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MOTIVATION
The idea for this book grew out of discussions between the statistics faculty and the
engineering faculty at the Colorado School of Mines regarding our introductory statis-
tics course for engineers. Our engineering faculty felt that the students needed sub-
stantial coverage of propagation of error, as well as more emphasis on model-fitting
skills. The statistics faculty believed that students needed to become more aware of
some important practical statistical issues such as the checking of model assumptions
and the use of simulation. 

My view is that an introductory statistics text for students in engineering and sci-
ence should offer all these topics in some depth. In addition, it should be flexible
enough to allow for a variety of choices to be made regarding coverage, because there
are many different ways to design a successful introductory statistics course. Finally,
it should provide examples that present important ideas in realistic settings. Accord-
ingly, the book has the following features:

• The book is flexible in its presentation of probability, allowing instructors wide lat-
itude in choosing the depth and extent of their coverage of this topic.

• The book contains many examples that feature real, contemporary data sets, both
to motivate students and to show connections to industry and scientific research.

• The book contains many examples of computer output and exercises suitable for
solving with computer software.

• The book provides extensive coverage of propagation of error.

• The book presents a solid introduction to simulation methods and the bootstrap,
including applications to verifying normality assumptions, computing probabilities,
estimating bias, computing confidence intervals, and testing hypotheses.

• The book provides more extensive coverage of linear model diagnostic procedures
than is found in most introductory texts. This includes material on examination of
residual plots, transformations of variables, and principles of variable selection in
multivariate models.

• The book covers the standard introductory topics, including descriptive statistics,
probability, confidence intervals, hypothesis tests, linear regression, factorial
experiments, and statistical quality control.

MATHEMATICAL LEVEL
Most of the book will be mathematically accessible to those whose background includes
one semester of calculus. The exceptions are multivariate propagation of error, which
requires partial derivatives, and joint probability distributions, which require multiple
integration. These topics may be skipped on first reading, if desired.

PREFACE
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COMPUTER USE
Over the past 35 years, the development of fast and cheap computing has revolution-
ized statistical practice; indeed, this is one of the main reasons that statistical methods
have been penetrating ever more deeply into scientific work. Scientists and engineers
today must not only be adept with computer software packages, they must also have
the skill to draw conclusions from computer output and to state those conclusions in
words. Accordingly, the book contains exercises and examples that involve interpret-
ing, as well as generating, computer output, especially in the chapters on linear mod-
els and factorial experiments. Many statistical software packages are available for
instructors who wish to integrate their use into their courses, and this book can be
used effectively with any of these packages.

The modern availability of computers and statistical software has produced an
important educational benefit as well, by making simulation methods accessible to
introductory students. Simulation makes the fundamental principles of statistics come
alive. The material on simulation presented here is designed to reinforce some basic
statistical ideas, and to introduce students to some of the uses of this powerful tool.

CONTENT
Chapter 1 covers sampling and descriptive statistics. The reason that statistical meth-
ods work is that samples, when properly drawn, are likely to resemble their popula-
tions. Therefore Chapter 1 begins by describing some ways to draw valid samples.
The second part of the chapter discusses descriptive statistics.

Chapter 2 is about probability. There is a wide divergence in preferences of
instructors regarding how much and how deeply to cover this subject. Accordingly, I
have tried to make this chapter as flexible as possible. The major results are derived
from axioms, with proofs given for most of them. This should enable instructors to
take a mathematically rigorous approach. On the other hand, I have attempted to illus-
trate each result with an example or two, in a scientific context where possible, that is
designed to present the intuition behind the result. Instructors who prefer a more
informal approach may therefore focus on the examples rather than the proofs.

Chapter 3 covers propagation of error, which is sometimes called “error analysis”
or, by statisticians, “the delta method.” The coverage is more extensive than in most
texts, but because the topic is so important to many engineers I thought it was worth-
while. The presentation is designed to enable instructors to adjust the amount of cov-
erage to fit the needs of of the course. In particular, Sections 3.2 through 3.4 can be
omitted without loss of continuity.

Chapter 4 presents many of the probability distribution functions commonly used
in practice. Point estimation, probability plots and the Central Limit Theorem are also
covered. The final section introduces simulation methods to assess normality assump-
tions, compute probabilities, and estimate bias.

Chapters 5 and 6 cover confidence intervals and hypothesis testing, respectively.
The P-value approach to hypothesis testing is emphasized, but fixed-level testing and
power calculations are also covered. The multiple testing problem is covered in some
depth. Simulation methods to compute confidence intervals and to test hypotheses are
introduced as well.



Chapter 7 covers correlation and simple linear regression. I have worked hard to
emphasize that linear models are appropriate only when the relationship between the
variables is linear. This point is all the more important since it is often overlooked in
practice by engineers and scientists (not to mention statisticians). It is not hard to find
in the scientific literature straight-line fits and correlation coefficient summaries for
plots that show obvious curvature or for which the slope of the line is determined by
a few influential points. Therefore this chapter includes a lengthy section on checking
model assumptions and transforming variables.

Chapter 8 covers multiple regression. Model selection methods are given particular
emphasis, because choosing the variables to include in a model is an essential step in
many real-life analyses. The topic of confounding is given careful treatment as well.

Chapter 9 discusses some commonly used experimental designs and the methods
by which their data are analyzed. One-way and two-way analysis of variance meth-
ods, along with randomized complete block designs and 2p factorial designs, are cov-
ered fairly extensively.

Chapter 10 presents the topic of statistical quality control, discussing control charts,
CUSUM charts, and process capability; and concluding with a brief discussion of six-
sigma quality.

NEW FOR THIS EDITION
The fourth edition of this book is intended to extend the strengths of the third. Some
of the changes are:

• A large number of new exercises have been included, many of which involve real
data from recently published sources.

• A new section on confidence intervals for a population variance has been added to
Chapter 5.

• Chapter 6 now contains material on tests for a population variance.

• The material on goodness-of-fit tests has been expanded.

• The exposition has been improved in a number of places.

RECOMMENDED COVERAGE
The book contains enough material for a year-long course. For a one-semester course,
there are a number of options. In our three-hour course at the Colorado School of Mines,
we cover all of the first four chapters, except for joint distributions, the more theoretical
aspects of point estimation, and the exponential, gamma, and Weibull distributions. We
then cover the material on confidence intervals and hypothesis testing in Chapters 5 and
6, going quickly over the two-sample methods and power calculations and omitting dis-
tribution-free methods and the chi-square and F tests. We finish by covering as much of
the material on correlation and simple linear regression in Chapter 7 as time permits.

A course with a somewhat different emphasis can be fashioned by including more
material on probability, spending more time on two-sample methods and power, and
reducing coverage of propagation of error, simulation, or regression. Many other options



are available; for example, one may choose to include material on factorial experiments 
in place of some of the preceding topics. Sample syllabi, emphasizing a variety of
approaches and course lengths, can be found on the book website www.mhhe.com/navidi.

McGRAW-HILL CONNECT® ENGINEERING
The online resources for this edition include McGraw-Hill Connect Engineering, a web-
based assignment and assessment platform that can help students to perform better in
their coursework and to master important concepts. With Connect Engineering, instruc-
tors can deliver assignments, quizzes, and tests easily online. Students can practice
important skills at their own pace and on their own schedule. Ask your McGraw-
Hill Representative for more detail and check it out at www.mcgrawhillconnect
.com/engineering.

In addition, the website for Statistics for Engineers and Scientists, 4e, features data
sets for students, as well as solutions, PowerPoint lecture notes for each chapter, an
image library, and suggested syllabi for instructors. The website can be accessed at
www.mhhe.com/navidi.

McGRAW-HILL LEARNSMART®

McGraw-Hill LearnSmart® is an adaptive learning system designed to help students
learn faster, study more efficiently, and retain more knowledge for greater success.
Through a series of adaptive questions, Learnsmart pinpoints concepts the student
does not understand and maps out a personalized study plan for success. It also lets
instructors see exactly what students have accomplished, and it features a built-in
assessment tool for graded assignments. Ask your McGraw-Hill Representative for
more information, and visit www.mhlearnsmart.com for a demonstration. 

ELECTRONIC TEXTBOOK OPTION
This text may be purchased in electronic form through an online resource known as
CourseSmart. Students can access the complete text online at a lower cost than the tradi-
tional text. In addition, purchasing the eTextbook allows students to use CourseSmart’s
web tools, which include full text search, notes, and highlighting, and email tools for shar-
ing notes among classmates. More information can be found at www.CourseSmart.com.

ACKNOWLEDGMENTS
I am indebted to many people for contributions at every stage of development. I received
valuable suggestions from my colleagues Barbara Moskal, Gus Greivel, Ashlyn Munson,
and Melissa Laeser at the Colorado School of Mines. Mike Colagrosso developed some
excellent applets, and Lesley Strawderman developed PowerPoint slides to supplement
the text. I am particularly grateful to Jackie Miller of The Ohio State University, who has
corrected many errors and made many valuable suggestions for improvement.

The staff at McGraw-Hill has been extremely capable and supportive. In particular, 
I would like to express my thanks to Developmental Editors Kathryn Neubauer, and
Vincent Bradshaw, and Global Publisher Raghu Srinivasan for their patience and guid-
ance in the preparation of this edition.

William Navidi
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Supplements for 
Students and Instructors

Student Resources available include:

• Connect. More than 200 example
problems and odd-numbered
homework problems from the text
provide virtually unlimited practice of text
exercises. Our algorithmic problem
generator offers the following options:
• The Guided Solution button leads

students step-by-step through the
solution, prompting the student to
complete each step.

• The Hint button produces a worked-out
solution to a similar problem.

• Learnsmart contains hundreds of
probes that will help students learn
faster, study more efficiently, and retain
more knowledge for greater success. 

• Java Applets created specifically for this
calculus-based course provide interactive
exercises based on text content, which
allow students to alter variables and
explore “What if?” scenarios. Among
these are Simulation Applets, which
reinforce the excellent text coverage of
simulation methods. The applets allow
students to see the text simulation
examples in action and to alter the
parameters for further exploration.

Instructor Resources available include:
• A Solutions Manual in PDF accessed

with a password provided by a McGraw-
Hill sales representative provides
instructors with detailed solutions to all
text exercises by chapter.

• PowerPoint Lecture Notes for each
chapter of the text can be customized to
fit individual classroom presentation
needs.

• Suggested Syllabi provide useful roadmaps
for many different versions of the course.

Additional Student
Resources 
• All text data sets are provided for

download in various formats:
• ASCII comma delimited
• ASCII tab delimited
• MINITAB
• Excel
• SAS 
• SPSS
• TI-89

• A Guide to Simulation in MINITAB,
prepared by the author, describes how
the simulation examples in the text may
be implemented in MINITAB.
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1
Sampling and
Descriptive Statistics

Introduction

The collection and analysis of data are fundamental to science and engineering. Scien-
tists discover the principles that govern the physical world, and engineers learn how to
design important new products and processes, by analyzing data collected in scientific
experiments. A major difficulty with scientific data is that they are subject to random vari-
ation, or uncertainty. That is, when scientific measurements are repeated, they come out
somewhat differently each time. This poses a problem: How can one draw conclusions
from the results of an experiment when those results could have come out differently?
To address this question, a knowledge of statistics is essential. Statistics is the field of
study concerned with the collection, analysis, and interpretation of uncertain data. The
methods of statistics allow scientists and engineers to design valid experiments and to
draw reliable conclusions from the data they produce.

Although our emphasis in this book is on the applications of statistics to science
and engineering, it is worth mentioning that the analysis and interpretation of data
are playing an ever-increasing role in all aspects of modern life. For better or worse,
huge amounts of data are collected about our opinions and our lifestyles, for purposes
ranging from the creation of more effective marketing campaigns to the development of
social policies designed to improve our way of life. On almost any given day, newspa-
per articles are published that purport to explain social or economic trends through the
analysis of data. A basic knowledge of statistics is therefore necessary not only to be an
effective scientist or engineer, but also to be a well-informed member of society.

The Basic Idea
The basic idea behind all statistical methods of data analysis is to make inferences about
a population by studying a relatively small sample chosen from it. As an illustration,
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consider a machine that makes steel rods for use in optical storage devices. The specifi-
cation for the diameter of the rods is 0.45 ± 0.02 cm. During the last hour, the machine
has made 1000 rods. The quality engineer wants to know approximately how many of
these rods meet the specification. He does not have time to measure all 1000 rods. So
he draws a random sample of 50 rods, measures them, and finds that 46 of them (92%)
meet the diameter specification. Now, it is unlikely that the sample of 50 rods represents
the population of 1000 perfectly. The proportion of good rods in the population is likely
to differ somewhat from the sample proportion of 92%. What the engineer needs to
know is just how large that difference is likely to be. For example, is it plausible that the
population percentage could be as high as 95%? 98%? As low as 90%? 85%?

Here are some specific questions that the engineer might need to answer on the basis
of these sample data:

1. The engineer needs to compute a rough estimate of the likely size of the difference
between the sample proportion and the population proportion. How large is a
typical difference for this kind of sample?

2. The quality engineer needs to note in a logbook the percentage of acceptable rods
manufactured in the last hour. Having observed that 92% of the sample rods were
good, he will indicate the percentage of acceptable rods in the population as an
interval of the form 92% ± x%, where x is a number calculated to provide
reasonable certainty that the true population percentage is in the interval. How
should x be calculated?

3. The engineer wants to be fairly certain that the percentage of good rods is at least
90%; otherwise he will shut down the process for recalibration. How certain can
he be that at least 90% of the 1000 rods are good?

Much of this book is devoted to addressing questions like these. The first of these
questions requires the computation of a standard deviation, which we will discuss in
Chapters 2 and 4. The second question requires the construction of a confidence interval,
which we will learn about in Chapter 5. The third calls for a hypothesis test, which we
will study in Chapter 6.

The remaining chapters in the book cover other important topics. For example, the
engineer in our example may want to know how the amount of carbon in the steel rods
is related to their tensile strength. Issues like this can be addressed with the methods
of correlation and regression, which are covered in Chapters 7 and 8. It may also be
important to determine how to adjust the manufacturing process with regard to several
factors, in order to produce optimal results. This requires the design of factorial exper-
iments, which are discussed in Chapter 9. Finally, the engineer will need to develop a
plan for monitoring the quality of the product manufactured by the process. Chapter 10
covers the topic of statistical quality control, in which statistical methods are used to
maintain quality in an industrial setting.

The topics listed here concern methods of drawing conclusions from data. These
methods form the field of inferential statistics. Before we discuss these topics, we must
first learn more about methods of collecting data and of summarizing clearly the basic
information they contain. These are the topics of sampling and descriptive statistics,
and they are covered in the rest of this chapter.
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1.1 Sampling

As mentioned, statistical methods are based on the idea of analyzing a sample drawn from
a population. For this idea to work, the sample must be chosen in an appropriate way.
For example, let us say that we wished to study the heights of students at the Colorado
School of Mines by measuring a sample of 100 students. How should we choose the
100 students to measure? Some methods are obviously bad. For example, choosing the
students from the rosters of the football and basketball teams would undoubtedly result in
a sample that would fail to represent the height distribution of the population of students.
You might think that it would be reasonable to use some conveniently obtained sample,
for example, all students living in a certain dorm or all students enrolled in engineering
statistics. After all, there is no reason to think that the heights of these students would
tend to differ from the heights of students in general. Samples like this are not ideal,
however, because they can turn out to be misleading in ways that are not anticipated. The
best sampling methods involve random sampling. There are many different random
sampling methods, the most basic of which is simple random sampling.

To understand the nature of a simple random sample, think of a lottery. Imagine
that 10,000 lottery tickets have been sold and that 5 winners are to be chosen. What is
the fairest way to choose the winners? The fairest way is to put the 10,000 tickets in a
drum, mix them thoroughly, and then reach in and one by one draw 5 tickets out. These
5 winning tickets are a simple random sample from the population of 10,000 lottery
tickets. Each ticket is equally likely to be one of the 5 tickets drawn. More importantly,
each collection of 5 tickets that can be formed from the 10,000 is equally likely to be the
group of 5 that is drawn. It is this idea that forms the basis for the definition of a simple
random sample.

Summary

■ A population is the entire collection of objects or outcomes about which
information is sought.

■ A sample is a subset of a population, containing the objects or outcomes
that are actually observed.

■ A simple random sample of size n is a sample chosen by a method in
which each collection of n population items is equally likely to make up
the sample, just as in a lottery.

Since a simple random sample is analogous to a lottery, it can often be drawn by the
same method now used in many lotteries: with a computer random number generator.
Suppose there are N items in the population. One assigns to each item in the popula-
tion an integer between 1 and N . Then one generates a list of random integers between
1 and N and chooses the corresponding population items to make up the simple
random sample.
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Example
1.1 A physical education professor wants to study the physical fitness levels of students

at her university. There are 20,000 students enrolled at the university, and she wants
to draw a sample of size 100 to take a physical fitness test. She obtains a list of all
20,000 students, numbered from 1 to 20,000. She uses a computer random number
generator to generate 100 random integers between 1 and 20,000 and then invites
the 100 students corresponding to those numbers to participate in the study. Is this a
simple random sample?

Solution
Yes, this is a simple random sample. Note that it is analogous to a lottery in which
each student has a ticket and 100 tickets are drawn.

Example
1.2 A quality engineer wants to inspect rolls of wallpaper in order to obtain information

on the rate at which flaws in the printing are occurring. She decides to draw a sample
of 50 rolls of wallpaper from a day’s production. Each hour for 5 hours, she takes
the 10 most recently produced rolls and counts the number of flaws on each. Is this a
simple random sample?

Solution
No. Not every subset of 50 rolls of wallpaper is equally likely to make up the sample.
To construct a simple random sample, the engineer would need to assign a number to
each roll produced during the day and then generate random numbers to determine
which rolls make up the sample.

In some cases, it is difficult or impossible to draw a sample in a truly random way.
In these cases, the best one can do is to sample items by some convenient method. For
example, imagine that a construction engineer has just received a shipment of 1000 con-
crete blocks, each weighing approximately 50 pounds. The blocks have been delivered
in a large pile. The engineer wishes to investigate the crushing strength of the blocks
by measuring the strengths in a sample of 10 blocks. To draw a simple random sample
would require removing blocks from the center and bottom of the pile, which might be
quite difficult. For this reason, the engineer might construct a sample simply by taking
10 blocks off the top of the pile. A sample like this is called a sample of convenience.

Definition
A sample of convenience is a sample that is obtained in some convenient way,
and not drawn by a well-defined random method.

The big problem with samples of convenience is that they may differ systematically
in some way from the population. For this reason samples of convenience should not
be used, except in situations where it is not feasible to draw a random sample. When
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it is necessary to take a sample of convenience, it is important to think carefully about
all the ways in which the sample might differ systematically from the population. If it
is reasonable to believe that no important systematic difference exists, then it may be
acceptable to treat the sample of convenience as if it were a simple random sample. With
regard to the concrete blocks, if the engineer is confident that the blocks on the top of the
pile do not differ systematically in any important way from the rest, then he may treat
the sample of convenience as a simple random sample. If, however, it is possible that
blocks in different parts of the pile may have been made from different batches of mix
or may have different curing times or temperatures, a sample of convenience could give
misleading results.

Some people think that a simple random sample is guaranteed to reflect its population
perfectly. This is not true. Simple random samples always differ from their populations in
some ways, and occasionally may be substantially different. Two different samples from
the same population will differ from each other as well. This phenomenon is known as
sampling variation. Sampling variation is one of the reasons that scientific experiments
produce somewhat different results when repeated, even when the conditions appear to
be identical.

Example
1.3 A quality inspector draws a simple random sample of 40 bolts from a large ship-

ment and measures the length of each. He finds that 34 of them, or 85%, meet a
length specification. He concludes that exactly 85% of the bolts in the shipment meet
the specification. The inspector’s supervisor concludes that the proportion of good
bolts is likely to be close to, but not exactly equal to, 85%. Which conclusion is
appropriate?

Solution
Because of sampling variation, simple random samples don’t reflect the population
perfectly. They are often fairly close, however. It is therefore appropriate to infer that
the proportion of good bolts in the lot is likely to be close to the sample proportion,
which is 85%. It is not likely that the population proportion is equal to 85%, however.

Example
1.4 Continuing Example 1.3, another inspector repeats the study with a different simple

random sample of 40 bolts. She finds that 36 of them, or 90%, are good. The first
inspector claims that she must have done something wrong, since his results showed
that 85%, not 90%, of bolts are good. Is he right?

Solution
No, he is not right. This is sampling variation at work. Two different samples from
the same population will differ from each other and from the population.

Since simple random samples don’t reflect their populations perfectly, why is it
important that sampling be done at random? The benefit of a simple random sample
is that there is no systematic mechanism tending to make the sample unrepresentative.
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The differences between the sample and its population are due entirely to random varia-
tion. Since the mathematical theory of random variation is well understood, we can use
mathematical models to study the relationship between simple random samples and their
populations. For a sample not chosen at random, there is generally no theory available to
describe the mechanisms that caused the sample to differ from its population. Therefore,
nonrandom samples are often difficult to analyze reliably.

In Examples 1.1 to 1.4, the populations consisted of actual physical objects—the
students at a university, the concrete blocks in a pile, the bolts in a shipment. Such
populations are called tangible populations. Tangible populations are always finite.
After an item is sampled, the population size decreases by 1. In principle, one could in
some cases return the sampled item to the population, with a chance to sample it again,
but this is rarely done in practice.

Engineering data are often produced by measurements made in the course of a
scientific experiment, rather than by sampling from a tangible population. To take a
simple example, imagine that an engineer measures the length of a rod five times, being
as careful as possible to take the measurements under identical conditions. No matter
how carefully the measurements are made, they will differ somewhat from one another,
because of variation in the measurement process that cannot be controlled or predicted.
It turns out that it is often appropriate to consider data like these to be a simple random
sample from a population. The population, in these cases, consists of all the values that
might possibly have been observed. Such a population is called a conceptual population,
since it does not consist of actual objects.

A simple random sample may consist of values obtained from a process under
identical experimental conditions. In this case, the sample comes from a pop-
ulation that consists of all the values that might possibly have been observed.
Such a population is called a conceptual population.

Example 1.5 involves a conceptual population.

Example
1.5 A geologist weighs a rock several times on a sensitive scale. Each time, the scale gives

a slightly different reading. Under what conditions can these readings be thought of
as a simple random sample? What is the population?

Solution
If the physical characteristics of the scale remain the same for each weighing, so
that the measurements are made under identical conditions, then the readings may be
considered to be a simple random sample. The population is conceptual. It consists
of all the readings that the scale could in principle produce.

Note that in Example 1.5, it is the physical characteristics of the measurement
process that determine whether the data are a simple random sample. In general, when
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deciding whether a set of data may be considered to be a simple random sample, it is
necessary to have some understanding of the process that generated the data. Statistical
methods can sometimes help, especially when the sample is large, but knowledge of the
mechanism that produced the data is more important.

Example
1.6 A new chemical process has been designed that is supposed to produce a higher yield

of a certain chemical than does an old process. To study the yield of this process, we
run it 50 times and record the 50 yields. Under what conditions might it be reasonable
to treat this as a simple random sample? Describe some conditions under which it
might not be appropriate to treat this as a simple random sample.

Solution
To answer this, we must first specify the population. The population is conceptual
and consists of the set of all yields that will result from this process as many times as
it will ever be run. What we have done is to sample the first 50 yields of the process.
If, and only if, we are confident that the first 50 yields are generated under identical
conditions, and that they do not differ in any systematic way from the yields of future
runs, then we may treat them as a simple random sample.

Be cautious, however. There are many conditions under which the 50 yields
could fail to be a simple random sample. For example, with chemical processes, it
is sometimes the case that runs with higher yields tend to be followed by runs with
lower yields, and vice versa. Sometimes yields tend to increase over time, as process
engineers learn from experience how to run the process more efficiently. In these
cases, the yields are not being generated under identical conditions and would not be
a simple random sample.

Example 1.6 shows once again that a good knowledge of the nature of the process
under consideration is important in deciding whether data may be considered to be a
simple random sample. Statistical methods can sometimes be used to show that a given
data set is not a simple random sample. For example, sometimes experimental conditions
gradually change over time. A simple but effective method to detect this condition is to
plot the observations in the order they were taken. A simple random sample should show
no obvious pattern or trend.

Figure 1.1 (page 8) presents plots of three samples in the order they were taken.
The plot in Figure 1.1a shows an oscillatory pattern. The plot in Figure 1.1b shows an
increasing trend. Neither of these samples should be treated as a simple random sample.
The plot in Figure 1.1c does not appear to show any obvious pattern or trend. It might
be appropriate to treat these data as a simple random sample. However, before making
that decision, it is still important to think about the process that produced the data, since
there may be concerns that don’t show up in the plot (see Example 1.7).

Sometimes the question as to whether a data set is a simple random sample depends
on the population under consideration. This is one case in which a plot can look good,
yet the data are not a simple random sample. Example 1.7 provides an illustration.
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FIGURE 1.1 Three plots of observed values versus the order in which they were made. (a) The values show a definite
pattern over time. This is not a simple random sample. (b) The values show a trend over time. This is not a simple random
sample. (c) The values do not show a pattern or trend. It may be appropriate to treat these data as a simple random sample.

Example
1.7 A new chemical process is run 10 times each morning for five consecutive mornings.

A plot of yields in the order they are run does not exhibit any obvious pattern or trend.
If the new process is put into production, it will be run 10 hours each day, from 7 A.M.
until 5 P.M. Is it reasonable to consider the 50 yields to be a simple random sample?
What if the process will always be run in the morning?

Solution
Since the intention is to run the new process in both the morning and the afternoon,
the population consists of all the yields that would ever be observed, including both
morning and afternoon runs. The sample is drawn only from that portion of the
population that consists of morning runs, and thus it is not a simple random sample.
There are many things that could go wrong if this is used as a simple random sample.
For example, ambient temperatures may differ between morning and afternoon, which
could affect yields.

If the process will be run only in the morning, then the population consists only
of morning runs. Since the sample does not exhibit any obvious pattern or trend, it
might well be appropriate to consider it to be a simple random sample.

Independence
The items in a sample are said to be independent if knowing the values of some of
them does not help to predict the values of the others. With a finite, tangible population,
the items in a simple random sample are not strictly independent, because as each item
is drawn, the population changes. This change can be substantial when the population
is small. However, when the population is very large, this change is negligible and the
items can be treated as if they were independent.
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To illustrate this idea, imagine that we draw a simple random sample of 2 items
from the population

0 0 1 1

For the first draw, the numbers 0 and 1 are equally likely. But the value of the second
item is clearly influenced by the first; if the first is 0, the second is more likely to be 1,
and vice versa. Thus the sampled items are dependent. Now assume we draw a sample
of size 2 from this population:

0 ’sOne million 1 ’sOne million

Again on the first draw, the numbers 0 and 1 are equally likely. But unlike the previous
example, these two values remain almost equally likely the second draw as well, no
matter what happens on the first draw. With the large population, the sample items are
for all practical purposes independent.

It is reasonable to wonder how large a population must be in order that the items in
a simple random sample may be treated as independent. A rule of thumb is that when
sampling from a finite population, the items may be treated as independent so long as
the sample contains 5% or less of the population.

Interestingly, it is possible to make a population behave as though it were infinitely
large, by replacing each item after it is sampled. This method is called sampling with
replacement. With this method, the population is exactly the same on every draw and
the sampled items are truly independent.

With a conceptual population, we require that the sample items be produced under
identical experimental conditions. In particular, then, no sample value may influence the
conditions under which the others are produced. Therefore, the items in a simple random
sample from a conceptual population may be treated as independent. We may think of a
conceptual population as being infinite, or equivalently, that the items are sampled with
replacement.

Summary

■ The items in a sample are independent if knowing the values of some of
the items does not help to predict the values of the others.

■ Items in a simple random sample may be treated as independent in many
cases encountered in practice. The exception occurs when the population
is finite and the sample consists of a substantial fraction (more than 5%) of
the population.
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Other Sampling Methods
In addition to simple random sampling there are other sampling methods that are useful in
various situations. In weighted sampling, some items are given a greater chance of being
selected than others, like a lottery in which some people have more tickets than others.
In stratified random sampling, the population is divided up into subpopulations, called
strata, and a simple random sample is drawn from each stratum. In cluster sampling,
items are drawn from the population in groups, or clusters. Cluster sampling is useful
when the population is too large and spread out for simple random sampling to be
feasible. For example, many U.S. government agencies use cluster sampling to sample
the U.S. population to measure sociological factors such as income and unemployment.
A good source of information on sampling methods is Cochran (1977).

Simple random sampling is not the only valid method of random sampling. But it
is the most fundamental, and we will focus most of our attention on this method. From
now on, unless otherwise stated, the terms “sample” and “random sample” will be taken
to mean “simple random sample.”

Types of Experiments
There are many types of experiments that can be used to generate data. We briefly describe
a few of them. In a one-sample experiment, there is only one population of interest, and
a single sample is drawn from it. For example, imagine that a process is being designed
to produce polyethylene that will be used to line pipes. An experiment in which several
specimens of polyethylene are produced by this process, and the tensile strength of each
is measured, is a one-sample experiment. The measured strengths are considered to be a
simple random sample from a conceptual population of all the possible strengths that can
be observed for specimens manufactured by this process. One-sample experiments can
be used to determine whether a process meets a certain standard, for example, whether
it provides sufficient strength for a given application.

In a multisample experiment, there are two or more populations of interest, and
a sample is drawn from each population. For example, if several competing processes
are being considered for the manufacture of polyethylene, and tensile strengths are
measured on a sample of specimens from each process, this is a multisample experiment.
Each process corresponds to a separate population, and the measurements made on the
specimens from a particular process are considered to be a simple random sample from
that population. The usual purpose of multisample experiments is to make comparisons
among populations. In this example, the purpose might be to determine which process
produced the greatest strength or to determine whether there is any difference in the
strengths of polyethylene made by the different processes.

In many multisample experiments, the populations are distinguished from one an-
other by the varying of one or more factors that may affect the outcome. Such experi-
ments are called factorial experiments. For example, in his M.S. thesis at the Colorado
School of Mines, G. Fredrickson measured the Charpy V-notch impact toughness for
a large number of welds. Each weld was made with one of two types of base metals
and had its toughness measured at one of several temperatures. This was a factorial
experiment with two factors: base metal and temperature. The data consisted of several
toughness measurements made at each combination of base metal and temperature. In a
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factorial experiment, each combination of the factors for which data are collected defines
a population, and a simple random sample is drawn from each population. The purpose
of a factorial experiment is to determine how varying the levels of the factors affects
the outcome being measured. In his experiment Fredrickson found that for each type of
base metal, the toughness remained unaffected by temperature unless the temperature was
very low—below −100◦C. As the temperature was decreased from −100◦C to −200◦C,
the toughness dropped steadily.

Types of Data
When a numerical quantity designating how much or how many is assigned to each item
in a sample, the resulting set of values is called numerical or quantitative. In some cases,
sample items are placed into categories, and category names are assigned to the sample
items. Then the data are categorical or qualitative. Example 1.8 provides an illustration.

Example
1.8 The article “Hysteresis Behavior of CFT Column to H-Beam Connections with

External T-Stiffeners and Penetrated Elements” (C. Kang, K. Shin, et al., Engineering
Structures, 2001:1194–1201) reported the results of cyclic loading tests on concrete-
filled tubular (CFT) column to H-beam welded connections. Several test specimens
were loaded until failure. Some failures occurred at the welded joint; others oc-
curred through buckling in the beam itself. For each specimen, the location of the
failure was recorded, along with the torque applied at failure [in kilonewton-meters
(kN · m)]. The results for the first five specimens were as follows:

Torque Failure
Specimen (kN · m) Location

1 165 Weld
2 237 Beam
3 222 Beam
4 255 Beam
5 194 Weld

Which data are numerical, and which data are categorical?

Solution
The torques, in the middle column, are numerical data. The failure locations, in the
rightmost column, are categorical data.

Controlled Experiments and Observational Studies
Many scientific experiments are designed to determine the effect of changing one or more
factors on the value of a response. For example, suppose that a chemical engineer wants
to determine how the concentrations of reagent and catalyst affect the yield of a pro-
cess. The engineer can run the process several times, changing the concentrations each
time, and compare the yields that result. This sort of experiment is called a controlled
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experiment, because the values of the factors, in this case the concentrations of reagent
and catalyst, are under the control of the experimenter. When designed and conducted
properly, controlled experiments can produce reliable information about cause-and-effect
relationships between factors and response. In the yield example just mentioned, a well-
done experiment would allow the experimenter to conclude that the differences in yield
were caused by differences in the concentrations of reagent and catalyst.

There are many situations in which scientists cannot control the levels of the factors.
For example, there have been many studies conducted to determine the effect of cigarette
smoking on the risk of lung cancer. In these studies, rates of cancer among smokers are
compared with rates among non-smokers. The experimenters cannot control who smokes
and who doesn’t; people cannot be required to smoke just to make a statistician’s job
easier. This kind of study is called an observational study, because the experimenter
simply observes the levels of the factor as they are, without having any control over them.
Observational studies are not nearly as good as controlled experiments for obtaining
reliable conclusions regarding cause and effect. In the case of smoking and lung cancer,
for example, people who choose to smoke may not be representative of the population
as a whole, and may be more likely to get cancer for other reasons. For this reason,
although has been known for a long time that smokers have higher rates of lung cancer
than non-smokers, it took many years of carefully done observational studies before
scientists could be sure that smoking was actually the cause of the higher rate.

Exercises for Section 1.1

1. Each of the following processes involves sampling
from a population. Define the population, and state
whether it is tangible or conceptual.

a. A chemical process is run 15 times, and the yield
is measured each time.

b. A pollster samples 1000 registered voters in a cer-
tain state and asks them which candidate they sup-
port for governor.

c. In a clinical trial to test a new drug that is designed
to lower cholesterol, 100 people with high choles-
terol levels are recruited to try the new drug.

d. Eight concrete specimens are constructed from a
new formulation, and the compressive strength of
each is measured.

e. A quality engineer needs to estimate the percentage
of bolts manufactured on a certain day that meet a
strength specification. At 3:00 in the afternoon he
samples the last 100 bolts to be manufactured.

2. If you wanted to estimate the mean height of all the
students at a university, which one of the following
sampling strategies would be best? Why? Note that
none of the methods are true simple random samples.

i. Measure the heights of 50 students found in the
gym during basketball intramurals.

ii. Measure the heights of all engineering majors.

iii. Measure the heights of the students selected by
choosing the first name on each page of the cam-
pus phone book.

3. True or false:

a. A simple random sample is guaranteed to reflect
exactly the population from which it was drawn.

b. A simple random sample is free from any system-
atic tendency to differ from the population from
which it was drawn.

4. A sample of 100 college students is selected from all
students registered at a certain college, and it turns
out that 38 of them participate in intramural sports.
True or false:

a. The proportion of students at this college who
participate in intramural sports is 0.38.

b. The proportion of students at this college who
participate in intramural sports is likely to be close
to 0.38, but not equal to 0.38.
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5. A certain process for manufacturing integrated circuits
has been in use for a period of time, and it is known
that 12% of the circuits it produces are defective. A
new process that is supposed to reduce the proportion
of defectives is being tested. In a simple random sam-
ple of 100 circuits produced by the new process, 12
were defective.

a. One of the engineers suggests that the test proves
that the new process is no better than the old
process, since the proportion of defectives in the
sample is the same. Is this conclusion justified?
Explain.

b. Assume that there had been only 11 defective
circuits in the sample of 100. Would this have
proven that the new process is better? Explain.

c. Which outcome represents stronger evidence that
the new process is better: finding 11 defective
circuits in the sample, or finding 2 defective
circuits in the sample?

6. Refer to Exercise 5. True or false:

a. If the proportion of defectives in the sample is less
than 12%, it is reasonable to conclude that the new
process is better.

b. If the proportion of defectives in the sample is only
slightly less than 12%, the difference could well be
due entirely to sampling variation, and it is not rea-
sonable to conclude that the new process is better.

c. If the proportion of defectives in the sample is a
lot less than 12%, it is very unlikely that the dif-
ference is due entirely to sampling variation, so it
is reasonable to conclude that the new process is
better.

7. To determine whether a sample should be treated as
a simple random sample, which is more important: a

good knowledge of statistics, or a good knowledge of
the process that produced the data?

8. A medical researcher wants to determine whether ex-
ercising can lower blood pressure. At a health fair, he
measures the blood pressure of 100 individuals, and
interviews them about their exercise habits. He divides
the individuals into two categories: those whose typ-
ical level of exercise is low, and those whose level of
exercise is high.

a. Is this a controlled experiment or an observational
study?

b. The subjects in the low exercise group had consid-
erably higher blood pressure, on the average, than
subjects in the high exercise group. The researcher
concludes that exercise decreases blood pressure.
Is this conclusion well-justified? Explain.

9. A medical researcher wants to determine whether ex-
ercising can lower blood pressure. She recruits 100
people with high blood pressure to participate in the
study. She assigns a random sample of 50 of them to
pursue an exercise program that includes daily swim-
ming and jogging. She assigns the other 50 to refrain
from vigorous activity. She measures the blood pres-
sure of each of the 100 individuals both before and
after the study.

a. Is this a controlled experiment or an observational
study?

b. On the average, the subjects in the exercise group
substantially reduced their blood pressure, while
the subjects in the no-exercise group did not expe-
rience a reduction. The researcher concludes that
exercise decreases blood pressure. Is this conclu-
sion better justified than the conclusion in Exer-
cise 8? Explain.

1.2 Summary Statistics

A sample is often a long list of numbers. To help make the important features of a sample
stand out, we compute summary statistics. The two most commonly used summary
statistics are the sample mean and the sample standard deviation. The mean gives an
indication of the center of the data, and the standard deviation gives an indication of how
spread out the data are.
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The Sample Mean
The sample mean is also called the “arithmetic mean,” or, more simply, the “average.”
It is the sum of the numbers in the sample, divided by how many there are.

Definition
Let X1, . . . , Xn be a sample. The sample mean is

X = 1

n

n∑
i=1

Xi (1.1)

Note that it is customary to use a letter with a bar over it (e.g., X ) to denote a sample mean.
Note also that the sample mean has the same units as the sample values X1, . . . , Xn .

Example
1.9 A simple random sample of five men is chosen from a large population of men, and

their heights are measured. The five heights (in inches) are 65.51, 72.30, 68.31, 67.05,
and 70.68. Find the sample mean.

Solution
We use Equation (1.1). The sample mean is

X = 1

5
(65.51 + 72.30 + 68.31 + 67.05 + 70.68) = 68.77 in.

The Standard Deviation
Here are two lists of numbers: 28, 29, 30, 31, 32 and 10, 20, 30, 40, 50. Both lists have the
same mean of 30. But clearly the lists differ in an important way that is not captured by
the mean: the second list is much more spread out than the first. The standard deviation
is a quantity that measures the degree of spread in a sample.

Let X1, . . . , Xn be a sample. The basic idea behind the standard deviation is that
when the spread is large, the sample values will tend to be far from their mean, but when
the spread is small, the values will tend to be close to their mean. So the first step in
calculating the standard deviation is to compute the differences (also called deviations)
between each sample value and the sample mean. The deviations are (X1 − X), . . . ,

(Xn − X). Now some of these deviations are positive and some are negative. Large
negative deviations are just as indicative of spread as large positive deviations are.
To make all the deviations positive we square them, obtaining the squared deviations
(X1 − X)2, . . . , (Xn − X)2. From the squared deviations we can compute a measure of
spread called the sample variance. The sample variance is the average of the squared
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deviations, except that we divide by n − 1 instead of n. It is customary to denote the
sample variance by s2.

Definition
Let X1, . . . , Xn be a sample. The sample variance is the quantity

s2 = 1

n − 1

n∑
i=1

(Xi − X)2 (1.2)

An equivalent formula, which can be easier to compute, is

s2 = 1

n − 1

(
n∑

i=1

X2
i − nX

2

)
(1.3)

While the sample variance is an important quantity, it has a serious drawback as a
measure of spread. Its units are not the same as the units of the sample values; instead they
are the squared units. To obtain a measure of spread whose units are the same as those
of the sample values, we simply take the square root of the variance. This quantity is
known as the sample standard deviation. It is customary to denote the sample standard
deviation by s (the square root of s2).

Definition
Let X1, . . . , Xn be a sample. The sample standard deviation is the quantity

s =
√√√√ 1

n − 1

n∑
i=1

(Xi − X)2 (1.4)

An equivalent formula, which can be easier to compute, is

s =
√√√√ 1

n − 1

(
n∑

i=1

X2
i − nX

2

)
(1.5)

The sample standard deviation is the square root of the sample variance.

It is natural to wonder why the sum of the squared deviations is divided by n − 1
rather than n. The purpose in computing the sample standard deviation is to estimate the
amount of spread in the population from which the sample was drawn. Ideally, therefore,
we would compute deviations from the mean of all the items in the population, rather
than the deviations from the sample mean. However, the population mean is in general
unknown, so the sample mean is used in its place. It is a mathematical fact that the
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deviations around the sample mean tend to be a bit smaller than the deviations around
the population mean and that dividing by n − 1 rather than n provides exactly the right
correction.

Example
1.10 Find the sample variance and the sample standard deviation for the height data in

Example 1.9.

Solution
We’ll first compute the sample variance by using Equation (1.2). The sample mean
is X = 68.77 (see Example 1.9). The sample variance is therefore

s2 = 1

4
[(65.51 − 68.77)2 + (72.30 − 68.77)2 + (68.31 − 68.77)2

+ (67.05 − 68.77)2 + (70.68 − 68.77)2] = 7.47665

Alternatively, we can use Equation (1.3):

s2 = 1

4
[65.512 + 72.302 + 68.312 + 67.052 + 70.682 − 5(68.772)] = 7.47665

The sample standard deviation is the square root of the sample variance:

s =
√

7.47665 = 2.73

What would happen to the sample mean, variance, and standard deviation if the
heights in Example 1.9 were measured in centimeters rather than inches? Let’s de-
note the heights in inches by X1, X2, X3, X4, X5, and the heights in centimeters by
Y1, Y2, Y3, Y4, Y5. The relationship between Xi and Yi is then given by Yi = 2.54Xi . If
you go back to Example 1.9, convert to centimeters, and compute the sample mean, you
will find that the sample means in centimeters and in inches are related by the equation
Y = 2.54X . Thus if we multiply each sample item by a constant, the sample mean is
multiplied by the same constant. As for the sample variance, you will find that the devia-
tions are related by the equation (Yi −Y ) = 2.54(Xi − X). It follows that s2

Y = 2.542s2
X ,

and that sY = 2.54sX .
What if each man in the sample put on 2-inch heels? Then each sample height would

increase by 2 inches and the sample mean would increase by 2 inches as well. In general,
if a constant is added to each sample item, the sample mean increases (or decreases) by
the same constant. The deviations, however, do not change, so the sample variance and
standard deviation are unaffected.

Summary
■ If X1, . . . , Xn is a sample and Yi = a + bXi , where a and b are constants,

then Y = a + bX .

■ If X1, . . . , Xn is a sample and Yi = a + bXi , where a and b are constants,
then s2

Y = b2s2
X , and sY = |b|sX .
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Outliers
Sometimes a sample may contain a few points that are much larger or smaller than the
rest. Such points are called outliers. See Figure 1.2 for an example. Sometimes outliers
result from data entry errors; for example, a misplaced decimal point can result in a
value that is an order of magnitude different from the rest. Outliers should always be
scrutinized, and any outlier that is found to result from an error should be corrected or
deleted. Not all outliers are errors. Sometimes a population may contain a few values
that are much different from the rest, and the outliers in the sample reflect this fact.

Outlier

FIGURE 1.2 A data set that contains an outlier.

Outliers are a real problem for data analysts. For this reason, when people see outliers
in their data, they sometimes try to find a reason, or an excuse, to delete them. An outlier
should not be deleted, however, unless there is reasonable certainty that it results from
an error. If a population truly contains outliers, but they are deleted from the sample, the
sample will not characterize the population correctly.

The Sample Median
The median, like the mean, is a measure of center. To compute the median of a sample,
order the values from smallest to largest. The sample median is the middle number. If
the sample size is an even number, it is customary to take the sample median to be the
average of the two middle numbers.

Definition
If n numbers are ordered from smallest to largest:

■ If n is odd, the sample median is the number in position
n + 1

2
.

■ If n is even, the sample median is the average of the numbers in positions
n

2
and

n

2
+ 1.

Example
1.11 Find the sample median for the height data in Example 1.9.

Solution
The five heights, arranged in increasing order, are 65.51, 67.05, 68.31, 70.68, 72.30.
The sample median is the middle number, which is 68.31.

The median is often used as a measure of center for samples that contain outliers.
To see why, consider the sample consisting of the values 1, 2, 3, 4, and 20. The mean is
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6, and the median is 3. It is reasonable to think that the median is more representative of
the sample than the mean is. See Figure 1.3.

Median Mean 

FIGURE 1.3 When a sample contains outliers, the median may be more representative
of the sample than the mean is.

The Trimmed Mean
Like the median, the trimmed mean is a measure of center that is designed to be
unaffected by outliers. The trimmed mean is computed by arranging the sample values
in order, “trimming” an equal number of them from each end, and computing the mean
of those remaining. If p% of the data are trimmed from each end, the resulting trimmed
mean is called the “p% trimmed mean.” There are no hard-and-fast rules on how many
values to trim. The most commonly used trimmed means are the 5%, 10%, and 20%
trimmed means. Note that the median can be thought of as an extreme form of trimmed
mean, obtained by trimming away all but the middle one or two sample values.

Since the number of data points trimmed must be a whole number, it is impossible
in many cases to trim the exact percentage of data that is called for. If the sample size is
denoted by n, and a p% trimmed mean is desired, the number of data points to be trimmed
is np/100. If this is not a whole number, the simplest thing to do when computing by
hand is to round it to the nearest whole number and trim that amount.

Example
1.12 In the article “Evaluation of Low-Temperature Properties of HMA Mixtures”

(P. Sebaaly, A. Lake, and J. Epps, Journal of Transportation Engineering, 2002:
578–583), the following values of fracture stress (in megapascals) were measured for
a sample of 24 mixtures of hot-mixed asphalt (HMA).

30 75 79 80 80 105 126 138 149 179 179 191

223 232 232 236 240 242 245 247 254 274 384 470

Compute the mean, median, and the 5%, 10%, and 20% trimmed means.

Solution
The mean is found by averaging together all 24 numbers, which produces a value
of 195.42. The median is the average of the 12th and 13th numbers, which is
(191 + 223)/2 = 207.00. To compute the 5% trimmed mean, we must drop 5%
of the data from each end. This comes to (0.05)(24) = 1.2 observations. We round
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1.2 to 1, and trim one observation off each end. The 5% trimmed mean is the average
of the remaining 22 numbers:

75 + 79 + · · · + 274 + 384

22
= 190.45

To compute the 10% trimmed mean, round off (0.1)(24) = 2.4 to 2. Drop 2
observations from each end, and then average the remaining 20:

79 + 80 + · · · + 254 + 274

20
= 186.55

To compute the 20% trimmed mean, round off (0.2)(24) = 4.8 to 5. Drop 5
observations from each end, and then average the remaining 14:

105 + 126 + · · · + 242 + 245

14
= 194.07

The Mode and the Range
The mode and the range are summary statistics that are of limited use but are occasionally
seen. The sample mode is the most frequently occurring value in a sample. If several
values occur with equal frequency, each one is a mode. The range is the difference
between the largest and smallest values in a sample. It is a measure of spread, but it
is rarely used, because it depends only on the two extreme values and provides no
information about the rest of the sample.

Example
1.13 Find the modes and the range for the sample in Example 1.12.

Solution
There are three modes: 80, 179, and 232. Each of these values appears twice, and no
other value appears more than once. The range is 470 − 30 = 440.

Quartiles
The median divides the sample in half. Quartiles divide it as nearly as possible into
quarters. A sample has three quartiles. There are several different ways to compute
quartiles, but all of them give approximately the same result. The simplest method when
computing by hand is as follows: Let n represent the sample size. Order the sample
values from smallest to largest. To find the first quartile, compute the value 0.25(n + 1).
If this is an integer, then the sample value in that position is the first quartile. If not, then
take the average of the sample values on either side of this value. The third quartile is
computed in the same way, except that the value 0.75(n +1) is used. The second quartile
uses the value 0.5(n + 1). The second quartile is identical to the median. We note that
some computer packages use slightly different methods to compute quartiles, so their
results may not be quite the same as the ones obtained by the method described here.
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Example
1.14 Find the first and third quartiles of the asphalt data in Example 1.12.

Solution
The sample size is n = 24. To find the first quartile, compute (0.25)(25) = 6.25. The
first quartile is therefore found by averaging the 6th and 7th data points, when the
sample is arranged in increasing order. This yields (105 + 126)/2 = 115.5. To find
the third quartile, compute (0.75)(25) = 18.75. We average the 18th and 19th data
points to obtain (242 + 245)/2 = 243.5.

Percentiles
The pth percentile of a sample, for a number p between 0 and 100, divides the sample
so that as nearly as possible p% of the sample values are less than the pth percentile,
and (100 − p)% are greater. There are many ways to compute percentiles; they all
produce similar results. We describe here a method analogous to the method described
for computing quartiles. Order the sample values from smallest to largest, and then
compute the quantity (p/100)(n + 1), where n is the sample size. If this quantity is an
integer, the sample value in this position is the pth percentile. Otherwise average the
two sample values on either side. Note that the first quartile is the 25th percentile, the
median is the 50th percentile, and the third quartile is the 75th percentile. Some computer
packages use slightly different methods to compute percentiles, so their results may differ
slightly from the ones obtained by this method.

Percentiles are often used to interpret scores on standardized tests. For example, if
a student is informed that her score on a college entrance exam is on the 64th percentile,
this means that 64% of the students who took the exam got lower scores.

Example
1.15 Find the 65th percentile of the asphalt data in Example 1.12.

Solution
The sample size is n = 24. To find the 65th percentile, compute (0.65)(25) = 16.25.
The 65th percentile is therefore found by averaging the 16th and 17th data points,
when the sample is arranged in increasing order. This yields (236 + 240)/2 = 238.

In practice, the summary statistics we have discussed are often calculated on a
computer, using a statistical software package. The summary statistics are sometimes
called descriptive statistics because they describe the data. We present an example
of the calculation of summary statistics from the software package MINITAB. Then
we will show how these statistics can be used to discover some important features of
the data.

For a Ph.D. thesis that investigated factors affecting diesel vehicle emissions,
J. Yanowitz of the Colorado School of Mines obtained data on emissions of particu-
late matter (PM) for a sample of 138 vehicles driven at low altitude (near sea level)
and for a sample of 62 vehicles driven at high altitude (approximately one mile above
sea level). All the vehicles were manufactured between 1991 and 1996. The samples
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contained roughly equal proportions of high- and low-mileage vehicles. The data, in
units of grams of particulates per gallon of fuel consumed, are presented in Tables 1.1
and 1.2. At high altitude, the barometric pressure is lower, so the effective air/fuel ratio
is lower as well. For this reason it was thought that PM emissions might be greater at
higher altitude. We would like to compare the samples to determine whether the data
support this assumption. It is difficult to do this simply by examining the raw data in the
tables. Computing summary statistics makes the job much easier. Figure 1.4 presents
summary statistics for both samples, as computed by MINITAB.

TABLE 1.1 Particulate matter (PM) emissions (in g/gal) for 138 vehicles driven at low altitude

1.50 0.87 1.12 1.25 3.46 1.11 1.12 0.88 1.29 0.94 0.64 1.31 2.49
1.48 1.06 1.11 2.15 0.86 1.81 1.47 1.24 1.63 2.14 6.64 4.04 2.48
2.98 7.39 2.66 11.00 4.57 4.38 0.87 1.10 1.11 0.61 1.46 0.97 0.90
1.40 1.37 1.81 1.14 1.63 3.67 0.55 2.67 2.63 3.03 1.23 1.04 1.63
3.12 2.37 2.12 2.68 1.17 3.34 3.79 1.28 2.10 6.55 1.18 3.06 0.48
0.25 0.53 3.36 3.47 2.74 1.88 5.94 4.24 3.52 3.59 3.10 3.33 4.58
6.73 7.82 4.59 5.12 5.67 4.07 4.01 2.72 3.24 5.79 3.59 3.48 2.96
5.30 3.93 3.52 2.96 3.12 1.07 5.30 5.16 7.74 5.41 3.40 4.97 11.23
9.30 6.50 4.62 5.45 4.93 6.05 5.82 10.19 3.62 2.67 2.75 8.92 9.93
6.96 5.78 9.14 10.63 8.23 6.83 5.60 5.41 6.70 5.93 4.51 9.04 7.71
7.21 4.67 4.49 4.63 2.80 2.16 2.97 3.90

TABLE 1.2 Particulate matter (PM) emissions (in g/gal) for 62 vehicles driven at high altitude

7.59 6.28 6.07 5.23 5.54 3.46 2.44 3.01 13.63 13.02 23.38 9.24 3.22
2.06 4.04 17.11 12.26 19.91 8.50 7.81 7.18 6.95 18.64 7.10 6.04 5.66
8.86 4.40 3.57 4.35 3.84 2.37 3.81 5.32 5.84 2.89 4.68 1.85 9.14
8.67 9.52 2.68 10.14 9.20 7.31 2.09 6.32 6.53 6.32 2.01 5.91 5.60
5.61 1.50 6.46 5.29 5.64 2.07 1.11 3.32 1.83 7.56

In Figure 1.4, the quantity labeled “N” is the sample size. Following that is the
sample mean. The next quantity (SE Mean) is the standard error of the mean. The
standard error of the mean is equal to the standard deviation divided by the square root
of the sample size. This is a quantity that is not used much as a descriptive statistic,
although it is important for applications such as constructing confidence intervals and
hypothesis tests, which we will cover in Chapters 5 and 6. Following the standard error
of the mean is the 5% trimmed mean (TrMean), and the standard deviation. Finally, the
second line of the output provides the minimum, median, and maximum, as well as the
first and third quartiles (Q1 and Q3). We note that the values of the quartiles produced
by the computer package differ slightly from the values that would be computed by the
methods we describe. This is not surprising, since there are several ways to compute
these values. The differences are not large enough to have any practical importance.

The summary statistics tell a lot about the differences in PM emissions between
high- and low-altitude vehicles. First, note that the mean is indeed larger for the high-
altitude vehicles than for the low-altitude vehicles (6.596 vs. 3.715), which supports the
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Descriptive Statistics: LowAltitude, HiAltitude

Variable N Mean SE Mean TrMean StDev
LoAltitude 138 3.715 0.218 3.526 2.558
HiAltitude 62 6.596 0.574 6.118 4.519

Variable Minimum Q1 Median Q3 Maximum
LoAltitude 0.250 1.468 3.180 5.300 11.230
HiAltitude 1.110 3.425 5.750 7.983 23.380

FIGURE 1.4 MINITAB output presenting descriptive statistics for the PM data in
Tables 1.1 and 1.2.

hypothesis that emissions tend to be greater at high altitudes. Now note that the maxi-
mum value for the high-altitude vehicles (23.38) is much higher than the maximum for
the low-altitude vehicles (11.23). This shows that there are one or more high-altitude
vehicles whose emissions are much higher than the highest of the low-altitude vehicles.
Could the difference in mean emissions be due entirely to these vehicles? To answer
this, compare the medians, the first and third quartiles, and the trimmed means. These
statistics are not affected much by a few large values, yet all of them are noticeably larger
for the high-altitude vehicles. Therefore, we can conclude that the high-altitude vehicles
not only contain a few very high emitters, they also have higher emissions than the low-
altitude vehicles in general. Finally note that the standard deviation is larger for the high-
altitude vehicles, which indicates that the values for the high-altitude vehicles are
more spread out than those for the low-altitude vehicles. At least some of this dif-
ference in spread must be due to the one or more high-altitude vehicles with very high
emissions.

Summary Statistics for Categorical Data
With categorical data, each sample item is assigned a category rather than a quantitative
value. But to work with categorical data, numerical summaries are needed. The two
most commonly used ones are the frequencies and the sample proportions (sometimes
called relative frequencies). The frequency for a given category is simply the number of
sample items that fall into that category. The sample proportion is the frequency divided
by the sample size.

Example
1.16 A process manufactures crankshaft journal bearings for an internal combustion en-

gine. Bearings whose thicknesses are between 1.486 and 1.490 mm are classified
as conforming, which means that they meet the specification. Bearings thicker than
this are reground, and bearings thinner than this are scrapped. In a sample of 1000
bearings, 910 were conforming, 53 were reground, and 37 were scrapped. Find the
frequencies and sample proportions.

Solution
The frequencies are 910, 53, and 37. The sample proportions are 910/1000 = 0.910,
53/1000 = 0.053, and 37/1000 = 0.037.
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Sample Statistics and Population Parameters
Each of the sample statistics we have discussed has a population counterpart. This is easy
to see when the population is finite. For example, for a finite population of numerical
values, the population mean is simply the average of all the values in the population; the
population median is the middle value, or average of the two middle values; and so on.
In fact, any numerical summary used for a sample can be used for a finite population,
just by applying the methods of calculation to the population values rather than the
sample values. One small exception occurs for the population variance, where we divide
by n rather than n − 1. There is a difference in terminology for numerical summaries
of populations as opposed to samples. Numerical summaries of a sample are called
statistics, while numerical summaries of a population are called parameters. Of course,
in practice, the entire population is never observed, so the population parameters cannot
be calculated directly. Instead, the sample statistics are used to estimate the values of the
population parameters.

The methods for computing sample statistics require that the sample be finite. There-
fore, when a population contains an infinite number of values, the methods for computing
sample statistics cannot be applied to compute population parameters. For infinite pop-
ulations, parameters such as the mean and variance are computed by procedures that
generalize the methods used to compute sample statistics, and which involve infinite
sums or integrals. We will describe these procedures in Chapter 2.

Summary

■ A numerical summary of a sample is called a statistic.

■ A numerical summary of a population is called a parameter.

■ Statistics are often used to estimate parameters.

Exercises for Section 1.2

1. True or false: For any list of numbers, half of them
will be below the mean.

2. Is the sample mean always the most frequently occur-
ring value? If so, explain why. If not, give an example.

3. Is the sample mean always equal to one of the val-
ues in the sample? If so, explain why. If not, give an
example.

4. Is the sample median always equal to one of the val-
ues in the sample? If so, explain why. If not, give an
example.

5. Find a sample size for which the median will always
equal one of the values in the sample.

6. For a list of positive numbers, is it possible for the
standard deviation to be greater than the mean? If so,
give an example. If not, explain why not.

7. Is it possible for the standard deviation of a list of
numbers to equal 0? If so, give an example. If not,
explain why not.

8. In a certain company, every worker received a $50-
per-week raise. How does this affect the mean salary?
The standard deviation of the salaries?

9. In another company, every worker received a 5% raise.
How does this affect the mean salary? The standard
deviation of the salaries?
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10. A sample of 100 adult women was taken, and each was
asked how many children she had. The results were as
follows:

Children 0 1 2 3 4 5
Number of Women 27 22 30 12 7 2

a. Find the sample mean number of children.

b. Find the sample standard deviation of the number
of children.

c. Find the sample median of the number of children.

d. What is the first quartile of the number of children?

e. What proportion of the women had more than the
mean number of children?

f. For what proportion of the women was the num-
ber of children more than one standard deviation
greater than the mean?

g. For what proportion of the women was the num-
ber of children within one standard deviation of
the mean?

11. In a sample of 20 men, the mean height was 178 cm.
In a sample of 30 women, the mean height was
164 cm. What was the mean height for both groups put
together?

12. Each of 16 students measured the circumference of a
tennis ball by four different methods, which were:

Method A: Estimate the circumference by eye.

Method B: Measure the diameter with a ruler, and then
compute the circumference.

Method C: Measure the circumference with a ruler
and string.

Method D: Measure the circumference by rolling the
ball along a ruler.

The results (in cm) are as follows, in increasing order
for each method:

Method A: 18.0, 18.0, 18.0, 20.0, 22.0, 22.0, 22.5,
23.0, 24.0, 24.0, 25.0, 25.0, 25.0, 25.0, 26.0, 26.4.

Method B: 18.8, 18.9, 18.9, 19.6, 20.1, 20.4, 20.4,
20.4, 20.4, 20.5, 21.2, 22.0, 22.0, 22.0, 22.0, 23.6.

Method C: 20.2, 20.5, 20.5, 20.7, 20.8, 20.9, 21.0,
21.0, 21.0, 21.0, 21.0, 21.5, 21.5, 21.5, 21.5, 21.6.

Method D: 20.0, 20.0, 20.0, 20.0, 20.2, 20.5, 20.5,
20.7, 20.7, 20.7, 21.0, 21.1, 21.5, 21.6, 22.1, 22.3.

a. Compute the mean measurement for each method.

b. Compute the median measurement for each
method.

c. Compute the 20% trimmed mean measurement for
each method.

d. Compute the first and third quartiles for each
method.

e. Compute the standard deviation of the measure-
ments for each method.

f. For which method is the standard deviation the
largest? Why should one expect this method to
have the largest standard deviation?

g. Other things being equal, is it better for a measure-
ment method to have a smaller standard deviation
or a larger standard deviation? Or doesn’t it matter?
Explain.

13. Refer to Exercise 12.

a. If the measurements for one of the methods were
converted to inches (1 inch = 2.54 cm), how would
this affect the mean? The median? The quartiles?
The standard deviation?

b. If the students remeasured the ball, using a ruler
marked in inches, would the effects on the mean,
median, quartiles, and standard deviation be the
same as in part (a)? Explain.

14. There are 10 employees in a particular division of
a company. Their salaries have a mean of $70,000,
a median of $55,000, and a standard deviation of
$20,000. The largest number on the list is $100,000.
By accident, this number is changed to $1,000,000.

a. What is the value of the mean after the change?

b. What is the value of the median after the change?

c. What is the value of the standard deviation after
the change?

15. Quartiles divide a sample into four nearly equal pieces.
In general, a sample of size n can be broken into k
nearly equal pieces by using the cutpoints (i/k)(n+1)

for i = 1, . . . , k − 1. Consider the following ordered
sample:

2 18 23 41 44 46 49 61 62 74 76 79 82 89 92 95

a. Tertiles divide a sample into thirds. Find the tertiles
of this sample.

b. Quintiles divide a sample into fifths. Find the quin-
tiles of this sample.
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16. In each of the following data sets, tell whether the
outlier seems certain to be due to an error, or whether
it could conceivably be correct.

a. The length of a rod is measured five times.
The readings in centimeters are 48.5, 47.2, 4.91,
49.5, 46.3.

b. The prices of five cars on a dealer’s lot are $25,000,
$30,000, $42,000, $110,000, $31,000.

1.3 Graphical Summaries

Stem-and-Leaf Plots
The mean, median, and standard deviation are numerical summaries of a sample or of a
population. Graphical summaries are used as well to help visualize a list of numbers. The
graphical summary that we will discuss first is the stem-and-leaf plot. A stem-and-leaf
plot is a simple way to summarize a data set.

As an example, the data in Table 1.3 concern the geyser Old Faithful in Yellowstone
National Park. This geyser alternates periods of eruption, which typically last from 1.5 to 4
minutes, with periods of dormancy, which are considerably longer. Table 1.3 presents the
durations, in minutes, of 60 dormant periods. The list has been sorted into numerical order.

TABLE 1.3 Durations (in minutes) of dormant periods of the geyser Old Faithful

42 45 49 50 51 51 51 51 53 53
55 55 56 56 57 58 60 66 67 67
68 69 70 71 72 73 73 74 75 75
75 75 76 76 76 76 76 79 79 80
80 80 80 81 82 82 82 83 83 84
84 84 85 86 86 86 88 90 91 93

Figure 1.5 presents a stem-and-leaf plot of the geyser data. Each item in the sample
is divided into two parts: a stem, consisting of the leftmost one or two digits, and the
leaf, which consists of the next digit. In Figure 1.5, the stem consists of the tens digit and
the leaf consists of the ones digit. Each line of the stem-and-leaf plot contains all of the
sample items with a given stem. The stem-and-leaf plot is a compact way to represent
the data. It also gives some indication of its shape. For the geyser data, we can see that
there are relatively few durations in the 60–69 minute interval, compared with the 50–59,
70–79, or 80–89 minute intervals.

Stem Leaf
4 259
5 0111133556678
6 067789
7 01233455556666699
8 000012223344456668
9 013

FIGURE 1.5 Stem-and-leaf plot for the geyser data in Table 1.3.
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Stem-and-leaf of HiAltitude N = 62
Leaf Unit = 1.0

4 0 1111
19 0 222222223333333

(14) 0 44445555555555
29 0 66666666777777
15 0 8889999
8 1 0
7 1 233
4 1
4 1 7
3 1 89
1 2
1 2 3

FIGURE 1.6 Stem-and-leaf plot of the PM data in Table 1.2 in Section 1.2 as produced
by MINITAB.

When there are a great many sample items with the same stem, it is often necessary
to assign more than one row to that stem. As an example, Figure 1.6 presents a computer-
generated stem-and-leaf plot, produced by MINITAB, for the PM data in Table 1.2 in
Section 1.2. The middle column, consisting of 0s, 1s, and 2s, contains the stems, which
are the tens digits. To the right of the stems are the leaves, consisting of the ones digits
for each of the sample items. Since many numbers are less than 10, the 0 stem must be
assigned several lines, five in this case. Specifically, the first line contains the sample
items whose ones digits are either 0 or 1, the next line contains the items whose ones
digits are either 2 or 3, and so on. For consistency, all the stems are assigned several
lines in the same way, even though there are few enough values for the 1 and 2 stems
that they could have fit on fewer lines.

The output in Figure 1.6 contains a cumulative frequency column to the left of the
stem-and-leaf plot. The upper part of this column provides a count of the number of
items at or above the current line, and the lower part of the column provides a count of
the number of items at or below the current line. Next to the line that contains the median
is the count of items in that line, shown in parentheses.

A good feature of stem-and-leaf plots is that they display all the sample values. One
can reconstruct the sample in its entirety from a stem-and-leaf plot—with one important
exception: The order in which the items were sampled cannot be determined.

Dotplots
A dotplot is a graph that can be used to give a rough impression of the shape of a sample.
It is useful when the sample size is not too large and when the sample contains some
repeated values. Figure 1.7 (page 27) presents a dotplot for the geyser data in Table 1.3.
For each value in the sample a vertical column of dots is drawn, with the number of dots
in the column equal to the number of times the value appears in the sample. The dotplot
gives a good indication of where the sample values are concentrated and where the gaps
are. For example, it is immediately apparent from Figure 1.7 that the sample contains no
dormant periods between 61 and 65 minutes in length.
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40 50 60 70 80 90 100

FIGURE 1.7 Dotplot for the geyser data in Table 1.3.

Stem-and-leaf plots and dotplots are good methods for informally examining a
sample, and they can be drawn fairly quickly with pencil and paper. They are rarely used
in formal presentations, however. Graphics more commonly used in formal presentations
include the histogram and the boxplot, which we will now discuss.

Histograms
A histogram is a graphic that gives an idea of the “shape” of a sample, indicating
regions where sample points are concentrated and regions where they are sparse. We
will construct a histogram for the PM emissions of 62 vehicles driven at high altitude,
as presented in Table 1.2 (Section 1.2). The sample values range from a low of 1.11 to
a high of 23.38, in units of grams of emissions per gallon of fuel. The first step is to
construct a frequency table, shown in Table 1.4.

TABLE 1.4 Frequency table for PM emissions of 62 vehicles driven at
high altitude

Class Relative
Interval (g/gal) Frequency Frequency Density

1–< 3 12 0.1935 0.0968
3–< 5 11 0.1774 0.0887
5–< 7 18 0.2903 0.1452
7–< 9 9 0.1452 0.0726
9–< 11 5 0.0806 0.0403

11–< 13 1 0.0161 0.0081
13–< 15 2 0.0323 0.0161
15–< 17 0 0.0000 0.0000
17–< 19 2 0.0323 0.0161
19–< 21 1 0.0161 0.0081
21–< 23 0 0.0000 0.0000
23–< 25 1 0.0161 0.0081

The intervals in the left-hand column are called class intervals. They divide the
sample into groups. For most histograms, the class intervals all have the same width. In
Table 1.4, all classes have width 2. The notation 1–< 3, 3–< 5, and so on, indicates that
a point on the boundary will go into the class on its right. For example, a sample value
equal to 3 will go into the class 3–< 5, not 1–< 3.

There is no hard-and-fast rule as to how to choose the endpoints of the class intervals.
In general, it is good to have more intervals rather than fewer, but it is also good to have
large numbers of sample points in the intervals. Striking the proper balance is a matter
of judgment and of trial and error. When the number of observations n is large (several
hundred or more), some have suggested that reasonable starting points for the number
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of classes may be log2 n or 2n1/3. When the number of observations is smaller, more
classes than these are often needed.

The column labeled “Frequency” in Table 1.4 presents the numbers of data points
that fall into each of the class intervals. The column labeled “Relative Frequency”
presents the frequencies divided by the total number of data points, which for these
data is 62. The relative frequency of a class interval is the proportion of data points
that fall into the interval. Note that since every data point is in exactly one class in-
terval, the relative frequencies must sum to 1. Finally, the column labeled “Density”
presents the relative frequency divided by the class width. In this case all classes have
width 2, so the densities are found by dividing the relative frequencies by 2. Note that
when the classes are of equal width, the frequencies, relative frequencies, and densities
are proportional to one another.

Figure 1.8 presents a histogram for Table 1.4. The units on the horizontal axis are
the units of the data, in this case grams per gallon. Each class interval is represented by a
rectangle. When the class intervals are of equal width, the heights of the rectangles may
be set equal to the frequencies, the relative frequencies, or the densities. Since these three
quantities are proportional, the shape of the histogram will be the same in each case. For
the histogram in Figure 1.8, the heights of the rectangles are the relative frequencies.

1 3 5 7 9 11 13 15 17 19 21 23 25

Emissions (g/gal)
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FIGURE 1.8 Histogram for the data in Table 1.4. In this histogram the heights of
the rectangles are the relative frequencies. Since the class widths are all the same, the
frequencies, relative frequencies, and densities are proportional to one another, so it
would have been equally appropriate to set the heights equal to the frequencies or to the
densities.

Unequal Class Widths
In some cases, histograms are drawn with class intervals of differing widths. This
may be done when it is desired for the histogram to have a smoother appearance, or
when the data come in the form of a frequency table in which the classes have unequal
widths. Table 1.5 presents the PM data of Table 1.4 with the last seven classes collapsed
into two.
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TABLE 1.5 Frequency table, with unequal class widths, for PM
emissions of 62 vehicles driven at high altitude

Class Relative
Interval (g/gal) Frequency Frequency Density

1–< 3 12 0.1935 0.0968
3–< 5 11 0.1774 0.0887
5–< 7 18 0.2903 0.1452
7–< 9 9 0.1452 0.0726
9–< 11 5 0.0806 0.0403

11–< 15 3 0.0484 0.0121
15–< 25 4 0.0645 0.0065

It is important to note that because the class widths vary in size, the densities
are no longer proportional to the relative frequencies. Instead, the densities adjust the
relative frequency for the width of the class. Other things being equal, wider classes tend
to contain more sample items than the narrower classes, and thus tend to have larger
relative frequencies. Dividing the relative frequency by the class width to obtain the
density adjusts for this tendency. For this reason, when the classes have unequal widths,
the heights of the rectangles must be set equal to the densities. The areas of the rectangles
then represent the relative frequencies.

Figure 1.9 presents the histogram for Table 1.5. Comparing this histogram to the one
in Figure 1.8 shows that the string of small rectangles on the right has been smoothed out.
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FIGURE 1.9 Histogram for the PM emissions for high-altitude vehicles. The frequency
table is presented in Table 1.5. Since the classes have differing widths, the heights of the
rectangles must be set equal to the densities. The areas of the rectangles are then equal
to the relative frequencies. Compare with the equal-class-width histogram in Figure 1.8.

Summary
When the class intervals are of unequal widths, the heights of the rectangles must
be set equal to the densities. The areas of the rectangles will then be the relative
frequencies.
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Example
1.17 Use the histogram in Figure 1.8 to determine the proportion of the vehicles in the

sample with emissions between 7 and 11 g/gal.

Solution
The proportion is the sum of the relative frequencies of the classes spanning the range
between 7 and 11. This is found by adding the heights of the rectangles for the two
class intervals covered. The result is 0.1452 + 0.0806 = 0.2258. Note that this result
can also be obtained from the frequency table. The proportion of data points with
values between 7 and 9 is 0.1452, and the proportion between 9 and 11 is 0.0806.
The proportion between 7 and 11 is therefore equal to 0.1452 + 0.0806 = 0.2258.

Example
1.18 Use the histogram in Figure 1.9 to determine the proportion of the vehicles in the

sample with emissions between 9 and 15 g/gal.

Solution
The proportion is the sum of the relative frequencies of the two classes spanning
the range between 9 and 15. Since the heights of the rectangles represent densities,
the areas of the rectangles represent relative frequencies. The sum of the areas of the
rectangles is (2)(0.0403) + (4)(0.0121) = 0.129. Note that this result can also be
obtained from the frequency table. The proportion of data points with values between
9 and 11 is 0.0806, and the proportion between 11 and 15 is 0.0484. The proportion
between 9 and 15 is therefore equal to 0.0806 + 0.0484 = 0.129.

Summary
To construct a histogram:

■ Choose boundary points for the class intervals.

■ Compute the frequency and relative frequency for each class. (Relative
frequency is optional if the classes all have the same width.)

■ Compute the density for each class, according to the formula

Density = Relative Frequency

Class Width

(This step is optional if the classes all have the same width.)

■ Draw a rectangle for each class. If the classes all have the same width, the
heights of the rectangles may be set equal to the frequencies, the relative
frequencies, or the densities. If the classes do not all have the same width,
the heights of the rectangles must be set equal to the densities.
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FIGURE 1.10 (a) A histogram skewed to the left. The mean is less than the median. (b) A nearly symmetric
histogram. The mean and median are approximately equal. (c) A histogram skewed to the right. The mean is greater
than the median.

Symmetry and Skewness
A histogram is perfectly symmetric if its right half is a mirror image of its left half.
Histograms that are not symmetric are referred to as skewed. In practice, virtually no
sample has a perfectly symmetric histogram; all exhibit some degree of skewness. In a
skewed histogram, one side, or tail, is longer than the other. A histogram with a long
right-hand tail is said to be skewed to the right, or positively skewed. A histogram
with a long left-hand tail is said to be skewed to the left, or negatively skewed. While
there is a formal mathematical method for measuring the skewness of a histogram, it is
rarely used; instead people judge the degree of skewness informally by looking at the
histogram. Figure 1.10 presents some histograms for hypothetical samples. Note that
for a histogram that is skewed to the right (Figure 1.10c), the mean is greater than the
median. The reason for this is that the mean is near the center of mass of the histogram,
that is, it is near the point where the histogram would balance if supported there. For a
histogram skewed to the right, more than half the data will be to the left of the center of
mass. Similarly, the mean is less than the median for a histogram that is skewed to the
left (Figure 1.10a). The histogram for the PM data (Figure 1.8) is skewed to the right.
The sample mean is 6.596, which is greater than the sample median of 5.75.

Unimodal and Bimodal Histograms
We have used the term “mode” to refer to the most frequently occurring value in a sample.
This term is also used in regard to histograms and other curves to refer to a peak, or
local maximum. A histogram is unimodal if it has only one peak, or mode, and bimodal
if it has two clearly distinct modes. In principle, a histogram can have more than two
modes, but this does not happen often in practice. The histograms in Figure 1.10 are
all unimodal. Figure 1.11 (page 32) presents a bimodal histogram for a hypothetical
sample.
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FIGURE 1.11 A bimodal histogram.

In some cases, a bimodal histogram indicates that the sample can be divided into two
subsamples that differ from each other in some scientifically important way. Each sample
corresponds to one of the modes. As an example, Table 1.6 presents the durations of 60
dormant periods of the geyser Old Faithful (originally presented in Table 1.3). Along with
the durations of the dormant period, in minutes, the duration of the eruption immediately
preceding the dormant period is classified either as short (less than 3 minutes) or long
(more than 3 minutes).

Figure 1.12a presents a histogram for all 60 durations. Figures 1.12b and 1.12c
present histograms for the durations following short and long eruptions, respectively.
The histogram for all the durations is clearly bimodal. The histograms for the durations
following short or long eruptions are both unimodal, and their modes form the two modes
of the histogram for the full sample.

TABLE 1.6 Durations of dormant periods (in minutes) and of the previous eruptions of the geyser Old Faithful

Dormant Eruption Dormant Eruption Dormant Eruption Dormant Eruption

76 Long 90 Long 45 Short 84 Long
80 Long 42 Short 88 Long 70 Long
84 Long 91 Long 51 Short 79 Long
50 Short 51 Short 80 Long 60 Long
93 Long 79 Long 49 Short 86 Long
55 Short 53 Short 82 Long 71 Long
76 Long 82 Long 75 Long 67 Short
58 Short 51 Short 73 Long 81 Long
74 Long 76 Long 67 Long 76 Long
75 Long 82 Long 68 Long 83 Long
80 Long 84 Long 86 Long 76 Long
56 Short 53 Short 72 Long 55 Short
80 Long 86 Long 75 Long 73 Long
69 Long 51 Short 75 Long 56 Short
57 Long 85 Long 66 Short 83 Long
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FIGURE 1.12 (a) Histogram for all 60 durations in Table 1.6. This histogram is bimodal. (b) Histogram for the
durations in Table 1.6 that follow short eruptions. (c) Histogram for the durations in Table 1.6 that follow long eruptions.
The histograms for the durations following short eruptions and for those following long eruptions are both unimodal, but
the modes are in different places. When the two samples are combined, the histogram is bimodal.

Boxplots
A boxplot is a graphic that presents the median, the first and third quartiles, and any
outliers that are present in a sample. Boxplots are easy to understand, but there is a bit of
terminology that goes with them. The interquartile range is the difference between the
third quartile and the first quartile. Note that since 75% of the data is less than the third
quartile, and 25% of the data is less than the first quartile, it follows that 50%, or half,
of the data are between the first and third quartiles. The interquartile range is therefore
the distance needed to span the middle half of the data.

We have defined outliers as points that are unusually large or small. If IQR represents
the interquartile range, then for the purpose of drawing boxplots, any point that is more
than 1.5 IQR above the third quartile, or more than 1.5 IQR below the first quartile, is
considered an outlier. Some texts define a point that is more than 3 IQR from the first
or third quartile as an extreme outlier. These definitions of outliers are just conventions
for drawing boxplots and need not be used in other situations.

Figure 1.13 (page 34) presents a boxplot for some hypothetical data. The plot con-
sists of a box whose bottom side is the first quartile and whose top side is the third quar-
tile. A horizontal line is drawn at the median. The “outliers” are plotted individually and
are indicated by crosses in the figure. Extending from the top and bottom of the box are
vertical lines called “whiskers.” The whiskers end at the most extreme data point that is
not an outlier.

Apart from any outliers, a boxplot can be thought of as having four pieces: the two
parts of the box separated by the median line, and the two whiskers. Again apart from
outliers, each of these four parts represents one-quarter of the data. The boxplot therefore
indicates how large an interval is spanned by each quarter of the data, and in this way
it can be used to determine the regions in which the sample values are more densely
crowded and the regions in which they are more sparse.
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FIGURE 1.13 Anatomy of a boxplot.

Steps in the Construction of a Boxplot
■ Compute the median and the first and third quartiles of the sample. Indicate

these with horizontal lines. Draw vertical lines to complete the box.

■ Find the largest sample value that is no more than 1.5 IQR above the
third quartile, and the smallest sample value that is no more than 1.5 IQR
below the first quartile. Extend vertical lines (whiskers) from the quartile
lines to these points.

■ Points more than 1.5 IQR above the third quartile, or more than 1.5 IQR
below the first quartile, are designated as outliers. Plot each outlier
individually.

Figure 1.14 presents a boxplot for the geyser data presented in Table 1.6. First note
that there are no outliers in these data. Comparing the four pieces of the boxplot, we can
tell that the sample values are comparatively densely packed between the median and
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FIGURE 1.14 Boxplot for the Old Faithful dormant period data presented in Table 1.6.
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the third quartile, and more sparse between the median and the first quartile. The lower
whisker is a bit longer than the upper one, indicating that the data has a slightly longer
lower tail than an upper tail. Since the distance between the median and the first quartile
is greater than the distance between the median and the third quartile, and since the
lower quarter of the data produces a longer whisker than the upper quarter, this boxplot
suggests that the data are skewed to the left.

A histogram for these data was presented in Figure 1.12a. The histogram presents a
more general impression of the spread of the data. Importantly, the histogram indicates
that the data are bimodal, which a boxplot cannot do.

Comparative Boxplots
A major advantage of boxplots is that several of them may be placed side by side,
allowing for easy visual comparison of the features of several samples. Tables 1.1 and 1.2
(in Section 1.2) presented PM emissions data for vehicles driven at high and low altitudes.
Figure 1.15 presents a side-by-side comparison of the boxplots for these two samples.
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FIGURE 1.15 Comparative boxplots for PM emissions data for vehicles driven at high
versus low altitudes.

The comparative boxplots in Figure 1.15 show that vehicles driven at low altitude
tend to have lower emissions. In addition, there are several outliers among the data for
high-altitude vehicles whose values are much higher than any of the values for the low-
altitude vehicles (there is also one low-altitude value that barely qualifies as an outlier).
We conclude that at high altitudes, vehicles have somewhat higher emissions in general,
and that a few vehicles have much higher emissions. The box for the high-altitude vehicles
is a bit taller, and the lower whisker a bit longer, than that for the low-altitude vehicles.
We conclude that apart from the outliers, the spread in values is slightly larger for the
high-altitude vehicles and is much larger when the outliers are considered.

In Figure 1.4 (in Section 1.2) we compared the values of some numerical descriptive
statistics for these two samples, and reached some conclusions similar to the previous
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ones. The visual nature of the comparative boxplots in Figure 1.15 makes comparing the
features of samples much easier.

We have mentioned that it is important to scrutinize outliers to determine whether
they have resulted from errors, in which case they may be deleted. By identifying outliers,
boxplots can be useful in this regard. The following example provides an illustration.

The article “Virgin Versus Recycled Wafers for Furnace Qualification: Is the Expense
Justified?” (V. Czitrom and J. Reece, in Statistical Case Studies for Industrial Process
Improvement, ASA and SIAM, 1997:87–104) describes a process for growing a thin
silicon dioxide layer onto silicon wafers that are to be used in semiconductor manufacture.
Table 1.7 presents thickness measurements, in angstroms (A

◦
), of the oxide layer for 24

wafers. Nine measurements were made on each wafer. The wafers were produced in two
separate runs, with 12 wafers in each run.

TABLE 1.7 Oxide layer thicknesses for silicon wafers

Wafer Thicknesses (A
◦

)

Run 1 1 90.0 92.2 94.9 92.7 91.6 88.2 92.0 98.2 96.0
2 91.8 94.5 93.9 77.3 92.0 89.9 87.9 92.8 93.3
3 90.3 91.1 93.3 93.5 87.2 88.1 90.1 91.9 94.5
4 92.6 90.3 92.8 91.6 92.7 91.7 89.3 95.5 93.6
5 91.1 89.8 91.5 91.5 90.6 93.1 88.9 92.5 92.4
6 76.1 90.2 96.8 84.6 93.3 95.7 90.9 100.3 95.2
7 92.4 91.7 91.6 91.1 88.0 92.4 88.7 92.9 92.6
8 91.3 90.1 95.4 89.6 90.7 95.8 91.7 97.9 95.7
9 96.7 93.7 93.9 87.9 90.4 92.0 90.5 95.2 94.3

10 92.0 94.6 93.7 94.0 89.3 90.1 91.3 92.7 94.5
11 94.1 91.5 95.3 92.8 93.4 92.2 89.4 94.5 95.4
12 91.7 97.4 95.1 96.7 77.5 91.4 90.5 95.2 93.1

Run 2 1 93.0 89.9 93.6 89.0 93.6 90.9 89.8 92.4 93.0
2 91.4 90.6 92.2 91.9 92.4 87.6 88.9 90.9 92.8
3 91.9 91.8 92.8 96.4 93.8 86.5 92.7 90.9 92.8
4 90.6 91.3 94.9 88.3 87.9 92.2 90.7 91.3 93.6
5 93.1 91.8 94.6 88.9 90.0 97.9 92.1 91.6 98.4
6 90.8 91.5 91.5 91.5 94.0 91.0 92.1 91.8 94.0
7 88.0 91.8 90.5 90.4 90.3 91.5 89.4 93.2 93.9
8 88.3 96.0 92.8 93.7 89.6 89.6 90.2 95.3 93.0
9 94.2 92.2 95.8 92.5 91.0 91.4 92.8 93.6 91.0

10 101.5 103.1 103.2 103.5 96.1 102.5 102.0 106.7 105.4
11 92.8 90.8 92.2 91.7 89.0 88.5 87.5 93.8 91.4
12 92.1 93.4 94.0 94.7 90.8 92.1 91.2 92.3 91.1

The 12 wafers in each run were of several different types and were processed in
several different furnace locations. The purpose in collecting the data was to determine
whether the thickness of the oxide layer was affected either by the type of wafer or the
furnace location. This was therefore a factorial experiment, with wafer type and furnace
location as the factors, and oxide layer thickness as the outcome. The experiment was
designed so that there was not supposed to be any systematic difference in the thicknesses
between one run and another. The first step in the analysis was to construct a boxplot for
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FIGURE 1.16 Comparative boxplots for oxide layer thickness data.

the data in each run to help determine if this condition was in fact met, and whether any
of the observations should be deleted. The results are presented in Figure 1.16.

The boxplots show that there were several outliers in each run. Note that apart from
these outliers, there are no striking differences between the samples, and therefore no
evidence of any systematic difference between the runs. The next task is to inspect the
outliers, to determine which, if any, should be deleted. By examining the data in Table 1.7,
it can be seen that the eight largest measurements in run 2 occurred on a single wafer:
number 10.

It was then determined that this wafer had been contaminated with a film residue,
which caused the large thickness measurements. It would therefore be appropriate
to delete these measurements. In the actual experiment, the engineers had data from
several other runs available, and for technical reasons, decided to delete the entire run,
rather than to analyze a run that was missing one wafer. In run 1, the three smallest
measurements were found to have been caused by a malfunctioning gauge, and were
therefore appropriately deleted. No cause could be determined for the remaining two
outliers in run 1, so they were included in the analysis.

Multivariate Data
Sometimes the items in a population may have several values associated with them.
For example, imagine choosing a random sample of days and determining the average
temperature and humidity on each day. Each day in the population provides two values,
temperature and humidity. The random sample therefore would consist of pairs of num-
bers. If the precipitation were measured on each day as well, the sample would consist of
triplets. In principle, any number of quantities could be measured on each day, producing
a sample in which each item is a list of numbers.

Data for which each item consists of more than one value is called multivariate
data. When each item is a pair of values, the data are said to be bivariate. One of the most
useful graphical summaries for numerical bivariate data is the scatterplot. If the data
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consist of ordered pairs (x1, y1), . . . , (xn, yn), then a scatterplot is constructed simply
by plotting each point on a two-dimensional coordinate system. Scatterplots can also be
used to summarize multivariate data when each item consists of more than two values.
One simply constructs separate scatterplots for each pair of values.

The following example illustrates the usefulness of scatterplots. The article “Ad-
vances in Oxygen Equivalence Equations for Predicting the Properties of Titanium
Welds” (D. Harwig, W. Ittiwattana, and H. Castner, The Welding Journal, 2001:
126s–136s) presents data concerning the chemical composition and strength character-
istics of a number of titanium welds. Figure 1.17 presents two scatterplots. Figure 1.17a
is a plot of the yield strength [in thousands of pounds per square inch (ksi)] versus carbon
content (in percent) for some of these welds. Figure 1.17b is a plot of the yield strength
(in ksi) versus nitrogen content (in percent) for the same welds.
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FIGURE 1.17 (a) A scatterplot showing that there is not much of a relationship between carbon content and yield
strength for a certain group of welds. (b) A scatterplot showing that for these same welds, higher nitrogen content is
associated with higher yield strength.

The plot of yield strength versus nitrogen content (Figure 1.17b) shows some clear
structure—the points seem to be following a line from lower left to upper right. In
this way, the plot illustrates a relationship between nitrogen content and yield strength:
Welds with higher nitrogen content tend to have higher yield strength. This scatterplot
might lead investigators to try to predict strength from nitrogen content or to try to
increase nitrogen content to increase strength. (The fact that there is a relationship on a
scatterplot does not guarantee that these attempts will be successful, as we will discuss
in Section 7.1.) In contrast, there does not seem to be much structure to the scatterplot
of yield strength versus carbon content, and thus there is no evidence of a relationship
between these two quantities. This scatterplot would discourage investigators from trying
to predict strength from carbon content.
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Exercises for Section 1.3

1. The weather in Los Angeles is dry most of the time,
but it can be quite rainy in the winter. The rainiest
month of the year is February. The following table
presents the annual rainfall in Los Angeles, in inches,
for each February from 1965 to 2006.

0.2 3.7 1.2 13.7 1.5 0.2 1.7
0.6 0.1 8.9 1.9 5.5 0.5 3.1
3.1 8.9 8.0 12.7 4.1 0.3 2.6
1.5 8.0 4.6 0.7 0.7 6.6 4.9
0.1 4.4 3.2 11.0 7.9 0.0 1.3
2.4 0.1 2.8 4.9 3.5 6.1 0.1

a. Construct a stem-and-leaf plot for these data.

b. Construct a histogram for these data.

c. Construct a dotplot for these data.

d. Construct a boxplot for these data. Does the box-
plot show any outliers?

2. Forty-five specimens of a certain type of powder were
analyzed for sulfur trioxide content. Following are the
results, in percent. The list has been sorted into numer-
ical order.

14.1 14.4 14.7 14.8 15.3 15.6 16.1 16.6 17.3
14.2 14.4 14.7 14.9 15.3 15.7 16.2 17.2 17.3
14.3 14.4 14.8 15.0 15.4 15.7 16.4 17.2 17.8
14.3 14.4 14.8 15.0 15.4 15.9 16.4 17.2 21.9
14.3 14.6 14.8 15.2 15.5 15.9 16.5 17.2 22.4

a. Construct a stem-and-leaf plot for these data.

b. Construct a histogram for these data.

c. Construct a dotplot for these data.

d. Construct a boxplot for these data. Does the box-
plot show any outliers?

3. Refer to Table 1.2 (in Section 1.2). Construct a stem-
and-leaf plot with the ones digit as the stem (for values
greater than or equal to 10 the stem will have two dig-
its) and the tenths digit as the leaf. How many stems
are there (be sure to include leafless stems)? What
are some advantages and disadvantages of this plot,
compared to the one in Figure 1.6 (page 26)?

4. Following are measurements of soil concentrations (in
mg/kg) of chromium (Cr) and nickel (Ni) at 20 sites in
the area of Cleveland, Ohio. These data are taken from
the article “Variation in North American Regulatory
Guidance for Heavy Metal Surface Soil Contamina-

tion at Commercial and Industrial Sites” (A. Jennings
and J. Ma, J Environment Eng, 2007:587–609).

Cr: 34 1 511 2 574 496 322 424
269 140 244 252 76 108 24 38

18 34 30 191

Ni: 23 22 55 39 283 34 159 37
61 34 163 140 32 23 54 837
64 354 376 471

a. Construct a histogram for each set of
concentrations.

b. Construct comparative boxplots for the two sets of
concentrations.

c. Using the boxplots, what differences can be seen
between the two sets of concentrations?

5. A certain reaction was run several times using each of
two catalysts, A and B. The catalysts were supposed
to control the yield of an undesirable side product.
Results, in units of percentage yield, for 24 runs of
catalyst A and 20 runs of catalyst B are as follows:

Catalyst A

4.4 3.4 2.6 3.8
4.9 4.6 5.2 4.7
4.1 2.6 6.7 4.1
3.6 2.9 2.6 4.0
4.3 3.9 4.8 4.5
4.4 3.1 5.7 4.5

Catalyst B

3.4 1.1 2.9 5.5
6.4 5.0 5.8 2.5
3.7 3.8 3.1 1.6
3.5 5.9 6.7 5.2
6.3 2.6 4.3 3.8

a. Construct a histogram for the yields of each
catalyst.

b. Construct comparative boxplots for the yields of
the two catalysts.

c. Using the boxplots, what differences can be seen
between the results of the yields of the two
catalysts?

6. Sketch a histogram for which
a. The mean is greater than the median.

b. The mean is less than the median.

c. The mean is approximately equal to the median.
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7. The figure below is a histogram showing the dis-
tribution of serum cholesterol level for a sample
of men. Use the histogram to answer the following
questions:

a. Is the percentage of men with cholesterol levels
above 240 mg/dL closest to 30%, 50%, or 70%?

b. In which interval are there more men: 240–260
mg/dL or 280–340 mg/dL?
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8. The histogram below presents the compressive
strengths of a sample of concrete blocks hardened for
28 days. One rectangle from the histogram is missing.
What is its height?
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9. Refer to Table 1.4 (in Section 1.3).

a. Using the class intervals in the table, construct a
histogram in which the heights of the rectangles
are equal to the frequencies.

b. Using the class intervals in the table, construct a
histogram in which the heights of the rectangles
are equal to the densities.

c. Compare the histograms in parts (a) and (b) with
the histogram in Figure 1.8, for which the heights
are the relative frequencies. Are the shapes of the
histograms the same?

10. Refer to Table 1.5 (in Section 1.3).

a. Using the class intervals in the table, construct a
histogram in which the heights of the rectangles
are equal to the relative frequencies.

b. Compare the histogram in part (a) with the histo-
gram in Figure 1.9, for which the heights are the
densities. Are the shapes of the histograms the
same?

c. Explain why the heights should not be set equal to
the relative frequencies in this case.

d. Which classes are visually exaggerated by making
the heights equal to the relative frequencies?

11. The following table presents the number of students
absent in a middle school in northwestern Montana
for each school day in January 2008.

Number Number Number
Date Absent Date Absent Date Absent

Jan. 2 65 Jan. 14 59 Jan. 23 42
Jan. 3 67 Jan. 15 49 Jan. 24 45
Jan. 4 71 Jan. 16 42 Jan. 25 46
Jan. 7 57 Jan. 17 56 Jan. 28 100
Jan. 8 51 Jan. 18 45 Jan. 29 59
Jan. 9 49 Jan. 21 77 Jan. 30 53
Jan. 10 44 Jan. 22 44 Jan. 31 51
Jan. 11 41

a. Construct a boxplot.

b. There was a snowstorm on January 27. Was the
number of absences the next day an outlier?

12. Which of the following statistics cannot be determined
from a boxplot?

i. The median

ii. The mean

iii. The first quartile

iv. The third quartile

v. The interquartile range

13. A sample of 100 resistors has an average resistance
of 50 � and a standard deviation of 5 �. A second
sample of 100 resistors has an average resistance of
100 � and a standard deviation of 5 �. If the two sam-
ples are combined, the standard deviation of all 200
resistances will be .
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i. less than 5 �

ii. greater than 5 �

iii. equal to 5 �

iv. can’t tell from the information given

(Hint: Don’t do any calculations. Just try to sketch,
very roughly, histograms for each sample separately,
then for the combined sample.)

14. Following are boxplots comparing the amount of
econozole nitrate (in μg/cm2) absorbed into skin for a
brand name and a generic antifungal ointment (from
the article “Improved Bioequivalence Assessment
of Topical Dermatological Drug Products Using
Dermatopharmacokinetics.” B. N’Dri-Stempfer, W.
Navidi, R. Guy, and A. Bunge, Pharmaceutical
Research, 2009:316–328).
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True or false:

a. The median amount absorbed for the brand name
drug is greater than the 25th percentile of the
amount absorbed for the generic drug.

b. The median amount absorbed for the brand name
drug is greater than the median amount absorbed
for the generic drug.

c. About half the sample values for the brand name
drug are between 2 and 3.

d. There is a greater proportion of values outside the
box for the brand name drug than for the generic
drug.

e. Both samples are skewed to the right.

f. Both samples contain outliers.

15. Following are summary statistics for two data sets,
A and B.

A B

Minimum 0.066 −2.235
1st Quartile 1.42 5.27
Median 2.60 8.03
3rd Quartile 6.02 9.13
Maximum 10.08 10.51

a. Compute the interquartile ranges for both A and B.

b. Do the summary statistics for A provide enough
information to construct a boxplot? If so, construct
the boxplot. If not, explain why.

c. Do the summary statistics for B provide enough
information to construct a boxplot? If so, construct
the boxplot. If not, explain why.

16. Match each histogram to the boxplot that represents the same data set.

(a) (b) (c) (d)

(1) (2) (3) (4)
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17. Refer to the asphalt data in Example 1.12 (page 18).

a. Construct a boxplot for the asphalt data.
b. Which values, if any, are outliers?
c. Construct a dotplot for the asphalt data.
d. For purposes of constructing boxplots, an outlier is defined to be a point whose distance from the nearest quartile

is more than 1.5 IQR. A more general, and less precise, definition is that an outlier is any point that is detached
from the bulk of the data. Are there any points in the asphalt data set that are outliers under this more general
definition, but not under the boxplot definition? If so, which are they?

18. Match each scatterplot to the statement that best describes it.
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i. The relationship between x and y is approximately linear.

ii. The relationship between x and y is nonlinear.

iii. There isn’t much of any relationship between x and y.

iv. The relationship between x and y is approximately linear, except for an outlier.

19. For the following data:

x 1.4 2.4 4.0 4.9 5.7 6.3 7.8 9.0 9.3 11.0
y 2.3 3.7 5.7 9.9 6.9 15.8 15.4 36.9 34.6 53.2

a. Make a scatterplot of y versus x . Is the relationship between x and y approximately linear, or is it nonlinear?
b. Compute the natural logarithm of each y value. This is known as making a log transformation of y. Make a

scatterplot of ln y versus x . Is the relationship between x and ln y approximately linear, or is it nonlinear?
c. In general, it is easier to work with quantities that have an approximate linear relationship than with quantities

that have a nonlinear relationship. For these data, do you think it would be easier to work with x and y or with
x and ln y? Explain.

Supplementary Exercises for Chapter 1

1. A vendor converts the weights on the packages she
sends out from pounds to kilograms (1 kg ≈ 2.2 lb).

a. How does this affect the mean weight of the
packages?

b. How does this affect the standard deviation of the
weights?

2. Refer to Exercise 1. The vendor begins using heavier
packaging, which increases the weight of each pack-
age by 50 g.

a. How does this affect the mean weight of the
packages?

b. How does this affect the standard deviation of the
weights?

3. The specification for the pull strength of a wire that
connects an integrated circuit to its frame is 10 g or
more. Units made with aluminum wire have a defect
rate of 10%. A redesigned manufacturing process, in-
volving the use of gold wire, is being investigated.
The goal is to reduce the rate of defects to 5% or less.
Out of the first 100 units manufactured with gold wire,
only 4 are defective. True or false:

a. Since only 4% of the 100 units were defective, we
can conclude that the goal has been reached.

b. Although the sample percentage is under 5%, this
may represent sampling variation, so the goal may
not yet be reached.

c. There is no use in testing the new process, because
no matter what the result is, it could just be due to
sampling variation.

d. If we sample a large enough number of units, and
if the percentage of defective units is far enough
below 5%, then it is reasonable to conclude that
the goal has been reached.

4. A coin is tossed twice and comes up heads both times.
Someone says, “There’s something wrong with this
coin. A coin is supposed to come up heads only half
the time, not every time.”

a. Is it reasonable to conclude that something is
wrong with the coin? Explain.

b. If the coin came up heads 100 times in a row,
would it be reasonable to conclude that something
is wrong with the coin? Explain.

5. The smallest number on a list is changed from 12.9
to 1.29.

a. Is it possible to determine by how much the mean
changes? If so, by how much does it change?

b. Is it possible to determine by how much the me-
dian changes? If so, by how much does it change?
What if the list consists of only two numbers?

c. Is it possible to determine by how much the stan-
dard deviation changes? If so, by how much does
it change?
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6. There are 15 numbers on a list, and the smallest num-
ber is changed from 12.9 to 1.29.

a. Is it possible to determine by how much the mean
changes? If so, by how much does it change?

b. Is it possible to determine the value of the mean
after the change? If so, what is the value?

c. Is it possible to determine by how much the median
changes? If so, by how much does it change?

d. Is it possible to determine by how much the stan-
dard deviation changes? If so, by how much does
it change?

7. There are 15 numbers on a list, and the mean is 25.
The smallest number on the list is changed from 12.9
to 1.29.

a. Is it possible to determine by how much the mean
changes? If so, by how much does it change?

b. Is it possible to determine the value of the mean
after the change? If so, what is the value?

c. Is it possible to determine by how much the me-
dian changes? If so, by how much does it change?

d. Is it possible to determine by how much the stan-
dard deviation changes? If so, by how much does
it change?

8. The article “The Selection of Yeast Strains for the Pro-
duction of Premium Quality South African Brandy
Base Products” (C. Steger and M. Lambrechts, Jour-
nal of Industrial Microbiology and Biotechnology,
2000:431– 440) presents detailed information on the
volatile compound composition of base wines made
from each of 16 selected yeast strains. Following are
the concentrations of total esters (in mg/L) in each of
the wines.

284.34 173.01 229.55 312.95 215.34 188.72
144.39 172.79 139.38 197.81 303.28 256.02
658.38 105.14 295.24 170.41

a. Compute the mean concentration.

b. Compute the median concentration.

c. Compute the first quartile of the concentrations.

d. Compute the third quartile of the concentrations.

e. Construct a boxplot for the concentrations. What
features does it reveal?

9. Concerning the data represented in the following
boxplot, which one of the following statements is
true?

i. The mean is greater than the median.

ii. The mean is less than the median.

iii. The mean is approximately equal to the median.

10. True or false: In any boxplot,

a. The length of the whiskers is equal to 1.5 IQR,
where IQR is the interquartile range.

b. The length of the whiskers may be greater than 1.5
IQR, where IQR is the interquartile range.

c. The length of the whiskers may be less than 1.5
IQR, where IQR is the interquartile range.

d. The values at the ends of the whiskers are al-
ways values in the data set used to construct the
boxplot.
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11. For each of the following histograms, determine
whether the vertical axis has been labeled correctly.
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12. In the article “Occurrence and Distribution of Am-
monium in Iowa Groundwater” (K. Schilling, Water
Environment Research, 2002:177–186), ammonium
concentrations (in mg/L) were measured at a total of
349 alluvial wells in the state of Iowa. The mean con-
centration was 0.27, the median was 0.10, and the
standard deviation was 0.40. If a histogram of these
349 measurements were drawn,

i. it would be skewed to the right.

ii. it would be skewed to the left.

iii. it would be approximately symmetric.

iv. its shape could not be determined without know-
ing the relative frequencies.

13. The article “Vehicle-Arrival Characteristics at Urban
Uncontrolled Intersections” (V. Rengaraju and V. Rao,
Journal of Transportation Engineering, 1995:
317–323) presents data on traffic characteristics at 10
intersections in Madras, India. One characteristic
measured was the speeds of the vehicles traveling
through the intersections. The accompanying table
gives the 15th, 50th, and 85th percentiles of speed
(in km/h) for two intersections.

Percentile

Intersection 15th 50th 85th

A 27.5 37.5 40.0
B 24.5 26.5 36.0

a. If a histogram for speeds of vehicles through in-
tersection A were drawn, do you think it would be
skewed to the left, skewed to the right, or approx-
imately symmetric? Explain.

b. If a histogram for speeds of vehicles through in-
tersection B were drawn, do you think it would be
skewed to the left, skewed to the right, or approx-
imately symmetric? Explain.

14. The cumulative frequency and the cumulative rel-
ative frequency for a given class interval are the
sums of the frequencies and relative frequencies, re-
spectively, over all classes up to and including the
given class. For example, if there are five classes,
with frequencies 11, 7, 3, 14, and 5, the cumula-
tive frequencies would be 11, 18, 21, 35, and 40,
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and the cumulative relative frequencies would be
0.275, 0.450, 0.525, 0.875, and 1.000. Construct a
table presenting frequencies, relative frequencies, cu-
mulative frequencies, and cumulative relative fre-
quencies, for the data in Exercise 2 of Section 1.3,
using the class intervals 14 –<15, 15 –<16, . . . ,

22 –<23.

15. The article “Computing and Using Rural versus Ur-
ban Measures in Statistical Applications” (C. Goodall,
K. Kafadar, and J. Tukey, The American Statistician,
1998:101–111) discusses methods to measure the de-
gree to which U.S. counties are urban rather than ru-
ral. The following frequency table presents popula-
tion frequencies of U.S. counties. Populations are on
the log2 scale; thus the first interval contains counties
whose populations are at least 26 = 64 but less than
212.4 = 5404, and so on.

log2 Population Number of Counties

6.0–< 12.4 305
12.4–< 13.1 294
13.1–< 13.6 331
13.6–< 14.0 286
14.0–< 14.4 306
14.4–< 14.8 273
14.8–< 15.3 334
15.3–< 16.0 326
16.0–< 17.0 290
17.0–< 23.0 323

a. Construct a histogram from the frequency table.

b. Estimate the proportion of counties whose popu-
lations are greater than 100,000.

c. Is the histogram skewed to the left, skewed to the
right, or approximately symmetric?

d. Construct a histogram using the actual populations
rather than their logs. Why do you think the article
transformed the populations to the log scale?

16. The article “Hydrogeochemical Characteristics of
Groundwater in a Mid-Western Coastal Aquifer Sys-
tem” (S. Jeen, J. Kim, et al., Geosciences Journal,
2001:339–348) presents measurements of various
properties of shallow groundwater in a certain aquifer
system in Korea. Following are measurements of elec-
trical conductivity (in microsiemens per centimeter)
for 23 water samples.

2099 528 2030 1350 1018 384 1499
1265 375 424 789 810 522 513
488 200 215 486 257 557 260
461 500

a. Find the mean.

b. Find the standard deviation.

c. Find the median.

d. Construct a dotplot.

e. Find the 10% trimmed mean.

f. Find the first quartile.

g. Find the third quartile.

h. Find the interquartile range.

i. Construct a boxplot.

j. Which of the points, if any, are outliers?

k. If a histogram were constructed, would it be
skewed to the left, skewed to the right, or approx-
imately symmetric?

17. Water scarcity has traditionally been a major con-
cern in the Canary Islands. Water rights are divided
into shares, which are privately owned. The article
“The Social Construction of Scarcity. The Case of Wa-
ter in Tenerife (Canary Islands)” (F. Aguilera-Klink,
E. Pérez-Moriana, and J. Sánchez-Garcia, Ecologi-
cal Economics, 2000:233–245) discusses the extent
to which many of the shares are concentrated among
a few owners. The following table presents the num-
ber of owners who own various numbers of shares.
(There were 15 owners who owned 50 shares or more;
these are omitted.) Note that it is possible to own a
fractional number of shares; for example, the interval
2–< 3 contains 112 individuals who owned at least 2
but less than 3 shares.

Number of Number of
Shares Owners

0–< 1 18
1–< 2 165
2–< 3 112
3–< 4 87
4–< 5 43
5–< 10 117

10–< 15 51
15–< 20 32
20–< 25 10
25–< 30 8
30–< 50 8
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a. Construct a histogram for these data.

b. Approximate the median number of shares owned
by finding the point for which the areas on either
side are equal.

c. Approximate the first quartile of the number of
shares owned by finding the point for which 25%
of the area is to the left.

d. Approximate the third quartile of the number of
shares owned by finding the point for which 75%
of the area is to the left.

18. The Editor’s Report in the November 2003 issue of
Technometrics provides the following information re-
garding the length of time taken to review articles that
were submitted for publication during the year 2002.
A few articles took longer than 9 months to review,
these are omitted from the table.

Time Number of
(months) Articles

0–< 1 45
1–< 2 17
2–< 3 18
3–< 4 19
4–< 5 12
5–< 6 14
6–< 7 13
7–< 8 22
8–< 9 11

a. Construct a histogram for these data.

b. Which class interval contains the median review
time?

c. Which class interval contains the first quartile of
the review times?

d. Which class interval contains the third quartile of
the review times?

19. The article “ The Ball-on-Three-Ball Test for Ten-
sile Strength: Refined Methodology and Results for
Three Hohokam Ceramic Types” (M. Beck, Ameri-
can Antiquity, 2002:558–569) discusses the strength
of ancient ceramics. Several specimens of each of
three types of ceramic were tested. The loads (in kg)
required to crack the specimens are as follows:

Ceramic Type Loads (kg)

Sacaton 15, 30, 51, 20, 17, 19, 20,
32, 17, 15, 23, 19, 15, 18,
16, 22, 29, 15, 13, 15

Gila Plain 27, 18, 28, 25, 55, 21, 18,
34, 23, 30, 20, 30, 31, 25,
28, 26, 17, 19, 16, 24, 19,
9, 31, 19, 27, 20, 43, 15

Casa Grande 20, 16, 20, 36, 27, 35,
66, 15, 18, 24, 21, 30,
20, 24, 23, 21, 13, 21

a. Construct comparative boxplots for the three
samples.

b. How many outliers does each sample contain?

c. Comment on the features of the three samples.



Navidi-3810214 book November 11, 2013 12:35

2
Probability

Introduction

The development of the theory of probability was financed by seventeenth-century gam-
blers, who hired some of the leading mathematicians of the day to calculate the correct
odds for certain games of chance. Later, people realized that scientific processes involve
chance as well, and since then the methods of probability have been used to study the
physical world.

Probability is now an extensive branch of mathematics. Many books are devoted to
the subject, and many researchers have dedicated their professional careers to its further
development. In this chapter we present an introduction to the ideas of probability that
are most important to the study of statistics.

2.1 Basic Ideas

To make a systematic study of probability, we need some terminology. An experiment
is a process that results in an outcome that cannot be predicted in advance with certainty.
Tossing a coin, rolling a die, measuring the diameter of a bolt, weighing the contents
of a box of cereal, and measuring the breaking strength of a length of fishing line are
all examples of experiments. To discuss an experiment in probabilistic terms, we must
specify its possible outcomes:

Definition
The set of all possible outcomes of an experiment is called the sample space for
the experiment.

For tossing a coin, we can use the set {Heads, Tails} as the sample space. For rolling
a six-sided die, we can use the set {1, 2, 3, 4, 5, 6}. These sample spaces are finite. Some
experiments have sample spaces with an infinite number of outcomes. For example,
imagine that a punch with diameter 10 mm punches holes in sheet metal. Because
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of variations in the angle of the punch and slight movements in the sheet metal, the
diameters of the holes vary between 10.0 and 10.2 mm. For the experiment of punching
a hole, then, a reasonable sample space is the interval (10.0, 10.2), or in set notation,
{x | 10.0 < x < 10.2}. This set obviously contains an infinite number of outcomes.

For many experiments, there are several sample spaces to choose from. For example,
assume that a process manufactures steel pins whose lengths vary between 5.20 and
5.25 cm. An obvious choice for the sample space for the length of a pin is the set
{x | 5.20 < x < 5.25}. However, if the object were simply to determine whether the pin
was too short, too long, or within specification limits, a good choice for the sample space
might be {too short, too long, within specifications}.

When discussing experiments, we are often interested in a particular subset of out-
comes. For example, we might be interested in the probability that a die comes up an
even number. The sample space for the experiment is {1, 2, 3, 4, 5, 6}, and coming
up even corresponds to the subset {2, 4, 6}. In the hole punch example, we might be in-
terested in the probability that a hole has a diameter less than 10.1 mm. This corresponds
to the subset {x | 10.0 < x < 10.1}. There is a special name for a subset of a sample
space:

Definition

A subset of a sample space is called an event.

Note that for any sample space, the empty set ∅ is an event, as is the entire sample
space. A given event is said to have occurred if the outcome of the experiment is one
of the outcomes in the event. For example, if a die comes up 2, the events {2, 4, 6}
and {1, 2, 3} have both occurred, along with every other event that contains the
outcome “2.”

Example
2.1 An electrical engineer has on hand two boxes of resistors, with four resistors in each

box. The resistors in the first box are labeled 10 � (ohms), but in fact their resistances
are 9, 10, 11, and 12 �. The resistors in the second box are labeled 20 �, but in fact
their resistances are 18, 19, 20, and 21 �. The engineer chooses one resistor from
each box and determines the resistance of each.

Let A be the event that the first resistor has a resistance greater than 10, let B be
the event that the second resistor has a resistance less than 19, and let C be the event
that the sum of the resistances is equal to 28. Find a sample space for this experiment,
and specify the subsets corresponding to the events A, B, and C .

Solution
A good sample space for this experiment is the set of ordered pairs in which the
first component is the resistance of the first resistor and the second component is the
resistance of the second resistor. We will denote this sample space by S.
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S = {(9, 18), (9, 19), (9, 20), (9, 21), (10, 18), (10, 19), (10, 20), (10, 21),

(11, 18), (11, 19), (11, 20), (11, 21), (12, 18), (12, 19), (12, 20), (12, 21)}

The events A, B, and C are given by
A = {(11, 18), (11, 19), (11, 20), (11, 21), (12, 18), (12, 19), (12, 20), (12, 21)}
B = {(9, 18), (10, 18), (11, 18), (12, 18)}
C = {(9, 19), (10, 18)}

Combining Events
We often construct events by combining simpler events. Because events are subsets of
sample spaces, it is traditional to use the notation of sets to describe events constructed
in this way. We review the necessary notation here.

■ The union of two events A and B, denoted A ∪ B, is the set of outcomes that
belong either to A, to B, or to both. In words, A ∪ B means “A or B.” Thus the
event A ∪ B occurs whenever either A or B (or both) occurs.

■ The intersection of two events A and B, denoted A ∩ B, is the set of outcomes
that belong both to A and to B. In words, A ∩ B means “A and B.” Thus the event
A ∩ B occurs whenever both A and B occur.

■ The complement of an event A, denoted Ac, is the set of outcomes that do not
belong to A. In words, Ac means “not A.” Thus the event Ac occurs whenever A
does not occur.

Events can be graphically illustrated with Venn diagrams. Figure 2.1 illustrates the
events A ∪ B, A ∩ B, and B ∩ Ac.

(a) (b) (c)

A B A B A B 

FIGURE 2.1 Venn diagrams illustrating various events: (a) A ∪ B, (b) A ∩ B, (c) B ∩ Ac.

Example
2.2 Refer to Example 2.1. Find B ∪ C and A ∩ Bc.

Solution
The event B ∪ C contains all the outcomes that belong either to B or to C , or to both.
Therefore

B ∪ C = {(9, 18), (10, 18), (11, 18), (12, 18), (9, 19)}
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The event Bc contains those outcomes in the sample space that do not belong to B.
It follows that the event A ∩ Bc contains the outcomes that belong to A and do not
belong to B. Therefore

A ∩ Bc = {(11, 19), (11, 20), (11, 21), (12, 19), (12, 20), (12, 21)}

Mutually Exclusive Events
There are some events that can never occur together. For example, it is impossible that
a coin can come up both heads and tails, and it is impossible that a steel pin can be both
too long and too short. Events like this are said to be mutually exclusive.

Definition

■ The events A and B are said to be mutually exclusive if they have no
outcomes in common.

■ More generally, a collection of events A1, A2, . . . , An is said to be
mutually exclusive if no two of them have any outcomes in common.

The Venn diagram in Figure 2.2 illustrates mutually exclusive events.

A B

FIGURE 2.2 The events A and B are mutually exclusive.

Example
2.3 Refer to Example 2.1. If the experiment is performed, is it possible for events A and

B both to occur? How about B and C? A and C? Which pair of events is mutually
exclusive?

Solution
If the outcome is (11, 18) or (12, 18), then events A and B both occur. If the outcome
is (10, 18), then both B and C occur. It is impossible for A and C both to occur,
because these events are mutually exclusive, having no outcomes in common.
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Probabilities
Each event in a sample space has a probability of occurring. Intuitively, the probability
is a quantitative measure of how likely the event is to occur. Formally speaking, there are
several interpretations of probability; the one we shall adopt is that the probability of an
event is the proportion of times the event would occur in the long run, if the experiment
were to be repeated over and over again.

We often use the letter P to stand for probability. Thus when tossing a coin, the
notation “P(heads) = 1/2” means that the probability that the coin lands heads is equal
to 1/2.

Summary
Given any experiment and any event A:

■ The expression P(A) denotes the probability that the event A occurs.

■ P(A) is the proportion of times that event A would occur in the long run,
if the experiment were to be repeated over and over again.

In many situations, the only way to estimate the probability of an event is to repeat
the experiment many times and determine the proportion of times that the event occurs.
For example, if it is desired to estimate the probability that a printed circuit board
manufactured by a certain process is defective, it is usually necessary to produce a
number of boards and test them to determine the proportion that are defective. In some
cases, probabilities can be determined through knowledge of the physical nature of an
experiment. For example, if it is known that the shape of a die is nearly a perfect cube
and that its mass is distributed nearly uniformly, it may be assumed that each of the six
faces is equally likely to land upward when the die is rolled.

Once the probabilities of some events have been found through scientific knowledge
or experience, the probabilities of other events can be computed mathematically. For
example, if it has been estimated through experimentation that the probability that a
printed circuit board is defective is 0.10, an estimate of the probability that a board is not
defective can be calculated to be 0.90. As another example, assume that steel pins
manufactured by a certain process can fail to meet a length specification either by being
too short or too long. By measuring a large number of pins, it is estimated that the
probability that a pin is too short is 0.02, and the probability that a pin is too long is 0.03. It
can then be estimated that the probability that a pin fails to meet the specification is 0.05.

In practice, scientists and engineers estimate the probabilities of some events on
the basis of scientific understanding and experience and then use mathematical rules to
compute estimates of the probabilities of other events. In the rest of this section and in
Section 2.2, we will explain some of these rules and show how to use them.

Axioms of Probability
The subject of probability is based on three commonsense rules, known as axioms.
They are:
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The Axioms of Probability
1. Let S be a sample space. Then P(S) = 1.

2. For any event A, 0 ≤ P(A) ≤ 1.

3. If A and B are mutually exclusive events, then P(A ∪ B) = P(A) + P(B).
More generally, if A1, A2, . . . are mutually exclusive events, then
P(A1 ∪ A2 ∪ · · ·) = P(A1) + P(A2) + · · · .

With a little thought, it is easy to see that the three axioms do indeed agree with common
sense. The first axiom says that the outcome of an experiment is always in the sample
space. This is obvious, because by definition the sample space contains all the possi-
ble outcomes of the experiment. The second axiom says that the long-run frequency of
any event is always between 0 and 100%. For an example illustrating the third axiom,
we previously discussed a process that manufactures steel pins, in which the proba-
bility that a pin is too short is 0.02 and the probability that a pin is too long is 0.03.
The third axiom says that the probability that the pin is either too short or too long
is 0.02 + 0.03 = 0.05.

We now present two simple rules that are helpful in computing probabilities. These
rules are intuitively obvious, and they can also be proved from the axioms. Proofs are
provided at the end of the section.

For any event A,

P(Ac) = 1 − P(A) (2.1)

Let ∅ denote the empty set. Then

P(∅) = 0 (2.2)

Equation (2.1) says that the probability that an event does not occur is equal to 1 minus
the probability that it does occur. For example, if there is a 40% chance of rain, there
is a 60% chance that it does not rain. Equation (2.2) says that it is impossible for an
experiment to have no outcome.

Example
2.4 A target on a test firing range consists of a bull’s-eye with two concentric rings around

it. A projectile is fired at the target. The probability that it hits the bull’s-eye is 0.10,
the probability that it hits the inner ring is 0.25, and the probability that it hits the
outer ring is 0.45. What is the probability that the projectile hits the target? What is
the probability that it misses the target?

Solution
Hitting the bull’s-eye, hitting the inner ring, and hitting the outer ring are mutually
exclusive events, since it is impossible for more than one of these events to occur.
Therefore, using Axiom 3,
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P(hits target) = P(bull’s-eye) + P(inner ring) + P(outer ring)

= 0.10 + 0.25 + 0.45

= 0.80

We can now compute the probability that the projectile misses the target by using
Equation (2.1):

P(misses target) = 1 − P(hits target)

= 1 − 0.80

= 0.20

Example
2.5 The following table presents probabilities for the number of times that a certain

computer system will crash in the course of a week. Let A be the event that there
are more than two crashes during the week, and let B be the event that the system
crashes at least once. Find a sample space. Then find the subsets of the sample space
that correspond to the events A and B. Then find P(A) and P(B).

Number of Crashes Probability

0 0.60
1 0.30
2 0.05
3 0.04
4 0.01

Solution
A sample space for the experiment is the set {0, 1, 2, 3, 4}. The events are A = {3, 4}
and B = {1, 2, 3, 4}. To find P(A), notice that A is the event that either 3 crashes
happen or 4 crashes happen. The events “3 crashes happen” and “4 crashes happen”
are mutually exclusive. Therefore, using Axiom 3, we conclude that

P(A) = P(3 crashes happen or 4 crashes happen)

= P(3 crashes happen) + P(4 crashes happen)

= 0.04 + 0.01

= 0.05

We will compute P(B) in two ways. First, note that Bc is the event that no crashes
happen. Therefore, using Equation (2.1),

P(B) = 1 − P(Bc)

= 1 − P(0 crashes happen)

= 1 − 0.60

= 0.40
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For a second way to compute P(B), note that B is the event that 1 crash happens or 2
crashes happen or 3 crashes happen or 4 crashes happen. These events are mutually
exclusive. Therefore, using Axiom 3, we conclude that

P(B) = P(1 crash) + P(2 crashes) + P(3 crashes) + P(4 crashes)

= 0.30 + 0.05 + 0.04 + 0.01

= 0.40

In Example 2.5, we computed the probabilities of the events A = {3, 4} and B =
{1, 2, 3, 4} by summing the probabilities of the outcomes in each of the events: P(A) =
P(3) + P(4) and P(B) = P(1) + P(2) + P(3) + P(4). This method works in general.
Since any two outcomes in a sample space are mutually exclusive, the probability of
any event that contains a finite number of outcomes can be found by summing the
probabilities of the outcomes that make up the event.

If A is an event containing outcomes O1, . . . , On , that is, if A = {O1, . . . , On},
then

P(A) = P(O1) + P(O2) + · · · + P(On) (2.3)

Sample Spaces with Equally Likely Outcomes
For some experiments, a sample space can be constructed in which all the outcomes
are equally likely. A simple example is the roll of a fair die, in which the sample space
is {1, 2, 3, 4, 5, 6} and each of these outcomes has probability 1/6. Another type of
experiment that results in equally likely outcomes is the random selection of an item
from a population of items. The items in the population can be thought of as the outcomes
in a sample space, and each item is equally likely to be selected.

A population from which an item is sampled at random can be thought of as a
sample space with equally likely outcomes.

If a sample space contains N equally likely outcomes, the probability of each out-
come is 1/N . This is so, because the probability of the whole sample space must be
1, and this probability is equally divided among the N outcomes. If A is an event that
contains k outcomes, then P(A) can be found by summing the probabilities of the k
outcomes, so P(A) = k/N .

If S is a sample space containing N equally likely outcomes, and if A is an
event containing k outcomes, then

P(A) = k

N
(2.4)
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Example
2.6 An extrusion die is used to produce aluminum rods. Specifications are given for the

length and the diameter of the rods. For each rod, the length is classified as too short,
too long, or OK, and the diameter is classified as too thin, too thick, or OK. In a
population of 1000 rods, the number of rods in each class is as follows:

Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5
OK 38 900 4
Too Long 2 25 13

A rod is sampled at random from this population. What is the probability that it is too
short?

Solution
We can think of each of the 1000 rods as an outcome in a sample space. Each of the
1000 outcomes is equally likely. We’ll solve the problem by counting the number
of outcomes that correspond to the event. The number of rods that are too short is
10 + 3 + 5 = 18. Since the total number of rods is 1000,

P(too short) = 18

1000

The Addition Rule
If A and B are mutually exclusive events, then P(A ∪ B) = P(A)+ P(B). This rule can
be generalized to cover the case where A and B are not mutually exclusive. Example 2.7
illustrates the reasoning.

Example
2.7 Refer to Example 2.6. If a rod is sampled at random, what is the probability that it is

either too short or too thick?

Solution
First we’ll solve this problem by counting the number of outcomes that correspond
to the event. In the following table the numbers of rods that are too thick are circled,
and the numbers of rods that are too short have rectangles around them. Note that
there are 5 rods that are both too short and too thick.
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Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5�

OK 38 900 4�

Too Long 2 25 13�

Of the 1000 outcomes, the number that are either too short or too thick is 10 + 3 +
5 + 4 + 13 = 35. Therefore

P(too short or too thick) = 35

1000
Now we will solve the problem in a way that leads to a more general method. In the
sample space, there are 10 + 3 + 5 = 18 rods that are too short and 5 + 4 + 13 = 22
rods that are too thick. But if we try to find the number of rods that are either too
short or too thick by adding 18 + 22, we get too large a number (40 instead of 35).
The reason is that there are five rods that are both too short and too thick, and these
are counted twice. We can still solve the problem by adding 18 and 22, but we must
then subtract 5 to correct for the double counting.

We restate this reasoning, using probabilities:

P(too short) = 18

1000
, P(too thick) = 22

1000
, P(too short and too thick) = 5

1000

P(too short or too thick) = P(too short) + P(too thick) − P(too short and too thick)

= 18

1000
+ 22

1000
− 5

1000

= 35

1000

The method of Example 2.7 holds for any two events in any sample space. In general,
to find the probability that either of two events occurs, add the probabilities of the events
and then subtract the probability that they both occur.

Summary
Let A and B be any events. Then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (2.5)

A proof of this result, based on the axioms, is provided at the end of this section. Note
that if A and B are mutually exclusive, then P(A ∩ B) = 0, so Equation (2.5) reduces
to Axiom 3 in this case.
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Example
2.8 In a process that manufactures aluminum cans, the probability that a can has a flaw on

its side is 0.02, the probability that a can has a flaw on the top is 0.03, and the probability
that a can has a flaw on both the side and the top is 0.01. What is the probability that
a randomly chosen can has a flaw? What is the probability that it has no flaw?

Solution
We are given that P(flaw on side) = 0.02, P(flaw on top) = 0.03, and P(flaw on
side and flaw on top) = 0.01. Now P(flaw) = P(flaw on side or flaw on top). Using
Equation (2.5),

P(flaw on side or flaw on top) = P(flaw on side) + P(flaw on top)

−P(flaw on side and flaw on top)

= 0.02 + 0.03 − 0.01

= 0.04

To find the probability that a can has no flaw, we compute

P(no flaw) = 1 − P(flaw) = 1 − 0.04 = 0.96

Venn diagrams can sometimes be useful in computing probabilities by showing how
to express an event as the union of disjoint events. Example 2.9 illustrates the method.

Example
2.9 Refer to Example 2.8. What is the probability that a can has a flaw on the top but not

on the side?

Solution
Let A be the event that a can has a flaw on the top and let B be the event that a can
has a flaw on the side. We need to find P(A ∩ Bc). The following Venn diagram
(Figure 2.3) shows that A ∩ B and A ∩ Bc are mutually exclusive, so that

P(A) = P(A ∩ B) + P(A ∩ Bc)

We know that P(A) = 0.03 and P(A ∩ B) = 0.01. Therefore 0.03 = 0.01 +
P(A ∩ Bc), so P(A ∩ Bc) = 0.02.

A � Bc

A B

A � B

FIGURE 2.3 The events A ∩ B and A ∩ Bc are mutually exclusive, and their union is
the event A.
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Proof that P (Ac) = 1 − P (A)
Let S be a sample space and let A be an event. Then A and Ac are mutually exclusive,
so by Axiom 3,

P(A ∪ Ac) = P(A) + P(Ac)

But A ∪ Ac = S, and by Axiom 1, P(S) = 1. Therefore

P(A ∪ Ac) = P(S) = 1

It follows that P(A) + P(Ac) = 1, so P(Ac) = 1 − P(A).

Proof that P (∅) = 0
Let S be a sample space. Then ∅ = Sc. Therefore P(∅) = 1 − P(S) = 1 − 1 = 0.

Proof that P (A∪ B) = P (A) + P (B) − P (A∩ B)
Let A and B be any two events. The key to the proof is to write A ∪ B as the union of
three mutually exclusive events: A ∩ Bc, A ∩ B, and Ac ∩ B.

A ∪ B = (A ∩ Bc) ∪ (A ∩ B) ∪ (Ac ∩ B) (2.6)

The following figure illustrates Equation (2.6).

A B

� � �

A B A B A B

By Axiom 3,

P(A ∪ B) = P(A ∩ Bc) + P(A ∩ B) + P(Ac ∩ B) (2.7)

Now A = (A ∩ Bc) ∪ (A ∩ B), and B = (Ac ∩ B) ∪ (A ∩ B). Therefore

P(A) = P(A ∩ Bc) + P(A ∩ B) (2.8)

and

P(B) = P(Ac ∩ B) + P(A ∩ B) (2.9)

Summing Equations (2.8) and (2.9) yields

P(A) + P(B) = P(A ∩ Bc) + P(Ac ∩ B) + 2P(A ∩ B) (2.10)

Comparing Equations (2.10) and (2.7) shows that

P(A) + P(B) = P(A ∪ B) + P(A ∩ B) (2.11)

It follows that P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
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Exercises for Section 2.1

1. The probability that a bearing fails during the first
month of use is 0.12. What is the probability that it
does not fail during the first month?

2. A die (six faces) has the number 1 painted on three of
its faces, the number 2 painted on two of its faces, and
the number 3 painted on one face. Assume that each
face is equally likely to come up.

a. Find a sample space for this experiment.

b. Find P(odd number).

c. If the die were loaded so that the face with the 3
on it were twice as likely to come up as each of
the other five faces, would this change the sample
space? Explain.

d. If the die were loaded so that the face with the 3
on it were twice as likely to come up as each of
the other five faces, would this change the value of
P(odd number)? Explain.

3. A section of an exam contains four True-False ques-
tions. A completed exam paper is selected at random,
and the four answers are recorded.

a. List all 16 outcomes in the sample space.

b. Assuming the outcomes to be equally likely, find
the probability that all the answers are the same.

c. Assuming the outcomes to be equally likely, find
the probability that exactly one of the four answers
is “True.”

d. Assuming the outcomes to be equally likely, find
the probability that at most one of the four answers
is “True.”

4. Three times each day, a quality engineer samples a
component from a recently manufactured batch and
tests it. Each part is classified as conforming (suitable
for its intended use), downgraded (unsuitable for the
intended purpose but usable for another purpose), or
scrap (not usable). An experiment consists of record-
ing the categories of the three parts tested in a partic-
ular day.

a. List the 27 outcomes in the sample space.

b. Let A be the event that all the parts fall into the
same category. List the outcomes in A.

c. Let B be the event that there is one part in each
category. List the outcomes in B.

d. Let C be the event that at least two parts are con-
forming. List the outcomes in C .

e. List the outcomes in A ∩ C .

f. List the outcomes in A ∪ B.

g. List the outcomes in A ∩ Cc.

h. List the outcomes in Ac ∩ C .

i. Are events A and C mutually exclusive? Explain.

j. Are events B and C mutually exclusive? Explain.

5. Four candidates are to be interviewed for a job. Two of
them, numbered 1 and 2, are qualified, and the other
two, numbered 3 and 4, are not. The candidates are
interviewed at random, and the first qualified candi-
date interviewed will be hired. The outcomes are the
sequences of candidates that are interviewed. So one
outcome is 2, and another is 431.

a. List all the possible outcomes.

b. Let A be the event that only one candidate is inter-
viewed. List the outcomes in A.

c. Let B be the event that three candidates are inter-
viewed. List the outcomes in B.

d. Let C be the event that candidate 3 is interviewed.
List the outcomes in C .

e. Let D be the event that candidate 2 is not inter-
viewed. List the outcomes in D.

f. Let E be the event that candidate 4 is interviewed.
Are A and E mutually exclusive? How about B and
E , C and E , D and E?

6. Refer to Exercise 5. Two candidates are randomly
selected.

a. List the equally likely outcomes.

b. What is the probability that both are qualified?

c. What is the probability that exactly one is quali-
fied?

7. In a survey of households with television sets, the
proportion of television sets in various types of rooms
was

Proportion
Room of TV Sets

Bedroom 0.37
Living Room 0.26
Den 0.22
Basement 0.12
Kitchen 0.02
Bathroom 0.01
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a. What is the probability that a TV set is located in
a living room or den?

b. What is the probability that a TV set is not located
in a bedroom?

8. An automobile insurance company divides customers
into three categories, good risks, medium risks, and
poor risks. Assume that 70% of the customers are good
risks, 20% are medium risks, and 10% are poor risks.
As part of an audit, one customer is chosen at random.

a. What is the probability that the customer is a good
risk?

b. What is the probability that the customer is not a
poor risk?

9. Among the cast aluminum parts manufactured on a
certain day, 80% were flawless, 15% had only minor
flaws, and 5% had major flaws. Find the probability
that a randomly chosen part

a. has a flaw (major or minor).

b. has no major flaw.

10. The article “High Cumulative Risk of Lung Cancer
Death among Smokers and Nonsmokers” (P. Brennan,
et al. American Journal of Epidemiology, 2006:1233–
1241) states that the probability is 0.24 that a man who
is a heavy smoker will contract lung cancer. True or
false:

a. In a sample of 100 men who are heavy smokers,
exactly 24 of them will contract lung cancer.

b. In a sample of 100 men who are heavy smokers,
the number who will contract lung cancer is likely
to be close to 24, but not exactly equal to 24.

c. As more and more heavy-smoking men are sam-
pled, the proportion who contract lung cancer will
approach 0.24.

11. A quality-control engineer samples 100 items manu-
factured by a certain process, and finds that 15 of them
are defective. True or false:

a. The probability that an item produced by this pro-
cess is defective is 0.15.

b. The probability that an item produced by this pro-
cess is defective is likely to be close to 0.15, but
not exactly equal to 0.15.

12. Let V be the event that a computer contains a virus,
and let W be the event that a computer contains a

worm. Suppose P(V ) = 0.15, P(W ) = 0.05, and
P(V ∪ W ) = 0.17.

a. Find the probability that the computer contains
both a virus and a worm.

b. Find the probability that the computer contains nei-
ther a virus nor a worm.

c. Find the probability that the computer contains a
virus but not a worm.

13. Let S be the event that a randomly selected college
student has taken a statistics course, and let C be
the event that the same student has taken a chem-
istry course. Suppose P(S) = 0.4, P(C) = 0.3, and
P(S ∩ C) = 0.2.

a. Find the probability that a student has taken statis-
tics, chemistry, or both.

b. Find the probability that a student has taken neither
statistics nor chemistry.

c. Find the probability that a student has taken statis-
tics but not chemistry.

14. Six hundred paving stones were examined for cracks,
and 15 were found to be cracked. The same 600 stones
were then examined for discoloration, and 27 were
found to be discolored. A total of 562 stones were nei-
ther cracked nor discolored. One of the 600 stones is
selected at random.

a. Find the probability that it is cracked, discolored,
or both.

b. Find the probability that it is both cracked and dis-
colored.

c. Find the probability that it is cracked but not dis-
colored.

15. All the fourth-graders in a certain elementary school
took a standardized test. A total of 85% of the students
were found to be proficient in reading, 78% were found
to be proficient in mathematics, and 65% were found
to be proficient in both reading and mathematics. A
student is chosen at random.

a. What is the probability that the student is proficient
in mathematics but not in reading?

b. What is the probability that the student is proficient
in reading but not in mathematics?

c. What is the probability that the student is proficient
in neither reading nor mathematics?
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16. A system contains two components, A and B. The sys-
tem will function so long as either A or B functions.
The probability that A functions is 0.95, the probabil-
ity that B functions is 0.90, and the probability that
both function is 0.88. What is the probability that the
system functions?

17. A system contains two components, A and B. The
system will function only if both components func-
tion. The probability that A functions is 0.98, the
probability that B functions is 0.95, and the proba-
bility that either A or B functions is 0.99. What is the
probability that the system functions?

18. Human blood may contain either or both of two anti-
gens, A and B. Blood that contains only the A antigen
is called type A, blood that contains only the B antigen
is called type B, blood that contains both antigens is
called type AB, and blood that contains neither anti-
gen is called type O. At a certain blood bank, 35% of
the blood donors have type A blood, 10% have type
B, and 5% have type AB.

a. What is the probability that a randomly chosen
blood donor is type O?

b. A recipient with type A blood may safely receive
blood from a donor whose blood does not contain

the B antigen. What is the probability that a ran-
domly chosen blood donor may donate to a recip-
ient with type A blood?

19. True or false: If A and B are mutually exclusive,

a. P(A ∪ B) = 0

b. P(A ∩ B) = 0

c. P(A ∪ B) = P(A ∩ B)

d. P(A ∪ B) = P(A) + P(B)

20. A flywheel is attached to a crankshaft by 12 bolts,
numbered 1 through 12. Each bolt is checked to de-
termine whether it is torqued correctly. Let A be the
event that all the bolts are torqued correctly, let B be
the event that the #3 bolt is not torqued correctly, let
C be the event that exactly one bolt is not torqued cor-
rectly, and let D be the event that bolts #5 and #8 are
torqued correctly. State whether each of the following
pairs of events is mutually exclusive.

a. A and B

b. B and D

c. C and D

d. B and C

2.2 Counting Methods

When computing probabilities, it is sometimes necessary to determine the number of
outcomes in a sample space. In this section we will describe several methods for doing
this. The basic rule, which we will call the fundamental principle of counting, is
presented by means of Example 2.10.

Example
2.10 A certain make of automobile is available in any of three colors: red, blue, or green,

and comes with either a large or small engine. In how many ways can a buyer choose
a car?

Solution
There are three choices of color and two choices of engine. A complete list of choices
is written in the following 3 × 2 table. The total number of choices is (3)(2) = 6.

Red Blue Green

Large Red, Large Blue, Large Green, Large

Small Red, Small Blue, Small Green, Small
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To generalize Example 2.10, if there are n1 choices of color and n2 choices of engine,
a complete list of choices can be written in an n1×n2 table, so the total number of choices
is n1n2.

If an operation can be performed in n1 ways, and if for each of these ways a
second operation can be performed in n2 ways, then the total number of ways
to perform the two operations is n1n2.

The fundamental principle of counting states that this reasoning can be extended to
any number of operations.

The Fundamental Principle of Counting
Assume that k operations are to be performed. If there are n1 ways to perform
the first operation, and if for each of these ways there are n2 ways to perform
the second operation, and if for each choice of ways to perform the first two
operations there are n3 ways to perform the third operation, and so on, then the
total number of ways to perform the sequence of k operations is n1n2 · · · nk .

Example
2.11 When ordering a certain type of computer, there are 3 choices of hard drive, 4 choices

for the amount of memory, 2 choices of video card, and 3 choices of monitor. In how
many ways can a computer be ordered?

Solution
The total number of ways to order a computer is (3)(4)(2)(3) = 72.

Permutations
A permutation is an ordering of a collection of objects. For example, there are six
permutations of the letters A, B, C: ABC, ACB, BAC, BCA, CAB, and CBA. With only
three objects, it is easy to determine the number of permutations just by listing them all.
But with a large number of objects this would not be feasible. The fundamental principle
of counting can be used to determine the number of permutations of any set of objects.
For example, we can determine the number of permutations of a set of three objects
as follows. There are 3 choices for the object to place first. After that choice is made,
there are 2 choices remaining for the object to place second. Then there is 1 choice left
for the object to place last. Therefore, the total number of ways to order three objects
is (3)(2)(1) = 6. This reasoning can be generalized. The number of permutations of a
collection of n objects is

n(n − 1)(n − 2) · · · (3)(2)(1)

This is the product of the integers from 1 to n. This product can be written with the
symbol n!, read “n factorial.”
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Definition
For any positive integer n, n! = n(n − 1)(n − 2) · · · (3)(2)(1).

Also, we define 0! = 1.

The number of permutations of n objects is n!.

Example
2.12 Five people stand in line at a movie theater. Into how many different orders can they

be arranged?

Solution
The number of permutations of a collection of five people is 5! = (5)(4)(3)(2)(1) =
120.

Sometimes we are interested in counting the number of permutations of subsets of
a certain size chosen from a larger set. This is illustrated in Example 2.13.

Example
2.13 Five lifeguards are available for duty one Saturday afternoon. There are three lifeguard

stations. In how many ways can three lifeguards be chosen and ordered among the
stations?

Solution
We use the fundamental principle of counting. There are 5 ways to choose a lifeguard
to occupy the first station, then 4 ways to choose a lifeguard to occupy the second
station, and finally 3 ways to choose a lifeguard to occupy the third station. The total
number of permutations of three lifeguards chosen from 5 is therefore (5)(4)(3) = 60.

The reasoning used to solve Example 2.13 can be generalized. The number of
permutations of k objects chosen from a group of n objects is

(n)(n − 1) · · · (n − k + 1)

This expression can be simplified by using factorial notation:

(n)(n − 1) · · · (n − k + 1) = n(n − 1) · · · (n − k + 1)(n − k)(n − k − 1) · · · (3)(2)(1)

(n − k)(n − k − 1) · · · (3)(2)(1)

= n!

(n − k)!
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Summary
The number of permutations of k objects chosen from a group of n objects is

n!

(n − k)!

Combinations
In some cases, when choosing a set of objects from a larger set, we don’t care about
the ordering of the chosen objects; we care only which objects are chosen. For example,
we may not care which lifeguard occupies which station; we might care only which
three lifeguards are chosen. Each distinct group of objects that can be selected, without
regard to order, is called a combination. We will now show how to determine the
number of combinations of k objects chosen from a set of n objects. We will illustrate
the reasoning with the result of Example 2.13. In that example, we showed that there are
60 permutations of three objects chosen from five. Denoting the objects A, B, C, D, E,
Figure 2.4 presents a list of all 60 permutations.

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE
ACB ADB AEB ADC AEC AED BDC BEC BED CED
BAC BAD BAE CAD CAE DAE CBD CBE DBE DCE
BCA BDA BEA CDA CEA DEA CDB CEB DEB DEC
CAB DAB EAB DAC EAC EAD DBC EBC EBD ECD
CBA DBA EBA DCA ECA EDA DCB ECB EDB EDC

FIGURE 2.4 The 60 permutations of three objects chosen from five.

The 60 permutations in Figure 2.4 are arranged in 10 columns of 6 permutations
each. Within each column, the three objects are the same, and the column contains the
six different permutations of those three objects. Therefore, each column represents a
distinct combination of three objects chosen from five, and there are 10 such combina-
tions. Figure 2.4 thus shows that the number of combinations of three objects chosen
from five can be found by dividing the number of permutations of three objects cho-
sen from five, which is 5!/(5 − 3)!, by the number of permutations of three objects,
which is 3! In summary, the number of combinations of three objects chosen from five is

5!

3!(5 − 3)!
.

The number of combinations of k objects chosen from n is often denoted by the

symbol

(
n

k

)
. The reasoning used to derive the number of combinations of three objects

chosen from five can be generalized to derive an expression for

(
n

k

)
.
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Summary
The number of combinations of k objects chosen from a group of n objects is(

n

k

)
= n!

k!(n − k)!
(2.12)

Example
2.14 At a certain event, 30 people attend, and 5 will be chosen at random to receive door

prizes. The prizes are all the same, so the order in which the people are chosen does
not matter. How many different groups of five people can be chosen?

Solution
Since the order of the five chosen people does not matter, we need to compute the
number of combinations of 5 chosen from 30. This is(

30
5

)
= 30!

5!25!

= (30)(29)(28)(27)(26)

(5)(4)(3)(2)(1)

= 142,506

Choosing a combination of k objects from a set of n divides the n objects into two
subsets: the k that were chosen and the n − k that were not chosen. Sometimes a set
is to be divided up into more than two subsets. For example, assume that in a class
of 12 students, a project is assigned in which the students will work in groups. Three
groups are to be formed, consisting of five, four, and three students. We can calculate
the number of ways in which the groups can be formed as follows. We consider the
process of dividing the class into three groups as a sequence of two operations. The first
operation is to select a combination of 5 students to make up the group of 5. The second
operation is to select a combination of 4 students from the remaining 7 to make up the
group of 4. The group of 3 will then automatically consist of the 3 students who are left.

The number of ways to perform the first operation is(
12

5

)
= 12!

5!7!

After the first operation has been performed, the number of ways to perform the second
operation is (

7

4

)
= 7!

4!3!

The total number of ways to perform the sequence of two operations is therefore

12!

5!7!

7!

4!3!
= 12!

5!4!3!
= 27,720
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Notice that the numerator in the final answer is the factorial of the total group size, while
the denominator is the product of the factorials of the sizes of the groups chosen from
it. This holds in general.

Summary
The number of ways of dividing a group of n objects into groups of k1, . . . , kr

objects, where k1 + · · · + kr = n, is
n!

k1! · · · kr !
(2.13)

Example
2.15 A die is rolled 20 times. Given that three of the rolls came up 1, five came up 2, four

came up 3, two came up 4, three came up 5, and three came up 6, how many different
arrangements of the outcomes are there?

Solution
There are 20 outcomes. They are divided into six groups, namely, the group of three
outcomes that came up 1, the group of five outcomes that came up 2, and so on. The
number of ways to divide the 20 outcomes into six groups of the specified sizes is

20!

3!5!4!2!3!3!
= 1.955 × 1012

When a sample space consists of equally likely outcomes, the probability of an event
can be found by dividing the number of outcomes in the event by the total number of
outcomes in the sample space. Counting rules can sometimes be used to compute these
numbers, as the following example illustrates:

Example
2.16 A box of bolts contains 8 thick bolts, 5 medium bolts, and 3 thin bolts. A box of nuts

contains 6 that fit the thick bolts, 4 that fit the medium bolts, and 2 that fit the thin
bolts. One bolt and one nut are chosen at random. What is the probability that the nut
fits the bolt?

Solution
The sample space consists of all pairs of nuts and bolts, and each pair is equally likely
to be chosen. The event that the nut fits the bolt corresponds to the set of all matching
pairs of nuts and bolts. Therefore

P(nut fits bolt) = number of matching pairs of nuts and bolts

number of pairs of nuts and bolts

There are 6 + 4 + 2 = 12 nuts, and 8 + 5 + 3 = 16 bolts. Therefore

Number of pairs of nuts and bolts = (12)(16) = 192
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The number of matching pairs is found by summing the number of pairs of thick nuts
and bolts, the number of pairs of medium nuts and bolts, and the number of pairs of
thin nuts and bolts. These numbers are

Number of pairs of thick nuts and bolts = (6)(8) = 48

Number of pairs of medium nuts and bolts = (4)(5) = 20

Number of pairs of thin nuts and bolts = (2)(3) = 6

Therefore
P(nut fits bolt) = 48 + 20 + 6

192
= 0.3854

Exercises for Section 2.2

1. DNA molecules consist of chemically linked se-
quences of the bases adenine, guanine, cytosine, and
thymine, denoted A, G, C, and T. A sequence of three
bases is called a codon. A base may appear more than
once in a codon.

a. How many different codons are there?

b. The bases A and G are purines, while C and T are
pyrimidines. How many codons are there whose
first and third bases are purines and whose second
base is a pyrimidine?

c. How many codons consist of three different bases?

2. A metallurgist is designing an experiment to deter-
mine the effect of flux, base metal, and energy input
on the hardness of a weld. She wants to study four
different fluxes, two different base metals, and three
different amounts of energy input. If each run of the
experiment involves a choice of one flux, one base
metal, and one amount of energy input, how many
different runs are possible?

3. The article “Improved Bioequivalence Assessment of
Topical Dermatological Drug Products Using Der-
matopharmacokinetics” (B. N’Dri-Stempfer, W. Na-
vidi, et al., Pharmaceutical Research, 2009:316–328)
describes a study in which a new type of ointment
was applied to forearms of volunteers to study the
rates of absorption into the skin. Eight locations on
the forearm were designated for ointment application.
The new ointment was applied to four locations, and
a control was applied to the other four. How many
different choices were there for the four locations to
apply the new ointment?

4. A group of 18 people have gotten together to play
baseball. They will divide themselves into two teams

of 9 players each, with one team wearing green uni-
forms and the other wearing yellow uniforms. In how
many ways can this be done?

5. In horse racing, one can make a trifecta bet by speci-
fying which horse will come in first, which will come
in second, and which will come in third, in the correct
order. One can make a box trifecta bet by specify-
ing which three horses will come in first, second, and
third, without specifying the order.

a. In an eight-horse field, how many different ways
can one make a trifecta bet?

b. In an eight-horse field, how many different ways
can one make a box trifecta bet?

6. A college math department consisting of 10 faculty
members must choose a department head, an assistant
department head, and a faculty senate representative.
In how many ways can this be done?

7. A test consists of 15 questions. Ten are true-false
questions, and five are multiple-choice questions that
have four choices each. A student must select an an-
swer for each question. In how many ways can this
be done?

8. In a certain state, license plates consist of three letters
followed by three numbers.

a. How many different license plates can be made?

b. How many different license plates can be made
in which no letter or number appears more than
once?

c. A license plate is chosen at random. What is the
probability that no letter or number appears more
than once?
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9. A computer password consists of eight characters.

a. How many different passwords are possible if
each character may be any lowercase letter or
digit?

b. How many different passwords are possible if each
character may be any lowercase letter or digit, and
at least one character must be a digit?

c. A computer system requires that passwords con-
tain at least one digit. If eight characters are gener-
ated at random, and each is equally likely to be any
of the 26 letters or 10 digits, what is the probability
that a valid password will be generated?

10. A company has hired 15 new employees, and must as-
sign 6 to the day shift, 5 to the graveyard shift, and 4 to
the night shift. In how many ways can the assignment
be made?

11. One drawer in a dresser contains 8 blue socks and 6
white socks. A second drawer contains 4 blue socks
and 2 white socks. One sock is chosen from each
drawer. What is the probability that they match?

12. A drawer contains 6 red socks, 4 green socks, and
2 black socks. Two socks are chosen at random. What
is the probability that they match?

2.3 Conditional Probability and Independence

A sample space contains all the possible outcomes of an experiment. Sometimes we
obtain some additional information about an experiment that tells us that the outcome
comes from a certain part of the sample space. In this case, the probability of an event is
based on the outcomes in that part of the sample space. A probability that is based on a
part of a sample space is called a conditional probability. We explore this idea through
some examples.

