

Example 17.4 Telecommunications Laser Degradation. Lasers used in telecommunications
applications contain a feedback mechanism that will maintain nearly constant light output over
the life of the laser, resulting in an increase in operating current as the laser degrades.When oper-
ating current becomes too high—a 10% increase in our application—the device is considered to
have failed. Figure 17.5 is a plot of laser degradation data irst presented in Meeker and Escobar
(1998, Example 13.10). The percent increase in current (i.e., the degradation measurement) for
each of 15 lasers was observed at 17 equally spaced times up to 4,000 hours. In this example we
show, among other things, how to obtain a 95% credible interval on the probability of failure
by 5,000 hours of operation and a 95% credible interval on the 0.10 quantile of the failure-time
distribution.

As suggested by Figure 17.5, the model for laser degradation, relating laser exposure time
tj to percent increase in operating current Di,j , is linear with a zero intercept and a slope that
varies from laser to laser; that is,

Di,j = bitj

for the i = 1, . . . , 15 lasers at j = 1, . . . , 17 points in time, where bi is the degradation slope
(rate) for laser i. Then a model for yi,j , the observed percent increase in measured current for
laser i at time tj hours, is

yi,j = Di,j + ǫi,j = bitj + ǫi,j ,

where ǫi,j denotes the random error term, assumed to be independent (for the different i and
j) and having a normal distribution with mean 0 and a standard deviation σǫ . The log of bi is
assumed to have a normal distribution (so bi has a lognormal distribution) with a mean μlog(b)
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Figure 17.5 Percent increase in operating current over time for 17 lasers.

and a standard deviation σlog(b) . That is,

log(bi) ∼ NORM(µlog(b), σlog(b)), ǫi,j ∼ NORM(0, σǫ),

for i = 1, . . . , 15 and j = 1, . . . , 17. The assumption of independent residuals (from the itted
model) was justiied in this application because the experiment was conducted under carefully
controlled conditions and because there was no evidence of autocorrelation in the data.

References describing non-Bayesian methods for estimating the parameters and functions
of the parameters for the preceding longitudinal repeated measures model are given in the
Bibliographic Notes section at the end of this chapter. Here we use a Bayesian approach to
construct credible intervals for functions of the parameters. The Bayesian approach is more
straightforward than traditional likelihood-based methods when computing credible intervals
for functions of the parameters. Also, with diffuse prior distributions, such procedures tend to
have coverage probabilities that are close to the nominal credible level.

Diffuse prior distributions for the unknown parameters are taken to be

μlog(b) ∼ UNIF(−∞,∞), σlog(b) ∼ UNIF(0, 20), σ−2
ǫ ∼ GAMMA(0.001, 0.001).

The gamma prior distribution for the “precision” parameter σ−2
ǫ is equivalent to having what

is known as an “inverse-gamma” distribution for σ2
ǫ and is related to the conjugate inverse

chi-square distribution for a normal distribution variance described in Section H.3.3. The
GAMMA(0.001, 0.001) distribution has a very large variance and is, for this reason, a com-
monly used diffuse prior distribution for an error variance.
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In applications of longitudinal repeated measures models, statistical intervals are frequently
desired for:

� Predictions about the future performance of the particular units in the data set or
� Estimates of functions of the parameters for the model describing the population or process
from which the sample units were assumed to be randomly drawn.

In this example we will, as suggested earlier, focus on the latter application, considering
estimates and associated intervals for the quantiles of the degradation distribution and on the
probability of failure (i.e., the probability of having a current increase greater thanDf = 10) as
a function of time.

An MCMC algorithm for this model was used to generate 27,000 draws from the joint
posterior distribution of μlog(b) , σlog(b) , σǫ , and bi , i = 1, . . . , 15. The draws for the individual
bi values would be important for prediction of the future performance of individual units (the
irst issue stated above), but are not required for the present application. The cdf for the percent
increase in operating current for a randomly selected laser at time t is

Pr(D(t) ≤ d) = Pr(bt ≤ d) = Pr[log(bt) ≤ log(d)]

= Φnorm

[
log(d) − [μlog(b) + log(t)]

σlog(b)

]
,

which can be seen to be a lognormal distribution with parameters μlog(b) + log(t) and σlog(b) .
Note that this distribution does not depend onσǫ . The p quantile of the distribution of degradation
at time t is

dp(t) = t × exp
[
μlog(b) + Φ−1

norm(p)σlog(b)

]
.

Figure 17.6 shows the 0.1, 0.5 and 0.9 quantiles for the itted degradation distribution as a
function of time and the lognormal density function for percent increase in operating current
at several points in time. The probability of failure at a given time t can be visualized as the
proportion of area of the density above the 10% failure deinition at that value of t. More
formally, the failure-time (i.e., the time to crossing Df ) cdf can be expressed as

F (t) = Pr(T ≤ t) = Pr(D(t) ≥ Df ) = Pr(b ≥ Df/t)

= 1 − Φnorm

[
log(Df ) − [μlog(b) + log(t)]

σlog(b)

]

= Φnorm

[
log(t) − [log(Df ) − μlog(b)]

σlog(b)

]
, (17.6)

which again can be shown to be a lognormal distribution—nowwith parametersμ = log(Df ) −
μlog(b) and σ = σlog(b) . The estimate and credible interval for the proportion of lasers failing
by 5,000 hours can be obtained by substituting the pairs of draws for μlog(b) and σlog(b) into
(17.6) to obtain a set of draws from the marginal posterior distribution of F (t) and inding the
appropriate quantiles (0.5 for the point estimate and 0.05 and 0.95 for the 90% credible interval)
of the empirical distribution of the resulting values. The point estimate of the proportion lasers
failing by 5,000 hours is 0.503 and the credible interval is [0.338, 0.667]. Figure 17.7 shows
the estimated fraction of lasers failing as a function of time, along with 90% pointwise credible
intervals, plotted on lognormal probability axes. The horizontal lines indicate the point estimate
and 90% credible interval at 5,000 hours.

The p quantile of the failure-time distribution is

tp = exp
{
[log(Df ) − μlog(b)] + Φ−1

norm(p)σlog(b)

}
. (17.7)
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Figure 17.6 Plot of 0.1, 0.5 and 0.9 quantiles of itted distribution for percent increase in laser operating

current as a function of time and density functions at selected times.
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Estimates and Bayesian credible intervals for the p quantile can be found in a manner similar
to that for the cdf by substituting the draws for μlog(b) and σlog(b) into (17.7). Thus, the

point estimate of the 0.10 quantile of the laser failure-time distribution is t̂0.10 = 3,745 hours

and the corresponding 90% credible interval is [t
˜

0.10 , t̃0.10 ] = [3,155, 4,187] hours. If a set
of estimates of and credible intervals for the quantiles tp (hours) had been plotted versus p
(fraction failing), the resulting curves would be similar to but not exactly the same as those in
Figure 17.7.

BIBLIOGRAPHIC NOTES

General textbooks on Bayesian modeling

Most books on the application of Bayesianmethods also discuss and illustrate (if not emphasize)
Bayesian hierarchical models. These include Hoff (2009), Carlin and Louis (2009), Lunn et al.
(2012), and Gelman et al. (2013).

Books and papers focusing on Bayesian hierarchical modeling

There are many books and papers that focus speciically on Bayesian hierarchical model-
ing. These include Raudenbush and Bryk (2002), Gelman and Hill (2006), Gelman (2006a),
Congdon (2007), and Snijders (2011).

Specification of diffuse prior distributions in Bayesian hierarchical modeling

The speciication of a diffuse joint prior distribution is an important part of the use of Bayesian
methods in applications. As discussed in Section 15.3, when there is little information about
a parameter, inferences about that parameter can be highly sensitive to the particular diffuse
prior distribution that is used. Gelman (2006b) provides useful suggestions for specifying
appropriate prior distributions for variance components in hierarchical models. Polson et al.
(2012) discuss use of the half-Cauchy distribution as a prior distribution, and this distribution
is also recommended by Gelman (2006b) for certain kinds of applications.

References for non-Bayesian multilevel/hierarchical estimation

This chapter has presented Bayesian inferential methods for hierarchical models. There are
many references that present and use non-Bayesian methods for hierarchical models. These
include Seber and Wild (1989, Chapter 7), Davidian and Giltinan (1995), Pinheiro and Bates
(2000), Venables and Ripley (2002, Chapter 10), Singer and Willett (2003), Hox (2010), and
Fitzmaurice et al. (2012). Browne and Draper (2006) compare Bayesian and non-Bayesian
methods for hierarchical models; they show through simulation that Bayesian estimation with
appropriately chosen diffuse joint prior distributions provides credible intervals that have cover-
age probabilities close to nominal, often performing better than commonly used non-Bayesian
methods (such as Wald and likelihood-based conidence intervals).



Chapter 18
Advanced Case Studies

OBJECTIVES AND OVERVIEW

This chapter contains seven advanced case studies that illustrate the broad applicability of the
general methods presented in Chapters 15–17. The following applications are discussed:

� The case study in Section 18.1 shows how to construct, and contrasts, likelihood, bootstrap,
and Wald-approximation conidence intervals on the proportion of defective integrated
circuits from a manufacturing process, when the consequence of the defect is a product
failure during the (early) life of the product operation and the available information is
limited time-to-failure data.

� Gauge repeatability and reproducibility studies are used to assess the capability of a
measurement process and to estimate components of variance attributable to different
sources of variability. The case study in Section 18.2 shows the use of generalized pivotal
quantity and Bayesian methods to compute conidence intervals for quantities of interest
calculated from such studies.

� Naive computation of a tolerance interval when the data contain measurement errors will
result in an interval that is too wide. The case study in Section 18.3 shows how to compute
a tolerance interval on actual product performance that corrects for measurement error in
the data, using parametric bootstrap and Bayesian methods.

� The case study in Section 18.4 illustrates the use of Bayesian and parametric bootstrap
methods for computing a conidence interval on the probability of meeting a two-sided
speciication in product quality assessment applications.

� The case study in Section 18.5 shows how to compute a conidence interval on an estimate
of the effect of a purchase-inducement strategy in a marketing study, using bootstrap and
Bayesian methods, based on the results of a comparative study with random assignment of
customers.

� The case study in Section 18.6 shows how to calculate conidence intervals on the proba-
bility of detecting material laws as a function of law size using likelihood and Bayesian

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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methods, based on data from experiments involving the detection (or lack thereof) of laws
with known size. This application involves a binary regression.

� The case study in Section 18.7 returns to Example 14.14. This application dealt with
obtaining a conidence interval on the probability of failure of a rocket motor as a function
of age, based on scanty censored data and using Wald-approximation, likelihood, and
bootstrap methods. All three of these methods resulted in intervals that were so wide that
they were of little use. We now show how a more meaningful Bayesian credible interval
can be obtained leveraging prior information based on engineering knowledge and/or past
experience when such information is available.

Our main purpose in presenting these case studies is to demonstrate the broad applicability of
the general, and mostly approximate, methods that we present in Chapters 12–17 and to help
facilitate practitioners adopting them for yet other problems.

18.1 CONFIDENCE INTERVAL FOR THE PROPORTION OF DEFECTIVE
INTEGRATED CIRCUITS

In some applications one needs to estimate the proportion of units in a population that possess a
certain characteristic—but whether or not a particular unit possesses the characteristic becomes
known only over time as a result of the occurrence (or non-occurrence) of some event, such
as product failure. Thus, the information from which one estimates the population proportion
possessing the characteristic is typically time-to-occurrence data. Moreover, the data may
be incomplete in that some units have not experienced enough exposure time for the event
occurrence to take place.

Example 18.1 Integrated Circuit Failure-Time Data.Meeker (1987) gives the results of an
accelerated life test of n = 4,156 integrated circuits tested for 1,370 hours at 80◦C and 80%
relative humidity. A small proportion of the units had a manufacturing defect that would result
in product failure early in life. The data are shown in Table 18.1. There were 25 failures in
the irst 100 hours, three more between 100 and 600 hours (with the last one occurring at 593
hours), and no more failures among the remaining 4,128 units by 1,370 hours, when the test
was terminated. The data were also analyzed in Meeker and Escobar (1998, Section 11.5).

The primary purpose of the test was to estimate the proportion of defective units being
manufactured by the production process and to determine how much initial in-house “burn-in”
time each unit should receive so as to remove all, or at least most, of the defective units prior to
shipment, assuming the proportion defective remains unchanged. The reliability engineers were
also interested in determining whether it might be possible to obtain the needed information
about the proportion defective in the future, using tests much shorter than 1,370 hours (say, 100
or 200 hours).

0.10 0.10 0.15 0.60 0.80 0.80
1.20 2.50 3.00 4.00 4.00 6.00

10.00 10.00 12.50 20.00 20.00 43.00
43.00 48.00 48.00 54.00 74.00 84.00
94.00 168.00 263.00 593.00

Table 18.1 Integrated circuit failure times in hours. When the test

ended at 1,370 hours, there were 4,128 unfailed units.
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Wewill illustrate the use of likelihood andWald-approximation conidence interval methods
fromChapter 12 (based on general theory outlined in SectionsD.5.5 andD.5.6, respectively) and
the bootstrap methods from Chapters 13 and 14 to estimate and construct conidence intervals
for the proportion of defective units being generated by the manufacturing process.

18.1.1 The Limited Failure Population Model

The limited failure population (LFP)model, as used in this application, assumes that a proportion
p of units from a population or process is defective and will fail according to a cumulative
distribution F (t;μ, σ); the remaining proportion 1 − p will never fail—at least, due to the
defect under consideration. This model has been found useful for describing integrated circuit
infant mortality. Furthermore, if F (t;μ, σ) can be assumed to be a Weibull cdf, then the LFP
failure-time model becomes

Pr(T ≤ t) = G(t;μ, σ, p) = pF (t;μ, σ) = pΦsev

[
log(t) − μ

σ

]
, (18.1)

where Φsev(z) is the standard smallest extreme value distribution cdf (see Section C.3.1). Note
that as t → ∞,G(t;μ, σ, p) → p. The lognormal LFPmodel is obtained by usingΦnorm instead
of Φsev in (18.1).

18.1.2 Estimates and Confidence Intervals for the Proportion of
Defective Units

Using the methodology of Chapter 12, the maximum likelihood estimates for the Weibull LFP
model using the data available after 1,370 hours are μ̂ = 3.35, σ̂ = 2.02, and p̂ = 0.0067. The
ML estimates using the data available after 100 hours are μ̂ = 4.04, σ̂ = 2.12, and p̂ = 0.0083.
Figure 18.1 is a Weibull probability plot showing the nonparametric estimate of fraction failing
as a function of time (the plotted points) and ML estimates of the Weibull LFP model cdf for
the data available both after 100 hours and after 1,370 hours. The ML estimates of the Weibull
model cdf were obtained by substituting the ML estimates of the parameters into (18.1) for
values of t from 0.07 to 10,000 hours.

The two curves agree well up to 100 hours, but diverge after that. Focusing on the estimate
for the proportion defective p, Figure 18.2 shows proile likelihood plots for both the 100-hour
and the 1,370-hour data. As we saw in Chapter 12, the likelihood-based conidence intervals
for a quantity of interest can be read from the proile likelihood plot. Figure 18.2 shows that
one can obtain a reasonably precise estimate of p from the 1,370-hour data but that there is a
huge amount of uncertainty when the estimate is based on the 100-hour data.

Table 18.2 summarizes the estimates and compares the conidence intervals for p using the
likelihood and Wald-approximation methods as well as a bootstrap method based on random-
weight bootstrap sampling and the simple percentile method to obtain the conidence intervals
from the bootstrap estimates. There is good agreement between the likelihood and the bootstrap
methods, but the Wald-approximation method deviates radically from the other two methods
when using the 100-hour data.

There are two striking results from this example:

� Figure 18.2 shows that p can be estimated precisely from the 1,370-hour data. With the
100-hour data, however, the likelihood-based upper conidence bound for p is 1, implying
that it is possible that all of the manufactured units are defective.
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Figure 18.1 Weibull probability plot showing the LFP model estimates of the cdf for the 100-hour and

1,370-hour integrated circuit failure-time data.

� In sharp contrast to the upper endpoint of the likelihood and bootstrap conidence interval
for p where p̃ = 1 for the 100-hour data, the corresponding upper endpoint of the Wald-
approximation interval is only p̃ = 0.0203. Because the more trustworthy likelihood and
bootstrap methods tell us that the upper conidence bound on p should be 1, the Wald-
approximation interval gives a seriously inaccurate representation of the information in the
data.

1,370-hour data 100-hour data

ML estimate p̂ 0.00674 0.00827

Standard error ŝep̂ 0.00127 0.00380

Approximate 95%
conidence intervals for p
Wald-approximation [0.00466, 0.00975] [0.0033, 0.0203]
Likelihood-based [0.00455, 0.00955] [0.00463, 1.0000]
Random-weight bootstrap [0.00447, 0.00952] [0.00464, 1.0000]

Table 18.2 Comparison of Weibull LFP model estimates and conidence intervals

for p, the proportion of defective integrated circuits for the 100-hour data and the

1,370-hour data.
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Figure 18.2 Proile likelihood for the proportion defective p for the 100-hour and 1,370-hour integrated

circuit failure-time data.

The striking difference between the likelihood and bootstrap methods, when compared with the
Wald-approximation methods, provides an extreme example in which the Wald approximation
can be misleading and also supports the important practice of examining the likelihood in
situations involving new models or data.

The contrast between the likelihoods for the 1,370-hour data and the 100-hour data also
provides a partial answer the question of whether p can be estimated with a test of length 100
or 200 hours. The answer is no. Generally, one can obtain a reasonably precise estimate of p
only if the nonparametric estimate of the fraction failing as a function of time (see the plotted
points in Figure 18.1) levels off suficiently by the end of the life test.

18.2 CONFIDENCE INTERVALS FOR COMPONENTS OF VARIANCE IN A
MEASUREMENT PROCESS

Gauge repeatability and reproducibility (GR&R) studies are used to characterize the capability
of measurement systems. In this case study we review the basic ideas of a GR&R study
and present two modern methods for analysis of the resulting data—one based on a bootstrap
generalized pivotal quantity approach and the other usingBayesianmethods—to ind conidence
intervals for components of variance and functions of such components. Our application uses
the common two-way random-effects model with interaction, but the methods can be readily
adapted to other random-effects models.

Example 18.2 GR&R Study of Thermal Impedance Measurements on Power Mod-

ules. Houf and Berman (1988) describe a GR&R study to characterize a thermal impedance
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Part Operator 1 Operator 2 Operator 3

1 0.37, 0.38, 0.37 0.41, 0.41, 0.40 0.41, 0.42, 0.41
2 0.42, 0.41, 0.43 0.42, 0.42, 0.42 0.43, 0.42, 0.43
3 0.30, 0.31, 0.31 0.31, 0.31, 0.31 0.29, 0.30, 0.28
4 0.42, 0.43, 0.42 0.43, 0.43, 0.43 0.42, 0.42, 0.42
5 0.28, 0.30, 0.29 0.29, 0.30, 0.29 0.31, 0.29, 0.29
6 0.42, 0.42, 0.43 0.45, 0.45, 0.45 0.44, 0.46, 0.45
7 0.25, 0.26, 0.27 0.28, 0.28, 0.30 0.29, 0.27, 0.27
8 0.40, 0.40, 0.40 0.43, 0.42, 0.42 0.43, 0.43, 0.41
9 0.25, 0.25, 0.25 0.27, 0.29, 0.28 0.26, 0.26, 0.26

10 0.35, 0.34, 0.34 0.35, 0.35, 0.34 0.35, 0.34, 0.35

Table 18.3 Thermal impedance measurements on power modules in units of kelvin per watt.

measurement process applied to semiconductor power modules. Ten power modules were
selected at random from a speciic population of parts, and each was inspected three times by
three different operators, in a randomized sequence. The three operators are also assumed to
be a random sample from a larger population of operators. The resulting data are shown in
Table 18.3. Analysis of variance (ANOVA) methods applied to the data allow one to estimate
components of variance attributable to operator-to-operator variability, part-to-part variability,
repeat variability, as well as other quantities of interest that are typically functions of these
variance components.

18.2.1 Two-Way Random-Effects Model

The two-way random-effects model with interaction for the observed thermal impedance mea-
surement used by Hamada and Weerahandi (2000) is

Yijk = μ + Oi + Pj + (OP )ij + ǫijk , (18.2)

where i = 1, . . . , o; j = 1, . . . , p; and k = 1, . . . , r, Oi ∼ NORM(0, σO ) is the effect for
operator i, Pj ∼ NORM(0, σP ) is the effect for part j, (OP )ij ∼ NORM(0, σOP ) is the
interaction effect between operator i and part j, and ǫijk ∼ NORM(0, σE ) is the error term
nested within operator i and part j. Also,Oi, Pj , OPij , and ǫijk are assumed to be independent.
The usual ANOVA table for this model is shown in Table 18.4. In this table,

ȳi =

p∑

j=1

r∑

k=1

yijk/(pr), ȳj =
o∑

i=1

r∑

k=1

yijk/(or),

ȳij =
r∑

k=1

yijk/r, ȳ =
o∑

i=1

p∑

j=1

r∑

k=1

yijk/(opr)

are the sample means for each operator, each part, each operator-part combination, and the
overall mean, respectively.

The E(MS) expected mean squares values given in Table 18.4 are denoted by
(θP , θO , θOP , θE ) and can be thought of as an alternative set of parameters for the random-effects
model in (18.2); these alternative parameters can be estimated directly (and independently, for
balanced data) by the sample mean squares computed from the ANOVA table (e.g., Table 18.6).
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Degrees of
Source freedom (df) Sum of squares (SS) Expected mean square (MS)

P p − 1 or
∑p

j=1(ȳj − ȳ)2 θP = σ2
E + rσ2

OP + orσ2
P

O o − 1 pr
∑o

i=1(ȳi − ȳ)2 θO = σ2
E + rσ2

OP + prσ2
O

OP (o − 1)(p − 1) r
∑o

i=1

∑p
j=1(yij − ȳi − ȳj + ȳ)2 θOP = σ2

E + rσ2
OP

E op(r − 1)
∑o

i=1

∑p
j=1

∑r
k=1(yijk − ȳij )2 θE = σ2

E

T opr − 1
∑o

i=1

∑p
j=1

∑r
k=1(yijk − ȳ)2

Table 18.4 ANOVA table for two-factor random-effects model with interaction. For each row, the

sample mean square (MS) is the mean sum of squares (i.e., SS/df).

Table 18.5 shows some quantities of interest (functions of the components of variance model
parameters) in a GR&R study that will be estimated in this case study.

Example 18.3 ANOVA Table for the Thermal Impedance Measurement GR&R Study.

In this application we have p = 10 parts, o = 3 operators, and r = 3 repeat observations by
each operator on each part. The sample mean of all of the thermal impedance measurements
is μ̂ = ȳ = 0.3580. Table 18.6 gives the ANOVA table for the analysis of the data from this
GR&R study. As will be shown in Section 18.2.2, entries from this table can be used to compute
estimates and conidence intervals for the quantities of interest given in Table 18.5.

18.2.2 Bootstrap (GPQ) Method

This section provides amore advanced application of theGPQmethod described in Sections 14.4
and Appendix F. The development follows the approach given in Hamada and Weerahandi
(2000). Table 18.7 shows GPQs for the expected mean square parameters for the ANOVA in
Table 18.4. Note that in Table 18.7, s2

P , s2
O , s2

OP , and s2
E are sample mean squares for the

variance components for P, O, OP and E, respectively. Thus the numerators of the GPQ
ratios are the sample sums of squares in Table 18.4. The X2

(ν ) values in the denominators are

independent chi-square random variables with ν degrees of freedom, where ν equals p − 1,
o − 1, (o − 1)(p − 1), and op(r − 1), respectively, for the four rows in Table 18.7.

Variability type GR&R name Quantity

Part-to-part Process γP = σ2
P

Measurement system Gauge γM = σ2
O + σ2

OP + σ2
E

Reproducibility Reproducibility γR = σ2
O + σ2

OP

Error Repeatability γE = σ2
E

Total Total γT = σ2
O + σ2

P + σ2
OP + σ2

E

Proportion of variability due to part-to-part variation ρP = γP /γT

Proportion of variability due to themeasurement sys-
tem variation

ρM = γM /γT

Table 18.5 GR&R quantities of interest.
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Degrees of
Source freedom (df) Sum of squares (SS) Mean square (MS)

P 9 0.394 0.0437
O 2 0.00393 0.00196
OP 18 0.00485 0.000270
E 60 0.00307 5.11 × 10−5

T 89 0.405 0.00456

Table 18.6 ANOVA table for the thermal impedance measurement

GR&R study. For each row, the sample mean square is the mean sum of

squares (i.e., SS/df).

TheGPQs for the other quantities of interest in Table 18.5 can be shown, using the substitution
method in Section F.2, to be simple functions of the GPQs in Table 18.7 and are given by

Zγ̂P
=

(
Zθ̂P

− Zθ̂O P

)
/(or)

Zγ̂M
=

[
Zθ̂O

+ (p − 1)Zθ̂O P
+ p(r − 1)Zθ̂E

]
/(pr)

Zγ̂R
=

[
Zθ̂O

+ (p − 1)Zθ̂O P
− pZθ̂E

]
/(pr)

Zγ̂T
=

[
pZθ̂P

+ oZθ̂O
+ (op − p − o)Zθ̂O P

+ op(r − 1)Zθ̂E

]
/(opr)

Zρ̂P
= Zγ̂P

/Zγ̂T
, Zρ̂M

= Zγ̂M
/Zγ̂T

.

(18.3)

Conidence intervals for the quantities of interest in Table 18.5 can then be obtained by using the
expressions for the GPQs for the E(MS) values in Table 18.7, substituted into the appropriate
expressions in (18.3) and applying the GPQmethod described in Appendix F and illustrated for
other applications in Section 14.4. The results for the thermal impedance measurement GR&R
study are presented in the following example.

Example 18.4 GPQ Conidence Intervals for the Thermal Impedance Measurement

GR&R Study. GPQ conidence intervals for quantities of interest, such as those given in
Table 18.5, can be computed by generating a large number of draws (e.g., 1 million) from the
distribution of the corresponding GPQ. The draws can be obtained by substituting the sum of
squares from Table 18.6 into the GPQ expression for the quantity of interest in Table 18.7 and/or
(18.3) and independently simulating the values of the different chi-square random variables.
Then an approximate 100(1 − α)% conidence interval for the quantity of interest is obtained

E(MS) GPQ for E(MS)

θP = σ2
E + rσ2

OP + orσ2
P Zθ̂P

= (p − 1)s2
P /X2

(p−1)

θO = σ2
E + rσ2

OP + prσ2
O Zθ̂O

= (o − 1)s2
O/X2

(o−1)

θOP = σ2
E + rσ2

OP Zθ̂O P
= (o − 1)(p − 1)s2

OP /X2
((o−1)(p−1))

θE = σ2
E Zθ̂E

= op(r − 1)s2
E /X2

(op(r−1))

Table 18.7 GPQs for the E(MS) values in Table 18.4.
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from the α/2 and 1 − α/2 quantiles of the resulting empirical distribution of the draws. The
median of the empirical distribution provides a point estimate for the quantity of interest.

For example, to obtain a point estimate and approximate 95% conidence interval for γP one
can use the R command

quantile((0.394/rchisq(1.e7, df=9) -

0.00485/rchisq(1.e7, df=18))/(3*3),

probs=c(0.50, 0.025, 0.975))

50% 2.5% 97.5%

0.005212903 0.002268804 0.016186309

where 1.e7 is to be read as 107 . Similarly, to obtain a point estimate and approximate 95%
conidence interval for γM one can use the R command

quantile((0.00393/rchisq(1.e7, df=2) +

(10-1)*0.00485/rchisq(1.e7, df=18) +

10*(3-1)*0.00307/rchisq(1.e7, df=60))/(10*3),

probs=c(0.50, 0.025, 0.975))

50% 2.5% 97.5%

0.0002272204 0.0001186154 0.0027125311

Table 18.8 summarizes the results for all of the quantities of interest in Table 18.5, along with
similar results using the Bayesian method, to be described in Section 18.2.3.

This example has dealt with point estimates and conidence intervals for variances and ratios
of variances. For some applications, we need to present instead estimates and intervals for

Ratio
Quantity of

Interval endpoints
upper/lower

Method interest Estimate Lower Upper endpoints

GPQ γP 0.0052 0.0023 0.016 7.0
Bayesian γP 0.0059 0.0024 0.020 8.2

GPQ γM 0.00023 0.00012 0.0027 23
Bayesian γM 0.00035 0.00013 0.016 121

GPQ γR 0.00017 6.7 × 10−5 0.0027 40
Bayesian γR 0.00028 6.6 × 10−5 0.016 237

GPQ θE 5.2 × 10−5 3.7 × 10−5 7.6 × 10−5 2.1
Bayesian θE 6.3 × 10−5 4.5 × 10−5 9.2 × 10−5 2.0

GPQ γT 0.0056 0.0025 0.018 7.0
Bayesian γT 0.0069 0.0029 0.030 10

GPQ ρP 0.96 0.64 0.99 1.5
Bayesian ρP 0.94 0.26 0.99 3.8

GPQ ρM 0.044 0.012 0.36 31
Bayesian ρM 0.059 0.012 0.74 64

Table 18.8 95% conidence intervals and 95% credible intervals for quantities of interest for

the thermal inductance GR&R study.
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standard deviations (which are in general easier to interpret because they are in the same units
as the original response variable). These are easily obtained by simply taking the square root of
the values corresponding to the variance. For example, a GPQ 95% conidence interval for the
measurement error standard deviation σ2

E is

[√
γ
˜

M ,
√

γ̃M

]
=

[√
0.00012,

√
0.0027

]
= [0.011, 0.052].

18.2.3 Bayesian Method

The construction of conidence intervals for the GR&R quantities of interest (Table 18.5)
presented in this section follows the Bayesian approach given in Example 2 of Weaver et al.
(2012). This approach uses the model given in Section 18.2.1, but also requires one to specify
prior distributions for the unknown model parameters. Then an MCMC algorithm is used to
generate a large number of draws from the resulting joint posterior distribution of the model
parameters; these are, in turn, used to compute draws from the marginal posterior distributions
of the quantities of interest needed to compute Bayesian point estimates and credible intervals
for the quantities of interest.

Example 18.5 Bayesian Credible Intervals for the Thermal Impedance Measurement

GR&R Study. Because no physically or empirically based prior information was available for
this application, and to have results that are comparable with the non-Bayesian GPQ method
in Section 18.2.2, we follow the advice in the literature (e.g., Gelman, 2006b, Weaver et al.,
2012) and use the diffuse prior distributions µ ∼ UNIF(−∞,∞), σP ∼ UNIF(0, 10,000),
σOP ∼ UNIF(0, 10,000), σE ∼ UNIF(0, 10,000), and σO ∼ HCAUCHY(0.20). The half-
Cauchy prior distribution is recommended for a random-effect parameter when there are only
a small number of units (and thus a small number of degrees of freedom) available to estimate
the random effect (there were only three operators).

An MCMC algorithm was used to generate 1 million draws from the joint posterior distri-
bution of μ, σP , σOP , σE , and σO . These draws were then used to generate the corresponding
1 million draws for the marginal posterior distributions of the GR&R quantities of interest in
Table 18.5, using the formulas on the right-hand column of that table. Then, as described in
Section 15.2.6, these sample draws were used to compute Bayesian point estimates and credible
intervals for the quantities of interest. The results are shown in Table 18.8.

18.2.4 Comparison of Results Using GPQ and Bayesian Methods and
Recommendations

We note that in Table 18.8, the upper endpoints for the intervals for γR and γM = γR + σ2
E

agree because σ2
E is negligible in magnitude relative to γR . The GPQ and Bayesian intervals

for γP = σP are similar because there is a reasonable amount of data to estimate σP (i.e., there
were 10 parts) and, therefore, the analysis did not rely heavily on the assumed prior distribution
for σP . On the other hand, there were only three operators, and thus σ2

O and functions of σ2
O (see

Table 18.5) such as γM and γR are not estimated precisely (note the last column in Table 18.8,
in which larger numbers indicate less precision). Because there is relatively little information in
the data about γM and γR , the Bayesian inferences are highly dependent on the particular forms
of the speciied diffuse prior distributions, probably contributing to the differences between the
GPQ and Bayesian intervals.

In applicationswith random effects and limited (but balanced) data forwhich the speciication
of different diffuse prior distributions can have a strong effect on the resulting inferences
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(because the number of degrees of freedom to estimate variance components of interest is
small), we recommend the GPQ method over the Bayesian method. This is because simulation
studies (see the references in the Bibliographic Notes section at the end of this chapter) have
shown that GPQ methods tend to have coverage probabilities close to the nominal conidence
level. An exception would be situations for which good prior information exists and there is no
objection to its use.

If the data are unbalanced, the GPQ method does not apply directly. In this case, alterna-
tives approximate parametric bootstrap/simulation procedures can be developed. If a Bayesian
approach (which does not require balanced data) is used, it is important to compare the results
obtained using different diffuse prior distributions so as to assess the sensitivity of the results.

18.3 TOLERANCE INTERVAL TO CHARACTERIZE THE DISTRIBUTION OF
PROCESS OUTPUT IN THE PRESENCE OF MEASUREMENT ERROR

Chapters 4 and 16 show how to compute tolerance intervals for a normal distribution and a
general (log-)location-scale distribution, respectively. When there is measurement error, how-
ever, using the methods in Chapters 4 and 16 will result in tolerance intervals that overstate
the actual product or process variability. On the other hand, the naive interval μ̂ ∓ z(1+β )/2 σ̂P

(where σ̂P is the estimate of the part standard deviation, introduced in Section 18.2.1) is likely
be too narrow because it ignores the statistical uncertainty in the estimates μ̂ and σ̂P . The
next two subsections provide improved approximate tolerance intervals for the actual part or
process distribution without the measurement error when the available data are subject to mea-
surement error. We will continue to use the notation and data from the thermal impedance
example, described in Section 18.2. Under the model (18.2), the distribution of the particular
part characteristic is NORM(μ, σP ) and a control-the-center tolerance interval is desired for
this distribution.

18.3.1 Bootstrap (GPQ) Method

The method used here is a special case of the more general method given in Liao et al. (2005),
but has been simpliied and uses our notation. Tolerance intervals for the responses of other
random-effects models (e.g., when there are only two sources of variability in a response) can
be constructed similarly.

First, note that σ2
ȳ = γT /(opr) is the variance of µ̂ = ȳ (see Table 18.5). Then σTol =

(σ2
ȳ + σ2

P )1/2 can be interpreted as a kind of tolerance interval standard deviation, accounting

for both variability in theNORM(μ, σP ) distribution and the uncertainty in the estimates of the
model parameters. A GPQ method can then be used to account for the parameter uncertainty to
construct a control-the-center tolerance interval, in a manner similar to that for the conidence
intervals given in Section 18.2.2. Speciically, an approximate 100(1 − α)% control-the-center
tolerance interval for the NORM(µ,σP ) distribution is

[

˜
Tβ (y, 1 − α), T̃β (y, 1 − α)

]
= µ̂ ∓ z(1+β )/2 σ̃Tol, (18.4)

where σ̃Tol is an approximate 100(1 − α)% one-sided upper conidence bound for σTol .
In a manner similar to that used to ind the GPQs in (18.3), the GPQ for σ̂2

Tol is

Zσ̂ 2
To l

=

[
p

(opr)2
+

1

or

]
Zθ̂P

+
o

(opr)2
Zθ̂O

+

[
op − p − o

(opr)2
− 1

or

]
Zθ̂O P

+
op(r − 1)

(opr)2
Zθ̂E

.

(18.5)
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Then σ̃Tol is obtained as the square root of the 1 − α quantile of the empirical distribution of
B (a large number, such as 1 million) draws from the distribution of Zσ̂ 2

To l
, computed using the

B independent draws from the distributions of the GPQs in Table 18.7.

Example 18.6 GPQTolerance Interval for theDistribution ofThermal ImpedanceValues.

As in Example 18.4, GPQ intervals can be computed by generating draws from the distribution
of the GPQ for the quantity of interest (σ̂2

Tol for the tolerance interval in (18.4)). For this
example, taking the values of the sums of squares and degrees of freedom from Table 18.6,
recalling from Example 18.2 that p = 10, o = 3, r = 3, substituting into (18.5), and using the
R command

sqrt(quantile((10/90ˆ2+1/9)*0.394/rchisq(1.e7, df=9) +

(3/90ˆ2)*0.00393/rchisq(1.e7, df=2) +

(18/90ˆ2-1/9)*0.00485/rchisq(1.e7, df=18) +

(60/90ˆ2)*0.00307/rchisq(1.e7, df=60), probs=0.95))

95%

0.1152904

provides σ̃Tol = 0.1153. Substituting σ̃Tol into (18.4) gives an approximate 95% tolerance
interval to contain 90% of the thermal impedance values as

[

˜
Tβ , T̃β

]
= 0.3580 ∓ z(0.95) 0.1153 = [0.168, 0.548].

Using R as a calculator to compute the tolerance interval, we obtain

0.3580 + c(-1,1)*qnorm(0.95)*0.1153

18.3.2 Bayesian Method

We now apply the general Bayesian approach given in Section 15.5.2 to construct a control-
the-center tolerance interval for a normal distribution when the observations are subject to
measurement error. Because of the symmetry of the normal distribution, the desired tolerance
interval has the form [

˜
Tβ (y, 1 − α), T̃β (y, 1 − α)

]
= µ̂ ∓ kTol.

Then, adapting (15.4), kTol is chosen such that

1

B

B∑

j=1

I

[
Φnorm

(
T̃β − μ∗

j

σ∗
Pj

)
− Φnorm

(

˜
Tβ − μ∗

j

σ∗
Pj

)
> β

]
= 1 − α, (18.6)

where the indicator function I[A] is equal to 1 when the statement A is true and equal to 0
otherwise, and µ∗

j and σ∗
Pj

are calculated from draw j of B draws from the marginal posterior

distributions of μ and σP , respectively, for j = 1, . . . , B.

Example 18.7 Bayesian Tolerance Interval for the Distribution of Thermal Impedance

Values. In this example we use the same 1 million draws from the joint posterior distribution of
μ and σP as in Example 18.5. The median of the posterior distribution of μ gives μ̂ = 0.3581,
and the value of kTol satisfying (18.6) for β = 0.90 and 1 − α = 0.95 is 0.2456, giving

[

˜
Tβ , T̃β

]
= 0.3581 ∓ 0.2456 = [0.113, 0.604].

This interval is similar to but a little wider than the interval computed with the GPQ method in
Example 18.4.
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18.4 CONFIDENCE INTERVAL FOR THE PROPORTION OF PRODUCT
CONFORMING TO A TWO-SIDED SPECIFICATION

Determining the probability of meeting speciications, or equivalently, the proportion of product
conforming to speciications—a subject introduced in Section 2.2.3—is desired in many prac-
tical applications. When there is only a one-sided upper speciication limit U , the proportion of
product meeting (i.e., falling below) such a limit for a location-scale distribution is

pU = Pr(X ≤ xU ) = F (xU ) = Φ
(xU − μ

σ

)
, (18.7)

where xU on the right-hand side is replaced by log(xU ) for a log-location-scale distribution.
When one has to rely on data to estimate μ and σ—as is usually the case—the ML estimate
for pU is obtained by substituting the ML estimates for μ and σ into (18.7). A similar approach
is used to determine the proportion of product pL meeting (i.e., exceeding) a one-sided lower
speciication limit L. In Section 4.5 we provided an exact method for constructing conidence
intervals for the probabilities pL or pU of meeting such one-sided speciication limits for a
normal distribution. Section 14.4.2 provides a more general approach for any (log-)location-
scale distribution.

This case study shows how to obtain a conidence interval for the probability of meeting a
two-sided speciication limit (e.g., xL ≤ X ≤ xU ) for a normal distribution (but the method
extends easily to any (log-)location-scale distribution). In particular, we show how to compute
a conidence interval for

pI = Pr(xL ≤ X ≤ xU ) = pU − pL = Φ
(xU − μ

σ

)
− Φ

(xL − μ

σ

)
, (18.8)

where again xi on the right-hand side is replaced by log(xi), i = L,U , for a log-location-scale
distribution and the ML estimate of pI is obtained by substituting the ML estimates of μ and σ
into (18.8).

Unlike the case for one-sided speciication limits, we know of no exact methods for ind-
ing a conidence interval for pI . Thus, we will present approximate methods based on the
GPQ (Chapter 14) and Bayesian methods (Chapter 15). The methods presented in this case
study apply directly to any location-scale or log-location-scale distribution and can be extended
to distributions outside these families. They can also be applied for obtaining approximate
conidence intervals for one-sided speciication limits for distribution families other than
(log-)location-scale distributions.

18.4.1 Bootstrap Simulation (GPQ) Method

A GPQ for pI is obtained by substituting GPQs for μ and σ (given in (14.6) and (14.7),
respectively) into (18.8), giving

Zp̂I
= Φ

[(
σ̂∗

σ

)
Φ−1(p̂U ) +

μ̂∗ − μ

σ

]
− Φ

[(
σ̂∗

σ

)
Φ−1(p̂L) +

μ̂∗ − μ

σ

]
. (18.9)

The preceding expression can be simpliied when, as described in Section 14.4.4, the data are
complete (i.e., no censoring) or censoring occurs after a prespeciied number of lower order
statistics have been observed. In these cases it is possible to simulate using μ = 0 and σ = 1,
resulting in the simpliied form of (18.9),

Zp̂I
= Φ

[
σ̂∗Φ−1(p̂U ) + μ̂∗] − Φ

[
σ̂∗Φ−1(p̂L) + μ̂∗].

Example 18.8 GPQ Conidence Interval for the Proportion of Conforming Circuit Pack

Output Voltages. Assume that in Example 3.1 systems using the circuit pack will operate
satisfactorily as long as their output is between 48 and 52 volts. It is desired to construct a
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95% conidence interval to contain the proportion of such “conforming” units (i.e., to obtain a
conidence interval for pI = Pr(48 ≤ X ≤ 52)).

The ML estimate of pI is computed by substituting the ML estimates μ̂ = 50.10 and
σ̂ = 1.1713 into (18.8), giving

p̂I = p̂U − p̂L = Φnorm

(
52 − 50.10

1.1713

)
− Φnorm

(
48 − 50.10

1.1713

)

= 0.9476086 − 0.03649902 = 0.9111.

Given a matrix VoltageMLdraws of draws (B = 200,000 in this example) from the joint sam-
pling distribution of μ̂ and σ̂, one can use the following R command to generate an approximate
95% conidence interval for pI :

quantile(

pnorm(VoltageMLdraws[,"sigma"]*qnorm(0.9476086)+VoltageMLdraws

[,"mu"])-

pnorm(VoltageMLdraws[,"sigma"]*qnorm(0.0364990)+VoltageMLdraws

[,"mu"]),

probs=c(0.025, 0.975))

This gives the 95% conidence interval [p
˜

I , p̃I ] = [0.366, 0.984]. The left-hand plot of

Figure 18.3 shows the empirical density function of the generated values of Zp̂I
from which

this conidence interval was obtained.

18.4.2 Bayesian Method

To obtain the marginal posterior distribution for pI , one irst substitutes the marginal posterior
distributions for μ and σ into (18.8). Then, in manner similar to that in the examples in Chapter
14, a credible interval can be obtained from the appropriate quantiles of the marginal posterior
distribution for pI .

Example 18.9 Bayesian Credible Interval for the Proportion of Conforming Circuit Pack

Output Voltages. We obtain credible intervals for the proportion conforming in Example 3.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr(48 ≤ X ≤ 52)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pr(48 ≤ X ≤ 52)

Informative Prior Distribution
Diffuse Prior Distribution

Figure 18.3 The empirical density of the GPQZp̂ I
(left) and the Bayesian marginal posterior distributions of

pI = Pr(48 ≤ X ≤ 52) based on diffuse and informative prior distributions (right) for the circuit pack output

voltage application.
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using Bayesian methods with the diffuse and informative prior distributions for μ and σ that
were used in Example 16.15. In particular, draws from the posterior distributions for μ and σ
were used to generate draws from the marginal posterior distributions for pI . The right-hand
plot in Figure 18.3 shows the resulting marginal posterior distributions under the assumptions
of diffuse and informative prior distributions, respectively. It is interesting (and reassuring) to
note that the marginal posterior distribution of pI using the diffuse prior information has almost
exactly the same shape as the GPQ distribution shown on the left-hand plot.

The 95% credible interval for pI based on diffuse prior information can be computed from
the corresponding marginal distribution for pI with the R command

quantile(pnorm(q=52, mean=drawsOutputVoltageDiffuse[,"mu"],

sd=drawsOutputVoltageDiffuse[,"sigma"])-

pnorm(q=48, mean=drawsOutputVoltageDiffuse[,"mu"],

sd=drawsOutputVoltageDiffuse[,"sigma"]),

probs=c(0.50, 0.025, 0.975))

50% 2.5% 97.5%

0.7984249 0.3558718 0.9840402

giving [p
˜

I , p̃I ] = [0.356, 0.984]which is in close agreement with the GPQ interval. The cor-

responding interval based on the informative prior distribution is [p
˜

I , p̃I ] = [0.716, 0.969]

which is, as expected, appreciably narrower, relecting the impact of the assumed prior
information.

18.5 CONFIDENCE INTERVAL FOR THE TREATMENT EFFECT IN A
MARKETING CAMPAIGN

18.5.1 Background

Marketing managers often conduct experiments to evaluate the effect that a treatment (e.g., a
direct mail offer of a discount) will have on the probability that a customer will purchase a
product.

Example 18.10 Direct Mail Marketing Experiment. Table 18.9 shows the results of a
marketing experiment in which nT = 300,000 potential customers were randomly selected
to receive, by direct mail, a special inducement to purchase a particular product. The other
nC = 1,300,000 potential customers were not offered the inducement and are considered the
control group.

Of those potential customers in the treatment group, xT = 810 (proportion 0.0027) made a
purchase. Of the 1,300,000 potential customers in the control group, xC = 1,950 (proportion
0.0015) made a purchase. The difference between the treatment and the control proportions is
0.0027 − 0.0015 = 0.0012. The results are usually reported in terms of the percentage increase
arising from the marketing campaign:

R̂Total =

xT

nT

− xC

nC
xC

nC

=

810

300,000
− 1,950

1,300,000
1,950

1,300,000

(18.10)

=
0.0027 − 0.0015

0.0015
=

0.0012

0.0015
= 0.80,
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Potential Number Proportion
customers purchased purchased

Treatment 300,000 810 0.0027
Control 1,300,000 1,950 0.0015
Increment 0.0012

Table 18.9 Marketing experiment results.

suggesting an 80% “lift” (i.e., 80% increase in the proportion of customers). Although the
sample sizes were large, the response proportions were small. Thus, a statement about the

statistical uncertainty in R̂Total, in the form of a conidence interval, was desired for presentation
to management.

18.5.2 Bootstrap (Simulation) Method

The model for the data from the marketing experiment is

XT ∼ BINOM(nT , pT ), XC ∼ BINOM(nC , pC ), (18.11)

where XT and XC are assumed to be mutually independent. The parameters are estimated by
p̂T = xT/nT and p̂C = xC/nC .

To compute the bootstrap intervals for given nT , xT , nC , and xC , we simulated B =
50,000 realizations (x∗

T , x∗
C) according to (18.11) and computed the corresponding bootstrap

estimates (p̂∗
T , p̂

∗
C and R̂∗

Total). Then a bootstrap approximate 95% conidence interval for RTotal

is obtained from the 0.025 and 0.975 quantiles of the empirical distribution of R̂∗
Total, giving

[R
˜
Total, R̃Total] = [0.66, 0.95] or [66%, 95%]. It can be claimed, with 95% conidence, that

the lift in sales provided by the marketing campaign is between 66% and 95%.

18.5.3 Bayesian Method

The Bayesian method also uses the model in (18.11), but has to be supplemented with prior
distributions for the parameters. In this example, we will use Jeffreys prior distributions to
represent diffuse prior information; that is,

pT ∼ BETA(0.50, 0.50), pC ∼ BETA(0.50, 0.50).

Because the number of trials and the number of positive responses are large for each of the
binomial distributions in this example, the results are not expected to be highly sensitive to the
prior distribution speciication.

An MCMC algorithm was used to generate B = 297,000 draws from the joint poste-
rior distribution of (pT , pC ). These draws were then substituted into (18.10) to compute the
marginal posterior distribution of RTotal. Then a Bayesian 95% credible interval for RTotal is
obtained from the 0.025 and 0.975 quantiles of the marginal posterior distribution of RTotal,

giving [R
˜
Total, R̃Total] = [0.66, 0.95], the same result as the simulation method given in

Section 18.5.2.
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18.6 CONFIDENCE INTERVAL FOR THE PROBABILITY OF DETECTION WITH
LIMITED HIT/MISS DATA

Nondestructive evaluation (NDE), also known as nondestructive inspection, is commonly used
to detect laws (e.g., cracks or voids) in physical components such as tubes in nuclear power
plant heat exchangers, fan blades in aircraft engines, and pipeline welds. Some inspection
methods provide quantitative information about law size. Others give only binary “hit/miss”
results. This is often the case when inspectors (or radiologists in the case of medical inspection)
assess images to decide whether or not a law (or other characteristic of interest) exists. In this
case study, we show two approaches for constructing conidence intervals on the probability of
detectingmaterial laws of different sizes, based on the results of a study to assess the probability
of detection of laws of known sizes.

Example 18.11 Hit/Miss Inspection Data.A study was conducted to estimate the probability
of detection (POD) as a function of law size in specimens of a particular material. In total, 48
specimens were prepared and a law was seeded into each specimen. Four different law sizes
(5, 10, 15 or 20 mils) were used with 12 specimens randomly assigned for fabrication for each
of the four law sizes. Each specimen was then subjected to an X-ray inspection. The resulting
images were inspected in random order by a trained technician to determine whether or not a
law was detected. The results are shown in Table 18.10.

18.6.1 Logistic Regression Model

A commonly used model for binary (hit/miss) inspection data is the logistic regression model
in which the probability of detection of a law of size x is

POD(x) = Φlogis(β0 + β1x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
,

where β1 is generally greater than 0, in which case p → 0 as x → −∞ and p → 1 as x → ∞. In
NDEapplications,x is often deined to be the log of the law size.An alternative parameterization
uses

POD(x) = Φlogis

(x − μ

σ

)
, (18.12)

where σ = 1/β1 > 0 is known as the POD slope because it controls the steepness of the
increasing POD curve, and μ = −β0/β1 is the POD median (i.e., the (log) law size at which
the POD is 0.50). Constraining σ to be positive assures that POD(x) is a monotone increasing
function of x.

When x is log law size, a50 = exp(μ) is the law size at which the POD is 0.50
and a90 = exp[μ + Φ−1

logis(0.90)σ] is the law size at which the POD is 0.90, where

Flaw size (mils) Misses Hits

5 12 0
10 6 6
15 0 12
20 0 12

Table 18.10 Hit/miss inspection results for different

law sizes.
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Φ−1
logis(p) = log[p/(1 − p)] is the p quantile of the standard logistic distribution. A one-sided

upper 95% conidence bound on a90 , commonly denoted by a90/95 in the NDE literature, is
a widely used metric for NDE inspection capability, indicating the largest law that might be
missed in an inspection (in NDE applications it is often stated that the primary concern is the
largest law that might be missed, not the smallest law that can be detected).

18.6.2 Likelihood Method

Analysts attempted to it model (18.12) to the data in Table 18.10 using two different statistical
software packages. The two packages gave different answers and one of them gave warnings
of instability. Neither of the software packages provided sensible conidence intervals for the
parameters. The problem is that the maximum of the likelihood is not unique because there is
only one law size that has a mix of hits and misses and the software packages did not detect
this data problem.

Figure 18.4 illustrates the problem by showing proile likelihood plots (described in Sec-
tion 12.5.2) for a50 = exp(μ), the law size having POD equal to 0.50 (left), and the POD
slope parameter σ (right). These plots show that the data provide good information about a50

but not about σ. The proile likelihood plot for σ, however, shows that values of σ between 0
and 0.05 are nearly equally likely and thus it is possible (although not expected in practice) for
the data to have arisen from a model with value of σ that is close to 0 (which would imply that
the POD function is close to a step function). From these plots, we obtain the likelihood-based
90% conidence interval for a50 to be [a

˜
50 , ã50 ] = [9.0, 10.8] mils and the likelihood-based

conidence interval for σ to be [σ
˜
, σ̃] = [0+, 0.17], where 0+ indicates a positive value that

is close to 0 (e.g., 10−5).
The left-hand plot in Figure 18.5 shows the POD estimates obtained by ixing the POD

slope parameter σ to be 10−5 (as an approximation to the smallest possible value for σ) and
0.1706 (the one-sided upper 95% conidence bound for σ). These two POD curve estimates
help provide some insight into the effect that σ has on the shape of the estimated POD function
and help in understanding the likelihood-based conidence intervals for POD to follow.

Although there is not a unique ML estimate for σ, we have been able to use the likelihood to
obtain an upper conidence bound on σ. Correspondingly, we can use the likelihood to compute
proile likelihoods and obtain one-sided conidence bounds for POD for given values of law
size a.

The right-hand plot in Figure 18.5 shows a set of pointwise likelihood-based approximate
90% conidence intervals for the POD as a function of a. Note that for some small law sizes
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Figure 18.4 Proile likelihood plots for a50 (left) and the POD slope parameter σ (right) for the hit/miss

inspection data.
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Figure 18.5 POD estimates with POD slope parameter σ set to 10−5 and 0.1706 (left) and likelihood-based

pointwise 90% conidence intervals for POD (right) for the hit/miss inspection data.

the lower endpoint of the conidence interval is approaching 0 and for some large law sizes
the upper endpoint is approaching 1. These limiting behaviors correspond to the step function
in the left-hand plot in Figure 18.5 with σ approaching 0. Also, the upper endpoint of this
two-sided 90% conidence interval for POD can be taken as a one-sided upper 95% conidence
bound for POD. Thus the dotted-line rectangle in the plot indicates that the one-sided upper
95% conidence bound on a90 is a90/95 = ã90 = 14.5.

18.6.3 Bayesian Method

Because the data provide inadequate information about the POD slope parameter σ, it was
decided to improve the estimate of the POD function by using (fortunately) available prior
information about this parameter, based on previous experience using similar X-ray images to
detect similar laws in a similar material. In particular, past experience indicated that σ would
most likely be between 0.05 and 0.15, suggesting the use of an accordingly informative prior
distribution for σ. It was also decided to use a diffuse prior distribution for μ. In particular, the
prior distributions were chosen to be μ ∼ UNIF(−∞,∞) and σ ∼ <LNORM>(0.05, 0.15).
As described in Section 15.2.2, <LNORM>(0.05, 0.15) implies a lognormal distribution for
σ that has 0.05 as its 0.005 quantile and 0.15 as its 0.995 quantile (implying that 99% of the
probability is between 0.05 and 0.15).

Similar to previous Bayesian-analysis examples, an MCMC algorithm was used to generate
57,000 draws from the joint posterior distribution of μ and σ. The left-hand plot in Figure 18.6
compares the prior and marginal posterior distributions for σ, showing that they are nearly
identical. This indicates that the prior distribution dominates the small amount of information
in the data in determining the marginal posterior distribution for σ. The right-hand plot in
Figure 18.6 shows a sample of 1,000 draws from the joint posterior distribution of a50 = exp(μ)
and σ. This plot shows that the marginal posterior distribution of a50 = exp(μ) ranges from
approximately 8.5 to 12 (recall that the prior distribution for a50 = exp(μ) ranges from 0 to
∞), indicating that the data have had a large effect on the marginal posterior distribution of
a50 = exp(μ). The 90% credible interval for a50 = exp(μ) is [9.12, 10.82], which is similar
to the likelihood interval that was given in Section 18.6.2. The similarity is because the prior
distribution for μ (and thus for a50 = exp(μ)) is diffuse.

The left-hand plot in Figure 18.7 shows the Bayesian estimates and pointwise two-sided
90% credible intervals for POD over a range of law sizes. For each law size, these were
computed, as in previous examples, by substituting the 57,000 draws from the joint posterior
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Figure 18.6 Comparison of the prior and the marginal posterior distributions for the POD slope parameter

σ (left) and 1,000 draws from the joint posterior distribution for σ and the POD median parameter a50 =
exp(μ) (right) for the hit/miss inspection data. The vertical dashed lines indicate the 90% credible interval for

a50 = exp(μ).

distribution of μ and σ into (18.12) and using the median of the posterior distribution draws
as the point estimate and the 0.05 and 0.95 quantiles as the endpoints of the two-sided 90%
credible interval. In comparison with the right-hand plot in Figure 18.5, the Bayesian analysis
using an informative prior distribution for σ has substantially improved the POD estimation
precision, compared to the likelihood method. The a90/95 value for the Bayesian analysis,
indicated by the dotted-line rectangle in the plot, is a90/95 = ã90 = 13.5 (compared with 14.5
for the non-Bayesian analysis). The right-hand plot in Figure 18.7 shows the marginal posterior
distribution of a90 , with the vertical lines indicating the 90% credible interval for a90 (and
again, the upper endpoint of this interval a90/95 = ã90 is the one-sided upper 95% conidence
bound on a90).

18.7 USING PRIOR INFORMATION TO ESTIMATE THE SERVICE-LIFE
DISTRIBUTION OF A ROCKET MOTOR

18.7.1 Rocket Motor Example Revisited

Example 14.14 used likelihood and bootstrap methods to estimate the lifetime distribution of
a rocket motor of a missile system and especially F (20), the fraction of rocket motors that
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Figure 18.7 Bayesian estimates and pointwise 90% credible intervals for POD (left) and marginal posterior

distribution for a90 showing 90% credible interval (right), for the hit/miss inspection data.
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would be defective by the time they have been in the stockpile for 20 years. Because the
data consisted of only censored observations (three left-censored observations corresponding
to the failures, and 1,937 right-censored observations corresponding to successful launches)
the resulting estimates of distribution characteristics in general and F (20) in particular were
so wide as to be essentially useless. Fortunately, there was relevant engineering information
pertaining to the Weibull shape parameter that could be used to develop a prior distribution for
a Bayesian analysis.

18.7.2 Rocket Motor Prior Information

As described in Olwell and Sorell (2001), based on conversations with engineers, values of the
Weibull shape parameter β between 1 and 5 were felt to be plausible, but values outside this
range seemed to be out of line with past experience and/or engineering theory. Thus, we assume
the (relatively) informative prior distribution β ∼ <LNORM>(1, 5) for β. Because there was
no other relevant prior information available, we will—using the type of reparameterization
suggested in Section 15.1.5—assume a diffuse prior distribution for t0.10 , the Weibull 0.10
quantile. In particular, we will use t0.10 ∼ LUNIF(5, 400) years. For the sake of comparison,
we will also consider the diffuse prior distribution β ∼ UNIF(0.20, 30) for β, with the same
diffuse prior distribution as before for t0.10 .