In Example 2.6 (in Section 2.1) we discussed a population of 1000 aluminum rods.
For each rod, the length is classified as too short, too long, or OK, and the diameter
is classified as too thin, too thick, or OK. These 1000 rods form a sample space in
which each rod is equally likely to be sampled. The number of rods in each category is
presented in Table 2.1. Of the 1000 rods, 928 meet the diameter specification. Therefore,
if a rod is sampled, P(diameter OK) = 928/1000 = 0.928. This probability is called
the unconditional probability, since it is based on the entire sample space. Now assume
that a rod is sampled, and its length is measured and found to meet the specification. What
is the probability that the diameter also meets the specification? The key to computing
this probability is to realize that knowledge that the length meets the specification reduces
the sample space from which the rod is drawn. Table 2.2 (page 70) presents this idea.
Once we know that the length specification is met, we know that the rod will be one of
the 942 rods in the sample space presented in Table 2.2.

TABLE 2.1 Sample space containing 1000 aluminum rods

Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5
OK 38 900 4
Too Long 2 25 13
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TABLE 2.2 Reduced sample space containing 942
aluminum rods that meet the length specification

Diameter

Length Too Thin OK Too Thick

Too Short — — —
OK 38 900 4
Too Long — — —

Of the 942 rods in this sample space, 900 of them meet the diameter specification.
Therefore, if we know that the rod meets the length specification, the probability that the
rod meets the diameter specification is 900/942. We say that the conditional probability
that the rod meets the diameter specification given that it meets the length specification
is equal to 900/942, and we write P(diameter OK | length OK) = 900/942 = 0.955.
Note that the conditional probability P(diameter OK | length OK) differs from the
unconditional probability P(diameter OK), which was computed from the full sample
space (Table 2.1) to be 0.928.

Example
2.17 Compute the conditional probability P(diameter OK | length too long). Is this the

same as the unconditional probability P(diameter OK)?

Solution
The conditional probability P(diameter OK | length too long) is computed under the
assumption that the rod is too long. This reduces the sample space to the 40 items
indicated in boldface in the following table.

Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5
OK 38 900 4
Too Long 2 25 13

Of the 40 outcomes, 25 meet the diameter specification. Therefore

P(diameter OK | length too long) = 25

40
= 0.625

The unconditional probability P(diameter OK) is computed on the basis of all 1000
outcomes in the sample space and is equal to 928/1000 = 0.928. In this case, the
conditional probability differs from the unconditional probability.

Let’s look at the solution to Example 2.17 more closely. We found that

P(diameter OK | length too long) = 25

40
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In the answer 25/40, the denominator, 40, represents the number of outcomes that satisfy
the condition that the rod is too long, while the numerator, 25, represents the number of
outcomes that satisfy both the condition that the rod is too long and that its diameter is
OK. If we divide both the numerator and denominator of this answer by the number of
outcomes in the full sample space, which is 1000, we obtain

P(diameter OK | length too long) = 25/1000

40/1000

Now 40/1000 represents the probability of satisfying the condition that the rod is too
long. That is,

P(length too long) = 40

1000

The quantity 25/1000 represents the probability of satisfying both the condition that the
rod is too long and that the diameter is OK. That is,

P(diameter OK and length too long) = 25

1000

We can now express the conditional probability as

P(diameter OK | length too long) = P(diameter OK and length too long)

P(length too long)

This reasoning can be extended to construct a definition of conditional probability
that holds for any sample space:

Definition
Let A and B be events with P(B) �= 0. The conditional probability of A given B is

P(A|B) = P(A ∩ B)

P(B)
(2.14)

Figure 2.5 presents Venn diagrams to illustrate the idea of conditional probability.

A B A B

(b)(a)

FIGURE 2.5 (a) The diagram represents the unconditional probability P(A). P(A) is
illustrated by considering the event A in proportion to the entire sample space, which
is represented by the rectangle. (b) The diagram represents the conditional probability
P(A|B). Since the event B is known to occur, the event B now becomes the sample
space. For the event A to occur, the outcome must be in the intersection A ∩ B. The
conditional probability P(A|B) is therefore illustrated by considering the intersection
A ∩ B in proportion to the entire event B.
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Example
2.18 Refer to Example 2.8 (in Section 2.1). What is the probability that a can will have a

flaw on the side, given that it has a flaw on top?

Solution
We are given that P(flaw on top) = 0.03, and P(flaw on side and flaw on top) = 0.01.
Using Equation (2.14),

P(flaw on side | flaw on top) = P(flaw on side and flaw on top)

P(flaw on top)

= 0.01

0.03

= 0.33

Example
2.19 Refer to Example 2.8 (in Section 2.1). What is the probability that a can will have a

flaw on the top, given that it has a flaw on the side?

Solution
We are given that P(flaw on side) = 0.02, and P(flaw on side and flaw on top) =
0.01. Using Equation (2.14),

P(flaw on top | flaw on side) = P(flaw on top and flaw on side)

P(flaw on side)

= 0.01

0.02

= 0.5

The results of Examples 2.18 and 2.19 show that in most cases, P(A|B) �= P(B|A).

Independent Events
Sometimes the knowledge that one event has occurred does not change the probability
that another event occurs. In this case the conditional and unconditional probabilities are
the same, and the events are said to be independent. We present an example.

Example
2.20 If an aluminum rod is sampled from the sample space presented in Table 2.1, find

P(too long) and P(too long | too thin). Are these probabilities different?
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Solution

P(too long) = 40

1000
= 0.040

P(too long | too thin) = P(too long and too thin)

P(too thin)

= 2/1000

50/1000

= 0.040

The conditional probability and the unconditional probability are the same. The
information that the rod is too thin does not change the probability that the rod is
too long.

Example 2.20 shows that knowledge that an event occurs sometimes does not
change the probability that another event occurs. In these cases, the two events are
said to be independent. The event that a rod is too long and the event that a rod is too
thin are independent. We now give a more precise definition of the term, both in words
and in symbols.

Definition
Two events A and B are independent if the probability of each event remains
the same whether or not the other occurs.

In symbols: If P(A) �= 0 and P(B) �= 0, then A and B are independent if

P(B|A) = P(B) or, equivalently, P(A|B) = P(A) (2.15)

If either P(A) = 0 or P(B) = 0, then A and B are independent.

If A and B are independent, then the following pairs of events are also independent:
A and Bc, Ac and B, and Ac and Bc. The proof of this fact is left as an exercise.

The concept of independence can be extended to more than two events:

Definition
Events A1, A2, . . . , An are independent if the probability of each remains the
same no matter which of the others occur.

In symbols: Events A1, A2, . . . , An are independent if for each Ai , and each
collection A j1, . . . , A jm of events with P(A j1 ∩ · · · ∩ A jm) �= 0,

P(Ai |A j1 ∩ · · · ∩ A jm) = P(Ai ) (2.16)
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The Multiplication Rule
Sometimes we know P(A|B) and we wish to find P(A ∩ B). We can obtain a result that
is useful for this purpose by multiplying both sides of Equation (2.14) by P(B). This
leads to the multiplication rule.

If A and B are two events with P(B) �= 0, then

P(A ∩ B) = P(B)P(A|B) (2.17)

If A and B are two events with P(A) �= 0, then

P(A ∩ B) = P(A)P(B|A) (2.18)

If P(A) �= 0 and P(B) �= 0, then Equations (2.17) and (2.18) both hold.

When two events are independent, then P(A|B) = P(A) and P(B|A) = P(B), so
the multiplication rule simplifies:

If A and B are independent events, then

P(A ∩ B) = P(A)P(B) (2.19)

This result can be extended to any number of events. If A1, A2, . . . , An are
independent events, then for each collection A j1, . . . , A jm of events

P(A j1 ∩ A j2 ∩ · · · ∩ A jm) = P(A j1)P(A j2) · · · P(A jm) (2.20)

In particular,

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) · · · P(An) (2.21)

Example
2.21 A vehicle contains two engines, a main engine and a backup. The engine component

fails only if both engines fail. The probability that the main engine fails is 0.05, and
the probability that the backup engine fails is 0.10. Assume that the main and backup
engines function independently. What is the probability that the engine component
fails?

Solution
The probability that the engine component fails is the probability that both engines
fail. Therefore

P(engine component fails) = P(main engine fails and backup engine fails)

Since the engines function independently, we may use Equation (2.19):
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P(main engine fails and backup engine fails) = P(main fails)P(backup fails)

= (0.10)(0.05)

= 0.005

Example
2.22 A system contains two components, A and B. Both components must function for the

system to work. The probability that component A fails is 0.08, and the probability
that component B fails is 0.05. Assume the two components function independently.
What is the probability that the system functions?

Solution
The probability that the system functions is the probability that both components
function. Therefore

P(system functions) = P(A functions and B functions)

Since the components function independently,

P(A functions and B functions) = P(A functions)P(B functions)

= [1 − P(A fails)][1 − P(B fails)]

= (1 − 0.08)(1 − 0.05)

= 0.874

Example
2.23 Of the microprocessors manufactured by a certain process, 20% are defective. Five

microprocessors are chosen at random. Assume they function independently. What
is the probability that they all work?

Solution
For i = 1, . . . , 5, let Ai denote the event that the i th microprocessor works. Then

P(all 5 work) = P(A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5)

= P(A1)P(A2)P(A3)P(A4)P(A5)

= (1 − 0.20)5

= 0.328

Example
2.24 In Example 2.23, what is the probability that at least one of the microprocessors

works?

Solution
The easiest way to solve this problem is to notice that

P(at least one works) = 1 − P(all are defective)

Now, letting Di denote the event that the i th microprocessor is defective,
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P(all are defective) = P(D1 ∩ D2 ∩ D3 ∩ D4 ∩ D5)

= P(D1)P(D2)P(D3)P(D4)P(D5)

= (0.20)5

= 0.0003

Therefore P(at least one works) = 1 − 0.0003 = 0.9997.

Equations (2.19) and (2.20) tell us how to compute probabilities when we know that
events are independent, but they are usually not much help when it comes to deciding
whether two events really are independent. In most cases, the best way to determine
whether events are independent is through an understanding of the process that produces
the events. Here are a few illustrations:

■ A die is rolled twice. It is reasonable to believe that the outcome of the second roll
is not affected by the outcome of the first roll. Therefore, knowing the outcome of
the first roll does not help to predict the outcome of the second roll. The two rolls
are independent.

■ A certain chemical reaction is run twice, using different equipment each time. It is
reasonable to believe that the yield of one reaction will not affect the yield of the
other. In this case the yields are independent.

■ A chemical reaction is run twice in succession, using the same equipment. In this
case, it might not be wise to assume that the yields are independent. For example,
a low yield on the first run might indicate that there is more residue than usual left
behind. This might tend to make the yield on the next run higher. Thus knowing
the yield on the first run could help to predict the yield on the second run.

■ The items in a simple random sample may be treated as independent, unless the
population is finite and the sample comprises more than about 5% of the
population (see the discussion of independence in Section 1.1).

The Law of Total Probability
The law of total probability is illustrated in Figure 2.6. A sample space contains the
events A1, A2, A3, and A4. These events are mutually exclusive, since no two over-
lap. They are also exhaustive, which means that their union covers the whole sample
space. Each outcome in the sample space belongs to one and only one of the events
A1, A2, A3, A4.

The event B can be any event. In Figure 2.6, each of the events Ai intersects B,
forming the events A1 ∩ B, A2 ∩ B, A3 ∩ B, and A4 ∩ B. It is clear from Figure 2.6 that
the events A1 ∩ B, A2 ∩ B, A3 ∩ B, and A4 ∩ B are mutually exclusive and that they
cover B. Every outcome in B belongs to one and only one of the events A1 ∩ B, A2 ∩ B,
A3 ∩ B, A4 ∩ B. It follows that

B = (A1 ∩ B) ∪ (A2 ∩ B) ∪ (A3 ∩ B) ∪ (A4 ∩ B)
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A1
A2

B

A3A4

A1 � B A4 � B

A2 � B A3 � B

FIGURE 2.6 The mutually exclusive and exhaustive events A1, A2, A3, A4 divide the
event B into mutually exclusive subsets.

which is a union of mutually exclusive events. Therefore

P(B) = P(A1 ∩ B) + P(A2 ∩ B) + P(A3 ∩ B) + P(A4 ∩ B)

Since P(Ai ∩ B) = P(B|Ai )P(Ai ),

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3) + P(B|A4)P(A4)

(2.22)

Equation (2.22) is a special case of the law of total probability, restricted to the case
where there are four mutually exclusive and exhaustive events. The intuition behind the
law of total probability is quite simple. The events A1, A2, A3, A4 break the event B into
pieces. The probability of B is found by adding up the probabilities of the pieces.

We could redraw Figure 2.6 to have any number of events Ai . This leads to the
general case of the law of total probability.

Law of Total Probability
If A1, . . . , An are mutually exclusive and exhaustive events, and B is any event,
then

P(B) = P(A1 ∩ B) + · · · + P(An ∩ B) (2.23)

Equivalently, if P(Ai ) �= 0 for each Ai ,

P(B) = P(B|A1)P(A1) + · · · + P(B|An)P(An) (2.24)

Example
2.25 Customers who purchase a certain make of car can order an engine in any of three

sizes. Of all cars sold, 45% have the smallest engine, 35% have the medium-sized
one, and 20% have the largest. Of cars with the smallest engine, 10% fail an emissions
test within two years of purchase, while 12% of those with the medium size and 15%
of those with the largest engine fail. What is the probability that a randomly chosen
car will fail an emissions test within two years?
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Solution
Let B denote the event that a car fails an emissions test within two years. Let A1 denote
the event that a car has a small engine, A2 the event that a car has a medium-size
engine, and A3 the event that a car has a large engine. Then

P(A1) = 0.45 P(A2) = 0.35 P(A3) = 0.20

The probability that a car will fail a test, given that it has a small engine, is 0.10. That
is, P(B|A1) = 0.10. Similarly, P(B|A2) = 0.12, and P(B|A3) = 0.15. By the law
of total probability (Equation 2.24),

P(B) = P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3)

= (0.10)(0.45) + (0.12)(0.35) + (0.15)(0.20)

= 0.117

Sometimes problems like Example 2.25 are solved with the use of tree diagrams.
Figure 2.7 presents a tree diagram for Example 2.25. There are three primary branches on
the tree, corresponding to the three engine sizes. The probabilities of the engine sizes are
listed on their respective branches. At the end of each primary branch are two secondary
branches, representing the events of failure and no failure. The conditional probabilities

P(B ∩ A1) � P(B|A1)P(A1) � 0.045

Failure

Sm
al

l

Medium

L
arge

P(B|A1
) �
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P(A 1
) �

 0
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3 ) �
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 0.12
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2) � 0.88

No failure
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 0.15
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3) � 0.85
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P(B ∩ A2) � P(B|A2)P(A2) � 0.042

P(B ∩ A3) � P(B|A3)P(A3) � 0.030

FIGURE 2.7 Tree diagram for the solution to Example 2.25.
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of failure and no failure, given engine size, are listed on the secondary branches. By
multiplying along each of the branches corresponding to the event B = fail, we obtain
the probabilities P(B|Ai )P(Ai ). Summing these probabilities yields P(B), as desired.

Bayes’ Rule
If A and B are two events, we have seen that in most cases P(A|B) �= P(B|A). Bayes’
rule provides a formula that allows us to calculate one of the conditional probabilities if
we know the other one. To see how it works, assume that we know P(B|A) and we wish
to calculate P(A|B). Start with the definition of conditional probability (Equation 2.14):

P(A|B) = P(A ∩ B)

P(B)

Now use Equation (2.18) to substitute P(B|A)P(A) for P(A ∩ B):

P(A|B) = P(B|A)P(A)

P(B)
(2.25)

Equation (2.25) is essentially Bayes’ rule. When Bayes’ rule is written, the expression
P(B) in the denominator is usually replaced with a more complicated expression derived
from the law of total probability. Specifically, since the events A and Ac are mutually
exclusive and exhaustive, the law of total probability shows that

P(B) = P(B|A)P(A) + P(B|Ac)P(Ac) (2.26)

Substituting the right-hand side of Equation (2.26) for P(B) in Equation (2.25) yields
Bayes’ rule. A more general version of Bayes’ rule can be derived as well, by consider-
ing a collection A1, . . . , An of mutually exclusive and exhaustive events and using the
law of total probability to replace P(B) with the expression on the right-hand side of
Equation (2.24).

Bayes’ Rule
Special Case: Let A and B be events with P(A) �= 0, P(Ac) �= 0, and
P(B) �= 0. Then

P(A|B) = P(B|A)P(A)

P(B|A)P(A) + P(B|Ac)P(Ac)
(2.27)

General Case: Let A1, . . . , An be mutually exclusive and exhaustive events
with P(Ai ) �= 0 for each Ai . Let B be any event with P(B) �= 0. Then

P(Ak |B) = P(B|Ak)P(Ak)∑n
i=1 P(B|Ai )P(Ai )

(2.28)

Example 2.26 shows how Bayes’ rule can be used to discover an important and
surprising result in the field of medical testing.
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Example
2.26 The proportion of people in a given community who have a certain disease is 0.005.

A test is available to diagnose the disease. If a person has the disease, the probability
that the test will produce a positive signal is 0.99. If a person does not have the disease,
the probability that the test will produce a positive signal is 0.01. If a person tests
positive, what is the probability that the person actually has the disease?

Solution
Let D represent the event that the person actually has the disease, and let + represent
the event that the test gives a positive signal. We wish to find P(D|+). We are given
the following probabilities:

P(D) = 0.005 P(+|D) = 0.99 P(+|Dc) = 0.01

Using Bayes’ rule (Equation 2.27),

P(D|+) = P(+|D)P(D)

P(+|D)P(D) + P(+|Dc)P(Dc)

= (0.99)(0.005)

(0.99)(0.005) + (0.01)(0.995)

= 0.332

In Example 2.26, only about a third of the people who test positive for the disease
actually have the disease. Note that the test is fairly accurate; it correctly classifies 99%
of both diseased and nondiseased individuals. The reason that a large proportion of those
who test positive are actually disease-free is that the disease is rare—only 0.5% of the
population has it. Because many diseases are rare, it is the case for many medical tests that
most positives are false positives, even when the test is fairly accurate. For this reason,
when a test comes out positive, a second test is usually given before a firm diagnosis
is made.

Example
2.27 Refer to Example 2.25. A record for a failed emissions test is chosen at random. What

is the probability that it is for a car with a small engine?

Solution
Let B denote the event that a car failed an emissions test. Let A1 denote the event
that a car has a small engine, A2 the event that a car has a medium-size engine, and
A3 the event that a car has a large engine. We wish to find P(A1|B). The following
probabilities are given in Example 2.25:

P(A1) = 0.45
P(B|A1) = 0.10

P(A2) = 0.35
P(B|A2) = 0.12

P(A3) = 0.20
P(B|A3) = 0.15
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By Bayes’ rule,

P(A1|B) = P(B|A1)P(A1)

P(B|A1)P(A1) + P(B|A2)P(A2) + P(B|A3)P(A3)

= (0.10)(0.45)

(0.10)(0.45) + (0.12)(0.35) + (0.15)(0.20)

= 0.385

Application to Reliability Analysis
Reliability analysis is the branch of engineering concerned with estimating the failure
rates of systems. While some problems in reliability analysis require advanced mathe-
matical methods, there are many problems that can be solved with the methods we have
learned so far. We begin with an example illustrating the computation of the reliability
of a system consisting of two components connected in series.

Example
2.28 A system contains two components, A and B, connected in series as shown in the

following diagram.

A B

The system will function only if both components function. The probability that A
functions is given by P(A) = 0.98, and the probability that B functions is given by
P(B) = 0.95. Assume that A and B function independently. Find the probability that
the system functions.

Solution
Since the system will function only if both components function, it follows that

P(system functions) = P(A ∩ B)

= P(A)P(B) by the assumption of independence

= (0.98)(0.95)

= 0.931

Example 2.29 illustrates the computation of the reliability of a system consisting of
two components connected in parallel.

Example
2.29 A system contains two components, C and D, connected in parallel as shown in the

following diagram.
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C

D

The system will function if either C or D functions. The probability that C func-
tions is 0.90, and the probability that D functions is 0.85. Assume C and D function
independently. Find the probability that the system functions.

Solution
Since the system will function so long as either of the two components functions, it
follows that

P(system functions) = P(C ∪ D)

= P(C) + P(D) − P(C ∩ D)

= P(C) + P(D) − P(C)P(D)

by the assumption of independence

= 0.90 + 0.85 − (0.90)(0.85)

= 0.985

The reliability of more complex systems can often be determined by decomposing
the system into a series of subsystems, each of which contains components connected
either in series or in parallel. Example 2.30 illustrates the method.

Example
2.30 The thesis “Dynamic, Single-stage, Multiperiod, Capacitated Production Sequencing

Problem with Multiple Parallel Resources” (D. Ott, M.S. thesis, Colorado School of
Mines, 1998) describes a production method used in the manufacture of aluminum
cans. The following schematic diagram, slightly simplified, depicts the process.

C

D

E
Cup Wash

Print Depalletize Fill

Fill

A B

G H

F

The initial input into the process consists of coiled aluminum sheets, approximately
0.25 mm thick. In a process known as “cupping,” these sheets are uncoiled and shaped
into can bodies, which are cylinders that are closed on the bottom and open on top.
These can bodies are then washed and sent to the printer, which prints the label on the
can. In practice there are several printers on a line; the diagram presents a line with
three printers. The printer deposits the cans onto pallets, which are wooden structures
that hold 7140 cans each. The cans next go to be filled. Some fill lines can accept cans
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directly from the pallets, but others can accept them only from cell bins, which are
large containers holding approximately 100,000 cans each. To use these fill lines, the
cans must be transported from the pallets to cell bins, in a process called depalletizing.
In practice there are several fill lines; the diagram presents a case where there are two
fill lines, one of which will accept cans from the pallets, and the other of which will
not. In the filling process the cans are filled, and the can top is seamed on. The cans
are then packaged and shipped to distributors.

It is desired to estimate the probability that the process will function for one day
without failing. Assume that the cupping process has probability 0.995 of functioning
successfully for one day. Since this component is denoted by “A” in the diagram,
we will express this probability as P(A) = 0.995. Assume that the other process
components have the following probabilities of functioning successfully during a
one-day period: P(B) = 0.99, P(C) = P(D) = P(E) = 0.95, P(F) = 0.90,
P(G) = 0.90, P(H) = 0.98. Assume the components function independently. Find
the probability that the process functions successfully for one day.

Solution
We can solve this problem by noting that the entire process can be broken down into
subsystems, each of which consists of simple series or parallel component systems.
Specifically, subsystem 1 consists of the cupping and washing components, which
are connected in series. Subsystem 2 consists of the printers, which are connected in
parallel. Subsystem 3 consists of the fill lines, which are connected in parallel, with
one of the two lines consisting of two components connected in series.

We compute the probabilities of successful functioning for each subsystem,
denoting the probabilities p1, p2, and p3.

P(subsystem 1 functions) = p1 = P(A ∩ B)

= P(A)P(B)

= (0.995)(0.990)

= 0.985050

P(subsystem 2 functions) = p2 = 1 − P(subsystem 2 fails)

= 1 − P(Cc ∩ Dc ∩ Ec)

= 1 − P(Cc)P(Dc)P(Ec)

= 1 − (0.05)3

= 0.999875

Subsystem 3 functions if F functions, or if both G and H function. Therefore

P(subsystem 3 functions) = p3 = P(F ∪ (G ∩ H))

= P(F) + P(G ∩ H) − P(F ∩ G ∩ H)

= P(F) + P(G)P(H) − P(F)P(G)P(H)

= (0.90) + (0.90)(0.98) − (0.90)(0.90)(0.98)

= 0.988200
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The entire process consists of the three subsystems connected in series. Therefore,
for the process to function, all three subsystems must function. We conclude that

P(system functions) = P(systems 1, 2, and 3 all function)

= p1 p2 p3

= (0.985050)(0.999875)(0.988200)

= 0.973

We remark that the assumption that the components function independently is crucial
in the solutions of Examples 2.28, 2.29, and 2.30. When this assumption is not met, it can
be very difficult to make accurate reliability estimates. If the assumption of independence
is used without justification, reliability estimates may be misleading.

Exercises for Section 2.3

1. Let A and B be events with P(A) = 0.8 and
P(A ∩ B) = 0.2. For what value of P(B) will A
and B be independent?

2. Let A and B be events with P(A) = 0.5 and
P(A ∩ Bc) = 0.4. For what value of P(B) will A
and B be independent?

3. A box contains 15 resistors. Ten of them are labeled
50 � and the other five are labeled 100 �.

a. What is the probability that the first resistor is
100 �?

b. What is the probability that the second resistor is
100 �, given that the first resistor is 50 �?

c. What is the probability that the second resistor is
100 �, given that the first resistor is 100 �?

4. Refer to Exercise 3. Resistors are randomly selected
from the box, one by one, until a 100 � resistor is
selected.

a. What is the probability that the first two resistors
are both 50 �?

b. What is the probability that a total of two resistors
are selected from the box?

c. What is the probability that more than three resis-
tors are selected from the box?

5. On graduation day at a large university, one graduate
is selected at random. Let A represent the event that
the student is an engineering major, and let B repre-
sent the event that the student took a calculus course

in college. Which probability is greater, P(A|B) or
P(B|A)? Explain.

6. The article “Integrating Risk Assessment and Life
Cycle Assessment: A Case Study of Insulation”
(Y. Nishioka, J. Levy, et al., Risk Analysis, 2002:
1003–1017) estimates that 5.6% of a certain popula-
tion has asthma, and that an asthmatic has probability
0.027 of suffering an asthma attack on a given day.
A person is chosen at random from this population.
What is the probability that this person has an asthma
attack on that day?

7. Suppose that start-up companies in the area of biotech-
nology have probability 0.2 of becoming profitable,
and that those in the area of information technology
have probability 0.15 of becoming profitable. A ven-
ture capitalist invests in one firm of each type. Assume
the companies function independently.

a. What is the probability that both companies be-
come profitable?

b. What is the probability that neither company be-
comes profitable?

c. What is the probability that at least one of the two
companies become profitable?

8. A drag racer has two parachutes, a main and a backup,
that are designed to bring the vehicle to a stop after the
end of a run. Suppose that the main chute deploys with
probability 0.99, and that if the main fails to deploy,
the backup deploys with probability 0.98.
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a. What is the probability that one of the two
parachutes deploys?

b. What is the probability that the backup parachutes
deploys?

9. Of people in a certain city who bought a new vehicle
in the past year, 12% of them bought a hybrid vehicle,
and 5% of them bought a hybrid truck. Given that a
person bought a hybrid vehicle, what is the probability
that it was a truck?

10. Of all failures of a certain type of computer hard drive,
it is determined that in 20% of them only the sector
containing the file allocation table is damaged, in 70%
of them only nonessential sectors are damaged, and in
10% of the cases both the allocation sector and one or
more nonessential sectors are damaged. A failed drive
is selected at random and examined.

a. What is the probability that the allocation sector is
damaged?

b. What is the probability that a nonessential sector
is damaged?

c. If the drive is found to have a damaged allocation
sector, what is the probability that some nonessen-
tial sectors are damaged as well?

d. If the drive is found to have a damaged nonessential
sector, what is the probability that the allocation
sector is damaged as well?

e. If the drive is found to have a damaged allocation
sector, what is the probability that no nonessential
sectors are damaged?

f. If the drive is found to have a damaged nonessential
sector, what is the probability that the allocation
sector is not damaged?

11. In the process of producing engine valves, the valves
are subjected to a first grind. Valves whose thicknesses
are within the specification are ready for installation.
Those valves whose thicknesses are above the speci-
fication are reground, while those whose thicknesses
are below the specification are scrapped. Assume that
after the first grind, 70% of the valves meet the spec-
ification, 20% are reground, and 10% are scrapped.
Furthermore, assume that of those valves that are
reground, 90% meet the specification, and 10% are
scrapped.

a. Find the probability that a valve is ground only
once.

b. Given that a valve is not reground, what is the prob-
ability that it is scrapped?

c. Find the probability that a valve is scrapped.

d. Given that a valve is scrapped, what is the proba-
bility that it was ground twice?

e. Find the probability that the valve meets the spec-
ification (after either the first or second grind).

f. Given that a valve meets the specification (after
either the first or second grind), what is the proba-
bility that it was ground twice?

g. Given that a valve meets the specification, what is
the probability that it was ground only once?

12. Sarah and Thomas are going bowling. The probability
that Sarah scores more than 175 is 0.4, and the proba-
bility that Thomas scores more than 175 is 0.2. Their
scores are independent.

a. Find the probability that both score more than
175.

b. Given that Thomas scores more than 175, the prob-
ability that Sarah scores higher than Thomas is 0.3.
Find the probability that Thomas scores more than
175 and Sarah scores higher than Thomas.

13. A particular automatic sprinkler system has two differ-
ent types of activation devices for each sprinkler head.
One type has a reliability of 0.9; that is, the probabil-
ity that it will activate the sprinkler when it should is
0.9. The other type, which operates independently of
the first type, has a reliability of 0.8. If either device
is triggered, the sprinkler will activate. Suppose a fire
starts near a sprinkler head.

a. What is the probability that the sprinkler head will
be activated?

b. What is the probability that the sprinkler head will
not be activated?

c. What is the probability that both activation devices
will work properly?

d. What is the probability that only the device with
reliability 0.9 will work properly?

14. Laura and Philip each fire one shot at a target. Laura
has probability 0.5 of hitting the target, and Philip has
probability 0.3. The shots are independent.

a. Find the probability that the target is hit.

b. Find the probability that the target is hit by exactly
one shot.
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c. Given that the target was hit by exactly one shot,
find the probability that Laura hit the target.

15. A population of 600 semiconductor wafers contains
wafers from three lots. The wafers are categorized by
lot and by whether they conform to a thickness spec-
ification. The following table presents the number of
wafers in each category. A wafer is chosen at random
from the population.

Lot Conforming Nonconforming

A 88 12
B 165 35
C 260 40

a. If the wafer is from Lot A, what is the probability
that it is conforming?

b. If the wafer is conforming, what is the probability
that it is from Lot A?

c. If the wafer is conforming, what is the probability
that it is not from Lot C?

d. If the wafer is not from Lot C, what is the proba-
bility that it is conforming?

16. Refer to Exercise 15. Let E1 be the event that the
wafer comes from Lot A, and let E2 be the event that
the wafer is conforming. Are E1 and E2 independent?
Explain.

17. A geneticist is studying two genes. Each gene can be
either dominant or recessive. A sample of 100 indi-
viduals is categorized as follows.

Gene 2

Gene 1 Dominant Recessive

Dominant 56 24
Recessive 14 6

a. What is the probability that a randomly sampled
individual, gene 1 is dominant?

b. What is the probability that a randomly sampled
individual, gene 2 is dominant?

c. Given that gene 1 is dominant, what is the
probability that gene 2 is dominant?

d. These genes are said to be in linkage equilibrium if
the event that gene 1 is dominant is independent of
the event that gene 2 is dominant. Are these genes
in linkage equilibrium?

18. A car dealer sold 750 automobiles last year. The fol-
lowing table categorizes the cars sold by size and color
and presents the number of cars in each category. A
car is to be chosen at random from the 750 for which
the owner will win a lifetime of free oil changes.

Color

Size White Black Red Grey

Small 102 71 33 134
Midsize 86 63 36 105
Large 26 32 22 40

a. If the car is small, what is the probability that it is
black?

b. If the car is white, what is the probability that it is
midsize?

c. If the car is large, what is the probability that it is
red?

d. If the car is red, what is the probability that it is
large?

e. If the car is not small, what is the probability that
it is not grey?

19. The following table presents the 100 senators of the
113th U.S. Congress on January 3, 2013, classified by
political party affiliation and gender.

Male Female

Democrat 37 16
Republican 41 4
Independent 2 0

A senator is selected at random from this group. Com-
pute the following probabilities.

a. The senator is a male Republican.

b. The senator is a Democrat or a female.

c. The senator is a Republican.

d. The senator is not a Republican.
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e. The senator is a Democrat.

f. The senator is an Independent.

g. The senator is a Democrat or an Independent.

20. An automobile insurance company divides customers
into three categories, good risks, medium risks, and
poor risks. Assume that 70% of the customers are
good risks, 20% are medium risks, and 10% are poor
risks. Assume that during the course of a year, a good
risk customer has probability 0.005 of filing an acci-
dent claim, a medium risk customer has probability
0.01, and a poor risk customer has probability 0.025.
A customer is chosen at random.

a. What is the probability that the customer is a good
risk and has filed a claim?

b. What is the probability that the customer has filed
a claim?

c. Given that the customer has filed a claim, what is
the probability that the customer is a good risk?

21. Nuclear power plants have redundant components in
important systems to reduce the chance of catastrophic
failure. Assume that a plant has two gauges to measure
the level of coolant in the reactor core and that each
gauge has probability 0.01 of failing. Assume that one
potential cause of gauge failure is that the electric ca-
bles leading from the core to the control room where
the gauges are located may burn up in a fire. Someone
wishes to estimate the probability that both gauges
fail, and makes the following calculation:

P(both gauges fail) = P(first gauge fails) ×
P(second gauge fails)

= (0.01)(0.01)

= 0.0001

a. What assumption is being made in this calculation?

b. Explain why this assumption is probably not justi-
fied in the present case.

c. Is the probability of 0.0001 likely to be too high or
too low? Explain.

22. Refer to Exercise 21. Is it possible for the proba-
bility that both gauges fail to be greater than 0.01?
Explain.

23. A lot of 10 components contains 3 that are defective.
Two components are drawn at random and tested. Let
A be the event that the first component drawn is defec-

tive, and let B be the event that the second component
drawn is defective.

a. Find P(A).

b. Find P(B|A).

c. Find P(A ∩ B).

d. Find P(Ac ∩ B).

e. Find P(B).

f. Are A and B independent? Explain.

24. A lot of 1000 components contains 300 that are defec-
tive. Two components are drawn at random and tested.
Let A be the event that the first component drawn is
defective, and let B be the event that the second com-
ponent drawn is defective.

a. Find P(A).

b. Find P(B|A).

c. Find P(A ∩ B).

d. Find P(Ac ∩ B).

e. Find P(B).

f. Find P(A|B).

g. Are A and B independent? Is it reasonable to
treat A and B as though they were independent?
Explain.

25. In a lot of n components, 30% are defective. Two com-
ponents are drawn at random and tested. Let A be the
event that the first component drawn is defective, and
let B be the event that the second component drawn
is defective. For which lot size n will A and B be
more nearly independent: n = 10 or n = 10,000?
Explain.

26. A certain delivery service offers both express and stan-
dard delivery. Seventy-five percent of parcels are sent
by standard delivery, and 25% are sent by express. Of
those sent standard, 80% arrive the next day, and of
those sent express, 95% arrive the next day. A record
of a parcel delivery is chosen at random from the com-
pany’s files.

a. What is the probability that the parcel was shipped
express and arrived the next day?

b. What is the probability that it arrived the next day?

c. Given that the package arrived the next day, what
is the probability that it was sent express?

27. Each day, a weather forecaster predicts whether or
not it will rain. For 80% of rainy days, she correctly
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predicts that it will rain. For 90% of non-rainy days,
she correctly predicts that it will not rain. Suppose that
10% of days are rainy and 90% are non-rainy.

a. What proportion of the forecasts are correct?

b. Another forecaster always predicts that there will
be no rain. What proportion of these forecasts are
correct?

28. Items are inspected for flaws by two quality inspec-
tors. If a flaw is present, it will be detected by the
first inspector with probability 0.9, and by the second
inspector with probability 0.7. Assume the inspectors
function independently.

a. If an item has a flaw, what is the probability that it
will be found by both inspectors?

b. If an item has a flaw, what is the probability that it
will be found by at least one of the two inspectors?

c. Assume that the second inspector examines only
those items that have been passed by the first in-
spector. If an item has a flaw, what is the probability
that the second inspector will find it?

29. Refer to Exercise 28. Assume that both inspectors in-
spect every item and that if an item has no flaw, then
neither inspector will detect a flaw.

a. Assume that the probability that an item has a
flaw is 0.10. If an item is passed by the first in-
spector, what is the probability that it actually has
a flaw?

b. Assume that the probability that an item has a
flaw is 0.10. If an item is passed by both inspec-
tors, what is the probability that it actually has
a flaw?

30. Refer to Example 2.26. Assume that the proportion
of people in the community who have the disease is
0.05.

a. Given that the test is positive, what is the
probability that the person has the disease?

b. Given that the test is negative, what is the proba-
bility that the person does not have the disease?

31. Sickle-cell anemia is an inherited disease in which
red blood cells are misshapen and sticky. Sickle cells
tend to form clumps in blood vessels, inhibiting the
flow of blood. Humans have two genes for sickle-cell
anemia, either of which may be S for normal cells
or s for sickle cells. A person with two copies of the

s gene will have sickle-cell anemia. A person with
one s gene and one S gene will not have the dis-
ease, but will be a carrier, which means that the s
gene may be transmitted to the person’s offspring.
If two carriers have a child, the probability is 0.25
that the child will have the disease and 0.5 that the
child will be a carrier. Outcomes among children are
independent.

a. A mother and father who are both carriers have
two children. What is the probability that neither
child has the disease?

b. What is the probability that both children are
carriers?

c. If neither child has the disease, what is the proba-
bility that both are carriers?

d. A woman who is the child of two carriers has a
child by a man who is a carrier. What is the prob-
ability that this child has the disease?

32. A quality-control program at a plastic bottle pro-
duction line involves inspecting finished bottles for
flaws such as microscopic holes. The proportion of
bottles that actually have such a flaw is only 0.0002.
If a bottle has a flaw, the probability is 0.995 that
it will fail the inspection. If a bottle does not have
a flaw, the probability is 0.99 that it will pass the
inspection.

a. If a bottle fails inspection, what is the probability
that it has a flaw?

b. Which of the following is the more correct inter-
pretation of the answer to part (a)?

i. Most bottles that fail inspection do not have a
flaw.

ii. Most bottles that pass inspection do have a
flaw.

c. If a bottle passes inspection, what is the probability
that it does not have a flaw?

d. Which of the following is the more correct inter-
pretation of the answer to part (c)?

i. Most bottles that fail inspection do have a flaw.

ii. Most bottles that pass inspection do not have a
flaw.

e. Explain why a small probability in part (a) is not
a problem, so long as the probability in part (c) is
large.
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33. Refer to Example 2.26.

a. If a man tests negative, what is the probability that
he actually has the disease?

b. For many medical tests, it is standard procedure to
repeat the test when a positive signal is given. If
repeated tests are independent, what is the proba-
bility that a man will test positive on two successive
tests if he has the disease?

c. Assuming repeated tests are independent, what is
the probability that a man tests positive on two
successive tests if he does not have the disease?

d. If a man tests positive on two successive tests, what
is the probability that he has the disease?

34. A system consists of four components connected as
shown in the following diagram:

C

A B

D

Assume A, B, C, and D function independently. If the
probabilities that A, B, C, and D fail are 0.10, 0.05,
0.10, and 0.20, respectively, what is the probability
that the system functions?

35. A system consists of four components, connected as
shown in the diagram. Suppose that the components
function independently, and that the probabilities of
failure are 0.05 for A, 0.03 for B, 0.07 for C, and 0.14
for D. Find the probability that the system functions.

C

D

A B

36. A system contains two components, A and B, con-
nected in series, as shown in the diagram.

A B

Assume A and B function independently. For the sys-
tem to function, both components must function.

a. If the probability that A fails is 0.05, and the prob-
ability that B fails is 0.03, find the probability that
the system functions.

b. If both A and B have probability p of failing, what
must the value of p be so that the probability that
the system functions is 0.90?

c. If three components are connected in series, and
each has probability p of failing, what must the
value of p be so that the probability that the sys-
tem functions is 0.90?

37. A system contains two components, C and D, con-
nected in parallel as shown in the diagram.

C

D

Assume C and D function independently. For the sys-
tem to function, either C or D must function.

a. If the probability that C fails is 0.08 and the prob-
ability that D fails is 0.12, find the probability that
the system functions.

b. If both C and D have probability p of failing, what
must the value of p be so that the probability that
the system functions is 0.99?

c. If three components are connected in parallel,
function independently, and each has probabil-
ity p of failing, what must the value of p be
so that the probability that the system functions
is 0.99?

d. If components function independently, and each
component has probability 0.5 of failing, what is
the minimum number of components that must be
connected in parallel so that the probability that
the system functions is at least 0.99?

38. If A and B are independent events, prove that the fol-
lowing pairs of events are independent: Ac and B, A
and Bc, and Ac and Bc.
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2.4 Random Variables

In many situations, it is desirable to assign a numerical value to each outcome of an
experiment. Such an assignment is called a random variable. To make the idea clear,
we present an example. Suppose that an electrical engineer has on hand six resistors.
Three of them are labeled 10 � and the other three are labeled 20 �. The engineer wants
to connect a 10 � resistor and a 20 � resistor in series, to create a resistance of 30 �.
Now suppose that in fact the three resistors labeled 10 � have actual resistances of 9,
10, and 11 �, and that the three resistors labeled 20 � have actual resistances of 19,
20, and 21 �. The process of selecting one resistor of each type is an experiment whose
sample space consists of nine equally likely outcomes. The sample space is presented in
the following table.

Outcome Probability

(9, 19) 1/9
(9, 20) 1/9
(9, 21) 1/9
(10, 19) 1/9
(10, 20) 1/9
(10, 21) 1/9
(11, 19) 1/9
(11, 20) 1/9
(11, 21) 1/9

Now what is important to the engineer in this experiment is the sum of the two
resistances, rather than their individual values. Therefore we assign to each outcome a
number equal to the sum of the two resistances selected. This assignment, represented
by the letter X , is presented in the following table.

Outcome X Probability

(9, 19) 28 1/9
(9, 20) 29 1/9
(9, 21) 30 1/9
(10, 19) 29 1/9
(10, 20) 30 1/9
(10, 21) 31 1/9
(11, 19) 30 1/9
(11, 20) 31 1/9
(11, 21) 32 1/9

The function X , which assigns a numerical value to each outcome in the sample
space, is a random variable.

A random variable assigns a numerical value to each outcome in a sample
space.
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It is customary to denote random variables with uppercase letters. The letters X , Y , and
Z are most often used.

We can compute probabilities for random variables in an obvious way. In the example
just presented, the event X = 29 corresponds to the event {(9, 20), (10, 19)} of the sample
space. Therefore P(X = 29) = P({(9, 20), (10, 19)}) = 2/9.

Example
2.31 List the possible values of the random variable X , and find the probability of each of

them.

Solution
The possible values are 28, 29, 30, 31, and 32. To find the probability of one of these
values, we add the probabilities of the outcomes in the sample space that correspond
to the value. The results are given in the following table.

x P (X = x)

28 1/9
29 2/9
30 3/9
31 2/9
32 1/9

The table of probabilities in Example 2.31 contains all the information needed to
compute any probability regarding the random variable X . Note that the outcomes of
the sample space are not presented in the table. When the probabilities pertaining to a
random variable are known, we usually do not think about the sample space; we just
focus on the probabilities.

There are two important types of random variables, discrete and continuous. A dis-
crete random variable is one whose possible values form a discrete set; in other words,
the values can be ordered, and there are gaps between adjacent values. The random
variable X , just described, is discrete. In contrast, the possible values of a continuous
random variable always contain an interval, that is, all the points between some two num-
bers. We will provide precise definitions of these types of random variables later in this
section.

We present some more examples of random variables.

Example
2.32 Computer chips often contain surface imperfections. For a certain type of computer

chip, 9% contain no imperfections, 22% contain 1 imperfection, 26% contain 2 im-
perfections, 20% contain 3 imperfections, 12% contain 4 imperfections, and the re-
maining 11% contain 5 imperfections. Let Y represent the number of imperfections
in a randomly chosen chip. What are the possible values for Y ? Is Y discrete or
continuous? Find P(Y = y) for each possible value y.
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Solution
The possible values for Y are the integers 0, 1, 2, 3, 4, and 5. The random variable
Y is discrete, because it takes on only integer values. Nine percent of the outcomes
in the sample space are assigned the value 0. Therefore P(Y = 0) = 0.09. Similarly
P(Y = 1) = 0.22, P(Y = 2) = 0.26, P(Y = 3) = 0.20, P(Y = 4) = 0.12, and
P(Y = 5) = 0.11.

Example
2.33 A certain type of magnetic disk must function in an environment where it is exposed

to corrosive gases. It is known that 10% of all such disks have lifetimes less than
or equal to 100 hours, 50% have lifetimes greater than 100 hours but less than or
equal to 500 hours, and 40% have lifetimes greater than 500 hours. Let Z represent
the number of hours in the lifetime of a randomly chosen disk. Is Z continuous or
discrete? Find P(Z ≤ 500). Can we compute all the probabilities for Z? Explain.

Solution
The lifetime of a component is not limited to a list of discretely spaced values;
Z is continuous. Of all the components, 60% have lifetimes less than or equal to
500 hours. Therefore P(Z ≤ 500) = 0.60. We do not have enough information to
compute all the probabilities for Z . We can compute some of them, for example,
P(Z ≤ 100) = 0.10, P(100 < Z ≤ 500) = 0.50, and P(Z > 500) = 0.40.
But we do not know, for example, the proportion of components that have lifetimes
between 100 and 200 hours, or between 200 and 300 hours, so we cannot find the
probability that the random variable Z falls into either of these intervals. To compute
all the probabilities for Z , we would need to be able to compute the probability for
every possible interval, for example, P(200 < Z ≤ 300), P(200 < Z ≤ 201),
P(200 < Z ≤ 200.1), and so on. We will see how this can be done later in this
section, when we discuss continuous random variables.

Random Variables and Populations
It is often useful to think of a value of a random variable as having been sampled from
a population. For example, consider the random variable Y described in Example 2.32.
Observing a value for this random variable is like sampling a value from a population
consisting of the integers 0, 1, 2, 3, 4, and 5 in the following proportions: 0s, 9%; 1s,
22%; 2s, 26%; 3s, 20%; 4s, 12%; and 5s, 11%. For a continuous random variable, it is
appropriate to imagine an infinite population containing all the possible values of the
random variable. For example, for the random variable Z in Example 2.33 we would
imagine a population containing all the positive numbers, with 10% of the population
values less than or equal to 100, 50% greater than 100 but less than or equal to 500,
and 40% greater than 500. The proportion of population values in any interval would be
equal to the probability that the variable Z is in that interval.

Methods for working with random variables differ somewhat between discrete and
continuous random variables. We begin with the discrete case.
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Discrete Random Variables
We begin by reviewing the definition of a discrete random variable.

Definition
A random variable is discrete if its possible values form a discrete set. This means
that if the possible values are arranged in order, there is a gap between each value
and the next one. The set of possible values may be infinite; for example, the set
of all integers and the set of all positive integers are both discrete sets.

It is common for the possible values of a discrete random variable to be a set of
integers. For any discrete random variable, if we specify the list of its possible values
along with the probability that the random variable takes on each of these values, then we
have completely described the population from which the random variable is sampled.
We illustrate with an example.

The number of flaws in a 1-inch length of copper wire manufactured by a certain
process varies from wire to wire. Overall, 48% of the wires produced have no flaws,
39% have one flaw, 12% have two flaws, and 1% have three flaws. Let X be the number
of flaws in a randomly selected piece of wire. Then

P(X = 0) = 0.48 P(X = 1) = 0.39 P(X = 2) = 0.12 P(X = 3) = 0.01

The list of possible values 0, 1, 2, 3, along with the probabilities for each, provide a
complete description of the population from which X is drawn. This description has a
name—the probability mass function.

Definition
The probability mass function of a discrete random variable X is the
function p(x) = P(X = x). The probability mass function is sometimes called
the probability distribution.

Thus for the random variable X representing the number of flaws in a length of wire,
p(0) = 0.48, p(1) = 0.39, p(2) = 0.12, p(3) = 0.01, and p(x) = 0 for any value of x
other than 0, 1, 2, or 3. Note that if the values of the probability mass function are added
over all the possible values of X , the sum is equal to 1. This is true for any probability
mass function. The reason is that summing the values of a probability mass function over
all the possible values of the corresponding random variable produces the probability
that the random variable is equal to one of its possible values, and this probability is
always equal to 1.

The probability mass function can be represented by a graph in which a vertical line
is drawn at each of the possible values of the random variable. The heights of the lines
are equal to the probabilities of the corresponding values. The physical interpretation of
this graph is that each line represents a mass equal to its height. Figure 2.8 (page 94)
presents a graph of the probability mass function of the random variable X .
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FIGURE 2.8 Probability mass function of X , the number of flaws in a randomly chosen
piece of wire.

The Cumulative Distribution Function of a Discrete
Random Variable
The probability mass function specifies the probability that a random variable is equal
to a given value. A function called the cumulative distribution function specifies the
probability that a random variable is less than or equal to a given value. The cumulative
distribution function of the random variable X is the function F(x) = P(X ≤ x).

Example
2.34 Let F(x) denote the cumulative distribution function of the random variable X that

represents the number of flaws in a randomly chosen wire. Find F(2). Find F(1.5).

Solution
Since F(2) = P(X ≤ 2), we need to find P(X ≤ 2). We do this by summing the pro-
babilities for the values of X that are less than or equal to 2, namely, 0, 1, and 2. Thus

F(2) = P(X ≤ 2)

= P(X = 0) + P(X = 1) + P(X = 2)

= 0.48 + 0.39 + 0.12

= 0.99

Now F(1.5) = P(X ≤ 1.5). Therefore, to compute F(1.5) we must sum the prob-
abilities for the values of X that are less than or equal to 1.5, which are 0 and 1.
Thus

F(1.5) = P(X ≤ 1.5)

= P(X = 0) + P(X = 1)

= 0.48 + 0.39

= 0.87



Navidi-3810214 book November 11, 2013 12:35

2.4 Random Variables 95

In general, for any discrete random variable X , the cumulative distribution function
F(x) can be computed by summing the probabilities of all the possible values of X that
are less than or equal to x . Note that F(x) is defined for any number x , not just for the
possible values of X .

Summary
Let X be a discrete random variable. Then

■ The probability mass function of X is the function p(x) = P(X = x).

■ The cumulative distribution function of X is the function F(x) = P(X ≤ x).

■ F(x) =
∑
t≤x

p(t) =
∑
t≤x

P(X = t).

■
∑

x

p(x) =
∑

x

P(X = x) = 1, where the sum is over all the possible

values of X .

Example
2.35 Plot the cumulative distribution function F(x)of the random variable X that represents

the number of flaws in a randomly chosen wire.

Solution
First we compute F(x) for each of the possible values of X , which are 0, 1, 2, and 3.

F(0) = P(X ≤ 0) = 0.48

F(1) = P(X ≤ 1) = 0.48 + 0.39 = 0.87

F(2) = P(X ≤ 2) = 0.48 + 0.39 + 0.12 = 0.99

F(3) = P(X ≤ 3) = 0.48 + 0.39 + 0.12 + 0.01 = 1

For any value x , we compute F(x) by summing the probabilities of all the possible
values of X that are less than or equal to x . For example, if 1 ≤ x < 2, the possible
values of X that are less than or equal to x are 0 and 1, so F(x) = P(X = 0) +
P(X = 1) = F(1) = 0.87. Therefore

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x < 0

0.48 0 ≤ x < 1

0.87 1 ≤ x < 2

0.99 2 ≤ x < 3

1 x ≥ 3
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A plot of F(x) is presented in the following figure.

0.48

1
0.99
0.87

43210

For a discrete random variable, the graph of F(x) consists of a series of horizontal
lines (called “steps”) with jumps at each of the possible values of X . Note that the
size of the jump at any point x is equal to the value of the probability mass function
p(x) = P(X = x).

Mean and Variance for Discrete Random Variables
The population mean of a discrete random variable can be thought of as the mean of a
hypothetical sample that follows the probability distribution perfectly. To make this idea
concrete, assume that the number of flaws in a wire, X , has the probability mass function
given previously, with P(X = 0) = 0.48, P(X = 1) = 0.39, P(X = 2) = 0.12, and
P(X = 3) = 0.01. Now imagine that we have a sample of 100 wires, and that the sample
follows this distribution perfectly, so that exactly 48 of the wires have 0 flaws, 39 have
1 flaw, 12 have 2 flaws, and 1 has 3 flaws. The sample mean is the total number of flaws
divided by 100:

Mean = 0(48) + 1(39) + 2(12) + 3(1)

100
= 0.66

This can be rewritten as

Mean = 0(0.48) + 1(0.39) + 2(0.12) + 3(0.01) = 0.66

This shows that the mean of a perfect sample can be obtained by multiplying each
possible value of X by its probability, and summing the products. This is the definition
of the population mean of a discrete random variable. The population mean of a random
variable X may also be called the expectation, or expected value, of X , and can be
denoted by μX , by E(X), or simply by μ. Sometimes we will drop the word “population,”
and simply refer to the population mean as the mean.
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Definition
Let X be a discrete random variable with probability mass function
p(x) = P(X = x).

The mean of X is given by

μX =
∑

x

x P(X = x) (2.29)

where the sum is over all possible values of X .
The mean of X is sometimes called the expectation, or expected value, of X

and may also be denoted by E(X) or by μ.

Example
2.36 A certain industrial process is brought down for recalibration whenever the quality of

the items produced falls below specifications. Let X represent the number of times the
process is recalibrated during a week, and assume that X has the following probability
mass function.

x 0 1 2 3 4
p(x) 0.35 0.25 0.20 0.15 0.05

Find the mean of X .

Solution
Using Equation (2.29), we compute

μX = 0(0.35) + 1(0.25) + 2(0.20) + 3(0.15) + 4(0.05) = 1.30

The population mean has an important physical interpretation. It is the horizontal
component of the center of mass of the probability mass function; that is, it is the point
on the horizontal axis at which the graph of the probability mass function would balance
if supported there. Figure 2.9 illustrates this property for the probability mass function
described in Example 2.36, where the population mean is μ = 1.30.
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FIGURE 2.9 The graph of a probability mass function will balance if supported at the
population mean.
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We will describe the population variance of a discrete random variable by making
an analogy with the sample variance. The sample variance was discussed in Section 1.2.
Recall that for a sample X1, . . . , Xn , the sample variance is given by

∑
(Xi −X)2/(n−1).

The sample variance is thus essentially the average of the squared differences between
the sample points and the sample mean (except that we divide by n − 1 instead of n).

By analogy, the population variance of a discrete random variable X is a weighted
average of the squared differences (x − μX )2 where x ranges through all the possible
values of the random variable X . This weighted average is computed by multiplying each
squared difference (x − μX )2 by the probability P(X = x) and summing the results.
The population variance of a random variable X can be denoted by σ 2

X , by V (X), or
simply by σ 2. The population variance is given by the formula

σ 2
X =

∑
x

(x − μX )2 P(X = x)

By performing some algebra, an alternate formula can be obtained.

σ 2
X =

∑
x

x2 P(X = x) − μ2
X

A derivation of the alternate formula is given at the end of this section.
We also define the population standard deviation to be the square root of the

population variance. We denote the population standard deviation of a random variable X
by σX or simply by σ . As with the mean, we will sometimes drop the word “population,”
and simply refer to the population variance and population standard deviation as the
variance and standard deviation, respectively.

Summary
Let X be a discrete random variable with probability mass function
p(x) = P(X = x). Then

■ The variance of X is given by

σ 2
X =

∑
x

(x − μX )2 P(X = x) (2.30)

■ An alternate formula for the variance is given by

σ 2
X =

∑
x

x2 P(X = x) − μ2
X (2.31)

■ The variance of X may also be denoted by V (X) or by σ 2.

■ The standard deviation is the square root of the variance: σX =
√

σ 2
X .
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Example
2.37 Find the variance and standard deviation for the random variable X described in

Example 2.36, representing the number of times a process is recalibrated.

Solution
In Example 2.36 we computed the mean of X to be μX = 1.30. We compute the
variance by using Equation (2.30):

σ 2
X = (0 − 1.30)2 P(X = 0) + (1 − 1.30)2 P(X = 1) + (2 − 1.30)2 P(X = 2)

+ (3 − 1.30)2 P(X = 3) + (4 − 1.30)2 P(X = 4)

= (1.69)(0.35) + (0.09)(0.25) + (0.49)(0.20) + (2.89)(0.15) + (7.29)(0.05)

= 1.51

The standard deviation is σX = √
1.51 = 1.23.

Example
2.38 Use the alternate formula, Equation (2.31), to compute the variance of X , the number

of times a process is recalibrated.

Solution
In Example 2.36 the mean was computed to be μX = 1.30. The variance is therefore

σ 2
X = 02 P(X = 0) + 12 P(X = 1) + 22 P(X = 2) + 32 P(X = 3)

+ 42 P(X = 4) − (1.30)2

= (0)(0.35) + (1)(0.25) + (4)(0.20) + (9)(0.15) + (16)(0.05) − (1.30)2

= 1.51

Example
2.39 A resistor in a certain circuit is specified to have a resistance in the range 99 �–101 �.

An engineer obtains two resistors. The probability that both of them meet the spec-
ification is 0.36, the probability that exactly one of them meets the specification is
0.48, and the probability that neither of them meets the specification is 0.16. Let X
represent the number of resistors that meet the specification. Find the probability mass
function, and the mean, variance, and standard deviation of X .

Solution
The probability mass function is P(X = 0) = 0.16, P(X = 1) = 0.48, P(X = 2) =
0.36, and P(X = x) = 0 for x �= 0, 1, or 2. The mean is

μX = (0)(0.16) + (1)(0.48) + (2)(0.36)

= 1.200
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The variance is

σ 2
X = (0 − 1.200)2(0.16) + (1 − 1.200)2(0.48) + (2 − 1.200)2(0.36)

= 0.4800

The standard deviation is σX = √
0.4800 = 0.693.

To develop a physical interpretation for the population variance, imagine that each
line in the graph of the probability mass function has mass proportional to its length, and
that a solid rod is inserted vertically into the graph through the center of mass (population
mean). Now imagine grasping the rod and twirling the graph around it. The more spread
out the graph, the more difficult it would be to twirl. The physical quantity that measures
the difficulty in twirling is the moment of inertia. For each line in the graph, the moment
of inertia around the center of mass is given by the squared distance from the line to the
center of mass, multiplied by the length of the line. The moment of inertia for the entire
graph is the sum of the moments of the lines, which is the population variance.

The Probability Histogram
When the possible values of a discrete random variable are evenly spaced, the proba-
bility mass function can be represented by a histogram, with rectangles centered at the
possible values of the random variable. The area of a rectangle centered at a value x
is equal to P(X = x). Such a histogram is called a probability histogram, because
the areas represent probabilities. Figure 2.8 presented the graph of the probability mass
function of a random variable X representing the number of flaws in a wire. Figure 2.10
presents a probability histogram for this random variable.

The probability that the value of a random variable falls into a given interval is given
by an area under the probability histogram. Example 2.40 illustrates the idea.
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FIGURE 2.10 Probability histogram for X , the number of flaws in a randomly chosen
piece of wire. Compare with Figure 2.8.
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Example
2.40 Find the probability that a randomly chosen wire has more than one flaw. Indicate

this probability as an area under the probability histogram.

Solution
We wish to find P(X > 1). Since no wire has more than three flaws, the proportion
of wires that have more than one flaw can be found by adding the proportion that
have two flaws to the proportion that have three flaws. In symbols, P(X > 1) =
P(X = 2) + P(X = 3). The probability mass function specifies that P(X = 2) =
0.12 and P(X = 3) = 0.01. Therefore P(X > 1) = 0.12 + 0.01 = 0.13.

This probability is given by the area under the probability histogram correspond-
ing to those rectangles centered at values greater than 1 (see Figure 2.11). There are
two such rectangles; their areas are P(X = 2) = 0.12 and P(X = 3) = 0.01. This
is another way to show that P(X > 1) = 0.12 + 0.01 = 0.13.
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FIGURE 2.11 Probability histogram for X , the number of flaws in a randomly chosen piece
of wire. The area corresponding to values of X greater than 1 is shaded. This area is equal to
P(X > 1).

In Chapter 4, we will see that probabilities for discrete random variables can some-
times be approximated by computing the area under a curve. Representing the discrete
probabilities with a probability histogram will make it easier to understand how this is
done.

Continuous Random Variables
Figure 1.9 (in Section 1.3) presents a histogram for the emissions, in grams of particulates
per gallon of fuel consumed, of a sample of 62 vehicles. Note that emissions is a continu-
ous variable, because its possible values are not restricted to some discretely spaced set.
The class intervals are chosen so that each interval contains a reasonably large number of
vehicles. If the sample were larger, we could make the intervals narrower. In particular,
if we had information on the entire population, containing millions of vehicles, we could
make the intervals extremely narrow. The histogram would then look quite smooth and
could be approximated with a curve, which might look like Figure 2.12 (page 102).
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FIGURE 2.12 The histogram for a large continuous population could be drawn with
extremely narrow rectangles and might look like this curve.

If a vehicle were chosen at random from this population to have its emissions
measured, the emissions level X would be a random variable. The probability that X
falls between any two values a and b is equal to the area under the histogram between
a and b. Because the histogram in this case is represented by a curve, the probability
would be found by computing an integral.

The random variable X described here is an example of a continuous random
variable. A continuous random variable is defined to be a random variable whose prob-
abilities are represented by areas under a curve. This curve is called the probability
density function. Because the probability density function is a curve, the computa-
tions of probabilities involve integrals, rather than the sums that are used in the discrete
case.

Definition
A random variable is continuous if its probabilities are given by areas under
a curve. The curve is called a probability density function for the random
variable.

The probability density function is sometimes called the probability distri-
bution.

Computing Probabilities with the Probability
Density Function
Let X be a continuous random variable. Let the function f (x) be the probability density
function of X . Let a and b be any two numbers, with a < b.

The proportion of the population whose values of X lie between a and b is given
by

∫ b
a f (x) dx , the area under the probability density function between a and b. This is

the probability that the random variable X takes on a value between a and b. Note that
the area under the curve does not depend on whether the endpoints a and b are included
in the interval. Therefore probabilities involving X do not depend on whether endpoints
are included.
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Summary
Let X be a continuous random variable with probability density function f (x).
Let a and b be any two numbers, with a < b. Then

P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X ≤ b) = P(a < X < b) =
∫ b

a
f (x) dx

In addition,

P(X ≤ b) = P(X < b) =
∫ b

−∞
f (x) dx (2.32)

P(X ≥ a) = P(X > a) =
∫ ∞

a
f (x) dx (2.33)

If f (x) is the probability density function of a random variable X , then the area
under the entire curve from −∞ to ∞ is the probability that the value of X is between
−∞ and ∞. This probability must be equal to 1, because the value of X is always
between −∞ and ∞. Therefore the area under the entire curve f (x) is equal to 1.

Summary
Let X be a continuous random variable with probability density function f (x).
Then ∫ ∞

−∞
f (x) dx = 1

Example
2.41 A hole is drilled in a sheet-metal component, and then a shaft is inserted through the

hole. The shaft clearance is equal to the difference between the radius of the hole and
the radius of the shaft. Let the random variable X denote the clearance, in millimeters.
The probability density function of X is

f (x) =
{

1.25(1 − x4) 0 < x < 1

0 otherwise

Components with clearances larger than 0.8 mm must be scrapped. What proportion
of components are scrapped?

Solution
Figure 2.13 (page 104) presents the probability density function of X . Note that the
density f (x) is 0 for x ≤ 0 and for x ≥ 1. This indicates that the clearances are
always between 0 and 1 mm. The proportion of components that must be scrapped is
P(X > 0.8), which is equal to the area under the probability density function to the
right of 0.8.
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FIGURE 2.13 Graph of the probability density function of X , the clearance of a shaft.
The area shaded is equal to P(X > 0.8).

This area is given by

P(X > 0.8) =
∫ ∞

0.8
f (x) dx

=
∫ 1

0.8
1.25(1 − x4) dx

= 1.25

(
x − x5

5

) ∣∣∣∣
1

0.8

= 0.0819

The Cumulative Distribution Function
of a Continuous Random Variable
The cumulative distribution function of a continuous random variable X is F(x) =
P(X ≤ x), just as it is for a discrete random variable. For a discrete random variable,
F(x) can be found by summing values of the probability mass function. For a continuous
random variable, the value of F(x) is obtained by integrating the probability density
function. Since F(x) = P(X ≤ x), it follows from Equation (2.32) that F(x) =∫ x

−∞ f (t) dt , where f (t) is the probability density function.

Definition
Let X be a continuous random variable with probability density function f (x).
The cumulative distribution function of X is the function

F(x) = P(X ≤ x) =
∫ x

−∞
f (t) dt (2.34)
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Example
2.42 Refer to Example 2.41. Find the cumulative distribution function F(x) and plot it.

Solution
The probability density function of X is given by f (t) = 0 if t ≤ 0, f (t) =
1.25(1 − t4) if 0 < t < 1, and f (t) = 0 if t ≥ 1. The cumulative distribution
function is given by F(x) = ∫ x

−∞ f (t) dt . Since f (t) is defined separately on three
different intervals, the computation of the cumulative distribution function involves
three separate cases.

If x ≤ 0:

F(x) =
∫ x

−∞
f (t) dt

=
∫ x

−∞
0 dt

= 0

If 0 < x < 1:

F(x) =
∫ x

−∞
f (t) dt

=
∫ 0

−∞
f (t) dt +

∫ x

0
f (t) dt

=
∫ 0

−∞
0 dt +

∫ x

0
1.25(1 − t4) dt

= 0 + 1.25

(
t − t5

5

) x

0

= 1.25

(
x − x5

5

)
If x > 1:

F(x) =
∫ x

−∞
f (t) dt

=
∫ 0

−∞
f (t) dt +

∫ 1

0
f (t) dt +

∫ x

1
f (t) dt

=
∫ 0

−∞
0 dt +

∫ 1

0
1.25(1 − t4) dt +

∫ x

1
0 dt

= 0 + 1.25

(
t − t5

5

) 1

0

+ 0

= 0 + 1 + 0

= 1
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Therefore

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x ≤ 0

1.25

(
x − x5

5

)
0 < x < 1

1 x ≥ 1

A plot of F(x) is presented here.

0.250

1

0.75

0.50

0.25

0.50 0.75 1

Note that the cumulative distribution function F(x) in Example 2.42 is a continuous
function—there are no jumps in its graph. This is characteristic of continuous random
variables. The cumulative distribution function of a continuous random variable will
always be continuous, while the cumulative distribution function of a noncontinuous
random variable will never be continuous.

Example
2.43 Refer to Example 2.41. Use the cumulative distribution function to find the probability

that the shaft clearance is less than 0.5 mm.

Solution
Let X denote the shaft clearance. We need to find P(X ≤ 0.5). This is equivalent to
finding F(0.5), where F(x) is the cumulative distribution function. Using the results
of Example 2.42, F(0.5) = 1.25(0.5 − 0.55/5) = 0.617.

Mean and Variance for Continuous Random Variables
The population mean and variance of a continuous random variable are defined in the
same way as those of a discrete random variable, except that the probability density
function is used instead of the probability mass function. Specifically, if X is a continuous
random variable, its population mean is defined to be the center of mass of its probability
density function, and its population variance is the moment of inertia around a vertical
axis through the population mean. The formulas are analogous to Equations (2.29)
through (2.31), with the sums replaced by integrals.

As was the case with discrete random variables, we will sometimes drop the word
“population” and refer to the population mean, population variance, and population
standard deviation more simply as the mean, variance, and standard deviation,
respectively.
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Definition
Let X be a continuous random variable with probability density function f (x).
Then the mean of X is given by

μX =
∫ ∞

−∞
x f (x) dx (2.35)

The mean of X is sometimes called the expectation, or expected value, of X and
may also be denoted by E(X) or by μ.

Definition
Let X be a continuous random variable with probability density function f (x).
Then

■ The variance of X is given by

σ 2
X =

∫ ∞

−∞
(x − μX )2 f (x) dx (2.36)

■ An alternate formula for the variance is given by

σ 2
X =

∫ ∞

−∞
x2 f (x) dx − μ2

X (2.37)

■ The variance of X may also be denoted by V (X) or by σ 2.

■ The standard deviation is the square root of the variance: σX =
√

σ 2
X .

Example
2.44 Refer to Example 2.41. Find the mean clearance and the variance of the clearance.

Solution
Using Equation (2.35), the mean clearance is given by

μX =
∫ ∞

−∞
x f (x) dx

=
∫ 1

0
x[1.25(1 − x4)] dx

= 1.25

(
x2

2
− x6

6

) 1

0

= 0.4167
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Having computed μX = 0.4167, we can now compute σ 2
X . It is easiest to use the

alternate formula, Equation (2.37):

σ 2
X =

∫ ∞

−∞
x2 f (x) dx − μ2

X

=
∫ 1

0
x2[1.25(1 − x4)] dx − (0.4167)2

= 1.25

(
x3

3
− x7

7

) 1

0

− (0.4167)2

= 0.0645

The Population Median and Percentiles
In Section 1.2, we defined the median of a sample to be the middle number, or the
average of the two middle numbers, when the sample values are arranged from smallest
to largest. Intuitively, the sample median is the point that divides the sample in half. The
population median is defined analogously. In terms of the probability density function,
the median is the point at which half the area under the curve is to the left, and half the
area is to the right. Thus if X is a continuous random variable with probability density
function f (x), the median of X is the point xm that solves the equation P(X ≤ xm) =∫ xm

−∞ f (x) dx = 0.5.
The median is a special case of a percentile. Let 0 < p < 100. The pth percentile of

a population is the value x p such that p% of the population values are less than or equal to
x p. Thus if X is a continuous random variable with probability density function f (x), the
pth percentile of X is the point x p that solves the equation P(X ≤ x p) = ∫ x p

−∞ f (x) dx =
p/100. Note that the median is the 50th percentile. Figure 2.14 illustrates the median
and the 90th percentile for a hypothetical population.

Area � 0.5

xm x90

(a) (b)

Area � 0.9

FIGURE 2.14 (a) Half of the population values are less than the median xm . (b) Ninety
percent of the population values are less than the 90th percentile x90.
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Definition
Let X be a continuous random variable with probability mass function f (x) and
cumulative distribution function F(x).

■ The median of X is the point xm that solves the equation
F(xm) = P(X ≤ xm) = ∫ xm

−∞ f (x) dx = 0.5.

■ If p is any number between 0 and 100, the pth percentile is the point x p

that solves the equation F(x p) = P(X ≤ x p) = ∫ x p

−∞ f (x) dx = p/100.

■ The median is the 50th percentile.

We note that it is possible to construct continuous random variables for which there
is an interval of points that satisfy the definition of the median or a percentile. Such
random variables are seldom found in practice.

Example
2.45 A certain radioactive mass emits alpha particles from time to time. The time between

emissions, in seconds, is random, with probability density function

f (x) =
{

0.1e−0.1x x > 0

0 x ≤ 0

Find the median time between emissions. Find the 60th percentile of the times.

Solution
The median xm is the solution to

∫ xm

−∞ f (x) dx = 0.5. We therefore must solve∫ xm

0
0.1e−0.1x dx = 0.5

−e−0.1x
xm

0 = 0.5

1 − e−0.1xm = 0.5

e−0.1xm = 0.5

−0.1xm = ln 0.5

0.1xm = 0.6931

xm = 6.931

Half of the times between emissions are less than 6.931 s, and half are greater.
The 60th percentile x60 is the solution to

∫ x60

−∞ f (x) dx = 0.6. We proceed as
before, substituting x60 for xm , and 0.6 for 0.5. We obtain

1 − e−0.1x60 = 0.6

e−0.1x60 = 0.4

−0.1x60 = ln 0.4
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0.1x60 = 0.9163

x60 = 9.163

Sixty percent of the times between emissions are less than 9.163 s, and 40% are
greater.

Chebyshev's Inequality
The mean of a random variable is a measure of the center of its distribution, and the
standard deviation is a measure of the spread. Chebyshev’s inequality relates the mean
and the standard deviation by providing a bound on the probability that a random variable
takes on a value that differs from its mean by more than a given multiple of its standard
deviation. Specifically, the probability that a random variable differs from its mean by k
standard deviations or more is never greater than 1/k2.

Chebyshev’s Inequality
Let X be a random variable with mean μX and standard deviation σX . Then

P(|X − μX | ≥ kσX ) ≤ 1

k2

Example
2.46 The length of a rivet manufactured by a certain process has mean μX = 50 mm

and standard deviation σX = 0.45 mm. What is the largest possible value for the
probability that the length of the rivet is outside the interval 49.1–50.9 mm?

Solution
Let X denote the length of a randomly sampled rivet. We must find P(X ≤ 49.1 or
X ≥ 50.9). Now

P(X ≤ 49.1 or X ≥ 50.9) = P(|X − 50| ≥ 0.9) = P(|X − μX | ≥ 2σX )

Applying Chebyshev’s inequality with k = 2, we conclude that

P(X ≤ 49.1 or X ≥ 50.9) ≤ 1

4

Chebyshev’s inequality is valid for any random variable and does not require knowl-
edge of the distribution. Because it is so general, the bound given by Chebyshev’s in-
equality is in most cases much greater than the actual probability. Example 2.47 illustrates
this.

Example
2.47 Assume that the probability density function for X , the length of a rivet in Exam-

ple 2.46, is

fX (x) =
{

[477 − 471(x − 50)2]/640 49 ≤ x ≤ 51
0 otherwise

It can be verified that μX = 50 and σX = 0.45. Compute the probability that the
length of the rivet is outside the interval 49.1–50.9 mm. How close is this probability
to the Chebyshev bound of 1/4?
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Solution

P(X ≤ 49.1 or X ≥ 50.9) = 1 − P(49.1 < X < 50.9)

= 1 −
∫ 50.9

49.1

477 − 471(x − 50)2

640
dx

= 1 − 477x − 157(x − 50)3

640

50.9

49.1

= 0.01610

The actual probability is much smaller than the Chebyshev bound of 1/4.

Because the Chebyshev bound is generally much larger than the actual probability, it
should only be used when the distribution of the random variable is unknown. When the
distribution is known, then the probability density function or probability mass function
should be used to compute probabilities.

Derivation of the Alternate Formula for the Variance
We derive Equation (2.31). We begin with Equation (2.30).

σ 2
X =

∑
x

(x − μX )2 P(X = x)

Multiplying out (x − μX )2, we obtain

σ 2
X =

∑
x

(x2 − 2xμX + μ2
X )P(X = x)

Distributing the term P(X = x) over the terms in the parentheses yields

σ 2
X =

∑
x

[x2 P(X = x) − 2xμX P(X = x) + μ2
X P(X = x)]

Summing the terms separately,

σ 2
X =

∑
x

x2 P(X = x) −
∑

x

2xμX P(X = x) +
∑

x

μ2
X P(X = x) (2.38)

Now
∑

x 2xμX P(X = x) = 2μX
∑

x x P(X = x) = 2μXμX = 2μ2
X , and∑

x μ2
X P(X = x) = μ2

X

∑
x P(X = x) = μ2

X (1) = μ2
X .

Substituting into Equation (2.38) yields

σ 2
X =

∑
x

x2 P(X = x) − 2μ2
X + μ2

X

We conclude that

σ 2
X =

∑
x

x2 P(X = x) − μ2
X

To derive the alternate formula (2.37) for the variance of a continuous random variable
from Equation (2.36), the same steps may be used; replacing

∑
x with

∫ ∞
−∞, and

P(X = x) with f (x) dx .
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Exercises for Section 2.4

1. Determine whether each of the following random vari-
ables is discrete or continuous.

a. The number of heads in 100 tosses of a coin.

b. The length of a rod randomly chosen from a day’s
production.

c. The final exam score of a randomly chosen stu-
dent from last semester’s engineering statistics
class.

d. The age of a randomly chosen Colorado School of
Mines student.

e. The age that a randomly chosen Colorado School
of Mines student will be on his or her next
birthday.

2. Computer chips often contain surface imperfections.
For a certain type of computer chip, the probability
mass function of the number of defects X is presented
in the following table.

x 0 1 2 3 4
p(x) 0.4 0.3 0.15 0.10 0.05

a. Find P(X ≤ 2).

b. Find P(X > 1).

c. Find μX .

d. Find σ 2
X .

3. A chemical supply company ships a certain sol-
vent in 10-gallon drums. Let X represent the num-
ber of drums ordered by a randomly chosen cus-
tomer. Assume X has the following probability mass
function:

x 1 2 3 4 5
p(x) 0.4 0.2 0.2 0.1 0.1

a. Find the mean number of drums ordered.

b. Find the variance of the number of drums
ordered.

c. Find the standard deviation of the number of drums
ordered.

d. Let Y be the number of gallons ordered. Find the
probability mass function of Y .

e. Find the mean number of gallons ordered.

f. Find the variance of the number of gallons
ordered.

g. Find the standard deviation of the number of gal-
lons ordered.

4. Let X represent the number of tires with low air pres-
sure on a randomly chosen car.

a. Which of the three functions below is a possible
probability mass function of X? Explain.

x
0 1 2 3 4

p1(x) 0.2 0.2 0.3 0.1 0.1
p2(x) 0.1 0.3 0.3 0.2 0.2
p3(x) 0.1 0.2 0.4 0.2 0.1

b. For the possible probability mass function, com-
pute μX and σ 2

X .

5. A survey of cars on a certain stretch of highway during
morning commute hours showed that 70% had only
one occupant, 15% had 2, 10% had 3, 3% had 4, and
2% had 5. Let X represent the number of occupants
in a randomly chosen car.

a. Find the probability mass function of X .

b. Find P(X ≤ 2).

c. Find P(X > 3).

d. Find μX .

e. Find σX .

6. The element titanium has five stable occurring iso-
topes, differing from each other in the number of neu-
trons an atom contains. If X is the number of neutrons
in a randomly chosen titanium atom, the probability
mass function of X is given as follows:

x 24 25 26 27 28
p(x) 0.0825 0.0744 0.7372 0.0541 0.0518

a. Find μX .

b. Find σX .

7. A computer sends a packet of information along
a channel and waits for a return signal acknowl-
edging that the packet has been received. If no
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acknowledgment is received within a certain time, the
packet is re-sent. Let X represent the number of times
the packet is sent. Assume that the probability mass
function of X is given by

p(x) =
{

cx for x = 1, 2, 3, 4, or 5
0 otherwise

where c is a constant.

a. Find the value of the constant c so that p(x) is a
probability mass function.

b. Find P(X = 2).

c. Find the mean number of times the packet is sent.

d. Find the variance of the number of times the packet
is sent.

e. Find the standard deviation of the number of times
the packet is sent.

8. After manufacture, computer disks are tested for er-
rors. Let X be the number of errors detected on a
randomly chosen disk. The following table presents
values of the cumulative distribution function F(x)

of X .

x F (x)

0 0.41
1 0.72
2 0.83
3 0.95
4 1.00

a. What is the probability that two or fewer errors are
detected?

b. What is the probability that more than three errors
are detected?

c. What is the probability that exactly one error is
detected?

d. What is the probability that no errors are detected?

e. What is the most probable number of errors to be
detected?

9. On 100 different days, a traffic engineer counts the
number of cars that pass through a certain intersection
between 5 P.M. and 5:05 P.M. The results are presented
in the following table.

Number Number Proportion
of Cars of Days of Days

0 36 0.36
1 28 0.28
2 15 0.15
3 10 0.10
4 7 0.07
5 4 0.04

a. Let X be the number of cars passing through the
intersection between 5 P.M. and 5:05 P.M. on a ran-
domly chosen day. Someone suggests that for any
positive integer x , the probability mass function
of X is p1(x) = (0.2)(0.8)x . Using this function,
compute P(X = x) for values of x from 0 through
5 inclusive.

b. Someone else suggests that for any positive inte-
ger x , the probability mass function is p2(x) =
(0.4)(0.6)x . Using this function, compute P(X =
x) for values of x from 0 through 5 inclusive.

c. Compare the results of parts (a) and (b) to the data
in the table. Which probability mass function ap-
pears to be the better model? Explain.

d. Someone says that neither of the functions is a
good model since neither one agrees with the data
exactly. Is this right? Explain.

10. Microprocessing chips are randomly sampled one
by one from a large population, and tested to de-
termine if they are acceptable for a certain applica-
tion. Ninety percent of the chips in the population are
acceptable.

a. What is the probability that the first chip chosen is
acceptable?

b. What is the probability that the first chip is unac-
ceptable, and the second is acceptable?

c. Let X represent the number of chips that are tested
up to and including the first acceptable chip. Find
P(X = 3).

d. Find the probability mass function of X .

11. Refer to Exercise 10. Let Y be the number of chips
tested up to and including the second acceptable
chip.

a. What is the smallest possible value for Y ?

b. What is the probability that Y takes on that value?
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c. Let X represent the number of chips that are tested
up to and including the first acceptable chip. Find
P(Y = 3|X = 1).

d. Find P(Y = 3|X = 2).

e. Find P(Y = 3).

12. Three components are randomly sampled, one at a
time, from a large lot. As each component is selected,
it is tested. If it passes the test, a success (S) occurs; if
it fails the test, a failure (F) occurs. Assume that 80%
of the components in the lot will succeed in passing the
test. Let X represent the number of successes among
the three sampled components.

a. What are the possible values for X?

b. Find P(X = 3).

c. The event that the first component fails and the next
two succeed is denoted by FSS. Find P(FSS).

d. Find P(SFS) and P(SSF).

e. Use the results of parts (c) and (d) to find
P(X = 2).

f. Find P(X = 1).

g. Find P(X = 0).

h. Find μX .

i. Find σ 2
X .

j. Let Y represent the number of successes if four
components are sampled. Find P(Y = 3).

13. Resistors labeled 100 � have true resistances that are
between 80 � and 120 �. Let X be the mass of a ran-
domly chosen resistor. The probability density func-
tion of X is given by

f (x) =

⎧⎨
⎩

x − 80

800
80 < x < 120

0 otherwise

a. What proportion of resistors have resistances less
than 90 �?

b. Find the mean resistance.

c. Find the standard deviation of the resistances.

d. Find the cumulative distribution function of the
resistances.

14. Elongation (in percent) of steel plates treated with alu-
minum are random with probability density function

f (x) =
{ x

250
20 < x < 30

0 otherwise

a. What proportion of steel plates have elongations
greater than 25%?

b. Find the mean elongation.

c. Find the variance of the elongations.

d. Find the standard deviation of the elongations.

e. Find the cumulative distribution function of the
elongations.

f. A particular plate elongates 28%. What proportion
of plates elongate more than this?

15. The lifetime in months of a transistor in a certain ap-
plication is random with probability density function

f (t) =
{

0.1e−0.1t t > 0
0 t ≤ 0

a. Find the mean lifetime.

b. Find the standard deviation of the lifetimes.

c. Find the cumulative distribution function of the
lifetime.

d. Find the probability that the lifetime will be less
than 12 months.

16. A process that manufactures piston rings produces
rings whose diameters (in centimeters) vary according
to the probability density function

f (x) =
{

3[1 − 16(x − 10)2] 9.75< x <10.25
0 otherwise

a. Find the mean diameter of rings manufactured by
this process.

b. Find the standard deviation of the diameters of
rings manufactured by this process. (Hint: Equa-
tion 2.36 may be easier to use than Equation 2.37.)

c. Find the cumulative distribution function of piston
ring diameters.

d. What proportion of piston rings have diameters less
than 9.75 cm?

e. What proportion of piston rings have diameters
between 9.75 and 10.25 cm?

17. Refer to Exercise 16. A competing process produces
rings whose diameters (in centimeters) vary according
to the probability density function

f (x) =
{

15[1 − 25(x − 10.05)2]/4
9.85 < x < 10.25

0 otherwise
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Specifications call for the diameter to be 10.0±0.1 cm.
Which process is better, this one or the one in Exer-
cise 16? Explain.

18. The lifetime, in years, of a certain type of pump is a
random variable with probability density function

f (x) =
{ 64

(x + 2)5
x > 0

0 x ≤ 0

a. What is the probability that a pump lasts more than
two years?

b. What is the probability that a pump lasts between
two and four years?

c. Find the mean lifetime.

d. Find the variance of the lifetimes.

e. Find the cumulative distribution function of the
lifetime.

f. Find the median lifetime.

g. Find the 60th percentile of the lifetimes.

19. The level of impurity (in percent) in the product of
a certain chemical process is a random variable with
probability density function{

3

64
x2(4 − x) 0 < x < 4

0 otherwise

a. What is the probability that the impurity level is
greater than 3%?

b. What is the probability that the impurity level is
between 2% and 3%?

c. Find the mean impurity level.

d. Find the variance of the impurity levels.

e. Find the cumulative distribution function of the
impurity level.

20. The main bearing clearance (in mm) in a certain type
of engine is a random variable with probability density
function

f (x) =
{

625x 0 < x ≤ 0.04
50 − 625x 0.04 < x ≤ 0.08

0 otherwise

a. What is the probability that the clearance is less
than 0.02 mm?

b. Find the mean clearance.

c. Find the standard deviation of the clearances.

d. Find the cumulative distribution function of the
clearance.

e. Find the median clearance.

f. The specification for the clearance is 0.015 to
0.063 mm. What is the probability that the speci-
fication is met?

21. The error in the length of a part (absolute value of
the difference between the actual length and the target
length), in mm, is a random variable with probability
density function

f (x) =
{

12(x2 − x3) 0 < x < 1

0 otherwise

a. What is the probability that the error is less than
0.2 mm?

b. Find the mean error.

c. Find the variance of the error.

d. Find the cumulative distribution function of the
error.

e. The specification for the error is 0 to 0.8 mm. What
is the probability that the specification is met?

22. The concentration of a reactant is a random variable
with probability density function

f (x) =

⎧⎨
⎩

2e−2x

1 − e−2
0 < x < 1

0 otherwise

a. What is the probability that the concentration is
greater than 0.5?

b. Find the mean concentration.

c. Find the probability that the concentration is within
±0.1 of the mean.

d. Find the standard deviation σ of the concentra-
tions.

e. Find the probability that the concentration is within
±σ of the mean.

f. Find the cumulative distribution function of the
concentration.

23. The thickness of a washer (in mm) is a random vari-
able with probability density function

f (x) =
{

3

52
x(6 − x) 2 < x < 4

0 otherwise
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a. What is the probability that the thickness is less
than 2.5 m?

b. What is the probability that the thickness is
between 2.5 and 3.5 m?

c. Find the mean thickness.

d. Find the standard deviation σ of the thicknesses.

e. Find the probability that the thickness is within ±σ

of the mean.

f. Find the cumulative distribution function of the
thickness.

24. Particles are a major component of air pollution in
many areas. It is of interest to study the sizes of con-
taminating particles. Let X represent the diameter, in
micrometers, of a randomly chosen particle. Assume
that in a certain area, the probability density function
of X is inversely proportional to the volume of the
particle; that is, assume that

f (x) =
{ c

x3
x ≥ 1

0 x < 1

where c is a constant.

a. Find the value of c so that f (x) is a probability
density function.

b. Find the mean particle diameter.

c. Find the cumulative distribution function of the
particle diameter.

d. Find the median particle diameter.

e. The term PM10 refers to particles 10 μm or less
in diameter. What proportion of the contaminating
particles are PM10?

f. The term PM2.5 refers to particles 2.5 μm or less
in diameter. What proportion of the contaminating
particles are PM2.5?

g. What proportion of the PM10 particles are PM2.5?

25. The repair time (in hours) for a certain machine is a
random variable with probability density function

f (x) =
{

xe−x x > 0
0 x ≤ 0

a. What is the probability that the repair time is less
than 2 hours?

b. What is the probability that the repair time is be-
tween 1.5 and 3 hours?

c. Find the mean repair time.

d. Find the cumulative distribution function of the
repair times.

26. The diameter of a rivet (in mm) is a random variable
with probability density function

f (x) =
{

6(x − 12)(13 − x) 12 < x ≤ 13

0 otherwise

a. What is the probability that the diameter is less
than 12.5 mm?

b. Find the mean diameter.

c. Find the standard deviation of the diameters.

d. Find the cumulative distribution function of the
diameter.

e. The specification for the diameter is 12.3 to
12.7 mm. What is the probability that the speci-
fication is met?

2.5 Linear Functions of Random Variables

In practice we often construct new random variables by performing arithmetic operations
on other random variables. For example, we might add a constant to a random variable,
multiply a random variable by a constant, or add two or more random variables together.
In this section, we describe how to compute means and variances of random variables
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constructed in these ways, and we present some practical examples. The presentation
in this section is intuitive. A more rigorous presentation is provided in Section 2.6. For
those desiring such a presentation, Section 2.6 may be covered in addition to, or in place
of, this section.

Adding a Constant
When a constant is added to a random variable, the mean is increased by the value of the
constant, but the variance and standard deviation are unchanged. For example, assume
that steel rods produced by a certain machine have a mean length of 5.0 in. and a variance
of σ 2 = 0.003 in2. Each rod is attached to a base that is exactly 1.0 in. long. The mean
length of the assembly will be 5.0 + 1.0 = 6.0 in. Since each length is increased by
the same amount, the spread in the lengths does not change, so the variance remains
the same. To put this in statistical terms, let X be the length of a randomly chosen rod,
and let Y = X + 1 be the length of the assembly. Then μY = μX+1 = μX + 1, and
σ 2

Y = σ 2
X+1 = σ 2

X . In general, when a constant is added to a random variable, the mean
is shifted by that constant, and the variance is unchanged.

Summary
If X is a random variable and b is a constant, then

μX+b = μX + b (2.39)

σ 2
X+b = σ 2

X (2.40)

Multiplying by a Constant
Often we need to multiply a random variable by a constant. This might be done, for
example, to convert to a more convenient set of units. We continue the example of steel
rod production to show how multiplication by a constant affects the mean, variance, and
standard deviation of a random variable.

If we measure the lengths of the rods described earlier in centimeters rather than
inches, the mean length will be (2.54 cm/in.)(5.0 in.) = 12.7 cm. In statistical terms, let the
random variable X be the length in inches of a randomly chosen rod, and let Y = 2.54X
be the length in centimeters. Then μY = 2.54μX . In general, when a random variable is
multiplied by a constant, its mean is multiplied by the same constant.

Summary
If X is a random variable and a is a constant, then

μaX = aμX (2.41)



Navidi-3810214 book November 11, 2013 12:35

118 CHAPTER 2 Probability

When the length X of a rod is measured in inches, the variance σ 2
X must have units of

in2. If Y = 2.54X is the length in centimeters, then σ 2
Y must have units of cm2. Therefore

we obtain σ 2
Y by multiplying σ 2

X by 2.542, which is the conversion factor from in2 to cm2.
In general, when a random variable is multiplied by a constant, its variance is multiplied
by the square of the constant.

Summary
If X is a random variable and a is a constant, then

σ 2
aX = a2σ 2

X (2.42)

σaX = |a|σX (2.43)

If a random variable is multiplied by a constant and then added to another constant,
the effect on the mean and variance can be determined by combining Equations (2.39)
and (2.41) and Equations (2.40) and (2.42). The results are presented in the following
summary.

Summary
If X is a random variable, and a and b are constants, then

μaX+b = aμX + b (2.44)

σ 2
aX+b = a2σ 2

X (2.45)

σaX+b = |a|σX (2.46)

Note that Equations (2.44) through (2.46) are analogous to results for the sample mean
and standard deviation presented in Section 1.2.

Example
2.48 The molarity of a solute in solution is defined to be the number of moles of solute per

liter of solution (1 mole = 6.02 × 1023 molecules). If the molarity of a stock solution
of concentrated sulfuric acid (H2SO4) is X , and if one part of the solution is mixed
with N parts water, the molarity Y of the dilute solution is given by Y = X/(N + 1).
Assume that the stock solution is manufactured by a process that produces a molarity
with mean 18 and standard deviation 0.1. If 100 mL of stock solution is added to
300 mL of water, find the mean and standard deviation of the molarity of the dilute
solution.
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Solution
The molarity of the dilute solution is Y = 0.25X . The mean and standard deviation
of X are μX = 18 and σX = 0.1, respectively. Therefore

μY = μ0.25X

= 0.25μX (using Equation 2.41)

= 0.25(18.0)

= 4.5

Also,

σY = σ0.25X

= 0.25σX (using Equation 2.43)

= 0.25(0.1)

= 0.025

Means of Linear Combinations of Random Variables
Consider the case of adding two random variables. For example, assume that there are
two machines that fabricate a certain metal part. The mean daily production of machine
A is 100 parts, and the mean daily production of machine B is 150 parts. Clearly the
mean daily production from the two machines together is 250 parts. Putting this in
mathematical notation, let X be the number of parts produced on a given day by machine
A, and let Y be the number of parts produced on the same day by machine B. The total
number of parts is X + Y , and we have that μX+Y = μX + μY .

This idea extends to any number of random variables.

If X1, X2, . . . , Xn are random variables, then the mean of the sum X1 + X2 +
· · · + Xn is given by

μX1+X2+ ··· +Xn = μX1 + μX2 + · · · + μXn (2.47)

The sum X1 + X2 + · · · + Xn is a special case of a linear combination:

If X1, . . . , Xn are random variables and c1, . . . , cn are constants, then the ran-
dom variable

c1 X1 + · · · + cn Xn

is called a linear combination of X1, . . . , Xn .
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To find the mean of a linear combination of random variables, we can combine
Equations (2.41) and (2.47):

If X and Y are random variables, and a and b are constants, then

μaX+bY = μaX + μbY = aμX + bμY (2.48)

More generally, if X1, X2, . . . , Xn are random variables and c1, c2, . . . , cn are
constants, then the mean of the linear combination c1 X1 + c2 X2 + · · · + cn Xn

is given by

μc1 X1+c2 X2+ ··· +cn Xn = c1μX1 + c2μX2 + · · · + cnμXn (2.49)

Independent Random Variables
The notion of independence for random variables is very much like the notion of inde-
pendence for events. Two random variables are independent if knowledge concerning
one of them does not affect the probabilities of the other. When two events are indepen-
dent, the probability that both occur is found by multiplying the probabilities for each
event (see Equations 2.19 and 2.20 in Section 2.3). There are analogous formulas for
independent random variables. The notation for these formulas is as follows. Let X be
a random variable and let S be a set of numbers. The notation “X ∈ S” means that the
value of the random variable X is in the set S.

Definition
If X and Y are independent random variables, and S and T are sets of numbers,
then

P(X ∈ S and Y ∈ T ) = P(X ∈ S)P(Y ∈ T ) (2.50)

More generally, if X1, . . . , Xn are independent random variables, and S1, . . . , Sn

are sets, then

P(X1 ∈ S1 and X2 ∈ S2 and · · · and Xn ∈ Sn) =
P(X1 ∈ S1)P(X2 ∈ S2) · · · P(Xn ∈ Sn) (2.51)

Example
2.49 Rectangular plastic covers for a compact disc (CD) tray have specifications regarding

length and width. Let X be the length and Y be the width, each measured to the
nearest millimeter, of a randomly sampled cover. The probability mass function of X
is given by P(X = 129) = 0.2, P(X = 130) = 0.7, and P(X = 131) = 0.1. The
probability mass function of Y is given by P(Y = 15) = 0.6 and P(Y = 16) = 0.4.
The area of a cover is given by A = XY . Assume X and Y are independent. Find the
probability that the area is 1935 mm2.
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Solution
The area will be equal to 1935 if X = 129 and Y = 15. Therefore

P(A = 1935) = P(X = 129 and Y = 15)

= P(X = 129)P(Y = 15) since X and Y are independent

= (0.2)(0.6)

= 0.12

Equations (2.50) and (2.51) tell how to compute probabilities for independent random
variables, but they are not usually much help in determining whether random variables
actually are independent. In general, the best way to determine whether random variables
are independent is through an understanding of the process that generated them.

Variances of Linear Combinations of Independent
Random Variables
We have seen that the mean of a sum of random variables is always equal to the sum
of the means (Equation 2.47). In general, the formula for the variance of a sum of
random variables is a little more complicated than this. But when random variables are
independent, the result is simple: the variance of the sum is the sum of the variances.

If X1, X2, . . . , Xn are independent random variables, then the variance of the
sum X1 + X2 + · · · + Xn is given by

σ 2
X1+X2+ ··· +Xn

= σ 2
X1

+ σ 2
X2

+ · · · + σ 2
Xn

(2.52)

To find the variance of a linear combination of random variables, we can combine
Equations (2.52) and (2.42):

If X1, X2, . . . , Xn are independent random variables and c1, c2, . . . , cn are
constants, then the variance of the linear combination c1 X1+c2 X2+· · ·+cn Xn

is given by

σ 2
c1 X1+c2 X2+ ··· +cn Xn

= c2
1σ

2
X1

+ c2
2σ

2
X2

+ · · · + c2
nσ

2
Xn

(2.53)

Two frequently encountered linear combinations are the sum and the difference of
two random variables. Interestingly enough, when the random variables are independent,
the variance of the sum is the same as the variance of the difference.

If X and Y are independent random variables with variances σ 2
X and σ 2

Y , then
the variance of the sum X + Y is

σ 2
X+Y = σ 2

X + σ 2
Y (2.54)

The variance of the difference X − Y is

σ 2
X−Y = σ 2

X + σ 2
Y (2.55)
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The fact that the variance of the difference is the sum of the variances may seem coun-
terintuitive. However, it follows from Equation (2.53) by setting c1 = 1 and c2 = −1.

Example
2.50 A piston is placed inside a cylinder. The clearance is the distance between the edge of

the piston and the wall of the cylinder and is equal to one-half the difference between
the cylinder diameter and the piston diameter. Assume the piston diameter has a mean
of 80.85 cm with a standard deviation of 0.02 cm. Assume the cylinder diameter has
a mean of 80.95 cm with a standard deviation of 0.03 cm. Find the mean clearance.
Assuming that the piston and cylinder are chosen independently, find the standard
deviation of the clearance.

Solution
Let X1 represent the diameter of the cylinder and let X2 the diameter of the piston.
The clearance is given by C = 0.5X1 − 0.5X2. Using Equation (2.49), the mean
clearance is

μC = μ0.5X1−0.5X2

= 0.5μX1 − 0.5μX2

= 0.5(80.95) − 0.5(80.85)

= 0.050

Since X1 and X2 are independent, we can use Equation (2.53) to find the standard
deviation σC :

σC =
√

σ 2
0.5X1−0.5X2

=
√

(0.5)2σ 2
X1

+ (−0.5)2σ 2
X2

=
√

0.25(0.02)2 + 0.25(0.03)2

= 0.018

Independence and Simple Random Samples
When a simple random sample of numerical values is drawn from a population, each
item in the sample can be thought of as a random variable. The items in a simple random
sample may be treated as independent, except when the sample is a large proportion (more
than 5%) of a finite population (see the discussion of independence in Section 1.1). From
here on, unless explicitly stated to the contrary, we will assume this exception has not
occurred, so that the values in a simple random sample may be treated as independent
random variables.

Summary
If X1, X2, . . . , Xn is a simple random sample, then X1, X2, . . . , Xn may be
treated as independent random variables, all with the same distribution.
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When X1, . . . , Xn are independent random variables, all with the same distribution, it is
sometimes said that X1, . . . , Xn are independent and identically distributed (i.i.d.).

The Mean and Variance of a Sample Mean
The most frequently encountered linear combination is the sample mean. Specifically,
if X1, . . . , Xn is a simple random sample from a population with mean μ and variance
σ 2, then the sample mean X is the linear combination

X = 1

n
X1 + · · · + 1

n
Xn

From this fact we can compute the mean and variance of X .

μX = μ 1
n X1+ ··· + 1

n Xn

= 1

n
μX1 + · · · + 1

n
μXn (using Equation 2.49)

= 1

n
μ + · · · + 1

n
μ

= (n)

(
1

n

)
μ

= μ

As discussed previously, the items in a simple random sample may be treated as inde-
pendent random variables. Therefore

σ 2
X

= σ 2
1
n X1+ ··· + 1

n Xn

= 1

n2
σ 2

X1
+ · · · + 1

n2
σ 2

Xn
(using Equation 2.53)

= 1

n2
σ 2 + · · · + 1

n2
σ 2

= (n)

(
1

n2

)
σ 2

= σ 2

n

Summary
If X1, . . . , Xn is a simple random sample from a population with mean μ and
variance σ 2, then the sample mean X is a random variable with

μX = μ (2.56)

σ 2
X

= σ 2

n
(2.57)

The standard deviation of X is

σX = σ√
n

(2.58)
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Example
2.51 A process that fills plastic bottles with a beverage has a mean fill volume of 2.013 L and

a standard deviation of 0.005 L. A case contains 24 bottles. Assuming that the bottles
in a case are a simple random sample of bottles filled by this method, find the mean
and standard deviation of the average volume per bottle in a case.

Solution
Let V1, . . . , V24 represent the volumes in 24 bottles in a case. This is a simple random
sample from a population with mean μ = 2.013 and standard deviation σ = 0.005.
The average volume is V = (V1 + · · · + V24)/24. Using Equation (2.56),

μV = μ = 2.013

Using Equation (2.58),
σV = σ√

24
= 0.001

Exercises for Section 2.5

1. If X and Y are independent random variables with
means μX = 9.5 and μY = 6.8, and standard devi-
ations σX = 0.4 and σY = 0.1, find the means and
standard deviations of the following:

a. 3X

b. Y − X

c. X + 4Y

2. The bottom of a cylindrical container has an area of
10 cm2. The container is filled to a height whose mean
is 5 cm, and whose standard deviation is 0.1 cm. Let
V denote the volume of fluid in the container.

a. Find μV .

b. Find σV .

3. The lifetime of a certain transistor in a certain appli-
cation has mean 900 hours and standard deviation 30
hours. Find the mean and standard deviation of the
length of time that four transistors will last.

4. Two batteries, with voltages V1 and V2, are connected
in series. The total voltage V is given by V = V1 +V2.
Assume that V1 has mean 12 V and standard deviation
1 V, and that V2 has mean 6 V and standard deviation
0.5 V.

a. Find μV .

b. Assuming V1 and V2 to be independent, find σV .

5. A laminated item is composed of five layers. The lay-
ers are a simple random sample from a population
whose thickness has mean 1.2 mm and standard devi-
ation 0.04 mm.

a. Find the mean thickness of an item.

b. Find the standard deviation of the thickness of an
item.

6. Two independent measurements are made of the life-
time of a charmed strange meson. Each measurement
has a standard deviation of 7 × 10−15 seconds. The
lifetime of the meson is estimated by averaging the
two measurements. What is the standard deviation of
this estimate?

7. The molarity of a solute in solution is defined to be
the number of moles of solute per liter of solution
(1 mole = 6.02 × 1023 molecules). If X is the
molarity of a solution of magnesium chloride (MgCl2),
and Y is the molarity of a solution of ferric chloride
(FeCl3), the molarity of chloride ion (Cl−) in a solu-
tion made of equal parts of the solutions of MgCl2 and
FeCl3 is given by M = X + 1.5Y . Assume that X has
mean 0.125 and standard deviation 0.05, and that Y
has mean 0.350 and standard deviation 0.10.

a. Find μM .

b. Assuming X and Y to be independent, find σM .
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8. A machine that fills bottles with a beverage has a fill
volume whose mean is 20.01 ounces, with a standard
deviation of 0.02 ounces. A case consists of 24 bottles
randomly sampled from the output of the machine.

a. Find the mean of the total volume of the beverage
in the case.

b. Find the standard deviation of the total volume of
the beverage in the case.

c. Find the mean of the average volume per bottle of
the beverage in the case.

d. Find the standard deviation of the volume per bot-
tle of the beverage in the case.

e. How many bottles must be included in a case for
the standard deviation of the average volume per
bottle to be 0.0025 ounces?

9. The four sides of a picture frame consist of two
pieces selected from a population whose mean length
is 30 cm with standard deviation 0.1 cm, and two
pieces selected from a population whose mean length
is 45 cm with standard deviation 0.3 cm.

a. Find the mean perimeter.

b. Assuming the four pieces are chosen indepen-
dently, find the standard deviation of the perimeter.

10. A gas station earns $2.60 in revenue for each gallon of
regular gas it sells, $2.75 for each gallon of midgrade
gas, and $2.90 for each gallon of premium gas. Let
X1, X2, and X3 denote the numbers of gallons of reg-
ular, midgrade, and premium gasoline sold in a day.
Assume that X1, X2, and X3 have means μ1 = 1500,
μ2 = 500, and μ3 = 300, and standard deviations
σ1 = 180, σ2 = 90, and σ3 = 40, respectively.

a. Find the mean daily revenue.

b. Assuming X1, X2, and X3 to be independent, find
the standard deviation of the daily revenue.

11. A certain commercial jet plane uses a mean of 0.15
gallons of fuel per passenger-mile, with a standard
deviation of 0.01 gallons.

a. Find the mean number of gallons the plane uses to
fly 8000 miles if it carries 210 passengers.

b. Assume the amounts of fuel used are independent
for each passenger-mile traveled. Find the stan-
dard deviation of the number of gallons of fuel the
plane uses to fly 8000 miles while carrying 210
passengers.

c. The plane used X gallons of fuel to carry 210
passengers 8000 miles. The fuel efficiency is esti-
mated as X/(210 × 8000). Find the mean of this
estimate.

d. Assuming the amounts of fuel used are indepen-
dent for each passenger-mile, find the standard de-
viation of the estimate in part (c).

12. The Needleman-Wunsch method for aligning
DNA sequences assigns 1 point whenever a mis-
match occurs, and 3 points whenever a gap (insertion
or deletion) appears in a sequence. Assume that un-
der certain conditions, the number of mismatches has
mean 5 and standard deviation 2, and the number of
gaps has mean 2 and standard deviation 1.

a. Find the mean of the Needleman-Wunsch score.

b. Assume the number of gaps is independent of the
number of mismatches. Find the variance of the
Needleman-Wunsch score.

13. In the article “An Investigation of the Ca–CO3–CaF2–
K2SiO3–SiO2–Fe Flux System Using the Submerged
Arc Welding Process on HSLA-100 and AISI-1018
Steels” (G. Fredrickson, M.S. thesis, Colorado School
of Mines, 1992), the carbon equivalent P of a weld
metal is defined to be a linear combination of the
weight percentages of carbon (C), manganese (Mn),
copper (Cu), chromium (Cr), silicon (Si), nickel (Ni),
molybdenum (Mo), vanadium (V), and boron (B). The
carbon equivalent is given by

P = C+ Mn + Cu + Cr

20
+ Si

30
+ Ni

60
+ Mo

15
+ V

10
+5B

Means and standard deviations of the weight per-
cents of these chemicals were estimated from mea-
surements on 45 weld metals produced on HSLA-100
steel base metal. Assume the means and standard de-
viations (SD) are as given in the following table.

Mean SD

C 0.0695 0.0018
Mn 1.0477 0.0269
Cu 0.8649 0.0225
Cr 0.7356 0.0113
Si 0.2171 0.0185
Ni 2.8146 0.0284
Mo 0.5913 0.0031
V 0.0079 0.0006
B 0.0006 0.0002
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a. Find the mean carbon equivalent of weld metals
produced from HSLA-100 steel base metal.

b. Assuming the weight percents to be independent,
find the standard deviation of the carbon equiv-
alent of weld metals produced from HSLA-100
steel base metal.

14. The oxygen equivalence number of a weld is a number
that can be used to predict properties such as hard-
ness, strength, and ductility. The article “Advances
in Oxygen Equivalence Equations for Predicting
the Properties of Titanium Welds” (D. Harwig, W.
Ittiwattana, and H. Castner, The Welding Journal,
2001:126s–136s) presents several equations for com-
puting the oxygen equivalence number of a weld. One
equation, designed to predict the hardness of a weld,
is X = O + 2N + (2/3)C , where X is the oxygen
equivalence, and O , N , and C are the amounts of
oxygen, nitrogen, and carbon, respectively, in weight
percent, in the weld. Suppose that for welds of a cer-
tain type, μO = 0.1668, μN = 0.0255, μC = 0.0247,
σO = 0.0340, σN = 0.0194, and σC = 0.0131.

a. Find μX .

b. Suppose the weight percents of O , N , and C are
independent. Find σX .

15. Measurements are made on the length and width (in
cm) of a rectangular component. Because of measure-
ment error, the measurements are random variables.
Let X denote the length measurement and let Y denote
the width measurement. Assume that the probability
density function of X is

f (x) =
{

10 9.95 < x < 10.05
0 otherwise

and that the probability density function of Y is

g(y) =
{

5 4.9 < y < 5.1
0 otherwise

Assume that the measurements X and Y are
independent.

a. Find P(X < 9.98).

b. Find P(Y > 5.01).

c. Find P(X < 9.98 and Y > 5.01).

d. Find μX .

e. Find μY .

16. The thickness X of a wooden shim (in mm) has prob-
ability density function

f (x) =

⎧⎨
⎩

3

4
− 3(x − 5)2

4
4 ≤ x ≤ 6

0 otherwise

a. Find μX .

b. Find σ 2
X .

c. Let Y denote the thickness of a shim in inches
(1 mm = 0.0394 inches). Find μY and σ 2

Y .

d. If three shims are selected independently and
stacked one atop another, find the mean and vari-
ance of the total thickness.

17. The article “Abyssal Peridotites > 3800 Ma from
Southern West Greenland: Field Relationships, Pe-
trography, Geochronology, Whole-Rock and Mineral
Chemistry of Dunite and Harzburgite Inclusions in
the Itsaq Gneiss Complex” (C. Friend, V. Bennett,
and A. Nutman, Contrib Mineral Petrol, 2002:71–92)
describes the chemical compositions of certain min-
erals in the early Archaean mantle. For a certain type
of olivine assembly, the silicon dioxide (SiO2) con-
tent (in weight percent) in a randomly chosen rock
has mean 40.25 and standard deviation 0.36.

a. Find the mean and standard deviation of the sam-
ple mean SiO2 content in a random sample of 10
rocks.

b. How many rocks must be sampled so that the stan-
dard deviation of the sample mean SiO2 content is
0.05?

18. The number of bytes downloaded per second on an
information channel has mean 105 and standard de-
viation 104. Among the factors influencing the rate
is congestion, which produces alternating periods of
faster and slower transmission. Let X represent the
number of bytes downloaded in a randomly chosen
five-second period.

a. Is it reasonable to assume that μX = 5 × 105?
Explain.

b. Is it reasonable to assume that σX = √
5 × 104?

Explain.
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2.6 Jointly Distributed Random Variables

In this section, results concerning several random variables are presented in a more
rigorous fashion than in Section 2.5. For those desiring such a presentation, this section
may be covered in addition to, or in place of, Section 2.5.

We have said that observing a value of a random variable is like sampling a value
from a population. In some cases, the items in the population may each have several
random variables associated with them. For example, imagine choosing a student at
random from a list of all the students registered at a university and measuring that
student’s height and weight. Each individual in the population of students corresponds
to two random variables, height and weight. If we also determined the student’s age,
each individual would correspond to three random variables. In principle, any number
of random variables may be associated with each item in a population.

When two or more random variables are associated with each item in a population,
the random variables are said to be jointly distributed. If all the random variables are
discrete, they are said to be jointly discrete. If all the random variables are continuous,
they are said to be jointly continuous. We will study these two cases separately.

Jointly Discrete Random Variables
Example 2.49 (in Section 2.5) discussed the lengths and widths of rectangular plastic
covers for a CD tray that is installed in a personal computer. Measurements are rounded
to the nearest millimeter. Let X denote the measured length and Y the measured width.
The possible values of X are 129, 130, and 131, and the possible values for Y are 15 and
16. Both X and Y are discrete, so X and Y are jointly discrete. There are six possible
values for the ordered pair (X,Y ): (129, 15), (129, 16), (130, 15), (130, 16), (131, 15),
and (131, 16). Assume that the probabilities of each of these ordered pairs are as given
in the following table.

x y P (X= x and Y= y)

129 15 0.12
129 16 0.08
130 15 0.42
130 16 0.28
131 15 0.06
131 16 0.04

The joint probability mass function is the function p(x,y) = P(X = x and Y = y).
So, for example, we have p(129, 15) = 0.12, and p(130, 16) = 0.28.

Sometimes we are given a joint probability mass function of two random variables,
but we are interested in only one of them. For example, we might be interested in the
probability mass function of X , the length of the CD cover, but not interested in the
width Y . We can obtain the probability mass function of either one of the variables X or
Y separately by summing the appropriate values of the joint probability mass function.
Examples 2.52 and 2.53 illustrate the method.
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Example
2.52 Find the probability that a CD cover has a length of 129 mm.

Solution
It is clear from the previous table that 12% of the CD covers in the population have
a length of 129 and a width of 15, and 8% have a length of 129 and a width of 16.
Therefore 20% of the items in the population have a length of 129. The probability
that a CD cover has a length of 129 mm is 0.20. In symbols, we have

P(X = 129) = P(X = 129 and Y = 15) + P(X = 129 and Y = 16)

= 0.12 + 0.08

= 0.20

Example
2.53 Find the probability that a CD cover has a width of 16 mm.

Solution
We need to find P(Y = 16). We can find this quantity by summing the probabilities
of all pairs (x,y) for which y = 16. We obtain

P(Y = 16) = P(X = 129 and Y = 16) + P(X = 130 and Y = 16)

+ P(X = 131 and Y = 16)

= 0.08 + 0.28 + 0.04

= 0.40

Examples 2.52 and 2.53 show that we can find the probability mass function of X
(or Y ) by summing the joint probability mass function over all values of Y (or X ).
Table 2.3 presents the joint probability mass function of X and Y . The probability mass
function of X appears in the rightmost column and is obtained by summing along the
rows. The probability mass function of Y appears in the bottom row and is obtained by
summing down the columns. Note that the probability mass functions of X and of Y
appear in the margins of the table. For this reason they are often referred to as marginal
probability mass functions.

TABLE 2.3 Joint and marginal proba-
bility mass functions for the length X
and width Y of a CD cover

y

x 15 16 pX(x)

129 0.12 0.08 0.20
130 0.42 0.28 0.70
131 0.06 0.04 0.10

pY(y) 0.60 0.40
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Finally, if we sum the joint probability density function over all possible values of
x and y, we obtain the probability that X and Y take values somewhere within their
possible ranges, and this probability is equal to 1.

Summary
If X and Y are jointly discrete random variables:

■ The joint probability mass function of X and Y is the function

p(x,y) = P(X = x and Y = y)

■ The marginal probability mass functions of X and of Y can be obtained
from the joint probability mass function as follows:

pX (x) = P(X = x) =
∑

y

p(x,y) pY (y) = P(Y = y) =
∑

x

p(x,y)

where the sums are taken over all the possible values of Y and of X ,
respectively.

■ The joint probability mass function has the property that∑
x

∑
y

p(x,y) = 1

where the sum is taken over all the possible values of X and Y.

Jointly Continuous Random Variables
We have seen that if X is a continuous random variable, its probabilities are found by
integrating its probability density function. We say that the random variables X and
Y are jointly continuous if their probabilities are found by integrating a function of
two variables, called the joint probability density function of X and Y. To find the
probability that X and Y take values in any region, we integrate the joint probability
density function over that region. Example 2.54 shows how.

Example
2.54 Assume that for a certain type of washer, both the thickness and the hole diameter

vary from item to item. Let X denote the thickness in millimeters and let Y denote the
hole diameter in millimeters, for a randomly chosen washer. Assume that the joint
probability density function of X and Y is given by

f (x,y) =
⎧⎨
⎩

1

6
(x + y) if 1 ≤ x ≤ 2 and 4 ≤ y ≤ 5

0 otherwise

Find the probability that a randomly chosen washer has a thickness between 1.0 and
1.5 mm, and a hole diameter between 4.5 and 5 mm.
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Solution
We need to find P(1 ≤ X ≤ 1.5 and 4.5 ≤ Y ≤ 5). The large rectangle in the figure
indicates the region where the joint density is positive. The shaded rectangle indicates
the region where 1 ≤ x ≤ 1.5 and 4.5 ≤ y ≤ 5, over which the joint density is to be
integrated.

5.5

5

4.5

4

3.5
10.5 1.5

x

y

2 2.5

We integrate the joint probability density function over the indicated region:

P(1 ≤ X ≤ 1.5 and 4.5 ≤ Y ≤ 5) =
∫ 1.5

1

∫ 5

4.5

1

6
(x + y) dy dx

=
∫ 1.5

1

{
xy

6
+ y2

12

y=5

y=4.5

}
dx

=
∫ 1.5

1

(
x

12
+ 19

48

)
dx

= 1

4

Note that if a joint probability density function is integrated over the entire plane,
that is, if the limits are −∞ to ∞ for both x and y, we obtain the probability that both
X and Y take values between −∞ and ∞, which is equal to 1.

Summary
If X and Y are jointly continuous random variables, with joint probability density
function f (x,y), and a < b, c < d, then

P(a ≤ X ≤ b and c ≤ Y ≤ d) =
∫ b

a

∫ d

c
f (x,y) dy dx

The joint probability density function has the following properties:

f (x, y) ≥ 0 for all x and y∫ ∞

−∞

∫ ∞

−∞
f (x,y) dy dx = 1
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We have seen that if X and Y are jointly discrete, the probability mass function
of either variable may be found by summing the joint probability mass function over
all the values of the other variable. When computed this way, the probability mass
function is called the marginal probability mass function. By analogy, if X and Y are
jointly continuous, the probability density function of either variable may be found by
integrating the joint probability density function with respect to the other variable. When
computed this way, the probability density function is called the marginal probability
density function. Example 2.55 illustrates the idea.

Example
2.55 Refer to Example 2.54. Find the marginal probability density function of the thickness

X of a washer. Find the marginal probability density function of the hole diameter Y
of a washer.

Solution
Denote the marginal probability density function of X by fX (x), and the marginal
probability density function of Y by fY (y). Then

fX (x) =
∫ ∞

−∞
f (x,y) dy

=
∫ 5

4

1

6
(x + y) dy

= 1

6

(
x + 9

2

)
for 1 ≤ x ≤ 2

and

fY (y) =
∫ ∞

−∞
f (x,y) dx

=
∫ 2

1

1

6
(x + y) dx

= 1

6

(
y + 3

2

)
for 4 ≤ y ≤ 5

Summary
If X and Y are jointly continuous with joint probability density function f (x,y),
then the marginal probability density functions of X and of Y are given, respec-
tively, by

fX (x) =
∫ ∞

−∞
f (x,y) dy fY (y) =

∫ ∞

−∞
f (x,y) dx
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Example
2.56 The article “Performance Comparison of Two Location Based Routing Protocols for

Ad Hoc Networks” (T. Camp, J. Boleng, et al., Proceedings of the Twenty-first Annual
Joint Conference of IEEE Computer and Communications Societies 2002:1678–1687)
describes a model for the movement of a mobile computer. Assume that a mobile
computer moves within the region A bounded by the x axis, the line x = 1, and the
line y = x in such a way that if (X,Y ) denotes the position of the computer at a given
time, the joint density of X and Y is given by

f (x,y) =
{

8xy (x,y) ∈ A

0 (x,y) �∈ A

Find P(X > 0.5 and Y < 0.5).

Solution
The region A is the triangle shown in Figure 2.15, with the region X > 0.5 and
Y < 0.5 shaded in. To find P(X > 0.5 and Y < 0.5), we integrate the joint density
over the shaded region.

P(X > 0.5 and Y < 0.5) =
∫ 1

0.5

∫ 0.5

0
8xy dy dx

=
∫ 1

0.5

{
4xy2

y=0.5

y=0

}
dx

=
∫ 1

0.5
x dx

= 0.375

0.5

y � x

0

0.5

0

1

1

y

x

FIGURE 2.15 The triangle represents the region where the joint density of X and Y is
positive. By integrating the joint density over the shaded square, we find the probability
that the point (X,Y ) lies in the shaded square.
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Example
2.57 Refer to Example 2.56. Find the marginal densities of X and of Y .

Solution
To compute fX (x), the marginal density of X , we fix x and integrate the joint density
along the vertical line through x , as shown in Figure 2.16. The integration is with
respect to y, and the limits of integration are y = 0 to y = x .

fX (x) =
∫ x

0
8xy dy

= 4xy2

y=x

y=0

= 4x3 for 0 < x < 1

0
0

1

1

y

x
x

y � x

FIGURE 2.16 The marginal density fX (x) is computed by integrating the joint density
along the vertical line through x .

To compute fY (y), the marginal density of Y , we fix y and integrate the joint density
along the horizontal line through y, as shown in Figure 2.17 (page 134). The integration
is with respect to x , and the limits of integration are x = y to x = 1.

fY (y) =
∫ 1

y
8xy dx

= 4x2 y

x=1

x=y

= 4y − 4y3 for 0 < y < 1
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0
0

1

y

1

y

x

y � x

FIGURE 2.17 The marginal density fY (y) is computed by integrating the joint density
along the horizontal line through y.

More than Two Random Variables
The ideas of joint probability mass functions and joint probability density functions
extend easily to more than two random variables. We present the definitions here.

Definition

■ If the random variables X1, . . . , Xn are jointly discrete, the joint
probability mass function is

p(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn)

■ If the random variables X1, . . . , Xn are jointly continuous, they have a
joint probability density function f (x1, . . . , xn), where

P(a1 ≤ X1 ≤ b1, . . . , an ≤ Xn ≤ bn) =
∫ bn

an

· · ·
∫ b1

a1

f (x1, . . . , xn) dx1 · · · dxn

for any constants a1 ≤ b1, . . . , an ≤ bn .

Means of Functions of Random Variables
Sometimes we are given a random variable X and we need to work with a function
of X . If X is a random variable, and h(X) is a function of X , then h(X) is a random
variable as well. If we wish to compute the mean of h(X), it can be done by using the
probability mass function or probability density function of X . It is not necessary to
know the probability mass function or probability density function of h(X).
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Let X be a random variable, and let h(X) be a function of X . Then

■ If X is discrete with probability mass function p(x), the mean of h(X) is
given by

μh(X) =
∑

x

h(x)p(x) (2.59)

where the sum is taken over all the possible values of X .

■ If X is continuous with probability density function f (x), the mean of
h(X) is given by

μh(X) =
∫ ∞

−∞
h(x) f (x) dx (2.60)

Note that if we substitute h(X) = (X − μX )2 in either Equation (2.59) or (2.60),
the right-hand side of the equation becomes an expression for the variance of X . It
follows that σ 2

X = μ(X−μX )2 . We can obtain another expression for the variance of X
by substituting h(X) = X2 and subtracting μ2

X from both sides of the equation. We
conclude that σ 2

X = μX2 − μ2
X .

Example
2.58 An internal combustion engine contains several cylinders bored into the engine block.

Let X represent the bore diameter of a cylinder, in millimeters. Assume that the
probability density function of X is

f (x) =
{

10 80.5 < x < 80.6

0 otherwise

Let A = π X2/4 represent the area of the bore. Find the mean of A.

Solution

μA =
∫ ∞

−∞

πx2

4
f (x) dx

=
∫ 80.6

80.5

πx2

4
(10) dx

= 5096

The mean area is 5096 mm2.

If h(X) = aX + b is a linear function of X , then the mean μaX+b and the vari-
ance σ 2

a X+b can be expressed in terms of μX and σ 2
X . These results were presented in

Equations (2.44) through (2.46) in Section 2.5; we repeat them here.
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If X is a random variable, and a and b are constants, then

μaX+b = aμX + b (2.61)

σ 2
aX+b = a2σ 2

X (2.62)

σaX+b = |a|σX (2.63)

Proofs of these results are presented at the end of this section.
If X and Y are jointly distributed random variables, and h(X,Y ) is a function of

X and Y , then the mean of h(X,Y ) can be computed from the joint probability mass
function or joint probability density function of X and Y.

If X and Y are jointly distributed random variables, and h(X,Y ) is a function
of X and Y , then

■ If X and Y are jointly discrete with joint probability mass function p(x,y),

μh(X,Y ) =
∑

x

∑
y

h(x,y)p(x,y) (2.64)

where the sum is taken over all the possible values of X and Y.

■ If X and Y are jointly continuous with joint probability density function
f (x,y),

μh(X,Y ) =
∫ ∞

−∞

∫ ∞

−∞
h(x,y) f (x,y) dx dy (2.65)

Example
2.59 The displacement of a piston in an internal combustion engine is defined to be the

volume that the top of the piston moves through from the top to the bottom of its
stroke. Let X represent the diameter of the cylinder bore, in millimeters, and let Y
represent the length of the piston stroke in millimeters. The displacement is given by
D = π X2Y/4. Assume X and Y are jointly distributed with joint probability mass
function

f (x,y) =
{

100 80.5 < x < 80.6 and 65.1 < y < 65.2

0 otherwise

Find the mean of D.

Solution

μD =
∫ ∞

−∞

∫ ∞

−∞

πx2 y

4
f (x,y) dx dy
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=
∫ 65.2

65.1

∫ 80.6

80.5

πx2 y

4
(100) dx dy

= 331,998

The mean displacement is 331,998 mm3, or approximately 332 mL.

Conditional Distributions
If X and Y are jointly distributed random variables, then knowing the value of X may
change probabilities regarding the random variable Y . For example, let X represent
the height in inches and Y represent the weight in pounds of a randomly chosen college
student. Let’s say that we are interested in the probability P(Y ≥ 200). If we know the
joint density of X and Y , we can determine this probability by computing the marginal
density of Y . Now let’s say that we learn that the student’s height is X = 78. Clearly,
this knowledge changes the probability that Y ≥ 200. To compute this new probability,
the idea of a conditional distribution is needed.

We will first discuss the case where X and Y are jointly discrete. Let x be any value
for which P(X = x) > 0. Then the conditional probability that Y = y given X = x
is P(Y = y | X = x). We will express this conditional probability in terms of the joint
and marginal probability mass functions. Let p(x,y) denote the joint probability mass
function of X and Y , and let pX (x) denote the marginal probability mass function of X .
Then the conditional probability is

P(Y = y | X = x) = P(X = x and Y = y)

P(X = x)
= p(x,y)

pX (x)

The conditional probability mass function of Y given X = x is the conditional prob-
ability P(Y = y | X = x), considered as a function of y and x .

Definition
Let X and Y be jointly discrete random variables, with joint probability mass
function p(x,y). Let pX (x) denote the marginal probability mass function of X
and let x be any number for which pX (x) > 0.

The conditional probability mass function of Y given X = x is

pY |X (y | x) = p(x,y)

pX (x)
(2.66)

Note that for any particular values of x and y, the value of pY |X (y | x) is just the
conditional probability P(Y = y | X = x).
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Example
2.60 Table 2.3 presents the joint probability mass function of the length X and width Y of

a CD cover. Compute the conditional probability mass function pY |X (y | 130).

Solution
The possible values for Y are y =15 and y =16. From Table 2.3, P(Y = 15 and X =
130) = 0.42, and P(X = 130) = 0.70. Therefore,

pY |X (15 | 130) = P(Y = 15 | X = 130)

= P(Y = 15 and X = 130)

P(X = 130)

= 0.42

0.70

= 0.60

The value of pY |X (16 | 130) can be computed with a similar calculation. Alternatively,
note that pY |X (16 | 130) = 1 − pY |X (15 | 130), since y = 15 and y = 16 are the
only two possible values for Y . Therefore pY |X (16 | 130) = 0.4. The conditional
probability mass function of Y given X = 130 is therefore pY |X (15 | 130) = 0.60,
pY |X (16 | 130) = 0.40, and pY |X (y | 130) = 0 for any value of y other than 15 or 16.

The analog to the conditional probability mass function for jointly continuous ran-
dom variables is the conditional probability density function. The definition of the
conditional probability density function is just like that of the conditional probability
mass function, with mass functions replaced by density functions.

Definition
Let X and Y be jointly continuous random variables, with joint probability density
function f (x,y). Let fX (x) denote the marginal probability density function of
X and let x be any number for which fX (x) > 0.

The conditional probability density function of Y given X = x is

fY |X (y | x) = f (x,y)

fX (x)
(2.67)

Example
2.61 (Continuing Example 2.54.) The joint probability density function of the thickness X

and hole diameter Y (both in millimeters) of a randomly chosen washer is f (x,y) =
(1/6)(x + y) for 1 ≤ x ≤ 2 and 4 ≤ y ≤ 5. Find the conditional probability density
function of Y given X = 1.2. Find the probability that the hole diameter is less than
or equal to 4.8 mm given that the thickness is 1.2 mm.



Navidi-3810214 book November 11, 2013 12:35

2.6 Jointly Distributed Random Variables 139

Solution
In Example 2.55 we computed the marginal probability density functions

fX (x) = 1

6
(x + 4.5) for 1 ≤ x ≤ 2 fY (y) = 1

6
(y + 1.5) for 4 ≤ y ≤ 5

The conditional probability density function of Y given X = 1.2 is

fY |X (y | 1.2) = f (1.2, y)

fX (1.2)

=

⎧⎪⎨
⎪⎩

(1/6)(1.2 + y)

(1/6)(1.2 + 4.5)
if 4 ≤ y ≤ 5

0 otherwise

=

⎧⎪⎨
⎪⎩

1.2 + y

5.7
if 4 ≤ y ≤ 5

0 otherwise

The probability that the hole diameter is less than or equal to 4.8 mm given that the
thickness is 1.2 mm is P(Y ≤ 4.8 | X = 1.2). This is found by integrating fY |X (y|1.2)

over the region y ≤ 4.8:

P(Y ≤ 4.8 | X = 1.2) =
∫ 4.8

−∞
fY |X (y | 1.2) dy

=
∫ 4.8

4

1.2 + y

5.7
dy

= 0.786

Conditional Expectation
Expectation is another term for mean. A conditional expectation is an expectation, or
mean, calculated using a conditional probability mass function or conditional probability
density function. The conditional expectation of Y given X = x is denoted E(Y | X = x)

or μY | X=x . We illustrate with Examples 2.62 through 2.64.

Example
2.62 Table 2.3 presents the joint probability mass function of the length X and width Y of

a CD cover. Compute the conditional expectation E(Y | X = 130).

Solution
We computed the conditional probability mass function pY |X (y | 130) in Exam-
ple 2.60. The conditional expectation E(Y | X = 130) is calculated using the
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definition of the mean of a discrete random variable and the conditional probability
mass function. Specifically,

E(Y | X = 130) =
∑

y

y pY |X (y | 130)

= 15 pY |X (15 | 130) + 16 pY |X (16 | 130)

= 15(0.60) + 16(0.40)

= 15.4

Example
2.63 Refer to Example 2.61. Find the conditional expectation of Y given that X = 1.2.

Solution
Since X and Y are jointly continuous, we use the definition of the mean of a continuous
random variable to compute the conditional expectation.

E(Y | X = 1.2) =
∫ ∞

−∞
y fY |X (y | 1.2) dy

=
∫ 5

4
y

1.2 + y

5.7
dy

= 4.5146

Example
2.64 Refer to Example 2.61. Find the value μY (which can be called the unconditional

mean of Y ). Does it differ from E(Y | X = 1.2)?

Solution
The value μY is calculated using the marginal probability mass function of Y . Thus

μY =
∫ ∞

−∞
y fY (y) dy

=
∫ 5

4
y

1

6
(y + 1.5) dy

= 4.5139

The conditional expectation in this case differs slightly from the unconditional
expectation.

Independent Random Variables
The notion of independence for random variables is very much like the notion of in-
dependence for events. Two random variables are independent if knowledge regarding
one of them does not affect the probabilities of the other. We present here a definition of
independence of random variables in terms of their joint probability mass or joint prob-
ability density function. A different but logically equivalent definition was presented in
Section 2.5.
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Definition
Two random variables X and Y are independent, provided that

■ If X and Y are jointly discrete, the joint probability mass function is equal
to the product of the marginals:

p(x,y) = pX (x)pY (y)

■ If X and Y are jointly continuous, the joint probability density function is
equal to the product of the marginals:

f (x,y) = fX (x) fY (y)

Random variables X1, . . . , Xn are independent, provided that

■ If X1, . . . , Xn are jointly discrete, the joint probability mass function is
equal to the product of the marginals:

p(x1, . . . , xn) = pX1(x1) · · · pXn (xn)

■ If X1, . . . , Xn are jointly continuous, the joint probability density function
is equal to the product of the marginals:

f (x1, . . . , xn) = fX1(x1) · · · fXn (xn)

Intuitively, when two random variables are independent, knowledge of the value of
one of them does not affect the probability distribution of the other. In other words, the
conditional distribution of Y given X is the same as the marginal distribution of Y .

If X and Y are independent random variables, then

■ If X and Y are jointly discrete, and x is a value for which pX (x) > 0, then

pY |X (y | x) = pY (y)

■ If X and Y are jointly continuous, and x is a value for which fX (x) > 0,
then

fY |X (y | x) = fY (y)

Example
2.65 The joint probability mass function of the length X and thickness Y of a CD tray

cover is given in Table 2.3. Are X and Y independent?

Solution
We must check to see if P(X = x and Y = y) = P(X = x)P(Y = y) for every
value of x and y. We begin by checking x = 129, y = 15:

P(X = 129 and Y = 15) = 0.12 = (0.20)(0.60) = P(X = 129)P(Y = 15)
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Continuing in this way, we can verify that P(X = x and Y = y) = P(X = x)P(Y = y)

for every value of x and y. Therefore X and Y are independent.

Example
2.66 (Continuing Example 2.54.) The joint probability density function of the thickness

X and hole diameter Y of a randomly chosen washer is f (x,y) = (1/6)(x + y) for
1 ≤ x ≤ 2 and 4 ≤ y ≤ 5. Are X and Y independent?

Solution
In Example 2.55 we computed the marginal probability mass functions

fX (x) = 1

6

(
x + 9

2

)
fY (y) = 1

6

(
y + 3

2

)
Clearly f (x,y) �= fX (x) fY (y). Therefore X and Y are not independent.

Covariance
When two random variables are not independent, it is useful to have a measure of the
strength of the relationship between them. The population covariance is a measure of
a certain type of relationship known as a linear relationship. We will usually drop the
term “population,” and refer simply to the covariance.

Definition
Let X and Y be random variables with means μX and μY . The covariance of X
and Y is

Cov(X,Y ) = μ(X−μX )(Y−μY ) (2.68)

An alternate formula is

Cov(X,Y ) = μXY − μXμY (2.69)

A proof of the equivalence of these two formulas is presented at the end of the section.
It is important to note that the units of Cov(X,Y ) are the units of X multiplied by the
units of Y .

How does the covariance measure the strength of the linear relationship between
X and Y ? The covariance is the mean of the product of the deviations
(X − μX )(Y − μY ). If a Cartesian coordinate system is constructed with the origin
at (μX , μY ), this product will be positive in the first and third quadrants, and negative
in the second and fourth quadrants (see Figure 2.18). It follows that if Cov(X,Y ) is
strongly positive, then values of (X,Y ) in the first and third quadrants will be observed
much more often than values in the second and fourth quadrants. In a random sample of
points, therefore, larger values of X would tend to be paired with larger values of Y , while
smaller values of X would tend to be paired with smaller values of Y (see Figure 2.18a).
Similarly, if Cov(X,Y ) is strongly negative, the points in a random sample would be
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more likely to lie in the second and fourth quadrants, so larger values of X would tend
to be paired with smaller values of Y (see Figure 2.18b). Finally, if Cov(X,Y ) is near
0, there would be little tendency for larger values of X to be paired with either larger or
smaller values of Y (see Figure 2.18c).

(x 2 �X)(y 2 �Y) < 0 (x 2 �X)(y 2 �Y) > 0

(x 2 �X)(y 2 �Y) > 0 (x 2 �X)(y 2 �Y) < 0

(x 2 �X)(y 2 �Y) < 0 (x 2 �X)(y 2 �Y) > 0

(x 2 �X)(y 2 �Y) > 0 (x 2 �X)(y 2 �Y) < 0

(x 2 �X)(y 2 �Y) < 0 (x 2 �X)(y 2 �Y) > 0

(x 2 �X)(y 2 �Y) > 0 (x 2 �X)(y 2 �Y) < 0

�Y

�X

�Y

�X

�Y

�X

(a) (b)

(c)

FIGURE 2.18 (a)A random sample of points from a population with positive covariance. (b) A random sample of points
from a population with negative covariance. (c) A random sample of points from a population with covariance near 0.

Example
2.67 Continuing Example 2.56, a mobile computer is moving in the region A bounded by

the x axis, the line x = 1, and the line y = x (see Figure 2.15). If (X,Y ) denotes the
position of the computer at a given time, the joint density of X and Y is given by

f (x,y) =
{

8xy (x,y) ∈ A

0 (x,y) �∈ A

Find Cov(X,Y ).
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Solution
We will use the formula Cov(X,Y ) = μXY −μXμY (Equation 2.69). First we compute
μXY :

μXY =
∫ ∞

−∞

∫ ∞

−∞
xy f (x,y) dy dx

Now the joint density is positive on the triangle shown.

0
0

1

1

y

x
x

y � x

To compute the integral over this region, we fix a value of x , as shown. We compute
the inner integral by integrating with respect to y along the vertical line through x .
The limits of integration along this line are y = 0 to y = x . Then we compute the
outer integral by integrating with respect to x over all possible values of x , so the
limits of integration on the outer integral are x = 0 to x = 1.

Therefore

μXY =
∫ 1

0

∫ x

0
xy(8xy) dy dx

=
∫ 1

0

(∫ x

0
8x2 y2 dy

)
dx

=
∫ 1

0

8x5

3
dx

= 4

9
To find μX and μY , we will use the marginal densities computed in Example 2.57.
These are

fX (x) =
{

4x3 0 < x < 1

0 otherwise

fY (y) =
{

4y − 4y3 0 < y < 1

0 otherwise
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We now compute μX and μY :

μX =
∫ ∞

−∞
x fX (x) dx

=
∫ 1

0
4x4 dx

= 4

5

μY =
∫ ∞

−∞
y fY (y) dy

=
∫ 1

0

(
4y2 − 4y4

)
dy

= 8

15

Now Cov(X,Y ) = 4

9
−

(
4

5

) (
8

15

)
= 4

225
= 0.01778.

Example
2.68 Quality-control checks on wood paneling involve counting the number of surface

flaws on each panel. On a given 2 × 8 ft panel, let X be the number of surface flaws
due to uneven application of the final coat of finishing material, and let Y be the
number of surface flaws due to inclusions of foreign particles in the finish. The joint
probability mass function p(x,y) of X and Y is presented in the following table. The
marginal probability mass functions are presented as well, in the margins of the table.
Find the covariance of X and Y .

y

x 0 1 2 pX(x)

0 0.05 0.10 0.20 0.35
1 0.05 0.15 0.05 0.25
2 0.25 0.10 0.05 0.40

pY(y) 0.35 0.35 0.30

Solution
We will use the formula Cov(X,Y ) = μXY − μXμY (Equation 2.69). First we
compute μXY :

μXY =
2∑

x=0

2∑
y=0

xy p(x,y)

= (1)(1)(0.15) + (1)(2)(0.05) + (2)(1)(0.10) + (2)(2)(0.05)

= 0.65 (omitting terms equal to 0)
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We use the marginals to compute μX and μY :

μX = (0)(0.35) + (1)(0.25) + (2)(0.40) = 1.05

μY = (0)(0.35) + (1)(0.35) + (2)(0.30) = 0.95

It follows that Cov(X,Y ) = 0.65 − (1.05)(0.95) = −0.3475.

Correlation
If X and Y are jointly distributed random variables, Cov(X,Y ) measures the strength
of the linear relationship between them. As mentioned previously, the covariance has
units, which are the units of X multiplied by the units of Y . This is a serious drawback
in practice, because one cannot use the covariance to determine which of two pairs of
random variables is more strongly related, since the two covariances will have differ-
ent units. What is needed is a measure of the strength of a linear relationship that is
unitless. The population correlation is such a measure. We will usually drop the term
“population,” and refer simply to the correlation. We will denote the correlation between
random variables X and Y by ρX,Y .

The correlation is a scaled version of the covariance. Specifically, to compute the
correlation between X and Y , one first computes the covariance, and then gets rid of the
units by dividing by the product of the standard deviations of X and Y . It can be proved
that the correlation is always between −1 and 1 (see Exercise 29).

Summary
Let X and Y be jointly distributed random variables with standard deviations σX

and σY . The correlation between X and Y is denoted ρX,Y and is given by

ρX,Y = Cov(X,Y )

σXσY
(2.70)

For any two random variables X and Y :

−1 ≤ ρX,Y ≤ 1

Example
2.69 Refer to Example 2.67. Find ρX,Y .

Solution
In Example 2.67, we computed Cov(X,Y ) = 0.01778, μX = 4/5, and μY = 8/15.
We now must compute σX and σY . To do this we use the marginal densities of X and
of Y , which were computed in Example 2.57. These are fX (x) = 4x3 for 0 < x < 1,
and fY (y) = 4y − 4y3 for 0 < y < 1. We obtain
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σ 2
X =

∫ ∞

−∞
x2 fX (x) dx − μ2

X

=
∫ 1

0
4x5 dx −

(
4

5

)2

= 0.02667

σ 2
Y =

∫ ∞

−∞
y2 fY (y) dy − μ2

Y

=
∫ 1

0

(
4y3 − 4y5

)
dy −

(
8

15

)2

= 0.04889

It follows that ρX,Y = 0.01778√
(0.02667)(0.04889)

= 0.492.

Example
2.70 Refer to Example 2.68. Find ρX,Y .

Solution
In Example 2.68, we computed Cov(X,Y ) = −0.3475, μX = 1.05, and μY = 0.95.
We now must compute σX and σY . To do this we use the marginal densities of X and
of Y , which were presented in the table in Example 2.68. We obtain

σ 2
X =

2∑
x=0

x2 pX (x) − μ2
X

= (02)(0.35) + (12)(0.25) + (22)(0.40) − 1.052

= 0.7475

σ 2
Y =

2∑
y=0

y2 pY (y) − μ2
Y

= (02)(0.35) + (12)(0.35) + (22)(0.30) − 0.952

= 0.6475

It follows that

ρX,Y = −0.3475√
(0.7475)(0.6475)

= −0.499

As an important special case, note that it follows immediately from the definition
(Equation 2.68 or 2.69) that the covariance of any random variable and itself is the
variance of that random variable. Also, it follows from the definition of correlation
(Equation 2.70) that the correlation between any random variable and itself is 1.
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Summary
For any random variable X , Cov(X, X) = σ 2

X and ρX,X = 1.

Covariance, Correlation, and Independence
When Cov(X,Y ) = ρX,Y = 0, there is no linear relationship between X and Y . In
this case we say that X and Y are uncorrelated. Note that if Cov(X,Y ) = 0, then it
is always the case that ρX,Y = 0, and vice versa. If X and Y are independent random
variables, then X and Y are always uncorrelated, since there is no relationship, linear
or otherwise, between them. It is mathematically possible to construct random variables
that are uncorrelated but not independent. This phenomenon is rarely seen in practice,
however.

Summary

■ If Cov(X,Y ) = ρX,Y = 0, then X and Y are said to be uncorrelated.

■ If X and Y are independent, then X and Y are uncorrelated.

■ It is mathematically possible for X and Y to be uncorrelated without being
independent. This rarely occurs in practice.

A proof of the fact that independent random variables are always uncorrelated is
presented at the end of this section. An example of random variables that are uncorrelated
but not independent is presented in Exercise 22.

Linear Combinations of Random Variables
We discussed linear combinations of random variables in Section 2.5. We review the
results here and include additional results on the variance of a linear combination of
dependent random variables.

If X1, . . . , Xn are random variables and c1, . . . , cn are constants, then the ran-
dom variable

c1 X1 + · · · + cn Xn

is called a linear combination of X1, . . . , Xn .

If X1, . . . , Xn are random variables and c1, . . . , cn are constants, then

μc1 X1+ ··· +cn Xn = c1μX1 + · · · + cnμXn (2.71)

σ 2
c1 X1+ ··· +cn Xn

= c2
1σ

2
X1

+ · · · + c2
nσ

2
Xn

+ 2
n−1∑
i=1

n∑
j=i+1

ci c j Cov(Xi , X j ) (2.72)
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Proofs of these results for the case n = 2 are presented at the end of this section.
Equation (2.72) is the most general result regarding the variance of a linear combination
of random variables. As a special case, note that if X1, . . . , Xn are independent, then all
the covariances are equal to 0, so the result simplifies:

If X1, . . . , Xn are independent random variables and c1, . . . , cn are constants,
then

σ 2
c1 X1+ ··· +cn Xn

= c2
1σ

2
X1

+ · · · + c2
nσ

2
Xn

(2.73)

In particular,

σ 2
X1+ ··· +Xn

= σ 2
X1

+ · · · + σ 2
Xn

(2.74)

Finally, we present some special cases of Equations (2.72) and (2.74) in which there are
only two random variables:

If X and Y are random variables, then

σ 2
X+Y = σ 2

X + σ 2
Y + 2 Cov(X,Y ) (2.75)

σ 2
X−Y = σ 2

X + σ 2
Y − 2 Cov(X,Y ) (2.76)

If X and Y are independent random variables, then

σ 2
X+Y = σ 2

X + σ 2
Y (2.77)

σ 2
X−Y = σ 2

X + σ 2
Y (2.78)

Note that the variance of the difference X − Y of two independent random variables is
the sum of the variances.

Example
2.71 (Continuing Example 2.56.) Assume that the mobile computer moves from a random

position (X,Y ) vertically to the point (X, 0), and then along the x axis to the origin.
Find the mean and variance of the distance traveled.

Solution
The distance traveled is the sum X + Y . The means of X and of Y were computed in
Example 2.67. They are μX = 4/5 = 0.800, and μY = 8/15 = 0.533. We compute

μX+Y = μX + μY

= 0.800 + 0.533

= 1.333

To computeσ 2
X+Y , we use Equation (2.75). In Example 2.67 we computed Cov(X,Y ) =

0.01778. In Example 2.69 we computed σ 2
X = 0.02667 and σ 2

Y = 0.04889. Therefore
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σ 2
X+Y = σ 2

X + σ 2
Y + 2 Cov(X,Y )

= 0.02667 + 0.04889 + 2(0.01778)

= 0.1111

The Mean and Variance of a Sample Mean
We review the procedures for computing the mean and variance of a sample mean,
which were presented in Section 2.5. When a simple random sample of numerical values
is drawn from a population, each item in the sample can be thought of as a random
variable. Unless the sample is a large proportion (more than 5%) of the population, the
items in the sample may be treated as independent (see the discussion of independence in
Section 1.1). From here on, unless stated to the contrary, we will assume that the values
in a simple random sample may be treated as independent random variables.

If X1, . . . , Xn is a simple random sample, then X1, . . . , Xn may be treated as
independent random variables, all with the same distribution.

The most frequently encountered linear combination is the sample mean. Specifi-
cally, if X1, . . . , Xn is a simple random sample, then X1, . . . , Xn are independent, and
the sample mean X is the linear combination

X = 1

n
X1 + · · · + 1

n
Xn

Formulas for the mean and variance of X may therefore be derived from Equations (2.71)
and (2.73), respectively, by setting c1 = c2 = · · · = cn = 1/n.

If X1, . . . , Xn is a simple random sample from a population with mean μ and
variance σ 2, then the sample mean X is a random variable with

μX = μ (2.79)

σ 2
X

= σ 2

n
(2.80)

The standard deviation of X is

σX = σ√
n

(2.81)

Example
2.72 The article “Water Price Influence on Apartment Complex Water Use” (D. Agthe and

R. Billings, Journal of Water Resources Planning and Management, 2002:366–369)
discusses the volume of water used in apartments in 308 complexes in Tucson,
Arizona.
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The volume used per apartment during the summer had mean 20.4 m3 and standard
deviation 11.1 m3. Find the mean and standard deviation for the sample mean water
use in a sample of 100 apartments. How many apartments must be sampled so that
the sample mean water use will have a standard deviation equal to 0.5 m3?

Solution
Let X1, . . . , X100 be the amounts of water used in a sample of 100 apartments. Then
X1, . . . , X100 come from a population with mean μ = 20.4 and standard deviation
σ = 11.1. We conclude that the sample mean X has mean μX = μ = 20.4, and
standard deviation σX = σ/

√
100 = 1.11. Let n be the sample size required so that

σX = 0.5. Then σ/
√

n = 11.1/
√

n = 0.5. Solving for n, we obtain n ≈ 493.

Application to Portfolio Management
Equation (2.72) and its variants play an important role in the field of finance. Assume
that an investor has a fixed number of dollars to invest. She may choose from a variety
of investments, for example, stocks, bonds, and real estate. After one year she will sell
her investment; let X denote her profit (or loss). The value of X cannot be predicted with
certainty, so economists treat it as a random variable. The mean μX indicates the amount
that the investment can be expected to earn on the average. The standard deviation σX

reflects the volatility, or risk, of the investment. If σX is very small, then it is nearly
certain that the investment will earn close to its mean return μX , so the risk is low. If
σX is large, the return can vary over a wide range, so the risk is high. In general, if two
investments have the same mean return, the one with the smaller standard deviation is
preferable, since it earns the same return on the average with lower risk.

Example
2.73 An investor has $200 to invest. He will invest $100 in each of two investments. Let

X and Y denote the returns on the two investments. Assume that μX = μY = $5,
σX = σY = $2, and ρX,Y = 0.5. Find the mean and standard deviation of the total
return on the two investments.

Solution
The total return is X + Y . The mean is

μX+Y = μX + μY

= $5 + $5

= $10

Using Equation (2.75), the standard deviation is σX+Y =
√

σ 2
X + σ 2

Y + 2 Cov(X,Y ).
Now Cov(X,Y ) = ρX,Y σXσY = (0.5)(2)(2) = 2. Therefore

σX+Y =
√

22 + 22 + 2(2)

= $3.46
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It is instructive to compare the result of Example 2.73 with the result that would
occur if the entire $200 were invested in a single investment. Example 2.74 analyzes that
possibility.

Example
2.74 If the investor in Example 2.73 invests the entire $200 in one of the two investments,

find the mean and standard deviation of the return.

Solution
Assume the investor invests in the investment whose return on $100 is X (the result
is the same if Y is chosen). Since $200, rather than $100, is invested, the return will
be 2X . The mean return is

μ2X = 2μX = 2(5) = $10

The standard deviation is

σ2X = 2σX = 2(2) = $4

Comparing the results of Examples 2.73 and 2.74 shows that the mean returns of the
two investment strategies are the same, but the standard deviation (i.e., risk) is lower
when the investment capital is divided between two investments. This is the principle of
diversification. When two investments are available whose returns have the same mean
and same risk, it is always advantageous to divide one’s capital between them, rather
than to invest in only one of them.