18.7.3 Rocket Motor Bayesian Estimation Results

Similar to previous examples of Bayesian estimation, anMCMC algorithmwas used to generate
297,000 draws from the joint posterior distribution of t0.10 and β. The left-hand plot in Fig-
ure 18.8 compares the diffuse prior distribution for β with the marginal posterior distribution
for β (computed using the diffuse prior distribution for β). We can see from the plots that
the data provide new information about β, but the 95% credible interval on this parameter is

[β
˜
, β̃] = [2.3, 14.7], indicating only limited knowledge about its true value. The right-hand

plot in Figure 18.8 provides a similar comparison between the prior and the marginal posterior
distribution for β using the assumed informative prior distribution for this parameter. In this
case, there is good agreement between the two distributions; this is because the informative
prior dominates the limited information about β in the data. The 95% credible interval on β
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Prior Distribution

 0  2  4  6  8 10

Weibull Shape Parameter β

Posterior Distribution
Prior Distribution

Figure 18.8 Comparison of the posterior and prior distributions for the rocket motorWeibull shape parameter

β with diffuse prior information (left) and informative prior information (right) for β.
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Figure 18.9 Marginal posterior distributions for the 0.10 quantile of the rocket motor lifetime distribution

(left) and draws from the joint posterior distributions (right) using diffuse and informative prior distributions

for β.

with the informative prior distribution is [β
˜
, β̃] = [1.42, 4.77], considerably narrower than

the interval with the diffuse prior distribution.
The left-hand plot of Figure 18.9 comparing the marginal posterior distributions of t0.10 ,

the rocket motor lifetime distribution 0.10 quantile, using the diffuse and the informative
prior distributions for β, shows strikingly different results. Interestingly, the marginal posterior
distribution for β using the informative prior distribution is wider than that using the diffuse

prior distribution, resulting in 95% credible intervals for t0.10 of [t
˜

0.10 , t̃0.10 ] = [19.3, 163]

years and [t
˜

0.10 , t̃0.10 ] = [14.3, 48.6] years, respectively. The reason for this is apparent from
examining the draws from the joint posterior distributions for t0.10 and β in the two situations,
compared in the right-hand plot of Figure 18.9. The informative prior distribution constrains
β to have almost all of its values below 5 years. With the associated strong concentration of
values with t0.10 less than 20 years largely eliminated (by using the informative in place of the
diffuse prior distribution for β), the total probability is redistributed to the larger values of t0.10 .

18.7.4 Credible Interval for the Proportion of Healthy Rocket Motors after 20 or
30 Years in the Stockpile

The left-hand plot of Figure 18.10 compares marginal posterior distributions for the Weibull
F (20) using the diffuse and informative prior distributions. Table 18.11 is an extension of
Table 14.8, adding Bayesian credible intervals to the comparison of several non-Bayesian
conidence intervals for F (20). As in most previous similar comparisons, the credible interval

Method Section 95% conidence interval

Wald approximation 12.6.4 [0.027, 0.9999988]
Likelihood ratio 12.5.4 [0.023, 0.999996]
Random-weight bootstrap simple percentile 14.4.2 [0.014, 1.0000000]
Bayesian with diffuse prior distribution 15.2.6 [0.012, 0.9998]
Bayesian with informative prior distribution 15.2.6 [0.0035, 0.116]

Table 18.11 95% conidence and credible intervals for the rocket motor Weibull F (20)
using different methods.
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Figure 18.10 Comparison of the marginal posterior distributions of the rocket motor lifetime F (20) (left)
and F (30) (right) using diffuse and informative prior distributions.

using the diffuse prior distribution is close to the non-Bayesian intervals. The Bayesian analysis
using the informative prior distribution resulted in a credible interval for F (20) that has a much
narrower and more meaningful interval length, showing an important advantage of using the
Bayesian method when reliable informative prior information is available.

The right-hand side of Figure 18.10 provides a similar comparison for F (30). These plots
again show the dramatic effect that the informative prior has on providing more precise infer-
ences. The 95% credible interval for F (30), based on the informative prior distribution, is

[F
˜

(30), F̃ (30)] = [0.0072, 0.53], which is much wider than the interval for F (20), and
indicates, as expected, that reliability could be seriously deteriorated after 30 years in the
stockpile.

BIBLIOGRAPHIC NOTES

The LFP model

In addition to the microelectronic example in Section 18.1, irst presented in Meeker (1987),
the LFP model (also known as the “cure model” and the “defective-subpopulation model”) has
been used in addressing a variety of problems, including estimating the proportion of treated
patients that are cured (e.g., Boag, 1949) and the recidivism (i.e., relapse) rate of those released
from prison (e.g., Maltz and McCleary, 1977). Also, Maller and Zhou (1996) provide a detailed
description of “cure models” for a number of biomedical applications. Trindade (1991) gave
another microelectronic example.

Random-effects models

Hamada and Weerahandi (2000) conducted a small simulation study that showed (for the cases
considered) that the GPQ method has coverage probabilities for variance components and
functions of variance components that are generally close to their nominal conidence levels.
Chiang (2001) independently developed a similar method that he called the “surrogate variable
method” for obtaining conidence intervals for variance components. Liao et al. (2005) show
how to use GPQ methods to compute two-sided tolerance intervals and one-sided tolerance
bounds for general balanced mixed models and unbalanced one-way random-effects models.



390 ADVANCED CASE STUDIES

Confidence interval for the proportion in the center of a distribution

Corresponding to the GPQ procedure used in Section 18.4, Hannig et al. (2006) show how to
use the GPQmethod to compute a conidence interval for the proportion in a speciied two-sided
interval of a distribution (one of many applications in the paper) and show that the procedure
has asymptotically correct coverage probability. The coverage properties of the procedure were
evaluated for inite sample sizes in Patterson et al. (2004) and shown to be satisfactory for most
practical applications.



Epilogue

The concept of this book was born about 40 years ago. After agreeing to go for it withWiley, our
publishers, it took two of us 12 years to put together the irst edition, published in 1991. After a
14-year hiatus, it took another 12 years for the three of us to get this second edition into print.
Why so long?Admittedly, our day jobs had to be our irst priority. But another reason is that there
is somuch to say and limited space to say it precisely and understandably. Statistical intervals, in
fact, illustrate the proverbial “bottomless pit” with seemingly endless opportunities for adding
to the exposition. We have tried to provide both practitioners and researchers the speciic tools
they need to quantify uncertainty in their data via statistical intervals for commonly occurring
situations and to provide added guidance in constructing such intervals in more complex and
less frequently occurring situations. Thus, we will conclude by reemphasizing some of our
major ideas, and adding a few anecdotes about:

� The importance of calculating the “right” statistical interval.

� The role of statistical intervals versus other forms of inference.

� The limitations of statistical inference.

STATISTICAL INTERVALS: VIVE LA DIFFÉRENCE!

We have presented a wide variety of statistical intervals, and tried to explain the situations for
which each is appropriate, how each is calculated, and the underlying assumptions. Some of
these—such as conidence intervals for the population or process mean or standard deviation
(assuming a normal distribution) or for a population or process proportion (assuming a bino-
mial distribution)—are well known to users of statistical methods. Others, such as a conidence
interval for the proportion below or above a threshold, or a prediction interval to contain one
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or more future observations, are surprisingly unfamiliar, even to many professional statisti-
cians. We say “surprisingly” because, as evidenced by the case studies in Chapters 11 and 18,
these intervals are frequently needed in applications. We have suggested that the reasons for
this unfamiliarity include tradition, the relatively advanced nature of the underlying mathemat-
ics (generally not needed to use the intervals), and the complexity of some of the calculations
(becoming increasingly less relevant with the rapid development of needed computer algorithms
and computational capabilities).

In this regard, we recount our experience in interviewing, for positions in industry, promising
recent PhDs in statistics. As part of the screening process, we often ask the following two
questions, typical of those we are asked by our clients:

� An appliance, built in large quantities, is required to have a noise level of less than 50
decibels. A sample of eight units has resulted in the following readings:

46.4, 46.7, 46.9, 47.0, 47.0, 47.2, 47.6, 48.1.

What can one conclude with a “high degree of assuredness” about the percentage of units
manufactured during the year that fail to meet the 50-decibel threshold? What important
assumptions, that are implicit in our inferences, do we need emphasize?

� Consider again the preceding noise measurements. However, now assume that a single
added appliance is to be selected. What can one say, with a high degree of conidence,
about the maximum noise that one may reasonably expect from this ninth appliance, and
what added assumptions does this require?

We ind that the great majority of interviewees either are unable to tell us how they would go
about constructing the desired intervals or, worse still, answer incorrectly (e.g., by proposing
a conidence interval for the mean in response to the second question). In contrast, diligent
readers of this book will have no trouble passing our test!

THE ROLE OF STATISTICAL INTERVALS

We feel strongly that, before reporting or using any form of statistical inference, an analyst
should carefully examine and plot the data. Numerous methods and software for exploratory
data analysis are available for this purpose and should be applied before one proceeds to more
sophisticated evaluations, should these seem necessary.

However, when we do try to draw formal conclusions about a population or process from
an appropriately selected random sample, statistical intervals play a central role in quantifying
uncertainty, and provide an important supplement to point estimates. In our experience, such
intervals are much more useful than signiicance or hypothesis tests. As previously indicated,
we believe that this is because few statistical hypotheses hold exactly. Moreover, one can reject
almost any statistical hypotheses by taking a suficiently large sample—and avoid disproving a
hypothesis by having a small enough sample, or even no sample at all.

THE LIMITATIONS OF STATISTICAL INFERENCE

Starting with Chapter 1, and throughout this book, we have stressed the basic assumptions
underlying statistical inferences about a sampled population or process, especially in analytic
studies. We conclude with a recent example.
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In a mail survey, the 730 member families of a congregation were asked the following
question: “On an overall basis, do you feel the minister is doing a good job (answer yes or
no)?” Among the 105 respondents, 58 answered “yes,” and 47 said “no.” Because the results
were from “sample data,” one of us was asked to make a statement that incorporated the
“statistical uncertainty” about the proportion of families in the congregation that favored the
minister. In this example, there was a well-deined population (the 730 families) which also
comprised the sample frame. In fact, if all families had responded, one would have had data
from the entire population and there would be no statistical uncertainty, at least with regard
to the stated viewpoints at the time of the survey. Moreover, if the respondents could be
considered as randomly selected from the congregation, one could apply the methods presented
in Chapter 6 for drawing inferences about the population proportion (perhaps including an
appropriate inite population adjustment for the fact that the sample constituted an appreciable
part of the population).

In reality, however, the sample was far from random; the respondents, in fact, were self-
selected. Thus, those who felt most strongly about the issue, and, perhaps, those most active in
the congregation (and in organizing the survey), were the ones who were most likely to respond,
or urge their similarly viewed friends to do so. Without further study, little can be said about
how representative this nonrandom sample really is of the population as a whole. Therefore,
we felt that it would be misleading to calculate a statistical interval to contain the proportion of
all congregants favoring the minister. Instead, we proposed that the results be presented as they
stand, with appropriate comments concerning their possible inadequacy and encouragement for
recanvassing nonrespondents in a follow-up study.

Where does this leave us? Despite our enthusiasm for statistical intervals, we feel that there
are numerous situations where the practitioner is better served by not calculating such intervals
and by emphasizing instead the limitations of the available information, perhaps suggesting
how improved data can be obtained. Moreover, when statistical intervals are calculated in such
situations, one needs to stress that they provide only a lower bound on the total uncertainty.

Learning is an iterative process. Sometimes, the available data are suficient to draw mean-
ingful conclusions; statistical intervals may then play an important role in quantifying uncer-
tainty. Often, however, current information provides only a stepping stone to further study.
In such cases, statistical intervals are frequently useful in describing what is known (or,
indeed, unknown). This understanding can help practitioners decide on the next step in their
investigations.



AppendixA
Notation and Acronyms

This appendix outlines most of the notation that is used in this book. Some symbols, when
they are only used within a particular section, are not listed here but are deined where used.
Generally, we have tried to use notation that is most commonly used in the statistical literature.
In some cases we needed to use the same symbol for more than one purpose. These are explained
in the following list, and in such usage we have been careful to make sure that the meaning of
the notation is clear from the context of the usage.

Notation for probability distribution cdfs and quantiles is given in the following list when
such notation is widely used in the book chapters (e.g., pnorm and qnorm refer, respectively,
to the normal distribution cdf and quantile function). Technical details about these and other
distributions are given in Appendix C and summarized in Table C.1.

∗ Used to indicate a bootstrap sample value (e.g., θ̂∗j is a
bootstrap estimate of θ computed from the jth bootstrap
sample). Also, in Bayesian inferences, it is used to indicate a
sample draw from a posterior distribution.

� Indicates planning value for a parameter; used in choosing an
appropriate sample size (e.g., σ� is used in computing a
sample size when σ is unknown).

† Indicates a speciied limit for a parameter (e.g., one might need
to demonstrate that yp ≥ y†

p ) or a value that has been

adjusted (e.g., π̂† in Chapter 6).

̂ Denotes an estimator or estimate (e.g., λ̂ is an estimate of λ).

˜ Indicates endpoints of a statistical interval or one-sided

statistical bound (e.g., [λ
˜
, λ̃] is a conidence interval for λ;

λ
˜
and λ̃ are one-sided lower and upper conidence bounds

for λ, respectively).
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− F (z−) is equal to F (z) for continuous random variables and
equal to the limit of F (w) when w approaches z from
below for discrete random variables.

∼ Distributed as (e.g., W ∼ χ2(r) indicates that W has a
chi-square distribution with r degrees of freedom).

∼̇ Approximately distributed as (e.g., W ∼̇ χ2(r)).
≈ Approximately equal to (e.g., n ≈ 11).
100(1 − α)% Conidence level (percent).
β Probability content of a tolerance interval. Also the shape

parameter for a Weibull distribution and the rate parameter
for a gamma distribution.

βi Regression model parameter in Chapters 4, 17, and 18.

B(a, b) Beta function; B(a, b) =
∫ 1

0
wa−1(1 − w)b−1 dw =

Γ(a)Γ(b)/Γ(a + b), a > 0, b > 0.
γ The power parameter of a power transformation

in Chapter 4 (e.g., xγ is power transformation of x).
Γ(z) Gamma function; Γ(z) =

∫ ∞

0
tz−1 exp(−t) dt, z > 0.

Γ(z) = (z − 1)!, where z is a nonnegative integer with the
convention 0! = 1.

δ δ = 1 − pdem in Chapter 9. Also the noncentrality parameter
of a noncentral t-distribution.

θ Generic scalar parameter. Also the mean of an exponential
distribution.

θ Generic parameter vector.
λ Exponential and Poisson distribution rate parameter.
μ Location parameter of a location-scale distribution (e.g., the

mean of a normal or logistic distribution). Also,
η = exp(μ) is the scale parameter of the corresponding
log-location-scale distribution.

ν ν − 1 is the number of extreme observations to be removed
from the upper (or lower) end of the sample of size n to
obtain the order statistic that provides the desired one-sided
upper (lower) conidence bound for xp . Also, ν − 2 is the
total number extreme observations to be removed from the
upper and lower ends of the sample of size n to obtain the
order statistics that provide the desired two-sided tolerance
interval.

η Scale parameter of a log-location-scale distribution (e.g., for a
Weibull distribution).

π The probability of a single randomly selected unit being
nonconforming or the probability of some other particular
event.

ρ Correlation coeficient between two random variables.
σ Scale parameter for a location-scale distribution; also the

standard deviation of a normal distribution.
τ Precision τ = 1/σ2 , where σ2 is the variance.
φ(z) The pdf of a standardized location-scale distribution (i.e.,

φ(z) = dΦ(z)/dz). See Table C.2.
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Φ(z) The cdf for a standardized location-scale distribution (i.e.,
Pr(Z ≤ z) = Φ(z), where Z = (X − μ)/σ and X has a
location-scale distribution with location parameter µ and
scale parameter σ). See Table C.2.

Φ−1(p) p quantile of a standardized location-scale distribution. See
Table C.2.

χ2(r) Chi-square distribution with r degrees of freedom.

χ2
(p ;r) p quantile of a chi-square distribution with r degrees of

freedom; equivalent to qchisq(p; r).
ω Weight for linear interpolation in Chapter 5. Also an

observation weight in Chapter 13.
a A beta distribution shape parameter, the gamma distribution

shape parameter, a general interval endpoint, and also an
acceleration constant in Chapter 13.

ACF Autocorrelation function.
ANOVA Analysis of variance.
b A beta distribution shape parameter, a gamma distribution rate

parameter, and also a general interval endpoint.
B Number of bootstrap samples. Also the number of sample

draws from a posterior distribution.
BC Bias-corrected bootstrap procedure in Chapter 13.
BCa Bias-corrected and accelerated bootstrap procedure in

Chapter 13.
BETA(a, b) Beta distribution with shape parameters a and b.

BINOM(n,π) Binomial distribution for the number of nonconforming (or
conforming) units in a random sample of size n and
probability π of observing a nonconforming (or
conforming) unit in a single trial.

c(·), c′(·), cL(·), cU (·),

c′L(·), c
′
U (·)

Factors for computing statistical intervals for a normal
distribution in Chapter 3.

c Critical number of nonconforming items in an attribute
demonstration test. If the observed number nonconforming
is less than or equal to c, the demonstration is successful.

cdf Cumulative distribution function for a random variable (i.e.,
Pr(X ≤ x)).

CP(θ) Coverage probability as a function of the parameter(s) θ.

CPKM(n, ℓ, u,m, k) The distribution-free probability that the interval deined by
the order statistics [x(ℓ), x(u)] from a random sample of size
n will contain at least k observations from a subsequent
independent random sample of size m from the same
distribution. For one-sided lower (upper) bounds, set
u = n + 1 (ℓ = 0).

CPTI(n, ℓ, u, β) The distribution-free probability that the interval deined by the
order statistics [x(ℓ), x(u)] from a random sample of size n
will cover at least a proportion β of the sampled distribution.
For one-sided lower (upper) bounds, set u = n + 1 (ℓ = 0).

CPXP(n, ℓ, u, p) The distribution-free probability that the interval deined by
the order statistics [x(ℓ), x(u)] from a random sample of size
n will contain the p quantile of the distribution. For
one-sided lower (upper) bounds, set u = n + 1 (ℓ = 0).
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CPYJ(n, ℓ, u, m, j) The distribution-free probability that the interval deined by
the order statistics [x(ℓ), x(u)] from a random sample of size
n will contain Y(j ) , the jth largest observation from a
subsequent independent random sample of size m from the
same distribution. For one-sided lower (upper) bounds, set
u = n + 1 (ℓ = 0).

d Desired conidence interval half-width.
Degrees of freedom.

D Number of nonconforming units in a inite population of
size N .

DATA A data set (including a response and other information such as
explanatory variables, a censoring indicator, or a frequency
count).

DATA∗ A simulated or bootstrap data set.
DATA∗

i The ith simulated or bootstrap data set.
EXP(θ) Exponential distribution with mean parameter θ.
f(θ) Prior probability density function of a random variable.

f(θ|DATA) Posterior distribution of θ given a prior distribution f(θ)
and DATA.

f(DATA|θ) Likelihood for the DATA given the parameters θ. See also
L(DATA|θ).

F (x) = Pr(X ≤ x) The cdf for a random variable X.
F(p ;r1 ,r2 ) p quantile of Snedecor’s F -distribution with r1 numerator and

r2 denominator degrees of freedom; equivalent to
qf(p; r1 , r2).

g(1−α ;p,n) Factors from Tables J.5a–J.5b used to compute 100(1 − α)%
two-sided tolerance intervals to control the center of a
normal distribution.

g′′
(1−α ;p,n) Factors from Tables J.6a–J.6b used to compute 100(1 − α)%

two-sided tolerance intervals to control both tails of a
normal distribution.

g′
(γ ;p,n) Factors from Tables J.7a–J.7d used to compute two-sided

conidence intervals or one-sided conidence bounds for
quantiles from a normal distribution; also used to compute
one-sided tolerance bounds for a normal distribution.

GAMMA(a, b) Gamma distribution with shape parameter a and rate
parameter b.

GFI Generalized iducial inference.
GNG(µ,σ,λ) Generalized gamma distribution with scale parameter exp(μ)

and shape parameters σ and λ.
GPQ Generalized pivotal quantity.

h(θ̂;θ) Sampling distribution pdf for the estimator θ̂.

HYPER(n,D,N) Hypergeometric distribution, for which n is sample size and N
is the population size which initially contains D
nonconforming units.

iid Independent and identically distributed.
I[A] Indicator function for statement A. The function I[A] is equal

to 1 when the statement A is true and 0 otherwise.
ℓ, u Indices for particular ordered observations.
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L(DATA|θ) The likelihood of the DATA as a function of θ. See also
f(DATA|θ).

LNORM(μ,σ) Lognormal distribution with scale parameter exp(µ) and
shape parameter σ.

<LNORM>(a, b) A lognormal (prior) distribution that has 99% of its probability
between a and b, with 0 < a < b.

log(a) Natural (base e) logarithm of a for a > 0.
LOGIS(µ, σ) Logistic distribution with location parameter µ and scale

parameter σ.
LLOGIS(µ, σ) Log-logistic distribution with scale parameter exp(µ) and

shape parameter σ.
LUNIF(a, b) Log-uniform distribution with location parameters a and b.
m Sample size of a future sample.
MC Monte Carlo.
MCMC Markov chain Monte Carlo.
ML Maximum likelihood.
n Sample size of a previous sample.
normCenterTI A StatInt R function to compute a control-the-center

tolerance interval for a normal distribution.
normTailCI A StatInt R function to compute conidence intervals for a

normal distribution tail probability.
N Size of a inite population.
NORM(µ, σ) Normal distribution with mean µ and standard deviation σ.
<NORM>(a, b) A normal (prior) distribution that has 99% of its probability

between a and b.
pdf Probability density function for a continuous random variable.
pmf Probability mass function for a discrete random variable.
pdem Probability of successful demonstration.
pGT Probability that a random variable X is greater than a speciied

number x (i.e., pGT = Pr(X > x)).
pLE Probability that a random variable X is less or equal than a

speciied number x (i.e., pLE = Pr(X ≤ x)).
POIS(nλ) Poisson distribution with exposure amount n and rate

parameter λ.
PQ Pivotal quantity.
ptL Lower tail probability for a control-both-tails tolerance

interval.
ptU Upper tail probability for a control-both-tails tolerance

interval.
pbeta(x; a, b) The cdf for a beta distribution with shape parameters a and b.
pbinom(x;n,π) The cdf for a binomial distribution with probability parameter

π and sample size n.
pchisq(p; r) The cdf for a chi-square distribution with r degrees of freedom.
pf(x; r1 , r2) The cdf for Snedecor’s F -distribution with r1 numerator and

r2 denominator degrees of freedom.
pgamma(x; a, b) The cdf for a gamma distribution with shape parameter a and

rate parameter b.
phyper(x;n,D,N) The cdf for a hypergeometric distribution. The sample size is

n; N is the inite population size which initially contains D
nonconforming units.
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plnorm(x;μ,σ) The cdf for a lognormal distribution with scale parameter
exp(µ) and shape parameter σ.

pnhyper(x; k,D,N) The cdf for a negative hypergeometric distribution, where x is
the number of conforming units observed in sequential
sampling without replacement until exactly k
nonconforming units have been drawn from a population of
size N which initially contains D nonconforming units.

pnorm(p;µ, σ) The cdf for a normal distribution with mean µ and standard
deviation σ.

ppois(x;nλ) The cdf for a Poisson distribution with given exposure n and
rate parameter λ.

pt(x; r) The cdf for Student’s t-distribution with r degrees of freedom.
pt(x; r, δ) The cdf for a noncentral t-distribution with r degrees of

freedom and noncentrality parameter δ.
q Length of a parameter vector.
qbeta(p; a, b) p quantile for a beta distribution with shape parameters a

and b.
qbinom(p;n,π) p quantile for a binomial distribution with probability

parameter π and sample size n.
qchisq(p; r) p quantile for a chi-square distribution with r degrees of

freedom; equivalent to χ2
(p ;r).

qf(p; r1 , r2) p quantile for Snedecor’s F -distribution with r1 numerator and
r2 denominator degrees of freedom; equivalent to F(p ;r1 ,r2 ).

qgamma(p; a, b) p quantile for a gamma distribution with shape parameter a
and rate parameter b.

qhyper(p;n,D,N) p quantile for a hypergeometric distribution. The sample size
is n; N is the inite population size which initially contains
D nonconforming units.

qnhyper(p; k,D,N) p quantile for the negative hypergeometric distribution,
involving sequential sampling without replacement until
exactly k nonconforming units have been drawn from a
population of size N which initially contains D
nonconforming units.

qnorm(p;μ,σ) p quantile for a normal distribution with mean µ and standard
deviation σ; equivalent to z(p).

qpois(x;nλ) p quantile for a Poisson distribution with given exposure n and
rate parameter λ.

qt(p; r) p quantile for Student’s t-distribution with r degrees of
freedom; equivalent to t(p ;r).

qt(p; r, δ) p quantile for a noncentral t-distribution with r degrees of
freedom and noncentrality parameter δ; equivalent to t(p ;r,δ).

r(1−α ;m,m,n) Factors from Table J.8 used to compute 100(1 − α)%
two-sided simultaneous prediction intervals to contain m
out of m future observations from a normal distribution.

r′(1−α ;m,m,n) Factors from Table J.9 used to compute 100(1 − α)%
one-sided simultaneous prediction bounds to contain m out
of m future observations from a normal distribution.

R(θ) Proile relative likelihood for parameter θ.
s or sn Sample standard deviation based on a previous sample of size

n; an estimate of the normal distribution σ.
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Sm Sample standard deviation of a future sample of size m
(estimate for σ).

[S
˜

m , S̃m ] Prediction interval or bounds to contain the sample standard
deviation computed from m future observations.

se Standard error.
SEV(µ, σ) Smallest extreme value distribution with location parameter µ

and scale parameter σ.
t(p ;r) p quantile for Student’s t-distribution with r degrees of

freedom; equivalent to qt(p; r).
t(p ;r,δ) p quantile for a noncentral t-distribution with r degrees of

freedom and noncentrality parameter δ; equivalent to
qt(p; r, δ).

[
˜
Tβ , T̃β ] Tolerance interval to contain at least a proportion β of the

sampled distribution.

˜
T ′

β One-sided lower tolerance bound to be exceeded by at least a
proportion β of the sampled distribution; equivalent to
x
˜

(1−β ) , a one-sided lower conidence bound on the 1 − β
quantile of the previously sampled distribution.

T̃ ′
β One-sided upper tolerance bound to exceed at least a

proportion β of the previously sampled distribution;
equivalent to x̃β , a one-sided upper conidence bound on the
β quantile of the previously sampled distribution.

[
˜
Tp t L

, T̃p t U
] Tolerance interval to control both tails of a distribution. See

deinitions for ptL and ptL .
U A [0, 1] uniform random variable (in most places, but also used

as a general random vector in Appendix D).
UNIF(a, b) Uniform distribution over the range [a, b].
v(θ) A general scalar function of a parameter vector θ.

v
˜
(x, 1−α) and ṽ(x, 1−α) Endpoints of a 100(1 − α)% conidence interval for v(θ); that

is, [v
˜
(x, 1 − α), ṽ(x, 1 − α)] is a 100(1 − α)%

conidence interval for v(θ).
v
˜
′(x, 1 − α) One-sided lower 100(1 − α)% conidence bound for v(θ).

ṽ ′(x, 1 − α) One-sided upper 100(1 − α)% conidence bound for v(θ).

W Prediction interval relative width.
x Single observed quantity (e.g., the number of binomial

nonconforming units in a sample of size n or the number of
Poisson occurrences in n units of exposure).

x1 , . . . , xn Previous observations from a sample of size n.
x(1), . . . , x(n) Order statistics; previous sample observations, ordered from

smallest x(1) to largest x(n).
x̄ Sample mean of a previous sample; estimate of the mean of a

sampled distribution.
xp p quantile of the distribution of X.

x̂p Estimate for the p quantile of the distribution of X.

[x
˜

p , x̃p ] Conidence interval or one-sided conidence bounds for xp .

X̂p Estimator for the p quantile of the distribution of X .

[X̂
˜

p ,
˜̂
Xp ] Prediction interval or bounds to contain X̂p .
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X2
(r) A chi-square random variable with r degrees of freedom.

yp p quantile of the distribution of Y.

ŷp Estimate for the p quantile of the distribution of Y.

[y
˜

p , ỹp ] Conidence interval or one-sided conidence bounds for yp .

y(γ ) Transformed data value.

[y
˜

(γ ), ỹ(γ )] Statistical interval on a transformed data scale.

Y Single future random variable (e.g., number of binomial
nonconforming units in a future sample of size m).

Y1 , . . . , Ym Future sample observations.
Y(1), . . . , Y(m ) Future sample observations, ordered from smallest to largest

(order statistics).

[Y
˜

, Ỹ ] Prediction interval or bounds to contain a single future
observation Y.

Ȳm Sample mean of a future sample of m observations.

[Ȳ
˜

m , ˜̄Ym ] Prediction interval or bounds to contain the mean of a future
sample of m observations.

Ŷp Estimator for the p quantile of the distribution of Y.

[Ŷ
˜

p ,
˜̂
Yp ] Prediction interval or bounds to contain Ŷp .

[Y
˜

(j ), Ỹ(j )] Prediction interval or bounds to contain the jth largest
observation (the jth order statistic) from a future sample of
m observations.

[Y
˜

k ;m , Ỹk ;m ] Simultaneous prediction intervals or one-sided bounds to
contain at least k out of m future observations.

z(p) p quantile of the standard normal distribution; equivalent to
qnorm(p).

zθ̂(γ )
γ quantile of the distribution of Zθ̂ .

Zθ̂ A pivotal quantity or a generalized pivotal quantity for θ
(a parameter or other quantity of interest).



AppendixB
Generic Deinition of Statistical

Intervals and Formulas for
Computing Coverage

Probabilities

B.1 INTRODUCTION

This appendix provides formal deinitions of two-sided conidence intervals, tolerance inter-
vals, prediction intervals, and the corresponding one-sided bounds. A procedure to compute
a statistical interval (or bound) deines a computational method by which interval endpoint(s)
are obtained from observed data. This appendix also provides methods to compute the “cover-
age probability” (CP) associated with a procedure for calculating a statistical interval, the CP
being is the probability that the interval obtained using the procedure actually contains what it is
claimed to contain, as a function of the procedure’s deinition. General expressions are followed
by some speciic examples that can be programmed directly for purposes of computation. Both
analytical and simulation-based methods are described.

Knowledge of the CP of an interval is useful for several purposes:

� In some cases, exact (or approximate) statistical interval procedures can be obtained by
inding interval endpoints that result in a CP that is equal to (or approximates) the desired
nominal conidence level.

� To evaluate the adequacy of an approximate interval procedure.

� To calibrate a procedure (i.e., to improve the approximation). This topic is discussed in
Section B.8 and applied in Chapters 6 and 7.

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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This appendix describes the deinition and CPs for:

� Conidence intervals and one-sided conidence bounds (Section B.2).

� Two-sided control-the-center tolerance intervals (Section B.3).

� Two-sided tolerance intervals to control both tails of a distribution (Section B.4).

� One-sided tolerance bounds (Section B.5).

� Two-sided prediction intervals and one-sided prediction bounds (Section B.6).

� Two-sided simultaneous prediction intervals and one-sided simultaneous prediction
bounds (Section B.7).

The appendix concludes with a brief introduction to the concept of statistical interval calibration
(Section B.8).

B.2 TWO-SIDED CONFIDENCE INTERVALS AND ONE-SIDED CONFIDENCE
BOUNDS FOR DISTRIBUTION PARAMETERS OR A FUNCTION OF
PARAMETERS

B.2.1 Two-Sided Confidence Interval Definition

In statistical studies we are often interested in estimating and constructing two-sided conidence
intervals for quantities such as (a) distribution parameters, (b) distribution quantiles, or (c)
probabilities of events or other functions of the distribution parameters.

First, we introduce some generic notation (in contrast to the speciic notation used in the
main parts of this book) for a two-sided conidence interval. Let

[
v
˜
(x, 1 − α), ṽ(x, 1 − α)

]

denote a conidence interval for v(θ), a scalar function of a parameter vector θ. Here x
denotes the observed data used to construct the conidence interval, and 100(1 − α)% is the
nominal conidence level, expressed as a percentage. To simplify the presentation, in the rest
of this section we will suppress the dependency of the interval endpoints on 1 − α. Then, the
particular functions v

˜
(x) and ṽ(x) deine what we will call a conidence interval procedure.

An exact conidence interval procedure is one for which the CP is exactly equal to the
nominal conidence level 100(1 − α)%. That is,

CP(θ) = Pr
[
v
˜
(X) ≤ v(θ) ≤ ṽ(X)

]
= 1 − α, (B.1)

whereX denotes the not-yet-observed data that will be used to construct the conidence interval.
Note that in this expression v(θ) is ixed but v

˜
(X) and ṽ(X) are random because they depend

on the random data X .
In some situations (e.g., when the data are discrete) an exact conidence interval procedure

may not be available. Then one can use an approximate procedure for which the CP in (B.1)
is approximately equal to the nominal conidence level 1 − α. In some applications it may be
desirable to have a conidence interval procedure that is conservative in the sense that the CP
is greater than or equal to the nominal conidence level.

Chapters 3–7 show how to compute a conidence interval
[
v
˜
(x), ṽ(x)

]
for given datax and

different assumed probability distributions. Chapters 12–15 and Appendices D–F describe gen-
eral approaches for deining conidence interval procedures to determine the interval endpoints
v
˜
(x) and ṽ(x).
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B.2.2 One-Sided Confidence Bound Definition

In other situations, one needs to compute one-sided conidence bounds. As described in Sec-
tion 2.7, it is possible to combine two one-sided conidence bounds to create a two-sided
conidence interval. Let v

˜
′(x) and ṽ ′(x) denote, respectively, one-sided lower and upper coni-

dence bounds for v(θ). The probability statement deining an exact one-sided lower conidence
bound procedure is

Pr
[
v
˜
′(X) ≤ v(θ)

]
= 1 − αL . (B.2)

The corresponding one-sided upper conidence bound procedure is

Pr[ṽ ′(X) ≥ v(θ)] = 1 − αU . (B.3)

There are similar deinitions for approximate and conservative conidence bound procedures.
Assuming exact procedures and 0 < α < 0.50, v

˜
′(x) and ṽ ′(x) can be combined to obtain

the two-sided CP,

Pr
[
v
˜
′(X) ≤ v(θ) ≤ ṽ ′(X)

]
= 1 − αL − αU .

This shows that, in general, one can obtain a two-sided conidence interval by combining separate
one-sided lower and upper conidence bounds. As described in Section 2.7, it is desirable to have
αL = αU . If the one-sided conidence bounds are approximate (conservative), then combining
them results in an approximate (conservative) two-sided conidence interval.

B.2.3 A General Expression for Computing the Coverage Probability of a
Confidence Interval Procedure

The CP for a two-sided conidence interval procedure can be expressed as

CP(θ) = 1 − Pr
[
v
˜
(X) > v(θ)

]
− Pr[ṽ(X) < v(θ)]

= 1 − EX

{
I
[
v
˜
(X) > v(θ)

]}
− EX{I[ṽ(X) < v(θ)]}, (B.4)

where the indicator function I[A] is equal to 1 when the statement A is true and equal to 0
otherwise. We have expressed the CP in the manner given in (B.4) because, motivated by the
discussion in Section 2.7, we ind it advisable to examine separately the probability of the
two possible events that will lead to the interval not covering the quantity of interest v(θ)
(i.e., the interval can be entirely to the left or to the right of v(θ)). Note that in some cases
(especially when no exact conidence interval procedure is available), the CP will depend
on the parameter(s) θ. The expectations with respect to X in (B.4) sometimes have simple
closed-form expressions. In other cases these expectations can be expressed as functions of
well-known probability distributions or the distribution of a pivotal quantity (as, for example,
described in Appendix E). When simple and/or easy-to-compute expressions are not available,
Monte Carlo simulation can be used to perform the needed evaluations.

B.2.4 Computing the Coverage Probability for a Confidence Interval
Procedure When Sampling from a Discrete Probability Distribution

When a conidence interval is to be computed for a parameter (or some function of a parameter)
of a univariate discrete distribution, such as the binomial or the Poisson distribution, instead of
the data x we have a scalar x and easy-to-compute expressions are available for the CP of the
procedure. In particular,

CP(θ) = 1 −
∑

I
[
v
˜
(x) > v(θ)

]
Pr(X = x) −

∑
I[ṽ(x) < v(θ)] Pr(X = x). (B.5)
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Say, for example, that we wish to compute the CP for a conidence interval procedure to
contain the parameter π of the binomial distribution based on a sample of n trials, as described
in Section 6.2. Letting π

˜
= π

˜
(x) and π̃ = π̃(x), (B.5) reduces to

CP(π) = 1 −
n∑

x=0

I
[
π
˜

> π
](n

x

)
πx(1 − π)n−x −

n∑

x=0

I[π̃ < π]

(
n

x

)
πx(1 − π)n−x

= 1 −
n∑

x=0

I
[
π
˜

> π
]
dbinom(x;π, n) −

n∑

x=0

I[π̃ < π]dbinom(x;π, n), (B.6)

where the interval endpoints π
˜
and π̃ depend on n and x, as described in Section 6.2.

The CP for a conidence interval to contain the probability that a future binomial random
variable Y from m trials will be less than or equal to j, given the results of n trials from

the same distribution, would be the same as (B.6) because I
[
p
˜

LE > pLE

]
= I

[
π
˜

> π
]
and

I[p̃LE < pLE ] = I[π̃ < π].
Finally, for a conidence interval to contain the mean event-occurrence rate parameter λ of

the Poisson distribution based on an exposure of n units, (B.5) reduces to

CP(λ) = 1 −
∞∑

x=0

I
[
λ
˜

> λ
]exp(−nλ)(nλ)x

x!
−

∞∑

x=0

I
[
λ̃ < λ

]exp(−nλ)(nλ)x

x!

= 1 −

∞∑

x=0

I
[
λ
˜

> λ
]
dpois(x;nλ) −

∞∑

x=0

I
[
λ̃ < λ

]
dpois(x;nλ), (B.7)

where the interval endpoints λ
˜
and λ̃ depend on n and x, as described in Section 7.2.

B.2.5 Computing the Coverage Probability for a Confidence Interval
Procedure When Sampling from a Continuous Probability Distribution

Two-sided confidence intervals

When a conidence interval is to be computed for one of the parameters (or a scalar function of
the parameters) of a univariate continuous distribution, such as the normal distribution or the
Weibull distribution, the CP can be expressed as

CP(θ) = 1 −

∫
I
[
v
˜
(x) > v(θ)

]
f(x;θ)dx −

∫
I[ṽ(x) < v(θ)]f(x;θ)dx,

where f(x;θ) is the joint density function of the data X and the integration is over the region
of x values for which f(x;θ) > 0. When the conidence interval endpoints can be expressed

as a function of the model parameter estimates θ̂, the CP can be computed from

CP(θ) = 1 −

∫
I
[
v
˜
(θ̂) > v(θ)

]
h(θ̂;θ)dθ̂ −

∫
I
[
ṽ(θ̂) < v(θ)

]
h(θ̂;θ)dθ̂, (B.8)

where h(θ̂;θ) is the joint density function (sampling distribution) of the parameter estimator

θ̂ and the integration is over the region of θ̂ values for which h(θ̂;θ) > 0. If the conidence
interval procedure is based on a Wald statistic (described in Sections 12.6 and D.5.6), then
the integrals in (B.8) reduce to integration by parts of an ellipsoid and simpliications may be
possible. In particular, when the underlying distribution of X is a member of the location-scale
or log-location-scale families of distributions and the data are complete (i.e., not censored or
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truncated), it is generally possible to replace the distribution of θ̂ with the distribution of a
pivotal quantity. Some illustrations are given in Appendix E.

When no simpliications are available, Monte Carlo simulation can be used to evaluate the
CP of a given procedure using

CP(θ) ≈ 1 − 1

B

B∑

j=1

I
[
v
˜
(x∗

j ) > v(θ)
]
−

1

B

B∑

j=1

I
[
ṽ(x∗

j ) < v(θ)
]
,

where x∗
j , j = 1, . . . , B, are simulated samples from the density f(x;θ). The approximation

is due to Monte Carlo error which can be made arbitrarily small by using a suficiently large
value ofB. When the conidence interval endpoints can be expressed as a function of the model

parameter estimates, θ̂, the CP can be computed from

CP(θ) ≈ 1 − 1

B

B∑

j=1

I
[
v
˜
(θ̂

∗

j ) > v(θ)
]
−

1

B

B∑

j=1

I
[
ṽ(θ̂

∗

j ) < v(θ)
]
,

where θ̂
∗

j is the estimate of θ computed from the samplex∗
j , simulated from the density f(x;θ),

j = 1, . . . , B.
An important special case arises whenX comes from a location-scale (or log-location-scale)

distribution. For example, by applying an extension of the notation used in Section 4.6.1, a two-
sided conidence interval for a location-scale distribution quantile xp = μ + Φ−1(p)σ (where
Φ−1(p) is the p quantile of the corresponding standard location-scale distribution) is

v
˜
(x) = v

˜
(µ̂, σ̂) = µ̂ + g′

L(1−α/2;p,n)σ̂, (B.9)

ṽ(x) = ṽ(µ̂, σ̂) = µ̂ + g′
U (1−α/2;p,n)σ̂,

where for a symmetric distribution g′
L(1−α/2;p,n) = −g′

U (1−α/2;p,n) , g′
L(1−α/2;p,n) =

−g′
L(1−α/2;1−p,n) and g′

U (1−α/2;p,n) = −g′
U (1−α/2;1−p,n), for any 0 < 1 − α/2 < 1.

One-sided confidence bounds

One-sided conidence bounds for xp can be expressed in a similar manner. In particular, a
one-sided lower conidence bound is

v
˜
′(x) = v

˜
′(µ̂, σ̂) = µ̂ + g′

L(1−α ;p,n)σ̂

and a one-sided upper conidence bound is

ṽ ′(x) = ṽ ′(µ̂, σ̂) = µ̂ + g′
U (1−α ;p,n)σ̂.

Computation of coverage probability

It follows from (B.4) that the CP for the two-sided conidence interval procedure deined by
(B.9) is

CP(µ, σ) = 1 − Eµ̂ ,σ̂

{
I
[
µ̂ + g′

L(1−α/2;p,n)σ̂ > xp

]}
− Eµ̂ ,σ̂

{
I
[
µ̂ + g′

U (1−α/2;p,n)σ̂ < xp

]}
,

where the expectation is with respect to the distribution of the estimators (µ̂, σ̂). With complete
data from a normal distribution, it is possible to evaluate the expectations by numerical integra-
tion (see the references in the Bibliographic Notes section at the end of Chapter 4). Otherwise,
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Monte Carlo simulation can be used to evaluate the CP. In particular, for suficiently large B,

CP(μ,σ)≈ 1− 1

B

B∑

j=1

I
[
µ̂∗

j + g′
L(1−α/2;p,n)σ̂

∗
j > x̂p

]
−

1

B

B∑

j=1

I
[
µ̂∗

j + g′
U (1−α/2;p,n)σ̂

∗
j < x̂p

]
,

where x̂p = µ̂ + Φ−1(p)σ̂ and µ̂∗
j and σ̂∗

j are the ML estimates based on sample j simulated
from a normal distribution with µ = µ̂ and σ = σ̂, j = 1, . . . , B.

B.3 TWO-SIDED CONTROL-THE-CENTER TOLERANCE INTERVALS TO
CONTAIN AT LEAST A SPECIFIED PROPORTION OF A DISTRIBUTION

B.3.1 Control-the-Center Tolerance Interval Definition

In many applications, one is interested in estimating, with a high level of conidence, the extent
of a distribution (as opposed to obtaining a conidence interval to contain a scalar descriptor,
such as a distribution mean or quantile). A tolerance interval to contain a proportion of the
distribution (i.e., to control the center of a distribution) is used for this purpose.

Let x denote the observed data and let
[

˜
Tβ (x, 1 − α), T̃β (x, 1 − α)

]
be a tolerance

interval that will contain, with 100(1 − α)% conidence, at least a proportion β of the randomly
sampled distribution. To simplify the presentation, in the rest of this section we will suppress
the dependency of the interval endpoints on 1 − α.

In what follows, F (z−) is equal to F (z) for continuous random variables and equal to the
limit of F (w) when w approaches z from below for discrete random variables. Note that for
any realization of X = x, the population content of the tolerance interval is ∆F (x,θ) =

F
[
T̃β (x);θ

]
− F

[

˜
T −

β (x);θ
]
, where F (x;θ) is the distribution of the random variable X

from which the not-yet-observed data X will be taken. One is interested in the probability with

which the random quantity ∆F (X,θ) exceeds β. The functions
˜
Tβ (x) and T̃β (x) deine a

control-the-center tolerance interval procedure, often referred to more briely as just a tolerance
interval procedure.

An exact tolerance interval procedure is one for which theCP is exactly equal to the nominal
conidence level 100(1 − α)%. That is,

CP(θ) = Pr
{

Pr
[

˜
Tβ (x) ≤ X ≤ T̃β (x)|X = x

]
> β

}

= Pr
{

Pr
[
F [T̃β (x);θ

]
− F

[

˜
T −

β (x);θ]|X = x
]

> β
}

= Pr
{

F
[
T̃β (X);θ

]
− F

[

˜
T −

β (X);θ
]

> β
}

= 1 − α, (B.10)

where X is a single observation from the randomly sampled distribution and independent of
the data X. The inside probability in the irst two lines in (B.10) is computed with respect to

the single observationX . Note that
˜
Tβ (X) and T̃β (X) are random because they depend on the

random data X . The other probabilities in (B.10) are computed with respect to the distribution

of the data X . Generally there are not unique values of
˜
Tβ (X) and T̃β (X) that satisfy (B.10)

and an equal-tail probability constraint like

Pr
{

F
[

˜
T −

β (X);θ
]}

= 1 − Pr
{

F
[
T̃β (X);θ

]}

is a natural constraint to determine the interval endpoints uniquely.
When an exact control-the-center tolerance interval procedure is not available (e.g., when

the data are discrete), one can use an approximate procedure for which the CP in (B.10) is
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approximately equal to the nominal conidence level 1 − α. In some applications it may be
desirable to have a tolerance interval procedure that is conservative in the sense that the CP is
greater than or equal to the nominal conidence level.

Chapters 3–7 and 14 show how to compute tolerance intervals like
[

˜
Tβ (x), T̃β (x)

]
for

given data x and different assumed probability distributions in the (log-)location-scale family
of distributions. Section E.5.1 describes numerical methods for computing the CP and how to

determine the interval endpoints
˜
Tβ (x) and T̃β (x) for the normal distribution.

B.3.2 A General Expression for Computing the Coverage Probability of a
Control-the-Center Tolerance Interval Procedure

The CP for a two-sided tolerance interval procedure can be expressed as

CP(θ) = Pr
{

F
[
T̃β (X);θ

]
− F

[

˜
T −

β (X);θ
]

> β
}

(B.11)

= EX

(
I
{

F
[
T̃β (X);θ

]
− F

[

˜
T −

β (X);θ
]

> β
})

,

where F (x) is the cdf of the random variable X and the indicator function I[A] is equal to 1
when the statement A is true and is equal to 0 otherwise. Note that in some cases (especially
when no exact tolerance interval procedure is available), theCPwill depend on the parameter(s)
θ through the probability distribution of the data X .

B.3.3 Computing the Coverage Probability for a Control-the-Center Tolerance
Interval Procedure When Sampling from a Discrete Distribution

For a univariate discrete distribution, such as a binomial or a Poisson distribution, instead of
the data x we have a scalar x and easy-to-compute expressions are available for the CP of the
tolerance interval procedure. In particular,

CP(θ) =
∑

I
{

F
[
T̃β (x)

]
− F

[

˜
T −

β (x)
]

> β
}

Pr(X = x), (B.12)

where the summation is over all values of x such thatPr(X = x) > 0. If, for example, we wish
to compute the CP for a tolerance interval procedure to contain a proportion β of an m-trial
binomial distribution based on a past sample of n trials, as described in Section B.4, (B.12)
reduces to

CP(π) =
n∑

x=0

I

⎡
⎣

T̃β∑

k=
˜
Tβ

(
m

k

)
πk(1 − π)m−k > β

⎤
⎦

(
n

x

)
πx(1 − π)n−x

=
n∑

x=0

{
I
[
pbinom(T̃β ;π,m) − pbinom(

˜
Tβ − 1;π,m)

]
> β

}
dbinom(x;π, n),

where the interval endpoints
˜
Tβ and T̃β depend on n, x, m, β, and 1 − α as described in

Section 6.4.
For a tolerance interval to contain a proportion β of a Poisson distribution with m exposure

units and mean occurrence rate parameter λ, based on past data x from an exposure amount of
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n units, (B.12) reduces to

CP(λ) =
∞∑

x=0

I

⎡
⎣

T̃β∑

k=
˜
Tβ

exp(−mλ)(mλ)k

k!
> β

⎤
⎦exp(−nλ)(nλ)x

x!

=
∞∑

x=0

I
{[

ppois(T̃β ;mλ) − ppois(
˜
Tβ − 1;mλ)

]
> β

}
dpois(x;nλ),

where the interval endpoints
˜
Tβ and T̃β depend on n, x, m, β, and 1 − α as described in

Section 7.5.

B.3.4 Computing the Coverage Probability for a Control-the-Center Tolerance
Interval Procedure When Sampling from a Continuous Probability
Distribution

When a tolerance interval is to be computed for a univariate continuous distribution, such as a
normal or Weibull distribution, the CP can be expressed as

CP(θ) =

∫
I
{

F
[
T̃β (x);θ

]
− F [

˜
Tβ (x);θ] > β

}
f(x;θ)dx,

where f(x;θ) is the joint density function of the data X and the integration is over the region
of x values for which f(x;θ) > 0. When the tolerance interval endpoints can be expressed as

a function of model parameter estimates θ̂, the CP can be computed as

CP(θ) =

∫
I
{

F
[
T̃β (θ̂);θ

]
− F

[

˜
Tβ (θ̂);θ

]
> β

}
h(θ̂;θ)dθ̂,

where h(θ̂;θ) is the joint density function (sampling distribution) of the parameter estimator

θ̂ and the integration is over the region of θ̂ values for which h(θ̂;θ) > 0.
For some distributions (e.g., the normal distribution), simpliication may be possible. For

example, when the underlying distribution of X is a member of the location-scale or log-
location-scale families of distributions and the data are complete (i.e., not censored or truncated),

it is generally possible to replace the distribution of θ̂ with the distribution of a pivotal quantity.
Some examples are given in Section E.6.

When no simpliications are available, Monte Carlo simulation can be used to evaluate the
CP of a given procedure using

CP(θ) ≈ 1

B

B∑

j=1

I
{

F
[
T̃β (x∗

j );θ
]
− F

[

˜
Tβ (x∗

j );θ
]

> β
}

, (B.13)

where x∗
j , j = 1, . . . , B, are simulated samples from the density f(x;θ). The approximation

in (B.13) is due to Monte Carlo error which can be made arbitrarily small by using a suficiently
large value of B.

When the tolerance interval endpoints can be expressed as a function of the model parameter
estimates, the CP can be computed from

CP(θ) ≈ 1

B

B∑

j=1

I
{

F
[
T̃β (θ̂

∗

j );θ
]
− F

[

˜
Tβ (θ̂

∗

j );θ
]

> β
}

,

where θ̂
∗

j is the estimate of θ computed from the samplex∗
j , simulated from the density f(x;θ),

j = 1, . . . , B.
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An important special case arises when X comes from a continuous location-scale (or log-
location-scale) distribution. In this case, using an extension of the notation used in Section 4.6.1,
for a two-sided tolerance interval to control the center of the distribution,

˜
Tβ (x) =

˜
Tβ (µ̂, σ̂) = µ̂ + gL(1−α ;β ,n)σ̂, (B.14)

T̃β (x) = T̃β (µ̂, σ̂) = µ̂ + gU (1−α ;β ,n)σ̂,

where gL(1−α ;β ,n) = −gU (1−α ;β ,n) , gL(1−α ;β ,n) = −gL(1−α ;1−β ,n) and gU (1−α ;β ,n) =
−gU (1−α ;1−β ,n) for a symmetric distribution.

Following from (B.11), the CP for a two-sided tolerance interval to control the center of the
distribution can be expressed as

CP(µ, σ) = Eµ̂ ,σ̂

{
I

[
Φ

(
T̃β (µ̂, σ̂) − µ

σ

)
− Φ

(
˜
Tβ (µ̂, σ̂) − µ

σ

)
> β

]}
(B.15)

= Eµ̂ ,σ̂

{
I

[
Φ

(
µ̂ + gU (1−α ;β ,n)σ̂ − µ

σ

)
− Φ

(
µ̂ + gL(1−α ;β ,n)σ̂ − µ

σ

)
> β

]}
,

where Φ(z) is the cdf of a particular standard location-scale distribution and the expectation is
with respect to the joint distribution of the estimators (µ̂, σ̂).

With complete data from a normal distribution, it is possible to evaluate the expectation
using numerical integration (see the references in the Bibliographic Notes section at the end of
Chapter 4 and Section E.5.1). Otherwise, Monte Carlo simulation can be used to evaluate the
CP. In particular, for suficiently large B,

CP(µ, σ) ≈ 1

B

B∑

j=1

I

[
Φ

(
µ̂∗

j + gU (1−α ;β ,n)σ̂∗
j − µ̂

σ̂

)
− Φ

(
µ̂∗

j + gL(1−α ;β ,n)σ̂∗
j − µ̂

σ̂

)
> β

]
,

(B.16)

where µ̂∗
j and σ̂∗

j are the ML estimates based on sample j simulated from a normal distribution
with µ = µ̂ and σ = σ̂, j = 1, . . . , B. This approach is used in Section 14.5.1.

B.4 TWO-SIDED TOLERANCE INTERVALS TO CONTROL BOTH TAILS OF A
DISTRIBUTION

B.4.1 Control-Both-Tails Tolerance Interval Definition

In some applications, in contrast to the control-the-center tolerance interval described in the
preceding section, onemight wish to construct amore stringent tolerance interval that simultane-
ously controls the amount of probability in both tails of the distribution. The “control-both-tails”
tolerance interval speciies the maximum probability in each tail. Often the same probability is
speciied in each distribution tail, and this procedure is sometimes referred to as an “equal-tail
tolerance interval.” Our presentation allows for unequal tail probabilities.

In particular, let

[

˜
Tp t L

(x, ptL , 1 − α), T̃p t U
(x, ptU , 1 − α)

]
denote a control-both-tails

tolerance interval procedure that will, with 100(1 − α)% conidence, have no more than a pro-

portion ptL less than
˜
Tp t L

and no more than ptU greater than T̃p t U
. To simplify the presentation,

in the rest of this section we will suppress the dependency of the interval endpoints on 1 − α
and ptL or ptU .
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Note that in the upper tail, the requirement is 1 − F
[
T̃p t U

(x);θ
]
≤ ptU , which is equivalent

to F
[
T̃p t U

(x);θ
]
≥ 1 − ptU . Here x denotes the observed data used to construct the control-

both-tails tolerance interval. Typically ptL and ptU will be between 0 and 0.50, but all that is
required is that these probabilities be positive and have a sum less than 1.

An exact control-both-tails tolerance interval procedure is one for which the CP is exactly
equal to the nominal conidence level 100(1 − α)%. That is,

CP(θ) = Pr
{

F
[

˜
T −

p t L
(X);θ

]
≤ ptL and F

[
T̃p t U

(X);θ
]
≥ 1 − ptU

}
= 1 − α, (B.17)

where X is the not-yet-observed data that will be used to construct the control-both-tails
tolerance interval, and the probability is computed with respect to the distribution of X. Note

that
˜
Tp t L

(X) and T̃p t U
(X) are random because they depend on the random data X .

In some situations (e.g., when the data are discrete), it is impossible to obtain an exact
control-both-tails tolerance interval procedure. Then one can use an approximate procedure for
which the CP in (B.17) is approximately equal to the nominal conidence level 1 − α. In some
applications it may be desirable to have a control-both-tails tolerance interval procedure that is
conservative in the sense that the CP is greater than or equal to the nominal conidence level.

Section 4.6.2 shows how to compute a control-both-tails tolerance interval[

˜
Tp t L

(x), T̃p t U
(x)

]
for a normal distribution. Section 14.5.2 does the same for general (log-)

location-scale distributions.

B.4.2 A General Expression for Computing the Coverage Probability of a
Control-Both-Tails Tolerance Interval Procedure

This section provides an expression for the CP of a control-both-tails tolerance interval proce-
dure. First note that the random event

F
[

˜
T −

p t L
(X);θ

]
≤ ptL and F

[
T̃p t U

(X);θ
]
≥ 1 − ptU ,

indicating the probability of correctness in both tails of a control-both-tails tolerance interval,
is equivalent to the event

˜
Tp t L

(X) ≤ xp t L
and T̃p t U

(X) ≥ x(1−p t U ),

which implies that the endpoints of the tolerance interval
[

˜
Tp t L

, T̃p t U

]
enclose the unknown

interval [xp t L
, x(1−p t U )] where xp t L

and x(1−p t U ) are the corresponding quantiles of the sam-

pled distribution. That is, the interval is correct if
˜
Tp t L

≤ xp t L
< x(1−p t U ) ≤ T̃p t U

. Then, the
CP for a two-sided control-both-tails tolerance interval procedure can be expressed as

CP(θ) = Pr
{

F
[

˜
T −

p t L
(X);θ

]
≤ ptL and F

[
T̃p t U

(X);θ
]
≥ 1 − ptU

}

= Pr
[

˜
Tp t L

(X) ≤ xp t L
and T̃p t U

(X) ≥ x(1−p t U )

]
(B.18)

= EX

{
I
[

˜
Tp t L

(X) ≤ xp t L
and T̃p t U

(X) ≥ x(1−p t U )

]}
,

where EX is the expectation with respect to the distribution of X and the indicator function
I[A] is equal to 1 when the statement A is true and is equal to 0 otherwise. Note that in some
cases (especially when no exact control-both-tails tolerance interval procedure is available), the
CP will depend on the parameter(s) θ through the probability distribution of the data X .
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B.4.3 Computing the Coverage Probability for a Control-Both-Tails Tolerance
Interval Procedure When Sampling from a Discrete Probability
Distribution

When a control-both-tails tolerance interval is to be computed for a univariate discrete distribu-
tion, such as a binomial or a Poisson distribution, instead of the data x we have a scalar x and
easy-to-compute expressions are available for its CP. In particular,

CP(θ) =
∑

I
[

˜
Tp t L

(x) ≤ xp t L
and T̃p t U

(x) ≥ x(1−p t U )

]
Pr(X = x), (B.19)

where the summation is over all values of x for which Pr(X = x) > 0.
Say, for example, that we wish to compute the CP for a control-both-tails tolerance interval

procedure to have no more than a proportion ptL in the lower tail and no more than a proportion
ptU in the upper tail of an m-trial binomial distribution based on a past sample of n trials. Then
(B.19) reduces to

CP(p) =
n∑

x=0

I
[

˜
Tp t L

(x) ≤ xp t L
and T̃p t U

(x) ≥ x(1−p t U )

](n

x

)
px(1 − p)n−x ,

where the interval endpoints
˜
Tp t L

(x) and T̃p t U
(x) depend on n, x, m, ptL or ptU , and 1 − α

in a manner similar to that described in Section B.3.3.
As a second example, say we desire a control-both-tails tolerance interval to have no more

than a proportion ptL in the lower tail and no more than a proportion ptU in the upper tail of a
Poisson distribution with m exposure units and mean occurrence rate λ, based on past data of
exposure amount of n units. For this case, (B.19) reduces to

CP(λ) =
∞∑

x=0

I
[

˜
Tp t L

(x) ≤ xp t L
and T̃p t U

(x) ≥ x(1−p t U )

]exp(−nλ)(nλ)x

x!
,

where the interval endpoints
˜
Tp t L

(x) and T̃p t U
(x) depend on n, x, m, ptL or ptU , and 1 − α

in a manner similar to that described in Section B.3.3.

B.4.4 Computing the Coverage Probability for a Control-Both-Tails Tolerance
Interval Procedure When Sampling from a Continuous Probability
Distribution

When a control-both-tails tolerance interval is to be computed for a univariate continuous
distribution, such as a normal or Weibull distribution, the CP can be expressed as

CP(θ) =

∫
I
[

˜
Tp t L

(x) ≤ xp t L
and T̃p t U

(x) ≥ x(1−p t U )

]
f(x;θ)dx,

where f(x;θ) is the joint density function of the dataX and the integration is over the region of
x values for which f(x;θ) > 0. When the control-both-tails tolerance interval endpoints can

be expressed as a function of the model parameter estimates θ̂, the CP can be computed from

CP(θ) =

∫
I
[

˜
Tp t L

(θ̂) ≤ xp t L
and T̃p t U

(θ̂) ≥ x(1−p t U )

]
h(θ̂;θ)dθ̂,

where h(θ̂;θ) is the joint density function (sampling distribution) of the parameter estimator

θ̂ and the integration is over the region of θ̂ values for which h(θ̂;θ) > 0.
For some distributions (e.g., the normal distribution), simpliications may be possible. When

the underlying distribution ofX is a member of the location-scale or log-location-scale families
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of distributions and data are complete (i.e., not censored or truncated), it is generally possible

to replace the distribution of θ̂ with the distribution of a pivotal quantity.
When no simpliications are available, Monte Carlo simulation can be used to evaluate the

CP of a given procedure using

CP(θ) ≈ 1

B

B∑

j=1

I
[

˜
Tp t L

(x∗
j ) ≤ xp t L

and T̃p t U
(x∗

j ) ≥ x(1−p t U )

]
,

where x∗
j , j = 1, . . . , B, are simulated samples from the density f(x;θ). When the control-

both-tails tolerance interval endpoints can be expressed as a function of the model parameter

estimates θ̂, the CP can be computed from

CP(θ) ≈ 1

B

B∑

j=1

I
[

˜
Tp t L

(θ̂
∗

j ) ≤ xp t L
and T̃p t U

(θ̂
∗

j ) ≥ x(1−p t U )

]
,

where θ̂
∗

j is the estimate of θ computed from the samplex∗
j , simulated from the density f(x;θ),

j = 1, . . . , B.
An important special case arises whenX comes from a location-scale (or log-location-scale)

distribution. In this case, using an extension of the notation in Section 4.6.2, for a two-sided
tolerance interval to control the probability in both tails of the distribution,

˜
Tp t L

(x) =
˜
Tp t L

(μ̂, σ̂) = µ̂ + g′′
L(1−α ;p t L ,n)σ̂,

T̃p t U
(x) = T̃p t U

(µ̂, σ̂) = µ̂ + g′′
U (1−α ;p t U ,n)σ̂,

where for a symmetric distribution g′′
L(1−α ;p t L ,n) = −g′′

U (1−α ;p t U ,n) , g′′
L(1−α ;p t L ,n) =

−g′′
L(1−α ;1−p t L ,n) , and g′′

U (1−α ;p t U ,n) = −g′′
U (1−α ;1−p t U ,n) for any 0 < 1 − α < 1.

Following from (B.18), the CP for a two-sided tolerance interval to control the probability
in both tails of the distribution can be expressed as

CP(µ, σ) = EX

{
I
[

˜
Tp t L

(X) ≤ xp t L
and T̃p t U

(X) ≥ x(1−p t U )

]}

= Eµ̂ ,σ̂

{
I
[
µ̂ + g′′

L(1−α ;p t L ,n)σ̂ ≤ xp t L
and µ̂ + g′′

U (1−α ;p t U ,n)σ̂ ≥ x(1−p t U )

]}
,

where xp = µ + Φ−1(p)σ is the p quantile of the location-scale distribution and the expectation
is with respect to the joint distribution of the estimators (µ̂, σ̂).

With complete data from a normal distribution, it is possible to evaluate the expectation using
numerical integration (see the references in the previously cited Bibliographic Notes section
at the end of Chapter 4 and Section E.5.2). Otherwise, Monte Carlo simulation can be used to
evaluate the CP. In particular, for suficiently large B,

CP(µ, σ) ≈
1

B

B∑

j=1

I
[
z

′′∗
Lj ≤ Φ−1(ptL) and z

′′∗
U j ≥ Φ−1(ptU )

]
= 1 − α, (B.20)

z
′′∗
Lj =

µ̂∗
j + g′′

L(1−α ;p t L ,n)σ̂
∗
j − µ̂

σ̂
,

z
′′∗
U j =

µ̂∗
j + g′′

U (1−α ;p t U ,n)σ̂
∗
j − µ̂

σ̂
,

where µ̂∗
j and σ̂∗

j are the ML estimates based on bootstrap sample j simulated from a normal
distribution with µ = µ̂ and σ = σ̂, i = 1, . . . , B. This approach is used in Section 14.5.2.
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B.5 ONE-SIDED TOLERANCE BOUNDS

A 100(1 − α)% one-sided lower tolerance bound to be exceeded by a proportion β of the
population, denoted by

˜
T ′

β (x), is equivalent to a 100(1 − α)% lower conidence bound on
x(1−β ) , the 1 − β quantile of the sampled distribution. To see this, we modify the coverage
statement in (B.11) to be a one-sided lower tolerance bound CP. That is,

CP(θ) = Pr
{

1 − F
[

˜
T ′−

β (X)
]

> β
}

= Pr
[

˜
T ′

β (X) ≤ x(1−β )

]

= Pr
[
v
˜
′(X) ≤ x(1−β )

]
,

which is in agreement with the one-sided conidence interval statement in (B.2) when v(θ) =
x(1−β ) .

Similarly, a 100(1 − α)% one-sided upper tolerance bound to exceed a proportion β of

the sampled distribution, denoted by T̃ ′
β (x), is equivalent to a 100(1 − α)% upper conidence

bound onxβ , theβ quantile of the sampled distribution. To see this, we nowmodify the coverage
statement in (B.11) to be a one-sided upper tolerance bound CP. That is,

CP(θ) = Pr
{

F
[
T̃ ′

β (X)
]

> β
}

= Pr
[
T̃ ′

β (X) ≥ xβ

]

= Pr[ṽ ′(X) ≥ xβ ],

which is in agreement with the one-sided conidence interval statement in (B.3) when
v(θ) = xβ .

B.6 TWO-SIDED PREDICTION INTERVALS AND ONE-SIDED PREDICTION
BOUNDS FOR FUTURE OBSERVATIONS

B.6.1 Prediction Interval Definition

One often needs to assess the uncertainty associated with the prediction of one or more future
observations or a function of future observations. This is done by constructing a prediction
interval. First, we introduce some generic notation for a prediction interval (in contrast to the
speciic notation used in the main parts of this book). Deine V = v(Y ) as a scalar function of

future observations Y . Let
[
V
˜

(x, 1 − α), Ṽ (x, 1 − α)
]
denote a prediction interval for V .

Here x denotes the observed data used to construct the prediction interval, and 100(1 − α)%
is the nominal conidence level. To simplify the presentation, in the rest of this section we
will suppress the dependency of the interval endpoints on 1 − α. Then the functions V

˜
(x) and

Ṽ (x) deine a prediction interval procedure.
The probability statement deining an exact prediction interval procedure (i.e., a procedure

for which the CP of the procedure is exactly equal to its nominal conidence level 100(1 − α)%)
is

Pr
[
V
˜

(X) ≤ v(Y ) ≤ Ṽ (X)
]

= 1 − α, (B.21)

where X is the not-yet-observed data that will be used to construct the prediction interval and
Y is the future data from the sampled population. Note that in this expression v(Y ), V

˜
(X),

and Ṽ (X) are random because they depend on the random data Y and X .
In some situations (e.g., when the data are discrete), it is impossible to obtain an exact

prediction interval procedure. Then one can use an approximate procedure for which the CP
in (B.21) is approximately equal to the nominal conidence level 1 − α. In some applications
it may be desirable to have a prediction interval procedure that is conservative in the sense that
the CP is greater than or equal to the nominal conidence level.
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Chapters 3–7 show how to compute a prediction interval
[
V
˜

(x), Ṽ (x)
]
for given data x

and different assumed probability distributions. Chapters 12–15 describe general approaches
for deining prediction interval procedures to determine the prediction interval endpoints V

˜
(x)

and Ṽ (x). Section E.6 gives theory, based on pivotal quantities, for prediction intervals related
to the normal distribution. The methods given there can be adapted to other (log-)location-scale
distributions.

B.6.2 One-Sided Prediction Bound Definition

As described in Section 2.7, it is possible to combine two one-sided prediction bounds for
a future scalar random variable to create a two-sided prediction interval. Namely, let V

˜
′(x)

and Ṽ ′(x) denote, respectively, lower and upper prediction bounds for v(Y ). The probability
statement deining an “exact” lower prediction bound procedure is then

Pr
[
V
˜

′(X) ≤ v(Y )
]

= 1 − αL

and the corresponding upper prediction bound procedure is

Pr
[
Ṽ ′(X) ≥ v(Y )

]
= 1 − αU .

There are similar deinitions for approximate and conservative prediction bound procedures.

Assuming exact procedures and 0 < α < 0.50, we use V
˜

′(x) and Ṽ ′(x) to obtain the
two-sided CP,

Pr
[
V
˜

′(X) ≤ v(Y ) ≤ Ṽ ′(X)
]

= 1 − αL − αU .

Thus, one can combine separate lower and upper prediction bounds for a scalar random variable
to obtain a two-sided prediction interval. As described in Section 2.7, it is desirable to have
αL = αU . Note, however, that this result holds only for prediction intervals to contain a single
random quantity, but not for the simultaneous prediction intervals described in Section B.7.

B.6.3 A General Expression for Computing the Coverage Probability of a
Prediction Interval Procedure

There are two kinds of CP for prediction intervals and prediction bounds: the conditional CP
and the unconditional CP. First, for given data x, we have a CP for the corresponding interval,[
V
˜

(x), Ṽ (x)
]
, conditional on X = x, that can be expressed as

CP(θ|X = x) = 1 − Pr
[
v(Y ) < V

˜
(x)

]
− Pr

[
v(Y ) > Ṽ (x)

]
,

where θ is a vector of parameters of the distribution of X and Y . This conditional CP is
unknown because it depends on the unknown parameter(s) θ. Also, this conditional probability
depends on the observed data x and in this sense is random (before the data are obtained). For
these reasons, the conditional CP is not useful for describing the properties of a prediction
interval procedure.

The unconditional CP of the prediction interval procedure can be expressed as

CP(θ) = 1 − Pr
[
v(Y ) < V

˜
(X)

]
− Pr

[
v(Y ) > Ṽ (X)

]

= 1 − EX

{
Pr

[
v(Y ) < V

˜
(x)|X = x

]}
− EX

{
Pr

[
v(Y ) > Ṽ (x)|X = x

]}
,

(B.22)

where EX is the expectation with respect to the distribution of the data X . Note that both X
and Y are random. As with the other statistical interval procedures, we have expressed the
CP in this form because, as motivated by the discussion in Section 2.7, we generally ind it
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advisable to examine separately the probability of the two possible events that will lead to the
interval not covering the quantity of interest v(Y ) (i.e., when the interval ends up being entirely
to the left or to the right of v(Y )). Note that in some cases (especially when no exact prediction
interval procedure is available), the CP will depend on the parameter(s) θ.

Sometimes the expectations in (B.22) have simple closed-form expressions. In other cases
they can be expressed as functions of well-known probability distributions or the distribution of
a pivotal quantity (e.g., as described in Section E.6). When simple easy-to-compute expressions
are not available, Monte Carlo simulation can be used for the needed evaluations.

B.6.4 Computing the Coverage Probability for a Prediction Interval Procedure
When Sampling from a Discrete Probability Distribution

When a prediction interval is to be computed for a function of future observations from a
univariate discrete distribution, such as the binomial or the Poisson distribution, the observed
data x and the future observations Y are scalars (denoted by x and Y , respectively). In this
case, easy-to-compute expressions are generally available for the CP of a given prediction

interval procedure. Let Y
˜

= V
˜

(x) and Ỹ = Ṽ (x). Then

CP(θ) = 1 −
∑

x

⎡
⎣Pr(X = x)

∑

y<Y
˜

Pr(Y = y)

⎤
⎦ −

∑

x

⎡
⎣Pr(X = x)

∑

y>Ỹ

Pr(Y = y)

⎤
⎦,

(B.23)

where the summation is over all values of x such that Pr(X = x) > 0.
For example, for a prediction interval to contain a future outcome Y from m (future) trials

from a binomial distribution based on a previous sample of n trials, (B.23) reduces to

CP(π) =
n∑

x=0

[
pbinom(Ỹ ;m,π) − pbinom(Y

˜
− 1;m,π)

]
dbinom(x;π, n), (B.24)

where the interval endpoints Y
˜
and Ỹ depend on n, the observed value of x, m, and 1 − α as

described in Section 6.7.
Also, for a prediction interval to contain the future outcome from a Poisson distribution with

m units of exposure, based on a previous sample with n units of exposure, (B.23) reduces to

CP(λ) =
∞∑

x=0

[
ppois(Ỹ ;mλ) − ppois(Y

˜
− 1;mλ)

]
dpois(x;nλ), (B.25)

where the interval endpoints Y
˜
and Ỹ depend on n, the observed value of x, m, and 1 − α as

described in Section 7.6.

B.6.5 Computing the Coverage Probability for a Prediction Interval Procedure
When Sampling from a Continuous Probability Distribution

When a prediction interval is to be computed for a function of future observations from a
univariate continuous distribution, such as the normal distribution or the Weibull distribution,
the CP can be expressed as

CP(θ) = 1 −

∫
Pr

[
v(Y ) < V

˜
(x)

]
f(x;θ)dx −

∫
Pr

[
v(Y ) > Ṽ (x)

]
f(x;θ)dx,

where f(x;θ) is the joint density function of the data X and the integration is over the region
of x values for which f(x;θ) > 0. When the prediction interval endpoints can be expressed
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as a function of the model parameter estimates θ̂, the CP can be computed from

CP(θ) = 1 −
∫

Pr
[
v(Y ) < V

˜
(x)

]
h(θ̂;θ)dθ̂ −

∫
Pr

[
v(Y ) > Ṽ (x)

]
h(θ̂;θ)dθ̂,

(B.26)

where h(θ̂;θ) is the joint density function (sampling distribution) of the parameter estimator

θ̂ and the integration is over the region of θ̂ values for which h(θ̂;θ) > 0.
If the prediction interval procedure is based on a Wald-like procedure (described in Sec-

tions 12.6 and D.5.6), the integrals in (B.26) reduce to integration over parts of an ellipsoid
and simpliication may be possible. For example, when the underlying distribution of X is a
member of the location-scale or log-location-scale families of distributions and the data are
complete (i.e., not censored or truncated), it is generally possible to replace the distribution of

θ̂ with the distribution of a pivotal quantity. Some examples are given in Section E.6.
When no simpliications are available, Monte Carlo simulation can be used to evaluate the

CP of a given procedure using

CP(θ) ≈ 1 − 1

B

B∑

j=1

Pr
[
v(Y ) < V

˜
(x∗

j )
]
−

1

B

B∑

j=1

Pr
[
v(Y ) > Ṽ (x∗

j )
]
,

where x∗
j , j = 1, . . . , B, are simulated samples from the density f(x;θ). When the prediction

interval endpoints can be expressed as a function of the model parameter estimates, θ̂, CP can
be computed from

CP(θ) ≈ 1 − 1

B

B∑

j=1

Pr
[
v(Y ) < V

˜
(θ̂

∗

j )
]
−

1

B

B∑

j=1

Pr
[
v(Y ) > Ṽ (θ̂

∗

j )
]
,

where θ̂
∗

j is the bootstrap estimate of θ computed from the bootstrap samplex∗
j , simulated from

the density f(x;θ), j = 1, . . . , B.

B.7 TWO-SIDED SIMULTANEOUS PREDICTION INTERVALS AND ONE-SIDED
SIMULTANEOUS PREDICTION BOUNDS

Let Y denote a vector of m independent future observations from a previously sampled
population. A common statistical problem is to obtain a simultaneous prediction interval

[
Y
˜

k ;m (x, k,m, 1 − α), Ỹk ;m (x, k,m, 1 − α)
]

to contain at least k of them components ofY with 100(1 − α)% conidence. Other situations
call for obtaining one-sided simultaneous prediction bounds. To simplify the presentation, in
the rest of this section we will suppress the dependency of the interval endpoints on k, m, and
1 − α.

The CP for a two-sided simultaneous prediction interval is

CP(θ) = Pr
[
at least k of m values lie between Y

˜
k ;m (X) and Ỹk ;m (X)

]

= EX

[
m∑

i=k

(
m

i

)
pi(1 − p)m−i

]
,
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where the expectation is with respect to the distribution of X . Conditional on a ixed X = x,

p = p(x) = Pr
[
Y
˜

k ;m (x) ≤ Y ≤ Ỹk ;m (x)|X = x
]

= F
[
Ỹk ;m (x)

]
− F

[
Y
˜

−
k ;m (x)

]
,

whereF (y) is the cdf of Y, a single future observation from the previously sampled distribution.
One canmake similar CP statements for one-sided simultaneous prediction bounds. In particular,
for a lower simultaneous prediction bound,

CP(θ) = Pr
[
at least k of m values are greater than or equal to Y

˜
′
k ;m (X)

]

= EX

[
m∑

i=k

(
m

i

)
pi(1 − p)m−i

]
,

where, conditional on a ixed X = x,

p = p(x) = Pr
[
Y ≥ Y

˜
′
k ;m (x)|X = x

]
= 1 − F

[
Y
˜

′−
k ;m (x)

]
.

Similarly, for a one-sided upper simultaneous prediction bound,

CP(θ) = Pr
[
at least k of m values are less than or equal to Ỹ ′

k ;m (X)
]

= EX

[
m∑

i=k

(
m

i

)
pi(1 − p)m−i

]
,

where, conditional on a ixed X = x,

p = p(x) = Pr
[
Y ≤ Ỹ ′

k ;m (x)|X = x
]

= F
[
Ỹ ′

k ;m (x)
]
.

An important special case arises whenX and Y come from a location-scale (or log-location-
scale) distribution. In this case, using an extension of the notation used in Section 4.8, for a
two-sided simultaneous prediction interval,

Y
˜

k ;m (x) = Y
˜

k ;m (μ̂, σ̂) = µ̂ + rL(1−α ;k,m,n)σ̂, (B.27)

Ỹk ;m (x) = Ỹk ;m (µ̂, σ̂) = µ̂ + rU (1−α ;k,m,n)σ̂,

where rL(1−α ;k,m,n) = −rU (1−α ;k,m,n) for a symmetric distribution. For a nonsymmetric dis-
tribution, we suggest that the values of rL(1−α ;k,m,n) and rU (1−α ;k,m,n) be chosen to have equal
one-sided probabilities of noncoverage in each tail of the distribution.

One-sided simultaneous prediction bounds can be expressed in a similarmanner. In particular,
the one-sided lower simultaneous prediction bound is

Y
˜

′
k ;m (x) = Y

˜
′
k ;m (µ̂, σ̂) = µ̂ + r′L(1−α ;k,m,n)σ̂

and the one-sided upper simultaneous prediction bound is

Ỹ ′
k ;m (x) = Ỹ ′

k ;m (µ̂, σ̂) = µ̂ + r′U (1−α ;k,m,n)σ̂.

The CP for two-sided prediction intervals and one-sided prediction bounds can be expressed as

CP(µ, σ) = Eµ̂ ,σ̂

[
m∑

i=k

(
m

i

)
pi(1 − p)m−i

]
,
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where p is given by the following expressions and the expectation is with respect to the joint
distribution of the estimators (μ̂, σ̂): for a two-sided prediction interval,

p = p(µ̂, σ̂) = Pr
[
Y
˜

k ;m (µ̂, σ̂) ≤ Y ≤ Ỹk ;m (µ̂, σ̂)
]

= Φ(µ̂ + rU (1−α ;k,m,n)σ̂) − Φ(µ̂ + rL(1−α ;k,m,n)σ̂);

for a one-sided lower prediction bound,

p = p(µ̂, σ̂) = Pr
[
Y ≥ Y

˜
′
k ;m (µ̂, σ̂)

]
= 1 − Φ(µ̂ + r′L(1−α ;k,m,n)σ̂);

and for a one-sided upper prediction bound,

p = p(µ̂, σ̂) = Pr
[
Y ≤ Ỹ ′

k ;m (µ̂, σ̂)
]

= Φ(µ̂ + r′U (1−α ;k,m,n)σ̂),

where Φ(z) is the cdf of a particular standard location-scale distribution and µ̂ and σ̂ are the
ML estimates of µ and σ, respectively.

With complete data from a normal distribution, it is possible to evaluate the expectation using
numerical integration (see the references cited in the Bibliographic Notes section at the end of
Chapter 4 and Section E.6.4). Otherwise, Monte Carlo simulation can be used to evaluate the
CP. In particular, for suficiently large B,

CP(µ, σ) ≈ 1

B

B∑

j=1

[
m∑

i=k

(
m

i

)
(p∗

j )
i(1 − p∗

j )
m−i

]
, (B.28)

where pj is given by the following expressions in which µ̂∗
j and σ̂∗

j are the ML estimates based
on sample j simulated from a normal distribution with µ = 0 and σ = 1, j = 1, . . . , B: for a
two-sided prediction interval,

p∗
j = p(µ̂∗

j , σ̂
∗
j ) = Pr

[
Y
˜

k ;m (µ̂∗
j , σ̂

∗
j ) ≤ Y ≤ Ỹk ;m (µ̂∗

j , σ̂
∗
j )

]

= Φ(µ̂∗
j + rU (1−α ;k,m,n)σ̂

∗
j ) − Φ(µ̂∗

j + rL(1−α ;k,m,n)σ̂
∗
j );

for a one-sided lower prediction bound,

p∗
j = p(µ̂∗

j , σ̂
∗
j ) = Pr

[
Y ≥ Y

˜
′
k ;m (µ̂∗

j , σ̂
∗
j )

]
= 1 − Φ(µ̂∗

j + r′L(1−α ;k,m,n)σ̂
∗
j );

and for a one-sided upper prediction bound,

p∗
j = p(µ̂∗

j , σ̂
∗
j ) = Pr

[
Y ≤ Ỹ ′

k ;m (µ̂∗
j , σ̂

∗
j )

]
= Φ(µ̂∗

j + r′U (1−α ;k,m,n)σ̂
∗
j ),

where Φ(z) is the cdf of a particular standard location-scale distribution. This approach is used
in Section 14.6.

B.8 CALIBRATION OF STATISTICAL INTERVALS

Up to this point in this appendixwe have notationally suppressed the dependency of the coverage
probability CP(θ) on the nominal conidence level 1 − α. In this section, however, we will
write CP(θ, 1 − α). Then for an exact interval, CP(θ, 1 − α) = 1 − α.

As described in several places in this appendix, in applications for which an exact statistical
interval procedure is not available, we often resort to the use of an approximate interval
procedure, in which case CP(θ, 1 − α) ≈ 1 − α. In situations for which CP(θ, 1 − α) is
consistently greater than or consistently less than the nominal conidence level 1 − α for all
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possible values of the parameter(s) θ, one may be able to use the method of calibration to ind
a procedure that has CP(θ, 1 − α) closer to 1 − α than the simple approximation alone. We
describe calibration for conidence bounds and intervals only. However, this method can be
used for any kind of statistical interval,

For a two-sided conidence interval, because it is desirable to have equal probability of being
outside the interval on each side of a two-sided conidence interval (as described in Sections 2.7
and B.2.2), we would do separate calibrations for one-sided lower and upper 100(1 − α)%
conidence bounds and then combine them to form an approximate 100(1 − 2α)% conidence
interval. Thus we describe the calibration of one-sided conidence bound procedures.

To obtain a one-sided lower conidence bound with nominal conidence level 1 − α, we use
v
˜
′(X, 1 − αcl) and choose 1 − αcl such that the CP is CP(θ̂, 1 − αcl) = 1 − α. Similarly,

to obtain a one-sided upper conidence bound with nominal conidence level 1 − α, we use

ṽ ′(X, 1 − αcu) and choose 1 − αcu such that the CP is CP(θ̂, 1 − αcu) = 1 − α.
In simple special cases it may be possible to do the calibration analytically or to compute

CPs directly. Frequently, however, simulation is required. For a given set of data and a speciied

model, a single simulation generally can be used to compute CP(θ̂, 1 − αcl) as a function of
1 − αcl . This provides a so-called calibration curve that can be used to determine the value of

1 − αcl that will give the desired 1 − α. If CP(θ̂, 1 − αcl) does not depend on the value of θ̂,
the calibrated procedure is exact. Otherwise, the procedure is approximate. A similar approach
is used to calibrate a one-sided upper conidence bound.

The ideas behind calibration and theory to support its use have been described in numerous
works, including Loh (1987, 1991) and Zheng and Loh (1995). Beran (1990) treats calibration
for prediction intervals. Calibration is closely related to the bootstrap/simulation methods in
Chapters 13 and 14.



AppendixC
Useful Probability Distributions

INTRODUCTION

This appendix provides notation, expressions for the density or the probability mass func-
tion (pmf), the cumulative distribution function, the quantiles, the mean, and the variance for
distributions that are important in setting different kinds of statistical intervals. Most of the
presentation is descriptive, but when needed we provide some technical details.

The topics discussed in this appendix are:

� The relationship between the symbols used in our formulas in this book and the arguments
used by the R software package (R Core Team, 2016) for the pdf/pmf, cdf, and quantile
functions (Section C.1).

� Information about important functions related to the probability distributions used in this
book, namely the cdf, pdf, and quantile functions (Section C.2).

� Continuous distributions used in the book (Section C.3).

� Discrete distributions used in the book (Section C.4).

C.1 PROBABILITY DISTRIBUTIONS AND R COMPUTATIONS

In some places in this book, we show how to do simple computations where the software
package R is used as a sophisticated calculator that can not only perform the usual scientiic hand
calculator functions (e.g., add, subtract, multiply, divide, log, antilog, and square root), but also
compute probabilities and quantiles of particular distributions used in constructing conidence
intervals (replacing tables that were utilized before the advent of personal computers). To aid
readers who are new to R, Table C.1 shows the relationship between the symbols used in our
formulas and the arguments used by R.

For each probability distribution in Table C.1, R provides functions to compute the pdf (or
pmf), cdf, the quantile function, and to generate random variates. The names of these functions

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Distribution R function Section
Distribution R root name parameters parameter names number

Normal norm μ, σ mean, std C.3.2
Lognormal lnorm μ, σ meanlog, sdlog C.3.2

Smallest extreme
value

sev† μ, σ location, scale C.3.2

Weibull weibull β, η shape, scale C.3.2

Largest extreme
value

lev† μ,σ location, scale C.3.2

Fréchet frechet† β, η shape, scale C.3.2
Logistic logis μ,σ location, scale C.3.2

Log-logistic llogis† μ, σ locationlog, scalelog C.3.2
Cauchy cauchy μ, σ location, scale C.3.2

Log-Cauchy lcauchy† μ, σ locationlog, scalelog C.3.2
Beta beta a, b shape1, shape2 C.3.3

Log-uniform lunif† a, b location1, location2 C.3.4
Gamma gamma a, b shape, rate C.3.5
Chi-square chisq r df C.3.6
Exponential exp λ rate C.3.7
Noncentral t t r, δ df, ncp C.3.9
Student’s t t r df C.3.10
Snedecor’s F f r1 , r2 df1, df2 C.3.11
Binomial binom n, π size, prob C.4.1

Beta-binomial betabinom† n, a, b size, shape1, shape2 C.4.2
Negative binomial nbinom n, π size, prob C.4.3
Poisson pois λ lambda C.4.4

Hypergeometric hyper2† n,D,N size, D, N C.4.5

Negative
hypergeometric

nhyper† k,D,N k, D, N C.4.6

Table C.1 Relationship between mathematical notation and R parameter names for probability

distributions. † Indicates functions that require R package StatInt.

are obtained by preixing the root name with the letters d, p, q, and r, respectively. The irst
argument for each of these ive functions indicates the point where the pdf (or pmf) is to
be evaluated (x), the point where the cdf is to be evaluated (q), the particular quantile (p,
0 ≤ p ≤ 1), and the number of random observations to generate (n ≥ 1). For example, using
the binomial distribution functions, R gives the following results:

> dbinom(x=5, size=20, prob=0.10)

[1] 0.03192136

> pbinom(q=5, size=20, prob=0.10)

[1] 0.9887469

> qbinom(p=0.50, size=20, prob=0.10)

[1] 2

> rbinom(n=4, size=20, prob=0.10)

[1] 0 3 1 2
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for dbinom(x = 5;n = 20, π = 0.10), pbinom(q = 5;n = 20, π = 0.10), qbinom(p =
0.50;n = 20, π = 0.10) and four random observations from theBINOM(n = 20, π = 0.10)
distribution. Functions in package StatInt are for distributions that either do not exist in basic
R (smallest and largest extreme value, log-logistic, log-Cauchy, log-uniform, beta-binomial,
and negative hypergeometric) or have been redeined to use our more standard parameterization
(hypergeometric).

C.2 IMPORTANT CHARACTERISTICS OF RANDOM VARIABLES

In this book we describe distributions for two distinct types of random variables: continuous
and discrete. The support of a random variable is the collection of values for which the random
variable has positive probability.

Continuous random variables used here have their support on a inite interval (e.g., the
UNIF(0, 1) distribution has support over the interval (0, 1)) or on an ininite interval (e.g., the
NORM(μ, σ) distribution has support over the entire real line).

Discrete random variables have support on countable sets. For example, the binomial dis-
tribution with n = 1 assigns positive probability to the points 0 and 1, while the POIS(λ)
distribution assigns positive probability to each nonnegative integer.

Next we deine some important functions and metrics associated with a random variable.

C.2.1 Density and Probability Mass Functions

A continuous and nonnegative function f(x;θ) is a density (pdf) for a continuous random
variable X if, for all real values between a and b (with a < b),

Pr(a < X ≤ b) =

∫ b

a

f(x;θ) dx,

where the vector θ contains the distribution parameters. A nonnegative function f(x;θ) is
a pmf for a discrete random variable X if f(xi ;θ) = Pr(X = xi) for each point xi in the
support of the distribution, where θ is the vector of distribution parameters.

C.2.2 Cumulative Distribution Function

For a continuous random variable X , the cumulative distribution function (cdf) is deined by

F (x;θ) = Pr(X ≤ x) =

∫ x

−∞
f(w;θ) dw, −∞ < x < ∞,

where the real-valued function f(w;θ) is nonnegative and continuous for all w. This deinition
implies that for all x the density f(x;θ) is the derivative of F (x;θ) with respect to x. The
cdf F (x;θ) is commonly called an absolutely continuous distribution, but we simply call it a
continuous distribution.

For a discrete random variable X, the cdf is deined by

F (x;θ) = Pr(X ≤ x) =
∑

x i ≤x

f(xi),

where the sum is over all the xi values in the support of the distribution that are less than
or equal to x. Then F (x;θ) is a step function that increases at each point in the support of
the distribution and that remains constant between adjacent points in the support. That is, if



426 USEFUL PROBABILITY DISTRIBUTIONS

xi < xi+1 are two adjacent points in the support of the distribution, F (x;θ) = F (xi ;θ) for
all x ∈ [xi, xi+1) and F (xi ;θ) < F (xi+1 ;θ).

C.2.3 Quantile Function

The quantile xp is the inverse of the cumulative distribution function. Formally, for 0 < p < 1,
the p quantile of the cdf F (x;θ) is deined as

xp = F−1(p;θ) = inf{x|p ≤ F (x;θ)}. (C.1)

For all practical purposes in this book, it sufices to interpret (C.1) as xp =
min{x|p ≤ F (x;θ)}. When F (x;θ) is continuous and strictly increasing as a function of
x, there is a unique value of xp such that F (xp ;θ) = p, or equivalently xp = F−1(p;θ). For
example, for the exponential distribution with rate parameter λ = 1, the distribution function is
F (x) = pexp(x) = 1 − exp(−x) for x > 0 (see Section C.3.7 for details on this distribution),
and the p quantile function of the cdf is xp = qexp(p) = − log(1 − p) for 0 < p < 1. Then
the 0.5 quantile (which is the median of the distribution) is x0.5 = − log(0.5) ≈ 0.6931. A
direct computation shows that pexp(0.6931) = 0.4999 ≈ 0.5, which veriies the computed
value for x0.5 .

When F (t;θ) is continuous but not strictly monotone increasing, or when F (x;θ) is dis-
crete, there may not be a unique value of x such that F (x;θ) = p. In such cases, xp is
the smallest of the x values with the property that F (x;θ) ≥ p. For example, suppose one
is interested in the p = 0.25 quantile, x0.25 , of the BINOM(n = 5, π = 0.5) distribution
(see Section C.4.1 for properties of this distribution). In this case, θ = (n, π) = (5, 0.5) and
F (x;θ) = pbinom(x; 5, 0.5). It can be veriied that 0.25 < pbinom(x; 5, 0.5) for x ≥ 2 and
0.25 > pbinom(x; 5, 0.5) for x < 2, which shows that x0.25 = qbinom(0.25; 5, 0.5) = 2.

For a continuous cdfF (x;θ), the quantile function (C.1) is useful in the generation of random
samples from F (x;θ). That is, to generate a random sample from F (x;θ), irst generate a
random sample from a UNIF(0, 1) distribution, say ui, i = 1, . . . , n. Then xi = F−1(ui ;θ),
i = 1, . . . , n, is a random sample from F (x;θ) (see Example D.2 for an explanation of this
result).

Behavior of quantiles under monotone transformations

The quantile function of a distribution has the important property of predictable behavior under
monotone increasing (or decreasing) transformations as follows. Suppose that X ∼ F (x) and
xα (where 0 < α < 1) is theα quantile ofF (x).Deine Y = h(X),where h(x) is a monotone
function, and let G(y) denote the cdf of Y. The following results hold:

1. For a continuous (or discrete) random variable X and a monotone increasing function
h(x), yα = h(xα) (i.e., the quantiles of G(y) are the corresponding quantiles of F (x)
transformed through h(x)). This result is explained by the fact thatG[h(xα)] = F (xα) ≥
α and G[h(x))] = F (x) < α for every x < xα .

2. For a continuous random variable X and a monotone decreasing function h(x), the
relationship between the quantiles is yα = h[x(1−α)]. This result is explained by the fact
that G[h(xα)] = 1 − F (xα) = 1 − α. As explained next, this result is not true when X
is a discrete random variable.

3. Consider a discrete random variable X and a monotone decreasing function h(x), and let
i be the observation index for the 1 − α quantile (i.e., x(1−α) = xi). Then

yα =

{
h(xi+1) if F (xi) = 1 − α

h(xi) = h[x(1−α)] otherwise,
(C.2)
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where xi+1 is the smallest point in the support of the distribution of X with the property
that F (xi+1) > 1 − α. There is always a point with this property when F (xi) = 1 − α
because limx→∞ F (x) = 1.

Suppose that F (xi) = 1 − α. Thus, because h(x) is decreasing, using (D.9) gives

G[h(xi+1)] = 1 − F (xi) = α.

This shows that h(xi+1) = yα . Note that yα < h(xi) because h(x) is a decreasing function
of x.

Now suppose that F (xi) > 1 − α. Then F (x) < 1 − α for x < xi . Consequently,

G[h(xi)] = 1 − lim
x↑x i

F (x) ≥ α,

G[h(xi+1)] = 1 − lim
x↑x i + 1

F (x) = 1 − F (xi) < α.
(C.3)

The two inequalities in (C.3) show that h(xi) is the α quantile of Y = h(X). The relationship
in (C.2) is used in (C.18) and (C.29) to determine the quantiles for the distribution of the
number of conforming units as a function of the quantiles of the number of nonconforming
units in binomial and hypergeometric distributions. These results were also needed to establish
the computational methods presented in Chapter 5.

Example C.1 Quantiles of a Monotone Decreasing Function. Consider the monotone
decreasing function h(x) = 4 − x, for 0 ≤ x ≤ 4. Suppose that X ∼ BINOM(4, 1/2) and
deine Y = h(X) = 4 − X. We show the computation of two quantiles α1 = 1/16 and
α2 = 1/2 for the distribution of Y.

Using the relationship (C.2)withα = α1 = 1/16,we have 1 − α1 = 15/16 and the quantile
function qbinom gives x(1−α1 ) = qbinom(1 − α1 ; 4, 1/2) = 3. This implies that xi = 3 and
xi+1 = 4. From the irst row in (C.2), y(1−α1 ) = y(1/16) = h(xi+1) = 4 − 4 = 0.

Now for the quantile α = α2 = 1/2, x(1−α2 ) = qbinom(1 − α2 , 4, 1/2) = 2. This implies
xi = 2 and pbinom(xi, 4, 1/2) = 0.6875 
= 1/2. Thus from the second row in (C.2), yα =
h(xi) = 4 − 2 = 2. In this example, Y ∼ BINOM(4, 1/2) and the quantile function of this
distribution gives qbinom(α1 , 4, 1/2) = 0 and qbinom(α2 , 4, 1/2) = 2, which veriies the
computations done using (C.2).

C.3 CONTINUOUS DISTRIBUTIONS

C.3.1 Location-Scale and Log-Location-Scale-Distributions

The location-scale and log-location-scale families of distributions contain the most impor-
tant continuous probability distributions used in practical applications, including the normal,
lognormal, and Weibull distributions.

Location-scale distributions

A random variable X has a location-scale distribution with location parameter µ and scale
parameter σ if its pdf and cdf are given by

f(x;μ, σ) =
1

σ
φ
(x − µ

σ

)
and F (x;μ, σ) = Φ

(x − μ

σ

)
. (C.4)

Here −∞ < μ < ∞, σ > 0, −∞ < x < ∞, φ(z) is a continuous pdf that does not depend
on unknown parameters and Φ(z) is the cdf corresponding to φ(z). Note that the density
f(x;µ,σ) is completely determined by φ(z) and the parameters µ and σ. Similarly, F (x;μ, σ)
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pdf cdf Quantile

Distribution φ(z) Φ(z) Φ−1(p)

NORM φnorm (z) =
exp(−z2/2)√

2π
Φnorm (z) =

∫ z

−∞ φnorm (w) dw Φ−1
norm (p)

SEV φsev(z) = exp[z − exp(z)] Φsev(z) = 1 − exp[− exp(z)] log[− log(1 − p)]

LEV φlev(z) = exp[−z − exp(−z)] Φlev(z) = exp[− exp(−z)] − log[− log(p)]

LOGIS φlogis(z) =
exp(z)

[1 + exp(z)]2
Φlogis(z) =

exp(z)

1 + exp(z)
log[p/(1 − p)]

CAUCHY φcauchy(z) =
1

π(1 + z2)
Φcauchy(z) =

1

2
+

1

π
arctan(z) tan

[
π

(
p − 1

2

)]

Table C.2 Standardized pdfs, cdfs, and quantile functions for commonly used location-scale and

log-location-scale distributions.

is completely determined by Φ(z), µ, and σ. From the cdf in (C.4), the quantile function for
the distribution F (x;μ, σ) is xp = μ + σΦ−1(p), where Φ−1(p) is the p quantile of Φ(z).

The location-scale cdf representation in (C.4) leads to certain general properties of the
location-scale family. In particular, let Z = (X − μ)/σ. Then

E(X) = μ + σE(Z) and Var(X) = σ2Var(Z).

Note that E(X) is inite only when E(Z) is inite. Similarly, Var(X) is inite only when
Var(Z) is inite. Table C.2 lists ive standardized pdfs φ(z) that characterize ive location-scale
distributions used in this book. In Section C.3.2, we summarize general properties of these ive
distributions.

Log-location-scale distributions

For each random variable X that has a location-scale distribution, there is a corresponding
log-location-scale random variable deined by T = exp(X). Using transformation of random
variables, as explained in Section D.1, the pdf and cdf of T are

f(t) =
1

σt
φ

[
log(t) − µ

σ

]
and F (t) = Φ

[
log(t) − μ

σ

]
, (C.5)

where t > 0. The quantile function for F (t) is tp = exp[μ + σΦ−1(p)].
The ive corresponding log-location-scale pdfs related to the location-scale distributions

derived from Table C.2 are the lognormal distribution (using φnorm(z)), Weibull distribution
(using φsev(z)), Fréchet distribution (using φlev(z)), log-logistic distribution (using φlogis(z)),
and log-Cauchy distribution (using φcauchy(z)).

C.3.2 Examples of Location-Scale and Log-Location-Scale Distributions

In this section we describe the ive location-scale and the corresponding log-location-scale
distributions derived from the standardized distributions in Table C.2.
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Normal distribution

A random variable that has a normal distribution, denoted by X ∼ NORM(μ, σ), is a member
of the location-scale family and has a pdf dnorm(x;μ, σ) and cdf pnorm(x;μ, σ). The expres-
sions for the pdf and cdf are obtained by replacing the functions φ(z) and Φ(z) in (C.4) with
φnorm(z) and Φnorm(z) from Table C.2, respectively. That is,

dnorm(x;µ,σ) =
1

σ
φnorm

(x − µ

σ

)
and pnorm(x;μ, σ) = Φnorm

(x − μ

σ

)
.

The normal distribution quantile function is qnorm(p;μ, σ) = μ + σΦ−1
norm(p), where

Φ−1
norm(p) is given in Table C.2. The mean and variance of the NORM(μ, σ) distribution

are E(X) = μ and Var(X) = σ2 .
The normal distribution cdf has the following important symmetry relationship. For any

value x,

pnorm(μ + x;μ, σ) + pnorm(μ − x;μ, σ) = 1. (C.6)

Letting μ = 0 and σ = 1 in (C.6) gives

Φnorm(z) = 1 − Φnorm(−z). (C.7)

The latter result is useful when tabulating the cdf of the NORM(0, 1) distribution because
it sufices to tabulate Φnorm(z) for z ≤ 0. The values of Φnorm(z) for z > 0 are obtained
from (C.7). The relationship in (C.7) also implies that the quantiles of the NORM(0, 1)
distribution are symmetric in the sense that z(p) = −z(1−p). Thus in tabulating the quantiles of
the NORM(0, 1) distribution, it sufices to tabulate z(p) for 0 < p ≤ 0.5.

Lognormal distribution

A random variable that has a lognormal distribution, denoted by T ∼ LNORM(μ, σ), has the
property that log(T ) ∼ NORM(μ, σ) and is thus a member of the log-location-scale family.
Letdlnorm(t;μ, σ) andplnorm(t;μ, σ) denote the pdf and cdf of the distribution, respectively.
The expressions for the pdf and cdf are obtained by replacing the functions φ(z) and Φ(z) in
(C.5) with φnorm(z) and Φnorm(z) from Table C.2, respectively. That is,

dlnorm(t;µ,σ) =
1

σt
φnorm

[
log(t) − µ

σ

]
and plnorm(t;μ, σ) = Φnorm

[
log(t) − μ

σ

]
,

where t > 0. In this case,μ is the mean of log(T ), exp(μ) is the median (and a scale parameter)
of the distribution of T, σ is a shape parameter, and σ2 is the variance of log(T ).

The lognormal distribution quantile function is qlnorm(p;μ, σ) = exp[μ + σΦ−1
norm(p)].

The mean and variance of the LNORM(μ, σ) distribution are

E(T ) = exp

(
μ +

σ2

2

)
and Var(T ) = exp(2μ + σ2)

[
exp(σ2) − 1

]
.

Smallest extreme value distribution

A random variable that has a smallest extreme value distribution, denoted by X ∼ SEV(μ, σ),
is a member of the location-scale family and has a pdf and cdf given by dsev(x;μ, σ) and
psev(x;μ, σ), respectively. The expressions for the pdf and cdf are obtained by replacing the
functions φ(z) and Φ(z) in (C.4) with φsev(z) and Φsev(z) from Table C.2, respectively. The
quantile function of the SEV(µ,σ) distribution is qsev(p;μ, σ) = μ + σΦ−1

sev(p),where Φ−1
sev
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is given in Table C.2. The mean and variance of the SEV(μ, σ) distribution are

E(X) = μ − σγ and Var(X) =
σ2π2

6
,

where γ ≈ 0.5772 is Euler’s constant.

Weibull distribution

A random variable that has a Weibull distribution, denoted by T ∼ WEIBULL(η,β), has
the property that log(T ) ∼ SEV(μ, σ), where μ = log(η) and σ = 1/β. Thus, the Weibull
distribution is a member of the log-location-scale family and replacing the functions φ(z) and
Φ(z) with φsev(z) and Φsev(z), respectively, from Table C.2 in (C.5) gives the Weibull pdf and
cdf as

dweibull(t; η,β) =
1

σt
φsev

[
log(t) − µ

σ

]
=

(
β

t

)(
t

η

)β

exp

[
−

(
t

η

)β
]
,

pweibull(t; η,β) = Φsev

[
log(t) − μ

σ

]
= 1 − exp

[
−

(
t

η

)β
]
,

(C.8)

where η > 0 is a scale parameter, β > 0 is a shape parameter, and t > 0.
Note that (C.8) gives two different parameterizations for the Weibull distribution. The (η,β)

parameterization is common in applications and the (μ, σ) parameterization is useful for graphi-
cal purposes, regression models, and theoretical work (seeMeeker and Escobar, 1998, Chapters
4 and 6, for details).

The quantile function of the Weibull distribution is

qweibull(p; η,β) = exp
[
μ + σΦ−1

sev(p)
]

= η[− log(1 − p)]
1/β .

The mean and variance of the WEIBULL(η,β) distribution are

E(T ) = ηΓ

(
1 +

1

β

)
and Var(T ) = η2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
,

where Γ(z) is the gamma function deined in Appendix A.

Largest extreme value distribution

A random variable that has a largest extreme value distribution, denoted by X ∼ LEV(μ, σ),
is a member of the location-scale family and has a pdf and cdf given by dlev(x;μ, σ) and
plev(x;μ, σ), respectively. The expressions for the pdf and cdf are obtained by replacing the
functions φ(z) and Φ(z) in (C.4) with φlev(z) and Φlev(z) from Table C.2, respectively. The
quantile function for this distribution is qlev(p;µ,σ) = μ + σΦ−1

lev(p), where the function
Φ−1

lev(p) is given in Table C.2. The mean and variance of the LEV(μ, σ) distribution are

E(X) = μ + σγ and Var(X) =
σ2π2

6
,

where γ ≈ 0.5772 is Euler’s constant.
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Fréchet distribution

A random variable that has a Fréchet distribution, denoted by T ∼ FREC(η,β), has the
property that log(T ) ∼ LEV(μ, σ), where μ = log(η) and σ = 1/β. Thus, T is a member of
the log-location-scale family with pdf dfrechet(t; η,β) and cdf pfrechet(t; η,β). Using
(C.5) and replacing the functions φ(z) and Φ(z) with φlev(z) and Φlev(z), respectively, from
Table C.2 gives

dfrechet(t; η,β) =
1

σt
φlev

[
log(t) − µ

σ

]
=

(
β

t

)(η

t

)β

exp

[
−

(η

t

)β
]
,

pfrechet(t; η,β) = Φlev

[
log(t) − μ

σ

]
= exp

[
−

(η

t

)β
]
,

(C.9)

where η > 0 is a scale parameter, β > 0 is a shape parameter, and t > 0.
Note that (C.9) gives two equivalent parameterizations for the Fréchet distribution. The

(μ, σ) parameterization is useful for graphical purposes, regression models, and theoretical
work. The (η,β) parameterization is more common in other applications.

The p quantile of the Fréchet distribution is

qfrechet(p; η,β) = exp
[
μ + σΦ−1

lev(p)
]

=
η

[− log(p)]
1/β

.

The mean and variance of the FREC(η,β) distribution are

E(T ) = ηΓ

(
1 − 1

β

)
and Var(T ) = η2

[
Γ

(
1 − 2

β

)
− Γ2

(
1 − 1

β

)]
,

where E(T ) is inite if β > 1 and Var(T ) is inite if β > 2. The gamma function Γ(z) is
deined in Appendix A.

Logistic distribution

A random variable that has a logistic distribution, denoted by X ∼ LOGIS(μ, σ), is a
member of the location-scale family and has a pdf and cdf given by dlogis(x;μ, σ) and
plogis(x;μ, σ), respectively. The expressions for the pdf and cdf are obtained by replacing
the functions φ(z) and Φ(z) in (C.4) with φlogis(z) and Φlogis(z) from Table C.2, respec-
tively. The logistic distribution quantile function is qlogis(x;µ,σ) = μ + σΦ−1

logis(p), where

Φ−1
logis(p) is given in Table C.2. The mean and variance of the LOGIS(μ, σ) distribution are

E(X) = μ and Var(X) = σ2π2/3.

Log-logistic distribution

A random variable that has a log-logistic distribution, denoted by T ∼ LLOGIS(μ, σ), has
property that log(T ) ∼ LOGIS(μ, σ) and is thus amember of the log-location-scale family. Let
dllogis(t;μ, σ) and pllogis(t;μ, σ) denote, respectively, the pdf and cdf of the distribution.
The expressions for the pdf and cdf are obtained by replacing the functions φ(z) and Φ(z) in
(C.5) with φlogis(z) and Φlogis(z) from Table C.2, respectively. The log-logistic distribution
quantile function is

qllogis(p;µ,σ) = exp
[
μ + σΦ−1

logis(p)
]

= exp(μ)

(
p

1 − p

)σ

,
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where Φ−1
logis(z) is given in Table C.2. For this distribution, exp(μ) is the median of the

distribution (and a scale parameter) and σ is a shape parameter. The mean and variance of the
LLOGIS(μ, σ) distribution are

E(T ) = exp(μ)Γ(1 + σ)Γ(1 − σ),

Var(T ) = exp(2μ)
[
Γ(1 + 2σ)Γ(1 − 2σ) − Γ2(1 + σ)Γ2(1 − σ)

]
,

where Γ(z) is the gamma function deined in Appendix A. Note that E(T ) is inite only if
0 < σ < 1 and Var(T ) is inite only if 0 < σ < 1/2.

Cauchy distribution

A random variable that has a Cauchy distribution, denoted by X ∼ CAUCHY(μ, σ), is
a member of the location-scale family and has a pdf given by dcauchy(x;μ, σ) and cdf
pcauchy(x;μ, σ). The expressions for the pdf and cdf are obtained by replacing the func-
tions φ(z) and Φ(z) in (C.4) with φcauchy(z) and Φcauchy(z) from Table C.2, respectively.
The Cauchy distribution quantile function is qcauchy(p;µ,σ) = μ + σΦ−1

cauchy(p), where

Φ−1
cauchy(p) is given in Table C.2. That is,

xp = qcauchy(p;μ, σ) = μ + σ tan

[
π

(
p − 1

2

)]
,

where 0 < p < 1 and tan(z) is the tangent function for the angle z in radians. In particular,
μ − σ, μ, and μ + σ are the irst, second, and third quartiles of the distribution, respectively.
That is, pcauchy(μ − σ;μ, σ) = 0.25, pcauchy(μ;μ, σ) = 0.5, and pcauchy(σ;μ + σ) =
0.75.

The Cauchy distribution does not have a inite mean or variance.When the location parameter
μ is equal to 0 and the scale parameter σ is equal to 1, the Cauchy distribution is a Student’s
t-distribution with 1 degrees of freedom (see Section C.3.10 for more details).

Log-Cauchy distribution

A random variable that has a log-Cauchy distribution, denoted by T ∼ LCAUCHY(μ, σ), has
the property that log(T ) ∼ CAUCHY(μ, σ) and is thus a member of the log-location-scale
family. Letdlcauchy(t;μ, σ) and plcauchy(t;μ, σ) denote the pdf and cdf of the distribution,
respectively. The expressions for the pdf and cdf of the distribution are obtained by replacing the
functions φ(z) and Φ(z) in (C.5) with φcauchy(z) and Φcauchy(z) from Table C.2, respectively.
For this distribution, exp(µ) is themedian of the distribution andσ is a shape parameter. The log-
Cauchy distribution quantile function is qlcauchy(p;μ, σ) = exp

[
μ + σΦ−1

cauchy(p)
]
, where

Φ−1
cauchy(z) is given in Table C.2. The log-Cauchy distribution does not have a inite mean or

variance.

C.3.3 Beta Distribution

The pdf and cdf of the beta random variable, denoted by X ∼ BETA(a, b), are

dbeta(x; a, b)=
1

B(a, b)
xa−1(1−x)b−1 and pbeta(x; a, b)=

∫ x

0

dbeta(w; a, b) dw,

where a > 0 and b > 0 are shape parameters, 0 < x < 1, and B(a, b) is the beta function
deined in Appendix A. The beta distribution quantile function qbeta(p; a, b) does not have a
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closed-form expression. The mean and variance of the BETA(a, b) distribution are

E(X) =
a

a + b
and Var(X) =

ab

(a + b)2(a + b + 1)
.

The UNIF(0, 1) is the special case of the beta distribution when a = b = 1.

Monotone decreasing behavior of a single parameter beta distribution.

Consider the special case of a single-parameter beta cdf given by pbeta(x, a, n − a + 1),
where a > 0 is a shape parameter and n is a given positive quantity. This cdf is a monotone
decreasing function of a in the range 0 < a < n + 1. Let δ be such that 0 < δ < n + 1 − a.
Direct computations give

dbeta(x; a + δ, n + 1 − a − δ)

dbeta(x; a, n + 1 − a)
=

Γ(a)Γ(n − a + 1)

Γ(a + δ)Γ(n − a − δ + 1)

xa+δ−1(1 − x)n−a−δ

xa−1(1 − x)n−a

=
Γ(a)Γ(n − a + 1)

Γ(a + δ)Γ(n − a − δ + 1)

( x

1 − x

)δ

. (C.10)

Because (C.10) is a monotone increasing function of x for 0 < x < 1, for ixed x and n the
cdf pbeta(x; a, n − a + 1) is a monotone decreasing function of a (see details in Lehmann,
1986, pages 85). Equivalently, for ixed p and n, qbeta(p; a, n − a + 1) is increasing in a.
This result is important, for example, in determining the smallest sample size to have a positive
probability of successful demonstration test for a binomial parameter, as done in Section I.2.2.

Beta probabilities and quantiles as function of Snedecor’s F -distribution
probabilities and quantiles

Relationships to compute beta quantiles and probabilities as a function of Snedecor’s F -
distribution probabilities and quantiles are:

pbeta(x; a, b) = pf

[
bx

a(1 − x)
; 2a, 2b

]
= 1 − pf

[
a(1 − x)

bx
; 2b, 2a

]
,

qbeta(p; a, b) =
a

a + b/qf(p; 2a, 2b)
=

a

a + b qf(1 − p; 2b, 2a)
,

(C.11)

where 0 ≤ x < 1 and qf(γ; r1 , r2) = F(γ ; r1 , r2 ) is the γ quantile for Snedecor’sF -distribution
with (r1 , r2) degrees of freedom (see Example D.3 for details on these relationships). For
example, using R as a calculator gives

> qbeta(p=0.3, shape1=2, shape2=3)

[1] 0.2723839

> 2/(2+3*qf(p=1-0.3, df1=2*3, df2=2*2))

[1] 0.2723839

> 2/(2+3/qf(p=0.3, df1=2*2, df2=2*3))

[1] 0.2723839

> pbeta(q=0.27238, shape1=2, shape2=3)

[1] 0.2999932

> pf((q=3/2)*0.27238/(1-0.27238), df1=2*2, df2=2*3)

[1] 0.2999932
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The relationship between the beta quantiles and Snedecor’s F -distribution quantiles in (C.11)
is used in Sections 6.2.2 and 6.2.5 to express, respectively, the conservative and the Jeffreys
conidence interval methods for the binomial parameter π in terms of F -distribution quantiles.

C.3.4 Log-Uniform Distribution

A random variable that has a log-uniform distribution, denoted by T ∼ LUNIF(a, b), has the
property that log(T ) ∼ UNIF[log(a), log(b)]. Thus T has pdf and cdf given by

dlunif(t; a, b) =
1

t [log(b) − log(a)]
and plunif(t; a, b) =

log(t) − log(a)

log(b) − log(a)
,

where 0 < a < b and a ≤ t ≤ b. The quantile function of the distribution is tp =
qlunif(p; a, b) = a(b/a)p , where 0 < p < 1. The mean and variance of the LUNIF(a, b)
distribution are

E(T ) =
b − a

log(b) − log(a)
,

Var(T ) =
(b2 − a2)[log(b) − log(a)] − 2 (b − a)2

2 [log(b) − log(a)]
2 .

C.3.5 Gamma Distribution

The pdf and cdf for the gamma random variable, denoted by T ∼ GAMMA(a, b), are

dgamma(t; a, b) =
bata−1

Γ(a)
exp(−bt) and pgamma(t; a, b) =

∫ t

0

dgamma(w; a, b) dw,

where a > 0 is a shape parameter, b > 0 is a rate parameter, t > 0, and Γ(a) is the gamma
function deined inAppendixA. The gamma distribution quantile functionqgamma(p; a, b) does
not have a closed-form expression. The mean and variance of the GAMMA(a, b) distribution
are E(T ) = a/b and Var(T ) = a/b2 .

Sometimes the gamma distribution is parameterized using a scale parameter η = 1/b. In this
case, to obtain the pdf, cdf, quantile function, mean, and variance of the distribution, replace b
with 1/η in the corresponding expressions above.

C.3.6 Chi-Square Distribution

A chi-square distribution with r degrees of freedom, denoted by χ2(r), is a special case of the
GAMMA(a, b) distribution where a = r/2 and b = 1/2. Observe that r can take noninteger
values. Using the expressions for the GAMMA(a, b) distribution with a = r/2 and b = 1/2
gives the chi-square pdf and cdf

dchisq(t; r) =
tr/2−1

2r/2Γ(r/2)
exp

(
− t

2

)
and pchisq(t; r) =

∫ t

0

dchisq(w; r) dw,

where Γ(z) is the gamma function deined in Appendix A and t > 0. The chi-square quantile
function qchisq(p; r) = χ2

(p ;r) does not have a closed-form expression. A chi-square random

variable with r degrees of freedom is denoted by X2
(r). The mean and variance of the χ2(r)

distribution are E
(
X2

(r)

)
= r and Var

(
X2

(r)

)
= 2r.
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C.3.7 Exponential Distribution

An exponential random variable, denoted by T ∼ EXP(λ), is a GAMMA(a, λ) with a = 1.
Then using the GAMMA(1, λ) pdf and cdf expressions gives the exponential pdf and cdf as

dexp(t;λ) = λ exp(−λt) and pexp(t;λ) = 1 − exp(−λt),

where λ > 0 is a rate parameter and t > 0. The exponential distribution quantile function
is qexp(p;λ) = −(1/λ) log(1 − p). The mean and variance of the EXP(λ) distribution are
E(T ) = 1/λ and Var(T ) = 1/λ2 .

A common alternative parameterization of the exponential distribution is in terms of the scale
parameter θ = 1/λ which is also the mean of the distribution. In this case, the pdf, cdf, and
quantile functions are obtained from the expressions given above with λ = 1/θ. In particular,
F (t; θ) = 1 − exp(−t/θ).This parameterization shows that the exponential distribution is also
aWeibull distribution with shape parameter β = 1 and scale parameter θ. This parameterization
in terms of the mean parameter is used in Section 12.3 to illustrate likelihood-based conidence
intervals for a single-parameter distribution.