Proof that μaX+b = aμX + b
We assume that X is a continuous random variable with density function f (x). Then

μa X+b =
∫ ∞

−∞
(ax + b) f (x) dx (Equation 2.60)

=
∫ ∞

−∞
ax f (x)dx +

∫ ∞

−∞
b f (x) dx

= a
∫ ∞

−∞
x f (x)dx + b

∫ ∞

−∞
f (x) dx

= aμX + b(1)

= aμX + b

The proof in the case that X is a discrete random variable is similar, with the integrals
replaced by sums.

Proof that μaX+bY = aμX + bμY

Let X and Y be jointly continuous with joint density f (x,y) and marginal densities
fX (x) and fY (y). Let a and b be constants. Then
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μa X+bY =
∫ ∞

−∞

∫ ∞

−∞
(ax + by) f (x,y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
ax f (x,y) dx dy +

∫ ∞

−∞

∫ ∞

−∞
by f (x,y) dx dy

= a
∫ ∞

−∞

∫ ∞

−∞
x f (x,y) dy dx + b

∫ ∞

−∞

∫ ∞

−∞
y f (x,y) dx dy

= a
∫ ∞

−∞
x

[∫ ∞

−∞
f (x,y) dy

]
dx + b

∫ ∞

−∞
y

[∫ ∞

−∞
f (x,y) dx

]
dy

= a
∫ ∞

−∞
x fX (x) dx + b

∫ ∞

−∞
y fY (y) dy

= aμX + bμY

The proof in the case that X and Y are jointly discrete is similar, with the integrals
replaced by sums.

Proof that σ
2
aX+b = a2σ

2
X

We will use the notation E(X) interchangeably with μX , E(Y ) interchangeably with
μY , and so forth. Let Y = aX + b. Then

σ 2
a X+b = σ 2

Y

= E(Y 2) − μ2
Y

= E[(aX + b)2] − μ2
aX+b

= E(a2 X2 + 2abX + b2) − (aμX + b)2

= E(a2 X2) + E(2abX) + E(b2) − (aμX + b)2

= a2 E(X2) + 2abE(X) + b2 − a2μ2
X − 2abμX − b2

= a2[E(X2) − μ2
X ]

= a2σ 2
X

Proof that σ
2
aX+bY = a2σ

2
X + b2σ

2
Y + 2ab Cov(X,Y)

We will use the notation E(X) interchangeably with μX , E(Y ) interchangeably with
μY , and so forth.

σ 2
a X+bY = E[(aX + bY )2] − μ2

aX+bY

= E(a2 X2 + 2abXY + b2Y 2) − μ2
aX+bY

= E(a2 X2) + E(2abXY ) + E(b2Y 2) − (aμX + bμY )2

= a2 E(X2) + 2abE(XY ) + b2 E(Y 2) − a2μ2
X − 2abμXμY − b2μ2

Y

= a2[E(X2) − μ2
X ] + b2[E(Y 2) − μ2

Y ] + 2ab[E(XY ) − μXμY ]

= a2σ 2
X + b2σ 2

Y + 2ab Cov(X,Y )

Proof of the equivalence of Equations (2.68) and (2.69)
We will use the notation E(X) interchangeably with μX , E(Y ) interchangeably with
μY , and so forth. We must show that

E[(X − μX )(Y − μY )] = μXY − μXμY
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Now

E[(X − μX )(Y − μY )] = E(XY − XμY − YμX + μXμY )

= E(XY ) − E(XμY ) − E(YμX ) + E(μXμY )

= E(XY ) − μY E(X) − μX E(Y ) + μXμY

= μXY − μY μX − μXμY + μXμY

= μXY − μXμY

Proof that if X and Y are independent then X and Y are uncorrelated
Let X and Y be independent random variables. We will show that μXY = μXμY ,
from which it will follow that Cov(X,Y ) = ρX,Y = 0. We will assume that X and
Y are jointly continuous with joint density f (x,y) and marginal densities fX (x)

and fY (y). The key to the proof is the fact that since X and Y are independent,
f (x,y) = fX (x) fY (y).

μXY =
∫ ∞

−∞

∫ ∞

−∞
xy f (x,y) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
xy fX (x) fY (y) dx dy

=
∫ ∞

−∞
x fX (x) dx

∫ ∞

−∞
y fY (y) dy

= μXμY

The proof in the case that X and Y are jointly discrete is similar, with the integrals
replaced by sums.

Exercises for Section 2.6

1. In a certain community, levels of air pollution may
exceed federal standards for ozone or for particulate
matter on some days. For a particular summer sea-
son, let X be the number of days on which the ozone
standard is exceeded and let Y be the number of days
on which the particulate matter standard is exceeded.
Assume that the joint probability mass function of X
and Y is given in the following table:

y
x 0 1 2

0 0.10 0.11 0.05
1 0.17 0.23 0.08
2 0.06 0.14 0.06

a. Find P(X = 1 and Y = 0).

b. Find P(X ≥ 1 and Y < 2).

c. Find P(X < 1).

d. Find P(Y ≥ 1).

e. Find the probability that the standard for ozone is
exceeded at least once.

f. Find the probability that the standard for particu-
late matter is never exceeded.

g. Find the probability that neither standard is ever
exceeded.

2. Refer to Exercise 1.

a. Find the marginal probability mass function
pX (x).

b. Find the marginal probability mass function
pY (y).

c. Find μX .
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d. Find μY .

e. Find σX .

f. Find σY .

g. Find Cov(X, Y ).

h. Find ρX,Y .

i. Are X and Y independent? Explain.

3. Refer to Exercise 1.

a. Find the conditional probability mass function
pY |X (y |0).

b. Find the conditional probability mass function
pX |Y (x |1).

c. Find the conditional expectation E(Y | X = 0).

d. Find the conditional expectation E(X | Y = 1).

4. In a piston assembly, the specifications for the clear-
ance between piston rings and the cylinder wall are
very tight. In a lot of assemblies, let X be the num-
ber with too little clearance and let Y be the number
with too much clearance. The joint probability mass
function of X and Y is given in the table below:

y
x 0 1 2 3

0 0.15 0.12 0.11 0.10
1 0.09 0.07 0.05 0.04
2 0.06 0.05 0.04 0.02
3 0.04 0.03 0.02 0.01

a. Find the marginal probability mass function of X .

b. Find the marginal probability mass function of Y .

c. Are X and Y independent? Explain.

d. Find μX and μY .

e. Find σX and σY .

f. Find Cov(X, Y ).

g. Find ρ(X, Y ).

5. Refer to Exercise 4. The total number of assemblies
that fail to meet specifications is X + Y .

a. Find μX+Y .

b. Find σX+Y .

c. Find P(X + Y = 3).

6. Refer to Exercise 4.

a. Find the conditional probability mass function
pY |X (y | 1).

b. Find the conditional probability mass function
pX |Y (x | 2).

c. Find the conditional expectation E(Y | X = 1).

d. Find the conditional expectation E(X | Y = 2).

7. Refer to Exercise 4. Assume that the cost of repairing
an assembly whose clearance is too little is $2, and
the cost of repairing an assembly whose clearance is
too much is $3.

a. Express the total cost of repairs in terms of X
and Y .

b. Find the mean of the total cost of repairs.

c. Find the standard deviation of the total cost of
repairs.

8. The number of customers in line at a supermarket
express checkout counter is a random variable whose
probability mass function is given in the following
table.

x 0 1 2 3 4 5
p(x) 0.10 0.25 0.30 0.20 0.10 0.05

For each customer, the number of items to be pur-
chased is a random variable with probability mass
function

y 1 2 3 4 5 6
p(y) 0.05 0.15 0.25 0.30 0.15 0.10

Let X denote the number of customers in line, and
let Y denote the total number of items purchased
by all the customers in line. Assume the number of
items purchased by one customer is independent of
the number of items purchased by any other customer.

a. Find P(X = 2 and Y = 2).

b. Find P(X = 2 and Y = 6).

c. Find P(Y = 2).

9. Bolts manufactured for a certain purpose may be
classified as acceptable (suitable for the intended
purpose), downgraded (unsuitable for the intended
purpose but acceptable for a different purpose), or
scrap (unsuitable for any purpose). In a lot of 500
bolts, let X be the number that are downgraded and
let Y be the number that are scrap. Assume that the
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joint probability mass function of X and Y is given in
the following table.

y

x 0 1 2 3 4

0 0.06 0.03 0.01 0.00 0.00
1 0.06 0.08 0.04 0.02 0.00
2 0.04 0.05 0.12 0.06 0.03
3 0.00 0.03 0.07 0.09 0.06
4 0.00 0.00 0.02 0.06 0.07

a. Find the marginal probability mass function of X .

b. Find the marginal probability mass function of Y .

c. Are X and Y independent? Explain.

d. Find μX and μY .

e. Find σX and σY .

f. Find Cov(X, Y ).

g. Find ρ(X, Y ).

10. Refer to Exercise 9.

a. Find the mean of the total number of unacceptable
bolts (those that are classified as either down-
graded or scrap).

b. Find the variance of the total number of unaccept-
able bolts.

c. Find the probability that the total number of un-
acceptable bolts is exactly 5.

11. Refer to Exercise 9.

a. Find the conditional probability mass function
pY |X (y | 4).

b. Find the conditional probability mass function
pX |Y (x | 3).

c. Find the conditional expectation E(Y | X = 4).

d. Find the conditional expectation E(X | Y = 3).

12. Automobile engines and transmissions are produced
on assembly lines, and are inspected for defects after
they come off their assembly lines. Those with defects
are repaired. Let X represent the number of engines,
and Y the number of transmissions that require repairs
in a one-hour time interval. The joint probability mass
function of X and Y is as follows:

y

x 0 1 2 3
0 0.13 0.10 0.07 0.03
1 0.12 0.16 0.08 0.04
2 0.02 0.06 0.08 0.04
3 0.01 0.02 0.02 0.02

a. Find the marginal probability mass function pX (x).

b. Find the marginal probability mass function pY (y).

c. Find μX .

d. Find μY .

e. Find σX .

f. Find σY .

g. Find Cov(X, Y ).

h. Find ρX,Y .

13. Refer to Exercise 12. Let Z = X + Y represent the
total number of repairs needed.

a. Find μZ .

b. Find σZ .

c. Find P(Z = 2).

14. Refer to Exercise 12. Assume that the cost of an
engine repair is $50, and the cost of a transmission
repair is $100. Let T represent the total cost of repairs
during a one-hour time interval.

a. Find μT .

b. Find σT .

c. Find P(T = 250).

15. Refer to Exercise 12.

a. Find the conditional probability mass function
pY |X (y | 3).

b. Find the conditional probability mass function
pX |Y (x | 1).

c. Find the conditional expectation E(Y | X = 3).

d. Find the conditional expectation E(X | Y = 1).

16. For continuous random variables X and Y with joint
probability density function

f (x) =
{

xe−(x+xy) x > 0 and y > 0
0 otherwise

a. Find P(X > 1 and Y > 1).
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b. Find the marginal probability density functions
fX (x) and fY (y).

c. Are X and Y independent? Explain.

17. Refer to Example 2.54.

a. Find Cov(X,Y ).

b. Find ρX,Y .

18. A production facility contains two machines that are
used to rework items that are initially defective. Let
X be the number of hours that the first machine is in
use, and let Y be the number of hours that the second
machine is in use, on a randomly chosen day. Assume
that X and Y have joint probability density function
given by

f (x) =
{

3

2
(x2 + y2) 0 < x < 1 and 0 < y < 1

0 otherwise

a. What is the probability that both machines are in
operation for more than half an hour?

b. Find the marginal probability density functions
fX (x) and fY (y).

c. Are X and Y independent? Explain.

19. Refer to Exercise 18.

a. Find Cov(X, Y ).

b. Find ρX,Y .

c. Find the conditional probability density function
fY |X (y | 0.5).

d. Find the conditional expectation E(Y | X = 0.5).

20. The lifetimes, in months, of two components in a sys-
tem, denoted X and Y , have joint probability density
function

f (x) =
{

4xye−(2x+y) x > 0 and y > 0
0 otherwise

a. What is the probability that both components last
longer than one month?

b. Find the marginal probability density functions
fX (x) and fY (y).

c. Are X and Y independent? Explain.

21. The lifetime of a certain component, in years, has
probability density function

f (x) =
{

e−x x > 0
0 x ≤ 0

Two such components, whose lifetimes are indepen-
dent, are available. As soon as the first component
fails, it is replaced with the second component. Let X
denote the lifetime of the first component, and let Y
denote the lifetime of the second component.

a. Find the joint probability density function of
X and Y .

b. Find P(X ≤ 1 and Y > 1).

c. Find μX .

d. Find μX+Y .

e. Find P(X + Y ≤ 2). (Hint: Sketch the region of
the plane where x + y ≤ 2, and then integrate the
joint probability density function over that region.)

22. Here are two random variables that are uncorrelated
but not independent. Let X and Y have the following
joint probability mass function:

x y p(x,y)

−1 1 1/3
0 0 1/3
1 1 1/3

a. Use the definition of independence on page 141
to show that X and Y are not independent (in fact
Y = |X |, so Y is actually a function of X ).

b. Show that X and Y are uncorrelated.

23. An investor has $100 to invest, and two investments
between which to divide it. If she invests the entire
amount in the first investment, her return will be X ,
while if she invests the entire amount in the sec-
ond investment, her return will be Y . Both X and Y
have mean $6 and standard deviation (risk) $3. The
correlation between X and Y is 0.3.

a. Express the return in terms of X and Y if she invests
$30 in the first investment and $70 in the second.

b. Find the mean return and the risk if she invests $30
in the first investment and $70 in the second.

c. Find the mean return and the risk, in terms of
K , if she invests $K in the first investment and
$(100 − K ) in the second.

d. Find the value of K that minimizes the risk in
part (c).

e. Prove that the value of K that minimizes the risk
in part (c) is the same for any correlation ρX,Y with
ρX,Y �= 1.
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24. The height H and radius R (in cm) of a cylindrical
can are random with joint probability density function

f (h, r) =

⎧⎪⎨
⎪⎩

19 < h < 21
3(h − 20)2(r − 5) and

5 < r < 6
0 otherwise

The volume of a can is V = π R2 H . Find μV .

25. Let R denote the resistance of a resistor that is selected
at random from a population of resistors that are la-
beled 100 �. The true population mean resistance is
μR = 100 �, and the population standard deviation is
σR = 2 �. The resistance is measured twice with an
ohmmeter. Let M1 and M2 denote the measured val-
ues. Then M1 = R + E1 and M2 = R + E2, where E1

and E2 are the errors in the measurements. Suppose
that E1 and E2 are random with μE1 = μE2 = 0 and
σE1 = σE2 = 1 �. Further suppose that E1, E2, and
R are independent.

a. Find σM1 and σM2 .

b. Show that μM1 M2 = μR2 .

c. Show that μM1μM2 = μ2
R .

d. Use the results of (b) and (c) to show that
Cov(M1, M2) = σ 2

R .

e. Find ρM1,M2 .

26. If X is a random variable, prove that Cov(X, X) = σ 2
X .

27. Let X and Y be random variables, and a and b be
constants.

a. Prove that Cov(aX, bY ) = ab Cov(X,Y ).

b. Prove that if a > 0 and b > 0, then ρaX,bY = ρX,Y .
Conclude that the correlation coefficient is unaf-
fected by changes in units.

28. Let X , Y , and Z be jointly distributed random vari-
ables. Prove that Cov(X + Y, Z) = Cov(X, Z) +
Cov(Y, Z). (Hint: Use Equation 2.69.)

29. Let X and Y be jointly distributed random variables.
This exercise leads you through a proof of the fact
that −1 ≤ ρX,Y ≤ 1.

a. Express the quantity V (X − (σX/σY )Y ) in terms
of σX , σY , and Cov(X, Y ).

b. Use the fact that V (X − (σX/σY )Y ) ≥ 0 and
Cov(X, Y ) = ρX,Y σXσY to show that ρX,Y ≤ 1.

c. Repeat parts (a) and (b) using V (X + (σX/σY )Y )

to show that ρX,Y ≥ −1.

30. The oxygen equivalence number of a weld is a num-
ber that can be used to predict properties such as
hardness, strength, and ductility. The article “Ad-
vances in Oxygen Equivalence Equations for Predict-
ing the Properties of Titanium Welds” (D. Harwig,
W. Ittiwattana, and H. Castner, The Welding Journal,
2001:126s–136s) presents several equations for com-
puting the oxygen equivalence number of a weld. An
equation designed to predict the strength of a weld is
X = 1.12C + 2.69N + O − 0.21 Fe, where X is the
oxygen equivalence, and C , N , O , and Fe are the
amounts of carbon, nitrogen, oxygen, and iron, respec-
tively, in weight percent, in the weld. Suppose that for
welds of a certain type, μC = 0.0247, μN = 0.0255,
μO = 0.1668, μFe = 0.0597, σC = 0.0131,
σN = 0.0194, σO = 0.0340, and σFe = 0.0413.
Furthermore assume that correlations are given
by ρC,N = −0.44, ρC,O = 0.58, ρC,Fe = 0.39,
ρN ,O = −0.32, ρN ,Fe = 0.09, and ρO,Fe = −0.35.

a. Find μX .

b. Find Cov(C, N ), Cov(C, O), Cov(C, Fe),
Cov(N , O), Cov(N , Fe), and Cov(O, Fe).

c. Find σX .

31. Refer to Exercise 30. An equation to predict the ductil-
ity of a titanium weld is Y = 7.84C + 11.44N + O −
1.58Fe, where Y is the oxygen equivalence used to
predict ductility, and C , N , O , and Fe are the amounts
of carbon, nitrogen, oxygen, and iron, respectively, in
weight percent, in the weld. Using the means, standard
deviations, and correlations presented in Exercise 30,
find μY and σY .

32. Let X and Y be jointly continuous with joint proba-
bility density function f (x, y) and marginal densities
fX (x) and fY (y). Suppose that f (x, y) = g(x)h(y)

where g(x) is a function of x alone, h(y) is a
function of y alone, and both g(x) and h(y) are
nonnegative.

a. Show that there exists a positive constant c such
that fX (x) = cg(x) and fY (y) = (1/c)h(y).

b. Use part (a) to show that X and Y are independent.

33. Let a, b, c, d be any numbers with a < b and c < d.
Let k be a constant, and let X and Y be jointly con-
tinuous with joint probability density function

f (x, y) =
{

k a < x < b and c < y < d
0 otherwise



Navidi-3810214 book November 11, 2013 12:35

Supplementary Exercises for Chapter 2 159

In other words, f (x, y) is constant on the rectangle
a < x < b and c < y < d, and zero off the rectangle.

a. Show that k = 1

(b − a)(d − c)
.

b. Show that the marginal density of X is fX (x) =
1/(b − a) for a < x < b.

c. Show that the marginal density of Y is fY (y) =
1/(d − c) for c < y < d.

d. Use parts (a), (b), and (c) to show that X and Y
are independent.

Supplementary Exercises for Chapter 2

1. A system consists of four components connected as
shown.

A

B

C

D

Assume A, B, C, and D function independently. If the
probabilities that A, B, C, and D fail are 0.1, 0.2, 0.05,
and 0.3, respectively, what is the probability that the
system functions?

2. A fair coin is tossed until a head appears. What is the
probability that more than three tosses are necessary?

3. Silicon wafers are used in the manufacture of inte-
grated circuits. Of the wafers manufactured by a cer-
tain process, 10% have resistances below specification
and 5% have resistances above specification.

a. What is the probability that the resistance of a
randomly chosen wafer does not meet the
specification?

b. If a randomly chosen wafer has a resistance that
does not meet the specification, what is the prob-
ability that it is too low?

4. Two production lines are used to pack sugar into 5 kg
bags. Line 1 produces twice as many bags as does
line 2. One percent of the bags from line 1 are de-
fective in that they fail to meet a purity specification,

while 3% of the bags from line 2 are defective. A bag
is randomly chosen for inspection.
a. What is the probability that it came from line 1?

b. What is the probability that it is defective?

c. If the bag is defective, what is the probability that
it came from line 1?

d. If the bag is not defective, what is the probability
that it came from line 1?

5. Four bricks are sampled from a large load and the
crushing strength of each is measured to determine
whether it meets a specification. If any of the four fail
to meet the specification, the load will be returned. If
in fact 10% of the bricks in the load fail to meet the
specification, what is the probability that the load will
be returned?

6. In a certain type of automobile engine, the cylinder
head is fastened to the block by 10 bolts, each of which
should be torqued to 60 N · m. Assume that the torques
of the bolts are independent.

a. If each bolt is torqued correctly with probability
0.99, what is the probability that all the bolts on a
cylinder head are torqued correctly?

b. The goal is for 95% of the engines to have all their
bolts torqued correctly. What must be the proba-
bility that a bolt is torqued correctly in order to
reach this goal?

7. An electronic message consists of a string of bits (0s
and 1s). The message must pass through two relays
before being received. At each relay the probability
is 0.1 that the bit will be reversed before being re-
layed (i.e., a 1 will be changed to a 0, or a 0 to a 1).
Find the probability that the value of a bit received at
its final destination is the same as the value of the bit
that was sent.
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8. The reading given by a thermometer calibrated in ice
water (actual temperature 0◦C) is a random variable
with probability density function

f (x) =
{

k(1 − x2) −1 < x < 1

0 otherwise

where k is a constant.

a. Find the value of k.

b. What is the probability that the thermometer reads
above 0◦C?

c. What is the probability that the reading is within
0.25◦C of the actual temperature?

d. What is the mean reading?

e. What is the median reading?

f. What is the standard deviation?

9. Two dice are rolled. Given that two different numbers
come up, what is the probability that one of the dice
comes up 6?

10. In a lot of 10 components, 2 are sampled at ran-
dom for inspection. Assume that in fact exactly 2
of the 10 components in the lot are defective. Let
X be the number of sampled components that are
defective.

a. Find P(X = 0).

b. Find P(X = 1).

c. Find P(X = 2).

d. Find the probability mass function of X .

e. Find the mean of X .

f. Find the standard deviation of X .

11. There are two fuses in an electrical device. Let X
denote the lifetime of the first fuse, and let Y de-
note the lifetime of the second fuse (both in years).
Assume the joint probability density function of X
and Y is

f (x,y) =
{ 1

6
e−x/2−y/3 x > 0 and y > 0

0 otherwise

a. Find P(X ≤ 2 and Y ≤ 3).

b. Find the probability that both fuses last at least
3 years.

c. Find the marginal probability density function
of X .

d. Find the marginal probability density function
of Y .

e. Are X and Y independent? Explain.

12. Let A and B be events with P(A) = 0.3 and
P(A ∪ B) = 0.7.

a. For what value of P(B) will A and B be mutually
exclusive?

b. For what value of P(B) will A and B be
independent?

13. A snowboard manufacturer has three plants, one in
the eastern United States, one in the western United
States, and one in Canada. Production records show
that the U.S. plants each produced 10,000 snowboards
last month, while the Canadian plant produced 8000
boards. Of all the boards manufactured in Canada last
month, 4% had a defect that caused the boards to de-
laminate prematurely. Records kept at the U.S. plants
show that 3% of the boards manufactured in the east-
ern United States and 6% of the boards manufactured
in the western United States had this defect as well.

a. What proportion of the boards manufactured last
month were defective?

b. What is the probability that a snowboard is defec-
tive and was manufactured in Canada?

c. Given that a snowboard is defective, what is the
probability that it was manufactured in the United
States?

14. The article “Traps in Mineral Valuations—Proceed
With Care” (W. Lonegan, Journal of the Australasian
Institute of Mining and Metallurgy, 2001:18–22) mod-
els the value (in millions of dollars) of a mineral
deposit yet to be mined as a random variable X with
probability mass function p(x) given by p(10) =
0.40, p(60) = 0.50, p(80) = 0.10, and p(x) = 0
for values of x other than 10, 60, or 80.

a. Is this article treating the value of a mineral deposit
as a discrete or a continuous random variable?

b. Compute μX .

c. Compute σX .

d. The project will be profitable if the value is more
than $50 million. What is the probability that the
project is profitable?

15. Six new graduates are hired by an engineering firm.
Each is assigned at random to one of six cubicles
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arranged in a row in the back of the room that houses
the engineering staff. Two of the graduates are Bill and
Cathy. What is the probability that they are assigned
adjacent cubicles?

16. A closet contains four pairs of shoes. If four shoes
are chosen at random, what is the probability that the
chosen shoes do not contain a pair?

17. Let X and Y be independent random variables with
μX = 2, σX = 1, μY = 2, and σY = 3. Find the
means and variances of the following quantities.

a. 3X

b. X + Y

c. X − Y

d. 2X + 6Y

18. Let X and Y be random variables with μX = 1,
σX = 2, μY = 3, σY = 1, and ρX,Y = 0.5. Find
the means and variances of the following quantities.

a. X + Y

b. X − Y

c. 3X + 2Y

d. 5Y − 2X

19. A steel manufacturer is testing a new additive for
manufacturing an alloy of steel. The joint probabil-
ity mass function of tensile strength (in thousands of
pounds/in2) and additive concentration is

Tensile Strength

Concentration of Additive 100 150 200

0.02 0.05 0.06 0.11
0.04 0.01 0.08 0.10
0.06 0.04 0.08 0.17
0.08 0.04 0.14 0.12

a. What are the marginal probability mass func-
tions for X (additive concentration) and Y (tensile
strength)?

b. Are X and Y independent? Explain.

c. Given that a specimen has an additive concentra-
tion of 0.04, what is the probability that its strength
is 150 or more?

d. Given that a specimen has an additive concentra-
tion of 0.08, what is the probability that its tensile
strength is greater than 125?

e. A certain application calls for the tensile strength
to be 175 or more. What additive concentration
should be used to make the probability of meeting
this specification the greatest?

20. Refer to Exercise 19.

a. Find μX .

b. Find μY .

c. Find σX .

d. Find σY .

e. Find Cov(X,Y ).

f. Find ρX,Y .

21. Refer to Exercise 19.

a. Compute the conditional mass function
pY |X (y | 0.06).

b. Compute the conditional mass function
pX |Y (x | 100).

c. Compute the conditional expectation
E(Y | X = 0.06).

d. Compute the conditional expectation
E(X | Y = 100).

22. A certain plant runs three shifts per day. Of all the
items produced by the plant, 50% of them are pro-
duced on the first shift, 30% on the second shift, and
20% on the third shift. Of all the items produced on
the first shift, 1% are defective, while 2% of the items
produced on the second shift and 3% of the items pro-
duced on the third shift are defective.

a. An item is sampled at random from the day’s pro-
duction, and it turns out to be defective. What is
the probability that it was manufactured during the
first shift?

b. An item is sampled at random from the day’s pro-
duction, and it turns out not to be defective. What
is the probability that it was manufactured during
the third shift?

23. The article “Uncertainty and Climate Change”
(G. Heal and B. Kriström, Environmental and Re-
source Economics, 2002:3–39) considers three sce-
narios, labeled A, B, and C, for the impact of global
warming on income. For each scenario, a probabil-
ity mass function for the loss of income is specified.
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These are presented in the following table.

Probability

Loss (%) Scenario A Scenario B Scenario C

0 0.65 0.65 0.65
2 0 0 0.24
5 0.2 0.24 0.1

10 0 0 0.01
15 0.1 0.1 0
20 0 0.01 0
25 0.05 0 0

a. Compute the mean and standard deviation of the
loss under scenario A.

b. Compute the mean and standard deviation of the
loss under scenario B.

c. Compute the mean and standard deviation of the
loss under scenario C.

d. Under each scenario, compute the probability that
the loss is less than 10%.

24. Refer to Exercise 23. Assume that the probabilities
that each of the three scenarios occurs are P(A) =
0.20, P(B) = 0.30, and P(C) = 0.50.

a. Find the probability that scenario A occurs and
that the loss is 5%.

b. Find the probability that the loss is 5%.

c. Find the probability that scenario A occurs given
that the loss is 5%.

25. A box contains four 75 W lightbulbs, three 60 W light-
bulbs, and three burned-out lightbulbs. Two bulbs are
selected at random from the box. Let X represent the
number of 75 W bulbs selected, and let Y represent
the number of 60 W bulbs selected.

a. Find the joint probability mass function of
X and Y .

b. Find μX .

c. Find μY .

d. Find σX .

e. Find σY .

f. Find Cov(X,Y ).

g. Find ρX,Y .

26. A stock solution of hydrochloric acid (HCl) supplied
by a certain vendor contains small amounts of several
impurities, including copper and nickel. Let X denote

the amount of copper and let Y denote the amount of
nickel, in parts per ten million, in a randomly selected
bottle of solution. Assume that the joint probability
density function of X and Y is given by

f (x,y) =
{

c(x + y)2 0 < x < 1 and 0 < y < 1

0 otherwise

a. Find the value of the constant c so that f (x,y) is
a joint density function.

b. Compute the marginal density function fX (x).

c. Compute the conditional density function
fY |X (y | x).

d. Compute the conditional expectation
E(Y | X = 0.4).

e. Are X and Y independent? Explain.

27. Refer to Exercise 26.

a. Find μX .

b. Find σ 2
X .

c. Find Cov(X,Y ).

d. Find ρX,Y .

28. A fair coin is tossed five times. Which sequence is
more likely, HTTHH or HHHHH? Or are they equally
likely? Explain.

29. A penny and a nickel are tossed. The penny has prob-
ability 0.4 of coming up heads, and the nickel has
probability 0.6 of coming up heads. Let X = 1 if the
penny comes up heads, and let X = 0 if the penny
comes up tails. Let Y = 1 if the nickel comes up
heads, and let Y = 0 if the nickel comes up tails.

a. Find the probability mass function of X .

b. Find the probability mass function of Y .

c. Is it reasonable to assume that X and Y are inde-
pendent? Why?

d. Find the joint probability mass function of
X and Y .

30. Two fair dice are rolled. Let X represent the number
on the first die, and let Y represent the number on the
second die. Find μXY .

31. A box contains three cards, labeled 1, 2, and 3. Two
cards are chosen at random, with the first card being
replaced before the second card is drawn. Let X rep-
resent the number on the first card, and let Y represent
the number on the second card.
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a. Find the joint probability mass function of
X and Y .

b. Find the marginal probability mass functions
pX (x) and pY (y).

c. Find μX and μY .

d. Find μXY .

e. Find Cov(X,Y ).

32. Refer to Exercise 31. Assume the first card is not re-
placed before the second card is drawn.

a. Find the joint probability mass function of
X and Y .

b. Find the marginal probability mass functions
pX (x) and pY (y).

c. Find μX and μY .

d. Find μXY .

e. Find Cov(X,Y ).

33. This exercise will lead you through a proof of Cheby-
shev’s inequality. Let X be a continuous random vari-
able with probability density function f (x). Suppose
that P(X < 0) = 0, so f (x) = 0 for x ≤ 0.

a. Show that μX = ∫ ∞
0

x f (x) dx .

b. Let k > 0 be a constant. Show that μX ≥∫ ∞
k

k f (x) dx = k P(X ≥ k).

c. Use part (b) to show that P(X ≥ k) ≤ μX/k. This
is called Markov’s inequality. It is true for discrete
as well as for continuous random variables.

d. Let Y be any random variable with mean μY and
variance σ 2

Y . Let X = (Y − μY )2. Show that
μX = σ 2

Y .

e. Let k > 0 be a constant. Show that P(|Y − μY | ≥
kσY ) = P(X ≥ k2σ 2

Y ).

f. Use part (e) along with Markov’s inequality to
prove Chebyshev’s inequality: P(|Y − μY | ≥
kσY ) ≤ 1/k2.

34. A circle is drawn with radius R, where μR = 10 and
σ 2

R = 1. The area of the circle is A = πR2. Find μA.

35. Blood is taken from each of n individuals to be tested
for a certain disease. Rather than test each sample
separately, a pooled method is used in an attempt to
reduce the number of tests needed. Part of each blood
sample is taken, and these parts are combined to form
a pooled sample. The pooled sample is then tested. If
the result is negative, then none of the n individuals
has the disease, and no further tests are needed. If the
pooled sample tests positive, then each individual is
tested to see which of them have the disease.

a. Let X represent the number of tests that are carried
out. What are the possible values of X?

b. Assume that n = 4 individuals are to be tested, and
the probability that each has the disease, indepen-
dent of the others, is p = 0.1. Find μX .

c. Repeat part (b) with n = 6 and p = 0.2.

d. Express μX as a function of n and p.

e. The pooled method is more economical than per-
forming individual tests if μX < n. Suppose n =
10. For what values of p is the pooled method
more economical than performing n individual
tests?
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3
Propagation of Error

Introduction

Measurement is fundamental to scientific work. Scientists and engineers often perform
calculations with measured quantities, for example, computing the density of an object
by dividing a measurement of its mass by a measurement of its volume, or computing
the area of a rectangle by multiplying measurements of its length and width.

Any measuring procedure contains error. As a result, measured values generally
differ somewhat from the true values that are being measured. When a calculation is
performed with measurements, the errors in the measurements produce an error in the
calculated value. We say that the error is propagated from the measurements to the
calculated value. If we have some knowledge concerning the sizes of the errors in
measurements such as the length and width of a rectangle, there are methods for obtaining
knowledge concerning the likely size of the error in a calculated quantity such as the
area. The subject of propagation of error concerns these methods and is the topic of this
chapter.

3.1 Measurement Error

A geologist is weighing a rock on a scale. She weighs the rock five times and obtains
the following measurements (in grams):

251.3 252.5 250.8 251.1 250.4

The measurements are all different, and it is likely that none of them is equal to the true
mass of the rock. The difference between a measured value and the true value is called
the error in the measured value. Any measuring procedure contains many sources of
error. For example, assume that the rock measurements were read from a dial. If the scale
was not calibrated properly, this will pull each measurement away from the true value
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by some fixed amount. Thus imperfect calibration contributes errors of equal magnitude
to each measurement. Interpolation between graduation marks on the dial is another
source of error. The magnitude of the error due to interpolation is likely to vary from
measurement to measurement and is likely to be positive for some measurements and
negative for others. It may be reasonable to assume that interpolation errors average out
to zero in the long run.

In general, we can think of the error in a measurement as being composed of two
parts, the systematic error, or bias, and the random error. The bias is the part of the error
that is the same for every measurement. The random error, on the other hand, varies from
measurement to measurement, and averages out to zero in the long run. Some sources of
error contribute both to bias and to random error. For example, consider parallax error.
Parallax is the difference in the apparent position of the dial indicator when observed
from different angles. The magnitude of the parallax error in any particular measurement
depends on the position of the observer relative to the dial. Since the position will vary
somewhat from reading to reading, parallax contributes to random error. If the observer
tends to lean somewhat to one side rather than another, parallax will contribute to bias
as well.

Any measurement can be considered to be the sum of the true value plus contributions
from each of the two components of error:

Measured value = true value + bias + random error (3.1)

Since part of the error is random, it is appropriate to use a statistical model to study
measurement error. We model each measured value as a random variable, drawn from a
population of possible measurements. The mean μ of the population represents that part
of the measurement that is the same for every measurement. Therefore, μ is the sum of
the true value and the bias. The standard deviation σ of the population is the standard
deviation of the random error. It represents the variation that is due to the fact that each
measurement has a different value for its random error. Intuitively, σ represents the size
of a typical random error.

We are interested in two aspects of the measuring process. First is its accuracy.
The accuracy is determined by the bias, which is the difference between the mean
measurement μ and the true value being measured. The smaller the bias, the more
accurate the measuring process. If the mean μ is equal to the true value, so that the bias
is 0, the measuring process is said to be unbiased.

The other aspect of the measuring process that is of interest is the precision. Precision
refers to the degree to which repeated measurements of the same quantity tend to agree
with each other. If repeated measurements come out nearly the same every time, the
precision is high. If they are widely spread out, the precision is low. The precision
is therefore determined by the standard deviation σ of the measurement process. The
smaller the value of σ , the more precise the measuring process. Engineers and scientists
often refer to σ as the random uncertainty or statistical uncertainty in the measuring
process. We will refer to σ simply as the uncertainty.
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Summary

■ A measured value is a random variable with mean μ and standard
deviation σ.

■ The bias in the measuring process is the difference between the mean
measurement and the true value:

Bias = μ − true value

■ The uncertainty in the measuring process is the standard deviation σ.

■ The smaller the bias, the more accurate the measuring process.

■ The smaller the uncertainty, the more precise the measuring process.

When reporting a measured value, it is important to report an estimate of the bias and
uncertainty along with it, in order to describe the accuracy and precision of the measure-
ment. It is in general easier to estimate the uncertainty than the bias. Figures 3.1 and 3.2
illustrate the reason for this. Figure 3.1 illustrates a hypothetical experiment involving
repeated measurements, under differing conditions regarding bias and uncertainty. The
sets of measurements in Figure 3.1a and b are fairly close together, indicating that the
uncertainty is small. The sets of measurements in Figure 3.1a and c are centered near
the true value, indicating that the bias is small.

True value 

(a)

(c)

(b)

(d)

True value 

True value 

True value 

FIGURE 3.1 (a) Both bias and uncertainty are small. (b) Bias is large; uncertainty is
small. (c) Bias is small; uncertainty is large. (d) Both bias and uncertainty are large.

In real life, of course, we do not know the true value being measured. Thus the plot
of measurements shown in Figure 3.1 would look like Figure 3.2. We can still determine
that the sets of measurements in Figure 3.2a and b have smaller uncertainty. But without
additional information about the true value, we cannot estimate the bias.

We conclude from Figures 3.1 and 3.2 that uncertainty can be estimated from re-
peated measurements, but in order to estimate the bias, we must have additional infor-
mation about the true value. We might obtain this additional information, for example,
by repeatedly measuring a standard quantity whose true value is known and estimating
the bias to be the difference between the average of the measurements and the known
true value. Another way to estimate the bias would be to compare the average of a large
number of measurements to a measurement made with a more elaborate process for
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(a)

(c)

(b)

(d)

FIGURE 3.2 We can estimate the uncertainty from the set of repeated measurements,
but without knowing the true value, we cannot estimate the bias.

which the bias is known to be negligible. Estimating the bias is essentially the process
of calibration, for which information external to the measuring device is needed.

Example
3.1 A laboratory sample of gas is known to have a carbon monoxide (CO) concentration

of 50 parts per million (ppm). A spectrophotometer is used to take five independent
measurements of this concentration. The five measurements, in ppm, are 51, 47, 53,
53, and 48. Estimate the bias and the uncertainty in a spectrophotometer measurement.

Solution
The five measurements are regarded as a random sample from the population of
possible measurements. The bias is equal to the mean of this population minus the
true value of 50. The uncertainty is the standard deviation of the population. We do
not know the mean and standard deviation of the population, but we can approximate
them with the mean and standard deviation of the sample. The mean of the five
measurements is 50.4. Therefore we estimate the bias to be 50.4 − 50 = 0.4 ppm.
The standard deviation of the five measurements is 2.8 ppm. Therefore we estimate
the uncertainty in each measurement to be 2.8 ppm.

Example
3.2 A different spectrophotometer is now used to measure the CO concentration in another

gas sample. The true concentration in this sample is unknown. Five measurements
are made (in ppm). They are 62, 63, 61, 62, and 59. Estimate the uncertainty in a
measurement from this spectrophotometer. Can we estimate the bias?

Solution
The uncertainty in a single measurement is estimated with the sample standard devi-
ation, which is 1.5 ppm. The sample mean is 61.4 ppm, but to estimate the bias, we
would have to subtract the true concentration from this. Since we do not know the
true concentration, we cannot estimate the bias.

In practice, estimates of uncertainty are sometimes very crude. In Examples 3.1
and 3.2 we suggested estimating the uncertainty σ with the sample standard deviation
of five measurements. Estimates based on small samples like this are sometimes widely
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off the mark. When possible, it is best to base estimates of uncertainty on large samples.
However, an estimate from a small sample is better than none at all.

Summary
Let X1, . . . , Xn be independent measurements, all made by the same process on
the same quantity.

■ The sample standard deviation s can be used to estimate the uncertainty.

■ Estimates of uncertainty are often crude, especially when based on small
samples.

■ If the true value is known, the sample mean X can be used to estimate the
bias: Bias ≈ X− true value.

■ If the true value is unknown, the bias cannot be estimated from repeated
measurements.

An important example of bias estimation is the calibration of scales in supermarkets
and other commercial establishments to ensure that they do not systematically over-
or underweigh goods sold to customers. This calibration procedure follows a chain
of comparisons with external standards, beginning at the county level and ending up
near Paris, France, where the world’s ultimate standard for weight (technically mass) is
located. This is the International Prototype Kilogram, a platinum–iridium cylinder whose
mass is by definition exactly 1 kg. A replica of The Kilogram, located at the National
Institute of Standards and Technology in Washington, serves as the standard for measures
in the United States. Use of this replica, rather than The Kilogram, introduces a bias into
every measure of weight in the United States. By comparing the U.S. replica to The
Kilogram, this bias has been estimated to be −1.9 × 10−8 kg. That is, the U.S. replica
appears to be lighter than The Kilogram by about 19 parts in a billion. For this reason,
all weight measurements made at the National Institute of Standards and Technology are
adjusted upward by 19 parts in a billion to compensate. Note that this adjustment factor
could not have been estimated by repeated weighing of the replica; comparison with an
external standard was required.

From here on we will assume, unless otherwise stated, that bias has been reduced
to a negligible level. We will describe measurements in the form

Measured value ± σ (3.2)

where σ is the uncertainty in the process that produced the measured value.
Expression (3.2) has the form a ± b, where a and b are numbers. It is important to

realize that expressions containing the symbol ± can have many meanings. The meaning
here is that a is a measured value and b is the uncertainty in a. Some people use a ± b to
indicate that b is the maximum value for the error, or that b is a multiple of the uncertainty,
typically two or three times the uncertainty. Yet another meaning will be presented in
Chapter 5, where we will use the notation a ± b to denote a confidence interval, which
is an interval computed in a way so as to be likely to contain the true value. Whenever
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you encounter the symbol ±, you should be sure to understand the context in which it is
used.

Example
3.3 The spectrophotometer in Example 3.1 has been recalibrated, so we may assume

that the bias is negligible. The spectrophotometer is now used to measure the CO
concentration in another gas sample. The measurement is 55.1 ppm. How should this
measurement be expressed?

Solution
From the repeated measurements in Example 3.1, the uncertainty in a measurement
from this instrument was estimated to be 2.8 ppm. Therefore we report the CO con-
centration in this gas sample as 55.1 ± 2.8 ppm.

Exercises for Section 3.1

1. The boiling point of water is measured four times.
The results are 110.01◦C, 110.02◦C, 109.99◦C, and
110.01◦C. Which of the following statements best
describes this measuring process?

i. Accurate but not precise

ii. Precise but not accurate

iii. Neither accurate nor precise

iv. Both accurate and precise

2. Two thermometers are calibrated by measuring the
freezing point of glacial acetic acid, which is 16.6◦C.
Equal numbers of measurements are taken with each
thermometer. The result from the first thermometer
is 16.4 ± 0.2◦C and the result from the second ther-
mometer is 16.8 ± 0.1◦C.

a. Is it possible to tell which thermometer is more
accurate? If so, say which one. If not, explain why.

b. Is it possible to tell which thermometer is more
precise? If so, say which one. If not, explain why.

3. The weight of an object is given as 67.2±0.3 g. True
or false:

a. The weight was measured to be 67.2 g.

b. The true weight of the object is 67.2 g.

c. The bias in the measurement is 0.3 g.

d. The uncertainty in the measurement is 0.3 g.

4. For some measuring processes, the uncertainty is ap-
proximately proportional to the value of the measure-
ment. For example, a certain scale is said to have an
uncertainty of ±2%. An object is weighed on
this scale.

a. Given that the reading is 100 g, express the un-
certainty in this measurement in grams.

b. Given that the reading is 50 g, express the uncer-
tainty in this measurement in grams.

5. A person stands on a bathroom scale. The reading is
150 lb. After the person gets off the scale, the reading
is 2 lb.

a. Is it possible to estimate the uncertainty in this
measurement? If so, estimate it. If not, explain
why not.

b. Is it possible to estimate the bias in this measure-
ment? If so, estimate it. If not, explain why not.

6. A person gets on and off a bathroom scale four times.
The four readings (in pounds) are 148, 151, 150, and
152. Each time after the person gets off the scale, the
reading is 2 lb.

a. Is it possible to estimate the uncertainty in these
measurements? If so, estimate it. If not, explain
why not.

b. Is it possible to estimate the bias in these mea-
surements? If so, estimate it. If not, explain why
not.

7. In a hypothetical scenario, the National Institute of
Standards and Technology has received a new replica
of The Kilogram. It is weighed five times. The mea-
surements are as follows, in units of micrograms
above 1 kg: 114.3, 82.6, 136.4, 126.8, 100.7.

a. Is it possible to estimate the uncertainty in these
measurements? If so, estimate it. If not, explain
why not.
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b. Is it possible to estimate the bias in these
measurements? If so, estimate it. If not, explain
why not.

8. The Kilogram is now weighed five times on a
different scale. The measurements are as follows,
in units of micrograms above 1 kg: 25.6, 26.8, 26.2,
26.8, 25.4.

a. Is it possible to estimate the uncertainty in these
measurements? If so, estimate it. If not, explain
why not.

b. Is it possible to estimate the bias in these measure-
ments? If so, estimate it. If not, explain why not.

9. A new and unknown weight is weighed on the same
scale that was used in Exercise 8, and the measure-
ment is 127 μg above 1 kg. Using the information in
Exercise 8, is it possible to come up with a more ac-
curate measurement? If so, what is it? If not, explain
why not.

10. The article “Calibration of an FTIR Spectrometer”
(P. Pankratz, Statistical Case Studies for Industrial

and Process Improvement, SIAM-ASA, 1997:
19–38) describes the use of a spectrometer to make
five measurements of the carbon content (in ppm)
of a certain silicon wafer whose true carbon content
was known to be 1.1447 ppm. The measurements
were 1.0730, 1.0825, 1.0711, 1.0870, and 1.0979.

a. Is it possible to estimate the uncertainty in these
measurements? If so, estimate it. If not, explain
why not.

b. Is it possible to estimate the bias in these measure-
ments? If so, estimate it. If not, explain why not.

11. The length of a rod was measured eight times. The
measurements in centimeters, in the order they were
taken, were 21.20, 21.22, 21.25, 21.26, 21.28, 21.30,
21.32, 21.35.

a. Do these measurements appear to be a random
sample from a population of possible measure-
ments? Why or why not?

b. Is it possible to estimate the uncertainty in these
measurements? Explain.

3.2 Linear Combinations of Measurements

Often we add constants to measurements, multiply measurements by constants, or add
two or more measurements together. This section describes how uncertainties are af-
fected by these arithmetic operations. Since measurements are random variables, and
uncertainties are the standard deviations of these random variables, the results used to
compute standard deviations of linear combinations of random variables can be applied
to compute uncertainties in linear combinations of measurements. Results for indepen-
dent random variables were presented in Section 2.5; more general results were presented
in Section 2.6. In this section we apply these results to independent measurements. We
discuss dependent measurements as well, at the end of the section.

We begin by stating the basic results used to compute uncertainties in linear com-
binations of independent measurements, and then follow with some examples.

If X is a measurement and c is a constant, then

σcX = |c|σX (3.3)

If X1, . . . , Xn are independent measurements and c1, . . . , cn are constants, then

σc1 X1+···+cn Xn =
√

c2
1σ

2
X1

+ · · · + c2
nσ

2
Xn

(3.4)
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Example
3.4 The radius of a circle is measured to be 3.0±0.1 cm. Estimate the circumference and

find the uncertainty in the estimate.

Solution
Let R denote the radius of the circle. The measured value of R is 3.0 cm, and the
uncertainty is the standard deviation of this measurement, which is σR = 0.1 cm.
The circumference is given by C = 2π R. The uncertainty in C is σC , the standard
deviation of C . Since 2π is a constant, we have

σC = |2π |σR (using Equation 3.3)

= (6.28)(0.1 cm)

= 0.63 cm

The circumference is 18.85 ± 0.63 cm.

Example
3.5 An item is formed by placing two components end to end. The lengths of the com-

ponents are measured independently, by a process that yields a random measurement
with uncertainty 0.1 cm. The length of the item is estimated by adding the two mea-
sured lengths. Assume that the measurements are 4.10 cm and 3.70 cm. Estimate the
length of the item and find the uncertainty in the estimate.

Solution
Let X be the measured length of the first component, and let Y be the measured length
of the second component. The estimated length is 7.80 cm. The uncertainty is

σX+Y =
√

σ 2
X + σ 2

Y (using Equation 3.4 with c1 = c2 = 1)

=
√

(0.1)2 + (0.1)2

= 0.14 cm

The estimated length is 7.80 ± 0.14 cm.

Example
3.6 A surveyor is measuring the perimeter of a rectangular lot. He measures two adjacent

sides to be 50.11 ± 0.05 m and 75.21 ± 0.08 m. These measurements are independent.
Estimate the perimeter of the lot and find the uncertainty in the estimate.

Solution
Let X = 50.11 and Y = 75.21 be the two measurements. The perimeter is estimated
by P = 2X + 2Y = 250.64 m, and the uncertainty in P is

σP = σ2X+2Y

=
√

4σ 2
X + 4σ 2

Y (using Equation 3.4)
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=
√

4(0.05)2 + 4(0.08)2

= 0.19 m

The perimeter is 250.64 ± 0.19 m.

Example
3.7 In Example 3.6, the surveyor’s assistant suggests computing the uncertainty in P by

a different method. He reasons that since P = X + X + Y + Y , then

σP = σX+X+Y+Y

=
√

σ 2
X + σ 2

X + σ 2
Y + σ 2

Y

=
√

(0.05)2 + (0.05)2 + (0.08)2 + (0.08)2

= 0.13 m

This disagrees with the value of 0.19 m calculated in Example 3.6. What went wrong?

Solution
What went wrong is that the four terms in the sum for P are not all independent.
Specifically, X + X is not the sum of independent quantities; neither is Y + Y . In
order to use Equation (3.4) to compute the uncertainty in P , we must express P as
the sum of independent quantities, that is, P = 2X + 2Y , as in Example 3.6.

Repeated Measurements
One of the best ways to reduce uncertainty is to take several independent measurements
and average them. The measurements in this case are a simple random sample from a
population, and their average is the sample mean. Methods for computing the mean and
standard deviation of a sample mean were presented in Sections 2.5 and 2.6. These meth-
ods can be applied to compute the mean and uncertainty in the average of independent
repeated measurements.

If X1, . . . , Xn are n independent measurements, each with mean μ and uncer-
tainty σ , then the sample mean X is a measurement with mean

μX = μ (3.5)

and with uncertainty

σ X = σ√
n

(3.6)

With a little thought, we can see how important these results are for applications.
What these results say is that if we perform many independent measurements of the same
quantity, then the average of these measurements has the same mean as each individual
measurement, but the standard deviation is reduced by a factor equal to the square root
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of the sample size. In other words, the average of several repeated measurements has the
same accuracy as, and is more precise than, any single measurement.

Example
3.8 The length of a component is to be measured by a process whose uncertainty is

0.05 cm. If 25 independent measurements are made and the average of these is used
to estimate the length, what will the uncertainty be? How much more precise is the
average of 25 measurements than a single measurement?

Solution
The uncertainty in the average of 25 measurements is 0.05/

√
25 = 0.01 cm. The

uncertainty in a single measurement is 0.05 cm. The uncertainty in the average of 25
independent measurements is therefore less than that of a single measurement by a
factor of 5, which is the square root of the number of measurements that are averaged.
Thus the average of 25 independent measurements is five times more precise than a
single measurement.

Example
3.9 The mass of a rock is measured five times on a scale whose uncertainty is unknown.

The five measurements (in grams) are 21.10, 21.05, 20.98, 21.12, and 21.05. Estimate
the mass of the rock and find the uncertainty in the estimate.

Solution
Let X represent the average of the five measurements, and let s represent the sam-
ple standard deviation. We compute X = 21.06 g and s = 0.0543 g. Using Equa-
tion (3.6), we would estimate the length of the component to be X ±σ/

√
5. We do not

know σ , which is the uncertainty, or standard deviation, of the measurement process.
However, we can approximate σ with s, the sample standard deviation of the five
measurements. We therefore estimate the mass of the rock to be 21.06 ± 0.0543/

√
5,

or 21.06 ± 0.02 g.

Example
3.10 In Example 3.6 two adjacent sides of a rectangular lot were measured to be X =

50.11 ± 0.05 m and Y = 75.21 ± 0.08 m. Assume that the budget for this project
is sufficient to allow 14 more measurements to be made. Each side has already been
measured once. One engineer suggests allocating the new measurements equally to
each side, so that each will be measured eight times. A second engineer suggests
using all 14 measurements on the longer side, since that side is measured with greater
uncertainty. Estimate the uncertainty in the perimeter under each plan. Which plan
results in the smaller uncertainty?

Solution
Under the first plan, let X represent the average of eight measurements of the shorter
side, and let Y represent the average of eight measurements of the longer side. The
perimeter will be estimated by 2X+2Y . The uncertainty in the perimeter under the first
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plan is therefore

σ2X+2Y =
√

4σ 2
X

+ 4σ 2
Y

(using Equation 3.4)

=
√

4

(
σX√

8

)2

+ 4

(
σY√

8

)2

(using Equation 3.6)

=
√

4(0.05)2

8
+ 4(0.08)2

8

= 0.067 m

Under the second plan, the perimeter will be estimated by 2X + 2Y , where X is a
single measurement of the shorter side and Y is the average of 15 measurements of
the longer side. The uncertainty in the perimeter under the second plan is therefore

σ2X+2Y =
√

4σ 2
X + 4σ 2

Y
(using Equation 3.4)

=
√

4σ 2
X + 4

(
σY√
15

)2

(using Equation 3.6)

=
√

4(0.05)2 + 4(0.08)2

15

= 0.11 m

The first plan is better.

Repeated Measurements with Differing Uncertainties
Sometimes repeated measurements may have differing uncertainties. This can happen,
for example, when the measurements are made with different instruments. It turns out
that the best way to combine the measurements in this case is with a weighted average,
rather than with the sample mean. Examples 3.11 and 3.12 explore this idea.

Example
3.11 An engineer measures the period of a pendulum (in seconds) to be 2.0 ± 0.2 s.

Another independent measurement is made with a more precise clock, and the result
is 2.2 ± 0.1 s. The average of these two measurements is 2.1 s. Find the uncertainty
in this quantity.

Solution
Let X represent the measurement with the less precise clock, so X = 2.0 s, with
uncertainty σX = 0.2 s. Let Y represent the measurement on the more precise clock,
so Y = 2.2 s, with uncertainty σY = 0.1 s. The average is (1/2)X + (1/2)Y = 2.10,
and the uncertainty in this average is

σavg =
√

1

4
σ 2

X + 1

4
σ 2

Y

=
√

1

4
(0.2)2 + 1

4
(0.1)2

= 0.11 s
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Example
3.12 In Example 3.11, another engineer suggests that since Y is a more precise measure-

ment than X , a weighted average in which Y is weighted more heavily than X might
be more precise than the unweighted average. Specifically, the engineer suggests that
by choosing an appropriate constant c between 0 and 1, the weighted average cX +
(1 − c)Y might have a smaller uncertainty than the unweighted average (1/2)X +
(1/2)Y considered in Example 3.11. Express the uncertainty in the weighted average
cX + (1 − c)Y in terms of c, and find the value of c that minimizes the uncertainty.

Solution
The uncertainty in the weighted average is

σ =
√

c2σ 2
X + (1 − c)2σ 2

Y

=
√

0.04c2 + 0.01(1 − c)2

= √
0.05c2 − 0.02c + 0.01

We now must find the value of c minimizing σ . This is equivalent to finding the value
of c minimizing σ 2. We take the derivative of σ 2 = 0.05c2 − 0.02c + 0.01 with
respect to c and set it equal to 0:

dσ 2

dc
= 0.10c − 0.02 = 0

Solving for c, we obtain

c = 0.2

The most precise weighted average is therefore 0.2X +0.8Y = 2.16. The uncertainty
in this estimate is

σbest =
√

(0.2)2σ 2
X + (0.8)2σ 2

Y =
√

(0.2)2(0.2)2 + (0.8)2(0.1)2 = 0.09 s

Note that this is less than the uncertainty of 0.11 s found for the unweighted average
used in Example 3.11.

The ratio of the coefficients of X and Y in the best weighted average is equal to the
ratio of the variances of Y and X : σ 2

Y /σ 2
X = 0.12/0.22 = 0.25 = 0.2/0.8 = c/(1−c). We

can therefore express the coefficients in terms of the variances: c = σ 2
Y /(σ 2

X +σ 2
Y ) = 0.2

and 1 − c = σ 2
X/(σ 2

X + σ 2
Y ) = 0.8. This relationship holds in general.

Summary
If X and Y are independent measurements of the same quantity, with uncertainties
σX and σY , respectively, then the weighted average of X and Y with the smallest
uncertainty is given by cbest X + (1 − cbest)Y , where

cbest = σ 2
Y

σ 2
X + σ 2

Y

1 − cbest = σ 2
X

σ 2
X + σ 2

Y

(3.7)
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Linear Combinations of Dependent Measurements
Imagine that X and Y are measurements with uncertainties σX and σY , and we wish to
compute the uncertainty in the sum X + Y . If X and Y are dependent, the uncertainty in
the sum may be either greater than or less than it would be in the independent case, and
it cannot be determined from σX and σY alone. For example, if positive random errors in
X tend to occur alongside negative random errors in Y , and vice versa, the random errors
will tend to cancel out when computing the sum X + Y , so the uncertainty in X + Y
will be smaller than in the independent case. On the other hand, if the random errors in
X and Y tend to have the same sign, the uncertainty in X + Y will be larger than in the
independent case.

The quantity that measures the relationship between the random errors in X and
Y is the covariance, which was discussed in Section 2.6. In general, if X1, . . . , Xn

are measurements, and if the covariance of each pair of measurements is known,
Equation (2.72) (in Section 2.6) can be used to compute the uncertainty in a linear
combination of the measurements.

In practice, when measurements are dependent, it is often the case that not enough
is known about the dependence to quantify it. In these cases, an upper bound may be
placed on the uncertainty in a linear combination of the measurements. The result is
presented here; a proof is provided at the end of the section.

If X1, . . . , Xn are measurements and c1, . . . , cn are constants, then

σc1 X1+ ··· +cn Xn ≤ |c1|σX1 + · · · + |cn|σXn (3.8)

The expression on the right-hand side of the inequality (3.8) is a conservative estimate
of the uncertainty in c1 X1 + · · · + cn Xn .

Example
3.13 A surveyor is measuring the perimeter of a rectangular lot. He measures two adjacent

sides to be 50.11 ± 0.05 m and 75.21 ± 0.08 m. These measurements are not neces-
sarily independent. Find a conservative estimate of the uncertainty in the perimeter
of the lot.

Solution
Denote the two measurements by X1 and X2. The uncertainties are then σX1 =
0.05 and σX2 = 0.08, and the perimeter is given by P = 2X1 + 2X2. Using the
inequality (3.8), we obtain

σP = σ2X1+2X2

≤ 2σX1 + 2σX2

= 2(0.05) + 2(0.08)

= 0.26 m

The uncertainty in the perimeter is no greater than 0.26 m. In Example 3.6, we com-
puted the uncertainty to be 0.19 m when X and Y are independent.
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Derivation of the Inequality σc1 X1+···+cnXn ≤ |c1|σX1 + · · · + |cn|σXn

This derivation requires material from Section 2.6. Let X1, . . . , Xn be random
variables, and c1, . . . , cn be constants. By Equation (2.72) (in Section 2.6),

σ 2
c1 X1+ ··· +cn Xn

= c2
1σ

2
X1

+ · · · + c2
nσ

2
Xn

+ 2
n−1∑
i=1

n∑
j=i+1

ci c j Cov(Xi , Xj )

Now ρXi ,X j = Cov(Xi , X j )

σXi σX j

. Since |ρXi ,X j | ≤ 1, it follows that

|Cov(Xi , X j )| ≤ σXi σX j

Since ci c j Cov(Xi , X j ) ≤ |ci ||c j ||Cov(Xi , X j )|, it follows that

ci c j Cov(Xi , X j ) ≤ |ci ||c j |σXi σX j

Substituting, we obtain

σ 2
c1 X1+ ··· +cn Xn

≤ c2
1σ

2
X1

+ · · · + c2
nσ

2
Xn

+ 2
n−1∑
i=1

n∑
j=i+1

|ci ||c j |σXi σX j (3.9)

Since c2
i = |ci |2, the right-hand side of inequality (3.9) can be factored:

c2
1σ

2
X1

+ · · · + c2
nσ

2
Xn

+ 2
n−1∑
i=1

n∑
j=i+1

|ci ||c j |σXi σX j = (|c1|σX1 + · · · + |cn|σXn )
2

Substituting into inequality (3.9) and taking square roots, we obtain

σc1 X1+ ··· +cn Xn ≤ |c1|σX1 + · · · + |cn|σXn

Exercises for Section 3.2

1. Assume that X and Y are independent measurements
with uncertainties σX = 0.3 and σY = 0.2. Find the
uncertainties in the following quantities:

a. 4X

b. X + 2Y

c. 2X − 3Y

2. A measurement of the circumference of a disk has
an uncertainty of 1.5 mm. How many measurements
must be made so that the diameter can be estimated
with an uncertainty of only 0.5 mm?

3. The length of a rod is to be measured by a process
whose uncertainty is 3 mm. Several independent mea-

surements will be taken, and the average of these mea-
surements will be used to estimate the length of the
rod. How many measurements must be made so that
the uncertainty in the average will be 1 mm?

4. The volume of a cone is given by V = πr 2h/3, where
r is the radius of the base and h is the height. Assume
the radius is 5 cm, measured with negligible uncer-
tainty, and the height is h = 6.00±0.02 cm. Estimate
the volume of the cone, and find the uncertainty in the
estimate.

5. In the article “The World’s Longest Continued
Series of Sea Level Observations” (M. Ekman, Pa-
leogeography, 1988:73–77), the mean annual level of
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land uplift in Stockholm, Sweden, was estimated to
be 4.93 ± 0.23 mm for the years 1774–1884 and to
be 3.92 ± 0.19 mm for the years 1885–1984. Esti-
mate the difference in the mean annual uplift between
these two time periods, and find the uncertainty in the
estimate.

6. A cylindrical hole is bored through a steel block, and
a cylindrical piston is machined to fit into the hole.
The diameter of the hole is 20.00 ± 0.01 cm, and the
diameter of the piston is 19.90 ± 0.02 cm. The clear-
ance is one-half the difference between the diameters.
Estimate the clearance and find the uncertainty in the
estimate.

7. A force of F = 2.2 ± 0.1 N is applied to a block
for a period of time, during which the block moves
a distance d = 3 m, which is measured with negligi-
ble uncertainty. The work W is given by W = Fd.
Estimate W , and find the uncertainty in the estimate.

8. The period T of a simple pendulum is given by
T = 2π

√
L/g where L is the length of the pendulum

and g is the acceleration due to gravity. Thus if L and T
are measured, we can estimate g with g = 4π 2 L/T 2.

Assume that the period is known to be T = 1.5 s with
negligible uncertainty, and that L is measured to be
0.559 ± 0.005 m. Estimate g, and find the uncertainty
in the estimate.

9. The specific gravity of a substance is given by G =
DS/DW , where DS is the density of the substance in
kg/m3 and DW is the density of water, which is known
to be 1000 kg/m3. The density of a particular sub-
stance is measured to be DS = 500 ± 5 kg/m3. Esti-
mate the specific gravity, and find the uncertainty in
the estimate.

10. In a Couette flow, two large flat plates lie one on top
of another, separated by a thin layer of fluid. If a shear
stress is applied to the top plate, the viscosity of the
fluid produces motion in the bottom plate as well.
The velocity V in the top plate relative to the bot-
tom plate is given by V = τh/μ, where τ is the shear
stress applied to the top plate, h is the thickness of
the fluid layer, and μ is the viscosity of the fluid. As-
sume that μ = 1.49 Pa · s and h = 10 mm, both with
negligible uncertainty.

a. Suppose that τ = 30.0 ± 0.1 Pa. Estimate V , and
find the uncertainty in the estimate.

b. If it is desired to estimate V with an uncertainty of
0.2 mm/s, what must be the uncertainty in τ?

11. According to Newton’s law of cooling, the temper-
ature T of a body at time t is given by T = Ta +
(T0 − Ta)e−kt , where Ta is the ambient temperature,
T0 is the initial temperature, and k is the cooling rate
constant. For a certain type of beverage container, the
value of k is known to be 0.025 min−1.

a. Assume that Ta = 36◦F exactly and that T0 =
72.0 ± 0.5◦F. Estimate the temperature T at
time t = 10 min, and find the uncertainty in the
estimate.

b. Assume that T0 = 72◦F exactly and that Ta =
36.0 ± 0.5◦F. Estimate the temperature T at time
t = 10 min, and find the uncertainty in the
estimate.

12. In the article “Influence of Crack Width on Shear Be-
haviour of SIFCON” (C. Fritz and H. Reinhardt, High
Performance Fiber Reinforced Cement Composites:
Proceedings of the International RILEM/ACI Work-
shop, 1992), the maximum shear stress τ of a cracked
concrete member is given to be τ = τ0(1 − kw),
where τ0 is the maximum shear stress for a crack
width of zero, w is the crack width in mm, and k is
a constant estimated from experimental data. Assume
k = 0.29 ± 0.05 mm−1. Given that τ0 = 50 MPa and
w = 1.0 mm, both with negligible uncertainty, esti-
mate τ and find the uncertainty in the estimate.

13. Nine independent measurements are made of the
length of a rod. The average of the nine measure-
ments is X = 5.238 cm, and the standard deviation is
s = 0.081 cm.

a. Is the uncertainty in the value 5.238 cm closest to
0.009, 0.027, or 0.081 cm? Explain.

b. Another rod is measured once by the same process.
The measurement is 5.423 cm. Is the uncertainty
in this value closest to 0.009, 0.027, or 0.081 cm?
Explain.

14. A certain scale has an uncertainty of 3 g and a bias
of 2 g.

a. A single measurement is made on this scale. What
are the bias and uncertainty in this measurement?

b. Four independent measurements are made on this
scale. What are the bias and uncertainty in the av-
erage of these measurements?
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c. Four hundred independent measurements are made
on this scale. What are the bias and uncertainty in
the average of these measurements?

d. As more measurements are made, does the uncer-
tainty get smaller, get larger, or stay the same?

e. As more measurements are made, does the bias get
smaller, get larger, or stay the same?

15. The volume of a rock is measured by placing the
rock in a graduated cylinder partially filled with water
and measuring the increase in volume. Eight inde-
pendent measurements are made. The average of the
measurements is 87.0 mL, and the standard deviation
is 2.0 mL.

a. Estimate the volume of the rock, and find the un-
certainty in the estimate.

b. Eight additional measurements are made, for a to-
tal of 16. What is the uncertainty, approximately,
in the average of the 16 measurements?

c. Approximately how many measurements would be
needed to reduce the uncertainty to 0.4 mL?

16. A student measures the spring constant k of a spring by
loading it and measuring the extension. (According to
Hooke’s law, if l is the load and e is the extension, then
k = l/e.) Assume five independent measurements are
made, and the measured values of k (in N/m) are 36.4,
35.4, 38.6, 36.6, and 38.0.

a. Estimate the spring constant, and find the uncer-
tainty in the estimate.

b. Find an approximate value for the uncertainty in
the average of 10 measurements.

c. Approximately how many measurements must be
made to reduce the uncertainty to 0.3 N/m?

d. A second spring, similar to the first, is measured
once. The measured value for k is 39.3. Approx-
imately how much is the uncertainty in this
measurement?

17. A certain chemical process is run 10 times at a
temperature of 65◦C and 10 times at a temper-
ature of 80◦C. The yield at each run was mea-
sured as a percent of a theoretical maximum.
The data are presented in the following table.

65◦C 71.3 69.1 70.3 69.9 71.1 70.7 69.8 68.5 70.9 69.8

80◦C 90.3 90.8 91.2 90.7 89.0 89.7 91.3 91.2 89.7 91.1

a. For each temperature, estimate the mean yield and
find the uncertainty in the estimate.

b. Estimate the difference between the mean yields
at the two temperatures, and find the uncertainty
in the estimate.

18. An object is weighed four times, and the results, in
milligrams, are 234, 236, 233, and 229. The object
is then weighed four times on a different scale, and
the results, in milligrams, are 236, 225, 245, and 240.
The average of all eight measurements will be used to
estimate the weight. Someone suggests estimating the
uncertainty in this estimate as follows: Compute the
standard deviation of all eight measurements. Call this
quantity s. The uncertainty is then s/

√
8. Is this cor-

rect? Explain.

19. The length of a component is to be estimated through
repeated measurement.

a. Ten independent measurements are made with an
instrument whose uncertainty is 0.05 mm. Let X
denote the average of these measurements. Find
the uncertainty in X .

b. A new measuring device, whose uncertainty is
only 0.02 mm, becomes available. Five indepen-
dent measurements are made with this device. Let
Y denote the average of these measurements. Find
the uncertainty in Y .

c. In order to decrease the uncertainty still further,
it is decided to combine the estimates X and
Y . One engineer suggests estimating the length
with (1/2)X + (1/2)Y . A second engineer ar-
gues that since X is based on 10 measurements,
while Y is based on only five, a better estimate is
(10/15)X + (5/15)Y . Find the uncertainty in each
of these estimates. Which is smaller?

d. Find the value c such that the weighted average
cX + (1 − c)Y has minimum uncertainty. Find the
uncertainty in this weighted average.

20. The lengths of two components will be measured sev-
eral times. The uncertainty in each measurement of the
length of the first component is σ1 = 0.02 cm, and the
uncertainty in each measurement of the length of
the second component is σ2 = 0.08 cm. Let X denote
the average of the measurements of the first compo-
nent, and let Y denote the average of the measurements
of the second component. The total length of the two
components will be estimated with the quantity X +Y .
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a. Find the uncertainty in the total length if the first
component is measured 4 times and the second
component is measured 12 times.

b. Find the uncertainty in the total length in terms
of n if the first component is measured n times

and the second component is measured 16 − n
times.

c. Determine the best way to allocate 16 measure-
ments between the components by determining the
value of n that minimizes the uncertainty.

3.3 Uncertainties for Functions of One
Measurement

The examples we have seen so far involve estimating uncertainties in linear functions
of measurements. In many cases we wish to estimate the uncertainty in a nonlinear
function of a measurement. For example, if the radius R of a circle is measured to be
5.00 ± 0.01 cm, what is the uncertainty in the area A? In statistical terms, we know that
the standard deviation σR is 0.01 cm, and we must calculate the standard deviation of A,
where A is the function of R given by A = π R2.

The type of problem we wish to solve is this: Given a random variable X , with
known standard deviation σX , and given a function U = U (X), how do we compute the
standard deviation σU ? If U is a linear function, the methods of Section 3.2 apply. If U
is not linear, we can still approximate σU , by multiplying σX by the absolute value of
the derivative dU/d X . The approximation will be good so long as σX is small.

If X is a measurement whose uncertainty σX is small, and if U is a function of
X , then

σU ≈
∣∣∣∣dU

d X

∣∣∣∣ σX (3.10)

In practice, we evaluate the derivative dU/d X at the observed measurement X .

Equation (3.10) is known as the propagation of error formula. Its derivation is given
at the end of this section.

Propagation of Error Uncertainties Are Only Approximate
The uncertainties computed by using Equation (3.10) are often only rough approxima-
tions. For this reason, these uncertainties should be expressed with no more than two
significant digits. Indeed, some authors suggest using only one significant digit.

Nonlinear Functions Are Biased
If X is an unbiased measurement of a true value μX , and if the function U = U (X) is a
nonlinear function of X , then in most cases U will be biased for the true value U (μX ).
In practice this bias is usually ignored. It can be shown by advanced methods that in
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general, the size of the bias depends mostly on the magnitudes of σX and of the second
derivative d2U/d X2. Therefore, so long as the uncertainty σX is small, the bias in U
will in general be small as well, except for some fairly unusual circumstances when the
second derivative is quite large. Of course, if X is a measurement with non-negligible
bias, then the bias in U may be large. These ideas are explored further in Supplementary
Exercise 22 at the end of this chapter.

Example
3.14 The radius R of a circle is measured to be 5.00 ± 0.01 cm. Estimate the area of the

circle and find the uncertainty in this estimate.

Solution
The area A is given by A = π R2. The estimate of A is π(5.00 cm)2 = 78.5 cm2.
Now σR = 0.01 cm, and d A/d R = 2π R = 10π cm. We can now find the uncertainty
in A:

σA =
∣∣∣∣d A

d R

∣∣∣∣ σR

= (10π cm)(0.01 cm)

= 0.31 cm2

We estimate the area of the circle to be 78.5 ± 0.3 cm2.

Example
3.15 A rock identified as cobble-sized quartzite has a mass m of 674.0 g. Assume this

measurement has negligible uncertainty. The volume V of the rock will be measured
by placing it in a graduated cylinder partially filled with water and measuring the
volume of water displaced. The density D of the rock will be computed as D = m/V .
Assume the volume of displaced water is 261.0±0.1 mL. Estimate the density of the
rock and find the uncertainty in this estimate.

Solution
Substituting V = 261.0 mL, the estimate of the density D is 674.0/261.0 = 2.582 g/mL.
Treating m = 674.0 as a known constant, dD/dV=− 674.0/V 2 =− 674.0/(261.0)2=
− 0.010 g/mL2. We know that σV = 0.1 mL. The uncertainty in D is therefore

σD =
∣∣∣∣d D

dV

∣∣∣∣ σV

= | − 0.010|(0.1 g/mL)

= 0.001 g/mL

We estimate the density to be 2.582 ± 0.001 g/mL.
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Relative Uncertainties for Functions of One Measurement
We have been referring to the standard deviation σU of a measurement U as the un-
certainty in U . A more complete name for σU is the absolute uncertainty, because it
is expressed in the same units as the measurement U . Sometimes we wish to express
the uncertainty as a fraction of the true value, which (assuming no bias) is the mean
measurement μU . This is called the relative uncertainty in U . The relative uncertainty
can also be called the coefficient of variation. In practice, since μU is unknown, the
measured value U is used in its place when computing the relative uncertainty.

Summary
If U is a measurement whose true value is μU , and whose uncertainty is σU , the
relative uncertainty in U is the quantity σU /μU .

The relative uncertainty is a unitless quantity. It is frequently expressed as a
percent. In practice μU is unknown, so if the bias is negligible, we estimate the
relative uncertainty with σU /U .

There are two ways to compute the relative uncertainty in a quantity U . One is
simply to use Equation (3.10) to compute the absolute uncertainty σU , and then divide
by U . To develop the second method, we will compute the absolute uncertainty in ln U :

σln U = d(ln U )

dU
σU = σU

U

This equation shows that the absolute uncertainty in ln U is equal to the relative uncer-
tainty in U . Thus the second way to compute the relative uncertainty in U is to compute
ln U , and then use Equation (3.10) to compute the absolute uncertainty in ln U .

Summary
There are two methods for approximating the relative uncertainty σU /U in a
function U = U (X):

1. Compute σU using Equation (3.10), and then divide by U .

2. Compute ln U and use Equation (3.10) to find σln U , which is equal to σU /U .

Both of the methods work in every instance, so one may use whichever is easiest for
a given problem. This choice is usually dictated by whether it is easier to compute the
derivative of U or of ln U .
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Example
3.16 The radius of a circle is measured to be 5.00 ± 0.01 cm. Estimate the area, and find

the relative uncertainty in the estimate.

Solution
In Example 3.14 the area A = π R2 was computed to be 78.5 ± 0.3 cm2. The abso-
lute uncertainty is therefore σA = 0.3 cm2, and the relative uncertainty is σA/A =
0.3/78.5 = 0.004. We can therefore express the area as A = 78.5 cm2 ± 0.4%.

If we had not already computed σA, it would be easier to compute the relative
uncertainty by computing the absolute uncertainty in ln A. Since ln A = ln π +2 ln R,
d ln A/d R = 2/R = 0.4. The relative uncertainty in A is therefore

σA

A
= σln A

=
∣∣∣∣d ln A

d R

∣∣∣∣ σR

= 0.4σR

= (0.4)(0.01)

= 0.4%

Example
3.17 The acceleration of a mass down a frictionless inclined plane is given by a = g sin θ ,

where g is the acceleration due to gravity and θ is the angle of inclination of the plane.
Assume the uncertainty in g is negligible. If θ = 0.60 ± 0.01 rad, find the relative
uncertainty in a.

Solution
The relative uncertainty in a is the absolute uncertainty in ln a. Now ln a = ln g +
ln(sin θ), where ln g is constant. Therefore d ln a/dθ = d ln(sin θ)/dθ = cos θ/sin θ =
cot θ = cot(0.60) = 1.46. The uncertainty in θ is σθ = 0.01. The relative uncertainty
in a is therefore

σa

a
= σln a

=
∣∣∣∣d ln a

dθ

∣∣∣∣ σθ

= (1.46)(0.01)

= 1.5%

Note that the relative uncertainty in a = g sin θ does not depend on the constant g.

Derivation of the Propagation of Error Formula
We derive the propagation of error formula for a nonlinear function U of a random
variable X by approximating it with a linear function, and then using the methods of
Section 3.2. To find a linear approximation to U , we use a first-order Taylor series
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approximation. This is known as linearizing the problem; it is a commonly used
technique in science and engineering.

Let U (X) be a differentiable function. Let μX be any point. Then if X is close to
μX , the first-order Taylor series approximation for U (X) is

U (X) − U (μX ) ≈ dU

d X
(X − μX ) (3.11)

The derivative dU/d X is evaluated at μX .
Now let X be a measurement, and let U (X) (which we will also refer to as U ) be a

quantity calculated from X . Let μX denote the mean of X . For any reasonably precise
measurement, X will be close enough to μX for the Taylor series approximation to be
valid.

Adding U (μX ) to both sides of Equation (3.11) yields

U ≈ U (μX ) + dU

d X
(X − μX )

Multiplying through by dU/d X and rearranging terms yields

U ≈
(

U (μX ) − dU

d X
μX

)
+ dU

d X
X

Now the quantity dU/d X is a constant, because it is evaluated at μX . Therefore the
quantity U (μX ) − (dU/d X) μX is also constant. It follows from Equation (2.46)
(in Section 2.5) that

σU ≈
∣∣∣∣dU

d X

∣∣∣∣ σX

This is the propagation of error formula. When applying this formula, we evaluate the
derivative dU/d X at the observed measurement X , since we do not know the value μX .

Exercises for Section 3.3

1. FindtheuncertaintyinY ,giventhat X = 2.0 ± 0.3and

a. Y = X 3

b. Y = √
2X

c. Y = 3/X

d. Y = ln X

e. Y = eX

f. Y = cos X (X is in units of radians)

2. Given that X and Y are related by the given equa-
tion, and that X = 3.0 ± 0.1, estimate Y and its
uncertainty.

a. XY = 1

b. Y/X = 2

c.
√

XY = 3

d. Y
√

X = 4

3. The volume of a cone is given by V = πr 2h/3, where
r is the radius of the base and h is the height. Assume
the height is 6 cm, measured with negligible uncer-
tainty, and the radius is r = 5.00 ± 0.02 cm. Estimate
the volume of the cone, and find the uncertainty in the
estimate.

4. The velocity V of sound in air at temperature T is given
by V = 20.04

√
T , where T is measured in kelvins (K)

and V is in m/s. Assume that T = 300 ± 0.4 K.
Estimate V, and find the uncertainty in the estimate.

5. The period T of a simple pendulum is given by
T = 2π

√
L/g where L is the length of the pendu-

lum and g is the acceleration due to gravity.

a. Assume g = 9.80 m/s2 exactly, and that L =
0.742 ± 0.005 m. Estimate T , and find the uncer-
tainty in the estimate.
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b. Assume L = 0.742 m exactly, and that T =
1.73±0.01 s. Estimate g, and find the uncertainty
in the estimate.

6. The change in temperature of an iron bar brought about
by a transfer of heat is given by �T = �Q/mc, where
�Q is the amount of heat transferred, m is the mass
of the bar, and c is the specific heat of iron. Assume
that c = 448 J/kg◦C and �Q = 1210 J are known
with negligible uncertainty. Assume the mass is m =
0.54±0.01 kg. Estimate �T , and find the uncertainty
in the estimate.

7. The friction velocity F of water flowing through a pipe
is given by F = √

gdh/4l, where g is the acceleration
due to gravity, d is the diameter of the pipe, l is the
length of the pipe, and h is the head loss. Estimate F ,
and find the uncertainty in the estimate, assuming that
g = 9.80 m/s2 exactly, and that

a. d = 0.15 m and l = 30.0 m, both with negligible
uncertainty, and h = 5.33 ± 0.02 m.

b. h = 5.33 m and l = 30.0 m, both with negligible
uncertainty, and d = 0.15 ± 0.03 m.

c. d = 0.15 m and h = 5.33 m, both with negligible
uncertainty, and l = 30.00 ± 0.04 m.

8. The refractive index n of a piece of glass is related
to the critical angle θ by n = 1/ sin θ . Assume that
the critical angle is measured to be 0.70 ± 0.02 rad.
Estimate the refractive index, and find the uncertainty
in the estimate.

9. The density of a rock will be measured by placing it
into a graduated cylinder partially filled with water,
and then measuring the volume of water displaced.
The density D is given by D = m/(V1 − V0), where
m is the mass of the rock, V0 is the initial volume
of water, and V1 is the volume of water plus rock.
Assume the mass of the rock is 750 g, with negligi-
ble uncertainty, and that V0 = 500.0 ± 0.1 mL and
V1 = 813.2 ± 0.1 mL. Estimate the density of the
rock, and find the uncertainty in the estimate.

10. The conversion of ammonium cyanide to urea is a
second-order reaction. This means that the concen-
tration C of ammonium cyanide at time t is given by
1/C = kt+1/C0, where C0 is the initial concentration
and k is the rate constant. Assume the initial concen-
tration is known to be 0.1 mol/L exactly. Assume that
time can be measured with negligible uncertainty.
a. After 45 minutes, the concentration of ammonium

cyanide is measured to be 0.0811±0.0005 mol/L.

Estimate the rate constant k, and find the uncer-
tainty in the estimate.

b. Use the result in part (a) to estimate the time when
the concentration of ammonium cyanide will be
0.0750 mol/L, and find the uncertainty in this
estimate.

11. Convert the following absolute uncertainties to rela-
tive uncertainties.

a. 20.9 ± 0.4

b. 15.1 ± 0.8

c. 388 ± 23

d. 2.465 ± 0.009

12. Convert the following relative uncertainties to abso-
lute uncertainties.

a. 48.41 ± 0.3%

b. 991.7 ± 0.6%

c. 0.011 ± 9%

d. 7.86 ± 1%

13. The acceleration g due to gravity is estimated by
dropping an object and measuring the time it takes
to travel a certain distance. Assume the distance s is
known to be exactly 2.2 m. The time is measured to
be t = 0.67 ± 0.02 s. Estimate g, and find the relative
uncertainty in the estimate. (Note that g = 2s/t2.)

14. Refer to Exercise 4. Assume that T = 298.4 ± 0.2 K.
Estimate V , and find the relative uncertainty in the
estimate.

15. Refer to Exercise 5.

a. Assume g = 9.80 m/s2 exactly, and that L =
0.855 ± 0.005 m. Estimate T , and find the rela-
tive uncertainty in the estimate.

b. Assume L = 0.855 m exactly, and that T =
1.856 ± 0.005 s. Estimate g, and find the relative
uncertainty in the estimate.

16. Refer to Exercise 6. Assume that c = 448 J/kg◦C and
�Q = 1210 J are known with negligible uncertainty.
Assume the mass is m = 0.75 ± 0.01 kg. Estimate
�T , and find the relative uncertainty in the estimate.

17. Refer to Exercise 7. Estimate F , and find the relative
uncertainty in the estimate, assuming that g = 9.80
m/s2 exactly and that

a. d = 0.20 m and l = 35.0 m, both with negligible
uncertainty, and h = 4.51 ± 0.03 m.
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b. h = 4.51 m and l = 35.0 m, both with negligible
uncertainty, and d = 0.20 ± 0.008 m.

c. d = 0.20 m and h = 4.51 m, both with negligible
uncertainty, and l = 35.00 ± 0.4 m.

18. Refer to Exercise 8. Assume the critical angle is mea-
sured to be 0.90 ± 0.01 rad. Estimate the refractive
index and find the relative uncertainty in the estimate.

19. Refer to Exercise 9. Assume that the mass of the
rock is 288.2 g with negligible uncertainty, the initial
volume of water in the cylinder is 400 ± 0.1 mL,
and the volume of water plus rock is 516 ± 0.2 mL.
Estimate the density of the rock, and find the relative
uncertainty in the estimate.

20. In a chemical reaction run at a certain temperature, the
concentration C of a certain reactant at time t is given

by 1/C = kt+1/C0, where C0 is the initial concentra-
tion and k is the rate constant. Assume the initial con-
centration is known to be 0.04 mol/L exactly. Assume
that time is measured with negligible uncertainty.

a. After 30 s, the concentration C is measured to
be 0.0038 ± 2.0 × 10−4 mol/L. Estimate the rate
constant k, and find the relative uncertainty in the
estimate.

b. After 50 s, the concentration C is measured to be
0.0024 ± 2.0 × 10−4 mol/L. Estimate the rate con-
stant k and find the relative uncertainty in the esti-
mate.

c. Denote the estimates of the rate constant k in parts
(a) and (b) by k̂1 and k̂2, respectively. The geomet-

ric mean
√

k̂1k̂2 is used as an estimate of k. Find
the relative uncertainty in this estimate.

3.4 Uncertainties for Functions of Several
Measurements

Often we need to estimate a quantity as a function of several measurements. For example,
we might measure the mass m and volume V of a rock and compute the density as
D = m/V . In Example 3.15 we saw how to estimate the uncertainty in D when one of
the quantities, in this case V , was measured with uncertainty while m was treated as a
known constant. However, in practice we might need to estimate the uncertainty in D
when both m and V are measured with uncertainty.

In this section we will learn how to estimate the uncertainty in a quantity that is a
function of several independent uncertain measurements. The basic formula is given here.

If X1, X2, . . . , Xn are independent measurements whose uncertaintiesσX1 , σX2 ,
. . . , σXn are small, and if U = U (X1, X2, . . . , Xn) is a function of X1, X2,
. . . , Xn , then

σU ≈
√(

∂U

∂ X1

)2

σ 2
X1

+
(

∂U

∂ X2

)2

σ 2
X2

+ · · · +
(

∂U

∂ Xn

)2

σ 2
Xn

(3.12)

In practice, we evaluate the partial derivatives at the point (X1, X2, . . . , Xn).

Equation (3.12) is the multivariate propagation of error formula. It is important
to note that it is valid only when the measurements X1, X2, . . . , Xn are independent.
A derivation of the formula is given at the end of the section. As in the case of one
measurement, the uncertainties computed by the propagation of error formula are often
only rough approximations.
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Nonlinear functions of measurements are generally biased (see the discussion con-
cerning functions of one measurement in Section 3.3). However, so long as the
measurements X1, . . . , Xn are unbiased, and the uncertainties σX1 , . . . , σXn are all small,
the bias in U will usually be small enough to ignore. Exceptions to this rule, which are
fairly unusual, can occur when some of the second- or higher-order partial derivatives
of U with respect to the Xi are quite large. Of course, if one or more of X1, . . . , Xn are
substantially biased, then U may be substantially biased as well. These ideas are explored
further in Exercise 23 in the Supplementary Exercises at the end of this chapter.

We now present some examples that illustrate the use of multivariate propagation
of error.

Example
3.18 Assume the mass of a rock is measured to be m = 674.0 ± 1.0 g, and the volume of

the rock is measured to be V = 261.0 ± 0.1 mL. Estimate the density of the rock and
find the uncertainty in the estimate.

Solution
Substituting m = 674.0 g and V = 261.0 mL, the estimate of the density D is
674.0/261.0 = 2.582 g/mL. Since D = m/V , the partial derivatives of D are

∂ D

∂m
= 1

V
= 0.0038 mL−1

∂ D

∂V
= −m

V 2
= −0.0099 g/mL2

The uncertainty in D is therefore

σD =
√(

∂ D

∂m

)2

σ 2
m +

(
∂ D

∂V

)2

σ 2
V

=
√

(0.0038)2(1.0)2 + (−0.0099)2(0.1)2

= 0.0040 g/mL

The density of the rock is 2.582 ± 0.004 g/mL.

One of the great benefits of the multivariate propagation of error formula is that it
enables one to determine which measurements are most responsible for the uncertainty
in the final result. Example 3.19 illustrates this.

Example
3.19 The density of the rock in Example 3.18 is to be estimated again with different

equipment, in order to improve the precision. Which would improve the precision of
the density estimate more: decreasing the uncertainty in the mass estimate to 0.5 g,
or decreasing the uncertainty in the volume estimate to 0.05 mL?
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Solution

From Example 3.18, σD =
√

(0.0038)2σ 2
m + (−0.0099)2σ 2

V . We have a choice be-
tween having σm = 0.5 and σV = 0.1, or having σm = 1.0 and σV = 0.05.
The first choice results in σD = 0.002 g/mL, while the second choice results in
σD = 0.004 g/mL. It is better to reduce σm to 0.5 g.

Example
3.20 Two resistors with resistances R1 and R2 are connected in parallel. The combined

resistance R is given by R = (R1 R2)/(R1 + R2). If R1 is measured to be 100±10 	,
and R2 is measured to be 20±1 	, estimate R and find the uncertainty in the estimate.

Solution
The estimate of R is (100)(20)/(100+20) = 16.67 	. To compute σR , we first
compute the partial derivatives of R:

∂ R

∂ R1
=

(
R2

R1 + R2

)2

= 0.0278

∂ R

∂ R2
=

(
R1

R1 + R2

)2

= 0.694

Now σR1 = 10 	, and σR2 = 1 	. Therefore

σR =
√(

∂ R

∂ R1

)2

σ 2
R1

+
(

∂ R

∂ R2

)2

σ 2
R2

=
√

(0.0278)2(10)2 + (0.694)2(1)2

= 0.75 	

The combined resistance is 16.67 ± 0.75 	.

Example
3.21 In Example 3.20, the 100 ± 10 	 resistor can be replaced with a more expensive

100 ± 1 	 resistor. How much would this reduce the uncertainty in the combined
resistance? Is it worthwhile to make the replacement?

Solution
Using the method of Example 3.20, the uncertainty in the combined resistance R with
the new resistor would be√

(0.0278)2(1)2 + (0.694)2(1)2 = 0.69 	

There is not much reduction from the uncertainty of 0.75 	 using the old resistor.
Almost all the uncertainty in the combined resistance is due to the uncertainty in
the 20 	 resistor. The uncertainty in the 100 	 resistor can be neglected for most
practical purposes. There is little benefit in replacing this resistor.
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Note that in Example 3.20, one component (the 100 	 resistor) had larger uncer-
tainty, both in absolute terms and relative to the measured value, than the other. Even so,
Example 3.21 showed that the uncertainty in the combined resistance was only slightly
affected by the uncertainty in this component. The lesson is that one cannot predict the
impact that the uncertainties in individual measurements will have on the uncertainty in
the final calculation from the magnitudes of those uncertainties alone. One must use the
propagation of error formula.

Uncertainties for Functions of Dependent Measurements
If X1, X2, . . . , Xn are not independent, the uncertainty in a function U = U (X1,

X2, . . . , Xn) can be estimated if the covariance of each pair (Xi , X j ) is known. (Co-
variance is discussed in Section 2.6.) In many situations, the covariances are not known.
In these cases, a conservative estimate of the uncertainty in U may be computed. We
present this result here.

If X1, X2, . . . , Xn are measurements whose uncertainties σX1 , σX2 , . . . , σXn

are small, and if U = U (X1, X2, . . . , Xn) is a function of (X1, X2, . . . , Xn),
then a conservative estimate of σU is given by

σU ≤
∣∣∣∣ ∂U

∂ X1

∣∣∣∣ σX1 +
∣∣∣∣ ∂U

∂ X2

∣∣∣∣ σX2 + · · · +
∣∣∣∣ ∂U

∂ Xn

∣∣∣∣ σXn (3.13)

In practice, we evaluate the partial derivatives at the point (X1, X2, . . . , Xn).
The inequality (3.13) is valid in almost all practical situations; in principle

it can fail if some of the second partial derivatives of U are quite large.

Example
3.22 Refer to Example 3.20. Find a conservative estimate for the uncertainty in the total

resistance R if R1 and R2 are not known to be independent.

Solution
We have σR1 = 10 	, σR2 = 1 	, ∂ R/∂ R1 = 0.0278, and ∂ R/∂ R2 = 0.694.
Therefore

σR ≤
∣∣∣∣ ∂ R

∂ R1

∣∣∣∣ σR1 +
∣∣∣∣ ∂ R

∂ R2

∣∣∣∣ σR2

= (0.0278)(10) + (0.694)(1)

= 0.97 	

The uncertainty in the total resistance is conservatively estimated by 0.97 	. In Exam-
ple 3.20, we computed the uncertainty to be 0.75 	 when R1 and R2 are independent.
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Relative Uncertainties for Functions of Several Measurements
In Section 3.3, we presented methods for calculating relative uncertainties for functions
of one variable. The methods for calculating relative uncertainties for functions of several
variables are similar.

There are two methods for approximating the relative uncertainty σU /U in a
function U = U (X1, X2, . . . , Xn):

1. Compute σU using Equation (3.12), and then divide by U .

2. Compute ln U , and then use Equation (3.12) to find σln U , which is equal
to σU /U .

Both of the methods work in every instance, so one may use whichever is easiest for a
given problem. This choice is usually dictated by whether it is easier to compute partial
derivatives of U or of ln U .

Example
3.23 Two perpendicular sides of a rectangle are measured to be X = 2.0 ± 0.1 cm and

Y = 3.2 ± 0.2 cm. Find the relative uncertainty in the area A = XY .

Solution
This is easily computed by finding the absolute uncertainty in ln A = ln X + ln Y .
We begin by computing the partial derivatives of ln A:

∂ ln A

∂ X
= 1

X
= 0.50

∂ ln A

∂Y
= 1

Y
= 0.31

We are given that σX = 0.1 and σY = 0.2. The relative uncertainty in A is

σA

A
= σln A =

√(
∂ ln A

∂ X

)2

σ 2
X +

(
∂ ln A

∂Y

)2

σ 2
Y

=
√

(0.50)2(0.1)2 + (0.31)2(0.2)2

= 0.080

The relative uncertainty in A is 0.080, or 8%. The area of the rectangle is
6.4 cm2 ± 8%.

Example
3.24 An Atwood machine consists of two masses X and Y (X > Y ) attached to the ends of

a light string that passes over a light frictionless pulley. When the masses are released,
the larger mass X accelerates down with acceleration

a = g
X − Y

X + Y
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Suppose that X and Y are measured as X = 100 ± 1 g, and Y = 50 ± 1 g. Assume
that g, the acceleration due to gravity, is known with negligible uncertainty. Find the
relative uncertainty in the acceleration a.

Solution
The relative uncertainty in a is equal to the absolute uncertainty in ln a = ln g +
ln(X − Y ) − ln(X + Y ). We treat g as a constant, since its uncertainty is negligible.
The partial derivatives are

∂ ln a

∂ X
= 1

X − Y
− 1

X + Y
= 0.0133

∂ ln a

∂Y
= − 1

X − Y
− 1

X + Y
= −0.0267

The uncertainties in X and Y are σX = σY = 1. The relative uncertainty in a is

σa

a
= σln a =

√(
∂ ln a

∂ X

)2

σ 2
X +

(
∂ ln a

∂Y

)2

σ 2
Y

=
√

(0.0133)2(1)2 + (−0.0267)2(1)2

= 0.030

The relative uncertainty in a is 0.030, or 3%. Note that this value does not depend on g.

When a function involves a product or quotient of measurements, the relative un-
certainty in the function can be computed directly from the relative uncertainties in the
measurements. Example 3.25 illustrates the method.

Example
3.25 The height h of a cylinder is measured with a relative uncertainty of 2%, and the

radius r is measured with a relative uncertainty of 1%. Find the relative uncertainty
in the volume V .

Solution
The volume is given by V = πr2h. Taking logs, we have

ln V = ln π + 2 ln r + ln h

Since ln V is a linear combination, and ln π is constant, we can use Equation (3.4) to
obtain

σln V =
√

4σ 2
ln r + σ 2

ln h

But σln V = σV /V , σln h = σh/h, and σln r = σr/r are the relative uncertainties in V ,
h, and r , respectively. Substituting 0.02 for σln h and 0.01 for σln r , we obtain

σV

V
= σln V =

√
4(0.01)2 + 0.022 = 0.028

The relative uncertainty in V is 2.8%.

We can generalize the result of Example 3.25.
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If X1, . . . , Xn are measurements whose relative uncertainties are σX1/X1, . . . ,

σXn /Xn , and U = Xm1
1 · · · Xmn

n , where m1, . . . , mn are any exponents, then the
relative uncertainty in U is

σU

U
=

√(
m1

σX1

X1

)2

+ · · · +
(

mn
σXn

Xn

)2

(3.14)

Derivation of the Multivariate Propagation of Error Formula
We derive the propagation of error formula for a nonlinear function U of a random
variable X by approximating it with a multivariate linear function (i.e., lineariz-
ing the problem), and then using the methods of Section 3.2. To find a linear ap-
proximation to U , we use a first-order multivariate Taylor series approximation.
Let U = U (X1, X2, . . . , Xn) be a function whose partial derivatives all exist. Let
(μ1, μ2, . . . , μn) be any point. Then if X1, X2, . . . , Xn are close to μ1, μ2, . . . , μn ,
respectively, the linearization of U is

U (X1, X2, . . . , Xn) − U (μ1, μ2, . . . , μn) ≈ ∂U

∂ X1
(X1 − μ1)

+ ∂U

∂ X2
(X2 − μ2) + · · · + ∂U

∂ Xn
(Xn − μn)

(3.15)

Each partial derivative is evaluated at the point (μ1, μ2, . . . , μn).
If X1, X2, . . . , Xn are independent measurements, the linear approximation leads

to a method for approximating the uncertainty in U , given the uncertainties in X1, X2,

. . . , Xn . The derivation is similar to the one-variable case presented at the end of
Section 3.3. Let μ1, μ2, . . . , μn be the means of X1, X2, . . . , Xn , respectively. Then
for any reasonably precise measurements, X1, X2, . . . , Xn will be close enough to
μ1, μ2, . . . , μn for the linearization to be valid.

We can rewrite Equation (3.15) as

U ≈
(

U (μ1, μ2, . . . , μn) − ∂U

∂ X1
μ1 − ∂U

∂ X2
μ2 − · · · − ∂U

∂ Xn
μn

)
+ ∂U

∂ X1
X1 + ∂U

∂ X2
X2 + · · · + ∂U

∂ Xn
Xn

(3.16)

The quantities ∂U/∂ X1, ∂U/∂ X2, . . . , ∂U/∂ Xn are all constant, since they are eval-
uated at the point (μ1, μ2, . . . , μn). Therefore the quantity

U (μ1, μ2, . . . , μn) − ∂U

∂ X1
μ1 − ∂U

∂ X2
μ2 − · · · − ∂U

∂ Xn
μn

is constant as well. It follows from Equation (2.40) (in Section 2.5) and Equation (3.4)
(in Section 3.2) that

σU ≈
√(

∂U

∂ X1

)2

σ 2
X1

+
(

∂U

∂ X2

)2

σ 2
X2

+ · · · +
(

∂U

∂ Xn

)2

σ 2
Xn
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Exercises for Section 3.4

1. Find the uncertainty in U , assuming that X = 10.0 ±
0.5, Y = 5.0 ± 0.1, and
a. U = XY 2

b. U = X 2 + Y 2

c. U = (X + Y 2)/2

2. The volume of a cone is given by V = πr 2h/3, where
r is the radius of the base and h is the height. Assume
the height is measured to be h = 6.00 ± 0.01 cm and
the radius is r = 5.00 ± 0.02 cm.

a. Estimate the volume of the cone, and find the un-
certainty in the estimate.

b. Which would provide a greater reduction in the
uncertainty in V : reducing the uncertainty in h
to 0.005 cm or reducing the uncertainty in r to
0.01 cm?

3. From a fixed point on the ground, the distance to a cer-
tain tree is measured to be s = 55.2 ± 0.1 m and the
angle from the point to the top of the tree is measured
to be θ = 0.50 ± 0.02 radians. The height of the tree
is given by h = s tan θ .

a. Estimate h, and find the uncertainty in the estimate.

b. Which would provide a greater reduction in the
uncertainty in h: reducing the uncertainty in s
to 0.05 m or reducing the uncertainty in θ to
0.01 radians?

4. Refer to Exercise 10 in Section 3.2. Assume that
τ = 30.0 ± 0.1 Pa, h = 10.0 ± 0.2 mm, and μ =
1.49 Pa · s with negligible uncertainty.
a. Estimate V and find the uncertainty in the estimate.

b. Which would provide a greater reduction in the
uncertainty in V : reducing the uncertainty in
τ to 0.01 Pa or reducing the uncertainty in h
to 0.1 mm?

5. When air enters a compressor at pressure P1 and leaves
at pressure P2, the intermediate pressure is given by
P3 = √

P1 P2. Assume that P1 = 10.1 ± 0.3 MPa and
P2 = 20.1 ± 0.4 MPa.

a. Estimate P3,andfindtheuncertaintyintheestimate.

b. Which would provide a greater reduction in the
uncertainty in P3: reducing the uncertainty in P1

to 0.2 MPa or reducing the uncertainty in P2

to 0.2 MPa?

6. One way to measure the water content of a soil is
to weigh the soil both before and after drying it in
an oven. The water content is W = (M1 − M2)/M1,
where M1 is the mass before drying and M2 is the mass
after drying. Assume that M1 = 1.32 ± 0.01 kg and
M2 = 1.04 ± 0.01 kg.
a. Estimate W , and find the uncertainty in the

estimate.

b. Which would provide a greater reduction in the
uncertainty in W : reducing the uncertainty in M1

to 0.005 kg or reducing the uncertainty in M2 to
0.005 kg?

7. The lens equation says that if an object is placed at
a distance p from a lens, and an image is formed at
a distance q from the lens, then the focal length f
satisfies the equation 1/ f = 1/p + 1/q. Assume that
p = 2.3 ± 0.2 cm and q = 3.1 ± 0.2 cm.

a. Estimate f , and find the uncertainty in the estimate.

b. Which would provide a greater reduction in the
uncertainty in f : reducing the uncertainty in p to
0.1 cm or reducing the uncertainty in q
to 0.1 cm?

8. The pressure P , temperature T , and volume V of
one mole of an ideal gas are related by the equation
PV = 8.31T , when P is measured in kilopascals, T
is measured in kelvins, and V is measured in liters.

a. Assume that P = 242.52 ± 0.03 kPa and V =
10.103 ± 0.002 L. Estimate T , and find the uncer-
tainty in the estimate.

b. Assume that P = 242.52 ± 0.03 kPa and T =
290.11 ± 0.02 K. Estimate V , and find the uncer-
tainty in the estimate.

c. Assume that V = 10.103 ± 0.002 L and T =
290.11 ± 0.02 K. Estimate P , and find the uncer-
tainty in the estimate.

9. The Beer-Lambert law relates the absorbance A of a
solution to the concentration C of a species in solu-
tion by A = M LC , where L is the path length and
M is the molar absorption coefficient. Assume that
C = 1.25 ± 0.03 mol/cm3, L = 1.2 ± 0.1 cm, and
A = 1.30 ± 0.05.

a. Estimate M and find the uncertainty in the
estimate.
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b. Which would provide a greater reduction in the
uncertainty in M : reducing the uncertainty in C
to 0.01 mol/cm3, reducing the uncertainty in L to
0.05 cm, or reducing the uncertainty in A to 0.01?

10. In the article “Temperature-Dependent Optical
Constants of Water Ice in the Near Infrared: New
Results and Critical Review of the Available Mea-
surements” (B. Rajaram, D. Glandorf, et al., Applied
Optics, 2001:4449–4462), the imaginary index of re-
fraction of water ice is presented for various frequen-
cies and temperatures. At a frequency of 372.1 cm−1

and a temperature of 166 K, the index is estimated to be
0.00116. At the same frequency and at a temperature
of 196 K, the index is estimated to be 0.00129. The
uncertainty is reported to be 10−4 for each of these two
estimated indices. The ratio of the indices is estimated
to be 0.00116/0.00129 = 0.899. Find the uncertainty
in this ratio.

11. Refer to Exercise 12 in Section 3.2. Assume that
τ0 = 50 ± 1 MPa, w = 1.2 ± 0.1 mm, and k =
0.29 ± 0.05 mm−1.

a. Estimate τ , and find the uncertainty in the estimate.

b. Which would provide the greatest reduction in the
uncertainty in τ : reducing the uncertainty in τ0 to
0.1 MPa, reducing the uncertainty in w to 0.01 mm,
or reducing the uncertainty in k to 0.025 mm−1?

c. A new, somewhat more expensive process would
allow both τ0 and w to be measured with negligi-
ble uncertainty. Is it worthwhile to implement the
process? Explain.

12. According to Snell’s law, the angle of refraction θ2

of a light ray traveling in a medium of index of
refraction n is related to the angle of incidence θ1

of a ray traveling in a vacuum through the equa-
tion sin θ1 = n sin θ2. Assume that θ1 = 0.3672 ±
0.005 radians and θ2 = 0.2943 ± 0.004 radians. Esti-
mate n, and find the uncertainty in the estimate.

13. Archaeologists studying meat storage methods em-
ployed by the Nunamiut in northern Alaska have
developed a Meat Drying Index. Following is a
slightly simplified version of the index given in
the article “A Zooarchaeological Signature for
Meat Storage: Rethinking the Drying Utility In-
dex” (T. Friesen, American Antiquity, 2001:315–331).
Let m represent the weight of meat, b the weight
of bone, and g the gross weight of some part of a cari-

bou. The Meat Drying Index y is given by y = mb/g.
Assume that for a particular caribou rib, the following
measurements are made (in grams): g = 3867.4 ±
0.3, b = 1037.0 ± 0.2, m = 2650.4 ± 0.1.

a. Estimate y, and find the uncertainty in the estimate.

b. Which would provide the greatest reduction in the
uncertainty in y: reducing the uncertainty in g to
0.1 g, reducing the uncertainty in b to 0.1 g, or
reducing the uncertainty in m to 0?

14. The resistance R (in ohms) of a cylindrical conduc-
tor is given by R = kl/d2, where l is the length, d
is the diameter, and k is a constant of proportionality.
Assume that l = 14.0±0.1 cm and d = 4.4±0.1 cm.

a. Estimate R, and find the uncertainty in the esti-
mate. Your answer will be in terms of the propor-
tionality constant k.

b. Which would provide the greater reduction in the
uncertainty in R: reducing the uncertainty in l
to 0.05 cm or reducing the uncertainty in d
to 0.05 cm?

15. A cylindrical wire of radius R elongates when sub-
jected to a tensile force F . Let L0 represent the initial
length of the wire and let L1 represent the final length.
Young’s modulus for the material is given by

Y = F L0

π R2(L1 − L0)

Assume that F = 800 ± 1 N, R = 0.75 ± 0.1 mm,
L0 = 25.0 ± 0.1 mm, and L1 = 30.0 ± 0.1 mm.

a. Estimate Y , and find the uncertainty in the estimate.

b. Of the uncertainties in F , R, L0, and L1, only one
has a non-negligible effect on the uncertainty in Y .
Which one is it?

16. According to Newton’s law of cooling, the time t
needed for an object at an initial temperature T0 to
cool to a temperature T in an environment with am-
bient temperature Ta is given by

t = ln(T0 − Ta)

k
− ln(T − Ta)

k

where k is a constant. Assume that for a certain type
of container, k = 0.025 min−1. Let t be the number
of minutes needed to cool the container to a temper-
ature of 50◦F. Assume that T0 = 70.1 ± 0.2◦F and
Ta = 35.7 ± 0.1◦F. Estimate t , and find the uncer-
tainty in the estimate.
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17. Refer to Exercise 16. In an experiment to determine
the value of k, the temperature T at time t = 10 min
is measured to be T = 54.1 ± 0.2◦F. Assume that
T0 = 70.1 ± 0.2◦F and Ta = 35.7 ± 0.1◦F. Estimate
k, and find the uncertainty in the estimate.

18. The vertical displacement v of a cracked slurry in-
filtrated fiber concrete member at maximum shear
stress is given by v = a + bw, where w is the crack
width, and a and b are estimated from data to be
a = 2.5 ± 0.1 mm and b = 0.05 ± 0.01. Assume
that w = 1.2 ± 0.1 mm.
a. Estimate v, and find the uncertainty in the estimate.

b. Of the uncertainties in w, a, and b, only one has
a non-negligible effect on the uncertainty in v.
Which one is it?

19. The shape of a bacterium can be approximated by a
cylinder of radius r and height h capped on each end
by a hemisphere. The volume and surface area of the
bacterium are given by

V = πr 2(h + 4r/3)

S = 2πr(h + 2r)

It is known that the rate R at which a chemical is ab-
sorbed into the bacterium is R = c(S/V ), where c is a
constant of proportionality. Assume that for a certain
bacterium, r = 0.9 ± 0.1 μm and h = 1.7 ± 0.1 μm.
a. Are the computed values of S and V independent?

Explain.

b. Assuming the measurements of r and h to be in-
dependent, estimate R and find the uncertainty in
the estimate. Your answer will be in terms of c.

20. Estimate U , and find the relative uncertainty in the es-
timate, assuming that X = 5.0±0.2, Y = 10.0±0.5,
and

a. U = X
√

Y

b. U = 2Y/
√

X

c. U = X 2 + Y 2

21. Refer to Exercise 10 in Section 3.2. Assume that
τ = 35.2 ± 0.1 Pa, h = 12.0 ± 0.3 mm, and
μ = 1.49 Pa · s with negligible uncertainty. Estimate
V , and find the relative uncertainty in the estimate.

22. Refer to Exercise 5. Assume that P1 = 15.3 ±
0.2 MPa and P2 = 25.8 ± 0.1 MPa. Estimate P3, and
find the relative uncertainty in the estimate.

23. Refer to Exercise 7. Assume that p = 4.3 ± 0.1 cm
and q = 2.1 ± 0.2 cm. Estimate f , and find the
relative uncertainty in the estimate.

24. Refer to Exercise 8.

a. Assume that P = 224.51 ± 0.04 kPa and V =
11.237 ± 0.002 L. Estimate T , and find the rela-
tive uncertainty in the estimate.

b. Assume that P = 224.51 ± 0.04 kPa and T =
289.33 ± 0.02 K. Estimate V , and find the relative
uncertainty in the estimate.

c. Assume that V = 11.203 ± 0.002 L and T =
289.33 ± 0.02 K. Estimate P , and find the relative
uncertainty in the estimate.

25. Refer to Exercise 12. Estimate n, and find the rel-
ative uncertainty in the estimate, from the follow-
ing measurements: θ1 = 0.216 ± 0.003 radians and
θ2 = 0.456 ± 0.005 radians.

26. Refer to Exercise 14. Assume that l = 10.0 cm ±
0.5% and d = 10.4 cm ± 0.5%.

a. Estimate R, and find the relative uncertainty in the
estimate.Doestherelativeuncertaintydependonk?

b. Assume that either l or d can be remeasured with
relative uncertainty 0.2%. Which should be remea-
sured to provide the greater improvement in the
relative uncertainty of the resistance?

27. Refer to Exercise 15. Assume that F = 750 ± 1 N,
R = 0.65 ± 0.09 mm, L0 = 23.7 ± 0.2 mm, and
L1 = 27.7 ± 0.2 mm. Estimate Y , and find the rela-
tive uncertainty in the estimate.

28. Refer to Exercise 16. Assume that T0 = 73.1 ± 0.1◦F,
Ta = 37.5 ± 0.2◦F, k = 0.032 min−1 with negligible
uncertainty, and T = 50◦F exactly. Estimate t , and
find the relative uncertainty in the estimate.

29. Refer to Exercise 19. Assume that for a certain bac-
terium, r = 0.8 ± 0.1 μm and h = 1.9 ± 0.1 μm.

a. Estimate S, and find the relative uncertainty in the
estimate.

b. Estimate V , and find the relative uncertainty in the
estimate.

c. Estimate R, and find the relative uncertainty in the
estimate.

d. Does the relative uncertainty in R depend on c?
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30. Refer to Exercise 5. Assume that the relative uncer-
tainty in P1 is 5% and the relative uncertainty in P2 is
2%. Find the relative uncertainty in P3.

31. Refer to Exercise 14. Assume that the relative uncer-
tainty in l is 3% and that the relative uncertainty in d
is 2%. Find the relative uncertainty in R.

Supplementary Exercises for Chapter 3

1. Assume that X , Y , and Z are independent measure-
ments with X = 25 ± 1, Y = 5.0 ± 0.3, and
Z = 3.5 ± 0.2. Find the uncertainties in each of the
following quantities:

a. XY + Z

b. Z/(X + Y )

c.
√

X (ln Y + Z)

d. XeZ2−2Y

2. Assume that X , Y , and Z are independent measure-
ments, and that the relative uncertainty in X is 5%,
the relative uncertainty in Y is 10%, and the relative
uncertainty in Z is 15%. Find the relative uncertainty
in each of the following quantities:

a. XY Z

b.
√

XY 2 Z 3

c.

(
XY

Z

)1/3

3. An item is to be constructed by laying three compo-
nents in a row. The length of each component will be
measured.

a. If the uncertainty in measuring the length of
each component is 1.2 mm, what is the un-
certainty in the combined length of the three
components?

b. If it is desired to estimate the length of the item
with an uncertainty of 0.5 mm, what must be the
uncertainty in the measurement of each individual
component? Assume the uncertainties in the three
measurements are the same.

4. For some genetic mutations, it is thought that the fre-
quency of the mutant gene in men increases linearly
with age. If m1 is the frequency at age t1, and m2 is
the frequency at age t2, then the yearly rate of in-
crease is estimated by r = (m2 − m1)/(t2 − t1). In
a polymerase chain reaction assay, the frequency in
20-year-old men was estimated to be 17.7 ± 1.7 per
μg DNA, and the frequency in 40-year-old men was
estimated to be 35.9 ± 5.8 per μg DNA. Assume that
age is measured with negligible uncertainty.

a. Estimate the yearly rate of increase, and find the
uncertainty in the estimate.

b. Find the relative uncertainty in the estimated rate
of increase.

5. The Darcy–Weisbach equation states that the power-
generating capacity in a hydroelectric system that is
lost due to head loss is given by P = ηγ Q H , where η

is the efficiency of the turbine, γ is the specific grav-
ity of water, Q is the flow rate, and H is the head loss.
Assume that η = 0.85 ± 0.02, H = 3.71 ± 0.10 m,
Q = 60±1 m3/s, and γ = 9800 N/m3 with negligible
uncertainty.

a. Estimate the power loss (the units will be in watts),
and find the uncertainty in the estimate.

b. Find the relative uncertainty in the estimated
power loss.

c. Which would provide the greatest reduction in the
uncertainty in P: reducing the uncertainty in η to
0.01, reducing the uncertainty in H to 0.05, or
reducing the uncertainty in Q to 0.5?

6. Let A and B represent two variants (alleles) of the
DNA at a certain locus on the genome. Let p repre-
sent the proportion of alleles in a population that are
of type A, and let q represent the proportion of alleles
that are of type B. The Hardy–Weinberg equilibrium
principle states that the proportion PAB of organisms
that are of type AB is equal to pq. In a population
survey of a particular species, the proportion of alle-
les of type A is estimated to be 0.360 ± 0.048 and
the proportion of alleles of type B is independently
estimated to be 0.250 ± 0.043.

a. Estimate the proportion of organisms that are of
type AB, and find the uncertainty in the estimate.

b. Find the relative uncertainty in the estimated pro-
portion.

c. Which would provide a greater reduction in the
uncertainty in the proportion: reducing the un-
certainty in the type A proportion to 0.02 or re-
ducing the uncertainty in the type B proportion
to 0.02?



Navidi-3810214 book November 11, 2013 12:43

Supplementary Exercises for Chapter 3 197

7. The heating capacity of a calorimeter is known to be
4 kJ/◦C, with negligible uncertainty. The number of
dietary calories (kilocalories) per gram of a substance
is given by C = cH(�T )/m, where C is the num-
ber of dietary calories, H is the heating capacity of
the calorimeter, �T is the increase in temperature in
◦C caused by burning the substance in the calorime-
ter, m is the mass of the substance in grams, and
c = 0.2390 cal/kJ is the conversion factor from kilo-
joules to dietary calories. An amount of mayonnaise
with mass 0.40 ± 0.01 g is burned in a calorimeter.
The temperature increase is 2.75 ± 0.02◦C.

a. Estimate the number of dietary calories per gram
of mayonnaise, and find the uncertainty in the
estimate.

b. Find the relative uncertainty in the estimated num-
ber of dietary calories.

c. Which would provide a greater reduction in the
uncertainty in C : reducing the uncertainty in the
mass to 0.005 g or reducing the uncertainty in �T
to 0.01◦C?

8. Sixteen independent measurements were made of the
resistance of a resistor. The average was 52.37 	 and
the standard deviation was 0.12 	.

a. Estimate the resistance of this resistor, and find
the uncertainty in the estimate.

b. A single measurement is made of the resistance
of another resistor. This measurement is 61.42 	.
What is the uncertainty in this measurement?

9. The article “Insights into Present-Day Crustal Mo-
tion in the Central Mediterranean Area from GPS
Surveys” (M. Anzidei, P. Baldi, et al., Geophysi-
cal Journal International, 2001:98–100) reports that
the components of velocity of the earth’s crust in
Zimmerwald, Switzerland, are 22.10±0.34 mm/year
in a northerly direction and 14.3 ± 0.32 mm/year in
an easterly direction.

a. Estimate the velocity of the earth’s crust, and find
the uncertainty in the estimate.

b. Using your answer to part (a), estimate the number
of years it will take for the crust to move 100 mm,
and find the uncertainty in the estimate.

10. If two gases have molar masses M1 and M2, Graham’s
law states that the ratio R of their rates of effusion
through a small opening is given by R = √

M1/M2.

The effusion rate of an unknown gas through a small
opening is measured to be 1.66 ± 0.03 times greater
than the effusion rate of carbon dioxide. The molar
mass of carbon dioxide may be taken to be 44 g/mol
with negligible uncertainty.

a. Estimate the molar mass of the unknown gas, and
find the uncertainty in the estimate.

b. Find the relative uncertainty in the estimated molar
mass.

11. A piece of plywood is composed of five layers.
The two outer layers are veneers with thickness
0.50 ± 0.02 mm, and the three inner layers each have
thickness 6.25 ± 0.05 mm. Assume the thicknesses
of the layers are independent. Estimate the thickness
of the plywood and its uncertainty.

12. The article “Effect of Varying Solids Concentration
and Organic Loading on the Performance of Temper-
ature Phased Anaerobic Digestion Process” (S. Van-
denburgh and T. Ellis, Water Environment Research,
2002:142–148) discusses experiments to determine
the effect of the solids concentration on the perfor-
mance of treatment methods for wastewater sludge.
In the first experiment, the concentration of solids
(in g/L) was 43.94 ± 1.18. In the second experiment,
which was independent of the first, the concentration
was 48.66 ± 1.76. Estimate the difference in the con-
centration between the two experiments, and find the
uncertainty in the estimate.

13. In the article “Measurements of the Thermal Con-
ductivity and Thermal Diffusivity of Polymer Melts
with the Short-Hot-Wire Method” (X. Zhang, W.
Hendro, et al., International Journal of Thermo-
physics, 2002:1077–1090), the thermal diffusivity of
a liquid measured by the transient short-hot-wire
method is given by

λ = V I A

πla

whereλ is the thermal diffusivity; V and I are the volt-
age and current applied to the hot wire, respectively;
l is the length of the wire; and A and a are quanti-
ties involving temperature whose values are estimated
separately. In this article, the relative uncertainties of
these quantities are given as follows: V , 0.01%; I ,
0.01%; l, 1%; A, 0.1%; a, 1%.
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a. Find the relative uncertainty in λ.

b. Which would reduce the relative uncertainty
more: reducing the relative uncertainty in l to 0.5%
or reducing the relative uncertainties in V , I , and
A each to 0?

14. A cable is made up of several parallel strands of wire.
The strength of the cable can be estimated from the
strengths of the individual wires by either of two
methods. In the ductile wire method, the strength of
the cable is estimated to be the sum of the strengths
of the wires. In the brittle wire method, the strength
of the cable is estimated to be the strength of the
weakest wire multiplied by the number of wires.
A particular cable is composed of 12 wires. Four
of them have strength 6000 ± 20 lb, four have
strength 5700 ± 30 lb, and four have strength
6200 ± 40 lb.

a. Estimate the strength of the cable, and find the
uncertainty in the estimate, using the ductile wire
method.

b. Estimate the strength of the cable, and find the
uncertainty in the estimate, using the brittle wire
method.

15. Refer to Exercise 14. A cable is composed of 16 wires.
The strength of each wire is 5000 ± 20 lb.

a. Will the estimated strength of the cable be the
same under the ductile wire method as under the
brittle wire method?

b. Will the uncertainty in the estimated strength of
the cable be the same under the ductile wire
method as under the brittle wire method? Explain
why or why not.

16. The mean yield from process A is estimated to
be 80 ± 5, where the units are percent of a
theoretical maximum. The mean yield from process
B is estimated to be 90 ± 3. The relative increase
obtained from process B is therefore estimated to be
(90 − 80)/80 = 0.125. Find the uncertainty in this
estimate.

17. The flow rate of water through a cylindrical pipe is
given by Q = πr 2v, where r is the radius of the pipe
and v is the flow velocity.

a. Assume that r = 3.00 ± 0.03 m and v = 4.0 ±
0.2 m/s. Estimate Q, and find the uncertainty in
the estimate.

b. Assume that r = 4.00 ± 0.04 m and v = 2.0 ±
0.1 m/s. Estimate Q, and find the uncertainty in
the estimate.

c. If r and v have not been measured, but it is known
that the relative uncertainty in r is 1% and that
the relative uncertainty in v is 5%, is it possible
to compute the relative uncertainty in Q? If so,
compute the relative uncertainty. If not, explain
what additional information is needed.

18. The conversion of cyclobutane (C4H8) to ethylene
(C2H4) is a first-order reaction. This means that the
concentration of cyclobutane at time t is given by
ln C = ln C0 − kt , where C is the concentration at
time t , C0 is the initial concentration, t is the time
since the reaction started, and k is the rate con-
stant. Assume that C0 = 0.2 mol/L with negligi-
ble uncertainty. After 300 seconds at a constant tem-
perature, the concentration is measured to be C =
0.174 ± 0.005 mol/L. Assume that time can be mea-
sured with negligible uncertainty.

a. Estimate the rate constant k, and find the uncer-
tainty in the estimate. The units of k will be s−1.

b. Find the relative uncertainty in k.

c. The half-life t1/2 of the reaction is the time it takes
for the concentration to be reduced to one-half its
initial value. The half-life is related to the rate con-
stant by t1/2 = (ln 2)/k. Using the result found in
part (a), find the uncertainty in the half-life.

d. Find the relative uncertainty in the half-life.

19. The decomposition of nitrogen dioxide (NO2) into
nitrogen monoxide (NO) and oxygen is a second-
order reaction. This means that the concentration C
of NO2 at time t is given by 1/C = kt + 1/C0,
where C0 is the initial concentration and k is the rate
constant. Assume the initial concentration is known
to be 0.03 mol/L exactly. Assume that time can be
measured with negligible uncertainty.

a. After 40 s, the concentration C is measured
to be 0.0023 ± 2.0 × 10−4 mol/L. Estimate the
rate constant k, and find the uncertainty in the
estimate.

b. After 50 s, the concentration C is measured
to be 0.0018 ± 2.0 × 10−4 mol/L. Estimate the
rate constant k, and find the uncertainty in the
estimate.
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c. Denote the estimates of the rate constant k in parts
(a) and (b) by k̂1 and k̂2, respectively. The average
(̂k1 + k̂2)/2 is used as an estimate of k. Find the
uncertainty in this estimate.

d. Find the value of c so that the weighted average
ck̂1 + (1 − c)k̂2 has the smallest uncertainty.

20. Two students want to measure the acceleration a of
a cart rolling down an inclined plane. The cart starts
at rest and travels a distance s down the plane. The
first student estimates the acceleration by measuring
the instantaneous velocity v just as the cart has trav-
eled s meters, and uses the formula a = v2/2s. The
second student estimates the acceleration by measur-
ing the time, in seconds, that the cart takes to travel s
meters, and uses the formula a = 2s/t2. Assume
that s = 1 m, and that there is negligible uncer-
tainty in s. Assume that v = 3.2 ± 0.1 m/s and that
t = 0.63 ± 0.01 s. Assume that the measurements of
v and t are independent.

a. Compute the acceleration using the method of the
first student. Call this estimate a1. Find the uncer-
tainty in a1.

b. Compute the acceleration using the method of the
second student. Call this estimate a2. Find the un-
certainty in a2.

c. Find the weighted average of a1 and a2 that has the
smallest uncertainty. Find the uncertainty in this
weighted average.

21. A track has the shape of a square capped on two op-
posite sides by semicircles. The length of a side of
the square is measured to be 181.2 ± 0.1 m.

a. Compute the area of the square and its uncertainty.

b. Compute the area of one of the semicircles and its
uncertainty.

c. Let S denote the area of the square as computed
in part (a), and let C denote the area of one of the
semicircles as computed in part (b). The area en-
closed by the track is A = S+2C . Someone com-

putes the uncertainty in A as σA =
√

σ 2
S + 4σ 2

C .
Is this correct? If so, explain why. If not, compute
the uncertainty in A correctly.

22. If X is an unbiased measurement of a true value μX ,
and U (X) is a nonlinear function of X , then in most
cases U is a biased estimate of the true value U (μX ).
In most cases this bias is ignored. If it is important to
reduce this bias, however, a bias-corrected estimate
is U (X) − (1/2)(d2U/d X 2)σ 2

X . In general the bias-
corrected estimate is not unbiased, but has a smaller
bias than U (X).

Assume that the radius of a circle is measured to
be r = 3.0 ± 0.1 cm.

a. Estimate the area A, and find the uncertainty in
the estimate, without bias correction.

b. Compute the bias-corrected estimate of A.

c. Compare the difference between the bias-
corrected and non-bias-corrected estimates to the
uncertainty in the non-bias-corrected estimate. Is
bias correction important in this case? Explain.

23. If X1, X2, . . . , Xn are independent and unbiased
measurements of true values μ1, μ2, . . . , μn , and
U (X1, X2, . . . , Xn) is a nonlinear function of
X1, X2, . . . , Xn , then in general U (X1, X2, . . . , Xn)

is a biased estimate of the true value U (μ1,

μ2, . . . , μn). A bias-corrected estimate is U (X1,

X2, . . . , Xn) − (1/2)
∑n

i=1(∂
2U/∂ X 2

i )σ
2
Xi

.
When air enters a compressor at pressure

P1 and leaves at pressure P2, the intermediate
pressure is given by P3 = √

P1 P2. Assume that
P1 = 8.1 ± 0.1 MPa and P2 = 15.4 ± 0.2 MPa.

a. Estimate P3, and find the uncertainty in the esti-
mate, without bias correction.

b. Compute the bias-corrected estimate of P3.

c. Compare the difference between the bias-
corrected and non-bias-corrected estimates to the
uncertainty in the non-bias-corrected estimate. Is
bias correction important in this case? Explain.
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4
Commonly Used
Distributions

Introduction

Statistical inference involves drawing a sample from a population and analyzing the
sample data to learn about the population. In many situations, one has an approxi-
mate knowledge of the probability mass function or probability density function of the
population. In these cases, the probability mass or density function can often be well
approximated by one of several standard families of curves, or functions. In this chap-
ter, we describe some of these standard functions, and for each one we describe some
conditions under which it is appropriate.

4.1 The Bernoulli Distribution

Imagine an experiment that can result in one of two outcomes. One outcome is labeled
“success,” and the other outcome is labeled “failure.” The probability of success is de-
noted by p. The probability of failure is therefore 1− p. Such a trial is called a Bernoulli
trial with success probability p. The simplest Bernoulli trial is the toss of a coin. The
two outcomes are heads and tails. If we define heads to be the success outcome, then p is
the probability that the coin comes up heads. For a fair coin, p = 1/2. Another example
of a Bernoulli trial is the selection of a component from a population of components,
some of which are defective. If we define “success” as a defective component, then p is
the proportion of defective components in the population.

For any Bernoulli trial, we define a random variable X as follows: If the experiment
results in success, then X = 1. Otherwise X = 0. It follows that X is a discrete random
variable, with probability mass function p(x) defined by

p(0) = P(X = 0) = 1 − p

p(1) = P(X = 1) = p
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p(x) = 0 for any value of x other than 0 or 1

The random variable X is said to have the Bernoulli distribution with parameter p.
The notation is X ∼ Bernoulli(p). Figure 4.1 presents probability histograms for the
Bernoulli(0.5) and Bernoulli(0.8) probability mass functions.

(b)(a)
0 10 1

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

FIGURE 4.1 (a) The Bernoulli(0.5) probability histogram. (b) The Bernoulli(0.8)

probability histogram.

Example
4.1 A coin has probability 0.5 of landing heads when tossed. Let X = 1 if the coin comes

up heads, and X = 0 if the coin comes up tails. What is the distribution of X?

Solution
Since X = 1 when heads comes up, heads is the success outcome. The success
probability, P(X = 1), is equal to 0.5. Therefore X ∼ Bernoulli(0.5).

Example
4.2 A die has probability 1/6 of coming up 6 when rolled. Let X = 1 if the die comes up

6, and X = 0 otherwise. What is the distribution of X?

Solution
The success probability is p = P(X = 1) = 1/6. Therefore X ∼ Bernoulli(1/6).

Example
4.3 Ten percent of the components manufactured by a certain process are defective. A

component is chosen at random. Let X = 1 if the component is defective, and X = 0
otherwise. What is the distribution of X?

Solution
The success probability is p = P(X = 1) = 0.1. Therefore X ∼ Bernoulli(0.1).
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Mean and Variance of a Bernoulli Random Variable
It is easy to compute the mean and variance of a Bernoulli random variable. If
X ∼ Bernoulli(p), then, using Equations (2.29) and (2.30) (in Section 2.4), we compute

μX = (0)(1 − p) + (1)(p)

= p

σ 2
X = (0 − p)2(1 − p) + (1 − p)2(p)

= p(1 − p)

Summary
If X ∼ Bernoulli(p), then

μX = p (4.1)

σ 2
X = p(1 − p) (4.2)

Example
4.4 Refer to Example 4.3. Find μX and σ 2

X .

Solution
Since X ∼ Bernoulli(0.1), the success probability p is equal to 0.1. Using Equa-
tions (4.1) and (4.2), μX = 0.1 and σ 2

X = 0.1(1 − 0.1) = 0.09.

Exercises for Section 4.1

1. After scoring a touchdown, a football team may elect
to attempt a two-point conversion, by running or pass-
ing the ball into the end zone. If successful, the team
scores two points. For a certain football team, the prob-
ability that this play is successful is 0.40.

a. Let X = 1 if successful, X = 0 if not. Find the
mean and variance of X .

b. If the conversion is successful, the team scores 2
points; if not the team scores 0 points. Let Y be the
number of points scored. Does Y have a Bernoulli
distribution? If so, find the success probability. If
not, explain why not.

c. Find the mean and variance of Y .

2. A certain brand of dinnerware set comes in three col-
ors: red, white, and blue. Twenty percent of customers
order the red set, 45% order the white, and 35% order
the blue. Let X = 1 if a randomly chosen order is for
a red set, let X = 0 otherwise; let Y = 1 if the order is

for a white set, let Y = 0 otherwise; let Z = 1 if it is
for either a red or white set, and let Z = 0 otherwise.

a. Let pX denote the success probability for X .
Find pX .

b. Let pY denote the success probability for Y .
Find pY .

c. Let pZ denote the success probability for Z .
Find pZ .

d. Is it possible for both X and Y to equal 1?

e. Does pZ = pX + pY ?

f. Does Z = X + Y ? Explain.

3. When a certain glaze is applied to a ceramic surface,
the probability is 5% that there will be discoloration,
20% that there will be a crack, and 23% that there will
be either discoloration or a crack, or both. Let X = 1
if there is discoloration, and let X = 0 otherwise. Let
Y = 1 if there is a crack, and let Y = 0 otherwise.
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Let Z = 1 if there is either discoloration or a crack,
or both, and let Z = 0 otherwise.

a. Let pX denote the success probability for X .
Find pX .

b. Let pY denote the success probability for Y .
Find pY .

c. Let pZ denote the success probability for Z .
Find pZ .

d. Is it possible for both X and Y to equal 1?

e. Does pZ = pX + pY ?

f. Does Z = X + Y ? Explain.

4. Let X and Y be Bernoulli random variables. Let
Z = X + Y .

a. Show that if X and Y cannot both be equal to 1, then
Z is a Bernoulli random variable.

b. Show that if X and Y cannot both be equal to 1, then
pZ = pX + pY .

c. Show that if X and Y can both be equal to 1, then Z
is not a Bernoulli random variable.

5. A penny and a nickel are tossed. Both are fair coins.
Let X = 1 if the penny comes up heads, and let
X = 0 otherwise. Let Y = 1 if the nickel comes
up heads, and let Y = 0 otherwise. Let Z = 1 if both
the penny and nickel come up heads, and let Z = 0
otherwise.

a. Let pX denote the success probability for X .
Find pX .

b. Let pY denote the success probability for Y .
Find pY .

c. Let pZ denote the success probability for Z .
Find pZ .

d. Are X and Y independent?

e. Does pZ = pX pY ?

f. Does Z = XY ? Explain.

6. Two dice are rolled. Let X = 1 if the dice come up
doubles and let X = 0 otherwise. Let Y = 1 if the
sum is 6, and let Y = 0 otherwise. Let Z = 1 if the
dice come up both doubles and with a sum of 6 (that
is, double 3), and let Z = 0 otherwise.

a. Let pX denote the success probability for X .
Find pX .

b. Let pY denote the success probability for Y .
Find pY .

c. Let pZ denote the success probability for Z .
Find pZ .

d. Are X and Y independent?

e. Does pZ = pX pY ?

f. Does Z = XY ? Explain.

7. Let X and Y be Bernoulli random variables. Let
Z = XY .

a. Show that Z is a Bernoulli random variable.

b. Show that if X and Y are independent, then pZ =
pX pY .

4.2 The Binomial Distribution

Sampling a single component from a lot and determining whether it is defective is an
example of a Bernoulli trial. In practice, we might sample several components from a very
large lot and count the number of defectives among them. This amounts to conducting
several independent Bernoulli trials and counting the number of successes. The number
of successes is then a random variable, which is said to have a binomial distribution.

We now present a formal description of the binomial distribution. Assume that a
series of n Bernoulli trials is conducted, each with the same success probability p.
Assume further that the trials are independent, that is, that the outcome of one trial does
not influence the outcomes of any of the other trials. Let the random variable X equal the
number of successes in these n trials. Then X is said to have the binomial distribution
with parameters n and p. The notation is X ∼ Bin(n, p). X is a discrete random variable,
and its possible values are 0, 1, . . . , n.
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Summary
If a total of n Bernoulli trials are conducted, and

■ The trials are independent

■ Each trial has the same success probability p

■ X is the number of successes in the n trials

then X has the binomial distribution with parameters n and p, denoted
X ∼ Bin(n, p).

Example
4.5 A fair coin is tossed 10 times. Let X be the number of heads that appear. What is the

distribution of X?

Solution
There are 10 independent Bernoulli trials, each with success probability p = 0.5.
The random variable X is equal to the number of successes in the 10 trials. Therefore
X ∼ Bin(10, 0.5).

Recall from the discussion of independence in Section 1.1 that when drawing a
sample from a finite, tangible population, the sample items may be treated as independent
if the population is very large compared to the size of the sample. Otherwise the sample
items are not independent. In some cases, the purpose of drawing a sample may be to
classify each sample item into one of two categories. For example, we may sample a
number of items from a lot and classify each one as defective or nondefective. In these
cases, each sampled item is a Bernoulli trial, with one category counted as a success
and the other counted as a failure. When the population of items is large compared to
the number sampled, these Bernoulli trials are nearly independent, and the number of
successes among them has, for all practical purposes, a binomial distribution. When the
population size is not large compared to the sample, however, the Bernoulli trials are
not independent, and the number of successes among them does not have a binomial
distribution. A good rule of thumb is that if the sample size is 5% or less of the population,
the binomial distribution may be used.

Summary
Assume that a finite population contains items of two types, successes and fail-
ures, and that a simple random sample is drawn from the population. Then if the
sample size is no more than 5% of the population, the binomial distribution may
be used to model the number of successes.
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Example
4.6 A lot contains several thousand components, 10% of which are defective. Seven com-

ponents are sampled from the lot. Let X represent the number of defective components
in the sample. What is the distribution of X?

Solution
Since the sample size is small compared to the population (i.e., less than 5%), the
number of successes in the sample approximately follows a binomial distribution.
Therefore we model X with the Bin(7, 0.1) distribution.

Probability Mass Function of a Binomial Random Variable
We now derive the probability mass function of a binomial random variable by consider-
ing an example. A biased coin has probability 0.6 of coming up heads. The coin is tossed
three times. Let X be the number of heads. Then X ∼ Bin(3, 0.6). We will compute
P(X = 2).

There are three arrangements of two heads in three tosses of a coin, HHT, HTH,
and THH. We first compute the probability of HHT. The event HHT is a sequence of
independent events: H on the first toss, H on the second toss, T on the third toss. We
know the probabilities of each of these events separately:

P(H on the first toss)=0.6, P(H on the second toss)=0.6, P(T on the third toss)=0.4

Since the events are independent, the probability that they all occur is equal to the product
of their probabilities (Equation 2.20 in Section 2.3). Thus

P(HHT)=(0.6)(0.6)(0.4)=(0.6)2(0.4)1

Similarly, P(HTH)=(0.6)(0.4)(0.6) = (0.6)2(0.4)1, and P(THH) = (0.4)(0.6)(0.6) =
(0.6)2(0.4)1. It is easy to see that all the different arrangements of two heads and one
tail have the same probability. Now

P(X = 2) = P(HHT or HTH or THH)

= P(HHT) + P(HTH) + P(THH)

= (0.6)2(0.4)1 + (0.6)2(0.4)1 + (0.6)2(0.4)1

= 3(0.6)2(0.4)1

Examining this result, we see that the number 3 represents the number of arrangements
of two successes (heads) and one failure (tails), 0.6 is the success probability p, the
exponent 2 is the number of successes, 0.4 is the failure probability 1 − p, and the
exponent 1 is the number of failures.

We can now generalize this result to produce a formula for the probability of x
successes in n independent Bernoulli trials with success probability p, in terms of x,n,
and p. In other words, we can compute P(X = x) where X ∼ Bin(n, p). We can
see that
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P(X = x) = (number of arrangements of x successes in n trials) · px (1 − p)n−x

(4.3)

All we need to do now is to provide an expression for the number of arrangements of x
successes in n trials. To describe this number, we need factorial notation. For any positive
integer n, the quantity n! (read “n factorial”) is the number

(n)(n − 1)(n − 2) · · · (3)(2)(1)

We also define 0! = 1. The number of arrangements of x successes in n trials is
n!/[x!(n − x)!]. (A derivation of this result is presented in Section 2.2.) We can now
define the probability mass function for a binomial random variable.

If X ∼ Bin(n, p), the probability mass function of X is

p(x) = P(X = x) =

⎧⎪⎨
⎪⎩

n!

x!(n − x)!
px (1 − p)n−x x = 0, 1, . . . , n

0 otherwise

(4.4)

Figure 4.2 presents probability histograms for the Bin(10, 0.4) and Bin(20, 0.1) proba-
bility mass functions.
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FIGURE 4.2 (a) The Bin(10, 0.4) probability histogram. (b) The Bin(20, 0.1) probability histogram.

Example
4.7 Find the probability mass function of the random variable X if X ∼ Bin(10, 0.4).

Find P(X = 5).



Navidi-3810214 book November 11, 2013 12:48

4.2 The Binomial Distribution 207

Solution
We use Equation (4.4) with n = 10 and p = 0.4. The probability mass function is

p(x) =

⎧⎪⎨
⎪⎩

10!

x!(10 − x)!
(0.4)x (0.6)10−x x = 0, 1, . . . , 10

0 otherwise

P(X = 5) = p(5) = 10!

5!(10 − 5)!
(0.4)5(0.6)10−5

= 0.2007

Example
4.8 A fair die is rolled eight times. Find the probability that no more than 2 sixes come up.

Solution
Each roll of the die is a Bernoulli trial with success probability 1/6. Let X denote the
number of sixes in 8 rolls. Then X ∼ Bin(8, 1/6). We need to find P(X ≤ 2). Using
the probability mass function,

P(X ≤ 2) = P(X = 0 or X = 1 or X = 2)

= P(X = 0) + P(X = 1) + P(X = 2)

= 8!

0!(8 − 0)!

(
1

6

)0 (
5

6

)8−0

+ 8!

1!(8 − 1)!

(
1

6

)1 (
5

6

)8−1

+ 8!

2!(8 − 2)!

(
1

6

)2 (
5

6

)8−2

= 0.2326 + 0.3721 + 0.2605

= 0.8652

Table A.1 (in Appendix A) presents binomial probabilities of the form P(X ≤ x) for
n ≤ 20 and selected values of p. Examples 4.9 and 4.10 illustrate the use of this table.

Example
4.9 A large industrial firm allows a discount on any invoice that is paid within 30 days. Of

all invoices, 10% receive the discount. In a company audit, 12 invoices are sampled at
random. What is the probability that fewer than 4 of the 12 sampled invoices receive
the discount?

Solution
Let X represent the number of invoices in the sample that receive discounts. Then
X ∼ Bin(12, 0.1). The probability that fewer than four invoices receive discounts is
P(X ≤ 3). We consult Table A.1 with n = 12, p = 0.1, and x = 3. We find that
P(X ≤ 3) = 0.974.
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Sometimes the best way to compute the probability of an event is to compute the
probability that the event does not occur, and then subtract from 1. Example 4.10 provides
an illustration.

Example
4.10 Refer to Example 4.9. What is the probability that more than 1 of the 12 sampled

invoices receives a discount?

Solution
Let X represent the number of invoices in the sample that receive discounts. We wish
to compute the probability P(X > 1). Table A.1 presents probabilities of the form
P(X ≤ x). Therefore we note that P(X > 1) = 1 − P(X ≤ 1). Consulting the
table with n = 12, p = 0.1, x = 1, we find that P(X ≤ 1) = 0.659. Therefore
P(X > 1) = 1 − 0.659 = 0.341.

A Binomial Random Variable Is a Sum of Bernoulli
Random Variables
Assume n independent Bernoulli trials are conducted, each with success probability
p. Let Y1, . . . , Yn be defined as follows: Yi = 1 if the i th trial results in success, and
Yi = 0 otherwise. Then each of the random variables Yi has the Bernoulli(p) distribution.
Now let X represent the number of successes among the n trials. Then X ∼ Bin(n, p).
Since each Yi is either 0 or 1, the sum Y1 + · · · + Yn is equal to the number of the Yi

that have the value 1, which is the number of successes among the n trials. Therefore
X = Y1 + · · · + Yn . This shows that a binomial random variable can be expressed as
a sum of Bernoulli random variables. Put another way, sampling a single value from a
Bin(n, p) population is equivalent to drawing a sample of size n from a Bernoulli(p)

population, and then summing the sample values.

The Mean and Variance of a Binomial Random Variable
With a little thought, it is easy to see how to compute the mean of a binomial random
variable. For example, if a fair coin is tossed 10 times, we expect on the average to see
five heads. The number 5 comes from multiplying the success probability (0.5) by the
number of trials (10). This method works in general. If we perform n Bernoulli trials,
each with success probability p, the mean number of successes is np. Therefore, if
X ∼ Bin(n, p), then μX = np. We can verify this intuition by noting that X is the sum
of n Bernoulli variables, each with mean p. The mean of X is therefore the sum of the
means of the Bernoulli random variables that compose it, which is equal to np.

We can compute σ 2
X by again noting that X is the sum of independent Bernoulli

random variables and recalling that the variance of a Bernoulli random variable is
p(1 − p). The variance of X is therefore the sum of the variances of the Bernoulli
random variables that compose it, which is equal to np(1 − p).
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Summary
If X ∼ Bin(n, p), then the mean and variance of X are given by

μX = np (4.5)

σ 2
X = np(1 − p) (4.6)

Using the binomial probability mass function (Equation 4.4), we could in principle
compute the mean and variance of a binomial random variable by using the defini-
tions of mean and variance for a discrete random variable (Equations 2.29 and 2.30 in
Section 2.4). These expressions involve sums that are tedious to evaluate. It is much
easier to think of a binomial random variable as a sum of independent Bernoulli random
variables.

Using a Sample Proportion to Estimate a Success Probability
In many cases we do not know the success probability p associated with a certain
Bernoulli trial, and we wish to estimate its value. A natural way to do this is to conduct
n independent trials and count the number X of successes. To estimate the success
probability p we compute the sample proportion p̂.

p̂ = number of successes

number of trials
= X

n

This notation follows a pattern that is important to know. The success probability, which
is unknown, is denoted by p. The sample proportion, which is known, is denoted p̂. The
“hat” (̂ ) indicates that p̂ is used to estimate the unknown value p.

Example
4.11 A quality engineer is testing the calibration of a machine that packs ice cream into

containers. In a sample of 20 containers, 3 are underfilled. Estimate the probability p
that the machine underfills a container.

Solution
The sample proportion of underfilled containers is p̂ = 3/20 = 0.15. We estimate
that the probability p that the machine underfills a container is 0.15 as well.

Uncertainty in the Sample Proportion
It is important to realize that the sample proportion p̂ is just an estimate of the success
probability p, and in general, is not equal to p. If another sample were taken, the value
of p̂ would probably come out differently. In other words, there is uncertainty in p̂. For p̂
to be useful, we must compute its bias and its uncertainty. We now do this. Let n denote
the sample size, and let X denote the number of successes, where X ∼ Bin(n, p).
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The bias is the difference μp̂ − p. Since p̂ = X/n, it follows from Equation (2.41)
(in Section 2.5) that

μp̂ = μX/n = μX

n

= np

n
= p

Since μp̂ = p, p̂ is unbiased; in other words, its bias is 0.
The uncertainty is the standard deviation σp̂. From Equation (4.6), the standard

deviation of X is σX = √
np(1 − p). Since p̂ = X/n, it follows from Equation (2.43)

(in Section 2.5) that

σp̂ = σX/n = σX

n

=
√

np(1 − p)

n
=

√
p(1 − p)

n

In practice, when computing the uncertainty in p̂, we don’t know the success probability
p, so we approximate it with p̂.

Summary
If X ∼ Bin(n, p), then the sample proportion p̂ = X/n is used to estimate the
success probability p.

■ p̂ is unbiased.

■ The uncertainty in p̂ is

σp̂ =
√

p(1 − p)

n
(4.7)

In practice, when computing σp̂, we substitute p̂ for p, since p is unknown.

Example
4.12 The safety commissioner in a large city wants to estimate the proportion of buildings

in the city that are in violation of fire codes. A random sample of 40 buildings is
chosen for inspection, and 4 of them are found to have fire code violations. Estimate
the proportion of buildings in the city that have fire code violations, and find the
uncertainty in the estimate.

Solution
Let p denote the proportion of buildings in the city that have fire code violations. The
sample size (number of trials) is n = 40. The number of buildings with violations
(successes) is X = 4. We estimate p with the sample proportion p̂:

p̂ = X

n
= 4

40
= 0.10
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Using Equation (4.7), the uncertainty in p̂ is

σp̂ =
√

p(1 − p)

n

Substituting p̂ = 0.1 for p and 40 for n, we obtain

σp̂ =
√

(0.10)(0.90)

40

= 0.047

In Example 4.12, it turned out that the uncertainty in the sample proportion was
rather large. We can reduce the uncertainty by increasing the sample size. Example 4.13
shows how to compute the approximate sample size needed to reduce the uncertainty to
a specified amount.

Example
4.13 In Example 4.12, approximately how many additional buildings must be inspected

so that the uncertainty in the sample proportion of buildings in violation will be
only 0.02?

Solution
We need to find the value of n so that σp̂ = √

p(1 − p)/n = 0.02. Approximating p
with p̂ = 0.1, we obtain

σp̂ =
√

(0.1)(0.9)

n
= 0.02

Solving for n yields n = 225. We have already sampled 40 buildings, so we need to
sample 185 more.

The following example requires knowledge of propagation of error, which is covered
in Section 3.3.

Example
4.14 In a sample of 100 newly manufactured automobile tires, 7 are found to have minor

flaws in the tread. If four newly manufactured tires are selected at random and installed
on a car, estimate the probability that none of the four tires have a flaw, and find the
uncertainty in this estimate.

Solution
Let p represent the probability that a tire has no flaw. The probability that all four
tires have no flaw is p4. We use propagation of error (Section 3.3) to estimate the
uncertainty in p4. We begin by computing the sample proportion p̂ and finding its
uncertainty. The sample proportion is p̂ = 93/100 = 0.93. The uncertainty in p̂ is
given by σp̂ = √

p(1 − p)/n. We substitute n = 100 and p̂ = 0.93 for p to obtain

σp̂ =
√

(0.93)(0.07)

100
= 0.0255
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We estimate p4 with p̂4 = 0.934 = 0.7481. We use Equation (3.10) to compute the
uncertainty in p̂4:

σp̂4 ≈
∣∣∣∣ d

d p̂
p̂4

∣∣∣∣ σp̂

= 4p̂3σp̂

= 4(0.93)3(0.0255)

= 0.082

Exercises for Section 4.2

1. Let X ∼ Bin(7, 0.3). Find

a. P(X = 1)

b. P(X = 2)

c. P(X < 1)

d. P(X > 4)

e. μX

f. σ 2
X

2. Let X ∼ Bin(9, 0.4). Find

a. P(X > 6)

b. P(X ≥ 2)

c. P(2 ≤ X < 5)

d. P(2 < X ≤ 5)

e. P(X = 0)

f. P(X = 7)

g. μX

h. σ 2
X

3. Find the following probabilities:

a. P(X = 2) when X ∼ Bin(4, 0.6)

b. P(X > 2) when X ∼ Bin(8, 0.2)

c. P(X ≤ 2) when X ∼ Bin(5, 0.4)

d. P(3 ≤ X ≤ 5) when X ∼ Bin(6, 0.7)

4. At a certain airport, 75% of the flights arrive on time.
A sample of 10 flights is studied.

a. Find the probability that all 10 of the flights were
on time.

b. Find the probability that exactly eight of the flights
were on time.

c. Find the probability that eight or more of the flights
were on time.

5. Of all the registered automobiles in a certain state,
10% violate the state emissions standard. Twelve au-
tomobiles are selected at random to undergo an emis-
sions test.

a. Find the probability that exactly three of them vi-
olate the standard.

b. Find the probability that fewer than three of them
violate the standard.

c. Find the probability that none of them violate the
standard.

6. A fair die is rolled 8 times.

a. What is the probability that the die comes up 6
exactly twice?

b. What is the probability that the die comes up an
odd number exactly five times?

c. Find the mean number of times a 6 comes up.

d. Find the mean number of times an odd number
comes up.

e. Find the standard deviation of the number of times
a 6 comes up.

f. Find the standard deviation of the number of times
an odd number comes up.

7. Of all the weld failures in a certain assembly, 85% of
them occur in the weld metal itself, and the remaining
15% occur in the base metal. A sample of 20 weld
failures is examined.

a. What is the probability that exactly five of them are
base metal failures?

b. What is the probability that fewer than four of them
are base metal failures?

c. What is the probability that none of them are base
metal failures?
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d. Find the mean number of base metal failures.

e. Find the standard deviation of the number of base
metal failures.

8. A general contracting firm experiences cost overruns
on 20% of its contracts. In a company audit, 20 con-
tracts are sampled at random.

a. What is the probability that exactly four of them
experience cost overruns?

b. What is the probability that fewer than three of
them experience cost overruns?

c. What is the probability that none of them experi-
ence cost overruns?

d. Find the mean number that experience cost
overruns.

e. Find the standard deviation of the number that ex-
perience cost overruns.

9. Several million lottery tickets are sold, and 60% of the
tickets are held by women. Five winning tickets will
be drawn at random.

a. What is the probability that three or fewer of the
winners will be women?

b. What is the probability that three of the winners
will be of one gender and two of the winners will
be of the other gender?

10. A quality engineer takes a random sample of 100 steel
rods from a day’s production, and finds that 92 of them
meet specifications.

a. Estimate the proportion of that day’s production
that meets specifications, and find the uncertainty
in the estimate.

b. Estimate the number of rods that must be sampled
to reduce the uncertainty to 1%.

11. In a random sample of 100 parts ordered from vendor
A, 12 were defective. In a random sample of 200 parts
ordered from vendor B, 10 were defective.

a. Estimate the proportion of parts from vendor A
that are defective, and find the uncertainty in the
estimate.

b. Estimate the proportion of parts from vendor B
that are defective, and find the uncertainty in the
estimate.

c. Estimate the difference in the proportions, and find
the uncertainty in the estimate.

12. Of the items manufactured by a certain process, 20%
are defective. Of the defective items, 60% can be
repaired.

a. Find the probability that a randomly chosen item
is defective and cannot be repaired.

b. Find the probability that exactly 2 of 20 randomly
chosen items are defective and cannot be repaired.

13. Of the bolts manufactured for a certain application,
90% meet the length specification and can be used
immediately, 6% are too long and can be used af-
ter being cut, and 4% are too short and must be
scrapped.

a. Find the probability that a randomly selected bolt
can be used (either immediately or after being
cut).

b. Find the probability that fewer than 9 out of a sam-
ple of 10 bolts can be used (either immediately or
after being cut).

14. Gears produced by a grinding process are categorized
either as conforming (suitable for their intended pur-
pose), downgraded (unsuitable for the intended pur-
pose but usable for another purpose), or scrap (not
usable). Suppose that 80% of the gears produced are
conforming, 15% are downgraded, and 5% are scrap.
Ten gears are selected at random.

a. What is the probability that one or more is scrap?

b. What is the probability that eight or more are not
scrap?

c. What is the probability that more than two are
either downgraded or scrap?

d. What is the probability that exactly nine are either
conforming or downgraded?

15. A commuter must pass through three traffic lights
on her way to work. For each light, the probability
that it is green when she arrives is 0.6. The lights are
independent.

a. What is the probability that all three lights are
green?

b. The commuter goes to work five days per week.
Let X be the number of times out of the five days in
a given week that all three lights are green. Assume
the days are independent of one another. What is
the distribution of X?

c. Find P(X = 3).
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16. A distributor receives a large shipment of components.
The distributor would like to accept the shipment if
10% or fewer of the components are defective and
to return it if more than 10% of the components are
defective. She decides to sample 10 components, and
to return the shipment if more than 1 of the 10 is
defective.

a. If the proportion of defectives in the batch is in fact
10%, what is the probability that she will return the
shipment?

b. If the proportion of defectives in the batch is 20%,
what is the probability that she will return the
shipment?

c. If the proportion of defectives in the batch is 2%,
what is the probability that she will return the
shipment?

d. The distributor decides that she will accept the
shipment only if none of the sampled items are de-
fective. What is the minimum number of items she
should sample if she wants to have a probability no
greater than 0.01 of accepting the shipment if 20%
of the components in the shipment are defective?

17. A k out of n system is one in which there is a group of n
components, and the system will function if at least k
of the components function. Assume the components
function independently of one another.

a. In a 3 out of 5 system, each component has prob-
ability 0.9 of functioning. What is the probability
that the system will function?

b. In a 3 out of n system, in which each component has
probability 0.9 of functioning, what is the smallest
value of n needed so that the probability that the
system functions is at least 0.90?

18. Refer to Exercise 17 for the definition of a k out of
n system. For a certain 4 out of 6 system, assume
that on a rainy day each component has probability
0.7 of functioning, and that on a nonrainy day each
component has probability 0.9 of functioning.

a. What is the probability that the system functions
on a rainy day?

b. What is the probability that the system functions
on a nonrainy day?

c. Assume that the probability of rain tomorrow is
0.20. What is the probability that the system will
function tomorrow?

19. A certain large shipment comes with a guarantee that
it contains no more than 15% defective items. If the
proportion of defective items in the shipment is greater
than 15%, the shipment may be returned. You draw a
random sample of 10 items. Let X be the number of
defective items in the sample.

a. If in fact 15% of the items in the shipment are
defective (so that the shipment is good, but just
barely), what is P(X ≥ 7)?

b. Based on the answer to part (a), if 15% of the items
in the shipment are defective, would 7 defectives in
a sample of size 10 be an unusually large number?

c. If you found that 7 of the 10 sample items were
defective, would this be convincing evidence that
the shipment should be returned? Explain.

d. If in fact 15% of the items in the shipment are
defective, what is P(X ≥ 2)?

e. Based on the answer to part (d), if 15% of the items
in the shipment are defective, would 2 defectives in
a sample of size 10 be an unusually large number?

f. If you found that 2 of the 10 sample items were
defective, would this be convincing evidence that
the shipment should be returned? Explain.

20. An insurance company offers a discount to home-
owners who install smoke detectors in their homes.
A company representative claims that 80% or more of
policyholders have smoke detectors. You draw a ran-
dom sample of eight policyholders. Let X be the num-
ber of policyholders in the sample who have smoke
detectors.

a. If exactly 80% of the policyholders have smoke
detectors (so the representative’s claim is true, but
just barely), what is P(X ≤ 1)?

b. Based on the answer to part (a), if 80% of the pol-
icyholders have smoke detectors, would one poli-
cyholder with a smoke detector in a sample of size
8 be an unusually small number?

c. If you found that one of the eight sample policy-
holders had a smoke detector, would this be con-
vincing evidence that the claim is false? Explain.

d. If exactly 80% of the policyholders have smoke
detectors, what is P(X ≤ 6)?

e. Based on the answer to part (d), if 80% of the poli-
cyholders have smoke detectors, would six policy-
holders with smoke detectors in a sample of size 8
be an unusually small number?
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f. If you found that six of the eight sample policyhold-
ers had smoke detectors, would this be convincing
evidence that the claim is false? Explain.

21. A message consists of a string of bits (0s and 1s).
Due to noise in the communications channel, each bit
has probability 0.3 of being reversed (i.e., a 1 will be
changed to a 0 or a 0 to a 1). To improve the accuracy
of the communication, each bit is sent five times, so,
for example, 0 is sent as 00000. The receiver assigns
the value 0 if three or more of the bits are decoded as
0, and 1 if three or more of the bits are decoded as 1.
Assume that errors occur independently.

a. A 0 is sent (as 00000). What is the probability that
the receiver assigns the correct value of 0?

b. Assume that each bit is sent n times, where n is an
odd number, and that the receiver assigns the value
decoded in the majority of the bits. What is the min-
imum value of n necessary so that the probability
that the correct value is assigned is at least 0.90?

22. Let X ∼ Bin(n, p), and let Y = n − X . Show that
Y ∼ Bin(n, 1 − p).

23. Porcelain figurines are sold for $10 if flawless, and
for $3 if there are minor cosmetic flaws. Of the fig-
urines made by a certain company, 90% are flawless
and 10% have minor cosmetic flaws. In a sample of
100 figurines that are sold, let Y be the revenue earned
by selling them and let X be the number of them that
are flawless.

a. Express Y as a function of X .

b. Find μY .

c. Find σY .

24. One design for a system requires the installation of
two identical components. The system will work if
at least one of the components works. An alterna-
tive design requires four of these components, and
the system will work if at least two of the four com-
ponents work. If the probability that a component
works is 0.9, and if the components function inde-
pendently, which design has the greater probability of
functioning?

25. (Requires material from Section 3.3.) Refer to Exam-
ple 4.14. Estimate the probability that exactly one of
the four tires has a flaw, and find the uncertainty in the
estimate.

26. If p is a success probability, the quantity p/(1 − p)

is called the odds. Odds are commonly estimated in
medical research. The article “A Study of Twelve
Southern California Communities with Differing Lev-
els and Types of Air Pollution” (J. Peters, E. Avol,
et al., The American Journal of Respiratory and Crit-
ical Care Medicine, 1999:760–767) reports an assess-
ment of respiratory health of southern California chil-
dren. Assume that 88 boys in a sample of 612 re-
ported being diagnosed with bronchitis during the last
12 months.

a. Estimate the proportion p of boys who have been
diagnosed with bronchitis, and find the uncertainty
in the estimate.

b. (Requires material from Section 3.3.) Estimate the
odds, and find the uncertainty in the estimate.

4.3 The Poisson Distribution

The Poisson distribution arises frequently in scientific work. One way to think of the
Poisson distribution is as an approximation to the binomial distribution when n is large
and p is small. We illustrate with an example.

A mass contains 10,000 atoms of a radioactive substance. The probability that a given
atom will decay in a one-minute time period is 0.0002. Let X represent the number of
atoms that decay in one minute. Now each atom can be thought of as a Bernoulli trial,
where success occurs if the atom decays. Thus X is the number of successes in 10,000
independent Bernoulli trials, each with success probability 0.0002, so the distribution of
X is Bin(10,000, 0.0002). The mean of X is μX = (10,000)(0.0002) = 2.
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Another mass contains 5000 atoms, and each of these atoms has probability 0.0004
of decaying in a one-minute time interval. Let Y represent the number of atoms
that decay in one minute from this mass. By the reasoning in the previous paragraph,
Y ∼ Bin(5000, 0.0004) and μY = (5000)(0.0004) = 2.

In each of these cases, the number of trials n and the success probability p are
different, but the mean number of successes, which is equal to the product np, is the
same. Now assume that we wanted to compute the probability that exactly three atoms
decay in one minute for each of these masses. Using the binomial probability mass
function, we would compute as follows:

P(X = 3) = 10,000!

3! 9997!
(0.0002)3(0.9998)9997 = 0.180465091

P(Y = 3) = 5000!

3! 4997!
(0.0004)3(0.9996)4997 = 0.180483143

It turns out that these probabilities are very nearly equal to each other. Although it
is not obvious from the formula for the binomial probability mass function, it is the case
that when n is large and p is small the mass function depends almost entirely on the mean
np, and very little on the specific values of n and p. We can therefore approximate the
binomial mass function with a quantity that depends on the product np only. Specifically,
if n is large and p is small, and we let λ = np, it can be shown by advanced methods
that for all x ,

n!

x!(n − x)!
px (1 − p)n−x ≈ e−λ λx

x!
(4.8)

We are led to define a new probability mass function, called the Poisson probability mass
function. The Poisson probability mass function is defined by

p(x) = P(X = x) =
{

e−λ λx

x!
if x is a non-negative integer

0 otherwise
(4.9)

If X is a random variable whose probability mass function is given by Equation (4.9),
then X is said to have the Poisson distribution with parameter λ. The notation is
X ∼ Poisson(λ).

Example
4.15 If X ∼ Poisson(3), compute P(X = 2), P(X = 10), P(X = 0), P(X = −1), and

P(X = 0.5).
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Solution
Using the probability mass function (4.9), with λ = 3, we obtain

P(X = 2) = e−3 32

2!
= 0.2240

P(X = 10) = e−3 310

10!
= 0.0008

P(X = 0) = e−3 30

0!
= 0.0498

P(X = −1) = 0 because −1 is not a non-negative integer

P(X = 0.5) = 0 because 0.5 is not a non-negative integer

Example
4.16 If X ∼ Poisson(4), compute P(X ≤ 2) and P(X > 1).

Solution

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= e−4 40

0!
+ e−4 41

1!
+ e−4 42

2!

= 0.0183 + 0.0733 + 0.1465

= 0.2381

To find P(X > 1), we might try to start by writing

P(X > 1) = P(X = 2) + P(X = 3) + · · ·

This leads to an infinite sum that is difficult to compute. Instead, we write

P(X > 1) = 1 − P(X ≤ 1)

= 1 − [P(X = 0) + P(X = 1)]

= 1 −
(

e−4 40

0!
+ e−4 41

1!

)

= 1 − (0.0183 + 0.0733)

= 0.9084

For the radioactive masses described at the beginning of this section, we would use
the Poisson mass function to approximate either P(X = x) or P(Y = x) by substituting
λ = 2 into Equation (4.9). Table 4.1 (page 218) shows that the approximation is excellent.
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TABLE 4.1 An example of the Poisson approximation to the binomial probability mass function*

P (X = x), P (Y = x), Poisson Approximation,
x X ∼ Bin (10,000, 0.0002) Y ∼ Bin (5000, 0.0004) Poisson (2)

0 0.135308215 0.135281146 0.135335283
1 0.270670565 0.270670559 0.270670566
2 0.270697637 0.270724715 0.270670566
3 0.180465092 0.180483143 0.180447044
4 0.090223521 0.090223516 0.090223522
5 0.036082189 0.036074965 0.036089409
6 0.012023787 0.012017770 0.012029803
7 0.003433993 0.003430901 0.003437087
8 0.000858069 0.000856867 0.000859272
9 0.000190568 0.000190186 0.000190949

*When n is large and p is small, the Bin(n, p) probability mass function is well approximated by the Poisson (λ) probability mass

function (Equation 4.9), with λ = np. Here X ∼ Bin(10,000, 0.0002) and Y ∼ Bin(5000, 0.0004), so λ = np = 2, and the Poisson

approximation is Poisson(2).

Summary
If X ∼ Poisson(λ), then

■ X is a discrete random variable whose possible values are the non-negative
integers.

■ The parameter λ is a positive constant.

■ The probability mass function of X is

p(x) = P(X = x) =
{

e−λ λx

x!
if x is a non-negative integer

0 otherwise

■ The Poisson probability mass function is very close to the binomial
probability mass function when n is large, p is small, and λ = np.

The Mean and Variance of a Poisson Random Variable
To compute the mean and variance of a Poisson random variable, we can use the proba-
bility mass function along with the definitions given by Equations (2.29) and (2.30) (in
Section 2.4). Rigorous derivations of the mean and variance using this method are given
at the end of the section. We present an intuitive approach here. If X ∼ Poisson(λ), we
can think of X as a binomial random variable with large n, small p, and np = λ. Since
the mean of a binomial random variable is np, it follows that the mean of a Poisson
random variable is λ. The variance of a binomial random variable is np(1 − p). Since
p is very small, we replace 1 − p with 1, and conclude that the variance of a Poisson
random variable is np = λ. Note that the variance of a Poisson random variable is equal
to its mean.
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Summary
If X ∼ Poisson(λ), then the mean and variance of X are given by

μX = λ (4.10)

σ 2
X = λ (4.11)

Figure 4.3 presents probability histograms for the Poisson(1) and Poisson(10)probability
mass functions.

One of the earliest industrial uses of the Poisson distribution involved an application
to the brewing of beer. A crucial step in the brewing process is the addition of yeast culture
to prepare mash for fermentation. The living yeast cells are kept suspended in a liquid
medium. Because the cells are alive, their concentration in the medium changes over time.
Therefore, just before the yeast is added, it is necessary to estimate the concentration of
yeast cells per unit volume of suspension, so as to be sure to add the right amount.

Up until the early part of the twentieth century, this posed a problem for brewers.
They estimated the concentration in the obvious way, by withdrawing a small volume
of the suspension and counting the yeast cells in it under a microscope. Of course,
the estimates determined this way were subject to uncertainty, but no one knew how
to compute the uncertainty. Thus no one knew by how much the concentration in the
sample was likely to differ from the actual concentration.

William Sealy Gosset, a young man in his mid-twenties who was employed by the
Guinness Brewing Company of Dublin, Ireland, discovered in 1904 that the number of
yeast cells in a sampled volume of suspension follows a Poisson distribution. He was
then able to develop methods to compute the needed uncertainty. Gosset’s discovery not
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FIGURE 4.3 (a) The Poisson(1) probability histogram. (b) The Poisson(10) probability histogram.
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only enabled Guinness to produce a more consistent product, it showed that the Poisson
distribution could have important applications in many situations. Gosset wanted to
publish his result, but his managers at Guinness considered his discovery to be proprietary
information and forbade publication. Gosset published it anyway, but to hide this fact
from his employers, he used the pseudonym “Student.”

In Example 4.17, we will follow a train of thought that leads to Student’s result. Be-
fore we get to it though, we will mention that shortly after publishing this result, Student
made another discovery that solved one of the most important outstanding problems in
statistics, and which has profoundly influenced work in virtually all fields of science ever
since. We will discuss this result in Section 5.3.

Example
4.17 Particles (e.g., yeast cells) are suspended in a liquid medium at a concentration of 10

particles per mL. A large volume of the suspension is thoroughly agitated, and then
1 mL is withdrawn. What is the probability that exactly eight particles are withdrawn?

Solution
So long as the volume withdrawn is a small fraction of the total, the solution to this
problem does not depend on the total volume of the suspension, but only on the
concentration of particles in it. Let V be the total volume of the suspension, in mL.
Then the total number of particles in the suspension is 10V . Think of each of the 10V
particles as a Bernoulli trial. A particle “succeeds” if it is withdrawn. Now 1 mL out
of the total of V mL is to be withdrawn. Therefore the amount to be withdrawn is 1/V
of the total, so it follows that each particle has probability 1/V of being withdrawn.
Let X denote the number of particles withdrawn. Then X represents the number of
successes in 10V Bernoulli trials, each with probability 1/V of success. Therefore
X ∼ Bin(10V, 1/V ). Since V is large, 10V is large and 1/V is small. Thus to a very
close approximation, X ∼ Poisson(10). We compute P(X = 8) with the Poisson
probability mass function: P(X = 8) = e−10108/8! = 0.1126.

In Example 4.17, λ had the value 10 because the mean number of particles in 1 mL
of suspension (the volume withdrawn) was 10.

Example
4.18 Particles are suspended in a liquid medium at a concentration of 6 particles per mL. A

large volume of the suspension is thoroughly agitated, and then 3 mL are withdrawn.
What is the probability that exactly 15 particles are withdrawn?

Solution
Let X represent the number of particles withdrawn. The mean number of particles in
a 3 mL volume is 18. Therefore X ∼ Poisson(18). The probability that exactly 15
particles are withdrawn is

P(X = 15) = e−18 1815

15!
= 0.0786
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Note that for the solutions to Examples 4.17 and 4.18 to be correct, it is important
that the amount of suspension withdrawn not be too large a fraction of the total. For
example, if the total volume in Example 4.18 was 3 mL, so that the entire amount was
withdrawn, it would be certain that all 18 particles would be withdrawn, so the probability
of withdrawing 15 particles would be zero.

Example
4.19 Grandma bakes chocolate chip cookies in batches of 100. She puts 300 chips into the

dough. When the cookies are done, she gives you one. What is the probability that
your cookie contains no chocolate chips?

Solution
This is another instance of particles in a suspension. Let X represent the number of
chips in your cookie. The mean number of chips is 3 per cookie, so X ∼ Poisson(3).
It follows that P(X = 0) = e−330/0! = 0.0498.

Example
4.20 Grandma’s grandchildren have been complaining that Grandma is too stingy with the

chocolate chips. Grandma agrees to add enough chips to the dough so that only 1%
of the cookies will contain no chips. How many chips must she include in a batch of
100 cookies to achieve this?

Solution
Let n be the number of chips to include in a batch of 100 cookies, and let X be the
number of chips in your cookie. The mean number of chips is 0.01n per cookie, so
X ∼ Poisson(0.01n). We must find the value of n for which P(X = 0) = 0.01.
Using the Poisson(0.01n) probability mass function,

P(X = 0) = e−0.01n (0.01n)0

0!

= e−0.01n

Setting e−0.01n = 0.01, we obtain n ≈ 461.

Examples 4.17 through 4.20 show that for particles distributed uniformly at random
throughout a medium, the number of particles that happen to fall in a small portion of
the medium follows a Poisson distribution. In these examples, the particles were actual
particles and the medium was spatial in nature. There are many cases, however, when the
“particles” represent events and the medium is time. We saw such an example previously,
where the number of radioactive decay events in a fixed time interval turned out to follow
a Poisson distribution. Example 4.21 presents another.

Example
4.21 Assume that the number of hits on a certain website during a fixed time interval

follows a Poisson distribution. Assume that the mean rate of hits is 5 per minute. Find
the probability that there will be exactly 17 hits in the next three minutes.
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Solution
Let X be the number of hits in three minutes. The mean number of hits in three
minutes is (5)(3) = 15, so X ∼ Poisson(15). Using the Poisson(15) probability
mass function,

P(X = 17) = e−15 1517

17!
= 0.0847

Example
4.22 In Example 4.21, let X be the number of hits in t minutes. Find the probability mass

function of X , in terms of t .

Solution
The mean number of hits in t minutes is 5t , so X ∼ Poisson(5t). The probability
mass function of X is

p(x) = P(X = x) = e−5t (5t)x

x!
x = 0, 1, 2, . . .

Using the Poisson Distribution to Estimate a Rate
Often experiments are done to estimate a rate λ that represents the mean number of
events that occur in one unit of time or space. In these experiments, the number of events
X that occur in t units is counted, and the rate λ is estimated with the quantity λ̂ = X/t .
(Note that since the quantity X/t is used to estimate λ, it is denoted λ̂.) If the numbers
of events in disjoint intervals of time or space are independent, and if events cannot
occur simultaneously, then X follows a Poisson distribution. A process that produces
such events is called a Poisson process. Since the mean number of events that occur in
t units of time or space is equal to λt , X ∼ Poisson(λt).

Summary
Let λ denote the mean number of events that occur in one unit of time or space.
Let X denote the number of events that are observed to occur in t units of time
or space. Then if X ∼ Poisson(λt), λ is estimated with λ̂ = X/t .

Example
4.23 A suspension contains particles at an unknown concentration of λ per mL. The sus-

pension is thoroughly agitated, and then 4 mL are withdrawn and 17 particles are
counted. Estimate λ.

Solution
Let X = 17 represent the number of particles counted, and let t = 4 mL be the
volume of suspension withdrawn. Then λ̂ = X/t = 17/4 = 4.25 particles per mL.
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Uncertainty in the Estimated Rate
It is important to realize that the estimated rate or concentration λ̂ is just an estimate
of the true rate or concentration λ. In general λ̂ does not equal λ. If the experiment
were repeated, the value of λ̂ would probably come out differently. In other words, there
is uncertainty in λ̂. For λ̂ to be useful, we must compute its bias and its uncertainty.
The calculations are similar to those for the sample proportion that were presented in
Section 4.2. Let X be the number of events counted in t units of time or space, and
assume that X ∼ Poisson(λt).

The bias is the difference μλ̂ − λ. Since λ̂ = X/t , it follows from Equation (2.41)
(in Section 2.5) that

μλ̂ = μX/t = μX

t

= λt

t
= λ

Since μλ̂ = λ, λ̂ is unbiased.
The uncertainty is the standard deviation σλ̂. Since λ̂ = X/t , it follows from Equa-

tion (2.43) (in Section 2.5) that σλ̂ = σX/t . Since X ∼ Poisson(λt), it follows from
Equation (4.11) that σX = √

λt . Therefore

σλ̂ = σX

t
=

√
λt

t
=

√
λ

t

In practice, the value of λ is unknown, so we approximate it with λ̂.

Summary

If X ∼ Poisson(λt), we estimate the rate λ with λ̂ = X

t
.

■ λ̂ is unbiased.

■ The uncertainty in λ̂ is

σλ̂ =
√

λ

t
(4.12)

In practice, we substitute λ̂ for λ in Equation (4.12), since λ is unknown.

Example
4.24 A 5 mL sample of a suspension is withdrawn, and 47 particles are counted. Estimate

the mean number of particles per mL, and find the uncertainty in the estimate.
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Solution
The number of particles counted is X = 47. The volume withdrawn is t = 5 mL.
The estimated mean number of particles per mL is

λ̂ = 47

5
= 9.4

The uncertainty in the estimate is

σλ̂ =
√

λ

t

=
√

9.4

5
approximating λ with λ̂ = 9.4

= 1.4

Example
4.25 A certain mass of a radioactive substance emits alpha particles at a mean rate of λ

particles per second. A physicist counts 1594 emissions in 100 seconds. Estimate λ,
and find the uncertainty in the estimate.

Solution
The estimate of λ is λ̂ = 1594/100 = 15.94 emissions per second. The uncertainty is

σλ̂ =
√

λ

t

=
√

15.94

100
approximating λ with λ̂ = 15.94

= 0.40

Example
4.26 In Example 4.25, for how many seconds should emissions be counted to reduce the

uncertainty to 0.3 emissions per second?

Solution
We want to find the time t for which σλ̂ = √

λ/t = 0.3. From Example 4.25,
λ̂ = 15.94. Substituting this value for λ, we obtain

σλ̂ =
√

15.94

t
= 0.3

Solving for t yields t = 177 seconds.

The following example requires knowledge of propagation of error, which is covered
in Section 3.3.
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Example
4.27 The number of flaws on a sheet of aluminum manufactured by a certain process

follows a Poisson distribution. In a sample of 100 m2 of aluminum, 200 flaws are
counted. Estimate the probability that a given square meter of aluminum has no flaws,
and find the uncertainty in the estimate.

Solution
Let λ represent the mean number of flaws per square meter. We will begin by com-
puting λ̂ and its uncertainty. We have observed X = 200 flaws in t = 100 m2 of
aluminum. Therefore λ̂ = 200/100 = 2.00. The uncertainty in λ̂ is

σλ̂ =
√

λ

t

=
√

2

100
approximating λ with λ̂ = 2

= 0.1414

What we want to estimate is the probability that a square meter of aluminum contains
no flaws. We first express this probability as a function of λ. To do this, let Y represent
the number of flaws in a 1 m2 sheet of aluminum. Then Y ∼ Poisson(λ). We want to
estimate P(Y = 0). Using the Poisson probability mass function, this probability is
given by

P(Y = 0) = e−λλ0

0!
= e−λ

The probability that a square meter contains no flaws is therefore estimated with
e−λ̂ = e−2.00 = 0.1353. To find the uncertainty in this estimate, we use the propagation
of error method (Equation 3.10).

σe−λ̂ ≈
∣∣∣∣ d

dλ̂
e−λ̂

∣∣∣∣ σλ̂

=
∣∣∣−e−λ̂

∣∣∣ σλ̂

= e−2.00(0.1414)

= 0.0191

In the case of particles in a suspension, or radioactive decay events, enough is known
about the underlying physical principles governing these processes that we were able
to argue from first principles to show that the distribution of the number of events is
Poisson. There are many other cases where empirical evidence suggests that the Poisson
distribution may be appropriate, but the laws governing the process are not sufficiently
well understood to make a rigorous derivation possible. Examples include the number
of hits on a website, the number of traffic accidents at an intersection, and the number
of trees in a section of forest.
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Derivation of the Mean and Variance of a Poisson Random Variable
Let X ∼ Poisson(λ). We will show that μX = λ and σ 2

X = λ. Using the definition of
population mean for a discrete random variable (Equation 2.29 in Section 2.4):

μX =
∞∑

x=0

x P(X = x)

=
∞∑

x=0

xe−λ λx

x!

= (0)(e−λ)

(
λ0

0!

)
+

∞∑
x=1

xe−λ λx

x!

= 0 +
∞∑

x=1

e−λ λx

(x − 1)!

=
∞∑

x=1

e−λ λx

(x − 1)!

= λ

∞∑
x=1

e−λ λx−1

(x − 1)!

= λ

∞∑
x=0

e−λ λx

x!

Now the sum
∑∞

x=0 e−λλx/x! is the sum of the Poisson(λ) probability mass function
over all its possible values. Therefore

∑∞
x=0 e−λλx/x! = 1, so

μX = λ

We use Equation (2.31) (in Section 2.4) to show that σ 2
X = λ.

σ 2
X =

∞∑
x=0

x2e−λ λx

x!
− μ2

X (4.13)

Substituting x(x − 1) + x for x2 and λ for μX in Equation (4.13), we obtain

σ 2
X =

∞∑
x=0

x(x − 1)e−λ λx

x!
+

∞∑
x=0

xe−λ λx

x!
− λ2 (4.14)

Now x(x − 1) = 0 if x = 0 or 1, and
∑∞

x=0 xe−λλx/x! = μX = λ. We may therefore
begin the sum on the right-hand side of Equation (4.14) at x = 2, and substitute λ for∑∞

x=0 xe−λλx/x!. We obtain

σ 2
X =

∞∑
x=2

x(x − 1)e−λ λx

x!
+ λ − λ2

=
∞∑

x=2

e−λ λx

(x − 2)!
+ λ − λ2



Navidi-3810214 book November 11, 2013 12:48

4.3 The Poisson Distribution 227

= λ2
∞∑

x=2

e−λ λx−2

(x − 2)!
+ λ − λ2

= λ2
∞∑

x=0

e−λ λx

x!
+ λ − λ2

= λ2(1) + λ − λ2

= λ

Exercises for Section 4.3

1. Let X ∼ Poisson(4). Find

a. P(X = 1)

b. P(X = 0)

c. P(X < 2)

d. P(X > 1)

e. μX

f. σX

2. The number of flaws in a given area of aluminum foil
follows a Poisson distribution with a mean of 3 per
m2. Let X represent the number of flaws in a 1 m2

sample of foil.

a. P(X = 5)

b. P(X = 0)

c. P(X < 2)

d. P(X > 1)

e. μX

f. σX

3. In a certain city, the number of potholes on a major
street follows a Poisson distribution with a rate of 3
per mile. Let X represent the number of potholes in
a two-mile stretch of road. Find

a. P(X = 4)

b. P(X ≤ 1)

c. P(5 ≤ X < 8)

d. μX

e. σX

4. Geologists estimate the time since the most recent
cooling of a mineral by counting the number of ura-
nium fission tracks on the surface of the mineral. A
certain mineral specimen is of such an age that there
should be an average of 6 tracks per cm2 of sur-
face area. Assume the number of tracks in an area
follows a Poisson distribution. Let X represent the
number of tracks counted in 1 cm2 of surface area.
Find

a. P(X = 7)

b. P(X ≥ 3)

c. P(2 < X < 7)

d. μX

e. σX

5. A data center contains 1000 computer servers. Each
server has probability 0.003 of failing on a given day.

a. What is the probability that exactly two servers
fail?

b. What is the probability that fewer than 998
servers function?

c. What is the mean number of servers that fail?

d. What is the standard deviation of the number of
servers that fail?

6. One out of every 5000 individuals in a population
carries a certain defective gene. A random sample of
1000 individuals is studied.

a. What is the probability that exactly one of the
sample individuals carries the gene?
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b. What is the probability that none of the sample
individuals carries the gene?

c. What is the probability that more than two of the
sample individuals carry the gene?

d. What is the mean of the number of sample indi-
viduals that carry the gene?

e. What is the standard deviation of the number of
sample individuals that carry the gene?

7. The number of hits on a certain website follows
a Poisson distribution with a mean rate of 4 per
minute.

a. What is the probability that 5 messages are re-
ceived in a given minute?

b. What is the probability that 9 messages are re-
ceived in 1.5 minutes?

c. What is the probability that fewer than 3 mes-
sages are received in a period of 30 seconds?

8. The number of cars arriving at a given intersection
follows a Poisson distribution with a mean rate of 4
per second.

a. What is the probability that 3 cars arrive in a given
second?

b. What is the probability that 8 cars arrive in three
seconds?

c. What is the probability that more than 3 cars ar-
rive in a period of two seconds?

9. A random variable X has a binomial distribution,
and a random variable Y has a Poisson distribution.
Both X and Y have means equal to 3. Is it possible
to determine which random variable has the larger
variance? Choose one of the following answers:

i. Yes, X has the larger variance.

ii. Yes, Y has the larger variance.

iii. No, we need to know the number of trials, n,
for X .

iv. No, we need to know the success probability, p,
for X .

v. No, we need to know the value of λ for Y .

10. A chemist wishes to estimate the concentration of
particles in a certain suspension. She withdraws 3 mL
of the suspension and counts 48 particles. Estimate
the concentration in particles per mL and find the
uncertainty in the estimate.

11. A microbiologist wants to estimate the concentra-
tion of a certain type of bacterium in a wastewater
sample. She puts a 0.5 mL sample of the waste-
water on a microscope slide and counts 39 bacte-
ria. Estimate the concentration of bacteria, per mL,
in this wastewater, and find the uncertainty in the
estimate.

12. Two-dimensional Poisson process. The number of
plants of a certain species in a certain forest has a
Poisson distribution with mean 10 plants per acre.
The number of plants in T acres therefore has a Pois-
son distribution with mean 10T .

a. What is the probability that there will be exactly
18 plants in a two-acre region?

b. What is the probability that there will be exactly
12 plants in a circle with radius 100 ft? (1 acre =
43,560 ft2.)

c. The number of plants of a different type follows
a Poisson distribution with mean λ plants per
acre, where λ is unknown. A total of 5 plants
are counted in a 0.1 acre area. Estimate λ, and
find the uncertainty in the estimate.

13. The number of defective components produced by
a certain process in one day has a Poisson distribu-
tion with mean 20. Each defective component has
probability 0.60 of being repairable.

a. Find the probability that exactly 15 defective
components are produced.

b. Given that exactly 15 defective components are
produced, find the probability that exactly 10 of
them are repairable.

c. Let N be the number of defective components
produced, and let X be the number of them that
are repairable. Given the value of N , what is the
distribution of X?

d. Find the probability that exactly 15 defective
components are produced, with exactly 10 of
them being repairable.

14. The probability that a certain radioactive mass emits
no particles in a one-minute time period is 0.1353.
What is the mean number of particles emitted per
minute?

15. The number of flaws in a certain type of lumber fol-
lows a Poisson distribution with a rate of 0.45 per
linear meter.
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a. What is the probability that a board 3 meters in
length has no flaws?

b. How long must a board be so that the probability
it has no flaw is 0.5?

16. Grandma is trying out a new recipe for raisin bread.
Each batch of bread dough makes three loaves, and
each loaf contains 20 slices of bread.

a. If she puts 100 raisins into a batch of dough, what
is the probability that a randomly chosen slice of
bread contains no raisins?

b. If she puts 200 raisins into a batch of dough, what
is the probability that a randomly chosen slice of
bread contains 5 raisins?

c. How many raisins must she put in so that the prob-
ability that a randomly chosen slice will have no
raisins is 0.01?

17. Mom and Grandma are each baking chocolate chip
cookies. Each gives you two cookies. One of Mom’s
cookies has 14 chips in it and the other has 11.
Grandma’s cookies have 6 and 8 chips.
a. Estimate the mean number of chips in one of

Mom’s cookies.

b. Estimate the mean number of chips in one of
Grandma’s cookies.

c. Find the uncertainty in the estimate for Mom’s
cookies.

d. Find the uncertainty in the estimate for
Grandma’s cookies.

e. Estimate how many more chips there are on the
average in one of Mom’s cookies than in one of
Grandma’s. Find the uncertainty in this estimate.

18. You have received a radioactive mass that is claimed
to have a mean decay rate of at least 1 particle per
second. If the mean decay rate is less than 1 per sec-
ond, you may return the product for a refund. Let X
be the number of decay events counted in 10 seconds.

a. If the mean decay rate is exactly 1 per second
(so that the claim is true, but just barely), what is
P(X ≤ 1)?

b. Based on the answer to part (a), if the mean decay
rate is 1 particle per second, would one event in
10 seconds be an unusually small number?

c. If you counted one decay event in 10 seconds,
would this be convincing evidence that the prod-
uct should be returned? Explain.

d. If the mean decay rate is exactly 1 per second,
what is P(X ≤ 8)?

e. Based on the answer to part (d), if the mean decay
rate is 1 particle per second, would eight events
in 10 seconds be an unusually small number?

f. If you counted eight decay events in 10 seconds,
would this be convincing evidence that the prod-
uct should be returned? Explain.

19. Someone claims that a certain suspension contains at
least seven particles per mL. You sample 1 mL of so-
lution. Let X be the number of particles in the sample.

a. If the mean number of particles is exactly seven
per mL (so that the claim is true, but just barely),
what is P(X ≤ 1)?

b. Based on the answer to part (a), if the suspen-
sion contains seven particles per mL, would one
particle in a 1 mL sample be an unusually small
number?

c. If you counted one particle in the sample, would
this be convincing evidence that the claim is
false? Explain.

d. If the mean number of particles is exactly 7 per
mL, what is P(X ≤ 6)?

e. Based on the answer to part (d), if the suspen-
sion contains seven particles per mL, would six
particles in a 1 mL sample be an unusually small
number?

f. If you counted six particles in the sample, would
this be convincing evidence that the claim is
false? Explain.

20. A physicist wants to estimate the rate of emissions of
alpha particles from a certain source. He makes two
counts. First, he measures the background rate by
counting the number of particles in 100 seconds in
the absence of the source. He counts 36 background
emissions. Then, with the source present, he counts
324 emissions in 100 seconds. This represents the
sum of source emissions plus background emissions.

a. Estimate the background rate, in emissions per
second, and find the uncertainty in the estimate.

b. Estimate the sum of the source plus background
rate, in emissions per second, and find the uncer-
tainty in the estimate.

c. Estimate the rate of source emissions in parti-
cles per second, and find the uncertainty in the
estimate.
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d. Which will provide the smaller uncertainty in
estimating the rate of emissions from the source:
(1) counting the background only for 150 seconds
and the background plus the source for 150 sec-
onds, or (2) counting the background for 100 sec-
onds and the source plus the background for 200
seconds? Compute the uncertainty in each case.

e. Is it possible to reduce the uncertainty to 0.03
particles per second if the background rate is

measured for only 100 seconds? If so, for how
long must the source plus background be mea-
sured? If not, explain why not.

21. (Requires material from Section 3.3.) Refer to Ex-
ample 4.27. Estimate the probability that a 1 m2

sheet of aluminum has exactly one flaw, and find the
uncertainty in this estimate.

4.4 Some Other Discrete Distributions

In this section we discuss several discrete distributions that are useful in various
situations.

The Hypergeometric Distribution
When a finite population contains two types of items, which may be called successes
and failures, and a simple random sample is drawn from the population, each item sam-
pled constitutes a Bernoulli trial. As each item is selected, the proportion of successes
in the remaining population decreases or increases, depending on whether the sam-
pled item was a success or a failure. For this reason the trials are not independent, so
the number of successes in the sample does not follow a binomial distribution. In-
stead, the distribution that properly describes the number of successes in this situation is
called the hypergeometric distribution.

As an example, assume that a lot of 20 items contains 6 that are defective, and that
5 items are sampled from this lot at random. Let X be the number of defective items in
the sample. We will compute P(X = 2). To do this, we first count the total number of
different groups of 5 items that can be sampled from the population of 20. (We refer to
each group of 5 items as a combination.) The number of combinations of 5 items is the
number of different samples that can be drawn, and each of them is equally likely. Then
we determine how many of these combinations of 5 items contain exactly 2 defectives.
The probability that a combination of 5 items contains exactly 2 defectives is the quotient

P(X = 2) = number of combinations of 5 items that contain 2 defectives

number of combinations of 5 items that can be chosen from 20

In general, the number of combinations of k items that can be chosen from a group of n

items is denoted
( n

k
)

and is equal to (see Equation 2.12 in Section 2.2 for a derivation)(
n
k

)
= n!

k!(n − k)!

The number of combinations of 5 items that can be chosen from 20 is therefore(
20
5

)
= 20!

5!(20 − 5)!
= 15,504
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To determine the number of combinations of 5 that contain exactly 2 defectives, we
describe the construction of such a combination as a sequence of two operations. First,
select 2 items from the 6 defective ones; second, select 3 items from the 14 nondefective
ones. The number of combinations of 2 items chosen from 6 is(

6
2

)
= 6!

2!(6 − 2)!
= 15

and the number of combinations of 3 items chosen from 14 is(
14
3

)
= 14!

3!(14 − 3)!
= 364

The total number of combinations of 5 items that can be made up of 2 defectives and 3
nondefectives is therefore the product

(6
2

)(14
3

) = (15)(364) = 5460 (this is an application
of the fundamental principal of counting; see Section 2.2 for a more detailed discussion).
We conclude that

P(X = 2) =

(
6
2

)(
14
3

)
(

20
5

)

= 5460

15,504

= 0.3522

To compute P(X = 2) in the preceding example, it was necessary to know the number of
items in the population (20), the number of defective items in the population (6), and the
number of items sampled (5). The probability mass function of the random variable X is
determined by these three parameters. Specifically, X is said to have the hypergeometric
distribution with parameters 20, 6, and 5, which we denote X ∼ H(20, 6, 5). We now
generalize this idea.

Summary
Assume a finite population contains N items, of which R are classified as suc-
cesses and N − R are classified as failures. Assume that n items are sampled
from this population, and let X represent the number of successes in the sample.
Then X has the hypergeometric distribution with parameters N , R, and n, which
can be denoted X ∼ H(N , R, n).

The probability mass function of X is

p(x)= P(X = x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
R
x

)(
N − R
n − x

)
(

N
n

) max(0, R + n − N )≤ x ≤ min(n, R)

0 otherwise
(4.15)
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Example
4.28 Of 50 buildings in an industrial park, 12 have electrical code violations. If 10 buildings

are selected at random for inspection, what is the probability that exactly 3 of the 10
have code violations?

Solution
Let X represent the number of sampled buildings that have code violations. Then
X ∼ H(50, 12, 10). We must find P(X = 3). Using Equation (4.15),

P(X = 3) =

(
12
3

)(
38
7

)
(

50
10

)

= (220)(12,620,256)

10,272,278,170

= 0.2703

Mean and Variance of the Hypergeometric Distribution
The mean and variance of the hypergeometric distribution are presented in the following
box. Their derivations are omitted.

If X ∼ H(N , R, n), then

μX = n R

N
(4.16)

σ 2
X = n

(
R

N

) (
1 − R

N

) (
N − n

N − 1

)
(4.17)

Example
4.29 Refer to Example 4.28. Find the mean and variance of X .

Solution
X ∼ H(50, 12, 10), so

μX = (10)(12)

50

= 2.4000

σ 2
X = (10)

(
12

50

) (
1 − 12

50

) (
50 − 10

50 − 1

)

= 1.4890
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Comparison with the Binomial Distribution
A population of size N contains R successes and N − R failures. Imagine that a sam-
ple of n items is drawn from this population with replacement, that is, with each
sampled item being returned to the population after it is drawn. Then the sampled
items result from a sequence of independent Bernoulli trials, and the number of suc-
cesses X in the sample has a binomial distribution with n trials and success probability
p = R/N .

In practice, samples are seldom drawn with replacement, because there is no need
to sample the same item twice. Instead, sampling is done without replacement, where
each item is removed from the population after it is sampled. The sampled items then
result from dependent Bernoulli trials, because the population changes as each item is
sampled. For this reason the distribution of the number of successes, X , is H(N , R, n)

rather than Bin(n, R/N ).
When the sample size n is small compared to the population size N (i.e., no more

than 5%), the difference between sampling with and without replacement is slight, and
the binomial distribution Bin(n, R/N ) is a good approximation to the hypergeomet-
ric distribution H(N , R, n). Note that the mean of H(N , R, n) is n R/N , the same as
that of Bin(n, R/N ). This indicates that whether the sampling is done with or with-
out replacement, the proportion of successes in the sample is the same on the aver-
age as the proportion of successes in the population. The variance of Bin(n, R/N ) is
n(R/N )(1 − R/N ), and the variance of H(N , R, n) is obtained by multiplying this by
the factor (N − n)/(N − 1). Note that when n is small relative to N , this factor is close
to 1.

The Geometric Distribution
Assume that a sequence of independent Bernoulli trials is conducted, each with the same
success probability p. Let X represent the number of trials up to and including the first
success. Then X is a discrete random variable, which is said to have the geometric
distribution with parameter p. We write X ∼ Geom(p).

Example
4.30 A test of weld strength involves loading welded joints until a fracture occurs. For a

certain type of weld, 80% of the fractures occur in the weld itself, while the other
20% occur in the beam. A number of welds are tested. Let X be the number of tests up
to and including the first test that results in a beam fracture. What is the distribution
of X?

Solution
Each test is a Bernoulli trial, with success defined as a beam fracture. The success prob-
ability is therefore p = 0.2. The number of trials up to and including the first success
has a geometric distribution with parameter p = 0.2. Therefore X ∼ Geom(0.2).
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Example
4.31 Refer to Example 4.30. Find P(X = 3).

Solution
The event X = 3 occurs when the first two trials result in failure and the third trial
results in success. It follows that

P(X = 3) = P(FFS)

= (0.8)(0.8)(0.2)

= 0.128

The result of Example 4.31 can be generalized to produce the probability mass
function of a geometric random variable.

If X ∼ Geom(p), then the probability mass function of X is

p(x) = P(X = x) =
{

p(1 − p)x−1 x = 1, 2, . . .

0 otherwise

The Mean and Variance of a Geometric Distribution
The mean and variance of the geometric distribution are given in the following box.
Their derivations require the manipulation of infinite series and are omitted.

If X ∼ Geom(p), then

μX = 1

p
(4.18)

σ 2
X = 1 − p

p2
(4.19)

Example
4.32 Refer to Example 4.30. Let X denote the number of tests up to and including the first

beam fracture. Find the mean and variance of X .

Solution
Since X ∼ Geom(0.2), μX = 1/0.2 = 5, and σ 2

X = (1 − 0.2)/(0.22) = 20.

The Negative Binomial Distribution
The negative binomial distribution is an extension of the geometric distribution. Let r be a
positive integer. Assume that independent Bernoulli trials, each with success probability
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p, are conducted, and let X denote the number of trials up to and including the r th
success. Then X has the negative binomial distribution with parameters r and p. We
write X ∼ NB(r, p).

Example
4.33 (Continuing Example 4.30.) In a test of weld strength, 80% of tests result in a fracture

in the weld, while the other 20% result in a fracture in the beam. Let X denote the
number of tests up to and including the third beam fracture. What is the distribution
of X? Find P(X = 8).

Solution
Since X represents the number of trials up to and including the third success, and since
the success probability is p = 0.2, X ∼ NB(3, 0.2). We will compute P(X = 8), and
the method of computation will lead to a derivation of the probability mass function
of a negative binomial random variable. Since X ∼ NB(3, 0.2), the event X = 8
means that the third success occurred on the eighth trial. Another way to say this is
that there were exactly two successes in the first 7 trials, and the eighth trial was a
success. Since all the trials are independent, it follows that

P(X = 8) = P(exactly 2 successes in first 7 trials)P(success on eighth trial)

Now the number of successes in the first 7 trials has the Bin(7, 0.2) distribution, so

P(exactly 2 successes in first 7 trials) =
(

7
2

)
(0.2)2(0.8)5

The probability that the eighth trial (or any other trial) results in success is 0.2.
Therefore

P(X = 8) =
(

7
2

)
(0.2)2(0.8)5(0.2)

=
(

7
2

)
(0.2)3(0.8)5

= 0.05505

We generalize the result of Example 4.33 to produce the probability mass function
of a negative binomial random variable.

If X ∼ NB(r, p), then the probability mass function of X is

p(x) = P(X = x) =

⎧⎪⎨
⎪⎩

(
x − 1
r − 1

)
pr (1 − p)x−r x = r, r + 1, . . .

0 otherwise
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Note that the smallest possible value for X is r , since it takes at least r trials to
produce r successes. Note also that when r = 1, the negative binomial distribution is
the same as the geometric distribution. In symbols, NB(1, p) = Geom(p).

A Negative Binomial Random Variable Is a Sum of Geometric
Random Variables
Assume that a sequence of 8 independent Bernoulli trials, each with success probability
p, comes out as follows:

F F S F S F F S

If X is the number of trials up to and including the third success, then X ∼ NB(3, p),
and for this sequence of trials, X = 8. Denote the number of trials up to and including the
first success by Y1. For this sequence, Y1 = 3, but in general, Y1 ∼ Geom(p). Now count
the number of trials, starting with the first trial after the first success, up to and including
the second success. Denote this number of trials by Y2. For this sequence Y2 = 2, but
in general, Y2 ∼ Geom(p). Finally, count the number of trials, beginning from the first
trial after the second success, up to and including the third success. Denote this number
of trials by Y3. For this sequence Y3 = 3, but again in general, Y3 ∼ Geom(p). It is clear
that X = Y1 + Y2 + Y3. Furthermore, since the trials are independent, Y1, Y2, and Y3 are
independent. This shows that if X ∼ NB(3, p), then X is the sum of three independent
Geom(p) random variables. This result can be generalized to any positive integer r .

Summary
If X ∼ NB(r, p), then

X = Y1 + · · · + Yr

where Y1, . . . , Yr are independent random variables, each with the Geom(p)

distribution.

The Mean and Variance of the Negative Binomial Distribution
If X ∼ NB(r, p), then X = Y1 + · · · + Yr , where Y1, . . . , Yr are independent random
variables, each with the Geom(p) distribution. It follows that the mean of X is the sum
of the means of the Y s, and the variance of X is the sum of the variances. Each Yi has
mean 1/p and variance (1 − p)/p2. Therefore μX = r/p and σ 2

X = r(1 − p)/p2.

Summary
If X ∼ NB(r, p), then

μX = r

p
(4.20)

σ 2
X = r(1 − p)

p2
(4.21)
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Example
4.34 Refer to Example 4.33. Find the mean and variance of X , where X represents the

number of tests up to and including the third beam fracture.

Solution
Since X ∼ NB(3, 0.2), it follows that

μX = 3

0.2
= 15

σ 2
X = 3(1 − 0.2)

0.22
= 60

The Multinomial Distribution
A Bernoulli trial is a process that results in one of two possible outcomes. A generalization
of the Bernoulli trial is the multinomial trial, which is a process that can result in any
of k outcomes, where k ≥ 2. For example, the rolling of a die is a multinomial trial,
with the six possible outcomes 1, 2, 3, 4, 5, 6. Each outcome of a multinomial trial has a
probability of occurrence. We denote the probabilities of the k outcomes by p1, . . . , pk .
For example, in the roll of a fair die, p1 = p2 = · · · = p6 = 1/6.

Now assume that n independent multinomial trials are conducted, each with the same
k possible outcomes and with the same probabilities p1, . . . , pk . Number the outcomes
1, 2, . . . , k. For each outcome i , let Xi denote the number of trials that result in that
outcome. Then X1, . . . , Xk are discrete random variables. The collection X1, . . . , Xk

is said to have the multinomial distribution with parameters n, p1, . . . , pk . We write
X1, . . . , Xk ∼ MN(n, p1, . . . , pk). Note that it is the whole collection X1, . . . , Xk that
has the multinomial distribution, rather than any single Xi .

Example
4.35 The items produced on an assembly line are inspected, and each is classified either

as conforming (acceptable), downgraded, or rejected. Overall, 70% of the items are
conforming, 20% are downgraded, and 10% are rejected. Assume that four items are
chosen independently and at random. Let X1, X2, X3 denote the numbers among the 4
that are conforming, downgraded, and rejected, respectively. What is the distribution
of X1, X2, X3?

Solution
Each item is a multinomial trial with three possible outcomes, conforming, down-
graded, and rejected. The probabilities associated with the outcomes are p1 = 0.7,
p2 = 0.2, and p3 = 0.1. The random variables X1, X2, X3 refer to the numbers of
each outcome in 4 independent trials. Therefore X1, X2, X3 ∼ MN(4, 0.7, 0.2, 0.1).

To show how to compute probabilities concerning multinomial random variables,
we will compute P(X1 = 2, X2 = 1, and X3 = 1), where X1, X2, X3 are defined in
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Example 4.35. This will lead to a derivation of the multinomial probability mass func-
tion. We begin by noting that there are 12 arrangements of two conforming (C), one
downgraded (D), and one rejected (R) among four trials. They are listed here.

CCDR CCRD CDCR CDRC CRCD CRDC
DCCR DCRC DRCC RCCD RCDC RDCC

Each of these 12 arrangements is equally probable. We compute the probability of CCDR.
The event CCDR is a sequence of four outcomes: C on the first trial, C on the second
trial, D on the third trial, and R on the fourth trial. Since the trials are independent,
the probability of the sequence of outcomes is equal to the product of their individual
probabilities.

P(CCDR) = (0.7)(0.7)(0.2)(0.1) = (0.7)2(0.2)(0.1)

Since each of the 12 arrangements has the same probability,

P(X1 = 2, X2 = 1, X3 = 1) = (12)(0.7)2(0.2)(0.1) = 0.1176

In this calculation, the number of arrangements was small enough to count by listing
them all. To compute probabilities like this in general, we need a formula. The formula
is given in the following box. A derivation is presented in Section 2.2.

Assume n independent trials are performed, each of which results in one of
k possible outcomes. Let x1, . . . , xk be the numbers of trials resulting in out-
comes 1, 2, . . . , k, respectively. The number of arrangements of the outcomes
among the n trials is

n!

x1! x2! · · · xk!

We can now specify the multinomial probability mass function.

If X1, . . . , Xk ∼ MN(n, p1, . . . , pk), then the probability mass function of
X1, . . . , Xk is

p(x1, . . . , xk) = P(X1 = x1, . . . , Xk = xk)

=

⎧⎪⎪⎨
⎪⎪⎩

n!

x1! x2! · · · xk!
px1

1 px2
2 · · · pxk

k xi = 0, 1, 2, . . . , n
and

∑
xi = n

0 otherwise
(4.22)

Note that the multinomial distribution differs from the other distributions that we have
studied in that it concerns several random variables simultaneously. We can express this
fact by saying that p(x1, . . . , xk) is the joint probability mass function of X1, . . . , Xk .
Joint probability mass functions are discussed more fully in Section 2.6.
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Example
4.36 Alkaptonuria is a genetic disease that results in the lack of an enzyme necessary to

break down homogentisic acid. Some people are carriers of alkaptonuria, which means
that they do not have the disease themselves, but they can potentially transmit it to their
offspring. According to the laws of genetic inheritance, an offspring both of whose
parents are carriers of alkaptonuria has probability 0.25 of being unaffected, 0.5 of
being a carrier, and 0.25 of having the disease. In a sample of 10 offspring of carriers of
alkaptonuria, what is the probability that 3 are unaffected, 5 are carriers, and 2 have
the disease?

Solution
Let X1, X2, X3 denote the numbers among the 10 offspring who are unaffected,
carriers, and diseased, respectively. Then X1, X2, X3 ∼ MN(10, 0.25, 0.50, 0.25).
It follows from Equation (4.22) that

P(X1 = 3, X2 = 5, X3 = 2) = 10!

3! 5! 2!
(0.25)3(0.50)5(0.25)2

= (2520)(0.015625)(0.03125)(0.0625)

= 0.07690

Sometimes we want to focus on only one of the possible outcomes of a multinomial
trial. In this situation, we can consider the outcome of interest a “success,” and any other
outcome a “failure.” In this way it can be seen that the number of occurrences of any
particular outcome has a binomial distribution.

If X1, . . . , Xk ∼ MN(n, p1, . . . , pk), then for each i

Xi ∼ Bin(n, pi )

Example
4.37 Refer to Example 4.36. Find the probability that exactly 4 of 10 offspring are

unaffected.

Solution
Let X represent the number of unaffected offspring in a sample of 10. Then
X ∼ Bin(10, 0.25), so

P(X = 4) = 10!

4! 6!
(0.25)4(0.75)6

= 0.1460
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Exercises for Section 4.4

1. Twenty air-conditioning units have been brought in
for service. Twelve of them have broken compressors,
and eight have broken fans. Seven units are chosen at
random to be worked on. What is the probability that
three of them have broken fans?

2. There are 30 restaurants in a certain town. Assume that
four of them have health code violations. A health in-
spector chooses 10 restaurants at random to visit.

a. What is the probability that two of the restaurants
with health code violations will be visited?

b. What is the probability that none of the restaurants
that are visited will have health code violations?

3. The probability that a computer running a certain op-
erating system crashes on any given day is 0.1. Find
the probability that the computer crashes for the first
time on the twelfth day after the operating system is
installed.

4. A traffic light at a certain intersection is green 50%
of the time, yellow 10% of the time, and red 40% of
the time. A car approaches this intersection once each
day. Let X represent the number of days that pass up
to and including the first time the car encounters a red
light. Assume that each day represents an independent
trial.

a. Find P(X = 3).

b. Find P(X ≤ 3).

c. Find μX .

d. Find σ 2
X .

5. Refer to Exercise 4. Let Y denote the number of days
up to and including the third day on which a red light
is encountered.

a. Find P(Y = 7).

b. Find μY .

c. Find σ 2
Y .

6. Refer to Exercise 4. What is the probability that in
a sequence of 10 days, four green lights, one yellow
light, and five red lights are encountered?

7. If X ∼ Geom(p), what is the most probable value
of X?

i. 0

ii. 1/p

iii. p

iv. 1

v. (1 − p)/p2

8. A process that fills packages is stopped whenever a
package is detected whose weight falls outside the
specification. Assume that each package has proba-
bility 0.01 of falling outside the specification and that
the weights of the packages are independent.

a. Find the mean number of packages that will be
filled before the process is stopped.

b. Find the variance of the number of packages that
will be filled before the process is stopped.

c. Assume that the process will not be stopped until
four packages whose weight falls outside the spec-
ification are detected. Find the mean and variance
of the number of packages that will be filled before
the process is stopped.

9. A system is tested for faults once per hour. If there is
no fault, none will be detected. If there is a fault, the
probability is 0.8 that it will be detected. The tests are
independent of one another.

a. If there is a fault, what is the probability that it will
be detected in 3 hours or less?

b. Given that a fault has gone undetected for 2 hours,
what is the probability that it will be detected in
the next hour?

c. What is the mean number of tests that must be
conducted in order to detect a fault?

10. A computer program has a bug that causes it to fail
once in every thousand runs, on average. In an effort
to find the bug, independent runs of the program will
be made until the program has failed five times.

a. What is the mean number of runs required?

b. What is the standard deviation of the number of
runs required?

11. In a lot of 10 microcircuits, 3 are defective. Four
microcircuits are chosen at random to be tested.
Let X denote the number of tested circuits that are
defective.

a. Find P(X = 2).

b. Find μX .

c. Find σX .
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12. A lot of parts contains 500 items, 100 of which are
defective. Suppose that 20 items are selected at ran-
dom. Let X be the number of selected items that are
defective.

a. Express the quantity P(X = 5) using factorials.

b. Use the binomial approximation to compute an
approximation to P(X = 5).

13. Ten items are to be sampled from a lot of 60. If more
than one is defective, the lot will be rejected. Find the
probability that the lot will be rejected in each of the
following cases.

a. The number of defective items in the lot is 5.

b. The number of defective items in the lot is 10.

c. The number of defective items in the lot is 20.

14. Of customers ordering a certain type of personal com-
puter, 20% order an upgraded graphics card, 30%
order extra memory, 15% order both the upgraded
graphics card and extra memory, and 35% order
neither. Fifteen orders are selected at random. Let
X1, X2, X3, X4 denote the respective numbers of or-
ders in the four given categories.

a. Find P(X1 = 3, X2 = 4, X3 = 2, and X4 = 6).

b. Find P(X1 = 3).

15. At a certain fast-food restaurant, 25% of drink orders
are for a small drink, 35% for a medium, and 40% for

a large. A random sample of 20 orders is selected for
audit.

a. What is the probability that the numbers of orders
for small, medium and large drinks are 5, 7, and 8,
respectively?

b. What is the probability that more than 10 orders
are for large drinks?

16. A thermocouple placed in a certain medium produces
readings within 0.1◦C of the true temperature 70%
of the time, readings more than 0.1◦C above the true
temperature 10% of the time, and readings more than
0.1◦C below the true temperature 20% of the time.

a. In a series of 10 independent readings, what is the
probability that 5 are within 0.1◦C of the true tem-
perature, 2 are more than 0.1◦C above, and 3 are
more than 0.1◦C below?

b. What is the probability that more than 8 of the
readings are within 0.1◦C of the true temperature?

17. Let X ∼ Geom(p), let n be a non-negative integer,
and let Y ∼ Bin(n, p). Show that P(X = n) =
(1/n)P(Y = 1).

18. Use the result of Exercise 17 and Table A.1 to find
P(X = 10) where X ∼ Geom(0.3).

4.5 The Normal Distribution

The normal distribution (also called the Gaussian distribution) is by far the most
commonly used distribution in statistics. This distribution provides a good model for
many, although not all, continuous populations. Part of the reason for this is the Central
Limit Theorem, which we shall discuss in Section 4.11.

The normal distribution is continuous rather than discrete. The mean of a normal
random variable may have any value, and the variance may have any positive value. The
probability density function of a normal random variable with mean μ and variance σ 2

is given by

f (x) = 1

σ
√

2π
e−(x−μ)2/(2σ 2) (4.23)

At the end of the section, we derive the fact that μ and σ 2 are the mean and variance,
respectively. If X is a random variable whose probability density function is normal with
mean μ and variance σ 2, we write X ∼ N (μ, σ 2).
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Summary
If X ∼ N (μ, σ 2), then the mean and variance of X are given by

μX = μ

σ 2
X = σ 2

Figure 4.4 presents a plot of the normal probability density function with mean μ

and standard deviation σ . The normal probability density function is sometimes called
the normal curve. Note that the normal curve is symmetric around μ, so that μ is the
median as well as the mean. It is also the case that for any normal population

■ About 68% of the population is in the interval μ ± σ .

■ About 95% of the population is in the interval μ ± 2σ .

■ About 99.7% of the population is in the interval μ ± 3σ .

The proportion of a normal population that is within a given number of standard
deviations of the mean is the same for any normal population. For this reason, when
dealing with normal populations, we often convert from the units in which the population
items were originally measured to standard units. Standard units tell how many standard
deviations an observation is from the population mean.

Example
4.38 Assume that the heights in a population of women follow the normal curve with mean

μ = 64 inches and standard deviation σ = 3 inches. The heights of two randomly
chosen women are 67 inches and 62 inches. Convert these heights to standard units.

Solution
A height of 67 inches is 3 inches more than the mean of 64, and 3 inches is equal to
one standard deviation. So 67 inches is one standard deviation above the mean and is
thus equivalent to one standard unit. A height of 62 inches is 0.67 standard deviations
below the mean, so 62 inches is equivalent to −0.67 standard units.

≈ 68%

≈ 95%

≈ 99.7%

m � 3s m � 2s m � 1s m m � 1s m � 2s m � 3s

FIGURE 4.4 Probability density function of a normal random variable with mean μ

and variance σ 2.
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In general, we convert to standard units by subtracting the mean and dividing by the
standard deviation. Thus, if x is an item sampled from a normal population with mean
μ and variance σ 2, the standard unit equivalent of x is the number z, where

z = x − μ

σ
(4.24)

The number z is sometimes called the “z-score” of x . The z-score is an item sampled
from a normal population with mean 0 and standard deviation 1. This normal population
is called the standard normal population.

Example
4.39 Aluminum sheets used to make beverage cans have thicknesses (in thousandths of

an inch) that are normally distributed with mean 10 and standard deviation 1.3. A
particular sheet is 10.8 thousandths of an inch thick. Find the z-score.

Solution
The quantity 10.8 is an observation from a normal population with mean μ = 10 and
standard deviation σ = 1.3. Therefore

z = 10.8 − 10

1.3

= 0.62

Example
4.40 Refer to Example 4.39. The thickness of a certain sheet has a z-score of −1.7. Find

the thickness of the sheet in the original units of thousandths of inches.

Solution
We use Equation (4.24), substituting −1.7 for z and solving for x . We obtain

−1.7 = x − 10

1.3
Solving for x yields x = 7.8. The sheet is 7.8 thousandths of an inch thick.

The proportion of a normal population that lies within a given interval is equal to
the area under the normal probability density above that interval. This would suggest
that we compute these proportions by integrating the normal probability density given
in Equation (4.23). Interestingly enough, areas under this curve cannot be found by the
method, taught in elementary calculus, of finding the antiderivative of the function and
plugging in the limits of integration. This is because the antiderivative of this function
is an infinite series and cannot be written down exactly. Instead, areas under this curve
must be approximated numerically.

Areas under the standard normal curve (mean 0, variance 1) have been extensively
tabulated. A typical such table, called a standard normal table, or z table, is given as
Table A.2 (in Appendix A). To find areas under a normal curve with a different mean and
variance, we convert to standard units and use the z table. Table A.2 provides areas in the
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left-hand tail of the curve for values of z. Other areas can be calculated by subtraction or
by using the fact that the total area under the curve is equal to 1. We now present several
examples to illustrate the use of the z table.

Example
4.41 Find the area under the normal curve to the left of z = 0.47.

Solution
From the z table, the area is 0.6808. See Figure 4.5.

0.470

0.6808 

FIGURE 4.5 Solution to Example 4.41.

Example
4.42 Find the area under the normal curve to the right of z = 1.38.

Solution
From the z table, the area to the left of z = 1.38 is 0.9162. Therefore the area to the
right is 1 − 0.9162 = 0.0838. See Figure 4.6.

0 1.38

0.9162 0.0838 

FIGURE 4.6 Solution to Example 4.42.

Example
4.43 Find the area under the normal curve between z = 0.71 and z = 1.28.

Solution
From the z table, the area to the left of z = 1.28 is 0.8997. The area to the left
of z = 0.71 is 0.7611. The area between z = 0.71 and z = 1.28 is therefore
0.8997 − 0.7611 = 0.1386. See Figure 4.7.
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0

– 5

1.28

0.8997

0 0.71

0.7611

0 0.71 1.28

0.1386 

FIGURE 4.7 Solution to Example 4.43.

Example
4.44 What z-score corresponds to the 75th percentile of a normal curve? The 25th per-

centile? The median?

Solution
To answer this question, we use the z table in reverse. We need to find the z-score
for which 75% of the area of the curve is to the left. From the body of the table, the
closest area to 75% is 0.7486, corresponding to a z-score of 0.67. Therefore the 75th
percentile is approximately 0.67. By the symmetry of the curve, the 25th percentile
is z = −0.67 (this can also be looked up in the table directly). See Figure 4.8. The
median is z = 0.

0

≈ 75%

�0.670 0.67

≈ 25%

FIGURE 4.8 Solution to Example 4.44.

Example
4.45 Lifetimes of batteries in a certain application are normally distributed with mean

50 hours and standard deviation 5 hours. Find the probability that a randomly chosen
battery lasts between 42 and 52 hours.

Solution
Let X represent the lifetime of a randomly chosen battery. Then X ∼ N (50, 52).
Figure 4.9 (page 246) presents the probability density function of the N (50, 52)

population. The shaded area represents P(42 < X < 52), the probability that a
randomly chosen battery has a lifetime between 42 and 52 hours. To compute the
area, we will use the z table. First we need to convert the quantities 42 and 52 to
standard units. We have

z = 42 − 50

5
= −1.60 z = 52 − 50

5
= 0.40

From the z table, the area to the left of z = −1.60 is 0.0548, and the area to the left
of z = 0.40 is 0.6554. The probability that a battery has a lifetime between 42 and
52 hours is 0.6554 − 0.0548 = 0.6006.
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5042 52

z 5 �1.6 z 5 0.4

0.6006

FIGURE 4.9 Solution to Example 4.45.

Example
4.46 Refer to Example 4.45. Find the 40th percentile of battery lifetimes.

Solution
From the z table, the closest area to 0.4000 is 0.4013, corresponding to a z-score of
−0.25. The population of lifetimes has mean 50 and standard deviation 5. The 40th
percentile is the point 0.25 standard deviations below the mean. We find this value by
converting the z-score to a raw score, using Equation (4.24):

−0.25 = x − 50

5

Solving for x yields x = 48.75. The 40th percentile of battery lifetimes is 48.75
hours. See Figure 4.10.

≈ 40%

z � �0.25
5048.75

FIGURE 4.10 Solution to Example 4.46.

Example
4.47 A process manufactures ball bearings whose diameters are normally distributed with

mean 2.505 cm and standard deviation 0.008 cm. Specifications call for the diameter
to be in the interval 2.5 ± 0.01 cm. What proportion of the ball bearings will meet
the specification?

Solution
Let X represent the diameter of a randomly chosen ball bearing. Then X ∼ N (2.505,

0.0082). Figure 4.11 presents the probability density function of the N (2.505, 0.0082)

population. The shaded area represents P(2.49 < X < 2.51), which is the proportion
of ball bearings that meet the specification.
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We compute the z-scores of 2.49 and 2.51:

z = 2.49 − 2.505

0.008
= −1.88 z = 2.51 − 2.505

0.008
= 0.63

The area to the left of z = −1.88 is 0.0301. The area to the left of z = 0.63 is
0.7357. The area between z = 0.63 and z = −1.88 is 0.7357 − 0.0301 = 0.7056.
Approximately 70.56% of the diameters will meet the specification.

z � �1.88 z � 0.63
2.5052.49 2.51

0.7056

FIGURE 4.11 Solution to Example 4.47.

Example
4.48 Refer to Example 4.47. The process can be recalibrated so that the mean will equal

2.5 cm, the center of the specification interval. The standard deviation of the process
remains 0.008 cm. What proportion of the diameters will meet the specifications?

Solution
The method of solution is the same as in Example 4.47. The mean is 2.500 rather than
2.505. The calculations are as follows:

z = 2.49 − 2.50

0.008
= −1.25 z = 2.51 − 2.50

0.008
= 1.25

The area to the left of z = −1.25 is 0.1056. The area to the left of z = 1.25 is
0.8944. The area between z = 1.25 and z = −1.25 is 0.8944 − 0.1056 = 0.7888.
See Figure 4.12. Recalibrating will increase the proportion of diameters that meet the
specification to 78.88%.

z � �1.25 z � 1.25
2.502.49 2.51

0.7888 

FIGURE 4.12 Solution to Example 4.48.
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Example
4.49 Refer to Examples 4.47 and 4.48. Assume that the process has been recalibrated so

that the mean diameter is now 2.5 cm. To what value must the standard deviation be
lowered so that 95% of the diameters will meet the specification?

Solution
The specification interval is 2.49–2.51 cm. We must find a value for σ so that this inter-
val spans the middle 95% of the population of ball bearing diameters. See Figure 4.13.
The z-score that has 2.5% of the area to its left is z = −1.96. The z-score that has
2.5% of the area to its right is z = 1.96 (this follows from the symmetry of the curve).
It follows that the lower specification limit, 2.49, has a z-score of −1.96, while the
upper limit of 2.51 has a z-score of 1.96. Either of these facts may be used to find σ .
From Equation (4.24),

1.96 = 2.51 − 2.50

σ

Solving for σ yields σ = 0.0051 cm.

≈ 95%

z � �1.96 z � 1.96
2.502.49 2.51

FIGURE 4.13 Solution to Example 4.49. If σ = 0.0051, then approximately 95% of
the population will fall between 2.49 and 2.51.

Estimating the Parameters of a Normal Distribution
The parameters μ and σ of a normal distribution represent its mean and variance, re-
spectively. Therefore, if X1, . . . , Xn are a random sample from a N (μ, σ 2) distribution,
μ is estimated with the sample mean X and σ 2 is estimated with the sample variance s2.
As with any sample mean, the uncertainty in X is σ/

√
n, which we replace with s/

√
n

if σ is unknown. In addition μX = μ, so X is unbiased for μ.

Linear Functions of Normal Random Variables
If a normal random variable is multiplied by a nonzero constant, or has a constant added
to it, the resulting random variable is also normal, with a mean and variance that are
determined by the original mean and variance and the constants. Specifically,
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Summary
Let X ∼ N (μ, σ 2), and let a �= 0 and b be constants. Then

aX + b ∼ N (aμ + b, a2σ 2). (4.25)

Example
4.50 A chemist measures the temperature of a solution in ◦C. The measurement is denoted

C , and is normally distributed with mean 40◦C and standard deviation 1◦C. The mea-
surement is converted to ◦F by the equation F = 1.8C + 32. What is the distribution
of F?

Solution
Since C is normally distributed, so is F . Now μC = 40, so μF = 1.8(40)+32 = 104,
and σ 2

C = 1, so σ 2
F = 1.82(1) = 3.24. Therefore F ∼ N (104, 3.24).

Linear Combinations of Independent Normal Random Variables
One of the remarkable features of the normal distribution is that linear combinations
of independent normal random variables are themselves normal random variables. To
be specific, suppose that X1 ∼ N (μ1, σ2

1), X2 ∼ N (μ2, σ2
2), . . . , Xn ∼ N (μn, σ2

n)

are independent normal random variables. Note that the means and variances of these
random variables can differ from one another. Let c1, c2, . . . , cn be constants. Then the
linear combination c1 X1 + c2 X2 + · · · + cn Xn is a normally distributed random vari-
able. The mean and variance of the linear combination are c1μ1 + c2μ2 + · · · + cnμn

and c2
1σ

2
1 + c2

2σ
2
2 + · · · + c2

nσ
2
n , respectively (see Equations 2.49 and 2.53 in

Section 2.5).

Summary
Let X1, X2, . . . , Xn be independent and normally distributed with means
μ1, μ2, . . . , μn and variances σ2

1, σ
2
2, . . . , σ

2
n . Let c1, c2, . . . , cn be constants, and

c1 X1 + c2 X2 + · · · + cn Xn be a linear combination. Then

c1 X1+c2 X2+· · ·+cn Xn ∼ N(c1μ1+c2μ2+· · ·+cnμn, c2
1σ

2
1+c2

2σ
2
2+· · ·+c2

nσ
2
n)

(4.26)

Example
4.51 In the article “Advances in Oxygen Equivalent Equations for Predicting the Properties

of Titanium Welds” (D. Harwig, W. Ittiwattana, and H. Castner, The Welding Journal,
2001:126s–136s), the authors propose an oxygen equivalence equation to predict
the strength, ductility, and hardness of welds made from nearly pure titanium. The
equation is E = 2C + 3.5N + O , where E is the oxygen equivalence, and C , N , and
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O are the proportions by weight, in parts per million, of carbon, nitrogen, and oxygen,
respectively (a constant term involving iron content has been omitted). Assume that
for a particular grade of commercially pure titanium, the quantities C , N , and O
are approximately independent and normally distributed with means μC = 150,
μN = 200, μO = 1500, and standard deviations σC = 30, σN = 60, σO = 100. Find
the distribution of E . Find P(E > 3000).

Solution
Since E is a linear combination of independent normal random variables, its distribu-
tion is normal. We must now find the mean and variance of E . Using Equation (4.26),
we compute

μE = 2μC + 3.5μN + 1μO

= 2(150) + 3.5(200) + 1(1500)

= 2500

σ 2
E = 22σ 2

C + 3.52σ 2
N + 12σ 2

O

= 22(302) + 3.52(602) + 12(1002)

= 57,700

We conclude that E ∼ N (2500, 57,700).
To find P(E > 3000), we compute the z-score: z = (3000 − 2500)/

√
57,700 =

2.08. The area to the right of z = 2.08 under the standard normal curve is 0.0188. So
P(E > 3000) = 0.0188.

If X1, . . . , Xn is a random sample from any population with mean μ and variance σ 2,
then the sample mean X has mean μX = μ and variance σ 2

X
= σ 2/n. If the population

is normal, then X is normal as well, because it is a linear combination of X1, . . . , Xn

with coefficients c1 = · · · = cn = 1/n.

Summary
Let X1, . . . , Xn be independent and normally distributed with mean μ and vari-
ance σ 2. Then

X ∼ N

(
μ,

σ 2

n

)
(4.27)

Other important linear combinations are the sum and difference of two random
variables. If X and Y are independent normal random variables, the sum X + Y and the
difference X − Y are linear combinations. The distributions of X + Y and X − Y can be
determined by using Equation (4.26) with c1 = 1, c2 = 1 for X +Y and c1 = 1, c2 = −1
for X − Y .
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Summary
Let X and Y be independent, with X ∼ N (μX , σ 2

X ) and Y ∼ N (μY , σ 2
Y ). Then

X + Y ∼ N (μX + μY , σ 2
X + σ 2

Y ) (4.28)

X − Y ∼ N (μX − μY , σ 2
X + σ 2

Y ) (4.29)

How Can I Tell Whether My Data Come from
a Normal Population?
In practice, we often have a sample from some population, and we must use the sample
to decide whether the population distribution is approximately normal. If the sample
is reasonably large, the sample histogram may give a good indication. Large samples
from normal populations have histograms that look something like the normal density
function—peaked in the center, and decreasing more or less symmetrically on either
side. Probability plots, which will be discussed in Section 4.10, provide another good
way of determining whether a reasonably large sample comes from a population that is
approximately normal. For small samples, it can be difficult to tell whether the normal
distribution is appropriate. One important fact is this: Samples from normal populations
rarely contain outliers. Therefore the normal distribution should generally not be used
for data sets that contain outliers. This is especially true when the sample size is small.
Unfortunately, for small data sets that do not contain outliers, it is difficult to determine
whether the population is approximately normal. In general, some knowledge of the
process that generated the data is needed.

Derivation of the Mean and Variance for a Normal Random Variable
Let X ∼ N (μ, σ 2). We show that μX = μ and σ 2

X = σ 2. Using the definition of the
population mean of a continuous random variable (Equation 2.35 in Section 2.4),

μX =
∫ ∞

−∞

1

σ
√

2π
xe−(x−μ)2/2σ 2

dx

Make the substitution z = (x − μ)/σ . Then x = σ z + μ, and dx = σdz. We obtain

μX =
∫ ∞

−∞

1

σ
√

2π
(σ z + μ)σe−z2/2 dz

= σ

∫ ∞

−∞

1√
2π

ze−z2/2 dz + μ

∫ ∞

−∞

1√
2π

e−z2/2 dz

Direct computation shows that∫ ∞

−∞

1√
2π

ze−z2/2 dz = 0
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Also, ∫ ∞

−∞

1√
2π

e−z2/2 dz = 1

since it is the integral of the N (0, 1) probability density function over all its possible
values.

Therefore

μX = σ(0) + μ(1) = μ

To show that σ 2
X = σ 2, we use Equation (2.36) (in Section 2.4):

σ 2
X =

∫ ∞

−∞
(x − μX )2 1

σ
√

2π
e−(x−μ)2/2σ 2

dx

Make the substitution z = (x − μ)/σ . Recall that μX = μ. Then

σ 2
X =

∫ ∞

−∞
σ 2z2 1

σ
√

2π
σe−z2/2 dz

= σ 2
∫ ∞

−∞

1√
2π

z2e−z2/2 dz

Integrating by parts twice shows that∫ ∞

−∞

1√
2π

z2e−z2/2 dz = 1

Therefore σ 2
X = σ 2.

Exercises for Section 4.5

1. Find the area under the normal curve

a. To the right of z = −0.85.

b. Between z = 0.40 and z = 1.30.

c. Between z = −0.30 and z = 0.90.

d. Outside z = −1.50 to z = −0.45.

2. Find the area under the normal curve

a. To the left of z = 0.56.

b. Between z = −2.93 and z = −2.06.

c. Between z = −1.08 and z = 0.70.

d. Outside z = 0.96 to z = 1.62.

3. Let Z ∼ N (0, 1). Find a constant c for which

a. P(Z ≥ c) = 0.1587

b. P(c ≤ Z ≤ 0) = 0.4772

c. P(−c ≤ Z ≤ c) = 0.8664

d. P(0 ≤ Z ≤ c) = 0.2967

e. P(|Z | ≥ c) = 0.1470

4. If X ∼ N (2, 9), compute

a. P(X ≥ 2)

b. P(1 ≤ X < 7)

c. P(−2.5 ≤ X < −1)

d. P(−3 ≤ X − 2 < 3)

5. The lifetime of a battery in a certain application is
normally distributed with mean μ = 16 hours and
standard deviation σ = 2 hours.

a. What is the probability that a battery will last more
than 19 hours?
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b. Find the 10th percentile of the lifetimes.

c. A particular battery lasts 14.5 hours. What per-
centile is its lifetime on?

d. What is the probability that the lifetime of a battery
is between 14.5 and 17 hours?

6. The temperature recorded by a certain thermometer
when placed in boiling water (true temperature 100◦C)
is normally distributed with mean μ = 99.8◦C and
standard deviation 0.1◦C.

a. What is the probability that the thermometer read-
ing is greater than 100◦C?

b. What is the probability that the thermometer read-
ing is within ±0.05◦C of the true temperature?

7. Scores on a standardized test are approximately nor-
mally distributed with a mean of 480 and a standard
deviation of 90.

a. What proportion of the scores are above 700?

b. What is the 25th percentile of the scores?

c. If someone’s score is 600, what percentile is
she on?

d. What proportion of the scores are between 420
and 520?

8. Weights of female cats of a certain breed are normally
distributed with mean 4.1 kg and standard deviation
0.6 kg.

a. What proportion of female cats have weights be-
tween 3.7 and 4.4 kg?

b. A certain female cat has a weight that is 0.5 stan-
dard deviations above the mean. What proportion
of female cats are heavier than this one?

c. How heavy is a female cat whose weight is on the
80th percentile?

d. A female cat is chosen at random. What is the
probability that she weighs more than 4.5 kg?

e. Six female cats are chosen at random. What is the
probability that exactly one of them weighs more
than 4.5 kg?

9. The lifetime of a lightbulb in a certain application is
normally distributed with mean μ = 1400 hours and
standard deviation σ = 200 hours.

a. What is the probability that a lightbulb will last
more than 1800 hours?

b. Find the 10th percentile of the lifetimes.

c. A particular lightbulb lasts 1645 hours. What per-
centile is its lifetime on?

d. What is the probability that the lifetime of a light-
bulb is between 1350 and 1550 hours?

10. In a certain university, math SAT scores for the enter-
ing freshman class averaged 650 and had a standard
deviation of 100. The maximum possible score is 800.
Is it possible that the scores of these freshmen are nor-
mally distributed? Explain.

11. Penicillin is produced by the Penicillium fungus,
which is grown in a broth whose sugar content must
be carefully controlled. The optimum sugar concen-
tration is 4.9 mg/mL. If the concentration exceeds
6.0 mg/mL, the fungus dies and the process must be
shut down for the day.

a. If sugar concentration in batches of broth is nor-
mally distributed with mean 4.9 mg/mL and stan-
dard deviation 0.6 mg/mL, on what proportion of
days will the process shut down?

b. The supplier offers to sell broth with a sugar
content that is normally distributed with mean
5.2 mg/mL and standard deviation 0.4 mg/mL.
Will this broth result in fewer days of production
lost? Explain.

12. Specifications for an aircraft bolt require that the ul-
timate tensile strength be at least 18 kN. It is known
that 10% of the bolts have strengths less than 18.3 kN
and that 5% of the bolts have strengths greater than
19.76 kN. It is also known that the strengths of these
bolts are normally distributed.

a. Find the mean and standard deviation of the
strengths.

b. What proportion of the bolts meet the strength
specification?

13. A cylindrical hole is drilled in a block, and a cylindri-
cal piston is placed in the hole. The clearance is equal
to one-half the difference between the diameters of
the hole and the piston. The diameter of the hole is
normally distributed with mean 15 cm and standard
deviation 0.025 cm, and the diameter of the piston is
normally distributed with mean 14.88 cm and standard
deviation 0.015 cm.

a. Find the mean clearance.



Navidi-3810214 book November 11, 2013 12:48

254 CHAPTER 4 Commonly Used Distributions

b. Find the standard deviation of the clearance.

c. What is the probability that the clearance is less
than 0.05 cm?

d. Find the 25th percentile of the clearance.

e. Specifications call for the clearance to be between
0.05 and 0.09 cm. What is the probability that the
clearance meets the specification?

f. It is possible to adjust the mean hole diameter. To
what value should it be adjusted so as to maximize
the probability that the clearance will be between
0.05 and 0.09 cm?

14. Shafts manufactured for use in optical storage de-
vices have diameters that are normally distributed
with mean μ = 0.652 cm and standard deviation
σ = 0.003 cm. The specification for the shaft di-
ameter is 0.650 ± 0.005 cm.

a. What proportion of the shafts manufactured by this
process meet the specifications?

b. The process mean can be adjusted through calibra-
tion. If the mean is set to 0.650 cm, what proportion
of the shafts will meet specifications?

c. If the mean is set to 0.650 cm, what must the stan-
dard deviation be so that 99% of the shafts will
meet specifications?

15. The fill volume of cans filled by a certain machine is
normally distributed with mean 12.05 oz and standard
deviation 0.03 oz.

a. What proportion of cans contain less than 12 oz?

b. The process mean can be adjusted through cal-
ibration. To what value should the mean be set
so that 99% of the cans will contain 12 oz or
more?

c. If the process mean remains at 12.05 oz, what must
the standard deviation be so that 99% of the cans
will contain 12 oz or more?

16. The amount of paint required to paint a surface with
an area of 50 m2 is normally distributed with mean
6 L and standard deviation 0.3 L.

a. If 6.2 L of paint are available, what is the probabil-
ity that the entire surface can be painted?

b. How much paint is needed so that the probability
is 0.9 that the entire surface can be painted?

c. What must the standard deviation be so that the
probability is 0.9 that 6.2 L of paint will be suffi-
cient to paint the entire surface?

17. A fiber-spinning process currently produces a fiber
whose strength is normally distributed with a mean
of 75 N/m2. The minimum acceptable strength is
65 N/m2.

a. Ten percent of the fiber produced by the current
method fails to meet the minimum specification.
What is the standard deviation of fiber strengths in
the current process?

b. If the mean remains at 75 N/m2, what must the
standard deviation be so that only 1% of the fiber
will fail to meet the specification?

c. If the standard deviation is 5 N/m2, to what value
must the mean be set so that only 1% of the fiber
will fail to meet the specification?

18. The area covered by 1 L of a certain stain is normally
distributed with mean 10 m2 and standard deviation
0.2 m2.

a. What is the probability that 1 L of stain will be
enough to cover 10.3 m2?

b. What is the probability that 2 L of stain will be
enough to cover 19.9 m2?

19. Let X ∼ N (μ, σ 2), and let Z = (X − μ)/σ . Use
Equation (4.25) to show that Z ∼ N (0, 1).

20. The quality-assurance program for a certain adhesive
formulation process involves measuring how well the
adhesive sticks a piece of plastic to a glass surface.
When the process is functioning correctly, the adhe-
sive strength X is normally distributed with a mean of
200 N and a standard deviation of 10 N. Each hour,
you make one measurement of the adhesive strength.
You are supposed to inform your supervisor if your
measurement indicates that the process has strayed
from its target distribution.

a. Find P(X ≤ 160), under the assumption that the
process is functioning correctly.

b. Based on your answer to part (a), if the process is
functioning correctly, would a strength of 160 N
be unusually small? Explain.

c. If you observed an adhesive strength of 160 N,
would this be convincing evidence that the process
was no longer functioning correctly? Explain.
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d. Find P(X ≥ 203), under the assumption that the
process is functioning correctly.

e. Based on your answer to part (d), if the pro-
cess is functioning correctly, would a strength of
203 N be unusually large? Explain.

f. If you observed an adhesive strength of 203 N,
would this be convincing evidence that the process
was no longer functioning correctly? Explain.

g. Find P(X ≤ 195), under the assumption that the
process is functioning correctly.

h. Based on your answer to part (g), if the pro-
cess is functioning correctly, would a strength of
195 N be unusually small? Explain.

i. If you observed an adhesive strength of 195 N,
would this be convincing evidence that the pro-
cess was no longer functioning correctly? Explain.

21. Two resistors, with resistances R1 and R2, are con-
nected in series. R1 is normally distributed with mean
100 � and standard deviation 5 �, and R2 is normally
distributed with mean 120 � and standard deviation
10 �.

a. What is the probability that R2 > R1?

b. What is the probability that R2 exceeds R1 by more
than 30 �?

22. The molarity of a solute in solution is defined to be
the number of moles of solute per liter of solution
(1 mole = 6.02 × 1023 molecules). If X is the mo-
larity of a solution of sodium chloride (NaCl), and
Y is the molarity of a solution of sodium carbonate
(Na2CO3), the molarity of sodium ion (Na+) in a so-
lution made of equal parts NaCl and Na2CO3 is given
by M = 0.5X + Y . Assume X and Y are indepen-
dent and normally distributed, and that X has mean
0.450 and standard deviation 0.050, and Y has mean
0.250 and standard deviation 0.025.

a. What is the distribution of M?

b. Find P(M > 0.5).

23. A binary message m, where m is equal either to 0 or
to 1, is sent over an information channel. Because of
noise in the channel, the message received is X , where
X = m + E , and E is a random variable representing
the channel noise. Assume that if X ≤ 0.5 then the
receiver concludes that m = 0 and that if X > 0.5
then the receiver concludes that m = 1. Assume that
E ∼ N (0, 0.25).

a. If the true message is m = 0, what is the probabil-
ity of an error, that is, what is the probability that
the receiver concludes that m = 1?

b. Let σ 2 denote the variance of E . What must be the
value of σ 2 so that the probability of error when
m = 0 is 0.01?

24. Refer to Exercise 23. Assume that if m = 0, the value
s = −1.5 is sent, and if m = 1, the value s = 1.5 is
sent. The value received is X , where X = s + E , and
E ∼ N (0, 0.64). If X ≤ 0.5, then the receiver con-
cludes that m = 0, and if X > 0.5, then the receiver
concludes that m = 1.

a. If the true message is m = 0, what is the probabil-
ity of an error, that is, what is the probability that
the receiver concludes that m = 1?

b. If the true message is m = 1, what is the probabil-
ity of an error, that is, what is the probability that
the receiver concludes that m = 0?

c. A string consisting of 60 1s and 40 0s will be
sent. A bit is chosen at random from this string.
What is the probability that it will be received
correctly?

d. Refer to part (c). A bit is chosen at random from
the received string. Given that this bit is 1, what is
the probability that the bit sent was 0?

e. Refer to part (c). A bit is chosen at random from
the received string. Given that this bit is 0, what is
the probability that the bit sent was 1?

25. A company receives a large shipment of bolts. The
bolts will be used in an application that requires a
torque of 100 J. Before the shipment is accepted, a
quality engineer will sample 12 bolts and measure the
torque needed to break each of them. The shipment
will be accepted if the engineer concludes that fewer
than 1% of the bolts in the shipment have a breaking
torque of less than 100 J.

a. If the 12 values are 107, 109, 111, 113, 113, 114,
114, 115, 117, 119, 122, 124, compute the sample
mean and sample standard deviation.

b. Assume the 12 values are sampled from a normal
population, and assume the the sample mean and
standard deviation calculated in part (a) are actu-
ally the population mean and standard deviation.
Compute the proportion of bolts whose breaking
torque is less than 100 J. Will the shipment be
accepted?
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c. What if the 12 values had been 108, 110, 112,
114, 114, 115, 115, 116, 118, 120, 123, 140? Use
the method outlined in parts (a) and (b) to de-
termine whether the shipment would have been
accepted.

d. Compare the sets of 12 values in parts (a) and (c).
In which sample are the bolts stronger?

e. Is the method valid for both samples? Why or
why not?

26. Chebyshev’s inequality (Section 2.4) states that for
any random variable X with mean μ and variance σ 2,
and for any positive number k, P(|X − μ| ≥ kσ) ≤
1/k2. Let X ∼ N (μ, σ 2). Compute P(|X −μ| ≥ kσ)

for the values k = 1, 2, and 3. Are the actual proba-
bilities close to the Chebyshev bound of 1/k2, or are
they much smaller?

4.6 The Lognormal Distribution

For data that are highly skewed or that contain outliers, the normal distribution is generally
not appropriate. The lognormal distribution, which is related to the normal distribution,
is often a good choice for these data sets. The lognormal distribution is derived from
the normal distribution as follows: If X is a normal random variable with mean μ and
variance σ 2, then the random variable Y = eX is said to have the lognormal distribution
with parameters μ and σ 2. Note that if Y has the lognormal distribution with parameters
μ and σ 2, then X = ln Y has the normal distribution with mean μ and variance σ 2.

Summary

■ If X ∼ N (μ, σ 2), then the random variable Y = eX has the lognormal
distribution with parameters μ and σ 2.

■ If Y has the lognormal distribution with parameters μ and σ 2, then the
random variable X = ln Y has the N (μ, σ 2) distribution.

The probability density function of a lognormal random variable with parameters
μ and σ is

f (x) =

⎧⎪⎨
⎪⎩

1

σ x
√

2π
exp

[
− 1

2σ 2
(ln x − μ)2

]
if x > 0

0 if x ≤ 0

(4.30)

Figure 4.14 presents a graph of the lognormal density function with parameters
μ = 0 and σ = 1. Note that the density function is highly skewed. This is the reason
that the lognormal distribution is often used to model processes that tend to produce
occasional large values, or outliers.
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FIGURE 4.14 The probability density function of the lognormal distribution with
parameters μ = 0 and σ = 1.

It can be shown by advanced methods that if Y is a lognormal random variable with
parameters μ and σ 2, then the mean E(Y ) and variance V (Y ) are given by

E(Y ) = eμ+σ 2/2 V (Y ) = e2μ+2σ 2 − e2μ+σ 2
(4.31)

Note that if Y has the lognormal distribution, the parameters μ and σ 2 do not refer to
the mean and variance of Y . They refer instead to the mean and variance of the normal
random variable ln Y . In Equation (4.31) we used the notation E(Y ) instead of μY , and
V (Y ) instead of σ 2

Y , in order to avoid confusion with μ and σ .

Example
4.52 Lifetimes of a certain component are lognormally distributed with parameters μ = 1

day and σ = 0.5 days. Find the mean lifetime of these components. Find the standard
deviation of the lifetimes.

Solution
Let Y represent the lifetime of a randomly chosen component. The mean of Y is
found by Equation (4.31) to be e1+0.52/2 = 3.08 days. The variance is e2(1)+2(0.5)2 −
e2(1)+0.52 = 2.6948. The standard deviation is therefore

√
2.6948 = 1.64 days.

To compute probabilities involving lognormal random variables, take logs and use
the z table (Table A.2). Examples 4.53 and 4.54 illustrate the method.
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Example
4.53 Refer to Example 4.52. Find the probability that a component lasts longer than four

days.

Solution
Let Y represent the lifetime of a randomly chosen component. We need to find
P(Y > 4). We cannot use the z table for Y , because Y is not sampled from a
normal population. However, ln Y is sampled from a normal population; specifically,
ln Y ∼ N (1, 0.52). We express P(Y > 4) as a probability involving ln Y :

P(Y > 4) = P(ln Y > ln 4) = P(ln Y > 1.386)

The z-score of 1.386 is

z = 1.386 − 1.000

0.5

= 0.77

From the z table, we find that P(ln Y > 1.386) = 0.2206. (See Figure 4.15.) We
conclude that approximately 22% of the components will last longer than four days.

1.00 1.386

0.2206

z � 0.77

FIGURE 4.15 Solution to Example 4.53.

Example
4.54 Refer to Example 4.52. Find the median lifetime. Find the 80th percentile of the

lifetimes.

Solution
Let Y represent the lifetime of a randomly chosen component. Let m denote the median
lifetime. Then P(Y ≤ m) = 0.5. Taking logs, we have P(ln Y ≤ ln m) = 0.5. This
means that ln m is the median of ln Y . Now ln Y ∼ N (1, 0.52). Therefore ln m = 1,
so m = e1 = 2.718.

To find the 80th percentile, p80, set P(Y ≤ p80) = 0.80. Then P(ln Y ≤
ln p80) = 0.80. This means that ln p80 is the 80th percentile of ln Y . Now ln Y ∼
N (1, 0.52). From the z table, the z-score of the 80th percentile is 0.84. Therefore
ln p80 = 1 + (0.84)(0.5) = 1.42, so p80 = e1.42 = 4.14.
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Estimating the Parameters of a Lognormal Distribution
If Y is a random variable whose distribution is lognormal with parameters μ and σ 2, then
μ and σ 2 are the mean and variance, respectively, of ln Y . Therefore if Y1, . . . , Yn is a
random sample from a lognormal population, we first transform to the log scale, defining
X1 = ln Y1, . . . , Xn = ln Yn . Now X1, . . . , Xn is a random sample from N (μ, σ 2).
We estimate μ with X and σ 2 with the sample variance s2

X . As with any sample mean,
the uncertainty in X is σX = σ/

√
n, and if σ is unknown, we estimate it with the sample

standard deviation sX .

Example
4.55 The diameters (in mm) of seeds of a certain plant are lognormally distributed. A

random sample of five seeds had diameters 1.52, 2.22, 2.64, 2.00, and 1.69. Estimate
the parameters μ and σ .

Solution
To estimate μ and σ , we take logs of the five sample values, to obtain 0.419, 0.798,
0.971, 0.693, and 0.525. The sample mean is 0.681, and the sample standard deviation
is 0.218. We therefore estimate μ̂ = 0.681, σ̂ = 0.218.

How Can I Tell Whether My Data Come from a Lognormal
Population?
As stated previously, samples from normal populations rarely contain outliers. In contrast,
samples from lognormal populations often contain outliers in the right-hand tail. That
is, the samples often contain a few values that are much larger than the rest of the
data. This of course reflects the long right-hand tail in the lognormal density function
(Figure 4.14). For samples with outliers on the right, we transform the data, by taking
the natural logarithm (or any logarithm) of each value. We then try to determine whether
these logs come from a normal population, by plotting them on a histogram, or on a
probability plot. Probability plots will be discussed in Section 4.10.

Note that the lognormal density has only one long tail, on the right. For this reason,
samples from lognormal populations will have outliers on the right, but not on the
left. The lognormal distribution should therefore not be used for samples with a few
unusually small observations. In addition, lognormal populations contain only positive
values, so the lognormal distribution should not be used for samples that contain zeros or
negative values. Finally, it is important to note that the log transformation will not always
produce a sample that is close to normal. One has to plot a histogram or probability plot
(see Section 4.10) to check.

Figure 4.16 (page 260) presents two histograms. The first shows the monthly pro-
duction for 255 gas wells, in units of thousand cubic feet. This histogram clearly has a
long right-hand tail, so we conclude that the data do not come from a normal population.
The second shows the natural logs of the monthly productions. This histogram is closer
to the normal curve, although some departure from normality can be detected.
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FIGURE 4.16 (a) A histogram showing monthly production for 255 gas wells. There is a long right-hand tail.
(b) A histogram showing the natural logs of the monthly productions. The distribution of the logged data is much
closer to normal.

Exercises for Section 4.6

1. The lifetime (in days) of a certain electronic compo-
nent that operates in a high-temperature environment
is lognormally distributed with μ = 1.2 and σ = 0.4.

a. Find the mean lifetime.

b. Find the probability that a component lasts be-
tween three and six days.

c. Find the median lifetime.

d. Find the 90th percentile of the lifetimes.

2. The article “Assessment of Dermopharmacokinetic
Approach in the Bioequivalence Determination of
Topical Tretinoin Gel Products” (L. Pershing, J.
Nelson, et al., J Am Acad Dermatol 2003:740–751)
reports that the amount of a certain antifungal oint-
ment that is absorbed into the skin can be modeled
with a lognormal distribution. Assume that the amount
(in ng/cm2) of active ingredient in the skin two
hours after application is lognormally distributed with
μ = 2.2 and σ = 2.1.

a. Find the mean amount absorbed.

b. Find the median amount absorbed.

c. Find the probability that the amount absorbed is
more than 100 ng/cm2.

d. Find the probability that the amount absorbed is
less than 50 ng/cm2.

e. Find the 80th percentile of the amount absorbed.

f. Find the standard deviation of the amount
absorbed.

3. The body mass index (BMI) of a person is defined
to be the person’s body mass divided by the square
of the person’s height. The article “Influences of
Parameter Uncertainties within the ICRP 66 Respi-
ratory Tract Model: Particle Deposition” (W. Bolch,
E. Farfan, et al., Health Physics, 2001:378–394) states
that body mass index (in kg/m2) in men aged 25–34 is
lognormally distributed with parameters μ = 3.215
and σ = 0.157.

a. Find the mean BMI for men aged 25–34.

b. Find the standard deviation of BMI for men aged
25–34.

c. Find the median BMI for men aged 25–34.

d. What proportion of men aged 25–34 have a BMI
less than 22?

e. Find the 75th percentile of BMI for men aged
25–34.
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4. The article “Stochastic Estimates of Exposure and
Cancer Risk from Carbon Tetrachloride Released
to the Air from the Rocky Flats Plant” (A. Rood,
P. McGavran, et al., Risk Analysis, 2001:675–695)
models the increase in the risk of cancer due to
exposure to carbon tetrachloride as lognormal with
μ = −15.65 and σ = 0.79.

a. Find the mean risk.

b. Find the median risk.

c. Find the standard deviation of the risk.

d. Find the 5th percentile.

e. Find the 95th percentile.

5. If a resistor with resistance R ohms carries a current
of I amperes, the potential difference across the re-
sistor, in volts, is given by V = IR. Suppose that I is
lognormal with parameters μI = 1 and σ 2

I = 0.2, R
is lognormal with parameters μR = 4 and σ 2

R = 0.1,
and that I and R are independent.

a. Show that V is lognormally distributed, and com-
pute the parameters μV and σ 2

V . (Hint: ln V =
ln I + ln R.)

b. Find P(V < 200).

c. Find P(150 ≤ V ≤ 300).

d. Find the mean of V .

e. Find the median of V .

f. Find the standard deviation of V .

g. Find the 10th percentile of V .

h. Find the 90th percentile of V .

6. Refer to Exercise 5. Suppose 10 circuits are con-
structed. Find the probability that 8 or more have volt-
ages less than 200 volts.

7. The article “Withdrawal Strength of Threaded Nails”
(D. Rammer, S. Winistorfer, and D. Bender, Journal
of Structural Engineering 2001:442–449) describes
an experiment comparing the ultimate withdrawal
strengths (in N/mm) for several types of nails. For an
annularly threaded nail with shank diameter 3.76 mm
driven into spruce-pine-fir lumber, the ultimate
withdrawal strength was modeled as lognormal with
μ = 3.82 and σ = 0.219. For a helically threaded nail
under the same conditions, the strength was modeled
as lognormal with μ = 3.47 and σ = 0.272.

a. What is the mean withdrawal strength for annu-
larly threaded nails?

b. What is the mean withdrawal strength for helically
threaded nails?

c. For which type of nail is it more probable that the
withdrawal strength will be greater than 50 N/mm?

d. What is the probability that a helically threaded
nail will have a greater withdrawal strength than
the median for annularly threaded nails?

e. An experiment is performed in which withdrawal
strengths are measured for several nails of both
types. One nail is recorded as having a withdrawal
strength of 20 N/mm, but its type is not given. Do
you think it was an annularly threaded nail or a
helically threaded nail? Why? How sure are you?

8. Choose the best answer, and explain. If X is a random
variable with a lognormal distribution, then

i. the mean of X is always greater than the median.

ii. the mean of X is always less than the median.

iii. the mean may be greater than, less than, or equal
to the median, depending on the value of σ .

9. The prices of stocks or other financial instruments are
often modeled with a lognormal distribution. An in-
vestor is considering purchasing stock in one of two
companies, A or B. The price of a share of stock today
is $1 for both companies. For company A, the value of
the stock one year from now is modeled as lognormal
with parameters μ = 0.05 and σ = 0.1. For com-
pany B, the value of the stock one year from now is
modeled as lognormal with parameters μ = 0.02 and
σ = 0.2.

a. Find the mean of the price of one share of company
A one year from now.

b. Find the probability that the price of one share
of company A one year from now will be greater
than $1.20.

c. Find the mean of the price of one share of company
B one year from now.

d. Find the probability that the price of one share
of company B one year from now will be greater
than $1.20.

10. A manufacturer claims that the tensile strength of a
certain composite (in MPa) has the lognormal distri-
bution with μ = 5 and σ = 0.5. Let X be the strength
of a randomly sampled specimen of this composite.

a. If the claim is true, what is P(X < 20)?
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b. Based on the answer to part (a), if the claim is true,
would a strength of 20 MPa be unusually small?

c. If you observed a tensile strength of 20 MPa, would
this be convincing evidence that the claim is false?
Explain.

d. If the claim is true, what is P(X < 130)?

e. Based on the answer to part (d), if the claim is
true, would a strength of 130 MPa be unusually
small?

f. If you observed a tensile strength of 130 MPa,
would this be convincing evidence that the claim
is false? Explain.

11. Let X1, . . . , Xn be independent lognormal random
variables and let a1, . . . , an be constants. Show that
the product P = Xa1

1 · · · Xan
n is lognormal. (Hint:

ln P = a1 ln X1 + · · · + an ln Xn .)

4.7 The Exponential Distribution

The exponential distribution is a continuous distribution that is sometimes used to
model the time that elapses before an event occurs. Such a time is often called a waiting
time. The exponential distribution is sometimes used to model the lifetime of a compo-
nent. In addition, there is a close connection between the exponential distribution and
the Poisson distribution.

The probability density function of the exponential distribution involves a parameter,
which is a positive constant λ whose value determines the density function’s location
and shape.

Definition
The probability density function of the exponential distribution with parameter
λ > 0 is

f (x) =
{

λe−λx x > 0
0 x ≤ 0

(4.32)

Figure 4.17 presents the probability density function of the exponential distribution for
various values of λ. If X is a random variable whose distribution is exponential with
parameter λ, we write X ∼ Exp(λ).

The cumulative distribution function of the exponential distribution is easy to com-
pute. For x ≤ 0, F(x) = P(X ≤ x) = 0. For x > 0, the cumulative distribution
function is

F(x) = P(X ≤ x) =
∫ x

0
λe−λt dt = 1 − e−λx

Summary
If X ∼ Exp(λ), the cumulative distribution function of X is

F(x) = P(X ≤ x) =
{

1 − e−λx x > 0
0 x ≤ 0

(4.33)
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FIGURE 4.17 Plots of the exponential probability density function for various values of λ.

The mean and variance of an exponential random variable can be computed by using
integration by parts. Derivations are provided at the end of the section.

If X ∼ Exp(λ), then

μX = 1

λ
(4.34)

σ 2
X = 1

λ2
(4.35)

Example
4.56 If X ∼ Exp(2), find μX , σ 2

X , and P(X ≤ 1).

Solution
We compute μX and σ 2

X from Equations (4.34) and (4.35), substituting λ = 2. We
obtain μX = 0.5, σ 2

X = 0.25. Using Equation (4.33), we find that

P(X ≤ 1) = 1 − e−2(1) = 0.865

Example
4.57 Refer to Example 4.56. Find the median of X . Find the 30th percentile of X .

Solution
Let m denote the median of X . Then P(X ≤ m) = 0.5. Using Equation (4.33), we
find that 1 − e−2m = 0.5. Solving for m, we obtain m = 0.3466.

Let p30 denote the 30th percentile. Then P(X ≤ p30) = 0.30. Using Equa-
tion (4.33), we find that 1 − e−2p30 = 0.30. Solving for p30, we obtain p30 = 0.1783.
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The Exponential Distribution and the Poisson Process
We mentioned that the exponential distribution is sometimes used to model the waiting
time to an event. It turns out that the exponential distribution is the correct model for
waiting times whenever the events follow a Poisson process. Recall from Section 4.3
that events follow a Poisson process with rate parameter λ when the numbers of events
in disjoint intervals are independent, and the number X of events that occur in any
time interval of length t has a Poisson distribution with mean λt , in other words, when
X ∼ Poisson(λt). The connection between the exponential distribution and the Poisson
process is as follows:

If events follow a Poisson process with rate parameter λ, and if T represents
the waiting time from any starting point until the next event, then T ∼ Exp(λ).

A proof of this fact is given at the end of the section.

Example
4.58 A radioactive mass emits particles according to a Poisson process at a mean rate of

15 particles per minute. At some point, a clock is started. What is the probability that
more than 5 seconds will elapse before the next emission? What is the mean waiting
time until the next particle is emitted?

Solution
We will measure time in seconds. Let T denote the time in seconds that elapses before
the next particle is emitted. The mean rate of emissions is 0.25 per second, so the rate
parameter is λ = 0.25, and T ∼ Exp(0.25). The probability that more than 5 seconds
will elapse before the next emission is equal to

P(T > 5) = 1 − P(T ≤ 5)

= 1 − (1 − e−0.25(5))

= e−1.25

= 0.2865

The mean waiting time is μT = 1

0.25
= 4 seconds.

Lack of Memory Property
The exponential distribution has a property known as the lack of memory property, which
we illustrate with Examples 4.59 and 4.60.

Example
4.59 The lifetime of a particular integrated circuit has an exponential distribution with

mean 2 years. Find the probability that the circuit lasts longer than three years.
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Solution
Let T represent the lifetime of the circuit. Since μT = 2, λ = 0.5. We need to find
P(T > 3).

P(T > 3) = 1 − P(T ≤ 3)

= 1 − (1 − e−0.5(3))

= e−1.5

= 0.223

Example
4.60 Refer to Example 4.59. Assume the circuit is now four years old and is still functioning.

Find the probability that it functions for more than three additional years. Compare
this probability with the probability that a new circuit functions for more than three
years, which was calculated in Example 4.59.

Solution
We are given that the lifetime of the circuit will be more than four years, and we must
compute the probability that the lifetime will be more than 4 + 3 = 7 years. The
probability is given by

P(T > 7|T > 4) = P(T > 7 and T > 4)

P(T > 4)

If T > 7, then T > 4 as well. Therefore P(T > 7 and T > 4) = P(T > 7). It
follows that

P(T > 7|T > 4) = P(T > 7)

P(T > 4)

= e−0.5(7)

e−0.5(4)

= e−0.5(3)

= e−1.5

= 0.223

The probability that a 4-year-old circuit lasts 3 additional years is exactly the same
as the probability that a new circuit lasts 3 years.

Examples 4.59 and 4.60 illustrate the lack of memory property. The probability that
we must wait an additional t units, given that we have already waited s units, is the same
as the probability that we must wait t units from the start. The exponential distribution
does not “remember” how long we have been waiting. In particular, if the lifetime of a
component follows the exponential distribution, then the probability that a component
that is s time units old will last an additional t time units is the same as the probability
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that a new component will last t time units. In other words, a component whose lifetime
follows an exponential distribution does not show any effects of age or wear.

The calculations in Examples 4.59 and 4.60 could be repeated for any values s and
t in place of 4 and 3, and for any value of λ in place of 0.5. We now state the lack of
memory property in its general form:

Lack of Memory Property
If T ∼ Exp(λ), and t and s are positive numbers, then

P(T > t + s | T > s) = P(T > t)

Example
4.61 The number of hits on a website follows a Poisson process with a rate of 3 per minute.

What is the probability that more than a minute goes by without a hit? If 2 minutes
have gone by without a hit, what is the probability that a hit will occur in the next
minute?

Solution
Let T denote the waiting time in minutes until the next hit. Then T ∼ Exp(3). The
probability that one minute elapses with no hits is P(T > 1) = e−3(1) = 0.0498.
Because of the lack of memory property, the probability that one additional minute
elapses without a hit, given that two minutes have gone by without a hit, is also equal
to 0.0498. The probability that a hit does occur in the next minute is therefore equal
to 1 − 0.0498 = 0.9502.

Using the Exponential Distribution to Estimate a Rate
If X ∼ Exp(λ), then μX = 1/λ, so λ = 1/μX . It follows that if X1, . . . , Xn is a random
sample from Exp(λ), it is reasonable to estimate λ with λ̂ = 1/X .

We will discuss the bias in λ̂ = 1/X . As with any sample mean X , μX = μ,
so X is unbiased for μ. However, μ1/X �= 1/μ, because 1/μ is not a linear function
of μ. Therefore λ̂ = 1/X is biased for λ = 1/μ. Using advanced methods, it can be
shown that μλ̂ ≈ λ + λ/n, so the bias is approximately λ/n. Thus for a sufficiently
large sample size n the bias is negligible, but it can be substantial when the sample size
is small.

The uncertainty in λ̂ can be estimated with

σλ̂ ≈ 1

X
√

n

A derivation is given at the end of the section.
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Summary
If X1, . . . , Xn is a random sample from Exp(λ), then the parameter λ is estimated
with

λ̂ = 1

X
(4.36)

This estimator is biased. The bias is approximately equal to λ/n. The uncertainty
in λ̂ is estimated with

σλ̂ ≈ 1

X
√

n
(4.37)

This uncertainty estimate is reasonably good when the sample size is more
than 20.

Correcting the Bias
Since μλ̂ = μ1/X ≈ λ + λ/n = (n + 1)λ/n, it follows that μn/(n+1)X ≈ λ. In other
words, the quantity n/[(n + 1)X ] has smaller bias for estimating λ than does 1/X . This
is known as a bias-corrected estimate.

Example
4.62 A random sample of size 5 is taken from an Exp(λ) distribution. The values are 7.71,

1.32, 7.46, 6.53, and 0.44. Find a bias-corrected estimate of λ.

Solution
The sample mean is X = 4.6920. The sample size is n = 5. The bias-corrected
estimate of λ is 5/[6(4.6920)] = 0.178.

Derivation of the Mean and Variance of an Exponential Random
Variable
To derive Equation (4.34), we begin with Equation (2.35) (in Section 2.4):

μX =
∫ ∞

−∞
x f (x) dx

Substituting the exponential probability density function (4.32) for f (x), we obtain

μX =
∫ ∞

0
λxe−λx dx

Integrating by parts, setting u = x and dv = λe−λx yields

μX = −xe−λx

∞

0

+
∫ ∞

0
e−λx dx (4.38)
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We evaluate the first quantity on the right-hand side of Equation (4.38):

−xe−λx

∞

0

= lim
x→∞ −xe−λx − 0

= lim
x→∞ − x

eλx

= lim
x→∞ − 1

λeλx
by L’Hospital’s rule

= 0

Therefore

μX =
∫ ∞

0
e−λx dx

= 1

λ

To derive Equation (4.35), we begin with Equation (2.37) (in Section 2.4):

σ 2
X =

∫ ∞

−∞
x2 f (x) dx − μ2

X

Substituting the exponential probability density function (4.32) for f (x), and 1/λ for
μX , we obtain

σ 2
X =

∫ ∞

0
λx2e−λx dx − 1

λ2
(4.39)

We evaluate the integral
∫ ∞

0 λx2e−λx dx , using integration by parts. Setting u = x2

and dv = λe−λx we obtain∫ ∞

0
λx2e−λx dx = −x2e−λx

∞

0

+
∫ ∞

0
2xe−λx dx (4.40)

We evaluate the first quantity on the right-hand side of Equation (4.40).

−x2eλx

∞

0

= lim
x→∞ −x2e−λx − 0

= lim
x→∞ − x2

eλx

= lim
x→∞ − 2x

λeλx
by L’Hospital’s rule

= lim
x→∞ − 2

λ2eλx
by L’Hospital’s rule

= 0

Therefore ∫ ∞

0
λx2e−λx dx =

∫ ∞

0
2xe−λx dx

= 2

λ

∫ ∞

0
λxe−λx dx
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= 2

λ
μX

=
(

2

λ

) (
1

λ

)

= 2

λ2

Substituting into (4.39) yields

σ 2
X = 2

λ2
− 1

λ2

= 1

λ2

Derivation of the Relationship Between the Exponential Distribution
and the Poisson Process
Let T represent the waiting time until the next event in a Poisson process with rate
parameter λ. We show that T ∼ Exp(λ) by showing that the cumulative distribution
function of T is F(t) = 1 − e−λt , which is the cumulative distribution function of
Exp(λ).

First, if t ≤ 0, then F(t) = P(T ≤ t) = 0. Now let t > 0. We begin by
computing P(T > t). The key is to realize that T > t if and only if no events happen
in the next t time units. Let X represent the number of events that happen in the next
t time units. Now T > t if and only if X = 0, so P(T > t) = P(X = 0).

Since X ∼ Poisson(λt),

P(X = 0) = e−λt λ
0

0!
= e−λt

Therefore P(T > t) = e−λt . The cumulative distribution function of T is F(t) = 0
for t ≤ 0, and for t > 0

F(t) = P(T ≤ t)

= 1 − P(T > t)

= 1 − e−λt

Since F(t) is the cumulative distribution function of Exp(λ), it follows that
T ∼ Exp(λ).

Derivation of the Uncertainty in the Estimated Rate
We can estimate the uncertainty in λ̂ by using the propagation of error method (Equa-
tion 3.10 in Section 3.3):

σλ̂ ≈
∣∣∣∣ d

d X

1

X

∣∣∣∣ σX

For this expression to be useful, we need to know σX . Now the standard deviation
of an Exp(λ) distribution is σ = 1/λ (this follows from Equation 4.35; note that the
standard deviation is the same as the mean). Therefore σX = σ/

√
n = 1/(λ

√
n). We
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can replace λ with its estimate 1/X to obtain

σX ≈ X√
n

Now we can estimate the uncertainty σλ̂:

σλ̂ ≈
∣∣∣∣ d

d X

1

X

∣∣∣∣ σX

= 1

X
2

X√
n

= 1

X
√

n

This propagation of error estimate is fairly good when the sample size is at least 20
or so. For smaller sample sizes it underestimates the uncertainty.

Exercises for Section 4.7

1. Let T ∼ Exp(0.45). Find

a. μT

b. σ 2
T

c. P(T > 3)

d. The median of T

2. The time between requests to a web server is expo-
nentially distributed with mean 0.5 seconds.

a. What is the value of the parameter λ?

b. What is the median time between requests?

c. What is the standard deviation?

d. What is the 80th percentile?

e. Find the probability that more than one second
elapses between requests.

f. If there have been no requests for the past two
seconds, what is the probability that more than
one additional second will elapse before the next
request?

3. A catalyst researcher states that the diameters, in mi-
crons, of the pores in a new product she has made have
the exponential distribution with parameter λ = 0.25.

a. What is the mean pore diameter?

b. What is the standard deviation of the pore
diameters?

c. What proportion of the pores are less than
3 microns in diameter?

d. What proportion of the pores are greater than
11 microns in diameter?

e. What is the median pore diameter?

f. What is the third quartile of the pore diameters?

g. What is the 99th percentile of the pore
diameters?

4. The distance between flaws on a long cable is expo-
nentially distributed with mean 12 m.

a. Find the probability that the distance between two
flaws is greater than 15 m.

b. Find the probability that the distance between two
flaws is between 8 and 20 m.

c. Find the median distance.

d. Find the standard deviation of the distances.

e. Find the 65th percentile of the distances.

5. Refer to Exercise 3. Suppose that the diameters of 10
pores are independent.

a. Find the probability that more than seven of them
have diameters less than 3 microns.

b. Find the probability that exactly one of them has a
diameter greater than 11 microns.
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6. Someone claims that the waiting time, in minutes, be-
tween hits at a certain website has the exponential
distribution with parameter λ = 1.

a. Let X be the waiting time until the next hit. If the
claim is true, what is P(X ≥ 5)?

b. Based on the answer to part (a), if the claim is true,
is five minutes an unusually long time to wait?

c. If you waited five minutes until the next hit oc-
curred, would you still believe the claim? Explain.

7. A certain type of component can be purchased new or
used. Fifty percent of all new components last more
than five years, but only 30% of used components last
more than five years. Is it possible that the lifetimes
of new components are exponentially distributed?
Explain.

8. A radioactive mass emits particles according to a
Poisson process at a mean rate of 2 per second.
Let T be the waiting time, in seconds, between
emissions.

a. What is the mean waiting time?

b. What is the median waiting time?

c. Find P(T > 2).

d. Find P(T < 0.1).

e. Find P(0.3 < T < 1.5).

f. If 3 seconds have elapsed with no emission, what
is the probability that there will be an emission
within the next second?

9. The number of traffic accidents at a certain intersec-
tion is thought to be well modeled by a Poisson process
with a mean of 3 accidents per year.

a. Find the mean waiting time between accidents.

b. Find the standard deviation of the waiting times
between accidents.

c. Find the probability that more than one year elapses
between accidents.

d. Find the probability that less than one month
elapses between accidents.

e. If no accidents have occurred within the last six
months, what is the probability that an accident
will occur within the next year?

10. The distance between consecutive flaws on a roll
of sheet aluminum is exponentially distributed with
mean distance 3 m. Let X be the distance, in meters,
between flaws.

a. What is the mean number of flaws per meter?

b. What is the probability that a 5 m length of alu-
minum contains exactly two flaws?

11. A light fixture contains five lightbulbs. The lifetime
of each bulb is exponentially distributed with mean
200 hours. Whenever a bulb burns out, it is replaced.
Let T be the time of the first bulb replacement. Let
Xi , i = 1, . . . , 5, be the lifetimes of the five bulbs.
Assume the lifetimes of the bulbs are independent.

a. Find P(X1 > 100).

b. Find P(X1 > 100 and X2 > 100 and · · · and
X5 > 100).

c. Explain why the event T > 100 is the same as
{X1 >100 and X2 >100 and · · · and X5 >100}.

d. Find P(T ≤ 100).

e. Let t be any positive number. Find P(T ≤ t),
which is the cumulative distribution function of T .

f. Does T have an exponential distribution?

g. Find the mean of T .

h. If there were n lightbulbs, and the lifetime of each
was exponentially distributed with parameter λ,
what would be the distribution of T ?

4.8 Some Other Continuous Distributions

The Uniform Distribution
The continuous uniform distribution, which we will sometimes refer to just as the uniform
distribution, is the simplest of the continuous distributions. It often plays an important
role in computer simulation studies. The uniform distribution has two parameters, a and
b, with a < b.
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Definition
The probability density function of the continuous uniform distribution with
parameters a and b is

f (x) =
⎧⎨
⎩

1

b − a
a < x < b

0 otherwise
(4.41)

If X is a random variable with probability density function f (x), we say that X
is uniformly distributed on the interval (a, b).

Since the probability density function is constant on the interval (a, b), we can
think of the probability as being distributed “uniformly” on the interval. If X is a random
variable whose distribution is uniform on the interval (a, b), we write X ∼ U (a, b).

The mean and variance of a uniform random variable can easily be computed from
the definitions (Equations 2.35, 2.36, and 2.37). The derivations are left as an exercise.

Let X ∼ U (a, b). Then

μX = a + b

2
(4.42)

σ 2
X = (b − a)2

12
(4.43)

Example
4.63 When a motorist stops at a red light at a certain intersection, the waiting time for the

light to turn green, in seconds, is uniformly distributed on the interval (0, 30). Find
the probability that the waiting time is between 10 and 15 seconds.

Solution
Let X represent the waiting time. Then X ∼ U (0, 30), and we must compute
P(10 < X < 15). We will do this by integrating the probability density function
over the interval between 10 and 15. From Equation (4.41), the probability density
function is

f (x) =
⎧⎨
⎩

1

30
0 < x < 30

0 otherwise

Therefore

P(10 < X < 15) =
∫ 15

10

1

30
dx = x

30

x=15

x=10

= 15

30
− 10

30
= 1

6

Because the probability density function for a uniform random variable is constant
over the range of possible values, probabilities for uniform random variables generally
involve areas of rectangles, which can be computed without integrating. Figure 4.18
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1/30

0 5 10 15 20 25 30

FIGURE 4.18 Because the probability density function for a uniform random variable is constant
over the range of possible values, probabilities for uniform random variables generally involve
areas of rectangles, which can be computed without integrating. Here P(10 < X < 15) is the area
of a rectangle of dimensions 1/30 × 5, so the probability is 5/30, or 1/6.

shows how to compute P(10 < X < 15) without an integral. The probability P(10 <

X < 15) is equal to the area of the shaded region under the probability density
function. This region is a rectangle with height 1/30 and width equal to 15 − 10 = 5.
The probability is therefore 5/30, or 1/6.

Example
4.64 Refer to Example 4.63. Find the mean and variance of the waiting time.

Solution
The waiting time X is uniformly distributed on the interval (0, 30). Using Equa-
tion (4.42), μX = (0+30)/2 = 15. Using Equation (4.43), σ 2

X = (30−0)2/12 = 75.

The Gamma Distribution
The gamma distribution is a continuous distribution, one of whose purposes is to extend
the usefulness of the exponential distribution in modeling waiting times. It involves a
certain integral known as the gamma function. We define the gamma function and state
some of its properties.

Definition
For r > 0, the gamma function is defined by

�(r) =
∫ ∞

0
tr−1e−t dt (4.44)

The gamma function has the following properties:

1. If r is an integer, then �(r) = (r − 1)!.

2. For any r , �(r + 1) = r�(r).

3. �(1/2) = √
π .

The gamma function is used to define the probability density function of the gamma
distribution. The gamma probability density function has two parameters, r and λ, both
of which are positive constants.
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Definition
The probability density function of the gamma distribution with parameters r > 0
and λ > 0 is

f (x) =
⎧⎨
⎩

λr xr−1e−λx

�(r)
x > 0

0 x ≤ 0
(4.45)

If X is a random variable whose probability density function is gamma with param-
eters r and λ, we write X ∼ �(r, λ). Note that when r = 1, the gamma distribution is
the same as the exponential. In symbols, �(1, λ) = Exp(λ). Figure 4.19 presents plots
of the gamma probability density function for various values of r and λ.

r � 1,  � � 1 

r � 3,  � � 2

r � 5,  � � 1 

0 2 4 6 8 10 12

1

0.8

0.6

0.4

0.2

0

FIGURE 4.19 The gamma probability density function for various values of r and λ.

When the parameter r is an integer, the gamma distribution is a direct extension of
the exponential distribution. To be specific, recall that if events follow a Poisson process
with rate parameter λ, the waiting time until an event occurs is distributed as Exp(λ). If
r is any positive integer, then the waiting time until r events have occurred is distributed
as �(r, λ). We can say this another way. Let X1 be the waiting time until the first event,
and for i > 1 let Xi be the waiting time between events i − 1 and i . The waiting time
until the r th event is the sum of the independent random variables X1 + · · · + Xr , each
of which is distributed as Exp(λ).

Summary
If X1, . . . , Xr are independent random variables, each distributed as Exp(λ), then
the sum X1 + · · · + Xr is distributed as �(r, λ).

Since the mean and variance of an exponential random variable are given by 1/λ

and 1/λ2, respectively, we can use the fact that a gamma random variable is the sum
of independent exponential random variables to compute the mean and variance of a
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gamma random variable in the case when r is an integer. The results are presented in the
following box, and in fact, they are valid for any values of r and λ.

If X ∼ �(r, λ), then

μX = r

λ
(4.46)

σ 2
X = r

λ2
(4.47)

Example
4.65 Assume that arrival times at a drive-through window follow a Poisson process with

mean rate λ = 0.2 arrivals per minute. Let T be the waiting time until the third arrival.
Find the mean and variance of T . Find P(T ≤ 20).

Solution
The random variable T is distributed �(3, 0.2). Using Equations (4.46) and (4.47)
we compute μT = 3/0.2 = 15 and σ 2

T = 3/(0.22) = 75. To compute P(T ≤ 20)

we reason as follows: T ≤ 20 means that the third event occurs within 20 minutes.
This is the same as saying that the number of events that occur within 20 minutes is
greater than or equal to 3. Now let X denote the number of events that occur within
20 minutes. What we have said is that P(T ≤ 20) = P(X ≥ 3). Now the mean of X
is (20)(0.2) = 4, and X has a Poisson distribution, so X ∼ Poisson(4). It follows that

P(T ≤ 20) = P(X ≥ 3)

= 1 − P(X ≤ 2)

= 1 − [P(X = 0) + P(X = 1) + P(X = 2)]

= 1 −
(

e−4 40

0!
+ e−4 41

1!
+ e−4 42

2!

)

= 1 − (e−4 + 4e−4 + 8e−4)

= 0.7619

The method used in Example 4.65 to find P(T ≤ 20) can be used to find the
cumulative distribution function F(x) = P(T ≤ x) when T ∼ �(r, λ) and r is a
positive integer.

If T ∼ �(r, λ), and r is a positive integer, the cumulative distribution function
of T is given by

F(x) = P(T ≤ x) =

⎧⎪⎨
⎪⎩

1 −
r−1∑
j=0

e−λx (λx) j

j!
x > 0

0 x ≤ 0

(4.48)

A gamma distribution for which the parameter r is a positive integer is some-
times called an Erlang distribution. If r = k/2 where k is a positive integer, the
�(r, 1/2)distribution is called a chi-square distribution with k degrees of freedom. The
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chi-square distribution is widely used in statistical inference. We will discuss some of
its uses in Sections 5.8, 6.10, and 6.11.

The Weibull Distribution
The Weibull distribution is a continuous distribution that is used in a variety of situations.
A common application of the Weibull distribution is to model the lifetimes of components
such as bearings, ceramics, capacitors, and dielectrics. The Weibull probability density
function has two parameters, both positive constants, that determine its location and
shape. We denote these parameters α and β. The probability density function of the
Weibull distribution is

f (x) =
{

αβαxα−1e−(βx)α x > 0
0 x ≤ 0

(4.49)

If X is a random variable whose probability density function is Weibull with pa-
rameters α and β, we write X ∼ Weibull(α, β). Note that when α = 1, the Weibull
distribution is the same as the exponential distribution with parameter λ = β. In symbols,
Weibull(1, β) = Exp(β).

Figure 4.20 presents plots of the Weibull(α, β) probability density function for sev-
eral choices of the parameters α and β. By varying the values of α and β, a wide variety of
curves can be generated. Because of this, the Weibull distribution can be made to fit a wide
variety of data sets. This is the main reason for the usefulness of the Weibull distribution.

2

1.5

1

0.5

0

� � 5,  � � 1 

� � 1,  � � 0.5 
� � 5,  � � 0.2 

0 2 4 6 8 10

FIGURE 4.20 The Weibull probability density function for various choices of α and β.

The Weibull cumulative distribution function can be computed by integrating the
probability density function:

F(x) = P(X ≤ x) =
⎧⎨
⎩

∫ x

0
αβαtα−1e−(βt)α dt = 1 − e−(βx)α x > 0

0 x ≤ 0
(4.50)

This integral is not as hard as it looks. Just substitute u = (βt)α , and du = αβαtα−1 dt .



Navidi-3810214 book November 11, 2013 12:48

4.8 Some Other Continuous Distributions 277

The mean and variance of the Weibull distribution are expressed in terms of the
gamma function.

If X ∼ Weibull(α, β), then

μX = 1

β
�

(
1 + 1

α

)
(4.51)

σ 2
X = 1

β2

{
�

(
1 + 2

α

)
−

[
�

(
1 + 1

α

)]2
}

(4.52)

In the special case that 1/α is an integer, then

μX = 1

β

[(
1

α

)
!

]
σ 2

X = 1

β2

{(
2

α

)
! −

[(
1

α

)
!

]2
}

If the quantity 1/α is an integer, then 1+1/α and 1+2/α are integers, so Property 1
of the gamma function can be used to compute μX and σ 2

X exactly. If the quantity 1/α

is of the form n/2, where n is an integer, then in principle μX and σ 2
X can be computed

exactly through repeated applications of Properties 2 and 3 of the gamma function. For
other values of α, μX and σ 2

X must be approximated. Many computer packages can
do this.

Example
4.66 In the article “Snapshot: A Plot Showing Program through a Device Development

Laboratory” (D. Lambert, J. Landwehr, and M. Shyu, Statistical Case Studies for In-
dustrial Process Improvement, ASA-SIAM 1997), the authors suggest using a Weibull
distribution to model the duration of a bake step in the manufacture of a semiconduc-
tor. Let T represent the duration in hours of the bake step for a randomly chosen lot.
If T ∼ Weibull(0.3, 0.1), what is the probability that the bake step takes longer than
four hours? What is the probability that it takes between two and seven hours?

Solution
We use the cumulative distribution function, Equation (4.50). Substituting 0.3 for α

and 0.1 for β, we have

P(T ≤ t) = 1 − e−(0.1t)0.3

Therefore

P(T > 4) = 1 − P(T ≤ 4)

= 1 − (1 − e−[(0.1)(4)]0.3
)

= e−(0.4)0.3

= e−0.7597

= 0.468
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The probability that the step takes between two and seven hours is

P(2 < T < 7) = P(T ≤ 7) − P(T ≤ 2)

= (1 − e−[(0.1)(7)]0.3
) − (1 − e−[(0.1)(2)]0.3

)

= e−[(0.1)(2)]0.3 − e−[(0.1)(7)]0.3

= e−(0.2)0.3 − e−(0.7)0.3

= e−0.6170 − e−0.8985

= 0.132

Exercises for Section 4.8

1. A person arrives at a certain bus stop each morning.
The waiting time, in minutes, for a bus to arrive is
uniformly distributed on the interval (0, 15).

a. Find the mean waiting time.

b. Find the standard deviation of the waiting times.

c. Find the probability that the waiting time is be-
tween 5 and 11 minutes.

d. Suppose that waiting times on different mornings
are independent. What is the probability that the
waiting time is less than 5 minutes on exactly 4
of 10 mornings?

2. Resistors are labeled 100 �. In fact, the actual re-
sistances are uniformly distributed on the interval
(95, 103).

a. Find the mean resistance.

b. Find the standard deviation of the resistances.

c. Find the probability that the resistance is between
98 and 102 �.

d. Suppose that resistances of different resistors are
independent. What is the probability that three
out of six resistors have resistances greater than
100 �?

3. Let T ∼ �(4, 0.5).

a. Find μT .

b. Find σT .

c. Find P(T ≤ 1).

d. Find P(T ≥ 4).

4. Let T ∼ �(r, λ). If μT = 8 and σ 2
T = 16, find r and λ.

5. Let T ∼ �(r, λ). If μT = 8 and r = 16, find λ and σ 2.

6. The lifetime, in years, of a type of small electric motor
operating under adverse conditions is exponentially
distributed with λ = 3.6. Whenever a motor fails, it is
replaced with another of the same type. Find the prob-
ability that fewer than six motors fail within one year.

7. Let T ∼ Weibull(0.5, 3).

a. Find μT .

b. Find σT .

c. Find P(T < 1).

d. Find P(T > 5).

e. Find P(2 < T < 4).

8. If T is a continuous random variable that is always
positive (such as a waiting time), with probability
density function f (t) and cumulative distribution
function F(t), then the hazard function is defined to
be the function

h(t) = f (t)

1 − F(t)

The hazard function is the rate of failure per unit time,
expressed as a proportion of the items that have not
failed.

a. If T ∼ Weibull(α, β), find h(t).

b. For what values of α is the hazard rate increasing
with time? For what values of α is it decreasing?

c. If T has an exponential distribution, show that
the hazard function is constant.

9. In the article “Parameter Estimation with Only One
Complete Failure Observation” (W. Pang, P. Leung,
et al., International Journal of Reliability, Quality,
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and Safety Engineering, 2001:109–122), the lifetime,
in hours, of a certain type of bearing is modeled with
the Weibull distribution with parameters α = 2.25
and β = 4.474 × 10−4.

a. Find the probability that a bearing lasts more than
1000 hours.

b. Find the probability that a bearing lasts less than
2000 hours.

c. Find the median lifetime of a bearing.

d. The hazard function is defined in Exercise 8. What
is the hazard at t = 2000 hours?

10. The lifetime of a certain battery is modeled with the
Weibull distribution with α = 2 and β = 0.1.

a. What proportion of batteries will last longer than
10 hours?

b. What proportion of batteries will last less than 5
hours?

c. What proportion of batteries will last longer than
20 hours?

d. The hazard function is defined in Exercise 8. What
is the hazard at t = 10 hours?

11. The lifetime of a cooling fan, in hours, that is used in
a computer system has the Weibull distribution with
α = 1.5 and β = 0.0001.

a. What is the probability that a fan lasts more than
10,000 hours?

b. What is the probability that a fan lasts less than
5000 hours?

c. What is the probability that a fan lasts between
3000 and 9000 hours?

12. Someone suggests that the lifetime T (in days) of a
certain component can be modeled with the Weibull
distribution with parameters α = 3 and β = 0.01.

a. If this model is correct, what is P(T ≤ 1)?

b. Based on the answer to part (a), if the model is cor-
rect, would one day be an unusually short lifetime?
Explain.

c. If you observed a component that lasted one day,
would you find this model to be plausible? Explain.

d. If this model is correct, what is P(T ≤ 90)?

e. Based on the answer to part (d), if the model is cor-
rect, would 90 days be an unusually short lifetime?
An unusually long lifetime? Explain.

f. If you observed a component that lasted 90 days,
would you find this model to be plausible? Explain.

13. A system consists of two components connected in
series. The system will fail when either of the two
components fails. Let T be the time at which the
system fails. Let X1 and X2 be the lifetimes of the two
components. Assume that X1 and X2 are independent
and that each has the Weibull distribution with α = 2
and β = 0.2.

a. Find P(X1 > 5).

b. Find P(X1 > 5 and X2 > 5).

c. Explain why the event T > 5 is the same as the
event {X1 > 5 and X2 > 5}.

d. Find P(T ≤ 5).

e. Let t be any positive number. Find P(T ≤ t),
which is the cumulative distribution function of T .

f. Does T have a Weibull distribution? If so, what
are its parameters?

14. Let X ∼ U (a, b). Use the definition of the mean of a
continuous random variable (Equation 2.35) to show
that μX = (a + b)/2.

15. Let X ∼ U (a, b). Use the definition of the variance of
a continuous random variable (Equation 2.36 or 2.37)
to show that σ 2

X = (b − a)2/12.

16. Let X ∼ U (a, b).

a. Show that if x ≤ a then P(X ≤ x) = 0.

b. Show that if x > b then P(X ≤ x) = 1.

c. Show that if a < x ≤ b then P(X ≤ x) =
(x − a)/(b − a). Conclude that the cumulative
distribution function of X is

F(x) =

⎧⎪⎨
⎪⎩

0 x ≤ a
x − a

b − a
a < x ≤ b

1 x > b

17. Let U ∼ U (0, 1). Let a and b be constants with
a < b, and let X = (b − a)U + a.

a. Find the cumulative distribution function of U
(use the result of Exercise 16).

b. Show that P(X ≤ x) = P(U ≤ (x − a)/(b − a)).

c. Use the result of part (b) to show that X ∼ U (a, b).
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4.9 Some Principles of Point Estimation

When data are collected, it is often with the purpose of estimating some numerical
characteristic of the population from which they came.

For example, if X1, . . . , Xn is a random sample from a population, the sample mean
X is often used to estimate the population mean μ, and the sample variance s2 is often
used to estimate the population variance σ 2. As another example, if X ∼ Bin(n, p), the
sample proportion p̂ = X/n is often used to estimate the unknown population proportion
p (see Section 4.2).

In general, a quantity calculated from data is called a statistic, and a statistic that is
used to estimate an unknown constant, or parameter, is called a point estimator or point
estimate. The term point estimate is used when a particular numerical value is specified
for the data. For example, if X ∼ Bin(10, p), and we observe X = 3, then the number
p̂ = 3/10 is a point estimate of the unknown parameter p. On the other hand, if no
particular value is specified for X , the random quantity p̂ = X/10 is often called a point
estimator of p. Often, point estimators and point estimates are simply called estimators
and estimates, respectively.

In this section, we will briefly address two questions:

1. Given a point estimator, how do we determine how good it is?

2. What methods can be used to construct good point estimators?

In what follows, we will use the letter θ to denote an unknown parameter, and θ̂ to
denote an estimator of θ .

Measuring the Goodness of an Estimator
Ideally, an estimator should be both accurate and precise. The accuracy of an estimator
is measured by its bias, and the precision is measured by its standard deviation, or uncer-
tainty. The quantity most often used to evaluate the overall goodness of an estimator is
the mean squared error (abbreviated MSE), which combines both bias and uncertainty.
The bias of the estimator θ̂ is μθ̂ − θ , the difference between the mean of the estimator
and the true value. The uncertainty is the standard deviation σθ̂ , and is sometimes referred
to as the standard error of the estimator. The MSE is found by adding the variance to
the square of the bias.

Definition
Let θ be a parameter, and θ̂ an estimator of θ . The mean squared error (MSE) of
θ̂ is

MSEθ̂ = (μθ̂ − θ)2 + σ 2
θ̂

(4.53)

An equivalent expression for the MSE is

MSEθ̂ = μ(θ̂−θ)2 (4.54)
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Equation (4.53) says that the MSE is equal to the square of the bias, plus the variance.
To interpret Equation (4.54), note that the quantity θ̂ − θ is the difference between the
estimated value and the true value, and is called the error. So Equation (4.54) says that
the MSE is the mean of the squared error, and indeed it is this property that gives the
MSE its name.

Equations (4.53) and (4.54) yield identical results, so either may be used in any
situation to compute the MSE. In practice Equation (4.53) is often somewhat easier
to use.

Example
4.67 Let X ∼ Bin(n, p) where p is unknown. Find the MSE of p̂ = X/n.

Solution
We compute the bias and variance of p̂ and use Equation (4.53). As shown in Sec-
tion 4.2, the bias of p̂ is 0, and the variance is p(1 − p)/n. Therefore the MSE is
0 + p(1 − p)/n, or p(1 − p)/n.

In Example 4.67 the estimator was unbiased, so the MSE was equal to the variance
of the estimator.

In some cases an unbiased estimator can be altered in a way that adds a small bias,
but reduces the variance by a greater amount. Following is an example involving the
sample variance.

Example
4.68 Let X1, . . . , Xn be a random sample from a N (μ, σ 2) population. The sample vari-

ance is s2 = ∑n
i=1(Xi − X)2/(n − 1). It can be shown that s2 has mean μs2 = σ 2

and variance σ 2
s2 = 2σ 4/(n − 1). Consider the estimator σ̂ 2 = ∑n

i=1(Xi − X)2/n, in
which the sum of the squared deviations is divided by n rather than n − 1. Compute
the bias, variance, and mean squared error of both s2 and σ̂ 2. Show that σ̂ 2 has smaller
mean squared error than s2.

Solution
Since μs2 = σ 2, s2 is unbiased for σ 2, so the mean squared error is equal to the
variance: MSEs2 = 2σ 4/(n − 1). To compute the bias and variance of σ̂

2, note that

σ̂
2 = n − 1

n
s2

It follows that

μσ̂ 2 = n − 1

n
μs2 = n − 1

n
σ 2

Therefore

Bias of σ̂
2 = n − 1

n
σ 2 − σ 2 = −σ 2/n
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The variance is given by

σ 2
σ̂ 2 = (n − 1)2

n2
σ 2

s2 = 2(n − 1)

n2
σ 4

The mean squared error of σ̂
2 is therefore

MSEσ̂ 2 =
(−σ 2

n

)2

+ 2(n − 1)

n2
σ 4

= 2n − 1

n2
σ 4

To show that σ̂ 2 has smaller mean squared error than s2, we subtract:

MSEs2 − MSEσ̂ 2 = 2σ 4

n − 1
− (2n − 1)σ 4

n2

= 3n − 1

n2(n − 1)

> 0 (since n > 1)

We now turn to the question of how to find good estimators. We focus on the most
widely used method, which is the method of maximum likelihood.

The Method of Maximum Likelihood
The idea behind the method of maximum likelihood is to estimate a parameter with
the value that makes the observed data most likely. To illustrate the method, let
X ∼ Bin(20, p) where p is unknown. Suppose we observe the value X = 7. The
probability mass function is

f (7; p) = 20!

7!13!
p7(1 − p)13

Notice that we have included the symbol for the parameter p in the notation for the
probability mass function; that is, we have written f (7; p) rather than f (7). The reason
for this is that we will treat the probability mass function as a function of p, with the
data value 7 being constant. When a probability mass function or probability density
function is considered to be a function of parameters, it is called a likelihood function.

The maximum likelihood estimate (MLE) is the value p̂ which, when substituted
for p, maximizes the likelihood function. We will now discuss the mechanics of comput-
ing the maximum of the likelihood function f (7; p). In principle, we could maximize
this function by taking the derivative with respect to p and setting it equal to 0. It is
easier, however, to maximize ln f (7; p) instead. Note that the quantity that maximizes
the logarithm of a function is always the same quantity that maximizes the function itself.
Now

ln f (7; p) = ln 20! − ln 7! − ln 13! + 7 ln p + 13 ln(1 − p)

We take the derivative with respect to p and set it equal to 0:
d

dp
ln f (7; p) = 7

p
− 13

1 − p
= 0
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Solving, we find that the maximizing value is 7/20. Therefore the maximum likelihood
estimate is p̂ = 7/20.

It is easy to see that whatever value is observed for X , the maximizing value would
be X/20. We say, therefore, that the maximum likelihood estimator is p̂ = X/20. Note
that we are using the word “estimate” when a specific value, like 7, is given for X , and
the word “estimator” when the data value is unspecified, and represented by the random
variable X .

In principle, the likelihood function can be a probability density function or a prob-
ability mass function. It can also be a joint probability density or mass function, and is
often the joint density or mass function of independent random variables. (Joint distri-
butions are covered in Section 2.6.) The likelihood function can also be a function of
several parameters. We now present the definition of a maximum likelihood estimator.

Definition
Let X1, . . . , Xn have joint probability density or probability mass function
f (x1, . . . , xn; θ1, . . . , θk), where θ1, . . . , θk are parameters, and x1, . . . , xn are
the values observed for X1, . . . , Xn . The values θ̂1, . . . , θ̂k that maximize f are the
maximum likelihood estimates of θ1, . . . , θk .

If the random variables X1, . . . , Xn are substituted for x1, . . . , xn , then
θ̂1, . . . , θ̂k are called maximum likelihood estimators.

The abbreviation MLE is often used for both maximum likelihood estimate
and maximum likelihood estimator.

Example
4.69 Let X1, . . . , Xn be a random sample from an Exp(λ) population, where λ is unknown.

Find the MLE of λ.

Solution
The likelihood function is the joint probability density function of X1, . . . , Xn , con-
sidered as a function of the parameter λ. Since X1, . . . , Xn are independent, the joint
probability density function is the product of the marginals, each of which is an Exp(λ)

probability density function. Therefore

f (x1, . . . , xn; λ) =
n∏

i=1

λe−λxi

The MLE λ̂ is the value of λ that maximizes the likelihood function. Multiplying out
the product yields

f (x1, . . . , xn; λ) = λne−λ
n
i=1xi

As is often the case, it is easier to maximize the logarithm of the likelihood:

ln f (x1, . . . , xn; λ) = n ln λ − λ

n∑
i=1

xi
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Taking the derivative with respect to λ and setting it equal to 0 yields

d

dλ
ln f = n

λ
−

n∑
i=1

xi = 0

Solving for λ yields the MLE:

λ̂ = n∑n
i=1 xi

= 1

x

Desirable Properties of Maximum Likelihood Estimators
Maximum likelihood is the most commonly used method of estimation. The main rea-
son for this is that in most cases that arise in practice, MLEs have two very desirable
properties.

1. In most cases, as the sample size n increases, the bias of the MLE converges to 0.

2. In most cases, as the sample size n increases, the variance of the MLE converges
to a theoretical minimum.

Together, these two properties imply that when the sample size is sufficiently large,
the bias of the MLE will be negligible, and the variance will be nearly as small as is
theoretically possible.

Exercises for Section 4.9

1. Choose the best answer to fill in the blank. If an esti-
mator is unbiased, then

i. the estimator is equal to the true value.

ii. the estimator is usually close to the true value.

iii. the mean of the estimator is equal to the true value.

iv. the mean of the estimator is usually close to the
true value.

2. Choose the best answer to fill in the blank. The variance
of an estimator measures

i. how close the estimator is to the true value.

ii. how close repeated values of the estimator are to
each other.

iii. how close the mean of the estimator is to the true
value.

iv. how close repeated values of the mean of the esti-
mator are to each other.

3. Let X1 and X2 be independent, each with unknown
mean μ and known variance σ 2 = 1.

a. Let μ̂1 = X1 + X2

2
. Find the bias, variance, and

mean squared error of μ̂1.

b. Let μ̂2 = X1 + 2X2

3
. Find the bias, variance, and

mean squared error of μ̂2.

c. Let μ̂3 = X1 + X2

4
. Find the bias, variance, and

mean squared error of μ̂3.

d. For what values of μ does μ̂3 have smaller mean
squared error than μ̂1?

e. For what values of μ does μ̂3 have smaller mean
squared error than μ̂2?

4. Let X1, . . . , Xn be a simple random sample from a
N (μ, σ 2) population. For any constant k > 0, define

σ̂ 2
k =

∑n

i=1(Xi − X)2

k
. Consider σ̂ 2

k as an estimator

of σ 2.

a. Compute the bias of σ̂ 2
k in terms of k. [Hint:

The sample variance s2 is unbiased, and σ̂ 2
k =

(n − 1)s2/k.]

b. Compute the variance of σ̂ 2
k in terms of k. [Hint:

σ 2
s2 = 2σ 4/(n − 1), and σ̂ 2

k = (n − 1)s2/k.]

c. Compute the mean squared error of σ̂ 2
k in terms

of k.
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d. For what value of k is the mean squared error of σ̂ 2
k

minimized?

5. Let X ∼ Geom(p). Find the MLE of p.

6. Let X1, . . . , Xn be a random sample from a population
with the Poisson(λ) distribution. Find the MLE of λ.

7. Maximum likelihood estimates possess the property of
functional invariance, which means that if θ̂ is the MLE
of θ , and h(θ) is any function of θ , then h(θ̂) is the MLE
of h(θ).

a. Let X ∼ Bin(n, p) where n is known and p is un-
known. Find the MLE of the odds ratio p/(1 − p).

b. Use the result of Exercise 5 to find the MLE of the
odds ratio p/(1 − p) if X ∼ Geom(p).

c. If X ∼ Poisson(λ), then P(X = 0) = e−λ. Use the
result of Exercise 6 to find the MLE of P(X = 0) if
X1, . . . , Xn is a random sample from a population
with the Poisson(λ) distribution.