C.3.8 Generalized Gamma Distribution

The generalized gamma (GNG) distribution (which has also been known as the extended
generalized gamma distribution) has three parameters and contains the Weibull, lognormal,
Fréchet, and gamma distributions as special cases. The GNG cdf is

Pr(T ≤ t) = F (t;μ, σ,λ) =

⎧
⎪⎨

⎪⎩

Φlg[λω + log(λ−2);λ−2 ] if λ > 0

Φnorm(ω) if λ = 0

1 − Φlg[λω + log(λ−2);λ−2 ] if λ < 0,

(C.12)

where t > 0, ω = [log(t) − μ]/σ, −∞ < μ < ∞, −∞ < λ < ∞, σ > 0, and

Φlg(z; a) = ΓI[exp(z); a]

with a > 0 and

ΓI(v; a) =

∫ v

0
xa−1 exp(−x) dx

Γ(a)
, v > 0,

where Φlg(z; a) is known as the incomplete gamma function. Inverting the cdf in (C.12) gives
the p quantile of the GNG distribution,

tp = exp[μ + σ × ω(p;λ)], (C.13)

where ω(p;λ) is the p quantile of [log(T ) − μ]/σ given by

ω(p;λ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1

λ

)
log

[
λ2Γ−1

I (p;λ−2)
]

if λ > 0

Φ−1
norm(p) if λ = 0

(
1

λ

)
log

[
λ2Γ−1

I (1 − p;λ−2)
]

if λ < 0.
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From (C.12), we conclude that exp(μ) is a scale parameter and σ andλ are shape parameters.
For any given ixed value of λ, the GNG distribution is a log-location-scale distribution. The
GNG distribution has the following important special cases:

� If λ = 1, T has a Weibull distribution with η = exp(μ) and β = 1/σ.

� If λ = 0, T has a lognormal distribution with parameters μ and σ.

� If λ = −1, T has a Fréchet distribution ofmaxima (which is equivalent to the distribution
of the reciprocal of a Weibull random variable).

For more information about the GNG distribution, see Meeker and Escobar (1998, Section 5.4).

C.3.9 Noncentral t-Distribution

A random variable T with a noncentral t-distribution is denoted by T ∼ t(r, δ) and is deined
by the ratio

T =
Z + δ√
X2

(r)/r
,

where Z ∼ NORM(0, 1) and X2
(r) ∼ χ2(r) are independent random variables, r is a positive

real value, and δ is a real value. The pdf of this distribution (see Example D.4 for a detailed
derivation) is

dt(t; r, δ) =
rr/2 exp(−rδ2/[2(r + t2)])√

π Γ(r/2) (r + t2)(r+1)/2

∫ ∞

0

z(r−1)/2 exp

[
−

(
√

z − tδ√
2(r + t2)

)2]
dz,

where −∞ < t < ∞. There are no simple formulas for the noncentral t-distribution pdf, cdf,
or quantile function. The mean and variance of the noncentral t-distribution are

E(T ) =
δ Γ[(r − 1)/2]

Γ(r/2)

√
r

2
and Var(T ) =

(1 + δ2) r

r − 2
− [E(T )]2 .

Note that E(T ) is inite only if r > 1 and Var(T ) is inite only if r > 2. Some important
properties of the noncentral t-distribution are as follows.

A symmetry relationship of the noncentral t-distribution cdf

For given r > 0 and real-valued quantity δ, pt(−t; r,−δ) + pt(t; r, δ) = 1 for any value t.
This is a consequence of the fact that if T ∼ t(r, δ) then W = −T ∼ t(r,−δ). Thus, using the
transformation of variables W = g(T ) = −T and (D.3) gives Pr(W ≤ w) = 1 − Pr(T ≤
−w). That is, pt(w; r;−δ) = 1 − pt(−w; r, δ). Equivalently, with w = −t,

pt(t; r, δ) + pt(−t; r,−δ) = 1, (C.14)

which is the proposed result. This result is useful in establishing an important property of the
normTailCI function deined in (E.9). A direct consequence of (C.14) is that the quantiles
of the distributions pt(t; r, δ) and pt(w; r,−δ) are related through t(γ ;r,δ) = −t(1−γ ;r,−δ), for
every 0 < γ < 1 and real value δ. In particular, if z(p) is the p quantile of a NORM(0, 1)
distribution and n > 1 is a given sample size, we have

t(γ ;n−1,
√

n z( p ) ) = −t(1−γ ;n−1,
√

n z( 1−p ) ). (C.15)
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This result is useful when tabulating the factors in Tables J.7a–J.7d because it implies g′
(γ ;p,n) =

−g′
(1−γ ;1−p,n) and thus it sufices to tabulate the factors for 0 < p < 0.5. The factors for

0.5 ≤ p < 1 are obtained using the relationship in (C.15).

The noncentral t-distribution cdf is a monotone decreasing function of δ

pt(t; r, δ) is monotone decreasing function of δ. This monotone decreasing property follows
from the result given in Lehmann (1986, page 295). This result is useful in obtaining pivotal-
based conidence intervals for tail probabilities of a normal distribution in Sections E.3.4 and 4.5.

C.3.10 Student’s t-Distribution

Student’s t-distribution is a special case of the noncentral t-distribution when the noncentrality
parameter is equal to zero (i.e., δ = 0). Using the convention of omitting the noncentrality
parameter δ when this parameter is equal to zero, Student’s t-distribution is denoted by the
simpler notation T ∼ t(r). The pdf, mean, and variance of Student’s t-distribution are obtained
by substituting δ = 0 into the corresponding expressions for the noncentral t-distribution. This
gives

dt(t; r) =
Γ[(r + 1)/2]

Γ(r/2)

1√
rπ

1

(1 + t2/r)
(r+1)/2

, −∞ < t < ∞,

E(T ) = 0 for r > 1, and Var(T ) = r/(r − 2) for r > 2. The pdf, cdf, and quantile functions
of Student’s t-distribution are denoted by dt(t; r), pt(t; r), and qt(p; r) = t(p ;r) , respectively.
Because of the symmetry of the distribution, the quantiles of the distribution follow the relation-
ship qt(p; r) = −qt(1 − p; r). This is useful because most tables of Student’s t-distribution
quantiles have entries only for values of p ≥ 0.5.

When r = 1, Student’s t-distribution is known as the standardized Cauchy distribution (see
Section C.3.2 for details about the Cauchy distribution).

C.3.11 Snedecor’s F -Distribution

A random variable X that has Snedecor’s F -distribution with (r1 , r2) degrees of freedom,
denoted byX ∼ F (r1 , r2), is deined by the ratioX = (X2

(r1 )/r1)/(X2
(r2 )/r2),whereX2

(r1 ) ∼
χ2(r1) andX2

(r2 ) ∼ χ2(r2) are independent random variables. Using transformation of random

variables, as explained in Section D.1, gives the following pdf and cdf for X:

df(x; r1 , r2) =
1

B(r1/2, r2/2)

(
r1

r2

)r1 /2
x(r1 −2)/2

[1 + (r1/r2)x](r1 +r2 )/2
,

pf(x; r1 , r2) =

∫ x

0

df(w; r1 , r2) dw,

where r1 > 0, r2 > 0, B(a, b) is the beta function deined in Appendix A, and x ≥ 0.
The Snedecor’s F -distribution quantile function qf(p; r1 , r2) = F(p ;r1 ,r2 ) does not have a

closed-form expression. The mean and variance of the F (r1 , r2) distribution are

E(X) =
r2

r2 − 2
and Var(X) = 2

(
r2

r2 − 2

)2
(r1 + r2 − 2)

r1(r2 − 4)
.

Note that E(X) is inite if r2 > 2 and Var(X) is inite if r2 > 4.
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Snedecor’s F -distribution probabilities and quantiles as a function of beta
probabilities and quantiles

Relationships to compute Snedecor’s F -distribution probabilities and quantiles as a function of
beta probabilities and quantiles are:

pf(x; r1 , r2) = pbeta[r1 x/(r2 + r1x); r1/2, r2/2],

qf(p; r1 , r2) =
r2 qbeta(p; r1/2, r2/2)

r1 [1 − qbeta(p; r1/2, r2/2)]
,

where 0 ≤ x < ∞ and qbeta(γ; a, b) is the γ quantile for a BETA(a, b) (see Example D.3
for details about these relationships).

A symmetry property of Snedecor’s F -distribution cdf

The relationship

qf(p; r1 , r2) = 1/qf(1 − p; r2 , r1)

is useful because most available tables for F -distribution quantiles contain entries only for
p ≥ 0.50.

C.3.12 Scale Half-Cauchy Distribution

A scale half-Cauchy distribution is related to a CAUCHY(0, σ) as follows. If X ∼
CAUCHY(0, σ) then H = |X| has a scale half-Cauchy distribution, which is denoted by
H ∼ HCAUCHY(σ). This distribution is also known as a folded-CAUCHY distribution. The
pdf and cdf of scale half-Cauchy are

dhcauchy(h;σ) = 2 dcauchy(h; 0, σ) and phcauchy(h;σ) = 2 pcauchy(h; 0, σ) − 1,

where σ is a scale parameter and h ≥ 0. The quantiles for the HCAUCHY(σ) distribution are

hp = qhcauchy(p;σ) = qcauchy[(1 + p)/2; 0, σ] = σ tan
(πp

2

)
.

Note that σ is the median of the HCAUCHY(σ) distribution (i.e., h0.5 = σ). The scale half-
Cauchy distribution does not have a inite mean or variance. The HCAUCHY(σ) distribution
is used in Chapter 18 to specify a diffuse prior for a random effect parameter.

C.4 DISCRETE DISTRIBUTIONS

C.4.1 Binomial Distribution

A binomial random variable, denoted by X ∼ BINOM(n, π), arises as the number of non-
conforming units in n independent binary trials, when at each trial the probability of observing
a nonconforming unit is π. The pmf and cdf for the binomial distribution are

dbinom(x;n, π)=
n!

x! (n−x)!
πx(1−π)n−x and pbinom(x;n, π)=

x∑

i=0

dbinom(i;n, π),

(C.16)

where n is a positive integer, 0 ≤ π ≤ 1, and x is nonnegative integer such that 0 ≤ x ≤ n.



DISCRETE DISTRIBUTIONS 439

The binomial quantile function qbinom(p, n,π) does not have a closed-form expression.
The mean and variance of the BINOM(n, π) distribution are E(X) = nπ and Var(X) =
nπ(1 − π).

The distribution of the number of conforming units in a random sample

IfX ∼ BINOM(n, π) then Y = (n − X) ∼ BINOM(n, 1 − π). This result follows directly
from switching the role of the conforming and nonconforming units. Then Y is the number of
conforming units in a sample of sizenwhen at each trial the probability of observing a conform-
ing unit is 1 − π. From the deinition of the binomial distribution, Y ∼ BINOM(n, 1 − π).
Because Y = n − X, we can obtain the cdf of Y from its own distribution (i.e., Pr(Y ≤
y) = pbinom(y;n, 1 − π)) or as a function of the distribution of X (i.e., Pr(Y ≤ y) =
1 − pbinom(n − y − 1;n, π)). These two equivalent expressions for Pr(Y ≤ y) imply the
identity

pbinom(y;n, 1 − π) = 1 − pbinom(n − y − 1;n, π), (C.17)

where y is a nonnegative integer and y ≤ n. This relationship is used in (5.4) to obtain a simple
expression for the distribution-free coverage probability of a lower conidence bound for a
distribution quantile.

Also, using (C.2), the quantiles of Y and X are related as follows:

yα =

{
n − x(1−α) − 1 if pbinom(x(1−α);n,π) = 1 − α

n − x(1−α) otherwise.
(C.18)

The binomial distribution cdf as a function of the beta distribution cdf

Two relationships to compute binomial probabilities using beta probabilities are

Pr(X ≤ x;n,π) = pbinom(x;n, π) = 1 − pbeta(π;x + 1, n − x),

Pr(X ≥ x;n, π) = 1 − pbinom(x − 1;n, π) = pbeta(π;x, n − x + 1),
(C.19)

where x = 0, 1, . . . , n. These beta probability expressions are particularly useful to compute
binomial probabilities when n is large. Note that, by continuity, pbeta(π;n + 1, 0) = 0 and
pbeta(π; 0, n + 1) = 1. For the proof of (C.19) see Arnold et al. (2008, page 13). The relation-
ships in (C.19) are used in Section G.2 to express the coverage probabilities of distribution-free
conidence intervals and bounds for a quantile in terms of binomial probabilities.

The binomial distribution cdf as a function of Snedecor’s F -distribution cdf

The relationship

pbinom(x;n, π) = pf

[
1 − π

kπ
; 2(n − x), 2(x + 1)

]
,

shows that binomial distribution cdf values can be expressed a function of Snedecor’s F -
distribution cdf values, where k = (n − x)/(x + 1) andx = 0, 1, . . . , n − 1.This relationship
follows from (C.19) and (C.11).
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The binomial distribution cdf is a monotone decreasing function of π

Taking derivatives with respect to π on both sides of the cdf relationship in (C.19) gives

d

dπ
pbinom(x;n, π) =

d

dπ
[1 − pbeta(π;x + 1, n − x)]

= − d

dπ
pbeta(π;x + 1, n − x)

= −dbeta(π;x + 1, n − x) < 0. (C.20)

This shows that the binomial cdf pbinom(x;n, π) is a decreasing function of the probability
parameter π. This implies that for ixed p and n, the quantile function qbinom(p;n, π) is
nondecreasing in π. The result in (C.20) is used in Section 6.4 to determine a conidence
interval for the probability that the number of nonconforming units in a sample is less than or
equal to (or greater than) a speciied number.

The binomial distribution cdf is a nonincreasing function of n

Directly from (C.16),

dbinom(x;n + 1, π)

dbinom(x;n, π)
=

⎧
⎨

⎩

n + 1

n + 1 − x
× (1 − π) if 0 ≤ x ≤ n,

∞ if x = n + 1.

Because this ratio ismonotone increasing inx, the binomial pmf dbinom(x;n, π) is amonotone
increasing function of x. This implies that the binomial cdf pbinom(x;n, π) is nonincreasing
as a function of n (see details in Lehmann, 1986, page 85). This result is important in obtaining
the prediction interval procedure given in Section 7.6.1.

C.4.2 Beta-Binomial Distribution

The beta-binomial distribution is a BETA(a, b) distribution mixture of binomial distributions.
Formally, suppose that X|π ∼ BINOM(n, π) and π ∼ BETA(a, b). Then the marginal dis-
tribution of X is a beta-binomial distribution with parameters n, a, and b. The beta-binomial
distribution pmf and cdf are

dbetabinom(x;n, a, b) =
1

(n + 1)B(x + 1, n − x + 1)
× B(x + a, n − x + b)

B(a, b)
,

pbetabinom(x;n, a, b) =
x∑

i=0

dbetabinom(i;n, a, b),

where n is a positive integer, a > 0, b > 0, B(u, v) is the beta function deined in Appendix A,
and x is a nonnegative integer such that 0 ≤ x ≤ n. The quantile function of the beta-binomial
distribution, qbetabinom(p;n, a, b), does not have a closed-form expression. The mean and
variance of the beta-binomial distribution are

E(X) =
na

a + b
and Var(X) =

nab(a + b + n)

(a + b)2(a + b + 1)
.
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C.4.3 Negative Binomial Distribution

The negative binomial random variable, denoted by X ∼ NBINOM(k,π), has a pmf and cdf
given by

dnbinom(x; k, π) =
Γ(x + k)

Γ(k) Γ(x + 1)
πk(1 − π)x and

pnbinom(x; k, π) =
x∑

i=0

dnbinom(i; k, π),

where 0 < π ≤ 1, k is a positive quantity (not necessarily an integer), and x is a nonnegative
integer.

The quantile function of the negative binomial distribution qnbinom(p) does not have
a closed-form expression. The mean and variance of the NBINOM(k, π) distribution are
E(X) = k(1 − π)/π and Var(X) = k(1 − π)/π2 .

When k is a positive integer, the negative binomial random variable has the following
interpretation. In a sequence of independent binary trials with constant probability π of observ-
ing a nonconforming unit, X is the number of conforming units observed at the time that k
nonconforming units are obtained. Note that X + k is the total number of binary trials.

The negative binomial distribution cdf as function of the beta distribution cdf

A relationship to compute negative binomial cdf values using the beta distribution cdf is

pnbinom(x; k, π) = pbeta(π, k, x + 1), (C.21)

where x = 0, 1, . . . . This relationship is particularly useful to compute negative binomial
probabilities when either p or k is large.

The negative binomial distribution cdf is a monotone increasing function of π

Taking derivatives with respect to π on both sides of the relationship in (C.21) gives

d

dπ
pnbinom(x; k, π) = dbeta(π, k, x + 1) > 0, (C.22)

where x = 0, 1, . . . . This shows that, for ixed k > 0 and 0 < π < 1, the negative binomial
cdf pnbinom(x; r, π) is an increasing function of the probability parameter π. This result
is useful to obtain a conidence interval for the negative binomial distribution probability
parameter in Example D.16.

C.4.4 Poisson Distribution

A Poisson distribution random variable, denoted byX ∼ POIS(λ), has a pmf and cdf given by

dpois(x;λ) =
λx exp(−λ)

x!
and ppois(x;λ) =

x∑

i=0

dpois(i;λ),

where λ > 0 and x is a nonnegative integer.
The quantile function for the Poisson distribution qpois(p;λ) does not have a closed-

form expression. The mean and variance of the POIS(λ) distribution are E(X) = λ and
Var(X) = λ.
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Modeling rate of occurrence data with a Poisson distribution

The Poisson distribution is often used to model the number of events X occurring during n
units of exposure when the rate of events per unit of exposure is λ. The assumptions are that
n > 0 (not necessarily an integer) is given and that the rate is constant during the exposure
time. In this setting,

dpois(x;nλ) =
(nλ)x exp(−nλ)

x!
and ppois(x;nλ) =

x∑

i=0

dpois(i;nλ),

where λ > 0 and x is a nonnegative integer. The quantile function of the Poisson distribution
using this parameterization is qpois(p;nλ). The mean and variance are E(X) = nλ and
Var(X) = nλ.

This model is convenient because one can combine independent observations with different
amounts of exposure to estimate the rate λ. Another application of the model arises when X is
the cumulative number of occurrences in n independent processes that have the same constant
rate λ.

Poisson distribution probabilities as a function of chi-square distribution
probabilities

Relationships to compute Poisson distribution probabilities using chi-square distribution prob-
abilities are

Pr(X ≤ x;nλ) = ppois(x;nλ) = 1 − pchisq[2nλ; 2(x + 1)],

Pr(X ≥ x;nλ) = 1 − ppois(x − 1;nλ) = pchisq(2nλ; 2x),
(C.23)

where X ∼ POIS(nλ), λ > 0, n > 0, and x is a nonnegative integer. The chi-square distri-
bution expressions are particularly useful to compute Poisson distribution probabilities when n
is large.

The Poisson distribution cdf is a monotone decreasing function of λ

Taking derivatives with respect to λ on both sides of the cdf relationship in (C.23) gives

d

dλ
ppois(x;nλ) = −2n dchisq[2nλ; 2(x + 1)] < 0. (C.24)

This shows that, for given x, the Poisson distribution cdf ppois(x;nλ) is a decreasing function
of the parameter λ. This result is used in Section D.6.2 to deine the conidence interval for λ
using the cdf pivotal method.

The Poisson distribution quantile function is a nondecreasing function of λ

This follows directly from (C.24). This property of the Poisson distribution is used in Section 7.3
to obtain conidence intervals for the probability that the number of events in a speciied amount
of exposure is less than or equal to (or greater than) a speciied number.

C.4.5 Hypergeometric Distribution

Consider sampling without replacement from a population of size N that initially had D
nonconforming units and N − D conforming units. Deine X as the random variable that
counts the number of nonconforming units observed in a sample of size n. Then X is said to
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have a hypergeometric distribution, denoted by X ∼ HYPER(n,D,N). The pdf and cdf of
X are

dhyper(x;n,D,N) =

(
D
x

)(
N−D
n−x

)
(

N
n

) and

phyper(x;n,D,N) =
x∑

i=0

dhyper(i;n,D,N), (C.25)

where 0 < D < N , 0 < n ≤ N , and x is a nonnegative integer such that max{0, n +
D − N} ≤ x ≤ min{n,D}.

The quantile function of this distribution, qhyper(p;n,D,N), does not have a closed-form
expression. The mean and variance of the HYPER(n,D,N) distribution are

E(X) =
nD

N
and Var(X) =

nD

N

(
1 −

D

N

)(
N − n

N − 1

)
.

Equivalence of the HYPER(n, D, N) and HYPER(D, n, N) distributions

To show the equivalence, it sufices to show that dhyper(x;n,D,N) = dhyper(x;D,n,N)
for max{0, n + D − N} ≤ x ≤ min{n,D}. Using (C.25) and expanding the terms in the
numerator and denominator gives

dhyper(x;n,D,N) =
D!

(D − x)!x!
×

(N − D)!

(N − D − n + x)! (n − x)!
×

(N − n)!n!

N !

=
n!

(n − x)!x!
×

(N − n)!

(N − D − n + x)! (D − x)!
×

(N − D)!D!

N !

=

(
n
x

)(
N−n
D−x

)
(

N
D

) = dhyper(x;D,n,N), (C.26)

which shows the equivalence of the two pdf expressions for the hypergeometric distribution.
This result is used in Section 6.7 to obtain prediction intervals for the number of nonconforming
units in a future sample from a binomial distribution.

The hypergeometric distribution cdf is a nonincreasing function of D or n

Directly from (C.25),

dhyper(x;n,D +1,N)

dhyper(x;n,D,N)
=

⎧
⎨

⎩

D +1

N −D
×

N −D−n+x

D +1−x
if n+D +1−N ≤x≤D,

0 or ∞ if x=n+D or x=D +1.

This shows that, for ixed values of n,D, andN , the hypergeometric pmf dhyper(x;n,D,N)
is a decreasing function of x. This implies that the hypergeometric cdf phyper(x;n,D,N)
is a nonincreasing function of D (this is related to what is known as the monotone likelihood-
ratio property discussed, for example, in Lehmann, 1986, pages 80 and 85). Because of the
relationship phyper(x;n,D,N) = phyper(x;D,n,N), it follows that phyper(x;n,D,N)
is also nonincreasing as a function of n. This result is used in Section 6.7 to obtain prediction
intervals for the number of nonconforming units in a future sample from a distribution.



444 USEFUL PROBABILITY DISTRIBUTIONS

C.4.6 Negative Hypergeometric Distribution

Consider sampling without replacement from a population of sizeN which initially hasD non-
conforming units and N − D conforming units. The sampling is sequential, without replace-
ment, and the sampling ends as soon as k nonconforming units have been observed. Deine
X ∼ NHYPER(k,D,N) as the random variable that counts the number of conforming units
observed in the sample by the time that exactly k nonconforming units of interest are obtained.
Note that the total number of observed units in the sample is X + k and that X takes positive
probabilities in the set {0, 1, 2, . . . ,N − D}.

The pmf and cdf of the negative hypergeometric distribution are

dnhyper(x; k,D,N) =

(
x+k−1

x

) (
N−x−k
N−D−x

)
(

N
D

) ,

pnhyper(x; k,D,N) =
x∑

i=0

dnhyper(i; k,D,N),

(C.27)

where 0 < D < N, 1 ≤ k ≤ D, and x = 0, . . . ,N − D. The quantile function of the negative
hypergeometric distribution qnhyper(p; k,D,N) does not have a closed-form expression. The
mean and variance of the NHYPER(k,D,N) distribution are

E(X) =
k(1 − π)

π + 1/N
and Var(X) =

k(1 − π)

(π + 1/N)2

(1 + 1/N)(D + 1 − k)

(D + 2)
,

where π = D/N.

A symmetry relationship for the negative hypergeometric distribution

Here we show that ifX∼NHYPER(k,D,N) then Y =(N−D−X)∼NHYPER(D−k+1,
D,N). Suppose that g(y) is the pmf of Y. Using transformation of variables gives

g(y) = Pr(Y = y) = Pr(X = N − D − y)

=

(
N−D−y+k−1

N−D−y

) (
D+y−k

y

)
(

N
D

) =

(
y+(D−k+1)−1

y

) (
N−(D−k+1)−y

N−D−y

)
(

N
D

)

=

(
y+k∗−1

y

) (
N−k∗−y
N−D−y

)
(

N
D

) = dnhyper(y; k∗,D,N),

where k∗ = D − k + 1.
In particular, with D = m, N = m + n, and k = m + j − 1, we get Y = n − X, k∗ = j,

X ∼ NHYPER(m − j + 1,m,m + n), and Y ∼ NHYPER(j,m,m + n). Because Y =
n − X, the cdf of Y can be obtained from its own distribution Pr(Y ≤ y) =
pnhyper(y; j,m,m + n) or as a function of the distribution of X (i.e., Pr(Y ≤ y) =
1 − pnhyper(n − y − 1;m − j + 1,m,m + n)). This gives the identity

pnhyper(y; j,m,m + n) = 1 − pnhyper(n − y − 1;m − j + 1,m,m + n), (C.28)

where 0 ≤ y ≤ n. Also, using (C.2), the quantiles of Y and X are related as follows:

yα =

{
n − x(1−α) − 1 if pnhyper(x(1−α);m − j + 1,m,m + n) = 1 − α

n − x(1−α) otherwise.
(C.29)
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The negative hypergeometric pmf as a beta distribution mixture of binomial
distribution probabilities

The dnhyper(i; k,D,N) pmf can be expressed as a mixture of binomial distribution proba-
bilities as follows:

dnhyper(i; k,D,N) =

∫ 1

0

dbinom(i;N − D, v)dbeta(v; k,D − k + 1) dv. (C.30)

We use this result to show the equivalence between the negative hypergeometric distribution
cdf and a beta distribution mixture of beta distribution probabilities as given in (C.31). Now we
prove (C.30):

∫ 1

0

dbinom(i;N − D, v) dbeta(v; k,D − k + 1) dv

=

(
N−D

i

) ∫ 1

0
vi+k−1(1 − v)N−i−k dv

B(k,D − k + 1)
=

(
N−D

i

)
B(i + k,N − i − k + 1)

B(k,D − k + 1)

=

(
i+k−1

i

) (
N−i−k
N−D−i

)
(

N
D

) = dnhyper(i; k,D,N).

The negative hypergeometric distribution cdf as a beta distribution mixture of
beta distribution probabilities

The negative hypergeometric distribution cdf can be expressed as a beta distribution mixture of
beta distribution probabilities as follows:

pnhyper(x− 1; k,D,N)=1−
∫ 1

0

pbeta(v;x,N −D−x+1)dbeta(v; k,D− k +1) dv,

(C.31)

for k = 1, . . . ,D and x = 1, . . . ,N − D. To verify this result, we use (C.30) in the proof
below:

pnhyper(x− 1; k, D, N) =

x−1∑

i=0

dnhyper(i; k, D, N)

=

∫ 1

0

[
x−1∑

i=0

dbinom(i; N −D, v)

]

dbeta(v; k, D−k + 1) dv

=

∫ 1

0

pbinom(x− 1; N −D, v) dbeta(v; k, D− k + 1) dv

=

∫ 1

0

[1− pbeta(v; x, N −D− x + 1)]dbeta(v; k, D− k + 1) dv

= 1−
∫ 1

0

pbeta(v; x, N −D− x + 1)dbeta(v; k, D− k + 1) dv,

where the fourth line follows from the third by (C.19). This result is used in Sections G.4 andG.5
to obtain coverage probabilities for distribution-free prediction intervals given in Sections 5.4
and 5.5.



AppendixD
General Results from Statistical
Theory and Some Methods Used
to Construct Statistical Intervals

INTRODUCTION

This appendix provides someuseful tools and results from statistical theory. These tools facilitate
the justiication and extension of much of the methodology in the book.

The topics discussed in this appendix are:

� Basic theory for transformation of random variables (Section D.1).

� The delta method to obtain expressions for approximate variances of random quantities
as a function of the variances and covariances of the function arguments (Section D.2).

� Expected and observed information matrices (Section D.3).

� Some general regularity conditions assumed in most of the book and needed for certain
technical results (Section D.3.2).

� A deinition of convergence in distribution of random variables, with examples of its use
in this book (Section D.4).

� An outline of general maximum likelihood theory relevant to applications in this book
(Section D.5).

� The cdf pivotal method for constructing conidence intervals, their coverage probabilities,
and examples for continuous and discrete distributions (Section D.6).
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� Bonferroni approximate statistical intervals with application to simultaneous conidence
intervals as well as the construction of tolerance and simultaneous prediction inter-
vals (Section D.7).

D.1 THE CDFS AND PDFS OF FUNCTIONS OF RANDOM VARIABLES

This section reviews the procedure for obtaining the cdf and pdf (or pmf) of a one-to-one
function of a random variable(s) that has known distribution. Most of the development is
for scalar monotone increasing (or decreasing) functions of a given random variable. All the
examples in this section are illustrations of transformations used in this book.

D.1.1 Transformation of Continuous Random Variables

This section shows how to obtain expressions for the pdf and cdf of functions of random
variables. Let V be a k-dimensional continuous random vector with pdf h(v). We consider a
k-dimensional transformation U = g(V ) with the following properties:

1. The function u = g(v) = [g1(v), . . . , gk(v)] is a one-to-one transformation.

2. The inverse function v = g−1(u) = [g−1
1 (u), . . . , g−1

k (u)] has continuous irst partial
derivatives with respect to u.

3. The Jacobian J(u) of g−1(u) is nonzero, where

J(u) = det

⎡
⎢⎢⎢⎢⎢⎣

∂g−1
1 (u)

∂u1

. . .
∂g−1

k (u)

∂u1
...

...
...

∂g−1
1 (u)

∂uk

. . .
∂g−1

k (u)

∂uk

⎤
⎥⎥⎥⎥⎥⎦

. (D.1)

Then the pdf and cdf of U are

f(u) = h [g−1(u)]|J(u)|,

F (u) =

∫

z≤u

h [g−1(z)]|J(z)| dz,

where u = (u1 , . . . , uk) and the integral is evaluated for all values z = (z1 , . . . , zk) such that
zi ≤ ui , i = 1, . . . , k.

For the scalar case (i.e., k = 1) the formulas simplify to

f(u) = h[g−1(u)]

∣∣∣∣
dg−1(u)

du

∣∣∣∣, (D.2)

for the pdf of the transformed random variable and

F (u) =

∫ u

−∞

h[g−1(z)]

∣∣∣∣
dg−1(z)

dz

∣∣∣∣dz

=

{
H[g−1(u)] if g is increasing

1 − H[g−1(u)] if g is decreasing,
(D.3)

for the cdf of the transformed random variable. For illustration, consider the following examples.
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Example D.1 Log-Location-Scale Transformation. Suppose that V has a location-scale
distribution with location parameter −∞ < μ < ∞, scale parameter σ > 0, and pdf and cdf
given by

f(v;µ, σ) = φ
(v − µ

σ

)
and F (v;µ, σ) = Φ

(v − µ

σ

)
,

where ∞ < v < ∞, φ(z) is a completely speciied cdf, and Φ(z) is the cdf corresponding
to φ(z).

Consider the transformation U = g(V ) = exp(V ). Then g−1(u) = log(u) and J(u) =
1/u. Consequently, from (D.2) and (D.3),

f(u;µ, σ) = h[g−1(u)] =
1

σ t
φ

[
log(u) − µ

σ

]
, (D.4)

F (u;µ, σ) = H[g−1(u)] = Φ

[
log(u) − µ

σ

]
, (D.5)

for 0 < u < ∞.
The family of distributions F (u;µ, σ) is known as the log-location-scale family with param-

eters (µ, σ). Note that µ and σ are the location and scale parameters for the distribution of
log(U) = V .

The results in (D.4) and (D.5) justify all of the log-location-scale distributions discussed in
Section C.3.1.

Example D.2 The cdf Transform for Continuous Distributions. Suppose that V has a
continuous and strictly monotone increasing cdf H(v). Consider the transformation U =
g(V ) = H(V ). That is, V is transformed using its own cdf. In this case g−1(u) = H−1(u)

and J(u) = (h[H−1(u)])
−1
. Thus,

f(u) =
h[H−1(u)]

h[H−1(u)]
= 1 and F (u) = H

[
H−1(u)

]
= u,

where 0 < u < 1. This implies that U ∼ UNIF(0, 1).
This result is useful in the generation of random numbers for a continuous random variable

as follows. The relationship U = H(V ) gives V = H−1(U), and if u1 , . . . , un is a random
sample from theUNIF(0, 1) then [v1 , . . . , vn ] = [H−1(u1), . . . ,H−1(un)] is a random sample
from V . The cdf transform is used in Section D.6 to derive conidence intervals based on pivotal
quantities.

Example D.3 A Snedecor’sF RandomVariable as a Function of a Beta RandomVariable

and Vice Versa. Suppose that V ∼ BETA(a, b) and let r = a/b. We show that the random
variable deined by

U = g(V ) =
V

r(1 − V )
(D.6)

has Snedecor’s F (2a, 2b) distribution. Note that the degrees of freedom need not be integers.
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The transformation g(v) in (D.6) is a monotone increasing function in v with inverse function
g−1(u) = ru/(1 + ru) and Jacobian J = r/(1 + ru)2 . Thus the density of U in (D.6) is

f(u; a, b) =
r

(1 + ru)2
dbeta

( ru

1 + ru
; a, b
)

=
Γ(a + b)

Γ(a) Γ(b)

r

(1 + ru)2

( ru

1 + ru

)a−1(
1 − ru

1 + ru

)b−1

=
Γ(a + b)

Γ(a) Γ(b)

raua−1

(1 + ru)a+b
=

Γ(a + b)

Γ(a) Γ(b)

(a
b

)a ua−1

[1 + (a/b)u]a+b

= (u; 2a, 2b).

Because U is a monotone increasing function of V , the quantiles qf(p; 2a, 2b) of U are related
to the quantiles qbeta(p; a, b) of V through (D.6), which gives the relationship

qf(p; 2a, 2b) =
qbeta(p; a, b)

r[1 − qbeta(p; a, b)]
.

Now, solving for qbeta(p; a, b) in this relationship gives

qbeta(p; a, b) =
1

a + b/qf(p; 2a, 2b)
.

Similarly, because the transformation (D.6) is one-to-one, one can get aBETA(a, b) random
variable as a transformation of a Snedecor’s F (r1 , r2) random variable. Speciically, suppose
that V ∼ F (r1 , r2). Deine ξ = r1/r2 and consider the transformation

U = g(V ) =
ξV

1 + ξV
.

Then U ∼ BETA(r1/2, r2/2). The proof of this result is similar to the proof of (D.6).

Example D.4 A Noncentral t Random Variable as a Function of a NORM(δ, 1) Random
Variable and an Independent Chi-Square Random Variable with r Degrees of Freedom.

Suppose that X and W are independent, X ∼ NORM(δ, 1), and W ∼ χ2(r). A noncentral
t-distribution random variable is deined by the ratio

T =
X√
W/r

,

where the scalar δ is a noncentrality parameter of the distribution of T and r > 0 is the degrees
of freedom (which need not be an integer).

Because of the independence of X and W , the joint distribution of V = (X,W ) is a
product of a normal density and a chi-square density. To obtain the distribution of T , con-

sider the one-to-one transformation u = g(x,w) = (t, w), where t = x/
√

w/r. The inverse

of the transformation is g−1(t, w) = (t
√

w/r,w) and the Jacobian of the transformation is

J =
√

w/r. Thus, the joint distribution of U = (T,W ) is

f(t, w) =
√

w/r × dnorm(t
√

w/r; δ, 1) × dchisq(w; r)

=

√
w

r

1√
2π

exp

[
−1

2

(
t

√
w

r
− δ

)2
]

wr/2−1

2r/2Γ(r/2)
exp
(
−w

2

)

=
w(r−1)/2

2(r+1)/2
√

rπ Γ(r/2)
exp

[
−1

2

(
t

√
w

r
− δ

)2

− w

2

]
.
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The marginal pdf for T , denoted by dt(t; r, δ), is obtained by integrating f(t, w) with respect
to w. This gives

dt(t; r, δ) =

∫ ∞

0

w(r−1)/2

2(r+1)/2
√

rπ Γ(r/2)
exp

[
−1

2

(
t

√
w

r
− δ

)2

− w

2

]
dw.

Changing the integration variable to z = w(r + t2)/(2r),

dt(t; r, δ) =
rr/2 exp(−rδ2/[2(r + t2)])√

π Γ(r/2) (r + t2)(r+1)/2

∫ ∞

0

z(r−1)/2 exp

[
−

(
√

z − tδ√
2(r + t2)

)2]
dz.

(D.7)

When the noncentrality parameter is equal to zero, the distribution is known as Student’s
t-distribution. In this case, the integral in (D.7) is equal to Γ[(r + 1)/2], and the pdf is

dt(t; r) =
Γ[(r + 1)/2]

Γ(r/2)

1√
r π

1

(1 + t2/r)(r+1)/2
,

where −∞ < t < ∞.

D.1.2 Transformation of Discrete Random Variables

This section shows how to obtain expressions for the pmf and cdf of functions of discrete random
variables. LetV be a k-dimensional discrete random vector with pmf h(v). We consider a one-
to-one transformation k-dimensional transformation U = g(V ). Then the pmf and cdf of U
are

f(u) = h [g−1(u)] and F (u) =
∑

z ≤u

h [g−1(z)],

where u = (u1 , . . . , uk) and the summation is evaluated for all values z = (z1 , . . . , zk) such
that h [g−1(z)] > 0 and zi ≤ ui , i = 1, . . . , k.

For the scalar case (i.e., k = 1), the pdf and cdf of the transformed random variable are

f(u) = h[g−1(u)] (D.8)

and

F (u) =
∑

v≤g−1 (u)

h(v) =

{
H[g−1(u)] if g is increasing

1 − H [g−1(u)] if g is decreasing,
(D.9)

where H [g−1(u)] = limv↑g−1 (u) H(v) is the limiting value of H(v) when v approaches
g−1(u) from below. For example, if V takes just integer values, for integer g−1(u) the limit
from below for H[g−1(u)] is H [g−1(u)] = H[g−1(u) − 1].

Example D.5 The Distribution of V1 Conditional on the Sum V1 + V2 when V1 and V2 are

Independent and Poisson Distributed. Suppose that V = (V1 , V2), where V1 ∼ POIS(nλ)
and V2 ∼ POIS(mλ). The joint distribution of (V1 , V2) is

f(v1 , v2) =
(nλ)v1 (mλ)v2

v1 ! v2 !
exp[−λ(n + m)],

where v1 and v2 are nonnegative integers.
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Consider the transformation of variables U = (U1 , U2) = g(V ), where g(v1 , v2) =
(u1 , u2) with

u1 = v1 and u2 = v1 + v2 .

The inverse g−1(u1 , u2) of the transformation is

v1 = u1 and v2 = u2 − u1 .

The purpose is to obtain the conditional distribution of V1 |(V1 + V2), or equivalently the con-
ditional distribution of U1 |U2 . Note that the support of the distribution of U has the restrictions
thatu1 andu2 are nonnegative integers withu1 ≤ u2 . From (D.8) and using the joint distribution
f(v1 , v2) of (V1 , V2) given above, the joint distribution of (U1 , U2) is

f(u1 , u2) =
(nλ)u1 (mλ)u2 −u1

u1 ! (u2 − u1)!
exp[−λ(n + m)], 0 ≤ u1 ≤ u2 .

The marginal distribution for U2 is

f(u2) =

u2∑

u1 =0

f(u1 , u2) = λu2 exp[−λ(n + m)]

u2∑

u1 =0

nu1 mu2 −u1

u1 ! (u2 − u1)!

=
[λ(n + m)]u2

u2 !
exp[−λ(n + m)].

That is, U2 ∼ POIS[λ(n + m)]. Thus, the conditional distribution of U1 |U2 is

f(u1 |u2) =
f(u1 , u2)

f(u2)
=

u2 !

u1 ! (u2 − u1)!

( n

n + m

)u1
(
1 − n

n + m

)u2 −u1

,

where u1 = 0, . . . , u2 . That is, U1 |U2 = V1 |(V1 + V2) ∼ BINOM(u2 , π), where π =
n/(n + m). This result is used in Section 7.6.1 to obtain a Poisson prediction interval.

D.2 STATISTICAL ERROR PROPAGATION—THE DELTA METHOD

This section shows how to compute approximate expected values, variances, and covariances
of functions of parameter estimators. Let g(θ) be a real-valued function of the parameters

θ = (θ1 , . . . , θr)′ and let θ̂ = (θ̂1 , . . . , θ̂r)′ and g(θ̂) be estimates of θ and g(θ), respectively.

The objective is to obtain expressions or approximate expressions for E
[
g(θ̂)
]
and Var

[
g(θ̂)
]

as a function of E(θ̂i), Var(θ̂i), and Cov(θ̂i , θ̂j ).

The simplest case is when g(θ̂) is a linear function of the θ̂i , say, g(θ̂) = a0 +
∑r

i=1 ai θ̂i ,

where the ai are constants. To facilitate the development, express g(θ̂) as

g(θ̂) = a0 +
r∑

i=1

ai θ̂i = b0 +
r∑

i=1

bi

[
θ̂i − E(θ̂i)

]
, (D.10)
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where b0 = a0 +
∑r

i=1 aiE(θ̂i) and bi = ai, i = 1, . . . , r. In this case, simple computations
with expectations and variances give

E
[
g(θ̂)

]
= b0 ,

Var
[
g(θ̂)

]
=

r∑

i=1

b2
i Var(θ̂i) +

r∑

i=1

r∑

j=1
j �=i

bi bj Cov(θ̂i , θ̂j ).

When g(θ̂) is a smooth nonlinear function of the θ̂i values and g(θ̂) can be approximated by a

linear function of the θ̂i values in the region with nonnegligible likelihood, it is still possible to
apply the methodology above. The general procedure is known as the delta method or statistical
error propagation, and here we describe a simpliied version of the methodology. For a more
detailed account, see Hahn and Shapiro (1967, page 228) or Stuart and Ord (1994, page 350).

When g(θ) has continuous second partial derivatives with respect to θ, a irst-order (i.e.,

keeping linear terms only) Taylor series expansion of g(θ̂) about µ =
[
E(θ̂1), . . . ,E(θ̂r)

]
is

given by

g(θ̂) ≈ g(µ) +
r∑

i=1

∂g(θ)

∂θi

[
θ̂i − E(θ̂i)

]
, (D.11)

where the partial derivatives in (D.11) are evaluated at µ.
Observe that (D.11) looks like (D.10) with

b0 = g(µ) and bi =
∂g(θ)

∂θi

, i = 1, . . . , r.

Consequently,

E
[
g(θ̂)

]
≈ g(µ),

Var
[
g(θ̂)

]
≈

r∑

i=1

[
∂g(θ)

∂θi

]2
Var(θ̂i) +

r∑

i=1

r∑

j=1
j �=i

[
∂g(θ)

∂θi

] [
∂g(θ)

∂θj

]
Cov(θ̂i , θ̂j ). (D.12)

When the θ̂i values are uncorrelated or when the covariancesCov(θ̂i , θ̂j ), i �= j, are small when

compared with the variances Var(θ̂i), the last term on the right of (D.12) is usually omitted
from the approximation.

The same ideas apply to vector-valued functions. For example, if g1(θ) and g2(θ) are two
real-valued functions then

Cov
[
g1(θ̂), g2(θ̂)

]
≈

r∑

i=1

[
∂g1(θ)

∂θi

] [
∂g2(θ)

∂θi

]
Var(θ̂i)

+
r∑

i=1

r∑

j=1
j �=i

[
∂g1(θ)

∂θi

] [
∂g2(θ)

∂θj

]
Cov(θ̂i , θ̂j ).
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In general, for a vector-valued function g(θ) of the parameters such that all the second partial
derivatives with respect to the elements of θ are continuous,

Var
[
g(θ̂)

]
≈

[
∂g(θ)

∂θ

]′
Var(θ̂)

[
∂g(θ)

∂θ

]
,

where ∂g(θ)/∂θ = [∂g1(θ)/∂θ, . . . , ∂gr(θ)/∂θ] is the matrix of gradient vectors of irst
partial derivatives of g(θ) with respect to θ, and

Var(θ̂) =

⎡
⎢⎢⎢⎢⎢⎣

Var(θ̂1) Cov(θ̂1 , θ̂2) · · · Cov(θ̂1 , θ̂r)

Var(θ̂2) · · · Cov(θ̂2 , θ̂r)

. . .
...

symmetric Var(θ̂r )

⎤
⎥⎥⎥⎥⎥⎦

are both evaluated at θ̂.
The delta method can provide good approximations for E[g(θ̂)] and Var[g(θ̂)]. However,

one needs to exercise caution in applying thismethod because the adequacy of the approximation
depends on the validity of the Taylor series approximation and the size of the remainder in the
approximation. Simulation can be used to check the adequacy of the approximation.

D.3 LIKELIHOOD AND FISHER INFORMATION MATRICES

This section presents expected and observed information matrices in the context of likelihood
estimation. Expected information matrices used in the book are given to facilitate the presenta-
tion when they are used.

D.3.1 Information Matrices

Let L(θ) =
∑n

i=1 Li(θ) denote the total log-likelihood for a given model and data that will
consist of n independent but not necessarily identically distributed observations. Here it is
understood that Li(θ) is the contribution of the ith observation to the total log-likelihood. Let

θ̂ be the ML estimator of θ with a sample of size n. This θ̂, when it exists, is the value of θ that
maximizesL(θ). Let I(θ) denote the large-sample (or limiting) average amount of information
per observation. That is,

I(θ) = lim
n→∞

{
1

n

n∑

i=1

E

[
−

∂2Li(θ)

∂θ ∂θ′

]}
, (D.13)

where the expectation is with respect to the as-yet-unobserved data. Then in general, for large
samples, the matrix Iθ = nI(θ) approximately quantiies the amount of information that we
“expect” to obtain from the future data. Intuitively, larger second derivatives of L(θ) indicate
more curvature in the likelihood, implying that the likelihood is more concentrated about its
maximum. For a large class of model situations satisfying regularity conditions that ensure
consistency of the ML estimator of θ (see Boos and Stefanski, 2013, Chapter 6, for details), Iθ

simpliies to the well-known Fisher information matrix for θ,

Iθ = E

[
∂L(θ)

∂θ

∂L(θ)

∂θ′

]
= E

[
−∂2L(θ)

∂θ ∂θ′

]
=

n∑

i=1

E

[
−∂2Li(θ)

∂θ ∂θ′

]
. (D.14)
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Iθ is often known as the Fisher information or “expected information” matrix for θ. When data
are available, one can compute the “local” (or “observed information”) matrix for θ as

Îθ = −∂2L(θ)

∂θ ∂θ′ =
n∑

i=1

[
−∂2Li(θ)

∂θ ∂θ′

]
, (D.15)

where the derivatives are evaluated at θ = θ̂.

D.3.2 Fisher Information for a One-to-One Transformation of θ

Consider the one-to-one transformation ν = h(θ) = (ν1 , . . . , νk)′ of θ. Then θ = g(ν) =
[g1(ν), . . . , gk(ν)]′, where g(ν) = h−1(ν). When the interest is in the Fisher information
matrix for ν, we use the chain rule for the derivative of a scalar function with respect a vector to
show that

∂L(ν)

∂ν
=

[
∂g(ν)

∂ν

] [
∂L[g(ν)]

∂g(ν)

]
,

where

[
∂g(ν)

∂ν

]
=

⎡
⎢⎢⎢⎢⎣

∂g1(ν)

∂ν1

. . .
∂gk(ν)

∂ν1
...

...
...

∂g1(ν)

∂νk

. . .
∂gk(ν)

∂νk

⎤
⎥⎥⎥⎥⎦

and
∂L[g(ν)]

∂g(ν)
=

∂L(θ)

∂θ

∣∣∣∣
θ=g(ν)

.

Then from ∂L(ν)/∂ν and using (D.14), we obtain

Iν =

[
∂g(ν)

∂ν

]
Iθ

[
∂g(ν)

∂ν

]′
, (D.16)

where Iθ is evaluated at θ = g(ν).
In Section D.5.1, we explain that, under the standard regularity conditions, nΣ

θ̂
= n(Iθ)−1

is the covariance matrix for the asymptotic (large-sample) distribution of
√

n (θ̂ − θ) and an

estimate of I−1
θ can be used to estimate the sampling variability in θ̂.

Each technical asymptotic result, such as the asymptotic distribution of an estimator, or
a speciic asymptotic property of an estimator, requires its own set of regularity conditions
on the model. For example, under a certain set of conditions it is possible to show that ML
estimators are asymptotically normal. With additional conditions, it can be shown that ML
estimators are also asymptotically eficient. The model, in this case, includes the underlying
probability model for the process (e.g., a failure-time process) and for the observation process,
such as sampling or inspections (when there is not continuous inspection) and characteristics
of any censoring processes. Lehmann (1983, Chapter 6), for example, gives precise regularity
conditions in the context of “continuous inspection.” Rao (1973, Section 5e) does the same
assuming an underlying discrete multinomial observation scheme. Although censoring is not
explicitly treated in either of these references, the same asymptotic results hold under the
standard kinds of noninformative censoring mechanisms as long as the average amount of
information per sample (elements of I(θ)) does not decrease substantially as the sample size
increases. For a rigorous treatment of the asymptotic properties of ML estimators based on
Type 2 censored data, see Bhattacharyya (1985). See also the Bibliographic Notes section at
the end of Chapter 12 for sources of more detailed technical information.
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Example D.6 Fisher Information for the Binomial Distribution Parameter π. For
X ∼ BINOM(n, π), the likelihood is L(π) = dbinom(x;π). Using the expression for
dbinom(x;π) in Section C.4.1 and taking its logarithm gives the log-likelihood

L(π) = log(C) + X log(π) + (n − X) log(1 − π),

where the constant C = n!/[X!(n − X)!] does not depend on π. Direct computations, and
using the result that E(X) = nπ, give

Iπ = E

[
− ∂2L(π)

∂π2

]
= E

(
X

π2
+

n − X

(1 − π)2

)
=

n

π(1 − π)
. (D.17)

This information matrix is used in determining the Jeffreys prior distribution for the
BINOM(n, π) distribution in Section H.4.1.

Example D.7 Fisher Information for the Binomial Distribution Log-Odds Parameter. For
the binomial modelX ∼ BINOM(n, π), sometimes one is interested in the log-odds parameter
ν = log[π/(1 − π)]. Then, as a function of ν, π = g(ν) = 1/[1 + exp(−ν)] and

∂g(ν)

∂ν
=

exp(−ν)

[1 + exp(−ν)]2
.

Using this derivative and substituting (D.17) into (D.16) gives the Fisher information for ν,

Iν =
n exp(−ν)

[1 + exp(−ν)]2
.

Example D.8 Fisher Information for the Poisson Distribution Rate Parameter λ. For
X ∼ POIS(nλ), where n is amount of exposure and λ is an unknown rate of occurrence
parameter, the likelihood is L(λ) = dpois(x;nλ). Using the expression for dpois(x;nλ)
given in Section C.4.4 and taking its logarithm gives the log-likelihood

L(λ) = log(C) + X log(λ) − n log(λ),

where the constant C = nX /X! does not depend on λ. Direct computations, and using the
result that E(X) = nλ, give

Iλ = E

[
− ∂2L(λ)

∂λ2

]
= E

(
X

λ2

)
=

n

λ
. (D.18)

This information matrix is used in determining the Jeffreys prior distribution for the Poisson
distribution model in Section H.4.2.

Example D.9 Fisher InformationMatrix for Normal Distribution Parameters. In this case
the log-likelihood is

L(µ, σ) = −n

2
log(2π) − n log(σ) − 1

2σ2

n∑

i=1

(Xi − µ)2 . (D.19)

1. Fisher information for µ when σ is given. Differentiating (D.19) twice with respect to
µ and computing the expectation gives

∂2L(µ, σ)

∂µ2
= − n

σ2

and thus

Iµ = E

(
−∂2L

∂µ2

)
=

n

σ2
. (D.20)
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2. Fisher information for σ and σ2 when µ is given. Differentiating (D.19) twice with
respect to σ and computing the expectation gives

∂2L(µ, σ)

∂σ2
=

n

σ2
− 3

σ4

n∑

i=1

(Xi − µ)2

and

Iσ = E

(
−∂2L(µ, σ)

∂σ2

)
=

2n

σ2
. (D.21)

A similar computation gives

Iσ 2 =
n

2σ4
. (D.22)

3. Fisher information for (µ, σ) and (µ, σ2). Differentiating (D.19) twice with respect to
(µ, σ) and computing the expectations gives

I(µ,σ ) = E

[
−∂2L(θ)

∂θ∂θ′

]
=

n

σ2

[
1 0
0 2

]
, (D.23)

where θ = (µ, σ). A similar computation gives

I(µ,σ 2 ) =
n

σ2

[
1 0

0
1

2σ2

]
.

D.4 CONVERGENCE IN DISTRIBUTION

In this section we use a subscript n to identify explicitly an estimator or quantity with properties
that depend on the sample size n. Considering the sequence for increasing n facilitates the
description of these properties when n gets large (i.e., when n → ∞).

Convergence in distribution is an important concept for describing the behavior of estimators
in large samples. For example, one is often interested in the statistical properties of the ML

estimators θ̂n of the scalar θ when the sample size n increases. In this case a common approach
is to consider the distribution of the studentized ratios

Zn = Zn(θ) =
θ̂n − θ

ŝeθ̂n

, n = 2, . . . ,

where ŝeθ̂n
is a consistent estimator of seθ̂n

. In general, the exact distribution of Zn is com-
plicated, depending on the model, the actual parameter values, and the sample size. But under
the regularity conditions of Section D.3.2, if Zn(θ) is evaluated at the actual value of θ, then
for all z,

lim
n→∞

FZn
(z) = Φnorm(z).

Thus, for inite n, one can use the approximation

Pr[z(α/2) < Zn ≤ z(1−α/2)] = FZn
[z(1−α/2)] − FZn

[z(α/2)]

≈ Φnorm [z(1−α/2)] − Φnorm [z(α/2)] = 1 − α.
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The adequacy of this approximation has to be studied (e.g., by simulation) for each individual
application, but in general it works well for a large class of problems and moderate to large
sample sizes.

More generally, we say that the sequence of scalars Zn converges in distribution to the
continuous random variable V if

lim
n→∞

FZn
(z) = FV (z), for all z,

where FV (z) is the cdf of V . Thus one can use the limiting distribution FV to approximate the
probabilities for inite n as follows:

Pr(a < Zn ≤ b) = FZn
(b) − FZn

(a) ≈ FV (b) − FV (a),

where a and b are speciied constants. This approximation improves as n increases. These ideas
of convergence in distribution generalize to vector random variables, (see Billingsley, 2012,
page 402, for details).

For other examples, let θ̂ = (θ̂1 , θ̂2) be the ML estimator of a vector θ = (θ1 ,θ2) with a
sample of size n, where θ1 is a parameter(s) of interest and θ2 contains nuisance parameters.

Although the distribution of θ̂ and its components depend on n, for simplicity in the notation,
we do not make that dependence explicit in the notation in what follows.

Likelihood-ratio statistic

The proile likelihood of θ1 is

R(θ1) = max
θ2

[
L(θ1 ,θ2)

L(θ̂)

]
.

The corresponding parameter subset log-likelihood-ratio statistic is LLR(θ1) =
−2 log[R(θ1)]. This statistic, when evaluated at the actual value θ1 , converges in distribution
to a chi-square distribution with r1 degrees of freedom, where r1 is the number of parameters
in θ1 .

Wald statistic

For the parameter subset θ1 the Wald statistic is

W (θ1) = (θ̂1 − θ1)
′
(
Σ̂

θ̂1

)−1

(θ̂1n − θ1).

When evaluated at the actual value of θ1 , W (θ1) converges in distribution to a chi-square
random variable with r1 degrees of freedom.

Score statistic

The score function is deined by the derivative of the log-likelihood

S(θ) =
∂L(θ)

∂θ
.

For given θ1 , Rao’s score statistic for θ1 is

V (θ1) =
[
S(

̂
θ)
]′(̂

Σ
θ̂

)[
S(

̂
θ)
]
, (D.24)
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where

̂
θ = (θ1 ,

̂
θ2), and

̂
θ2 maximizes L(θ1 ,θ2) with respect to θ2 for ixed θ1 . The deriva-

tives are evaluated at

̂
θ, and

̂
Σ

θ̂
is the covariance matrix Σ

θ̂
evaluated at θ =

̂
θ.

In (D.24), θ1 could be the full parameter vector, a single element of θ, or some other subset

of θ. When θ1 is a subset of the entire parameter vector and

̂
θ2 maximizes the likelihood with

respect to θ2 , with θ1 held constant, we have

S(

̂
θ) =

[
S1(

̂
θ)

S2(

̂
θ)

]
=

[
S1(

̂
θ)

0

]
,

where Si(

̂
θ) = ∂L/∂θi and all the derivatives are evaluated at

̂
θ. Consequently, the score

statistic simpliies to

V (θ1) =
[
S1(

̂
θ)
]′[̂

Σ11

][
S1(

̂
θ)
]
, (D.25)

where the matrices

̂
Σij are deined by the partitioned matrix

̂
Σ

θ̂
=

[̂
Σ11

̂
Σ12̂

Σ21

̂
Σ22

]
.

Note that

̂
Σii , is a square matrix with row dimension equal to the length of θi , for i = 1 and

i = 2.
When n → ∞, the score statistic V (θ1), evaluated at the actual θ1 , converges in distribution

to a chi-square distribution with r1 degrees of freedom, where r1 is the length of θ1 .

Example D.10 Score Statistic for the Poisson Distribution Rate Parameter. Suppose that
X is the number of events during n units of exposure from a Poisson process with rate λ. Then
X ∼ POIS(nλ). The data are x, the number of events observed during the exposure period,
and the likelihood is

L(λ) = Pr(X = x) =
(nλ)x

x!
exp(−nλ).

The log-likelihood is L(λ) = x log(nλ) − nλ − log(x!). Then the score function is

S(λ) =
∂L(λ)

∂λ
=

x

λ
− n.

Solving S(λ) = 0 gives the ML estimator for λ, which is λ̂ = x/n. The Fisher information is
obtained from (D.18), which gives Iλ = n/λ. In this case θ1 = θ = λ and the score statistic
is obtained directly from (D.24), giving

V (λ) =
(x

λ
− n
) λ

n

(x
λ
− n
)

=
(λ − λ̂)2

λ/n
. (D.26)

D.5 OUTLINE OF GENERAL MAXIMUM LIKELIHOOD THEORY

This section is a summary of basic results for ML estimators. The presentation is descriptive
with little development but relevant references for technical details. The focus is on results
needed to justify large-sample approximations for the distribution of statistics used in obtaining
some statistical intervals in this book.
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D.5.1 Asymptotic Distribution of ML Estimators

In this section we assume that θ̂ is the ML estimator of θ based on n observations and that
the regularity conditions given in Section D.3.2 hold. Then it can be shown that

√
n(θ̂ − θ)

converges in distribution to a multivariate normal with mean zero and covariance matrix I−1(θ)

deined in (D.13). In a convenient casual wording, we say that θ̂ is approximately normal with
mean θ and covariance matrix Σ

θ̂
= I−1

θ , where Iθ = nI(θ). In large samples, statistical
theory shows that, under the standard regularity conditions, the elements of Σ

θ̂
are of the order

of n−1 . This can be seen by noting that nΣ
θ̂
does not depend on n, following from the deinition

of I(θ) in (D.13).

Similarly, using the observed information, it can be shown that θ̂ is approximately mul-

tivariate normal with mean θ and covariance matrix Σ̂
θ̂
. This follows from convergence in

distribution of
√

n(θ̂ − θ) and the fact that nΣ̂
θ̂
is a consistent estimator of nΣ

θ̂
.

D.5.2 Asymptotic Distribution of Functions of ML Estimators via the
Delta Method

In general, one is interested in inferences on functions of θ. For example, consider a vector
function g(θ) of the parameters such that all the second derivatives with respect to the ele-

ments of θ are continuous. The ML estimator of g(θ) is ĝ = g(θ̂). In large samples, g(θ̂) is
approximately normally distributed with mean g(θ) and covariance matrix

Σĝ =

[
∂g(θ)

∂θ

]′
Σ

θ̂

[
∂g(θ)

∂θ

]
. (D.27)

This delta-method approximation is based on the assumption that g(θ̂) is approximately linear

in θ in the region near to θ̂. The approximation is better in large samples because then the

variation in θ̂ is smaller and thus the region over which θ varies is correspondingly smaller.
If this region is small enough, the linear approximation will be adequate. See Section D.2 for
more details.