8. Let X1, . . . , Xn be a random sample from a N (μ, 1)

population. Find the MLE of μ.

9. Let X1, . . . , Xn be a random sample from a N (0, σ 2)

population. Find the MLE of σ .

10. Let X1, . . . , Xn be a random sample from a N (μ, σ 2)

population. Find the MLEs of μ and of σ . (Hint: The
likelihood function is a function of two parameters, μ

and σ . Compute partial derivatives with respect to μ

and σ and set them equal to 0 to find the values μ̂ and
σ̂ that maximize the likelihood function.)

4.10 Probability Plots

Scientists and engineers frequently work with data that can be thought of as a ran-
dom sample from some population. In many such cases, it is important to determine
a probability distribution that approximately describes that population. In some cases,
knowledge of the process that generated the data can guide the decision. More often,
though, the only way to determine an appropriate distribution is to examine the sample
to find a probability distribution that fits.

Probability plots provide a good way to do this. Given a random sample X1, . . . , Xn ,
a probability plot can determine whether the sample might plausibly have come from
some specified population. We will present the idea behind probability plots with a
simple example. A random sample of size 5 is drawn, and we want to determine whether
the population from which it came might have been normal. The sample, arranged in
increasing order, is

3.01, 3.35, 4.79, 5.96, 7.89

Denote the values, in increasing order, by X1, . . . , Xn (n = 5 in this case). The first thing
to do is to assign increasing, evenly spaced values between 0 and 1 to the Xi . There are
several acceptable ways to do this; perhaps the simplest is to assign the value (i −0.5)/n
to Xi . The following table shows the assignment for the given sample.

i Xi (i − 0.5)/5

1 3.01 0.1
2 3.35 0.3
3 4.79 0.5
4 5.96 0.7
5 7.89 0.9
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The value (i − 0.5)/n is chosen to reflect the position of Xi in the ordered sample.
There are i − 1 values less than Xi , and i values less than or equal to Xi . The quantity
(i − 0.5)/n is a compromise between the proportions (i − 1)/n and i/n.

The goal is to determine whether the sample might have come from a normal pop-
ulation. The most plausible normal distribution is the one whose mean and standard
deviation are the same as the sample mean and standard deviation. The sample mean
is X = 5.00, and the sample standard deviation is s = 2.00. We will therefore deter-
mine whether this sample might have come from a N (5, 22) distribution. Figure 4.21
is a plot of the five points (Xi , (i − 0.5)/5). The curve is the cumulative distribution
function (cdf) F(x) of the N (5, 22) distribution. Recall that F(x) = P(X ≤ x) where
X ∼ N (5, 22).

Q1 X1 X3 Q3

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
�2 0 2 4 6 8 10 12

FIGURE 4.21 The curve is the cdf of N (5, 22). If the sample points X1, . . . , X5 came
from this distribution, they are likely to lie close to the curve.

We have drawn horizontal lines through the sample points. We denote the x values
of the points on the cdf that are crossed by the line, in increasing order, by Q1, . . . , Q5.
Now the horizontal line through (X1, 0.1) intersects the cdf at the point (Q1, 0.1). This
means that the proportion of values in the N (5, 22) population that are less than or equal
to Q1 is 0.1. Another way to say this is that Q1 is the 10th percentile of the N (5, 22)

distribution. If the sample X1, . . . , X5 truly came from a N (5, 22) distribution, then it
is reasonable to believe that the lowest value in the sample, X1, would be fairly close
to the 10th percentile of the population, Q1. Intuitively, the reason for this is that we
would expect that the lowest of five points would be likely to come from the lowest
fifth, or 20%, of the population, and the 10th percentile is in the middle of that lowest
20%. Applying similar reasoning to the remaining points, we would expect each Qi to
be close to its corresponding Xi .

The probability plot consists of the points (Xi , Qi ). Since the distribution that
generated the Qi was a normal distribution, this is called a normal probability plot.
If X1, . . . , Xn do in fact come from the distribution that generated the Qi , the points
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should lie close to a straight line. To construct the plot, we must compute the Qi . These
are the 100(i − 0.5)/n percentiles of the distribution that is suspected of generating the
sample. In this example the Qi are the 10th, 30th, 50th, 70th, and 90th percentiles of
the N (5, 22) distribution. We could approximate these values by looking up the z-scores
corresponding to these percentiles, and then converting to raw scores. In practice, the Qi

are invariably calculated by a computer software package. The following table presents
the Xi and the Qi for this example.

i Xi Qi

1 3.01 2.44
2 3.35 3.95
3 4.79 5.00
4 5.96 6.05
5 7.89 7.56

Figure 4.22 presents a normal probability plot for the sample X1, . . . , X5. A straight
line is superimposed on the plot, to make it easier to judge whether the points lie close
to a straight line or not. Two versions of the plot are presented; they are identical except
for the scaling on the vertical axis. In the plot on the left, the values on the vertical axis
represent the Qi . In the plot on the right, the values on the vertical axis represent the
percentiles (as decimals, so 0.1 is the 10th percentile) of the Qi . For example, the 10th
percentile of N (5, 22) is 2.44, so the value 0.1 on the right-hand plot corresponds to
the value 2.44 on the left-hand plot. The 50th percentile, or median, is 5, so the value
0.5 on the right-hand plot corresponds to the value 5 on the left-hand plot. Computer
packages often scale the vertical axis like the plot on the right. In Figure 4.22, the sample
points are close to the line, so it is quite plausible that the sample came from a normal
distribution.
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FIGURE 4.22 Normal probability plots for the sample X1, . . . , X5. The plots are identical, except for the scaling on
the vertical axis. The sample points lie approximately on a straight line, so it is plausible that they came from a normal
population.



Navidi-3810214 book November 11, 2013 12:48

288 CHAPTER 4 Commonly Used Distributions

We remark that the points Q1, . . . , Qn are called quantiles of the distribution from
which they are generated. Sometimes the sample points X1, . . . , Xn are called empirical
quantiles. For this reason the probability plot is sometimes called a quantile–quantile
plot, or QQ plot.

In this example, we used a sample of only five points to make the calculations clear.
In practice, probability plots work better with larger samples. A good rule of thumb is
to require at least 30 points before relying on a probability plot. Probability plots can
still be used for smaller samples, but they will detect only fairly large departures from
normality.

Figure 4.23 shows two normal probability plots. The plot in Figure 4.23a is of the
monthly productions of 255 gas wells. These data do not lie close to a straight line, and
thus do not come from a population that is close to normal. The plot in Figure 4.23b is of
the natural logs of the monthly productions. These data lie much closer to a straight line,
although some departure from normality can be detected. (Figure 4.16 in Section 4.6
presents histograms of these data.)

(a) (b)
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FIGURE 4.23 Two normal probability plots. (a) A plot of the monthly productions of 255 gas wells. These data do not
lie close to a straight line, and thus do not come from a population that is close to normal. (b) A plot of the natural logs
of the monthly productions. These data lie much closer to a straight line, although some departure from normality can be
detected. See Figure 4.16 for histograms of these data.

Interpreting Probability Plots
It’s best not to use hard-and-fast rules when interpreting a probability plot. Judge the
straightness of the plot by eye. When deciding whether the points on a probability plot
lie close to a straight line or not, do not pay too much attention to the points at the very
ends (high or low) of the sample, unless they are quite far from the line. It is common for
a few points at either end to stray from the line somewhat. However, a point that is very
far from the line when most other points are close is an outlier, and deserves attention.
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Exercises for Section 4.10

1. Each of three samples has been plotted on a normal probability plot. For each, say whether the sample appears to
have come from an approximately normal population.

(b)(a)

(c)
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2. As part of a quality-control study aimed at improving
a production line, the weights (in ounces) of 50 bars of
soap are measured. The results are as follows, sorted
from smallest to largest.

11.6 12.6 12.7 12.8 13.1 13.3 13.6 13.7 13.8 14.1
14.3 14.3 14.6 14.8 15.1 15.2 15.6 15.6 15.7 15.8
15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.4 16.5 16.5
16.5 16.6 17.0 17.1 17.3 17.3 17.4 17.4 17.4 17.6
17.7 18.1 18.3 18.3 18.3 18.5 18.5 18.8 19.2 20.3

Construct a normal probability plot for these data. Do
these data appear to come from an approximately nor-
mal distribution?

3. Below are the durations (in minutes) of 40 eruptions of
the geyser Old Faithful in Yellowstone National Park.

4.1 1.8 3.2 1.9 4.6 2.0 4.5 3.9 4.3 2.3
3.8 1.9 4.6 1.8 4.7 1.8 4.6 1.9 3.5 4.0
3.7 3.7 4.3 3.6 3.8 3.8 3.8 2.5 4.5 4.1
3.7 3.8 3.4 4.0 2.3 4.4 4.1 4.3 3.3 2.0

Construct a normal probability plot for these data. Do
the data appear to come from an approximately normal
distribution?

4. Below are the durations (in minutes) of 40 time inter-
vals between eruptions of the geyser Old Faithful in
Yellowstone National Park.

91 51 79 53 82 51 76 82 84 53
86 51 85 45 88 51 80 49 82 75
73 67 68 86 72 75 75 66 84 70
79 60 86 71 67 81 76 83 76 55

Construct a normal probability plot for these data. Do
they appear to come from an approximately normal
distribution?

5. Construct a normal probability plot for the PM data in
Table 1.2 (page 21). Do the PM data appear to come
from a normal population?

6. Construct a normal probability plot for the logs of the
PM data in Table 1.2. Do the logs of the PM data appear
to come from a normal population?
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7. Can the plot in Exercise 6 be used to determine whether
the PM data appear to come from a lognormal popula-
tion? Explain.

8. In the article “Assessment of Dermatopharmacokinetic
Approach in the Bioequivalence Determination of Top-
ical Tretinoin Gel Products” (L. Pershing, J. Nelson,
et al., Journal of the American Academy of Dermatol-
ogy, 2003:740–751), measurements of the concentra-
tion of an anti-fungal gel, in ng per square centimeter
of skin, were made one hour after application for 49 in-
dividuals. Following are the results. The authors claim

that these data are well-modeled by a lognormal distri-
bution. Construct an appropriate probability plot, and
use it to determine whether the data support this claim.

132.44 76.73 258.46 177.46 73.01 130.62 235.63
107.54 75.95 70.37 88.76 104.00 19.07 174.30

82.87 68.73 41.47 120.44 136.52 82.46 67.04
96.92 93.26 72.92 138.15 82.43 245.41 104.68
82.53 122.59 147.12 129.82 54.83 65.82 75.24

135.52 132.21 85.63 135.79 65.98 349.71 77.84
89.19 102.94 166.11 168.76 155.20 44.35 202.51

4.11 The Central Limit Theorem

The Central Limit Theorem is by far the most important result in statistics. Many
commonly used statistical methods rely on this theorem for their validity. The Central
Limit Theorem says that if we draw a large enough sample from a population, then the
distribution of the sample mean is approximately normal, no matter what population the
sample was drawn from. This allows us to compute probabilities for sample means using
the z table, even though the population from which the sample was drawn is not normal.
We now explain this more fully.

Let X1, . . . , Xn be a simple random sample from a population with mean μ and
variance σ 2. Let X = (X1 + · · · + Xn)/n be the sample mean. Now imagine drawing
many such samples and computing their sample means. If one could draw every possible
sample of size n from the original population, and compute the sample mean for each one,
the resulting collection would be the population of sample means. One could construct
the probability density function of this population. One might think that the shape of this
probability density function would depend on the shape of the population from which
the sample was drawn. The surprising thing is that if the sample size is sufficiently large,
this is not so. If the sample size is large enough, the distribution of the sample mean is
approximately normal, no matter what the distribution of the population from which the
sample was drawn.

The Central Limit Theorem
Let X1, . . . , Xn be a simple random sample from a population with mean μ

and variance σ 2.

Let X = X1 + · · · + Xn

n
be the sample mean.

Let Sn = X1 + · · · + Xn be the sum of the sample observations.

Then if n is sufficiently large,

X ∼ N

(
μ,

σ 2

n

)
approximately (4.55)

and
Sn ∼ N (nμ, nσ 2) approximately (4.56)
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Note that the statement of the Central Limit Theorem specifies that μX = μ and
σ 2

X
= σ 2/n, which hold for any sample mean. The sum of the sample items is equal to

the mean multiplied by the sample size, that is, Sn = nX . It follows that μSn = nμ and
σ 2

Sn
= n2σ 2/n = nσ 2 (see Equations 2.41 and 2.42 in Section 2.5).
The Central Limit Theorem says that X and Sn are approximately normally dis-

tributed, if the sample size n is large enough. The natural question to ask is: How large
is large enough? The answer depends on the shape of the underlying population. If
the sample is drawn from a nearly symmetric distribution, the normal approximation can
be good even for a fairly small value of n. However, if the population is heavily skewed,
a fairly large n may be necessary. Empirical evidence suggests that for most populations,
a sample size of 30 or more is large enough for the normal approximation to be adequate
(see Figure 4.24 on page 292).

For most populations, if the sample size is greater than 30, the Central Limit
Theorem approximation is good.

Example
4.70 Let X denote the number of flaws in a 1 in. length of copper wire. The probability

mass function of X is presented in the following table.

x P (X = x)

0 0.48
1 0.39
2 0.12
3 0.01

One hundred wires are sampled from this population. What is the probability that the
average number of flaws per wire in this sample is less than 0.5?

Solution
The population mean number of flaws is μ = 0.66, and the population variance is
σ 2 = 0.5244. (These quantities can be calculated using Equations 2.29 and 2.30 in
Section 2.4.) Let X1, . . . , X100 denote the number of flaws in the 100 wires sampled
from this population. We need to find P(X < 0.5). Now the sample size is n = 100,
which is a large sample. It follows from the Central Limit Theorem (expression 4.55)
that X ∼ N (0.66, 0.005244). The z-score of 0.5 is therefore

z = 0.5 − 0.66√
0.005244

= −2.21

From the z table, the area to the left of −2.21 is 0.0136. Therefore P(X < 0.5) =
0.0136, so only 1.36% of samples of size 100 will have fewer than 0.5 flaws per wire.
See Figure 4.25 (page 293).

Note that in Example 4.70 we needed to know only the mean and variance of the
population, not the probability mass function.
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FIGURE 4.24 The leftmost plot in each row is the distribution (probability density function or probability mass function)
of a random variable. The two plots to its right are the distributions of the sample mean (solid line) for samples of sizes 5
and 30, respectively, with the normal curve (dashed line) superimposed. Top row: Since the original distribution is nearly
symmetric, the normal approximation is good even for a sample size as small as 5. Middle row: The original distribution
is somewhat skewed. Even so, the normal approximation is reasonably close even for a sample of size 5, and very good for
a sample of size 30. Bottom row: The original distribution is highly skewed. The normal approximation is not good for a
sample size of 5, but is reasonably good for a sample of size 30. Note that two of the original distributions are continuous,
and one is discrete. The Central Limit Theorem holds for both continuous and discrete distributions.
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z � �2.21
0.660.50

0.0136

FIGURE 4.25 Solution to Example 4.70.

Example
4.71 At a large university, the mean age of the students is 22.3 years, and the standard

deviation is 4 years. A random sample of 64 students is drawn. What is the probability
that the average age of these students is greater than 23 years?

Solution
Let X1, . . . , X64 be the ages of the 64 students in the sample. We wish to find
P(X > 23). Now the population from which the sample was drawn has mean
μ = 22.3 and variance σ 2 = 16. The sample size is n = 64. It follows from the
Central Limit Theorem (expression 4.55) that X ∼ N (22.3, 0.25). The z-score for
23 is

z = 23 − 22.3√
0.25

= 1.40

From the z table, the area to the right of 1.40 is 0.0808. Therefore P(X > 23) =
0.0808. See Figure 4.26.

z � 1.4
22.3 23.0

0.0808

FIGURE 4.26 Solution to Example 4.71.

In Section 4.5 we showed that linear combinations of independent normal random
variables are normal (Equations 4.26, 4.28, and 4.29). This fact can be combined with
the Central Limit Theorem to find probabilities regarding linear combinations of sample
sums and sample means. Example 4.72 illustrates the method.

Example
4.72 The manufacture of a certain part requires two different machine operations. The

time on machine 1 has mean 0.4 hours and standard deviation 0.1 hours. The time on
machine 2 has mean 0.45 hours and standard deviation 0.15 hours. The times needed
on the machines are independent. Suppose that 65 parts are manufactured. What is
the distribution of the total time on machine 1? On machine 2? What is the probability
that the total time used by both machines together is between 50 and 55 hours?



Navidi-3810214 book November 11, 2013 12:48

294 CHAPTER 4 Commonly Used Distributions

Solution
Let X1, . . . , X65 represent the times of the 65 parts on machine 1. The population from
which this sample was drawn has mean μX = 0.4 and standard deviation σX = 0.1.
Let SX = X1 + · · · + X65 be the total time on machine 1. It follows from the Central
Limit Theorem (expression 4.56) that

SX ∼ N (65μX , 65σ 2
X ) = N (26, 0.65)

Now let Y1, . . . , Y65 represent the times of the 65 parts on machine 2. Then
μY = 0.45 and σY = 0.15. Let SY = Y1 + · · · + Y65 be the total time on machine 2.
Proceeding by the same method used to compute the distribution of the total time on
machine 1, we see that

SY ∼ N (29.25, 1.4625)

Finally, let T = SX + SY represent the total time on both machines. Since
SX ∼ N (26, 0.65), SY ∼ N (29.25, 1.4625), and SX and SY are independent, it
follows that

μT = 26+29.25 = 55.25, σ 2
T = 0.65+1.4625 = 2.1125, and T ∼ N (55.25, 2.1125)

To find P(50 < T < 55) we compute the z-scores of 50 and of 55.

z = 50 − 55.25√
2.1125

= −3.61 z = 55 − 55.25√
2.1125

= −0.17

The area to the left of z = −3.61 is 0.0002. The area to the left of z = −0.17 is 0.4325.
The area between z = −3.61 and z = −0.17 is 0.4325 − 0.0002 = 0.4323. The
probability that the total time used by both machines together is between 50 and 55
hours is 0.4323.

Normal Approximation to the Binomial
Recall from Section 4.2 that if X ∼ Bin(n, p) then X = Y1 +· · ·+Yn , where Y1, . . . , Yn

is a sample from a Bernoulli(p) population. Therefore X is the sum of the sample
observations. The sample proportion is

p̂ = X

n
= Y1 + · · · + Yn

n

which is also the sample mean Y . The Bernoulli(p) population has mean μ = p and
variance σ 2 = p(1 − p). It follows from the Central Limit Theorem that if the number
of trials n is large, then X ∼ N (np, np(1 − p)), and p̂ ∼ N (p, p(1 − p)/n).

Again the question arises, how large a sample is large enough? In the binomial case,
the accuracy of the normal approximation depends on the mean number of successes np
and on the mean number of failures n(1− p). The larger the values of np and n(1− p), the
better the approximation. A common rule of thumb is to use the normal approximation
whenever np > 5 and n(1 − p) > 5. A better and more conservative rule is to use the
normal approximation whenever np > 10 and n(1 − p) > 10.
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Summary
If X ∼ Bin(n, p), and if np > 10 and n(1 − p) > 10, then

X ∼ N (np, np(1 − p)) approximately (4.57)

p̂ ∼ N

(
p,

p(1 − p)

n

)
approximately (4.58)

To illustrate the accuracy of the normal approximation to the binomial, Figure 4.27
presents the Bin(100, 0.2) probability histogram with the N (20, 16) probability density
function superimposed. While a slight degree of skewness can be detected in the binomial
distribution, the normal approximation is quite close.

0.1

0.08

0.06

0.04

0.02

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

FIGURE 4.27 The Bin(100, 0.2) probability histogram, with the N (20, 16) probability
density function superimposed.

The Continuity Correction
The binomial distribution is discrete, while the normal distribution is continuous. The
continuity correction is an adjustment, made when approximating a discrete distribution
with a continuous one, that can improve the accuracy of the approximation. To see how
it works, imagine that a fair coin is tossed 100 times. Let X represent the number of
heads. Then X ∼ Bin(100, 0.5). Imagine that we wish to compute the probability that X
is between 45 and 55. This probability will differ depending on whether the endpoints,
45 and 55, are included or excluded. Figure 4.28 (on page 296) illustrates the case where
the endpoints are included, that is, where we wish to compute P(45 ≤ X ≤ 55). The
exact probability is given by the total area of the rectangles of the binomial probability
histogram corresponding to the integers 45 to 55 inclusive. The approximating normal
curve is superimposed. To get the best approximation, we should compute the area
under the normal curve between 44.5 and 55.5. In contrast, Figure 4.29 (on page 296)
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illustrates the case where we wish to compute P(45 < X < 55). Here the endpoints
are excluded. The exact probability is given by the total area of the rectangles of the
binomial probability histogram corresponding to the integers 46 to 54. The best normal
approximation is found by computing the area under the normal curve between 45.5
and 54.5.

0.08
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0.06

0.05

0.04

0.03

0.02

0.01

0
40 45 50 55 60

FIGURE 4.28 To compute P(45 ≤ X ≤ 55), the areas of the rectangles corresponding
to 45 and to 55 should be included. To approximate this probability with the normal
curve, compute the area under the curve between 44.5 and 55.5.
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FIGURE 4.29 To compute P(45 < X < 55), the areas of the rectangles corresponding
to 45 and to 55 should be excluded. To approximate this probability with the normal
curve, compute the area under the curve between 45.5 and 54.5.

In summary, to apply the continuity correction, determine precisely which rectangles
of the discrete probability histogram you wish to include, and then compute the area under
the normal curve corresponding to those rectangles.

Example
4.73 If a fair coin is tossed 100 times, use the normal curve to approximate the probability

that the number of heads is between 45 and 55 inclusive.
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Solution
This situation is illustrated in Figure 4.28. Let X be the number of heads obtained.
Then X ∼ Bin(100, 0.5). Substituting n = 100 and p = 0.5 into Equation (4.57),
we obtain the normal approximation X ∼ N (50, 25). Since the endpoints 45 and 55
are to be included, we should compute the area under the normal curve between 44.5
and 55.5. The z-scores for 44.5 and 55.5 are

z = 44.5 − 50

5
= −1.1, z = 55.5 − 50

5
= 1.1

From the z table we find that the probability is 0.7286. See Figure 4.30.

z � �1.1 z � 1.1
5044.5 55.5

0.7286 

FIGURE 4.30 Solution to Example 4.73.

Example
4.74 If a fair coin is tossed 100 times, use the normal curve to approximate the probability

that the number of heads is between 45 and 55 exclusive.

Solution
This situation is illustrated in Figure 4.29. Let X be the number of heads obtained. As in
Example 4.73, X ∼ Bin(100, 0.5), and the normal approximation is X ∼ N (50, 25).
Since the endpoints 45 and 55 are to be excluded, we should compute the area under
the normal curve between 45.5 and 54.5. The z-scores for 45.5 and 54.5 are

z = 45.5 − 50

5
= −0.9, z = 54.5 − 50

5
= 0.9

From the z table we find that the probability is 0.6318. See Figure 4.31.

z � �0.9 z � 0.9
5045.5 54.5

0.6318 

FIGURE 4.31 Solution to Example 4.74.
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Example
4.75 In a certain large university, 25% of the students are over 21 years of age. In a sample

of 400 students, what is the probability that more than 110 of them are over 21?

Solution
Let X represent the number of students who are over 21. Then X ∼ Bin(400, 0.25).
Substituting n = 400 and p = 0.25 into Equation (4.57), we obtain the normal
approximation X ∼ N (100, 75). Since we want to find the probability that the number
of students is more than 110, the value 110 is excluded. We therefore find P(X >

110.5). We compute the z-score for 110.5, which is

z = 110.5 − 100√
75

= 1.21

Using the z table, we find that P(X > 110.5) = 0.1131. See Figure 4.32.

100 110.5
z � 1.21

0.1131

FIGURE 4.32 Solution to Example 4.75.

Accuracy of the Continuity Correction
The continuity correction improves the accuracy of the normal approximation to the
binomial distribution in most cases. For binomial distributions with large n and small
p, however, when computing a probability that corresponds to an area in the tail of the
distribution, the continuity correction can in some cases reduce the accuracy of the normal
approximation somewhat. This results from the fact that the normal approximation is
not perfect; it fails to account for a small degree of skewness in these distributions.
In summary, use of the continuity correction makes the normal approximation to the
binomial distribution better in most cases, but not all.

Normal Approximation to the Poisson
Recall that if X ∼ Poisson(λ), then X is approximately binomial with n large and
np = λ. Recall also that μX = λ and σ 2

X = λ. It follows that if λ is sufficiently
large, i.e., λ > 10, then X is approximately binomial, with np > 10. It follows
from the Central Limit Theorem that X is also approximately normal, with mean and
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variance both equal to λ. Thus we can use the normal distribution to approximate the
Poisson.

Summary
If X ∼ Poisson(λ), where λ > 10, then

X ∼ N (λ, λ) approximately (4.59)

Continuity Correction for the Poisson Distribution
Since the Poisson distribution is discrete, the continuity correction can in principle be
applied when using the normal approximation. For areas that include the central part
of the curve, the continuity correction generally improves the normal approximation,
but for areas in the tails the continuity correction sometimes makes the approximation
worse. We will not use the continuity correction for the Poisson distribution.

Example
4.76 The number of hits on a website follows a Poisson distribution, with a mean of 27

hits per hour. Find the probability that there will be 90 or more hits in three hours.

Solution
Let X denote the number of hits on the website in three hours. The mean number
of hits in three hours is 81, so X ∼ Poisson(81). Using the normal approximation,
X ∼ N (81, 81). We wish to find P(X ≥ 90). We compute the z-score of 90,
which is

z = 90 − 81√
81

= 1.00

Using the z table, we find that P(X ≥ 90) = 0.1587. See Figure 4.33.

81 90
z � 1

0.1587

FIGURE 4.33 Solution to Example 4.76.
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Exercises for Section 4.11

1. Bottles filled by a certain machine are supposed to con-
tain 12 oz of liquid. In fact the fill volume is random
with mean 12.01 oz and standard deviation 0.2 oz.

a. What is the probability that the mean volume of a
random sample of 144 bottles is less than 12 oz?

b. If the population mean fill volume is increased
to 12.03 oz, what is the probability that the mean
volume of a sample of size 144 will be less than
12 oz?

2. A 500-page book contains 250 sheets of paper. The
thickness of the paper used to manufacture the book
has mean 0.08 mm and standard deviation 0.01 mm.

a. What is the probability that a randomly chosen
book is more than 20.2 mm thick (not including
the covers)?

b. What is the 10th percentile of book thicknesses?

c. Someone wants to know the probability that a ran-
domly chosen page is more than 0.1 mm thick. Is
enough information given to compute this proba-
bility? If so, compute the probability. If not, explain
why not.

3. A commuter encounters four traffic lights each day on
her way to work. Let X represent the number of these
that are red lights. The probability mass function of X
is as follows.

x 0 1 2 3 4
P(X = x) 0.1 0.3 0.3 0.2 0.1

What is the probability that in a period of 100 days,
the average number of red lights encountered is more
than 2 per day?

4. Among all the income-tax forms filed in a certain year,
the mean tax paid was $2000 and the standard devia-
tion was $500. In addition, for 10% of the forms, the
tax paid was greater than $3000. A random sample of
625 tax forms is drawn.

a. What is the probability that the average tax paid
on the sample forms is greater than $1980?

b. What is the probability that more than 60 of the
sampled forms have a tax of greater than $3000?

5. Bags checked for a certain airline flight have a mean
weight of 15 kg with a standard deviation of 5 kg. A
random sample of 60 bags is drawn.

a. What is the probability that the sample mean
weight is less than 14 kg?

b. Find the 70th percentile of the sample mean
weights.

c. How many bags must be sampled so that the prob-
ability is 0.01 that the sample mean weight is less
than 14 kg?

6. The amount of warpage in a type of wafer used in the
manufacture of integrated circuits has mean 1.3 mm
and standard deviation 0.1 mm. A random sample of
200 wafers is drawn.

a. What is the probability that the sample mean
warpage exceeds 1.305 mm?

b. Find the 25th percentile of the sample mean.

c. How many wafers must be sampled so that
the probability is 0.05 that the sample mean
exceeds 1.305?

7. The time spent by a customer at a checkout counter
has mean 4 minutes and standard deviation 2 minutes.

a. What is the probability that the total time taken by
a random sample of 50 customers is less than 180
minutes?

b. Find the 30th percentile of the total time taken by
50 customers.

8. Drums labeled 30 L are filled with a solution from
a large vat. The amount of solution put into each
drum is random with mean 30.01 L and standard
deviation 0.1 L.

a. What is the probability that the total amount
of solution contained in 50 drums is more
than 1500 L?

b. If the total amount of solution in the vat is 2401 L,
what is the probability that 80 drums can be filled
without running out?

c. How much solution should the vat contain so that
the probability is 0.9 that 80 drums can be filled
without running out?

9. The temperature of a solution will be estimated by
taking n independent readings and averaging them.
Each reading is unbiased, with a standard deviation
of σ = 0.5◦C. How many readings must be taken so
that the probability is 0.90 that the average is within
±0.1◦C of the actual temperature?
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10. Among the adults in a large city, 30% have a college
degree. A simple random sample of 100 adults is cho-
sen. What is the probability that more than 35 of them
have a college degree?

11. In a process that manufactures bearings, 90% of the
bearings meet a thickness specification. A shipment
contains 500 bearings. A shipment is acceptable if at
least 440 of the 500 bearings meet the specification.
Assume that each shipment contains a random sample
of bearings.

a. What is the probability that a given shipment is
acceptable?

b. What is the probability that more than 285 out of
300 shipments are acceptable?

c. What proportion of bearings must meet the spec-
ification in order that 99% of the shipments are
acceptable?

12. A machine produces 1000 steel O-rings per day.
Each ring has probability 0.9 of meeting a thickness
specification.

a. What is the probability that on a given day, fewer
than 890 O-rings meet the specification?

b. Find the 60th percentile of the number of O-rings
that meet the specification.

c. If the machine operates for five days, what is the
probability that fewer than 890 O-rings meet the
specification on three or more of those days?

13. Radioactive mass A emits particles at a mean rate of
20 per minute, and radioactive mass B emits particles
at a mean rate of 25 per minute.

a. What is the probability that fewer than 200 parti-
cles are emitted by both masses together in a five-
minute time period?

b. What is the probability that mass B emits more par-
ticles than mass A in a two-minute time period?

14. The concentration of particles in a suspension is
30 per mL.

a. What is the probability that a 2 mL sample will
contain more than 50 particles?

b. Ten 2 mL samples are drawn. What is the proba-
bility that at least 9 of them contain more than 50
particles?

c. One hundred 2 mL samples are drawn. What is the
probability that at least 90 of them contain more
than 50 particles?

15. The concentration of particles in a suspension is
50 per mL. A 5 mL volume of the suspension is with-
drawn.

a. What is the probability that the number of particles
withdrawn will be between 235 and 265?

b. What is the probability that the average number of
particles per mL in the withdrawn sample is be-
tween 48 and 52?

c. If a 10 mL sample is withdrawn, what is the prob-
ability that the average number per mL of particles
in the withdrawn sample is between 48 and 52?

d. How large a sample must be withdrawn so that the
average number of particles per mL in the sample
is between 48 and 52 with probability 95%?

16. A battery manufacturer claims that the lifetime of
a certain type of battery has a population mean of
40 hours and a standard deviation of 5 hours. Let X
represent the mean lifetime of the batteries in a simple
random sample of size 100.

a. If the claim is true, what is P(X ≤ 36.7)?

b. Based on the answer to part (a), if the claim is true,
is a sample mean lifetime of 36.7 hours unusually
short?

c. If the sample mean lifetime of the 100 batteries
were 36.7 hours, would you find the manufac-
turer’s claim to be plausible? Explain.

d. If the claim is true, what is P(X ≤ 39.8)?

e. Based on the answer to part (d), if the claim is true,
is a sample mean lifetime of 39.8 hours unusually
short?

f. If the sample mean lifetime of the 100 batteries
were 39.8 hours, would you find the manufac-
turer’s claim to be plausible? Explain.

17. A new process has been designed to make ceramic
tiles. The goal is to have no more than 5% of the tiles
be nonconforming due to surface defects. A random
sample of 1000 tiles is inspected. Let X be the number
of nonconforming tiles in the sample.

a. If 5% of the tiles produced are nonconforming,
what is P(X ≥ 75)?

b. Based on the answer to part (a), if 5% of the tiles
are nonconforming, is 75 nonconforming tiles out
of 1000 an unusually large number?

c. If 75 of the sample tiles were nonconforming,
would it be plausible that the goal had been
reached? Explain.
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d. If 5% of the tiles produced are nonconforming,
what is P(X ≥ 53)?

e. Based on the answer to part (d), if 5% of the tiles
are nonconforming, is 53 nonconforming tiles out
of 1000 an unusually large number?

f. If 53 of the sample tiles were nonconforming,
would it be plausible that the goal had been
reached? Explain.

18. The manufacture of a certain part requires two dif-
ferent machine operations. The time on machine 1
has mean 0.5 hours and standard deviation 0.4 hours.
The time on machine 2 has mean 0.6 hours and stan-
dard deviation 0.5 hours. The times needed on the
machines are independent. Suppose that 100 parts are
manufactured.

a. What is the probability that the total time used by
machine 1 is greater than 55 hours?

b. What is the probability that the total time used by
machine 2 is less than 55 hours?

c. What is the probability that the total time used by
both machines together is greater than 115 hours?

d. What is the probability that the total time used by
machine 1 is greater than the total time used by
machine 2?

19. Seventy percent of rivets from vendor A meet a cer-
tain strength specification, and 80% of rivets from
vendor B meet the same specification. If 500 rivets
are purchased from each vendor, what is the prob-
ability that more than 775 of the rivets meet the
specifications?

20. Radiocarbon dating: Carbon-14 is a radioactive iso-
tope of carbon that decays by emitting a beta particle.
In the earth’s atmosphere, approximately one carbon
atom in 1012 is carbon-14. Living organisms ex-
change carbon with the atmosphere, so this same ratio

holds for living tissue. After an organism dies, it
stops exchanging carbon with its environment, and
its carbon-14 ratio decreases exponentially with
time. The rate at which beta particles are emitted
from a given mass of carbon is proportional to the
carbon-14 ratio, so this rate decreases exponentially
with time as well. By measuring the rate of beta emis-
sions in a sample of tissue, the time since the death
of the organism can be estimated. Specifically, it is
known that t years after death, the number of beta
particle emissions occurring in any given time inter-
val from 1 g of carbon follows a Poisson distribution
with rate λ = 15.3e−0.0001210t events per minute. The
number of years t since the death of an organism can
therefore be expressed in terms of λ:

t = ln 15.3 − ln λ

0.0001210

An archaeologist finds a small piece of charcoal from
an ancient campsite. The charcoal contains 1 g of
carbon.

a. Unknown to the archaeologist, the charcoal is
11,000 years old. What is the true value of the
emission rate λ?

b. The archaeologist plans to count the number X of
emissions in a 25 minute interval. Find the mean
and standard deviation of X .

c. The archaeologist then plans to estimate λ with
λ̂ = X/25. What is the mean and standard devia-
tion of λ̂?

d. What value for λ̂ would result in an age estimate
of 10,000 years?

e. What value for λ̂ would result in an age estimate
of 12,000 years?

f. What is the probability that the age estimate is cor-
rect to within ±1000 years?

4.12 Simulation

When fraternal (nonidentical) twins are born, they may be both boys, both girls, or one
of each. Assume that each twin is equally likely to be a boy or a girl, and assume that
the sexes of the twins are determined independently. What is the probability that both
twins are boys? This probability is easy to compute, using the multiplication rule for
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independent events. The answer is (0.5)(0.5) = 0.25. But let’s say that you did not know
the multiplication rule. Is there another way that you could estimate this probability?
You could do a scientific experiment, or study. You could obtain records of twin births
from hospitals, and count the number in which both were boys. If you obtained a large
enough number of records, the proportion in which both twins were boys would likely
be close to 0.25, and you would have a good estimate of the probability.

Here is an easier way. There are two equally likely outcomes for the birth of a twin:
boy and girl. There are also two equally likely outcomes for the toss of a coin: heads and
tails. Therefore the number of heads in the toss of two coins has the same distribution
as the number of boys in a twin birth (both are binomial with n = 2 trials and success
probability p = 0.5). Rather than go to the trouble of monitoring actual births, you could
toss two coins a large number of times. The proportion of tosses in which both coins
landed heads could be used to estimate the proportion of births in which both twins are
boys.

Estimating the probability that twins are both boys by estimating the probability
that two coins both land heads is an example of a simulation experiment. If the sides
of the coin are labeled “0” and “1,” then the toss of a coin is an example of a random
number generator. A random number generator is a procedure that produces a value
that has the same statistical properties as a random quantity sampled from some specified
distribution. The random number generated by the toss of a coin comes from a Bernoulli
distribution with success probability p = 0.5.

Nowadays, computers can generate thousands of random numbers in a fraction of a
second, and virtually every statistical software package contains routines that will gen-
erate random samples from a wide variety of distributions. When a scientific experiment
is too costly, or physically difficult or impossible to perform, and when the probability
distribution of the data that would be generated by the experiment is approximately
known, computer-generated random numbers from the appropriate distribution can be
used in place of actual experimental data. Such computer-generated numbers are called
simulated or synthetic data.

Summary
Simulation refers to the process of generating random numbers and treating
them as if they were data generated by an actual scientific experiment. The data
so generated are called simulated or synthetic data.

Simulation methods have many uses, including estimating probabilities, estimating
means and variances, verifying an assumption of normality, and estimating bias. We
describe some of these methods in the rest of this section.

Using Simulation to Estimate a Probability
Simulation is often used to estimate probabilities that are difficult to calculate directly.
Here is an example. An electrical engineer will connect two resistors, labeled 100 �

and 25 �, in parallel. The actual resistances may differ from the labeled values. Denote
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the actual resistances of the resistors that are chosen by X and Y . The total resistance
R of the assembly is given by R = XY/(X + Y ). Assume that X ∼ N (100, 102)

and Y ∼ N (25, 2.52) and that the resistors are chosen independently. Assume
that the specification for the resistance of the assembly is 19 < R < 21. What is
the probability that the assembly will meet the specification? In other words, what
is P(19 < R < 21)?

We will estimate this probability with a simulation. The idea is to generate sim-
ulated data whose distribution is as close as possible to the distribution of data that
would be generated in an actual experiment. In an actual experiment we would take a
sample of N resistors labeled 100 �, whose actual resistances were X1, . . . , X N , and
then independently take an equal size sample of resistors labeled 25 �, whose actual
resistances were Y1, . . . , YN . We would then construct N assemblies with resistances
R1 = X1Y1/(X1 + Y1), . . . , RN = X N YN /(X N + YN ). The values R1, . . . , RN would
be a random sample from the population of all possible values of the total resistance.
The proportion of the sample values R1, . . . , RN that fell between 19 and 21 would be
an estimate of P(19 < R < 21).

In an actual experiment, X1, . . . , X N would be a random sample from N (100, 102)

and Y1, . . . , YN would be a random sample from N (25, 2.52). Therefore, in the simu-
lated experiment, we will generate a random sample X∗

1, . . . , X∗
N from N (100, 102) and,

independently, a random sample Y ∗
1 , . . . , Y ∗

N from N (25, 2.52). We will then compute
simulated total resistances R∗

1 = X∗
1Y ∗

1 /(X∗
1 + Y ∗

1 ), . . . , R∗
N = X∗

N Y ∗
N /(X∗

N + Y ∗
N ). We

use the notation X∗
i , Y ∗

i , and R∗
i to indicate that these are simulated values from a ran-

dom number generator rather than actual data from a real experiment. Since the sample
X∗

1, . . . , X∗
N comes from the same distribution as would an actual sample X1, . . . , X N ,

and since Y ∗
1 , . . . , Y ∗

N comes from the same distribution as would an actual sample
Y1, . . . , YN , it follows that the sample R∗

1 , . . . , R∗
N comes from the same distribution

as would an actual sample of total resistances R1, . . . , RN . Therefore we can treat
R∗

1 , . . . , R∗
N as if it were in fact a sample of actual resistances, even though it is re-

ally a sample of random numbers generated by a computer.
The results from a simulation with sample size N = 100 are given in Table 4.2. This

is a smaller sample than one would use in practice. In practice, samples of 1000, 10,000,
or more are commonly used. Samples this size pose no problem for modern computers
and their software, and the larger the sample, the more precise the results.

To make the calculations more transparent, we arrange the 100 values of R∗
i found

in Table 4.2 in increasing order:

15.37 15.48 15.58 16.66 16.94 17.18 17.44 17.54 17.68 17.69
17.91 17.95 18.01 18.06 18.21 18.31 18.49 18.58 18.60 18.65
18.71 18.80 18.81 18.85 18.91 18.92 18.93 18.99 18.99 19.01
19.02 19.03 19.06 19.11 19.13 19.14 19.20 19.22 19.24 19.30
19.47 19.52 19.56 19.58 19.60 19.60 19.65 19.71 19.77 19.81
19.84 19.90 19.91 19.95 19.97 19.98 20.03 20.14 20.16 20.17
20.17 20.49 20.52 20.54 20.55 20.55 20.58 20.60 20.60 20.64
20.69 20.75 20.76 20.78 20.81 20.90 20.96 21.06 21.13 21.24
21.41 21.49 21.52 21.54 21.58 21.79 21.84 21.87 21.93 21.93
22.02 22.06 22.11 22.13 22.36 22.42 23.19 23.40 23.71 24.01
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TABLE 4.2 Simulated data for resistances in a parallel circuit

X∗ Y∗ R∗ X∗ Y∗ R∗ X∗ Y∗ R∗ X∗ Y∗ R∗

1 102.63 24.30 19.65 26 115.94 24.93 20.52 51 94.20 23.68 18.92 76 113.32 22.54 18.80
2 96.83 21.42 17.54 27 100.65 28.36 22.13 52 82.62 27.82 20.81 77 90.82 23.79 18.85
3 96.46 26.34 20.69 28 89.71 23.00 18.31 53 119.49 22.88 19.20 78 102.88 25.99 20.75
4 88.39 22.10 17.68 29 104.93 24.10 19.60 54 99.43 28.03 21.87 79 93.59 23.04 18.49
5 113.07 29.17 23.19 30 93.74 23.68 18.91 55 108.03 21.69 18.06 80 89.19 27.05 20.76
6 117.66 27.09 22.02 31 104.20 24.02 19.52 56 95.32 20.60 16.94 81 95.04 23.76 19.01
7 108.04 18.20 15.58 32 123.43 26.66 21.93 57 80.70 30.36 22.06 82 109.72 30.25 23.71
8 101.13 28.30 22.11 33 101.38 22.19 18.21 58 91.13 20.38 16.66 83 107.35 27.01 21.58
9 105.43 23.51 19.22 34 88.52 26.85 20.60 59 111.35 27.09 21.79 84 89.59 18.55 15.37

10 103.41 24.64 19.90 35 101.23 26.88 21.24 60 118.75 23.92 19.91 85 101.72 24.65 19.84
11 104.89 22.59 18.58 36 86.96 25.66 19.81 61 103.33 23.99 19.47 86 101.24 25.92 20.64
12 94.91 27.86 21.54 37 95.92 26.16 20.55 62 107.77 18.08 15.48 87 109.67 26.61 21.41
13 92.91 27.06 20.96 38 95.97 26.05 20.49 63 104.86 24.64 19.95 88 100.74 26.18 20.78
14 95.86 24.82 19.71 39 93.76 24.71 19.56 64 84.39 25.52 19.60 89 98.44 23.63 19.06
15 100.06 23.65 19.13 40 113.89 22.79 18.99 65 94.26 25.61 20.14 90 101.05 28.81 22.42
16 90.34 23.75 18.81 41 109.37 26.19 21.13 66 82.16 27.49 20.60 91 88.13 28.43 21.49
17 116.74 24.38 20.17 42 91.13 24.93 19.58 67 108.37 27.35 21.84 92 113.94 29.45 23.40
18 90.45 25.30 19.77 43 101.60 28.66 22.36 68 86.16 21.46 17.18 93 97.42 23.78 19.11
19 97.58 23.05 18.65 44 102.69 21.37 17.69 69 105.97 23.59 19.30 94 109.05 23.04 19.02
20 101.19 23.60 19.14 45 108.50 25.34 20.54 70 92.69 23.88 18.99 95 100.65 26.63 21.06
21 101.77 31.42 24.01 46 80.86 27.55 20.55 71 97.48 25.43 20.17 96 105.64 21.57 17.91
22 100.53 24.93 19.98 47 85.80 24.80 19.24 72 110.45 20.70 17.44 97 78.82 23.25 17.95
23 98.00 27.57 21.52 48 105.96 23.20 19.03 73 89.92 27.23 20.90 98 112.31 22.77 18.93
24 108.10 27.51 21.93 49 103.98 21.78 18.01 74 103.78 25.67 20.58 99 100.14 24.95 19.97
25 91.07 23.38 18.60 50 97.97 23.13 18.71 75 95.53 25.55 20.16 100 88.78 25.87 20.03
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To estimate P(19 < R < 21) we determine that 48 values out of the sample of 100 are
in this range. We therefore estimate P(19 < R < 21) = 0.48. We note that with a larger
sample we might use computer software to make this count.

Note the importance of the assumption that the resistance X of the first resistor and
the resistance Y of the second resistor were independent. Because of this assumption, we
could simulate the experiment by generating independent samples X∗ and Y ∗. If X and
Y had been dependent, we would have had to generate X∗ and Y ∗ to have the same joint
distribution as X and Y . (Joint distributions are discussed in Section 2.6.) Fortunately,
many real problems involve independent samples.

We now present another example of a probability estimated with a simulation.

Example
4.77 An engineer has to choose between two types of cooling fans to install in a computer.

The lifetimes, in months, of fans of type A are exponentially distributed with mean
50 months, and the lifetimes of fans of type B are exponentially distributed with mean
30 months. Since type A fans are more expensive, the engineer decides that she will
choose type A fans if the probability that a type A fan will last more than twice as
long as a type B fan is greater than 0.5. Estimate this probability.

Solution
Let A represent the lifetime, in months, of a randomly chosen type A fan, and let
B represent the lifetime, in months, of a randomly chosen type B fan. We need to
compute P(A > 2B). We perform a simulation experiment, using samples of size
1000. We generated a random sample A∗

1, . . . , A∗
1000 from an exponential distribution

with mean 50 (λ = 0.02) and a random sample B∗
1 , . . . , B∗

1000 from an exponential
distribution with mean 30 (λ = 0.033). We then count the number of times that
A∗

i > 2B∗
i . Table 4.3 presents the first 10 values, and the last value. The column

labeled “A∗ > 2B∗” contains a “1” if A∗
i > 2B∗

i and a “0” if A∗
i ≤ 2B∗

i .

TABLE 4.3 Simulated data for Example 4.77

A∗ B∗ A∗ > 2B∗

1 25.554 12.083 1
2 66.711 11.384 1
3 61.189 15.191 1
4 9.153 119.150 0
5 98.794 45.258 1
6 14.577 139.149 0
7 65.126 9.877 1
8 13.205 12.106 0
9 20.535 21.613 0

10 62.278 13.289 1
...

...
...

...
1000 19.705 12.873 0
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Among the first 10 pairs (A∗
i , B∗

i ), there are 6 for which A∗
i > 2B∗

i . Therefore, if
we were to base our results on the first 10 values, we would estimate P(A > 2B) =
6/10 = 0.6. Of course, 10 simulated pairs are not nearly enough to compute a reliable
estimate. Among the 1000 simulated pairs, there were 460 for which A∗

i > 2B∗
i . We

therefore estimate P(A > 2B) = 0.460. The engineer chooses type B. We note
that this probability can be computed exactly with a multiple integral. The exact
probability is 5/11 = 0.4545. The simulation approximation is quite good.

A properly simulated sample from a given probability distribution is in fact a
simple random sample from that distribution. Therefore the mean and variance of the
simulated sample can be used to estimate the mean and variance of the distribution, and
a probability plot may be used to determine whether the probability distribution is well
approximated by a standard density function, such as the normal curve. We now present
some examples.

Estimating Means and Variances
Example 4.78 shows how simulated values can be used to estimate a population mean
and standard deviation.

Example
4.78 Use the simulated values R∗

i in Table 4.2 to estimate the mean μR and standard
deviation σR of the total resistance R.

Solution
We may treat the values R∗

1 , . . . , R∗
100 as if they were a random sample of actual

resistances. Therefore we estimate μR with the sample mean R
∗

and σR with the sam-
ple standard deviation sR∗ . The sample mean and standard deviation of R∗

1 , . . . , R∗
100

are R
∗ = 19.856 and sR∗ = 1.6926, respectively. These are the estimates of μR and

σR , respectively.

Using Simulation to Determine Whether a Population
Is Approximately Normal
One of the most frequently arising issues in data analysis is whether a population is
approximately normally distributed. When a simulated sample is available from a pop-
ulation, this issue can be addressed.

Example
4.79 Construct a histogram of the simulated values of R∗ presented in Table 4.2. Construct

a normal probability plot to determine whether the density of the total resistance R
is approximately normal.

Solution
The histogram and probability plot are shown in the following figure. The histogram
is approximately symmetric and has one mode. This is consistent with normality.
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Normal probability plot for simulated resistances

The normal probability plot suggests a slight departure from normality, especially in
the tails. It is fair to say that the distribution appears to be approximately normal. In
practice, a sample size of 1000 or more would provide a more precise histogram. A
sample of 100 is adequate for the probability plot, although it is no more trouble to
generate a larger sample.

Example 4.80 shows how simulation can be used to determine whether a sample
size is large enough for the Central Limit Theorem to hold, if the distribution from which
the sample is drawn is known.

Example
4.80 The article “Dermal Absorption from Pesticide Residues” (M. Reddy and A. Bunge,

The Practical Applicability of Toxicokinetic Models in the Risk Assessment of Chem-
icals, 2002:55–79) models the amount of pesticide absorbed into the system as a
lognormal random variable whose mean is proportional to the dose. Assume that for
a certain dose, the amount absorbed is lognormally distributed with parameters μ = 1
and σ = 0.5. An experiment will be performed in which this dose will be applied
in each of five independent trials, and the amount absorbed will be determined each
time. Will the average amount absorbed be approximately normally distributed?

Solution
Let X1, . . . , X5 be a random sample from a lognormal distribution with parameters
μ = 1 and σ = 0.5. The question asked is whether the sample mean X is ap-
proximately normally distributed. We will answer this question by generating 1000
simulated random samples of size 5 from this lognormal distribution, computing the
sample mean of each of them, and then constructing a normal probability plot for the
1000 sample means. Table 4.4 presents the first three and last three of the samples.
The first five columns in each row of Table 4.4 constitute a simple random sample



Navidi-3810214 book November 11, 2013 12:48

4.12 Simulation 309

TABLE 4.4 Simulated data for Example 4.80

X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X

∗

1 2.3220 1.5087 1.2144 2.5092 3.3408 2.1790
2 3.3379 2.8557 1.0023 3.8088 2.3320 2.6673
3 2.9338 3.0364 3.1488 2.0380 4.7030 3.1720
...

...
...

...
...

...
...

998 4.7993 3.7609 1.5751 3.6382 2.0254 3.1598
999 3.7929 2.9527 6.3663 1.8057 10.4450 5.0725

1000 3.7680 4.5899 2.8609 2.1659 5.0658 3.6901

X∗
1i , . . . , X∗

5i from a lognormal distribution with parameters μ = 1 and σ = 0.5.
The sixth column is the sample mean X

∗
i . The 1000 entries in the sixth column are

therefore a random sample of sample means. By constructing a normal probability
plot of these values, we can determine whether the sample mean is approximately
normally distributed.

Following is a histogram and a normal probability plot of the 1000 values of X
∗
.

The histogram shows that the distribution is skewed to the right. The probability plot
confirms that the distribution is far from normal.
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Using Simulation in Reliability Analysis
A system is made up of components, each of which has a lifetime that is random. The
lifetime of the system is therefore also random. Reliability engineers often know, at least
approximately, the probability distributions of the lifetimes of the components and wish
to determine the probability distribution of the system. In practice, it can be very difficult
to calculate the distribution of the system lifetime directly from the distributions of the
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component lifetimes. However, if the lifetimes of the components are independent, it
can often be done easily with simulation. Following is an example.

Example
4.81 A system consists of components A and B connected in parallel as shown in the

following schematic illustration. The lifetime in months of component A is distributed
Exp(1), and the lifetime in months of component B is distributed Exp(0.5). The system
will function until both A and B fail. Estimate the mean lifetime of the system, the
probability that the system functions for less than 1 month, and the 10th percentile of
the system lifetimes.

A

B

Solution
We generate a sample A∗

1, . . . , A∗
1000 of simulated lifetimes of component A from an

Exp(1) distribution. Then we generate a sample B∗
1 , . . . , B∗

1000 of simulated lifetimes
of component B from an Exp(0.5) distribution. Note that the mean lifetime for com-
ponent A is 1 month and the mean lifetime for component B is 1/0.5 = 2 months.
The lifetime of the i th simulated system is L∗

i = max(A∗
i , B∗

i ). Table 4.5 presents
results for the first 10 samples and for the last sample.

TABLE 4.5 Simulated data for Example 4.81

A∗ B∗ L ∗

1 0.0245 0.5747 0.5747
2 0.3623 0.3998 0.3998
3 0.8858 1.7028 1.7028
4 0.1106 14.2252 14.2252
5 0.1903 0.4665 0.4665
6 2.2259 1.4138 2.2259
7 0.8881 0.9120 0.9120
8 3.3471 3.2134 3.3471
9 2.5475 1.3240 2.5475

10 0.3614 0.8383 0.8383
...

...
...

...
1000 0.3619 1.8799 1.8799

The sample mean of the first 10 values of L∗
i is 2.724. Five of them are less than 1.

The 10th percentile of these 10 values is (0.3998 + 0.4665)/2 = 0.43315. So if we
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were to base our estimates on the first 10 samples, we would estimate the mean system
lifetime to be 2.724 months, the probability that the system fails within a month to be
0.5, and the 10th percentile of system lifetimes to be 0.43315. Of course, 10 samples
is not nearly enough for a reliable estimate. Based on all 1000 samples, the estimate
of the mean lifetime was 2.29 months, the estimate of the probability of failure within
a month was 0.278, and the 10th percentile was 0.516 months.

Using Simulation to Estimate Bias
Simulation can be used to estimate bias. Example 4.82 shows how.

Example
4.82 If X1, . . . , Xn is a random sample, then the sample standard deviation s is used to esti-

mate the population standard deviation σ . However, s is biased for σ . If X1, . . . , X6 is
a simple random sample from a N (0,1) distribution, use simulation to estimate the bias
in s. Estimate the standard deviation σs of s as well.

Solution
We will generate 1000 random samples X∗

1i , . . . , X∗
6i of size 6 from N (0, 1), and for

each one compute the sample standard deviation s∗
i . Table 4.6 presents the results for

the first 10 samples and for the last sample.

TABLE 4.6 Simulated data for Example 4.82

X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X∗

6 s∗

1 −0.4326 0.7160 −0.6028 0.8304 −0.1342 −0.3560 0.6160
2 −1.6656 1.5986 −0.9934 −0.0938 0.2873 −1.8924 1.3206
3 0.1253 −2.0647 1.1889 −0.4598 0.3694 0.4906 1.1190
4 −1.7580 0.1575 −0.8496 0.3291 −1.5780 −1.1100 0.8733
5 1.6867 0.3784 0.3809 0.4870 0.9454 −0.4602 0.7111
6 1.3626 0.7469 −2.1102 2.6734 −0.5311 1.1611 1.6629
7 −2.2424 −0.5719 −1.9659 0.1269 −0.2642 0.3721 1.0955
8 1.3765 −0.4187 −0.5014 1.9869 −0.0532 −0.7086 1.1228
9 −1.8045 0.5361 −0.9121 1.4059 −1.2156 −0.9619 1.2085

10 0.3165 0.6007 −0.5363 −0.2300 0.2626 0.0523 0.4092
...

...
...

...
...

...
...

...
1000 0.3274 0.1787 0.2006 −1.1602 1.1020 0.3173 0.7328

The values s∗
1 , . . . , s∗

1000 are a random sample from the population of all possible
values of s that can be calculated from a normal sample of size 6. The sample mean s∗

is therefore an estimate of the population mean μs . Now the true standard deviation
of the distribution from which the simulated data were generated is σ = 1, so the bias
in s is μs − 1. We estimate the bias with s∗ − 1.

The sample mean of the first 10 values of s∗
i is 1.0139. Therefore if we were to base

our results on the first 10 values, we would estimate the bias to be 1.0139−1 = 0.0139.



Navidi-3810214 book November 11, 2013 12:48

312 CHAPTER 4 Commonly Used Distributions

Of course, 10 values is not enough to construct a reliable estimate. The sample mean of
the 1000 values s∗

i is s∗ = 0.9601. We estimate the bias to be 0.9601−1 = −0.0399.
The sample standard deviation of the 1000 values s∗

i is 0.3156. This is the estimate
of σs .

The Bootstrap
In the examples discussed so far in this section, the distribution from which to gen-
erate the simulated data has been specified. In some cases, this distribution must be
determined from data. Simulation methods in which the distribution to be sampled
from is determined from data are called bootstrap methods. To illustrate, we present a
variation on Example 4.82 in which the distribution sampled from is determined from
data.

Example
4.83 A sample of size 6 is taken from a normal distribution whose mean and variance are

unknown. The sample values are 5.23, 1.93, 5.66, 3.28, 5.93, and 6.21. The sample
mean is X = 4.7067, and the sample standard deviation is s = 1.7137. The value of
s will be used to estimate the unknown population standard deviation σ . Estimate the
bias in s.

Solution
If we knew the population mean μ and standard deviation σ of the normal distribution
from which the sample came, we could use the method of Example 4.82, simulating
from a N (μ, σ ) distribution. Since we don’t know these values, we will estimate
them with the sample values X = 4.7067 and s = 1.7137. We will proceed exactly as
in Example 4.82, except that we will sample from a N (4.7067, 1.71372) distribution.
Since this distribution was determined from the data, this is a bootstrap method.

We will generate 1000 random samples X∗
1i , . . . , X∗

6i of size 6 from N (4.7067,

1.71372), and for each one compute the sample standard deviation s∗
i . Table 4.7

presents the results for the first 10 samples and for the last sample.

TABLE 4.7 Simulated data for Example 4.83

X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X∗

6 s∗

1 2.3995 4.8961 3.6221 6.9787 4.4311 4.5367 1.5157
2 2.6197 4.3102 3.2350 6.2619 4.4233 3.5903 1.2663
3 3.0114 5.2492 7.6990 6.0439 6.5965 3.7505 1.7652
4 3.9375 5.2217 1.9737 4.5434 3.0304 3.8632 1.1415
5 5.8829 5.3084 4.6003 2.6439 2.3589 2.3055 1.6054
6 7.8915 3.9731 5.1229 5.1749 3.5255 3.3330 1.6884
7 4.2737 5.5189 2.3314 5.1512 5.7752 4.0205 1.2705
8 5.8602 5.3280 5.5860 6.8256 7.5063 3.9393 1.2400
9 5.7813 4.9364 2.5893 3.7633 0.9065 3.8372 1.7260

10 3.3690 1.8618 2.7627 3.2837 3.9863 6.0382 1.4110
...

...
...

...
...

...
...

...
1000 2.0496 6.3385 6.2414 5.1580 3.7213 8.4576 2.2364
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The values s∗
1 , . . . , s∗

1000 are a random sample from the population of all possible
values of s that can be calculated from a normal sample of size 6. The sample mean
s∗ is therefore an estimate of the population mean μs . Now the standard deviation of
the population from which the simulated data were generated is σ ∗ = 1.7137. We
estimate the bias with s∗ − 1.7137.

The sample mean of the first 10 values of s∗
i is 1.4630. Therefore if we were to base

our results on the first 10 values, we would estimate the bias to be 1.4630−1.7137 =
−0.2507. Of course, 10 values are not enough to construct a reliable estimate. The
sample mean of all the 1000 values of s∗

i is 1.6188. We estimate the bias to be
1.6188 − 1.7137 = −0.0949.

Bootstrap results can sometimes be used to adjust estimates to make them more
accurate. Example 4.84 shows how this can be done with the sample standard
deviation.

Example
4.84 In Example 4.83, a sample of size 6 was taken from an N (μ, σ 2) population. The

sample standard deviation s = 1.7137 is an estimate of the unknown population
standard deviation σ . Use the results of the bootstrap in Example 4.83 to reduce the
bias in this estimate.

Solution
We estimated the bias in s to be −0.0949. This means that on the average, the sample
standard deviation computed from this N (μ, σ 2) population will be less than the
true standard deviation σ by about −0.0949. We therefore adjust for the bias by
adding 0.0949 to the estimate. The bias-corrected estimate of the population standard
deviation is 1.7137 + 0.0949 = 1.81.

Parametric and Nonparametric Bootstrap
In Example 4.83, we knew that the sample came from a normal distribution, but we didn’t
know the mean and variance. We therefore used the data to estimate the parameters μ

and σ . This procedure is called the parametric bootstrap, because the data are used to
estimate parameters. What if we hadn’t known that the distribution was normal? Then
we would have used the nonparametric bootstrap. In the nonparametric bootstrap,
we simulate by sampling from the data itself. The nonparametric bootstrap is useful
in constructing confidence intervals and in performing hypothesis tests. We will briefly
describe the nonparametric bootstrap, and then present some applications in Sections 5.9
and 6.15.

If we had a sample X1, . . . , Xn from an unknown distribution, we would simulate
samples X∗

1i , . . . , X∗
ni as follows. Imagine placing the values X1, . . . , Xn in a box, and

drawing out one value at random. Then replace the value and draw again. The second
draw is also a draw from the sample X1, . . . , Xn . Continue until n draws have been
made. This is the first simulated sample, called a bootstrap sample: X∗

11, . . . , X∗
n1. Note

that since the sampling is done with replacement, the bootstrap sample will probably
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contain some of the original sample items more than once, and others not at all. Now
draw more bootstrap samples; as many as one would draw in any simulation, perhaps
1000 or more. Then proceed just as in any other simulation.

For more information about the bootstrap and other simulation procedures, Efron
and Tibshirani (1993) is an excellent source of information.

Comparison of Simulation with Propagation of Error
In Example 4.78, we used simulation to approximate the mean and standard deviation
of a function of random variables R = XY/(X + Y ). The method of propagation of
error, discussed in Section 3.4, can be used for this purpose as well (see Example 3.20).
Of course, simulation can do many things that propagation of error cannot do, such
as estimate probabilities and determine whether a given function of random variables
is normally distributed. But if what is needed is to estimate the standard deviation of
a function of random variables, it is natural to ask whether simulation or propagation
of error is the better technique. The answer is that each method has advantages and
disadvantages.

To make our discussion of this question concrete, let X1, . . . , Xn be independent
random variables, and let U = U (X1, . . . , Xn) be a function. We wish to estimate σU .
The first thing that needs to be said is that in many cases, both methods work well and
give similar results, so it is just a matter of convenience which is used. Simulation has one
advantage, which is that it does not require that the standard deviations of X1, . . . , Xn

be small, as propagation of error does. Propagation of error has two big advantages,
however. First, it is not necessary to know the distributions of X1, . . . , Xn , as it is for
simulation. Second, propagation of error can pinpoint which of the Xs contributes most
to the uncertainty in U , which simulation cannot easily do.

Exercises for Section 4.12

1. Vendor A supplies parts, each of which has probability
0.03 of being defective. Vendor B also supplies parts,
each of which has probability 0.05 of being defective.
You receive a shipment of 100 parts from each vendor.

a. Let X be the number of defective parts in the ship-
ment from vendor A and let Y be the number of de-
fective parts in the shipment from vendor B. What
are the distributions of X and Y ?

b. Generate simulated samples of size 1000 from the
distributions of X and Y .

c. Use the samples to estimate the probability that the
total number of defective parts is less than 10.

d. Use the samples to estimate the probability that the
shipment from vendor A contains more defective
parts than the shipment from vendor B.

e. Construct a normal probability plot for the total
number of defective parts. Is this quantity approx-
imately normally distributed?

2. There are two competing designs for a certain semi-
conductor circuit. The lifetime of the first (in hours)
is exponentially distributed with λ = 10−4, and the
lifetime of the second is lognormally distributed with
μ = 6 and σ 2 = 5.4.

a. Use a simulated sample of size 1000 to estimate
the probability that a circuit with the first design
lasts longer than one with the second design.

b. Estimate the probability that a circuit with the first
design lasts more than twice as long as one with
the second design.
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3. Rectangular plates are manufactured whose lengths
are distributed N (2.0, 0.12) and whose widths are dis-
tributed N (3.0, 0.22). Assume the lengths and widths
are independent. The area of a plate is given by
A = XY .

a. Use a simulated sample of size 1000 to estimate
the mean and variance of A.

b. Estimate the probability that P(5.9 < A < 6.1).

c. Construct a normal probability plot for the ar-
eas. Is the area of a plate approximately normally
distributed?

4. A cable is made up of four wires. The breaking
strength of each wire is a normally distributed ran-
dom variable with mean 10 kN and standard deviation
1 kN. The strength of the cable, using the brittle wire
method, is estimated to be the strength of the weakest
wire multiplied by the number of wires.

a. Use simulated samples of size 1000 to estimate
the mean strength of this type of cable.

b. Estimate the median cable strength.

c. Estimate the standard deviation of the cable
strength.

d. To be acceptable for a certain application, the prob-
ability that the cable breaks under a load of 28 kN
must be less than 0.01. Does the cable appear to
be acceptable? Explain.

5. The lifetime of a laser (in hours) is lognormally dis-
tributed with μ = 8 and σ 2 = 2.4. Two such lasers
are operating independently.

a. Use a simulated sample of size 1000 to estimate
the probability that the sum of the two lifetimes is
greater than 20,000 hours.

b. Estimate the probability that both lasers last more
than 3000 hours.

c. Estimate the probability that both lasers fail before
10,000 hours.

6. Estimating the value of π . The following figure sug-
gests how to estimate the value of π with a simulation.
In the figure, a circle with area equal toπ/4 is inscribed
in a square whose area is equal to 1. One hundred
points have been randomly chosen from within the
square. The probability that a point is inside the circle
is equal to the fraction of the area of the square that
is taken up by the circle, which is π/4. We can there-
fore estimate the value of π/4 by counting the number

of points inside the circle, which is 79, and dividing
by the total number of points, which is 100, to obtain
the estimate π/4 ≈ 0.79. From this we conclude that
π ≈ 4(0.79) = 3.16. This exercise presents a simula-
tion experiment that is designed to estimate the value
of π by generating 1000 points in the unit square.

0 1
0

1

a. Generate 1000 x coordinates X ∗
1, . . . , X ∗

1000. Use
the uniform distribution with minimum value 0
and maximum value 1.

b. Generate 1000 y coordinates Y ∗
1 , . . . , Y ∗

1000, again
using the uniform distribution with minimum
value 0 and maximum value 1.

c. Each point (X ∗
i , Y ∗

i ) is inside the circle if its dis-
tance from the center (0.5, 0.5) is less than 0.5. For
each pair (X ∗

i , Y ∗
i ), determine whether its distance

from the center is less than 0.5. This can be done
by computing the value (X ∗

i −0.5)2 + (Y ∗
i −0.5)2,

which is the squared distance, and determining
whether it is less than 0.25.

d. How many of the points are inside the circle?
What is your estimate of π? (Note: With only 1000
points, it is not unlikely for your estimate to be off
by as much as 0.05 or more. A simulation with
10,000 or 100,000 points is much more likely to
provide an estimate that is very close to the true
value.)

7. Application to mobile computer networks. Com-
puter scientists often model the movement of a mobile
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computer as a random path within a rectangle. That
is, two points are chosen at random within the rectan-
gle, and the computer moves on a straight line from
the first point to the second. In the study of mobile
computer networks, it is important to know the mean
length of a path (see the article “Stationary Distri-
butions for Random Waypoint Models,” W. Navidi
and T. Camp, IEEE Transactions on Mobile Com-
puting, 2004:99–108). It is very difficult to compute
this mean directly, but it is easy to estimate it with
a simulation. If the endpoints of a path are denoted
(X1, Y1), and (X2, Y2), then the length of the path is√

(X2 − X1)2 + (Y2 − Y1)2. The mean length is esti-
mated by generating endpoints (X ∗

1, Y ∗
1 ), and (X ∗

2, Y ∗
2 )

for many paths, computing the length of each, and
taking the mean. This exercise presents a simulation
experiment that is designed to estimate the mean dis-
tance between two points randomly chosen within a
square of side 1.

a. Generate 1000 sets of endpoints (X ∗
1i , Y ∗

1i ), and
(X ∗

2i , Y ∗
2i ). Use the uniform distribution with min-

imum value 0 and maximum value 1 for each co-
ordinate of each point. The uniform distribution
generates values that are equally likely to come
from any part of the interval (0, 1).

b. Compute the 1000 path lengths L∗
i =√

(X ∗
2i − X ∗

1i )
2 + (Y ∗

2i − Y ∗
1i )

2.

c. Compute the sample mean path length L
∗
. The true

mean, to six significant digits, is 0.521405. How
close did you come?

d. Estimate the probability that a path is more than 1
unit long.

8. Refer to Example 4.81 (page 310). In order to in-
crease the lifetime of the system, the engineers have
a choice between replacing component A with one
whose lifetime is distributed Exp(1/2), or replacing
component B with one whose lifetime is distributed
Exp(1/3).

a. Generate, by simulation, a large number (at least
1000) of system lifetimes under the assumption
that component A is replaced.

b. Generate, by simulation, a large number (at least
1000) of system lifetimes under the assumption
that component B is replaced.

c. If the goal is to maximize the mean system life-
time, which is the better choice? Explain.

d. If the goal is to minimize the probability that the
system fails within a month, which is the better
choice? Explain.

e. If the goal is to maximize the 10th percentile of
the system lifetimes, which is the better choice?
Explain.

9. A system consists of components A and B connected
in series, as shown in the following schematic illus-
tration. The lifetime in months of component A is
lognormally distributed with μ = 1 and σ = 0.5, and
the lifetime in months of component B is lognormally
distributed with μ = 2 and σ = 1. The system will
function only so long as A and B both function.

A B

a. Generate, by simulation, a large number (at least
1000) of system lifetimes.

b. Estimate the mean system lifetime.

c. Estimate the probability that the system fails within
2 months.

d. Estimate the 20th percentile of system lifetimes.

e. Construct a normal probability plot of system life-
times. Is the system lifetime approximately nor-
mally distributed?

f. Construct a histogram of the system lifetimes. Is it
skewed to the left, skewed to the right, or approx-
imately symmetric?

10. A system consists of two subsystems connected in
series, as shown in the following schematic illus-
tration. Each subsystem consists of two components
connected in parallel. The AB subsystem fails when
both A and B have failed. The CD subsystem fails
when both C and D have failed. The system fails
as soon as one of the two subsystems fails. Assume
that the lifetimes of the components, in months, have
the following distributions: A: Exp(1), B: Exp(0.1),
C: Exp(0.2), D: Exp(0.2).

A

B

C

D
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a. Generate, by simulation, a large number (at least
1000) of system lifetimes.

b. Estimate the mean system lifetime.

c. Estimate the median system lifetime.

d. Estimate the probability that the system functions
for more than 6 months.

e. Estimate the 90th percentile of system lifetimes.

f. Estimate the probability that the AB subsystem
fails before the CD subsystem does.

11. (Continues Exercise 20 in Section 4.11.) The age of an
ancient piece of organic matter can be estimated from
the rate at which it emits beta particles as a result of
carbon-14 decay. For example, if X is the number of
particles emitted in 10 minutes by a 10,000-year-old
bone fragment that contains 1 g of carbon, then X
has a Poisson distribution with mean λ = 45.62. An
archaeologist has found a small bone fragment that
contains exactly 1 g of carbon. If t is the unknown
age of the bone, in years, the archaeologist will count
the number X of particles emitted in 10 minutes and
compute an estimated age t̂ with the formula

t̂ = ln 15.3 − ln(X/10)

0.0001210

Unknown to the archaeologist, the bone is exactly
10,000 years old, so X has a Poisson distribution with
λ = 45.62.

a. Generate a simulated sample of 1000 values of X ,
and their corresponding values of t̂ .

b. Estimate the mean of t̂ .

c. Estimate the standard deviation of t̂ .

d. Estimate the probability that t̂ will be within 1000
years of the actual age of 10,000 years.

e. Estimate the probability that t̂ will be more than
2000 years from the actual age of 10,000 years.

f. Construct a normal probability plot for t̂ . Is t̂ ap-
proximately normally distributed?

12. A random sample will be drawn from a normal dis-
tribution, for the purpose of estimating the population
mean μ. Since μ is the median as well as the mean,
it seems that both the sample median m and the sam-
ple mean X are reasonable estimators. This exercise is
designed to determine which of these estimators has
the smaller uncertainty.

a. Generate a large number (at least 1000) samples of
size 5 from a N (0, 1) distribution.

b. Compute the sample medians m∗
1, . . . , m∗

1000 for the
1000 samples.

c. Compute the mean m∗ and the standard deviation
sm∗ of m∗

1, . . . , m∗
1000.

d. Compute the sample means X
∗
1, . . . , X

∗
1000 for the

1000 samples.

e. Compute the mean and standard deviation sX
∗ of

X
∗
1, . . . , X

∗
1000.

f. The true value of μ is 0. Estimate the bias and
uncertainty (σm) in m. (Note: In fact, the median
is unbiased, so your bias estimate should be close
to 0.)

g. Estimate the bias and uncertainty (σX ) in X . Is your
bias estimate close to 0? Explain why it should be.
Is your uncertainty estimate close to 1/

√
5? Ex-

plain why it should be.

13. A random sample of size 8 is taken from a Exp(λ) dis-
tribution, where λ is unknown. The sample values are
2.74, 6.41, 4.96, 1.65, 6.38, 0.19, 0.52, and 8.38. This
exercise shows how to use the bootstrap to estimate
the bias and uncertainty (σλ̂) in λ̂ = 1/X .

a. Compute λ̂ = 1/X for the given sample.

b. Generate 1000 bootstrap samples of size 8 from
an Exp(λ̂) distribution.

c. Compute the values λ̂∗
i = 1/X

∗
i for each of the

1000 bootstrap samples.

d. Compute the sample mean λ̂∗ and the sample stan-
dard deviation s λ̂∗ of λ̂∗

1, . . . , λ̂∗
1000.

e. Estimate the bias and uncertainty (σλ̂) in λ̂.
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Supplementary Exercises for Chapter 4

1. An airplane has 100 seats for passengers. Assume that
the probability that a person holding a ticket appears
for the flight is 0.90. If the airline sells 105 tickets,
what is the probability that everyone who appears for
the flight will get a seat?

2. The number of large cracks in a length of pavement
along a certain street has a Poisson distribution with
a mean of 1 crack per 100 m.

a. What is the probability that there will be exactly 8
cracks in a 500 m length of pavement?

b. What is the probability that there will be no cracks
in a 100 m length of pavement?

c. Let T be the distance in meters between two suc-
cessive cracks. What is the probability density
function of T ?

d. What is the probability that the distance between
two successive cracks will be more than 50 m?

3. Pea plants contain two genes for seed color, each of
which may be Y (for yellow seeds) or G (for green
seeds). Plants that contain one of each type of gene are
called heterozygous. According to the Mendelian the-
ory of genetics, if two heterozygous plants are crossed,
each of their offspring will have probability 0.75 of
having yellow seeds and probability 0.25 of having
green seeds.

a. Out of 10 offspring of heterozygous plants, what
is the probability that exactly 3 have green seeds?

b. Out of 10 offspring of heterozygous plants, what is
the probability that more than 2 have green seeds?

c. Out of 100 offspring of heterozygous plants, what
is the probability that more than 30 have green
seeds?

d. Out of 100 offspring of heterozygous plants, what
is the probability that between 30 and 35 inclusive
have green seeds?

e. Out of 100 offspring of heterozygous plants, what
is the probability that fewer than 80 have yellow
seeds?

4. A simple random sample X1, . . . , Xn is drawn from
a population, and the quantities ln X1, . . . , ln Xn are
plotted on a normal probability plot. The points ap-
proximately follow a straight line. True or false:

a. X1, . . . , Xn come from a population that is approx-
imately lognormal.

b. X1, . . . , Xn come from a population that is approx-
imately normal.

c. ln X1, . . . , ln Xn come from a population that is
approximately lognormal.

d. ln X1, . . . , ln Xn come from a population that is
approximately normal.

5. The Environmental Protection Agency (EPA) has con-
tracted with your company for equipment to monitor
water quality for several lakes in your water district.
A total of 10 devices will be used. Assume that each
device has a probability of 0.01 of failure during the
course of the monitoring period.

a. What is the probability that none of the devices
fail?

b. What is the probability that two or more devices
fail?

c. If the EPA requires the probability that none of the
devices fail to be at least 0.95, what is the largest
individual failure probability allowable?

6. In the article “Occurrence and Distribution of
Ammonium in Iowa Groundwater” (K. Schilling,
Water Environment Research, 2002:177–186), am-
monium concentrations (in mg/L) were measured at
a large number of wells in the state of Iowa. The
mean concentration was 0.71, the median was 0.22,
and the standard deviation was 1.09. Is it possible
to determine whether these concentrations are ap-
proximately normally distributed? If so, say whether
they are normally distributed, and explain how you
know. If not, describe the additional information you
would need to determine whether they are normally
distributed.

7. Medication used to treat a certain condition is admin-
istered by syringe. The target dose in a particular appli-
cation is μ. Because of the variations in the syringe, in
reading the scale, and in mixing the fluid suspension,
the actual dose administered is normally distributed
with mean μ and variance σ 2.

a. What is the probability that the dose administered
differs from the mean μ by less than σ?

b. If X represents the dose administered, find the
value of z so that P(X < μ + zσ) = 0.90.

c. If the mean dose is 10 mg, the variance is 2.6 mg2,
and a clinical overdose is defined as a dose larger
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than 15 mg, what is the probability that a patient
will receive an overdose?

8. A certain type of plywood consists of five layers. The
thicknesses of the layers are independent and normally
distributed with mean 5 mm and standard deviation
0.2 mm.

a. Find the mean thickness of the plywood.

b. Find the standard deviation of the thickness of the
plywood.

c. Find the probability that the plywood is less than
24 mm thick.

9. The intake valve clearances on new engines of a cer-
tain type are normally distributed with mean 200 μm
and standard deviation 10 μm.

a. What is the probability that the clearance is greater
than 215 μm?

b. What is the probability that the clearance is be-
tween 180 and 205 μm?

c. An engine has six intake valves. What is the prob-
ability that exactly two of them have clearances
greater than 215 μm?

10. The stiffness of a certain type of steel beam used in
building construction has mean 30 kN/mm and stan-
dard deviation 2 kN/mm.

a. Is it possible to compute the probability that the
stiffness of a randomly chosen beam is greater than
32 kN/mm? If so, compute the probability. If not,
explain why not.

b. In a sample of 100 beams, is it possible to com-
pute the probability that the sample mean stiffness
of the beams is greater than 30.2 kN/mm? If so,
compute the probability. If not, explain why not.

11. In a certain process, the probability of producing a
defective component is 0.07.

a. In a sample of 250 randomly chosen components,
what is the probability that fewer than 20 of them
are defective?

b. In a sample of 10 randomly chosen components,
what is the probability that one or more of them is
defective?

c. To what value must the probability of a defective
component be reduced so that only 1% of lots of
250 components contain 20 or more that are de-
fective?

12. A process that polishes a mirrored surface leaves an
average of 2 small flaws per 5 m2 of surface. The num-
ber of flaws on an area of surface follows a Poisson
distribution.

a. What is the probability that a surface with area
3 m × 5 m will contain more than 5 flaws?

b. What is the probability that a surface with area
2 m × 3 m will contain no flaws?

c. What is the probability that 50 surfaces, each with
dimensions 3 m × 6 m, will contain more than 350
flaws in total?

13. Yeast cells are suspended in a liquid medium. A 2 mL
sample of the suspension is withdrawn. A total of
56 yeast cells are counted.

a. Estimate the concentration of yeast cells per mL
of suspension, and find the uncertainty.

b. What volume of suspension must be withdrawn to
reduce the uncertainty to 1 cell per mL?

14. A plate is attached to its base by 10 bolts. Each
bolt is inspected before installation, and the proba-
bility of passing the inspection is 0.9. Only bolts that
pass the inspection are installed. Let X denote the
number of bolts that are inspected in order to attach
one plate.

a. Find P(X = 12).

b. Find μX .

c. Find σX .

15. Thicknesses of shims are normally distributed with
mean 1.5 mm and standard deviation 0.2 mm. Three
shims are stacked, one atop another.

a. Find the probability that the stack is more than
5 mm thick.

b. Find the 80th percentile of the stack thickness.

c. What is the minimum number of shims to be
stacked so that the probability that the stack is more
than 5 mm thick is at least 0.99?

16. The lifetime of a microprocessor is exponentially dis-
tributed with mean 3000 hours.

a. What proportion of microprocessors will fail
within 300 hours?

b. What proportion of microprocessors will function
for more than 6000 hours?
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c. A new microprocessor is installed alongside one
that has been functioning for 1000 hours. Assume
the two microprocessors function independently.
What is the probability that the new one fails be-
fore the old one?

17. The lifetime of a bearing (in years) follows the
Weibull distribution with parameters α = 1.5 and
β = 0.8.

a. What is the probability that a bearing lasts more
than 1 year?

b. What is the probability that a bearing lasts less
than 2 years?

18. The length of time to perform an oil change at a certain
shop is normally distributed with mean 29.5 minutes
and standard deviation 3 minutes. What is the proba-
bility that a mechanic can complete 16 oil changes in
an eight-hour day?

19. A cereal manufacturer claims that the gross weight
(including packaging) of a box of cereal labeled as
weighing 12 oz has a mean of 12.2 oz and a standard
deviation of 0.1 oz. You gather 75 boxes and weigh
them all together. Let S denote the total weight of the
75 boxes of cereal.

a. If the claim is true, what is P(S ≤ 914.8)?

b. Based on the answer to part (a), if the claim is true,
is 914.8 oz an unusually small total weight for a
sample of 75 boxes?

c. If the total weight of the boxes were 914.8 oz,
would you be convinced that the claim was false?
Explain.

d. If the claim is true, what is P(S ≤ 910.3)?

e. Based on the answer to part (d), if the claim is true,
is 910.3 oz an unusually small total weight for a
sample of 75 boxes?

f. If the total weight of the boxes were 910.3 oz,
would you be convinced that the claim was false?
Explain.

20. Someone claims that the number of hits on his website
has a Poisson distribution with mean 20 per hour. Let
X be the number of hits in five hours.

a. If the claim is true, what is P(X ≤ 95)?

b. Based on the answer to part (a), if the claim is true,
is 95 hits in a five-hour time period an unusually
small number?

c. If you observed 95 hits in a five-hour time period,
would this be convincing evidence that the claim
is false? Explain.

d. If the claim is true, what is P(X ≤ 65)?

e. Based on the answer to part (d), if the claim is true,
is 65 hits in a five-hour time period an unusually
small number?

f. If you observed 65 hits in a five-hour time period,
would this be convincing evidence that the claim
is false? Explain.

21. A distribution sometimes used to model the largest
item in a sample is the extreme value distribution. This
distribution has cumulative distribution function

F(x) = e−e−x

Let X be a random variable with this distribution.

a. Find P(X ≤ 0).

b. Find P(X > ln 2).

c. Find the median of X .

22. An alternative to the lognormal distribution for mod-
eling highly skewed populations is the Pareto distribu-
tion with parameters θ and r . The probability density
function is

f (x) =
{ rθ r

xr+1
x ≥ θ

0 x < θ

The parameters θ and r may be any positive numbers.
Let X be a random variable with this distribution.

a. Find the cumulative distribution function of X .

b. Assume r > 1. Find μX .

c. Assume r > 2. Find σ 2
X .

d. Show that if r ≤ 1, μX does not exist.

e. Show that if r ≤ 2, σ 2
X does not exist.

23. A distribution that has been used to model tolerance
levels in bioassays is the logistic distribution with pa-
rameters α and β. The cumulative distribution func-
tion of the logistic distribution is

F(x) = [1 + e−(x−α)/β]−1

The parameter α may be any real number; the param-
eter β may be any positive number. Let X be a random
variable with this distribution.
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a. Find the probability density function fX (x).

b. Show that fX (x) is symmetric around α, that is,
fX (α − x) = fX (α + x) for all x .

c. Explain why the symmetry described in part (b)
shows that μX = α. You may assume that μX

exists.

24. Radioactive mass 1 emits particles at a mean rate of
λ1 per second, and radioactive mass 2 emits particles
at a mean rate of λ2 per second. Mass 1 is selected
with probability p, and mass 2 is selected with prob-
ability 1 − p. Let X be the time at which the first
particle is emitted. It can be shown that X has a mixed
exponential distribution with probability density
function

f (x) =
{

pλ1e−λ1x + (1 − p)λ2e−λ2x x ≥ 0

0 x < 0

a. Find μX .

b. Find the cumulative distribution function of X .

c. Let λ1 = 2, λ2 = 1, and p = 0.5. Find P(X ≤ 2).

d. Let λ1 = 2, λ2 = 1, and p = 0.5. Given that
P(X ≤ 2), find the probability that mass 1 was
selected.

25. Let X ∼ Geom(p). Let s ≥ 0 be an integer.

a. Show that P(X > s) = (1− p)s . (Hint: The prob-
ability that more than s trials are needed to obtain
the first success is equal to the probability that the
first s trials are all failures.)

b. Let t ≥ 0 be an integer. Show that P(X >

s + t | X > s) = P(X > t). This is called
the lack of memory property. [Hint: P(X >

s + t and X > s) = P(X > s + t).]

c. A penny and a nickel are both fair coins. The penny
is tossed three times and comes up tails each time.
Now both coins will be tossed twice each, so that
the penny will be tossed a total of five times and the
nickel will be tossed twice. Use the lack of memory
property to compute the conditional probability
that all five tosses of the penny will be tails, given
that the first three tosses were tails. Then compute
the probability that both tosses of the nickel will
be tails. Are both probabilities the same?

26. A stick of length 1 is broken at a point chosen uni-
formly along its length. One piece is used as the length

of a rectangle, and the other is used as the width. Find
the mean area of a rectangle formed in this way.

27. Let X represent the lifetime of a component, in weeks.
Let Y represent the lifetime of the component in days,
so Y = 7X . Suppose X ∼ Exp(λ).

a. Let FY be the cumulative distribution function of
Y and let FX be the cumulative distribution func-
tion of X . Show that FY (y) = 1 − e−λy/7. [Hint:
FY (y) = P(Y ≤ y) = P(7X ≤ y) = P(X ≤
y/7).]

b. Show that Y ∼ Exp(λ/7). [Hint: Find the proba-
bility density function of Y by differentiating
FY (y).]

28. Let X ∼ Bin(n, p).

a. Show that if x is an integer between 1 and n inclu-
sive, then

P(X = x)

P(X = x − 1)
=

(
n − x + 1

x

)(
p

1 − p

)

b. Show that if X ∼ Bin(n, p), the most proba-
ble value for X is the greatest integer less than
or equal to np + p. [Hint: Use part (a) to show
that P(X = x) ≥ P(X = x − 1) if and only if
x ≤ np + p.]

29. Let X ∼ Poisson(λ).

a. Show that if x is a positive integer, then

P(X = x)

P(X = x − 1)
= λ

x

b. Show that if X ∼ Poisson(λ), the most proba-
ble value for X is the greatest integer less than
or equal to λ. [Hint: Use part (a) to show that
P(X = x) ≥ P(X = x −1) if and only if x ≤ λ.]

30. Let Z ∼ N (0, 1), and let X = σ Z + μ where μ and
σ > 0 are constants. Let � represent the cumulative
distribution function of Z , and let φ represent the prob-
ability density function, so φ(x) = (1/

√
2π)e−x2/2.

a. Show that the cumulative distribution function of

X is FX (x) = �

( x − μ

σ

)
.

b. Differentiate FX (x) to show that X ∼ N (μ, σ 2).

c. Now let X = −σ Z + μ. Compute the cumula-
tive distribution function of X in terms of �, then
differentiate it to show that X ∼ N (μ, σ 2).
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5
Confidence Intervals

Introduction

In Chapter 4 we discussed estimates for various parameters: for example, the sample
mean as an estimate of a population mean, and the sample proportion p̂ as an estimate
of a success probability p. These estimates are called point estimates, because they are
single numbers, or points. An important thing to remember about point estimates is that
they are almost never exactly equal to the true values they are estimating. They are almost
always off—sometimes by a little, sometimes by a lot. In order for a point estimate to
be useful, it is necessary to describe just how far off the true value it is likely to be. One
way to do this is by reporting an estimate of the standard deviation, or uncertainty, in
the point estimate. In this chapter, we will show that when the estimate comes from a
normal distribution, we can obtain more information about its precision by computing a
confidence interval. The following example presents the basic idea.

Assume that a large number of independent measurements, all using the same pro-
cedure, are made on the diameter of a piston. The sample mean of the measurements
is 14.0 cm, and the uncertainty in this quantity, which is the standard deviation of the
sample mean, is 0.1 cm. Assume that the measurements are unbiased. The value 14.0
comes from a normal distribution, because it is the average of a large number of mea-
surements. Now the true diameter of the piston will certainly not be exactly equal to
the sample mean of 14.0 cm. However, because the sample mean comes from a normal
distribution, we can use its standard deviation to determine how close it is likely to be to
the true diameter. For example, it is very unlikely that the sample mean will differ from
the true diameter by more than three standard deviations. Therefore we have a high level
of confidence that the true diameter is in the interval (13.7, 14.3). On the other hand, it
is not too unlikely for the sample mean to differ from the true value by more than one
standard deviation. Therefore we have a lower level of confidence that the true diameter
is in the interval (13.9, 14.1).

The intervals (13.7, 14.3) and (13.9, 14.1) are confidence intervals for the true
diameter of the piston. We will see in this chapter how to compute a quantitative measure
of the level of confidence that we may have in these intervals, and in other intervals we
may construct. Specifically, the results of Section 5.1 will show us that we may be 99.7%
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confident that the true diameter of the piston is in the interval (13.7, 14.3), but only
68% confident that the true value is in the interval (13.9, 14.1).

5.1 Large-Sample Confidence Intervals
for a Population Mean

We begin with an example. A quality-control engineer wants to estimate the mean fill
weight of boxes that have been filled with cereal by a certain machine on a certain day.
He draws a simple random sample of 100 boxes from the population of boxes that have
been filled by that machine on that day. He computes the sample mean fill weight to be
X = 12.05 oz, and the sample standard deviation to be s = 0.1 oz.

Since the population mean will not be exactly equal to the sample mean of 12.05, it is
best to construct a confidence interval around 12.05 that is likely to cover the population
mean. We can then quantify our level of confidence that the population mean is actually
covered by the interval. To see how to construct a confidence interval in this example, let
μ represent the unknown population mean and let σ 2 represent the unknown population
variance. Let X1, . . . , X100 be the 100 fill weights of the sample boxes. The observed
value of the sample mean is X = 12.05. Since X is the mean of a large sample, the
Central Limit Theorem specifies that it comes from a normal distribution whose mean
is μ and whose standard deviation is σX = σ/

√
100.

Figure 5.1 presents a normal curve, which represents the distribution of X . The
middle 95% of the curve, extending a distance 1.96σX on either side of population mean
μ, is indicated. The observed value X = 12.05 is a single draw from this distribution.
We have no way to know from what part of the curve this particular value of X was
drawn. Figure 5.1 presents one possibility, which is that the sample mean X lies within

� X� � 1.96�X

X � 1.96�X

� � � 1.96�X

95%

� � X � 1.96�X
�

�

� �

FIGURE 5.1 The sample mean X is drawn from a normal distribution with mean μ and
standard deviation σX = σ/

√
n. For this particular sample, X comes from the middle

95% of the distribution, so the 95% confidence interval X ± 1.96σX succeeds in covering
the population mean μ.
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the middle 95% of the distribution. Ninety-five percent of all the samples that could have
been drawn fall into this category. The horizontal line below the curve in Figure 5.1 is an
interval around X that is exactly the same length as the middle 95% of the distribution,
namely, the interval X ± 1.96σX . This interval is a 95% confidence interval for the
population mean μ. It is clear that this interval covers the population mean μ.

In contrast, Figure 5.2 represents a sample whose mean X lies outside the middle
95% of the curve. Only 5% of all the samples that could have been drawn fall into this
category. For these more unusual samples the 95% confidence interval X ± 1.96σX fails
to cover the population mean μ.

�X � � 1.96�X

X � 1.96�X

� � � 1.96�X

95%

� � X � 1.96�X
� �

� �

FIGURE 5.2 The sample mean X is drawn from a normal distribution with mean μ

and standard deviation σX = σ/
√

n. For this particular sample, X comes from the outer
5% of the distribution, so the 95% confidence interval X ± 1.96σX fails to cover the
population mean μ.

We will now compute a 95% confidence interval X ± 1.96σX for the mean fill
weight. The value of X is 12.05. The population standard deviation σ and thus σX =
σ/

√
100 are unknown. However, in this example, since the sample size is large, we may

approximate σ with the sample standard deviation s = 0.1. We therefore compute a 95%
confidence interval for the population mean fill weight μ to be 12.05 ± (1.96)(0.01), or
(12.0304, 12.0696). We can say that we are 95% confident, or confident at the 95%
level, that the population mean fill weight lies between 12.0304 and 12.0696.

Does this 95% confidence interval actually cover the population mean μ? It depends
on whether this particular sample happened to be one whose mean came from the middle
95% of the distribution, or whether it was a sample whose mean was unusually large or
small, in the outer 5% of the distribution. There is no way to know for sure into which
category this particular sample falls. But imagine that the engineer were to repeat this
procedure every day, drawing a large sample and computing the 95% confidence interval
X ±1.96σX . In the long run, 95% of the samples he draws will have means in the middle
95% of the distribution, so 95% of the confidence intervals he computes will cover the
population mean. To put it another way, a 95% confidence interval is computed by a
procedure that succeeds in covering the population mean 95% of the time.
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We can use this same reasoning to compute intervals with various confidence levels.
For example, we can construct a 68% confidence interval as follows. We know that the
middle 68% of the normal curve corresponds to the interval extending a distance 1.0σX
on either side of the population mean μ. It follows that an interval of the same length
around X , specifically X ± σX , will cover the population mean for 68% of the samples
that could possibly be drawn. Therefore a 68% confidence interval for the mean fill
weight of the boxes is 12.05 ± (1.0)(0.01), or (12.04, 12.06).

Note that the 95% confidence interval is wider than the 68% confidence interval.
This is intuitively plausible. In order to increase our confidence that we have covered the
true population mean, the interval must be made wider, to provide a wider margin for
error. To take two extreme cases, we have 100% confidence that the true population mean
is in the infinitely wide interval (−∞, ∞), and 0% confidence that the true population
mean is in the zero-width interval [12.05, 12.05] that contains the sample mean and no
other point.

We now illustrate how to find a confidence interval with any desired level of confi-
dence. Specifically, let α be a number between 0 and 1, and let 100(1 − α)% denote the
required confidence level. Figure 5.3 presents a normal curve representing the distribu-
tion of X . Define zα/2 to be the z-score that cuts off an area of α/2 in the right-hand tail.
For example, the z table (Table A.2) indicates that z.025 = 1.96, since 2.5% of the area
under the standard normal curve is to the right of 1.96. Similarly, the quantity −zα/2 cuts
off an area of α/2 in the left-hand tail. The middle 1 − α of the area under the curve
corresponds to the interval μ ± zα/2σX . By the reasoning shown in Figures 5.1 and 5.2,
it follows that the interval X ± zα/2σX will cover the population mean μ for a proportion
1 − α of all the samples that could possibly be drawn. Therefore a level 100(1 − α)%
confidence interval for μ is X ± zα/2σX , or X ± zα/2σ/

√
n.

� � z�/2�X � � z�/2�X�

1 � ��/2 �/2

� �

FIGURE 5.3 The sample mean X is drawn from a normal distribution with mean μ

and standard deviation σX = σ/
√

n. The quantity zα/2 is the z-score that cuts off an area
of α/2 in the right-hand tail. The quantity −zα/2 is the z-score that cuts off an area of
α/2 in the left-hand tail. The interval X ± zα/2σX will cover the population mean μ for
a proportion 1 − α of all samples that could possibly be drawn. Therefore X ± zα/2σX

is a level 100(1 − α)% confidence interval for μ.

We note that even for large samples, the distribution of X is only approximately
normal, rather than exactly normal. Therefore the levels stated for confidence intervals
are approximate. When the sample size is large enough for the Central Limit Theorem
to be used, the distinction between approximate and exact levels is generally ignored in
practice.
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Summary
Let X1, . . . , Xn be a large (n > 30) random sample from a population with
mean μ and standard deviation σ , so that X is approximately normal. Then a
level 100(1 − α)% confidence interval for μ is

X ± zα/2σX (5.1)

where σX = σ/
√

n. When the value of σ is unknown, it can be replaced with the
sample standard deviation s.

In particular,

■ X ± s√
n

is a 68% confidence interval for μ.

■ X ± 1.645
s√
n

is a 90% confidence interval for μ.

■ X ± 1.96
s√
n

is a 95% confidence interval for μ.

■ X ± 2.58
s√
n

is a 99% confidence interval for μ.

■ X ± 3
s√
n

is a 99.7% confidence interval for μ.

Example
5.1 The sample mean and standard deviation for the fill weights of 100 boxes are

X = 12.05 and s = 0.1. Find an 85% confidence interval for the mean fill weight of
the boxes.

Solution
To find an 85% confidence interval, set 1−α = 0.85 to obtain α = 0.15 and α/2 =
0.075. We then look in the table for z.075, the z-score that cuts off 7.5% of the area in
the right-hand tail. We find z.075 = 1.44. We approximate σX ≈ s/

√
n = 0.01. So the

85% confidence interval is 12.05±(1.44)(0.01). This can be written as 12.05±0.0144,
or as (12.0356, 12.0644).

Example
5.2 The article “Study on the Life Distribution of Microdrills” (Z. Yang, Y. Chen, and Y.

Yang, Journal of Engineering Manufacture, 2002:301–305) reports that in a sample
of 50 microdrills drilling a low-carbon alloy steel, the average lifetime (expressed as
the number of holes drilled before failure) was 12.68 with a standard deviation of
6.83. Find a 95% confidence interval for the mean lifetime of microdrills under these
conditions.

Solution
First let’s translate the problem into statistical language. We have a simple random
sample X1, . . . , X50 of lifetimes. The sample mean and standard deviation are X =
12.68 and s = 6.83. The population mean is unknown, and denoted by μ.
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The confidence interval has the form X ± zα/2σX , as specified in expression
(5.1). Since we want a 95% confidence interval, the confidence level 1 − α is
equal to 0.95. Thus α = 0.05, and zα/2 = z.025 = 1.96. We approximate σ with
s = 6.83, and obtain σX ≈ 6.83/

√
50 = 0.9659. Thus the 95% confidence interval

is 12.68 ± (1.96)(0.9659). This can be written as 12.68 ± 1.89, or as (10.79, 14.57).

The following computer output (from MINITAB) presents the 95% confidence
interval calculated in Example 5.2.

One-Sample Z

The assumed standard deviation = 6.830000

N Mean SE Mean 95% CI
50 12.680000 0.965908 (10.786821, 14.573179)

Most of the output is self-explanatory. The quantity labeled “SE Mean” is the stan-
dard deviation of the sample mean σX , approximated by s/

√
n. (“SE Mean” stands

for standard error of the mean, which is another term for the standard deviation of the
sample mean.)

Example
5.3 Use the data in Example 5.2 to find an 80% confidence interval.

Solution
To find an 80% confidence interval, set 1− α = 0.80 to obtain α = 0.20. Then look
in the table for z.10, the z-score that cuts off 10% of the area in the right-hand tail.
The value is z.10 = 1.28. So the 80% confidence interval is 12.68 ± (1.28)(0.9659).
This can be written as 12.68 ± 1.24, or as (11.44, 13.92).

We have seen how to compute a confidence interval with a given confidence level.
It is also possible to compute the level of a given confidence interval. Example 5.4
illustrates the method.

Example
5.4 Based on the microdrill lifetime data presented in Example 5.2, an engineer reported

a confidence interval of (11.09, 14.27) but neglected to specify the level. What is the
level of this confidence interval?

Solution
The confidence interval has the form X ± zα/2s/

√
n. We will solve for zα/2, and then

consult the z table to determine the value of α. Now X = 12.68, s = 6.83, and n = 50.
The upper confidence limit of 14.27 therefore satisfies the equation 14.27 = 12.68 +
zα/2(6.83/

√
50). Therefore zα/2 = 1.646. From the z table, we determine that α/2, the

area to the right of 1.646, is approximately 0.05. The level is 100(1 − α)%, or 90%.
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More About Confidence Levels
The confidence level of an interval measures the reliability of the method used to compute
the interval. A level 100(1 − α)% confidence interval is one computed by a method that
in the long run will succeed in covering the population mean a proportion 1 − α of
all the times that it is used. In practice, when one computes a confidence interval, one
must decide what level of confidence to use. This decision involves a trade-off, because
intervals with greater confidence levels are less precise. For example, a 68% confidence
interval specifies the population mean to within ±1.0σX , while a 95% confidence interval
specifies it only to within ±1.96σX , and therefore has only about half the precision of
the 68% confidence interval. Figure 5.4 illustrates the trade-off between confidence and
precision. One hundred samples were drawn from a population with mean μ. Figure 5.4b
presents one hundred 95% confidence intervals, each based on one of these samples. The
confidence intervals are all different, because each sample has a different mean X . (They
also have different values of s with which to approximate σ , but this has a much smaller
effect.) About 95% of these intervals cover the population mean μ. Figure 5.4a presents
68% confidence intervals based on the same samples. These intervals are more precise
(narrower), but many of them fail to cover the population mean. Figure 5.4c presents
99.7% confidence intervals. These intervals are very reliable. In the long run, only 3 in
1000 of these intervals will fail to cover the population mean. However, they are less
precise (wider), and thus do not convey as much information.

The level of confidence most often used in practice is 95%. For many applications,
this level provides a good compromise between reliability and precision. Confidence
levels below 90% are rarely used. For some quality-assurance applications, where product
reliability is extremely important, intervals with very high confidence levels, such as
99.7%, are used.

Probability versus Confidence
In the fill weight example discussed at the beginning of this section, a 95% confidence
interval for the population mean μ was computed to be (12.304, 12.696). It is tempting
to say that the probability is 95% that μ is between 12.304 and 12.696. This, however, is
not correct. The term probability refers to random events, which can come out differently
when experiments are repeated. The numbers 12.304 and 12.696 are fixed, not random.
The population mean is also fixed. The mean fill weight is either in the interval 12.304
to 12.696, or it is not. There is no randomness involved. Therefore we say that we have
95% confidence (not probability) that the population mean is in this interval.

On the other hand, let’s say that we are discussing a method used to compute a 95%
confidence interval. The method will succeed in covering the population mean 95% of
the time, and fail the other 5% of the time. In this case, whether the population mean is
covered or not is a random event, because it can vary from experiment to experiment.
Therefore it is correct to say that a method for computing a 95% confidence interval has
probability 95% of covering the population mean.
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(a) (b) (c)

� � �

FIGURE 5.4 (a) One hundred 68% confidence intervals for a population mean, each computed from a different
sample. Although precise, they fail to cover the population mean 32% of the time. This high failure rate makes the
68% confidence interval unacceptable for practical purposes. (b) One hundred 95% confidence intervals computed
from these samples. This represents a good compromise between reliability and precision for many purposes.
(c) One hundred 99.7% confidence intervals computed from these samples. These intervals fail to cover the popu-
lation mean only three times in 1000. They are extremely reliable, but imprecise.

Example
5.5 A 90% confidence interval for the mean diameter (in cm) of steel rods manufactured

on a certain extrusion machine is computed to be (14.73, 14.91). True or false: The
probability that the mean diameter of rods manufactured by this process is between
14.73 and 14.91 is 90%.



Navidi-3810214 book November 12, 2013 15:37

330 CHAPTER 5 Confidence Intervals

Solution
False. A specific confidence interval is given. The mean is either in the interval or it
isn’t. We are 90% confident that the population mean is between 14.73 and 14.91.
The term probability is inappropriate.

Example
5.6 An engineer plans to compute a 90% confidence interval for the mean diameter of

steel rods. She will measure the diameters of a large sample of rods, compute X and
s, and then compute the interval X ± 1.645s/

√
n. True or false: The probability that

the population mean diameter will be in this interval is 90%.

Solution
True. What is described here is a method for computing a confidence interval, rather
than a specific numerical value. It is correct to say that a method for computing a 90%
confidence interval has probability 90% of covering the population mean.

Example
5.7 A team of geologists plans to measure the weights of 250 rocks. After weighing each

rock a large number of times, they will compute a 95% confidence interval for its
weight. Assume there is no bias in the weighing procedure. What is the probability
that more than 240 of the confidence intervals will cover the true weights of the rocks?

Solution
Here we are discussing 250 planned implementations of a method for computing
a confidence interval, not 250 specific intervals that have already been computed.
Therefore it is appropriate to compute the probability that a specified number of these
intervals will cover the true weights of their respective rocks. Since the weighing
procedure is unbiased, the true weight of a rock is equal to the population mean
of its measurements. We may think of each of the 250 confidence intervals as a
Bernoulli trial, with success occurring if the confidence interval covers its population
mean. Since a 95% confidence interval is computed by a process that covers the
population mean 95% of the time, the success probability for each Bernoulli trial is
0.95. Let Y represent the number of confidence intervals that cover the true weight.
Then Y ∼ Bin(250, 0.95) ≈ N (237.5, 11.875). The standard deviation of Y is
σ = √

11.875 = 3.45. Using the normal curve, the probability that Y > 240 is 0.1922.
See Figure 5.5. Note that the continuity correction (see Section 4.11) has been used.

237.5 240.5
z � 0.87

0.1922

FIGURE 5.5 Solution to Example 5.7.
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Determining the Sample Size Needed for a Confidence
Interval of Specified Width
In Example 5.2, a 95% confidence interval was given by 12.68 ± 1.89, or (10.79, 14.57).
This interval specifies the mean to within ± 1.89. Now assume that this interval is too
wide to be useful. Assume that it is desirable to produce a 95% confidence interval that
specifies the mean to within ± 0.50. To do this, the sample size must be increased. We
show how to calculate the sample size needed to obtain a confidence interval of any
specified width.

It follows from expression (5.1) that the width of a confidence interval for a popula-
tion mean based on a sample of size n drawn from a population with standard deviation
σ is ±zα/2σ/

√
n. If the confidence level 100(1 − α)% is specified, we can look up the

value zα/2. If the population standard deviation σ is also specified, we can then compute
the value of n needed to produce a specified width. In Example 5.2, the confidence level
is 95% and the standard deviation is estimated to be 6.83. We look up zα/2 = z.025 = 1.96.
The sample size necessary to produce a 95% confidence interval with width ±0.50 is
found by solving the equation (1.96)(6.83)/

√
n = 0.50 for n. We obtain n = 716.83,

which we round up to n = 717.

Example
5.8 In the fill weight example discussed earlier in this section, the sample standard devi-

ation of weights from 100 boxes was s = 0.1 oz. How many boxes must be sampled
to obtain a 99% confidence interval of width ±0.012 oz?

Solution
The level is 99%, so 1 − α = 0.99. Therefore α = 0.01 and zα/2 = 2.58. The
value of σ is estimated with s = 0.1. The necessary sample size is found by solving
(2.58)(0.1)/

√
n = 0.012. We obtain n ≈ 463.

One-Sided Confidence Intervals
The confidence intervals discussed so far have been two-sided, in that they specify
both a lower and an upper confidence bound. Occasionally we are interested only in
one of these bounds. In these cases, one-sided confidence intervals are appropriate. For
example, assume that a reliability engineer wants to estimate the mean crushing strength
of a certain type of concrete block, to determine the sorts of applications for which it
will be appropriate. The engineer will probably be interested only in a lower bound for
the strength, since specifications for various applications will generally specify only a
minimum strength.

Assume that a large sample has sample mean X and standard deviation σX . Figure 5.6
(page 332) shows how the idea behind the two-sided confidence interval can be adapted
to produce a one-sided confidence interval for the population mean μ. The normal
curve represents the distribution of X . For 95% of all the samples that could be drawn,
X < μ+ 1.645σX , and therefore the interval (X − 1.645σX , ∞) covers μ. This interval
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will fail to cover μ only if the sample mean is in the upper 5% of its distribution. The
interval (X −1.645σX , ∞) is a 95% one-sided confidence interval for μ, and the quantity
X − 1.645σX is a 95% lower confidence bound for μ.

X � 1.645�X
�

�

 �1.645�X�

95%

X� ��

FIGURE 5.6 The sample mean X is drawn from a normal distribution with mean μ

and standard deviation σX = σ/
√

n. For this particular sample, X comes from the lower
95% of the distribution, so the 95% one-sided confidence interval (X − 1.645σX , ∞)

succeeds in covering the population mean μ.

By constructing a figure like Figure 5.6 with the lower 5% tail shaded, it can
be seen that the quantity X + 1.645σX is a 95% upper confidence bound for μ. We
now generalize the method to produce one-sided confidence intervals of any desired
level. Define zα to be the z-score that cuts off an area α in the right-hand tail of the
normal curve. For example, z.05 = 1.645. By the reasoning used to obtain a 95% con-
fidence interval, it can be seen that a level 100(1 − α)% lower confidence bound for
μ is given by X − zασX , and a level 1 − α upper confidence bound for μ is given by
X + zασX .

Summary
Let X1, . . . , Xn be a large (n > 30) random sample from a population with
mean μ and standard deviation σ , so that X is approximately normal. Then level
100(1 − α)% lower confidence bound for μ is

X − zασX (5.2)

and level 100(1 − α)% upper confidence bound for μ is

X + zασX (5.3)

where σX = σ/
√

n. When the value of σ is unknown, it can be replaced with the
sample standard deviation s.
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In particular,

■ X + 1.28
s√
n

is a 90% upper confidence bound for μ.

■ X + 1.645
s√
n

is a 95% upper confidence bound for μ.

■ X + 2.33
s√
n

is a 99% upper confidence bound for μ.

The corresponding lower bounds are found by replacing the “+” with “−.”

Example
5.9 Refer to Example 5.2. Find both a 95% lower confidence bound and a 99% upper

confidence bound for the mean lifetime of the microdrills.

Solution
The sample mean and standard deviation are X = 12.68 and s = 6.83, respectively.
The sample size is n = 50. We estimate σX ≈ s/

√
n = 0.9659. The 95% lower

confidence bound is X − 1.645σX = 11.09, and the 99% upper confidence bound is
X + 2.33σX = 14.93.

In Example 5.2, the 95% two-sided confidence interval was computed to be
(10.79, 14.57). The 95% lower confidence bound of 11.09, computed in Example 5.9, is
greater than the lower bound of the two-sided confidence interval. The reason for this is
that the two-sided interval can fail in two ways—the value of μ may be too high or too
low. The two-sided 95% confidence interval is designed to fail 2.5% of the time on the
high side and 2.5% of the time on the low side. In contrast, the 95% lower confidence
bound never fails on the high side. It is therefore designed to fail 5% of the time on the
low side, so its lower limit is greater than that of the two-sided interval.

Confidence Intervals Must Be Based on Random Samples
The methods described in this section require that the data be a random sample from a
population. When used for other samples, the results may not be meaningful. Following
are two examples in which the assumption of random sampling is violated.

Example
5.10 A chemical engineer wishes to estimate the mean yield of a new process. The process

is run 100 times over a period of several days. Figure 5.7 (page 334) presents the
100 yields plotted against time. Would it be appropriate to compute a confidence
interval for the mean yield by calculating X and s for the yields, and then using
expression (5.1)?
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FIGURE 5.7 Yields from 100 runs of a chemical process, plotted against time. There
is a clear pattern, indicating that the data do not constitute a random sample.

Solution
No. Expression (5.1) is valid only when the data are a random sample from a popu-
lation. Figure 5.7 shows a cyclic pattern. This might indicate that the yield on each
run is influenced by the yield on the previous run, which would violate the assump-
tion of independence. Another possibility is that the yield is influenced by ambient
conditions that fluctuate in a regular fashion. In either case, the data do not satisfy the
conditions of a random sample, and expression (5.1) should not be used.

Example
5.11 The engineer in Example 5.10 is studying the yield of another process. Figure 5.8

presents yields from 100 runs of this process, plotted against time. Should expres-
sion (5.1) be used to compute a confidence interval for the mean yield of this process?

Y
ie

ld

Time

FIGURE 5.8 Yields from 100 runs of a chemical process, plotted against time. There
is an increasing trend with time, at least in the initial part of the plot, indicating that the
data do not constitute a random sample.
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Solution
No. As in Example 5.10, there is a pattern in time. In this case, the yields tend to
increase with time, at least in the initial part of the plot. This might indicate a “learning
effect”; as an operator becomes more experienced in running a process, the results
get better. A more thorough analysis of the data might indicate a point in time where
the increase appears to stop, in which case the succeeding portion of the data might
be used to form a confidence interval.

Exercises for Section 5.1

1. Find the value of zα/2 to use in expression (5.1) to
construct a confidence interval with level

a. 95%

b. 98%

c. 99%

d. 80%

2. Find the levels of the confidence intervals that have
the following values of zα/2:

a. zα/2 = 1.96

b. zα/2 = 2.17

c. zα/2 = 1.28

d. zα/2 = 3.28

3. As the confidence level goes up, the reliability
goes and the precision goes .
Options: up, down.

4. The article “Modeling Arterial Signal Optimiza-
tion with Enhanced Cell Transmission Formula-
tions” (Z. Li, Journal of Transportation Engineering
2011:445–454) presents a new method for timing
traffic signals in heavily traveled intersections. The
effectiveness of the new method was evaluated in a
simulation study. In 50 simulations, the mean im-
provement in traffic flow in a particular intersection
was 654.1 vehicles per hour, with a standard devia-
tion of 311.7 vehicles per hour.

a. Find a 95% confidence interval for the improve-
ment in traffic flow due to the new system.

b. Find a 98% confidence interval for the improve-
ment in traffic flow due to the new system.

c. A traffic engineer states that the mean improve-
ment is between 581.6 and 726.6 vehicles per
hour. With what level of confidence can this state-
ment be made?

d. Approximately what sample size is needed so that
a 95% confidence interval will specify the mean
to within ±50 vehicles per hour?

e. Approximately what sample size is needed so that
a 98% confidence interval will specify the mean
to within ±50 vehicles per hour?

5. In a sample of 100 steel wires the average break-
ing strength is 50 kN, with a standard deviation
of 2 kN.

a. Find a 95% confidence interval for the mean
breaking strength of this type of wire.

b. Find a 99% confidence interval for the mean
breaking strength of this type of wire.

c. An engineer claims that the mean breaking
strength is between 49.7 kN and 50.3 kN. With
what level of confidence can this statement be
made?

d. How many wires must be sampled so that a 95%
confidence interval specifies the mean breaking
strength to within ±0.3 kN?

e. How many wires must be sampled so that a 99%
confidence interval specifies the mean breaking
strength to within ±0.3 kN?

6. The article “Application of Surgical Navigation to
Total Hip Arthroplasty” (T. Ecker and S. Murphy,
Journal of Engineering in Medicine, 2007:699–712)
reports that in a sample of 123 hip surgeries of a cer-
tain type, the average surgery time was 136.9 minutes
with a standard deviation of 22.6 minutes.

a. Find a 95% confidence interval for the mean
surgery time for this procedure.

b. Find a 99.5% confidence interval for the mean
surgery time for this procedure.
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c. A surgeon claims that the mean surgery time is
between 133.9 and 139.9 minutes. With what
level of confidence can this statement be made?

d. Approximately how many surgeries must be sam-
pled so that a 95% confidence interval will specify
the mean to within ±3 minutes?

e. Approximately how many surgeries must be sam-
pled so that a 99% confidence interval will specify
the mean to within ±3 minutes?

7. The capacities (in ampere-hours) were measured for
a sample of 120 batteries. The average was 178 and
the standard deviation was 14.

a. Find a 95% confidence interval for the mean ca-
pacity of batteries produced by this method.

b. Find a 99% confidence interval for the mean ca-
pacity of batteries produced by this method.

c. An engineer claims that the mean capacity is
between 176 and 180 ampere-hours. With what
level of confidence can this statement be made?

d. Approximately how many batteries must be sam-
pled so that a 95% confidence interval will specify
the mean to within ±2 ampere-hours?

e. Approximately how many batteries must be sam-
pled so that a 99% confidence interval will specify
the mean to within ±2 ampere-hours?

8. Oven thermostats were tested by setting them to
350◦F and measuring the actual temperature of the
oven. In a sample of 67 thermostats, the average
temperature was 348.2◦F and the standard deviation
was 5.1◦F.

a. Find a 90% confidence interval for the mean oven
temperature.

b. Find a 95% confidence interval for the mean oven
temperature.

c. What is the confidence level of the interval
(347.5, 348.9)?

d. How many thermostats must be sampled so that
a 90% confidence interval specifies the mean to
within ±0.8◦F?

e. How many thermostats must be sampled so that
a 95% confidence interval specifies the mean to
within ±0.8◦F?

9. In a sample of 80 ten-penny nails, the average weight
was 1.56 g and the standard deviation was 0.1 g.

a. Find a 95% confidence interval for the mean
weight of this type of nail.

b. Find a 98% confidence interval for the mean
weight of this type of nail.

c. What is the confidence level of the interval
(1.54, 1.58)?

d. How many nails must be sampled so that a 95%
confidence interval specifies the mean to within
±0.01 g?

e. Approximately how many nails must be sampled
so that a 98% confidence interval will specify the
mean to within ±0.01 g?

10. In a sample of 60 electric motors, the average effi-
ciency (in percent) was 85 and the standard deviation
was 2.

a. Find a 95% confidence interval for the mean
efficiency.

b. Find a 99.5% confidence interval for the mean
efficiency.

c. What is the confidence level of the interval
(84.63, 85.37)?

d. How many thermostats must be sampled so that
a 95% confidence interval specifies the mean to
within ±0.35?

e. How many thermostats must be sampled so that a
99.5% confidence interval specifies the mean to
within ±0.35?

11. The sugar content in a one-cup serving of a certain
breakfast cereal was measured for a sample of 140
servings. The average was 11.9 g and the standard
deviation was 1.1 g.

a. Find a 95% confidence interval for the mean sugar
content.

b. Find a 99% confidence interval for the mean sugar
content.

c. What is the confidence level of the interval
(11.81, 11.99)?

d. How large a sample is needed so that a 95% confi-
dence interval specifies the mean to within ±0.1?

e. How large a sample is needed so that a 99% confi-
dence interval specifies the mean to within ±0.1?

12. Refer to Exercise 5.

a. Find a 95% lower confidence bound for the mean
strength.
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b. Someone says that the mean strength is less than
50.4 kN. With what level of confidence can this
statement be made?

13. Refer to Exercise 6.

a. Find a 98% lower confidence bound for the mean
time.

b. Someone says that the mean time is greater than
134.3 minutes. With what level of confidence can
this statement be made?

14. Refer to Exercise 7.

a. Find a 95% lower confidence bound for the mean
capacity of this type of battery.

b. An engineer claims that the mean capacity is
greater than 175 ampere-hours. With what level
of confidence can this statement be made?

15. Refer to Exercise 8.

a. Find a 99% upper confidence bound for the mean
temperature.

b. The claim is made that the mean temperature is
less than 349.5◦F. With what level of confidence
can this statement be made?

16. Refer to Exercise 9.

a. Find a 90% upper confidence bound for the mean
weight.

b. Someone says that the mean weight is less than
1.585 g. With what level of confidence can this
statement be made?

17. Refer to Exercise 10.

a. Find a 98% lower confidence bound for the mean
efficiency.

b. The claim is made that the mean efficiency is
greater than 84.6%. With what level of confidence
can this statement be made?

18. Refer to Exercise 11.

a. Find a 95% upper confidence bound for the mean
sugar content.

b. The claim is made that the mean sugar content is
greater than 11.7 g. With what level of confidence
can this statement be made?

19. An investigator computes a 95% confidence interval
for a population mean on the basis of a sample of
size 70. If she wishes to compute a 95% confidence

interval that is half as wide, how large a sample does
she need?

20. A 95% confidence interval for a population mean is
computed from a sample of size 400. Another 95%
confidence interval will be computed from a sam-
ple of size 100 drawn from the same population.
Choose the best answer to fill in the blank: The inter-
val from the sample of size 400 will be approximately

as the interval from the sample of size 100.

i. One-eighth as wide

ii. One-fourth as wide

iii. One-half as wide

iv. The same width

v. Twice as wide

vi. Four times as wide

vii. Eight times as wide

21. Based on a large sample of capacitors of a certain
type, a 95% confidence interval for the mean capac-
itance, in μF, was computed to be (0.213, 0.241).
Find a 90% confidence interval for the mean capac-
itance of this type of capacitor.

22. Sixty-four independent measurements were made of
the speed of light. They averaged 299,795 km/s and
had a standard deviation of 8 km/s. True or false:

a. A 95% confidence interval for the speed of light
is 299,795 ± 1.96 km/s.

b. The probability is 95% that the speed of light is
in the interval 299,795 ± 1.96.

c. If a 65th measurement is made, the probabil-
ity is 95% that it would fall in the interval
299,795 ± 1.96.

23. A large box contains 10,000 ball bearings. A random
sample of 120 is chosen. The sample mean diameter
is 10 mm, and the standard deviation is 0.24 mm.
True or false:

a. A 95% confidence interval for the mean di-
ameter of the 120 bearings in the sample is
10 ± (1.96)(0.24)/

√
120.

b. A 95% confidence interval for the mean diam-
eter of the 10,000 bearings in the box is 10 ±
(1.96)(0.24)/

√
120.

c. A 95% confidence interval for the mean diam-
eter of the 10,000 bearings in the box is 10 ±
(1.96)(0.24)/

√
10,000.
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24. Each day a quality engineer selects a random sam-
ple of 50 power supplies from the day’s production,
measures their output voltages, and computes a 90%
confidence interval for the mean output voltage of all
the power supplies manufactured that day. What is
the probability that more than 15 of the confidence
intervals constructed in the next 200 days will fail to
cover the true mean?

25. Based on a sample of repair records, an engineer cal-
culates a 95% confidence interval for the mean cost to
repair a fiber-optic component to be ($140, $160). A
supervisor summarizes this result in a report, saying,

“We are 95% confident that the mean cost of repairs
is less than $160.” Is the supervisor underestimating
the confidence, overestimating it, or getting it right?
Explain.

26. A meteorologist measures the temperature in down-
town Denver at noon on each day for one year. The
365 readings average 57◦F and have standard devia-
tion 20◦F. The meteorologist computes a 95% con-
fidence interval for the mean temperature at noon to
be 57◦ ± (1.96)(20)/

√
365. Is this correct? Why or

why not?

5.2 Confidence Intervals for Proportions

The methods of Section 5.1, in particular expression (5.1), can be used to find confidence
intervals for the mean of any population from which a large sample has been drawn. When
the population has a Bernoulli distribution, this expression takes on a special form. We
illustrate this with an example.

In Example 5.2 (in Section 5.1), a confidence interval was constructed for the mean
lifetime of a certain type of microdrill when drilling a low-carbon alloy steel. Now
assume that a specification has been set that a drill should have a minimum lifetime of
10 holes drilled before failure. A sample of 144 microdrills is tested, and 120, or 83.3%,
meet this specification. Let p represent the proportion of microdrills in the population
that will meet the specification. We wish to find a 95% confidence interval for p.

We begin by constructing an estimate for p. Let X represent the number of drills
in the sample that meet the specification. Then X ∼ Bin(n, p), where n = 144 is
the sample size. The estimate for p is p̂ = X/n. In this example, X = 120, so p̂ =
120/144 = 0.833. The uncertainty, or standard deviation of p̂, is σp̂ = √

p(1 − p)/n.
Since the sample size is large, it follows from the Central Limit Theorem (Equation 4.58
in Section 4.11) that

p̂ ∼ N

(
p,

p(1 − p)

n

)
The reasoning illustrated by Figures 5.1 and 5.2 (in Section 5.1) shows that for 95% of
all possible samples, the population proportion p satisfies the following inequality:

p̂ − 1.96

√
p(1 − p)

n
< p < p̂ + 1.96

√
p(1 − p)

n
(5.4)

At first glance, expression (5.4) looks like a 95% confidence interval for p. However,
the limits p̂ ± 1.96

√
p(1 − p)/n contain the unknown p, and so cannot be computed.

The traditional approach is to replace p with p̂, obtaining the confidence interval p̂ ±
1.96

√
p̂(1 − p̂)/n. It turns out that replacing the population proportion p with the

sample proportion p̂ tends to make the confidence interval too short in some cases, even
for some fairly large sample sizes. Recent research, involving simulation studies, has
shown that this effect can be largely compensated for by modifying both n and p slightly.
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Specifically, one should add 4 to the number of trials, and 2 to the number of successes.
So in place of n we use ñ = n +4, and in place of p̂ we use p̃ = (X +2)/ñ. A 95% con-
fidence interval for p is thus given by p̃ ± 1.96

√
p̃(1 − p̃)/ñ. In this example, ñ = 148

and p̃ = 122/148 = 0.8243, so the 95% confidence interval is 0.8243 ± 0.0613, or
(0.763, 0.886).

We justified this confidence interval on the basis of the Central Limit Theorem,
which requires n to be large. However, this method of computing confidence intervals is
appropriate for any sample size n. When used with small samples, it may occasionally
happen that the lower limit is less than 0 or that the upper limit is greater than 1. Since
0 < p < 1, a lower limit less than 0 should be replaced with 0, and an upper limit greater
than 1 should be replaced with 1.

Summary
Let X be the number of successes in n independent Bernoulli trials with success
probability p, so that X ∼ Bin(n, p).

Define ñ = n + 4, and p̃ = X + 2

ñ
. Then a level 100(1 − α)% confidence

interval for p is

p̃ ± zα/2

√
p̃(1 − p̃)

ñ
(5.5)

If the lower limit is less than 0, replace it with 0. If the upper limit is greater
than 1, replace it with 1.

The confidence interval given by expression (5.5) is sometimes called the Agresti–
Coull interval, after Alan Agresti and Brent Coull, who developed it. For more informa-
tion on this confidence interval, consult the article “Approximate Is Better Than ‘Exact’
for Interval Estimation of Binomial Proportions” (A. Agresti and B. Coull, The American
Statistician, 1998:119–126).

Example
5.12 Interpolation methods are used to estimate heights above sea level for locations where

direct measurements are unavailable. In the article “Transformation of Ellipsoid
Heights to Local Leveling Heights” (M. Yanalak and O. Baykal, Journal of Sur-
veying Engineering, 2001:90–103), a weighted-average method of interpolation for
estimating heights from GPS measurements is evaluated. The method made “large”
errors (errors whose magnitude was above a commonly accepted threshold) at 26 of
the 74 sample test locations. Find a 90% confidence interval for the proportion of
locations at which this method will make large errors.

Solution
The number of successes is X = 26, and the number of trials is n = 74. We therefore
compute ñ = 74 + 4 = 78, p̃ = (26 + 2)/78 = 0.3590, and

√
p̃(1 − p̃)/ñ =√

(0.3590)(0.6410)/78 = 0.0543. For a 90% confidence interval, the value of α/2
is 0.05, so zα/2 = 1.645. The 90% confidence interval is therefore 0.3590 ±
(1.645)(0.0543), or (0.270, 0.448).
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One-sided confidence intervals can be computed for proportions as well. They are
analogous to the one-sided intervals for a population mean (Equations 5.2 and 5.3 in
Section 5.1). The levels for one-sided confidence intervals are only roughly approximate
for small samples.

Summary
Let X be the number of successes in n independent Bernoulli trials with success
probability p, so that X ∼ Bin(n, p).

Define ñ = n + 4, and p̃ = X + 2

ñ
. Then a level 100(1 − α)% lower

confidence bound for p is

p̃ − zα

√
p̃(1 − p̃)

ñ
(5.6)

and level 100(1 − α)% upper confidence bound for p is

p̃ + zα

√
p̃(1 − p̃)

ñ
(5.7)

If the lower bound is less than 0, replace it with 0. If the upper bound is greater
than 1, replace it with 1.

Example 5.13 shows how to compute an approximate sample size necessary for a
confidence interval to have a specified width when a preliminary value of p̃ is known.

Example
5.13 In Example 5.12, what sample size is needed to obtain a 95% confidence interval with

width ±0.08?

Solution
A 95% confidence interval has width ±1.96

√
p̃(1 − p̃)/ñ, where ñ = n + 4. There-

fore we determine the sample size n by solving the equation 1.96
√

p̃(1 − p̃)/(n + 4) =
0.08. From the data in Example 5.12, p̃ = 0.3590. Substituting this value for p̃ and
solving, we obtain n ≈ 135.

Sometimes we may wish to compute a necessary sample size without having a
reliable estimate p̃ available. The quantity p̃(1 − p̃), which determines the width of the
confidence interval, is maximized for p̃ = 0.5. Since the width is greatest when p̃(1− p̃)

is greatest, we can compute a conservative sample size estimate by substituting p̃ = 0.5
and proceeding as in Example 5.13.

Example
5.14 In Example 5.12, how large a sample is needed to guarantee that the width of the 95%

confidence interval will be no greater than ±0.08, if no preliminary sample has been
taken?
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Solution
A 95% confidence interval has width ±1.96

√
p̃(1 − p̃)/(n + 4). The widest the con-

fidence interval could be, for a sample of size n, is ±1.96
√

(0.5)(1 − 0.5)/(n + 4), or
±0.98/

√
n + 4. Solving the equation 0.98/

√
n + 4 = 0.08 for n, we obtain n ≈ 147.

Note that this estimate is somewhat larger than the one obtained in Example 5.13.

The Traditional Method
The method we have described was developed quite recently (although it was created
by simplifying a much older method). Many people still use a more traditional method.
The traditional method uses the actual sample size n in place of ñ, and the actual sample
proportion p̂ in place of p̃. Although this method is still widely used, it fails to achieve
its stated coverage probability even for some fairly large values of n. This means that
100(1−α)% confidence intervals computed by the traditional method will cover the true
proportion less than 100(1 − α)% of the time. The traditional method cannot be used
for small samples at all; one rule of thumb regarding the sample size is that both np̂ (the
number of successes) and n(1 − p̂) (the number of failures) should be greater than 10.

Since the traditional method is still widely used, we summarize it in the following
box. For very large sample sizes, the results of the traditional method are almost identical
to those of the modern method. For small or moderately large sample sizes, the modern
approach is better.

Summary
The Traditional Method for Computing Confidence Intervals for a
Proportion (widely used but not recommended)

Let p̂ be the proportion of successes in a large number n of independent
Bernoulli trials with success probability p. Then the traditional level 100(1−α)%
confidence interval for p is

p̂ ± zα/2

√
p̂(1 − p̂)

n
(5.8)

The method cannot be used unless the sample contains at least 10 successes and
10 failures.

Exercises for Section 5.2

1. In a simple random sample of 70 automobiles regis-
tered in a certain state, 28 of them were found to have
emission levels that exceed a state standard.

a. What proportion of the automobiles in the sample
had emission levels that exceed the standard?

b. Find a 95% confidence interval for the proportion
of automobiles in the state whose emission levels
exceed the standard.

c. Find a 98% confidence interval for the proportion
of automobiles whose emission levels exceed the
standard.

d. How many automobiles must be sampled to specify
the proportion that exceed the standard to within
±0.10 with 95% confidence?

e. How many automobiles must be sampled to specify
the proportion that exceed the standard to within
±0.10 with 98% confidence?
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f. Someone claims that less than half of the automo-
biles in the state exceed the standard. With what
level of confidence can this statement be made?

2. During a recent drought, a water utility in a certain
town sampled 100 residential water bills and found
that 73 of the residences had reduced their water con-
sumption over that of the previous year.

a. Find a 95% confidence interval for the proportion
of residences that reduced their water consumption.

b. Find a 99% confidence interval for the proportion
of residences that reduced their water consumption.

c. Find the sample size needed for a 95% confidence
interval to specify the proportion to within ±0.05.

d. Find the sample size needed for a 99% confidence
interval to specify the proportion to within ±0.05.

e. Someone claims that more than 70% of residences
reduced their water consumption. With what level
of confidence can this statement be made?

f. If 95% confidence intervals are computed for 200
towns, what is the probability that more than 192 of
the confidence intervals cover the true proportions?

3. A soft-drink manufacturer purchases aluminum cans
from an outside vendor. A random sample of 70 cans
is selected from a large shipment, and each is tested
for strength by applying an increasing load to the side
of the can until it punctures. Of the 70 cans, 52 meet
the specification for puncture resistance.

a. Find a 95% confidence interval for the proportion
of cans in the shipment that meet the specification.

b. Find a 90% confidence interval for the proportion
of cans in the shipment that meet the specification.

c. Find the sample size needed for a 95% confidence
interval to specify the proportion to within ±0.05.

d. Find the sample size needed for a 90% confidence
interval to specify the proportion to within ±0.05.

e. If a 90% confidence interval is computed each day
for 300 days, what is the probability that more
than 280 of the confidence intervals cover the true
proportions?

4. The article “HIV-positive Smokers Considering Quit-
ting: Differences by Race/Ethnicity” (E. Lloyd-
Richardson, C. Stanton, et al., Am J Health Behav,
2008:3–15) surveyed 444 HIV-positive smokers. Of
these, 170 reported that they had used a nicotine patch.
Consider this to be a simple random sample.

a. Find a 95% confidence interval for the proportion
of HIV-positive smokers who have used a nicotine
patch.

b. Find a 99% confidence interval for the proportion
of HIV-positive smokers who have used a nicotine
patch.

c. Someone claims that the proportion is less than
0.40. With what level of confidence can this state-
ment be made?

d. Find the sample size needed for a 95% confi-
dence interval to specify the proportion to within
±0.03.

e. Find the sample size needed for a 99% confi-
dence interval to specify the proportion to within
±0.03.

5. The article “The Functional Outcomes of Total Knee
Arthroplasty” (R. Kane, K. Saleh, et al., Journal of
Bone and Joint Surgery, 2005:1719–1724) reports that
out of 10,501 surgeries, 859 resulted in complications
within six months of surgery.

a. Find a 95% confidence interval for the proportion
of surgeries that result in complications within six
months.

b. Find a 99% confidence interval for the proportion
of surgeries that result in complications within six
months.

c. A surgeon claims that the rate of complications is
less than 8.5%. With what level of confidence can
this claim be made?

6. Refer to Exercise 1. Find a 95% lower confidence
bound for the proportion of automobiles whose emis-
sions exceed the standard.

7. Refer to Exercise 2. Find a 98% upper confidence
bound for the proportion of residences that reduced
their water consumption.

8. Refer to Exercise 4. Find a 99% lower confidence
bound for the proportion of HIV-positive smokers who
have used a nicotine patch.

9. A random sample of 400 electronic components man-
ufactured by a certain process are tested, and 30 are
found to be defective.

a. Let p represent the proportion of components man-
ufactured by this process that are defective. Find a
95% confidence interval for p.
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b. How many components must be sampled so that
the 95% confidence interval will specify the pro-
portion defective to within ±0.02?

c. (Hard) The company ships the components in lots
of 200. Lots containing more than 20 defective
components may be returned. Find a 95% confi-
dence interval for the proportion of lots that will
be returned.

10. Refer to Exercise 9. A device will be manufactured
in which two of the components in Exercise 9 will be
connected in series. The components function inde-
pendently, and the device will function only if both
components function. Let q be the probability that a
device functions. Find a 95% confidence interval for
q. (Hint: Express q in terms of p, and then use the
result of Exercise 9a.)

11. When the light turns yellow, should you stop or go
through it? The article “Evaluation of Driver Be-
havior in Type II Dilemma Zones at High-Speed Sig-
nalized Intersections” (D. Hurwitz, M. Knodler, and
B. Nyquist, Journal of Transportation Engineering
2011:277–286) defines the “indecision zone” as the
period when a vehicle is between 2.5 and 5.5 seconds
away from an intersection. It presents observations of
710 vehicles passing through various intersections in
Vermont for which the light turned yellow in the in-
decision zone. Of the 710 vehicles, 89 ran a red light.

a. Find a 90% confidence interval for the proportion
of vehicles that will run the red light when encoun-
tering a yellow light in the indecision zone.

b. Find a 95% confidence interval for the proportion
of vehicles that will run the red light when encoun-
tering a yellow light in the indecision zone.

c. Find a 99% confidence interval for the proportion
of vehicles that will run the red light when encoun-
tering a yellow light in the indecision zone.

12. In a random sample of 150 customers of a high-speed
internet provider, 63 said that their service had been
interrupted one or more times in the past month.

a. Find a 95% confidence interval for the proportion
of customers whose service was interrupted one or
more times in the past month.

b. Find a 99% confidence interval for the proportion
of customers whose service was interrupted one or
more times in the past month.

c. Find the sample size needed for a 95% confidence
interval to specify the proportion to within ±0.05.

d. Find the sample size needed for a 99% confidence
interval to specify the proportion to within ±0.05.

13. A sociologist is interested in surveying workers in
computer-related jobs to estimate the proportion of
such workers who have changed jobs within the past
year.

a. In the absence of preliminary data, how large a
sample must be taken to ensure that a 95% confi-
dence interval will specify the proportion to within
±0.05?

b. In a sample of 100 workers, 20 of them had
changed jobs within the past year. Find a 95% con-
fidence interval for the proportion of workers who
have changed jobs within the past year.

c. Based on the data in part (b), estimate the sample
size needed so that the 95% confidence interval
will specify the proportion to within ±0.05.

14. Stainless steels can be susceptible to stress corrosion
cracking under certain conditions. A materials engi-
neer is interested in determining the proportion of steel
alloy failures that are due to stress corrosion cracking.

a. In the absence of preliminary data, how large a
sample must be taken so as to be sure that a 98%
confidence interval will specify the proportion to
within ±0.05?

b. In a sample of 200 failures, 30 of them were caused
by stress corrosion cracking. Find a 98% confi-
dence interval for the proportion of failures caused
by stress corrosion cracking.

c. Based on the data in part (b), estimate the sample
size needed so that the 98% confidence interval
will specify the proportion to within ±0.05.

15. The article “A Music Key Detection Method Based
on Pitch Class Distribution Theory” (J. Sun, H. Li,
and L. Ma, International Journal of Knowledge-based
and Intelligent Engineering Systems, 2011:165–175)
describes a method of analyzing digital music files to
determine the key in which the music is written. In a
sample of 335 classical music selections, the key was
identified correctly in 293 of them.

a. Find a 90% confidence interval for the proportion
of pieces for which the key will be correctly iden-
tified.
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b. How many music pieces should be sampled to
specify the proportion to within ±0.025 with 90%
confidence?

c. Another method of key detection is to be tested.
At this point, there is no estimate of the proportion
of the time this method will be identified correctly.
Find a conservative estimate of the sample size

needed so that the proportion will be specified to
within ±0.03 with 90% confidence.

16. A stock market analyst notices that in a certain year,
the price of IBM stock increased on 131 out of 252
trading days. Can these data be used to find a 95%
confidence interval for the proportion of days that IBM
stock increases? Explain.

5.3 Small-Sample Confidence Intervals
for a Population Mean

The methods described in Section 5.1 for computing confidence intervals for a population
mean require that the sample size be large. When the sample size is small, there are no
good general methods for finding confidence intervals. However, when the population
is approximately normal, a probability distribution called the Student’s t distribution
can be used to compute confidence intervals for a population mean. In this section, we
describe this distribution and show how to use it.

The Student's t Distribution
If X is the mean of a large sample of size n from a population with mean μ and variance
σ 2, then the Central Limit Theorem specifies that X ∼ N (μ, σ 2/n). The quantity
(X −μ)/(σ/

√
n) then has a normal distribution with mean 0 and variance 1. In addition,

the sample standard deviation s will almost certainly be close to the population standard
deviation σ . For this reason the quantity (X −μ)/(s/

√
n) is approximately normal with

mean 0 and variance 1, so we can look up probabilities pertaining to this quantity in
the standard normal table (z table). This enables us to compute confidence intervals of
various levels for the population mean μ.

What can we do if X is the mean of a small sample? If the sample size is small, s
may not be close to σ , and X may not be approximately normal. If we know nothing
about the population from which the small sample was drawn, there are no easy methods
for computing confidence intervals. However, if the population is approximately normal,
X will be approximately normal even when the sample size is small. It turns out that we
can still use the quantity (X − μ)/(s/

√
n), but since s is not necessarily close to σ , this

quantity will not have a normal distribution. Instead, it has the Student’s t distribution
with n −1 degrees of freedom, which we denote tn−1. The number of degrees of freedom
for the t distribution is one less than the sample size.

The Student’s t distribution was discovered in 1908 by William Sealy Gossett, a
statistician who worked for the Guinness Brewing Company in Dublin, Ireland. The
management at Guinness considered the discovery to be proprietary information, and
forbade Gossett to publish it. He published it anyway, using the pseudonym “Student.”
Gossett had done this before; see Section 4.3.
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Summary
Let X1, . . . , Xn be a small (e.g., n < 30) sample from a normal population with
mean μ. Then the quantity

X − μ

s/
√

n

has a Student’s t distribution with n − 1 degrees of freedom, denoted tn−1.
When n is large, the distribution of the quantity (X − μ)/(s/

√
n) is very

close to normal, so the normal curve can be used, rather than the Student’s t .

The probability density function of the Student’s t distribution is different for differ-
ent degrees of freedom. Figure 5.9 presents plots of the probability density function for
several choices of degrees of freedom. The curves all have a shape similar to that of the
normal, or z, curve with mean 0 and standard deviation 1. The t curves are more spread
out, however. For example, the t curve with one degree of freedom corresponds to a sam-
ple size of 2. When drawing samples of size 2, it will frequently happen that the sample
standard deviation s is much smaller than σ , which makes the value of (X −μ)/(s/

√
n)

quite large (either positive or negative). For this reason, the t curve with one degree
of freedom has a lot of area in the tails. For larger sample sizes, the value of s is less
likely to be far from σ , and the t curve is closer to the normal curve. With 10 degrees of
freedom (corresponding to a sample size of 11), the difference between the t curve and
the normal curve is not great. If a t curve with 30 degrees of freedom were plotted in
Figure 5.9, it would be indistinguishable from the normal curve.

t4 t1

t10 z

0

FIGURE 5.9 Plots of the probability density function of the Student’s t curve for
various degrees of freedom. The normal curve with mean 0 and variance 1 (z curve)
is plotted for comparison. The t curves are more spread out than the normal, but the
amount of extra spread decreases as the number of degrees of freedom increases.
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Table A.3 (in Appendix A), called a t table, provides probabilities associated with
the Student’s t distribution. We present some examples to show how to use the table.

Example
5.15 A random sample of size 10 is to be drawn from a normal distribution with mean

4. The Student’s t statistic t = (X − 4)/(s/
√

10) is to be computed. What is the
probability that t > 1.833?

Solution
This t statistic has 10 − 1 = 9 degrees of freedom. From the t table, P(t > 1.833) =
0.05. See Figure 5.10.

0 1.833

0.05 

FIGURE 5.10 Solution to Example 5.15.

Example
5.16 Refer to Example 5.15. Find P(t > 1.5).

Solution
Looking across the row corresponding to 9 degrees of freedom, we see that the t table
does not list the value 1.5. We find that P(t > 1.383) = 0.10 and P(t > 1.833) =
0.05. We conclude that 0.05 < P(t > 1.5) < 0.10. See Figure 5.11. If a more precise
result were required, linear interpolation could be used as follows:

P(t > 1.5) ≈ 0.10 − 1.5 − 1.383

1.833 − 1.383
(0.10 − 0.05) = 0.0870

A computer package gives the answer correct to three significant digits as 0.0839.

0 1.38

1.5

1.83

0.10

0.05

FIGURE 5.11 Solution to Example 5.16.

Example
5.17 Find the value for the t12 distribution whose upper-tail probability is 0.025.
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Solution
Look down the column headed “0.025” to the row corresponding to 12 degrees of
freedom. The value for t12 is 2.179.

Example
5.18 Find the value for the t14 distribution whose lower-tail probability is 0.01.

Solution
Look down the column headed “0.01” to the row corresponding to 14 degrees of
freedom. The value for t14 is 2.624. This value cuts off an area, or probability, of 1%
in the upper tail. The value whose lower-tail probability is 1% is −2.624.

Don't Use the Student's t Statistic If the Sample Contains Outliers
For the Student’s t statistic to be valid, the sample must come from a population that is ap-
proximately normal. Such samples rarely contain outliers. Therefore, methods involving
the Student’s t statistic should not be used for samples that contain outliers.

Confidence Intervals Using the Student's t Distribution
When the sample size is small, and the population is approximately normal, we can use
the Student’s t distribution to compute confidence intervals. We illustrate this with an
example.

A metallurgist is studying a new welding process. He manufactures five welded joints
and measures the yield strength of each. The five values (in ksi) are 56.3, 65.4, 58.7,
70.1, and 63.9. Assume that these values are a random sample from an approximately
normal population. The task is to find a confidence interval for the mean strength of
welds made by this process.

When the sample size is large, we don’t need to worry much about the nature of the
population, because the Central Limit Theorem guarantees that the quantity X will be
approximately normally distributed. When the sample is small, however, the distribution
of the population must be approximately normal.

The confidence interval in this situation is constructed much like the ones in Sec-
tion 5.1, except that the z-score is replaced with a value from the Student’s t distribution.
The quantity

X − μ

s/
√

n

has a Student’s t distribution with n − 1 degrees of freedom. Figure 5.12 (page 348)
shows the t4 distribution. From the Student’s t table, we find that 95% of the area under
the curve is contained between the values t = −2.776 and t = 2.776. It follows that for
95% of all the samples that might have been chosen,

−2.776 <
X − μ

s/
√

n
< 2.776
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0�2.776 2.776

2.5% 2.5%95% 

FIGURE 5.12 The Student’s t distribution with four degrees of freedom. Ninety-five
percent of the area falls between t = −2.776 and t = 2.776.

Put another way, for 95% of all the samples that might have been chosen, it is the case
that

−2.776
s√
n

< X − μ < 2.776
s√
n

Multiplying by −1 and adding X across the inequality, we obtain a 95% confidence
interval for μ:

X − 2.776
s√
n

< μ < X + 2.776
s√
n

In this example, the sample mean is X = 62.88, and the sample standard deviation
s = 5.4838. The sample size is n = 5. Substituting values for X , s, and n, we find that a
95% confidence interval for μ is 62.88 − 6.81 < μ < 62.88 + 6.81, or (56.07, 69.69).

In general, to produce a level 100(1 − α)% confidence interval, let tn−1,α/2 be the
1−α/2 quantile of the Student’s t distribution with n −1 degrees of freedom, that is, the
value which cuts off an area of α/2 in the right-hand tail. For example, earlier we found
that t4,.025 = 2.776. Then a level 100(1 − α)% confidence interval for the population
mean μ is X − tn−1,α/2(s/

√
n) < μ < X + tn−1,α/2(s/

√
n), or X ± tn−1,α/2(s/

√
n).

Summary
Let X1, . . . , Xn be a small random sample from a normal population with mean
μ. Then a level 100(1 − α)% confidence interval for μ is

X ± tn−1,α/2
s√
n

(5.9)

How Do I Determine Whether the Student's t Distribution
Is Appropriate?
The Student’s t distribution is appropriate whenever the sample comes from a popula-
tion that is approximately normal. Sometimes one knows from past experience whether
a process produces data that are approximately normally distributed. In many cases,
however, one must decide whether a population is approximately normal by examining
the sample. Unfortunately, when the sample size is small, departures from normality may
be hard to detect. A reasonable way to proceed is to construct a boxplot or dotplot of
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the sample. If these plots do not reveal a strong asymmetry or any outliers, then in most
cases the Student’s t distribution will be reliable. In principle, one can also determine
whether a population is approximately normal by constructing a probability plot. With
small samples, however, boxplots and dotplots are easier to draw, especially by hand.

Example
5.19 The article “Direct Strut-and-Tie Model for Prestressed Deep Beams” (K. Tan, K.

Tong, and C. Tang, Journal of Structural Engineering, 2001:1076–1084) presents
measurements of the nominal shear strength (in kN) for a sample of 15 prestressed
concrete beams. The results are

580 400 428 825 850 875 920 550
575 750 636 360 590 735 950

Is it appropriate to use the Student’s t statistic to construct a 99% confidence interval
for the mean shear strength? If so, construct the confidence interval. If not, explain
why not.

Solution
To determine whether the Student’s t statistic is appropriate, we will make a boxplot
and a dotplot of the sample. These are shown in the following figure.
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There is no evidence of a major departure from normality; in particular the plots
are not strongly asymmetric, and there are no outliers. The Student’s t method is appro-
priate. We therefore compute X = 668.27 and s = 192.089. We use expression (5.9)
with n = 15 and α/2 = 0.005. From the t table with 14 degrees of freedom, we find
t14,.005 = 2.977. The 99% confidence interval is 668.27 ± (2.977)(192.089)/

√
15, or

(520.62, 815.92).
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The following computer output (from MINITAB) presents the confidence interval
calculated in Example 5.19.

One-Sample T: Strength

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 99% CI
Strength 15 668.2667 192.0891 49.59718 (520.6159, 815.9175)

The output is self-explanatory. The quantity labeled “SE Mean” is the estimated standard
deviation of the sample mean, s/

√
n.

Example
5.20 In the article referred to in Example 5.19, cylindrical compressive strength (in MPa)

was measured for 11 beams. The results were

38.43 38.43 38.39 38.83 38.45 38.35 38.43 38.31 38.32 38.48 38.50

Is it appropriate to use the Student’s t statistic to construct a 95% confidence interval
for the mean cylindrical compressive strength? If so, construct the confidence interval.
If not, explain why not.

Solution
As in Example 5.19, we will make a boxplot and a dotplot of the sample. These are
shown in the following figure.
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There is an outlier in this sample. The Student’s t statistic should not be used.
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Example
5.21 An engineer reads a report that states that a sample of 11 concrete beams had an average

compressive strength of 38.45 MPa with standard deviation 0.14 MPa. Should the t
curve be used to find a confidence interval for the mean compressive strength?

Solution
No. The problem is that there is no way of knowing whether the measurements came
from a normal population. For example, if the measurements contained an outlier (as
in Example 5.20), the confidence interval would be invalid.

The Student’s t distribution can be used to compute one-sided confidence intervals.
The formulas are analogous to those used with large samples.

Let X1, . . . , Xn be a small random sample from a normal population with mean
μ. Then a level 100(1 − α)% upper confidence bound for μ is

X + tn−1,α

s√
n

(5.10)

and a level 100(1 − α)% lower confidence bound for μ is

X − tn−1,α

s√
n

(5.11)

Use z, Not t, If σ Is Known
Occasionally a small sample may be taken from a normal population whose standard
deviation σ is known. In these cases, we do not use the Student’s t curve, because we
are not approximating σ with s. Instead, we use the z table. Example 5.22 illustrates the
method.

Example
5.22 Refer to Example 5.19. Assume that on the basis of a very large number of previous

measurements of other beams, the population of shear strengths is known to be ap-
proximately normal, with standard deviation σ = 180.0 kN. Find a 99% confidence
interval for the mean shear strength.

Solution
We compute X = 668.27. We do not need to compute s, because we know the
population standard deviation σ . Since we want a 99% confidence interval, α/2 =
0.005. Because we know σ , we use zα/2 = z.005, rather than a Student’s t value,
to compute the confidence interval. From the z table, we obtain z.005 = 2.58. The
confidence interval is 668.27 ± (2.58)(180.0)/

√
15, or (548.36, 788.18).

It is important to remember that when the sample size is small, the population must
be approximately normal, whether or not the standard deviation is known.
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Summary
Let X1, . . . , Xn be a random sample (of any size) from a normal population
with mean μ. If the standard deviation σ is known, then a level 100(1 − α)%
confidence interval for μ is

X ± zα/2
σ√
n

(5.12)

Occasionally one has a single value that is sampled from a normal population with
known standard deviation. In these cases a confidence interval for μ can be derived as a
special case of expression (5.12) by setting n = 1.

Summary
Let X be a single value sampled from a normal population with mean μ. If the
standard deviation σ is known, then a level 100(1 − α)% confidence interval for
μ is

X ± zα/2σ (5.13)

Exercises for Section 5.3

1. Find the value of tn−1,α/2 needed to construct a two-
sided confidence interval of the given level with the
given sample size:

a. Level 90%, sample size 12.

b. Level 95%, sample size 7.

c. Level 99%, sample size 2.

d. Level 95%, sample size 29.

2. Find the value of tn−1,α needed to construct an upper
or lower confidence bound in each of the situations in
Exercise 1.

3. Find the level of a two-sided confidence interval that
is based on the given value of tn−1,α/2 and the given
sample size.

a. t = 2.776, sample size 5.

b. t = 2.718, sample size 12.

c. t = 5.841, sample size 4.

d. t = 1.325, sample size 21.

e. t = 1.746, sample size 17.

4. True or false: The Student’s t distribution may be used
to construct a confidence interval for the mean of any
population, so long as the sample size is small.

5. The article “Wind-Uplift Capacity of Residential
Wood Roof-Sheathing Panels Retrofitted with In-
sulating Foam Adhesive” (P. Datin, D. Prevatt,
and W. Pang, Journal of Architectural Engineer-
ing, 2011:144–154) presents a study of the failure
pressures of roof panels. Following are the failure
pressures, in kPa, for five panels constructed with
6d smooth shank nails. These data are consistent
with means and standard deviations presented in
the article.

3.32 2.53 3.45 2.38 3.01

Find a 95% confidence interval for the mean failure
pressure for this type of roof panel.

6. The following are summary statistics for a data set.
Would it be appropriate to use the Student’s t distri-
bution to construct a confidence interval from these
data? Explain.

N Mean Median StDev
10 8.905 6.105 9.690

Minimum Maximum Q1 Q3
0.512 39.920 1.967 8.103
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7. The article “An Automatic Visual System for Mar-
ble Tile Classification” (L. Carrino, W. Polini, and
S. Turchetta, Journal of Engineering Manufacture,
2002:1095–1108) describes a measure for the shade
of marble tile in which the amount of light reflected
by the tile is measured on a scale of 0–255. A per-
fectly black tile would reflect no light and measure
0, and a perfectly white tile would measure 255. A
sample of nine Mezza Perla tiles were measured,
with the following results:

204.999 206.149 202.102 207.048 203.496

206.343 203.496 206.676 205.831

Is it appropriate to use the Student’s t statistic
to construct a 95% confidence interval for the mean
shade of Mezza Perla tile? If so, construct the confi-
dence interval. If not, explain why not.

8. A chemist made eight independent measurements of
the melting point of tungsten. She obtained a sam-
ple mean of 3410.14 degrees Celsius and a sample
standard deviation of 1.018 degrees.

a. Use the Student’s t distribution to find a 95%
confidence interval for the melting point of
tungsten.

b. Use the Student’s t distribution to find a 98%
confidence interval for the melting point of
tungsten.

c. If the eight measurements had been 3409.76,
3409.80, 3412.66, 3409.79, 3409.76, 3409.77,
3409.80, 3409.78, would the confidence
intervals above be valid? Explain.

9. Six measurements are taken of the thickness of a
piece of 18-gauge sheet metal. The measurements
(in mm) are: 1.316, 1.308, 1.321, 1.303, 1.311, and
1.310.

a. Make a dotplot of the six values.

b. Should the t curve be used to find a 99%
confidence interval for the thickness? If so,
find the confidence interval. If not, explain why
not.

c. Six independent measurements are taken of the
thickness of another piece of sheet metal. The
measurements this time are: 1.317, 1.318, 1.301,
1.307, 1.374, 1.323. Make a dotplot of these
values.

d. Should the t curve be used to find a 95% con-
fidence interval for the thickness of this metal?
If so, find the confidence interval. If not, explain
why not.

10. Fission tracks are trails found in uranium-bearing
minerals, left by fragments released during fission
events. The article “Yo-yo Tectonics of the Niğde
Massif During Wrenching in Central Anatolia” (D.
Whitney, P. Umhoefer, et al., Turkish Journal of
Earth Sciences, 2008:209–217) reports that fifteen
tracks on one rock specimen had an average track
length of 13 μm with a standard deviation of 2 μm.
Assuming this to be a random sample from an ap-
proximately normal population, find a 99% confi-
dence interval for the mean track length for this rock
specimen.

11. The article “Effect of Granular Subbase Thick-
ness on Airfield Pavement Structural Response” (K.
Gopalakrishnan and M. Thompson, Journal of Mate-
rials in Civil Engineering, 2008:331–342) presents
a study of the effect of the subbase thickness on
the amount of surface deflection caused by aircraft
landing on an airport runway. In six applications of a
160 kN load on a runway with a subbase thickness of
864 mm, the average surface deflection was 2.03 mm
with a standard deviation of 0.090 mm. Find a 90%
confidence interval for the mean deflection caused
by a 160 kN load.

12. The article “Influence of Penetration Rate on Pen-
etrometer Resistance” (J. Oliveira, M. Almeida,
et al., Journal of Geotechnical and Geoenvironmen-
tal Engineering, 2011:695–703) presents measures
of penetration resistance for a certain fine-grained
soil. Fifteen measurements, expressed as a mul-
tiple of a standard quantity, had a mean of 2.64
and a standard deviation of 1.02. Find a 95% confi-
dence interval for the mean penetration resistance for
this soil.

13. Ten samples of coal from a Northern Appalachian
source had an average mercury content of 0.242 ppm
with a standard deviation of 0.031 ppm. Find a 95%
confidence for the mean mercury content of coal
from this source.
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14. The following MINITAB output presents a confidence interval for a population mean.

One-Sample T: X

Variable N Mean StDev SE Mean 95% CI
X 10 6.59635 0.11213 0.03546 (6.51613, 6.67656)

a. How many degrees of freedom does the Student’s t distribution have?
b. Use the information in the output, along with the t table, to compute a 99% confidence interval.

15. The following MINITAB output presents a confidence interval for a population mean, but some of the numbers got
smudged and are now illegible. Fill in the missing numbers for (a), (b), and (c).

One-Sample T: X
Variable N Mean StDev SE Mean 99% CI
X 20 2.39374 (a) 0.52640 ( (b), (c) )

16. The concentration of carbon monoxide (CO) in a gas sample is measured by a spectrophotometer and found to be
85 ppm. Through long experience with this instrument, it is believed that its measurements are unbiased and normally
distributed, with an uncertainty (standard deviation) of 8 ppm. Find a 95% confidence interval for the concentration
of CO in this sample.

17. The article “Filtration Rates of the Zebra Mussel (Dreissena polymorpha) on Natural Seston from Saginaw Bay, Lake
Huron” (D. Fanslow, T. Nalepa, and G. Lang, Journal of Great Lakes Research 1995:489–500) reports measurements
of the rates (in mL/mg/h) at which mussels filter seston (particulate matter suspended in seawater).

a. In the year 1992, 5 measurements were made in the Outer Bay; these averaged 21.7 with a standard deviation of
9.4. Find a 95% confidence interval for the mean filtration rate in the Outer Bay.

b. In the year 1992, 7 measurements were made in the Inner Bay; these averaged 8.6 with a standard deviation of
4.5. Should the Student’s t distribution be used to find a 95% confidence interval for the mean filtration rate for
the Inner Bay? If so, find the confidence interval. If not, explain why not.

5.4 Confidence Intervals for the Difference
Between Two Means

We now investigate examples in which we wish to estimate the difference between the
means of two populations. The data will consist of two samples, one from each pop-
ulation. The basic idea is quite simple. We will compute the difference of the sample
means and the standard deviation of that difference. Then a simple modification of expres-
sion (5.1) (in Section 5.1) will provide the confidence interval. The method we describe
is based on the results concerning the sum and difference of two independent normal
random variables that were presented in Section 4.5. We review these results here:

Let X and Y be independent, with X ∼ N (μX , σ 2
X ) and Y ∼ N (μY , σ 2

Y ). Then

X + Y ∼ N (μX + μY , σ 2
X + σ 2

Y ) (5.14)

X − Y ∼ N (μX − μY , σ 2
X + σ 2

Y ) (5.15)
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We will now see how to construct a confidence interval for the difference between
two population means. As an example, assume that a new design of lightbulb has been
developed that is thought to last longer than an old design. A simple random sample
of 144 new lightbulbs has an average lifetime of 578 hours and a standard deviation
of 22 hours. A simple random sample of 64 old lightbulbs has an average lifetime of
551 hours and a standard deviation of 33 hours. The samples are independent, in that the
lifetimes for one sample do not influence the lifetimes for the other. We wish to find a
95% confidence interval for the difference between the mean lifetimes of lightbulbs of
the two designs.

We begin by translating the problem into statistical language. We have a sim-
ple random sample X1, . . . , X144 of lifetimes of new lightbulbs. The sample mean is
X = 578 and the sample standard deviation is sX = 22. We have another simple random
sample Y1, . . . , Y64 of lifetimes of old lightbulbs. This sample has mean Y = 551 and
standard deviation sY = 33. The population means and standard deviations are unknown.
Denote the mean of the population of lifetimes of new lightbulbs by μX , and the mean
of the population of old lightbulbs by μY . Denote the corresponding standard deviations
by σX and σY . We are interested in the difference μX − μY .

We can construct the confidence interval for μX −μY by determining the distribution
of X −Y . By the Central Limit Theorem, X comes from a normal distribution with mean
μX and standard deviation σX/

√
144, and Y comes from a normal distribution with

mean μY and standard deviation σY /
√

64. Since the samples are independent, it follows
from expression (5.15) that the difference X − Y comes from a normal distribution
with mean μX − μY and variance σ 2

X−Y
= σ 2

X/144 + σ 2
Y /64. Figure 5.13 illustrates

the distribution of X − Y and indicates that the middle 95% of the curve has width
±1.96σX−Y .

95%

�X � �Y � 1.96�X � Y �X � �Y � 1.96�X � Y�X � �Y ��� �

FIGURE 5.13 The observed difference X − Y = 27 is drawn from a normal distribu-
tion with mean μX − μY and standard deviation σX−Y =

√
σ 2

X/144 + σ 2
Y /64.

Estimating the population standard deviations σX and σY with the sample standard
deviations sX =22 and sY =33, respectively, we estimate σX−Y ≈

√
222/144+332/64=

4.514. The 95% confidence interval for μX − μY is therefore 578 − 551 ± 1.96(4.514),
or 27 ± 8.85.



Navidi-3810214 book November 12, 2013 15:37

356 CHAPTER 5 Confidence Intervals

Summary
Let X1, . . . , XnX be a large random sample of size nX from a population with
mean μX and standard deviation σX , and let Y1, . . . , YnY be a large random
sample of size nY from a population with mean μY and standard deviation σY . If
the two samples are independent, then a level 100(1 − α)% confidence interval
for μX − μY is

X − Y ± zα/2

√
σ 2

X

nX
+ σ 2

Y

nY
(5.16)

When the values of σX and σY are unknown, they can be replaced with the sample
standard deviations sX and sY .

Example
5.23 The chemical composition of soil varies with depth. The article “Sampling Soil

Water in Sandy Soils: Comparative Analysis of Some Common Methods” (M. Ahmed,
M. Sharma, et al., Communications in Soil Science and Plant Analysis, 2001:
1677–1686) describes chemical analyses of soil taken from a farm in Western
Australia. Fifty specimens were each taken at depths 50 and 250 cm. At a depth
of 50 cm, the average NO3 concentration (in mg/L) was 88.5 with a standard de-
viation of 49.4. At a depth of 250 cm, the average concentration was 110.6 with a
standard deviation of 51.5. Find a 95% confidence interval for the difference between
the NO3 concentrations at the two depths.

Solution
Let X1, . . . , X50 represent the concentrations of the 50 specimens taken at 50 cm,
and let Y1, . . . , Y50 represent the concentrations of the 50 specimens taken at 250 cm.
Then X = 88.5, Y = 110.6, sX = 49.4, and sY = 51.5. The sample sizes are
nX = nY = 50. Both samples are large, so we can use expression (5.16). Since we
want a 95% confidence interval, zα/2 = 1.96. The 95% confidence interval for the
difference μY − μX is 110.6 − 88.5 ± 1.96

√
49.42/50 + 51.52/50, or 22.1 ± 19.8.

Exercises for Section 5.4

1. To study the effect of curing temperature on shear
strength of a certain rubber compound, 80 specimens
were cured at 150◦C and 95 were cured at 130◦C.
The specimens cured at 150◦C had an average shear
strength of 620 psi, with a standard deviation of 20 psi.
Those cured at 130◦C had an average shear strength
of 750 psi, with a standard deviation of 30 psi. Find
a 95% confidence interval for the difference between
the mean shear strengths of specimens cured at the
two temperatures.

2. The article “Some Parameters of the Population
Biology of Spotted Flounder (Ciutharus linguatula
Linnaeus, 1758) in Edremit Bay (North Aegean Sea)”
(D. Türker, B. Bayhan, et al., Turkish Journal of
Veterinary and Animal Science, 2005:1013–1018)
reports that a sample of 87 one-year-old spotted
flounder had an average length of 126.31 mm with a
standard deviation of 18.10 mm, and a sample of 132
two-year-old spotted flounder had an average length
of 162.41 mm with a standard deviation of 28.49 mm.
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Find a 95% confidence interval for the mean length
increase between one- and two-year-old fish.

3. The article “Inconsistent Health Perceptions for US
Women and Men with Diabetes” (M. McCollum,
L. Hansen, et al., Journal of Women’s Health,
2007:1421–1428) presents results of a survey of adults
with diabetes. The average body mass index (BMI) in
a sample of 1559 men was 30.4, with a standard de-
viation of 0.6. The average BMI in a sample of 1924
women was 31.1 with a standard deviation of 0.2. Find
a 99% confidence interval for the difference in mean
BMI between men and women with diabetes.

4. The article “Hatching Distribution of Eggs Varying
in Weight and Breeder Age” (S. Viera, J. Almeida,
et al., Brazilian Journal of Poultry Science 2005:
73–78) presents the results of a study in which the
weights of 296 eggs from 27 week-old breeding hens
averaged 54.1 g with a standard deviation of 4.4 g,
and weights of 296 eggs from 59 week-old hens av-
eraged 72.7 g with a standard deviation of 4.7 g. Find
a 95% confidence interval for the difference between
the mean weights.

5. The article “Automatic Filtering of Outliers in RR
Intervals Before Analysis of Heart Rate Variability
in Holter Recordings: a Comparison with Carefully
Edited Data” (M. Karlsson, et al., Biomedical Engi-
neering Online, 2012) reports measurements of the
total power, on the log scale, of the heart rate variabil-
ity, in the frequency range 0.003 to 0.4 Hz, for a group
of 40 patients aged 25–49 years and for a group of 43
patients aged 50–75 years. The mean for the patients
aged 25–49 years was 3.64 with a standard deviation
of 0.23, and the mean for the patients aged 50–75
years was 3.40 with a standard deviation of 0.28. Find
a 95% confidence interval for the difference in mean
power between the two age groups.

6. A group of 78 people enrolled in a weight-loss pro-
gram that involved adhering to a special diet and to a
daily exercise program. After six months, their mean
weight loss was 25 pounds, with a sample standard
deviation of 9 pounds. A second group of 43 people
went on the diet but didn’t exercise. After six months,
their mean weight loss was 14 pounds, with a sample
standard deviation of 7 pounds. Find a 95% confidence
interval for the mean difference between the weight
losses.

7. In experiments to determine the effectiveness of drugs
such as anti-fungal ointments that are applied to the
skin, the concentration of the drug in a patient’s skin
must be measured. The article “Determining Bio-
equivalence of Topical Dermatological Drug Products
by Tape-Stripping” (W. Navidi, A. Hutchinson, et al.,
Journal of Pharmacokinetics and Pharmacodynam-
ics, 2008:213–220) describes an improved method of
measuring that is designed to ensure that all the drug
in the skin is recovered. Assume that in an experi-
ment using the old method, the mean amount of drug
recovered from a sample of 49 patients was 105 ng
with a standard deviation of 20 ng, and that in an ex-
periment using the new method the mean amount of
drug recovered in a sample of 35 patients was 117 ng
with a standard deviation of 15 ng. Find a 98% confi-
dence interval for the difference in the mean amounts
recovered between the two methods.

8. A stress analysis was conducted on random samples
of epoxy-bonded joints from two species of wood. A
random sample of 120 joints from species A had a
mean shear stress of 1250 psi and a standard devi-
ation of 350 psi, and a random sample of 90 joints
from species B had a mean shear stress of 1400 psi
and a standard deviation of 250 psi. Find a 98% confi-
dence interval for the difference in mean shear stress
between the two species.

9. In a study to compare two different corrosion in-
hibitors, specimens of stainless steel were immersed
for four hours in a solution containing sulfuric acid
and a corrosion inhibitor. Forty-seven specimens in
the presence of inhibitor A had a mean weight loss
of 242 mg and a standard deviation of 20 mg, and
42 specimens in the presence of inhibitor B had a
mean weight loss of 220 mg and a standard deviation
of 31 mg. Find a 95% confidence interval for the
difference in mean weight loss between the two
inhibitors.

10. An electrical engineer wishes to compare the mean
lifetimes of two types of transistors in an application
involving high-temperature performance. A sample of
60 transistors of type A were tested and were found
to have a mean lifetime of 1827 hours and a standard
deviation of 168 hours. A sample of 180 transistors
of type B were tested and were found to have a mean
lifetime of 1658 hours and a standard deviation of
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225 hours. Find a 95% confidence interval for the dif-
ference between the mean lifetimes of the two types
of transistors.

11. In a study of the effect of cooling rate on the hardness
of welded joints, 50 welds cooled at a rate of 10◦C/s
had an average Rockwell (B) hardness of 91.1 and
a standard deviation of 6.23, and 40 welds cooled at a
rate of 30◦C/s had an average hardness of 90.7 and a
standard deviation of 4.34.

a. Find a 95% confidence interval for the difference
in hardness between welds cooled at the different
rates.

b. Someone says that the cooling rate has no effect on
the hardness. Do these data contradict this claim?
Explain.

12. Refer to Exercise 11. Ten more welds will be made in
order to increase the precision of the confidence in-
terval. Which would increase the precision the most,
cooling all 10 welds at the rate of 10◦C/s, cooling all
10 welds at the rate of 30◦C/s, or cooling 5 welds at
10◦C/s and 5 at 30◦C/s? Explain.

13. The article “The Prevalence of Daytime Napping
and Its Relationship to Nighttime Sleep” (J. Pilcher,

K. Michalkowski, and R. Carrigan), Behavioral
Medicine, 2001:71–76) presents results of a study of
sleep habits in a large number of subjects. In a sample
of 87 young adults, the average time per day spent in
bed (either awake or asleep) was 7.70 hours, with a
standard deviation of 1.02 hours, and the average time
spent in bed asleep was 7.06 hours, with a standard
deviation of 1.11 hours. The mean time spent in bed
awake was estimated to be 7.70 − 7.06 = 0.64 hours.
Is it possible to compute a 95% confidence interval
for the mean time spent in bed awake? If so, con-
struct the confidence interval. If not possible, explain
why not.

14. The article “Occurrence and Distribution of Ammo-
nium in Iowa Groundwater” (K. Schilling, Water
Environment Research, 2002:177–186) describes
measurements of ammonium concentrations (in
mg/L) at a large number of wells in the state of Iowa.
These included 349 alluvial wells and 143 quaternary
wells. The concentrations at the alluvial wells aver-
aged 0.27 with a standard deviation of 0.40, and those
at the quaternary wells averaged 1.62 with a standard
deviation of 1.70. Find a 95% confidence interval for
the difference in mean concentrations between allu-
vial and quaternary wells.

5.5 Confidence Intervals for the Difference
Between Two Proportions

In a Bernoulli population, the mean is equal to the success probability p, which is the
proportion of successes in the population. When independent trials are performed from
each of two Bernoulli populations, we can use methods similar to those presented in
Section 5.4 to find a confidence interval for the difference between the two success
probabilities. We present an example to illustrate.

Eighteen of 60 light trucks produced on assembly line A had a defect in the steering
mechanism, which needed to be repaired before shipment. Only 16 of 90 trucks produced
on assembly line B had this defect. Assume that these trucks can be considered to
be two independent simple random samples from the trucks manufactured on the two
assembly lines. We wish to find a 95% confidence interval for the difference between
the proportions of trucks with this defect on the two assembly lines.

This is a situation in which we would have to be careful in practice to make sure
that it is reasonable to consider the data to be simple random samples. Choosing trucks
sequentially off the line might not be a good idea, for example, if there are systematic



Navidi-3810214 book November 12, 2013 15:37

5.5 Confidence Intervals for the Difference Between Two Proportions 359

fluctuations in quality over time. We will assume that the sampling has been done by
some well-thought-out and appropriate procedure.

The construction of the confidence interval here proceeds in a manner similar to
that in Section 5.4, with means replaced by proportions. Let pX represent the proportion
of trucks in the population from line A that had the defect, and let pY represent the
corresponding proportion from line B. The values of pX and pY are unknown. We wish
to find a 95% confidence interval for pX − pY .

Let X represent the number of trucks in the sample from line A that had defects,
and let Y represent the corresponding number from line B. Then X is a binomial ran-
dom variable with nX = 60 trials and success probability pX , and Y is a binomial
random variable with nY = 90 trials and success probability pY . The sample pro-
portions are p̂X and p̂Y . In this example the observed values are X = 18, Y = 16,
p̂X = 18/60, and p̂Y = 16/90. Since the sample sizes are large, it follows from the
Central Limit Theorem that p̂X and p̂Y are both approximately normally distributed
with means pX and pY and standard deviations σp̂X = √

pX (1 − pX )/nX and σp̂Y =√
pY (1 − pY )/nY . It follows that the difference p̂X − p̂Y has a normal distribution with

mean pX − pY and standard deviation
√

pX (1 − pX )/nX + pY (1 − pY )/nY . We con-
clude that for 95% of all possible samples, the difference pX − pY satisfies the following
inequality:

p̂X − p̂Y − 1.96

√
pX (1 − pX )

nX
+ pY (1 − pY )

nY

< pX − pY <

p̂X − p̂Y + 1.96

√
pX (1 − pX )

nX
+ pY (1 − pY )

nY
(5.17)

Expression (5.17) is not a confidence interval, because the quantity√
pX (1 − pX )/nX + pY (1 − pY )/nY depends on the unknown true values pX and pY .

The traditional approach is to replace pX and pY with p̂X and p̂Y , producing the

confidence interval p̂X − p̂Y ± zα/2

√
p̂X (1 − p̂X )/nX + p̂Y (1 − p̂Y )/nY . It turns out

that replacing the population proportions with the sample proportions tends to make the
confidence interval too short in some cases, even for some fairly large sample sizes.
Recent research, involving simulation studies, has shown that this effect can be largely
compensated for by slightly modifying nX , nY , pX , and pY . Simply add 1 to each of the
numbers of successes X and Y , and add 2 to each of the numbers of trials nX and nY .
Thus we define ñX = nX + 2, ñY = nY + 2, p̃X = (X + 1)/ñX , and p̃Y = (Y + 1)/ñY .
The 95% confidence interval is p̃X − p̃Y ± zα/2

√
p̃X (1 − p̃X )/ñX + p̃Y (1 − p̃Y )/ñY . In

this example, ñX = 62, ñY = 92, p̃X = 19/62 = 0.3065, and p̃Y = 17/92 = 0.1848.
We thus obtain 0.3065 − 0.1848 ± 0.1395, or (−0.0178, 0.2612).

To obtain a level 100(1 − α) confidence interval, replace 1.96 with zα/2. Although
we justified this confidence interval by using the Central Limit Theorem, which assumes
that nX and nY are large, this method has been found to give good results for almost all
sample sizes.
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Summary
Let X be the number of successes in nX independent Bernoulli trials with suc-
cess probability pX , and let Y be the number of successes in nY independent
Bernoulli trials with success probability pY , so that X ∼ Bin(nX , pX ) and
Y ∼ Bin(nY , pY ). Define ñX = nX + 2, ñY = nY + 2, p̃X = (X + 1)/ñX , and
p̃Y = (Y + 1)/ñY .

Then a level 100(1 −α)% confidence interval for the difference pX − pY is

p̃X − p̃Y ± zα/2

√
p̃X (1 − p̃X )

ñX
+ p̃Y (1 − p̃Y )

ñY
(5.18)

If the lower limit of the confidence interval is less than −1, replace it with −1.
If the upper limit of the confidence interval is greater than 1, replace it with 1.

The adjustment described here for the two-sample confidence interval is similar
to the one described in Section 5.2 for the one-sample confidence interval. In both
cases, a total of two successes and four trials are added. In the two-sample case, these
are divided between the samples, so that one success and two trials are added to each
sample. In the one-sample case, two successes and four trials are added to the one
sample. The confidence interval given by expression (5.18) can be called the Agresti–
Caffo interval, after Alan Agresti and Brian Caffo, who developed it. For more infor-
mation about this confidence interval, consult the article “Simple and Effective Con-
fidence Intervals for Proportions and Differences of Proportions Result from Adding
Two Successes and Two Failures” (A. Agresti and B. Caffo, The American Statistician,
2000:280–288).

Example
5.24 Methods for estimating strength and stiffness requirements should be conservative,

in that they should overestimate rather than underestimate. The success rate of such
a method can be measured by the probability of an overestimate. The article “Dis-
crete Bracing Analysis for Light-Frame Wood-Truss Compression Webs” (M. Waltz,
T. McLain, et al., Journal of Structural Engineering, 2000:1086–1093) presents the
results of an experiment that evaluated a standard method (Plaut’s method) for esti-
mating the brace force for a compression web brace. In a sample of 380 short test
columns (4 to 6 ft in length), the method overestimated the force for 304 of them, and
in a sample of 394 long test columns (8 to 10 ft in length), the method overestimated
the force for 360 of them. Find a 95% confidence interval for the difference between
the success rates for long columns and short columns.

Solution
The number of successes in the sample of short columns is X = 304, and the number
of successes in the sample of long columns is Y = 360. The numbers of trials are nX =
380 and nY = 394. We compute ñX = 382, ñY = 396, p̃X = (304 + 1)/382 = 0.7984,
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and p̃Y = (360 + 1)/396 = 0.9116. The value of zα/2 is 1.96. The 95% confidence
interval is 0.9116−0.7984±1.96

√
(0.7984)(0.2016)/382 + (0.9116)(0.0884)/396,

or 0.1132 ± 0.0490.

The Traditional Method
Many people use the traditional method for computing confidence intervals for the
difference between proportions. This method uses the sample proportions p̂X and p̂Y

and the actual sample sizes nX and nY . The traditional method gives results very sim-
ilar to those of the modern method previously described for large or moderately large
sample sizes. For small sample sizes, however, the traditional confidence interval fails
to achieve its coverage probability; in other words, level 100(1 − α)% confidence in-
tervals computed by the traditional method cover the true value less than 100(1−α)%
of the time.

Summary
The Traditional Method for Computing Confidence Intervals for the
Difference Between Proportions (widely used but not recommended)

Let p̂X be the proportion of successes in a large number nX of independent
Bernoulli trials with success probability pX , and let p̂Y be the proportion of
successes in a large number nY of independent Bernoulli trials with success
probability pY . Then the traditional level 100(1 − α)% confidence interval for
pX − pY is

p̂X − p̂Y ± zα/2

√
p̂X (1 − p̂X )

nX
+ p̂Y (1 − p̂Y )

nY
(5.19)

This method cannot be used unless both samples contain at least 10 successes
and 10 failures.

Exercises for Section 5.5

1. In a test of the effect of dampness on electric con-
nections, 100 electric connections were tested under
damp conditions and 150 were tested under dry con-
ditions. Twenty of the damp connections failed and
only 10 of the dry ones failed. Find a 90% confidence
interval for the difference between the proportions of
connections that fail when damp as opposed to dry.

2. The specification for the pull strength of a wire that
connects an integrated circuit to its frame is 10 g or
more. In a sample of 85 units made with gold wire,
68 met the specification, and in a sample of 120 units
made with aluminum wire, 105 met the specification.
Find a 95% confidence interval for the difference in

the proportions of units that meet the specification be-
tween units with gold wire and those with aluminum
wire.

3. Angioplasty is a medical procedure in which an ob-
structed blood vessel is widened. In some cases, a
wire mesh tube, called a stent, is placed in the vessel
to help it remain open. The article “Long-term Out-
comes of Patients Receiving Drug-eluting Stents” (A.
Philpott, D. Southern, et al., Canadian Medical Asso-
ciation Journal, 2009:167–174) presents the results
of a study comparing the effectiveness of a bare metal
stent with one that that has been coated with a drug
designed to prevent reblocking of the vessel. A total of
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5320 patients received bare metal stents, and of these,
841 needed treatment for reblocking within a year. A
total of 1120 received drug coated stents, and 134 of
them required treatment within a year.

a. Find a 98% confidence interval for the differences
between the proportions for drug coated stents and
bare metal stents.

b. Suppose that additional patients are to be treated
in order to increase the precision of the confidence
interval. Three sampling plans are being consid-
ered. In the first plan, 1000 additional patients will
be treated with bare metal stents. In the second
plan, 500 additional patients will be treated with
drug coated stents. In the third plan, 500 additional
patients will be treated with bare metal stents and
250 additional patients will be treated with drug
coated stents. Which plan is most likely to pro-
vide the greatest increase in the precision of the
confidence interval? Explain.

4. A group of 50 computer science students were taught
introductory computer programming class with an in-
novative teaching method that used a graphical inter-
face and drag-and-drop methods of creating computer
programs. At the end of the class, 43 of these stu-
dents said that they felt confident in their ability to
write computer programs. Another group of 40 stu-
dents were taught the same material using a standard
method. At the end of class, 25 of these students said
they felt confident. Assume that each class contained
a simple random sample of students. Find a 99% con-
fidence interval for the difference between the propor-
tions of students who felt confident.

5. Crash testing is a highly expensive procedure to evalu-
ate the ability of an automobile to withstand a serious
accident. A simple random sample of 12 small cars
were subjected to a head-on collision at 40 miles per
hour. Of them 8 were “totaled,” meaning that the cost
of repairs is greater than the value of the car. Another
sample of 15 large cars were subjected to the same
test, and 5 of them were totaled. Find a 95% confi-
dence interval for the difference in the proportions of
small cars and large cars that are totaled.

6. The article “Occurrence and Distribution of Ammo-
nium in Iowa Groundwater” (K. Schilling, Water En-
vironment Research, 2002:177–186) describes mea-
surements of ammonium concentrations (in mg/L) at

a large number of wells in the state of Iowa. These
included 349 alluvial wells and 143 quaternary wells.
Of the alluvial wells, 182 had concentrations above
0.1, and 112 of the quaternary wells had concentra-
tions above 0.1. Find a 95% confidence interval for the
difference between the proportions of the two types of
wells with concentrations above 0.1.

7. In a study of contamination at landfills contain-
ing construction and demolition waste, 42 leachate
specimens were tested for the presence of several
contaminants. Of the 42 specimens, 26 contained de-
tectable levels of lead, and 32 contained detectable
levels of chromium. Is it possible, using the methods
of this section, to find a 95% confidence interval for
the difference between the probability that a speci-
men will contain a detectable amount of lead and the
probability that it will contain a detectable amount of
chromium? If so, find the confidence interval. If not,
explain why not.

8. The article “Case Study Based Instruction of DOE and
SPC” (J. Brady and T. Allen, The American Statisti-
cian, 2002:312–315) describes an effort by an engi-
neering team to reduce the defect rate in the manu-
facture of a certain printed circuit board. The team
decided to reconfigure the transistor heat sink. A
total of 1500 boards were produced the week be-
fore the reconfiguration was implemented, and 345
of these were defective. A total of 1500 boards were
produced the week after reconfiguration, and 195 of
these were defective. Find a 95% confidence inter-
val for the decrease in the defective rate after the
reconfiguration.

9. A mobile computer network consists of a number of
computers (called nodes) that communicate with each
other while moving throughout a region. A node that
is out of transmission range of the other nodes, so
that it is unable to communicate, is said to be parti-
tioned. In studies carried out at the Colorado School
of Mines, S. Kurkowski found that in a network con-
taining 185 nodes in which destinations were cho-
sen at random from a uniform distribution, 19 nodes
were partitioned. J. Norman found that in a network
containing 164 nodes whose movements mimicked
those on a college campus, 30 nodes were partitioned.
Find a 99% confidence interval for the difference be-
tween the proportions of partitioned nodes in the two
networks.
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10. The article “Evaluation of Criteria for Setting Speed
Limits on Gravel Roads” (S. Dissanayake, Journal
of Transportation Engineering, 2011:57–63) counted
the numbers of vehicles of various types on several
roads in the state of Kansas. In Riley county, 13 out of
67 vehicles on Walsburg Road were heavy vehicles,
while 32 out of 91 on North 52nd Street were heavy
vehicles. Find a 90% confidence interval for the dif-
ference between the percentages of heavy vehicles on
the two roads.

11. In a certain year, there were 80 days with measur-
able snowfall in Denver, and 63 days with measur-
able snowfall in Chicago. A meteorologist computes
(80 + 1)/(365 + 2) = 0.22, (63 + 1)/(365 + 2) =
0.17, and proposes to compute a 95% confidence
interval for the difference between the proportions
of snowy days in the two cities as follows:

0.22 − 0.17 ± 1.96

√
(0.22)(0.78)

367
+ (0.17)(0.83)

367

Is this a valid confidence interval? Explain.

5.6 Small-Sample Confidence Intervals for the
Difference Between Two Means

The Student’s t distribution can be used in some cases where samples are small, and
thus, where the Central Limit Theorem does not apply. We present an example.

A sample of 6 welds of one type had an average ultimate testing strength (in ksi)
of 83.2 and a standard deviation of 5.2, and a sample of 10 welds of another type
had an average strength of 71.3 and a standard deviation of 3.1. Assume that both
sets of welds are random samples from normal populations. We wish to find a 95%
confidence interval for the difference between the mean strengths of the two types of
welds.

Both sample sizes are small, so the Central Limit Theorem does not apply. If both
populations are normal, the Student’s t distribution can be used to compute a confidence
interval for the difference between the two population means. The method is similar to
that presented in Section 5.4 for the case where the samples are large, except that the
z-score is replaced with a value from the Student’s t distribution.

If X1, . . . , XnX is a sample of size nX from a normal population with mean μX and
Y1, . . . , YnY is a sample of size nY from a normal population with mean μY , then the
quantity

(X − Y ) − (μX − μY )√
s2

X/nX + s2
Y /nY

has an approximate Student’s t distribution.
The number of degrees of freedom to use for this distribution is given by

ν =

(
s2

X

nX
+ s2

Y

nY

)2

(s2
X/nX )2

nX − 1
+ (s2

Y /nY )2

nY − 1

rounded down to the nearest integer. (5.20)
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In our example, let X1, . . . , X6 be the 6 welds of the first type, and let Y1, . . . , Y10

be the 10 welds of the second type. Substituting sX = 5.2, sY = 3.1, nX = 6, nY = 10
into Equation (5.20) yields

ν =

(
5.22

6
+ 3.12

10

)2

(5.22/6)2

5
+ (3.12/10)2

9

= 7.18 ≈ 7

If both populations are normal, then the quantity

(X − Y ) − (μX − μY )√
s2

X/6 + s2
Y /10

has an approximate Student’s t distribution with 7 degrees of freedom. Figure 5.14
presents this distribution. Ninety-five percent of the area under the curve is contained
between the values t = −2.365 and t = 2.365. It follows that for 95% of all the samples
that might have been chosen,

−2.365 <
(X − Y ) − (μX − μY )√

s2
X/6 + s2

Y /10
< 2.365

95%

�2.365 2.3650

FIGURE 5.14 The Student’s t distribution with seven degrees of freedom. Ninety-five
percent of the area lies between t = −2.365 and t = 2.365.

By the reasoning used in Section 5.3, a 95% confidence interval for the difference μX −μY

is X − Y ± 2.365
√

s2
X/6 + s2

Y /10. Substituting X = 83.2, Y = 71.3, sX = 5.2, and
sY = 3.1, we find that a 95% confidence interval for μX − μY is 11.9 ± 5.53, or
(6.37, 17.43).

In general, to produce a level 100(1 − α)% confidence interval, let tν,α/2 be the
1 − α/2 quantile of the Student’s t distribution with ν degrees of freedom, that is, the
value that cuts off an area of α/2 in the right-hand tail. For example, previously we found
that t7,.025 = 2.365. Then a level 100(1 − α)% confidence interval for the difference
between population means μX −μY , when the sample sizes are nX and nY , respectively,
is X − Y ± tν,α/2

√
s2

X/nX + s2
Y /nY .
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Summary
Let X1, . . . , XnX be a random sample of size nX from a normal population with
mean μX , and let Y1, . . . , YnY be a random sample of size nY from a normal
population with mean μY . Assume the two samples are independent.

If the populations do not necessarily have the same variance, a level
100(1 − α)% confidence interval for μX − μY is

X − Y ± tν,α/2

√
s2

X

nX
+ s2

Y

nY
(5.21)

The number of degrees of freedom, ν, is given by

ν =

(
s2

X

nX
+ s2

Y

nY

)2

(s2
X/nX )2

nX − 1
+ (s2

Y /nY )2

nY − 1

rounded down to the nearest integer.

Example
5.25 Resin-based composites are used in restorative dentistry. The article “Reduction of

Polymerization Shrinkage Stress and Marginal Leakage Using Soft-Start Polymer-
ization” (C. Ernst, N. Brand, et al., Journal of Esthetic and Restorative Dentistry,
2003:93–104) presents a comparison of the surface hardness of specimens cured for
40 seconds with constant power with that of specimens cured for 40 seconds with ex-
ponentially increasing power. Fifteen specimens were cured with each method. Those
cured with constant power had an average surface hardness (in N/mm2) of 400.9 with
a standard deviation of 10.6. Those cured with exponentially increasing power had an
average surface hardness of 367.2 with a standard deviation of 6.1. Find a 98% confi-
dence interval for the difference in mean hardness between specimens cured by the two
methods.

Solution
We have X = 400.9, sX = 10.6, nX = 15, Y = 367.2, sY = 6.1, and nY = 15. The num-
ber of degrees of freedom is given by Equation (5.20) to be

ν =

(
10.62

15
+ 6.12

15

)2

(10.62/15)2

15 − 1
+ (6.12/15)2

15 − 1

= 22.36 ≈ 22

From the t table (Table A.3 in Appendix A), we find that t22, .01 = 2.508. We use
expression (5.21) to find that the 98% confidence interval is

400.9 − 367.2 ± 2.508
√

10.62/15 + 6.12/15, or 33.7 ± 7.9.
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When the Populations Have Equal Variances
When the two population variances are known to be equal, there is an alternate method
for computing a confidence interval. This alternate method was widely used in the past,
and remains an option in many computer packages. We will describe the method here,
because it is still sometimes used. In practice, use of this method is rarely advisable,
because it is rare that the population variances are known to be equal. We begin with an
example.

Two standard weights, each labeled 100 g, are each weighed several times on the
same scale. The first weight is weighed 8 times, and the mean scale reading is 18.2 μg
above 100 g, with a standard deviation of 2.0 μg. The second weight is weighed 18 times,
and the mean reading is 16.4 g above 100 g, with a standard deviation of 1.8 μg. Assume
that each set of readings is a sample from an approximately normal population. Since
the same scale is used for all measurements, and since the true weights are nearly equal,
it is reasonable to assume that the population standard deviations of the readings are the
same for both weights. Assume the measurements are unbiased (it is actually enough to
assume that the bias is the same for both weights). We wish to find a 95% confidence
interval for the difference between the true weights.

Let X1, . . . , X8 represent the readings for the first weight, and let Y1, . . . , Y18 rep-
resent the readings for the second weight. Let μX and μY be the true weights, which
are the means of the populations from which these samples were drawn. By assumption,
both populations follow normal distributions with the same variance σ 2. Therefore X
has a normal distribution with mean μX and variance σ 2/8, and Y has a normal distri-
bution with mean μY and variance σ 2/18. The difference X − Y therefore has a normal
distribution with mean μX − μY and variance σ 2(1/8 + 1/18). Since σ 2 is unknown,
we must estimate it. We could estimate this quantity using either of the sample variances
s2

X = ∑8
i=1(Xi − X)2/(8−1) or s2

Y = ∑18
i=1(Yi −Y )2/(18−1). But the best estimate is

obtained by combining the information in both samples. The best estimate is the pooled
variance s2

p = (7s2
X + 17s2

Y )/(7 + 17). The pooled variance s2
p is a weighted average

of the two sample variances. The weights are equal to the sample sizes minus one. It is
logical to use a weighted average so that the sample variance based on the larger sample
counts more. Substituting the given values for sX and sY , the value of the pooled variance
is s2

p = [7(2.02) + 17(1.82)]/(7 + 17) = 3.4617, so sp = 1.8606.
The quantity [(X − Y ) − (μX − μY )]/

(
sp

√
1/8 + 1/18

)
has the Student’s t dis-

tribution with 8 + 18 − 2 = 24 degrees of freedom. From the t table, we find that
t24,.025 = 2.064. It follows that for 95% of all the samples that might have been
chosen,

−2.064 <
(X − Y ) − (μX − μY )

sp
√

1/8 + 1/18
< 2.064

By the reasoning used in Section 5.3, a 95% confidence interval for μX − μY is
X − Y ± 2.064sp

√
1/8 + 1/18. Substituting X = 18.2, Y = 16.4, and sp = 1.8606,

we find that a 95% confidence interval for μX − μY is 1.8 ± 1.6318, or
(0.1682, 3.4318).
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Summary
Let X1, . . . , XnX be a random sample of size nX from a normal population with
mean μX , and let Y1, . . . , YnY be a random sample of size nY from a normal
population with mean μY . Assume the two samples are independent.

If the populations are known to have nearly the same variance, a level
100(1 − α)% confidence interval for μX − μY is

X − Y ± tnX +nY −2,α/2 · sp

√
1

nX
+ 1

nY
(5.22)

The quantity sp is the pooled standard deviation, given by

sp =
√

(nX − 1)s2
X + (nY − 1)s2

Y

nX + nY − 2
(5.23)

Example
5.26 A machine is used to fill plastic bottles with bleach. A sample of 18 bottles had a

mean fill volume of 2.007 L and a standard deviation of 0.010 L. The machine was
then moved to another location. A sample of 10 bottles filled at the new location had
a mean fill volume of 2.001 L and a standard deviation of 0.012 L. It is believed that
moving the machine may have changed the mean fill volume, but is unlikely to have
changed the standard deviation. Assume that both samples come from approximately
normal populations. Find a 99% confidence interval for the difference between the
mean fill volumes at the two locations.

Solution
We have X = 2.007, sX = 0.010, nX = 18, Y = 2.001, sY = 0.012, and nY = 10.
Since we believe that the population standard deviations are equal, we estimate their
common value with the pooled standard deviation, using Equation (5.23). We obtain

sp =
√

(18 − 1)(0.0102) + (10 − 1)(0.0122)

18 + 10 − 2
= 0.0107

The number of degrees of freedom is 18 + 10 − 2 = 26. We use expression (5.22) to
find the 99% confidence interval. Consulting the t table with 26 degrees of freedom,
we find that t26, .005 = 2.779. The 99% confidence interval is therefore

2.007 − 2.001 ± 2.779(0.0107)
√

1/18 + 1/10, or 0.006 ± 0.012.

Don't Assume the Population Variances Are Equal Just Because
the Sample Variances Are Close
The major problem with the confidence interval given by expression (5.22) is that the
assumption that the population variances are equal is very strict. The method can be
quite unreliable if it is used when the population variances are not equal. In practice, the
population variances are almost always unknown, and it is usually impossible to be sure
that they are equal.
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In situations where the sample variances are nearly equal, it is tempting to assume that
the population variances are nearly equal as well. However, when sample sizes are small,
the sample variances are not necessarily good approximations to the population variances.
Thus it is possible for the sample variances to be close even when the population variances
are fairly far apart.

The confidence interval given by expression (5.21) produces good results in almost
all cases, whether the population variances are equal or not. (Exceptions occur when
the samples are of very different sizes.) Computer packages often offer a choice of
assuming variances to be equal or unequal. The best practice is to assume the variances
to be unequal unless it is quite certain that they are equal.

Exercises for Section 5.6

1. In a study comparing various methods of gold
plating, 7 printed circuit edge connectors were
gold-plated with control-immersion tip plating. The
average gold thickness was 1.5 μm, with a standard
deviation of 0.25 μm. Five connectors were masked
and then plated with total immersion plating. The av-
erage gold thickness was 1.0 μm, with a standard de-
viation of 0.15 μm. Find a 99% confidence interval for
the difference between the mean thicknesses produced
by the two methods.

2. Five specimens of untreated wastewater produced at
a gas field had an average benzene concentration of
6.83 mg/L with a standard deviation of 1.72 mg/L.
Seven specimens of treated wastewater had an average
benzene concentration of 3.32 mg/L with a standard
deviation of 1.17 mg/L. Find a 95% confidence inter-
val for the reduction in benzene concentration after
treatment.

3. In an experiment involving the breaking strength of
a certain type of thread used in personal flotation de-
vices, one batch of thread was subjected to a heat
treatment for 60 seconds and another batch was treated
for 120 seconds. The breaking strengths (in N) of ten
threads in each batch were measured. The results were

60 seconds: 43 52 52 58 49 52 41 52 56 54

120 seconds: 59 55 59 66 62 55 57 66 66 51

Find a 99% confidence interval for the difference in
the mean strengths between threads treated for 60 sec-
onds and those treated for 120 seconds.

4. A new post-surgical treatment is being compared with
a standard treatment. Seven subjects receive the new
treatment, while seven others (the controls) receive

the standard treatment. The recovery times, in days,
are given below.

Treatment: 12 13 15 19 20 21 24

Control: 18 23 24 30 32 35 39

Find a 98% confidence interval for the difference
in the mean recovery times between treatment and
control.

5. The article “Differences in Susceptibilities of Dif-
ferent Cell Lines to Bilirubin Damage” (K. Ngai,
C. Yeung, and C. Leung, Journal of Paediatric Child
Health, 2000:36–45) reports an investigation into the
toxicity of bilirubin on several cell lines. Ten sets of
human liver cells and 10 sets of mouse fibroblast cells
were placed into solutions of bilirubin in albumin with
a 1.4 bilirubin/albumin molar ratio for 24 hours. In the
10 sets of human liver cells, the average percentage
of cells surviving was 53.9 with a standard deviation
of 10.7. In the 10 sets of mouse fibroblast cells, the
average percentage of cells surviving was 73.1 with
a standard deviation of 9.1. Find a 98% confidence
interval for the difference in survival percentages be-
tween the two cell lines.

6. The article “Tibiofemoral Cartilage Thickness Distri-
bution and its Correlation with Anthropometric Vari-
ables” (A. Connolly, D. FitzPatrick, et al., Journal of
Engineering in Medicine, 2008:29–39) reports that in
a sample of 11 men, the average volume of femoral
cartilage (located in the knee) was 18.7 cm3 with a
standard deviation of 3.3 cm3 and the average volume
in a sample of 9 women was 11.2 cm3 with a standard
deviation of 2.4 cm2. Find a 95% confidence interval
for the difference in mean femoral cartilage volume
between men and women.
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7. During the spring of 1999, many fuel storage facil-
ities in Serbia were destroyed by bombing. As a re-
sult, significant quantities of oil products were spilled
and burned, resulting in soil pollution. The article
“Mobility of Heavy Metals Originating from Bomb-
ing of Industrial Sites” (B. S̆krbić, J. Novaković, and
N. Miljević, Journal of Environmental Science and
Health, 2002:7–16) reports measurements of heavy
metal concentrations at several industrial sites in June
1999, just after the bombing, and again in March of
2000. At the Smederevo site, on the banks of the
Danube River, eight soil specimens taken in 1999 had
an average lead concentration (in mg/kg) of 10.7 with
a standard deviation of 3.3. Four specimens taken in
2000 had an average lead concentration of 33.8 with
a standard deviation of 0.50. Find a 95% confidence
interval for the increase in lead concentration between
June 1999 and March 2000.

8. The article “Dynamics of Insulin Action in Hyperten-
sion: Assessment from Minimal Model Interpretation
of Intravenous Glucose Tolerance Test Data” (R. Bu-
rattini, M. Morettini, et al., Med Biol Eng Comput,
2011:831–841) compared levels of an insulin sensi-
tivity index SI in patients with high blood pressure
and patients with normal blood pressure. Ten patients
with high blood pressure had a mean value of 3.4 with
a standard deviation of 0.6, and eight patients with nor-
mal blood pressure had a mean value of 7.9 with a stan-
dard deviation of 0.6. Units are 10−5 · min−1 · pmol−1.
Find a 98% confidence interval for the difference in
mean levels between those with high blood pressure
and those with normal blood pressure.

9. The article “Toward a Lifespan Metric of Reading
Fluency” (S. Wallot and G. Van Orden, International
Journal of Bifurcation and Chaos, 2011:1173–1192)
described a study of reading speed for undergraduate
and graduate students. In a sample of 24 undergrad-
uates, the mean time to read a certain passage was
4.8 seconds, with a standard deviation of 1.9 seconds.
In a sample of 24 Ph.D. students, the mean time was
2.8 seconds, with a standard deviation of 1.0 seconds.
Find a 95% confidence interval for the difference in
reading speed between the two groups.

10. Eight independent measurements were taken of the
dissolution rate of a certain chemical at a temperature
of 0◦C, and seven independent measurements were
taken of the rate at a temperature of 10◦C. The results

are as follows:

0◦C: 2.28 1.66 2.56 2.64 1.92 3.09 3.09 2.48
10◦C: 4.63 4.56 4.42 4.79 4.26 4.37 4.44

Find a 98% confidence interval for the difference be-
tween the dissolution rates at 0◦C and 10◦C.

11. Measurements of the sodium content in samples of
two brands of chocolate bar yield the following re-
sults (in grams):

Brand A 34.36 31.26 37.36 28.52 33.14
32.74 34.34 34.33 30.95

Brand B 41.08 38.22 39.59 38.82 36.24
37.73 35.03 39.22 34.13 34.33
34.98 29.64 40.60

Find a 98% confidence interval for the difference be-
tween the mean sodium contents of the two brands.

12. The article “Permeability, Diffusion and Solubility of
Gases” (B. Flaconnèche, et al., Oil and Gas Science
and Technology, 2001:262–278) reported on a study of
the effect of temperature and other factors on gas trans-
port coefficients in semicrystalline polymers. The per-
meability coefficient (in 10−6 cm3 (STP) /cm · s · MPa)
of CO2 was measured for extruded medium-density
polyethylene at both 60◦C and 61◦C. The results are
as follows:

60◦C: 54 51 61 67 57 69 60
60 63 62

61◦C: 58 60 66 66 68 61 60

Find a 95% confidence interval for the difference in
the permeability coefficent between 60◦C and 61◦C.

13. A computer system administrator notices that com-
puters running a particular operating system seem to
freeze up more often as the installation of the operat-
ing system ages. She measures the time (in minutes)
before freeze-up for seven computers one month af-
ter installation, and for nine computers seven months
after installation. The results are as follows:

One month after install: 207.4 233.1 215.9
235.1 225.6 244.4
245.3

Seven months after install: 84.3 53.2 127.3
201.3 174.2 246.2
149.4 156.4 103.3

Find a 95% confidence interval for the mean differ-
ence in time to freeze-up between the first month and
the seventh.
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14. In the article “Bactericidal Properties of Flat Sur-
faces and Nanoparticles Derivatized with Alkylated
Polyethylenimines” (J. Lin, S. Qiu, et al., Biotechnol-
ogy Progress, 2002:1082–1086), experiments were
described in which alkylated polyethylenimines were
attached to surfaces and to nanoparticles to make them
bactericidal. In one series of experiments, the bacteri-
cidal efficiency against the bacterium E. coli was com-
pared for a methylated versus a nonmethylated poly-
mer. The mean percentage of bacterial cells killed with
the methylated polymer was 95 with a standard devi-
ation of 1, and the mean percentage of bacterial cells
killed with the nonmethylated polymer was 70 with a
standard deviation of 6. Assume that five independent

measurements were made on each type of polymer.
Find a 95% confidence interval for the increase in
bactericidal efficiency of the methylated polymer.

15. The article “Effects of Waste Glass Additions on
the Properties and Durability of Fired Clay Brick”
(S. Chidiac and L. Federico, Can J Civ Eng, 2007:
1458–1466) reports that the average initial rate of ab-
sorption (in g/min·cm2) for a sample of five clay bricks
with fine glass particles added was 1299.8 with a stan-
dard deviation of 329.8, and the average for a sample
of five bricks without glass particles added was 4500.8
with a standard deviation of 271.6. Find a 98% con-
fidence interval for the difference between the mean
initial absorption rates.

5.7 Confidence Intervals with Paired Data

The methods discussed so far for finding confidence intervals on the basis of two samples
have required that the samples be independent. In some cases, it is better to design an
experiment so that each item in one sample is paired with an item in the other. Following
is an example.

A tire manufacturer wishes to compare the tread wear of tires made of a new material
with that of tires made of a conventional material. One tire of each type is placed on
each front wheel of each of 10 front-wheel-drive automobiles. The choice as to which
type of tire goes on the right wheel and which goes on the left is made with the flip of
a coin. Each car is driven for 40,000 miles, then the tires are removed, and the depth of
the tread on each is measured. The results are presented in Figure 5.15.
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FIGURE 5.15 Tread depth for 10 pairs of tires.
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The column on the right-hand side of Figure 5.15 presents the results for all 20 tires.
There is considerable overlap in tread wear for the two samples. It is difficult to tell
from the column whether there is a difference between the old and the new types of tire.
However, when the data are examined in pairs, it is clear that the tires of the new type
generally have more tread than those of the old type. The reason that analyzing the pairs
presents a clearer picture of the result is that the cars vary greatly in the amount of wear
they produce. Heavier cars, and those whose driving patterns involve many starts and
stops, will generally produce more wear than others. The aggregated data in the column
on the right-hand side of the figure includes this variability between cars as well as the
variability in wear between tires. When the data are considered in pairs, the variability
between the cars disappears, because both tires in a pair come from the same car.

Table 5.1 presents, for each car, the depths of tread for both the tires as well as
the difference between them. We wish to find a 95% confidence interval for the mean
difference in tread wear between old and new materials in a way that takes advantage
of the reduced variability produced by the paired design. The way to do this is to think
of a population of pairs of values, in which each pair consists of measurements from
an old type tire and a new type tire on the same car. For each pair in the population,
there is a difference (New − Old); thus there is a population of differences. The data are
then a random sample from the population of pairs, and their differences are a random
sample from the population of differences.

TABLE 5.1 Depths of tread, in mm, for tires made of new and old material

Car
1 2 3 4 5 6 7 8 9 10

New material 4.35 5.00 4.21 5.03 5.71 4.61 4.70 6.03 3.80 4.70
Old material 4.19 4.62 4.04 4.72 5.52 4.26 4.27 6.24 3.46 4.50
Difference 0.16 0.38 0.17 0.31 0.19 0.35 0.43 –0.21 0.34 0.20

To put this into statistical notation, let (X1, Y1), . . . , (X10, Y10) be the 10 observed
pairs, with Xi representing the tread on the tire made from the new material on the i th
car and Yi representing the tread on the tire made from the old material on the i th car. Let
Di = Xi − Yi represent the difference between the treads for the tires on the i th car. Let
μX and μY represent the population means for X and Y , respectively. We wish to find
a 95% confidence interval for the difference μX − μY . Let μD represent the population
mean of the differences. Then μD = μX − μY . It follows that a confidence interval for
μD will also be a confidence interval for μX − μY .

Since the sample D1, . . . , D10 is a random sample from a population with mean μD ,
we can use one-sample methods to find confidence intervals for μD . In this example,
since the sample size is small, we use the Student’s t method of Section 5.3. The observed
values of the sample mean and sample standard deviation are

D = 0.232 sD = 0.183

The sample size is 10, so there are nine degrees of freedom. The appropriate t value
is t9,.025 = 2.262. The confidence interval using expression (5.9) (in Section 5.3) is
therefore 0.232± (2.262)(0.183)/

√
10, or (0.101, 0.363). When the number of pairs is

large, the large-sample methods of Section 5.1, specifically expression (5.1), can be used.
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Summary
Let D1, . . . , Dn be a small random sample (n ≤ 30) of differences of pairs. If
the population of differences is approximately normal, then a level 100(1 −α)%
confidence interval for the mean difference μD is given by

D ± tn−1,α/2
sD√

n
(5.24)

where sD is the sample standard deviation of D1, . . . , Dn . Note that this interval
is the same as that given by expression (5.9).

If the sample size is large, a level 100(1 − α)% confidence interval for the
mean difference μD is given by

D ± zα/2σD (5.25)

In practice σD is approximated with sD/
√

n. Note that this interval is the same
as that given by expression (5.1).

Exercises for Section 5.7

1. The article “Simulation of the Hot Carbonate Pro-
cess for Removal of CO2 and H2S from Medium
Btu Gas” (K. Park and T. Edgar, Energy Progress,
1984:174–180) presents an equation used to esti-
mate the equilibrium vapor pressure of CO2 in a
potassium carbonate solution. The actual equilibrium
pressure (in kPa) was measured in nine different
reactions and compared with the value estimated from
the equation. The results are presented in the following
table:

Reaction Estimated Experimental Difference

1 45.10 42.95 2.15
2 85.77 79.98 5.79
3 151.84 146.17 5.67
4 244.30 228.22 16.08
5 257.67 240.63 17.04
6 44.32 41.99 2.33
7 84.41 82.05 2.36
8 150.47 149.62 0.85
9 253.81 245.45 8.36

Find a 95% confidence interval for the mean differ-
ence between the estimated and actual pressures.

2. The article “Effect of Refrigeration on the Potassium
Bitartrate Stability and Composition of Italian Wines”

(A. Versari, D. Barbanti, et al., Italian Journal of Food
Science, 2002:45–52) reports a study in which eight
types of white wine had their tartaric acid concentra-
tion (in g/L) measured both before and after a cold
stabilization process. The results are presented in the
following table:

Wine Type Before After Difference

1 2.86 2.59 0.27
2 2.85 2.47 0.38
3 1.84 1.58 0.26
4 1.60 1.56 0.04
5 0.80 0.78 0.02
6 0.89 0.66 0.23
7 2.03 1.87 0.16
8 1.90 1.71 0.19

Find a 95% confidence interval for the mean differ-
ence between the tartaric acid concentrations before
and after the cold stabilization process.

3. Transepidermal water loss (TEWL) is a measure of the
rate that water crosses the skin through diffusion and
evaporation. In general, damaged skin has a higher
TEWL than nondamaged skin. A report submitted
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to the U.S. Food and Drug Administration (Thera-
peutic Equivalence of Topical Products, A. Bunge,
B. N’Dri-Stempfer, et al., 2007) described an exper-
iment in which the outer layer of skin on a small
area of the forearm was partially removed in order
to measure the concentration of a certain drug. TEWL
(in g/m2 per hour) was measured both before and after
skin removal. The results for 10 individuals were as
follows.

Subject Before After

1 18 27
2 12 19
3 14 19
4 11 20
5 12 22
6 17 26
7 16 18
8 18 26
9 14 22

10 14 24

Find a 98% confidence for the increase in TEWL.

4. Breathing rates, in breaths per minute, were measured
for a group of 10 subjects at rest, and then during
moderate exercise. The results were as follows:

Subject Rest Exercise

1 15 30
2 16 37
3 21 39
4 17 37
5 18 40
6 15 39
7 19 34
8 21 40
9 18 38

10 14 34

Find a 95% confidence interval for the increase in
breathing rate due to exercise.

5. A group of five individuals with high blood pressure
were given a new drug that was designed to lower
blood pressure. Systolic blood pressure was measured
before and after treatment for each individual, with the
following results:

Subject Before After

1 170 145
2 164 132
3 168 129
4 158 135
5 183 145

Find a 90% confidence for the mean reduction in sys-
tolic blood pressure.

6. A sample of 10 diesel trucks were run both hot and
cold to estimate the difference in fuel economy. The
results, in mpg, are presented in the following table.
(From “In-use Emissions from Heavy-Duty Diesel
Vehicles,” J. Yanowitz, Ph.D. thesis, Colorado School
of Mines, 2001.)

Truck Hot Cold

1 4.56 4.26
2 4.46 4.08
3 6.49 5.83
4 5.37 4.96
5 6.25 5.87
6 5.90 5.32
7 4.12 3.92
8 3.85 3.69
9 4.15 3.74

10 4.69 4.19

Find a 98% confidence interval for the difference in
mean fuel mileage between hot and cold engines.

7. For a sample of nine automobiles, the mileage (in
1000s of miles) at which the original front brake pads
were worn to 10% of their original thickness was mea-
sured, as was the mileage at which the original rear
brake pads were worn to 10% of their original thick-
ness. The results are given in the following table.

Automobile Front Rear

1 32.8 41.2
2 26.6 35.2
3 35.6 46.1
4 36.4 46.0
5 29.2 39.9
6 40.9 51.7
7 40.9 51.6
8 34.8 46.1
9 36.6 47.3
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Find a 95% confidence interval for the difference in
mean lifetime between the front and rear brake pads.

8. Refer to Exercise 7. Someone suggests that the paired
design be replaced with a design in which 18 cars are
sampled, the lifetime of the front brakes is measured
on 9 of them, and the lifetime of the rear brakes is mea-
sured on the other 9. A confidence interval for the dif-
ference between the means would then be constructed
by using expression (5.21) (in Section 5.6). He claims
that this design will produce a more precise confidence
interval, since 18 cars will be used instead of 9.

a. Will the new design produce a valid confidence
interval? Explain.

b. Is it likely that the confidence interval produced
by the new design will be more precise than, less
precise than, or about equally precise as the con-
fidence interval produced by the paired design?
Explain. (Hint: Look at Figure 5.15.)

9. A tire manufacturer is interested in testing the fuel
economy for two different tread patterns. Tires of
each tread type are driven for 1000 miles on each of
18 different cars. The mileages, in mpg, are presented
in the following table.

Car Tread A Tread B

1 24.1 20.3
2 22.3 19.7
3 24.5 22.5
4 26.1 23.2
5 22.6 20.4
6 23.3 23.5
7 22.4 21.9
8 19.9 18.6
9 27.1 25.8

Car Tread A Tread B

10 23.5 21.4
11 25.4 20.6
12 24.9 23.4
13 23.7 20.3
14 23.9 22.5
15 24.6 23.5
16 26.4 24.5
17 21.5 22.4
18 24.6 24.9

a. Find a 99% confidence interval for the mean dif-
ference in fuel economy.

b. A confidence interval based on the data in the table
has width ±0.5 mpg. Is the level of this confidence
interval closest to 80%, 90%, or 95%?

10. Refer to Exercise 9. In a separate experiment, 18 cars
were outfitted with tires with tread type A, and an-
other 18 were outfitted with tires with tread type B.
Each car was driven 1000 miles. The cars with tread
type A averaged 23.93 mpg, with a standard deviation
of 1.79 mpg. The cars with tread type B averaged
22.19 mpg, with a standard deviation of 1.95 mpg.

a. Which method should be used to find a con-
fidence interval for the difference between the
mean mileages of the two tread types: expres-
sion (5.24) (in this section) or expression (5.21)
(in Section 5.6)?

b. Using the appropriate method, find a 99% confi-
dence interval for the difference between the mean
mileages of the two tread types.

c. Is the confidence interval found in part (b) wider
than the one found in Exercise 9? Why is this so?

5.8 Confidence Intervals for the Variance and
Standard Deviation of a Normal Population

Thus far we have learned to compute confidence intervals for population means and
proportions. Occasionally it is useful to compute a confidence interval for a population
variance. In general, there is no good way to do this. When the population is normal,
however, a method is available.

Confidence intervals for the variance σ 2 are based on the sample variance s2, and
on a probability distribution known as the chi-square distribution. (This distribution
was briefly discussed in Section 4.8.)
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Specifically, if X1, . . . , Xn is a random sample from a normal population with
variance σ 2, the sample variance is

s2 = 1

n − 1

n∑
i=1

(Xi − X)2

and the quantity

(n − 1)s2

σ 2
=

∑n
i=1(Xi − X)2

σ 2

has a chi-square distribution with n − 1 degrees of freedom, denoted χ2
n−1.

Summary
Let X1, . . . , Xn be a random sample from a normal population with variance σ 2.

The sample variance is s2 =
∑n

i=1(Xi − X)2

n − 1
. The quantity

(n − 1)s2

σ 2
=

∑n
i=1(Xi − X)2

σ 2

has a chi-square distribution with n − 1 degrees of freedom, denoted χ2
n−1.

We describe the chi-square distribution, and then explain how to use it to construct
confidence intervals.

The Chi-Square Distribution
There are actually many different chi-square distributions, each with a different number
of degrees of freedom. Figure 5.16 presents plots of the probability density function

0 10 20 30 40 50
0

0.05

0.10

0.15

0.20

0.25

0.30
2   with 1 degree of freedom

 
2   with 10 degrees of freedom

 

 
2    with 5 degrees of freedom

χ

χ

χ
2   with 20 degrees of freedomχ

FIGURE 5.16 Plots of the chi-square probability density function for various degrees
of freedom. The curves are skewed to the right, and all the area under the curve is over
the positive part of the x axis.
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for the chi-square distribution for several different degrees of freedom. There are two
important points to notice.

■ The chi-square distributions are not symmetric. They are skewed to the right.

■ Values of the χ2 statistic are always greater than or equal to 0. They are never
negative.

Because the chi-square distributions are not symmetric, confidence intervals for a
variance have a different form than those for means and proportions. For confidence
intervals based on symmetric distributions such as the Student’s t and the normal, we
use a single value, zα/2 or tn−1,α/2, to compute both the upper and lower confidence
bounds. For the chi-square distribution, however, the upper and lower bounds are based
on two different values.

To find the upper and lower bounds for a level 100(1 − α)% confidence interval for
a variance, we use the values that cut off areas of α/2 in the right and left tails of the
chi-square probability density curve. These are called the lower and upper α/2 points
of the distribution, and they contain 100(1 − α)% of the area under the curve between
them. Figure 5.17 illustrates the lower and upper α/2 points of a chi-square distribution.
They are denoted χ2

k,1−α/2 and χ2
k,α/2, respectively, where k is the number of degrees of

freedom.

a/2 a/2

c 2
k,12 a/2 c 2

k,a/2

12 a

FIGURE 5.17 Probability density function for the chi-square distribution with k de-
grees of freedom. The values χ 2

k,1−α/2 and χ 2
k,α/2 contain the middle 100(1 − α)% of the

area under the curve between them.

Example
5.27 Find the upper and lower 0.025 points of the χ2

10 distribution.

Solution
We consult the chi-square table (Table A.7 in Appendix A) using the row correspond-
ing to 10 degrees of freedom. To find the upper 0.025 point, look under α = 0.025.
The value is 20.483. The lower 0.025 point has an area of 0.975 to its right. We look
under α = 0.975 to find that the lower 0.025 point is 3.247. Figure 5.18 illustrates
the results.

Confidence Intervals for the Variance of a Normal Population
When a sample comes from a normal population, we can use the chi-square distribution to
compute a confidence interval for the population variance. We illustrate with an example.
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20.4833.247

0.025 0.025

0.95

FIGURE 5.18 Probability density function for the chi-square distribution with 10 de-
grees of freedom. The lower 0.025 point is χ 2

10,.975 = 3.427. The upper 0.025 point is
χ 2

10,.025 = 20.483.

Example
5.28 A simple random sample of 15 pistons is selected from a large population whose

diameters are known to be normally distributed. The sample standard deviation of the
piston diameters is s = 2.0 mm. Find a 95% confidence for the population variance σ 2.

Solution
To construct a 95% confidence interval, we use the fact that the quantity

(n − 1)s2

σ 2

has a chi-square distribution with n−1 = 14 degrees of freedom. From the chi-square
table (Table A.7), we find that the lower and upper 0.025 points of the χ2

14 distribution
are χ2

14,.975 = 5.629 and χ2
14,.025 = 26.119, respectively. These values contain 95% of

the area under the χ2
14 curve between them, so it follows that for 95% of the samples

that might have been chosen,

5.629 <
(n − 1)s2

σ 2
< 26.119

Put another way, for 95% of the samples that might have been chosen,

5.629

(n − 1)s2
<

1

σ 2
<

26.119

(n − 1)s2

Taking reciprocals, which requires us to switch the order of the inequality, we obtain
a 95% confidence interval for σ 2:

(n − 1)s2

26.119
< σ 2 <

(n − 1)s2

5.629

In this example, s2 = 4 and n = 15. Substituting, we find that a 95% confidence
interval for σ 2 is 56/26.119 < σ 2 < 56/5.629, or 2.144 < σ 2 < 9.948.

To find a confidence interval for the standard deviation σ , we simply take the square
roots of the confidence bounds for the variance. A 95% confidence interval for σ is√

2.144 < σ <
√

9.948, or 1.464 < σ < 3.154.
In general, to construct a 100(1−α)% confidence interval, let χ2

n−1,1−α/2 and χ2
n−1,α/2

be the lower and upper α/2 points, respectively, of the χ2
n−1 distribution. Then a level
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100(1 − α)% confidence interval for σ 2 is(
(n − 1)s2

χ2
n−1,α/2

,
(n − 1)s2

χ2
n−1,1−α/2

)

To find a confidence interval for the standard deviation σ , simply take the square
roots of the confidence bounds for the variance.

Confidence Intervals for the Variance Are Sensitive to
Departures from Normality
Confidence intervals based on the chi-square distribution, like those based on the Stu-
dent’s t distribution, require that the population be normal. However, unlike confidence
intervals based on the Student’s t distribution, those based on the chi-square distribution
are fairly sensitive to the normality assumption. If the shape of the population differs
much from the normal curve, confidence intervals for the variance may be misleading.
For this reason, these confidence intervals should be used with caution.

Summary
Let X1, . . . , Xn be a random sample from a normal population with variance σ 2.
Let s2 be the sample variance. A level 100(1 −α)% confidence interval for σ 2 is(

(n − 1)s2

χ2
n−1,α/2

,
(n − 1)s2

χ2
n−1,1−α/2

)

A level 100(1 − α)% confidence interval for the standard deviation σ is(√
(n − 1)s2

χ2
n−1,α/2

,

√
(n − 1)s2

χ2
n−1,1−α/2

)

Exercises for Section 5.8

1. Find the following values.

a. χ 2
12,.025

b. χ 2
12,.975

c. χ 2
5,.005

d. χ 2
5,.995

e. χ 2
22,.1

f. χ 2
22,.9

2. Construct a 95% confidence interval for the popula-
tion variance σ 2 if a sample of size 25 has standard
deviation s = 15.

3. Construct a 99% confidence interval for the popula-
tion standard deviation σ if a sample of size 8 has
standard deviation s = 7.5.

4. Scores on the math SAT are normally distributed.
A sample of 20 SAT scores had standard deviation
s = 87. Construct a 98% confidence interval for the
population standard deviation σ .

5. Scores on an IQ test are normally distributed. A sam-
ple of 18 IQ scores had standard deviation s = 8.
Construct a 95% confidence interval for the popula-
tion variance σ 2.

6. Following are weights, in pounds, of 12 two-month-
old baby girls. Assume that the population is normally
distributed.

12.23 12.32 11.87 12.34 11.48 12.66
8.51 14.13 12.95 10.30 9.34 8.63
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a. Find the sample standard deviation s.

b. Construct a 95% confidence interval for population
standard deviation σ .

7. Boxes of cereal are labeled as containing 14 ounces.
Following are the weights, in ounces, of a sample
of 12 boxes. Assume that the population is normally
distributed.

14.02 13.97 14.11 14.12 14.10 14.02
14.15 13.97 14.05 14.04 14.11 14.12

a. Find the sample standard deviation s.

b. Construct a 98% confidence interval for popula-
tion standard deviation σ .

8. Six measurements were made of the mineral content
(in percent) of spinach, with the following results.

19.1 20.8 20.8 21.4 20.5 19.7

Assuming the population to be normally distributed,
construct a 99% confidence interval for population
variance σ 2.

9. Following are interest rates (annual percentage rates)
for a 30-year fixed-rate mortgage from a sample of
lenders in Colorado on May 3, 2013. Assume that the
population is normally distributed.

3.516 3.499 3.638 3.540 3.547 3.500
3.395 3.401 3.500 3.625 3.625 3.667

Construct a 95% confidence interval for the popula-
tion variance σ 2.

The chi-square distribution is skewed, but as the num-
ber of degrees of freedom becomes large, the skewness
diminishes. If the number of degrees of freedom, k, is
large enough, the chi-square distribution is reason-
ably well approximated by a normal distribution with
mean k and variance 2k.

10. A sample of size 101 from a normal population has
sample standard deviation s = 40. The lower and up-
per 0.025 points of the χ 2

100 distribution are χ 2
100, 0.975 =

74.222 and χ 2
100, 0.025 = 129.561. Use these values to

construct a 95% confidence interval for σ .

11. Refer to Exercise 10. Use the normal approximation
to estimate the critical values χ 2

100, 0.025 and χ 2
100, 0.975

for a 95% confidence interval, and construct a 95%
confidence interval for σ .

A more accurate normal approximation to χ 2
k,α is given

by χ 2
k,α ≈ 0.5(zα +√

2k − 1 )2, where zα is the z-score
that has area α to its right.

12. Refer to Exercise 10. Use the more accurate normal
approximation to estimate the critical values χ 2

100, 0.025

and χ 2
100, 0.975 for a 95% confidence interval, and con-

struct a 95% confidence interval for σ .

5.9 Prediction Intervals and Tolerance Intervals

A confidence interval for a parameter such as a population mean is an interval that is
likely to contain the true value of the parameter. In contrast, prediction and tolerance
intervals are concerned with the population itself, and with values that may be sampled
from it in the future. Prediction intervals and tolerance intervals are useful only when
the shape of the population is known. The methods we present here, which are the most
commonly used, are valid only when the population is known to be normal.

Prediction Intervals
A prediction interval is an interval that is likely to contain the value of an item sampled
from a population at a future time. In other words, we “predict” that a value that is yet
to be sampled from the population will fall within the prediction interval. We illustrate
with an example.
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Assume that the silicon content (in percent) has been measured for a sample of five
steel beams, and that the sample mean is X = 0.26 with a sample standard deviation
of s = 0.05. Assume further that the silicon content in this type of beam is normally
distributed. At some future time we will observe the silicon content Y of some other beam,
and we wish to construct an interval that will contain the value of Y with probability
0.95. To see how this is done, let μ and σ denote the mean and standard deviation of the
normal population of silicon contents. Then Y ∼ N (μ, σ 2) and, since the sample size is
n = 5, X ∼ N (μ, σ 2/5). The difference Y − X is therefore normally distributed with
mean 0 and variance σ 2(1 + 1/5). It follows that

Y − X

σ
√

1 + 1/5
∼ N (0, 1)

Approximating σ with s, we find that

Y − X

s
√

1 + 1/5

has a Student’s t distribution with 5 − 1 = 4 degrees of freedom (the number of degrees
of freedom is based on the sample size used to compute s). From the Student’s t table
(Table A.3), we find that 95% of the area under the t curve with 4 degrees of freedom is
contained between the values −2.776 and 2.776. It follows that

P

(
−2.776 <

Y − X

s
√

1 + 1/5
< 2.776

)
= 0.95

Performing some algebra, we obtain

P(X − 2.776s
√

1 + 1/5 < Y < X + 2.776s
√

1 + 1/5) = 0.95

The interval X ± 2.776s
√

1 + 1/5 is a 95% prediction interval for Y . In this example,
X = 0.26 and s = 0.05, so the 95% prediction interval is 0.26 ± 0.15, or (0.09, 0.41).

Generalizing the procedure just described, a 100(1 −α)% prediction interval based
on a sample of size n is given by X ± tn−1,α/2(s

√
1 + 1/n).

Summary
Let X1, . . . , Xn be a sample from a normal population. Let Y be another item to be
sampled from this population, whose value has not been observed. A 100(1−α)%
prediction interval for Y is

X ± tn−1,α/2s

√
1 + 1

n
(5.26)

The probability is 1 − α that the value of Y will be contained in this interval.
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Example
5.29 A sample of 10 concrete blocks manufactured by a certain process had a mean com-

pressive strength of X = 1312 MPa, with standard deviation s = 25 MPa. Find a 95%
prediction interval for the strength of a block whose strength has yet to be measured.

Solution
For a 95% prediction interval, α = 0.025. We have a sample size of n = 10, so
we consult the Student’s t table (Table A.3) to find t9,.025 = 2.262. Using expres-
sion (5.26) with X = 1312 and s = 25, the 95% prediction interval is 1312 ±
2.262(25)

√
1 + 1/10, or (1253, 1371).

Comparison of Prediction Intervals and Confidence Intervals
The formula for a prediction interval is similar to that for a confidence interval for the
mean of a normal population; in fact, the prediction interval can be obtained from the
confidence interval by replacing the expression s

√
1/n with s

√
1 + 1/n. The quantity

1/n under the square root reflects the uncertainty in the sample mean as an estimator of
the population mean, and is present in both the confidence interval and the prediction
interval. The quantity 1 under the square root in the prediction interval reflects the
uncertainty in the value of the sampled item that is to be predicted. Note that since 1
is larger than 1/n, most of the width of the prediction interval is due to the variability
in the value to be predicted. For this reason, the prediction interval is much wider than
the confidence interval. Increasing the sample size affects the confidence interval and
prediction interval in different ways as well. As the sample size gets larger, the width
of a level 100(1 − α)% confidence interval, which is tn−1,α/2(s

√
1/n) shrinks to 0. In

contrast, the width of the level 100(1−α)% confidence interval is tn−1,α/2(s
√

1 + 1/n).
As n becomes large, tn−1,α/2 becomes close to zα/2, s becomes close to σ , and 1 + 1/n
becomes close to 1. The width of the prediction interval, therefore, becomes close to
zα/2σ . This reflects the fact that there is always uncertainty in the value of an item to be
sampled from a population, even if there is no uncertainty about the population itself.

One-sided Prediction Intervals
One-sided prediction intervals can be computed by a method analogous to that for
computing one-sided confidence intervals.

Let X1, . . . , Xn be a sample from a normal population. Let Y be another item
to be sampled from this population, whose value has not been observed. A
100(1 − α)% upper prediction bound for Y is

X + tn−1,αs

√
1 + 1

n
(5.27)

and a level 100(1 − α)% lower prediction bound for Y is

X − tn−1,αs

√
1 + 1

n
(5.28)
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Prediction Intervals Are Sensitive to Departures from Normality
The method presented here for computing prediction intervals is sensitive to the as-
sumption that the population is normal. If the shape of the population differs much from
the normal curve, the prediction interval may be misleading. For this reason, prediction
intervals must be interpreted with caution. Large samples do not help. No matter how
large the sample is, the prediction interval will not be valid unless the population is
normal.

Tolerance Intervals for a Normal Population
A tolerance interval is an interval that is likely to contain a specified proportion of
the population. The method we present here, which is the one most commonly used,
requires that the population be normal. To illustrate the idea, first assume that we have
a normal population whose mean μ and standard deviation σ are known. If we wish to
find an interval that contains 90% of this population, we can do so exactly. The interval
μ ± 1.645σ contains 90% of the population. In general, the interval μ ± zγ /2σ will
contain 100(1 − γ )% of the population.

In practice, we do not know μ and σ . Instead, we have a sample of size n, and we
estimate μ with the sample mean X and σ with the sample standard deviation s. This
estimation has two consequences. First, we must make the interval wider than it would be
if μ and σ were known. Second, we cannot be 100% confident that the interval actually
contains the required proportion of the population.

To construct a tolerance interval, therefore, we must specify the proportion
100(1 − γ )% of the population that we wish the interval to contain, along with a level
of confidence 100(1 − α)% that the interval actually contains the specified proportion.
It is then possible to find a number kn,α,γ such that the interval

X ± kn,α,γ s

will contain at least 100(1 − γ )% of the population with confidence 100(1 − α)%.
Values of kn,α,γ are presented in Table A.4 for various values of α, γ , and the sample
size n.

Summary
Let X1, . . . , Xn be a sample from a normal population. A tolerance interval
containing at least 100(1 − γ )% of the population with confidence 100(1 −α)%
is

X ± kn,α,γ s (5.29)

Of all the tolerance intervals that are computed by this method, 100(1 − α)%
will actually contain at least 100(1 − γ )% of the population.
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Example
5.30 The lengths of bolts manufactured by a certain process are known to be normally

distributed. In a sample of 30 bolts, the average length was 10.25 cm, with a standard
deviation of 0.20 cm. Find a tolerance interval that includes 90% of the lengths of the
bolts with 95% confidence.

Solution
We have X = 10.25 and s = 0.20. The value of γ is 0.10 and the value of α is
0.05. The sample size is n = 30. From Table A.4, we find that kn,α,γ = 2.140. The
tolerance interval is therefore 10.25 ± 2.140 ∗ 0.20, or (9.82, 10.68).

Exercises for Section 5.9

1. A sample of 25 resistors, each labeled 100 �, had an
average resistance of 101.4 � with a standard devi-
ation of 2.3 �. Assume the resistances are normally
distributed.

a. Find a 95% prediction interval for the resistance
of a single resistor.

b. Find a tolerance interval for the resistance that in-
cludes 90% of the resistors with 95% confidence.

2. In a sample of 20 bolts, the average breaking torque
was 89.7 J with a standard deviation of 8.2 J. Assume
that the breaking torques are normally distributed.

a. Find a 99% prediction interval for the breaking
torque of a single bolt.

b. Find a tolerance interval for the breaking torque
that includes 95% of the bolts with 99%
confidence.

3. The article “Ozone for Removal of Acute Toxicity
from Logyard Run-off” (M. Zenaitis and S. Duff,
Ozone Science and Engineering, 2002: 83–90)
presents chemical analyses of runoff water from
sawmills in British Columbia. Included were mea-
surements of pH for six water specimens: 5.9, 5.0, 6.5,

5.6, 5.9, 6.5. Assume that these are a random sample
of water specimens from a normal population.

a. Find a 98% prediction interval for a pH of a single
specimen.

b. Find a tolerance interval for the pH that includes
95% of the specimens with 95% confidence.

4. Six measurements were made of the concentration (in
percent) of ash in a certain variety of spinach. The
sample mean was 19.35 and the sample standard de-
viation was 0.577. Assume that the concentrations are
normally distributed.

a. Find a 90% prediction interval for a single
measurement.

b. Find a tolerance interval for the pH that includes
99% of the measurements with 95% confidence.

5. Five measurements are taken of the octane rating for
a particular type of gasoline. The results (in percent)
are 87.0, 86.0, 86.5, 88.0, 85.3.

a. Find a 95% prediction interval for a single
measurement.

b. Find a tolerance interval for the pH that includes
90% of the measurements with 99% confidence.

5.10 Using Simulation to Construct
Confidence Intervals

If X1, . . . , Xn are normally distributed random variables with known standard deviations
σ1, . . . , σn , and U = U (X1, . . . , Xn) is a function of X1, . . . , Xn , then it will often (not
always) be the case that U is approximately normally distributed and that its standard
deviation σU can be estimated. In these cases expression (5.13) (in Section 5.3) can be
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used to compute a confidence interval for the mean μU of U . To determine whether
U is approximately normally distributed, and to estimate σU , simulation can be used.

To provide a concrete example, assume that a process manufactures steel washers,
whose radii are normally distributed with unknown mean μR and known standard devi-
ation σR = 0.1 cm. A single washer, selected at random, is observed to have a radius of
R = 2.5 cm. Since R comes from a normal population with known standard deviation,
expression (5.13) can be used to find a confidence interval for the mean radius μR . A 95%
confidence interval for μR is R±1.96σR = 2.5±0.196. Now let’s consider the area of the
washer. The area of the sampled washer is given by A = π R2 = 3.14(2.52) = 19.63 cm2.
We describe how to find a confidence interval for the mean area μA.

The value A = 19.63 is a single value sampled from the population of all possible
areas. If the distribution of areas were normal, and if the population standard deviation
σA were known, we could find a 95% confidence interval for μA by the same method
used for μR , obtaining A ± 1.96σA. How can we determine whether the distribution of
areas is normal, and how can we approximate the population standard deviation σA? If we
had a large sample of areas, we could determine whether the population was normal by
constructing a normal probability plot, and we could use the sample standard deviation to
approximate the population standard deviation. We don’t have a large sample of areas, but
we can simulate one as follows (see Section 4.12 for a discussion of the basic principles
of simulation).

We start by generating a large sample of simulated radii R∗. We want the distribution
of the population from which this sample is drawn to be as close as possible to the
distribution of the population from which the observation R = 2.5 was drawn. We know
that the value R = 2.5 was drawn from a normal population with σR = 0.1. We don’t
know μR , but we can use the observed value R = 2.5 as an approximation to μR for
the purposes of simulation. Therefore we will generate a large sample of simulated radii
R∗

1 , . . . , R∗
n from a N (2.5, 0.12) distribution. (The notation R∗

i indicates that this is a
simulated value, rather than a value observed in an actual experiment.)

To understand exactly how we can use the simulated values, let’s imagine that we had
a large sample of actual washers, and that their radii R1, . . . , Rn had been determined.
What are the similarities and differences between the actual sample R1, . . . , Rn and
the simulated sample R∗

1 , . . . , R∗
n? The actual sample comes from a population that is

normally distributed, whose standard deviation is known to be 0.1, and whose mean
μR is unknown. The simulated sample comes from a population that is also normally
distributed, whose standard deviation is also equal to 0.1, and whose mean has been set
to 2.5 (the value of the one actual observation of R). Thus the simulated population has
the same shape (normal) and spread (standard deviation) as the actual population. The
simulated and actual populations have different means (2.5 for the simulated population,
and the unknown value μR for the actual population).

Now for each R∗
i we compute a simulated area A∗

i = π R∗
i

2. Because the simulated
sample of radii R∗

1 , . . . , R∗
n comes from a population whose shape and spread are the

same as the actual population of radii, it is reasonable to assume that the simulated
sample of areas A∗

1, . . . , A∗
n comes from a population whose shape and spread are very

similar to the actual population of areas. In other words, it is reasonable to assume that
the sample standard deviation of the simulated sample A∗

1, . . . , A∗
n is close to the actual
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population standard deviation σA, and it is reasonable to assume that if the simulated
sample A∗

1, . . . , A∗
n comes from a population that is approximately normal, the actual

population of areas is approximately normal as well. The mean of the simulated popula-
tion of areas will differ from that of the actual population of areas, however. The reason
for this is that the means of the simulated and actual populations of radii differ. The mean
of the simulated population of areas will be close to the one actual observed value of A,
which is 19.63. The mean of the actual population of areas is the unknown value μA.

We construct a normal probability plot for A∗
1, . . . , A∗

n . If it shows that the population
of areas is approximately normal, then we can assume that the actual observed A came
from an approximately normal population, and we can find a confidence interval for
μA. Figure 5.19 presents a normal probability plot for a sample of 1000 areas. With the
exception of a few points at either end, the normality assumption seems well satisfied.
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FIGURE 5.19 Normal probability plot for 1000 simulated areas. The assumption of
normality is justified.

Now that we know that the population is approximately normal, we can compute a
confidence interval for the mean area μA. To do this, we compute the standard deviation of
the simulated values A∗

1, . . . , A∗
n . For the 1000 values we simulated, the sample standard

deviation was 1.59. The value of A actually observed (as opposed to simulated) is A =
19.63. A 95% confidence interval for the mean area μA is therefore 19.63 ± 1.96(1.59),
or (16.51, 22.75).

It is important to note that the center of the confidence interval is the actual observed
value A, and not the mean of the simulated values A

∗
. The reason for this is that we are

finding a confidence interval for the mean of the actual population of areas μA, and the
observed value A has been sampled from this population. The simulated values have been
sampled from a population whose mean is different from that of the actual population.
Therefore A

∗
is not an appropriate choice for the center of the confidence interval.

The method just described can be very useful when making measurements whose
measurement errors are normally distributed. We present some examples.
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Example
5.31 The length and width of a rectangle are measured as X = 3.0 ± 0.1 and Y = 3.5 ± 0.2 cm,

respectively. Assume that the measurements come from normal populations and are
unbiased. Assume the standard deviations σX = 0.1 and σY = 0.2 are known. Find a
95% confidence interval for the area of the rectangle.

Solution
Let A = XY denote the measured area of the rectangle. The observed value of A
is A = (3.0)(3.5) = 10.5. We will use simulation to check that the distribution
of A is approximately normal and to estimate σA. We generated 1000 simulated
values X∗

1, . . . , X∗
1000 from a N (3.0, 0.12) distribution, and 1000 simulated values

Y ∗
1 , . . . , Y ∗

1000 from a N (3.5, 0.22) distribution. Note that we used the observed values
3.0 and 3.5 to approximate the unknown means μX and μY (which are the true length
and width, respectively) for the purposes of simulation. We then computed 1000
simulated areas A∗

1, . . . , A∗
1000. A normal probability plot appears in the following

figure. The normality assumption is satisfied. The sample standard deviation of the
1000 values A∗

1, . . . , A∗
1000 was 0.6861. A 95% confidence interval for the area of the

rectangle is 10.5 ± 1.96(0.6861).
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Technical note: In Example 5.31 we are actually finding a confidence interval for
the mean μA of the measured area. The true area of the rectangle is the product of the
true length and the true width, which is μXμY . The value μA differs slightly from the
product μXμY , but the difference is negligible for practical purposes.

Example
5.32 Two resistors whose resistances are measured to be X and Y are connected in parallel.

The total resistance is estimated with R = (XY )/(X + Y ). Assume that X =
10.0 ± 1.0 �, Y = 20.0 ± 2.0 �, and that X and Y come from normal populations
and are unbiased. Find a 95% confidence interval for the total resistance.
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Solution
The observed value of R is (10)(20)/(10 + 20) = 6.667 �. We will use simulation
to check that the distribution of R is approximately normal and to estimate σR . We
generated 1000 simulated values X∗

1, . . . , X∗
1000 from a N (10, 1.02) distribution, and

1000 simulated values Y ∗
1 , . . . , Y ∗

1000 from a N (20, 2.02) distribution. Note that we use
the observed values 10 and 20 to approximate the means μX and μY for the purposes
of simulation. We then computed 1000 simulated values R∗

1 , . . . , R∗
1000. A normal

probability plot appears in the following figure and shows that the normality assump-
tion is justified. The sample standard deviation of the 1000 values R∗

1 , . . . , R∗
1000

was 0.5059. A 95% confidence interval for the total resistance is 6.667 ± 1.96
(0.5059).
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The technical note appearing after Example 5.31 applies to Example 5.32 as well. We
are actually finding a confidence interval for the mean μR of the measured total resistance.
This mean μR is slightly different from the true total resistance μXμY /(μX + μY ), but
the difference is negligible for practical purposes.

In some cases the distribution of a function U (X1, . . . , Xn) is not normal even
when X1, . . . , Xn are normal. For this reason it is important to check normality with a
simulation. Example 5.33 provides an illustration.

Example
5.33 The mass of a rock is measured to be M = 10 ± 0.4 g, and its volume is measured to

be V = 1.0 ± 0.2 mL. The density is estimated to be D = M/V . Assume M and V
come from normal populations and are unbiased. Is D normally distributed? Can the
method described in Examples 5.31 and 5.32, which is based on the normal curve, be
used to find a 95% confidence interval for the density of the rock?
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Solution
We generated 1000 simulated values M∗

1 , . . . , M∗
1000 from a N (10, 0.42) distribution,

and 1000 simulated values V ∗
1 , . . . , V ∗

1000 from a N (1.0, 0.22) distribution. We then
computed values D∗

i = M∗
i /V ∗

i . A normal probability plot of the D∗
i appears in

the following figure. The normality assumption is not justified. The method based
on the normal curve cannot be used to find a confidence interval for the density of
the rock.
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Confidence Intervals Using the Bootstrap
When a sample is drawn from a population that is not normal, and a confidence interval
is required, methods based on the bootstrap (see Section 4.12) may be used. There are
many such methods; we present a simple one here and show how to use it to construct a
confidence interval for a population mean.

We will consider the following example. The article “In-use Emissions from Heavy-
Duty Diesel Vehicles” (J. Yanowitz, Ph.D. thesis, Colorado School of Mines, 2001)
presents fuel efficiency measurements (in mpg) on a sample of 7 trucks. The data are as
follows:

7.69 4.97 4.56 6.49 4.34 6.24 4.45

Assume this is a random sample from a population of trucks, and assume that we wish
to construct a 95% confidence interval for the mean fuel efficiency μ of this population.
A look at the sample suggests that there is a gap near the middle of the distribution,
since there are no trucks in the sample with values between 5 and 6. Therefore one
might not wish to assume that the data were normal. The bootstrap provides a method
for constructing a confidence interval whose level will be approximately 95% (or any
other value that one might specify).

To construct a bootstrap confidence interval, we must draw bootstrap samples from
the data. A bootstrap sample is a sample of the same size as the data, drawn with replace-
ment. To describe this in detail, denote the values in a random sample by X1, . . . , Xn .
Imagine putting these values in a box and drawing one out at random. This would be
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TABLE 5.2 Bootstrap samples from the mileage data

Sample Sample Values Sample Mean

1 4.97 6.49 7.69 4.97 7.69 4.56 4.45 5.8314
2 6.24 4.97 4.56 4.97 4.56 6.24 7.69 5.6043
3 4.34 4.45 4.56 4.45 6.24 4.97 4.34 4.7643
4 4.45 6.49 7.69 6.24 4.97 4.45 4.34 5.5186
5 6.24 4.34 4.45 7.69 4.56 4.34 4.45 5.1529
6 4.34 4.97 7.69 4.97 6.24 6.24 6.24 5.8129
7 4.45 6.49 6.24 4.97 4.34 7.69 4.34 5.5029
8 6.49 7.69 4.97 6.49 6.49 4.34 4.56 5.8614
9 7.69 4.45 4.45 4.45 4.45 4.56 4.56 4.9443

10 6.24 4.56 4.97 6.49 4.45 4.97 6.24 5.4171
...

...
...

1000 4.34 7.69 4.45 4.56 7.69 4.45 7.69 5.8386

the first value in the bootstrap sample; call it X∗
1 . Then replace X∗

1 in the box, and draw
another value, X∗

2 . Continue in this way until n values X∗
1, . . . , X∗

n have been drawn.
This is a bootstrap sample. Note that each value in the bootstrap sample is drawn from
the complete data sample, so that it is likely that some values will appear more than once
while others will not appear at all.

We drew 1000 bootstrap samples from the given mileage data. The first 10 and the
last one of them are presented in Table 5.2. The sample mean is computed for each
bootstrap sample.

To construct a bootstrap confidence interval, many bootstrap samples (minimum
1000) must be drawn. Since we want a confidence interval for the population mean μ,
we compute the sample mean for each bootstrap sample. Let X

∗
i denote the mean of the

i th bootstrap sample. Since we want the level of the confidence interval to be as close to
95% as possible, we find the interval that spans the middle 95% of the bootstrap sample
means. The endpoints of this interval are the 2.5 percentile and the 97.5 percentile
of the list of bootstrap sample means. Denote these percentiles by X

∗
.025 and X

∗
.975,

respectively.
We will compute these percentiles for the mileage data. Following are the smallest

26 and largest 26 of the 1000 bootstrap sample means X
∗
i .

Smallest 26: 4.4929 4.4971 4.5357 4.5400 4.5514 4.5557 4.5557 4.5829
4.5986 4.6143 4.6429 4.6457 4.6729 4.6729 4.6900 4.6943
4.7014 4.7157 4.7257 4.7257 4.7329 4.7371 4.7414 4.7486
4.7643 4.7643

Largest 26: 6.4757 6.4757 6.4800 6.4900 6.4986 6.5214 6.5443 6.5543
6.5929 6.5929 6.6257 6.6257 6.6471 6.6671 6.6900 6.6929
6.7057 6.7129 6.7514 6.7971 6.7971 6.8486 6.9329 6.9686
7.0714 7.1043

Using the method of percentile calculation presented in Chapter 1, the 2.5 percentile
is the average of the 25th and 26th values in the ordered sample of 1000, and the
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97.5 percentile is the average of the 975th and 976th values. Therefore in this case
X

∗
.025 = 4.7643 and X

∗
.975 = 6.4757.

There are now two methods available to construct the confidence interval; which is
better is a matter of some controversy. In method 1, the confidence interval is
(X

∗
.025, X

∗
.975). Method 2 uses the mean X of the original sample in addition to the

percentiles; the method 2 confidence interval is (2X − X
∗
.975, 2X − X

∗
.025). For the

mileage data, the 95% confidence interval computed by method 1 is (4.7643, 6.4757).

The sample mean for the mileage data is X = 5.5343. Therefore the 95% confidence
interval computed by method 2 is(

2(5.5343) − 6.4757, 2(5.5343) − 4.7643
) = (

4.5929, 6.3043
)

The confidence intervals from the two methods are similar in this case.

Summary
Given a random sample X1, . . . , Xn from a population with mean μ, a bootstrap
confidence interval for μ with level approximately 100(1−α)% can be computed
as follows:

■ Draw a large number m (m ≥ 1000) of bootstrap samples of size n with
replacement from X1, . . . , Xn .

■ Compute the mean of each bootstrap sample. Denote these bootstrap
means by X

∗
1, . . . , X

∗
m .

■ Compute the 100α/2 and the 100(1 − α/2) percentiles of the bootstrap
means. Denote these values X

∗
α/2, X

∗
1−α/2.

■ There are two methods for computing the confidence interval.
Method 1: (X

∗
α/2, X

∗
1−α/2) Method 2: (2X − X

∗
1−α/2, 2X − X

∗
α/2)

Although it is not obvious at first, there is a connection between the bootstrap
method presented here for computing confidence intervals for a population mean and
the large-sample method based on the normal curve. In both cases the width of the
confidence interval should ideally equal the width of the middle 95% of the distribution of
the sample mean X . When the sample size is large, the distribution of X approximately
follows the normal curve, so the width of the 95% confidence interval is made to equal
the width of the middle 95% of the normal distribution (see Figure 5.1 in Section 5.1).
The bootstrap is used when the distribution of X is not necessarily normal. The collection
of bootstrap sample means X

∗
i approximates a random sample from the distribution of

X , so this collection, rather than the normal curve, forms the basis for the confidence
interval. The width of the bootstrap confidence interval is made to equal the width of
the middle 95% of the bootstrap sample means in order to approximate the width of the
unknown distribution of X .

There are many different methods for computing bootstrap confidence intervals. The
simple methods presented here work well when the population from which the bootstrap
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sample is drawn is approximately symmetric, but not so well when it is highly skewed.
More sophisticated methods have been developed that produce good results under more
general conditions. Additional information on this topic may be found in Efron and
Tibshirani (1993).

Using Simulation to Evaluate Confidence Intervals
A level 100(1 − α)% confidence interval is one that is computed by a procedure that
succeeds in covering the true value for 100(1−α)% of all the samples that could possibly
be drawn. When the assumptions governing the use of a method are violated, this suc-
cess rate (also called the coverage probability) may be lower. In practice, assumptions
often do not hold precisely. Some methods are very sensitive to their assumptions, in
that the coverage probability can become much less than 100(1 − α)% even when the
assumptions are only slightly violated. Other methods are “robust,” which means that the
coverage probability does not go much below 100(1−α)% so long as their assumptions
are approximately satisfied. The advantage of a robust method is that it is useful over
a wide range of conditions and requires less concern about assumptions. Simulation
experiments provide a good way to evaluate the robustness of a statistical procedure. We
present an experiment that will be instructive regarding the robustness of the Student’s t
method for constructing confidence intervals for a population mean (expression 5.9 in
Section 5.3).

The Student’s t distribution can be used to construct confidence intervals for a
population mean, provided the sample comes from a population that is “approximately”
normal. We will perform a simulation experiment to gain some insight into how rough
this approximation can be. The following figure shows the probability density function
for the 	(2.5, 0.5) distribution (this is also known as the chi-square distribution with five
degrees of freedom). It is fairly skewed and does not look too much like the normal curve.
The mean of this population is μ = 5. If the Student’s t method is applied to samples of
size 5 from this population, what proportion of the time will a 95% confidence interval
cover the true mean?
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0

Gamma distribution with r = 2.5 and � = 0.5 



Navidi-3810214 book November 12, 2013 15:37

392 CHAPTER 5 Confidence Intervals

To address this question, we generated 10,000 samples of size 5 from the 	(2.5, 0.5)

distribution. Denote the i th sample by X∗
1i , X∗

2i , X∗
3i , X∗

4i , X∗
5i ; denote its sample mean

by X
∗
i and its sample standard deviation by s∗

i . For each sample, we computed a confi-
dence interval using the formula for a 95% confidence interval based on the Student’s t
distribution (expression 5.9 in Section 5.3). The lower confidence limit is L∗

i = X∗
i −

2.776s∗
i /

√
5 (note that t4, .025 = 2.776). The upper confidence limit is U ∗

i = X∗
i +

2.776s∗
i /

√
5. Table 5.3 presents the results for the first 10 samples and for the last one.

The rightmost column contains a “1” if L∗
i < 5 < U ∗

i , in other words, if the i th confi-
dence interval covers the true mean of 5.

TABLE 5.3 Simulated data from the 	(2.5, 0.5) distribution

i X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X

∗
s∗ L ∗ U ∗ L ∗ < 5 < U ∗

1 2.58 6.54 3.02 3.40 1.23 3.36 1.96 0.92 5.79 1
2 1.28 1.44 1.45 10.22 4.17 3.71 3.83 –1.05 8.47 1
3 7.26 3.28 2.85 8.94 12.09 6.88 3.89 2.05 11.72 1
4 6.11 3.81 7.06 11.89 3.01 6.38 3.49 2.04 10.72 1
5 4.46 9.70 5.14 2.45 4.99 5.35 2.66 2.05 8.65 1
6 2.20 1.46 9.30 2.00 4.80 3.95 3.26 –0.09 7.99 1
7 7.17 13.33 6.19 10.31 8.49 9.10 2.83 5.59 12.61 1
8 1.97 1.81 4.13 1.28 5.16 2.87 1.68 0.78 4.95 0
9 3.65 1.98 8.19 7.20 3.81 4.97 2.61 1.72 8.21 1

10 3.39 2.31 1.86 5.97 5.28 3.76 1.80 1.52 6.00 1
...

...
...

...
...

...
...

...
...

...
...

10,000 7.30 7.21 1.64 3.54 3.41 4.62 2.52 1.49 7.75 1

Nine of the first 10 confidence intervals cover the true mean. So if we were to base
our results on the first 10 samples, we would estimate the coverage probability of the
confidence interval to be 0.90. Of course, 10 samples are not nearly enough. Out of all
10,000 samples, the true mean was covered in 9205 of them. We therefore estimate the
coverage probability to be 0.9205. While this is less than 95%, it is not dramatically less.
This simulation suggests that the Student’s t procedure is fairly robust, in other words,
that confidence intervals based on the Student’s t distribution cover the true mean almost
as often as they should, even when the population is somewhat different from normal.

If the population deviates substantially from normal, the Student’s t method will not
perform well. See Exercise 8.

Exercises for Section 5.10

1. The pressure of air (in MPa) entering a compressor
is measured to be X = 8.5 ± 0.2, and the pressure
of the air leaving the compressor is measured to be
Y = 21.2 ± 0.3. The intermediate pressure is there-
fore measured to be P = √

XY = 13.42. Assume
that X and Y come from normal populations and are
unbiased.

a. From what distributions is it appropriate to simu-
late values X ∗ and Y ∗?

b. Generate simulated samples of values X ∗, Y ∗,
and P∗.

c. Use the simulated sample to estimate the standard
deviation of P .
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d. Construct a normal probability plot for the
values P∗. Is it reasonable to assume that P is
approximately normally distributed?

e. If appropriate, use the normal curve to find
a 95% confidence interval for the intermediate
pressure.

2. The mass (in kg) of a soil specimen is measured to
be X = 1.18 ± 0.02. After the sample is dried in
an oven, the mass of the dried soil is measured to be
Y = 0.85 ± 0.02. Assume that X and Y come from
normal populations and are unbiased. The water con-
tent of the soil is measured to be

W = X − Y

X

a. From what distributions is it appropriate to simu-
late values X ∗ and Y ∗?

b. Generate simulated samples of values X ∗, Y ∗,
and W ∗.

c. Use the simulated sample to estimate the standard
deviation of W .

d. Construct a normal probability plot for the values
W ∗. Is it reasonable to assume that W is approx-
imately normally distributed?

e. If appropriate, use the normal curve to find a
95% confidence interval for the water content.

3. A student measures the acceleration A of a cart mov-
ing down an inclined plane by measuring the time T
that it takes the cart to travel 1 m and using the formula
A = 2/T 2. Assume that T = 0.55 ± 0.01 s, and that
the measurement T comes from a normal population
and is unbiased.

a. Generate an appropriate simulated sample of
values A∗. Is it reasonable to assume that A
is normally distributed?

b. Use the simulated sample to estimate the standard
deviation of A.

c. If appropriate, use the normal curve to find a
95% confidence interval for the acceleration of the
cart.

4. The initial temperature of a certain container is mea-
sured to be T0 = 20◦C. The ambient temperature is
measured to be Ta = 4◦C. An engineer uses Newton’s
law of cooling to compute the time needed to cool
the container to a temperature of 10◦C. Taking into
account the physical properties of the container, this

time (in minutes) is computed to be

T = 40 ln

(
T0 − Ta

10 − Ta

)

Assume that the temperature measurements T0 and Ta

are unbiased and come from normal populations with
standard deviation 0.1◦C.

a. Generate an appropriate simulated sample of val-
ues T ∗. Is it reasonable to assume that T is normally
distributed?

b. Use the simulated sample to estimate the standard
deviation of T .

c. If appropriate, use the normal curve to find a
95% confidence interval for the time needed to cool
the container to a temperature of 10◦C.

5. In the article “Occurrence and Distribution of Am-
monium in Iowa Groundwater” (K. Schilling, Water
Environment Research, 2002:177–186), ammonium
concentrations (in mg/L) were measured at a large
number of wells in the state of Iowa. These included
349 alluvial wells and 143 quaternary wells. The con-
centrations at the alluvial wells averaged 0.27 with a
standard deviation of 0.40, and those at the quater-
nary wells averaged 1.62 with a standard deviation
of 1.70. Since these standard deviations are based on
large samples, assume they are negligibly different
from the population standard deviations. An estimate
for the ratio of the mean concentration in quaternary
wells to the mean concentration in alluvial wells is
R = 1.62/0.27 = 6.00.

a. Since the sample means 1.62 and 0.27 are based on
large samples, it is reasonable to assume that they
come from normal populations. Which distribution
approximates the distribution of the sample mean
concentration of alluvial wells, N (0.27, 0.402) or
N (0.27, 0.402/349)? Which distribution approx-
imates the distribution of the sample mean con-
centration of quaternary wells, N (1.62, 1.702) or
N (1.62, 1.702/143)? Explain.

b. Generate a simulated sample of sample means
and of ratios of sample means. Is it reasonable
to assume that the ratio R is approximately nor-
mally distributed?

c. Use the simulated sample to estimate the standard
deviation of R.



Navidi-3810214 book November 12, 2013 15:37

394 CHAPTER 5 Confidence Intervals

d. If appropriate, use the normal curve to find a
95% confidence interval for the ratio of the mean
concentrations.

6. In Example 5.20 (in Section 5.3) the following mea-
surements were given for the cylindrical compressive
strength (in MPa) for 11 beams:

38.43 38.43 38.39 38.83 38.45 38.35
38.43 38.31 38.32 38.48 38.50

One thousand bootstrap samples were generated from
these data, and the bootstrap sample means were ar-
ranged in order. Refer to the smallest value as Y1, the
second smallest as Y2, and so on, with the largest be-
ing Y1000. Assume that Y25 = 38.3818, Y26 = 38.3818,
Y50 = 38.3909, Y51 = 38.3918, Y950 = 38.5218,
Y951 = 38.5236, Y975 = 38.5382, and Y976 = 38.5391.

a. Compute a 95% bootstrap confidence interval for
the mean compressive strength, using method 1 as
described on page 390.

b. Compute a 95% bootstrap confidence interval for
the mean compressive strength, using method 2 as
described on page 390.

c. Compute a 90% bootstrap confidence interval for
the mean compressive strength, using method 1 as
described on page 390.

d. Compute a 90% bootstrap confidence interval for
the mean compressive strength, using method 2 as
described on page 390.

7. Refer to Exercise 6.

a. Generate 1000 bootstrap samples from these data.
Find the 2.5 and 97.5 percentiles.

b. Compute a 95% bootstrap confidence interval for
the mean compressive strength, using method 1
as described on page 390.

c. Compute a 95% bootstrap confidence interval for
the mean compressive strength, using method 2
as described on page 390.

8. This exercise continues the study of the robustness
of the Student’s t method for constructing confidence
intervals. The following figure shows graphs of prob-
ability density functions for the N (0, 1) distribution,
the lognormal distribution with μ = 1 and σ 2 = 0.25,
and the gamma distribution with r = 0.5 and λ = 0.5
(this is also known as the chi-square distribution with
one degree of freedom). For each of these distribu-
tions, generate 10,000 samples of size 5, and for each
sample compute the upper and lower limits of a 95%

confidence interval using the Student’s t method. [If
necessary, it is possible to compute the lognormal and
gamma random values from normal random values.
Specifically, to compute a value X from a lognormal
distribution with μ = 1 and σ 2 = 0.25, generate
Y ∼ N (1, 0.25) and compute X = eY . To generate
a value X from a gamma distribution with r = 0.5
and λ = 0.5, generate Y ∼ N (0, 1) and compute
X = Y 2.]

Normal distribution with
 � = 0,  �2 = 1

0�1�2�3�4 1 2 3 4
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0.1

0
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Gamma distribution with
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a. The true mean of the N (0, 1) distribution is 0.
Based on the simulation results, estimate the cov-
erage probability (proportion of samples for which
the confidence interval covers the true mean) for
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samples of size 5 from the N (0, 1) distribution.
(Since the assumptions underlying the Student’s t
method are satisfied here, your answer should be
very close to 95%.)

b. The true mean of the lognormal distribution with
μ = 1 and σ 2 = 0.25 is 3.0802. Based on the
simulation results, estimate the coverage probabil-
ity (proportion of samples for which the confidence
interval covers the true mean) for samples of size
5 from the lognormal distribution with μ = 1 and
σ 2 = 0.25.

c. The true mean of the gamma distribution with
r = 0.5 and λ = 0.5 is 1. Based on the simulation
results, estimate the coverage probability (propor-
tion of samples for which the confidence interval
covers the true mean) for samples of size 5 from
the gamma distribution with r = 0.5 and λ = 0.5.

9. This exercise is designed to compare the performance
of the Agresti–Coull confidence interval for a pro-
portion (expression 5.5 on page 339) with that of
the traditional confidence interval (expression 5.8 on
page 341). We will use sample sizes of n = 10,
n = 17, and n = 40, with p = 0.5.

a. Generate 10,000 observations X ∗
i , each from a bi-

nomial distribution with n = 10 and p = 0.5.
For each observation, compute the upper and lower
limits for both the Agresti–Coull 95% confidence
interval and the traditional one. For each confi-
dence interval, compute its width (upper limit −
lower limit). Use the simulated data to estimate
the coverage probability and mean width for both
the Agresti–Coull and the traditional confidence
interval.

b. Repeat part (a), using n = 17.

c. Repeat part (a), using n = 40.

d. The performance of the traditional confidence
interval does not improve steadily as the sam-
ple size increases; instead it oscillates, so that the
coverage probability can be better for a smaller
sample than for a larger one. Compare the cov-
erage probabilities for the traditional method for
sample sizes of 17 and of 40. Do your results
confirm this fact?

e. For which sample sizes does the Agresti–Coull in-
terval have greater coverage probability than does
the traditional one? For which sample size are the
coverage probabilities nearly equal?

f. Other things being equal, a narrower confidence in-
terval is better than a wider one. Which method pro-
duces confidence intervals with the narrower mean
width?

10. A general method for finding a confidence interval for
the difference between two means of normal popu-
lations is given by expression (5.21) on page 365. A
pooled method that can be used when the variances
of the populations are known to be equal is given by
expression (5.22) on page 367. This exercise is de-
signed to compare the coverage probabilities of these
methods under a variety of conditions. A fair amount
of coding may be required, depending on the software
used.

a. Let nX = 10, nY = 10, σX = 1, and σY = 1. Gen-
erate 10,000 pairs of samples: X ∗

1, . . . , X ∗
nX

from
a N (0, σ 2

X ) distribution, and Y ∗
1 , . . . , Y ∗

nY
from a

N (0, σ 2
Y ) distribution. For each pair of samples,

compute a 95% confidence interval using the gen-
eral method, and a 95% confidence interval using
the pooled method. Note that each population has
mean 0, so the true difference between the means
is 0. Estimate the coverage probability for each
method by computing the proportion of confidence
intervals that cover the true value 0.

b. Repeat part (a), using nX = 10, nY = 10, σX = 1,
and σY = 5.

c. Repeat part (a), using nX = 5, nY = 20, σX = 1,
and σY = 5.

d. Repeat part (a), using nX = 20, nY = 5, σX = 1,
and σY = 5.

e. Does the coverage probability for the general
method differ substantially from 95% under any
of the conditions in parts (a) through (d)? (It
shouldn’t.)

f. Based on the results in parts (a) through (d), under
which conditions does the pooled method perform
most poorly?

i. When the sample sizes are equal and the vari-
ances differ.

ii. When both the sample sizes and the variances
differ, and the larger sample comes from the
population with the larger variance.

iii. When both the sample sizes and the variances
differ, and the smaller sample comes from the
population with the larger variance.
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Supplementary Exercises for Chapter 5

1. A molecular biologist is studying the effectiveness of
a particular enzyme to digest a certain sequence of
DNA nucleotides. He divides six DNA samples into
two parts, treats one part with the enzyme, and leaves
the other part untreated. He then uses a polymerase
chain reaction assay to count the number of DNA frag-
ments that contain the given sequence. The results are
as follows:

Sample

1 2 3 4 5 6

Enzyme present 22 16 11 14 12 30

Enzyme absent 43 34 16 27 10 40

Find a 95% confidence interval for the difference be-
tween the mean numbers of fragments.

2. Refer to Exercise 1. Another molecular biologist re-
peats the study with a different design. She makes up
12 DNA samples, and then chooses 6 at random to
be treated with the enzyme and 6 to remain untreated.
The results are as follows:

Enzyme present: 12 15 14 22 22 20
Enzyme absent: 23 39 37 18 26 24

Find a 95% confidence interval for the difference be-
tween the mean numbers of fragments.

3. The article “Genetically Based Tolerance to
Endosulfan, Chromium (VI) and Fluoranthene
in the Grass Shrimp Palaemonetes pugio” (R. Harper-
Arabie, Ph.D. Thesis, Colorado School of Mines,
2002) reported that out of 1985 eggs produced by
shrimp at the Diesel Creek site in Charleston, South
Carolina, 1919 hatched, and at the Shipyard Creed
site, also in Charleston, 4561 out of 4988 eggs hatched.
Find a 99% confidence interval for the difference be-
tween the proportions of eggs that hatch at the two
sites.

4. A sample of 87 glass sheets has a mean thickness of
4.20 mm with a standard deviation of 0.10 mm.

a. Find a 98% confidence interval for the population
mean thickness.

b. What is the level of the confidence interval
(4.185, 4.215)?

c. How many glass sheets must be sampled so that a
98% confidence interval will specify the mean to
within ±0.015?

5. A sample of 125 pieces of yarn had mean breaking
strength 6.1 N and standard deviation 0.7 N. A new
batch of yarn was made, using new raw materials from
a different vendor. In a sample of 75 pieces of yarn
from the new batch, the mean breaking strength was
5.8 N and the standard deviation was 1.0 N. Find a
90% confidence interval for the difference in mean
breaking strength between the two types of yarn.

6. Refer to Exercise 5. Additional pieces of yarn will be
sampled in order to improve the precision of the con-
fidence interval. Which would increase the precision
the most: sampling 50 additional pieces of yarn from
the old batch, 50 additional pieces from the new batch,
or 25 additional pieces from each batch?

7. Leakage from underground fuel tanks has been
a source of water pollution. In a random sample of
87 gasoline stations, 13 were found to have at least
one leaking underground tank.

a. Find a 95% confidence interval for the proportion
of gasoline stations with at least one leaking un-
derground tank.

b. How many stations must be sampled so that a
95% confidence interval specifies the proportion
to within ±0.03?

8. A new catalyst is being investigated for use in the
production of a plastic chemical. Ten batches of
the chemical are produced. The mean yield of the
10 batches is 72.5% and the standard deviation is
5.8%. Assume the yields are independent and approx-
imately normally distributed. Find a 99% confidence
interval for the mean yield when the new catalyst is
used.

9. Three confidence intervals for the mean shear strength
(in ksi) of anchor bolts of a certain type are com-
puted, all from the same sample. The intervals
are (4.01, 6.02), (4.20, 5.83), and (3.57, 6.46).
The levels of the intervals are 90%, 95%, and 99%.
Which interval has which level?

10. A pollster plans to survey a random sample of vot-
ers in a certain city to ask whether they support an
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increase in property taxes to fund the construction of
a new elementary school. How many voters should be
sampled to be sure that a 95% confidence interval for
the proportion who favor the proposal specifies that
proportion to within ±0.04?

11. In the article “Groundwater Electromagnetic Imag-
ing in Complex Geological and Topographical
Regions: A Case Study of a Tectonic Boundary in
the French Alps” (S. Houtot, P. Tarits, et al., Geo-
physics, 2002:1048–1060), the pH was measured
for several water samples in various locations near
Gittaz Lake in the French Alps. The results for
11 locations on the northern side of the lake and for
6 locations on the southern side are as follows:

Northern side: 8.1 8.2 8.1 8.2 8.2 7.4
7.3 7.4 8.1 8.1 7.9

Southern side: 7.8 8.2 7.9 7.9 8.1 8.1

Find a 98% confidence interval for the difference in
pH between the northern and southern side.

12. Polychlorinated biphenyls (PCBs) are a group of syn-
thetic oil-like chemicals that were at one time widely
used as insulation in electrical equipment and were
discharged into rivers. They were discovered to be a
health hazard and were banned in the 1970s. Since
then, much effort has gone into monitoring PCB con-
centrations in waterways. Assume that water samples
are being drawn from a waterway in order to estimate
the PCB concentration.

a. Suppose that a random sample of size 80 has a
sample mean of 1.69 ppb and a sample standard
deviation of 0.25 ppb. Find a 95% confidence in-
terval for the PCB concentration.

b. Estimate the sample size needed so that a 95% con-
fidence interval will specify the population mean
to within ±0.02 ppb.

13. A 99% confidence interval for a population mean
based on a sample of size 64 is computed to be
(16.3, 18.7). How large a sample is needed so that
a 99% confidence interval will specify the mean to
within ±1.0?

14. A sample of 100 components is drawn, and a 95%
confidence interval for the proportion defective spec-
ifies this proportion to within ±0.06. To get a more
precise estimate of the number defective, the sample
size will be increased to 400, and the confidence

interval will be recomputed. What will be the approx-
imate width of the new confidence interval? Choose
the best answer:

i. ±0.015

ii. ±0.03

iii. ±0.06

iv. ±0.12

v. ±0.24

15. A metallurgist makes several measurements of the
melting temperature of a certain alloy and computes a
95% confidence interval to be 2038±2◦C. Assume the
measuring process for temperature is unbiased. True
or false:

a. There is 95% probability that the true melting tem-
perature is in the interval 2038 ± 2◦C.

b. If the experiment were repeated, the probability is
95% that the mean measurement from that exper-
iment would be in the interval 2038 ± 2◦C.

c. If the experiment were repeated, and a 95% confi-
dence interval computed, there is 95% probability
that the confidence interval would cover the true
melting point.

d. If one more measurement were made, the prob-
ability is 95% that it would be in the interval
2038 ± 2◦C.

16. In a study of the lifetimes of electronic components,
a random sample of 400 components are tested until
they fail to function. The sample mean lifetime was
370 hours and the standard deviation was 650 hours.
True or false:

a. An approximate 95% confidence interval for the
mean lifetime of this type of component is from
306.3 to 433.7 hours.

b. About 95% of the sample components had life-
times between 306.3 and 433.7 hours.

c. If someone takes a random sample of 400 com-
ponents, divides the sample standard deviation of
their lifetimes by 20, and then adds and subtracts
that quantity from the sample mean, there is about
a 68% chance that the interval so constructed will
cover the mean lifetime of this type of component.

d. The z table can’t be used to construct confidence
intervals here, because the lifetimes of the compo-
nents don’t follow the normal curve.
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e. About 68% of the components had lifetimes in the
interval 370 ± 650 hours.

17. The temperature of a certain solution is estimated by
taking a large number of independent measurements
and averaging them. The estimate is 37◦C, and the
uncertainty (standard deviation) in this estimate is
0.1◦C.

a. Find a 95% confidence interval for the
temperature.

b. What is the confidence level of the interval 37 ±
0.1◦C?

c. If only a small number of independent measure-
ments had been made, what additional assumption
would be necessary in order to compute a confi-
dence interval?

d. Making the additional assumption, compute a 95%
confidence interval for the temperature if 10 mea-
surements were made.

18. Boxes of nails contain 100 nails each. A sample of
10 boxes is drawn, and each of the boxes is weighed.
The average weight is 1500 g and the standard devi-
ation is 5 g. Assume the weight of the box itself is
negligible, so that all the weight is due to the nails in
the box.

a. Let μbox denote the mean weight of a box of nails.
Find a 95% confidence interval for μbox.

b. Let μnail denote the mean weight of a nail. Express
μnail in terms of μbox.

c. Find a 95% confidence interval for μnail.

19. Let X represent the number of events that are ob-
served to occur in n units of time or space, and as-
sume X ∼ Poisson(nλ), where λ is the mean number
of events that occur in one unit of time or space. As-
sume X is large, so that X ∼ N (nλ, nλ). Follow steps
(a) through (d) to derive a level 100(1 − α)% confi-
dence interval for λ. Then in part (e), you are asked to
apply the result found in part (d).

a. Show that for a proportion 1 − α of all possible
samples, X − zα/2σX < nλ < X + zα/2σX .

b. Let λ̂ = X/n. Show that σλ̂ = σX/n.

c. Conclude that for a proportion 1−α of all possible
samples, λ̂ − zα/2σλ̂ < λ < λ̂ + zα/2σλ̂.

d. Use the fact that σλ̂ ≈
√

λ̂/n to derive an expres-
sion for the level 100(1 −α)% confidence interval
for λ.

e. A 5 mL sample of a certain suspension is found
to contain 300 particles. Let λ represent the mean
number of particles per mL in the suspension. Find
a 95% confidence interval for λ.

20. The answer to Exercise 19 part (d) is needed for this
exercise. A geologist counts 64 emitted particles in
one minute from a certain radioactive rock.

a. Find a 95% confidence interval for the rate of emis-
sions in units of particles per minute.

b. After four minutes, 256 particles are counted. Find
a 95% confidence interval for the rate of emissions
in units of particles per minute.

c. For how many minutes should errors be counted
in order that the 95% confidence interval specifies
the rate to within ±1 particle per minute?

21. In a Couette flow, two large flat plates lie one atop
another, separated by a thin layer of fluid. If a shear
stress is applied to the top plate, the viscosity of the
fluid produces motion in the bottom plate as well. The
velocity V in the top plate relative to the bottom plate
is given by V = τh/μ, where τ is the shear stress
applied to the top plate, h is the thickness of the fluid
layer, and μ is the viscosity of the fluid.

Assume that μ, h, and τ are measured inde-
pendently and that the measurements are unbiased
and normally distributed. The measured values are
μ = 1.6 Pa · s, h = 15 mm, and τ = 25 Pa. The uncer-
tainties (standard deviations) of these measurements
are σμ = 0.05, σh = 1.0, and στ = 1.0.

a. Use the method of propagation of error (Sec-
tion 3.3) to estimate V and its uncertainty σV .

b. Assuming the estimate of V to be normally dis-
tributed, find a 95% confidence interval for V .

c. Perform a simulation to determine whether or
not the confidence interval found in part (b) is
valid.

22. The carbon content (in ppm) was measured for each
of six silicon wafers. The results were

2.41 2.45 2.21 2.32 2.25 2.38
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Assume that carbon contents are normally distributed.

a. Find a 95% prediction interval for the carbon con-
tent of a single wafer.

b. Find a tolerance interval for the carbon content that
contains 90% of the wafers with 95% confidence.

23. Diameters, in mm, were measured for eight specimens
of a certain type of ball bearing. The results were

8.4 8.2 9.5 9.3 8.8 9.8 8.5 9.1

Assume the diameters are normally distributed.

a. Find a 98% prediction interval for the diameter of
a single ball bearing.

b. Find a tolerance interval for the diameter that
contains 99% of the ball bearings with 95% confi-
dence.

24. A sample of eight repair records for a certain fiber-
optic component was drawn, and the cost of each re-
pair, in dollars, was recorded. The results were

30 35 19 23 27 22 26 16

Assume the population of repair records is normal.
Find a 95% confidence interval for the population stan-
dard deviation.

25. Refer to Exercise 24. A sample of six repair records for
a different type of component was drawn. The repair
costs, in dollars, were as follows.

93 97 27 79 81 87

Would it be appropriate to compute a 95% confidence
interval for the population standard deviation of the
costs? If so, compute it. If not, explain why not.

26. A sample of seven concrete blocks had their crushing
strength measured in MPa. The results were

1367.6 1411.5 1318.7 1193.6 1406.2
1425.7 1572.4

Ten thousand bootstrap samples were generated from
these data, and the bootstrap sample means were ar-
ranged in order. Refer to the smallest mean as Y1, the
second smallest as Y2, and so on, with the largest be-
ing Y10,000. Assume that Y50 = 1283.4, Y51 = 1283.4,
Y100 = 1291.5, Y101 = 1291.5, Y250 = 1305.5,
Y251 = 1305.5, Y500 = 1318.5, Y501 = 1318.5,
Y9500 = 1449.7, Y9501 = 1449.7, Y9750 = 1462.1,
Y9751 = 1462.1, Y9900 = 1476.2, Y9901 = 1476.2,
Y9950 = 1483.8, and Y9951 = 1483.8.

a. Compute a 95% bootstrap confidence interval for
the mean compressive strength, using method 1 as
described on page 390.

b. Compute a 95% bootstrap confidence interval for
the mean compressive strength, using method 2 as
described on page 390.

c. Compute a 99% bootstrap confidence interval for
the mean compressive strength, using method 1 as
described on page 390.

d. Compute a 99% bootstrap confidence interval for
the mean compressive strength, using method 2 as
described on page 390.

27. Refer to Exercise 26.

a. Generate 10,000 bootstrap samples from the data
in Exercise 26. Find the bootstrap sample mean
percentiles that are used to compute a 99% confi-
dence interval.

b. Compute a 99% bootstrap confidence interval for
the mean compressive strength, using method 1 as
described on page 390.

c. Compute a 99% bootstrap confidence interval for
the mean compressive strength, using method 2 as
described on page 390.
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6
Hypothesis Testing

Introduction

In Example 5.2 (in Section 5.1) a sample of 50 microdrills had an average lifetime of
X = 12.68 holes drilled and a standard deviation of s = 6.83. Let us assume that the
main question is whether or not the population mean lifetime μ is greater than 11. We
address this question by examining the value of the sample mean X . We see that X > 11,
but because of the uncertainty in X , this does not guarantee that μ > 11. We would like
to know just how certain we can be that μ > 11. A confidence interval is not quite what
we need. In Example 5.2, a 95% confidence interval for the population mean μ was
computed to be (10.79, 14.57). This tells us that we are 95% confident that μ is between
10.79 and 14.57. But the confidence interval does not directly tell us how confident we
can be that μ > 11.

The statement “μ > 11” is a hypothesis about the population mean μ. To determine
just how certain we can be that a hypothesis such as this is true, we must perform a
hypothesis test. A hypothesis test produces a number between 0 and 1 that measures
the degree of certainty we may have in the truth of a hypothesis about a quantity such
as a population mean or proportion. It turns out that hypothesis tests are closely related
to confidence intervals. In general, whenever a confidence interval can be computed, a
hypothesis test can also be performed, and vice versa.

6.1 Large-Sample Tests for a Population Mean

We begin with an example. A certain type of automobile engine emits a mean of 100 mg
of oxides of nitrogen (NOx ) per second at 100 horsepower. A modification to the engine
design has been proposed that may reduce NOx emissions. The new design will be put
into production if it can be demonstrated that its mean emission rate is less than 100 mg/s.
A sample of 50 modified engines are built and tested. The sample mean NOx emission
is 92 mg/s, and the sample standard deviation is 21 mg/s.
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The population in this case consists of the emission rates from the engines that would
be built if this modified design is put into production. If there were no uncertainty in the
sample mean, then we could conclude that the modification would reduce emissions—
from 100 to 92 mg/s. Of course, there is uncertainty in the sample mean. The population
mean will actually be somewhat higher or lower than 92.

The manufacturers are concerned that the modified engines might not reduce emis-
sions at all, that is, that the population mean might be 100 or more. They want to know
whether this concern is justified. The question, therefore, is this: Is it plausible that this
sample, with its mean of 92, could have come from a population whose mean is 100 or
more?

This is the sort of question that hypothesis tests are designed to address, and we
will now construct a hypothesis test to address this question. We have observed a sample
with mean 92. There are two possible interpretations of this observation:

1. The population mean is actually greater than or equal to 100, and the sample mean
is lower than this only because of random variation from the population mean.
Thus emissions will not go down if the new design is put into production, and the
sample is misleading.

2. The population mean is actually less than 100, and the sample mean reflects this
fact. Thus the sample represents a real difference that can be expected if the new
design is put into production.

These two explanations have standard names. The first is called the null hypothesis.
In most situations, the null hypothesis says that the effect indicated by the sample
is due only to random variation between the sample and the population. The sec-
ond explanation is called the alternate hypothesis. The alternate hypothesis says that
the effect indicated by the sample is real, in that it accurately represents the whole
population.

In our example, the engine manufacturers are concerned that the null hypothesis
might be true. A hypothesis test assigns a quantitative measure to the plausibility of the
null hypothesis. After performing a hypothesis test, we will be able to tell the manufac-
turers, in numerical terms, precisely how valid their concern is.

To make things more precise, we express everything in symbols. The null hypothesis
is denoted H0. The alternate hypothesis is denoted H1. As usual, the population mean is
denoted μ. We have, therefore,

H0 : μ ≥ 100 versus H1 : μ < 100

In performing a hypothesis test, we essentially put the null hypothesis on trial. We
begin by assuming that H0 is true, just as we begin a trial by assuming a defendant to
be innocent. The random sample provides the evidence. The hypothesis test involves
measuring the strength of the disagreement between the sample and H0 to produce a
number between 0 and 1, called a P-value. The P-value measures the plausibility of
H0. The smaller the P-value, the stronger the evidence is against H0. If the P-value
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is sufficiently small, we may be willing to abandon our assumption that H0 is true and
believe H1 instead. This is referred to as rejecting the null hypothesis.

In this example, let X1, . . . , X50 be the emissions rates measured from the 50 sample
engines. The observed value of the sample mean is X = 92. We will also need to know
the sample standard deviation, which is s = 21. We must assess the plausibility of H0,
which says that the population mean is 100 or more, given that we have observed a
sample from this population whose mean is only 92. We will do this in two steps, as
follows:

1. We will compute the distribution of X under the assumption that H0 is true. This
distribution is called the null distribution of X .

2. We will compute the P-value. This is the probability, under the assumption that
H0 is true, of observing a value of X whose disagreement with H0 is as least as
great as that of the observed value of 92.

To perform step 1, note that X is the mean of a large sample, so the Central
Limit Theorem specifies that it comes from a normal distribution whose mean is μ

and whose variance is σ 2/50, where σ 2 is the population variance and 50 is the sample
size. We must specify values for μ and for σ in order to determine the null distribu-
tion. Since we are assuming that H0 is true, we assume that μ ≥ 100. This does not
provide a specific value for μ. We take as the assumed value for μ the value clos-
est to the alternate hypothesis H1, for reasons that will be explained later in this sec-
tion. Thus we assume μ = 100. We do not know the population standard deviation σ .
However, since the sample is large, we may approximate σ with the sample standard
deviation s = 21. Thus we have determined that under H0, X has a normal distribu-
tion with mean 100 and standard deviation 21/

√
50 = 2.97. The null distribution is

X ∼ N (100, 2.972).
We are now ready for step 2. Figure 6.1 illustrates the null distribution. The number

92 indicates the point on the distribution corresponding to the observed value of X . How
plausible is it that a number sampled from this distribution would be as small as 92? This
is measured by the P-value. The P-value is the probability that a number drawn from
the null distribution would disagree with H0 at least as strongly as the observed value of
X , which is 92. Since H0 specifies that the mean of X is greater than or equal to 100,
values less than 92 are in greater disagreement with H0. The P-value, therefore, is the
probability that a number drawn from an N (100, 2.972) distribution is less than or equal
to 92. This probability is determined by computing the z-score:

z = 92 − 100

2.97
= −2.69

From the z table, the probability that a standard normal random variable z is less
than or equal to −2.69 is 0.0036. The P-value for this test is 0.0036.

The P-value, as promised, provides a quantitative measure of the plausibility of H0.
But how do we interpret this quantity? The proper interpretation is rather subtle. The
P-value tells us that if H0 were true, the probability of drawing a sample whose mean
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was as far from H0 as the observed value of 92 is only 0.0036. Therefore, one of the
following two conclusions is possible:

■ H0 is false.

■ H0 is true, which implies that of all the samples that might have been drawn, only
0.36% of them have a mean as small as or smaller than that of the sample actually
drawn. In other words, our sample mean lies in the most extreme 0.36% of its
distribution.

z = �2.69
10092

P = 0.0036

FIGURE 6.1 The null distribution of X is N (100, 2.972). Thus if H0 is true, the
probability that X takes on a value as extreme as or more extreme than the observed
value of 92 is 0.0036. This is the P-value.

In practice, events in the most extreme 0.36% of their distributions very seldom occur.
Therefore we reject H0 and conclude that the new engines will lower emissions.

The null hypothesis in this case specified only that μ ≥ 100. In assuming H0 to be
true, why did we choose the value μ = 100, which is closest to H1? To give H0 a fair
test, we must test it in its most plausible form. The most plausible value for μ is the value
closest to X . Now X = 92, so among the values μ ≥ 100, the closest to X is μ = 100.
This value is also the one closest to H1. This is typical. In practice, when it is of interest
to perform a hypothesis test, the most plausible value for H0 will be the value closest
to H1.

It is natural to ask how small the P-value should be in order to reject H0.
Some people use the “5% rule”; they reject H0 if P ≤ 0.05. However, there is no
scientific justification for this or any other rule. We discuss this issue in more detail in
Section 6.2.

Note that the method we have just described uses the Central Limit Theorem. It
follows that for this method to be valid, the sample size must be reasonably large, say
30 or more. Hypothesis tests that are sometimes valid for small samples are presented
in Section 6.4.

Finally, note that the calculation of the P-value was done by computing a z-score.
For this reason, the z-score is called a test statistic. A test that uses a z-score as a test
statistic is called a z test.

There are many kinds of hypothesis tests. All of them follow a basic series of steps,
which are outlined in the following box.
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Steps in Performing a Hypothesis Test

1. Define H0 and H1.

2. Assume H0 to be true.

3. Compute a test statistic. A test statistic is a statistic that is used to assess
the strength of the evidence against H0.

4. Compute the P-value of the test statistic. The P-value is the probability,
assuming H0 to be true, that the test statistic would have a value whose
disagreement with H0 is as great as or greater than that actually
observed. The P-value is also called the observed significance level.

5. State a conclusion about the strength of the evidence against H0.

Another Way to Express H0

We have mentioned that when assuming H0 to be true, we use the value closest to H1.
Some authors consider this single value to be H0, so that, in the previous example, they
would write H0 : μ = 100 instead of H0 : μ ≥ 100. There is an advantage to this notation,
which is that it makes it clear which value is being used when H0 is assumed to be true.
But there is a disadvantage when it comes to interpretation. Generally, the value closest
to H1 is of no special interest. For example, in the emissions example just discussed,
we are not specifically concerned with the possibility μ = 100, but with the possibility
μ ≥ 100. The importance of rejecting H0 is not that we reject the single value μ = 100,
but that we reject all values μ ≥ 100. For this reason, we choose to write H0 : μ ≥ 100.

Example
6.1 The article “Wear in Boundary Lubrication” (S. Hsu, R. Munro, and M. Shen, Journal

of Engineering Tribology, 2002:427–441) discusses several experiments involving
various lubricants. In one experiment, 45 steel balls lubricated with purified paraffin
were subjected to a 40 kg load at 600 rpm for 60 minutes. The average wear, measured
by the reduction in diameter, was 673.2 μm, and the standard deviation was 14.9 μm.
Assume that the specification for a lubricant is that the mean wear be less than 675 μm.
Find the P-value for testing H0 : μ ≥ 675 versus H1 : μ < 675.

Solution
First let’s translate the problem into statistical language. We have a simple random
sample X1, . . . , X45 of wear diameters. The sample mean and standard deviation are
X = 673.2 and s = 14.9. The population mean is unknown and denoted by μ. Before
getting into the construction of the test, we’ll point out again that the basic issue is
the uncertainty in the sample mean. If there were no uncertainty in the sample mean,
we could conclude that the lubricant would meet the specification, since 673.2 < 675.
The question is whether the uncertainty in the sample mean is large enough so that
the population mean could plausibly be as high as 675.

To perform the hypothesis test, we follow the steps given earlier. The null hy-
pothesis is that the lubricant does not meet the specification, and that the difference



Navidi-3810214 book November 11, 2013 14:8

6.1 Large-Sample Tests for a Population Mean 405

between the sample mean of 673.2 and 675 is due to chance. The alternate hypothesis
is that the lubricant does indeed meet the specification.

We assume H0 is true, so that the sample was drawn from a population with mean
μ = 675 (the value closest to H1). We estimate the population standard deviation σ

with the sample standard deviation s = 14.9. The test is based on X . Under H0, X
comes from a normal population with mean 675 and standard deviation 14.9/

√
45 =

2.22. The P-value is the probability of observing a sample mean less than or equal
to 673.2. The test statistic is the z-score, which is

z = 673.2 − 675

2.22
= −0.81

The P-value is 0.209 (see Figure 6.2). Therefore if H0 is true, there is a 20.9%
chance to observe a sample whose disagreement with H0 is as least as great as that
which was actually observed. Since 0.209 is not a very small probability, we do not
reject H0. Instead, we conclude that H0 is plausible. The data do not show conclusively
that the lubricant meets the specification. Note that we are not concluding that H0 is
true, only that it is plausible. We will discuss this distinction further in Section 6.2.

z = �0.81
675673.2

P = 0.209

FIGURE 6.2 The null distribution of X is N (675, 2.222). Thus if H0 is true, the prob-
ability that X takes on a value as extreme as or more extreme than the observed value
of 673.2 is 0.209. This is the P-value.

The following computer output (from MINITAB) presents the results of
Example 6.1.

One-Sample Z: Wear

Test of mu = 675 vs < 675
The assumed standard deviation = 14.9

95%
Upper

Variable N Mean StDev SE Mean Bound Z P
Wear 45 673.200 14.9 2.221 676.853 −0.81 0.209

The output states the null hypothesis as μ = 675 rather than μ ≥ 675. This reflects
the fact that the value μ = 675 is used to construct the null distribution. The quantity
“SE Mean” is the standard deviation of X , estimated by s/

√
n. The output also provides

a 95% upper confidence bound for μ.
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In the examples shown so far, the null hypothesis specified that the population mean
was less than or equal to something, or greater than or equal to something. In some
cases, a null hypothesis specifies that the population mean is equal to a specific value.
Example 6.2 provides an illustration.

Example
6.2 A scale is to be calibrated by weighing a 1000 g test weight 60 times. The 60 scale

readings have mean 1000.6 g and standard deviation 2 g. Find the P-value for testing
H0 : μ = 1000 versus H1 : μ �= 1000.

Solution
Let μ denote the population mean reading. The null hypothesis says that the scale is
in calibration, so that the population mean μ is equal to the true weight of 1000 g, and
the difference between the sample mean reading and the true weight is due entirely
to chance. The alternate hypothesis says that the scale is out of calibration.

In this example, the null hypothesis specifies that μ is equal to a specific value,
rather than greater than or equal to or less than or equal to. For this reason, values of X
that are either much larger or much smaller than μ will provide evidence against H0.
In the previous examples, only the values of X on one side of μ provided evidence
against H0.

We assume H0 is true, and that therefore the sample readings were drawn from a
population with mean μ = 1000. We approximate the population standard deviation
σ with s = 2. The null distribution of X is normal with mean 1000 and standard
deviation 2/

√
60 = 0.258. The z-score of the observed value X = 1000.6 is

z = 1000.6 − 1000

0.258
= 2.32

Since H0 specifies μ = 1000, regions in both tails of the curve are in greater
disagreement with H0 than the observed value of 1000.6. The P-value is the sum of
the areas in both of these tails, which is 0.0204 (see Figure 6.3). Therefore, if H0 is
true, the probability of a result as extreme as or more extreme than that observed is
only 0.0204. The evidence against H0 is pretty strong. It would be prudent to reject
H0 and to recalibrate the scale.

z = �2.32 z = 2.32
1000999.4 1000.6

0.0102 0.0102

FIGURE 6.3 The null distribution of X is N (1000, 0.2582). Thus if H0 is true, the
probability that X takes on a value as extreme as or more extreme than the observed
value of 1000.6 is 0.0204. This is the P-value.
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When H0 specifies a single value for μ, as in Example 6.2, both tails contribute to
the P-value, and the test is said to be a two-sided or two-tailed test. When H0 specifies
only that μ is greater than or equal to, or less than or equal to a value, only one tail
contributes to the P-value, and the test is called a one-sided or one-tailed test.

We conclude this section by summarizing the procedure used to perform a large-
sample hypothesis test for a population mean.

Summary
Let X1, . . . , Xn be a large (e.g., n > 30) sample from a population with mean μ

and standard deviation σ .
To test a null hypothesis of the form H0 : μ ≤ μ0, H0 : μ ≥ μ0, or H0 : μ = μ0:

■ Compute the z-score: z = X − μ0

σ/
√

n
.

If σ is unknown it may be approximated with s.

■ Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:

Alternate Hypothesis P-value
H1 : μ > μ0 Area to the right of z
H1 : μ < μ0 Area to the left of z
H1 : μ �= μ0 Sum of the areas in the tails cut off by z and −z

Exercises for Section 6.1

1. In an experiment to measure the lifetimes of parts man-
ufactured from a certain aluminum alloy, 73 parts were
loaded cyclically until failure. The mean number of
kilocycles to failure was 783, and the standard devi-
ation was 120. Let μ represent the mean number of
kilocycles to failure for parts of this type. A test is
made of H0 : μ ≤ 750 versus H1 : μ > 750.

a. Find the P-value.

b. Either the mean number of kilocycles to failure
is greater than 750, or the sample is in the most
extreme % of its distribution.

2. A simple random sample consists of 65 lengths of pi-
ano wire that were tested for the amount of extension
under a load of 30 N. The average extension for the
65 lines was 1.102 mm and the standard deviation was
0.020 mm. Let μ represent the mean extension for all
specimens of this type of piano wire.

a. Find the P-value for testing H0 : μ ≤ 1.1 versus
H1 : μ > 1.1.

b. Either the mean extension for this type of wire is
greater than 1.1 mm, or the sample is in the most
extreme % of its distribution.

3. The article “Supply Voltage Quality in Low-Voltage
Industrial Networks of Estonia” (T. Vinnal, K. Janson,
et al., Estonian Journal of Engineering, 2012:102–
126) presents voltage measurements for a sample of
66 industrial networks in Estonia. Assume the rated
voltage for these networks is 232 V. The sample mean
voltage was 231.7 V with a standard deviation of
2.19 V. Let μ represent the population mean voltage
for these networks.

a. Find the P-value for testing H0 : μ = 232 versus
H1 : μ �= 232.

b. Either the mean voltage is not equal to 232, or the
sample is in the most extreme % of
its distribution.

4. The pH of an acid solution used to etch aluminum
varies somewhat from batch to batch. In a sample of
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50 batches the mean pH was 2.6, with a standard devi-
ation of 0.3. Let μ represent the mean pH for batches
of this solution.

a. Find the P-value for testing H0 : μ ≤ 2.5 versus
H1 : μ > 2.5.

b. Either the mean pH is greater than 2.5 mm, or the
sample is in the most extreme % of its
distribution.

5. Recently many companies have been experimenting
with telecommuting, allowing employees to work
at home on their computers. Among other things,
telecommuting is supposed to reduce the number of
sick days taken. Suppose that at one firm, it is known
that over the past few years employees have taken a
mean of 5.4 sick days. This year, the firm introduces
telecommuting. Management chooses a simple ran-
dom sample of 80 employees to follow in detail, and,
at the end of the year, these employees average 4.5 sick
days with a standard deviation of 2.7 days. Let μ rep-
resent the mean number of sick days for all employees
of the firm.

a. Find the P-value for testing H0 : μ ≥ 5.4 versus
H1 : μ < 5.4.

b. Do you believe it is plausible that the mean number
of sick days is at least 5.4, or are you convinced
that it is less than 5.4? Explain your reasoning.

6. A certain type of stainless steel powder is supposed
to have a mean particle diameter of μ = 15 μm. A
random sample of 87 particles had a mean diameter
of 15.2 μm, with a standard deviation of 1.8 μm. A
test is made of H0 : μ = 15 versus H1 : μ �= 15.

a. Find the P-value.

b. Do you believe it is plausible that the mean diam-
eter is 15 μm, or are you convinced that it differs
from 15 μm? Explain your reasoning.

7. When it is operating properly, a chemical plant has
a mean daily production of at least 740 tons. The
output is measured on a simple random sample of
60 days. The sample had a mean of 715 tons/day and
a standard deviation of 24 tons/day. Let μ represent
the mean daily output of the plant. An engineer tests
H0 : μ ≥ 740 versus H1 : μ < 740.

a. Find the P-value.

b. Do you believe it is plausible that the plant is
operating properly or are you convinced that the

plant is not operating properly? Explain your
reasoning.

8. Lasers can provide highly accurate measurements of
small movements. To determine the accuracy of such
a laser, it was used to take 100 measurements of a
known quantity. The sample mean error was 25 μm
with a standard deviation of 60 μm. The laser is prop-
erly calibrated if the mean error is μ = 0. A test is
made of H0 : μ = 0 versus H1 : μ �= 0.

a. Find the P-value.

b. Do you believe it is plausible that the laser is prop-
erly calibrated, or are you convinced that it is out
of calibration? Explain your reasoning.

9. The article “Predicting Profit Performance for Select-
ing Candidate International Construction Projects”
(S. Han, D. Kim, and H. Kim, Journal of Construc-
tion Engineering and Management Science, 2007:
425–436) presents an analysis of the profit of inter-
national construction projects. In a sample of 126
projects, the average profit margin (in percent) was
8.24 with a standard deviation of 16.33. A test is made
of H0 : μ ≥ 10 versus H1 : μ < 10.

a. Find the P-value.

b. Do you believe that it is plausible that the mean
profit margin is at least 10%, or are you convinced
that it is less than 10%? Explain your reasoning.

10. A new concrete mix is being designed to provide ad-
equate compressive strength for concrete blocks. The
specification for a particular application calls for the
blocks to have a mean compressive strength μ greater
than 1350 kPa. A sample of 100 blocks is produced and
tested. Their mean compressive strength is 1356 kPa
and their standard deviation is 70 kPa. A test is made
of H0 : μ ≤ 1350 versus H1 : μ > 1350.

a. Find the P-value.

b. Do you believe it is plausible that the blocks do not
meet the specification, or are you convinced that
they do? Explain your reasoning.