For scalar g and θ the formula simpliies to

Avar[g(θ̂)] =

[
∂g(θ)

∂θ

]2
Avar(θ̂),

where Avar is the large-sample approximate variance function. For example, if θ is positive

and g(θ) is the log function, the asymptotic variance of log(θ̂) isAvar[log(θ̂)] = Avar(θ̂)/θ2 .

D.5.3 Estimating the Variance-Covariance Matrix of ML Estimates

Under mild regularity conditions (see Section D.3.2), Σ̂
θ̂

= (Îθ)−1 is a consistent estimator of

Σ
θ̂
, where Îθ is deined in (D.15). This “local” estimate of Σ

θ̂
is obtained by estimating the

“expected curvature” in (D.14) by the “observed curvature” in (D.15). It is possible to estimate

Σ̂
θ̂
directly by evaluating (D.14) at θ = θ̂, but this approach is rarely used because it is more

complicated and has no clear advantage.
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The “local” estimate of the covariance matrix of ĝ = g(θ̂) can be obtained by substituting

Σ̂
θ̂
for Σ

θ̂
in (D.27), giving

Σ̂ĝ =

[
∂g(θ)

∂θ

]′
Σ̂

θ̂

[
∂g(θ)

∂θ

]
, (D.28)

where the derivatives are again evaluated at θ = θ̂. For scalar g and θ the formula simpliies to

V̂ar[g(θ̂)] =

[
∂g(θ)

∂θ

]2
Σ̂θ̂ =

[
∂g(θ)

∂θ

]2
V̂ar(θ̂).

For example, if θ is positive and g(θ) is the log function, the local estimate of the variance of

log(θ̂) is V̂ar[log(θ̂)] = V̂ar(θ̂)/θ̂2 and ŝe[log(θ̂)] = ŝe(θ̂)/θ̂.

D.5.4 Likelihood Ratios and Profile Likelihoods

Suppose we want to estimate θ1 from the partition θ = (θ1 ,θ2). Let r1 denote the length of
θ1 . The proile likelihood for θ1 is

R(θ1) = max
θ2

[
L(θ1 ,θ2)

L(θ̂)

]
. (D.29)

When the length of θ2 is 0 (as in the exponential distribution in Example 12.12), expression
(D.29) is a relative likelihood for θ = θ1 . Otherwise we have a “maximized relative likelihood”
for θ1 . In either case, R(θ1) is commonly known as a “proile likelihood” because it provides
a view of the proile of L(θ) as viewed along a line that is perpendicular to the axes of θ1 .

� When θ1 is of length 1, R(θ1) is a curve projected onto a plane.

� When θ1 is of length 2 or more, R(θ1) is a surface projected onto a three-dimensional
hyperplane.

In either case the projection is in a direction perpendicular to the coordinate axes for θ1 . When
θ1 is of length 1 or 2, it is useful to display R(θ1) graphically.

Asymptotically, LLR(θ1) = −2 log[R(θ1)], when evaluated at the actual θ1 , has a chi-
square distribution with r1 degrees of freedom. To do a likelihood-ratio signiicance test, we
would reject the null hypothesis that θ = θ0 , at the α level of signiicance, if

LLR(θ1) = −2 log[R(θ0)] > χ2
(1−α ;r1 ).

D.5.5 Approximate Likelihood-Ratio-Based Confidence Regions or
Confidence Intervals for the Model Parameters

An approximate 100(1 − α)% likelihood-ratio-based conidence region for θ1 is the set of
all values of θ1 such that LLR(θ1) = −2 log[R(θ1)] < χ2

(1−α ;r1 ) or, equivalently, R(θ1) >
exp
[
− χ2

(1−α ;r1 )/2
]
. Here θ1 could be the full parameter vector, a single element of θ, or

some other subset of θ. If one is interested in a scalar function g(θ), these same ideas can be
applied after a reparameterization such that g(θ) is one of the parameters. Simulation stud-
ies for different applications and models (e.g., Meeker, 1987; Ostrouchov and Meeker, 1988;
Vander Wiel and Meeker, 1990; Jeng and Meeker, 2000) have shown that in terms of closeness
to the nominal conidence level, the likelihood-based intervals have important advantages over
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the standard normal-approximation intervals discussed in Section D.5.6, especially when there
are only a small number of failures in the data.

D.5.6 Approximate Wald-Based Confidence Regions or Confidence Intervals
for the Model Parameters

The large-sample normal approximation for the distribution of ML estimators can be used to
obtain approximate conidence intervals (regions) for scalar (vector) functions ofθ. In particular,
an approximate 100(1 − α)% conidence region for θ is the set of all values of θ inside the
ellipsoid

(θ̂ − θ)′
(
Σ̂

θ̂

)−1

(θ̂ − θ) ≤ χ2
(1−α ;r),

where r is the length of θ. This is sometimes known as the “Wald method” or the “normal-
approximation” method. This conidence region (or interval) is based on the distributional result
that, asymptotically, when evaluated at the actual value of θ, the Wald statistic

W (θ) = (θ̂ − θ)′
(
Σ̂

θ̂

)−1

(θ̂ − θ)

has a chi-square distribution with r degrees of freedom.
More generally, let g(θ) be a vector function of θ. An approximate 100(1 − α)% normal-

approximation conidence region for an r1-dimensional subset g1 = g1(θ), from the partition
g(θ) = [g1(θ),g2(θ)], is the set of all the g1 values inside the ellipsoid

(ĝ1 − g1)
′
(
Σ̂ĝ1

)−1

(ĝ1 − g1) ≤ χ2
(1−α ;r1 ),

where ĝ1 = g1(θ̂) is the ML estimator of g1(θ) and Σ̂ĝ1
is the local estimate of the covariance

matrix of ĝ1 . The estimate Σ̂ĝ1
can be obtained from the local estimate of Σĝ in (D.28). This

conidence region (or interval) is based on the distributional result that the Wald subset statistic

W (g1) = (ĝ1 − g1)
′
(
Σ̂ĝ1

)−1

(ĝ1 − g1),

when evaluated at the actual g1 , has, asymptotically, a chi-square distribution with r1 degrees
of freedom. As shown in Meeker and Escobar (1995), this normal-approximation conidence
region (or interval) can be viewed as a quadratic approximation for the log proile likelihood of
g1(θ) at ĝ1 .

When r1 = 1, g1 = g1(θ) is a scalar function of θ, and an approximate 100(1 − α)%Wald
interval is obtained from the familiar formula

[g
˜

1 , g̃1 ] = ĝ1 ± z(1−α/2) ŝeĝ1
,

where ŝeĝ1
=

√
V̂ar[g1(θ̂)] is the local estimate for the standard error of ĝ1 and z(1−α/2) is the

1 − α/2 quantile of the standard normal distribution.
Wald-based (normal-approximation) conidence intervals tend to have coverage probabilities

that are less than the nominal conidence levels. Likelihood-ratio-based conidence intervals tend
to have coverage probabilities that are much closer to the nominal. See alsoMeeker and Escobar
(1995).
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D.5.7 Approximate Score-Based Confidence Regions or Confidence Intervals
for Model Parameters

Consider the parameter vector θ = (θ1 ,θ2). An approximate 100(1 − α)% score-based con-
idence region for the subset θ1 is the set of all values of θ1 inside the ellipsoid deined by

V (θ1) =
[
S(

̂
θ)

]′(̂
Σ

θ̂

)[
S(

̂
θ)
]
≤ χ2

(1−α ;r1 ), (D.30)

where

̂
θ = (θ1 ,

̂
θ2n), and

̂
θ2n maximizes L(θ1 ,θ2) with respect to θ2 (see (D.25) for an

equivalent expression for V (θ1)). This conidence region (or interval) is based on the distribu-
tional result that, asymptotically, when evaluated at the actual θ1 , the score statistic in (D.25)
is distributed as χ2(r1).

If one is interested in a scalar function g(θ), these same ideas can be applied after a
reparameterization such that g(θ) is one of the model parameters (see Boos and Stefanski,
2013, Chapter 3, for a general discussion of the score statistic).

Example D.11 Score Based Conidence Interval for the Poisson Distribution Rate Para-

meter. Using (D.30) with the score statistic for the λ parameter in (D.26), an approximate
100(1 − α)% conidence region for λ is

(λ − λ̂)2

λ/n
≤ χ2

(1−α ;1).

Using the fact thatχ2
(1−α ;1) = z2

(1−α/2) , the conidence region contains the values ofλ that satisfy

the relationship (λ − λ̂)2 − z2
(1−α/2) (λ/n) ≤ 0. Or equivalently, grouping the quadratic and

linear terms for λ in the relationship, the conidence region contains values of λ that satisfy the
relationship

λ2 −
(
2λ̂ + z2

(1−α/2)/n
)

λ + λ̂2 ≤ 0. (D.31)

Because the left-hand side in the inequality (D.31) is a quadratic function that takes positive
values at λ = 0 and for large values of λ, the conidence region is the interval given by the two
roots of the quadratic equation

λ2 −
(
2λ̂ + z2

(1−α/2)/n
)
λ + λ̂2 = 0.

A simple computation gives the two roots which determine the score-based conidence interval
for λ,

[
λ
˜
, λ̃
]

=
̂̂
λ ∓ z(1−α/2)

1√
n

(
λ̂ +

z2
(1−α/2)

4n

)1/2

,

where
̂̂
λ = (x + z2

(1−α/2)/2)/n. This is the basis of the score interval in Section 7.2.4

D.6 THE CDF PIVOTAL METHOD FOR OBTAINING CONFIDENCE INTERVALS

This section describes the cdf pivotal method to obtain conidence intervals for scalar parame-
ters. Themethod is very useful and provides exact intervals for parameters from some continuous
distributions and conservative intervals for parameters from some discrete distribution.
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As mentioned in Section 2.7, it is possible to combine a one-sided lower 100(1 − αL)%
conidence bound and a one-sided upper 100(1 − αL)% conidence bound to obtain a two-sided
100(1 − 2αL)% conidence interval (see Section B.2.2 for a technical demonstration of this
result). To simplify the presentation, the development in this section will focus on two-sided
conidence intervals, but there is a parallel set of results for both lower and one-sided upper
conidence bounds.

D.6.1 Continuous Distributions

Consider a completely speciied scalar function of the data W = g(X); for example, W =∑n
i=1 X2

i . Suppose that W has a cdf F (w; θ) = Pr(W ≤ w; θ) which is continuous in w,
where θ is a scalar parameter. In addition, suppose that for all w, the function F (w; θ) is
continuous and strictly monotone decreasing in θ.

Because of the cdf transform (see ExampleD.2 in SectionD.1), the randomquantityF (W ; θ)
has a UNIF(0, 1) distribution. This implies that F (W ; θ) is pivotal. Thus

Pr
(α

2
≤ F (W ; θ) ≤ 1 −

α

2

)
= 1 − α.

Using the pivotal procedure in Section E.1, an exact 100(1 − α)% conidence interval [θ
˜
, θ̃]

for θ is obtained from the solutions to

F (w; θ
˜
) = 1 −

α

2
and F (w; θ̃) =

α

2
,

where w = g(x) is the sample value of W . Equivalently, obtain θ
˜
and θ̃ as the solutions to

Pr(W ≥ w; θ
˜
) =

α

2
and Pr(W ≤ w; θ̃) =

α

2
. (D.32)

When F (w; θ) is continuous and strictly monotone increasing on θ, the computation of the

conidence interval for θ is similar. In particular, the interval [θ
˜
, θ̃] endpoints are obtained from

to the solutions to

Pr(W ≥ w; θ̃) =
α

2
and Pr(W ≤ w; θ

˜
) =

α

2
. (D.33)

Note that it is implicitly assumed that there are solutions θ
˜
and θ̃ for (D.32), which need not be

the case in certain special cases.

Example D.12 Pivoting a CDF to Obtain a Conidence Interval for a Normal Distribution

Variance Parameter. Consider a random sample X1 , . . . ,Xn from a NORM(0, σ) distribu-
tion. A suficient statistic for σ2 is W =

∑n
i=1 X2

i /n. Let x1 , . . . , xn be the sample values.
The ML estimate for σ2 is σ̂2 =

∑n
i=1 x2

i /n, which is the observed value of W .
Using the fact that (Xi/σ)2 ∼ χ2(1) and that the Xi are independent, then W ∼

(σ2/n)χ2(n). Consequently, the sampling distribution of σ̂2 is

F (σ̂2 ;σ2) = Pr(W ≤ σ̂2) = Pr

(
X2

(n) ≤
nσ̂2

σ2

)
= pchisq

(
nσ̂2

σ2
;n

)
. (D.34)

Because

d

dσ2
F (σ̂2 ;σ2) = −

nσ̂2

σ4
dchisq

(
nσ̂2

σ2
, n

)
< 0,

for any ixed value of σ̂2 , F (σ̂2 ;σ2) is a continuous monotone decreasing function of σ2 .
Using (D.32) and (D.34), Pr(W ≥ σ̂2 ;σ

˜
2) = α/2, which implies that Pr(W ≤ σ̂2 ;σ

˜
2) =
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pchisq(nσ̂2/σ
˜

2 ;n) = 1 − α/2. Equivalently, σ
˜

2 = nσ̂2/χ2
(1−α/2;n) . Similarly, Pr(W ≥

σ̂2 ; σ̃2) = α/2 gives σ̃2 = nσ̂2/χ2
(α/2;n) . Thus an exact 100(1 − α)% conidence interval

for σ2 is

[
σ
˜

2 , σ̃2
]

=

[
nσ̂2

χ2
(1−α/2;n)

,
nσ̂2

χ2
(α/2;n)

]
.

Example D.13 Pivoting a CDF to Obtain a Conidence Interval for an Exponential Distri-

bution Rate Parameter. Consider a random sample T1 , . . . , Tn from an EXP(θ) distribution;
the objective is to obtain a conidence interval for the rate parameter λ = 1/θ. A suficient
statistic for λ is W =

∑n
i=1 Ti/n. Let t1 , . . . , tn be the sample values and let t̄ be the sample

mean of the data. Note that t̄ is a sample value for W . Then the ML estimate for λ is λ̂ = 1/t̄.
It can be veriied that 2λXi ∼ EXP(2) = χ2(2). Thus 2nλW ∼ χ2(2n) or, equivalently,
W ∼ χ2(2n)/(2nλ). Then

F (t̄;λ) = Pr(W ≤ t̄) = Pr(X2
(2n) ≤ 2nλt̄) = pchisq(2nλt̄; 2n). (D.35)

Because

d

dλ
F (t̄;λ) = 2nt̄ dchisq(2nλt̄; 2n) > 0,

for any value of t̄, F (t̄;λ) is a continuous monotone increasing function in λ. Using (D.33) and
(D.35) with θ

˜
= λ
˜
givesPr(W ≤ t̄;λ

˜
) = α/2, which implies thatPr(X2

(2n) ≤ 2nλ
˜
t̄) = α/2.

Thus 2nλ
˜
t̄ = χ2

(α/2;2n) andλ
˜

= (1/t̄) [χ2
(α/2;2n)/(2n)]. Similarly,Pr(W ≤ t̄; λ̃) = α/2 gives

λ̃ = (1/t̄) [χ2
(1−α/2;2n)/(2n)]. Thus an exact 100(1 − α)% conidence interval for λ is

[λ
˜
, λ̃] =

[
λ̂ χ2

(α/2;2n)

2n
,

λ̂ χ2
(1−α/2;2n)

2n

]
.

D.6.2 Discrete Distributions

To focus on the discrete distributions of interest in this book, and avoid pathological situations,
we consider discrete distributions with support on a inite set (e.g., binomial distribution, beta-
binomial distribution) or a subset of the nonnegative integers (i.e., the Poisson distribution).

When W = g(X) is a discrete random variable with cdf F (w; θ), the distribution of
F (W ; θ) is not pivotal because it depends on θ. Nevertheless, we can still use the cdf inver-
sion method given in (D.32) and (D.33). As shown in Section D.6.3, this approach provides
conservative conidence interval procedures for θ.

Example D.14 Pivoting a CDF to Obtain a Conidence Interval for a Binomial Distribu-

tion Probability Parameter. Consider a single observation X from a BINOM(n, π) distri-
bution. Then W = X ∼ BINOM(n, π). Using w = x for the sample value, the derivative in
(C.20) shows that, for each x, F (x;π) is a continuous and decreasing function of π.

Using (D.32) shows that Pr(X ≥ x;n, π
˜
) = α/2. From the relationship between the

beta and binomial distributions in (C.19), Pr(X ≥ x;n, π
˜
) = pbeta(π

˜
, x, n − x + 1) =

α/2. Thus π
˜

= qbeta(α/2, x, n − x + 1). Similarly, Pr(X ≤ x;n, π̃) = α/2 gives π̃ =
qbeta(1 − α/2, x + 1, n − x). Thus a conservative 100(1 − α)% conidence interval for π is

[π
˜
, π̃] = [qbeta(α/2;x, n − x + 1), qbeta(1 − α/2;x + 1, n − x)],

which agrees with (6.1).
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Example D.15 Pivoting a CDF to Obtain a Conidence Interval for the Poisson Rate

Parameter. Now consider a single observation X from a POIS(nλ) distribution where n > 0
is the amount of exposure and λ is the rate of occurrences per unit of exposure. Then W =
X ∼ POIS(nλ). Using w = x for the sample value, the derivative in (C.24) shows that, for
each x, F (x;λ) is a continuous and decreasing function of λ.

Using (D.32) shows that Pr(X ≥ x;nλ
˜
) = α/2. Using, the relationship between the

chi-square and the Poisson distribution cdf in (C.23), Pr(X ≥ x;nλ
˜
) = Pr(X2

(2x) ≤

2nλ
˜
) = α/2. Thus λ

˜
= (0.5/n)χ2

(α/2;2x) . Similarly, Pr(X ≤ x;nλ̃) = α/2 gives λ̃ =

(0.5/n)χ2
(1−α/2;2x+2) . Thus a conservative100(1 − α)% conidence interval for the rate param-

eter λ is

[λ
˜
, λ̃] =

[
0.5χ2

(α/2;2x)

n
,

0.5χ2
(1−α/2;2x+2)

n

]
,

which agrees with (7.1).

Example D.16 Pivoting a CDF to Obtain a Conidence Interval for a Negative Bino-

mial Distribution Probability Parameter. Now consider a single observation X from an
NBINOM(k, π) distribution where X is the number of conforming units observed before the
kth nonconforming unit is observed, and π is the probability of observing a nonconforming
unit at each trial. Then W = X ∼ NBINOM(k, π). Using w = x for the sample value, the
derivative in (C.22) shows that, for each x, F (x; k, π) is a continuous and increasing function
of π.

Using (D.33), Pr(X ≤ x;π
˜
) = α/2. Then using the relationship between the beta and

the negative binomial cdfs in (C.21) gives Pr(X ≤ x;π
˜
) = pbeta(π

˜
, k, x + 1) = α/2,

which implies that π
˜

= qbeta(α/2, k, x + 1). Similarly, Pr(X ≥ x; k, π̃) = α/2 implies
π̃ = qbeta(1 − α/2, k, x). Thus a conservative 100(1 − α)% conidence interval for π is

[
π
˜
, π̃
]

= [qbeta(α/2, k, x + 1), qbeta(1 − α/2, k, x)].

Example D.17 Pivoting a CDF to Obtain a Conidence Interval for a Hypergeometric

Distribution Parameter. Consider a sample of size n without replacement from a population
of size N containing D nonconforming units and N − D conforming units, where N and n
are known and D is unknown. In this case the parameter of interest is θ = D. Deine X as
the random variable that counts the number of nonconforming units observed in the sample
(without replacement) of size n. As shown later, for ixed x, H(x;n,D,N) = Pr(X ≤ x;D)
is a nonincreasing step function of D, for 0 ≤ D ≤ N .

Because of the discontinuities inH(x;n,D,N)with respect toD, D̃ is the largest value such

thatPr(X ≤ x; D̃) > α/2. Similarly,D
˜
is the smallest value such thatPr(X ≥ x;D

˜
) > α/2.

Then, as shown in Section D.6.3, [D
˜

, D̃] is a conservative 100(1 − α)% conidence interval
for D.

D.6.3 Coverage Probability of the Intervals Derived from the cdf
Pivotal Method

Here we consider the coverage probability for intervals obtained from pivoting a cdf of a
function W = g(X) of the data. The general assumptions are as follows:

(a) W = g(X) is a continuous (or discrete) random variable with cdf F (w; θ) =
Pr(W ≤ w) and survival function S(w; θ) = Pr(W ≥ w). In this section, for con-
venience, the survival function S(w; θ) is deined as the probability that W takes values
equal to or larger than w.
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(b) For each w, F (w; θ) is a continuous and monotone decreasing (or increasing) function
of θ.

(c) For a given observed value of w, the interval endpoints θ̃ and θ
˜
are deined to be values

of θ such that F (w; θ̃) = α/2 and S(w; θ
˜
) = α/2.

Continuous distribution

When W = g(X) is a continuous random variable with cdf F (w; θ), because of the cdf trans-
form F (W ; θ) ∼ UNIF(0, 1) and also S(W ; θ) ∼ UNIF(0, 1). From (D.32) the coverage
probability of the one-sided lower conidence bound is

Pr
(
θ
˜
≤ θ

)
= 1 − Pr(θ < θ

˜
) = 1 − Pr[S(W ; θ) ≤ S(W ; θ

˜
)]

= 1 − Pr[S(W ; θ) ≤ α/2] = 1 − α/2.
(D.36)

This shows that the one-sided lower conidence bound is exact (i.e., the coverage probability is
equal to the nominal conidence level).

Similarly, for the one-sided upper conidence bound,

Pr
(
θ ≤ θ̃

)
= 1 − Pr(θ̃ < θ) = 1 − Pr[F (W ; θ) ≤ F (W ; θ̃)]

= 1 − Pr[F (W ; θ) ≤ α/2] = 1 − α/2,
(D.37)

which shows that the one-sided upper conidence bound is exact.
Now consider the coverage probability for the two-sided conidence interval for θ. First notice

that Pr(θ < θ
˜
) + Pr
(
θ
˜
≤ θ ≤ θ̃

)
+ Pr(θ̃ < θ) = 1. Using this result, (D.36), and (D.37)

gives

Pr
(
θ
˜
≤ θ ≤ θ̃

)
= 1 − Pr(θ < θ

˜
) − Pr(θ̃ < θ)

= 1 − α/2 − α/2 = 1 − α.

Thus, the two-sided conidence intervals are also exact. This implies that the conidence intervals
in Examples D.12 and D.13 are exact.

Discrete distribution

Now we consider the coverage probability for the intervals when W = g(X) is a discrete
random variable. To avoid pathological situations, we consider discrete distributions whose set
of discontinuities is either inite (e.g., binomial and beta-binomial distributions) or a subset of the
nonnegative integers (e.g., the Poisson distribution). This includes all the discrete distributions
used in this book.

We now show that the cdf pivotal method, under assumptions (b) and (c) above, as applied
in Section D.6.2, gives conservative one-sided conidence bounds and conservative two-sided
conidence intervals. To prove the result, recall that the cdf of aUNIF(0, 1) distribution is given
by the identity function Pr(U ≤ v) = v, where U ∼ UNIF(0, 1). We irst show that for each
given θ, F (W ; θ) is stochastically ordered with respect to the UNIF(0, 1) cdf in the sense that
Pr[F (W ; θ) ≤ v] ≤ v for all 0 < v < 1 andPr[F (W ; θ) ≤ v] < v for at least some values of
v. Let J = {w0 < . . . < wk < . . .} be the set of discontinuity points of the cdf F (w; θ). For
each wi in J , deine vi = F (wi ; θ) = Pr(W ≤ wi; θ). Note that the vi values are monotone
increasing (i.e., v0 < v1 < . . . ). Using the fact that F (w; θ) is nondecreasing in w,

vi = Pr(W ≤ wi; θ) = Pr[F (W ; θ) ≤ vi]. (D.38)
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This shows that Pr[F (W ; θ) ≤ vi] = vi . Thus the cdf of F (W ; θ) agrees with the cdf of
a UNIF(0, 1) distribution at the vi points. Now, Pr[F (W ; θ) ≤ v] is right-continuous and
constant in the interval [vi, vi+1). Then

Pr[F (W ; θ) ≤ v] = vi < v, when vi < v < vi+1 . (D.39)

This shows that at each v value in interval (vi , vi+1) the cdf of F (W ; θ) evaluated at v is
smaller than the cdf of the UNIF(0, 1) distribution. From (D.38) and (D.39), we conclude that

Pr[F (W ; θ) ≤ v] ≤ v, for all 0 ≤ v ≤ 1, (D.40)

where the equality between the UNIF(0, 1) cdf and the cdf Pr[F (W ; θ) ≤ v] occur at and
only at the discontinuity points vi of this distribution.

First we show that the one-sided upper 100(1 − α/2)% conidence bound is conservative.
Hereafter it is assumed that F (w; θ) is decreasing in θ (the proof when the cdf is increasing in θ

is similar). The upper conidence bound θ̃ is determined byF (w; θ̃) = α/2. Using (D.40) gives

Pr
(
θ ≤ θ̃

)
= 1 − Pr(θ̃ < θ) ≥ 1 − Pr(θ̃ ≤ θ)

= 1 − Pr[F (W ; θ) ≤ F (W ; θ̃)] = 1 − Pr[F (W ; θ) ≤ α/2] ≥ 1 − α/2.
(D.41)

This shows that the one-sided upper conidence bound θ̃ is conservative.
The survival function S(W ; θ) is also stochastically ordered with respect to theUNIF(0, 1).

To prove this result, note that as a function of s, the function S(w; θ) is nonincreasing,
continuous from the left, with discontinuities at the points in the set J . For each wi in J ,
deine si = S(wi ; θ) = Pr(W ≥ wi; θ). Note that the si values are monotone decreasing (i.e.,
s0 > s1 > . . . ). Then because S(w; θ) is nonincreasing in w,

si = Pr(W ≥ wi; θ) = Pr[S(W ; θ) ≤ S(wi ; θ)] = Pr[S(W ; θ) ≤ si ]. (D.42)

This shows that Pr[S(W ; θ) ≤ si ] = si , which is the same as the value of the UNIF(0, 1) cdf
at si . Now, as a function of s, Pr[S(W ; θ) ≤ s] is right-continuous and constant in the interval
[si+1 , si). Then

Pr[S(W ; θ) ≤ s] = si+1 < s, when si+1 < s < si . (D.43)

From (D.42) and (D.43),

Pr[S(W ; θ) ≤ s] ≤ s, for all 0 ≤ s ≤ 1, (D.44)

where the equality between theUNIF(0, 1) cdf and the cdfPr[S(W ; θ) ≤ s] occur at and only
at the discontinuity points si of this distribution.

To show that the one-sided lower 100(1 − α/2)% conidence bound is conservative, using
(D.44) gives

Pr
(
θ
˜
≤ θ

)
= 1 − Pr(θ < θ

˜
) < θ) ≥ 1 − Pr(θ ≤ θ

˜
)

= 1 − Pr[S(W ; θ) ≤ S(W ; θ
˜
)] = 1 − Pr[S(W ; θ) ≤ α/2] ≥ 1 − α/2.

(D.45)

This shows that the one-sided lower bound θ
˜
is also conservative.

Now consider the two-sided 100(1 − α)% conidence interval [θ
˜
, θ̃]. The interval end-

points are determined from F (w; θ̃) = S(w; θ
˜
) = α/2. Because the three events

{
θ < θ

˜
}
,{

θ
˜
≤ θ ≤ θ̃

}
, and

{
θ̃ < θ

}
are disjoint and their union is equal to (−∞, ∞),

Pr
(
θ < θ

˜
)

+ Pr
(
θ
˜
≤ θ ≤ θ̃

)
+ Pr(θ̃ < θ) = 1.
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Solving this equation for Pr
(
θ
˜
≤ θ ≤ θ̃

)
and using (D.41)–(D.45) gives

Pr
(
θ
˜
≤ θ ≤ θ̃

)
= 1 − Pr

(
θ < θ

˜
)
− Pr

(
θ̃ < θ

)
≥ 1 − Pr

(
θ ≤ θ

˜
)
− Pr

(
θ̃ ≤ θ

)

≥ 1 − α/2 − α/2 = 1 − α.
(D.46)

This shows that the conidence interval [θ
˜
, θ̃] is conservative.

In summary, the conidence intervals based on the CDF pivotal methods for discrete distri-
butions that satisfy assumptions (a)–(c) are conservative. In particular, the intervals in Exam-
ples D.14–D.16 meet the assumptions and they are conservative.

In the case of Example D.17 where W = X , the conditions in items (b)–(c) above are
not satisied. The dificulty is caused by the discontinuity of F (w;D) as a function of D
because D is a discrete parameter. The interval in this example, however, is also conservative,
as we show next. The cdf F (w;D) is nonincreasing in D. This result is a consequence of the
fact that for ixed x, N and n, the hypergeometric distribution cdf phyper(x;n,D,N) is a
nonincreasing function of D (see Section C.4.5). Recall that in Example D.17 the bounds were

speciied as D̃, the largest value such that F (w; D̃) > α/2, and D
˜
, the smallest value such that

S(w;D
˜

) > α/2.

With D
˜

and D̃ as given in Example D.17, using F (w; D̃) > α/2, S(w;D
˜

) > α/2, and
proceeding as in deriving (D.46) gives

Pr
(
D
˜

≤ D ≤ D̃
)
≥ 1 − Pr[S(W ;D) ≤ S(W ;D

˜
)] − Pr[F (W ;D) ≤ F (W ; D̃)]

≥ 1 − Pr[S(W ;D) ≤ α/2] − Pr[F (W ;D) ≤ α/2]

≥ 1 −
α

2
−

α

2
= 1 − α.

(D.47)

This shows that the interval
[
D
˜

, D̃
]
is conservative because its coverage probability is larger

than or equal to the nominal 1 − α conidence level. The one-sided lower D
˜

and upper D̃
conidence bounds are also conservative. The proof of this is a simpliied version of the result
in (D.47).

D.7 BONFERRONI APPROXIMATE STATISTICAL INTERVALS

D.7.1 The Bonferroni Inequality

Given a collection of m sets A1 , . . . , Am , the Bonferroni inequality provides a bound for the
probability of the intersection of m sets, say

⋂m
i=1 Ai = A1 ∩ A2 ∩ · · · ∩ Am , as a function of

the probabilities of the Ai or the probability of the Ac
i . To be precise,

Pr

(
m⋂

i=1

Ai

)
≥

m∑

i

Pr(Ai) − (m − 1) = 1 −

m∑

i

Pr(Ac
i ).

To prove the inequality for m = 2, note that

1 ≥ Pr(A1 ∪ A2) = Pr(A1) + Pr(A2) − Pr(A1 ∩ A2). (D.48)

From the inequality between the far left and far right terms in (D.48), after rearranging some
terms, we obtain

Pr(A1 ∩ A2) ≥ Pr(A1) + Pr(A2) − 1 = 1 − [Pr(Ac
1) + Pr(Ac

2)],

where Ac
i is the complement of the set Ai for i = 1, 2. This proves the Bonferroni inequality

for m = 2. The general Bonferroni inequality is obtained using induction in m.
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D.7.2 Bonferroni Conservative Approach for Simultaneous Statistical Intervals

Suppose Ai is a statement that a conidence interval contains a parameter θi of interest, where
i = 1, . . . , k. Also suppose that, individually, the coverage probabilities of the conidence
intervals are Pr(A1) = 1 − α1 , . . . ,Pr(Ak) = 1 − αk . Then using Bonferroni, the combined

simultaneous conidence region
⋂k

i=1 Ai has a conservative coverage probability of

Pr

(
k⋂

i=1

Ai

)
≥ 1 − (α1 + α2 + · · · + αk).

For example, if [ai, bi ] is an exact 95% conidence level interval for θi for each i = 1, 2, then the
square with corners {(a1 , a2), (b1 , a2), (b1 , b2), (a1 , b2)} is a conservative simultaneous 90%
conidence level region for the pair (θ1 , θ2). Section 2.9 discuss the combination of individual
conidence intervals to obtain simultaneous conidence intervals.

D.7.3 Bonferroni Conservative Approach for Tolerance Intervals

One-sided tolerance bounds can be combined to obtain approximate two-sided tolerance inter-
vals. For example, suppose that

˜
T ′

pL
is a one-sided lower tolerance bound forT that one can claim

with 100(1 − αL)% conidence is exceeded by at least 100pL% of the population. Also suppose

that T̃ ′
pU

is a one-sided upper tolerance bound for T that one can claim with 100(1 − αU )%

conidence exceeds at least 100pU % of the population. Then [
˜
T ′

pL
, T̃ ′

pU
] is an approximate

two-sided tolerance interval that one can claim with 100(1 − αL − αU )% conidence encloses
at least 100(pL + pU − 1)% of the sampled population. The coverage probability for this
two-sided tolerance interval is greater than 100(1 − αL − αU )%, and thus the interval is con-
servative (i.e., wider than it needs to be). This is an application of the Bonferroni approximation,
as follows.

Deine the sets

A1 =
{
Pr

(

˜
T ′

pL
< T | X

)
> pL

}
=

{
1 − F (

˜
T ′

pL
) > pL

}
,

A2 =
{

Pr
(
T ≤ T̃ ′

pU
| X
)

> pU

}
=
{

F (T̃ ′
pU

) > pU

}
.

Note thatA1 andA2 depend onX through
˜
T ′

pL
and T̃ ′

pU
, respectively. AlsoPrX(A1) ≥ 1 − αL

and PrX(A2) ≥ 1 − αU . Deine the set B as

B =
{

Pr
(

˜
T ′

pL
< T ≤ T̃ ′

pU
| X
)

> pL + pU − 1
}

=
{

F (T̃ ′
pU

) − F (
˜
T ′

pL
) > pL + pU − 1

}
.

Note that B depends on X through
˜
T ′

pL
and T̃ ′

pU
. Because the inequalities 1 − F (

˜
T ′

pL
) > pL

and F (T̃ ′
pU

) > pU imply the inequality F (T̃ ′
pU

) − F (
˜
T ′

pL
) > pL + pU − 1, then A1 ∩ A2 is a

subset of B which implies Pr(B) ≥ PrX(A1 ∩ A2). Thus

Pr
(

˜
T ′

pL
< T ≤ T̃ ′

pU

)
= PrX(B) ≥ PrX(A1 ∩ A2)

≥ PrX(A1) + PrX(A2) − 1 (D.49)

≥ 1 − (αL + αU ),

where the inequality in the second line of (D.49) is obtained by applying the Bonferroni
inequality to PrX(A1 ∩ A2).
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When an exact two-sided tolerance interval is available (e.g., for the normal and exponential
distributions), such an exact interval is more precise (i.e., narrower) than the two-sided tolerance
interval from the preceding approximation.

D.7.4 Alternative Approximate Tolerance Interval Method

Simulation studies (like those reported in Sections 6.6.4 and 7.5.4) have shown that, for dis-
crete distributions, the one-sided tolerance bound procedures tend to be conservative, and thus
applying the method in Section D.7.3 results in additional conservatism (resulting in overly
wide tolerance intervals). Thus, for discrete distributions we will suggest a modiication of
the approach in Section D.7.3. To obtain an approximate two-sided 100(1 − α)% tolerance
interval to contain at least a proportion β of the distribution, one combines a one-sided lower
100(1 − α)% conidence bound on the (1 − β)/2 quantile for the lower endpoint and a one-
sided upper 100(1 − α)% conidence bound on the (1 + β)/2 quantile for the upper endpoint.

That is [
˜
Tβ , T̃β ] = [y

˜
(1−β )/2 , ỹ(1+β )/2 ]. Note that this procedure is not guaranteed to be

conservative (but evaluations in Sections 6.6.4 and 7.5.4 show that they are).

D.7.5 Two-Sided Prediction Intervals Based on Two One-Sided Prediction
Bounds and a Bonferroni Approximation

Section 4.8 gives the simultaneous two-sided 100(1 − α)% prediction interval to contain the
values of all m future randomly selected observations from a previously sampled normal
distribution

[Y
˜

m :m , Ỹm :m ] = x̄ ∓ r(1−α ;m,m,n)s,

where r(1−α ;m,m,n) is computed by the methods shown in Section E.6.4. For m = 1,
r(1−α ;1,1,n) = (1 + 1/n)1/2 t(1−α/2;n−1) (see Section 4.7 for details). We now show that a
conservative approximation for r(1−α ;m,m,n) is

ra
(1−α ;m,m,n) =

(
1 +

1

n

)1/2

t(1−α/(2m );n−1). (D.50)

Suppose that Yi , i = 1, 2, . . . ,m, are the future observations. Deine Ai ={
Y
˜

a
m :m ,≤ Yi ≤ Ỹ a

m ;m

}
. Note that for a single observation (i.e.,m = 1), the prediction interval

[
Y
˜

a
m :m , Ỹ a

m ;m

]
is exact with coverage probability equal to Pr(Ai) = 1 − α/m, for each i.

Then using the Bonferroni inequality gives

Pr

(
m⋂

i=1

Ai

)
≥ 1 − Pr

(
m∑

i=1

Ac
i

)
= 1 −
( α

m
+ · · · +

α

m

)
= 1 − α.

Because Pr(
⋂m

i=1 Ai) is the probability that the prediction interval contains all of the m future
observations, the approximation ra

(1−α ;m,m,n) ≈ r(1−α ;m,m,n) gives a conservative prediction

interval.
The conservative approximation in (D.50) was suggested by Chew (1968). See the Biblio-

graphic Notes section at the end of Chapter 4 for additional information.



AppendixE
Pivotal Methods for

Constructing Parametric
Statistical Intervals

INTRODUCTION

This appendix outlines some of the most useful methods for deining particular statistical
interval procedures. In particular, we present pivotal quantities that lead to well-known interval
procedures for the normal distribution. We also present pivotal quantities for the more general
location-scale distributions and indicate howmethods for location-scale distributions can usually
be applied directly to log-location-scale distributions and, in an approximate manner, to obtain
statistical intervals and bounds for other parametric distributions or when the data are censored.

The topics discussed in this appendix are:

� Pivotal quantities and their use to construct conidence intervals (Section E.1).

� Examples of normal distribution pivotal quantities (Section E.2).

� How to obtain conidence intervals for the mean, the standard deviation, quantiles, and
tail probabilities of a normal distribution using pivotal quantities (Section E.3).

� Examples of pivotal methods to construct conidence intervals to compare means and
sample variances for data coming from two normal distributions (Section E.4).

� The use of pivotal quantities to obtain tolerance intervals for normally distributed data
(Section E.5).

� Examples of pivotal methods to construct prediction intervals to predict the mean or the
sample standard deviation for data coming from a normal distribution. Also, examples of
pivotal methods to construct prediction bounds and intervals to bound or contain at least

Statistical Intervals: A Guide for Practitioners and Researchers, Second Edition.

William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.

© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

Companion Website: www.wiley.com/go/meeker/intervals

473

www.wiley.com/go/meeker/intervals


474 PIVOTAL METHODS FOR CONSTRUCTING PARAMETRIC STATISTICAL INTERVALS

k out of m future observations for data coming from a normal or a log-location-scale
distribution (Section E.6).

� How to obtain conidence intervals for the location, scale, and quantiles for a location-scale
and log-location-scale distribution using pivotal quantities (Section E.7).

E.1 GENERAL DEFINITION AND EXAMPLES OF PIVOTAL QUANTITIES

Consider a vector of random variables X = (X1 , . . . ,Xk) with joint distribution f(x;θ). A
function of the observations X and the parameters θ, say g(X,θ), is a pivotal quantity if
the distribution of g(X,θ) does not depend on θ. As illustrated later, the deinition of pivotal
quantities does not require that theX1 , . . . ,Xn are independent and identically distributed. The
vector of parameters θ may have one or more components. There is the potential to use vector
pivotal quantities, but in this book we use only scalar pivotal quantities.

Pivotal quantities are useful to construct conidence intervals. The general process is as
follows.

� Suppose that g(X,θ) is continuous and that gα1
and g(1−α2 ) are the α1 and 1 − α2

quantiles of its distribution, where α1 + α2 = α < 1 and usually α1 = α2 = α/2. Then

Pr[gα1
≤ g(X,θ) ≤ g(1−α2 )] = 1 − α. (E.1)

� Now suppose that θ = θ is a scalar and g(X, θ) is a scalar monotone decreasing function

of θ.Let θ
˜
and θ̃ be the solutions for θ to the equations g(X, θ) = g(1−α2 ), and g(X, θ) =

gα1
, respectively. Then

Pr(θ
˜
≤ θ ≤ θ̃) = 1 − α

deines an exact 100(1 − α)% conidence interval for θ.Note that θ
˜
and θ̃ are functions of

X (e.g., X̄ and S2). The procedure generating the interval [θ
˜
, θ̃] satisies the deinition

of an exact conidence interval because the coverage probability is equal to the nominal
conidence level of 100(1 − α)%.

� There are similar results when g(X, θ) is monotone increasing in θ.

� For a nonmonotonic function g(X, θ) or for a vector θ, the probability statement in (E.1)
still applies. The inal conidence interval for θ may, however, have a more complicated
form, but a similar procedure can be applied to obtain the interval.

E.2 PIVOTAL QUANTITIES FOR THE NORMAL DISTRIBUTION

This section gives pivotal quantities for data from a normal distribution. The derivation of
the distributions g1 , . . . , g6 below is material covered in courses and textbooks dealing with
transformation of random variables. See, for example, Casella and Berger (2002, Chapter 5) for
derivation of the distributions of some of these pivotal quantities.

E.2.1 Pivotal Quantities from a Single Normal Distribution Sample

Suppose that the dataX = (X1 , . . . ,Xn) aren independent observations fromaNORM(µ, σ)
distribution and Ȳ is the mean ofm independent future observations from the same distribution.
In the notation of Section E.1, θ = (µ, σ) and the components of X are iid. Let X̄ and S be
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the sample mean and sample standard deviation of the observations (see Section 3.1.1). In this
case, the following random quantities are pivotal quantities, with the distribution indicated in
each case:

g1(X,θ) =

√
n(X̄ − μ)

S
∼ t(n − 1), (E.2)

g2(X,θ) =
(n − 1)S2

σ2
∼ χ2(n − 1), (E.3)

g3(X,θ) =

√
n(X̄ − μ)/σ −√

nzp

S/σ
∼ t(n − 1, δ), (E.4)

g4(X,θ) =
Ȳ − X̄

(1/n + 1/m)1/2 S
∼ t(n − 1), (E.5)

where zp is the p quantile of theNORM(0, 1) distribution, t(n − 1) is a Student’s t-distribution
withn − 1 degrees of freedom, and t(n − 1, δ) is a noncentral t-distribution withn − 1 degrees
of freedom and noncentrality parameter δ = −√

nzp (see Section C.3.9).

E.2.2 Pivotal Quantities Involving Data from Two Normal Distribution Samples

Suppose X is a vector of n independent observations from a NORM(µX , σX ), Y is a vector
of m independent observations from a NORM(µY , σY ), and that X and Y are independent.
In this case the vector of unknown parameters is θ = (µX , µY , σX , σY ). Let (X̄, SX ) be the
sample mean and sample standard deviation of X and let (Ȳ, SY ) be the corresponding sample
values for Y . Then

g5(X,Y ,θ) =
S2

Y /σ2
Y

S2
X /σ2

X

∼ F (m − 1, n − 1) (E.6)

is a pivotal quantity. With the constraint that σX = σY ,

g6(X,Y ,θ) =
X̄ − Ȳ − (µX − µY )

(1/n + 1/m)1/2 Sp

∼ t(n + m − 2) (E.7)

is also a pivotal quantity, where Sp = {[(n − 1)S2
X + (m − 1)S2

Y ]/(n + m − 2)}1/2
is the

pooled sample standard deviation computed from (X,Y ).

E.3 CONFIDENCE INTERVALS FOR A NORMAL DISTRIBUTION BASED ON
PIVOTAL QUANTITIES

In this section we consider the situation when the data are a random sample X of size n from
a NORM(µ, σ) distribution where the mean µ and the standard deviation σ are unknown.

E.3.1 Confidence Interval for the Mean of a Normal Distribution

From the pivotal quantity g1(X,θ) in (E.2),

Pr

[
t(α/2;n−1) ≤

√
n(X̄ − µ)

S
≤ t(1−α/2;n−1)

]
= 1 − α.
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Symmetry of the t-distribution, t(α/2;n−1) = −t(1−α/2;n−1), gives

Pr

[
−t(1−α/2;n−1) ≤

√
n(X̄ − µ)

S
≤ t(1−α/2;n−1)

]
= 1 − α.

Solving for µ in the center gives

Pr

[
X̄ − t(1−α/2;n−1))

S√
n

≤ µ ≤ X̄ + t(1−α/2;n−1)
S√
n

]
= 1 − α.

Thus an exact 100(1 − α)% conidence interval for µ is

[µ
˜
, µ̃] = x̄ ∓ t(1−α/2;n−1)

s√
n

,

as given in Section 4.2.

E.3.2 Confidence Interval for the Standard Deviation of a Normal Distribution

From the pivotal quantity g2(X,θ) in (E.3),

Pr

[
χ2

(α/2;n−1) ≤
(n − 1)S2

σ2
≤ χ2

(1−α/2;n−1)

]
= 1 − α.

Solving for σ in the center gives

Pr

⎡
⎣S

(
n − 1

χ2
(1−α/2;n−1)

)1/2

≤ σ ≤ S

(
n − 1

χ2
(α/2;n−1)

)1/2
⎤
⎦.

Thus, an exact 100(1 − α)% conidence interval for σ is

[σ
˜
, σ̃] =

⎡
⎣s

(
n − 1

χ2
(1−α/2;n−1)

)1/2

, s

(
n − 1

χ2
(α/2;n−1)

)1/2
⎤
⎦,

as given in Section 4.3.

E.3.3 Confidence Interval for the Quantile of a Normal Distribution

From the pivotal quantity g3(X,θ) in (E.4),

Pr

[
t(α/2;n−1,δ) ≤

√
n(X̄ − µ)/σ −√

nzp

S/σ
≤ t(1−α/2;n−1,δ)

]
= 1 − α,

where δ = −
√

nz(p) is the t-distribution noncentrality parameter. Solving for the p quantile
xp = µ + σzp in the center gives

Pr

[
X̄ − t(1−α/2;n−1,δ)

S√
n

≤ xp ≤ X̄ − t(α/2;n−1,δ)
S√
n

]
= 1 − α.
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Thus an exact 100(1 − α)% conidence interval for xp is

[x
˜

p , x̃p ] =

[
x̄ − t(1−α/2;n−1,δ)

s√
n

, x̄ − t(α/2;n−1,δ)
s√
n

]
,

as given in Section 4.4.

E.3.4 Confidence Intervals for Tail Probabilities of a Normal Distribution

First, we consider a lower tail probability. The probability that an observation from a normal
distribution, with given mean µ and standard deviation σ, is less than a speciied value x, is
given by pLT = Pr(X ≤ x) = Φnorm [(x − µ)/σ]. The interest is in a conidence interval for
pLT .

Let K = (x − X̄)/S, where X̄ and S are the sample mean and sample standard deviation.
Deine

Z =

√
n(µ − X̄)

σ
, δ =

√
n(x − µ)

σ
, W =

(n − 1)S2

σ2
,

where n is the sample size. Note that Z and W are independent, Z ∼ NORM(0, 1), W ∼
χ2(n − 1), Then

δ + Z

S/σ
=

δ + Z√
W/(n − 1)

∼ t(n − 1, δ).

Deine G(k) = Pr(K ≤ k). Direct computation gives

G(k) = Pr(K ≤ k) = Pr

(
x − X̄

S
≤ k

)

= Pr

[√
n(x − µ)/σ +

√
n(µ − X̄)/σ

S/σ
≤ k

√
n

]

= Pr

(
δ + Z

S/σ
≤ k

√
n

)
= pt(k

√
n;n − 1, δ),

where pt(k
√

n;n − 1, δ) is the noncentral t-distribution cdf with n − 1 degrees of freedom
and noncentrality parameter δ. Thus,G(k) is completely speciied by n and δ. To make explicit
the dependence of G(k) on the parameters (n, δ), we write G(k) = G(k;n − 1, δ). That is,

Pr(K ≤ k) = G(k;n − 1, δ) = pt(k
√

n;n − 1, δ). (E.8)

For speciied k and n, pt(k
√

n;n − 1, δ) is decreasing in δ, as discussed in Section C.3.9.
Thus, for speciied k and n, G(k;n − 1, δ) is decreasing in δ. Using the cdf pivot method
discussed in Section D.6, we proceed to obtain a conidence interval for δ as follows.

An exact 100(1 − α)% conidence interval [δ
˜
, δ̃] for δ is given by the solutions to the

equations G(k;n − 1, δ
˜
) = 1 − α/2 and G(k;n − 1, δ̃) = α/2. Equivalently, in terms of the

noncentral t-distribution cdf, the conidence interval is provided by the solutions to the equations

pt
(
k
√

n;n − 1, δ
˜
)

= 1 − α/2 and pt

(
k
√

n;n − 1, δ̃
)

= α/2.
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Because pLT = Φnorm(δ/
√

n) is a monotone increasing function of δ, a 100(1 − α)% coni-
dence interval for pLT is

[p
˜

LT , p̃LT ] =
[
Φnorm(δ

˜
/
√

n), Φnorm(δ̃/
√

n)
]

= [normTailCI(α/2; k, n), normTailCI(1 − α/2; k, n)],

where k = (x̄ − y)/s is the observed value for K. For 0 < γ < 1, the function
normTailCI(γ; k, n) providesΦnorm(δ/

√
n),where δ is the solution to pt(k

√
n;n − 1, δ) =

1 − γ. The normTailCI function has the important property that

normTailCI(γ; k, n) = 1 − normTailCI(1 − γ;−k, n). (E.9)

This is explained as follows. Suppose that

normTailCI(γ; k, n) = Φnorm(δ/
√

n) and normTailCI(1 − γ;−k, n)

= Φnorm(δ∗/
√

n). (E.10)

These assumptions imply

pt(k
√

n;n − 1, δ) = 1 − γ and pt(−k
√

n;n − 1, δ∗) = γ.

These two equalities and the noncentral t-distribution property that (see the details in Sec-
tion C.3.9)

pt(−k
√

n;n − 1, δ∗) = 1 − pt(k
√

n;n − 1,−δ∗)

imply that pt(k
√

n;n − 1, δ) = pt(k
√

n;n − 1,−δ∗). Because of the monotonicity of
pt(k;n − 1, δ) with respect to the noncentrality parameter, it must be the case that δ = −δ∗.
Thus, evaluating (E.10) with the restriction that δ = −δ∗ gives the result in (E.9).

We now consider a conidence interval and bounds for the probability of an observation
being greater than a speciied value y. That is, pGT = Pr(Y > y) = 1 − Φnorm [(y − µ)/σ] =
1 − pLT . Because pGT is a monotone decreasing function of pLT , it follows that an exact
100(1 − α)% conidence interval for pGT is given by

[p
˜

GT , p̃GT ] = [1 − p̃LT , 1 − p
˜

LT ]

= [1 − normTailCI(1 − α/2; k, n), 1 − normTailCI(α/2; k, n)]

= [normTailCI(α/2;−k, n), normTailCI(1 − α/2;−k, n)],

as given in Section 4.5.

E.4 CONFIDENCE INTERVALS FOR TWO NORMAL DISTRIBUTIONS BASED
ON PIVOTAL QUANTITIES

In this section we consider situations for which X is a vector of n independent observations
from a NORM(µX , σX ) distribution, Y is a vector of m independent observations from a
NORM(µY , σY ) distribution, and X and Y are independent. The vector of unknown parame-
ters is θ = (µX , µY , σX , σY ). Let (X̄, SX ) be the sample mean and sample standard deviation
of X and let (Ȳ, SY ) be the corresponding sample values for Y .
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E.4.1 Confidence Interval to Compare Two Sample Variances

From the pivotal quantity g5(X,Y ,θ) in (E.6),

Pr

(
S2

X

S2
Y

F(α/2;m−1,n−1) ≤
σ2

X

σ2
Y

≤
S2

X

S2
Y

F(1−α/2;m−1,n−1)

)
= 1 − α.

Then using the relationship F(α ;r1 ,r2 ) = 1/F(1−α ;r2 ,r1 ) in Section C.3.11, an exact
100(1 − α)% conidence interval for ν = σ2

X /σ2
Y is

[ν
˜
, ν̃] =

[
s2

X

s2
Y

1

F(1−α/2;n−1,m−1)

,
s2

X

s2
Y

F(1−α/2;m−1,n−1)

]
.

E.4.2 Confidence Interval for the Difference between Two Normal Distribution
Means

Here we assume that σX = σY = σ. From the pivotal quantity g6(X,Y ,θ) in (E.7),

Pr

[
−t(1−α/2;n+m−2) ≤

X̄ − Ȳ − (µX − µY )

(1/n + 1/m)1/2 Sp

≤ t(1−α/2;n+m−2)

]
= 1 − α,

where X̄ and Ȳ are sample means and S2
p is the pooled sample variance of σ. Solving for

δµ = µX − µY and using g′′′
(1−α ;n,m ) = t(1−α/2;n+m−2)(1/m + 1/n)

1/2 , we obtain

Pr
[
X̄ − Ȳ − g′′′

(1−α ;n,m )Sp ≤ δµ ≤ X̄ − Ȳ + g′′′
(1−α ;n,m )Sp

]
= 1 − α.

Thus, an exact 100(1 − α)% conidence interval for the difference δµ between the two normal
distribution means is

[δ
˜

µ , δ̃µ ] = (x̄ − ȳ) ∓ g′′′
(1−α ;n,m )sp ,

where (x̄, s2
X ) and (ȳ, s2

Y ) are the observed sample mean and sample variance from X and Y ,
respectively. The pooled variance estimate is s2

p = [(n − 1)s2
X + (m − 1)s2

Y ]/(n + m − 2).

E.5 TOLERANCE INTERVALS FOR A NORMAL DISTRIBUTION BASED ON
PIVOTAL QUANTITIES

E.5.1 Tolerance Intervals to Control the Center

Section 4.6.1 gives an exact 100(1 − α)% tolerance interval to contain at least a proportion β
of a normal distribution,

[T
˜

β , T̃β ] = x̄ ∓ g(1−α ;β ,n)s.

The purpose here is to provide details for the computations of the factors g(γ ;β ,n) given in
Tables J.5a and J.5b. To facilitate the development below, we used the compact notation
g = g(1−α ;β ,n) . We also will use the notation

A(x̄, w) = Φnorm(x̄ + w) − Φnorm(x̄ − w).
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Note that for given w, A(x̄, w) = A(−x̄, w), and for given x̄,

∂A(x̄, w)

∂w
= φnorm(x̄ + w) + φnorm(x̄ − w) > 0,

where φnorm(z) is theNORM(0, 1) pdf. ThenA(x̄, w) is monotone increasing inw. For given
x̄, we denote by r(x̄,β) the unique solution to the equation A(x̄, w) = β. That is,

A[x̄, r(x̄, β)] = β. (E.11)

The CP(μ,σ) for the tolerance interval is

CP(µ, σ) = Pr
[
PrX

(
T
˜

β < X ≤ T̃β

)
> β

]

= Pr

[
Φnorm

(
T̃β − µ

σ

)
− Φnorm

(
T
˜

β − µ

σ

)
> β

]
,

where the outside probability is computed with respect to the joint distribution of (X̄, S), that
is, the distribution of the suficient statistics for the data.

Note that (T̃β − µ)/σ = (X̄ − µ + gS)/σ is a pivotal quantity. Similarly, [(T
˜

β − µ)/σ]
is also a pivotal quantity. Thus, we can arbitrarily use µ = 0 and σ = 1 in computing the
coverage probability, and also we write CP(0, 1) without loss of generality. In this case
X̄ ∼ NORM(0, 1/

√
n) with pdf f(x̄) = dnorm(x̄; 0, 1/

√
n), and S has density h(s;n − 1)

such that (n − 1)S2 ∼ χ2(n − 1), that is

h(s; k) =
kk/2 sk−2 exp(−k s2/2)

2k/2−1 Γ(k/2)
, (E.12)

where k = n − 1 and s > 0.
Using the fact that X̄ and S are independent and the result that A(x̄, gs) > β if and only if

s > r(x̄, β)/g, and the indicator function I[A(x̄, gs) > β], gives

CP(0, 1) = Pr
[
Φnorm

(
X̄ + gS

)
− Φnorm

(
X̄ − gS

)
> β

]
= Pr

[
A(X̄, gS) > β

]

=

∫ ∞

−∞

∫ ∞

0

I[A(x̄, gs) > β]h(s)f(x̄) ds dx̄

= 2

∫ ∞

0

∫ ∞

r(x̄)/g

h(s)f(x̄) ds dx̄

= 2

∫ ∞

0

Pr[S > r(x̄, β)/g] f(x̄) dx̄

= 2

∫ ∞

0

(1 − Pr[S ≤ r(x̄, β)/g]) f(x̄) dx̄

= 2

(
1 −

∫ ∞

0

Pr[S ≤ r(x̄, β)/g] f(x̄) dx̄

)
.

Finding g such that CP(0, 1) = 1 − α requires solving

2

(
1 −

∫ ∞

0

Pr[S ≤ r(x̄, β)/g] f(x̄) dx̄

)
= 1 − α

for g. This is equivalent to solving
∫ ∞

0
Pr[S ≤ r(x̄, β)/g] f(x̄) dx̄ = (1 + α)/2 for g.

Expressed more simply,∫ ∞

0

pchisq[(n − 1)r2(x̄, β)/g2 ;n − 1] dnorm(x̄; 0, 1/
√

n) dx̄ = (1 + α)/2
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can be solved for g where, for given x̄ and β, the solution r(x̄, β) is given by (E.11). The
presentation here is similar to that in Wald and Wolfowitz (1946) and Odeh and Owen (1980).

E.5.2 Tolerance Intervals to Control Both Tails

The distribution theory for tolerance intervals to control both tails is somewhat more compli-
cated than for control-the-center tolerance intervals. Such intervals were irst given in Owen
(1964), with corrections noted in Owen (1965, 1966). Odeh and Owen (1980) presents tables,
theory, and computation methods. Owen and Frawley (1971) also present tables and an exam-
ple. Krishnamoorthy and Mathew (2009, Section 2.3.2) present the theory for such intervals
(which they call “equal-tailed tolerance intervals” and describe a computing method that uses
two-dimensional integration.

The simulation method presented in Section 14.5.2 and by Yuan et al. (2017) is relatively
simple to implement and can be applied for any (log-)location-scale distribution. Without using
a variance-reduction technique, however, such simulations require much computer time to
compute factors that have three or four signiicant digits of accuracy, except in the complete-
data normal distribution case.

E.6 NORMAL DISTRIBUTION PREDICTION INTERVALS BASED ON PIVOTAL
QUANTITIES

In this section we consider situations for whichX is a vector of n independent observations and
Y is a vector of m independent observations both from the same NORM(μ,σ) distribution
and X and Y are independent. The vector of unknown parameters is θ = (µ, σ). Let (X̄, SX )
be the sample mean and sample standard deviation of X and let (Ȳ, SY ) be the corresponding
sample values for Y .

E.6.1 Prediction Interval to Contain the Mean of m Future Observations from a
Previously Sampled Normal Distribution

From the pivotal quantity g4(X,θ) in (E.5),

Pr

[
−t(1−α/2;n−1) ≤

(
Ȳ − X̄

)

(1/n + 1/m)1/2 SX

≤ t(1−α/2;n−1)

]
= 1 − α.