11. Fill in the blank: If the null hypothesis is H0 : μ ≤ 5,
then the mean of X under the null distribution is

.

i. 0

ii. 5

iii. Any number less than or equal to 5.

iv. We can’t tell unless we know H1.
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12. Fill in the blank: In a test of H0 : μ ≥ 10 versus
H1 : μ < 10, the sample mean was X = 8 and the
P-value was 0.04. This means that if μ = 10, and
the experiment were repeated 100 times, we would
expect to obtain a value of X of 8 or less approxi-
mately times.

i. 8

ii. 0.8

iii. 4

iv. 0.04

v. 80

13. An engineer takes a large number of independent mea-
surements of the length of a component and obtains
X = 5.2 mm and σX = 0.1 mm. Use this information
to find the P-value for testing H0 : μ = 5.0 versus
H1 : μ �= 5.0.

14. The following MINITAB output presents the results of a hypothesis test for a population mean μ.

One-Sample Z: X

Test of mu = 73.5 vs not = 73.5
The assumed standard deviation = 2.3634

Variable N Mean StDev SE Mean 95% CI Z P
X 145 73.2461 2.3634 0.1963 (72.8614, 73.6308) −1.29 0.196

a. Is this a one-tailed or two-tailed test?
b. What is the null hypothesis?
c. What is the P-value?
d. Use the output and an appropriate table to compute the P-value for the test of H0 : μ ≥ 73.6 versus H1 : μ < 73.6.
e. Use the output and an appropriate table to compute a 99% confidence interval for μ.

15. The following MINITAB output presents the results of a hypothesis test for a population mean μ. Some of the numbers
are missing. Fill in the numbers for (a) through (c).

One-Sample Z: X

Test of mu = 3.5 vs > 3.5
The assumed standard deviation = 2.00819

95%
Lower

Variable N Mean StDev SE Mean Bound Z P
X 87 4.07114 2.00819 (a) 3.71700 (b) (c)

6.2 Drawing Conclusions from the Results
of Hypothesis Tests

Let’s take a closer look at the conclusions reached in Examples 6.1 and 6.2 (in
Section 6.1). In Example 6.2, we rejected H0; in other words, we concluded that H0

was false. In Example 6.1, we did not reject H0. However, we did not conclude that H0

was true. We could only conclude that H0 was plausible.
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In fact, the only two conclusions that can be reached in a hypothesis test are that
H0 is false or that H0 is plausible. In particular, one can never conclude that H0 is true.
To understand why, think of Example 6.1 again. The sample mean was X = 673.2, and
the null hypothesis was μ ≥ 675. The conclusion was that 673.2 is close enough to
675 so that the null hypothesis might be true. But a sample mean of 673.2 obviously
could not lead us to conclude that μ ≥ 675 is true, since 673.2 is less than 675. This is
typical of many situations of interest. The test statistic is consistent with the alternate
hypothesis and disagrees somewhat with the null. The only issue is whether the level of
disagreement, measured with the P-value, is great enough to render the null hypothesis
implausible.

How do we know when to reject H0? The smaller the P-value, the less plausible
H0 becomes. A common rule of thumb is to draw the line at 5%. According to this rule
of thumb, if P ≤ 0.05, H0 is rejected; otherwise H0 is not rejected. In fact, there is no
sharp dividing line between conclusive evidence against H0 and inconclusive evidence,
just as there is no sharp dividing line between hot and cold weather. So while this rule
of thumb is convenient, it has no real scientific justification.

Summary

■ The smaller the P-value, the more certain we can be that H0 is false.

■ The larger the P-value, the more plausible H0 becomes, but we can never
be certain that H0 is true.

■ A rule of thumb suggests to reject H0 whenever P ≤ 0.05. While this rule
is convenient, it has no scientific basis.

Statistical Significance
Whenever the P-value is less than a particular threshold, the result is said to be “statis-
tically significant” at that level. So, for example, if P ≤ 0.05, the result is statistically
significant at the 5% level; if P ≤ 0.01, the result is statistically significant at the 1%
level, and so on. If a result is statistically significant at the 100α% level, we can also say
that the null hypothesis is “rejected at level 100α%.”

Example
6.3 A hypothesis test is performed of the null hypothesis H0 : μ = 0. The P-value turns

out to be 0.03. Is the result statistically significant at the 10% level? The 5% level?
The 1% level? Is the null hypothesis rejected at the 10% level? The 5% level? The
1% level?

Solution
The result is statistically significant at any level greater than or equal to 3%. Thus it
is statistically significant at the 10% and 5% levels, but not at the 1% level. Similarly,
we can reject the null hypothesis at any level greater than or equal to 3%, so H0 is
rejected at the 10% and 5% levels, but not at the 1% level.
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Sometimes people report only that a test result was statistically significant at a certain
level, without giving the P-value. It is common, for example, to read that a result was
“statistically significant at the 5% level” or “statistically significant (P < 0.05).” This
is a poor practice, for three reasons. First, it provides no way to tell whether the P-value
was just barely less than 0.05, or whether it was a lot less. Second, reporting that a result
was statistically significant at the 5% level implies that there is a big difference between
a P-value just under 0.05 and one just above 0.05, when in fact there is little difference.
Third, a report like this does not allow readers to decide for themselves whether the
P-value is small enough to reject the null hypothesis. If a reader believes that the null
hypothesis should not be rejected unless P < 0.01, then reporting only that P < 0.05
does not allow that reader to decide whether or not to reject H0.

Reporting the P-value gives more information about the strength of the evidence
against the null hypothesis and allows each reader to decide for himself or herself whether
to reject. Software packages always output P-values; these should be included whenever
the results of a hypothesis test are reported.

Summary
Let α be any value between 0 and 1. Then, if P ≤ α,

■ The result of the test is said to be statistically significant at the 100α% level.

■ The null hypothesis is rejected at the 100α% level.

■ When reporting the result of a hypothesis test, report the P-value, rather
than just comparing it to 5% or 1%.

The P-value Is Not the Probability That H0 Is True
Since the P-value is a probability, and since small P-values indicate that H0 is unlikely to
be true, it is tempting to think that the P-value represents the probability that H0 is true.
This is emphatically not the case. The concept of probability discussed here is useful
only when applied to outcomes that can turn out in different ways when experiments
are repeated. It makes sense to define the P-value as the probability of observing an
extreme value of a statistic such as X , since the value of X could come out differently if
the experiment were repeated. The null hypothesis, on the other hand, either is true or is
not true. The truth or falsehood of H0 cannot be changed by repeating the experiment.
It is therefore not correct to discuss the “probability” that H0 is true.

At this point we must mention that there is a notion of probability, different from that
which we discuss in this book, in which one can compute a probability that a statement
such as a null hypothesis is true. This kind of probability, called subjective probability,
plays an important role in the theory of Bayesian statistics. The kind of probability we
discuss in this book is called frequentist probability. A good reference for Bayesian
statistics is Lee (2013).
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Choose H0 to Answer the Right Question
When performing a hypothesis test, it is important to choose H0 and H1 appropriately
so that the result of the test can be useful in forming a conclusion. Examples 6.4 and 6.5
illustrate this.

Example
6.4 Specifications for a water pipe call for a mean breaking strength μ of more than

2000 lb per linear foot. Engineers will perform a hypothesis test to decide whether
or not to use a certain kind of pipe. They will select a random sample of 1 ft sections
of pipe, measure their breaking strengths, and perform a hypothesis test. The pipe
will not be used unless the engineers can conclude that μ > 2000. Assume they test
H0 : μ ≤ 2000 versus H1 : μ > 2000. Will the engineers decide to use the pipe if H0

is rejected? What if H0 is not rejected?

Solution
If H0 is rejected, the engineers will conclude that μ > 2000, and they will use the
pipe. If H0 is not rejected, the engineers will conclude that μ might be less than or
equal to 2000, and they will not use the pipe.

In Example 6.4, the engineers’ action with regard to using the pipe will differ
depending on whether H0 is rejected or not. This is therefore a useful test to perform,
and H0 and H1 have been specified correctly.

Example
6.5 In Example 6.4, assume the engineers test H0 : μ ≥ 2000 versus H1 : μ < 2000.

Will the engineers decide to use the pipe if H0 is rejected? What if H0 is not
rejected?

Solution
If H0 is rejected, the engineers will conclude that μ < 2000, and they will not use the
pipe. If H0 is not rejected, the engineers will conclude that μ might be greater than
or equal to 2000, but that it also might not be. So again, they won’t use the pipe.

In Example 6.5, the engineers’ action with regard to using the pipe will be the
same—they won’t use it—whether or not H0 is rejected. There is no point in performing
this test. The hypotheses H0 and H1 have not been specified correctly.

Final note: In a one-tailed test, the equality always goes with the null hypothesis.
Thus if μ0 is the point that divides H0 from H1, we may have H0 : μ ≤ μ0 or H0 : μ ≥ μ0,
but never H0 : μ < μ0 or H0 : μ > μ0. The reason for this is that when defining the null
distribution, we represent H0 with the value of μ closest to H1. Without the equality,
there is no value specified by H0 that is the closest to H1. Therefore the equality must
go with H0.
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Statistical Significance Is Not the Same as Practical Significance
When a result has a small P-value, we say that it is “statistically significant.” In common
usage, the word significant means “important.” It is therefore tempting to think that
statistically significant results must always be important. This is not the case. Sometimes
statistically significant results do not have any scientific or practical importance. We will
illustrate this with an example. Assume that a process used to manufacture synthetic
fibers is known to produce fibers with a mean breaking strength of 50 N. A new process,
which would require considerable retooling to implement, has been developed. In a
sample of 1000 fibers produced by this new method, the average breaking strength was
50.1 N, and the standard deviation was 1 N. Can we conclude that the new process
produces fibers with greater mean breaking strength?

To answer this question, let μ be the mean breaking strength of fibers produced by
the new process. We need to test H0 : μ ≤ 50 versus H1 : μ > 50. In this way, if we
reject H0, we will conclude that the new process is better. Under H0, the sample mean
X has a normal distribution with mean 50 and standard deviation 1/

√
1000 = 0.0316.

The z-score is

z = 50.1 − 50

0.0316
= 3.16

The P-value is 0.0008. This is very strong evidence against H0. The new process
produces fibers with a greater mean breaking strength.

What practical conclusion should be drawn from this result? On the basis of the
hypothesis test, we are quite sure that the new process is better. Would it be worthwhile
to implement the new process? Probably not. The reason is that the difference between
the old and new processes, although highly statistically significant, amounts to only
0.1 N. It is unlikely that this difference is large enough to matter.

The lesson here is that a result can be statistically significant without being large
enough to be of practical importance. How can this happen? A difference is statistically
significant when it is large compared to its standard deviation. In the example, a difference
of 0.1 N was statistically significant because the standard deviation was only 0.0316 N.
When the standard deviation is very small, even a small difference can be statistically
significant.

The P-value does not measure practical significance. What it does measure is the
degree of confidence we can have that the true value is really different from the value
specified by the null hypothesis. When the P-value is small, then we can be confident
that the true value is really different. This does not necessarily imply that the difference
is large enough to be of practical importance.

The Relationship Between Hypothesis Tests
and Confidence Intervals
Both confidence intervals and hypothesis tests are concerned with determining plausible
values for a quantity such as a population mean μ. In a hypothesis test for a popula-
tion mean μ, we specify a particular value of μ (the null hypothesis) and determine
whether that value is plausible. In contrast, a confidence interval for a population mean
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μ can be thought of as the collection of all values for μ that meet a certain criterion of
plausibility, specified by the confidence level 100(1 − α)%. In fact, the relationship
between confidence intervals and hypothesis tests is very close.

To be specific, the values contained within a two-sided level 100(1−α)% confidence
interval for a population mean μ are precisely those values for which the P-value of a
two-tailed hypothesis test will be greater than α. To illustrate this, consider the following
example (presented as Example 5.2 in Section 5.1). The sample mean lifetime of 50
microdrills was X = 12.68 holes drilled and the standard deviation was s = 6.83.
Setting α to 0.05 (5%), the 95% confidence interval for the population mean lifetime μ

was computed to be (10.79, 14.57). Suppose we wanted to test the hypothesis that μ was
equal to one of the endpoints of the confidence interval. For example, consider testing
H0 : μ = 10.79 versus H1 : μ �= 10.79. Under H0, the observed value X = 12.68 comes
from a normal distribution with mean 10.79 and standard deviation 6.83/

√
50 = 0.9659.

The z-score is (12.68 − 10.79)/0.9659 = 1.96. Since H0 specifies that μ is equal to
10.79, both tails contribute to the P-value, which is 0.05, and thus equal to α (see
Figure 6.4).

z = �1.96 z = 1.96
10.79 12.688.90

0.025 0.025

FIGURE 6.4 The sample mean X is equal to 12.68. Since 10.79 is an endpoint of a 95%
confidence interval based on X = 12.68, the P-value for testing H0 : μ = 10.79 is equal
to 0.05.

Now consider testing the hypothesis H0 : μ = 14.57 versus H1 : μ �= 14.57, where
14.57 is the other endpoint of the confidence interval. This time we will obtain z =
(12.68 − 14.57)/0.9659 = −1.96, and again the P-value is 0.05. It is easy to check that
if we choose any value μ0 in the interval (10.79, 14.57) and test H0 : μ = μ0 versus
H1 : μ �= μ0, the P-value will be greater than 0.05. On the other hand, if we choose
μ0 < 10.79 or μ0 > 14.57, the P-value will be less than 0.05. Thus the 95% confidence
interval consists of precisely those values of μ whose P-values are greater than 0.05 in
a hypothesis test. In this sense, the confidence interval contains all the values that are
plausible for the population mean μ.

It is easy to check that a one-sided level 100(1 − α)% confidence interval consists
of all the values for which the P-value in a one-tailed test would be greater than α. For
example, with X = 12.68, s = 6.83, and n = 50, the 95% lower confidence bound for
the lifetime of the drills is 11.09. If μ0 > 11.09, then the P-value for testing H0 : μ ≤ μ0

will be greater than 0.05. Similarly, the 95% upper confidence bound for the lifetimes
of the drills is 14.27. If μ0 < 14.27, then the P-value for testing H0 : μ ≥ μ0 will be
greater than 0.05.
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Exercises for Section 6.2

1. For which P-value is the null hypothesis more plau-
sible: P = 0.5 or P = 0.05?

2. True or false:

a. If we reject H0, then we conclude that H0 is false.

b. If we do not reject H0, then we conclude that H0

is true.

c. If we reject H0, then we conclude that H1 is true.

d. If we do not reject H0, then we conclude that H1

is false.

3. If P = 0.01, which is the best conclusion?

i. H0 is definitely false.

ii. H0 is definitely true.

iii. There is a 1% probability that H0 is true.

iv. H0 might be true, but it’s unlikely.

v. H0 might be false, but it’s unlikely.

vi. H0 is plausible.

4. If P = 0.50, which is the best conclusion?

i. H0 is definitely false.

ii. H0 is definitely true.

iii. There is a 50% probability that H0 is true.

iv. H0 is plausible, and H1 is false.

v. Both H0 and H1 are plausible.

5. True or false: If P = 0.02, then

a. The result is statistically significant at the 5% level.

b. The result is statistically significant at the 1% level.

c. The null hypothesis is rejected at the 5% level.

d. The null hypothesis is rejected at the 1% level.

6. George performed a hypothesis test. Luis checked
George’s work by redoing the calculations. Both
George and Luis agree that the result was statisti-
cally significant at the 5% level, but they got different
P-values. George got a P-value of 0.20 and Luis got
a P-value of 0.02.

a. Is is possible that George’s work is correct?
Explain.

b. Is is possible that Luis’s work is correct?
Explain.

7. The article “The Effect of Restricting Opening
Hours on Alcohol-Related Violence” (S. Duailibi, W.
Ponicki, et al., American Journal of Public Health,

2007:2276–2280) presented homicide rates for the
years 1995–2005 for the town of Diadema, Brazil.
In 2002, a law was passed requiring bars to close at
11 pm each night. After the law’s passage, the homi-
cide rate dropped by an average of 9 homicides per
month, a statistically significant decrease. Which of
the following is the best conclusion?

i. It is reasonable to conclude that the law is respon-
sible for a reduction of 9 homicides per month.

ii. It is reasonable to conclude that the law is re-
sponsible for a reduction in homicides, but the ac-
tual amount might be somewhat more or less than
9 per month.

iii. It is reasonable to conclude that the homicide rate
decreased, but the law may not have anything to
do with the decrease.

iv. It is plausible that the homicide rate may not have
decreased at all after the passage of the law.

8. Let μ be the radiation level to which a radiation worker
is exposed during the course of a year. The Environ-
mental Protection Agency has set the maximum safe
level of exposure at 5 rem per year. If a hypothesis
test is to be performed to determine whether a work-
place is safe, which is the most appropriate null hy-
pothesis: H0 : μ ≤ 5, H0 : μ ≥ 5, or H0 : μ = 5?
Explain.

9. In each of the following situations, state the most
appropriate null hypothesis regarding the population
mean μ.

a. A new type of battery will be installed in heart
pacemakers if it can be shown to have a mean life-
time greater than eight years.

b. A new material for manufacturing tires will be
used if it can be shown that the mean lifetime of
tires will be more than 60,000 miles.

c. A quality control inspector will recalibrate a
flowmeter if the mean flow rate differs from
10 mL/s.

10. The installation of a radon abatement device is rec-
ommended in any home where the mean radon con-
centration is 4.0 picocuries per liter (pCi/L) or more,
because it is thought that long-term exposure to suf-
ficiently high doses of radon can increase the risk
of cancer. Seventy-five measurements are made in a
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particular home. The mean concentration was
3.72 pCi/L and the standard deviation was 1.93 pCi/L.

a. The home inspector who performed the test says
that since the mean measurement is less than 4.0,
radon abatement is not necessary. Explain why this
reasoning is incorrect.

b. Because of health concerns, radon abatement is
recommended whenever it is plausible that the
mean radon concentration may be 4.0 pCi/L or
more. State the appropriate null and alternate hy-
potheses for determining whether radon abatement
is appropriate.

c. Compute the P-value. Would you recommend
radon abatement? Explain.

11. It is desired to check the calibration of a scale by
weighing a standard 10 g weight 100 times. Let μ

be the population mean reading on the scale, so that
the scale is in calibration if μ = 10. A test is made
of the hypotheses H0 : μ = 10 versus H1 : μ �= 10.
Consider three possible conclusions: (i) The scale
is in calibration. (ii) The scale is out of calibration.
(iii) The scale might be in calibration.

a. Which of the three conclusions is best if H0 is
rejected?

b. Which of the three conclusions is best if H0 is not
rejected?

c. Is it possible to perform a hypothesis test in a way
that makes it possible to demonstrate conclusively
that the scale is in calibration? Explain.

12. A machine that fills cereal boxes is supposed to be
calibrated so that the mean fill weight is 12 oz. Let μ

denote the true mean fill weight. Assume that in a test
of the hypotheses H0 : μ = 12 versus H1 : μ �= 12, the
P-value is 0.30.

a. Should H0 be rejected on the basis of this test?
Explain.

b. Can you conclude that the machine is calibrated to
provide a mean fill weight of 12 oz? Explain.

13. A method of applying zinc plating to steel is sup-
posed to produce a coating whose mean thickness is
no greater than 7 microns. A quality inspector mea-
sures the thickness of 36 coated specimens and tests
H0 : μ ≤ 7 versus H1 : μ > 7. She obtains a P-value
of 0.40. Since P > 0.05, she concludes that the mean
thickness is within the specification. Is this conclusion
correct? Explain.

14. Fill in the blank: A 95% confidence interval for μ is
(1.2, 2.0). Based on the data from which the confi-
dence interval was constructed, someone wants to test
H0 : μ = 1.4 versus H1 : μ �= 1.4. The P-value will
be .

i. Greater than 0.05

ii. Less than 0.05

iii. Equal to 0.05

15. Refer to Exercise 14. For which null hypothesis will
P = 0.05?

i. H0 : μ = 1.2

ii. H0 : μ ≤ 1.2

iii. H0 : μ ≥ 1.2

16. A scientist computes a 90% confidence interval to be
(4.38, 6.02). Using the same data, she also computes
a 95% confidence interval to be (4.22, 6.18), and a
99% confidence interval to be (3.91, 6.49). Now she
wants to test H0 : μ = 4 versus H1 : μ �= 4. Regarding
the P-value, which one of the following statements is
true?

i. P > 0.10

ii. 0.05 < P < 0.10

iii. 0.01 < P < 0.05

iv. P < 0.01

17. The strength of a certain type of rubber is tested by
subjecting pieces of the rubber to an abrasion test. For
the rubber to be acceptable, the mean weight loss μ

must be less than 3.5 mg. A large number of pieces of
rubber that were cured in a certain way were subject to
the abrasion test. A 95% upper confidence bound for
the mean weight loss was computed from these data
to be 3.45 mg. Someone suggests using these data to
test H0 : μ ≥ 3.5 versus H1 : μ < 3.5.

a. Is it possible to determine from the confidence
bound whether P < 0.05? Explain.

b. Is it possible to determine from the confidence
bound whether P < 0.01? Explain.

18. A shipment of fibers is not acceptable if the mean
breaking strength of the fibers is less than 50 N.
A large sample of fibers from this shipment was
tested, and a 98% lower confidence bound for the
mean breaking strength was computed to be 50.1 N.
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Someone suggests using these data to test the hypothe-
ses H0 : μ ≤ 50 versus H1 : μ > 50.

a. Is it possible to determine from the confidence
bound whether P < 0.01? Explain.

b. Is it possible to determine from the confidence
bound whether P < 0.05? Explain.

19. Refer to Exercise 17. It is discovered that the mean
of the sample used to compute the confidence bound

is X = 3.40. Is it possible to determine whether
P < 0.01? Explain.

20. Refer to Exercise 18. It is discovered that the stan-
dard deviation of the sample used to compute the
confidence interval is 5 N. Is it possible to determine
whether P < 0.01? Explain.

21. The following MINITAB output (first shown in Exercise 14 in Section 6.1) presents the results of a hypothesis test
for a population mean μ.

One-Sample Z: X

Test of mu = 73.5 vs not = 73.5
The assumed standard deviation = 2.3634

Variable N Mean StDev SE Mean 95% CI Z P
X 145 73.2461 2.3634 0.1963 (72.8614, 73.6308) −1.29 0.196

a. Can H0 be rejected at the 5% level? How can you tell?
b. Someone asks you whether the null hypothesis H0 : μ = 73 versus H1 : μ �= 73 can be rejected at the 5% level.

Can you answer without doing any calculations? How?

6.3 Tests for a Population Proportion

A population proportion is simply a population mean for a population of 0s and 1s: a
Bernoulli population. For this reason, hypothesis tests for proportions are similar to those
discussed in Section 6.1 for population means. Here is an example.

A supplier of semiconductor wafers claims that of all the wafers he supplies, no more
than 10% are defective. A sample of 400 wafers is tested, and 50 of them, or 12.5%, are
defective. Can we conclude that the claim is false?

The hypothesis test here proceeds much like those in Section 6.1. What makes this
problem distinct is that the sample consists of successes and failures, with “success”
indicating a defective wafer. If the population proportion of defective wafers is denoted
by p, then the supplier’s claim is that p ≤ 0.1. Since our hypothesis concerns a population
proportion, it is natural to base the test on the sample proportion p̂. Making the reasonable
assumption that the wafers are sampled independently, it follows from the Central Limit
Theorem, since the sample size is large, that

p̂ ∼ N

(
p,

p(1 − p)

n

)
(6.1)

where n is the sample size, equal to 400.
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We must define the null hypothesis. The question asked is whether the data allow
us to conclude that the supplier’s claim is false. Therefore, the supplier’s claim, which
is that p ≤ 0.1, must be H0. Otherwise it would be impossible to prove the claim false,
no matter what the data showed.

The null and alternate hypotheses are

H0 : p ≤ 0.1 versus H1 : p > 0.1

To perform the hypothesis test, we assume H0 to be true and take p = 0.1. Substituting
p = 0.1 and n = 400 in expression (6.1) yields the null distribution of p̂:

p̂ ∼ N (0.1, 2.25 × 10−4)

The standard deviation of p̂ is σ p̂ = √
2.25 × 10−4 = 0.015. The observed value of p̂

is 50/400 = 0.125. The z-score of p̂ is

z = 0.125 − 0.100

0.015
= 1.67

The z table indicates that the probability that a standard normal random variable has
a value greater than 1.67 is approximately 0.0475. The P-value is therefore 0.0475
(see Figure 6.5).

0.100
z = 1.67
0.125

P = 0.0475

FIGURE 6.5 The null distribution of p̂ is N (0.1, 0.0152). Thus if H0 is true, the prob-
ability that p̂ takes on a value as extreme as or more extreme than the observed value of
0.125 is 0.0475. This is the P-value.

What do we conclude about H0? Either the supplier’s claim is false, or we have
observed a sample that is as extreme as all but 4.75% of the samples we might have
drawn. Such a sample would be unusual, but not fantastically unlikely. There is every
reason to be quite skeptical of the claim, but we probably shouldn’t convict the supplier
quite yet. If possible, it would be a good idea to sample more wafers.

Note that under the commonly used rule of thumb, we would reject H0 and condemn
the supplier, because P is less than 0.05. This example illustrates the weakness of this
rule. If you do the calculations, you will find that if only 49 of the sample wafers had
been defective rather than 50, the P-value would have risen to 0.0668, and the supplier
would be off the hook. Thus the fate of the supplier hangs on the outcome of one single
wafer out of 400. It doesn’t make sense to draw such a sharp line. It’s better just to report
the P-value and wait for more evidence before reaching a firm conclusion.

The Sample Size Must Be Large
The test just described requires that the sample proportion be approximately normally dis-
tributed. This assumption will be justified whenever both np0 > 10 and n(1− p0) > 10,
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where p0 is the population proportion specified in the null distribution. Then the z-score
can be used as the test statistic, making this a z test.

Example
6.6 The article “Refinement of Gravimetric Geoid Using GPS and Leveling Data”

(W. Thurston, Journal of Surveying Engineering, 2000:27–56) presents a method
for measuring orthometric heights above sea level. For a sample of 1225 baselines,
926 gave results that were within the class C spirit leveling tolerance limits. Can we
conclude that this method produces results within the tolerance limits more than 75%
of the time?

Solution
Let p denote the probability that the method produces a result within the tolerance
limits. The null and alternate hypotheses are

H0 : p ≤ 0.75 versus H1 : p > 0.75

The sample proportion is p̂ = 926/1225 = 0.7559. Under the null hypothesis, p̂ is
normally distributed with mean 0.75 and standard deviation

√
(0.75)(1− 0.75)/1225 =

0.0124. The z-score is

z = 0.7559 − 0.7500

0.0124
= 0.48

The P-value is 0.3156 (see Figure 6.6). We cannot conclude that the method produces
good results more than 75% of the time.

z = 0.48
0.75590.75

P = 0.3156

FIGURE 6.6 The null distribution of p̂ is N (0.75, 0.01242). Thus if H0 is true, the
probability that p̂ takes on a value as extreme as or more extreme than the observed
value of 0.7559 is 0.3156. This is the P-value.

The following computer output (from MINITAB) presents the results from Exam-
ple 6.6.

Test and CI for One Proportion: GPS

Test of p = 0.75 vs p > 0.75
95%

Lower
Variable X N Sample p Bound Z-Value P-Value
GPS 926 1225 0.755918 0.735732 0.48 0.316

The output contains a 95% lower confidence bound as well as the P-value.
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Relationship with Confidence Intervals for a Proportion
A level 100(1−α)% confidence interval for a population mean μ contains those values for
a parameter for which the P-value of a hypothesis test will be greater than α. For the confi-
dence intervals for a proportion presented in Section 5.2 and the hypothesis test presented
here, this statement is only approximately true. The reason for this is that the methods
presented in Section 5.2 are slight modifications (that are much easier to compute) of a
more complicated confidence interval method for which the statement is exactly true.

Summary
Let X be the number of successes in n independent Bernoulli trials, each with
success probability p; in other words, let X ∼ Bin(n, p).

To test a null hypothesis of the form H0 : p ≤ p0, H0 : p ≥ p0, or H0 : p = p0,
assuming that both np0 and n(1 − p0) are greater than 10:

■ Compute the z-score: z = p̂ − p0√
p0(1 − p0)/n

.

■ Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:
Alternate Hypothesis P-value

H1 : p > p0 Area to the right of z
H1 : p < p0 Area to the left of z
H1 : p �= p0 Sum of the areas in the tails cut off by z and −z

Exercises for Section 6.3

1. Integrated circuits consist of electric channels that are
etched onto silicon wafers. A certain proportion of cir-
cuits are defective because of “undercutting,” which
occurs when too much material is etched away so that
the channels, which consist of the unetched portions of
the wafers, are too narrow. A redesigned process, in-
volving lower pressure in the etching chamber, is being
investigated. The goal is to reduce the rate of under-
cutting to less than 5%. Out of the first 1000 circuits
manufactured by the new process, only 35 show evi-
dence of undercutting. Can you conclude that the goal
has been met?

2. The article “HIV-positive Smokers Considering
Quitting: Differences by Race/Ethnicity” (E. Lloyd-
Richardson, C. Stanton, et al., Am J Health Behav,
2008:3–15) surveyed 444 HIV-positive smokers. Of
these, 281 were male and 163 were female. Consider
this to be a simple random sample. Can you con-

clude that more than 60% of HIV-positive smokers are
male?

3. Do bathroom scales tend to underestimate a person’s
true weight? A 150 lb test weight was placed on each
of 50 bathroom scales. The readings on 29 of the scales
were too light, and the readings on the other 21 were
too heavy. Can you conclude that more than half of
bathroom scales underestimate weight?

4. The article “Evaluation of Criteria for Setting Speed
Limits on Gravel Roads” (S. Dissanayake, Journal of
Transportation Engineering, 2011:57–63) measured
speeds of vehicles on several roads in the state of
Kansas. On South Cedar Niles, 73 vehicles were ob-
served, and 49 of them were exceeding the speed limit.
Can you conclude that more than half of the vehicles
on South Cedar Niles exceed the speed limit?

5. In a survey of 500 residents in a certain town,
274 said they were opposed to constructing a new
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shopping mall. Can you conclude that more than half of
the residents in this town are opposed to constructing
a new shopping mall?

6. The article “Application of Surgical Navigation to To-
tal Hip Arthroplasty” (T. Ecker and S. Murphy, Journal
of Engineering in Medicine, 2007:699–712) reports
that in a sample of 113 people undergoing a certain
type of hip replacement surgery on one hip, 65 of them
had surgery on their right hip. Can you conclude that
frequency of this type of surgery differs between right
and left hips?

7. In a sample of 150 households in a certain city, 110
had high-speed internet access. Can you conclude that
more than 70% of the households in this city have
high-speed internet access?

8. A grinding machine will be qualified for a particular
task if it can be shown to produce less than 8% defec-

tive parts. In a random sample of 300 parts, 12 were
defective. On the basis of these data, can the machine
be qualified?

9. Let A and B represent two variants (alleles) of the
DNA at a certain locus on the genome. Assume that
40% of all the alleles in a certain population are type A
and 30% are type B. The locus is said to be in Hardy-
Weinberg equilibrium if the proportion of organisms
that are of type AB is (0.40)(0.30) = 0.12. In a sample
of 300 organisms, 42 are of type AB. Can you conclude
that this locus is not in Hardy-Weinberg equilibrium?

10. Refer to Exercise 1 in Section 5.2. Can it be concluded
that less than half of the automobiles in the state have
pollution levels that exceed the standard?

11. Refer to Exercise 2 in Section 5.2. Can it be concluded
that more than 60% of the residences in the town re-
duced their water consumption?

12. The following MINITAB output presents the results of a hypothesis test for a population proportion p.

Test and CI for One Proportion: X

Test of p = 0.4 vs p < 0.4

95%
Upper

Variable X N Sample p Bound Z-Value P-Value
X 73 240 0.304167 0.353013 −3.03 0.001

a. Is this a one-tailed or two-tailed test?
b. What is the null hypothesis?
c. Can H0 be rejected at the 2% level? How can you tell?
d. Someone asks you whether the null hypothesis H0 : p ≥ 0.45 versus H1 : p < 0.45 can be rejected at the 2%

level. Can you answer without doing any calculations? How?
e. Use the output and an appropriate table to compute the P-value for the test of H0 : p ≤ 0.25 versus H1 : p > 0.25.
f. Use the output and an appropriate table to compute a 90% confidence interval for p.

13. The following MINITAB output presents the results of a hypothesis test for a population proportion p. Some of the
numbers are missing. Fill in the numbers for (a) through (c).

Test and CI for One Proportion: X

Test of p = 0.7 vs p < 0.7

95%
Upper

Variable X N Sample p Bound Z-Value P-Value
X 345 500 (a) 0.724021 (b) (c)
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6.4 Small-Sample Tests for a Population Mean

In Section 6.1, we described a method for testing a hypothesis about a population
mean, based on a large sample. A key step in the method is to approximate the pop-
ulation standard deviation σ with the sample standard deviation s. The normal curve
is then used to find the P-value. When the sample size is small, s may not be close
to σ , which invalidates this large-sample method. However, when the population is
approximately normal, the Student’s t distribution can be used. We illustrate with an
example.

Spacer collars for a transmission countershaft have a thickness specification of
38.98–39.02 mm. The process that manufactures the collars is supposed to be calibrated
so that the mean thickness is 39.00 mm, which is in the center of the specification win-
dow. A sample of six collars is drawn and measured for thickness. The six thicknesses are
39.030, 38.997, 39.012, 39.008, 39.019, and 39.002. Assume that the population of thick-
nesses of the collars is approximately normal. Can we conclude that the process needs
recalibration?

Denoting the population mean by μ, the null and alternate hypotheses are

H0 : μ = 39.00 versus H1 : μ �= 39.00

Note that H0 specifies a single value for μ, since calibration requires that the mean be
equal to the correct value. To construct the test statistic, note that since the population is
assumed to follow a normal distribution, the quantity

t = X − μ

s/
√

n

has a Student’s t distribution with n −1 = 5 degrees of freedom. This is the test statistic.
In this example the observed values of the sample mean and standard deviation

are X = 39.01133 and s = 0.011928. The sample size is n = 6. The null hypothesis
specifies that μ = 39. The value of the test statistic is therefore

t = 39.01133 − 39.00

0.011928/
√

6
= 2.327

The P-value is the probability of observing a value of the test statistic whose disagreement
with H0 is as great as or greater than that actually observed. Since H0 specifies that
μ = 39.00, this is a two-tailed test, so values both above and below 39.00 disagree
with H0. Therefore the P-value is the sum of the areas under the curve corresponding to
t > 2.327 and t < −2.327.

Figure 6.7 illustrates the null distribution and indicates the location of the test
statistic. From the t table (Table A.3 in Appendix A) the row corresponding to 5 degrees
of freedom indicates that the value t = ±2.015 cuts off an area of 0.05 in each tail, for
a total of 0.10, and that the value t = ±2.571 cuts off an area of 0.025 in each tail, for a
total of 0.05. Thus the P-value is between 0.05 and 0.10. While we cannot conclusively
state that the process is out of calibration, it doesn’t look too good. It would be prudent
to recalibrate.
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2.015�2.015�2.571

�2.327

2.5710

2.327

0.05 0.05 

0.025 0.025 

FIGURE 6.7 The null distribution of t = (X − 39.00)/(s/
√

6) is Student’s t with
five degrees of freedom. The observed value of t , corresponding to the observed values
X = 39.01133 and s = 0.011928, is 2.327. If H0 is true, the probability that t takes on a
value as extreme as or more extreme than that observed is between 0.05 and 0.10. Because
H0 specified that μ was equal to a specific value, both tails of the curve contribute to
the P-value.

In this example, the test statistic was a t statistic rather than a z-score. For this
reason, this test is referred to as a t test.

Example
6.7 Before a substance can be deemed safe for landfilling, its chemical properties must be

characterized. The article “Landfilling Ash/Sludge Mixtures” (J. Benoit, T. Eighmy,
and B. Crannell, Journal of Geotechnical and Geoenvironmental Engineering, 1999:
877–888) reports that in a sample of six replicates of sludge from a New Hampshire
wastewater treatment plant, the mean pH was 6.68 with a standard deviation of
0.20. Can we conclude that the mean pH is less than 7.0?

Solution
Let μ denote the mean pH for this type of sludge. The null and alternate hypotheses
are

H0 : μ ≥ 7.0 versus H1 : μ < 7.0

Under H0, the test statistic

t = X − 7.0

s/
√

n

has a Student’s t distribution with five degrees of freedom. Substituting X = 6.68,
s = 0.20, and n = 6, the value of the test statistic is

t = 6.68 − 7.00

0.20/
√

6
= −3.919

Consulting the t table, we find that the value t = −3.365 cuts off an area of 0.01 in the
left-hand tail, and the value t = −4.033 cuts off an area of 0.005 (see Figure 6.8 on
page 424). We conclude that the P-value is between 0.005 and 0.01. There is strong
evidence that the mean pH is less than 7.0.
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�4.032 �3.365

�3.919

0

0.01 

0.005 

FIGURE 6.8 Solution to Example 6.7. The null distribution is Student’s t with five
degrees of freedom. The observed value of t is −3.919. If H0 is true, the probability that
t takes on a value as extreme as or more extreme than that observed is between 0.005
and 0.01.

The following computer output (from MINITAB) presents the results from
Example 6.7.

One-Sample T: pH

Test of mu = 7 vs < 7
95%

Upper
Variable N Mean StDev SE Mean Bound T P
pH 6 6.680 0.200 0.081665 6.84453 −3.92 0.006

Note that the upper 95% confidence bound provided in the output is consistent with the
alternate hypothesis. This indicates that the P-value is less than 5%.

Use z, Not t, If σ Is Known
Occasionally a small sample may be taken from a normal population whose standard
deviation σ is known. In these cases, we do not use the Student’s t curve, because we are
not approximating σ with s. Instead, we use the z table and perform a z test. Example 6.8
illustrates the method.

Example
6.8 At the beginning of this section, we described a sample of six spacer collars, whose

thicknesses (in mm) were 39.030, 38.997, 39.012, 39.008, 39.019, and 39.002. We
denoted the population mean thickness by μ and tested the hypotheses

H0 : μ = 39.00 versus H1 : μ �= 39.00

Now assume that these six spacer collars were manufactured just after the machine
that produces them had been moved to a new location. Assume that on the basis
of a very large number of collars manufactured before the move, the population
of collar thicknesses is known to be very close to normal, with standard deviation
σ = 0.010 mm, and that it is reasonable to assume that the move has not changed
this. On the basis of the given data, can we reject H0?
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We compute X = 39.01133. We do not need the value of s, because we know
that σ = 0.010. Since the population is normal, X is normal even though the sample
size is small. The null distribution is therefore

X ∼ N (39.00, 0.0102)

The z-score is

z = 39.01133 − 39.000

0.010/
√

6
= 2.78

The P-value is 0.0054, so H0 can be rejected.

Summary
Let X1, . . . , Xn be a sample from a normal population with mean μ and standard
deviation σ , where σ is unknown.

To test a null hypothesis of the form H0 : μ ≤ μ0, H0 : μ ≥ μ0,
or H0 : μ = μ0:

■ Compute the test statistic t = X − μ0

s/
√

n
.

■ Compute the P-value. The P-value is an area under the Student’s t curve
with n − 1 degrees of freedom, which depends on the alternate hypothesis
as follows:

Alternate Hypothesis P-value
H1 : μ > μ0 Area to the right of t
H1 : μ < μ0 Area to the left of t
H1 : μ �= μ0 Sum of the areas in the tails cut off by t and −t

■ If σ is known, the test statistic is z = X − μ0

σ/
√

n
, and a z test should be

performed.

Exercises for Section 6.4

1. Each of the following hypothetical data sets represents
some repeated weighings of a standard weight that is
known to have a mass of 100 g. Assume that the read-
ings are a random sample from a population that fol-
lows the normal curve. Perform a t test to see whether
the scale is properly calibrated, if possible. If impos-
sible, explain why.

a. 100.02, 99.98, 100.03

b. 100.01

2. A geologist is making repeated measurements (in
grams) on the mass of a rock. It is not known whether

the measurements are a random sample from an ap-
proximately normal population. Below are three sets
of replicate measurements, listed in the order they
were made. For each set of readings, state whether
the assumptions necessary for the validity of the t test
appear to be met. If the assumptions are not met, ex-
plain why.

a. 213.03 212.95 213.04 213.00 212.99
213.01 221.03 213.05

b. 213.05 213.00 212.94 213.09 212.98
213.02 213.06 212.99
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c. 212.92 212.95 212.97 213.00 213.01 213.04
213.05 213.06

3. A new centrifugal pump is being considered for an
application involving the pumping of ammonia. The
specification is that the flow rate be more than 5 gal-
lons per minute (gpm). In an initial study, eight runs
were made. The average flow rate was 6.5 gpm and
the standard deviation was 1.9 gpm. If the mean flow
rate is found to meet the specification, the pump will
be put into service.

a. State the appropriate null and alternate hypotheses.

b. Find the P-value.

c. Should the pump be put into service? Explain.

4. A certain manufactured product is supposed to contain
23% potassium by weight. A sample of 10 specimens
of this product had an average percentage of 23.2 with
a standard deviation of 0.2. If the mean percentage is
found to differ from 23, the manufacturing process
will be recalibrated.

a. State the appropriate null and alternate hypotheses.

b. Compute the P-value.

c. Should the process be recalibrated? Explain.

5. The article “Influence of Penetration Rate on Pen-
etrometer Resistance” (G. Gagnon and J. Doubrough,
Canadian Journal of Civil Engineering, 2011:741–
750) describes a study in which twenty 2-L spec-
imens of water were drawn from a public works
building in Bridgewater, Nova Scotia. The mean lead
concentration was 6.7 μg/L with a standard deviation
of 3.9 μg/L.

a. The Health Canada guideline states that the con-
centration should be less than 10 μg/L. Can you
conclude that the water in this system meets the
guideline?

b. A stricter guideline is being considered, which
would require the concentration to be less than
7.5 μg/L. Can you conclude that the water in this
system meets this guideline?

6. A new process for producing a type of novolac resin
is supposed to have a mean cycle time of 3.5 hours
per batch. Six batches are produced, and their cycle
times, in hours, were

3.45 3.47 3.57 3.52 3.40 3.63

Can you conclude that the mean cycle time is greater
than 3.5 hours?

7. Specifications call for the wall thickness of two-liter
polycarbonate bottles to average 4.0 mils. A quality
control engineer samples 7 two-liter polycarbonate
bottles from a large batch and measures the wall thick-
ness (in mils) in each. The results are: 3.999, 4.037,
4.116, 4.063, 3.969, 3.955, and 4.091. It is desired to
test H0 : μ = 4.0 versus H1 : μ �= 4.0.

a. Make a dotplot of the seven values.

b. Should a Student’s t test be used to test H0? If so,
perform the test. If not, explain why not.

c. Measurements are taken of the wall thicknesses of
seven bottles of a different type. The measurements
this time are: 4.004, 4.225, 3.924, 4.052, 3.975,
3.976, and 4.041. Make a dotplot of these values.

d. Should a Student’s t test be used to test H0 : μ = 4.0
versus H1 : μ �= 4.0? If so, perform the test. If not,
explain why not.

8. As part of the quality-control program for a catalyst
manufacturing line, the raw materials (alumina and
a binder) are tested for purity. The process requires
that the purity of the alumina be greater than 85%.
A random sample from a recent shipment of alumina
yielded the following results (in percent):

93.2 87.0 92.1 90.1 87.3 93.6

A hypothesis test will be done to determine whether
or not to accept the shipment.

a. State the appropriate null and alternate hypotheses.

b. Compute the P-value.

c. Should the shipment be accepted? Explain.

9. The article “Approximate Methods for Estimating
Hysteretic Energy Demand on Plan-Asymmetric
Buildings” (M. Rathhore, A. Chowdhury, and S.
Ghosh, Journal of Earthquake Engineering, 2011:
99–123) presents a method, based on a modal
pushover analysis, of estimating the hysteretic en-
ergy demand placed on a structure by an earthquake.
A sample of 18 measurements had a mean error of
457.8 kNm with a standard deviation of 317.7 kNm.
An engineer claims that the method is unbiased, in
other words, that the mean error is 0. Can you con-
clude that this claim is false?

10. Refer to Exercise 12 in Section 5.3. Can you conclude
that the mean penetration resistance is greater than
2.5?

11. Refer to Exercise 13 in Section 5.3. Can you conclude
that the mercury content is less than 0.3 ppm?
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12. The following MINITAB output presents the results of a hypothesis test for a population mean μ.

One-Sample T: X

Test of mu = 5.5 vs > 5.5

95%
Lower

Variable N Mean StDev SE Mean Bound T P
X 5 5.92563 0.15755 0.07046 5.77542 6.04 0.002

a. Is this a one-tailed or two-tailed test?
b. What is the null hypothesis?
c. Can H0 be rejected at the 1% level? How can you tell?
d. Use the output and an appropriate table to compute the P-value for the test of H0 : μ ≥ 6.5 versus H1 : μ < 6.5.
e. Use the output and an appropriate table to compute a 99% confidence interval for μ.

13. The following MINITAB output presents the results of a hypothesis test for a population mean μ. Some of the
numbers are missing. Fill them in.

One-Sample T: X

Test of mu = 16 vs not = 16

Variable N Mean StDev SE Mean 95% CI T P
X 11 13.2874 (a) 1.8389 ( (b), (c) ) (d) 0.171

6.5 Large-Sample Tests for the Difference
Between Two Means

We now investigate examples in which we wish to determine whether the means of two
populations are equal. The data will consist of two samples, one from each population.
The basic idea is quite simple. We will compute the difference of the sample means. If
the difference is far from 0, we will conclude that the population means are different.
If the difference is close to 0, we will conclude that the population means might be the
same.

As an example, suppose that a production manager for a manufacturer of industrial
machinery is concerned that ball bearings produced in environments with low ambient
temperatures may have smaller diameters than those produced under higher temperatures.
To investigate this concern, she samples 120 ball bearings that were manufactured early
in the morning, before the shop was fully heated, and finds their mean diameter to be
5.068 mm and their standard deviation to be 0.011 mm. She independently samples
65 ball bearings manufactured during the afternoon and finds their mean diameter to
be 5.072 mm and their standard deviation to be 0.007 mm. Can she conclude that ball
bearings manufactured in the morning have smaller diameters, on average, than ball
bearings manufactured in the afternoon?
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We begin by translating the problem into statistical language. We have a simple ran-
dom sample X1, . . . , X120 of diameters of ball bearings manufactured in the morning, and
another simple random sample Y1, . . . , Y65 of diameters of ball bearings manufactured
in the afternoon. Denote the population mean of diameters of bearings manufactured in
the morning by μX , and the population mean of diameters of bearings manufactured in
the afternoon by μY . Denote the corresponding standard deviations by σX and σY . These
population means and standard deviations are unknown. The sample sizes are nX = 120
and nY = 65. We are interested in the difference μX − μY .

We must now determine the null and alternate hypotheses. The question asked is
whether we can conclude that the population mean for the morning bearings is less than
that for the afternoon bearings. Therefore the null and alternate hypotheses are

H0 : μX − μY ≥ 0 versus H1 : μX − μY < 0

The test is based on X − Y . Since both sample sizes are large, X and Y are both
approximately normally distributed. Since the samples are independent, it follows that
the null distribution of X − Y is

X − Y ∼ N
(
μX − μY , σ 2

X
+ σ 2

Y

) = N

(
μX − μY ,

σ 2
X

nX
+ σ 2

Y

nY

)
(6.2)

The observed values are X = 5.068 and Y = 5.072 for the sample means, and sX = 0.011
and sY = 0.007 for the sample standard deviations. Under H0, μX − μY = 0 (the
value closest to H1). We approximate the population variances σ 2

X and σ 2
Y with the

sample variances s2
X = 0.0112 and s2

Y = 0.0072, respectively, and substitute nX =
120 and nY = 65 to compute the standard deviation of the null distribution, obtaining√

0.0112/120 + 0.0072/65 = 0.001327. The null distribution of X − Y is therefore

X − Y ∼ N (0, 0.0013272)

The observed value of X − Y is 5.068 − 5.072 = −0.004. The z-score is

z = −0.004 − 0

0.001327
= −3.01

Figure 6.9 shows the null distribution and the location of the test statistic. The P-value is
0.0013. The manager’s suspicion is correct. The bearings manufactured in the morning
have a smaller mean diameter.

z = �3.01
0

P = 0.0013

�0.004

FIGURE 6.9 The null distribution of X −Y is N (0, 0.0013272). Thus if H0 is true, the
probability that X −Y takes on a value as extreme as or more extreme than the observed
value of −0.004 is 0.0013. This is the P-value.
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Note that we used the assumption that the samples were independent when com-
puting the variance of X − Y . This is one condition that is usually easy to achieve in
practice. Unless there is some fairly obvious connection between the items in the two
samples, it is usually reasonable to assume they are independent.

Example
6.9 The article “Effect of Welding Procedure on Flux Cored Steel Wire Deposits”

(N. Ramini de Rissone, I. de S. Bott, et al., Science and Technology of Welding
and Joining, 2003:113–122) compares properties of welds made using carbon diox-
ide as a shielding gas with those of welds made using a mixture of argon and carbon
dioxide. One property studied was the diameter of inclusions, which are particles em-
bedded in the weld. A sample of 544 inclusions in welds made using argon shielding
averaged 0.37 μm in diameter, with a standard deviation of 0.25 μm. A sample of
581 inclusions in welds made using carbon dioxide shielding averaged 0.40 μm in
diameter, with a standard deviation of 0.26 μm. (Standard deviations were estimated
from a graph.) Can you conclude that the mean diameters of inclusions differ between
the two shielding gases?

Solution
Let X = 0.37 denote the sample mean diameter for argon welds. Then sX = 0.25
and the sample size is nX = 544. Let Y = 0.40 denote the sample mean diameter for
carbon dioxide welds. Then sY = 0.26 and the sample size is nY = 581. Let μX denote
the population mean diameter for argon welds, and let μY denote the population mean
diameter for carbon dioxide welds. The null and alternate hypotheses are

H0 : μX − μY = 0 versus H1 : μX − μY �= 0

We have observed X − Y = 0.37 − 0.40 = −0.03. This value was drawn from a
normal population with mean μX −μY , and variance approximated by s2

X/nX +s2
Y /nY .

Under H0, we take μX −μY = 0. Substituting values of sX , sY , nX , and nY , the standard
deviation is

√
0.252/544 + 0.262/581 = 0.01521. The null distribution of X − Y is

therefore

X − Y ∼ N (0, 0.015212)

The z-score is

z = −0.03 − 0

0.01521
= −1.97

This is a two-tailed test, and the P-value is 0.0488 (see Figure 6.10 on page 430). A
follower of the 5% rule would reject the null hypothesis. It is certainly reasonable to
be skeptical about the truth of H0.
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z = �1.97 z = 1.97
0 0.03�0.03

0.0244 0.0244

FIGURE 6.10 Solution to Example 6.9.

The following computer output (from MINITAB) presents the results of Exam-
ple 6.9.

Two-sample T for Argon vs C02

N Mean StDev SE Mean
Argon 544 0.37 0.25 0.010719
CO2 581 0.40 0.26 0.010787

Difference = mu (Argon) − mu (CO2)
Estimate for difference: 0.030000

95% confidence bound for difference:
(−0.0598366, −0.000163)
T-Test of difference = 0 (vs not = 0):
T-Value = −1.97 P-Value = 0.049 DF = 1122

Note that the computer uses the t statistic rather than the z statistic for this test. Many
computer packages use the t statistic whenever a sample standard deviation is used to
estimate a population standard deviation. When the sample size is large, the difference
between t and z is negligible for practical purposes. When using tables rather than a
computer, the z-score has the advantage that the P-value can be determined with greater
precision with a z table than with a t table.

The methods described in this section can be used to test a hypothesis that two
population means differ by a specified constant. Example 6.10 shows how.

Example
6.10 Refer to Example 6.9. Can you conclude that the mean diameter for carbon dioxide

welds (μY ) exceeds that for argon welds (μX ) by more than 0.015 μm?

Solution
The null and alternate hypotheses are

H0 : μX − μY ≥ −0.015 versus H1 : μX − μY < −0.015

We observe X = 0.37, Y = 0.40, sX = 0.25, sY = 0.26, nX = 544, and nY = 581.
Under H0, we take μX − μY = −0.015. The null distribution of X − Y is given by
expression (6.2) to be

X − Y ∼ N (−0.015, 0.015212)
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We observe X − Y = 0.37 − 0.40 = −0.03. The z-score is

z = −0.03 − (−0.015)

0.01521
= −0.99

This is a one-tailed test. The P-value is 0.1611. We cannot conclude that the mean
diameter of inclusions from carbon dioxide welds exceeds that of argon welds by
more than 0.015 μm.

Summary
Let X1, . . . , XnX and Y1, . . . , YnY be large (e.g., nX > 30 and nY > 30) samples
from populations with means μX and μY and standard deviations σX and σY ,
respectively. Assume the samples are drawn independently of each other.

To test a null hypothesis of the form H0 : μX −μY ≤ �0, H0 : μX −μY ≥ �0,
or H0 : μX − μY = �0:

■ Compute the z-score: z = (X − Y ) − �0√
σ 2

X/nX + σ 2
Y /nY

. If σX and σY are unknown

they may be approximated with sX and sY , respectively.

■ Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:

Alternate Hypothesis P-value
H1 : μX − μY > �0 Area to the right of z
H1 : μX − μY < �0 Area to the left of z
H1 : μX − μY �= �0 Sum of the areas in the tails cut off by z and −z

Exercises for Section 6.5

1. The article “Capillary Leak Syndrome in Children
with C4A-Deficiency Undergoing Cardiac Surgery
with Cardiopulmonary Bypass: A Double-Blind,
Randomised Controlled Study” (S. Zhang, S. Wang,
et al., Lancet, 2005:556–562) presents the results of
a study of the effectiveness of giving blood plasma
containing complement component C4A to pediatric
cardiopulmonary bypass patients. Of 58 patients re-
ceiving C4A-rich plasma, the average length of hos-
pital stay was 8.5 days and the standard deviation was
1.9 days. Of 58 patients receiving C4A-free plasma,
the average length of hospital stay was 11.9 days and
the standard deviation was 3.6 days. Can you conclude
that the mean hospital stay is shorter for patients re-
ceiving C4A-rich plasma?

2. The article “Some Parameters of the Population
Biology of Spotted Flounder (Ciutharus linguatula

Linnaeus, 1758) in Edremit Bay (North Aegean Sea)”
(D. Türker, B. Bayhan, et al., Turkish Journal of Veteri-
nary and Animal Science, 2005:1013–1018) reports
that a sample of 482 female spotted flounder had an
average weight of 20.95 g with a standard deviation of
14.5 g, and a sample of 614 male spotted flounder had
an average weight of 22.79 g with a standard deviation
of 15.6 g. Can you conclude that the mean weight of
male spotted flounder is greater than that of females?

3. The article “Measurement of Complex Permittivity of
Asphalt Paving Materials” (J. Shang, J. Umana, et al.,
Journal of Transportation Engineering, 1999:347–
356) compared the dielectric constants between two
types of asphalt, HL3 and HL8, commonly used in
pavements. For 42 specimens of HL3 asphalt the aver-
age dielectric constant was 5.92 with a standard devi-
ation of 0.15, and for 37 specimens of HL8 asphalt the
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average dielectric constant was 6.05 with a standard
deviation of 0.16. Can you conclude that the mean
dielectric constant differs between the two types of
asphalt?

4. The article “Wired: Energy Drinks, Jock Identity,
Masculine Norms, and Risk Taking” (K. Miller, Jour-
nal of American College Health, 2008:481–489) re-
ports that in a sample of 413 male college students,
the average number of energy drinks consumed per
month was 2.49 with a standard deviation of 4.87, and
in a sample of 382 female college students, the aver-
age was 1.22 with a standard deviation of 3.24. Can
you conclude that the mean number of energy drinks
is greater for male students than for female students?

5. In a test to compare the effectiveness of two drugs
designed to lower cholesterol levels, 75 randomly se-
lected patients were given drug A and 100 randomly
selected patients were given drug B. Those given drug
A reduced their cholesterol levels by an average of 40
with a standard deviation of 12, and those given drug
B reduced their levels by an average of 42 with a
standard deviation of 15. The units are milligrams of
cholesterol per deciliter of blood serum. Can you con-
clude that the mean reduction using drug B is greater
than that of drug A?

6. Two machines used to fill soft drink containers are be-
ing compared. The number of containers filled each
minute is counted for 60 minutes for each machine.
During the 60 minutes, machine 1 filled an average of
73.8 cans per minute with a standard deviation of 5.2
cans per minute, and machine 2 filled an average of
76.1 cans per minute with a standard deviation of 4.1
cans per minute.
a. If the counts are made each minute for 60 consec-

utive minutes, what assumption necessary to the
validity of a hypothesis test may be violated?

b. Assuming that all necessary assumptions are met,
perform a hypothesis test. Can you conclude that
machine 2 is faster than machine 1?

7. A statistics instructor who teaches a lecture section
of 160 students wants to determine whether students
have more difficulty with one-tailed hypothesis tests
or with two-tailed hypothesis tests. On the next exam,
80 of the students, chosen at random, get a version
of the exam with a 10-point question that requires a
one-tailed test. The other 80 students get a question

that is identical except that it requires a two-tailed test.
The one-tailed students average 7.79 points, and their
standard deviation is 1.06 points. The two-tailed stu-
dents average 7.64 points, and their standard deviation
is 1.31 points.

a. Can you conclude that the mean score μ1 on one-
tailed hypothesis test questions is higher than the
mean score μ2 on two-tailed hypothesis test ques-
tions? State the appropriate null and alternate hy-
potheses, and then compute the P-value.

b. Can you conclude that the mean score μ1 on one-
tailed hypothesis test questions differs from the
mean score μ2 on two-tailed hypothesis test ques-
tions? State the appropriate null and alternate hy-
potheses, and then compute the P-value.

8. Fifty specimens of a new computer chip were tested
for speed in a certain application, along with 50 speci-
mens of chips with the old design. The average speed,
in MHz, for the new chips was 495.6, and the stan-
dard deviation was 19.4. The average speed for the old
chips was 481.2, and the standard deviation was 14.3.

a. Can you conclude that the mean speed for the new
chips is greater than that of the old chips? State
the appropriate null and alternate hypotheses, and
then find the P-value.

b. A sample of 60 even older chips had an average
speed of 391.2 MHz with a standard deviation of
17.2 MHz. Someone claims that the new chips av-
erage more than 100 MHz faster than these very old
ones. Do the data provide convincing evidence for
this claim? State the appropriate null and alternate
hypotheses, and then find the P-value.

9. Are low-fat diets or low-carb diets more effective
for weight loss? This question was addressed in the
article “Comparison of the Atkins, Zone, Ornish, and
LEARN Diets for Change in Weight and Related Risk
Factors Among Overweight Premenopausal Women:
The A TO Z Weight Loss Study: A Randomized Trial”
(C. Gardner, A. Kiazand, et al., Journal of the Amer-
ican Medical Association 2007:969–977). A sample
of 77 subjects went on a low-carbohydrate diet for
six months. At the end of that time the sample mean
weight loss was 4.7 kg with a sample standard devi-
ation of 7.2 kg. A second sample of 79 subjects went
on a low-fat diet. Their sample mean weight loss was
2.6 kg with a standard deviation of 5.9 kg.
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a. Can you conclude that the mean weight loss is
greater for those on the low-carbohydrate diet?

b. Can you conclude that the mean weight loss on the
low-carbohydrate diet is more than 1 kg greater
than that of the low-fat diet?

10. In a certain supermarket, a sample of 60 customers
who used a self-service checkout lane averaged 5.2
minutes of checkout time, with a standard deviation
of 3.1 minutes. A sample of 72 customers who used a
cashier averaged 6.1 minutes with a standard deviation
of 2.8 minutes.

a. Can you conclude that the mean checkout time is
less for people who use the self-service lane?

b. Can you conclude that if everyone used the self-
service lane, that the mean checkout time would
decrease? Consider the number of items checked
out when formulating your answer.

11. The National Opinion Research Center polled a sam-
ple of 92 people aged 18–22 in the year 2002, asking
them how many hours per week they spent on the
internet. The sample mean was 7.38, with a sample
standard deviation of 12.83. A second sample of 123
people aged 18–22 was taken in the year 2004. For
this sample, the mean was 8.20 with a standard devia-
tion of 9.84. Can you conclude that the mean number
of hours per week increased between 2002 and 2004?

12. The following MINITAB output presents the results of a hypothesis test for the difference μX − μY between two
population means:

Two-sample T for X vs Y

N Mean StDev SE Mean
X 135 3.94 2.65 0.23
Y 180 4.43 2.38 0.18

Difference = mu (X) − mu (Y)
Estimate for difference: −0.484442
95% upper bound for difference: −0.007380
T-Test of difference = 0 (vs <): T-Value = −1.68 P-Value = 0.047 DF = 270

a. Is this a one-tailed or two-tailed test?
b. What is the null hypothesis?
c. Can H0 be rejected at the 5% level? How can you tell?
d. The output presents a Student’s t test. Compute the P-value using a z test. Are the two results similar?
e. Use the output and an appropriate table to compute a 99% confidence interval for μX −μY based on the z statistic.

13. The following MINITAB output presents the results of a hypothesis test for the difference μX − μY between two
population means. Some of the numbers are missing.

Two-sample T for X vs Y

N Mean StDev SE Mean
X 78 23.3 (i) 1.26
Y 63 20.63 3.02 (ii)

Difference = mu (X) − mu (Y)
Estimate for difference: 2.670
95% CI for difference: (0.05472, 5.2853)
T-Test of difference = 0 (vs not =): T-Value = 2.03 P-Value = 0.045 DF = 90

a. Fill in the missing numbers for (i) and (ii).
b. The output presents a Student’s t test. Compute the P-value using a z test. Are the two results similar?
c. Use the output and an appropriate table to compute a 98% confidence interval for μX −μY based on the z statistic.
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6.6 Tests for the Difference Between
Two Proportions

The procedure for testing the difference between two proportions is similar to the pro-
cedure for testing the difference between two means. We illustrate with an example.

A mobile computer network consists of computers that maintain wireless commu-
nication with one another as they move about a given area. A routing protocol is an
algorithm that determines how messages will be relayed from machine to machine along
the network, so as to have the greatest chance of reaching their destination. The ar-
ticle “Performance Comparison of Two Location Based Routing Protocols” (T. Camp,
J. Boleng, et al., Proceedings of the IEEE International Conference on Communications,
2002:3318–3324) compares the effectiveness of two routing protocols over a variety of
metrics, including the rate of successful deliveries. Assume that using protocol A, 200
messages were sent, and 170 of them, or 85%, were successfully received. Using pro-
tocol B, 150 messages were sent, and 123 of them, or 82%, were successfully received.
Can we conclude that protocol A has the higher success rate?

In this example, the samples consist of successes and failures. Let X represent the
number of messages successfully sent using protocol A, and let Y represent the number
of messages successfully sent using protocol B. The observed values in this example are
X = 170 and Y = 123. Let pX represent the proportion of messages that are successfully
sent using protocol A, and let pY represent the corresponding proportion from protocol
B. The values of pX and pY are unknown.

The random variables X and Y have binomial distributions, with nX = 200 and
nY = 150 trials, respectively. The success probabilities are pX and pY . The observed
values of the sample proportions are p̂X = 170/200 = 0.85 and p̂Y = 123/150 = 0.82.

The null and alternate hypotheses are

H0 : pX − pY ≤ 0 versus H1 : pX − pY > 0

The test is based on the statistic p̂X − p̂Y . We must determine the null distribution of
this statistic. By the Central Limit Theorem, since nX and nY are both large,

p̂X ∼ N

(
pX ,

pX (1 − pX )

nX

)
p̂Y ∼ N

(
pY ,

pY (1 − pY )

nY

)

Therefore

p̂X − p̂Y ∼ N

(
pX − pY ,

pX (1 − pX )

nX
+ pY (1 − pY )

nY

)
(6.3)

To obtain the null distribution, we must substitute values for the mean pX − pY and
the variance pX (1 − pX )/nX + pY (1 − pY )/nY . The mean is easy. The null hypothesis
specifies that pX − pY ≤ 0, so we take pX − pY = 0. The variance is a bit trickier. At first
glance, it might seem reasonable to approximate the standard deviation by substituting
the sample proportions p̂X and p̂Y for the population proportions pX and pY . However,
the null hypothesis H0 specifies that the population proportions are equal. Therefore
we must estimate them both with a common value. The appropriate value is the pooled
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proportion, obtained by dividing the total number of successes in both samples by the
total sample size. This value is

p̂ = X + Y

nX + nY

The null distribution of p̂X − p̂Y is therefore estimated by substituting the pooled pro-
portion p̂ for both pX and pY into expression (6.3). This yields

p̂X − p̂Y ∼ N

(
0, p̂(1 − p̂)

(
1

nX
+ 1

nY

))
(6.4)

In this example, p̂ = (170 + 123)/(200 + 150) = 0.837. Under H0, we take
pX − pY = 0. The null distribution of p̂X − p̂Y is therefore normal with mean 0 and
standard deviation

√
0.837(1 − 0.837)(1/200 + 1/150) = 0.0399. The observed value

of p̂X − p̂Y is 0.85 − 0.82 = 0.03. The z-score is therefore

z = 0.03 − 0

0.0399
= 0.75

The P-value is 0.2266. Figure 6.11 illustrates the null distribution, and indicates
the location of the test statistic. On the basis of this P-value, we cannot conclude that
protocol B has the greater success rate. Note that for the Central Limit Theorem to be
valid, both samples must be reasonably large. A good rule of thumb is that there should
be at least 10 successes and 10 failures in each sample.

0 0.03
z = 0.75

P = 0.2266

FIGURE 6.11 The null distribution of p̂X − p̂Y is N (0, 0.03992). Thus if H0 is true,
the probability that p̂X − p̂Y takes on a value as extreme as or more extreme than the
observed value of 0.03 is 0.2266. This is the P-value.

Example
6.11 Industrial firms often employ methods of “risk transfer,” such as insurance or indem-

nity clauses in contracts, as a technique of risk management. The article “Survey of
Risk Management in Major U.K. Companies” (S. Baker, K. Ponniah, and S. Smith,
Journal of Professional Issues in Engineering Education and Practice, 1999:94–102)
reports the results of a survey in which managers were asked which methods played
a major role in the risk management strategy of their firms. In a sample of 43 oil
companies, 22 indicated that risk transfer played a major role, while in a sample of
93 construction companies, 55 reported that risk transfer played a major role. (These
figures were read from a graph.) Can we conclude that the proportion of oil compa-
nies that employ the method of risk transfer is less than the proportion of construction
companies that do?
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Solution
Let p̂X = 22/43 = 0.5116 be the sample proportion of oil companies employing
risk transfer methods, and let p̂Y = 55/93 = 0.5914 be the corresponding sample
proportion of industrial firms. The sample sizes are nX = 43 and nY = 93. Let pX and
pY denote the population proportions for oil and industrial companies, respectively.
The null and alternate hypotheses are

H0 : pX − pY ≥ 0 versus H1 : pX − pY < 0

The test is based on p̂X − p̂Y . Since both samples are large, the null distribution of
p̂X − p̂Y is given by expression (6.4). The pooled proportion is

p̂ = 22 + 55

43 + 93
= 0.5662

The null distribution is normal with mean 0 and standard deviation√
0.5662(1 − 0.5662)(1/43 + 1/93) = 0.0914. The observed value of p̂X − p̂Y

is 0.5116 − 0.5914 = −0.0798. The z-score is

z = −0.0798 − 0

0.0914
= −0.87

The P-value is 0.1922 (see Figure 6.12). We cannot conclude that the proportion of
oil companies employing risk transfer methods is less than the proportion of industrial
firms that do.

z = �0.87
0�0.0798

P = 0.1922

FIGURE 6.12 Solution to Example 6.11.

The following computer output (from MINITAB) presents the results of Exam-
ple 6.11.

Test and CI for Two Proportions: Oil, Indus.

Variable X N Sample p
Oil 22 43 0.511628
Indus. 55 93 0.591398

Difference = p (Oil) − p (Indus.)
Estimate for difference: −0.079770
95% Upper Bound for difference: 0.071079
Test for difference = 0 (vs < 0): Z = −0.87 P-Value = 0.192
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Summary
Let X ∼ Bin(nX , pX ) and let Y ∼ Bin(nY , pY ). Assume that there are at least
10 successes and 10 failures in each sample, and that X and Y are independent.

To test a null hypothesis of the form H0 : pX − pY ≤ 0, H0 : pX − pY ≥ 0,
or H0 : pX − pY = 0:

■ Compute p̂X = X

nX
, p̂Y = Y

nY
, and p̂ = X + Y

nX + nY
.

■ Compute the z-score: z = p̂X − p̂Y√
p̂(1 − p̂)(1/nX + 1/nY )

.

■ Compute the P-value. The P-value is an area under the normal curve,
which depends on the alternate hypothesis as follows:

Alternate Hypothesis P-value
H1 : pX − pY > 0 Area to the right of z
H1 : pX − pY < 0 Area to the left of z
H1 : pX − pY �= 0 Sum of the areas in the tails cut off by z and −z

Exercises for Section 6.6

1. Two extrusion machines that manufacture steel rods
are being compared. In a sample of 1000 rods taken
from machine 1, 960 met specifications regarding
length and diameter. In a sample of 600 rods taken
from machine 2, 582 met the specifications. Machine 2
is more expensive to run, so it is decided that machine
1 will be used unless it can be convincingly shown
that machine 2 produces a larger proportion of rods
meeting specifications.

a. State the appropriate null and alternate hypotheses
for making the decision as to which machine to
use.

b. Compute the P-value.

c. Which machine should be used?

2. Resistors labeled as 100 � are purchased from two
different vendors. The specification for this type of
resistor is that its actual resistance be within 5% of its
labeled resistance. In a sample of 180 resistors from
vendor A, 150 of them met the specification. In a sam-
ple of 270 resistors purchased from vendor B, 233 of
them met the specification. Vendor A is the current
supplier, but if the data demonstrate convincingly that
a greater proportion of the resistors from vendor B
meet the specification, a change will be made.

a. State the appropriate null and alternate hypotheses.

b. Find the P-value.

c. Should a change be made?

3. The article “A Music Key Detection Method Based
on Pitch Class Distribution Theory” (J. Sun, H. Li,
and L. Ma, International Journal of Knowledge-based
and Intelligent Engineering Systems, 2011:165–175)
describes a method of analyzing digital music files to
determine the key in which the music is written. In
a sample of 307 pop music selections, the key was
identified correctly in 245 of them. In a sample of 347
new-age selections, the key was identified correctly
in 304 of them. Can you conclude that the method is
more accurate for new-age songs than for pop songs?

4. When the light turns yellow, should you stop or go
through it? The article “Evaluation of Driver Behav-
ior in Type II Dilemma Zones at High-Speed Sig-
nalized Intersections” (D. Hurwitz, M. Knodler, and
B. Nyquist, Journal of Transportation Engineering,
2011:277–286) defines the “indecision zone” as the
period when a vehicle is between 2.5 and 5.5 seconds
away from an intersection. At the intersection of Route
7 and North Shrewsbury in Clarendon, Vermont, 154
vehicles were observed to encounter a yellow light in
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the indecision zone, and 21 of them ran the red light.
At the intersection of Route 62 and Paine Turnpike in
Berlin, Vermont, 183 vehicles entered the intersection
in the indecision zone, and 20 ran the red light. Can
you conclude that the proportion of red-light runners
differs between the two intersections?

5. The article “HIV-positive Smokers Considering Quit-
ting: Differences by Race/Ethnicity” (E. Lloyd-
Richardson, C. Stanton, et al., Am J Health Behav,
2008:3–15) reported that in a group of 230 European-
American HIV-positive smokers, 102 of them had
used a nicotine patch to try to quit smoking, and in a
group of 72 Hispanic-American HIV-positive smok-
ers, 20 had used a nicotine patch. Can you conclude
that the proportion of patch users is greater among
European-Americans?

6. In August and September 2005, Hurricanes Katrina
and Rita caused extraordinary flooding in New Or-
leans, Louisiana. Many homes were severely dam-
aged or destroyed; of those that survived, many re-
quired extensive cleaning. It was thought that cleaning
flood-damaged homes might present a health hazard
due to the large amounts of mold present in many of
the homes. The article “Health Effects of Exposure
to Water-Damaged New Orleans Homes Six Months
After Hurricanes Katrina and Rita” (K. Cummings,
J. Cox-Ganser, et al., American Journal of Public
Health, 2008:869–875) reports that in a sample of
365 residents of Orleans Parish who had participated
in the cleaning of one or more homes, 77 had expe-
rienced symptoms of wheezing, and in a sample of
179 residents who had not participated in cleaning, 23
reported wheezing symptoms (numbers read from a
graph). Can you conclude that the frequency of wheez-
ing symptoms is greater among those residents who
participated in the cleaning of flood-damaged homes?

7. To test the effectiveness of protective packaging, a
firm shipped out 1200 orders in regular light packag-
ing and 1500 orders in heavy-duty packaging. Of the
orders shipped in light packaging, 20 arrived in dam-
aged condition, while of the orders shipped in heavy-
duty packaging, 15 arrived in damaged condition. Can
you conclude that heavy-duty packaging reduces the
proportion of damaged shipments?

8. Colonoscopy is a medical procedure that is designed
to find and remove precancerous lesions in the colon
before they become cancerous. The article “Asso-
ciation of Colonoscopy and Death from Colorectal

Cancer” (N. Baxter, M. Goldwasser, et al., Annals of
Internal Medicine 2009:1–8) reports that in a sample
of 10,292 people diagnosed with colorectal cancer,
7.0% had previously had a colonoscopy, and in a sam-
ple of 51,460 people without colorectal cancer, 9.8%
had previously had a colonoscopy. Can you conclude
that the percentage of people who have had colono-
scopies is greater in those without colorectal cancer?

9. The article “Factors Associated with Exercise Behav-
ior in People with Parkinson Disease” (T. Ellis, J. Ca-
vanaugh, et al., Physical Therapy, 2011:1838–1848)
reported a survey of patients with Parkinson’s disease.
Of 164 patients who said they exercised regularly, 76
reported falling in the previous six months. Of 96 pa-
tients who said they did not exercise regularly, 48 re-
ported falling in the previous six months. Can you
conclude that the proportion of patients who fall is
less for those who exercise than for those who do not?

10. The article “Association Between Exposure to Emis-
sions from the Oil and Gas Industry and Pathology
of the Immune, Nervous, and Respiratory Systems,
and Skeletal and Cardiac Muscle in Beef Calves”
(C. Waldner and E. Clark, Annals of Environmental
and Occupational Health, 2009:6–27) reports that in
a sample of 355 calves less than 4 days old, 106 had
lesions on their bronchial lymph nodes, while in a sam-
ple of 467 calves more than 4 days old, 147 had such
lesions. Can you conclude that the proportion of calves
with lesions differs between the two age groups?

11. The article “Long-term Outcomes of Patients Re-
ceiving Drug-eluting Stents” (A. Philpott, D. South-
ern, et al., Canadian Medical Association Journal,
2009:167–174) reported that in a sample of 5320
angioplasty patients receiving bare metal stents, 195
died within one year, and in a sample of 1120 patients
receiving drug coated stents, 33 died within a year.
Can you conclude that the proportions differ between
the two groups?

12. In a study conducted by the U.S. Department of Health
and Human Services, a sample of 546 boys aged 6–11
was weighed, and it was determined that 87 of them
were overweight. A sample of 508 girls aged 6–11
was also weighed, and 74 of them were overweight.
Can you conclude that the proportion of boys who are
overweight differs from the proportion of girls who
are overweight?

13. In order to determine whether to pitch a new ad-
vertising campaign more toward men or women, an
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advertiser provided each couple in a random sample
of 500 married couples with a new type of TV remote
control that is supposed to be easier to find when
needed. Of the 500 husbands, 62% said that the new
remote was easier to find than their old one. Of the
500 wives, only 54% said the new remote was easier
to find. Let p1 be the population proportion of married

men who think that the new remote is easier to find,
and let p2 be the corresponding proportion of married
women. Can the statistic p̂1 − p̂2 = 0.62 − 0.54 be
used to test H0 : p1 − p2 = 0 versus H1 : p1 − p2 �= 0?
If so, perform the test and compute the P-value. If
not, explain why not.

14. The following MINITAB output presents the results of a hypothesis test for the difference p1 − p2 between two
population proportions.

Test and CI for Two Proportions

Sample X N Sample p
1 41 97 0.422680
2 37 61 0.606557

Difference = p (1) − p (2)
Estimate for difference: −0.183877
95% CI for difference: (−0.341016, −0.026738)
Test for difference = 0 (vs not = 0): Z = −2.25 P-Value = 0.024

a. Is this a one-tailed or two-tailed test?
b. What is the null hypothesis?
c. Can H0 be rejected at the 5% level? How can you tell?

15. The following MINITAB output presents the results of a hypothesis test for the difference p1 − p2 between two
population proportions. Some of the numbers are missing. Fill in the numbers for (a) through (d).

Test and CI for Two Proportions

Sample X N Sample p
1 101 153 (a)
2 (b) 90 0.544444

Difference = p (1) − p (2)
Estimate for difference: 0.115686
95% CI for difference: (−0.0116695, 0.243042)
Test for difference = 0 (vs not = 0): Z = (c) P-Value = (d)

6.7 Small-Sample Tests for the Difference
Between Two Means

The t test can be used in some cases where samples are small, and thus where the Central
Limit Theorem does not apply. We present an example.

The article “The Achondroplasia Paternal Age Effect Is Not Explained By an In-
crease in Mutant Frequency” (I. Tiemann-Boege, W. Navidi, et al., Proceedings of the
National Academy of Sciences, 2002:14952–14957) describes an experiment in which
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a number of DNA molecules is counted, and it needs to be determined whether these
molecules contain a certain sequence of nucleotides. This is done by repeating the ex-
periment with an added enzyme that digests the sequence of interest. If the mean count
is lower with the enzyme present, then it can be concluded that the molecules being
counted do indeed contain the sequence.

Assume that in six identically prepared specimens without the enzyme present,
the numbers of molecules counted are 33, 30, 26, 22, 37, and 34. Assume that in four
identically prepared specimens with the enzyme present, the counts were 22, 29, 25, and
23. Can we conclude that the counts are lower when the enzyme is present?

We have only a few observations for each process, so the Central Limit Theorem
does not apply. If both populations are approximately normal, the Student’s t distribution
can be used to construct a hypothesis test.

Let X1, . . . , X6 represent the counts obtained without the enzyme, and let Y1, . . . , Y4

represent the counts obtained with the enzyme. Let μX and μY be the means of the
populations from which these samples are drawn; let nX and nY denote the sample sizes.
The null and alternate hypotheses are

H0 : μX − μY ≤ 0 versus H1 : μX − μY > 0

By assumption, both populations follow normal distributions. Therefore (as dis-
cussed in Section 5.6) the quantity

(X − Y ) − (μX − μY )√
s2

X/nX + s2
Y /nY

(6.5)

has an approximate Student’s t distribution with ν degrees of freedom, where

ν =

(
s2

X

nX
+ s2

Y

nY

)2

(s2
X/nX )2

nX − 1
+ (s2

Y /nY )2

nY − 1

rounded down to the nearest integer.

The observed values for the sample means and standard deviations are X = 30.333,
Y = 24.750, sX = 5.538, and sY = 3.096. The sample sizes are nX = 6 and nY = 4.
Substituting the values for the sample standard deviations and sample sizes, we compute
ν = 7.89, which we round down to 7. Under H0, μX − μY = 0. The test statistic is
therefore

t = (X − Y ) − 0√
s2

X/nX + s2
Y /nY

Under H0, the test statistic has a Student’s t distribution with seven degrees of freedom.
Substituting values for X , Y , sX , sY , nX , and nY , we compute the value of the test statistic
to be

t = 5.583 − 0

2.740
= 2.038

Consulting the t table with seven degrees of freedom, we find that the value cutting off
5% in the right-hand tail is 1.895, and the value cutting off 2.5% is 2.365. The P-value
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is therefore between 0.025 and 0.05 (see Figure 6.13). We conclude that the mean count
is lower when the enzyme is present.

1.8950 2.365

2.038

0.05 

0.025 

FIGURE 6.13 The null distribution is Student’s t with seven degrees of freedom. The
observed value of the test statistic is 2.038. If H0 is true, the probability that t takes on
a value as extreme as or more extreme than that observed is between 2.5% and 5%.

Example
6.12 Good website design can make Web navigation easier. The article “The Implications

of Visualization Ability and Structure Preview Design for Web Information Search
Tasks” (H. Zhang and G. Salvendy, International Journal of Human-Computer Inter-
action, 2001:75–95) presents a comparison of item recognition between two designs.
A sample of 10 users using a conventional Web design averaged 32.3 items identified,
with a standard deviation of 8.56. A sample of 10 users using a new structured Web
design averaged 44.1 items identified, with a standard deviation of 10.09. Can we
conclude that the mean number of items identified is greater with the new structured
design?

Solution
Let X = 44.1 be the sample mean for the structured Web design. Then sX = 10.09 and
nX = 10. Let Y = 32.3 be the sample mean for the conventional Web design. Then
sY = 8.56 and nY = 10. Let μX and μY denote the population mean measurements
made by the structured and conventional methods, respectively. The null and alternate
hypotheses are

H0 : μX − μY ≤ 0 versus H1 : μX − μY > 0

The test statistic is

t = (X − Y ) − 0√
s2

X/nX + s2
Y /nY

Substituting values for X , Y , sX , sY , nX , and nY , we compute the value of the test
statistic to be t = 2.820. Under H0, this statistic has an approximate Student’s t
distribution, with the number of degrees of freedom given by

ν =

(
10.092

10
+ 8.562

10

)2

(10.092/10)2

9
+ (8.562/10)2

9

= 17.53 ≈ 17
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Consulting the t table with 17 degrees of freedom, we find that the value cutting
off 1% in the right-hand tail is 2.567, and the value cutting off 0.5% in the right-
hand tail is 2.898. Therefore the area in the right-hand tail corresponding to values as
extreme as or more extreme than the observed value of 2.820 is between 0.005 and
0.010. Therefore 0.005 < P < 0.01 (see Figure 6.14). There is strong evidence that
the mean number of items identified is greater for the new design.

2.820

2.898 2.567 0

0.005 

0.01 

FIGURE 6.14 Solution to Example 6.12. The P-value is the area in the right-hand tail,
which is between 0.005 and 0.01.

The following computer output (from MINITAB) presents the results from Exam-
ple 6.12.

Two-Sample T-Test and CI: Struct, Conven

Two-sample T for C1 vs C2

N Mean StDev SE Mean
Struct 10 44.10 10.09 3.19074
Conven 10 32.30 8.56 2.70691

Difference = mu (Struct) − mu (Conven)
Estimate for difference: 11.8000
95% lower bound for difference: 4.52100
T-Test of difference = 0 (vs >):
T-Value = 2.82 P-Value = 0.006 DF = 17

Note that the 95% lower confidence bound is consistent with the alternate hypothesis.
This indicates that the P-value is less than 5%.

The methods described in this section can be used to test a hypothesis that two
population means differ by a specified constant. Example 6.13 shows how.

Example
6.13 Refer to Example 6.12. Can you conclude that the mean number of items identified

with the new structured design exceeds that of the conventional design by more
than 2?

Solution
The null and alternate hypotheses are

H0 : μX − μY ≤ 2 versus H1 : μX − μY > 2
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We observe X = 44.1, Y = 32.3, sX = 10.09, sY = 8.56, nX = 10, and nY = 10.
Under H0, we take μX − μY = 2. The test statistic is given by expression (6.5) to be

t = (X − Y ) − 2√
s2

X/nX + s2
Y /nY

Under H0, the test statistic has a Student’s t distribution with 17 degrees of freedom.
Note that the number of degrees of freedom is calculated in the same way as in
Example 6.12. The value of the test statistic is t = 2.342. This is a one-tailed test.
The P-value is between 0.01 and 0.025. We conclude that the mean number of items
identified with the new structured design exceeds that of the conventional design by
more than 2.

Summary
Let X1, . . . , XnX and Y1, . . . , YnY be samples from normal populations with
means μX and μY and standard deviations σX and σY , respectively. Assume
the samples are drawn independently of each other.

If σX and σY are not known to be equal, then, to test a null hypothesis of the
form H0 : μX − μY ≤ �0, H0 : μX − μY ≥ �0, or H0 : μX − μY = �0:

■ Compute ν = [(s2
X/nX ) + (s2

Y /nY )]2

[(s2
X/nX )2/(nX − 1)] + [(s2

Y /nY )2/(nY − 1)]
, rounded

down to the nearest integer.

■ Compute the test statistic t = (X − Y ) − �0√
s2

X/nX + s2
Y /nY

.

■ Compute the P-value. The P-value is an area under the Student’s t curve
with ν degrees of freedom, which depends on the alternate hypothesis as
follows:

Alternate Hypothesis P-value
H1 : μX − μY > �0 Area to the right of t
H1 : μX − μY < �0 Area to the left of t
H1 : μX − μY �= �0 Sum of the areas in the tails cut off by t and −t

When the Populations Have Equal Variances
When the population variances are known to be nearly equal, the pooled variance (see
Section 5.6) may be used. The pooled variance is given by

s2
p = (nX − 1)s2

X + (nY − 1)s2
Y

nX + nY − 2

The test statistic for testing any of the null hypotheses H0 : μX −μY = 0, H0 : μX −μY ≤
0, or H0 : μX − μY ≥ 0 is

t = X − Y

sp
√

1/nX + 1/nY
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Under H0, the test statistic has a Student’s t distribution with nX + nY − 2 degrees of
freedom.

Example
6.14 Two methods have been developed to determine the nickel content of steel. In a

sample of five replications of the first method on a certain kind of steel, the average
measurement (in percent) was X = 3.16 and the standard deviation was sX = 0.042.
The average of seven replications of the second method was Y = 3.24 and the standard
deviation was sY = 0.048. Assume that it is known that the population variances are
nearly equal. Can we conclude that there is a difference in the mean measurements
between the two methods?

Solution
Substituting the sample sizes nX = 5 and nY = 7 along with the sample standard
deviations sX = 0.042 and sY = 0.048, we compute the pooled standard deviation,
obtaining sp = 0.0457.

The value of the test statistic is therefore

t = 3.16 − 3.24

0.0457
√

1/5 + 1/7
= −2.990

Under H0, the test statistic has the Student’s t distribution with 10 degrees of freedom.
Consulting the Student’s t table, we find that the area under the curve in each tail is
between 0.01 and 0.005. Since the null hypothesis stated that the means are equal, this
is a two-tailed test, so the P-value is the sum of the areas in both tails. We conclude
that 0.01 < P < 0.02 (see Figure 6.15). There does appear to be a difference in the
mean measurements between the two methods.

2.990

3.1692.764

�2.990

�3.169 �2.764 0

0.005 

0.01 

0.005 

0.01 

FIGURE 6.15 Solution to Example 6.14. The P-value is the sum of the areas in both
tails, which is between 0.01 and 0.02.

Don't Assume the Population Variances Are Equal Just Because
the Sample Variances Are Close
The major problem with using the pooled variance is that the assumption that the popu-
lation variances are equal is very strict. The hypothesis test based on the pooled variance
can be quite unreliable if it is used when the population variances are not equal. In prac-
tice, the population variances are almost always unknown, and it is usually impossible
to be sure that they are equal.



Navidi-3810214 book November 11, 2013 14:8

6.7 Small-Sample Tests for the Difference Between Two Means 445

In situations where the sample variances are nearly equal, it is tempting to assume
that the population variances are nearly equal as well. This assumption is not justified,
however, because it is possible for the sample variances to be nearly equal even when
the population variances are quite different. Computer packages often offer a choice of
assuming variances to be equal or unequal. The best practice is to assume the variances to
be unequal unless it is quite certain that they are equal. See the discussion in Section 5.6.

Summary
Let X1, . . . , XnX and Y1, . . . , YnY be samples from normal populations with
means μX and μY and standard deviations σX and σY , respectively. Assume
the samples are drawn independently of each other.

If σX and σY are known to be equal, then, to test a null hypothesis of the
form H0 : μX − μY ≤ �0, H0 : μX − μY ≥ �0, or H0 : μX − μY = �0:

■ Compute sp =
√

(nX − 1)s2
X + (nY − 1)s2

Y

nX + nY − 2
.

■ Compute the test statistic t = (X − Y ) − �0

sp
√

1/nX + 1/nY
.

■ Compute the P-value. The P-value is an area under the Student’s t curve
with nX + nY − 2 degrees of freedom, which depends on the alternate
hypothesis as follows:

Alternate Hypothesis P-value
H1 : μX − μY > �0 Area to the right of t
H1 : μX − μY < �0 Area to the left of t
H1 : μX − μY �= �0 Sum of the areas in the tails cut off by t and −t

Exercises for Section 6.7

1. A crayon manufacturer is comparing the effects of two
kinds of yellow dye on the brittleness of crayons. Dye
B is more expensive than dye A, but it is thought that
it might produce a stronger crayon. Four crayons are
tested with each kind of dye, and the impact strength
(in joules) is measured for each. The results are as
follows:

Dye A: 1.0 2.0 1.2 3.0

Dye B: 3.0 3.2 2.6 3.4

a. Can you conclude that the mean strength of crayons
made with dye B is greater than that of crayons
made with dye A?

b. Can you conclude that the mean strength of crayons
made with dye B exceeds that of crayons made with
dye A by more than 1 J?

2. In a study of the relationship of the shape of a tablet to
its dissolution time, 6 disk-shaped ibuprofen tablets
and 8 oval-shaped ibuprofen tablets were dissolved
in water. The dissolve times, in seconds, were as
follows:

Disk: 269.0 249.3 255.2 252.7 247.0 261.6

Oval: 268.8 260.0 273.5 253.9 278.5 289.4
261.6 280.2

Can you conclude that the mean dissolve times differ
between the two shapes?

3. The article “Influence of Penetration Rate on Pen-
etrometer Resistance” (J. Oliveira, M. Almeida, et al.,
Journal of Geotechnical and Geoenvironmental
Engineering, 2011:695–703) presents measures of
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penetration resistance, expressed as a multiple of a
standard quantity, for a certain fine-grained soil. Fif-
teen measurements taken at a depth of 1 m had a mean
of 2.31 with a standard deviation of 0.89. Fifteen mea-
surements taken at a depth of 2 m had a mean of 2.80
with a standard deviation of 1.10. Can you conclude
that the penetration resistance differs between the two
depths?

4. The article “Time Series Analysis for Construction
Productivity Experiments” (T. Abdelhamid and J. Ev-
erett, Journal of Construction Engineering and Man-
agement, 1999:87–95) presents a study comparing the
effectiveness of a video system that allows a crane
operator to see the lifting point while operating the
crane with the old system in which the operator re-
lies on hand signals from a tagman. Three different
lifts, A, B, and C, were studied. Lift A was of little
difficulty, lift B was of moderate difficulty, and lift C
was of high difficulty. Each lift was performed several
times, both with the new video system and with the
old tagman system. The time (in seconds) required to
perform each lift was recorded. The following tables
present the means, standard deviations, and sample
sizes.

Low Difficulty

Standard Sample
Mean Deviation Size

Tagman 47.79 2.19 14
Video 47.15 2.65 40

Moderate Difficulty

Standard Sample
Mean Deviation Size

Tagman 69.33 6.26 12

Video 58.50 5.59 24

High Difficulty

Standard Sample
Mean Deviation Size

Tagman 109.71 17.02 17

Video 84.52 13.51 29

a. Can you conclude that the mean time to perform
a lift of low difficulty is less when using the
video system than when using the tagman system?
Explain.

b. Can you conclude that the mean time to perform
a lift of moderate difficulty is less when using the
video system than when using the tagman system?
Explain.

c. Can you conclude that the mean time to perform
a lift of high difficulty is less when using the
video system than when using the tagman system?
Explain.

5. The Mastic tree (Pistacia lentiscus) is used in re-
forestation efforts in southeastern Spain. The article
“Nutrient Deprivation Improves Field Performance
of Woody Seedlings in a Degraded Semi-arid Shrub-
land” (R. Trubata, J. Cortina, and A. Vilagrosaa,
Ecological Engineering, 2011:1164–1173) presents
a study that investigated the effect of adding slow-
release fertilizer to the usual solution on the growth
of trees. Following are the heights, in cm, of 10 trees
grown with the usual fertilizer (the control group),
and 10 trees grown with the slow-release fertilizer
(treatment). These data are consistent with the mean
and standard deviation reported in the article. Can you
conclude that the mean height of plants grown with
slow-release fertilizer is greater than that of plants
with the usual fertilizer?

Usual 17.3 22.0 19.5 18.7 19.5
18.5 18.6 20.3 20.3 20.3

Slow-release 25.2 23.2 25.2 26.2 25.0
25.5 25.2 24.1 24.8 23.6

6. Two weights, each labeled as weighing 100 g, are each
weighed several times on the same scale. The results,
in units of μg above 100 g, are as follows:

First weight: 53 88 89 62 39 66
Second weight: 23 39 28 2 49

Since the same scale was used for both weights, and
since both weights are similar, it is reasonable to as-
sume that the variance of the weighing does not de-
pend on the object being weighed. Can you conclude
that the weights differ?

7. It is thought that a new process for producing a cer-
tain chemical may be cheaper than the currently used
process. Each process was run 6 times, and the cost
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of producing 100 L of the chemical was determined
each time. The results, in dollars, were as follows:

New Process: 51 52 55 53 54 53
Old Process: 50 54 59 56 50 58

Can you conclude that the mean cost of the new
method is less than that of the old method?

8. The article “Effects of Aerosol Species on Atmo-
spheric Visibility in Kaohsiung City, Taiwan” (C. Lee,
C. Yuan, and J. Chang, Journal of Air and Waste Man-
agement, 2005:1031–1041) reported that for a sample
of 20 days in the winter, the mass ratio of fine to coarse
particles averaged 0.51 with a standard deviation of
0.09, and for a sample of 14 days in the spring the
mass ratio averaged 0.62 with a standard deviation of
0.09. Let μ1 represent the mean mass ratio during the
winter and let μ2 represent the mean mass ratio dur-
ing the summer. It is desired to test H0 : μ2 − μ1 = 0
versus H1 : μ2 − μ1 �= 0.

a. Someone suggests that since the sample standard
deviations are equal, the pooled variance should be
used. Do you agree? Explain.

b. Using an appropriate method, perform the test.

9. The article “Wind-Uplift Capacity of Residential
Wood Roof-Sheathing Panels Retrofitted with In-
sulating Foam Adhesive” (P. Datin, D. Prevatt,
and W. Pang, Journal of Architectural Engineering,
2011:144–154) presents a study of the failure pres-
sures of roof panels. A sample of 15 panels constructed
with 8-inch nail spacing on the intermediate framing
members had a mean failure pressure of 8.38 kPa with
a standard deviation of 0.96 kPa. A sample of 15 pan-
els constructed with 6-inch nail spacing on the inter-
mediate framing members had a mean failure pressure
of 9.83 kPa with a standard deviation of 1.02 kPa. Can
you conclude that 6-inch spacing provides a higher
mean failure pressure?

10. The article “Magma Interaction Processes Inferred
from Fe-Ti Oxide Compositions in the Dölek and
Sariçiçek Plutons, Eastern Turkey” (O. Karsli, F.
Aydin, et al., Turkish Journal of Earth Sciences,
2008:297–315) presents chemical compositions (in
weight-percent) for several rock specimens. Fourteen
specimens (two outliers were removed) of limenite
grain had an average iron oxide (Fe2O3) content of
9.30 with a standard deviation of 2.71, and seven spec-
imens of limenite lamella had an average iron oxide

content of 9.47 with a standard deviation of 2.22. Can
you conclude that the mean iron oxide content differs
between limenite grain and limenite lamella?

11. The article “Structural Performance of Rounded
Dovetail Connections Under Different Loading Con-
ditions” (T. Tannert, H. Prion, and F. Lam, Can J Civ
Eng, 2007:1600–1605) describes a study of the de-
formation properties of dovetail joints. In one experi-
ment, 10 rounded dovetail connections and 10 double
rounded dovetail connections were loaded until fail-
ure. The rounded connections had an average load
at failure of 8.27 kN with a standard deviation of
0.62 kN. The double-rounded connections had an av-
erage load at failure of 6.11 kN with a standard devia-
tion of 1.31 kN. Can you conclude that the mean load
at failure is greater for rounded connections than for
double-rounded connections?

12. The article “Variance Reduction Techniques: Exper-
imental Comparison and Analysis for Single Sys-
tems” (I. Sabuncuoglu, M. Fadiloglu, and S. Celik,
IIE Transactions, 2008:538–551) describes a study of
the effectiveness of the method of Latin Hypercube
Sampling in reducing the variance of estimators of
the mean time-in-system for queueing models. For
the M/M/1 queueing model, ten replications of the
experiment yielded an average reduction of 6.1 with a
standard deviation of 4.1. For the serial line model, ten
replications yielded an average reduction of 6.6 with
a standard deviation of 4.3. Can you conclude that the
mean reductions differ between the two models?

13. In an experiment to test the effectiveness of a new
sleeping aid, a sample of 12 patients took the new
drug, and a sample of 14 patients took a commonly
used drug. Of the patients taking the new drug, the
average time to fall asleep was 27.3 minutes with a
standard deviation of 5.2 minutes, and for the patients
taking the commonly used drug the average time was
32.7 minutes with a standard deviation of 4.1 minutes.
Can you conclude that the mean time to sleep is less
for the new drug?

14. Refer to Exercise 11 in Section 5.6. Can you conclude
that the mean sodium content is higher for brand B
than for brand A?

15. Refer to Exercise 12 in Section 5.6. Can you conclude
that the mean permeability coefficient at 60◦C differs
from that at 61◦C?
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16. The following MINITAB output presents the results of a hypothesis test for the difference μX − μY between two
population means.

Two-sample T for X vs Y

N Mean StDev SE Mean
X 10 39.31 8.71 2.8
Y 10 29.12 4.79 1.5

Difference = mu (X) − mu (Y)
Estimate for difference: 10.1974
95% lower bound for difference: 4.6333
T-Test of difference = 0 (vs >): T-Value = 3.25 P-Value = 0.003 DF = 13

a. Is this a one-tailed or two-tailed test?
b. What is the null hypothesis?
c. Can H0 be rejected at the 1% level? How can you tell?

17. The following MINITAB output presents the results of a hypothesis test for the difference μX − μY between two
population means. Some of the numbers are missing. Fill in the numbers for (a) through (d).

Two-sample T for X vs Y

N Mean StDev SE Mean
X 6 1.755 0.482 (a)
Y 13 3.239 (b) 0.094
Difference = mu (X) − mu (Y)
Estimate for difference: (c)
95% CI for difference: (−1.99996, −0.96791)
T-Test of difference = 0 (vs not =): T-Value = (d) P-Value = 0.000 DF = 7

6.8 Tests with Paired Data

We saw in Section 5.7 that it is sometimes better to design a two-sample experiment so
that each item in one sample is paired with an item in the other. In this section, we present
a method for testing hypotheses involving the difference between two population means
on the basis of such paired data. We begin with an example.

Particulate matter (PM) emissions from automobiles are a serious environmental
concern. Eight vehicles were chosen at random from a fleet, and their emissions were
measured under both highway driving and stop-and-go driving conditions. The differ-
ences (stop-and-go emission − highway emission) were computed as well. The results,
in milligrams of particulates per gallon of fuel, were as follows:

Vehicle

1 2 3 4 5 6 7 8

Stop-and-go 1500 870 1120 1250 3460 1110 1120 880
Highway 941 456 893 1060 3107 1339 1346 644
Difference 559 414 227 190 353 −229 −226 236
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Can we conclude that the mean level of emissions is less for highway driving than for
stop-and-go driving?

The basic idea behind the construction of the hypothesis test in this example is the
same as the idea behind the construction of confidence intervals for paired data presented
in Section 5.7. We treat the collection of differences as a single random sample from a
population of differences. Denote the population mean of the differences by μD and the
standard deviation by σD . There are only eight differences, which is a small sample. If
we assume that the population of differences is approximately normal, we can use the
Student’s t test, as presented in Section 6.4.

The observed value of the sample mean of the differences is D = 190.5. The sample
standard deviation is sD = 284.1. The null and alternate hypotheses are

H0 : μD ≤ 0 versus H1 : μD > 0

The test statistic is

t = D − 0

sD/
√

n
= 190.5 − 0

284.1/
√

8
= 1.897

The null distribution of the test statistic is Student’s t with seven degrees of freedom.
Figure 6.16 presents the null distribution and indicates the location of the test statistic.
This is a one-tailed test. The t table indicates that 5% of the area in the tail is cut off by a t
value of 1.895, very close to the observed value of 1.897. The P-value is approximately
0.05. The following computer output (from MINITAB) presents this result.

Paired T-Test and CI: StopGo, Highway

Paired T for StopGo - Highway

N Mean StDev SE Mean
StopGo 8 1413.75 850.780 300.796
Highway 8 1223.25 820.850 290.214
Difference 8 190.50 284.104 100.446

95% lower bound for mean difference: 0.197215
T-Test of mean difference = 0 (vs > 0):
T-Value = 1.90 P-Value = 0.050

P ≈ 0.05

0 1.897

FIGURE 6.16 The null distribution of t = (D −0)/(sD/
√

8) is t7. The observed value
of t , corresponding to the observed values D = 190.5 and sp = 284.1, is 1.897. If H0

is true, the probability that t takes on a value as extreme as or more extreme than that
observed is very close to 0.05.
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Note that the 95% lower bound is just barely consistent with the alternate hypothesis.
This indicates that the P-value is just barely less than 0.05 (although it is given by 0.050
to two significant digits).

Summary
Let (X1, Y1), . . . , (Xn, Yn) be a sample of ordered pairs whose differences
D1, . . . , Dn are a sample from a normal population with mean μD . Let sD be the
sample standard deviation of D1, . . . , Dn .

To test a null hypothesis of the form H0 : μD ≤ μ0, H0 : μD ≥ μ0, or
H0 : μD = μ0:

■ Compute the test statistic t = D − μ0

sD/
√

n
.

■ Compute the P-value. The P-value is an area under the Student’s t curve
with n − 1 degrees of freedom, which depends on the alternate hypothesis
as follows:

Alternate Hypothesis P-value
H1 : μD > μ0 Area to the right of t
H1 : μD < μ0 Area to the left of t
H1 : μD �= μ0 Sum of the areas in the tails cut off by t and −t

■ If the sample is large, the Di need not be normally distributed, the test

statistic is z = D − μ0

sD/
√

n
, and a z test should be performed.

Exercises for Section 6.8

1. The article “Improved Bioequivalence Assessment
of Topical Dermatological Drug Products Using
Dermatopharmacokinetics” (B. N’Dri-Stempfer, W.
Navidi, R. Guy, and A. Bunge, Pharmaceutical
Research, 2009:316–328) described a study compar-
ing the amounts of econozole nitrate absorbed into
human skin for several formulations of antifungal
ointment. Both a brand name and generic drug were
applied to the arms of 14 subjects, and the amounts
absorbed, in μg/cm2, were measured. Following are
the results. Can you conclude that the mean amount
absorbed differs between the brand name and the
generic drug?

Brand Name Generic Difference

2.23 1.42 0.81
1.68 1.95 −0.27
1.96 2.58 −0.62
2.81 2.25 0.56
1.14 1.21 −0.07
3.20 3.01 0.19
2.33 2.76 −0.43
4.06 3.65 0.41
2.92 2.89 0.03
2.92 2.85 0.07
2.83 2.44 0.39
3.45 3.11 0.34
2.72 2.64 0.08
3.74 2.82 0.92
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2. The article “Estimation of Mean Arterial Pressure
from the Oscillometric Cuff Pressure: Comparison of
Different Techniques” (D. Zheng, J. Amoore, et al.,
Med Biol Eng Comput, 2011:33–39) describes a
study comparing two methods of measuring mean
arterial blood pressure. The auscultatory method is
based on listening to sounds in a stethoscope, while
the oscillatory method is based on oscillations in
blood flow. Following are measurements on six sub-
jects in mmHg, consistent with means and standard
deviations presented in the article.

Auscultatory Oscillatory Difference

92.9 86.3 6.6
101.5 97.3 4.2
74.3 79.8 −5.5
95.0 98.1 −3.1
91.4 82.1 9.3
80.6 84.5 −3.9

Can you conclude that the mean reading is greater
for the auscultatory method?

3. A dry etch process is used to etch silicon dioxide
(SiO2) off of silicon wafers. An engineer wishes to
study the uniformity of the etching across the surface
of the wafer. A total of 10 wafers are sampled after
etching, and the etch rates (in A

◦
/min) are measured

at two different sites, one near the center of the wafer,
and one near the edge. The results are presented in
the following table.

Wafer Center Edge

1 586 582
2 568 569
3 587 587
4 550 543
5 543 540
6 552 548
7 562 563
8 577 572
9 558 559

10 571 566

Can you conclude that the etch rates differ between
the center and the edge?

4. In an experiment to determine the effect of ambient
temperature on the emissions of oxides of nitrogen
(NOx ) of diesel trucks, 10 trucks were run at temper-

atures of 40◦F and 80◦F. The emissions, in ppm, are
presented in the following table.

Truck 40◦F 80◦F

1 0.8347 0.8152
2 0.7532 0.7652
3 0.8557 0.8426
4 0.9012 0.7971
5 0.7854 0.7643
6 0.8629 0.8195
7 0.8827 0.7836
8 0.7403 0.6945
9 0.7480 0.7729

10 0.8486 0.7947

Can you conclude that the mean emissions differ be-
tween the two temperatures?

5. Two formulations of a certain coating, designed to
inhibit corrosion, are being tested. For each of eight
pipes, half the pipe is coated with formulation A and
the other half is coated with formulation B. Each
pipe is exposed to a salt environment for 500 hours.
Afterward, the corrosion loss (in μm) is measured
for each formulation on each pipe.

Pipe A B

1 197 204
2 161 182
3 144 140
4 162 178
5 185 183
6 154 163
7 136 156
8 130 143

Can you conclude that the mean amount of corrosion
differs between the two formulations?

6. Two microprocessors are compared on a sample of
six benchmark codes to determine whether there is a
difference in speed. The times (in seconds) used by
each processor on each code are given in the follow-
ing table.

Code

1 2 3 4 5 6

Processor A 27.2 18.1 27.2 19.7 24.5 22.1
Processor B 24.1 19.3 26.8 20.1 27.6 29.8
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Can you conclude that the mean speeds of the two
processors differ?

7. The compressive strength, in kilopascals, was mea-
sured for concrete blocks from five different batches
of concrete, both three and six days after pouring.
The data are presented in the following table.

Batch

1 2 3 4 5

After 3 days 1341 1316 1352 1355 1327
After 6 days 1376 1373 1366 1384 1358

Can you conclude that the mean strength after six
days is greater than the mean strength after three
days?

8. The article “Effect of Granular Subbase Thick-
ness on Airfield Pavement Structural Response” (K.
Gopalakrishnan and M. Thompson, Journal of Mate-
rials in Civil Engineering, 2008:331–342) presents
a study of the effect of the subbase thickness (in
mm) on the amount of surface deflection caused by
aircraft landing on an airport runway. Two landing
gears, one simulating a Boeing 747 aircraft, and the
other a Boeing 777 aircraft, were trafficked across
four test sections of runway. The results are presented
in the following table.

Section

1 2 3 4

Boeing 747 4.01 3.87 3.72 3.76
Boeing 777 4.57 4.48 4.36 4.43

Can you conclude that the mean deflection is greater
for the Boeing 777?

9. A crossover trial is a type of experiment used to
compare two drugs. Subjects take one drug for a pe-
riod of time, then switch to the other. The responses
of the subjects are then compared using matched
pair methods. In an experiment to compare two

pain relievers, seven subjects took one pain reliever
for two weeks, then switched to the other. They
rated their pain level from 1 to 10, with larger num-
bers representing higher levels of pain. The results
were

Subject

1 2 3 4 5 6 7

Drug A 6 3 4 5 7 1 4
Drug B 5 1 5 5 5 2 2

Can you conclude that the mean response differs
between the two drugs?

10. A group of eight individuals with high cholesterol
levels were given a new drug that was designed
to lower cholesterol levels. Cholesterol levels, in
mg/dL, were measured before and after treatment
for each individual, with the following results:

Subject Before After

1 283 215
2 299 206
3 274 187
4 284 212
5 248 178
6 275 212
7 293 192
8 277 196

a. Can you conclude that the mean cholesterol level
after treatment is less than the mean before treat-
ment?

b. Can you conclude that the reduction in mean
cholesterol level after treatment is greater than
75 mg/dL?

11. The management of a taxi cab company is trying to
decide if they should switch from bias tires to radial
tires to improve fuel economy. Each of 10 taxis was
equipped with one of the two tire types and driven on
a test course. Without changing drivers, tires were
then switched to the other tire type and the test course
was repeated. The fuel economy (in mpg) for the 10
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cars is as follows:

Car Radial Bias

1 32.1 27.1
2 36.1 31.5
3 32.3 30.4
4 29.5 26.9
5 34.3 29.9
6 31.9 28.7
7 33.4 30.2
8 34.6 31.8
9 35.2 33.6

10 32.7 29.9

a. Because switching tires on the taxi fleet is expen-
sive, management does not want to switch unless
a hypothesis test provides strong evidence that
the mileage will be improved. State the appro-
priate null and alternate hypotheses, and find the
P-value.

b. A cost-benefit analysis shows that it will be prof-
itable to switch to radial tires if the mean mileage
improvement is greater than 2 mpg. State the
appropriate null and alternate hypotheses, and
find the P-value, for a hypothesis test that is de-
signed to form the basis for the decision whether
to switch.

12. The following MINITAB output presents the results of a hypothesis test for the difference μX − μY between two
population means.

Paired T for X − Y

N Mean StDev SE Mean
X 12 134.233 68.376 19.739
Y 12 100.601 94.583 27.304
Difference 12 33.6316 59.5113 17.1794

95% lower bound for mean difference: 2.7793
T-Test of mean difference = 0 (vs > 0): T-Value = 1.96 P-Value = 0.038

a. Is this a one-tailed or two-tailed test?
b. What is the null hypothesis?
c. Can H0 be rejected at the 1% level? How can you tell?
d. Use the output and an appropriate table to compute a 98% confidence interval for μX − μY .

13. The following MINITAB output presents the results of a hypothesis test for the difference μX − μY between two
population means. Some of the numbers are missing. Fill in the numbers for (a) through (d).

Paired T for X − Y

N Mean StDev SE Mean
X 7 12.4141 2.9235 (a)
Y 7 8.3476 (b) 1.0764
Difference 7 (c) 3.16758 1.19723

95% lower bound for mean difference: 1.74006
T-Test of mean difference = 0 (vs > 0): T-Value = (d) P-Value = 0.007
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6.9 Distribution-Free Tests

The Student’s t tests described in Sections 6.4 and 6.7 formally require that samples
come from normal populations. Distribution-free tests get their name from the fact that
the samples are not required to come from any specific distribution. While distribution-
free tests do require assumptions for their validity, these assumptions are somewhat
less restrictive than the assumptions needed for the t test. Distribution-free tests are
sometimes called nonparametric tests.

We discuss two distribution-free tests in this section. The first, called the Wilcoxon
signed-rank test, is a test for a population mean, analogous to the one-sample t test
discussed in Section 6.4. The second, called the Wilcoxon rank-sum test, or the Mann–
Whitney test, is analogous to the two-sample t test discussed in Section 6.7.

The Wilcoxon Signed-Rank Test
We illustrate this test with an example. The nickel content, in parts per thousand by
weight, is measured for six welds. The results are 9.3, 0.9, 9.0, 21.7, 11.5, and 13.9. Let
μ represent the mean nickel content for this type of weld. It is desired to test H0 : μ ≥ 12
versus H1 : μ < 12. The Student’s t test is not appropriate, because there are two out-
liers, 0.9 and 21.7, which indicate that the population is not normal. The Wilcoxon
signed-rank test can be used in this situation. This test does not require the popula-
tion to be normal. It does, however, require that the population be continuous (rather
than discrete), and that the probability density function be symmetric. (The normal is
a special case of a continuous symmetric population.) The given sample clearly comes
from a continuous population, and the presence of outliers on either side make it rea-
sonable to assume that the population is approximately symmetric as well. We therefore
proceed as follows.

Under H0, the population mean is μ = 12. Since the population is assumed to
be symmetric, the population median is 12 as well. To compute the rank-sum statistic,
we begin by subtracting 12 from each sample observation to obtain differences. The
difference closest to 0, ignoring sign, is assigned a rank of 1. The difference next closest to
0, again ignoring sign, is assigned a rank of 2, and so on. Finally, the ranks corresponding
to negative differences are given negative signs. The following table shows the results.

Signed
x x − 12 Rank

11.5 −0.5 −1
13.9 1.9 2

9.3 −2.7 −3
9.0 −3.0 −4

21.7 9.7 5
0.9 −11.1 −6

Denote the sum of the positive ranks S+ and the sum of the absolute values of the
negative ranks S−. Either S+ or S− may be used as a test statistic; we shall use S+. In
this example S+ = 2 + 5 = 7, and S− = 1 + 3 + 4 + 6 = 14. Note that since the sample
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size is 6, by necessity S+ + S− = 1 + 2 + 3 + 4 + 5 + 6 = 21. For any sample, it is the
case that S+ + S− = 1+2+· · ·+n = n(n +1)/2. In some cases, where there are many
more positive ranks than negative ranks, it is easiest to first compute S− by summing the
negative ranks and then computing S+ = n(n + 1)/2 − S−.

Figures 6.17 and 6.18 show how S+ can be used as a test statistic. In Figure 6.17,
μ > 12. For this distribution, positive differences are more probable than negative
differences and tend to be larger in magnitude as well. Therefore it is likely that the
positive ranks will be greater both in number and in magnitude than the negative ranks,
so S+ is likely to be large. In Figure 6.18, μ < 12, and the situation is reversed. Here
the positive ranks are likely to be fewer in number and smaller in magnitude, so S+ is
likely to be small.

12 �

FIGURE 6.17 The true median is greater than 12. Sample observations are more likely
to be above 12 than below 12. Furthermore, the observations above 12 will tend to have
larger differences from 12 than the observations below 12. Therefore S+ is likely to be
large.

� 12

FIGURE 6.18 The true median is less than 12. Sample observations are more likely
to be below 12 than above 12. Furthermore, the observations below 12 will tend to have
larger differences from 12 than the observations above 12. Therefore S+ is likely to be
small.
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We see that in general, large values of S+ will provide evidence against a null
hypothesis of the form H0 : μ ≤ μ0, while small values of S+ will provide evidence
against a null hypothesis of the form H0 : μ ≥ μ0.

In this example, the null hypothesis is H0 : μ ≥ 12, so a small value of S+ will
provide evidence against H0. We observe S+ = 7. The P-value is the probability of
observing a value of S+ that is less than or equal to 7 when H0 is true. Table A.5 (in
Appendix A) presents certain probabilities for the null distribution of S+. Consulting
this table with the sample size n = 6, we find that the probability of observing a value
of 4 or less is 0.1094. The probability of observing a value of 7 or less must be greater
than this, so we conclude that P > 0.1094, and thus do not reject H0.

Example
6.15 In the example discussed previously, the nickel content for six welds was measured

to be 9.3, 0.9, 9.0, 21.7, 11.5, and 13.9. Use these data to test H0 : μ ≤ 5 versus
H1 : μ > 5.

Solution
The table of differences and signed ranks is as follows:

Signed
x x − 5 Rank

9.0 4.0 1
0.9 −4.1 −2
9.3 4.3 3

11.5 6.5 4
13.9 8.9 5
21.7 16.7 6

The observed value of the test statistic is S+ = 19. Since the null hypothesis is of the
form μ ≤ μ0, large values of S+ provide evidence against H0. Therefore the P-value
is the area in the right-hand tail of the null distribution, corresponding to values greater
than or equal to 19. Consulting Table A.5 shows that the P-value is 0.0469.

Example
6.16 Use the data in Example 6.15 to test H0 : μ = 16 versus H1 : μ �= 16.

Solution
The table of differences and signed ranks is as follows:

Signed
x x − 16 Rank

13.9 −2.1 −1
11.5 −4.5 −2
21.7 5.7 3

9.3 −6.7 −4
9.0 −7.0 −5
0.9 −15.1 −6
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Since the null hypothesis is of the form H0 : μ = μ0, this is a two-tailed test. The
observed value of the test statistic is S+ = 3. Consulting Table A.5, we find that the
area in the left-hand tail, corresponding to values less than or equal to 3, is 0.0781.
The P-value is twice this amount, since it is the sum of areas in two equal tails. Thus
the P-value is 2(0.0781) = 0.1562.

Ties
Sometimes two or more of the quantities to be ranked have exactly the same value. Such
quantities are said to be tied. The standard method for dealing with ties is to assign
to each tied observation the average of the ranks they would have received if they had
differed slightly. For example, the quantities 3, 4, 4, 5, 7 would receive the ranks 1, 2.5,
2.5, 4, 5, and the quantities 12, 15, 16, 16, 16, 20 would receive the ranks 1, 2, 4, 4, 4, 6.

Differences of Zero
If the mean under H0 is μ0, and one of the observations is equal to μ0, then its difference
is 0, which is neither positive nor negative. An observation that is equal to μ0 cannot
receive a signed rank. The appropriate procedure is to drop such observations from the
sample altogether, and to consider the sample size to be reduced by the number of these
observations. Example 6.17 serves to illustrate this point.

Example
6.17 Use the data in Example 6.15 to test H0 : μ = 9 versus H1 : μ �= 9.

Solution
The table of differences and signed ranks is as follows:

Signed
x x − 9 Rank

9.0 0.0 −
9.3 0.3 1

11.5 2.5 2
13.9 4.9 3

0.9 −8.1 −4
21.7 12.7 5

The value of the test statistic is S+ = 11. The sample size for the purposes of the
test is 5, since the value 9.0 is not ranked. Entering Table A.5 with sample size 5, we
find that if S+ = 12, the P-value would be 2(0.1562) = 0.3124. We conclude that for
S+ = 11, P > 0.3124.

Large-Sample Approximation
When the sample size n is large, the test statistic S+ is approximately normally dis-
tributed. A rule of thumb is that the normal approximation is good if n > 20. It can
be shown by advanced methods that under H0, S+ has mean n(n + 1)/4 and variance
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n(n + 1)(2n + 1)/24. The Wilcoxon signed-rank test is performed by computing the
z-score of S+, and then using the normal table to find the P-value. The z-score is

z = S+ − n(n + 1)/4√
n(n + 1)(2n + 1)/24

Example 6.18 illustrates the method.

Example
6.18 The article “Exact Evaluation of Batch-Ordering Inventory Policies in Two-Echelon

Supply Chains with Periodic Review” (G. Chacon, Operations Research, 2001:
79–98) presents an evaluation of a reorder point policy, which is a rule for deter-
mining when to restock an inventory. Costs for 32 scenarios are estimated. Let μ

represent the mean cost. Test H0 : μ ≥ 70 versus H1 : μ < 70. The data, along with
the differences and signed ranks, are presented in Table 6.1.

TABLE 6.1 Data for Example 6.18

Signed Signed Signed
x x − 70 Rank x x − 70 Rank x x − 70 Rank

79.26 9.26 1 30.27 –39.73 –12 11.48 –58.52 –23
80.79 10.79 2 22.39 –47.61 –13 11.28 –58.72 –24
82.07 12.07 3 118.39 48.39 14 10.08 –59.92 –25
82.14 12.14 4 118.46 48.46 15 7.28 –62.72 –26
57.19 –12.81 –5 20.32 –49.68 –16 6.87 –63.13 –27
55.86 –14.14 –6 16.69 –53.31 –17 6.23 –63.77 –28
42.08 –27.92 –7 16.50 –53.50 –18 4.57 –65.43 –29
41.78 –28.22 –8 15.95 –54.05 –19 4.09 –65.91 –30

100.01 30.01 9 15.16 –54.84 –20 140.09 70.09 31
100.36 30.36 10 14.22 –55.78 –21 140.77 70.77 32

30.46 –39.54 –11 11.64 –58.36 –22

Solution
The sample size is n = 32, so the mean is n(n + 1)/4 = 264 and the variance is
n(n+1)(2n+1)/24 = 2860. The sum of the positive ranks is S+ = 121. We compute

z = 121 − 264√
2860

= − 2.67

Since the null hypothesis is of the form H0 : μ ≥ μ0, small values of S+ provide
evidence against H0. Thus the P-value is the area under the normal curve to the left
of z = − 2.67. This area, and thus the P-value, is 0.0038.

The Wilcoxon Rank-Sum Test
The Wilcoxon rank-sum test, also called the Mann–Whitney test, can be used to test the
difference in population means in certain cases where the populations are not normal.
Two assumptions are necessary. First the populations must be continuous. Second, their
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probability density functions must be identical in shape and size; the only possible
difference between them being their location. To describe the test, let X1, . . . , Xm be a
random sample from one population and let Y1, . . . , Yn be a random sample from the
other. We adopt the notational convention that when the sample sizes are unequal, the
smaller sample will be denoted X1, . . . , Xm . Thus the sample sizes are m and n, with
m ≤ n. Denote the population means by μX and μY , respectively.

The test is performed by ordering the m + n values obtained by combining the two
samples, and assigning ranks 1, 2, . . . , m + n to them. The test statistic, denoted by W ,
is the sum of the ranks corresponding to X1, . . . , Xm . Since the populations are identical
with the possible exception of location, it follows that if μX < μY , the values in the X
sample will tend to be smaller than those in the Y sample, so the rank sum W will tend
to be smaller as well. By similar reasoning, if μX > μY , W will tend to be larger. We
illustrate the test in Example 6.19.

Example
6.19 Resistances, in m�, are measured for five wires of one type and six wires of another

type. The results are as follows:
X : 36 28 29 20 38
Y : 34 41 35 47 49 46

Use the Wilcoxon rank-sum test to test H0 : μX ≥ μY versus H1 : μX < μY .

Solution
We order the 11 values and assign the ranks.

Value Rank Sample Value Rank Sample

20 1 X 38 7 X
28 2 X 41 8 Y
29 3 X 46 9 Y
34 4 Y 47 10 Y
35 5 Y 49 11 Y
36 6 X

The test statistic W is the sum of the ranks corresponding to the X values, so W =
1+2+3+6+7 = 19. To determine the P-value, we consult Table A.6 (in Appendix A).
We note that small values of W provide evidence against H0 : μX ≥ μY , so the P-
value is the area in the left-hand tail of the null distribution. Entering the table with
m = 5 and n = 6 we find that the area to the left of W = 19 is 0.0260. This is the
P-value.

Large-Sample Approximation
When both sample sizes m and n are greater than 8, it can be shown by advanced
methods that the null distribution of the test statistic W is approximately normal with
mean m(m+n+1)/2 and variance mn(m+n+1)/12. In these cases the test is performed
by computing the z-score of W , and then using the normal table to find the P-value. The
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z-score is

z = W − m(m + n + 1)/2√
mn(m + n + 1)/12

Example 6.20 illustrates the method.

Example
6.20 The article “Cost Analysis Between SABER and Design Bid Build Contracting Meth-

ods” (E. Henry and H. Brothers, Journal of Construction Engineering and Man-
agement, 2001:359–366) presents data on construction costs for 10 jobs bid by the
traditional method (denoted X ) and 19 jobs bid by an experimental system (denoted
Y ). The data, in units of dollars per square meter, and their ranks, are presented in
Table 6.2. Test H0 : μX ≤ μY versus H1 : μX > μY .

TABLE 6.2 Data for Example 6.20

Value Rank Sample Value Rank Sample

57 1 X 613 16 X
95 2 Y 622 17 Y

101 3 Y 708 18 X
118 4 Y 726 19 Y
149 5 Y 843 20 Y
196 6 Y 908 21 Y
200 7 Y 926 22 X
233 8 Y 943 23 Y
243 9 Y 1048 24 Y
341 10 Y 1165 25 X
419 11 Y 1293 26 X
457 12 X 1593 27 X
584 13 X 1952 28 X
592 14 Y 2424 29 Y
594 15 Y

Solution
The sum of the X ranks is W = 1+12+13+16+18+22+25+26+27+28 = 188.
The sample sizes are m = 10 and n = 19. We use the normal approximation and
compute

z = 188 − 10(10 + 19 + 1)/2√
10(19)(10 + 19 + 1)/12

= 1.74

Large values of W provide evidence against the null hypothesis. Therefore the
P-value is the area under the normal curve to the right of z = 1.74. From the z table
we find that the P-value is 0.0409.
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Distribution-Free Methods Are Not Assumption-Free
We have pointed out that the distribution-free methods presented here require certain
assumptions for their validity. Unfortunately, this is sometimes forgotten in practice. It is
tempting to turn automatically to a distribution-free procedure in any situation in which
the Student’s t test does not appear to be justified, and to assume that the results will
always be valid. This is not the case. The necessary assumptions of symmetry for the
signed-rank test and of identical shapes and spreads for the rank-sum test are actually
rather restrictive. While these tests perform reasonably well under moderate violations
of these assumptions, they are not universally applicable.

Exercises for Section 6.9

1. The article “Wastewater Treatment Sludge as a
Raw Material for the Production of Bacillus
thuringiensis Based Biopesticides” (M. Tirado Mon-
tiel, R. Tyagi, and J. Valero, Water Research, 2001:
3807–3816) presents measurements of total solids, in
g/L, for seven sludge specimens. The results (rounded
to the nearest gram) are 20, 5, 25, 43, 24, 21, and
32. Assume the distribution of total solids is approxi-
mately symmetric.

a. Can you conclude that the mean concentration
of total solids is greater than 14 g/L? Compute
the appropriate test statistic and find the P-value.

b. Can you conclude that the mean concentration of
total solids is less than 30 g/L? Compute the ap-
propriate test statistic and find the P-value.

c. An environmental engineer claims that the mean
concentration of total solids is equal to 18 g/L.
Can you conclude that the claim is false?

2. The thicknesses of eight pads designed for use in air-
craft engine mounts are measured. The results, in mm,
are 41.83, 41.01, 42.68, 41.37, 41.83, 40.50, 41.70,
and 41.42. Assume that the thicknesses are a sample
from an approximately symmetric distribution.

a. Can you conclude that the mean thickness is greater
than 41 mm? Compute the appropriate test statistic
and find the P-value.

b. Can you conclude that the mean thickness is less
than 41.8 mm? Compute the appropriate test statis-
tic and find the P-value.

c. The target thickness is 42 mm. Can you conclude
that the mean thickness differs from the target
value? Compute the appropriate test statistic and
find the P-value.

3. The article “Reaction Modeling and Optimization
Using Neural Networks and Genetic Algorithms:
Case Study Involving TS-1-Catalyzed Hydroxyla-
tion of Benzene” (S. Nandi, P. Mukherjee, et al.,
Industrial and Engineering Chemistry Research,
2002:2159–2169) presents benzene conversions
(in mole percent) for 24 different benzenehydroxy-
lation reactions. The results are

52.3 41.1 28.8 67.8 78.6 72.3 9.1 19.0
30.3 41.0 63.0 80.8 26.8 37.3 38.1 33.6
14.3 30.1 33.4 36.2 34.6 40.0 81.2 59.4.

a. Can you conclude that the mean conversion is less
than 45? Compute the appropriate test statistic and
find the P-value.

b. Can you conclude that the mean conversion is
greater than 30? Compute the appropriate test
statistic and find the P-value.

c. Can you conclude that the mean conversion differs
from 55? Compute the appropriate test statistic and
find the P-value.

4. The article “Abyssal Peridotites > 3,800 Ma from
Southern West Greenland: Field Relationships, Pe-
trography, Geochronology, Whole-Rock and Mineral
Chemistry of Dunite and Harzburgite Inclusions in
the Itsaq Gneiss Complex” (C. Friend, V. Bennett,
and A. Nutman, Contributions to Mineral Petrology,
2002:71–92) presents silicon dioxide (SiO2) con-
centrations (in weight percent) for 10 dunites. The
results are

40.57 41.48 40.76 39.68 43.68 43.53
43.76 44.86 43.06 46.14
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a. Can you conclude that the mean concentration
is greater than 41? Compute the appropriate test
statistic and find the P-value.

b. Can you conclude that the mean concentration is
less than 43? Compute the appropriate test statistic
and find the P-value.

c. Can you conclude that the mean concentration dif-
fers from 44? Compute the appropriate test statistic
and find the P-value.

5. This exercise shows that the signed-rank test can
be used with paired data. Two gauges that mea-
sure tire tread depth are being compared. Ten dif-
ferent locations on a tire are measured once by each
gauge. The results, in mm, are presented in the fol-
lowing table.

Location Gauge 1 Gauge 2 Difference

1 3.95 3.80 0.15
2 3.23 3.30 −0.07
3 3.60 3.59 0.01
4 3.48 3.61 −0.13
5 3.89 3.88 0.01
6 3.76 3.73 0.03
7 3.45 3.56 −0.11
8 3.01 3.02 −0.01
9 3.82 3.77 0.05

10 3.44 3.49 −0.05

Assume the differences are a sample from an approx-
imately symmetric population with mean μ. Use the
Wilcoxon signed-rank test to test H0 : μ = 0 versus
H1 : μ �= 0.

6. The article “n-Nonane Hydroconversion on Ni
and Pt Containing HMFI, HMOR and HBEA”
(G. Kinger and H. Vinek, Applied Catalysis
A: General, 2002:139–149) presents hydroconversion
rates (in μmol/g · s) of n-nonane over both HMFI and
HBEA catalysts. The results are as follows:

HMFI: 0.43 0.93 1.91 2.56 3.72 6.19 11.00

HBEA: 0.73 1.12 1.24 2.93

Can you conclude that the mean rate differs between
the two catalysts?

7. A new postsurgical treatment is being compared with
a standard treatment. Seven subjects receive the new
treatment, while seven others (the controls) receive
the standard treatment. The recovery times, in days,

are as follows:

Treatment (X ): 12 13 15 19 20 21 27

Control (Y ): 18 23 24 30 32 35 40

Can you conclude that the mean rate differs between
the treatment and control?

8. In an experiment to determine the effect of curing
time on compressive strength of concrete blocks, two
samples of 15 blocks each were prepared identically
except for curing time. The blocks in one sample were
cured for two days, while the blocks in the other were
cured for six days. The compressive strengths of the
blocks, in MPa, are as follows:

Cured 2 days (X ): 1326 1302 1314 1270
1287 1328 1318 1296
1306 1329 1255 1310
1255 1291 1280

Cured 6 days (Y ): 1387 1301 1376 1397
1399 1378 1343 1349
1321 1364 1332 1396
1372 1341 1374

Can you conclude that the mean strength is greater for
blocks cured for six days?

9. In a comparison of the effectiveness of distance learn-
ing with traditional classroom instruction, 12 students
took a business administration course online, while
14 students took it in a classroom. The final exam
scores were as follows.

Online: 66 75 85 64 88 77 74
91 72 69 77 83

Classroom: 80 83 64 81 75 80 86
81 51 64 59 85 74 77

Can you conclude that the mean score differs between
the two types of course?

10. A woman who has moved into a new house is trying to
determine which of two routes to work has the shorter
average driving time. Times in minutes for six trips
on route A and five trips on route B are as follows:

A: 16.0 15.7 16.4 15.9 16.2 16.3

B: 17.2 16.9 16.1 19.8 16.7

Can you conclude that the mean time is less for
route A?
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6.10 Tests with Categorical Data

In Section 4.1 we studied the Bernoulli trial, which is a process that results in one of
two possible outcomes, labeled “success” and “failure.” If a number of Bernoulli trials
are conducted, and the number of successes is counted, we can test the null hypothesis
that the success probability p is equal to a prespecified value p0. This was covered in
Section 6.3. If two sets of Bernoulli trials are conducted, with success probability p1 for
the first set and p2 for the second set, we can test the null hypothesis that p1 = p2. This
was covered in Section 6.6.

A generalization of the Bernoulli trial is the multinomial trial (see Section 4.4),
which is an experiment that can result in any one of k outcomes, where k ≥ 2. The
probabilities of the k outcomes are denoted p1, . . . , pk . For example, the roll of a fair
die is a multinomial trial with six outcomes 1, 2, 3, 4, 5, 6; and probabilities p1 =
p2 = p3 = p4 = p5 = p6 = 1/6. In this section, we generalize the tests for a
Bernoulli probability to multinomial trials. We begin with an example in which we test
the null hypothesis that the multinomial probabilities p1, p2, . . . , pk are equal to a
prespecified set of values p01, p02, . . . , p0k , so that the null hypothesis has the form
H0 : p1 = p01, p2 = p02, . . . , pk = p0k .

Imagine that a gambler wants to test a die to see whether it deviates from fairness. Let
pi be the probability that the number i comes up. The null hypothesis will state that the die
is fair, so the probabilities specified under the null hypothesis are p01 = · · · = p06 = 1/6.
The null hypothesis is H0 : p1 = · · · = p6 = 1/6.

The gambler rolls the die 600 times and obtains the results shown in Table 6.3, in
the column labeled “Observed.” The results obtained are called the observed values.
To test the null hypothesis, we construct a second column, labeled “Expected.” This
column contains the expected values. The expected value for a given outcome is the
mean number of trials that would result in that outcome if H0 were true. To compute
the expected values, let N be the total number of trials. (In the die example, N = 600.)
When H0 is true, the probability that a trial results in outcome i is p0i , so the expected
number of trials resulting in outcome i is Np0i . In the die example, the expected number
of trials for each outcome is 100.

TABLE 6.3 Observed and expected val-
ues for 600 rolls of a die

Category Observed Expected

1 115 100
2 97 100
3 91 100
4 101 100
5 110 100
6 86 100

Total 600 600



Navidi-3810214 book November 11, 2013 14:8

464 CHAPTER 6 Hypothesis Testing

The idea behind the hypothesis test is that if H0 is true, then the observed and
expected values are likely to be close to each other. Therefore we will construct a test
statistic that measures the closeness of the observed to the expected values. The statistic
is called the chi-square statistic. To define it, let k be the number of outcomes (k = 6
in the die example), and let Oi and Ei be the observed and expected numbers of trials,
respectively, that result in outcome i . The chi-square statistic is

χ2 =
k∑

i=1

(Oi − Ei )
2

Ei
(6.6)

The larger the value of χ2, the stronger the evidence against H0. To determine the
P-value for the test, we must know the null distribution of this test statistic. In gen-
eral, we cannot determine the null distribution exactly. However, when the expected
values are all sufficiently large, a good approximation is available. It is called the
chi-square distribution with k − 1 degrees of freedom, denoted χ2

k−1. Note that the
number of degrees of freedom is one less than the number of categories. Use of the chi-
square distribution is appropriate whenever all the expected values are greater than or
equal to 5.

A table for the chi-square distribution (Table A.7) is provided in Appendix A. The
table provides values for certain quantiles, or upper percentage points, for a large number
of choices of degrees of freedom. As an example, Figure 6.19 presents the probability
density function of the χ2

10 distribution. The upper 5% of the distribution is shaded. To
find the upper 5% point in the table, look under α = 0.05 and degrees of freedom ν = 10.
The value is 18.307.

0 18.307

5% 

FIGURE 6.19 Probability density function of the χ 2
10 distribution.The upper 5% point

is 18.307. [See the chi-square table (Table A.7) in Appendix A.]

We now compute the value of the chi-square statistic for the data in Table 6.3.
The number of degrees of freedom is 5 (one less than the number of outcomes). Using
Equation (6.6), the value of the statistic is

χ2 = (115 − 100)2

100
+ · · · + (86 − 100)2

100
= 2.25 + · · · + 1.96

= 6.12

To determine the P-value for the test statistic, we first note that all the expected
values are greater than or equal to 5, so use of the chi-square distribution is appropriate.
We consult the chi-square table under five degrees of freedom. The upper 10% point is
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9.236. We conclude that P > 0.10. (See Figure 6.20.) There is no evidence to suggest
that the die is not fair.

0 9.2366.12

10% 

FIGURE 6.20 Probability density function of the χ 2
5 distribution. The observed value

of the test statistic is 6.12. The upper 10% point is 9.236. Therefore the P-value is greater
than 0.10.

The test we have just described determines how well a given multinomial distribution
fits the data. For this reason it is called a goodness-of-fit test.

Example
6.21 Powerball is a multi-state lottery in which players try to guess the numbers that will

turn up in a drawing of numbered balls. One of the balls drawn is the “Powerball.”
Matching the number drawn on the Powerball increases one’s winnings. From January
18, 2012 through May 8, 2013, the Powerball was drawn from a collection of 35 balls
numbered 1 through 35. A total of 137 drawings were held. We group the numbers into
five categories: 1–7, 8–14, and so on. If the lottery is fair, then the winning number is
equally likely to occur in any category. Following are the observed frequencies (from
www.usamega.com). Can you conclude that the lottery is not fair?

Category 1–7 8–14 15–21 22–28 29–35 Total

Observed 31 24 25 24 33 137

Solution
Under the null hypothesis, each draw has probability 1/5 to fall into each category.
Therefore each expected value is 137/5 = 27.4. We compute the test statistic:

χ2 = (31 − 27.4)4

27.4
+ · · · + (33 − 27.4)4

27.4
= 2.6715

There are 5 categories; thus 4 degrees of freedom. Consulting the chi-square table,
we find that P > 0.10. (Computer software yields P= 0.61.) There is no evidence
that the lottery is unfair.

The Chi-Square Test for Homogeneity
In Example 6.21, we tested the null hypothesis that the probabilities of the outcomes
for a multinomial trial were equal to a prespecified set of values. Sometimes several
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multinomial trials are conducted, each with the same set of possible outcomes. The null
hypothesis is that the probabilities of the outcomes are the same for each experiment.
We present an example.

Four machines manufacture cylindrical steel pins. The pins are subject to a diameter
specification. A pin may meet the specification, or it may be too thin or too thick. Pins
are sampled from each machine, and the number of pins in each category is counted.
Table 6.4 presents the results.

TABLE 6.4 Observed numbers of pins in various cat-
egories with regard to a diameter specification

Too Too
Thin OK Thick Total

Machine 1 10 102 8 120
Machine 2 34 161 5 200
Machine 3 12 79 9 100
Machine 4 10 60 10 80

Total 66 402 32 500

Table 6.4 is an example of a contingency table. Each row specifies a category
regarding one criterion (machine, in this case), and each column specifies a category
regarding another criterion (thickness, in this case). Each intersection of row and column
is called a cell, so there are 12 cells in Table 6.4.

The number in the cell at the intersection of row i and column j is the number of
trials whose outcome was observed to fall into row category i and into column category
j . This number is called the observed value for cell i j . Note that we have included the
totals of the observed values for each row and column. These are called the marginal
totals.

The null hypothesis is that the proportion of pins that are too thin, OK, or too thick
is the same for all machines. More generally, the null hypothesis says that no matter
which row is chosen, the probabilities of the outcomes associated with the columns are
the same. We will develop some notation with which to express H0 and to define the test
statistic.

Let I denote the number of rows in the table, and let J denote the number of columns.
Let pi j denote the probability that the outcome of a trial falls into column j given that
it is in row i . Then the null hypothesis is

H0 : For each column j, p1 j = · · · = pI j (6.7)

Let Oi j denote the observed value in cell i j . Let Oi. denote the sum of the observed
values in row i , let O. j denote the sum of the observed values in column j , and let O..

denote the sum of the observed values in all the cells (see Table 6.5).
To define a test statistic, we must compute an expected value for each cell in

the table. Under H0, the probability that the outcome of a trial falls into column j
is the same for each row i . The best estimate of this probability is the proportion of trials
whose outcome falls into column j . This proportion is O. j/O... We need to compute
the expected number of trials whose outcome falls into cell i j . We denote this expected
value by Ei j . It is equal to the proportion of trials whose outcome falls into column j ,
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TABLE 6.5 Notation for observed values

Column 1 Column 2 · · · Column J Total

Row 1 O11 O12 · · · O1J O1.

Row 2 O21 O22 · · · O2J O2.

...
...

...
...

...
...

Row I OI 1 OI 2 · · · OI J OI.

Total O.1 O.2 · · · O.J O..

multiplied by the number Oi. of trials in row i . That is,

Ei j = Oi.O. j

O..

(6.8)

The test statistic is based on the differences between the observed and expected
values:

χ2 =
I∑

i=1

J∑
j=1

(Oi j − Ei j )
2

Ei j
(6.9)

Under H0, this test statistic has a chi-square distribution with (I − 1)(J − 1) degrees of
freedom. Use of the chi-square distribution is appropriate whenever the expected values
are all greater than or equal to 5.

Example
6.22 Use the data in Table 6.4 to test the null hypothesis that the proportions of pins that

are too thin, OK, or too thick are the same for all the machines.

Solution
We begin by using Equation (6.8) to compute the expected values Ei j . We show the
calculations of E11 and E23 in detail:

E11 = (120)(66)

500
= 15.84

E23 = (200)(32)

500
= 12.80

The complete table of expected values is as follows:

Expected values for Table 6.4

Too Too
Thin OK Thick Total

Machine 1 15.84 96.48 7.68 120.00
Machine 2 26.40 160.80 12.80 200.00
Machine 3 13.20 80.40 6.40 100.00
Machine 4 10.56 64.32 5.12 80.00

Total 66.00 402.00 32.00 500.00
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We note that all the expected values are greater than 5. Therefore the chi-square
test is appropriate. We use Equation (6.9) to compute the value of the chi-square
statistic:

χ2 = (10 − 15.84)2

15.84
+ · · · + (10 − 5.12)2

5.12

= 34.1056

15.84
+ · · · + 23.8144

5.12

= 15.5844

Since there are four rows and three columns, the number of degrees of freedom is
(4−1)(3−1) = 6. To obtain the P-value, we consult the chi-square table (Table A.7).
Looking under six degrees of freedom, we find that the upper 2.5% point is 14.449,
and the upper 1% point is 16.812. Therefore 0.01 < P < 0.025. It is reasonable to
conclude that the machines differ in the proportions of pins that are too thin, OK, or
too thick.

Note that the observed row and column totals are identical to the expected row and
column totals. This is always the case.

The following computer output (from MINITAB) presents the results of this hy-
pothesis test.

Chi-Square Test: Thin, OK, Thick

Expected counts are printed below observed counts
Chi-Square contributions are printed below expected counts

Thin OK Thick Total
1 10 102 8 120

15.84 96.48 7.68
2.153 0.316 0.013

2 34 161 5 200
26.40 160.80 12.80
2.188 0.000 4.753

3 12 79 9 100
13.20 80.40 6.40
0.109 0.024 1.056

4 10 60 10 80
10.56 64.32 5.12
0.030 0.290 4.651

Total 66 402 32 500

Chi-Sq = 15.584 DF = 6, P-Value = 0.016

In the output, each cell (intersection of row and column) contains three numbers. The
top number is the observed value, the middle number is the expected value, and the bot-
tom number is the contribution (Oi j − Ei j )

2/Ei j made to the chi-square statistic from
that cell.
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The Chi-Square Test for Independence
In Example 6.22 the column totals were random, while the row totals were presumably
fixed in advance, since they represented numbers of items sampled from various ma-
chines. In some cases, both row and column totals are random. In either case, we can
test the null hypothesis that the probabilities of the column outcomes are the same for
each row outcome, and the test is exactly the same in both cases. We present an example
where both row and column totals are random.

Example
6.23 The cylindrical steel pins in Example 6.22 are subject to a length specification as well

as a diameter specification. With respect to the length, a pin may meet the specification,
or it may be too short or too long. A total of 1021 pins are sampled and categorized
with respect to both length and diameter specification. The results are presented in
the following table. Test the null hypothesis that the proportions of pins that are too
thin, OK, or too thick with respect to the diameter specification do not depend on the
classification with respect to the length specification.

Observed Values for 1021 Steel Pins

Diameter
Too Too

Length Thin OK Thick Total

Too Short 13 117 4 134
OK 62 664 80 806
Too Long 5 68 8 81

Total 80 849 92 1021

Solution
We begin by using Equation (6.8) to compute the expected values. The expected
values are given in the following table.

Expected Values for 1021 Steel Pins

Diameter
Too Too

Length Thin OK Thick Total

Too Short 10.50 111.43 12.07 134.0
OK 63.15 670.22 72.63 806.0
Too Long 6.35 67.36 7.30 81.0

Total 80.0 849.0 92.0 1021.0

We note that all the expected values are greater than or equal to 5. (One of the observed
values is not; this doesn’t matter.) Therefore the chi-square test is appropriate. We
use Equation (6.9) to compute the value of the chi-square statistic:

χ2 = (13 − 10.50)2

10.50
+ · · · + (8 − 7.30)2

7.30

= 6.25

10.50
+ · · · + 0.49

7.30
= 7.46
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Since there are three rows and three columns, the number of degrees of freedom
is (3 − 1)(3 − 1) = 4. To obtain the P-value, we consult the chi-square table
(Table A.7). Looking under four degrees of freedom, we find that the upper 10%
point is 7.779. We conclude that P > 0.10. There is no evidence that the length and
thickness are related.

Exercises for Section 6.10

1. Fasteners are manufactured for an application involv-
ing aircraft. Each fastener is categorized either as con-
forming (suitable for its intended use), downgraded
(unsuitable for its intended use but usable for another
purpose), and scrap (not usable). It is thought that 85%
of the fasteners are conforming, while 10% are down-
graded and 5% are scrap. In a sample of 500 fasteners,
405 were conforming, 55 were downgraded, and 40
were scrap. Can you conclude that the true percent-
ages differ from 85%, 10%, and 5%?

a. State the appropriate null hypothesis.

b. Compute the expected values under the null
hypothesis.

c. Compute the value of the chi-square statistic.

d. Find the P-value. What do you conclude?

2. At an assembly plant for light trucks, routine monitor-
ing of the quality of welds yields the following data:

Number of Welds

High Moderate Low
Quality Quality Quality

Day Shift 467 191 42
Evening Shift 445 171 34
Night Shift 254 129 17

Can you conclude that the quality varies among shifts?

a. State the appropriate null hypothesis.

b. Compute the expected values under the null
hypothesis.

c. Compute the value of the chi-square statistic.

d. Find the P-value. What do you conclude?

3. The article “Inconsistent Health Perceptions for US
Women and Men with Diabetes” (M. McCollum,
L. Hansen, et al., Journal of Women’s Health,
2007:1421–1428) presents results of a survey of
adults with diabetes. Each respondent was catego-
rized by gender and income level. The numbers in

each category (calculated from percentages given in
the article) are presented in the following table.

Near Low Middle High
Poor Poor Income Income Income

Men 156 77 253 513 604
Women 348 152 433 592 511

Can you conclude that the proportions in the various
income categories differ between men and women?

4. The article “Analysis of Time Headways on Urban
Roads: Case Study from Riyadh” (A. Al-Ghamdi,
Journal of Transportation Engineering, 2001:
289–294) presents a model for the time elapsed be-
tween the arrival of consecutive vehicles on urban
roads. Following are 137 arrival times (in seconds)
along with the values expected from a theoretical
model.

Time Observed Expected

0–2 18 23
2–4 28 18
4–6 14 16
6–8 7 13

8–10 11 11
10–12 11 9
12–18 10 20
18–22 8 8
> 22 30 19

Can you conclude that the theoretical model does not
explain the observed values well?

5. The article “Chronic Beryllium Disease and Sen-
sitization at a Beryllium Processing Facility”
(K. Rosenman, V. Hertzberg, et al., Environmental
Health Perspectives, 2005:1366–1372) discusses the
effects of exposure to beryllium in a cohort of work-
ers. Workers were categorized by their duration of
exposure (in years) and by their disease status (chronic
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beryllium disease, sensitization to beryllium, or no
disease). The results were as follows:

Duration of Exposure

< 1 1 to < 5 ≥ 5

Diseased 10 8 23
Sensitized 9 19 11
Normal 70 136 206

Can you conclude that the proportions of workers in
the various disease categories differ among exposure
levels?

6. The article “The Effectiveness of Child Restraint Sys-
tems for Children Aged 3 Years or Younger During
Motor Vehicle Collisions: 1996 to 2005” (T. Rice and
C. Anderson, American Journal of Public Health,
2009:252–257) studied a large number of automo-
bile accidents involving small children. Following
are the numbers of infants who used various types of
restraints, categorized by age.

Age in Years

0 1 2

Safety seat 1143 1328 1086
Seat belt 41 93 172
No restraint 270 249 368

Can you conclude that the proportions of infants using
the various types of restraints differ with age?

7. For the given table of observed values,

a. Construct the corresponding table of expected
values.

b. If appropriate, perform the chi-square test for the
null hypothesis that the row and column outcomes
are independent. If not appropriate, explain why.

Observed Values
1 2 3

A 15 10 12
B 3 11 11
C 9 14 12

8. For the given table of observed values,

a. Construct the corresponding table of expected
values.

b. If appropriate, perform the chi-square test for the
null hypothesis that the row and column outcomes
are independent. If not appropriate, explain why.

Observed Values
1 2 3

A 25 4 11
B 3 3 4
C 42 3 5

9. Fill in the blank: For observed and expected
values,

i. The row totals in the observed table must be the
same as the row totals in the expected table, but
the column totals need not be the same.

ii. The column totals in the observed table must be
the same as the column totals in the expected
table, but the row totals need not be the same.

iii. Both the row and the column totals in the observed
table must be the same as the row and the column
totals, respectively, in the expected table.

iv. Neither the row nor the column totals in the ob-
served table need be the same as the row or the
column totals in the expected table.

10. Because of printer failure, none of the observed val-
ues in the following table were printed, but some of
the marginal totals were. Is it possible to construct
the corresponding table of expected values from the
information given? If so, construct it. If not, describe
the additional information you would need.

Observed Values
1 2 3 Total

A — — — 25
B — — — —
C — — — 40
D — — — 75

Total 50 20 — 150

11. Plates are evaluated according to their surface finish,
and placed into four categories: premium, conform-
ing, downgraded, and unacceptable. A quality engi-
neer claims that the proportions of plates in the four
categories are 10%, 70%, 15%, and 5%, respectively.
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In a sample of 200 plates, 19 were classified as pre-
mium, 133 were classified as conforming, 35 were
classified as downgraded, and 13 were classified as
unacceptable. Can you conclude that the engineer’s
claim is incorrect?