Solving for Ȳ, one obtains the prediction interval for Ȳ ,

Pr
[
X̄ − r′′(1−α ;m,n)SX ≤ Ȳ ≤ X̄ + r′′(1−α ;m,n)SX

]
= 1 − α,

where r′′(1−α ;m,n) = t(1−α/2;n−1)(1/m + 1/n)
1/2 . Thus an exact 100(1 − α)% prediction

interval for Ȳ is

[Ȳ
˜

m , ˜̄Ym ] = x̄n ∓ r′′(1−α ;m,n)sn ,

where x̄ and s2
n are the observed sample mean and sample variance for the data X. This

prediction interval is given in Section 4.7.
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E.6.2 Prediction Interval for the Sample Standard Deviation from a Sample of
m Future Observations from a Previously Sampled Normal Distribution

From the pivotal quantity g5(X,Y ,θ) in (E.6), and noting that σY = σX because the future
observations are from the same distribution, gives

Pr

(
F(α/2;m−1,n−1) ≤

S2
Y

S2
X

≤ F(1−α/2;m−1,n−1)

)
= 1 − α.

Solving for SY gives

Pr
[
SX (F(α/2;m−1,n−1))

1/2
≤ SY ≤ SX (F(1−α/2;m−1,n−1))

1/2
]

= 1 − α.

Then, using the relationship F(α ;r1 ,r2 ) = 1/F(1−α ;r2 ,r1 ) in Section C.3.11, an exact
100(1 − α)% prediction interval for SY is

[s
˜

m , s̃m ] =

[
s

(
1

F(1−α/2;n−1,m−1)

)1/2

, s (F(1−α/2;m−1,n−1))
1/2

]
, (E.13)

where s is the sample standard deviation from the data X. This prediction interval is given in
Section 4.9.

E.6.3 One-Sided Prediction Bound to Exceed (be Exceeded by) at Least
k Out of m Future Observations from a Previously Sampled Normal
Distribution

This section provides background information for the one-sided prediction bounds in Sec-
tion 4.8. First we consider the one-sided upper prediction bound to exceed at least k of m
future observations from the same normal distribution. There is not a simple pivotal quantity
that would directly provide this prediction bound. Pivotal quantities, however, facilitate the
computation of the bounds using either simulation or numerical integration, as we indicate
next.

A one-sided upper prediction bound exceeds at least k of the m future observations if and
only if the kth largest order statistic from the m future observations, say Y(k), is exceeded
by the bound. Consider an upper prediction bound of the type x̄ + r′(1−α ;k,m,n)s. Using r′ =

r′(1−α ;k,m,n), the coverage probability that the upper prediction bound X̄ + r′S exceeds at least

k of the m future observations is

CPU (r′) = Pr(Y(k) ≤ X̄ + r′S) = Pr

[
Y(k) − µ

σ
≤

X̄ − µ

σ
+ r′

S

σ

]

= Pr(Z(k) ≤ Z + r′W ), (E.14)

where Z(k), Z and W are independent. The random variable Z(k) is the kth order statistic
from a NORM(0, 1) distribution, Z has a NORM(0, 1/

√
n) distribution with pdf denoted by

f(z;n), and W has a pdf h(w;n − 1) such that (n − 1)W 2 ∼ χ2(n − 1); see (E.12).
Consequently, for given r′, the probability on the right-hand side of (E.14) does not depend

on unknown parameters. Using the distribution function of Z(k) as given in Arnold et al. (2008,
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Chapter 1), an equivalent expression for the coverage probability in (E.14) is

CPU (r′) = EZ,W [Pr(Z(k) ≤ Z + r′W |Z,W )]

=

∫ ∞

−∞

∫ ∞

0

Pr(Z(k) ≤ z + r′w)h(w;n − 1)f(z;n) dw dz

=

∫ ∞

−∞

∫ ∞

0

[
m∑

i=k

(
m

i

)
pi

U (1 − pU )m−i

]
h(w;n − 1)f(z;n) dw dz (E.15)

=

∫ ∞

−∞

∫ ∞

0

pbeta(pU ; k,m − k + 1)h(w;n − 1)f(z;n) dw dz, (E.16)

where pU = Φnorm(z + r′w) and the last equality was obtained using the relationship
pbeta(pU ; k,m − k + 1) = 1 − pbinom(k − 1;m,pU ) in (C.19).

To ind the value of r′ that provides an exact 100(1 − α)% prediction bound, one solves for
r′ in the relationship CPU (r′) = 1 − α. For this purpose, one can use (E.15) or (E.16). Using
the latter, r′ is the solution to

∫ ∞

−∞

∫ ∞

0

pbeta(pU ; k,m − k + 1)h(w;n − 1)f(z;n) dw dz = 1 − α.

Due to the symmetry of the normal distribution, the one-sided lower prediction bound to be
exceeded by at least k of m future observations is x̄ − r′s. In this case the coverage probability
of the lower prediction bound is

CPL(−r′) =

∫ ∞

−∞

∫ ∞

0

pbeta(1 − pL ; k,m − k + 1)h(w;n − 1)f(z;n) dw dz,

where pL = Φnorm(z − r′w). The procedure here to compute the factors r′ is similar, and
numerically equivalent, to that in Fertig and Mann (1977).

E.6.4 Simultaneous Prediction Interval to Contain at Least k Out of m Future
Observations from a Previously Sampled Normal Distribution

This section provides background information for the simultaneous prediction intervals in
Section 4.8. The derivation of the simultaneous prediction interval [x̄ − r(1−α ;k,m,n)s, x̄ +
r(1−α ;k,m,n)s] to contain at least k out of m future observations is similar to the derivation of
the one-side prediction bound in Section E.6.3

Let Bk be the set corresponding to “at least k of the m future observations are contained in
the prediction interval.” Thus, using the notation r = r(1−α ;k,m,n), the coverage probability for
the prediction interval is

CP(r,−r) = Pr(Bk)

= EZ,W [Pr(Bk |Z,W )]

=

∫ ∞

−∞

∫ ∞

0

[
m∑

i=k

(
m

i

)
(pU − pL)i(1− pU + pL)m−i

]
h(w;n− 1)f(z;n) dw dz

=

∫ ∞

−∞

∫ ∞

0

pbeta(pU − pL ; k,m − k + 1]h(w;n − 1)f(z;n) dw dz,

where pU = Φnorm(z + rw) and pL = Φnorm(z − rw). To ind the value of r that provides
an exact 100(1 − α)% simultaneous prediction interval that contains at least k of m future
observations, one solves for r in the relationship CP(r,−r) = 1 − α.
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The procedure here to compute the factors r for k = m is similar, and numerically equivalent,
to that in Hahn (1969, 1970a). Odeh (1990) gives a procedure to compute the factors r when
k ≤ m. His procedure requires only integration in one dimension but it does not seem to
generalize to the related prediction problem when the data are from a general location-scale
family (see Section B.7).

E.7 PIVOTAL QUANTITIES FOR LOG-LOCATION-SCALE DISTRIBUTIONS

In this section we describe some pivotal quantities for log-location-scale families. The cdf for
the location-scale family (see Section C.3 for a description of the location-scale family) is

F (x) = Pr(X ≤ x) = Φ
(x − μ

σ

)
,

where µ is the location parameter and σ is the scale parameter of the distribution of X .
The p quantile of the distribution is xp = µ + σzp , where zp = Φ−1(p) is the p quantile
of the standardized distribution Φ(z). For the log-location-scale family the cdf is F (t) =
Φ[(log(t) − µ)/σ] and the p quantile is tp = exp(µ + σzp).

E.7.1 Pivotal Quantities Involving Data from a Location-Scale Distribution

Suppose that the data, X, are from a location-scale distribution (see Section C.3.1) and are
complete (i.e., no censoring) or censored after a prespeciied number of lower order statistics
(Type 2 censoring). Then the likelihood of the data is L(µ, σ), which is a special case of the
likelihood in (12.7). The parameter values of µ and σ that maximize the likelihood are denoted
by µ̂ and σ̂, respectively.

In this case, the following random quantities are pivotal quantities (see Lawless, 2003,
Appendix A for details):

g7(X,θ) = Zµ̂ =
µ − µ̂

σ̂
, (E.17)

g8(X,θ) = Zσ̂ =
σ

σ̂
,

g9(X,θ) = Zx̂p
=

xp − x̂p

σ̂
=

µ − µ̂

σ̂
+

(σ

σ̂
− 1

)
Φ−1(p). (E.18)

If the data T are from a log-location-scale distribution, then with X = log(T ) the relation-
ships in g7(X,θ), g8(X,θ), and g9(X,θ) still hold, where now xp is the logarithm of the p
quantile tp of the log-location-scale distribution. That is, xp = log(tp).

E.7.2 Confidence Interval for a Location Parameter

To obtain an exact 100(1 − α)% conidence interval for µ, let zµ̂ (α / 2 ;n )
and zµ̂ ( 1−α / 2 ;n )

be the

α/2 and 1 − α/2 quantiles of g7(X,θ) = Zµ̂ , respectively. Thus

Pr

[
zµ̂ (α / 2 ;n )

≤
µ − µ̂

σ̂
≤ zµ̂ ( 1−α / 2 ;n )

]
= 1 − α. (E.19)

Rearranging terms to isolate µ at the center of the inequalities in (E.19) gives

Pr
[
µ̂ + zµ̂ (α / 2 ;n )

σ̂ ≤ µ ≤ µ̂ + zµ̂ ( 1−α / 2 ;n )
σ̂
]

= 1 − α.
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Thus, an exact 100(1 − α)% conidence interval for µ is

[µ
˜
, µ̃] =

[
µ̂ + zµ̂ (α / 2 ;n )

σ̂, µ̂ + zµ̂ ( 1−α / 2 ;n )
σ̂
]
.

If the data are from a log-location-scale distribution, one might be interested in the scale
parameter η = exp(µ) (e.g., if the data are from a Weibull distribution). In this case an exact
100(1 − α)% conidence interval for η is

[η
˜
, η̃] = [exp(µ

˜
), exp(µ̃)].

E.7.3 Confidence Interval for a Scale Parameter

To obtain an exact 100(1 − α)% conidence interval for σ, let zσ̂ (α / 2 ;n )
and zσ̂ ( 1−α / 2 ;n )

be the

α/2 and 1 − α/2 quantiles of g8(X,θ) = Zσ̂ , respectively. Then

Pr
[
zσ̂ (α / 2 ;n )

≤
σ

σ̂
≤ zσ̂ ( 1−α / 2 ;n )

]
= 1 − α. (E.20)

Rearranging terms to isolate σ at the center of the inequalities in (E.20) gives

Pr
[
zσ̂ (α / 2 ;n )

σ̂ ≤ σ ≤ zσ̂ ( 1−α / 2 ;n )
σ̂
]

= 1 − α.

Thus, an exact 100(1 − α)% conidence interval for σ is

[σ
˜
, σ̃] =

[
zσ̂ (α / 2 ;n )

σ̂, zσ̂ ( 1−α / 2 ;n )
σ̂
]
.

If the data are from a log-location-scale distribution, one might be interested in the shape
parameter β = 1/σ (e.g., if the data are from a Weibull distribution). In this case an exact
100(1 − α)% conidence interval for β is

[β
˜
, β̃] =

[
1

σ̃
,

1

σ
˜

]
.

E.7.4 Confidence Interval for a Distribution Quantile

To obtain an exact 100(1 − α)% conidence interval for xp = µ + Φ−1(p)σ, let zx̂p (1−α/2;n)

and zx̂p (1−α/2;n) be the α/2 and 1 − α/2 quantiles of g9(X,θ) = Zx̂p
, respectively. Thus,

Pr

[
zx̂p (α/2;n) ≤

xp − x̂p

σ̂
≤ zx̂p (1−α/2;n)

]
= 1 − α, (E.21)

where x̂p = µ̂ + Φ−1(p) σ̂. Rearranging terms to isolate xp in the center of the inequalities in
(E.21) gives

Pr
[
x̂p + zx̂p (α/2;n) σ̂ ≤ xp ≤ x̂p + zx̂p (1−α/2;n) σ̂

]
= 1 − α.

Thus, an exact 100(1 − α)% conidence interval for xp is

[x
˜

p , x̃p ] =
[
x̂p + zx̂p (α/2;n) σ̂, x̂p + zx̂p (1−α/2;n) σ̂

]
.

If the data are from a log-location-scale distribution, one might be interested in the p quantile
tp = exp[µ + Φpσ] of the distribution (e.g., the data are from a lognormal distribution). In this
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case an exact 100(1 − α)% conidence interval for tp is

[t
˜

p , t̃p ] =
[
exp(x

˜
p), exp(x̃p)

]
.

E.7.5 One-Sided Simultaneous Prediction Bound to Exceed (be Exceeded by)
at Least k Out of m Future Observations from a Previously Sampled
(Log-)Location-Scale Distribution

The results Section E.6.3 extend readily to (log-)location-scale distributions in the case where
the data are complete (i.e., no censoring) or censored after a prespeciied number of lower order
statistics have been observed (Type 2 censoring). First, we consider the case for which the data
are from a location-scale distribution with cdf Φ[(x − µ)/σ], where the cdf Φ(z) does not
depend on unknown parameters. Let (µ̂, σ̂) denote the maximum likelihood estimators of the
parameters. Then a one-sided upper prediction bound, to exceed at least k future observations
of a previous sampled distribution, has the form µ̂ + r′U σ̂. The coverage probability for this
one-sided upper prediction bound is

CPU (r′U ) =

∫ ∞

−∞

∫ ∞

0

pbeta(pU ; k, n − k + 1) g(z,w) dw dz, (E.22)

where pU = Φ(z + r′U w) and g(z,w) is the joint density of [Z,W ] = [(µ̂ − µ)/σ, σ̂/σ] in
random samples of size n. Note that g(z,w) does not depend on unknown parameters. To
obtain an exact 100(1 − α)% one-sided upper prediction bound, set CPU (r′U ) = 1 − α and
solve for r′U .

For a nonsymmetric distributionΦ(z), the factor r′L for the one-sided lower prediction bound
µ̂ + r′L σ̂ is not equal to−r′U . The coverage probability of this one-sided lower prediction bound
is

CPL(r′L) =

∫ ∞

−∞

∫ ∞

0

pbeta(1 − pL ; k, n − k + 1) g(z,w) dw dz, (E.23)

where pL = Φ(z + r′Lw). To obtain an exact 100(1 − α)% one-sided lower prediction bound,
set CPL(r′L) = 1 − α and solve for r′L .

When the data are from a log-location-scale distribution, the exact 100(1 − α)% one-sided
upper prediction bound is exp(µ̂ + r′U σ̂), where r′U is obtained from (E.22). Similarly, the
exact 100(1 − α)% one-sided lower prediction bound is exp(µ̂ + r′L σ̂), where r′L is obtained
from (E.23).

For situations where the joint density g(z,w) cannot be expressed in simple terms, the
integration in (E.22) and (E.23) can be accomplished by using Monte Carlo simulation, as
described in Section B.7 and illustrated in Section 14.6.

E.7.6 Two-Sided Simultaneous Prediction Interval to Contain at Least k Out of
m Future Observations from a Previously Sampled (Log-)Location-Scale
Distribution

The results in Section E.6.4 extend to general location-scale distributions, as follows. A pre-
diction interval to contain at least k of m future observations from a previously sampled
location-scale distribution is given by [µ̂ + rL σ̂, µ̂ + rU σ̂]. The coverage probability for this
prediction interval is

CP(rL , rU ) =

∫ ∞

−∞

∫ ∞

0

pbeta(pU − pL ; k,m − k + 1] g(z,w) dw dz,
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where pU = Φ(z + rU w), pL = Φ(z + rLw), and g(z,w) is the joint density of [Z,W ] =
[(μ̂ − μ)/σ, σ̂/σ] in random samples of size n.Note that g(z,w) does not depend on unknown
parameters.

To obtain an exact 100(1 − α)% prediction interval, solve

CP(rL , rU ) = 1 − α (E.24)

for rL and rU . Because there are multiple solutions (rL , rU ) to (E.24), to ensure a unique
solution, a plausible constraint for inding the roots rL and rU is to require that the prediction
interval be balanced in the sense that

CPU (rU ) = CPL(rL),

where CPU (rU ) and CPL(rL) are the one-sided coverage probabilities given in (E.22) and
(E.23), respectively. The presentation here for the location-scale family is similar to that in
Xie et al. (2017).

For situations where the joint density g(z,w) cannot be expressed in simple terms, the
integration in (E.24) can be accomplished by using Monte Carlo simulation, as described in
Section B.7 and illustrated in Section 14.6.

E.7.7 Pivotal Quantities Involving Data from Two Similar (Log-)Location-Scale
Distributions

Pivotal quantities similar to the normal distribution pivotal quantities g5 and g6 in Section E.2.2
can be used to obtain exact statistical interval procedures similar to those given in Sections E.4.1,
E.4.2, and E.6.2. Details are not provided here, but are easy towork out following the approaches
given in those sections.



AppendixF
Generalized Pivotal Quantities

INTRODUCTION

This appendix provides a general deinition of a generalized pivotal quantity (GPQ), a method
to obtain GPQs as a function of other GPQs, and a set of conditions that when satisied ensure
exact conidence intervals based on a GPQ.

The topics discussed in the appendix are:

� Deinition of a GPQ (Secton F.1).

� A substitution method to obtain GPQs (Section F.2).

� Examples of GPQs for functions of parameters from location-scale distributions (Sec-
tion F.3).

� Conditions for exact intervals derived from GPQs (Section F.4).

F.1 DEFINITION OF A GENERALIZED PIVOTAL QUANTITY

Let S be a vector function of the observed data x (i.e., a vector of parameter estimators).
Suppose that the cdf of S is F (·;ν), where ν is a vector of unknown parameters. Denote
an observation from S by s and let S

∗ be an independent copy of S. That is, S and S
∗ are

independent and have the same distribution. A scalar function Zs = Z(S∗; s,ν) is a GPQ for
a scalar parameter θ = θ(ν) if it satisies the following two conditions:

1. For given s, the distribution of Zs does not depend on unknown parameters.

2. Evaluating Zs at S∗ = s gives Zs = Z(s; s,ν) = θ.

Note that Hannig et al. (2006, Deinition 2) refer to this as a “iducial generalized pivotal
quantity.”
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For the purposes of implementation, we can consider s as the estimate of the parameters ν

and that the objective is to obtain a conidence interval for θ based on s and the information
that the distribution of S

∗ is F (·;ν). Note that S∗ is not observable; we just know that S∗ has
the same distribution as S (which we denote by S

∗ ∼ S). In this setting, we will use GPQs to
obtain conidence intervals for some functions of the unknown parameters.

Although the GPQ methods are more general (see the application in Section 18.2), consider,
for example, sampling from a location-scale family Φ[(x − μ)/σ]. Let x = (x1 , . . . , xn) be
the data. Obtain the maximum likelihood (ML) estimates (µ̂, σ̂) of (µ, σ). Deine ν = (µ, σ),
s = (µ̂, σ̂), and S

∗ = (µ̂∗, σ̂∗), where (µ̂∗, σ̂∗) have the same distribution as (µ̂, σ̂).We derive
GPQs for functions of (µ, σ) and use those GPQs to obtain GPQ-based conidence intervals
using s and the fact that the joint distribution of the GPQs does not depend on unknown
parameters.

F.2 A SUBSTITUTION METHOD TO OBTAIN GENERALIZED PIVOTAL
QUANTITIES

An important property of GPQs is the following:

Result F.1 Suppose that θ1 and θ2 are parameters of interest. Suppose that Zθ̂1
=

Zθ̂1
(S∗; s,ν) and Zθ̂2

= Zθ̂2
(S∗; s,ν) are GPQs for θ1 and θ2 , respectively, and that, given

s, the joint distribution of (Zθ̂1
, Zθ̂2

) does not depend on unknown parameters. Consider a

function of θ1 , θ2 , say h(θ1 , θ2). Then h(Zθ̂1
, Zθ̂2

) is a GPQ for h(θ1 , θ2).

This result is veriied as follows. Given s, the distribution of h(Zθ̂1
, Zθ̂2

) does not depend on

unknown parameters because it is determined by the function h(·, ·) and the joint distribution
of (Zθ̂1

, Zθ̂2
), which does not depend on unknown parameters. When S

∗ = s, we have that

Zθ̂1
= θ1 and Zθ̂2

= θ2 and then h(Zθ̂1
, Zθ̂2

) = h(θ1 , θ2). Thus h(Zθ̂1
, Zθ̂2

) has the two
properties required to be a GPQ.

Note that the conditions for Result F.1 are satisied, for example, when the GPQsZθ̂1
andZθ̂2

are independent because in this case the joint distribution is just the product of the marginals
which do not depend on unknown parameters. In (F.3) and (F.6) the generalized pivotal quantities
Zθ̂1

and Zθ̂2
are not independent but Result F.1 still applies because the joint distribution of

Zθ̂1
and Zθ̂2

does not depend on any unknown parameters.

F.3 EXAMPLES OF GENERALIZED PIVOTAL QUANTITIES FOR FUNCTIONS
OF LOCATION-SCALE DISTRIBUTION PARAMETERS

F.3.1 GPQ Function for μ

Here the interest is in θ = μ. Then ν = (μ,σ), where σ is a nuisance parameter. Deine

Zµ̂ = Zµ̂(S∗; s,ν) = Zµ̂ [(µ̂∗, σ̂∗); (µ̂, σ̂),ν] = µ̂ +

(
µ − µ̂∗

σ̂∗

)
σ̂. (F.1)

Thus:

1. Given the datax and the corresponding values s = (µ̂, σ̂), Zµ̂ has a distribution that does
not depend on unknown parameters. This is the case because (µ̂∗ − µ)/σ̂∗ is a PQ and,
given the data, µ̂ and σ̂ are known.
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Note that this is a conditional argument in the sense that the distribution of Zμ̂ depends
on the values of μ̂ and σ̂, but for purposes of constructing the conidence interval for µ
those quantities are known and computed from the data.

2. Substituting (µ̂∗, σ̂∗) for (µ̂, σ̂) in (F.1) gives

Zµ̂ = Zµ̂(S∗; s,ν) = Zµ̂ [(µ̂, σ̂); (µ̂, σ̂),ν] = µ̂ +

(
µ − µ̂

σ̂

)
σ̂ = µ.

Because of the results in items 1 and 2 above Zµ̂ is a GPQ for µ.

F.3.2 GPQ Function for σ

Here the interest is in θ = σ. Then ν = (µ, σ), where µ is a nuisance parameter. Deine

Zσ̂ = Zσ̂ (S∗; s,ν) = Zσ̂ [(µ̂∗, σ̂∗); (µ̂, σ̂),ν] =
( σ

σ̂∗

)
σ̂. (F.2)

Thus:

1. Given the datax, one obtains theMLparameter estimates, says = (µ̂, σ̂).The conditional
distribution of Zσ̂ , given s, does not depend on unknown parameters because σ̂ is known
and σ/σ̂∗ is a PQ.

2. Substituting (µ̂∗, σ̂∗) for (µ̂, σ̂) in (F.2) gives

Zσ̂ = Zσ̂ [(µ̂, σ̂); (µ̂, σ̂),ν] =
(σ

σ̂

)
σ̂ = σ.

Because of the results in items 1 and 2 above Zσ̂ is a GPQ for σ.

F.3.3 GPQ Function for a Tail Probability F (x;µ, σ)

Here we consider a GPQ for the probability p = F (x), where

F (x) = F (x;µ, σ) = Φ
(x − µ

σ

)
,

and x is ixed and given. The ML estimate of p is

p̂ = Φ

(
x − µ̂

σ̂

)
.

To obtain a GPQ for p, say Zp̂ , note that the GPQs for µ and σ in (F.1) and (F.2) have a joint
distribution that does not depend on unknown parameters. Then, using Result F.1,

Zp̂ = Zp̂ [(µ̂
∗, σ̂∗); (µ̂, σ̂),ν] = Φ

(
x − Zµ̂

Zσ̂

)

= Φ

[(
σ̂∗

σ

)(
x − µ̂

σ̂

)
+

µ̂∗ − µ

σ

]

= Φ

[(
σ̂∗

σ

)
Φ−1(p̂) +

µ̂∗ − µ

σ

]
. (F.3)

The conidence interval forF (x;µ, σ) is obtained from theα/2 and 1 − α/2 quantiles of (F.3),
considering p̂ ixed.
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For example, for observed data x from a NORM(μ,σ) distribution,

µ̂ = x̄, σ̂2 =
(n − 1)s2

n
, Φ−1

norm(p̂) =
x − µ̂

σ̂
, (F.4)

where x̄ and s2 are the sample mean and variance, respectively. Also

µ̂∗ − µ

σ
∼ NORM

(
0,

1√
n

)
and

σ̂∗

σ
∼

√
X2

(n−1)

n
, (F.5)

where (µ̂∗ − µ)/σ and σ̂∗/σ are independent. Using (F.3), with Φ(z) = Φnorm(z ) and the
information in (F.4) and (F.5), one obtains the distribution of Zp̂ . The α and 1 − α/2 quantiles
of this distribution provide the GPQ-based conidence interval for F (x;µ,σ).

The GPQ-based conidence interval for F (x;µ, σ) obtained from (F.3) is exact in the sense
that its coverage probability over the sampling distribution of X is equal to 1 − α; see Sec-
tions F.4.1 and F.4.2 for details.

F.3.4 GPQ Function for Probability Content of an Interval

An inference of interest is the probability content of an interval [xL , xU ]. This can be expressed
as pI = F (xU ) − F (xL) = pU − pL , where F (x) is a location-scale distribution and pi =
Φ[(xi − µ)/σ], i = L,U. A GPQ for pI is obtained from Result F.1, with h(Zp̂U

, Zp̂L
) =

Zp̂U
− Zp̂L

, where the Zp̂ i
are obtained from (F.3) with p̂ = p̂i and i = L, U. Thus,

Zp̂I
= Φ

[(
σ̂∗

σ

)
Φ−1(p̂U ) +

µ̂∗ − µ

σ

]
− Φ

[(
σ̂∗

σ

)
Φ−1(p̂L) +

µ̂∗ − µ

σ

]
. (F.6)

F.4 CONDITIONS FOR EXACT CONFIDENCE INTERVALS DERIVED FROM
GENERALIZED PIVOTAL QUANTITIES

In this section we irst establish and prove a necessary and suficient condition to ensure that a
GPQ interval procedure has an exact coverage probability from the frequentist point of view.
We also establish and prove an alternative suficient condition for a GPQ interval procedure to
have exact coverage. This suficient condition may be easier to check in some special cases.

F.4.1 A Necessary and Sufficient Condition for an Exact GPQ Confidence
Interval Procedure

Result F.2 Consider a GPQ for a scalar parameter θ, say Zθ̂ = Zθ̂(S
∗; s,ν), where s is

obtained from the data x, ν is a vector of unknown parameters, and S
∗ is random vari-

able independent of the sampling process generating s and with a distribution equal to the

sampling distribution of s. Consider the 100(1 − α)% conidence interval for θ given by

[Zθ̂ ;α/2 , Zθ̂ ;1−α/2 ] where Zθ̂ ;γ is the γ quantile of Zθ . This GPQ-based conidence interval
procedure is exact if

Pr
S

(
Zθ̂ ;α/2 ≤ θ ≤ Zθ̂ ;1−α/2

)
= 1 − α

for all θ.
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A necessary and suficient condition for an exact GPQ-based conidence interval procedure

is that the random variable U(S; θ) deined by

U(S; θ) = Pr
S∗|S

[Zθ̂(S
∗;S,ν) ≤ θ|S] (F.7)

has a UNIF(0, 1) distribution.

This result is veriied as follows. Because the conidence interval is obtained from putting
together two one-sided conidence bounds, it sufices to prove the result for the one-sided upper
bound. Suppose that 0 < γ < 1 and that the one-sided bound procedureZθ̂ ;γ has exact coverage
γ. Thus,

Pr(θ ≤ Zθ̂ ;γ ) = Pr
S

[
Pr

S∗|S

(
θ ≤ Zθ̂ ;γ | S

)]
= γ.

Using the deinition of the U(S; θ) function in (F.7), one obtains the following two proper-
ties: U(s;Zθ̂ ;γ ) = γ and U(s; θ) is nondecreasing as a function of θ. Then, using these two
properties, we have

Pr(θ ≤ Zθ̂ ;γ ) = Pr
S

[
Pr

S∗|S
(θ ≤ Zθ̂ ;γ | S)

]
= Pr

S

{
Pr

S∗|S

[
U(S, θ) ≤ U(S, Zθ̂ ;γ ) | S

]}

= Pr
S

{
Pr

S∗|S
[U(S, θ) ≤ γ | S]

}
= Pr

S
[U(S, θ) ≤ γ] = γ. (F.8)

The last equality in (F.8) holds because the procedure is exact. Also (F.8) shows thatU(S; θ) ∼
UNIF(0, 1).

Now suppose that U(S, θ) ∼ UNIF(0, 1). Then

Pr(θ ≤ Zθ̂ ;γ ) = Pr
S

[
Pr

S∗|S
(θ ≤ Zθ̂ ;γ | S)

]
= Pr

S

{
Pr

S∗|S

[
U(S, θ) ≤ U(S, Zθ̂ ;γ ) | S

]}

= Pr
S

{
Pr

S∗|S
[U(S, θ) ≤ γ | S]

}
= Pr

S
[U(S, θ) ≤ γ] = γ. (F.9)

The last equality in (F.9) holds because U(S; θ) ∼ UNIF(0, 1). Result F.2 appears in
Hannig et al. (2006, Remark 7) without proof.

Example F.1 Checking that a Tail Probability Conidence Interval is Exact. We now
illustrate the use of Result F.2. Consider the GPQ in (F.3) used to derive a conidence interval
for the tail probability p = F (x), where x is given and the parameters μ and σ are unknown.
In this case

s = (µ̂, σ̂), S
∗ = (µ̂∗, σ̂∗),

p = Φ
(x − µ

σ

)
, p̂ = Φ

(
x − µ̂

σ̂

)
,

Zp̂ = Φ

[
σ̂∗

σ
Φ−1(p̂) +

µ̂∗ − µ

σ

]
.
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Thus,

U(S, p) = Pr
S∗|S

[Zp̂(S
∗;S,ν) ≤ p|S]

= Pr
S∗|S

{Zp̂ [(μ̂
∗, σ̂∗); (µ̂, σ̂),ν] ≤ p|S}

= Pr
S∗|S

{
Φ

[
σ̂∗

σ
Φ−1(p̂) +

µ̂∗ − µ

σ

]
≤ p

∣∣∣∣S
}

= Pr
S∗|S

[
σ̂∗

σ
Φ−1(p̂) +

µ̂∗ − µ

σ
≤ Φ−1(p)

∣∣∣∣S
]

= Pr
S∗|S

(
x − µ̂

σ̂
≤ x − µ̂∗

σ̂∗

∣∣∣∣S
)

.

Let G(z) be the cdf of (x − µ̂∗)/σ̂∗. Then

Pr
S

[U(S, p) ≤ w] = Pr
S

[
Pr

S∗|S

(
x − µ̂

σ̂
≤ x − µ̂∗

σ̂∗

∣∣∣∣S
)

≤ w

]

= Pr
S

[
1 − Pr

S∗|S

(
x − µ̂∗

σ̂∗ ≤ x − µ̂

σ̂

∣∣∣∣S
)

≤ w

]

= Pr
S

[
1 − G

(
x − µ̂

σ̂

)
≤ w

]

= 1 − Pr
S

[
G

(
x − µ̂

σ̂

)
≤ 1 − w

]
= w.

The last equality above follows from the probability integral transform for continuous variables
which shows that G{[x − µ̂]/σ̂} has a UNIF(0, 1) distribution.

F.4.2 A Sufficient Condition for an Exact GPQ Confidence Interval Procedure

Here we establish a suficient condition which ensures that a GPQ-based conidence procedure
is exact. In some cases, it might be easier to verify this condition than the necessary and suficient
condition in Result F.2.

Result F.3 The U(S; θ) function in (F.7) has a UNIF(0, 1) distribution if the inequality
Zθ̂(S

∗; s, ν) ≤ θ is equivalent to the inequalityh(S,ν) ≤ h(S∗,ν) for someh(u, v) function.

To show the result, suppose that the two inequalities are equivalent. Let G(w) be the cdf of
h(S,ν).Note thatG(w) is also the distribution ofh(S∗,ν) becauseS ∼ S

∗.AlsoG[h(S,ν)]
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and G[h(S∗,ν)] have UNIF(0, 1) distribution because of the probability integral transform
for continuous variables. Then

Pr
S

[U(S, θ) ≤ w] = Pr
S

[
Pr

S∗|S
[Zθ̂(S

∗;S,ν) ≤ θ|S] ≤ w

]

= Pr
S∗

[
Pr

S|S∗
[Zθ̂(S

∗;S,ν) ≤ θ|S∗] ≤ w

]

= Pr
S∗

[
Pr

S|S∗
[h(X,ν) ≤ h(X∗,ν)|S∗] ≤ w

]

= Pr
S∗

(
Pr

S|S∗
[G[h(X,ν)] ≤ G[h(X∗,ν)] | S∗] ≤ w

)

= Pr
S∗
{G[h(X∗,ν)] ≤ w] = w.

This shows thatU(S, θ) ∼ UNIF(0, 1), which implies that the GPQ-based conidence-interval
procedure in Section F.3.3 is exact. Result F.3 appears in Hannig et al. (2006, Remark 7) without
proof.

Example F.2 A Simpler Check that a Tail Probability Conidence Interval is Exact. We
now illustrate the use of Result F.3. We again consider the GPQ in (F.3) used to derive a
conidence interval for p = F (x), where x is ixed.

It can be show that the following inequalities are equivalent:

Zp̂(S
∗;S,ν) ≤ p,

Zp̂ [(μ̂
∗, σ̂∗); (µ̂, σ̂),ν] ≤ p,

Φ

[
σ̂∗

σ
Φ−1(p̂) +

µ̂∗ − µ

σ

]
≤ p,

Φ−1(p̂) +
µ̂∗ − µ

σ
≤ Φ−1(p),

x − µ̂

σ̂
≤ x − µ̂∗

σ̂∗ .

Therefore, the inequality Zp̂(S
∗;S,ν) ≤ p is equivalent to the inequality h[(µ̂, σ̂), (µ, σ)] ≤

h[(µ̂∗, σ̂∗), (µ, σ)], for all (µ, σ), where h[(a, b), (µ, σ)] = (x − a)/b. This shows that the
suficient condition in Result F.3 is met and thus the GPQ-based conidence interval procedure
in Section F.3.3 is exact.



AppendixG
Distribution-Free Intervals
Based on Order Statistics

INTRODUCTION

This appendix provides technical explanations for the distribution-free statistical intervals based
on order statistics, which are described in Chapter 5. The purpose is to provide information
such that an interested reader could understand the theoretical basis for the methodology.

The topics discussed in this appendix are:

� Some basic results used to develop and evaluate the coverage probabilities of distribution-
free statistical intervals (Section G.1).

� Justiication of the distribution-free conidence intervals (and corresponding one-sided
conidence bounds) for a distribution quantile (Section G.2).

� Justiication of the distribution-free tolerance intervals to contain a given proportion of a
distribution (Section G.3).

� Justiication of the distribution-free statistical intervals to contain a speciied ordered
observation in a future sample (Section G.4).

� Justiication of the distribution-free statistical intervals to contain at least a given number
of observations from a future sample and the relationship of this prediction problem to
the prediction of a future ordered observation (Section G.5).

G.1 BASIC STATISTICAL RESULTS USED IN THIS APPENDIX

In this appendix we use the following results:

(a) If X is a continuous random variable with cdf F (x) and one deines W = F (X) then
W ∼ UNIF(0, 1) (see Example D.2 for a proof of this result).
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William Q. Meeker, Gerald J. Hahn and Luis A. Escobar.
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(b) If W(i) is the ith order statistic in a sample of size n from a UNIF(0, 1) distribution then
W(i) ∼ BETA(i, n − i + 1).

(c) Suppose that ℓ and u are positive integers with ℓ < u and deine d = u − ℓ. If W(ℓ) and
W(u) are the ℓth and uth order statistics from a UNIF(0, 1) distribution then W(u) −
W(ℓ) ∼ BETA(d, n − d + 1).

(d) The binomial cdf is related to a beta cdf as follows: pbinom(x − 1;n, π) = 1 −
pbeta(π;x, n − x + 1), where x and n are positive integers, and x ≤ n. See the discus-
sion following (C.19) for details about this relationship and a reference for its proof.

(e) Negative hypergeometric cumulative probabilities, denoted by pnhyper(x − 1; j,m,
m + n), can be expressed as a dbeta(v; j,m − j + 1) mixture of pbeta(v;x,
n − x + 1) probabilities as follows:

pnhyper(x − 1; j,m,m + n) = 1 −
∫ 1

0

pbeta(v;x, n − x + 1)

dbeta(v; j,m − j + 1) dv, (G.1)

where j,m, n, x are positive integers with j ≤ m, x ≤ n (see Section C.4.6 for details
about this relationship).

For proofs of items (b) and (c) above, see David and Nagaraja (2003, page 14).

G.2 DISTRIBUTION-FREE CONFIDENCE INTERVALS AND BOUNDS
FOR A DISTRIBUTION QUANTILE

G.2.1 Distribution-Free Confidence Intervals for Quantiles

For a continuous and strictly increasing cdf F (x), the p quantile (where 0 < p < 1) of
the distribution is xp = F−1(p). Suppose that x(1) < · · · < x(n) are the order statistics
in a random sample of size n from a continuous cdf F (x). A distribution-free conidence
interval for the p quantile xp is

[
˜
xp , x̃p ] = [x(ℓ), x(u)].

In general, the interval endpoints x(ℓ) and x(u) are chosen such that the procedure has
a coverage probability equal or approximately equal to the nominal conidence level
100(1 − α)%.

Because F (x) is continuous, the coverage probability of the procedure to obtain the
conidence interval [

˜
xp , x̃p ] for a quantile is

CPXP(n, ℓ, u, p) =Pr(X(ℓ) ≤ xp ≤ X(u)) = Pr(X(ℓ) ≤ xp) − Pr(X(u) ≤ xp)

=Pr[F (X(ℓ)) ≤ p] − Pr[F (X(u)) ≤ p] = Pr(W(ℓ) ≤ p)

− Pr(W(u) ≤ p)

= pbeta(p; ℓ, n − ℓ + 1) − pbeta(p;u, n − u + 1) (G.2)

= pbinom(u − 1;n, p) − pbinom(ℓ − 1;n, p). (G.3)

Note that (G.2) and (G.3) are equivalent forms for computing the coverage probability
of the conidence interval obtained using the relationship between the beta cdf and the
binomial cdf as explained in (C.19).
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G.2.2 Distribution-Free One-Sided Confidence Bounds for Quantiles

A one-sided upper conidence bound for the quantile xp is x̃p = x(u). The coverage probability
of this upper one-sided conidence bound procedure is

CPXP(n, 0, u, p) = Pr(X(u) ≥ xp) = 1 − Pr(X(u) ≤ xp)

= 1 − Pr[F (X(u)) ≤ p] = 1 − Pr(W(u) ≤ p)

= 1 − pbeta(p;u, n − u + 1) = pbinom(u − 1;n, p).

Operationally CPXP(n, 0, u, p) is obtained from CPXP(n, ℓ, u, p) with ℓ = 0.
To determine u to provide a conservative 100(1 − α)% upper bound for xp , we need

to ind the smallest integer u satisfying CPXP(n, 0, u, p) = pbinom(u − 1;n, p) ≥ 1 − α.
This inequality implies u − 1 = qbinom(1 − α;n, p). Thus

u = qbinom(1 − α;n, p) + 1.

A one-sided lower conidence bound for the quantile xp is
˜
xp = x(ℓ). The coverage proba-

bility for the lower-bound procedure is

CPXP(n, ℓ, n + 1, p) = Pr(X(ℓ) ≤ xp) = Pr[F (X(ℓ)) ≤ p]

= Pr(W(ℓ) ≤ p) = pbeta(p; ℓ, n − ℓ + 1)

= 1 − pbinom(ℓ − 1;n, p).

Operationally CPXP(n, ℓ, n + 1, p) is obtained from CPXP(n, ℓ, u, p) with u = n + 1.
Furthermore, using the identity (C.17), we obtain the following equivalent expression for
CPXP(n, ℓ, n + 1, p):

CPXP(n, ℓ, n + 1, p) = pbinom(n − ℓ;n, 1 − p).

This expression is convenient for obtaining a conservative lower bound ℓ for xp , as fol-
lows. A conservative 100(1 − α)% lower bound ℓ for xp is the largest integer ℓ satisfy-
ing CPXP(n, ℓ, n + 1, p) = pbinom(n − ℓ;n, 1 − p) ≥ 1 − α. This inequality implies that
n − ℓ = qbinom(1 − α;n, 1 − p). Thus,

ℓ = n − qbinom(1 − α;n, 1 − p).

Note that CPXP(n, ℓ, u, p) = CPXP(n, ℓ, n + 1, p) + CPXP(n, 0, u, p) − 1. This shows
that a 100(1 − αL − αU )% conidence interval for a particular quantile can be obtained by
putting together a one-sided lower 100(1 − αL)% conidence bound and a one-sided upper
100(1 − αU )% conidence bound for the same quantile.

G.3 DISTRIBUTION-FREE TOLERANCE INTERVALS TO CONTAIN A GIVEN
PROPORTION OF A DISTRIBUTION

G.3.1 Distribution-Free Tolerance Intervals

Adistribution-free tolerance interval to contain at least a proportionβ of the sampled population,
based on a random sample of size n from the same population, is

[
˜
Tβ , T̃β ] = [x(ℓ), x(u)], (G.4)

where the order statisticsx(ℓ) andx(u) are chosen such that the interval has a coverage probability
equal or approximately equal to the nominal conidence level 100(1 − α)%.
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For samples from a continuous random variable, the coverage probability for interval (G.4) is

CPTI(n, ℓ, u, β) = Pr[F (X(u)) − F (X(ℓ)) ≥ β]

= Pr[(W(u) − W(ℓ)) ≥ β] = 1 − Pr[(W(u) − W(ℓ)) ≤ β]

= 1 − pbeta(β; d, n − d + 1) = pbinom(d − 1;n, β), (G.5)

where d = u − ℓ, and W(u) = F (X(u)), W(ℓ) = F (X(ℓ)) are the uth and ℓth order statistics
in a sample of size n from a UNIF(0, 1) distribution, respectively.

To have tolerance intervals that have equal error probabilities in both tails, we recommend the
symmetric interval [x(n−u+1), x(u)], with u > (n + 1)/2. Such a symmetric interval has the
property that Pr[F (X) > F (X(u) ] = Pr[F (X) < F (X(n−u+1))] = (n − u + 1)/(n + 1).
This property implies that the expected proportion of the population less than

˜
Tβ is equal

to the expected proportion of the population greater than T̃β .
Because CPTI(n, ℓ, u, β) in (G.5) depends on ℓ and u only through d = u − ℓ, there

are, in general, multiple choices for ℓ and u that achieve the same CPTI(n, ℓ, u, β). The
narrowest tolerance interval will remove the largest number of ordered observations from
the ends of the ordered sample, subject to the constraint CPTI(n, ℓ, u, β) < 1 − α, lead-
ing to a conservative tolerance interval [x(ℓ), x(u)] that can be obtained as follows. Let
ν − 2 be the largest number of observations to be removed from the extremes of the ordered
sample to obtain a conservative tolerance interval that contains at least a proportion β of the
distribution. Then, n = (ν − 2) + (u − ℓ + 1) or equivalently, n − ν = u − ℓ − 1 and it is
required that CPTI(n, ℓ, u, β) = pbinom(n − ν;n, β) ≥ 1 − α. This implies that n − ν =
qbinom(1 − α;n, β). Thus,

ν = n − qbinom(1 − α;n, β). (G.6)

G.4 DISTRIBUTION-FREE PREDICTION INTERVAL TO CONTAIN A SPECIFIED
ORDERED OBSERVATION FROM A FUTURE SAMPLE

G.4.1 Distribution-Free Prediction Interval for Y(j ) in a Future Sample

A distribution-free prediction interval to contain Y(j ) , the jth ordered observation in a future
sample of size m from the previously sampled distribution, is

[
˜
Y(j ), Ỹ(j )] = [x(ℓ), x(u)], (G.7)

where 1 ≤ ℓ < u ≤ n, and x(ℓ) and x(u) are the ℓth and uth order statistics from the original
sample of size n. These order statistics are chosen such that the interval has a coverage
probability equal or approximately equal to the nominal conidence level 100(1 − α)%.

The coverage probability for the prediction interval procedure [
˜
Y(j ), Ỹ(j )] given in (G.7) is

CPYJ(n, ℓ, u,m, j) =

∫ 1

0

[pbeta(v; ℓ, n − ℓ + 1)

− pbeta(v;u, n − u + 1)]dbeta(v; j,m − j + 1) dv

= pnhyper(u − 1; j,m,m + n) − pnhyper(ℓ − 1; j,m,m + n),
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where pnhyper(x; j,m,m + n) is the cdf for a negative hypergeometric random variable (see
Section C.4.6 for details) and

pnhyper(x; k,D,N) =
x∑

i=0

dnhyper(i; k,D,N) =
x∑

i=0

(i+k−1
i

) (N−i−k
N−D−i

)

(N
D
)

,

where 0 < D < N, 1 ≤ k ≤ D, 0 ≤ x ≤ N − D,k is a positive integer, andx is a nonnegative
integer.

G.4.2 Distribution-Free One-Sided Prediction Bounds for Y(j ) in a
Future Sample

The coverage probability for the one-sided upper prediction bound Ỹ(j ) = x(u) to exceed Y(j ),
the jth order statistic in a future sample of size m, is

CPYJ(n, 0, u,m, j) = 1 −
∫ 1

0

pbeta(s;u, n − u + 1)dbeta(s; j,m − j + 1) ds

= pnhyper(u − 1; j,m,m + n).

(G.8)

To determine u to provide a conservative 100(1 − α)% upper prediction bound for Y(j ), we
need to ind the smallest integer u satisfying CPYJ(n, 0, u,m, j) = pnhyper(u − 1; j,m,
m + n) ≥ 1 − α. This implies u − 1 = qnhyper(1 − α; j,m,m + n). Thus,

u = qnhyper(1 − α; j,m,m + n) + 1. (G.9)

The coverage probability for the one-sided lower prediction bound
˜
Y(j ) = x(ℓ) to be exceeded

by Y(j ), the jth order statistic in a future sample of size m, is

CPYJ(n, ℓ, n + 1,m, j) =

∫ 1

0

pbeta(r; ℓ, n − ℓ + 1)dbeta(r; j,m − j + 1) dr

= 1 − pnhyper(ℓ − 1; j,m,m + n).

Alternatively, using the identity (C.28) with y = ℓ − 1,we can express this coverage probability
as

CPYJ(n, ℓ, n + 1,m, j) = pnhyper(n − ℓ;m − j + 1,m,m + n). (G.10)

To determine ℓ to provide a conservative 100(1 − α)% lower prediction bound for Y(j ),
ℓ must be the largest integer ℓ satisfying CPYJ(n, ℓ, n + 1,m, j) = pnhyper(n − ℓ;
m− j +1,m,m+n)≥ 1−α. This inequality implies n− ℓ= qnhyper(1−α;m− j +1,
m,m + n). Thus,

ℓ = n − qnhyper(1 − α;m − j + 1,m,m + n). (G.11)

Note that CPYJ(n, ℓ, u,m, j) = CPYJ(n, ℓ, n + 1,m, j) + CPYJ(n, 0, u,m, j) − 1.
This shows that a 100(1 − α)% prediction interval to contain a future ordered observation
can be obtained by combining a one-sided lower 100(1 − αL)% prediction bound and a one-
sided upper 100(1 − αU )% prediction bound for the future ordered observation. Then the
coverage probability for the two-sided prediction interval is 1 − αL − αU .



502 DISTRIBUTION-FREE INTERVALS BASED ON ORDER STATISTICS

G.4.3 Prediction Interval to Contain a Specified Ordered Observation Y(j ) in a
Future Sample (Technical Details)

The coverage probability of the prediction interval procedure given in (G.7) is

CPYJ(n, ℓ, u,m, j) = Pr(
˜
Y(j ) ≤ Y(j ) ≤ Ỹ(j )) = Pr(X(ℓ) ≤ Y(j ) ≤ X(u)). (G.12)

Using the cdf transformation, it follows that W(ℓ) = F (X(ℓ)) and W(u) = F (X(u)) are the lth
and uth order statistics in samples of sizen from aUNIF(0, 1) distribution, andV(j ) = F (Y(j ))
is the jth order statistic in samples of size m from a UNIF(0, 1) distribution. Note that V(j ) is
independent of the pair (W(ℓ),W(u)) and that V(j ) ∼ BETA(j,m − j + 1).

From (G.12),

CPYJ(n, ℓ, u,m, j) = Pr[F (x(ℓ)) ≤ F (Y(j )) ≤ F (X(u))] = Pr(W(ℓ) ≤ V(j ) ≤ W(u))

= Pr(W(ℓ) ≤ V(j )) − Pr(W(u) ≤ V(j )).

Conditioning on V(j ) = v, we obtain

CPYJ(n, ℓ, u,m, j)

=

∫ 1

0

[Pr(W(ℓ) ≤ v) − Pr(W(u) ≤ v)]dbeta(v; j,m − j + 1) dv

=

∫ 1

0

[pbeta(v; ℓ, n− ℓ+1)− pbeta(v;u, n−u+1)]dbeta(v; j,m− j +1) dv (G.13)

= pnhyper(u − 1; j,m,m + n) − pnhyper(ℓ − 1; j,m,m + n). (G.14)

In the transition from (G.13) to (G.14), we use twice the relationship (G.1).
Similarly, for the one-sided lower prediction bound, the coverage probability of the procedure

is

CPYJ(n, ℓ, n + 1,m, j) = Pr[F (x(ℓ)) ≤ F (Y(j ))] = Pr(W(ℓ) ≤ V(j ))

=

∫ 1

0

Pr(W(ℓ) ≤ v)dbeta(v; j,m − j + 1) dv

=

∫ 1

0

pbeta(v; ℓ, n − ℓ + 1)dbeta(v; j,m − j + 1) dv

= 1 − pnhyper(ℓ − 1; j,m,m + n).

For the upper prediction bound procedure, the coverage probability is

CPYJ(n, 0, u,m, j) = Pr[F (Y(j )) ≤ F (X(u))] = Pr(V(j ) ≤ W(u))

= 1 − Pr(W(u) ≤ V(j ))

= 1 −
∫ 1

0

Pr(W(u) ≤ v)dbeta(v; j,m − j + 1) dv

= 1 −
∫ 1

0

pbeta(v;u, n − u + 1)dbeta(v; j,m − j + 1) dv

= pnhyper(u − 1; j,m,m + n).
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G.5 DISTRIBUTION-FREE PREDICTION INTERVALS AND BOUNDS TO
CONTAIN AT LEAST k OF m FUTURE OBSERVATIONS FROM A
FUTURE SAMPLE

G.5.1 Prediction Intervals to Contain at Least k of m Future Observations

A distribution-free 100(1 − α)% prediction interval to contain at least k of m future observa-
tions Y1 , . . . , Ym from the previously sampled population, based on a random sample x of size
n, is

[
˜
Yk :m , Ỹk :m ] = [x(ℓ), x(u)], (G.15)

where 1 ≤ ℓ < u ≤ n, x(ℓ), x(u) are the ℓth and uth order statistics from the original sample
and they are chosen such that the interval has a coverage probability equal or approximately
equal to the nominal conidence level 100(1 − α)%.

Letting d = u − ℓ, the coverage probability of the prediction interval procedure giving

[
˜
Yk :m , Ỹk :m ] is

CPKM(n, ℓ, u, k,m) =

∫ 1

0

pbeta(v; k,m − k + 1)dbeta(v; d, n − d + 1) dv

= 1 −
∫ 1

0

pbeta(v; d, n − d + 1)dbeta(v; k,m − k + 1) dv

= pnhyper(d − 1; k,m,m + n), (G.16)

where pnhyper(d − 1; k,m,m + n) is the negative hypergeometric cdf, explained in Sec-
tion C.4.6, evaluated at x = d − 1, with parameters k = k, D = m, and N = n + m, with
d = u − ℓ as deined earlier.

Let ν − 2 be the total number of observations to be removed from the extremes of the
ordered sample to obtain a conservative prediction interval that contains at least k of m
future observations. Then n − ν = u − ℓ − 1 and it is required that CPKM(n, ℓ, u, k,m) =
pnhyper(n − ν;m,m + n) ≥ 1 − α. This implies that n − ν = qnhyper(1 − α; k,m,
m + n), which gives

ν = n − qnhyper(1 − α; k,m,m + n). (G.17)

G.5.2 One-Sided Prediction Bounds to Exceed (or Be Exceeded by)
at Least k of m Future Observations

For a one-sided upper prediction bound, Ỹk :m = x(u), to exceed at least k of m future observa-
tions from a previously sampled population with continuous cdf F (x), the coverage probability
is given by (G.16) with ℓ = 0. That is,

CPKM(n, 0, u, k,m) =

∫ 1

0

pbeta(v; k,m − k + 1)dbeta(v;u, n − u + 1) dv

= 1 −

∫ 1

0

pbeta(v;u, n − u + 1)dbeta(v; k,m − k + 1) dv

= pnhyper(u − 1; k,m,m + n). (G.18)

Operationally, CPKM(n, 0, u, k,m) = CPKM(n, u, ℓ, k,m) with ℓ = 0. Also note that
CPKM(n, 0, u, k,m) = CPYJ(n, 0, u,m, j) when j = k in (G.8). To obtain a one-sided
upper conservative prediction bound that exceeds at least k of m future observations, it is
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required that CPKM(n, 0, u, k,m) = pnhyper(u − 1; k,m,m + n) ≥ 1 − α. Thus

u = qnhyper(1 − α; k,m,m + n) + 1. (G.19)

For a one-sided lower prediction bound,
˜
Yk :m = x(ℓ), to be exceeded by at least k of m

future observations from a previously sampled population, the coverage probability is given
by (G.16) with u = n + 1. That is,

CPKM(n, ℓ, n + 1, k,m) =

∫ 1

0

pbeta(v; k,m − k + 1)dbeta(v;n − ℓ + 1, ℓ) dv

= 1 −

∫ 1

0

pbeta(v;n − ℓ + 1, ℓ)dbeta(v; k,m − k + 1) dv

= pnhyper(n − ℓ; k,m,m + n). (G.20)

Operationally, CPKM(n, ℓ, n + 1, k,m) = CPKM(n, ℓ, u, k,m) with u = n + 1.
To obtain a one-sided lower conservative prediction bound that is exceeded by at least k

of m future observations, it is required that CPKM(n, ℓ, n + 1, k,m) = pnhyper(n − ℓ;
k,m,m + n) ≥ 1 − α. Thus,

ℓ = n − qnhyper(1 − α; k,m,m + n). (G.21)

G.5.3 Special Cases, Limiting Behavior, and Relationship to Predicting
a Future Ordered Observation

Special cases

� A situation of interest is inding the coverage probability of the prediction interval to
contain allm ofm future observations and deined by the smallest and largest observations

in the sample. That is, the prediction interval is given by [
˜
Ym :m , Ỹm :m ] = (x(1), x(n)).

In this case d = u − ℓ = n − 1 and k = m. Because pnhyper(n;m,m,m + n) = 1,
using the negative hypergeometric density in (C.27) with k = m, D = m, N = m + n,
and the convention 0! = 1,

CPKM(n, 1, n,m,m) = pnhyper(n − 2;m,m,m + n)

= 1 − dnhyper(n − 1;m,m,m + n)

− dnhyper(n;m,m,m + n)

=
n(n − 1)

(m + n)(m + n − 1)
.

� Another prediction problem of interest is the coverage probability of the one-sided
lower prediction bound using the smallest observation x(1) to be exceeded by all m
future observations. In this case ℓ = 1 and (G.20) gives CPKM(n, 1, n + 1,m,m) =
pnhyper(n − 1;m,m,m + n) = n/(m + n).

Using a symmetry argument shows that the one-sided upper prediction bound
u(n) to exceed all m future observations has CPKM(n, 0, n,m,m) = CPKM(n, 1,
n + 1,m,m) = n/(m + n).

A limiting behavior of prediction intervals

Prediction intervals to contain at least k of m future observations with increasing k and m
behave like a tolerance interval to contain a proportion k/m of the F (x) distribution. Formally,
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consider the prediction interval [
˜
Ykr :m r

, Ỹkr :m r
] = [x(ℓ), x(u)], given in (G.15), to contain at

least kr out of mr future observations in a sequence, r = 1, 2, . . . , of prediction cases in which
as r → ∞, mr → ∞ and (kr/mr ) → β (where 0 < β < 1). In this situation, in the limit, the

prediction interval is equivalent to the tolerance interval [
˜
Tβ , T̃β ] = [x(ℓ), x(u)] to contain at

least a proportion β of the distribution F (x).
The practical implication of this result is that k is large and 0 < k/m < 1, there is no

important difference between the prediction interval [
˜
Yk :m , Ỹk :m ] = [x(ℓ), x(u)] to contain at

least k of m future observations and the tolerance interval [
˜
Tβ , T̃β ] = [x(ℓ), x(u)] to contain

a fraction 0 < k/m < 1 of the distribution F (x).

Relationship to predicting a future ordered observation

A one-sided upper prediction bound Ỹ(j ) = x(u) to exceed the jth ordered observation Y(j ) in

a future sample of size m is equivalent to a one-sided upper prediction bound Ỹk :m = x(u) to
exceed at least k = j of m future observations from the same distribution. For this result, note
that the coverage probability in (G.8) and the u in (G.9) are the same as the coverage probability
in (G.18) and the u in (G.19) when k = j.

Similarly,
˜
Y(j ) = x(ℓ) is equivalent to a one-sided lower prediction bound

˜
Yk :m to be exceeded

by at least k = m − j + 1 of m future observations from the same distribution. For this result,
note that the coverage probability in (G.10) and ℓ in (G.11) are the same as the coverage
probability in (G.20) and ℓ in (G.21) when k = m − j + 1.

G.5.4 Distribution-Free Prediction Intervals and Bounds to Contain at Least
k of m Future Observations: Coverage Probabilities (Technical Details)

Suppose that the data and the future observations are independent simple random samples from
the same continuous cdf F (x).

The prediction interval case

The probability that a single future observation Y is within the random prediction interval is

Pr(
˜
Yk :m ≤ Y ≤ Ỹk :m ) = Pr(X(ℓ) ≤ Y ≤ X(u))

= Pr[F (X(ℓ)) ≤ F (Y ) ≤ F (X(u))]

= Pr(W(ℓ) ≤ W ≤ W(u)),

whereW(ℓ) = F (X(ℓ)),W(u) = F (X(u)) are the ℓth and uth order statistics in a sample of size
n from aUNIF(0, 1) distribution; andW = F (Y ) has aUNIF(0, 1) distribution independent
of (W(ℓ),W(u)).

Deine K as the number of future observations contained in the prediction interval. Then
Pr(K = i; ℓ, u) is the probability that the prediction interval [W(ℓ),W(u)] contains exactly i of
m independent observations from a UNIF(0, 1) distribution. Let g(wℓ , wu) be the joint pdf of
(W(ℓ),W(u)). Using conditional probabilities,

Pr(K = i; ℓ, u) =

∫ 1

0

∫ wu

0

Pr(K = i; ℓ, u|W(ℓ) = wℓ ,W(u) = wu)g(wℓ , wu)dwℓdwu .
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Because Pr(K = i; ℓ, u|W(ℓ) = wℓ ,W(u) = wu) is the probability of observing exactly i of
m independent uniform random variables in the interval [wℓ , wu ], it follows from binomial
sampling that

Pr(K = i; ℓ, u|W(ℓ) = wℓ ,W(u) = wu) =

(
m

i

)
(wu − wℓ)

i [1 − (wu − wℓ)]
m−i.

Thus,

Pr(K = i; ℓ, u) = E[Pr(K = i; ℓ, u|W(ℓ) = wℓ ,W(u) = wu)]

=

(
m

i

)
E

{
[W(u) − W(ℓ)]

i [1 − (W(u) − W(ℓ))]
m−i

}

=

(
m

i

)∫ 1

0

vi(1 − v)m−idbeta(v; d, n − d + 1) dv, (G.22)

where d = u − ℓ, v = wu − wℓ , and the pdf of W(u) − W(ℓ) is dbeta(v; d, n − d + 1). Con-
sequently,

CPKM(n, ℓ, u, k,m) =

∫ 1

0

m∑

i=k

(
m

i

)
vi(1 − v)m−idbeta(v; d, n − d + 1) dv

=

∫ 1

0

pbeta(v; k,m − k + 1)dbeta(v; d, n − d + 1) dv

= 1 −

∫ 1

0

pbeta(v; d, n − d + 1)dbeta(v; k,m − k + 1) dv

= pnhyper(d − 1; k,m,m + n). (G.23)

One-sided lower and upper prediction bounds

For the one-sided prediction bounds, the formulas in (G.16) still apply.

� For the one-sided lower prediction bound,
˜
Yk :m = x(ℓ), it sufices to use u = n + 1 in the

formulas as shown next. Using conditional expectations with respect to W(ℓ) ∼ g(wℓ) =
dbeta(wℓ ; ℓ, n − ℓ + 1),

Pr(K = i; l) = E[Pr(K = i; l|W(ℓ) = wℓ)] =

(
m

i

)
E

[
(1 − W(ℓ))

iW m−i
(ℓ)

]

=

(
m

i

)∫ 1

0

vi(1 − v)m−idbeta(v;n − ℓ + 1, ℓ) dv. (G.24)

Note that (G.24) is a special case of (G.22) when u = n + 1. Similar to the derivation of
(G.23), here (G.24) implies

CPKM(n, ℓ, n + 1, k,m) =

∫ 1

0

pbeta(v; k,m − k + 1)dbeta(v;n − ℓ + 1, ℓ) dv

= 1−

∫ 1

0

pbeta(v;n− ℓ+1, ℓ)dbeta(v; k,m− k +1) dv

= pnhyper(n − ℓ; k,m,m + n).
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Thus, operationally, the coverage probabilities for the lower prediction bound are obtained
from (G.23), setting u = n + 1.

� Similarly, for the upper-prediction bound Ỹk :m = x(u), set ℓ = 0 in (G.23) to get
Pr(K = i;u) = dnhyper(i;u, n,m + n) and

CPKM(n, 0, u, k,m) =

∫ 1

0

pbeta(v; k,m − k + 1)dbeta(v;u, n − u + 1) dv

= 1 −

∫ 1

0

pbeta(v;u, n − u + 1)dbeta(v; k,m − k + 1) dv

= pnhyper(u − 1; k,m,m + n).



AppendixH
Basic Results from Bayesian

Inference Models

INTRODUCTION

This appendix describes and provides background information and results used mainly in the
construction of Bayesian intervals in Chapters 15–17. The appendix contains:

� Some useful technical results that are used to obtain the posterior distributions and poste-
rior predictive distributions in this appendix (Section H.1).

� A formal presentation of Bayes’ theorem (Section H.2).

� The deinition of conjugate prior distributions with examples for the binomial, Poisson,
and normal distributions (Section H.3).

� The deinition of Jeffreys prior distributions with examples for the binomial, Poisson, and
normal distributions. Also a modiied Jeffreys prior distribution for the normal distribu-
tion (Section H.4).

� The deinition of posterior predictive distributions with examples, using conjugate prior
distributions, for the binomial, Poisson, and normal distributions (Section H.5).

� Posterior predictive distributions for the binomial and the Poisson distributions using
Jeffreys prior distributions. Also a posterior predictive distribution for the normal distri-
butions using a modiied Jeffreys prior distribution (Section H.6).
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510 BASIC RESULTS FROM BAYESIAN INFERENCE MODELS

H.1 BASIC RESULTS USED IN THIS APPENDIX

In this appendix we use the following results:

(a) We frequently need to compute the marginal distribution corresponding to a mixture of
two normal distributions. The following result is useful in making those computations.

Consider the continuous normal-normal mixture (Y |μ) ∼ NORM(μ, σ) and μ ∼
NORM(τ, σ/

√
ν), where f(y|µ) = dnorm(y;µ, σ), f(µ) = dnorm(µ; τ, σ/ν), and

τ, σ, and ν are constants. The interest is in the marginal distribution of Y. The joint pdf
of (Y, µ) is f(y|µ)f(µ) and the marginal pdf of Y is

f(y; τ, σ, ν) =

∫ ∞

−∞

f(y|µ) f(µ)dµ

=

∫ ∞

−∞

dnorm(y;µ, σ) dnorm(µ; τ, σ/ν) dµ

= dnorm
[
y; τ, σ(1 + 1/ν)1/2

]

(H.1)

(see Villa and Escobar, 2006, for details). Note that the marginal distribution of Y is a
normal distribution with mean equal to the expected value of µ and variance equal to the
sum of the variances Var(Y |µ) and Var(µ).

(b) The following two identities are integrals that occur several times in this appendix and
are given here to simplify the development. These identities can be veriied directly after
making the change of variables w = 1/σ2 in evaluating the integrals. Suppose that D is
positive and does not depend on σ. Then

∫ ∞

0

1

σr
exp

(
−

D

σ2

)
dσ =

Γ[(r − 1)/2]

2D(r−1)/2
, (H.2)

where r > 1. Also
∫ ∞

0

1

σr
exp

(
−

D

σ2

)
dσ2 =

Γ[(r − 2)/2]

D(r−2)/2
, (H.3)

where r > 2.

H.2 BAYES’ THEOREM

Bayes’ theorem (also known as Bayes’ rule) is the basis for the Bayesian method of statistical
inference. The rule allows one to combine available data with prior information (expressed as
a probability distribution) to obtain a posterior (or updated) distribution as follows.

Suppose that f(x|θ) is the joint distribution of the data x as a function of the parameters
θ and that f(θ) is a completely speciied joint prior pdf of θ. Then using Bayes’ theorem, the
joint posterior distribution of θ as a function of the data is

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

. (H.4)

The integral in the denominator of (H.4) is a “normalizing constant” which is computed over
the region where f(θ) > 0. Bayes’ theorem also applies when f(θ) is a discrete distribution.
In that case the integral in the denominator of (H.4) is replaced with

∑
f(x|θ)f(θ), where the
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sum is over all values of θ for which f(θ) > 0. In computing f(θ|x), the most challenging
task is usually in the computation of the normalizing constant.

H.3 CONJUGATE PRIOR DISTRIBUTIONS

In principle, the parametric form of f(θ) should be chosen based on past experience, knowledge
of the process being studied, or a plausible subjective argument. Sometimes, however, f(θ) is
chosen for convenience of the computations, for ease of interpreting the prior information as
additional data, or because the choice provides the basis for a simple but useful approximation
of more realistic prior distributions. For these purposes, conjugate prior distributions are useful.

Informally, f(θ) is a conjugate prior distribution for f(x|θ) if the posterior distribution
f(θ|x) has the same parametric form as f(θ). That is, if f(x|θ) is a class of joint distributions
for x as a function of θ and f(θ) is a class of joint prior distributions for θ. Then f(θ) is
conjugate for f(x|θ) if f(θ|x) is an element of the class f(x|θ) for all choices of f(x|θ) and
f(θ), respectively. Next we describe some well-known conjugate prior distributions.

H.3.1 Conjugate Prior Distribution for the Binomial Distribution

Suppose thatX ∼ BINOM(n,π) is the number of conforming units inn independent Bernoulli
trials. Then θ = π and the distribution of number of conforming units is

Pr(X = x) = f(x|π) =

(
n

x

)
πx(1 − π)n−x , (H.5)

where 0 < π < 1, n is a given positive integer, and 0 ≤ x ≤ n.
We now show that the beta prior distribution,

f(π) =
Γ(a + b)

Γ(a) Γ(b)
πa−1(1 − π)b−1 ,

is a conjugate prior distribution for f(x|π) in (H.5). Here a > 0 and b > 0 are given hyper-
parameters. The joint distribution for (π, x) is f(π, x) = f(x|π)f(π). Then the posterior
distribution is

f(π|x) =
f(π, x)

f(x)
= C πx+a−1(1 − π)n−x+b−1 ,

where C is a constant that does not depend on π. We ind C using the constraint that∫ 1

0
f(π|x) dπ = 1 giving the posterior distribution,

f(π|x) =
Γ(n + a + b)

Γ(x + a) Γ(n − x + b)
πx+a−1(1 − π)n−x+b−1

= dbeta(π;x + a, n − x + b). (H.6)

This shows that the family of beta prior distributions BETA(a, b) is conjugate for the binomial
BINOM(n, π) distribution. Note that f(π|x) in (H.6) is proportional to a binomial probability
in which there are x + a − 1 conforming units and n − x + b − 1 nonconforming units. Thus
the posterior distribution can be interpreted as a binomial distribution likelihood after observing
x + a − 1 nonconforming units in n + a + b − 2 trials.

The beta prior distribution f(π) is also conjugate for the negative binomial distributions in
Section C.4.3.
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H.3.2 Conjugate Prior Distribution for the Poisson Distribution

Suppose that X ∼ POIS(nλ), where X is the number of events during a speciied amount of
exposure n,with n > 0 (not necessarily an integer) and λ > 0. Then θ = λ and the distribution
of the number of events is

Pr(X = x) = f(x|λ) =
(nλ)x

x!
exp(−nλ), (H.7)

where x is a nonnegative integer.
We now show that the prior distribution λ ∼ GAM(a, b) is a conjugate prior distribution for

the Poisson distribution in (H.7). The gamma prior distribution pdf is

f(λ) =
ba λa−1

Γ(a)
exp(−bλ),

where a > 0, b > 0, and Γ(z) is the gamma function deined in Appendix A.
The joint distribution for (λ, x) is f(λ, x) = f(x|λ)f(λ). Then the posterior distribution

for λ is

f(λ|x) =
f(λ, x)

f(x)
= C λx+a−1 exp[−(n + b)λ],

where C is a constant that does not depend on λ. We ind C using the constraint that∫ ∞

0
f(λ|x) dλ = 1. This gives the posterior distribution

f(λ|x) =
(n + b)x+a λx+a−1

Γ(x + a)
exp[−(n + b)λ] = dgamma(λ;x + a, n + b). (H.8)

This posterior distribution can be interpreted as a Poisson distribution likelihood with an
occurrence rate λ after observing x + a − 1 events during n + b units of exposure.

H.3.3 Conjugate Prior Distribution for the Normal Distribution

For a random sample x = (x1 , . . . , xn) from a NORM(µ, σ) distribution, the likelihood is

f(x|µ, σ) =

(
1√

2πσ2

)n

exp

(
− 1

σ2

[
n∑

i=1

(xi − µ)2

])
.

Using the identity
∑n

i=1(xi − µ)2 = n(x̄ − µ)2 + (n − 1)s2 , we can write the normal distri-
bution likelihood as a function of the suficient statistics (sample mean x̄ and sample variance
s2):

f(x|µ, σ) =

(
1√

2πσ2

)n

exp

(
− 1

σ2

[
n(x̄ − µ)2 + (n − 1)s2

2

])
. (H.9)

A conjugate prior distribution for (µ, σ2) is

µ|σ2 ∼ NORM(µ0 , σ/
√

n0) and σ2 ∼ Inv-χ2(r0 , σ
2
0 ), (H.10)

where µ0 , n0 , r0 , and σ0 are given constants (see Gelman et al., 2013, Chapter 3, for details).
The pdf of µ|σ2 is f(µ|σ2) = dnorm(µ;µ0 , σ/

√
n0), and Inv-χ2(r0 , σ2

0 ) is the distribution of
the scaled ratio σ2

0r0/X2
(r0 ), where X2

(r0 ) ∼ χ2(r0). The pdf of the Inv-χ2(r0 , σ2
0 ) distribution

is

f(σ2) =
1

Γ(r0/2)

1

σ2

(
r0σ2

0

2σ2

)r0 /2

exp

(
−

r0σ2
0

2σ2

)
. (H.11)
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In (H.10), the prior distribution speciication n0 can be interpreted as the effective number
of observations providing information about μ, and r0 as the effective number of degrees of
freedom providing information about σ2 .

The joint prior distribution for (μ, σ2) is f(μ, σ2) = f(μ|σ2) f(σ2). The joint posterior
distribution is given by f(μ, σ2 |x) = f(μ|σ2 ,x) f(σ2 |x), where

f(μ|σ2 ,x) = dnorm(μ;μn , σ/
√

nn),

f(σ2 |x) =
1

Γ(rn/2)

1

σ2

(
rnσ2

n

2σ2

)rn /2

exp

(
−rnσ2

n

2σ2

)
(H.12)

(see Gelman et al., 2013, page 68, for details), and the updated parameters are

μn =
n0

n0 + n
μ0 +

n

n0 + n
x̄, nn = n0 + n, rn = r0 + n,

σ2
n =

1

rn

[
n0σ

2
0 + (n − 1)s2 +

n0n

n0 + n
(x̄ − μ0)

2

]
.

(H.13)

In summary,

μ|σ2 ,x ∼ NORM(μn , σ/
√

nn), σ2 |x ∼ Inv-χ2
(
rn , σ2

n

)
,

μ − μn

σn/
√

nn

∣∣∣∣ x ∼ t(rn).
(H.14)

Note that the marginal posterior distribution for μ is a location-scale distribution with location
μn , scale σn/

√
nn , and with a Student’s t-distribution with rn degrees of freedom as the

standardized distribution.
Consequently, using (H.14), to draw a random pair (μ∗, σ∗) from the joint posterior distri-

bution (μ, σ|x), we proceed as follows: First, draw w from a χ2(rn) distribution and compute

σ∗ = (rnσ2
n/w)

1/2
. Then draw μ∗ from a NORM(μn , σ∗/

√
nn) distribution.

H.4 JEFFREYS PRIOR DISTRIBUTIONS

Suppose that f(x|θ) is the likelihood of the data. Consider the Fisher information matrix, Iθ,
deined in (D.14). The Jeffreys diffuse prior distribution (referred to henceforth as the Jeffreys
prior distribution) is

f(θ) ∝ [det(Iθ)]
1/2 ,

where det(Iθ) is the determinant of Iθ. Jeffreys prior distributions for single-parameter models
are important because they generally lead to statistical interval procedures that have frequentist
coverage probabilities close (and in some cases exactly equal) to the nominal credible level.

The Jeffreys prior distribution is invariant to one-to-one transformations of θ in the following
sense. Suppose that ν = h(θ) is a one-to-one transformation of θ and that f(θ) is the prior
distribution for θ. We can use this distribution to obtain a prior distribution for ν in two
alternative but equivalent ways: (a) Let g(ν) be the inverse function of h(θ). Then using
transformation of variables, the implied prior distribution for ν is proportional to

|J(ν)|f [g(ν)] = |J(ν)|[det(Iν)]
1/2 , (H.15)

where J(ν) is the Jacobian for ν as deined in (D.1). (b) Compute the Fisher information for
ν, say Iν , using (D.16). Then, using a well-known result about the determinant of a product
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of square matrices (e.g., Harville, 1997, page 187), the Jeffreys prior distribution for ν is
proportional to

{det[J(ν) Iθ J ′(ν)]}
1/2

= |J(ν)|[det(Iν)]
1/2 . (H.16)

Because of the equality of (H.15) and (H.16), the Jeffreys prior distribution is invariant to
one-to-transformations of the parameters.

H.4.1 Jeffreys Prior Distribution for the Binomial Distribution

For the binomial distribution BINOM(n,π), the Fisher information is n/[π(1 − π)], as given
in (D.17). Then the Jeffreys prior distribution for π is f(π) ∝ π−1/2(1 − π)−1/2 . Or equiva-
lently,

f(π) = C π−1/2(1 − π)−1/2 = dbeta(1/2, 1/2),

whereC = 1/B(1/2, 1/2) andB(a, b) is the beta function deined inAppendixA. As shown in
(H.6), dbeta(1/2, 1/2) is a conjugate prior distribution for the dbinom(x;n, π) distribution.
Thus using (H.6), the posterior distribution for π is f(π|x) = dbeta(π;x + 1/2, n − x +
1/2). This provides the basis for the Jeffreys conidence interval method in Section 6.2.5.

H.4.2 Jeffreys Prior Distribution for the Poisson Distribution

For Poisson data X ∼ POIS(nλ), the Fisher information is n/λ, as given in (D.18). Then the
Jeffreys prior distribution for λ is f(λ) ∝ 1/

√
λ. In this case, the Jeffreys prior distribution

is an improper prior distribution because
∫ ∞

0
λ−1/2 dλ = ∞. Using Bayes’ theorem, however,

the posterior distribution is proper. That is,

f(λ|x) ∝ f(x|λ)f(λ) = C λx−1/2 exp(−nλ).

The constant C is obtained from the constraint
∫ ∞

0
f(λ|x) dλ = 1, giving C = nx+1/2/

Γ(x + 1/2). Thus, the posterior distribution for λ is f(λ|x) = dgamma(λ;x + 1/2, n). This
provides the basis for the Jeffreys conidence interval method in Section 7.2.5.

H.4.3 Jeffreys Prior Distribution for the Normal Distribution

The following are examples of Jeffreys prior distributions for the normal distribution.

Example H.1 Jeffreys Prior Distribution for µ with a NORM(µ, σ) Distribution and

Given σ. From the Fisher information Iµ = n/σ2 in (D.20) and the fact that n and σ are given,
the Jeffreys prior distribution is

f(µ) ∝ 1

which is an improper prior distribution. Using Bayes’ theorem, however, the posterior distribu-
tion is proper, as shown next. Because σ is given, the likelihood is

f(x|µ) ∝ exp
[
−

n

2σ2
(x̄ − µ)2

]
.

Then the joint distribution of (µ,x) is f(µ,x) ∝ f(µ)f(x|µ) and f(µ|x) = Cf(µ,x),where
the constant C is chosen such that f(µ|x) is a pdf for µ. This gives C =

√
n/(σ

√
2π). That

is, the posterior distribution for µ is

f(µ|x) = dnorm
(
µ; x̄, σ/

√
n
)
.
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Example H.2 Jeffreys Prior Distribution for σ2 with a NORM(μ, σ) Distribution and

Given μ. From the Fisher information Iσ 2 = n/(2σ4) given in (D.22) and the fact that n is
given, the Jeffreys prior distribution is

f(σ2) ∝
1

σ2

which is an improper prior distribution. Using Bayes’ theorem, however, the posterior distribu-
tion is proper, as shown next. Because μ is given, the likelihood is

f(x|σ2) ∝
1

σn
exp

[
−

1

2σ2

n∑

i=1

(xi − μ)2

]
∝

1

σn
exp

(
−

nσ̂2

2σ2

)
, (H.17)

where σ̂2 =
∑n

i=1(xi − μ)2/n is the ML estimate of σ2 . Then the posterior distribution for σ2

is f(σ2 |x) = f(σ2)f(x|σ2). That is,

f(σ2 |x) =
C

σn+2
exp

(
−

nσ̂2

2σ2

)
.

Using the constraint that f(σ2 |x) must integrate to 1 and (H.3) with r = n + 2 and using
D = nσ̂2/2 to compute C leads to

f(σ2 |x) =
1

Γ(n/2)

1

σ2

(
nσ̂2

2σ2

)n/2

exp

(
−

nσ̂2

2σ2

)
. (H.18)

This shows that σ2 |x ∼ Inv-χ2(n, σ̂2) (see (H.11)).

Example H.3 Jeffreys Prior Distribution for σ with a NORM(μ, σ) Distribution and

Given μ. From the information Iσ = 2n/σ2 given in (D.21), the Jeffreys prior distribution for
σ is f(σ) ∝ 1/σ which is an improper prior distribution. Using Bayes’ theorem, however, the
posterior distribution is proper, as shown next. The likelihood is, as in (H.17),

f(x|σ) ∝
1

(σ2)n/2
exp

(
−

nσ̂2

2σ2

)
,

where σ̂ =
∑n

i=1(xi − μ)2/n. Because of the Jeffreys invariance property discussed in Sec-
tion H.4, we obtain the posterior distribution f(σ|x) using f(σ2 |x) in (H.18) and the transfor-
mation σ =

√
σ2 . This gives

f(σ|x) =
2

Γ(n/2)

1

σ

(
nσ̂2

2σ2

)n/2

exp

(
−nσ̂2

2σ2

)
.

Example H.4 Jeffreys Prior Distribution for (μ, σ) with a NORM(μ, σ) Distribution.

From the Fisher matrix I(μ,σ ) given in (D.23), the Jeffreys prior distribution is

f(μ, σ) ∝
1

σ2

which is an improper prior distribution. The posterior distribution is, as shown next, a proper
distribution if n ≥ 2. The likelihood is

f(x|μ, σ) ∝
1

σn
exp

(
−

A

σ2

)
,
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where A = [n(x̄ − μ)2 + (n − 1)s2 ]/2. Consequently, the joint distribution of (x, μ, σ) is

f(x, μ, σ) ∝
1

σn+2
exp

(
−

A

σ2

)
.

From this joint distribution, the marginal posterior distributions are

f(μ|x, σ) = C1
1

σ
exp

[
−

n

2σ2
(μ − x̄)2

]
, f(σ|x) = C2

1

σn+1
exp

[
−

(n − 1)s2

2σ2

]
,

where the constants C1 and C2 are chosen such that the corresponding posterior distribution
integrates to 1. Directly, one gets C1 =

√
n/

√
2π. From (H.2) with r = n + 1 and using

D = (n − 1)s2/2 gives C2 = 2[(n − 1)s2/2]n/2 . Thus,

f(µ|x, σ) =

√
n

σ
√

2π
exp

[
− n

2σ2
(μ − x̄)2

]
,

f(σ|x) =
2

Γ(n/2)

[
(n − 1)s2

2

]n/2
1

σn+1
exp

[
−(n − 1)s2

2σ2

]
.

(H.19)

Also,

f(μ|x) ∝

∫ ∞

0

1

σn+2
exp

(
−

A

σ2

)
dσ.

This last integral is evaluated using (H.2), which leads to

f(μ|x) =

√
n

s
√

(n − 1)/n

Γ[(n + 1)/2]

Γ(n/2)
√

πn

(
1 +

1

n

[ √
n(µ − x̄)

s
√

(n − 1)/n

]2)−(n+1)/2

.

That is, given the data, the marginal posterior distribution f(µ|x) implies that
√

n(µ − x̄)

s
√

(n − 1)/n
∼ t(n).

That is, f(µ|x) is a location-scale distribution with location x̄, scale (s/
√

n)
√

(n − 1)/n,
and a Student’s t-distribution with n degrees of freedom as the standardized distribution.

The fact that the marginal distribution f(µ|x) has n degrees of freedom, rather than n − 1 as
suggested by other statistical considerations, was one of the reasons for Jeffreys to recommend
against the use of this prior distribution (i.e., f(µ,σ) ∝ 1/σ2) for the normal distribution (see
Jeffreys, 1946, for details). See Kass and Wasserman (1996) for a related discussion of the
issues with the Jeffreys prior distribution for the normal distribution. We do not use this Jeffreys
prior distribution for the normal distribution in this book.

Example H.5 AModiied Jeffreys Prior Distribution for (μ, σ2)with aNORM(μ, σ)Dis-
tribution.Here we consider the prior distribution f(μ, σ) = (1/σ) or equivalently f(μ, σ2) =
1/σ2 , which was suggested by Jeffreys to address the deiciencies encountered with the original
Jeffreys prior distribution, discussed earlier in Example H.4. Note that f(μ, σ2) ∝ 1/σ2 is the
product of the Jeffreys prior distributions f(μ) ∝ 1 and f(σ2) ∝ 1/σ2 . In this case, as shown
in (H.9), the likelihood is

f(x|μ, σ2) =

(
1√

2πσ2

)n

exp

(
− A

σ2

)
,
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where A = [n(x̄ − μ)2 + (n − 1)s2 ]/2. Consequently, the joint distribution of (x, μ, σ2) is

f(x, μ, σ2) ∝
1

σn+2
exp

(
−

A

σ2

)
.

Similar to the development leading to (H.19), we obtain the posterior distributions

f(μ|x, σ2) =

√
n

σ
√

2π
exp

[
− n

2σ2
(μ − x̄)2

]
,

f(σ2 |x) =
1

Γ[(n − 1)/2]

[
(n − 1)s2

2σ2

](n−1)/2
1

σ2
exp

[
−(n − 1)s2

2σ2

]
.

(H.20)

Thus

f(μ|x) = C

∫ ∞

0

1

σn+2
exp

(
−

A

σ2

)
dσ2 , (H.21)

where

C =

√
n√
2π

1

Γ[(n − 1)/2]

[
(n − 1)s2

2

](n−1)/2

.

The integral in (H.21) is evaluated using (H.3), which leads to

f(µ|x) =
1

s/
√

n

Γ(n/2)

Γ[(n − 1)/2]
√

π(n − 1)

[
1 +

1

n − 1

(
µ − x̄

s/
√

n

)2
](−n/2)

.

In summary, using (H.11),

µ|σ2 ,x ∼ NORM
(
x̄, σ/

√
n
)
, σ2 |x ∼ Inv-χ2

(
n − 1, s2

)
. (H.22)

Credible interval for μ

Combining the results in (H.22) gives

μ − x̄

s/
√

n

∣∣∣∣ x ∼ t(n − 1),

which implies

Pr

(
t(α/2,n−1) ≤

μ − x̄

s/
√

n
≤ t(1−α/2,n−1)

)
= 1 − α. (H.23)

Then solving (H.23) for μ in the middle leads to

[μ
˜
, μ̃] = x̄ ∓ t(1−α/2;n−1)

s√
n

.

This 100(1 − α)% credible interval is the same as the non-Bayesian conidence interval for μ
in Section 4.2.
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Credible interval for σ

To obtain a credible interval for σ, we use the 1 − α/2 quantile, (n − 1)s2/χ2
(1−α/2;n−1) , and

the α/2 quantile, (n − 1)s2/χ2
(α/2;n−1) , of the posterior distribution (σ2 |x) in (H.22). Solving

for σ gives

[σ
˜
, σ̃] =

⎡
⎣s

(
n − 1

χ2
(1−α/2;n−1)

)1/2

, s

(
n − 1

χ2
(α/2;n−1)

)1/2
⎤
⎦.

This 100(1 − α)% credible interval is the same as the non-Bayesian conidence interval for σ
in Section 4.3.

Sample draws from the joint posterior distribution of μ and σ

Note that f(μ, σ2 |x) = f(μ|x, σ2) f(σ2 |x), where the conditional distributions for μ|σ2 ,x
and σ2 |x are given in (H.22). Thus to draw a random pair (μ∗, σ∗) from the posterior distri-
bution μ, σ|x, we proceed as follows: First, draw w at random from a χ2(n − 1) distribution

and compute σ∗ = [(n − 1)s2/w]
1/2

. Then draw μ∗ at random from a NORM(x̄, σ∗/
√

n)
distribution. Such draws will be useful computing more complicated Bayesian intervals such
as tolerance intervals (see Sections 15.5.2 and 15.5.3) and k-out-of-m prediction intervals (see
Section 15.5.4). When compared with the MCMC method, these draws are easier to obtain and
are iid.

H.5 POSTERIOR PREDICTIVE DISTRIBUTIONS

H.5.1 General Results

In Bayesian inference, we have data x = (x1 , . . . , xn) from X ∼ f(x|θ), a prior distribution
f(θ) for θ, and future observations y = (y1 , . . . , ym ) from Y ∼ f(y|θ). In many applications,
it is plausible to assume that, for given θ, the data X and the future observation Y are
independent. Of interest is the posterior predictive distribution of the future observation Y
given the data x. For this purpose (assuming that θ has a continuous distribution and ignoring
irrelevant constants) the joint distribution of (Y ,X,θ) is

f(y,x,θ) = f(y,x|θ) f(θ) = f(y|θ) f(x|θ) f(θ) = f(y|θ) f(θ|x)f(x). (H.24)

Integrating both sides of (H.24) with respect to θ gives f(y,x) = f(x)
∫

f(y|θ) f(θ|x) dθ.
Consequently, the posterior predictive distribution f(y|x) for Y |X = x is

f(y|x) =
f(y,x)

f(x)
=

∫
f(y|θ) f(θ|x) dθ. (H.25)

When it is dificult to sample directly from f(y|x), but one can sample from both f(y|θ) and
f(θ|x), one can sample indirectly from f(y|x) using a Monte Carlo procedure.

Note that f(y|x) = E[f(y|θ)], where the expectation is with respect to the posterior distri-
bution f(θ|x). Then, if the interest is in Pr(Y = y|x) for a speciic value y, one can proceed
as follows. Let θ∗

1 , . . . ,θ
∗
B be approximately independent draws from f(θ|x). Then the mean∑B

j f(y|θ∗
j )/B approximates f(y|x) (see Hoff, 2009, Chapter 4, for details). This is the

method described in Section 15.5.5 and used to obtain prediction intervals in Sections 16.1.5,
16.2.5, and 16.3.6.

The following three subsections provide simple expressions for the posterior predictive distri-
butions using conjugate prior distributions for the binomial, Poisson, and normal distributions.
Section H.6 gives posterior predictive distributions using Jeffreys conjugate prior distributions.
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H.5.2 Posterior Predictive Distribution for the Binomial Distribution Based
on a Conjugate Prior Distribution

The relationship in (H.6) shows that for X ∼ BINOM(n;π) and π ∼ BETA(a, b), the con-
jugate posterior distribution for π is f(π|x) = dbeta(π;x + a, n − x + b). Thus, given x,
the posterior predictive distribution for a future observation from Y ∼ BINOM(m,π) is a
beta-binomial distribution with pmf given by

f(y|x) =

∫ 1

0

dbinom(y;m,π) dbeta(π;x + a, n − x + b) dπ

=
m!

y!(m − y)!

∫ 1

0

πy+x+a−1(1 − π)m−y+n−x+b−1

B(x + a, n − x + b)
dπ

=
1

(m + 1)B(y + 1,m − y + 1)

B(y + x + a,m − y + n − x + b)

B(x + a, n − x + b)

= dbetabinom(y;m,x + a, n − x + b), (H.26)

where y is a nonnegative integer and y ≤ m.

H.5.3 Posterior Predictive Distribution for the Poisson Distribution Based
on a Conjugate Prior Distribution

The relationship in (H.8) shows that for X ∼ POIS(nλ) and λ ∼ GAM(a, b), the conjugate
posterior distribution for λ is f(λ|x) = dgamma(λ;x + a, n + b). Thus, given x, the posterior
predictive distribution for the number of events Y ∼ POIS(mλ) during a speciied future
amount of exposure m > 0 for events occurring at a rate of λ per exposure unit is a negative
binomial distribution with pmf given by

f(y|x) =

∫ 1

0

dpois(y;mλ) dgamma(λ;x + a, n + b) dλ

=
(n + b)x+amy

Γ(x + a) y!

∫ 1

0

λy+x+a−1 exp[−(n + b + m)λ] dλ.

Using a change of variable w = (n + b + m)λ gives

f(y|x) =
(n + b)x+amy

Γ(x + a) y!

Γ(y + x + a)

(n + b + m)y+x+a

=
Γ(y + x + a)

Γ(x + a) Γ(y + 1)

(
n + b

n + b + m

)x+a( m

n + b + m

)y

= dnbinom[y;x + a, (n + b)/(n + b + m)],

where y is a nonnegative integer.

H.5.4 Posterior Predictive Distribution for the Normal Distribution Based
on a Conjugate Prior Distribution

Here the joint prior distribution for the normal distribution parameters is the modiied Jeffreys
prior distribution f(µ, σ2) = 1/σ2 , used in Example H.5. To obtain the posterior predictive
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posterior for the normal distribution, use the identity f(μ, σ2 |x) = f(σ2 |x)f(μ|σ2 ,x). Using
(H.25) gives

f(y|x) =

∫ ∞

0

f(σ2 |x)

[∫ ∞

−∞

f(y|μ, σ2)f(μ|σ2 ,x) dμ

]
dσ2 . (H.27)

Using (H.12), the inner integral on the right-hand side of (H.27) is the pdf of normal-
normal mixture with f(y|μ, σ2) = dnorm(y;μ, σ) and f(μ|σ2 ,x) = dnorm(μ;μn , σ/

√
nn).

Thus applying (H.1) with τ = µn , ν = nn , we ind that the inner integral is equal to
dnorm(y;µn , σ/

√
wn), where wn = (nn + 1)/nn . Thus, using f(σ2 |x) in (H.14) and (H.3)

to obtain the integral, we obtain

f(y|x) =

∫ ∞

0

f(σ2 |x) dnorm(y;µn , σ/
√

wn) dσ2

= C

∫ ∞

0

(
1

σ2

)(rn +3)/2

exp

(
−

1

σ2

[rnσ2
n + wn(y − µn)2 ]

2

)
dσ2

=
1

σn/
√

wn

Γ[(rn + 1)/2]

Γ(rn/2)

1√
πrn

[
1 +

1

rn

(
y − µn

σn/
√

wn

)2
]−(rn +1)/2

, (H.28)

where C = (rnσ2
n/2)

rn /2√
wn/

[
Γ(rn/2)

√
2π

]
. Equivalently, the posterior predictive pdf

f(y|x) implies that, conditional on x,

Y − µn

σn/
√

wn

∼ t(rn).

That is, f(y|x) is a location-scale distribution with location µn , scale σn/
√

wn , and a Student’s
t-distribution with rn degrees of freedom as the standardized distribution.

To simulate draws from the posterior predictive distribution of Y in (H.28), one can generate
t∗ from a t(rn) distribution. Then

y∗ = µn + t∗σn/
√

wn ,

where µn and σn are deined in (H.13).

H.6 POSTERIOR PREDICTIVE DISTRIBUTIONS BASED ON JEFFREYS
PRIOR DISTRIBUTIONS

H.6.1 Posterior Predictive Distribution for the Binomial Distribution Based
on Jeffreys Prior Distribution

Section H.4.1 showed that the Jeffreys prior distribution for the binomial distribution is
f(π) = dbeta(π; 1/2, 1/2), which is a conjugate prior distribution for the dbinom(x;n, π)
distribution. Then using (H.6), the posterior distribution for π is f(π|x) = dbeta(π;x +
1/2, n − x + 1/2). Using (H.26), the posterior predictive distribution for a future observation
Y ∼ BINOM(m,π) has a beta-binomial distribution with pmf given by

f(y|x) = dbetabinom(y;m,x + 1/2, n − x + 1/2),
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where y is a nonnegative integer and y ≤ m. This is the basis for the Jeffreys prediction interval
method in Section 6.2.5.

H.6.2 Posterior Predictive Distribution for the Poisson Distribution Based
on Jeffreys Prior Distribution

In Section H.4.2, we show that for the Poisson distribution, the posterior distribution based on
the Jeffreys prior distribution is the conjugate distribution f(λ|x) = dgamma(λ;x + 1/2, n).
Consequently, the posterior predictive distribution for a new observation Y ∼ POIS(mλ) has
a negative binomial distribution with pmf given by

f(y|x) =

∫ ∞

0

dpois(y;mλ)dgamma(λ;x + 1/2, n) dλ

=
Γ(y + x + 1/2)

Γ(x + 1/2)Γ(y + 1)

( n

n + m

)x+1/2(
1 −

n

n + m

)y

= dnbinom[y;x + 1/2, n/(n + m)],

where y is a nonnegative integer. This is the basis for the Jeffreys prediction interval method in
Section 7.2.5.

H.6.3 Posterior Predictive Distribution for the Normal Distribution Based
on the Modified Jeffreys Prior Distribution

Here we use the posterior distributions for f(µ|σ2 ,x) and f(σ2 |x) obtained in (H.22) and the
identity f(µ, σ2 |x) = f(µ|x, σ2) f(σ2 |x). For a new observation from Y ∼ NORM(µ, σ),
which has a pdf given by f(y|µ, σ2) = dnorm(y;µ, σ), the posterior predictive distribution is

f(y|x) =

∫ ∞

0

∫ ∞

−∞

f(σ2 |x) f(µ|σ2 ,x) f(y|µ, σ2) dudσ2

=

∫ ∞

0

f(σ2 |x)

[∫ ∞

−∞

f(y|µ, σ2) f(µ|σ2 ,x) du

]
dσ2 (H.29)

=

∫ ∞

−∞

f(σ2 |x) dnorm(y; x̄, σ/
√

w) dσ2 ,

where (H.1) was used to evaluate the inner integral in (H.29) and w = n/(n + 1). Finally,
using the expression for f(σ2 |x) in (H.20) gives

f(y|x) = C

∫ ∞

0

1

σn+2
exp

(
−

B

σ2

)
dσ2 , (H.30)

where B = [w(y − x̄)2 + (n − 1)s2 ]/2 and

C =
1

Γ[(n − 1)/2]

[
(n − 1)s2

2

](n−1)/2 √
w√
2π

.

Using (H.3) to evaluate the integral in (H.30) gives

f(y|x) =
1

s/
√

w

Γ(n/2)

Γ[(n − 1)/2]
√

π(n − 1)

[
1 +

1

n − 1

(
y − x̄

s/
√

w

)2
]−n/2

. (H.31)
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Equivalently, the posterior predictive pdf f(y|x) in (H.31) implies that, conditional on x,

Y − x̄

s/
√

w
∼ t(n − 1). (H.32)

That is, f(y|x) is a location-scale distribution with location x̄, scale s/
√

w = s (1 + 1/n)1/2 ,
and a Student’s t-distribution with n − 1 degrees of freedom as the standardized distribution.

From (H.32), a 100(1 − α)% Bayesian prediction interval for a future observation is

[Y
˜

, Ỹ ] = x̄ ∓ t(1−α/2;n−1)s/
√

w

= x̄ ∓ t(1−α/2;n−1)

(
1 +

1

n

)1/2

s.

This interval is the same as the classical non-Bayesian prediction interval in (4.7) for m = 1.



Appendix I
Probability of Successful

Demonstration

I.1 DEMONSTRATION TESTS BASED ON A NORMAL DISTRIBUTION
ASSUMPTION

This section provides technical details for computing the probability of successful demonstration
shown in Figures 9.1a–9.1d in Chapter 9.

I.1.1 Probability of Successful Demonstration Based on a Normal Distribution
One-Sided Confidence Bound on a Quantile

Conidence intervals for a quantile can be used to demonstrate with 100(1 − α)% conidence
that xp† ≤ x†, where xp† is the p† quantile of a NORM(µ,σ) distribution and p† and x† are

speciied. We need to introduce p† here to distinguish this speciied value from an actual proba-
bility p. Suppose that the available data are a random sample x1 , . . . , xn from theNORM(µ, σ)
distribution. The data are summarized by the sample mean x̄ and the sample standard deviation
s, deined in Section 3.1.2.

The demonstration test is successful with 100(1 − α)% conidence if the one-sided upper
100(1 − α)% conidence bound x̃p† is less than or equal to x†. Thus, the probability of suc-
cessful demonstration is

pdem = Pr(x̃p† ≤ x†),

where the 100(1 − α)% one-sided upper conidence bound on xp† can be computed from
(4.2) as

x̃(p†) = x̄ − t(α ;n−1,δ
p †

)
s√
n

,
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where t(α ;n−1,δ
p †

) is the α quantile of a noncentral t-distribution with n − 1 degrees of freedom

and noncentrality parameter δp† = −z(p†)

√
n (see Section C.3.9 for more information about the

noncentral t-distribution). The underlying theory for this interval is given in Section E.3.3.
Let p = Pr(X ≤ x†) which implies that x† = xp = µ + σz(p), where z(p) = Φ−1

norm(p)
is the p quantile of the NORM(0, 1) distribution. Consequently, using X̄ and S for the
random sample mean and random sample standard deviation, the probability of a successful
demonstration is

pdem = Pr

(
X̄ − t(α ;n−1,δ

p †
)

S√
n

≤ x†

)
= Pr

(
X̄ − t(α ;n−1,δ

p †
)

S√
n

≤ µ + σz(p)

)

= Pr

[√
n(X̄ − µ)/σ − z(p)

√
n

S/σ
≤ t(α ;n−1,δ

p †
)

]
= Pr

[
T ≤ t(α ;n−1,δ

p †
)

]
,

where T has a noncentral t-distribution with n − 1 degrees of freedom and noncentrality
parameter δp = −z(p)

√
n (i.e., T ∼ t(n−1,δp )). Thus

pdem = pt[qt(α;n − 1, δp†);n − 1, δp ], (I.1)

where pt and qt are, respectively, the cdf and quantile functions of the noncentral
t-distribution given in Section C.3.9. Note that when xp† = x† = xp , p† = p and pdem =
pt[qt(α;n − 1, δp);n − 1, δp ] = α, as can be seen in Figures 9.1a–9.1d.

I.1.2 Probability of Successful Demonstration Based on a One-Sided
Confidence Bound on a Normal Distribution Probability

Because xp† ≤ x† is equivalent to p† ≤ p, the demonstration test can be also formulated as a

demonstration test to show that p† is less than or equal to p. The demonstration test is successful
with 100(1 − α)% conidence if the one-sided lower 100(1 − α)% conidence bound p

˜
for p

(Section 4.5) is greater than or equal to p† (i.e., p
˜
≥ p† ). Consequently, the probability of a

successful demonstration for this procedure is also given by (I.1).

I.1.3 Sample Size to Achieve a pdem for a Demonstration Based on a Normal
Distribution One-Sided Confidence Bound on a Quantile

The relationship in (I.1) can be used to ind the sample size n needed to conduct a test to
demonstrate with 100(1 − α)% conidence that p ≥ p† (or equivalently that xp† ≤ x†). For this
purpose, one speciies a desired probability of successful demonstration pdem and solves the
equation

pdem = pt
[
qt(α;n − 1, δp†);n − 1, δp

]
(I.2)

numerically for n. For example, suppose that we need the smallest sample size to demonstrate
with 1 − α = 90% conidence that p ≥ p† = 0.50 such that pdem ≥ 0.70 when p = 0.80.
Root-inding numerically the value n satisfying

pt[qt(0.10;n − 1, δ0.50);n − 1, δ0.80 ] = 0.70,

where δγ = −zγ

√
n, gives n = 5.6. Rounding this up, the required sample size is n = 6.

Another example is given in Section 9.2.4.
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I.2 DISTRIBUTION-FREE DEMONSTRATION TESTS

This section provides technical details for computing the probability of successful demonstration
shown in Figures 9.2a–9.2d in Chapter 9.

I.2.1 Probability of Successful Demonstration Based on a Distribution-Free
One-Sided Confidence Bound on a Quantile

In a manner that is similar to Section I.1.1, distribution-free conidence intervals for a quantile
can be used to demonstrate, with 100(1 − α)% conidence, that yp† ≤ y†, where yp† is the p†

quantile of a distribution with unspeciied form and p† and y† are speciied. (We use y here
instead of x to distinguish from the binomial random variable X which is also used in this
presentation.)

The demonstration will be successful if ỹp† , a distribution-free upper conidence bound for

the p† quantile of a continuous distribution (with unspeciied form), is less than or equal to
the speciied value y†. From the computational method in Section 5.2.3, ỹp† = y(u) where

u = qbinom(1 − α;n, p†) + 1, implying that there must be at least u conforming units or,
equivalently, no more than

c = n − u = n − qbinom(1 − α;n, p†) − 1 (I.3)

nonconforming units in the sample of size n. Thus, the probability of successful demonstration
is

pdem = Pr(ỹp† ≤ y†) = Pr(X ≤ c) = pbinom(c;n, 1 − p), (I.4)

where X ∼ BINOM(n, 1 − p) is the number of nonconforming units in the sample of size n
and 1 − p is the actual proportion nonconforming (p is the actual proportion conforming).

I.2.2 Probability of Successful Demonstration Based on a One-Sided
Confidence Bound on a Binomial Distribution Probability

The approach in Section I.2.1 is equivalent to having a successful demonstration when there are
no more than c nonconforming units in the sample of size n from a population. In this case, the
demonstration will be successful if π

˜
≥ π†, where π

˜
is the one-sided lower conidence bound

on the proportion conforming, obtained from the conservative method in Section 6.2.2. (We use
π instead of p here to be consistent with our notation for the binomial probability parameter.)
Thus, the probability of a successful demonstration for this procedure is also given by (I.4).

Note that c can take integer values in the range−1 ton − 1.When c = −1, the demonstration
test is infeasible in the sense that the demonstration fails evenwhen all the units in the sample are
conforming. That is, pdem = 0, regardless the number of nonconforming units in the sample,
because π

˜
< π†. This indicates that a larger n is needed to have a positive probability of a

successful demonstration test.

I.2.3 Sample Size to Achieve a pdem for a Demonstration Based
on a One-Sided Confidence Bound on a Probability

Similar to (I.2), combining (I.3) and (I.4), we see that the sample size n needed to conduct a
test to demonstrate with 100(1 − α)% conidence that π ≥ π†, with a probability of successful
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demonstration larger than or equal to pdem, is the smallest integer n satisfying the relationship

pbinom(n − qbinom(1 − α;n,π†) − 1;n, 1 − π) ≥ pdem.

For example, suppose that we need the smallest sample size to demonstrate with 1 − α = 90%
conidence that π ≥ π† = 0.50 such that pdem ≥ 0.70when π = 0.80. Solving numerically the
equation

pbinom(n − qbinom(1 − 0.10, n, 0.50) − 1;n, 1 − 0.80) ≥ 0.70,

we ind thatn = 9 is the required sample size and c = 9 − qbinom(1 − 0.10; 9, 0.50) − 1 = 2
is the maximum number of nonconforming units in the sample that will allow a successful
demonstration test. Another example is given in Section 9.5.3.



Appendix J
Tables

Table J.1a–J.1b Factors for calculating two-sided statistical intervals for a normal
distribution

Table J.2a–J.2b Further factors for calculating two-sided statistical intervals for a
normal distribution

Table J.3a–J.3b Factors for calculating one-sided statistical bounds for a normal
distribution

Table J.4a–J.4b Further factors for calculating one-sided statistical bounds for a normal
distribution

Table J.5a–J.5b Factors for calculating normal distribution two-sided tolerance intervals
to control the center of a distribution

Table J.6a–J.6b Factors for calculating normal distribution two-sided tolerance intervals
to control both tails of a distribution

Table J.7a–J.7d Factors for calculating two-sided conidence intervals and one-sided
conidence bounds for normal distribution quantiles or normal
distribution one-sided tolerance bounds

Table J.8 Factors for calculating normal distribution two-sided prediction
intervals for m future observations

Table J.9 Factors for calculating normal distribution one-sided prediction bounds
for m future observations

Table J.10a–J.10c Order statistics ℓ and u and actual conidence levels for two-sided
distribution-free conidence intervals for the p quantile, for various
sample sizes n and nominal 100(1 − α)% conidence levels

Table J.11 Value ν needed to obtain a two-sided distribution-free tolerance interval
(one-sided distribution-free tolerance bound) by removing ν − 2
(or ν − 1) observations from the ends (end) of a sample of size n. The
interval will contain (exceed or be exceeded by) at least 100β% of the
sampled distribution with 100(1 − α)% conidence
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Table J.12 Smallest sample size for the range formed by the smallest and largest
observations to contain at least 100β% of the sampled population

Table J.13 Smallest sample size for the largest (smallest) observation to exceed
(be exceeded by) at least 100β% of the sampled population

Table J.14a–J.14c Largest number k of m future observations that will be contained in
(bounded by) the distribution-free 100(1 − α)% two-sided prediction
interval (one-sided prediction bound) obtained by removing ν − 2
(or ν − 1) extreme observations from the ends (end) of a previous
sample of size n

Table J.15 Smallest sample size for the range formed by the smallest and largest
observations to contain, with 100(1 − α)% conidence, all m future
observations from the previously sampled population

Table J.16a Smallest sample size for the largest (smallest) observation to exceed
(be exceeded by), with 100(1 − α)% conidence, all m future
observations from the previously sampled population

Table J.16b Smallest sample size for the largest (smallest) observation to exceed
(be exceeded by), with 100(1 − α)% conidence, at least m − 1 of
m future observations from the previously sampled population

Table J.16c Smallest sample size for the largest (smallest) observation to exceed
(be exceeded by), with 100(1 − α)% conidence, at least m − 2 of
m future observations from the previously sampled population

Table J.17a Smallest sample size such that a two-sided 100(1 − α)% conidence
interval for the mean of a normal distribution will be no wider than
±kσ (σ known)

Table J.17b Correction for sample size so that, with 100(1 − γ)% probability, the
sample will provide a normal distribution 100(1 − α)% conidence
interval that is at least as narrow as the desired length

Table J.18 Smallest sample size needed to estimate a normal distribution standard
deviation with a given upper bound on percent error

Table J.19 Smallest sample size for normal distribution two-sided tolerance
intervals such that the probability of enclosing at least the population
proportion β is 1 − α and the probability of enclosing at least β∗ is no
more than δ

Table J.20 Smallest sample size for normal distribution one-sided tolerance
bounds such that the probability of enclosing at least the population
proportion β is 1 − α and the probability of enclosing at least β∗ is no
more than δ

Table J.21 Smallest sample size for distribution-free tolerance intervals and
tolerance bounds such that the probability of enclosing at least the
population proportion β is 1 − α and the probability of enclosing at
least β∗ is no more than δ
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Factors for conidence Factors for prediction intervals

Number of given intervals for the standard for the standard deviation

observations deviation σ of m = n future observations

Factor for calculating Factor for calculating

n Lower limit Upper limit Lower limit Upper limit

4 0.57 3.73 0.25 3.93

5 0.60 2.87 0.32 3.10

6 0.62 2.45 0.37 2.67

7 0.64 2.20 0.41 2.41

8 0.66 2.04 0.45 2.23

9 0.68 1.92 0.47 2.11

10 0.69 1.83 0.50 2.01

12 0.71 1.70 0.54 1.86

15 0.73 1.58 0.58 1.73

20 0.76 1.46 0.63 1.59

25 0.78 1.39 0.66 1.51

30 0.80 1.34 0.69 1.45

40 0.82 1.28 0.73 1.38

60 0.85 1.22 0.77 1.29

∞ 1.00 1.00 1.00 1.00

Table J.2a Factors for calculating two-sided 95% statistical intervals for a normal

distribution. The two-sided 95% statistical interval is [cL(0.95;n)s, cU (0.95;n)s], where
cL(0.95;n) and cU (0.95;n) are the appropriate tabulated factors and s is the sample standard

deviation of a sample of size n. A similar table irst appeared in Hahn (1970b). Adapted with

permission of the American Society for Quality.

Factors for conidence Factors for prediction intervals

Number of given intervals for the standard for the standard deviation

observations deviation σ of m = n future observations

Factor for calculating Factor for calculating

n Lower limit Upper limit Lower limit Upper limit

4 0.48 6.47 0.15 6.89

5 0.52 4.40 0.21 4.81

6 0.55 3.48 0.26 3.87

7 0.57 2.98 0.30 3.33

8 0.59 2.66 0.34 2.98

9 0.60 2.44 0.37 2.74

10 0.62 2.28 0.39 2.56

12 0.64 2.06 0.43 2.31

15 0.67 1.85 0.48 2.07

20 0.70 1.67 0.54 1.85

25 0.73 1.56 0.58 1.72

30 0.74 1.49 0.61 1.64

40 0.77 1.40 0.66 1.52

60 0.81 1.30 0.71 1.40

∞ 1.00 1.00 1.00 1.00

Table J.2b Factors for calculating two-sided 99% statistical intervals for a normal

distribution. The two-sided 99% statistical interval is [cL(0.99;n)s, cU (0.99;n)s], where
cL(0.99;n) and cU (0.99;n) are the appropriate tabulated factors and s is the sample standard

deviation of a sample of size n. A similar table irst appeared in Hahn (1970b). Adapted with

permission of the American Society for Quality.
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Factors for conidence Factors for prediction bounds

Number of given bounds for the standard for the standard deviation of

observations deviation σ m = n future observations

Factor for calculating Factor for calculating

n Lower bound Upper bound Lower bound Upper bound

4 0.62 2.92 0.33 3.05

5 0.65 2.37 0.40 2.53

6 0.67 2.09 0.44 2.25

7 0.69 1.92 0.48 2.07

8 0.71 1.80 0.51 1.95

9 0.72 1.71 0.54 1.85

10 0.73 1.65 0.56 1.78

12 0.75 1.55 0.60 1.68

15 0.77 1.46 0.63 1.58

20 0.79 1.37 0.68 1.47

25 0.81 1.32 0.71 1.41

30 0.83 1.28 0.73 1.36

40 0.85 1.23 0.77 1.31

60 0.87 1.18 0.81 1.24

∞ 1.00 1.00 1.00 1.00

Table J.4a Factors for calculating one-sided 95% statistical bounds for a normal distribution. The

one-sided 95% statistical bound is c′L(0.95;n)s or c′U (0.95;n)s, where c′L(0.95;n) and c′U (0.95;n) are the

appropriate tabulated factors for lower and upper bounds, respectively, and s is the sample standard

deviation of a sample size n. A similar table irst appeared in Hahn (1970b). Adapted with permission

of the American Society for Quality.

Factors for conidence Factors for prediction bounds

Number of given bounds for the standard for the standard deviation of

observations deviation σ m = n future observations

Factor for calculating Factor for calculating

n Lower bound Upper bound Lower bound Upper bound

4 0.51 5.11 0.18 5.43

5 0.55 3.67 0.25 4.00

6 0.58 3.00 0.30 3.31

7 0.60 2.62 0.34 2.91

8 0.62 2.38 0.38 2.64

9 0.63 2.20 0.41 2.46

10 0.64 2.08 0.43 2.31

12 0.67 1.90 0.47 2.11

15 0.69 1.73 0.52 1.92

20 0.72 1.58 0.57 1.74

25 0.75 1.49 0.61 1.63

30 0.76 1.43 0.64 1.56

40 0.79 1.35 0.68 1.46

60 0.82 1.27 0.74 1.36

∞ 1.00 1.00 1.00 1.00

Table J.4b Factors for calculating one-sided 99% statistical bounds for a normal distribution. The

one-sided 99% statistical bound is c′L(0.99;n) or c′U (0.99;n)s, where c′L(0.99;n) and c′U (0.99;n) are the

appropriate tabulated factors for lower and upper bounds, respectively, and s is the sample standard

deviation of a sample size n. A similar table irst appeared in Hahn (1970b). Adapted with permission

of the American Society for Quality.
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1 − α

n 0.50 0.60 0.70 0.80 0.90 0.95 0.99

10 1 3 1 3 1 3 1 3 1 3 1 3 1 3

0.5811 0.5811* 0.5811* 0.5811* 0.5811* 0.5811* 0.5811*

15 1 3 1 3 1 4 1 4 1 4 1 4 1 4

0.6100 0.6100 0.7386 0.7386* 0.7386* 0.7386* 0.7386*

20 1 3 1 4 1 4 1 5 1 5 1 5 1 5

0.5554 0.7455 0.7455 0.8352 0.8352* 0.8352* 0.8352*

25 2 5 2 5 1 5 1 5 1 6 1 6 1 6

0.6308 0.6308 0.8302 0.8302 0.8948* 0.8948* 0.8948*

30 2 5 2 5 2 6 1 6 1 7 1 7 1 7

0.6408 0.6408 0.7431 0.8844 0.9318 0.9318* 0.9318*

35 3 6 2 5 2 6 2 7 1 7 1 8 1 8

0.5621 0.6084 0.7460 0.8224 0.9198 0.9550 0.9550*

40 3 6 3 7 2 6 2 7 1 8 1 9 1 9

0.5709 0.6777 0.7133 0.8200 0.9433 0.9697 0.9697*

45 4 7 3 7 3 8 2 8 1 8 1 9 1 10

0.5126 0.6824 0.7653 0.8719 0.9156 0.9593 0.9792*

50 4 7 4 8 3 8 3 9 2 9 1 10 1 11

0.5199 0.6276 0.7661 0.8304 0.9083 0.9703 0.9855*

60 5 9 4 8 4 9 3 9 3 11 2 11 1 13

0.5874 0.6142 0.7210 0.8053 0.9127 0.9520 0.9925

70 6 10 5 10 5 11 4 11 3 12 2 12 1 14

0.5542 0.6826 0.7539 0.8415 0.9318 0.9504 0.9906

80 7 11 6 11 6 12 5 12 4 13 3 14 2 16

0.5262 0.6497 0.7226 0.8116 0.9109 0.9626 0.9925

90 8 12 7 12 6 12 6 14 4 14 3 15 2 17

0.5020 0.6210 0.7103 0.8334 0.9198 0.9621 0.9917

100 8 13 8 14 7 14 7 15 6 16 4 16 3 19

0.5958 0.6701 0.7590 0.8103 0.9025 0.9523 0.9935

150 13 18 12 19 12 20 11 21 9 22 8 23 6 25

0.5036 0.6599 0.7161 0.8219 0.9253 0.9603 0.9904

200 18 24 17 25 16 25 15 26 14 28 12 29 10 32

0.5134 0.6476 0.7120 0.8066 0.9000 0.9561 0.9911

250 22 29 21 29 21 31 19 32 18 34 16 35 13 38

0.5394 0.6017 0.7034 0.8307 0.9077 0.9558 0.9916

300 27 35 26 35 25 36 24 38 22 40 20 41 17 44

0.5538 0.6137 0.7107 0.8198 0.9164 0.9575 0.9907

400 36 45 35 46 34 47 33 49 31 51 28 52 25 56

0.5468 0.6409 0.7218 0.8158 0.9040 0.9540 0.9903

500 46 56 45 57 44 58 42 60 39 62 37 64 33 68

0.5411 0.6262 0.7009 0.8189 0.9142 0.9563 0.9910

600 56 66 54 67 53 69 51 70 48 73 46 75 42 80

0.5014 0.6237 0.7218 0.8044 0.9116 0.9520 0.9905

700 65 76 64 78 62 79 60 81 57 84 54 86 50 91

0.5116 0.6202 0.7160 0.8145 0.9115 0.9559 0.9902

800 75 87 73 88 72 90 70 92 67 95 63 97 58 102

0.5187 0.6233 0.7097 0.8042 0.9008 0.9546 0.9901

900 84 97 83 99 81 100 79 103 76 106 72 108 67 114

0.5298 0.6244 0.7090 0.8168 0.9042 0.9543 0.9910

1000 94 107 92 108 91 111 88 113 85 117 81 119 76 125

0.5067 0.6011 0.7070 0.8127 0.9082 0.9546 0.9902

Table J.10a Order statistics ℓ and u and actual conidence levels for two-sided distribution-free

conidence intervals for the 0.10 quantile for various sample sizes n and nominal 100(1 − α)%
conidence levels. An * indicates that a symmetric conidence interval with the desired conidence

cannot be achieved without a larger sample size.



1 − α

n 0.50 0.60 0.70 0.80 0.90 0.95 0.99

10 2 4 1 4 1 4 1 5 1 5 1 5 1 5

0.5033 0.7718 0.7718 0.8598 0.8598* 0.8598* 0.8598*

15 2 5 2 5 2 6 1 5 1 6 1 7 1 7

0.6686 0.6686 0.7718 0.8006 0.9038 0.9468* 0.9468*

20 3 6 3 7 3 7 2 7 1 7 1 8 1 9

0.5981 0.7072 0.7072 0.8441 0.9018 0.9563 0.9785*

25 4 7 4 8 3 8 3 9 2 9 2 10 1 11

0.5460 0.6569 0.7927 0.8550 0.9258 0.9553 0.9907

30 5 8 5 9 4 9 4 10 2 10 2 11 1 13

0.5056 0.6161 0.7486 0.8162 0.9284 0.9639 0.9957

35 6 10 5 9 5 10 4 11 4 12 2 12 2 14

0.5822 0.6015 0.7108 0.8648 0.9051 0.9617 0.9908

40 7 11 6 11 6 12 5 12 4 13 4 14 2 15

0.5533 0.6779 0.7512 0.8366 0.9283 0.9521 0.9906

45 8 12 7 12 7 13 6 13 5 14 4 15 3 17

0.5284 0.6491 0.7237 0.8103 0.9097 0.9621 0.9923

50 9 13 8 13 7 13 7 15 5 15 5 16 3 18

0.5066 0.6235 0.7105 0.8359 0.9208 0.9507 0.9925

60 10 15 10 16 9 16 8 16 7 18 6 19 5 21

0.5802 0.6562 0.7426 0.8024 0.9265 0.9658 0.9912

70 12 17 12 18 11 18 10 19 9 20 7 21 5 23

0.5448 0.6202 0.7051 0.8229 0.9018 0.9617 0.9914

80 14 19 13 20 13 21 12 22 11 23 9 24 7 26

0.5151 0.6725 0.7294 0.8334 0.9047 0.9652 0.9924

90 16 22 15 22 15 23 14 24 12 25 11 26 8 28

0.5630 0.6439 0.7014 0.8078 0.9148 0.9532 0.9904

100 18 24 17 24 16 25 15 26 13 27 12 28 10 31

0.5397 0.6186 0.7401 0.8321 0.9188 0.9533 0.9916

150 27 34 26 35 25 36 24 37 22 39 20 40 17 43

0.5249 0.6418 0.7389 0.8162 0.9182 0.9579 0.9913

200 37 45 36 46 35 47 33 48 31 50 29 52 25 55

0.5170 0.6198 0.7081 0.8157 0.9076 0.9585 0.9915

250 46 55 45 56 44 58 42 59 40 61 38 63 34 67

0.5232 0.6156 0.7293 0.8215 0.9037 0.9524 0.9910

300 56 66 55 67 53 68 52 70 49 72 46 74 42 78

0.5272 0.6112 0.7212 0.8047 0.9035 0.9563 0.9903

400 75 86 74 88 72 89 70 91 67 94 64 96 59 101

0.5082 0.6167 0.7121 0.8109 0.9088 0.9542 0.9911

500 94 107 93 109 91 110 89 112 86 116 82 118 77 124

0.5326 0.6275 0.7119 0.8017 0.9062 0.9556 0.9915

600 114 128 112 129 110 131 108 134 104 137 101 140 95 146

0.5239 0.6144 0.7162 0.8148 0.9081 0.9536 0.9908

700 133 148 132 150 130 152 127 155 123 158 119 161 113 168

0.5215 0.6039 0.7005 0.8135 0.9020 0.9526 0.9907

800 153 169 151 171 149 173 146 175 142 180 138 183 131 190

0.5196 0.6224 0.7104 0.8002 0.9068 0.9534 0.9909

900 172 189 170 191 168 193 165 196 161 201 156 204 149 211

0.5212 0.6184 0.7025 0.8036 0.9043 0.9544 0.9901

1000 192 210 190 212 187 214 184 217 180 222 175 225 167 233

0.5225 0.6148 0.7142 0.8080 0.9030 0.9518 0.9908

Table J.10b Order statistics ℓ and u and actual conidence levels for two-sided distribution-free

conidence intervals for the 0.20 quantile for various sample sizes n and nominal 100(1 − α)%
conidence levels. An * indicates that a symmetric conidence interval with the desired conidence

cannot be achieved without a larger sample size.



1 − α

n 0.50 0.60 0.70 0.80 0.90 0.95 0.99

10 4 7 4 7 3 7 3 8 3 9 2 9 1 10

0.6563 0.6563 0.7734 0.8906 0.9346 0.9785 0.9980

15 6 9 6 10 5 10 5 11 4 11 4 12 3 13

0.5455 0.6982 0.7899 0.8815 0.9232 0.9648 0.9926

20 9 13 9 13 8 13 7 13 7 15 6 15 5 17

0.6167 0.6167 0.7368 0.8108 0.9216 0.9586 0.9928

25 11 15 10 15 10 16 9 16 8 17 8 18 6 19

0.5756 0.6731 0.7705 0.8314 0.9245 0.9567 0.9906

30 14 18 13 18 13 19 11 19 11 20 10 21 8 23

0.5269 0.6384 0.7190 0.8504 0.9013 0.9572 0.9948

35 16 20 15 21 14 21 14 22 13 23 12 24 10 26

0.5004 0.6895 0.7570 0.8245 0.9105 0.9590 0.9940

40 18 23 18 24 17 24 16 25 15 26 14 27 12 29

0.5704 0.6511 0.7318 0.8461 0.9193 0.9615 0.9936

45 20 25 20 26 19 27 18 27 17 29 16 30 14 32

0.5386 0.6287 0.7673 0.8161 0.9275 0.9643 0.9934

50 23 28 22 29 22 30 20 30 20 32 19 33 16 35

0.5201 0.6778 0.7376 0.8392 0.9081 0.9511 0.9934

60 28 34 27 34 26 35 25 36 24 37 23 39 21 41

0.5574 0.6337 0.7549 0.8450 0.9075 0.9604 0.9901

70 33 39 32 40 31 40 30 41 29 43 27 44 24 46

0.5233 0.6575 0.7180 0.8118 0.9041 0.9586 0.9914

80 37 44 37 45 36 46 35 47 33 48 32 50 29 52

0.5660 0.6258 0.7336 0.8179 0.9071 0.9552 0.9903

90 42 49 41 50 41 51 39 52 38 54 36 55 33 58

0.5392 0.6572 0.7055 0.8298 0.9071 0.9554 0.9920

100 47 54 46 55 45 56 44 57 42 59 41 61 38 64

0.5159 0.6318 0.7287 0.8067 0.9114 0.9540 0.9907

150 71 80 70 81 69 82 68 84 65 86 63 88 60 92

0.5375 0.6308 0.7115 0.8073 0.9139 0.9591 0.9910

200 96 106 95 107 93 108 91 110 89 113 87 115 82 119

0.5193 0.6026 0.7112 0.8210 0.9098 0.9520 0.9913

250 120 131 119 133 117 134 115 136 112 139 110 141 105 146

0.5133 0.6231 0.7177 0.8160 0.9125 0.9503 0.9906

300 145 157 143 158 142 160 139 162 136 165 134 168 128 173

0.5108 0.6135 0.7005 0.8159 0.9061 0.9502 0.9907

400 194 208 192 209 190 211 188 214 184 217 181 221 175 227

0.5155 0.6046 0.7063 0.8059 0.9012 0.9544 0.9907

500 243 259 241 260 239 263 236 265 232 269 229 273 222 280

0.5252 0.6045 0.7164 0.8054 0.9021 0.9508 0.9905

600 292 309 290 311 288 314 285 317 280 321 276 325 269 333

0.5123 0.6087 0.7111 0.8083 0.9059 0.9546 0.9910

700 342 360 339 362 337 365 334 368 329 373 325 377 316 385

0.5034 0.6153 0.7097 0.8009 0.9035 0.9505 0.9909

800 391 411 389 413 386 416 382 419 377 424 373 429 364 437

0.5202 0.6035 0.7109 0.8092 0.9035 0.9522 0.9902

900 440 461 438 464 435 467 431 470 426 476 421 480 412 490

0.5161 0.6136 0.7136 0.8064 0.9043 0.9508 0.9907

1000 490 512 487 514 484 517 480 521 474 527 470 532 460 542

0.5131 0.6068 0.7033 0.8052 0.9063 0.9500 0.9905

Table J.10c Order statistics ℓ and u and actual conidence levels for two-sided distribution-free

conidence intervals for the 0.50 quantile for various sample sizes n and nominal 100(1 − α)%
conidence levels.
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1 − α

β 0.50 0.75 0.90 0.95 0.98 0.99 0.999

0.500 3 5 7 8 9 11 14
0.550 4 6 8 9 11 12 16
0.600 4 6 9 10 12 14 19
0.650 5 7 10 12 15 16 22

0.700 6 9 12 14 17 20 27
0.750 7 10 15 18 21 24 33
0.800 9 13 18 22 27 31 42
0.850 11 18 25 30 37 42 58
0.900 17 27 38 46 56 64 89

0.950 34 53 77 93 115 130 181
0.960 42 67 96 117 144 164 227
0.970 56 89 129 157 193 219 304
0.980 84 134 194 236 290 330 458
0.990 168 269 388 473 581 662 920

0.995 336 538 777 947 1165 1325 1843
0.999 1679 2692 3889 4742 5832 6636 9230

Table J.12 Smallest sample size for the range formed by the smallest and

largest observations to contain, with 100(1 − α)% conidence, at least 100β% of

the sampled population. A similar table appeared in Dixon and Massey (1969).

Adapted with permission of McGraw-Hill, Inc.

1 − α

β 0.50 0.75 0.90 0.95 0.98 0.99 0.999

0.500 1 2 4 5 6 7 10
0.550 2 3 4 6 7 8 12
0.600 2 3 5 6 8 10 14
0.650 2 4 6 7 10 11 17
0.700 2 4 7 9 11 13 20

0.750 3 5 9 11 14 17 25
0.800 4 7 11 14 18 21 31
0.850 5 9 15 19 25 29 43
0.900 7 14 22 29 38 44 66
0.950 14 28 45 59 77 90 135

0.960 17 34 57 74 96 113 170
0.970 23 46 76 99 129 152 227
0.980 35 69 114 149 194 228 342
0.990 69 138 230 299 390 459 688
0.995 139 277 460 598 781 919 1379

0.999 693 1386 2302 2995 3911 4603 6905

Table J.13 Smallest sample size for the largest (smallest) observation to exceed

(be exceeded by), with 100(1 − α)% conidence, at least 100β% of the sampled

population. A similar table appeared in Dixon and Massey (1969). Adapted with

permission of McGraw-Hill, Inc.
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1 − α

m 0.50 0.75 0.90 0.95 0.98 0.99 0.999

1 3 7 19 39 99 199 1999
2 6 14 38 78 198 398 3998
3 8 20 56 116 296 596 5996
4 11 27 75 155 395 795 7995
5 13 33 93 193 493 993 9993

6 15 40 112 232 592 1192 11992
7 18 46 130 270 690 1390 13990
8 20 53 149 309 789 1589 15989
9 23 59 167 347 887 1787 17987
10 25 66 186 386 986 1986 19986

11 28 72 204 424 1084 2184 21984
12 30 79 223 463 1183 2383 23983
13 32 85 241 501 1281 2581 25981
14 35 91 260 540 1380 2780 27980
15 37 98 278 578 1478 2978 29978

16 40 104 297 617 1577 3177 31977
17 42 111 315 655 1675 3375 33975
18 44 117 334 694 1774 3574 35974
19 47 124 352 732 1872 3772 37972
20 49 130 371 771 1971 3971 39971

21 52 137 389 809 2069 4169 41969
22 54 143 408 848 2168 4368 43968
23 57 150 426 886 2266 4566 45966
24 59 156 445 925 2365 4765 47965
25 61 163 463 963 2463 4963 49963

30 73 195 556 1156 2956 5956 59956
35 85 227 648 1348 3448 6948 69948
40 98 260 740 1541 3941 7941 79941
45 110 292 833 1733 4433 8933 89933
50 122 324 925 1926 4926 9926 99926

60 146 389 1110 2311 5911 11911 119911
70 170 453 1295 2696 6896 13896 139896
80 194 518 1480 3080 7881 15881 159881
90 218 583 1665 3465 8866 17866 179866

100 242 647 1850 3850 9851 19851 199851

Table J.15 Smallest sample size for the range formed by the smallest and largest

observations to contain, with 100(1 − α)% conidence, all m future observations from the

previously sampled population.
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1 − α

m 0.50 0.75 0.90 0.95 0.98 0.99 0.999

1 1 3 9 19 49 99 999
2 2 6 18 38 98 198 1998
3 3 9 27 57 147 297 2997
4 4 12 36 76 196 396 3996
5 5 15 45 95 245 495 4995

6 6 18 54 114 294 594 5994
7 7 21 63 133 343 693 6993
8 8 24 72 152 392 792 7992
9 9 27 81 171 441 891 8991

10 10 30 90 190 490 990 9990

11 11 33 99 209 539 1089 10989
12 12 36 108 228 588 1188 11988
13 13 39 117 247 637 1287 12987
14 14 42 126 266 686 1386 13986
15 15 45 135 285 735 1485 14985

16 16 48 144 304 784 1584 15984
17 17 51 153 323 833 1683 16983
18 18 54 162 342 882 1782 17982
19 19 57 171 361 931 1881 18981
20 20 60 180 380 980 1980 19980

21 21 63 189 399 1029 2079 20979
22 22 66 198 418 1078 2178 21978
23 23 69 207 437 1127 2277 22977
24 24 72 216 456 1176 2376 23976
25 25 75 225 475 1225 2475 24975

30 30 90 270 570 1470 2970 29970
35 35 105 315 665 1715 3465 34965
40 40 120 360 760 1960 3960 39960
45 45 135 405 855 2205 4455 44955
50 50 150 450 950 2450 4950 49950

60 60 180 540 1140 2940 5940 59940
70 70 210 630 1330 3430 6930 69930
80 80 240 720 1520 3920 7920 79920
90 90 270 810 1710 4410 8910 89910

100 100 300 900 1900 4900 9900 99900

Table J.16a Smallest sample size for the largest (smallest) observation to exceed

(be exceeded by), with 100(1 − α)% conidence, all m future observations from the

previously sampled population.
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1 − α

m 0.50 0.75 0.90 0.95 0.98 0.99 0.999

2 1 2 3 5 9 13 44
3 1 3 6 9 15 22 75
4 2 4 8 12 21 32 107
5 2 5 10 16 28 41 137
6 3 6 12 19 34 50 168

7 3 7 14 23 40 59 199
8 4 8 17 26 46 68 230
9 4 9 19 30 52 77 260

10 4 10 21 33 58 86 291
11 5 11 23 37 64 95 322

12 5 12 25 40 70 104 352
13 6 13 27 44 76 113 383
14 6 14 30 47 82 122 414
15 6 15 32 51 88 131 444
16 7 16 34 54 95 140 475

17 7 17 36 58 101 149 506
18 8 18 38 61 107 158 536
19 8 19 40 65 113 167 567
20 9 20 43 68 119 176 597
21 9 21 45 72 125 185 628

22 9 22 47 75 131 194 659
23 10 23 49 79 137 203 689
24 10 24 51 82 143 212 720
25 11 25 53 86 149 221 751
30 13 30 64 103 180 266 904

35 15 35 75 120 210 311 1057
40 17 40 86 138 240 356 1210
45 19 45 97 155 271 401 1363
50 21 50 108 172 301 446 1516
60 25 60 129 207 362 536 1822

70 29 70 151 242 422 626 2129
80 33 80 172 277 483 716 2435
90 38 90 194 311 544 806 2741

100 42 100 216 346 605 896 3047

Table J.16b Smallest sample size for the largest (smallest) observation to exceed

(be exceeded by), with 100(1 − α)% conidence, at least m − 1 of m future

observations from the previously sampled population.
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1 − α

m 0.50 0.75 0.90 0.95 0.98 0.99 0.999

3 1 1 2 3 5 7 17
4 1 2 4 5 8 11 26
5 1 3 5 7 11 15 36
6 2 3 6 9 14 18 45
7 2 4 7 11 16 22 54

8 2 5 8 12 19 26 63
9 3 5 10 14 22 29 72
10 3 6 11 16 25 33 81
11 3 6 12 18 27 37 90
12 3 7 13 19 30 40 99

13 4 8 14 21 33 44 108
14 4 8 15 23 35 48 117
15 4 9 17 24 38 51 126
16 4 9 18 26 41 55 135
17 5 10 19 28 43 59 144

18 5 10 20 30 46 62 153
19 5 11 21 31 49 66 162
20 5 12 22 33 51 70 171
21 6 12 24 35 54 73 180
22 6 13 25 36 57 77 189

23 6 13 26 38 59 81 198
24 6 14 27 40 62 84 207
25 7 15 28 42 65 88 216
30 8 18 34 50 78 106 261
35 9 20 40 59 92 124 306

40 11 23 45 67 105 142 351
45 12 26 51 76 119 161 396
50 13 29 57 84 132 179 441
60 16 35 69 102 159 215 531
70 18 41 80 119 186 252 621

80 21 47 92 136 213 288 711
90 24 53 103 153 239 325 801

100 26 59 115 170 266 361 891

Table J.16c Smallest sample size for the largest (smallest) observation to exceed

(be exceeded by), with 100(1 − α)% conidence, at least m − 2 of m future

observations from the previously sampled population.
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1 − α

k 0.50 0.75 0.80 0.90 0.95 0.98 0.99 0.999

0.01 4550 13234 16424 27056 38415 54119 66349 108109
0.02 1138 3309 4106 6764 9604 13530 16588 27028
0.03 506 1471 1825 3007 4269 6014 7373 12013
0.04 285 828 1027 1691 2401 3383 4147 6757
0.05 182 530 657 1083 1537 2165 2654 4325

0.06 127 368 457 752 1068 1504 1844 3004
0.07 93 271 336 553 784 1105 1355 2207
0.08 72 207 257 423 601 846 1037 1690
0.09 57 164 203 335 475 669 820 1335
0.10 46 133 165 271 385 542 664 1082

0.11 38 110 136 224 318 448 549 894
0.12 32 92 115 188 267 376 461 751
0.13 27 79 98 161 228 321 393 640
0.14 24 68 84 139 196 277 339 552
0.15 21 59 73 121 171 241 295 481

0.16 18 52 65 106 151 212 260 423
0.17 16 46 57 94 133 188 230 375
0.18 15 41 51 84 119 168 205 334
0.19 13 37 46 75 107 150 184 300
0.20 12 34 42 68 97 136 166 271

0.21 11 31 38 62 88 123 151 246
0.22 10 28 34 56 80 112 138 224
0.23 9 26 32 52 73 103 126 205
0.24 8 23 29 47 67 94 116 188
0.25 8 22 27 44 62 87 107 173

0.30 6 15 19 31 43 61 74 121
0.35 4 11 14 23 32 45 55 89
0.40 3 9 11 17 25 34 42 68
0.45 3 7 9 14 19 27 33 54
0.50 2 6 7 11 16 22 27 44

0.60 2 4 5 8 11 16 19 31
0.70 1 3 4 6 8 12 14 23
0.80 1 3 3 5 7 9 11 17
0.90 1 2 3 4 5 7 9 14
1.00 1 2 2 3 4 6 7 11

1.20 1 1 2 2 3 4 5 8
1.40 1 1 1 2 2 3 4 6
1.60 1 1 1 2 2 3 3 5
1.80 1 1 1 1 2 2 3 4
2.00 1 1 1 1 1 2 2 3

Table J.17a Smallest sample size such that a two-sided 100(1 − α)% conidence interval for the

mean of a normal distribution will be no wider than ±kσ (σ known). A similar table appeared in

Dixon and Massey (1969). Adapted with permission of McGraw-Hill, Inc.
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1 − α

100p 0.80 0.85 0.90 0.95 0.98 0.99 0.999

0.7 7310 11000 16800 27600 43000 55200 97300
0.8 5600 8450 12900 21200 32900 42300 74500
0.9 4430 6690 10200 16700 26000 33400 58800
1 3600 5420 8250 13600 21100 27000 47700
2 914 1370 2070 3390 5270 6750 11900
3 413 614 927 1510 2340 3000 5280
4 236 349 524 852 1320 1690 2960
5 154 226 338 547 844 1080 1890
6 109 159 236 381 586 749 1310
7 81 118 174 280 431 550 962
8 63 91 134 215 330 421 735
9 51 73 107 171 261 333 580

10 42 60 87 139 212 269 469
15 21 28 40 63 95 120 207
20 13 17 24 36 54 67 115
25 9 12 16 24 35 43 73
30 7 9 12 17 24 30 51
35 6 7 9 13 18 22 37
40 5 6 7 10 14 17 28
45 4 5 6 8 11 14 22
50 4 4 5 7 9 11 18
55 3 4 5 6 8 9 15
60 3 3 4 5 7 8 12
65 3 3 4 5 6 7 10
70 3 3 3 4 5 6 9
75 2 3 3 4 5 5 7
80 2 3 3 3 4 5 6
85 2 2 3 3 4 4 5
90 2 2 2 3 3 3 5
95 2 2 2 2 3 3 4

100 2 2 2 2 2 2 2

Table J.18 Smallest sample size needed to estimate a normal distribution standard deviation

with a given upper bound on percent error equal to 100p; see Section 8.2.3.
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Bayes’ Theorem, 20, 297–298, 302, 311, 510–511

Bayesian methods, see alsoMCMC

conidence interval, see Bayesian, credible interval

conjugate distributions, see Prior distribution,

conjugate

coverage probability, see Coverage probability,

Bayesian

credible interval or bound, 295, 305–309, see also

Conidence interval

binomial proportion π, 327–329
binomial quantile, 330–331

binomial tail probability, 329–330

normal distribution mean µ, 344–345
normal distribution quantile, 345–346

normal distribution standard deviation σ,
345

normal distribution tail probability, 346–347

Poisson quantile, 338

Poisson rate λ, 336–337
Poisson tail probability, 337–338

data analysis, 296–298

hierarchical model, see Hierarchical model

hyperparameter, 312, 354, 511

inference, 296–309

compared with non-Bayesian, 296–297

prediction interval or bound

binomial distribution, 333–335, 520–521

(log-)location-scale distribution, 320–322

normal distribution, 347–350, 521–522

Poisson distribution, 339–341, 521

prior distribution, see Prior distribution

probability plot, 307–308

statistical interval, 20

tolerance interval

binomial distribution, 331–333

(log-)location-scale distribution, 318–320

normal distribution, 347

Poisson distribution, 338–339

Weibull distribution illustrative example,

300–309

BCa method, see Bootstrap conidence interval

methods, percentile method,

bias-corrected-accelerated

Beta-binomial distribution

Bayesian binomial predictive distribution, as a,

124, 333–335, 519, 520–521

cdf, 440

hierarchical model, as a, 357

pmf, 440

properties of, 440

quantile function, 440

computing interval endpoints, use in, 124, 333,

335

R computation summary table, 424

β-content tolerance interval, 30
β-expectation tolerance interval, 30

Beta distribution

cdf, 432

computing coverage probability, use in,

498–500

computing interval endpoints, use in, 143

in a hierarchical model, 356–357

pdf, 432

prior distribution, as a, 311–312, 326–327, 382,

511, 514

properties of, 432–433

quantile function, 432

computing interval endpoints, use in, 103–104,

107–108, 114–118, 328, 465, 466

R computation summary table, 424

relationship to uniform distribution, 312, 433

relationship to the binomial distribution, 439

relationship to the F -distribution, 433, 438,

449–450

relationship to the negative binomial distribution,

441

Bias-correction, see Bootstrap conidence interval

methods, percentile method, bias-corrected

Binned data, 214–217, 222, see also Censoring or

censored data, interval

Binomial distribution

applications, 101, 187–189, 194–195, 197–198,

203, 204–206, 210–211, 326, 355–359,

381–382

Bayesian methods, 326–335

cdf, 76, 100, 114, 438

computing coverage probability, use in, 78,

81–89, 409, 417, 498–500

computing probability of successful

demonstration for a distribution-free

demonstration test, use in, 175, 525–526

conidence interval or bound

Agresti–Coull method, 105–107

Bayesian method, 327–331

comparisons, 108–112

conservative method, 103–104

Jeffreys method, 107–108, 326, 514

proportion π, 102–112, 327–329
quantile, 116–118, 330–331

tail probability, 114–116, 329–330

Wald method, 105

conjugate prior distribution, see Prior distribution,

conjugate, binomial distribution

derivation of conidence interval for, 465

hierarchical model, 355–359

pmf, 100, 438

computing coverage probability, use in, 406,

409, 417
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Binomial distribution (Continued)

prediction interval or bound

Bayesian method, 333–335, 520–521

comparisons, 124

conservative method, 121–122

Jeffreys method, 124, 333–335, 520–521

joint-sample method, 123–124

normal approximation method, 122

number nonconforming, 121–125

properties of, 438–440

proportion π, 100
quantile function, 76, 116, 439

computing interval endpoints, use in, 80–86, 88,

116–118, 331–333, 499–500

computing needed sample size for a

distribution-free demonstration test, use in,

175, 525–526

R computation summary table, 424

random variable, 100

relationship to the F distribution, 439

relationship to the beta distribution, 439

sample size

proportion π, 157–158
speciication limits, 101–102

statistical control, 101, 116

tolerance interval, 118–121

Bayesian method, 331–333

calibration for, 119–120

Bivariate normal distribution, 240

applications, 240–242, 260–262

Bonferroni

approximate statistical interval, 35, 469–471

conservative nature of, 470, 471

simultaneous prediction interval, 471

tolerance interval, 470–471

bound, 35

inequality, 469

Bootstrap conidence interval methods

adequacy of, 254–255

basic method, 257

bootstrap sample size requirements, see

Bootstrap samples and sampling, number

needed

bootstrap-t method, 257–258

cautions on the use of, 262–264

history, 264

nonparametric, 253–262

applications, 247–262

parametric, 268–293

applications, 269–293

percentile method

bias-corrected (BC), 256–257

bias-corrected-accelerated (BCa), 255–256

simple, 253–255

smoothness requirement, 263–264

theory, 265

Bootstrap samples and sampling, 247–253

computing quantiles of the empirical distribution,

252–253

nonparametric, 247–253

number needed, 252, 323

parametric, 270–272

random-weight, 249–251, 265–266, 369

parametric procedure, 288–290

resampling, 247–249

parametric procedure, 287–288

saving results, 252

with complicated censoring, 250, 256, 270–273,

288, 290

Bootstrap statistical interval or bound

nonparametric, 246–264

normal distribution

prediction, 57

parametric, 268–293

prediction interval k of m observations, 284–287

tolerance interval

control both tails, 283–284

control the center, 282–283

Box–Cox transformation, 66

Box plot, 61

Calibration of statistical intervals, 420–423

binomial distribution

conidence interval, 117

tolerance interval, 119, 331–333

Poisson distribution

conidence interval, 138

tolerance interval, 141

Cauchy distribution

cdf, 432

pdf, 432

properties of, 432

quantile function, 432

R computation summary table, 424

relationship to Student’s t-distribution, 437
cdf, 425–426, see also particular distribution, cdf

Censoring or censored data, 208–209, 217–218, 299,

455

bootstrapping with, 256, 290–293

heavy, 299

interval, 67, 217, 218

left, 67, 214, 217–218, 224, 291, 387

right, 67, 208–209, 214, 217, 224, 291, 300, 387

type 1 (time), 290

type 2 (failure), 281, 290, 484, 486

Central limit theorem, 38, 59, 254, 354

Chi-square distribution, 48, 179

cdf, 434
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Chi-square distribution (Continued)

limiting distribution, as a, 458–459, 461–462

pdf, 434

properties of, 434

quantile function, 48, 434

computing interval endpoints, use in, 49–50,

129, 133, 221, 228, 465, 466, 476

R computation summary table, 424

relationship to the gamma distribution, 434

relationship to the Poisson distribution, 442

Cluster random sample, 10

Common cause variation, 11

Comparing populations or processes, 68

Computer programs, see Statistical software

Conidence interval, 3

Conidence interval or bound

based on GPQ, 277–281

based on pivotal quantities (PQ), 273–276

Bayesian, see Bayesian credible interval

binomial distribution

proportion π, 102–112, 327–329
quantile, 116–118, 330–331

tail probability, 114–116, 329–330

cdf pivotal method

continuous distributions, 464–465

discrete distributions, 465–466

coverage probability, see Coverage probability,

conidence interval or bound

distribution-free for a quantile, 78–86, 498–499

effect of sample size on, 150–161, 222–223

exact, see Exact statistical interval or bound

examples of, 25–26

inite population

proportion, 112–114

formal deinition, 404–405

interpretation, 26–27

location-scale distribution

interval probability, 379–381

location parameter µ, 230–231, 236–237, 274,
484–485

quantile, 233–234, 238–239, 275–276, 485–486

scalar functions of µ and σ, 232–233, 238
scale parameter σ, 231–232, 237, 275, 485
tail probability, 234, 239–240, 278–280,

491–492

log-location-scale distribution

interval probability, 379–381

quantile, 233–234, 238–239, 275–276, 309,

485–486

scale parameter exp(µ), 230–231, 236–237,
274, 485

shape parameter σ or 1/σ, 231–232, 237,
275–276, 305, 485

tail probability, 234, 239–240, 278–280,

305–309, 491–492

mean of

exponential distribution, 221

log-location-scale distributions, 280–281

lognormal distribution, 280–281

normal distribution, 25–26, 40–41, 44, 49,

344–345, 475–476

Weibull distribution, 280–281

meeting a speciication, 25–26

monotone function of a parameter, 115, 137, 221,

237, 254

normal distribution, 4–5

mean, 25–26, 40–41, 44, 49, 344–345, 475–476

quantile, 50–52, 346, 476–477

standard deviation σ, 49–50, 345, 476
tail probability, 52–53, 278–279, 346–347,

477–478

Poisson distribution

quantile, 137–139, 338

rate λ, 129–136, 336–337
tail probability, 136–137, 337–338

proportion conforming, 102–112, 188–191,

327–329

tail probability, see particular distributions, tail

probability

versus signiicance test, 33–34

Conidence level, 19, 20

choosing, 31–33

conservative, see Conservative statistical interval

or bound

Conjugate prior distribution, see Prior distribution,

conjugate

Conservative statistical interval or bound, 15, 35,

74–75

conidence, 404, 465–470

binomial distribution, 103–104

distribution-free quantile, 82

hypergeometric distribution, 113

Poisson distribution, 129–131

prediction, 415–416

binomial distribution, 121–122

distribution-free, 90–91, 94–95

normal distribution, 56–57

Poisson distribution, 141–144

tolerance, 243, 409, 412

binomial distribution, 118–119

distribution-free, 86–87

Poisson distribution, 140–141

Convenience sample, 13

Convergence in distribution, 457–459, 460

Correlation coeficient, 236, 240–242, 260–262

Coverage probability (CP), 20, 73

Bayesian, 332

cdf pivotal method, 466–469

computation by Monte Carlo simulation, 410–411,

413–415, 417–418, 420
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Coverage probability (Continued)

conidence interval or bound, 235, 405–408

binomial, 101, 108–112, 116–117, 406

distribution-free, 78–86, 498–499

Poisson, 128, 133–136, 406

exact, see Exact statistical interval

prediction interval or bound

binomial, 124–125, 417

distribution-free, 89–93, 93–96, 500–502,

503–507

k of m observations, 418–420

observations, 416–418

Poisson, 146, 417

tolerance interval, 243

binomial, 119–120, 409

control both tails, 412–415

control the center, 409–411

distribution-free, 86–89, 499–500

Poisson, 141–142, 410

CPKM, 93–96, 503–507

CPTI, 86–89, 500

CPXP, 78–86, 498–499

CPYJ, 89–93, 500–502

Credible interval, see Bayesian methods, credible

interval

Degradation, 361

failure-time distribution, 363

Delta method, 238–239, 452–454, 460–461

Demonstration test, 26

probability of successful demonstration, see

Probability of successful demonstration

Dirichlet distribution, 251

Distribution-free interval or bound, 65

advantages, 74

applications, 74, 76–89, 90–93, 94–96

conidence interval or bound on a quantile, 65,

78–86, 498–499

computational method, 80, 82, 84

coverage, 78

interpolation method, 80–81, 82–83

tabular/graphical method, 79–80, 82, 84

coverage probability, see Coverage probability,

interval type, distribution-free

general procedure, 75

limitations, 74

prediction interval or bound

computational method, 90, 91, 94

interpolation method, 90, 91, 95

k of m observations, 93–96, 503–507

median, 90–91, 500–502

ordered observation, 89–93, 500–502

sample quantile, 89–93, 500–502

tabular/graphical method, 94

relationship to nonparametric, 73, 186

sample size

demonstration test, 169–171

tolerance interval, 86–89, 499–500

computational method, 87

interpolation method, 88

sample size for, 89

tabular/graphical method, 86

Distributional assumptions, 19, 40, 74

Enclosure interval, 24–25

Enumerative study, 5–7, 8–11

Error propagation, see Delta method

Event plot, 226, 292

Exact statistical interval or bound, 20, 59, 103, 128,

130, 246, 268, 270–271, 313, 420–421

conidence, 275–276, 404–405, 463–465,

475–479, 484–486, 492–495

prediction, 56–57, 415, 481–485, 486–487

tolerance, 53–55, 408, 412, 479–481

Examples

α-particle emissions of americium-241, 214–215

amount of a compound from a chemical process,

76–77

atrazine concentration, 225–228

audio speaker performance, 206–209

ball bearing failure data, 60–61, 288–290

baseball batting averages, 353–355

bearing cage failures, 300–301

body weight and pulse rate, 241–242, 261–262

circuit board reliability, 204–206

circuit pack output voltages, 39–40, 341–343,

379–380

credit card and ATM fraud rates, 359–361

demand forecasting, 191–194

demonstration of high proportion of manufactured

units within speciications, 210–211

device surface temperature, 186–189

direct mail marketing, 381–382

environmental emissions test, 194–197

fracture strengths of a carbon-epoxy composite,

269

integrated circuit failure times, 368

integrated circuit quality, 101, 326

pipeline thickness, 269

proportion of electronic devices within

speciications, 209–210

radar detection probability, 197–198

regulatory limit, 198–204

rocket motor reliability, 290–293, 386–389

sales agents’ performance, 355–359

telecommunications laser degradation, 361–365

thermal impedance, 371–372

tree volume, 246–247, 281

X-ray NDE inspection data, 383–386

Expected mean squares, 372–373
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Explanatory variable, 66

Exponential distribution

application, 214–215

cdf, 214, 435

likelihood for, 218

pdf, 435

probability plot, 215–216, 220

properties of, 435

quantile function, 435

R computation summary table, 424

relationship to the Gamma distribution, 435

relationship to the Weibull distribution, 435

Extrapolation, 65–66, 228, 269

Failure-time distribution, 61, 288–289, 291,

298–299, 363, see also Exponential,

Lognormal, Weibull distribution

F -distribution, see Snedecor’s F -distribution

Finite population, 4, 204–205

conidence interval or bound

proportion π, 112–114
versus ininite population, 15

Finite population correction, 204–205, 393

Fisher information matrix, see Information matrix,

Fisher

Fisher’s z-transformation, 241, 260–261, 264

Folded-Cauchy distribution, see Scale half-Cauchy

Frame, 5–6, 8–11, 14–18

Fréchet distribution

application, 289

cdf, 431

pdf, 431

properties of, 431

quantile function, 431

R computation summary table, 424

relationship to the generalized gamma distribution,

435–436

Functionally dependent intervals, 35

Gamma distribution, 129, 133

cdf, 434

pdf, 434

prior distribution, as a, 288–289, 335–336,

338–339, 342, 355, 362, 435–436

properties of, 434

quantile function, 434

computing interval endpoints, use in, 129–131,

133, 336

R computation summary table, 424

relationship to the chi-square distribution, 434

relationship to the exponential distribution, 435

Gauge repeatability and reproducibility (GR&R),

371–376

Bayesian method, 376

GPQ method, 373–375

Generalized iducial inference, see GFI

Generalized gamma distribution,

applications, 288–290

cdf, 435

pdf, 435

properties of, 435–436

quantile function, 435

special case distributions, 435

Generalized least squares, 67

Generalized pivotal quantity, see GPQ

GFI, 294

GPQ, 277–281

condition for exact procedure, 492–495

conidence interval for

interval probability, 377–378

log-location-scale mean, 280–281

lognormal mean, 279–281

tail probability, 278–279

Weibull mean, 279–281

formal deinition, 489–490

location parameter µ, 278, 490–491
scale parameter σ, 278, 491
substitution method to obtain, 490

theory for, 489–495

Hierarchical model, 352

beta-binomial, 357

binomial distribution, 355–358

non-Bayesian, 365

normal distribution, 353–355

Poisson distribution, 359–361

repeated measures, 361–365

Homogeneous Poisson process, 215, 311

Hypergeometric distribution, 100, 469

cdf, 443

computing interval endpoints, use in, 113,

121–122, 466

derivation of conidence interval for, 466

pmf, 443

properties of, 442–443

quantile function, 443

R computation summary table, 424

Hyperparameter, 312, 354, 511

Independence assumption, 11, 67, 262

Information matrix

Fisher, 454–457, 459

binomial log-odds, 456

binomial proportion, 456

normal distribution parameters, 456–457

Poisson rate, 456

observed, 236, 460

one-to-one transformation, 455
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Interpretation

conidence interval or bound, 26–27, 404–405

prediction interval or bound, 29, 415

tolerance interval

β-content, 30
β-expectation, 30
control both tails, 54, 411–412

control the center, 30, 408

Invariance property

Bootstrap procedures, 258, 264

Jeffreys prior distributions, 513–515

ML estimators, 231, 232, 236

Jackknife method

estimating skewness coeficient, 255–256

sample mean, 256

Jeffreys prior, see Prior distribution, Jeffreys

Joint conidence statement, 35, 228, 303

Joint posterior distribution, see Posterior distribution

Judgment sample, 13–14

Large-sample approximation, 234–236, 238,

461

bootstrap, 253, 263

inadequate, 240, 269

ML estimator, 454–455, 459–462

Likelihood-based

conidence interval, 218–234

location-scale location parameter µ, 230–231
location-scale scale parameter σ, 231–232
(log-)location-scale quantile, 233–234

log-location-scale scale parameter exp(µ),
230–231

log-location-scale shape parameter σ or 1/σ,
231–232

other distributions, 243

scalar function of µ and σ, 232–234
tail probability, 234

conidence region, 228–230

prediction interval, 243

tolerance interval, 243

transformation invariant, 231, 232

Likelihood function, 216–219, see also

Log-likelihood,

maximum of, 217–218

relationship to probability of the data, 217–218

relative, see Relative likelihood function

weighted observations, 218, 251

Likelihood ratio statistic, 225, 228, 230, 279–280,

458, 461–462

Limited failure population (LFP) model, 369

Linear regression analysis, 66–68

assumptions, 66

statistical intervals, 67–68

Location parameter

conidence interval for, see Conidence interval or

bound, location-scale distribution

Location-scale distribution

conidence interval for, see Conidence interval or

bound, location-scale distribution

likelihood function for, 224

properties of, 427–428

summary table, 428

Logistic

distribution

cdf, 431

pdf, 431

properties of, 431

quantile function, 431

R computation summary table, 424

regression, 250

applications, 357–359, 383–386

Log-likelihood, 218, 454, see also Likelihood,

binomial distribution, 456

curvature of, 236

normal distribution, 456

Poisson distribution, 456, 459

quadratic approximation to, 235

Log-location-scale distribution

conidence interval for, see Conidence interval,

log-location-scale distribution

likelihood function, 224–225

properties of, 428

summary table, 428

Lognormal distribution

applications, 62–63, 200–201, 203–204, 225–238,

240, 361–365, 369

cdf, 429

conidence interval for

mean, 280–281

quantile, 233–234, 238–239, 275–276

scale parameter, 230–231, 236–237, 274

shape parameter, 231–232, 237, 275

tail probability, 234–235, 239–240, 278–279

likelihood, 223–225

prior distribution, as a, 302, 342, 385

pdf, 429

probability plot, 63, 200, 227, 364

properties of, 429

quantile function, 429

R computation summary table, 424

relationship to the generalized gamma distribution,

435–436

Log-uniform distribution

cdf, 434

pdf, 434

prior distribution, as a, 301

properties of, 434
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Log-uniform distribution (Continued)

quantile function, 434

R computation summary table, 424

Longitudinal repeated measures data, 361

Markov chain Monte Carlo simulation, see

MCMC

Maximum likelihood (ML) estimation, 216–220,

223–228

applications, 208–209, 219, 225–228

estimating the variance-covariance matrix of

estimators, 460–461

estimation method, 67

invariance property, 231, 232, 236

weighted observations, 218, 251

MCMC, 313–317, see also Bayesian methods

autocorrelation, 313–317

diagnostics, 315–316

mixing, 317

number of draws needed, 315, 323

risks of misuse, 315

software for, 317, 323

summary of implementation and use,

317

thinning, 316–317

trace (time series) plot, 315–316

Measurement error, 4, 25, 67, 76, 157, 196

tolerance interval in the presence of, 377–378

Minimum sample size, 150

distribution-free one-sided tolerance bound, 170,

210–211

distribution-free two-sided tolerance interval, 88,

169

Model selection, 215

Monte Carlo Markov Chain, seeMCMC

Monte Carlo simulation, see also Bootstrap,

conidence interval based on, see Bootstrap

conidence interval methods, parametric and

nonparametric

GPQs, 278–281, see also GPQ

MCMC, 305, 312, 322

nonparametric bootstrap, 246, 247, 252, 256

parametric bootstrap, 268, 270, 280

simpliied simulation for

Bayesian computations, 305–306

conidence intervals based on PQs and GPQs,

281

Negative binomial distribution

Bayesian Poisson posterior predictive distribution,

as a, 145, 339–341, 519, 521

cdf, 441

derivation of conidence interval for, 466

pmf, 441

properties of, 441

quantile function, 441

computing interval endpoints, use in, 145,

339–341

R computation summary table, 424

relationship to the beta distribution, 441

Negative hypergeometric distribution

cdf, 76, 444, 498, 501

computing coverage probabilities or interval

endpoints, 89–93, 95–96, 501, 503–504,

506–507

properties of, 444–445

quantile function, 76, 444

computing interval endpoints, use in, 90–96,

501, 503–504

R computation summary table, 424

Noncentral t-distribution
cdf, 436

computing probability of successful

demonstration, use in, 169, 523–524

pdf, 436

properties of, 436–437, 450–451

quantile function, 48, 436

computing interval endpoints, use in, 50–51,

476–477

computing needed sample size for a normal

distribution demonstration test, use in, 169,

523–524

R computation summary table, 424

relationship to the Student’s t-distribution, 437,
451

Nonconforming unit, 76, 99

Nondestructive evaluation (NDE), 383–386

Nonnormality, 59–66

Nonparametric

bootstrap, see Bootstrap conidence interval

methods, nonparametric

intervals, 19

methods, 19, 60, 73–74, 101, 188–190, 204, 210,

216, 245–266

relationship to distribution-free, see

Distribution-free, relationship to

nonparametric

Nonresponse, 15

Normal-approximation conidence interval, see

Wald-approximation conidence interval

Normal distribution

applications, 39, 49, 60, 187, 195–196,

207–208, 341–350, 353–355, 371–377,

379–381

assumption, 47, 59–66

bootstrap prediction interval or bound,

57–58

cdf, 38, 429

comparison of different bounds, 45

comparison of different intervals, 42–43
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Normal distribution (Continued)

conidence interval or bound

mean μ, 40, 344–345, 475–476
quantile, 50–52, 345–346, 476–477

standard deviation σ, 41, 345–346, 476
tail probability, 52–53, 346–347, 477–478

examples, 41–42

hierarchical model, 353–355

pdf, 38, 429

prediction interval or bound

all of m = n observations, 41

k of m observations, 56–57, 349, 482–483

observation(s), 55, 348, 481

relative width, 178

sample mean of m observations, 55–56,

348–349, 481

sample mean of m = n observations, 41

sample standard deviation of m observations,

58, 349–350, 482

sample standard deviation of m = n
observations, 41

probability plot, 60, 62–64, 200

properties of, 429

quantile function, 48

computing interval endpoints, use in, 105, 107,

122–123, 131–132, 144–145

computing interval endpoints, use in, 145,

339–341

R computation summary table, 424

sample size

mean µ, 151–155
one-sided demonstration test, 165–169

prediction interval or bound, 178–183

quantile, 157

standard deviation σ, 155–157
standard deviation of m observations, 182

standard cdf, 48

statistical intervals, 47–58

using simple tabulations, 39–45

tolerance interval, 40, 347

control both tails, 54–55, 347, 481

control the center, 53–54, 347, 479–480

transformation to, 63–66

One-sided bound versus two-sided interval, 26, 33

One-sided conidence bound, see also Conidence

interval or bound

combining to make a two-sided conidence

interval, 405

One-sided prediction bound, see Prediction interval

or bound

One-sided tolerance bound

relation to conidence bound on a quantile, 29–30,

55, 243, 284, 318, 415

Order statistics, 74

Parameterization, 232, 298–299

easier elicitation of prior information, 299, 311

numerical reasons, 232

Parametric bootstrap, see Bootstrap conidence

interval methods, parametric

Partial pooling, 352, 357, 359–361

pdf, 425, see also particular distribution, pdf

People sampling, 14

Percentage point, 25

Percentile, 25

Percentile method, see Bootstrap conidence interval

methods, percentile method

Pivotal quantity (PQ)

general deinition, 474

location-scale distribution

conidence interval for location parameter µ,
274, 484–485

conidence interval for quantile, 275–276,

485–486

conidence interval for scale parameter σ, 275,
485

from one sample, 484–485

prediction interval or bound for k of m
observations, 486–487

log-location-scale distribution

conidence interval for quantile, 275–276,

485–486

conidence interval for scale parameter exp(µ),
274, 485

conidence interval for shape parameter σ or

1/σ, 275, 485
prediction interval or bound for k of m
observations, 486–487

normal distribution

conidence interval for a quantile, 476–477

conidence interval for a tail probability,

477–478

conidence interval for the mean µ, 475–476
conidence interval for the standard deviation σ,
476

conidence interval to compare two means, 479

conidence interval to compare two variances,

479

from one sample, 475

from two samples, 475

prediction bound for k of m observations,

482–483

prediction interval for k of m observations,

483–484

prediction interval for a sample mean of m
observations, 481

prediction interval for a sample standard

deviation of m observations, 482

tolerance interval to control both tails, 481

tolerance interval to control the center, 479–480
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Planning an analytic study, 12–13

Planning value for sample size, 150–151

pmf, 425, see also particular distribution, pmf

Poisson distribution

applications, 127, 191–192, 214–215, 336–341,

359–360

cdf, 128, 441–442

computing coverage probability, use in, 410,

417, 498–500

conidence interval or bound, 129–133

Bayesian method, 336–337

comparisons, 133–136

conservative method, 129

Jeffreys method, 132–133, 336–338, 514

quantile, 137–139, 338

rate λ, 129–136, 336–337
score method, 132, 463

tail probability, 136–137, 337–338

Wald method, 131

conjugate prior distribution, see Prior distribution,

conjugate, Poisson distribution

derivation of conidence interval for, 466

hierarchical model, 359

likelihood, 456

pmf, 128, 441–442

computing coverage probability, use in, 406,

410, 417

prediction interval or bound

Bayesian method, 339–341, 521

comparisons, 146

conservative method, 141–142

Jeffreys method, 145, 339–341, 521

joint-sample method, 145

normal-approximation method, 144

number of events, 141–146

properties of, 441–442

quantile function, 138, 441

R computation summary table, 424

random variable, 128

rate λ, 128
regression, 360

relationship to the chi-square distribution, 442

sample size

rate λ, 159–161
tolerance interval, 140–141

Bayesian method, 338–339

calibration for, 141

Population, 3–8

size, 15

Posterior distribution, 297–298

characterizing with simulation, 302–303

marginal, 303, 305–306

sample draws from, 327

from MCMC, 313–317

from simple simulation, 305–306

number needed, 315–316

use to construct a Bayesian credible interval,

305–306, 329, 335, 344, 376–378, 380–382,

385–387

use to construct a Bayesian prediction interval,

320–322, 333–335, 339–341, 347–350

use to construct a Bayesian tolerance interval,

318–320, 331–333, 338–339, 347

Power transformation, 63–65

PQ, see pivotal quantity

Prediction interval or bound

Bayesian, 320–322, 333–335, 339–341,

347–350

binomial distribution, 121–125, 333–335

coverage probability, see Coverage probability,

prediction interval or bound

distribution-free, see Distribution-free, prediction

interval

examples of, 24, 27–29

formal deinition, 415–416, 418–420

future sample, 28

important factors determining width, 177–178

interpretation, 28

k of m observations, 28

based on likelihood, 243

based on PQs, 486–487

based on simulation, 284–287, 320–322,

418–420

Bayesian, 320–322

limiting width, 178–179

normal distribution

sample mean, 24, 55–56, 482

sample standard deviation, 24, 58, 482

single observation, 27

Poisson distribution, 141–146, 339–341

Prior distribution, 297–298, 308–313

beta distribution, as a, 311–312, 326–327, 382,

511, 514

binomial distribution, for, 326–327, 333, 511,

519–520

conjugate, 311–312, 511–513

interpretation, 326, 336

diffuse (or vague), 20, 298, 300, 301–302

gamma distribution, as a, 288–289, 335–336,

338–339, 342, 355, 362, 435–436

informative, 300–303

Jeffreys, 313, 513–518

binomial distribution, for, 107–108, 124–125,

326–335, 356, 456, 514, 520

normal distribution (modiied), for, 343,

516–522

Poisson distribution, for, 132–134, 145–146,

359–360, 514, 521
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Prior distribution (Continued)

lognormal distribution, as a, 302, 342, 385

log-uniform distribution, as a, 301

need for, 298

noninformative (or lat), 20, 300, 310

normal distribution, for, 341–343, 512–522

Poisson distribution, for, 335–341, 512, 519,

521

scale half-Cauchy distribution, as a, 376

sources of, 311

speciication of, 301–302, 309–313

with marginal distributions, 302–303, 309–310,

312

uniform distribution, as a, 301–303, 310, 312

wishful thinking, 311

Probability distribution

beta, see Beta distribution

beta-binomial, see Beta-binomial distribution

binomial, see Binomial distribution

Cauchy, see Cauchy distribution

chi-square, see Chi-square distribution

cumulative distribution function (cdf), 425–426

exponential, see Exponential distribution

F , see Snedecor’s F -distribution

folded-Cauchy, see Scale half-Cauchy distribution

Fréchet, see Fréchet distribution

gamma, see Gamma distribution

generalized gamma, see Generalized gamma

distribution

generation of random samples from, 426

half-Cauchy, see Scale half-Cauchy distribution

hypergeometric, see Hypergeometric distribution

largest extreme value, 430

location-scale, see Location-scale distribution

log-Cauchy, 432

logistic, see Logistic, distribution

log-location-scale, see Log-location-scale

distribution

log-logistic, 431–432

lognormal, see Lognormal distribution

log-uniform, see Log-uniform distribution

negative binomial, see Negative binomial

distribution

negative hypergeometric, see Negative

hypergeometric distribution

noncentral t, see Noncentral t-distribution
normal, see Normal distribution

Poisson, see Poisson distribution

probability density function (pdf), 425

probability mass function (pmf), 425

quantile function, 426

R computation summary table, 424

scale half-Cauchy, see Scale half-Cauchy

distribution

smallest extreme value, 429–430

Snedecor’s F , see Snedecor’s F -distribution

Student’s t, see Student’s t-distribution
Weibull, seeWeibull distribution

Probability interval, 4, 17, 21, 28, 164, 178, 182

Probability of an event, 25

Probability of detection (POD), 383

Probability of successful demonstration

based on normal distribution one-sided conidence

bound on a quantile, 523–524

sample size required, 524

based on one-sided conidence bound on a

binomial distribution probability, 525–526

sample size required, 526

based on one-sided conidence bound on a normal

distribution probability, 523–524

Probability of the data, 217, see also Likelihood,

Probability plot

Bayesian, 307–308

exponential, 215–216, 220

lognormal, 63, 200, 227, 364

normal distribution, 60, 62–64, 200

transformation of data, after, 63–64

Weibull, 227

Process, 2–3

Product life analyses, 36

Proile likelihood, 230–231, 371

function of μ and σ, 232–234
µ and exp(µ), 230–231
σ, 231–232

Pseudo-random sampling, 13

Public opinion poll, 6, 14

p-value, 33

Q-Q plot, 60

Quantile function, see particular distribution,

quantile function

Random effects, 351, 354, 356–357, 360, 371–377

Random number generator, 9

Random sample, 2–3, 6, 8–11

Random-weight bootstrap, see Bootstrap samples

and sampling, random weight

Regression

binomial, see Logistic regression

logistic, see Logistic regression

normal distribution, 66–68, 354

Poisson distribution, 360–361

residuals, 67, 362

Regularity conditions, 214, 235, 288, 454–455

Relative likelihood function, 218, 223, 225–226,

228–230

Reparameterization, see Parameterization

Repeated measures, 361
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Representative sample, see Sample selection,

representative

Resampling, see Bootstrap samples and sampling,

resampling

Residuals, 67, 362

Response variable, 66

Retrospective study, 18

Sample mean, 39, 177–178, 248

Sample selection

representative, 242

self-selected, 393

Sample size, 2, 4, 10, 15–16

absolute versus relative, 15

assumptions

distribution, 151

random sample, 149–150

basic requirements, 150–151

binomial distribution

proportion π, 157–158
considerations, 32

data quality versus data quantity, 149

distribution-free

demonstration tests, 171–175

tolerance interval or bound, 169–171

minimum, 150

normal distribution

computational method for demonstration test,

169

graphical method for demonstration test, 166

mean µ, 151–155
one-sided demonstration test, 165–169

prediction interval or bound criteria, 178

prediction interval or bound mean of m
observations, 178–182

prediction interval or bound to contain all m
observations, 182

prediction interval or bound standard deviation

m observations, 182

quantile, 157

standard deviation σ, 155–157
tabular method for demonstration test, 166

tolerance interval or bound, 164–169

planning values, 150–151

Poisson distribution

rate λ, 159–161
precision, 150

probability of successful demonstration, see also

Probability of successful demonstration

relative versus absolute, 17

relative to population size in samples from a inite

population, 112–113

to construct a distribution-free two-sided tolerance

bound, 88–89

tolerance interval or bound, 164–169

Sample standard deviation, 39, 251

Sampled population, 2–3, 8–9, 11, 15, 17, 22

Scale half-Cauchy distribution

cdf, 438

pdf, 438

prior distribution, as a, 376

properties of, 438

quantile function, 438

Scale parameter

conidence interval for, see Conidence interval or

bound, location-scale distribution or

log-location-scale distribution, scale

parameter

Score

method, 125, 132, 463

statistic, 458–459, 463

Shape parameter

conidence interval for, see Conidence interval or

bound, log-location-scale distribution, shape

parameter

Shrinkage toward the mean, 355

Signiicance level, 33

Signiicance test, 33–34

Simple random sample, 9, 15

Simulation, seeMonte Carlo simulation

Simultaneous statistical intervals or bounds, 34–35,

see also Bonferroni

conidence intervals or bounds, 35, 470

conservative bound, 35

nonparametric conidence bands, 216

prediction intervals or bounds, 27, 33, 34

all of m = n observations, 41

k of m observations, 56–57, 284–287, 320–322,

349, 418–420, 483–484, 486–487

all m of m observations, 56–57, 471

tolerance intervals and bounds, 69

Snedecor’s F -distribution, 48

cdf, 437

pdf, 437

properties of, 437–438

quantile function, 48, 437

computing interval endpoints, use in, 58, 103,

107, 479, 482

R computation summary table, 424

relationship to beta distribution, 433, 438,

449–450

relationship to binomial distribution, 439

Software, see Statistical software

Stable parameter, 299

Standard error

estimate of, 229, 234, 237, 258

Statistical control, 11–13, 101–102, 194, 206

Statistical error propagation, see Delta method
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Statistical intervals

conidence, see Conidence interval or bound

formal deinition

approximate, see Approximate statistical

interval or bound

conidence, see Conidence interval or bound,

formal deinition

conservative, see Conservative statistical

interval

exact, see Exact statistical interval

prediction, see Prediction interval or bound,

formal deinition

tolerance, see Tolerance interval, formal

deinition

examples of, 24–30

from transformed data, 64–66

interpretation, 19–20, 26, 28, 30

prediction, see Prediction interval or bound

tolerance, see Tolerance interval

which statistical interval to use?, 30–31

Statistical software, xxvii–xxviii

general purpose, 9, 60, 214

MCMC, 317

R computation summary table, 424

StatInt R package, 424

Statistical uncertainty, see Uncertainty

Stratiied random sampling, 9–10, 15, 70

Stratum, 9–10

Student’s t-distribution, 48
cdf, 437

pdf, 437

properties of, 437

quantile function, 48, 437

computing interval endpoints, use in, 49, 55–56,

202, 475–476, 479, 481

R computation summary table, 424

relationship to the Noncentral t-distribution, 437,
451

Systematic sampling, 9–13

Target population, 8, 11, 14, 16–18

Taylor series approximation, 453–454, see also Delta

method

Telephone survey, 14

Theoretical results

Bayesian inference and prediction, 509–522

conidence intervals for discrete distribution,

465–466

distribution-free conidence interval for a quantile,

498–499

distribution-free prediction interval or bound

for a particular order statistic, 500–502

k of m observations, 503–507

distribution-free tolerance interval, 499–500

GPQ, 489–495

ML estimation, 459–462

pivotal quantity

conidence intervals based on, 474–479, 487

prediction intervals based on, 481–484,

486–487

tolerance intervals based on, 479–481

Thinning, seeMCMC, thinning

Tolerance interval, 3, 29–30, 118–119

approximate, 470–471

based on simulation, 282–284, 317–320

β-content, 30
β-expectation, 30
binomial distribution, 118–120, 331–333

control both tails, 283–284, 411–414

control the center, 282–283, 408–411

coverage probability, see Coverage probability

distribution-free, 86–88, 499–500

examples of, 24–25, 29

formal deinition, 408–409, 411–412

interpretation, 30, 54, 408, 411–412

(log-)location-scale distribution

control both tails, 283–284, 319–320

control the center, 282–283, 318–319

normal distribution, 40, 53–55, 347, 479–481

one-sided, see One-sided tolerance bound

Poisson distribution, 140–141, 338–339

sample size, 164–165, 169–171

with measurement error, 377–378

Bayesian method, 378

GPQ method, 377–378

Trace (time series) plot, 315–316

Transformation, 63–67, 69, 77

to approximate normality, 64

bootstrap, 264

Box–Cox, 66

invariant to

bootstrap, 264

Wald approximation, 236

power, 63–65

probability plot, 63–64

preserving, see Transformation, invariant

Wald approximation, 236

Two-sided intervals versus one-sided bounds, 33

Uncertainty

actual, 242

statistical, 242

Uniform distribution, 433

prior distribution, as a, 301–303, 310, 312

relationship to beta distribution, 312, 433

Variance-covariance matrix, 236

estimation of, 460
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Wald-approximation conidence interval, 234–242

adequacy of, 237

correlation coeficient, 240

location-scale distribution

location parameter μ, 237
quantile, 238–239

scale parameter σ, 237
tail probability, 239–240

log-location-scale distribution

quantile, 238–239

scale parameter exp(µ), 237
shape parameter σ or 1/σ, 237
tail probability, 239–240

not transformation invariant, 236

scalar function of µ and σ, 238
Wald statistic, 458, 462

Weibull distribution, 25, 224–225

applications, 62, 225–229, 269–277, 281,

289–290, 300–302, 369–371

cdf, 224, 298–299, 430

conidence interval for

mean, 280–281

quantile, 232–233

scale parameter, 229

shape parameter, 232

tail probability, 232–233, 279–280

pdf, 430

probability plot, 227

properties of, 430

quantile function, 430

R computation summary table, 424

relationship to the exponential distribution, 435

relationship to the generalized gamma distribution,

435–436

Weighted least squares, 67

Weighted-observation estimation, 218, 251

ẑ conidence interval procedure, 239–240, 279
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