12. The article “Determination of Carboxyhemoglobin
Levels and Health Effects on Officers Working at
the Istanbul Bosphorus Bridge” (G. Kocasoy and
H. Yalin, Journal of Environmental Science and
Health, 2004:1129–1139) presents assessments of
health outcomes of people working in an environment
with high levels of carbon monoxide (CO). Following
are the numbers of workers reporting various symp-
toms, categorized by work shift. The numbers were
read from a graph.

Shift

Morning Evening Night

Influenza 16 13 18

Headache 24 33 6

Weakness 11 16 5

Shortness 7 9 9
of Breath

Can you conclude that the proportions of workers
with the various symptoms differ among the shifts?

13. The article “Analysis of Unwanted Fire Alarm: Case
Study” (W. Chow, N. Fong, and C. Ho, Journal of
Architectural Engineering, 1999:62–65) presents a
count of the number of false alarms at several sites.
The numbers of false alarms each month, divided into
those with known causes and those with unknown
causes, are given in the following table. Can you con-
clude that the proportion of false alarms whose cause
is known differs from month to month?

Month

1 2 3 4 5 6 7 8 9 10 11 12

Known 20 13 21 26 23 18 14 10 20 20 18 14
Unknown 12 2 16 12 22 30 32 32 14 16 10 12

14. At a certain genetic locus on a chromosome, each
individual has one of three different DNA sequences

(alleles). The three alleles are denoted A, B, C. At
another genetic locus on the same chromosome, each
organism has one of three alleles, denoted 1, 2, 3.
Each individual therefore has one of nine possible
allele pairs: A1, A2, A3, B1, B2, B3, C1, C2, or C3.
These allele pairs are called haplotypes. The loci are
said to be in linkage equilibrium if the two alleles in an
individual’s haplotype are independent. Haplotypes
were determined for 316 individuals. The following
MINITAB output presents the results of a chi-square
test for independence.

Chi-Square Test: A, B, C

Expected counts are printed below
observed counts
Chi-Square contributions are printed
below expected counts

A B C Total
1 66 44 34 144

61.06 47.39 35.54
0.399 0.243 0.067

2 36 38 20 94
39.86 30.94 23.20
0.374 1.613 0.442

3 32 22 24 78
33.08 25.67 19.25
0.035 0.525 1.170

Total 134 104 78 316

Chi-Sq = 4.868, DF = 4,
P-Value = 0.301

a. How many individuals were observed to have the
haplotype B3?

b. What is the expected number of individuals with
the haplotype A2?

c. Which of the nine haplotypes was least frequently
observed?

d. Which of the nine haplotypes has the smallest
expected count?

e. Can you conclude that the loci are not in linkage
equilibrium (i.e., not independent)? Explain.

f. Can you conclude that the loci are in linkage equi-
librium (i.e., independent)? Explain.
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6.11 Tests for Variances of Normal Populations

The tests we have studied so far have involved means or proportions. Sometimes it is
desirable to test a hypothesis concerning variances. In general there is no good way to do
this. In the special case where populations are normal, however, a method is available.

Testing the Variance of a Normal Population
Let X1, . . . , Xn be a simple random sample from a N (μ, σ 2) population. Let s2 be the
sample variance:

s2 = 1

n − 1

n∑
i=1

(Xi − X)2

The test statistic is
(n − 1)s2

σ 2
0

. The null hypothesis may take any of three forms:

H0 : σ 2 ≤ σ 2
0 H0 : σ 2 ≥ σ 2

0 H0 : σ 2 = σ 2
0

When H0 is true, we assume that σ 2 = σ 2
0 . Then the test statistic has a chi-square

distribution with n − 1 degrees of freedom. We illustrate the test with an example.

Example
6.24 To check the reliability of a scale in a butcher shop, a test weight known to weigh 400

grams was weighed 16 times. For the scale to be considered reliable, the variance of
repeated measurements must be less than 1. The sample variance of the 16 measured
weights was s2 = 0.81. Assume that the measured weights are independent and
follow a normal distribution. Can we conclude that the population variance of the
measurements is less than 1?

Solution
Let σ 2 be the population variance. The null and alternate hypotheses are H0 : σ ≥ 1
versus H1 : σ < 1. The value of the test statistic is

(n − 1)s2

12
= 12.15

If H0 is true, then s2 will on the average be greater than or equal to 1. Therefore
the smaller the value of the test statistic, the stronger the evidence against H0. The
P-value is thus the probability of observing a value of the test statistic less than or
equal to the observed value of 12.15, under the assumption that H0 is true. Consulting
the chi-square table (Table A.7) with n − 1 = 15 degrees of freedom, we find that the
lower 10% point is 8.547. We conclude that P > 0.10 (see Figure 6.21 on page 474).
We cannot conclude that the scale is reliable.

When the null hypothesis has the form H0 : σ 2 ≤ σ 2
0 , larger values of the test statistic

provide stronger evidence against H0. Then the P-value is the area to the right of the
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0 8.547 12.15 20 40

10%

FIGURE 6.21 Probability density function of the χ 2
15 distribution. The observed value

of the test statistic is 12.15. The lower 10% point is 8.547. Therefore the P-value is
greater than 0.10.

observed value of the test statistic. When the null hypothesis has the form H0 : σ 2 = σ 2
0 ,

both large and small values of the test statistic provide evidence against H0. The P-value
is then found by doubling the area in the tail containing the observed value of the test
statistic.

The F Test for Equality of Variance
Sometimes it is desirable to test a null hypothesis that two populations have equal
variances. In general there is no good way to do this. In the special case where both
populations are normal, however, a method is available.

Let X1, . . . , Xm be a simple random sample from a N (μ1, σ 2
1) population, and let

Y1, . . . , Yn be a simple random sample from a N (μ2, σ 2
2) population. Assume that the

samples are chosen independently. The values of the means, μ1 and μ2, are irrelevant
here; we are concerned only with the variances σ 2

1 and σ 2
2. Note that the sample sizes,

m and n, may be different. Let s2
1 and s2

2 be the sample variances. That is,

s2
1 = 1

m − 1

m∑
i=1

(Xi − X)2 s2
2 = 1

n − 1

n∑
i=1

(Yi − Y )2

Any of three null hypotheses may be tested. They are

H0 :
σ 2

1

σ 2
2

≤ 1 or equivalently, σ 2
1 ≤ σ 2

2

H0 :
σ 2

1

σ 2
2

≥ 1 or equivalently, σ 2
1 ≥ σ 2

2

H0 :
σ 2

1

σ 2
2

= 1 or equivalently, σ 2
1 = σ 2

2

The procedures for testing these hypotheses are similar, but not identical. We will describe
the procedure for testing the null hypothesis H0 : σ 2

1/σ
2
2 ≤ 1 versus H1 : σ 2

1/σ
2
2 > 1, and

then discuss how the procedure may be modified to test the other two hypotheses.
The test statistic is the ratio of the two sample variances:

F = s2
1

s2
2

(6.10)
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When H0 is true, we assume that σ 2
1/σ

2
2 = 1 (the value closest to H1), or equivalently,

that σ 2
1 = σ 2

2. When H0 is true, s2
1 and s2

2 are, on average, the same size, so F is likely
to be near 1. When H0 is false, σ 2

1 > σ 2
2, so s2

1 is likely to be larger than s2
2, and F is

likely to be greater than 1. In order to use F as a test statistic, we must know its null
distribution. The null distribution is called an F distribution, which we now describe.

The F Distribution
Statistics that have an F distribution are ratios of quantities, such as the ratio of the two
sample variances in Equation (6.10). The F distribution therefore has two values for
the degrees of freedom: one associated with the numerator, and one associated with the
denominator. The degrees of freedom are indicated with subscripts under the letter F .
For example, the symbol F3,16 denotes the F distribution with 3 degrees of freedom for
the numerator and 16 degrees of freedom for the denominator. Note that the degrees of
freedom for the numerator are always listed first.

A table for the F distribution is provided (Table A.8 in Appendix A). The table
provides values for certain quantiles, or upper percentage points, for a large number of
choices for the degrees of freedom. As an example, Figure 6.22 presents the probability
density function of the F3,16 distribution. The upper 5% of the distribution is shaded.
To find the upper 5% point in the table, look under α = 0.050, and degrees of freedom
ν1 = 3, ν2 = 16. The value is 3.24.

0 3.24

5%

FIGURE 6.22 Probability density function of the F3,16 distribution. The upper 5%
point is 3.24. [See the F table (Table A.8) in Appendix A.]

The F Statistic for Testing Equality of Variance
The null distribution of the test statistic F = s2

1/s2
2 is Fm−1, n−1. The number of degrees

of freedom for the numerator is one less than the sample size used to compute s2
1, and

the number of degrees of freedom for the denominator is one less than the sample size
used to compute s2

2. We illustrate the F test with an example.

Example
6.25 In a series of experiments to determine the absorption rate of certain pesticides into

skin, measured amounts of two pesticides were applied to several skin specimens.
After a time, the amounts absorbed (in μg) were measured. For pesticide A, the
variance of the amounts absorbed in 6 specimens was 2.3, while for pesticide B,
the variance of the amounts absorbed in 10 specimens was 0.6. Assume that for
each pesticide, the amounts absorbed are a simple random sample from a normal
population. Can we conclude that the variance in the amount absorbed is greater for
pesticide A than for pesticide B?
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Solution
Let σ 2

1 be the population variance for pesticide A, and let σ 2
2 be the population variance

for pesticide B. The null hypothesis is

H0 :
σ 2

1

σ 2
2

≤ 1

The sample variances are s2
1 = 2.3 and s2

2 = 0.6. The value of the test statistic is

F = 2.3

0.6
= 3.83

The null distribution of the test statistic is F5,9. If H0 is true, then s2
1 will on the average

be smaller than s2
2. It follows that the larger the value of F , the stronger the evidence

against H0. Consulting the F table with five and nine degrees of freedom, we find
that the upper 5% point is 3.48, while the upper 1% point is 6.06. We conclude that
0.01 < P < 0.05. There is reasonably strong evidence against the null hypothesis. See
Figure 6.23.

0

3.83

3.48 6.06

5% 

1% 

FIGURE 6.23 The observed value of the test statistic is 3.83. The upper 5% point of
the F5,9 distribution is 3.48; the upper 1% point is 6.06. Therefore the P-value is between
0.01 and 0.05.

We now describe the modifications to the procedure shown in Example 6.25 that
are necessary to test the other null hypotheses. To test

H0 :
σ 2

1

σ 2
2

≥ 1

one could in principle use the test statistic s2
1/s2

2, with small values of the statistic
providing evidence against H0. However, since the F table contains only large values
(i.e., greater than 1) for the F statistic, it is easier to use the statistic s2

2/s2
1. Under H0,

the distribution of s2
2/s2

1 is Fn−1, m−1.
Finally, we describe the method for testing the two-tailed hypothesis

H0 :
σ 2

1

σ 2
2

= 1
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For this hypothesis, both large and small values of the statistic s2
1/s2

2 provide evidence
against H0. The procedure is to use either s2

1/s2
2 or s2

2/s2
1, whichever is greater than 1.

The P-value for the two-tailed test is twice the P-value for the one-tailed test. In other
words, the P-value of the two-tailed test is twice the upper tail area of the F distribution.
We illustrate with an example.

Example
6.26 In Example 6.25, s2

1 = 2.3 with a sample size of 6, and s2
2 = 0.6 with a sample size

of 10. Test the null hypothesis

H0 : σ 2
1 = σ 2

2

Solution
The null hypothesis σ 2

1 = σ 2
2 is equivalent to σ 2

1/σ
2
2 = 1. Since s2

1 > s2
2, we

use the test statistic s2
1/s2

2. In Example 6.25, we found that for the one-tailed test,
0.01 < P < 0.05. Therefore for the two-tailed test, 0.02 < P < 0.10.

The following computer output (from MINITAB) presents the solution to Exam-
ple 6.26.

Test for Equal Variances

F-Test (normal distribution)
Test statistic = 3.83, p-value = 0.078

The F Test Is Sensitive to Departures from Normality
The F test, like the t test, requires that the samples come from normal populations.
Unlike the t test, the F test for comparing variances is fairly sensitive to this assumption.
If the shapes of the populations differ much from the normal curve, the F test may give
misleading results. For this reason, the F test for comparing variances must be used with
caution.

In Chapters 8 and 9, we will use the F distribution to perform certain hypothesis
tests in the context of linear regression and analysis of variance. In these settings, the
F test is less sensitive to violations of the normality assumption.

The F Test Cannot Prove That Two Variances Are Equal
In Section 6.7, we presented two versions of the t test for the difference between two
means. One version is generally applicable, while the second version, which uses the
pooled variance, is appropriate only when the population variances are equal. When
deciding whether it is appropriate to assume population variances to be equal, it is
tempting to perform an F test and assume the variances to be equal if the null hypothesis
of equality is not rejected. Unfortunately this procedure is unreliable, for the basic
reason that failure to reject the null hypothesis does not justify the assumption that the
null hypothesis is true. In general, an assumption that population variances are equal
cannot be justified by a hypothesis test.
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Exercises for Section 6.11

1. A random sample of size 11 from a normal distribu-
tion has variance s2 = 96. Test H0 : σ 2 ≤ 50 versus
H1 : σ 2 > 50.

2. A random sample of size 29 from a normal distribu-
tion has variance s2 = 24. Test H0 : σ 2 ≥ 30 versus
H1 : σ 2 < 30.

3. Scores on an IQ test are normally distributed. A sam-
ple of 25 IQ scores had variance s2 = 64. The devel-
oper of the test claims that the population variance is
σ 2 = 225. Do these data provide sufficient evidence
to contradict this claim?

4. A machine that fills beverage cans is supposed to
put 12 ounces of beverage in each can. The variance
of the amount in each can is 0.01. The machine is
moved to a new location. To determine whether the
variance has changed, 10 cans are filled. Following
are the amounts in the 10 cans. Assume them to be a
random sample from a normal population.

12.18 11.77 12.09 12.03 11.87
11.96 12.03 12.36 12.28 11.85

Perform a hypothesis test to determine whether
the variance differs from 0.01. What do you
conclude?

5. A sample of 25 one-year-old girls had a mean weight
of 24.1 pounds with a standard deviation of 4.3
pounds. Assume that the population of weights is
normally distributed. A pediatrician claims that the
standard deviation of the weights of one-year-old
girls is less than 5 pounds. Do the data provide con-
vincing evidence that the pediatrician’s claim is true?
(Based on data from the National Health Statistics
Reports.)

6. The 2008 General Social Survey asked a large num-
ber of people how much time they spent watching TV
each day. The mean number of hours was 2.98 with
a standard deviation of 2.66. Assume that in a sam-
ple of 40 teenagers, the sample standard deviation
of daily TV time is 1.9 hours, and that the popula-
tion of TV watching times is normally distributed.
Can you conclude that the population standard de-
viation of TV watching times for teenagers is less
than 2.66?

7. Scores on the math SAT are normally distributed.
A sample of 20 SAT scores had standard deviation
s = 87. Someone says that the scoring system for
the SAT is designed so that the population standard
deviation will be σ = 100. Do these data provide
sufficient evidence to contradict this claim?

8. One of the ways in which doctors try to determine
how long a single dose of pain reliever will provide
relief is to measure the drug’s half-life, which is the
length of time it takes for one-half of the dose to
be eliminated from the body. A report of the Na-
tional Institutes of Health states that the standard
deviation of the half-life of the pain reliever oxy-
codone is σ = 1.43 hours. Assume that a sample of
25 patients is given the drug, and the sample stan-
dard deviation of the half-lives was s = 1.5 hours. As-
sume the population is normally distributed. Can you
conclude that the true standard deviation is greater
than the value reported by the National Institutes
of Health?

9. Find the upper 5% point of F7,20.

10. Find the upper 1% point of F2,5.

11. An F test with five degrees of freedom in the numer-
ator and seven degrees of freedom in the denominator
produced a test statistic whose value was 7.46.

a. What is the P-value if the test is one-tailed?

b. What is the P-value if the test is two-tailed?

12. A broth used to manufacture a pharmaceutical prod-
uct has its sugar content, in mg/mL, measured several
times on each of three successive days.

Day 1: 5.0 4.8 5.1 5.1 4.8 5.1 4.8
4.8 5.0 5.2 4.9 4.9 5.0

Day 2: 5.8 4.7 4.7 4.9 5.1 4.9 5.4
5.3 5.3 4.8 5.7 5.1 5.7

Day 3: 6.3 4.7 5.1 5.9 5.1 5.9 4.7
6.0 5.3 4.9 5.7 5.3 5.6

a. Can you conclude that the variability of the pro-
cess is greater on the second day than on the first
day?

b. Can you conclude that the variability of the pro-
cess is greater on the third day than on the second
day?
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13. Refer to Exercise 11 in Section 5.6. Can you con-
clude that the variance of the sodium content differs
between the two brands?

14. Refer to Exercise 13 in Section 5.6. Can you con-
clude that the time to freeze-up is more variable
in the seventh month than in the first month after
installation?

6.12 Fixed-Level Testing

Critical Points and Rejection Regions
A hypothesis test measures the plausibility of the null hypothesis by producing a
P-value. The smaller the P-value, the less plausible the null. We have pointed out
that there is no scientifically valid dividing line between plausibility and implausibility,
so it is impossible to specify a “correct” P-value below which we should reject H0. When
possible, it is best simply to report the P-value, and not to make a firm decision whether
or not to reject. Sometimes, however, a decision has to be made. For example, if items
are sampled from an assembly line to test whether the mean diameter is within tolerance,
a decision must be made whether to recalibrate the process. If a sample of parts is drawn
from a shipment and checked for defects, a decision must be made whether to accept or
to return the shipment. If a decision is going to be made on the basis of a hypothesis test,
there is no choice but to pick a cutoff point for the P-value. When this is done, the test
is referred to as a fixed-level test.

Fixed-level testing is just like the hypothesis testing we have been discussing so
far, except that a firm rule is set ahead of time for rejecting the null hypothesis. A value
α, where 0 < α < 1, is chosen. Then the P-value is computed. If P ≤ α, the null
hypothesis is rejected and the alternate hypothesis is taken as truth. If P > α, then the
null hypothesis is considered to be plausible. The value of α is called the significance
level, or, more simply, the level, of the test. Recall from Section 6.2 that if a test results
in a P-value less than or equal to α, we say that the null hypothesis is rejected at level
α (or 100α%), or that the result is statistically significant at level α (or 100α%). As we
have mentioned, a common choice for α is 0.05.

Summary
To conduct a fixed-level test:

■ Choose a number α, where 0 < α < 1. This is called the significance
level, or the level, of the test.

■ Compute the P-value in the usual way.

■ If P ≤ α, reject H0. If P > α, do not reject H0.

Example
6.27 Refer to Example 6.1 in Section 6.1. The mean wear in a sample of 45 steel balls

was X = 673.2 μm, and the standard deviation was s = 14.9 μm. Let μ denote the
population mean wear. A test of H0 : μ ≥ 675 versus H1 : μ < 675 yielded a P-value
of 0.209. Can we reject H0 at the 25% level? Can we reject H0 at the 5% level?
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Solution
The P-value of 0.209 is less than 0.25, so if we had chosen a significance level of
α = 0.25, we would reject H0. Thus we reject H0 at the 25% level. Since 0.209 > 0.05,
we do not reject H0 at the 5% level.

In a fixed-level test, a critical point is a value of the test statistic that produces a
P-value exactly equal to α. A critical point is a dividing line for the test statistic just as
the significance level is a dividing line for the P-value. If the test statistic is on one side
of the critical point, the P-value will be less than α, and H0 will be rejected. If the test
statistic is on the other side of the critical point, the P-value will be greater than α, and
H0 will not be rejected. The region on the side of the critical point that leads to rejection
is called the rejection region. The critical point itself is also in the rejection region.

Example
6.28 A new concrete mix is being evaluated. The plan is to sample 100 concrete blocks

made with the new mix, compute the sample mean compressive strength X , and then
test H0 : μ ≤ 1350 versus H1 : μ > 1350, where the units are MPa. It is assumed from
previous tests of this sort that the population standard deviation σ will be close to
70 MPa. Find the critical point and the rejection region if the test will be conducted
at a significance level of 5%.

Solution
We will reject H0 if the P-value is less than or equal to 0.05. The P-value for this
test will be the area to the right of the value of X . Therefore the P-value will be less
than 0.05, and H0 will be rejected, if the value of X is in the upper 5% of the null
distribution (see Figure 6.24). The rejection region therefore consists of the upper 5%
of the null distribution. The critical point is the boundary of the upper 5%. The null
distribution is normal, and from the z table we find that the z-score of the point that
cuts off the upper 5% of the normal curve is z.05 = 1.645. Therefore we can express
the critical point as z = 1.645, and the rejection region as z ≥ 1.645. It is often
more convenient to express the critical point and rejection region in terms of X , by
converting the z-score to the original units. The null distribution has mean μ = 1350
and standard deviation σX = σ/

√
n ≈ 70/

√
100 = 7. Therefore the critical point

can be expressed as X = 1350 + (1.645)(7) = 1361.5. The rejection region consists
of all values of X greater than or equal to 1361.5.

1350 1361.5
z = 1.645

5%

Rejection region 

FIGURE 6.24 The rejection region for this one-tailed test consists of the upper 5% of
the null distribution. The critical point is 1361.5, on the boundary of the rejection region.
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Example
6.29 In a hypothesis test to determine whether a scale is in calibration, the null hypothesis

is H0 : μ = 1000 and the null distribution of X is N (1000, 0.262). (This situation was
presented in Example 6.2 in Section 6.1.) Find the rejection region if the test will be
conducted at a significance level of 5%.

Solution
Since this is a two-tailed test, the rejection region is contained in both tails of the null
distribution. Specifically, H0 will be rejected if X is in either the upper or the lower
2.5% of the null distribution (see Figure 6.25). The z-scores that cut off the upper and
lower 2.5% of the distribution are z = ± 1.96. Therefore the rejection region consists
of all values of X greater than or equal to 1000+ (1.96)(0.26) = 1000.51, along with
all the values less than or equal to 1000 − (1.96)(0.26) = 999.49. Note that there are
two critical points, 999.49 and 1000.51.

z = �1.96 z = 1.96
1000999.49 1000.51

2.5%2.5%

Rejection 
region 

Rejection 
region 

FIGURE 6.25 The rejection region for this two-tailed test consists of both the lower
and the upper 2.5% of the null distribution. There are two critical points, 999.49 and
1000.51.

Type I and Type II Errors
Since a fixed-level test results in a firm decision, there is a chance that the decision could
be the wrong one. There are exactly two ways in which the decision can be wrong. One
can reject H0 when it is in fact true. This is known as a type I error. Or, one can fail to
reject H0 when it is false. This is known as a type II error.

When designing experiments whose data will be analyzed with a fixed-level test, it
is important to try to make the probabilities of type I and type II errors reasonably small.
There is no use in conducting an experiment that has a large probability of leading to an
incorrect decision. It turns out that it is easy to control the probability of a type I error,
as shown by the following result.

If α is the significance level that has been chosen for the test, then the probability
of a type I error is never greater than α.

We illustrate this fact with the following example. Let X1, . . . , Xn be a large random
sample from a population with mean μ and variance σ 2. Then X is normally distributed
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with mean μ and variance σ 2/n. Assume that we are to test H0 : μ ≤ 0 versus H1 : μ > 0
at the fixed level α = 0.05. That is, we will reject H0 if P ≤ 0.05. The null distribution,
shown in Figure 6.26, is normal with mean 0 and variance σ 2

X
= σ 2/n. Assume the null

hypothesis is true. We will compute the probability of a type I error and show that it is
no greater than 0.05.

1.645sX�0

0.05

FIGURE 6.26 The null distribution with the rejection region for H0 : μ ≤ 0.

A type I error will occur if we reject H0, which will occur if P ≤ 0.05, which in turn
will occur if X ≥ 1.645σX . Therefore the rejection region is the region X ≥ 1.645σX .
Now since H0 is true, μ ≤ 0. First, we’ll consider the case where μ = 0. Then the
distribution of X is given by Figure 6.26. In this case, P(X ≥ 1.645σX ) = 0.05, so the
probability of rejecting H0 and making a type I error is equal to 0.05. Next, consider
the case where μ < 0. Then the distribution of X is obtained by shifting the curve in
Figure 6.26 to the left, so P(X ≥ 1.645σX ) < 0.05, and the probability of a type I error
is less than 0.05. We could repeat this illustration using any number α in place of 0.05.
We conclude that if H0 is true, the probability of a type I error is never greater than
α. Furthermore, note that if μ is on the boundary of H0 (μ = 0 in this case), then the
probability of a type I error is equal to α.

We can therefore make the probability of a type I error as small as we please,
because it is never greater than the significance level α that we choose. Unfortunately,
as we will see in Section 6.13, the smaller we make the probability of a type I error,
the larger the probability of a type II error becomes. The usual strategy is to begin by
choosing a value for α so that the probability of a type I error will be reasonably small.
As we have mentioned, a conventional choice for α is 0.05. Then one computes the
probability of a type II error and hopes that it is not too large. If it is large, it can be
reduced only by redesigning the experiment—for example by increasing the sample
size. Calculating and controlling the size of the type II error is somewhat more difficult
than calculating and controlling the size of the type I error. We will discuss this in
Section 6.13.

Summary
When conducting a fixed-level test at significance level α, there are two types of
errors that can be made. These are

■ Type I error: Reject H0 when it is true.

■ Type II error: Fail to reject H0 when it is false.

The probability of a type I error is never greater than α.
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Exercises for Section 6.12

1. A hypothesis test is performed, and the P-value is
0.03. True or false:

a. H0 is rejected at the 5% level.

b. H0 is rejected at the 2% level.

c. H0 is not rejected at the 10% level.

2. A process for a certain type of ore is designed to re-
duce the concentration of impurities to less than 2%.
It is known that the standard deviation of impurities
for processed ore is 0.6%. Let μ represent the mean
impurity level, in percent, for ore specimens treated
by this process. The impurity of 80 ore specimens is
measured, and a test of the hypothesis H0 : μ ≥ 2
versus H1 : μ < 2 will be performed.

a. If the test is made at the 5% level, what is the re-
jection region?

b. If the sample mean impurity level is 1.85, will H0

be rejected at the 10% level?

c. If the sample mean pH is 1.85, will H0 be rejected
at the 1% level?

d. If the value 1.9 is a critical point, what is the level
of the test?

3. A new braking system is being evaluated for a cer-
tain type of car. The braking system will be installed
if it can be conclusively demonstrated that the stop-
ping distance under certain controlled conditions at a
speed of 30 mi/h is less than 90 ft. It is known that
under these conditions the standard deviation of stop-
ping distance is approximately 5 ft. A sample of 150
stops will be made from a speed of 30 mi/h. Let μ rep-
resent the mean stopping distance for the new braking
system.

a. State the appropriate null and alternate hypotheses.

b. Find the rejection region if the test is to be con-
ducted at the 5% level.

c. Someone suggests rejecting H0 if X ≥ 89.4 ft. Is
this an appropriate rejection region, or is something
wrong? If this is an appropriate rejection region,
find the level of the test. Otherwise explain what is
wrong.

d. Someone suggests rejecting H0 if X ≤ 89.4 ft. Is
this an appropriate rejection region, or is something
wrong? If this is an appropriate rejection region,
find the level of the test. Otherwise explain what is
wrong.

e. Someone suggests rejecting H0 if X ≤ 89.4 ft or if
X ≥ 90.6 ft. Is this an appropriate rejection region,
or is something wrong? If this is an appropriate re-
jection region, find the level of the test. Otherwise
explain what is wrong.

4. A test is made of the hypotheses H0 : μ ≤ 10 ver-
sus H1 : μ > 10. For each of the following situations,
determine whether the decision was correct, a type I
error occurred, or a type II error occurred.

a. μ = 8, H0 is rejected.

b. μ = 10, H0 is not rejected.

c. μ = 14, H0 is not rejected.

d. μ = 12, H0 is rejected.

5. A vendor claims that no more than 10% of the parts
she supplies are defective. Let p denote the actual pro-
portion of parts that are defective. A test is made of the
hypotheses H0 : p ≤ 0.10 versus H1 : p > 0.10. For
each of the following situations, determine whether
the decision was correct, a type I error occurred, or a
type II error occurred.

a. The claim is true, and H0 is rejected.

b. The claim is false, and H0 is rejected.

c. The claim is true, and H0 is not rejected.

d. The claim is false, and H0 is not rejected.

6. A hypothesis test is to be performed, and it is decided
to reject the null hypothesis if P ≤ 0.10. If H0 is in
fact true, what is the maximum probability that it will
be rejected?

7. A new process is being considered for the liquefac-
tion of coal. The old process yielded a mean of 15 kg
of distillate fuel per kilogram of hydrogen consumed
in the process. Let μ represent the mean of the new
process. A test of H0 : μ ≤ 15 versus H1 : μ > 15 will
be performed. The new process will be put into pro-
duction if H0 is rejected. Putting the new process into
production is very expensive. Therefore it would be a
costly error to put the new process into production if
in fact it is no better than the old process. Which pro-
cedure provides a smaller probability for this error, to
test at the 5% level or to test at the 1% level?
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6.13 Power

A hypothesis test results in a type II error if H0 is not rejected when it is false. The power
of a test is the probability of rejecting H0 when it is false. Therefore

Power = 1 − P(type II error)

To be useful, a test must have reasonably small probabilities of both type I and type II
errors. The type I error is kept small by choosing a small value of α as the significance
level. Then the power of the test is calculated. If the power is large, then the probability
of a type II error is small as well, and the test is a useful one. Note that power calculations
are generally done before data are collected. The purpose of a power calculation is to
determine whether or not a hypothesis test, when performed, is likely to reject H0 in the
event that H0 is false.

As an example of a power calculation, assume that a new chemical process has
been developed that may increase the yield over that of the current process. The current
process is known to have a mean yield of 80 and a standard deviation of 5, where the
units are the percentage of a theoretical maximum. If the mean yield of the new process
is shown to be greater than 80, the new process will be put into production. Let μ denote
the mean yield of the new process. It is proposed to run the new process 50 times and
then to test the hypothesis

H0 : μ ≤ 80 versus H1 : μ > 80

at a significance level of 5%. If H0 is rejected, it will be concluded that μ > 80, and the
new process will be put into production. Let us assume that if the new process had a mean
yield of 81, then it would be a substantial benefit to put this process into production. If it
is in fact the case that μ = 81, what is the power of the test, that is, the probability that
H0 will be rejected?

Before presenting the solution, we note that in order to compute the power, it is
necessary to specify a particular value of μ, in this case μ = 81, for the alternate
hypothesis. The reason for this is that the power is different for different values of μ. We
will see that if μ is close to H0, the power will be small, while if μ is far from H0, the
power will be large.

Computing the power involves two steps:

1. Compute the rejection region.

2. Compute the probability that the test statistic falls in the rejection region if the
alternate hypothesis is true. This is the power.

We’ll begin to find the power of the test by computing the rejection region, using
the method illustrated in Example 6.28 in Section 6.12. We must first find the null
distribution. We know that the statistic X has a normal distribution with mean μ and
standard deviation σX = σ/

√
n, where n = 50 is the sample size. Under H0, we take

μ = 80. We must now find an approximation for σ . In practice this can be a difficult
problem, because the sample has not yet been drawn, so there is no sample standard
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deviation s. There are several ways in which it may be possible to approximate σ .
Sometimes a small preliminary sample has been drawn, for example in a feasibility
study, and the standard deviation of this sample may be a satisfactory approximation for
σ . In other cases, a sample from a similar population may exist, whose standard deviation
may be used. In this example, there is a long history of a currently used process, whose
standard deviation is 5. Let’s say that it is reasonable to assume that the standard deviation
of the new process will be similar to that of the current process. We will therefore
assume that the population standard deviation for the new process is σ = 5 and that
σX = 5/

√
50 = 0.707.

Figure 6.27 presents the null distribution of X . Since H0 specifies that μ ≤ 80,
large values of X disagree with H0, so the P-value will be the area to the right of the
observed value of X . The P-value will be less than or equal to 0.05 if X falls into the
upper 5% of the null distribution. This upper 5% is the rejection region. The critical point
has a z-score of 1.645, so its value is 80 + (1.645)(0.707) = 81.16. We will reject H0 if
X ≥ 81.16. This is the rejection region.

z = 1.645
80 81.16

5%

Rejection
region

FIGURE 6.27 The hypothesis test will be conducted at a significance level of 5%. The
rejection region for this test is the region where the P-value will be less than 0.05.

We are now ready to compute the power, which is the probability that X will fall
into the rejection region if the alternate hypothesis μ = 81 is true. Under this alternate
hypothesis, the distribution of X is normal with mean 81 and standard deviation 0.707.
Figure 6.28 presents the alternate distribution and the null distribution on the same

z0 = 1.645

z1 = 0.23

80 81 81.16

Null 
distribution

Alternate
distribution

Power = 0.4090

FIGURE 6.28 The rejection region, consisting of the upper 5% of the null distribution,
is shaded. The z-score of the critical point is z0 = 1.645 under the null distribution and
z1 = 0.23 under the alternate. The power is the area of the rejection region under the
alternate distribution, which is 0.4090.
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plot. Note that the alternate distribution is obtained by shifting the null distribution
so that the mean becomes the alternate mean of 81 rather than the null mean of 80.
Because the alternate distribution is shifted over, the probability that the test statistic
falls into the rejection region is greater than it is under H0. To be specific, the z-score
under H1 for the critical point 81.16 is z = (81.16 − 81)/0.707 = 0.23. The area to the
right of z = 0.23 is 0.4090. This is the power of the test.

A power of 0.4090 is very low. It means that if the mean yield of new process
is actually equal to 81, there is only a 41% chance that the proposed experiment will
detect the improvement over the old process and allow the new process to be put into
production. It would be unwise to invest time and money to run this experiment, since it
has a large chance to fail.

It is natural to wonder how large the power must be for a test to be worthwhile to
perform. As with P-values, there is no scientifically valid dividing line between sufficient
and insufficient power. In general, tests with power greater than 0.80 or perhaps 0.90 are
considered acceptable, but there are no well-established rules of thumb.

We have mentioned that the power depends on the value of μ chosen to represent the
alternate hypothesis and is larger when the value is far from the null mean. Example 6.30
illustrates this.

Example
6.30 Find the power of the 5% level test of H0 : μ ≤ 80 versus H1 : μ > 80 for the mean

yield of the new process under the alternative μ = 82, assuming n = 50 and σ = 5.

Solution
We have already completed the first step of the solution, which is to compute the
rejection region. We will reject H0 if X ≥ 81.16. Figure 6.29 presents the alternate
and null distributions on the same plot. The z-score for the critical point of 81.16
under the alternate hypothesis is z = (81.16 − 82)/0.707 = −1.19. The area to the
right of z = −1.19 is 0.8830. This is the power.

z0 = 1.645

z1 = �1.19

80 8281.16

Null 
distribution

Alternate
distribution

Power = 0.8830

FIGURE 6.29 The rejection region, consisting of the upper 5% of the null distribution,
is shaded. The z-score of the critical point is z0 = 1.645 under the null distribution and
z1 = −1.19 under the alternate. The power is the area of the rejection region under the
alternate distribution, which is 0.8830.
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Since the alternate distribution is obtained by shifting the null distribution, the power
depends on which alternate value is chosen for μ, and can range from barely greater than
the significance level α all the way up to 1. If the alternate mean is chosen very close to
the null mean, the alternate curve will be almost identical with the null, and the power
will be very close to α. If the alternate mean is far from the null, almost all the area
under the alternate curve will lie in the rejection region, and the power will be close
to 1.

When power is not large enough, it can be increased by increasing the sample size.
When planning an experiment, one can determine the sample size necessary to achieve
a desired power. Example 6.31 illustrates this.

Example
6.31 In testing the hypothesis H0 : μ ≤ 80 versus H1 : μ > 80 regarding the mean yield of

the new process, how many times must the new process be run so that a test conducted
at a significance level of 5% will have power 0.90 against the alternative μ = 81, if
it is assumed that σ = 5?

Solution
Let n represent the necessary sample size. We first use the null distribution to express
the critical point for the test in terms of n. The null distribution of X is normal
with mean 80 and standard deviation 5/

√
n. Therefore the critical point is 80 +

1.645(5/
√

n). Now, we use the alternate distribution to obtain a different expression
for the critical point in terms of n. Refer to Figure 6.30. The power of the test is the area
of the rejection region under the alternate curve. This area must be 0.90. Therefore
the z-score for the critical point, under the alternate hypothesis, is z = −1.28. The
critical point is therefore 81 − 1.28(5/

√
n). We now have two different expressions

for the critical point. Since there is only one critical point, these two expressions are
equal. We therefore set them equal and solve for n.

80 + 1.645

(
5√
n

)
= 81 − 1.28

(
5√
n

)

z0 = 1.645

z1 = �1.28

80 8180.56

Null 
distribution

Alternate
distribution

Power = 0.90

FIGURE 6.30 To achieve a power of 0.90 with a significance level of 0.05, the z-score
for the critical point must be z0 = 1.645 under the null distribution and z1 = −1.28
under the alternate distribution.
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Solving for n yields n ≈ 214. The critical point can be computed by substituting this
value for n into either side of the previous equation. The critical point is 80.56.

Using a Computer to Calculate Power
We have presented a method for calculating the power, and the sample size needed to
attain a specified power, for a one-tailed large-sample test of a population mean. It is
reasonably straightforward to extend this method to compute power and needed sample
sizes for two-tailed tests and for tests for proportions. It is more difficult to compute
power for a t test, F test, or chi-square test. Computer packages, however, can compute
power and needed sample sizes for all these tests. We present some examples.

Example
6.32 A pollster will conduct a survey of a random sample of voters in a community to

estimate the proportion who support a measure on school bonds. Let p be the propor-
tion of the population who support the measure. The pollster will test H0 : p = 0.50
versus H1 : p �= 0.50 at the 5% level. If 200 voters are sampled, what is the power of
the test if the true value of p is 0.55?

Solution
The following computer output (from MINITAB) presents the solution:

Power and Sample Size

Test for One Proportion

Testing proportion = 0.5 (versus not = 0.5)
Alpha = 0.05

Alternative Sample
Proportion Size Power

0.55 200 0.292022

The first two lines of output state that this is a power calculation for a test for a single
population proportion p. The next two lines state the null and alternate hypotheses,
and the significance level of the test. Note that we have specified a two-tailed test with
significance level α = 0.05. Next is the alternative proportion, which is the value of
p (0.55) that we are assuming to be true when the power is calculated. The sample
size has been specified to be 200, and the power is computed to be 0.292.

Example
6.33 Refer to Example 6.32. How many voters must be sampled so that the power will be

0.8 when the true value of p = 0.55?
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Solution
The following computer output (from MINITAB) presents the solution:

Power and Sample Size

Test for One Proportion

Testing proportion = 0.5 (versus not = 0.5)
Alpha = 0.05

Alternative Sample Target
Proportion Size Power Actual Power

0.55 783 0.8 0.800239

The needed sample size is 783. Note that the actual power is slightly higher than
0.80. Because the sample size is discrete, it is not possible to find a sample size that
provides exactly the power requested (the target power). So MINITAB calculates the
smallest sample size for which the power is greater than that requested.

Example
6.34 Shipments of coffee beans are checked for moisture content. High moisture content

indicates possible water contamination, leading to rejection of the shipment. Let
μ represent the mean moisture content (in percent by weight) in a shipment. Five
moisture measurements will be made on beans chosen at random from the shipment.
A test of the hypothesis H0 : μ ≤ 10 versus H1 : μ > 10 will be made at the 5% level,
using the Student’s t test.What is the power of the test if the true moisture content is
12% and the standard deviation is σ = 1.5%?

Solution
The following computer output (from MINITAB) presents the solution:

Power and Sample Size

1-Sample t Test

Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 1.5

Sample
Difference Size Power

2 5 0.786485

The power depends only on the difference between the true mean and the null mean,
which is 12 − 10 = 2, and not on the means themselves. The power is 0.786. Note
that the output specifies that this is the power for a one-tailed test.
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Example
6.35 Refer to Example 6.34. Find the sample size needed so that the power will be at least

0.9.

Solution
The following computer output (from MINITAB) presents the solution:

Power and Sample Size

1-Sample t Test

Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 1.5

Sample Target
Difference Size Power Actual Power

2 7 0.9 0.926750

The smallest sample size for which the power is 0.9 or more is 7. The actual power
is 0.927.

To summarize, power calculations are important to ensure that experiments have
the potential to provide useful conclusions. Many agencies that provide funding for
scientific research require that power calculations be provided with every proposal in
which hypothesis tests are to be performed.

Exercises for Section 6.13

1. A test has power 0.90 when μ = 15. True or false:

a. The probability of rejecting H0 when μ = 15 is
0.90.

b. The probability of making a correct decision when
μ = 15 is 0.90.

c. The probability of making a correct decision when
μ = 15 is 0.10.

d. The probability that H0 is true when μ = 15 is 0.10.

2. A test has power 0.80 when μ = 3.5. True or false:

a. The probability of rejecting H0 when μ = 3.5 is
0.80.

b. The probability of making a type I error when
μ = 3.5 is 0.80.

c. The probability of making a type I error when
μ = 3.5 is 0.20.

d. The probability of making a type II error when
μ = 3.5 is 0.80.

e. The probability of making a type II error when
μ = 3.5 is 0.20.

f. The probability that H0 is false when μ = 3.5 is
0.80.

3. If the sample size remains the same, and the level α

increases, then the power will . Options: in-
crease, decrease.

4. If the level α remains the same, and the sample size
increases, then the power will . Options: in-
crease, decrease.
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5. A tire company claims that the lifetimes of its tires
average 50,000 miles. The standard deviation of tire
lifetimes is known to be 5000 miles. You sample 100
tires and will test the hypothesis that the mean tire life-
time is at least 50,000 miles against the alternative that
it is less. Assume, in fact, that the true mean lifetime is
49,500 miles.

a. State the null and alternate hypotheses. Which hy-
pothesis is true?

b. It is decided to reject H0 if the sample mean is less
than 49,400. Find the level and power of this test.

c. If the test is made at the 5% level, what is the power?

d. At what level should the test be conducted so that
the power is 0.80?

e. You are given the opportunity to sample more tires.
How many tires should be sampled in total so that
the power is 0.80 if the test is made at the 5%
level?

6. A copper smelting process is supposed to reduce the ar-
senic content of the copper to less than 1000 ppm. Let
μ denote the mean arsenic content for copper treated
by this process, and assume that the standard devia-
tion of arsenic content is σ = 100 ppm. The sample
mean arsenic content X of 75 copper specimens will be
computed, and the null hypothesis H0 : ≥ 1000 will be
tested against the alternate H1 : μ < 1000.

a. A decision is made to reject H0 if X ≤ 980. Find
the level of this test.

b. Find the power of the test in part (a) if the true mean
content is 965 ppm.

c. For what values of X should H0 be rejected so that
the power of the test will be 0.95 when the true mean
content is 965?

d. For what values of X should H0 be rejected so that
the level of the test will be 5%?

e. What is the power of a 5% level test if the true mean
content is 965 ppm?

f. How large a sample is needed so that a 5% level
test has power 0.95 when the true mean content is
965 ppm?

7. A power calculation has shown that if μ = 8, the power
of a test of H0 : μ ≥ 10 versus H1 : μ < 10 is 0.90. If
instead μ = 7, which one of the following statements
is true?

i. The power of the test will be less than 0.90.

ii. The power of the test will be greater than 0.90.

iii. We cannot determine the power of the test without
knowing the population standard deviation σ .

8. A new process for producing silicon wafers for inte-
grated circuits is supposed to reduce the proportion
of defectives to 10%. A sample of 250 wafers will be
tested. Let X represent the number of defectives in the
sample. Let p represent the population proportion of
defectives produced by the new process. A test will be
made of H0 : p ≥ 0.10 versus H1 : p < 0.10. Assume
the true value of p is actually 0.06.

a. It is decided to reject H0 if X ≤ 18. Find the level
of this test.

b. It is decided to reject H0 if X ≤ 18. Find the power
of this test.

c. Should you use the same standard deviation for X
to compute both the power and the level? Explain.

d. How many wafers should be sampled so that the
power is 0.90 if the test is made at the 5% level?

9. The following MINITAB output presents the results of
a power calculation for a test concerning a population
proportion p.

Power and Sample Size

Test for One Proportion

Testing proportion = 0.5
(versus not = 0.5)
Alpha = 0.05

Alternative Sample
Proportion Size Power

0.4 150 0.691332

a. Is the power calculated for a one-tailed or two-tailed
test?

b. What is the null hypothesis for which the power
is calculated?

c. For what alternative value of p is the power calcu-
lated?

d. If the sample size were 100, would the power be
less than 0.7, greater than 0.7, or is it impossible
to tell from the output? Explain.

e. If the sample size were 200, would the power be
less than 0.6, greater than 0.6, or is it impossible
to tell from the output? Explain.
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f. For a sample size of 150, is the power against the
alternative p = 0.3 less than 0.65, greater than
0.65, or is it impossible to tell from the output?
Explain.

g. For a sample size of 150, is the power against the
alternative p = 0.45 less than 0.65, greater than
0.65, or is it impossible to tell from the output?
Explain.

10. The following MINITAB output presents the results of a power calculation for a test concerning a population mean μ.

Power and Sample Size

1-Sample t Test

Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 1.5

Sample Target
Difference Size Power Actual Power

1 18 0.85 0.857299

a. Is the power calculated for a one-tailed or two-tailed test?
b. Assume that the value of μ used for the null hypothesis is μ = 3. For what alternate value of μ is the power

calculated?
c. If the sample size were 25, would the power be less than 0.85, greater than 0.85, or is it impossible to tell from the

output? Explain.
d. If the difference were 0.5, would the power be less than 0.90, greater than 0.90, or is it impossible to tell from the

output? Explain.
e. If the sample size were 17, would the power be less than 0.85, greater than 0.85, or is it impossible to tell from the

output? Explain.

11. The following MINITAB output presents the results of a power calculation for a test of the difference between
two means μ1 − μ2.

Power and Sample Size

2-Sample t Test

Testing mean 1 = mean 2 (versus not =)
Calculating power for mean 1 = mean 2 + difference
Alpha = 0.05 Assumed standard deviation = 5

Sample Target
Difference Size Power Actual Power

3 60 0.9 0.903115
The sample size is for each group.

a. Is the power calculated for a one-tailed or two-tailed test?
b. If the sample sizes were 50 in each group, would the power be less than 0.9, greater than 0.9, or is it impossible

to tell from the output? Explain.
c. If the difference were 4, would the power be less than 0.9, greater than 0.9, or is it impossible to tell from the

output? Explain.
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6.14 Multiple Tests

Sometimes a situation occurs in which it is necessary to perform many hypothesis tests.
The basic rule governing this situation is that as more tests are performed, the confidence
that we can place in our results decreases. In this section, we present an example to
illustrate this point.

It is thought that applying a hard coating containing very small particles of tungsten
carbide may reduce the wear on cam gears in a certain industrial application. There
are many possible formulations for the coating, varying in the size and concentration
of the tungsten carbide particles. Twenty different formulations were manufactured.
Each one was tested by applying it to a large number of gears, and then measuring the
wear on the gears after a certain period of time had elapsed. It is known on the basis
of long experience that the mean wear for uncoated gears over this period of time is
100 μm. For each formulation, a test was made of the null hypothesis H0 : μ ≥ 100 μm.
H0 says that the formulation does not reduce wear. For 19 of the 20 formulations, the
P-value was greater than 0.05, so H0 was not rejected. For one formulation, H0 was
rejected. It might seem natural to conclude that this formulation really does reduce wear.
Examples 6.36 through 6.39 will show that this conclusion is premature.

Example
6.36 If only one formulation were tested, and it in fact had no effect on wear, what is the

probability that H0 would be rejected, leading to a wrong conclusion?

Solution
If the formulation has no effect on wear, then μ = 100 μm, so H0 is true. Rejecting
H0 is then a type I error. The question is therefore asking for the probability of a type
I error. In general, this probability is always less than or equal to the significance level
of the test, which in this case is 5%. Since μ = 100 is on the boundary of H0, the
probability of a type I error is equal to the significance level. The probability is 0.05
that H0 will be rejected.

Example
6.37 Given that H0 was rejected for one of the 20 formulations, is it plausible that this

formulation actually has no effect on wear?

Solution
Yes. It is plausible that none of the formulations, including the one for which H0 was
rejected, have any effect on wear. There were 20 hypothesis tests made. For each test
there was a 5% chance (i.e., 1 chance in 20) of a type I error. Therefore we expect on
the average that out of every 20 true null hypotheses, one will be rejected. So rejecting
H0 in one out of the 20 tests is exactly what one would expect in the case that none
of the formulations made any difference.
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Example
6.38 If in fact none of the 20 formulations have any effect on wear, what is the probability

that H0 will be rejected for one or more of them?

Solution
We first find the probability that the right conclusion (not rejecting H0) is made for
all the formulations. For each formulation, the probability that H0 is not rejected is
1−0.05 = 0.95, so the probability that H0 is not rejected for any of the 20 formulations
is (0.95)20 = 0.36. Therefore the probability is 1 − 0.36 = 0.64 that we incorrectly
reject H0 for one or more of the formulations.

Example
6.39 The experiment is repeated. This time, the operator forgets to apply the coatings, so

each of the 20 wear measurements is actually made on uncoated gears. Is it likely
that one or more of the formulations will appear to reduce wear, in that H0 will be
rejected?

Solution
Yes. Example 6.38 shows that the probability is 0.64 that one or more of the coatings
will appear to reduce wear, even if they are not actually applied.

Examples 6.36 through 6.39 illustrate a phenomenon known as the multiple testing
problem. Put simply, the multiple testing problem is this: When H0 is rejected, we have
strong evidence that it is false. But strong evidence is not certainty. Occasionally a true
null hypothesis will be rejected. When many tests are performed, it is more likely that
some true null hypotheses will be rejected. Thus when many tests are performed, it is
difficult to tell which of the rejected null hypotheses are really false and which correspond
to type I errors.

The Bonferroni Method
The Bonferroni method provides a way to adjust P-values upward when several hy-
pothesis tests are performed. If a P-value remains small after the adjustment, the null
hypothesis may be rejected. To make the Bonferroni adjustment, simply multiply the
P-value by the number of tests performed. Here are two examples.

Example
6.40 Four different coating formulations are tested to see if they reduce the wear on cam

gears to a value below 100 μm. The null hypothesis H0 : μ ≥ 100 μm is tested for
each formulation, and the results are

Formulation A: P = 0.37
Formulation B: P = 0.41
Formulation C: P = 0.005
Formulation D: P = 0.21
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The operator suspects that formulation C may be effective, but he knows that the
P-value of 0.005 is unreliable, because several tests have been performed. Use the
Bonferroni adjustment to produce a reliable P-value.

Solution
Four tests were performed, so the Bonferroni adjustment yields P = (4)(0.005) =
0.02 for formulation C. So the evidence is reasonably strong that formulation C is in
fact effective.

Example
6.41 In Example 6.40, assume the P-value for formulation C had been 0.03 instead of

0.005. What conclusion would you reach then?

Solution
The Bonferroni adjustment would yield P = (4)(0.03) = 0.12. This is probably not
strong enough evidence to conclude that formulation C is in fact effective. Since the
original P-value was small, however, it is likely that one would not want to give up
on formulation C quite yet.

The Bonferroni adjustment is conservative; in other words, the P-value it produces
is never smaller than the true P-value. So when the Bonferroni-adjusted P-value is
small, the null hypothesis can be rejected conclusively. Unfortunately, as Example 6.41
shows, there are many occasions in which the original P-value is small enough to arouse
a strong suspicion that a null hypothesis may be false, but the Bonferroni adjustment
does not allow the hypothesis to be rejected.

When the Bonferroni-adjusted P-value is too large to reject a null hypothesis, yet
the original P-value is small enough to lead one to suspect that the hypothesis is in fact
false, often the best thing to do is to retest the hypothesis that appears to be false, using
data from a new experiment. If the P-value is again small, this time without multiple
tests, this provides real evidence against the null hypothesis.

Real industrial processes are monitored frequently by sampling and testing process
output to see whether it meets specifications. Every so often, the output appears to be
outside the specifications. But in these cases, how do we know whether the process is
really malfunctioning (out of control) or whether the result is a type I error? This is a
version of the multiple testing problem that has received much attention. The subject of
statistical quality control (see Chapter 10) is dedicated in large part to finding ways to
overcome the multiple testing problem.

Exercises for Section 6.14

1. An agricultural scientist tests six types of fertilizer, la-
beled A, B, C, D, E, and F, to determine whether any
of them produces an increase in the yield of lima beans
over that obtained with the current fertilizer. For fertil-

izer C, the increase in yield is statistically significant
at the 0.05 level. For the other five, the increase is not
statistically significant. The scientist concludes that
the yield obtained with fertilizer C is greater than that
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of the current fertilizer. Explain why this conclusion
is not justified.

2. Refer to Exercise 1. The P-value for fertilizer C
was 0.03. Use the Bonferroni correction to produce
a reliable P-value for this fertilizer. Can you reject
H0?

3. Six different settings are tried on a machine to see if
any of them will reduce the proportion of defective
parts. For each setting, an appropriate null hypothesis
is tested to see if the proportion of defective parts has
been reduced. The six P-values are 0.34, 0.27, 0.002,
0.45, 0.03, and 0.19.

a. Find the Bonferroni-adjusted P-value for the set-
ting whose P-value is 0.002. Can you conclude
that this setting reduces the proportion of defective
parts? Explain.

b. Find the Bonferroni-adjusted P-value for the set-
ting whose P-value is 0.03. Can you conclude
that this setting reduces the proportion of defec-
tive parts? Explain.

4. Five different variations of a bolt-making process are
run to see if any of them can increase the mean break-
ing strength of the bolts over that of the current pro-
cess. The P-values are 0.13, 0.34, 0.03, 0.28, and 0.38.
Of the following choices, which is the best thing to do
next?

i. Implement the process whose P-value was 0.03,
since it performed the best.

ii. Since none of the processes had Bonferroni-
adjusted P-values less than 0.05, we should stick
with the current process.

iii. Rerun the process whose P-value was 0.03 to
see if it remains small in the absence of multiple
testing.

iv. Rerun all the five variations again, to see if any
of them produce a small P-value the second time
around.

5. Twenty formulations of a coating are being tested
to see if any of them reduce gear wear. For the
Bonferroni-adjusted P-value for a formulation to be
0.05, what must the original P-value be?

6. Five new paint additives have been tested to see if any
of them can reduce the mean drying time from the
current value of 12 minutes. Ten specimens have been

painted with each of the new types of paint, and the
drying times (in minutes) have been measured. The
results are as follows:

Additive

A B C D E

1 14.573 10.393 15.497 10.350 11.263
2 12.012 10.435 9.162 7.324 10.848
3 13.449 11.440 11.394 10.338 11.499
4 13.928 9.719 10.766 11.600 10.493
5 13.123 11.045 11.025 10.725 13.409
6 13.254 11.707 10.636 12.240 10.219
7 12.772 11.141 15.066 10.249 10.997
8 10.948 9.852 11.991 9.326 13.196
9 13.702 13.694 13.395 10.774 12.259

10 11.616 9.474 8.276 11.803 11.056

For each additive, perform a hypothesis test of
the null hypothesis H0 : μ ≥ 12 against the alternate
H1 : μ < 12. You may assume that each population is
approximately normal.

a. What are the P-values for the five tests?

b. On the basis of the results, which of the three fol-
lowing conclusions seems most appropriate? Ex-
plain your answer.

i. At least one of the new additives results in an
improvement.

ii. None of the new additives result in an
improvement.

iii. Some of the new additives may result in
improvement, but the evidence is inconclusive.

7. Each day for 200 days, a quality engineer samples
144 fuses rated at 15 A and measures the amperage
at which they burn out. He performs a hypothesis test
of H0 : μ = 15 versus H1 : μ �= 15, where μ is the
mean burnout amperage of the fuses manufactured
that day.

a. On 10 of the 200 days, H0 is rejected at the
5% level. Does this provide conclusive evidence
that the mean burnout amperage was different
from 15 A on at least one of the 200 days?
Explain.

b. Would the answer to part (a) be different if
H0 had been rejected on 20 of the 200 days?
Explain.
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6.15 Using Simulation to Perform
Hypothesis Tests

If X1, . . . , Xn are normally distributed random variables, with known standard deviations
σ1, . . . , σn , and U = U (X1, . . . , Xn) is a function of X1, . . . , Xn , then it will often,
but not always, be the case that U is approximately normally distributed and that its
standard deviation σU can be estimated. In these cases we can perform hypothesis tests
on the mean μU of U . To determine whether U is approximately normally distributed
and to estimate σU , simulation can be used. The method is similar to that described in
Section 5.10.

We illustrate with an example. Let R represent the measurement of the radius of a
cylinder, and let H represent the measurement of the height. Assume that these measure-
ments are both unbiased and normally distributed. Let V = π R2 H denote the measure-
ment of the volume of the cylinder that is computed from R and H . Now assume that
R = 4.8 cm, H = 10.1 cm, and the uncertainties (standard deviations) are σR = 0.1 cm
and σH = 0.2 cm. The measured volume is V = π(4.82)(10.1) = 731.06 cm3.
Suppose we wish to determine whether we can conclude that the true volume of the
cylinder is greater than 700 cm3. Let μV denote the mean of V . Since R and H are
unbiased, with fairly small uncertainties, V is nearly unbiased (see the discussion on
pages 180–181), so μV is close to the true volume of the cylinder. Therefore we can
address the question concerning the true volume by performing a test of the hypotheses
H0 : μV ≤ 700 versus H1 : μV > 700.

Now if the measured volume V is normally distributed, and if the population
standard deviation σV were known, we could perform the test as follows: Under H0,
V ∼ N (700, σ 2

V ). We observed the value V = 731.06. The P-value for H0 : μV ≤ 700
is P(V ≥ 731.06), where the probability is computed under the assumption that
V ∼ N (700, σ 2

V ). The z-score is (731.06 − 700)/σV . If σV were known, we could
compute z, and then use the z table to find the P-value.

To determine whether V is normally distributed, and to approximate σV , we first
generate a large number N of values R∗

1 , . . . , R∗
N for the radius measurement. We know

that the radius measurement is normally distributed with standard deviation σR = 0.1.
We do not know the mean radius measurement, which is equal to the true radius, but we
can approximate it with the observed value 4.8. Therefore we generate R∗

1 , . . . , R∗
N from

the distribution N (4.8, 0.12). Similarly, we generate H∗
1 , . . . , H∗

N from the distribution
N (10.1, 0.22). Then we compute simulated volume measurements V ∗

i = π(R∗
i )

2 H∗
i . A

normal probability plot of the V ∗
i can then be used to determine whether V is approxi-

mately normal.
Figure 6.31 (page 498) presents a normal probability plot for a sample of 1000

values of V ∗
i . The normality assumption is satisfied. The sample standard deviation of

the simulated values V ∗
1 , . . . , V ∗

1000 was 34.42 cm3. We therefore compute the z-score to
be z = (731.06 − 700)/34.42 = 0.90. The P-value is 0.1841.
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FIGURE 6.31 Normal probability plot for 1000 simulated volumes. The assumption
of normality appears to be justified.

Testing Hypotheses with Bootstrap Confidence Intervals
Given a level 100(1−α)% confidence interval for a parameter, such as a population mean
μ, we can reject at level 100α% the null hypothesis that the parameter is equal to any
given value outside the interval, and cannot reject at level 100α% the null hypothesis that
the parameter is equal to any given value inside the interval (see the discussion beginning
on page 413). This idea can be applied to a bootstrap confidence interval to construct a
fixed-level hypothesis test. We present an example.

Example
6.42 In Section 5.10, an approximate 95% confidence interval for the mean mileage, in mpg,

of a population of trucks was found by a bootstrap method to be (4.7643, 6.4757).
Can we conclude at the 5% level that the population mean mileage differs from 5 mpg?
From 7 mpg?

Solution
A 95% confidence interval, whether computed by the bootstrap or by other means,
contains the values that are not rejected at the 5% level. Therefore we conclude at the
5% level that the population mean differs from 7 mpg, but we cannot conclude at the
5% level that it differs from 5 mpg.

Randomization Tests
Randomization tests, also called permutation tests, were among the earliest methods
developed to test the difference between two population means. While they require
virtually no assumptions about the distribution of the data, they involve a great deal of
computation, and so did not become truly feasible until recently. We present an example.

A crop scientist wants to determine whether the yield of lettuce will be increased by
using a fertilizer with a higher nitrogen content. She conducts an experiment involving
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20 plots. Ten plots are chosen at random to be treated with fertilizer A, which has a
low nitrogen content. The other 10 plots are treated with fertilizer B, which has a higher
nitrogen content.

The following table presents, for each plot, the treatment applied (A or B), and the
yield, in number of heads of lettuce harvested.

Plot Number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Treatment A A B B A A A B B A A B A A B B B B A B
Yield 145 142 144 141 142 155 143 157 152 143 103 151 150 148 150 162 149 158 144 151

The null hypothesis is that there is no difference between the fertilizers with regard
to yield; in other words, the yield for each plot would have been the same no matter which
fertilizer it had received. For example the yield in plot 1 would have been 145 whether
fertilizer A or B was used. If H0 is true, then the 20 observed yields are constants, and the
yields associated with fertilizer A are a simple random sample of 10 of these 20 constant
yields. Denote the mean of the 10 yields associated with fertilizer A by A, and the mean of
the 10 yields associated with fertilizer B by B. Since the main interest in the experiment
is to determine whether fertilizer B increases the yield, a reasonable test statistic is
the difference B − A. The observed value of this statistic is 151.5 − 141.5 = 10.0.
The larger the value of the test statistic, the stronger the evidence against H0. The
strength of the evidence is measured by the P-value. We now discuss how to calculate
the P-value.

The experiment involves a random choice of 10 plots out of 20 to receive fertil-
izer A. In general, the number of different choices of k items to be selected from a
group of n items is denoted

(n
k

)
and is given by (see Equation 2.12 in Section 2.2 for a

derivation) (
n
k

)
= n!

k!(n − k)!

Therefore the number of possible choices for these 10 plots is
(20

10

) = 184,756. This
means that there are 184,756 ways that the experiment could have come out; the actual
experiment consists of observing one of these ways chosen at random. The choice that
was actually made provided a value of B − A = 10 for the test statistic. Since, under H0,
the yields do not depend on which fertilizer was used, we could in principle compute
the value of the test statistic B − A for each of the 184,756 possible outcomes of the
experiment. The P-value is the probability, under H0, that the test statistic has a value
greater than or equal to 10. This probability is equal to the proportion of the 184,756
possible outcomes of the experiment for which B − A ≥ 10. Table 6.6 (page 500)
presents a partial listing of the possible outcomes of the experiment.

The exact P-value can be found by completing Table 6.6 and then determining the
proportion of outcomes for which B− A ≥ 10. This procedure is called a randomization
test, or permutation test. Computing the exact P-value is an intensive task, even for
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TABLE 6.6 Possible outcomes of the randomized experiment

Outcome Yields Assigned to A Yields Assigned to B A B B − A

103 141 142 142 143 149 150 150 151 1511
143 144 144 145 148 152 155 157 158 162

139.5 153.5 14.0

103 141 142 142 143 148 150 150 151 1512
143 144 144 145 149 152 155 157 158 162

139.6 153.4 13.8

...
...

...
...

...
...

148 150 150 151 151 103 141 142 142 143184,755
152 155 157 158 162 143 144 144 145 149

153.4 139.6 −13.8

149 150 150 151 151 103 141 142 142 143184,756
152 155 157 158 162 143 144 144 145 148

153.5 139.5 −14.0

a computer. An easier method, which is just as good in practice, is to work with a
randomly generated collection of outcomes instead. This is done by generating a large
number (1000 or more) randomly chosen subsets of 10 yields to assign to treatment A.
Each chosen subset corresponds to one of the possible outcomes of the experiment, and
for each subset, the value of the test statistic is computed. The P-value is approximated
with the proportion of the randomly chosen outcomes for which the value of the test
statistic is greater than or equal to the observed value of 10.

Table 6.7 presents the first 5 and the last of 1000 randomly chosen outcomes for
the experiment. Of the first five outcomes, none of them have values of B − A greater
than or equal to 10, so the estimate of the P-value based on these five is 0/5 = 0. Of
course, five outcomes is not enough upon which to base a reliable conclusion. Out of the
full set of 1000 outcomes, only 9 had values of B − A greater than or equal to 10. We
therefore estimate the P-value to be 0.009, which is small enough to conclusively reject
the null hypothesis that there is no difference between the fertilizers. It seems reasonable
to conclude that fertilizer B tends to increase the yield.

Randomized experiments like the one just described play a major role in scientific
investigations and are discussed more fully in Chapter 9. When no outliers are present,
it has been shown that the Student’s t test for the difference between means (see
Section 6.7) provides a good approximation to the randomization test when two treat-
ments are being compared. Data from randomized experiments can generally be treated
as though they consist of random samples from different populations; this is the approach
we will take in Chapter 9. Freedman, Pisani, and Purves (2007) contains a good discus-
sion of this topic. Rank tests (see Section 6.9) are sometimes used for these experiments
as well.

Randomization tests can be used in some cases when the data consist of two samples
from two populations, which is the situation discussed in Section 6.7. Thus randomization
tests can be an alternative to the t test for the difference between means when outliers
are present.

More information on randomization tests can be found in Efron and Tibshirani
(1993).
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TABLE 6.7 One thousand simulated outcomes of the randomized experiment

Outcome Yields Assigned to A Yields Assigned to B A B B − A

157 151 144 150 142 145 148 142 143 1031
150 155 144 143 141 152 158 149 162 151

147.70 145.30 −2.40

143 103 158 151 142 142 144 149 144 1432
151 155 150 148 141 162 157 150 152 145

144.20 148.80 4.60

162 158 144 141 148 143 150 142 152 1453
155 103 143 144 157 150 142 149 151 151

145.50 147.50 2.00

145 151 143 141 150 144 155 157 103 1524
142 162 148 149 158 150 144 151 143 142

148.90 144.10 −4.80

152 148 144 142 157 145 150 158 149 1445
155 162 103 150 151 143 141 143 151 142

146.40 146.60 0.20

...
...

...
...

...
...

144 152 143 155 142 144 103 149 142 1501000
148 143 145 158 151 162 150 141 151 157

148.10 144.90 −3.20

Using Simulation to Estimate Power
For some tests, it is difficult to calculate power with a formula. In these cases, simulation
can often be used to estimate the power. Following is an example.

Example
6.43 A new type of weld is being developed. If the mean fracture toughness of this weld

is conclusively shown to be greater than 20 ft · lb, the weld will be used in a certain
application. Assume that toughness is normally distributed with standard deviation
equal to 4 ft · lb. Six welds will be made, and the fracture toughness of each will be
measured.

A Student’s t test will be made of the null hypothesis H0 : μ ≤ 20 versus H1 : μ >

20. If the test is conducted at a significance level of 5%, what is the power of the test
if the true mean toughness is 25 ft · lb?

Solution
Let X1, . . . , X6 represent the six sample toughnesses, and let s represent their sample
standard deviation. This is a sample from a N (25, 16) distribution. The test statistic
is T = (X − 20)/(s/

√
6). Under H0, this statistic has a Student’s t distribution with

five degrees of freedom. The null hypothesis will be rejected if the value of the test
statistic is greater than t5,.05 = 2.015. The power, therefore, is equal to P(T > 2.015).
It is not easy to calculate this probability directly, since in fact the null hypothesis is
false, so T does not in fact have a Student’s t distribution. We can, however, estimate
it with a simulation experiment.

We will generate 10,000 samples X∗
1i , . . . , X∗

6i , each from a N (25, 16) distribu-
tion. For each sample, we will compute the sample mean X

∗
i , the sample standard

deviation s∗
i , and the test statistic T ∗

i = (X
∗
i − 20)/(s∗

i /
√

6). Since each simulated
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TABLE 6.8 Simulated data for Example 6.43

i X∗
1 X∗

2 X∗
3 X∗

4 X∗
5 X∗

6 X∗ s∗ T ∗ T ∗ > 2.015

1 23.24 23.78 15.65 25.67 24.08 25.88 23.05 3.776 1.978 0
2 26.51 19.89 20.53 25.03 28.35 28.01 24.72 3.693 3.131 1
3 28.61 28.19 29.48 20.06 30.00 21.19 26.26 4.423 3.465 1
4 22.84 28.69 23.93 27.37 19.51 30.28 25.44 4.046 3.291 1
5 22.36 21.26 26.37 23.61 34.45 29.97 26.34 5.061 3.067 1
6 26.54 28.63 24.79 20.63 25.44 26.69 25.45 2.703 4.940 1
7 24.05 24.42 20.32 23.74 24.14 24.66 23.56 1.615 5.394 1
8 28.38 29.51 23.80 29.05 26.39 23.76 26.81 2.579 6.472 1
9 23.55 21.73 19.57 25.04 22.34 29.71 23.66 3.484 2.570 1

10 29.98 34.65 21.17 28.43 23.43 34.44 28.68 5.559 3.825 1
...

...
...

...
...

...
...

...
...

...
...

10,000 30.75 19.99 26.20 22.41 31.53 21.78 25.45 4.862 2.744 1

sample is drawn from the same distribution as are the actual toughnesses of the
welds, each simulated sample is statistically equivalent to a sample of actual welds.
We can therefore estimate the power simply by computing the proportion of simulated
samples for which the null hypothesis is rejected, that is, for which the value of the
test statistic exceeds 2.015. Table 6.8 presents the results for the first 10 samples and
for the last one. The rightmost column contains a “1” if the value of the test statistic
exceeds 2.015 and a “0” otherwise.

The null hypothesis is rejected for 9 of the first 10 samples. If we were to base
our results on the first 10 samples, we would estimate the power to be 0.9. Of course,
10 samples is not enough. Out of all 10,000 samples, the null hypothesis was rejected
for 8366 of them. The estimate of the power is therefore 0.8366.

Exercises for Section 6.15

1. Refer to Exercise 6 in Section 5.10. Let μ represent
the population mean compressive strength, in MPa.
Consider the following null hypotheses:

i. H0 : μ = 38.53

ii. H0 : μ = 38.35

iii. H0 : μ = 38.45

iv. H0 : μ = 38.55

a. Using the bootstrap data presented in Exercise 6 in
Section 5.10, which of these null hypotheses can
be rejected at the 5% level if a confidence interval
is formed using method 1 on page 390?

b. Using the bootstrap data presented in Exercise 6 in
Section 5.10, which of these null hypotheses can
be rejected at the 10% level if a confidence interval
is formed using method 1 on page 390?

2. Refer to Exercise 6 in Section 5.10. Let μ represent
the population mean compressive strength, in MPa.
Generate 1000 bootstrap samples.

a. Using the bootstrap data you generated, which of
these null hypotheses can be rejected at the 5%
level, using method 1 on page 390?

b. Using the bootstrap data you generated, which of
these null hypotheses can be rejected at the 10%
level, using method 1 on page 390?

c. If a bootstrap experiment is performed twice on
the same data, is it necessary that the results will
agree? Explain.

3. In the lettuce yield example presented on page 499,
would it be a good idea to use the t test described in
Section 6.7 to determine whether the fertilizers differ
in their effects on yield? Why or why not?
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4. It is suspected that using premium gasoline rather than
regular will increase the mileage for automobiles with
a particular engine design. Sixteen cars are used in a
randomized experiment. Eight are randomly chosen to
be tested with regular gasoline, while the other eight
are tested with premium gasoline. The results, in mpg,
are as follows:

Regular: 29.1 27.1 30.8 17.3 27.6 16.3
28.4 30.2

Premium: 28.3 32.0 27.4 35.3 29.9 35.6
30.9 29.7

a. Under the null hypothesis that each car would get
the same mileage with either type of gasoline, how
many different outcomes are possible for this ex-
periment?

b. Let R and P denote the sample mean mileages
for the regular and premium groups, respectively.
Compute R and P .

c. Perform a randomization test to determine whether
it can be concluded that premium gasoline tends to
increase mileage. Use the test statistic P − R. Gen-
erate at least 1000 random outcomes, and estimate
the P-value.

d. Use the Student’s t test described in Section 6.7 to
test the null hypothesis that the mean mileage using
regular is greater than or equal to the mean mileage
for premium. Is this result reliable? Explain?

5. For the lettuce yield data (page 499), it is thought that
the yields from fertilizer A might have a larger vari-
ance than the yields from fertilizer B.

a. Compute the sample variances s2
A and s2

B of the
yields assigned to A and B, respectively, and the
quotient s2

A/s2
B .

b. Someone suggests using the F test in Section 6.11
for this problem. Is this a good idea? Why or why
not?

c. Perform a randomization test of H0 : s2
A ≤ s2

B ver-
sus H1 : s2

A > s2
B , using the test statistic s2

A/s2
B , and

a minimum of 1000 random outcomes.

(Hint: Proceed just as in the example in the text, but
for each outcome compute s2

A, s2
B , and s2

A/s2
B rather

than A, B, and B − A. A fair amount of coding
may be required, depending on the software used.)

6. Refer to Exercise 4. Perform a randomization test to
determine whether the mileage using regular gasoline

has a greater variance than the mileage using premium
gasoline. Generate at least 1000 random outcomes.

7. A certain wastewater treatment method is supposed
to neutralize the wastewater so that the mean pH is
7. Measurements of pH will be made on seven speci-
mens of treated wastewater, and a test of the hypothe-
ses H0 : μ = 7 versus H1 : μ �= 7 will be made using
the Student’s t test (Section 6.4). Assume that the true
mean is μ = 6.5, the pH measurements are normally
distributed with mean μ and standard deviation 0.5,
and the test is made at the 5% level.

a. Let X1, . . . , X7 denote the pH measurements, let
X denote their mean, and let s denote their sample
standard deviation. What is the test statistic? For
what values of the test statistic will H0 be rejected?

b. Generate 10,000 samples X ∗
1, . . . , X ∗

7 from the true
distribution of pH measurements. For each sample,
compute the test statistic and determine whether
H0 is rejected. Estimate the power of the test.

8. This exercise requires ideas from Section 2.6. In a
two-sample experiment, when each item in one sam-
ple is paired with an item in the other, the paired t test
(Section 6.8) can be used to test hypotheses regard-
ing the difference between two population means. If
one ignores the fact that the data are paired, one can
use the two-sample t test (Section 6.7) as well. The
question arises as to which test has the greater power.
The following simulation experiment is designed to
address this question.

Let (X1, Y1), . . . , (X8, Y8) be a random sample of
eight pairs, with X1, . . . , X8 drawn from an N (0, 1)

population and Y1, . . . , Y8 drawn from an N (1, 1)

population. It is desired to test H0 : μX − μY = 0 ver-
sus H1 : μX − μY �= 0. Note that μX = 0 and μY = 1,
so the true difference between the means is 1. Also
note that the population variances are equal. If a test
is to be made at the 5% significance level, which test
has the greater power?

Let Di = Xi − Yi for i = 1, . . . , 10. The test
statistic for the paired t test is D/(sD/

√
8), where sD

is the standard deviation of the Di (see Section 6.8).
Its null distribution is Student’s t with seven degrees
of freedom. Therefore the paired t test will reject H0

if |D/(sD/
√

8)| > t7,.025 = 2.365, so the power is
P(|D/(sD/

√
8)| > 2.365).

For the two-sample t test when the pop-
ulation variances are equal, the test statistic is
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D/(sp

√
1/8 + 1/8) = D/(sp/2), where sp is the

pooled standard deviation, which is equal in this case
to

√
(s2

X + s2
Y )/2. (See page 443. Note that D =

X −Y .) The null distribution is Student’s t with 14 de-
grees of freedom. Therefore the two-sample t test will
reject H0 if |D/(sp

√
1/8 + 1/8)| > t14,.025 = 2.145,

and the power is P(|D/(sp

√
1/8 + 1/8)| > 2.145).

The power of these tests depends on the correla-
tion between Xi and Yi .

a. Generate 10,000 samples X ∗
1i , . . . , X ∗

8i from
an N (0, 1) population and 10,000 samples
Y ∗

1i , . . . , Y ∗
8i from an N (1, 1) population. The ran-

dom variables X ∗
ki and Y ∗

ki are independent in this
experiment, so their correlation is 0. For each
sample, compute the test statistics D

∗
/(s∗

D/
√

8)

and D∗/(s∗
p/2). Estimate the power of each test

by computing the proportion of samples for which
the test statistics exceeds its critical point (2.365
for the paired test, 2.145 for the two-sample test).
Which test has greater power?

b. As in part (a), generate 10,000 samples
X ∗

1i , . . . , X ∗
8i from an N (0, 1) population. This

time, instead of generating the values Y ∗ indepen-
dently, generate them so the correlation between
X ∗

ki and Y ∗
ki is 0.8. This can be done as follows:

Generate 10,000 samples Z ∗
1i , . . . , Z8i from an

N (0, 1) population, independent of the X ∗ values.
Then compute Yki = 1 + 0.8X ∗

ki + 0.6Z ∗
ki . The

sample Y ∗
1i , . . . , Y ∗

8i will come from an N (1, 1)

population, and the correlation between X ∗
ki and

Y ∗
ki will be 0.8, which means that large values of

X ∗
ki will tend to be paired with large values of

Y ∗
ki , and vice versa. Compute the test statistics and

estimate the power of both tests, as in part (a).
Which test has greater power?

9. This exercise continues Exercise 9 in the Supple-
mentary Exercises for Chapter 3. The article “In-
sights into Present-Day Crustal Motion in the Central
Mediterranean Area from GPS Surveys” (M. Anzidei,
P. Baldi, et al., Geophysical Journal International,

2001:98–100) reports measurements of the velocity
of the earth’s crust in Zimmerwald, Switzerland. The
component of velocity in a northerly direction was
measured to be X = 22.10, and the component in an
easterly direction was measured to be Y = 14.30,
where the units are mm/year. The uncertainties in
the measurements were given as σX = 0.34 and
σY = 0.32.

a. Compute the estimated velocity V of the earth’s
crust, based on these measurements. Use the
method of propagation of error to estimate its un-
certainty.

b. Assuming the estimated velocity to be normally
distributed, find the P-value for the hypothesis
H0 : μV ≤ 25.

c. Assuming that the components of velocity in the
northerly and easterly directions are independent
and normally distributed, generate an appropriate
simulated sample of values V ∗. Is it reasonable
to assume that V is approximately normally dis-
tributed?

10. A population geneticist is studying the genes found
at two different locations on the genome. He esti-
mates the proportion p1 of organisms who have gene A
at the first locus to be p̂1 = 0.42, with uncertainty
σ1 = 0.049. He estimates the proportion of organisms
that have gene B at a second locus to be p̂2 = 0.23,
with uncertainty σ2 = 0.043. Under assumptions usu-
ally made in population genetics (Hardy–Weinberg
equilibrium), p̂1 and p̂2 are independent and normally
distributed, and the proportion p of organisms that
have both genes A and B is estimated with p̂ = p̂1 p̂2.

a. Compute p̂ and use propagation of error to esti-
mate its uncertainty.

b. Assuming p̂ to be normally distributed, find the
P-value for testing H0 : p ≥ 0.10.

c. Generate an appropriate simulated sample of val-
ues p̂∗. Is it reasonable to assume that p̂ is normally
distributed?

Supplementary Exercises for Chapter 6

Exercises 1 to 4 describe experiments that require a hy-
pothesis test. For each experiment, describe the appropri-
ate test. State the appropriate null and alternate hypotheses,
describe the test statistic, and specify which table should
be used to find the P-value. If relevant, state the number
of degrees of freedom for the test statistic.

1. A fleet of 100 taxis is divided into two groups of
50 cars each to see whether premium gasoline
reduces maintenance costs. Premium unleaded fuel is
used in group A, while regular unleaded fuel is used
in group B. The total maintenance cost for each ve-
hicle during a one-year period is recorded. Premium
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fuel will be used if it is shown to reduce maintenance
costs.

2. A group of 15 swimmers is chosen to participate in
an experiment to see if a new breathing style will im-
prove their stamina. Each swimmer’s pulse recovery
rate is measured after a 20 minute workout using the
old breathing style. The swimmers practice the new
style for two weeks, and then measure their pulse re-
covery rates after a 20 minute workout using the new
style. They will continue to use the new breathing style
if it is shown to reduce pulse recovery time.

3. A new quality-inspection program is being tested to
see if it will reduce the proportion of parts shipped
out that are defective. Under the old program, the
proportion of defective parts was 0.10. Two hundred
parts that passed inspection under the new program
will be sampled, and the number of defectives will
be counted. The new program will be implemented
if it is shown that the proportion of defectives is less
than 0.10.

4. A new material is being tested for use in the manufac-
ture of electrical conduit, to determine whether it will
reduce the variance in crushing strength over the old
material. Crushing strengths are measured for a sam-
ple of size 16 of the old material and a sample of size
20 of the new material. If it is shown that the crushing
strength with the new material has smaller variance,
the new material will be used.

5. Suppose you have purchased a filling machine for
candy bags that is supposed to fill each bag with 16 oz
of candy. Assume that the weights of filled bags are
approximately normally distributed. A random sam-
ple of 10 bags yields the following data (in oz):

15.87 16.02 15.78 15.83 15.69 15.81
16.04 15.81 15.92 16.10

On the basis of these data, can you conclude that the
mean fill weight is actually less than 16 oz?

a. State the appropriate null and alternate
hypotheses.

b. Compute the value of the test statistic.

c. Find the P-value and state your conclusion.

6. Are answer keys to multiple-choice tests generated
randomly, or are they constructed to make it less likely
for the same answer to occur twice in a row? This
question was addressed in the article “Seek Whence:

Answer Sequences and Their Consequences in Key-
Balanced Multiple-Choice Tests” (M. Bar-Hillel and
Y. Attali, The American Statistician, 2002:299–303).
They studied 1280 questions on 10 real Scholastic As-
sessment Tests (SATs). Assume that all the questions
had five choices (in fact 150 of them had only four
choices). They found that for 192 of the questions, the
correct choice (A, B, C, D, or E) was the same as the
correct choice for the question immediately preced-
ing. If the choices were generated at random, then the
probability that a question would have the same cor-
rect choice as the one immediately preceding would
be 0.20. Can you conclude that the choices for the SAT
are not generated at random?

a. State the appropriate null and alternate hypotheses.

b. Compute the value of the test statistic.

c. Find the P-value and state your conclusion.

7. An automobile manufacturer wishes to compare the
lifetimes of two brands of tire. She obtains samples
of seven tires of each brand. On each of seven cars,
she mounts one tire of each brand on each front wheel.
The cars are driven until only 20% of the original tread
remains. The distances, in miles, for each tire are pre-
sented in the following table. Can you conclude that
there is a difference between the mean lifetimes of the
two brands of tire?

Car Brand 1 Brand 2

1 36,925 34,318
2 45,300 42,280
3 36,240 35,500
4 32,100 31,950
5 37,210 38,015
6 48,360 47,800
7 38,200 33,215

a. State the appropriate null and alternate
hypotheses.

b. Compute the value of the test statistic.

c. Find the P-value and state your conclusion.

8. Twenty-one independent measurements were taken of
the hardness (on the Rockwell C scale) of HSLA-100
steel base metal, and another 21 independent mea-
surements were made of the hardness of a weld pro-
duced on this base metal. The standard deviation of
the measurements made on the base metal was 3.06,
and the standard deviation of the measurements made
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on the weld was 1.41. Assume that the measurements
are independent random samples from normal popu-
lations. Can you conclude that measurements made on
the base metal are more variable than measurements
made on the weld?

9. There is concern that increased industrialization may
be increasing the mineral content of river water. Ten
years ago, the silicon content of the water in a certain
river was 5 mg/L. Eighty-five water samples taken
recently from the river have mean silicon content
5.6 mg/L and standard deviation 1.2 mg/L. Can you
conclude that the silicon content of the water is greater
today than it was 10 years ago?

10. The article “Modeling of Urban Area Stop-and-
Go Traffic Noise” (P. Pamanikabud and C. Tha-
rasawatipipat, Journal of Transportation Engineer-
ing, 1999:152–159) presents measurements of traffic
noise, in dBA, from 10 locations in Bangkok, Thai-
land. Measurements, presented in the following table,
were made at each location, in both the acceleration
and deceleration lanes.

Location Acceleration Deceleration

1 78.1 78.6
2 78.1 80.0
3 79.6 79.3
4 81.0 79.1
5 78.7 78.2
6 78.1 78.0
7 78.6 78.6
8 78.5 78.8
9 78.4 78.0

10 79.6 78.4

Can you conclude that there is a difference in the
mean noise levels between acceleration and decelera-
tion lanes?

11. A machine that grinds valves is set to produce valves
whose lengths have mean 100 mm and standard devia-
tion 0.1 mm. The machine is moved to a new location.
It is thought that the move may have upset the cali-
bration for the mean length, but that it is unlikely to
have changed the standard deviation. Let μ represent
the mean length of valves produced after the move.
To test the calibration, a sample of 100 valves will
be ground, their lengths will be measured, and a test
will be made of the hypotheses H0 : μ = 100 versus
H1 : μ �= 100.

a. Find the rejection region if the test is made at the
5% level.

b. Find the rejection region if the test is made at the
10% level.

c. If the sample mean length is 99.97 mm, will H0 be
rejected at the 5% level?

d. If the sample mean length is 100.01 mm, will H0

be rejected at the 10% level?

e. A critical point is 100.015 mm. What is the level
of the test?

12. Resistors for use in a certain application are supposed
to have a mean resistance μ greater than 100 �. As-
sume that the standard deviation of the resistances is
5 �. Resistances will be measured for a sample of
resistors, and a test of the hypothesis H0 : μ ≤ 100
versus H1 : μ > 100 will be made. Assume that in
fact the true mean resistance is 101 �.

a. If 100 resistors are sampled, what is the power of
a test made at the 5% level?

b. How many resistors must be sampled so that a 5%
level test has power 0.95?

c. If 100 resistors are sampled, at what level must the
test be made so that the power is 0.90?

d. If 100 resistors are sampled, and the rejection re-
gion is X > 100.5, what is the power of the test?

13. A machine manufactures bolts that are supposed to be
3 inches in length. Each day a quality engineer selects a
random sample of 50 bolts from the day’s production,
measures their lengths, and performs a hypothesis test
of H0 : μ = 3 versus H1 : μ �= 3, where μ is the mean
length of all the bolts manufactured that day. Assume
that the population standard deviation for bolt lengths
is 0.1 in. If H0 is rejected at the 5% level, the machine
is shut down and recalibrated.

a. Assume that on a given day, the true mean length
of bolts is 3 in. What is the probability that the ma-
chine will be shut down? (This is called the false
alarm rate.)

b. If the true mean bolt length on a given day is
3.01 in., find the probability that the equipment
will be recalibrated.

14. Electric motors are assembled on four different pro-
duction lines. Random samples of motors are taken
from each line and inspected. The number that pass
and that fail the inspection are counted for each line,
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with the following results:

Line
1 2 3 4

Pass 482 467 458 404
Fail 57 59 37 47

Can you conclude that the failure rates differ among
the four lines?

15. Refer to Exercise 14. The process engineer notices
that the sample from line 3 has the lowest proportion
of failures. Use the Bonferroni adjustment to deter-
mine whether she can conclude that the population
proportion of failures on line 3 is less than 0.10.

Exercises 16 and 17 illustrate that distribution-free
methods can produce misleading results when their
assumptions are seriously violated.

16. Consider the following two samples:

X : 0 2 3 4 10 20 40 100 1000

Y : –738 162 222 242 252 258 259 260 262

a. Show that both samples have the same mean and
variance.

b. Use the Wilcoxon rank-sum test to test the null hy-
pothesis that the population means are equal. What
do you conclude?

c. Do the assumptions of the rank-sum test appear to
be satisfied? Explain why or why not.

17. The rank-sum test is sometimes thought of as a test for
population medians. Under the assumptions of equal
spread and shape, the means of two populations will
differ if and only if the medians differ; therefore tests
for equality of population means are also tests for
equality of population medians. This exercise illus-
trates that when these assumptions are seriously vi-
olated, the rank-sum test can give misleading results
concerning the equality of population medians. Con-
sider the following two samples:

X: 1 2 3 4 5 6 7
20 40 50 60 70 80 90 100

Y: −10 −9 −8 −7 −6 −5 −4
20 21 22 23 24 25 26 27

a. Show that both samples have the same median.

b. Compute the P-value for a two-tailed rank-sum
test. If small P-values provide evidence against
the null hypothesis that the population medians are
equal, would you conclude that the population me-
dians are different?

c. Do the assumptions of the rank-sum test appear to
be satisfied? Explain why or why not.

18. A new production process is being contemplated for
the manufacture of stainless steel bearings. Measure-
ments of the diameters of random samples of bearings
from the old and the new processes produced the fol-
lowing data:

Old: 16.3 15.9 15.8 16.2 16.1 16.0
15.7 15.8 15.9 16.1 16.3 16.1
15.8 15.7 15.8 15.7

New: 15.9 16.2 16.0 15.8 16.1 16.1
15.8 16.0 16.2 15.9 15.7 16.2
15.8 15.8 16.2 16.3

a. Can you conclude at the 5% level that one process
yields a different mean size bearing than the other?

b. Can you conclude at the 5% level that the vari-
ance of the new procedure is lower than the older
procedure?

19. Two different chemical formulations of rocket fuel are
considered for the peak thrust they deliver in a particu-
lar design for a rocket engine. The thrust/weight ratios
(in kilograms force per gram) for each of the two fuels
are measured several times. The results are as follows:

Fuel A: 54.3 52.9 57.9 58.2 53.4 51.4
56.8 55.9 57.9 56.8 58.4 52.9
55.5 51.3 51.8 53.3

Fuel B: 55.1 55.5 53.1 50.5 49.7 50.1
52.4 54.4 54.1 55.6 56.1 54.8
48.4 48.3 55.5 54.7

a. Assume the fuel processing plant is presently con-
figured to produce fuel B and changeover costs
are high. Since an increased thrust/weight ratio for
rocket fuel is beneficial, how should the null and
alternate hypotheses be stated for a test on which
to base a decision whether to switch to fuel A?

b. Can you conclude at the 5% level that the switch
to fuel A should be made?

20. Suppose the Environmental Protection Agency is in
the process of monitoring the water quality in a large
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estuary in the eastern United States, in order to mea-
sure the PCB concentration (in parts per billion).

a. Suppose that a random sample of size 80 has a
sample mean of 1.59 ppb and a sample standard
deviation of 0.25 ppb. Test the hypothesis, at the
5% level, that the mean PCB concentration in
the estuary is less than or equal to 1.50 ppb against
the alternative that it is higher. Is H0 rejected?

b. If the population mean is 1.6 ppb and the popu-
lation standard deviation is 0.33 ppb, what is the
probability that the null hypothesis H0 : μ ≤ 1.50
is rejected at the 5% level, if the sample size
is 80?

c. If the population mean is 1.6 ppb and the popula-
tion standard deviation is 0.33 ppb, what sample
size is needed so that the probability is 0.99 that
H0 : μ ≤ 1.50 is rejected at the 5% level?

21. Two machines are used to package laundry detergent.
It is known that weights of boxes are normally dis-
tributed. Four boxes from each machine have their
contents carefully weighed, with the following results
(in grams):

Machine 1: 1752 1757 1751 1754
Machine 2: 1756 1750 1752 1746

An engineer wishes to test the null hypothesis that
the mean weights of boxes from the two machines
are equal. He decides to assume that the population
variances are equal, reasoning as follows:

The sample variances are s2
1 = 7.00 for ma-

chine 1 and s2
2 = 17.33 for machine 2. The

F statistic for testing for equality of population
variances is F3,3 = s2

2/s2
1 = 2.48. The upper

10% point of the F3,3 distribution is 5.39. Since
the null hypothesis specifies that the variances
are equal, I determine that the P-value is greater
than 2(0.10) = 0.20. Therefore I do not reject
the null hypothesis, and I conclude that the vari-
ances are equal.

a. Has the F test been done correctly?

b. Is the conclusion justified? Explain.

22. The article “Valuing Watershed Quality Improve-
ments Using Conjoint Analysis” (S. Farber and B.
Griner, Ecological Economics, 2000:63–76) presents
the results of a mail survey designed to assess opin-
ions on the value of improvement efforts in an acid-
mine degraded watershed in Western Pennsylvania.

Of the 510 respondents to the survey, 347 were male.
Census data show that 48% of the target population
is male. Can you conclude that the survey method
employed in this study tends to oversample males?
Explain.

23. Anthropologists can estimate the birthrate of an an-
cient society by studying the age distribution of skele-
tons found in ancient cemeteries. The numbers of
skeletons found at two such sites, as reported in the
article “Paleoanthropological Traces of a Neolithic
Demographic Transition” (J. Bocquet-Appel, Current
Anthropology, 2002:637–650) are given in the follow-
ing table:

Ages of Skeletons

0--4 5--19 20 years
Site years years or more

Casa da Moura 27 61 126
Wandersleben 38 60 118

Do these data provide convincing evidence that the
age distributions differ between the two sites?

24. Deforestation is a serious problem throughout much
of India. The article “Factors Influencing People’s Par-
ticipation in Forest Management in India” (W. Lise,
Ecological Economics, 2000:379–392) discusses the
social forces that influence forest management poli-
cies in three Indian states: Haryana, Bihar, and Uttar
Pradesh. The forest quality in Haryana is somewhat
degraded, in Bihar it is very degraded, and in Uttar
Pradesh it is well-stocked. In order to study the rela-
tionship between educational levels and attitudes to-
ward forest management, random samples of adults
in each of these states were surveyed and their educa-
tional levels were ascertained. The numbers of adults
at each of several educational levels were recorded.
The data are presented in the following table.

Years of Education

State 0 1--4 5--6 7--9 10--11 12 or
more

Haryana 48 6 16 26 24 7
Bihar 34 24 7 32 16 10
Uttar Pradesh 20 9 25 30 17 34

Can you conclude that the educational levels differ
among the three states? Explain.
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7
Correlation and
Simple Linear
Regression

Introduction

Scientists and engineers often collect data in order to determine the nature of a
relationship between two quantities. For example, a chemical engineer may run a chem-
ical process several times in order to study the relationship between the concentration of
a certain catalyst and the yield of the process. Each time the process is run, the concen-
tration x and the yield y are recorded. The experiment thus generates bivariate data; a
collection of ordered pairs (x1, y1), . . . , (xn, yn). In many cases, ordered pairs generated
in a scientific experiment will fall approximately along a straight line when plotted. In
these situations the data can be used to compute an equation for the line. This equation
can be used for many purposes; for example, in the catalyst versus yield experiment just
described, it could be used to predict the yield y that will be obtained the next time the
process is run with a specific catalyst concentration x .

The methods of correlation and simple linear regression, which are the subject of
this chapter, are used to analyze bivariate data in order to determine whether a straight-
line fit is appropriate, to compute the equation of the line if appropriate, and to use that
equation to draw inferences about the relationship between the two quantities.

7.1 Correlation

One of the earliest applications of statistics was to study the variation in physical char-
acteristics in human populations. To this end, statisticians invented a quantity called
the correlation coefficient as a way of describing how closely related two physical
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characteristics were. The first published correlation coefficient was due to the English
statistician Sir Francis Galton, who in 1888 measured the heights and forearm lengths
of 348 adult men. (Actually, he measured the distance from the elbow to the tip of the
middle finger, which is called a cubit.) If we denote the height of the i th man by xi , and
the length of his forearm by yi , then Galton’s data consist of 348 ordered pairs (xi , yi ).
Figure 7.1 presents a simulated re-creation of these data, based on a table constructed
by Galton.
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FIGURE 7.1 Heights and forearm lengths of 348 men.

The points tend to slope upward and to the right, indicating that taller men tend to
have longer forearms. We say that there is a positive association between height and fore-
arm length. The slope is approximately constant throughout the plot, indicating that the
points are clustered around a straight line. The line superimposed on the plot is a special
line known as the least-squares line. It is the line that fits the data best, in a sense to be de-
scribed in Section 7.2. We will learn how to compute the least-squares line in Section 7.2.

Figure 7.2 presents the results of a study of the relationship between the mean
daily temperature and the mean daily humidity at a site near Riverside, California,
during a recent winter. Again the points are clustered around the least-squares line. The
line has a negative slope, indicating that days with higher humidity tend to have lower
temperatures.

The degree to which the points in a scatterplot tend to cluster around a line reflects the
strength of the linear relationship between x and y. The visual impression of a scatterplot
can be misleading in this regard, because changing the scale of the axes can make the
clustering appear tighter or looser. For this reason, we define the correlation coefficient,
which is a numerical measure of the strength of the linear relationship between two
variables. The correlation coefficient is usually denoted by the letter r. There are several
equivalent formulas for r . They are all a bit complicated, and it is not immediately
obvious how they work. We will present the formulas and then show how they work.

Let (x1, y1), . . . , (xn, yn) represent n points on a scatterplot. To compute the cor-
relation, first compute the means and standard deviations of the xs and ys, that is,
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FIGURE 7.2 Humidity (in percent) and temperature (in ◦C) for days in a recent winter
in Riverside, California.

x , y, sx , and sy . Then convert each x and y to standard units, or, in other words, compute
the z-scores: (xi − x)/sx , (yi − y)/sy . The correlation coefficient is the average of the
products of the z-scores, except that we divide by n − 1 instead of n:

r = 1

n − 1

n∑
i=1

(
xi − x

sx

) (
yi − y

sy

)
(7.1)

We can rewrite Equation (7.1) in a way that is sometimes useful. By substituting√∑n
i=1(xi − x)2/(n − 1) for sx and

√∑n
i=1(yi − y)2/(n − 1) for sy , we obtain

r =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

(7.2)

By performing some algebra on the numerator and denominator of Equation (7.2),
we arrive at yet another equivalent formula for r :

r =
∑n

i=1 xi yi − nx y√∑n
i=1 x2

i − nx2
√∑n

i=1 y2
i − ny2

(7.3)

Equation (7.3) is often the easiest to use when computing by hand.
In principle, the correlation coefficient can be calculated for any set of points. In

many cases, the points constitute a random sample from a population of points. In these
cases the correlation coefficient is often called the sample correlation, and it is an
estimate of the population correlation. (Population correlation was discussed formally
in Section 2.6; intuitively, you may imagine the population to consist of a large finite
collection of points, and the population correlation to be the quantity computed using
Equation (7.2) on the whole population, with sample means replaced by population
means.) The sample correlation can be used to construct confidence intervals and perform
hypothesis tests on the population correlation; these will be discussed later in this section.
We point out that the correlation coefficient can also be used to measure the strength of
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a linear relationship in many cases where the points are not a random sample from a
population; see the discussion of the coefficient of determination in Section 7.2.

It is a mathematical fact that the correlation coefficient is always between −1
and 1. Positive values of the correlation coefficient indicate that the least-squares line
has a positive slope, which means that greater values of one variable are associated with
greater values of the other. Negative values of the correlation coefficient indicate that the
least-squares line has a negative slope, which means that greater values of one variable
are associated with lesser values of the other. Values of the correlation coefficient close
to 1 or to −1 indicate a strong linear relationship; values close to 0 indicate a weak linear
relationship. The correlation coefficient is equal to 1 (or to −1) only when the points in
the scatterplot lie exactly on a straight line of positive (or negative) slope, in other words,
when there is a perfect linear relationship. As a technical note, if the points lie exactly
on a horizontal or a vertical line, the correlation coefficient is undefined, because one of
the standard deviations is equal to zero. Finally, a bit of terminology: Whenever r �= 0,
x and y are said to be correlated. If r = 0, x and y are said to be uncorrelated.

The correlation between height and forearm length in Figure 7.1 is 0.80. The cor-
relation between temperature and humidity in Figure 7.2 is −0.46. Figures 7.3 and 7.4
(pages 513 and 514) present some examples of scatterplots with various correlations. In
each plot, both x and y have mean 0 and standard deviation 1. All plots are drawn to the
same scale.

How the Correlation Coefficient Works
Why does the formula (Equation 7.1) for the correlation coefficient r measure the strength
of the linear association between two variables? Figure 7.5 (page 515) illustrates how
the correlation coefficient works. In this scatterplot, the origin is placed at the point of
averages (x, y). Therefore, in the first quadrant, the z-scores (xi − x)/sx and (yi − y)/sy

are both positive, so their product is positive as well. Thus each point in the first quadrant
contributes a positive amount to the sum in Equation (7.1). In the second quadrant, the
z-scores for the x coordinates of the points are negative, while the z-scores for the y
coordinates are positive. Therefore the products of the z-scores are negative, so each
point in the second quadrant contributes a negative amount to the sum in Equation (7.1).
Similarly, points in the third quadrant contribute positive amounts, and points in the
fourth quadrant contribute negative amounts. Clearly, in Figure 7.5 there are more points
in the first and third quadrants than in the second and fourth, so the correlation will be
positive. If the plot had a negative slope, there would be more points in the second and
fourth quadrants, and the correlation coefficient would be negative.

The Correlation Coefficient Is Unitless
In any sample x1, . . . , xn , the mean x and the standard deviation sx have the same units
as x1, . . . , xn . For this reason the z-scores (xi − x)/sx are unitless. Since the correlation
coefficient r is the average of products of z-scores, it too is unitless. This fact is crucial
to the usefulness of r . For example, the units for the x and y coordinates in Figure 7.1
are both inches, while the corresponding units in Figure 7.2 are percent and degrees
Celsius. If the correlation coefficients for the two plots had different units, it would
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FIGURE 7.3 Examples of various levels of positive correlation.
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FIGURE 7.5 How the correlation coefficient works.

be impossible to compare their values to determine which plot exhibited the stronger
linear relationship. But since the correlation coefficients have no units, they are directly
comparable, and we can conclude that the relationship between heights of men and
their forearm lengths in Figure 7.1 is more strongly linear than the relationship between
temperature and humidity in Figure 7.2.

Another crucial property of the correlation coefficient is that it is unaffected by the
units in which the measurements are made. For example, imagine that in Figure 7.1 the
heights of the men were measured in centimeters rather than inches. Then each xi would
be multiplied by 2.54. But this would cause x and sx to be multiplied by 2.54 as well, so
the z-scores (xi − x)/sx would be unchanged, and r would be unchanged as well. In a
more fanciful example, imagine that each man stood on a platform 2 inches high while
being measured. This would increase each xi by 2, but the value of x would be increased
by 2 as well. Thus the z-scores would be unchanged, so the correlation coefficient would
be unchanged as well. Finally, imagine that we interchanged the values of x and y, using
x to represent the forearm lengths, and y to represent the heights. Since the correlation
coefficient is determined by the product of the z-scores, it does not matter which variable
is represented by x and which by y.

Summary
The correlation coefficient remains unchanged under each of the following
operations:

■ Multiplying each value of a variable by a positive constant.

■ Adding a constant to each value of a variable.

■ Interchanging the values of x and y.

Figure 7.6 (page 516) presents plots of mean temperatures for the months of April
and October for several U.S. cities. Whether the temperatures are measured in ◦C or ◦F,
the correlation is the same. This is because converting from ◦C to ◦F involves multiplying
by 1.8 and adding 32.
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FIGURE 7.6 Mean April and October temperatures for several U.S. cities. The corre-
lation coefficient is 0.96 for each plot; the choice of units does not matter.

The Correlation Coefficient Measures Only Linear Association
An object is fired upward from the ground with an initial velocity of 64 ft/s. At each of
several times x1, . . . , xn , the heights y1, . . . , yn of the object above the surface of the
earth are measured. In the absence of friction, and assuming that there is no measure-
ment error, the scatterplot of the points (x1, y1), . . . , (xn, yn) will look like Figure 7.7.
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FIGURE 7.7 The relationship between the height of a free-falling object with a positive
initial velocity and the time in free fall is quadratic. The correlation is equal to 0.
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There is obviously a strong relationship between x and y; in fact the value of y is deter-
mined by x through the function y = 64x − 16x2. Yet the correlation between x and y
is equal to 0. Is something wrong? No. The value of 0 for the correlation indicates that
there is no linear relationship between x and y, which is true. The relationship is purely
quadratic. The lesson of this example is that the correlation coefficient should only be
used when the relationship between the x and y is linear. Otherwise the results can be
misleading.

The Correlation Coefficient can be Misleading
when Outliers are Present
Figure 7.8 presents a plot of the area of farmland versus the total land area for a selection
of U.S. states. In general, states with larger land areas have more farmland. The major
exception is Alaska, which has a huge area but very little farmland. The point in the lower
right corner of the plot, which represents Alaska, is an outlier, because it is detached
from the main body of the data. The correlation for this scatterplot is r = −0.12, which
indicates a weak negative relationship; in other words, it suggests that states with greater
total area actually tend to have less farm area. But it is clear that there is a strong positive
relationship, as one would expect, among the other states.

The correlation coefficient is often misleading for data sets that contain outliers.
Outliers are a serious problem, as they make data more difficult to analyze. Some outliers
are caused by data recording errors, or by failure to follow experimental protocol. These
outliers can appropriately be corrected or deleted. Sometimes people delete outliers from
a plot without cause, to give it a more pleasing appearance. This is not appropriate, as
it results in an underestimation of the variability of the process that generated the data.
Interpreting data that contain outliers can be difficult, because there are few easy rules
to follow.
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FIGURE 7.8 The correlation is −0.12. Because of the outlier, the correlation coefficient
is misleading.
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Correlation Is Not Causation
For children, vocabulary size is strongly correlated with shoe size. However, learning new
words does not cause feet to grow, nor do growing feet cause one’s vocabulary to increase.
There is a third factor, namely age, that is correlated with both shoe size and vocabulary.
Older children tend to have both larger shoe sizes and larger vocabularies, and this results
in a positive correlation between vocabulary and shoe size. This phenomenon is known
as confounding. Confounding occurs when there is a third variable that is correlated
with both of the variables of interest, resulting in a correlation between them.

To restate this example in more detail: Individuals with larger ages tend to have
larger shoe sizes. Individuals with larger ages also tend to have larger vocabularies. It
follows that individuals with larger shoe sizes will tend to have larger vocabularies. In
other words, because both shoe size and vocabulary are positively correlated with age,
they are positively correlated with each other.

In this example, the confounding was easy to spot. In many cases it is not so easy.
The example shows that simply because two variables are correlated with each other, we
cannot assume that a change in one will tend to cause a change in the other. Before we can
conclude that two variables have a causal relationship, we must rule out the possibility
of confounding.

Sometimes multiple regression (see Chapter 8) can be used to detect confounding.
Sometimes experiments can be designed so as to reduce the possibility of confounding.
The topic of experimental design (see Chapter 9) is largely concerned with this topic.
Here is a simple example.

Example
7.1 An environmental scientist is studying the rate of absorption of a certain chemical

into skin. She places differing volumes of the chemical on different pieces of skin and
allows the skin to remain in contact with the chemical for varying lengths of time. She
then measures the volume of chemical absorbed into each piece of skin. She obtains
the results shown in the following table.

Volume (mL) Time (h) Percent Absorbed

0.05 2 48.3
0.05 2 51.0
0.05 2 54.7
2.00 10 63.2
2.00 10 67.8
2.00 10 66.2
5.00 24 83.6
5.00 24 85.1
5.00 24 87.8

The scientist plots the percent absorbed against both volume and time, as shown
in the following figure. She calculates the correlation between volume and absorption
and obtains r = 0.988. She concludes that increasing the volume of the chemi-
cal causes the percentage absorbed to increase. She then calculates the correlation
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between time and absorption, obtaining r = 0.987. She concludes that increasing the
time that the skin is in contact with the chemical causes the percentage absorbed to
increase as well. Are these conclusions justified?

Solution
No. The scientist should look at the plot of time versus volume, presented in the
following figure. The correlation between time and volume is r = 0.999, so these
two variables are almost completely confounded. If either time or volume affects the
percentage absorbed, both will appear to do so, because they are highly correlated
with each other. For this reason, it is impossible to determine whether it is the time
or the volume that is having an effect. This relationship between time and volume
resulted from the design of the experiment and should have been avoided.
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Example
7.2 The scientist in Example 7.1 has repeated the experiment, this time with a new design.

The results are presented in the following table.
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Volume (mL) Time (h) Percent Absorbed

0.05 2 49.2
0.05 10 51.0
0.05 24 84.3
2.00 2 54.1
2.00 10 68.7
2.00 24 87.2
5.00 2 47.7
5.00 10 65.1
5.00 24 88.4

The scientist plots the percent absorbed against both volume and time, as shown
in the following figure.
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She then calculates the correlation between volume and absorption and obtains r =
0.121. She concludes that increasing the volume of the chemical has little or no effect
on the percentage absorbed. She then calculates the correlation between time and
absorption and obtains r = 0.952. She concludes that increasing the time that the
skin is in contact with the chemical will cause the percentage absorbed to increase.
Are these conclusions justified?

Solution
These conclusions are much better justified than the ones in Example 7.1. To see
why, look at the plot of time versus volume in the following figure. This experiment
has been designed so that time and volume are uncorrelated. It now appears that the
time, but not the volume, has an effect on the percentage absorbed. Before making a
final conclusion that increasing the time actually causes the percentage absorbed to
increase, the scientist must make sure that there are no other potential confounders
around. For example, if the ambient temperature varied with each replication of the
experiment, and was highly correlated with time, then it might be the case that the
temperature, rather than the time, was causing the percentage absorbed to vary.
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Controlled Experiments Reduce the Risk of Confounding
In Examples 7.1 and 7.2, the experimenter was able to reduce confounding by assigning
values for volume and time so that these two variables were uncorrelated. This is a
controlled experiment, because the experimenter could assign the values for these factors
(see Section 1.1 for a more complete description of controlled experiments). In controlled
experiments, confounding can often be avoided by choosing values for factors in a way
so that the factors are uncorrelated.

Observational studies are studies in which the values of factors cannot be chosen
by the experimenter. Studies involving public health issues, such as the effect of envi-
ronmental pollutants on human health, are usually observational, because experimenters
cannot deliberately expose people to high levels of pollution. In these studies, confound-
ing is often difficult to avoid. For example, people who live in areas with higher levels of
pollution may tend to have lower socio-economic status, which may affect their health.
Because confounding is difficult to avoid, observational studies must generally be re-
peated a number of times, under a variety of conditions, before reliable conclusions can
be drawn.

Inference on the Population Correlation
The rest of this section uses some ideas from Section 2.6. When the points (xi , yi ) are a
random sample from a population of ordered pairs, then each point can be thought of as
an observation of an ordered pair of random variables (X, Y ). The correlation coefficient,
or sample correlation, r is then an estimate of the population correlation ρX,Y .

If the random variables X and Y have a certain joint distribution called a bivariate
normal distribution, then the sample correlation r can be used to construct confidence
intervals and perform hypothesis tests on the population correlation. In practice, if X
and Y are both normally distributed, then it is a virtual certainty that X and Y will be
bivariate normal, so the confidence intervals and tests described subsequently will be
valid. (While it is mathematically possible to construct two normal random variables
that jointly are not bivariate normal, the conditions under which this occurs are almost
never seen in practice.)
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Confidence intervals, and most tests, on ρX,Y are based on the following result:

Let X and Y be random variables with the bivariate normal distribution.
Let ρ denote the population correlation between X and Y .
Let (x1, y1), . . . , (xn, yn) be a random sample from the joint distribution of X
and Y .
Let r be the sample correlation of the n points.
Then the quantity

W = 1

2
ln

1 + r

1 − r
(7.4)

is approximately normally distributed, with mean given by

μW = 1

2
ln

1 + ρ

1 − ρ
(7.5)

and variance given by

σ 2
W = 1

n − 3
(7.6)

Note that μW is a function of the population correlation ρ. To construct confidence
intervals, we will need to solve Equation (7.5) for ρ. We obtain

ρ = e2μW − 1

e2μW + 1
(7.7)

Example
7.3 In a study of reaction times, the time to respond to a visual stimulus (x) and the time

to respond to an auditory stimulus (y) were recorded for each of 10 subjects. Times
were measured in ms. The results are presented in the following table.

x 161 203 235 176 201 188 228 211 191 178
y 159 206 241 163 197 193 209 189 169 201

Find a 95% confidence interval for the correlation between the two reaction times.

Solution
Using Equation (7.1), we compute the sample correlation, obtaining r = 0.8159.
Next we use Equation (7.4) to compute the quantity W :

W = 1

2
ln

1 + r

1 − r

= 1

2
ln

1 + 0.8159

1 − 0.8159

= 1.1444
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Since W is normally distributed with known standard deviation σ = √
1/(10 − 3) =

0.3780 (Equation 7.6), a 95% confidence interval for μW is given by

1.1444 − 1.96(0.3780) < μW < 1.1444 + 1.96(0.3780)

0.4036 < μW < 1.8852

To obtain a 95% confidence interval for ρ we transform the inequality using Equa-

tion (7.7), obtaining

e2(0.4036) − 1

e2(0.4036) + 1
<

e2μW − 1

e2μW + 1
<

e2(1.8852) − 1

e2(1.8852) + 1

0.383 < ρ < 0.955

For testing null hypotheses of the form ρ = ρ0, ρ ≤ ρ0, and ρ ≥ ρ0, where ρ0

is a constant not equal to 0, the quantity W forms the basis of a test. Following is an
example.

Example
7.4 Refer to Example 7.3. Find the P-value for testing H0 : ρ ≤ 0.3 versus H1 : ρ > 0.3.

Solution
Under H0 we take ρ = 0.3, so, using Equation (7.5),

μW = 1

2
ln

1 + 0.3

1 − 0.3

= 0.3095

The standard deviation of W is σ = √
1/(10 − 3) = 0.3780. It follows that under

H0, W ∼ N (0.3095, 0.37802). The observed value of W is W = 1.1444. The z-score
is therefore

z = 1.1444 − 0.3095

0.3780
= 2.21

The P-value is 0.0136. We conclude that ρ > 0.3.

For testing null hypotheses of the form ρ = 0, ρ ≤ 0, or ρ ≥ 0, a somewhat simpler
procedure is available. When ρ = 0, the quantity

U = r
√

n − 2√
1 − r2

has a Student’s t distribution with n − 2 degrees of freedom. Example 7.5 shows how to
use U as a test statistic.
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Example
7.5 Refer to Example 7.3. Test the hypothesis H0 : ρ ≤ 0 versus H1 : ρ > 0.

Solution
Under H0 we take ρ = 0, so the test statistic U has a Student’s t distribution with
n − 2 = 8 degrees of freedom. The sample correlation is r = 0.8159, so the value
of U is

U = r
√

n − 2√
1 − r2

= 0.8159
√

10 − 2√
1 − 0.81592

= 3.991

Consulting the Student’s t table with eight degrees of freedom, we find that the
P-value is between 0.001 and 0.005. It is reasonable to conclude that ρ > 0.

Exercises for Section 7.1

1. Compute the correlation coefficient for the following
data set.

x 1 2 3 4 5 6 7
y 2 1 4 3 7 5 6

2. For each of the following data sets, explain why the
correlation coefficient is the same as for the data set
in Exercise 1.

a.
x 1 2 3 4 5 6 7
y 5 4 7 6 10 8 9

b.
x 11 21 31 41 51 61 71
y 5 4 7 6 10 8 9

c.
x 53 43 73 63 103 83 93
y 4 6 8 10 12 14 16

3. For each of the following scatterplots, state whether
the correlation coefficient is an appropriate sum-
mary, and explain briefly.
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(b)
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(c)
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4. True or false, and explain briefly:
a. If the correlation coefficient is positive, then

above-average values of one variable are asso-
ciated with above-average values of the other.

b. If the correlation coefficient is negative, then
below-average values of one variable are asso-
ciated with below-average values of the other.

c. If y is usually less than x , then the correlation
between y and x will be negative.

5. An investigator collected data on heights and weights
of college students. The correlation between height
and weight for men was about 0.6, and for women
it was about the same. If men and women are taken
together, will the correlation between height and
weight be more than 0.6, less than 0.6, or about
equal to 0.6? It might be helpful to make a rough
scatterplot.

6. In a study of ground motion caused by earthquakes,
the peak velocity (in m/s) and peak acceleration (in
m/s2) were recorded for five earthquakes. The results
are presented in the following table.

Velocity 1.54 1.60 0.95 1.30 2.92
Acceleration 7.64 8.04 8.04 6.37 3.25

a. Compute the correlation coefficient between peak
velocity and peak acceleration.

b. Construct a scatterplot for these data.
c. Is the correlation coefficient an appropriate sum-

mary for these data? Explain why or why not.
d. Someone suggests converting the units from me-

ters to centimeters and from seconds to minutes.
What effect would this have on the correlation?

7. A chemical engineer is studying the effect of tem-
perature and stirring rate on the yield of a certain
product. The process is run 16 times, at the settings
indicated in the following table. The units for yield
are percent of a theoretical maximum.

Temperature Stirring
(◦C) Rate (rpm) Yield (%)

110 30 70.27
110 32 72.29
111 34 72.57
111 36 74.69
112 38 76.09
112 40 73.14
114 42 75.61
114 44 69.56
117 46 74.41
117 48 73.49
122 50 79.18
122 52 75.44
130 54 81.71
130 56 83.03
143 58 76.98
143 60 80.99

a. Compute the correlation between temperature
and yield, between stirring rate and yield, and
between temperature and stirring rate.

b. Do these data provide good evidence that increas-
ing the temperature causes the yield to increase,
within the range of the data? Or might the result
be due to confounding? Explain.

c. Do these data provide good evidence that increas-
ing the stirring rate causes the yield to increase,
within the range of the data? Or might the result
be due to confounding? Explain.

8. Another chemical engineer is studying the same
process as in Exercise 7, and uses the following
experimental matrix.

Temperature Stirring
(◦C) Rate (rpm) Yield (%)

110 30 70.27
110 40 74.95
110 50 77.91
110 60 82.69
121 30 73.43
121 40 73.14
121 50 78.27
121 60 74.89
132 30 69.07
132 40 70.83
132 50 79.18
132 60 78.10
143 30 73.71
143 40 77.70
143 50 74.31
143 60 80.99
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a. Compute the correlation between temperature
and yield, between stirring rate and yield, and
between temperature and stirring rate.

b. Do these data provide good evidence that the
yield is unaffected by temperature, within the
range of the data? Or might the result be due to
confounding? Explain.

c. Do these data provide good evidence that increas-
ing the stirring rate causes the yield to increase,
within the range of the data? Or might the result
be due to confounding? Explain.

d. Which experimental design is better, this one or
the one in Exercise 7? Explain.

9. Tire pressure (in kPa) was measured for the right
and left front tires on a sample of 10 automobiles.
Assume that the tire pressures follow a bivariate
normal distribution.

Right Tire Left Tire
Pressure Pressure

184 185
206 203
193 200
227 213
193 196
218 221
213 216
194 198
178 180
207 210

a. Find a 95% confidence interval for ρ, the
population correlation between the pressure
in the right tire and the pressure in the left
tire.

b. Can you conclude that ρ > 0.9?

c. Can you conclude that ρ > 0?

10. In a sample of 300 steel rods, the correlation coeffi-
cient between diameter and length was r = 0.15.

a. Find the P-value for testing H0 : ρ ≤ 0 vs.
H1 : ρ > 0. Can you conclude that ρ > 0?

b. Does the result in part (a) allow you to con-
clude that there is a strong correlation between
eccentricity and smoothness? Explain.

11. The article “Drift in Posturography Systems
Equipped with a Piezoelectric Force Platform: Anal-
ysis and Numerical Compensation” (L. Quagliarella,
N. Sasanelli, and V. Monaco, IEEE Transac-
tions on Instrumentation and Measurement, 2008:
997–1004), reported the results of an experiment to
determine the effect of load on the drift in signals
derived from a piezoelectric force plates. The corre-
lation coefficient y between output and time under
a load of 588 N was −0.9515. Measurements were
taken 100 times per second for 300 seconds, for a to-
tal of 30,000 measurements. Find a 95% confidence
interval for the population correlation ρ.

12. Phonics is an instructional method in which chil-
dren are taught to connect sounds with letters or
groups of letters. The article “Predictive Accu-
racy of Nonsense Word Fluency for English Lan-
guage Learners” (M. Vanderwood, D. Linklater, and
K. Healy, School Psychology Review 2008:5–17)
reports that in a sample of 134 English-learning stu-
dents, the correlation between the score on a phonics
test given in first grade and a reading comprehen-
sion given in third grade was r = 0.25. Can you
conclude that there is a positive correlation between
phonics test score and the reading comprehension
score?

13. The article “‘Little Ice Age’ Proxy Glacier Mall
Balance Records Reconstructed from Tree Rings in
the Mt. Waddington Area, British Columbia Coast
Mountains, Canada” (S Larocque and D. Smith, The
Holocene, 2005:748–757) evaluates the use of tree
ring widths to estimate changes in the masses of
glaciers. For the Sentinel glacier, the net mass bal-
ance (change in mass between the end of one summer
and the end of the next summer) was measured for
23 years. During the same time period, the tree
ring index for white bark pine trees was measured,
and the sample correlation between net mass bal-
ance and tree ring index was r = −0.509. Can you
conclude that the population correlation ρ differs
from 0?

14. A scatterplot contains four points: (−2,−2),
(−1,−1), (0,0), and (1,1). A fifth point, (2,y), is to
be added to the plot. Let r represent the correlation
between x and y.
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a. Find the value of y so that r = 1.

b. Find the value of y so that r = 0.

c. Find the value of y so that r = 0.5.

d. Find the value of y so that r = −0.5.

e. Give a geometric argument to show that there is
no value of y for which r = −1.

7.2 The Least-Squares Line

When two variables have a linear relationship, the scatterplot tends to be clustered around
a line known as the least-squares line (see Figures 7.1 and 7.2 in Section 7.1). In this
section we will learn how to compute the least-squares line and how it can be used to
draw conclusions from data.

We begin by describing a hypothetical experiment. Springs are used in applications
for their ability to extend (stretch) under load. The stiffness of a spring is measured by
the “spring constant,” which is the length that the spring will be extended by one unit of
force or load.1 To make sure that a given spring functions appropriately, it is necessary
to estimate its spring constant with good accuracy and precision.

In our hypothetical experiment, a spring is hung vertically with the top end fixed,
and weights are hung one at a time from the other end. After each weight is hung, the
length of the spring is measured. Let x1, . . . , xn represent the weights, and let li represent
the length of the spring under the load xi . Hooke’s law states that

li = β0 + β1xi (7.8)

where β0 is the length of the spring when unloaded and β1 is the spring constant.
Let yi be the measured length of the spring under load xi . Because of measurement

error, yi will differ from the true length li . We write

yi = li + εi (7.9)

where εi is the error in the i th measurement. Combining (7.8) and (7.9), we obtain

yi = β0 + β1xi + εi (7.10)

In Equation (7.10) yi is called the dependent variable, xi is called the independent
variable, β0 and β1 are the regression coefficients, and εi is called the error.
Equation (7.10) is called a linear model.

Table 7.1 (page 528) presents the results of the hypothetical experiment, and Fig-
ure 7.9 (page 528) presents the scatterplot of y versus x . We wish to use these data to
estimate the spring constant β1 and the unloaded length β0. If there were no measurement
error, the points would lie on a straight line with slope β1 and intercept β0, and these

1 The more traditional definition of the spring constant is the reciprocal of this quantity, namely, the force
required to extend the spring one unit of length.
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TABLE 7.1 Measured lengths of a spring under various loads

Weight (lb) Measured Length (in.) Weight (lb) Measured Length (in.)
x y x y

0.0 5.06 2.0 5.40
0.2 5.01 2.2 5.57
0.4 5.12 2.4 5.47
0.6 5.13 2.6 5.53
0.8 5.14 2.8 5.61
1.0 5.16 3.0 5.59
1.2 5.25 3.2 5.61
1.4 5.19 3.4 5.75
1.6 5.24 3.6 5.68
1.8 5.46 3.8 5.80
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FIGURE 7.9 Plot of measured lengths of a spring versus load.

quantities would be easy to determine. Because of measurement error, β0 and β1 cannot
be determined exactly, but they can be estimated by calculating the least-squares line.

Figure 7.10 presents the scatterplot of y versus x with the least-squares line super-
imposed. We write the equation of the line as

y = β̂0 + β̂1x (7.11)

The quantities β̂0 and β̂1 are called the least-squares coefficients. The coefficient β̂1,
the slope of the least-squares line, is an estimate of the true spring constant β1, and the
coefficient β̂0, the intercept of the least-squares line, is an estimate of the true unloaded
length β0.
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FIGURE 7.10 Plot of measured lengths of a spring versus load. The least-squares line
y = β̂0 + β̂1x is superimposed. The vertical distance from a data point (xi , yi ) to the
point (xi , ŷi ) on the line is the i th residual ei . The least-squares line is the line that
minimizes the sum of the squared residuals.

The least-squares line is the line that fits the data “best.” We now define what we
mean by “best.” For each data point (xi , yi ), the vertical distance to the point (xi , ŷi ) on
the least-squares line is ei = yi − ŷi (see Figure 7.10). The quantity ŷi = β̂0 + β̂1xi

is called the fitted value, and the quantity ei is called the residual associated with the
point (xi , yi ). The residual ei is the difference between the value yi observed in the data
and the fitted value ŷi predicted by the least-squares line. This is the vertical distance
from the point to the line. Points above the least-squares line have positive residuals, and
points below the least-squares line have negative residuals. The closer the residuals are
to 0, the closer the fitted values are to the observations and the better the line fits the data.
We define the least-squares line to be the line for which the sum of the squared residuals∑n

i=1 e2
i is minimized. In this sense, the least-squares line fits the data better than any

other line.
In the Hooke’s law example, there is only one independent variable (weight), since

it is reasonable to assume that the only variable affecting the length of the spring is the
amount of weight hung from it. In other cases, we may need to use several independent
variables. For example, to predict the yield of a certain crop, we might need to know
the amount of fertilizer used, the amount of water applied, and various measurements
of chemical properties of the soil. Linear models like Hooke’s law, with only one inde-
pendent variable, are known as simple linear regression models. Linear models with
more than one independent variable are called multiple regression models. This chapter
covers simple linear regression. Multiple regression is covered in Chapter 8.
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Computing the Equation of the Least-Squares Line
To compute the equation of the least-squares line, we must determine the values for the
slope β̂1 and the intercept β̂0 that minimize the sum of the squared residuals

∑n
i=1 e2

i .
To do this, we first express ei in terms of β̂0 and β̂1:

ei = yi − ŷi = yi − β̂0 − β̂1xi (7.12)

Therefore β̂0 and β̂1 are the quantities that minimize the sum

S =
n∑

i=1

e2
i =

n∑
i=1

(yi − β̂0 − β̂1xi )
2 (7.13)

These quantities are

β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

(7.14)

β̂0 = y − β̂1x (7.15)

Derivations of these results are provided at the end of this section.

Computing Formulas
The quantities

∑n
i=1(xi − x)2 and

∑n
i=1(xi − x)(yi − y) need to be computed in order

to determine the equation of the least-squares line, and as we will soon see, the quantity∑n
i=1(yi − y)2 needs to be computed in order to determine how well the line fits the data.

When computing these quantities by hand, there are alternate formulas that are often
easier to use. They are given in the following box.

Computing Formulas
The expressions on the right are equivalent to those on the left, and are often
easier to compute:

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 (7.16)

n∑
i=1

(yi − y)2 =
n∑

i=1

y2
i − ny2 (7.17)

n∑
i=1

(xi − x)(yi − y) =
n∑

i=1

xi yi − n x y (7.18)

Example
7.6 Using the Hooke’s law data in Table 7.1, compute the least-squares estimates of

the spring constant and the unloaded length of the spring. Write the equation of the
least-squares line.
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Solution
The estimate of the spring constant is β̂1, and the estimate of the unloaded length is
β̂0. From Table 7.1 we compute:

x = 1.9000 y = 5.3885

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2 = 26.6000

n∑
i=1

(xi − x)(yi − y) =
n∑

i=1

xi yi − n x y = 5.4430

Using Equations (7.14) and (7.15), we compute

β̂1 = 5.4430

26.6000
= 0.2046

β̂0 = 5.3885 − (0.2046)(1.9000) = 4.9997

The equation of the least-squares line is y = β̂0 +β̂1x . Substituting the computed
values for β̂0 and β̂1, we obtain

y = 4.9997 + 0.2046x

Using the equation of the least-squares line, we can compute the fitted values ŷi =
β̂0 +β̂1xi and the residuals ei = yi − ŷi for each point (xi , yi ) in the Hooke’s law data
set. The results are presented in Table 7.2 (page 532). The point whose residual is shown
in Figure 7.10 (page 529) is the one where x = 2.2.

In the Hooke’s law example, the quantity β0 + β1x represents the true length of the

spring under a load x . Since β̂0 and β̂1 are estimates of the true values β0 and β1, the
quantity ŷ = β̂0 + β̂1x is an estimate of β0 + β1x . Examples 7.7 and 7.8 illustrate this.

Example
7.7 Using the Hooke’s law data, estimate the length of the spring under a load of 1.3 lb.

Solution
In Example 7.6, the equation of the least-squares line was computed to be y =
4.9997 + 0.2046x . Using the value x = 1.3, we estimate the length of the spring
under a load of 1.3 lb to be

ŷ = 4.9997 + (0.2046)(1.3) = 5.27 in.
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TABLE 7.2 Measured lengths of a spring under various loads, with fitted values and
residuals

Measured Fitted Measured Fitted
Weight Length Value Residual Weight Length Value Residual

x y ŷ e x y ŷ e

0.0 5.06 5.00 0.06 2.0 5.40 5.41 −0.01
0.2 5.01 5.04 −0.03 2.2 5.57 5.45 0.12
0.4 5.12 5.08 0.04 2.4 5.47 5.49 −0.02
0.6 5.13 5.12 0.01 2.6 5.53 5.53 −0.00
0.8 5.14 5.16 −0.02 2.8 5.61 5.57 0.04
1.0 5.16 5.20 −0.04 3.0 5.59 5.61 −0.02
1.2 5.25 5.25 0.00 3.2 5.61 5.65 −0.04
1.4 5.19 5.29 −0.10 3.4 5.75 5.70 0.05
1.6 5.24 5.33 −0.09 3.6 5.68 5.74 −0.06
1.8 5.46 5.37 0.09 3.8 5.80 5.78 0.02

Example
7.8 Using the Hooke’s law data, estimate the length of the spring under a load of 1.4 lb.

Solution
The estimate is ŷ = 4.9997 + (0.2046)(1.4) = 5.29 in.

In Example 7.8, note that the measured length at a load of 1.4 was 5.19 in. (see
Table 7.2). But the least-squares estimate of 5.29 in. is based on all the data and is more
precise (has smaller uncertainty). We will learn how to compute uncertainties for the
estimates ŷ in Section 7.3.

The Estimates Are Not the Same as the True Values
It is important to understand the difference between the least-squares estimatesβ̂0 andβ̂1,
and the true values β0 and β1. The true values are constants whose values are unknown.
The estimates are quantities that are computed from the data. We may use the estimates
as approximations for the true values.

In principle, an experiment such as the Hooke’s law experiment could be repeated
many times. The true values β0 and β1 would remain constant over the replications of the
experiment. But each replication would produce different data, and thus different values

of the estimates β̂0 and β̂1. Therefore β̂0 and β̂1 are random variables, since their values
vary from experiment to experiment. To make full use of these estimates, we will need
to be able to compute their standard deviations. We will discuss this topic in Section 7.3.

The Residuals Are Not the Same as the Errors
A collection of points (x1, y1), . . . , (xn, yn) follows a linear model if the x and y coordi-
nates are related through the equation yi = β0 + β1xi + εi . It is important to understand
the difference between the residuals ei and the errors εi . Each residual ei is the difference
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yi − ŷi between an observed, or measured, value yi and the fitted value ŷi = β̂0 + β̂1xi

estimated from the least-squares line. Since the values yi are known and the values ŷi

can be computed from the data, the residuals can be computed. In contrast, the errors
εi are the differences between the yi and the values β0 + β1xi . Since the true values
β0 and β1 are unknown, the errors are unknown as well. Another way to think of the
distinction is that the residuals are the vertical distances from the observed values yi to
the least-squares line ŷ = β̂0 + β̂1x , and the errors are the distances from the yi to the
true line y = β0 + β1x .

Summary
Given points (x1, y1), . . . , (xn, yn):

■ The least-squares line is ŷ = β̂0 + β̂1x .

■ β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

■ β̂0 = y − β̂1x

■ The quantities β̂0 and β̂1 can be thought of as estimates of a true slope β1

and a true intercept β0.

■ For any x , ŷ = β̂0 + β̂1x is an estimate of the quantity β0 + β1x .

Don't Extrapolate Outside the Range of the Data
What if we wanted to estimate the length of the spring under a load of 100 lb? The
least-squares estimate is 4.9997 + (0.2046)(100) = 25.46 in. Should we believe this?
No. None of the weights in the data set were this large. It is likely that the spring would
be stretched out of shape, so Hooke’s law would not hold. For many variables, linear
relationships hold within a certain range, but not outside it. If we extrapolate a least-
squares line outside the range of the data, therefore, there is no guarantee that it will
properly describe the relationship. If we want to know how the spring will respond to a
load of 100 lb, we must include weights of 100 lb or more in the data set.

Summary
Do not extrapolate a fitted line (such as the least-squares line) outside the range
of the data. The linear relationship may not hold there.

Don't Use the Least-Squares Line When the Data Aren't Linear
In Section 7.1, we learned that the correlation coefficient should be used only when the
relationship between x and y is linear. The same holds true for the least-squares line.
When the scatterplot follows a curved pattern, it does not make sense to summarize
it with a straight line. To illustrate this, Figure 7.11 (page 534) presents a plot of the



Navidi-3810214 book November 11, 2013 14:14

534 CHAPTER 7 Correlation and Simple Linear Regression

350

300

250

200

150

100

50

0
0 1 2 3 4

Time (s)

H
ei

g
h
t 

(f
t)

FIGURE 7.11 The relationship between the height of a free-falling object and the time
in free fall is not linear. The least-squares line does not fit the data well and should not
be used to predict the height of the object at a given time.

relationship between the height y of an object released from a height of 256 ft and the
time x since its release. The relationship between x and y is nonlinear. The least-squares
line does not fit the data well.

In some cases the least-squares line can be used for nonlinear data, after a process
known as variable transformation has been applied. This topic is discussed in Section 7.4.

Another Look at the Least-Squares Line
The expression (7.14) forβ̂1 can be rewritten in a way that provides a useful interpretation.
Starting with the definition of the correlation coefficient r (Equation 7.2 in Section 7.1)
and multiplying both sides by

√∑n
i=1(yi − y)2/

√∑n
i=1(xi − x)2 = sy/sx yields the

result

β̂1 = r
sy

sx
(7.19)

Equation (7.19) allows us to interpret the slope of the least-squares line in terms of the
correlation coefficient. The units of β̂1, the slope of the least-squares line, must be units
of y/x . The correlation coefficient r is a unitless number that measures the strength
of the linear relationship between x and y. Equation (7.19) shows that the slope β̂1 is
proportional to the correlation coefficient, where the constant of proportionality is the
quantity sy/sx that adjusts for the units in which x and y are measured.

Using Equation (7.19), we can write the equation of the least-squares line in a useful
form: Substituting y −β̂1x for β̂0 in the equation for the least-squares line ŷ = β̂0 +β̂1x
and rearranging terms yields

ŷ − y = β̂1(x − x) (7.20)
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Combining Equations (7.19) and (7.20) yields

ŷ − y = r
sy

sx
(x − x) (7.21)

Thus the least-squares line is the line that passes through the center of mass of the
scatterplot (x, y), with slope β̂1 = r(sy/sx ).

Measuring Goodness-of-Fit
A goodness-of-fit statistic is a quantity that measures how well a model explains a given
set of data. A linear model fits well if there is a strong linear relationship between
x and y. We mentioned in Section 7.1 that the correlation coefficient r measures the
strength of the linear relationship between x and y. Therefore r is a goodness-of-fit
statistic for the linear model. We will now describe how r measures the goodness-of-fit.
Figure 7.12 presents Galton’s data on forearm lengths versus heights. The points on the
scatterplot are (xi , yi ) where xi is the height of the i th man and yi is the length of his
forearm. Both the least-squares line and the horizontal line y = y are superimposed.
Now imagine that we must predict the length of one of the forearms. If we have no
knowledge of the man’s height, we must predict his forearm length to be the average
y. Our prediction error is yi − y. If we predict the length of each forearm this way, the

y = y

(xi, yi)
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FIGURE 7.12 Heights and forearm lengths of men. The least-squares line and the
horizontal line y = y are superimposed.
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sum of squared prediction errors will be
∑n

i=1(yi − y)2. If, on the other hand, we know
the height of each man before predicting the length of his forearm, we can use the least-
squares line, and we will predict the i th forearm length to be ŷi . The prediction error
will be the residual yi − ŷi , and the sum of squared prediction errors is

∑n
i=1(yi − ŷi )

2.
The strength of the linear relationship can be measured by computing the reduction
in sum of squared prediction errors obtained by using ŷi rather than y. This is the
difference

∑n
i=1(yi − y)2 − ∑n

i=1(yi − ŷi )
2. The bigger this difference is, the more

tightly clustered the points are around the least-squares line and the stronger the linear
relationship is between x and y. Thus

∑n
i=1(yi −y)2−∑n

i=1(yi − ŷi )
2 is a goodness-of-fit

statistic.
There is a problem with using

∑n
i=1(yi − y)2 − ∑n

i=1(yi − ŷi )
2 as a goodness-of-

fit statistic, however. This quantity has units, namely the squared units of y. We could
not use this statistic to compare the goodness-of-fit of two models fit to different data
sets, since the units would be different. We need to use a goodness-of-fit statistic that is
unitless, so that we can measure goodness-of-fit on an absolute scale.

This is where the correlation coefficient r comes in. It is shown at the end of this
section that

r2 =
∑n

i=1(yi − y)2 − ∑n
i=1(yi − ŷi )

2∑n
i=1(yi − y)2

(7.22)

The quantity r2, the square of the correlation coefficient, is called the coefficient of
determination. It is the reduction in the sum of the squared prediction errors obtained
by using ŷi rather than y, expressed as a fraction of the sum of squared prediction
errors

∑n
i=1(yi − y)2, obtained by using y. This interpretation of r2 is important to

know. In Chapter 8, we will see how it can be generalized to provide a measure of the
goodness-of-fit of linear relationships involving several variables.

For a visual interpretation of r2, look at Figure 7.12 (page 535). For each point
(xi , yi ) on the scatterplot, the quantity yi − y is the vertical distance from the point to the
horizontal line y = y. The quantity yi − ŷi is the vertical distance from the point to
the least-squares line. Thus the quantity

∑n
i=1(yi − y)2 measures the overall spread of

the points around the line y = y and the quantity
∑n

i=1(yi − ŷi )
2 measures the overall

spread of the points around the least-squares line. The quantity
∑n

i=1(yi−y)2−∑n
i=1(yi−

ŷi )
2 therefore measures the reduction in the spread of the points obtained by using the

least-squares line rather than y = y. The coefficient of determination r2 expresses this
reduction as a proportion of the spread around y = y.

The sums of squares appearing in this discussion are used so often that statisti-
cians have given them names. They call

∑n
i=1(yi − ŷi )

2 the error sum of squares and∑n
i=1(yi −y)2 the total sum of squares. Their difference

∑n
i=1(yi −y)2−∑n

i=1(yi −ŷi )
2

is called the regression sum of squares. Clearly, the following relationship holds:

Total sum of squares = Regression sum of squares + Error sum of squares

Using the preceding terminology, we can write Equation (7.22) as

r2 = Regression sum of squares

Total sum of squares
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Since the total sum of squares is just the sample variance of the yi without dividing by
n − 1, statisticians (and others) often refer to r2 as the proportion of the variance in y
explained by regression.

Derivation of the Least-Squares Coefficients β̂0 and β̂1

We derive Equations (7.14) and (7.15). The least-squares coefficients β̂0 and β̂1 are
the quantities that minimize the sum

S =
n∑

i=1

(yi − β̂0 − β̂1xi )
2

We compute these values by taking partial derivatives of S with respect toβ̂0 andβ̂1 and
setting them equal to 0. Thus β̂0 and β̂1 are the quantities that solve the simultaneous
equations

∂S

∂β̂0
= −

n∑
i=1

2(yi − β̂0 − β̂1xi ) = 0 (7.23)

∂S

∂β̂1
= −

n∑
i=1

2xi (yi − β̂0 − β̂1xi ) = 0 (7.24)

These equations can be written as a system of two linear equations in two unknowns:

nβ̂0 +
(

n∑
i=1

xi

)
β̂1 =

n∑
i=1

yi (7.25)

(
n∑

i=1

xi

)
β̂0 +

(
n∑

i=1

x2
i

)
β̂1 =

n∑
i=1

xi yi (7.26)

We solve Equation (7.25) for β̂0, obtaining

β̂0 =
∑n

i=1 yi

n
− β̂1

∑n
i=1 xi

n
= y − β̂1x

This establishes Equation (7.15). Now substitute y −β̂1x for β̂0 in Equation (7.26) to
obtain (

n∑
i=1

xi

)
(y − β̂1x) +

(
n∑

i=1

x2
i

)
β̂1 =

n∑
i=1

xi yi (7.27)

Solving Equation (7.27) for β̂1, we obtain

β̂1 =
∑n

i=1 xi yi − n x y∑n
i=1 x2

i − nx2
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To establish Equation (7.14), we must show that
∑n

i=1(xi −x)2 = ∑n
i=1 x2

i −nx2 and

that
∑n

i=1(xi − x)(yi − y) = ∑n
i=1 xi yi − n x y. (These are Equations 7.16 and 7.18.)

Now
n∑

i=1

(xi − x)(yi − y) =
n∑

i=1

(xi yi − x yi − yxi + x y)

=
n∑

i=1

xi yi − x
n∑

i=1

yi − y
n∑

i=1

xi +
n∑

i=1

x y

=
n∑

i=1

xi yi − n x y − n y x + n x y

=
n∑

i=1

xi yi − n x y

Also
n∑

i=1

(xi − x)2 =
n∑

i=1

(x2
i − 2xxi + x2)

=
n∑

i=1

x2
i − 2x

n∑
i=1

xi +
n∑

i=1

x2

=
n∑

i=1

x2
i − 2nx2 + nx2

=
n∑

i=1

x2
i − nx2

Derivation of Equation (7.22)
We first show that

n∑
i=1

(yi − y)2 =
n∑

i=1

(yi − ŷi )
2 +

n∑
i=1

(ŷi − y)2 (7.28)

This result is known as the analysis of variance identity. To derive it, we begin by
adding and subtracting ŷi from the left-hand side:∑n

i=1(yi − y)2 = ∑n
i=1[(yi − ŷi ) + (ŷi − y)]2

= ∑n
i=1(yi − ŷi )

2 + ∑n
i=1(ŷi − y)2 + 2

∑n
i=1(yi − ŷi )(ŷi − y)

Now we need only to show that
∑n

i=1(yi − ŷi )(ŷi − y) = 0. Since ŷi = β̂0 + β̂1xi

and β̂0 = y − β̂1x ,

ŷi = y + β̂1(xi − x) (7.29)
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Therefore
n∑

i=1

(yi − ŷi )(ŷi − y) =
n∑

i=1

[(yi − y) − β̂1(xi − x)][β̂1(xi − x)]

= β̂1

n∑
i=1

(xi − x)(yi − y) −β̂ 2
1

n∑
i=1

(xi − x)2 (7.30)

Now β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

, so

n∑
i=1

(xi − x)(yi − y) = β̂1

n∑
i=1

(xi − x)2

Substituting into Equation (7.30), we obtain
n∑

i=1

(yi − ŷi )(ŷi − y) = β̂ 2
1

n∑
i=1

(xi − x)2 −β̂ 2
1

n∑
i=1

(xi − x)2 = 0

This establishes the analysis of variance identity.
To derive Equation (7.22), Equation (7.29) implies that

ŷi − y = β̂1(xi − x) (7.31)

Square both sides of Equation (7.31) and sum, obtaining

n∑
i=1

(ŷi − y)2 = β̂ 2
1

n∑
i=1

(xi − x)2

Now β̂1 = r
sy

sx
(Equation 7.19), so

β̂ 2
1 = r2

∑n
i=1(yi − y)2∑n
i=1(xi − x)2

Substituting and canceling, we obtain
n∑

i=1

(ŷi − y)2 = r2
n∑

i=1

(yi − y)2

so

r2 =
∑n

i=1(ŷi − y)2∑n
i=1(yi − y)2

By the analysis of variance identity,
∑n

i=1(ŷi −y)2 = ∑n
i=1(yi −y)2−∑n

i=1(yi − ŷi )
2.

Therefore

r2 =
∑n

i=1(yi − y)2 − ∑n
i=1(yi − ŷi )

2∑n
i=1(yi − y)2
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Exercises for Section 7.2

1. Each month for several months, the average tempera-
ture in ◦C (x) and the number of pounds of steam (y)
consumed by a certain chemical plant were measured.
The least-squares line computed from the resulting
data is y = 245.82 + 1.13x .

a. Predict the number of pounds of steam con-
sumed in a month where the average temperature
is 65◦C.

b. If two months differ in their average temperatures
by 5◦C, by how much do you predict the number
of pounds of steam consumed to differ?

2. In a study of the relationship between the Brinell
hardness (x) and tensile strength in ksi (y) of speci-
mens of cold drawn copper, the least-squares line was
y = −196.32 + 2.42x .

a. Predict the tensile strength of a specimen whose
Brinell hardness is 102.7.

b. If two specimens differ in their Brinell hardness
by 3, by how much do you predict their tensile
strengths to differ?

3. A least-squares line is fit to a set of points. If the total
sum of squares is

∑
(yi − y)2 = 9615, and the error

sum of squares is
∑

(yi − ŷi )
2 = 1450, compute the

coefficient of determination r 2.

4. A least-squares line is fit to a set of points. If the total
sum of squares is

∑
(yi − y)2 = 181.2, and the error

sum of squares is
∑

(yi − ŷi )
2 = 33.9, compute the

coefficient of determination r 2.

5. In Galton’s height data (Figure 7.1, in Section 7.1),
the least-squares line for predicting forearm length
(y) from height (x) is y = −0.2967 + 0.2738x .

a. Predict the forearm length of a man whose height
is 70 in.

b. How tall must a man be so that we would predict
his forearm length to be 19 in.?

c. All the men in a certain group have heights greater
than the height computed in part (b). Can you con-
clude that all their forearms will be at least 19 in.
long? Explain.

6. In a study relating the degree of warping, in mm, of
a copper plate (y) to temperature in ◦C (x), the fol-
lowing summary statistics were calculated: n = 40,∑n

i=1(xi − x)2 = 98,775,
∑n

i=1(yi − y)2 = 19.10,

x = 26.36, y = 0.5188,
∑n

i=1(xi − x)(yi − y) =
826.94.

a. Compute the correlation r between the degree of
warping and the temperature.

b. Compute the error sum of squares, the regression
sum of squares, and the total sum of squares.

c. Compute the least-squares line for predicting
warping from temperature.

d. Predict the warping at a temperature of 40◦C.

e. At what temperature will we predict the warping
to be 0.5 mm?

f. Assume it is important that the warping not exceed
0.5 mm. An engineer suggests that if the temper-
ature is kept below the level computed in part (e),
we can be sure that the warping will not exceed
0.5 mm. Is this a correct conclusion? Explain.

7. Moisture content in percent by volume (x) and con-
ductivity in mS/m (y) were measured for 50 soil
specimens. The means and standard deviations were
x = 8.1, sx = 1.2, y = 30.4, sy = 1.9. The correlation
between conductivity and moisture was computed to
be r = 0.85. Find the equation of the least-squares line
for predicting soil conductivity from moisture content.

8. The following table presents shear strengths (in
kN/mm) and weld diameters (in mm) for a sample
of spot welds.

Diameter Strength

4.2 51
4.4 54
4.6 69
4.8 81
5.0 75
5.2 79
5.4 89
5.6 101
5.8 98
6.0 102

a. Construct a scatterplot of strength (y) versus diam-
eter (x). Verify that a linear model is appropriate.

b. Compute the least-squares line for predicting
strength from diameter.

c. Compute the fitted value and the residual for each
point.
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d. If the diameter is increased by 0.3 mm, by how
much would you predict the strength to increase or
decrease?

e. Predict the strength for a diameter of 5.5 mm.

f. Can the least-squares line be used to predict the
strength for a diameter of 8 mm? If so, predict the
strength. If not, explain why not.

g. For what diameter would you predict a strength of
95 kN/mm?

9. Structural engineers use wireless sensor networks to
monitor the condition of dams and bridges. The ar-
ticle “Statistical Analysis of Vibration Modes of a
Suspension Bridge Using Spatially Dense Wireless
Sensor Network” (S. Pakzad and G. Fenves, Journal
of Structural Engineering, 2009:863–872) describes
an experiment in which accelerometers were placed
on the Golden Gate Bridge for the purpose of estimat-
ing vibration modes. For 18 vertical modes, the system
was underdamped (damping ratio < 1). Following are
the damping ratios and frequencies for those modes.

Damping Frequency Damping Frequency
Ratio (Hz) Ratio (Hz)

0.3 2.72 0.5 1.53
0.3 2.84 0.6 0.77
0.3 3.77 0.6 1.26
0.4 2.07 0.6 1.66
0.4 2.20 0.7 0.89
0.4 2.34 0.7 1.00
0.4 2.61 0.7 0.66
0.5 1.80 0.8 1.13
0.5 1.93 0.8 0.37

a. Construct a scatterplot of frequency (y) versus
damping ratio (x). Verify that a linear model is
appropriate.

b. Compute the least-squares line for predicting fre-
quency from damping ratio.

c. If two modes differ in damping ratio by 0.2, by
how much would you predict their frequencies to
differ?

d. Predict the frequency for modes with damping
ratio 0.75.

e. Should the equation be used to predict the fre-
quency for modes that are overdamped (damping
ratio > 1)? Explain why or why not.

f. For what damping ratio would you predict a fre-
quency of 2.0?

10. The article “Effect of Environmental Factors on Steel
Plate Corrosion Under Marine Immersion Condi-
tions” (C. Soares, Y. Garbatov, and A. Zayed, Corro-
sion Engineering, Science and Technology, 2011:524–
541) describes an experiment in which nine steel spec-
imens were submerged in seawater at various temper-
atures, and the corrosion rates were measured. The
results are presented in the following table (obtained
by digitizing a graph).

Temperature (◦C) Corrosion (mm/yr)

26.6 1.58
26.0 1.45
27.4 1.13
21.7 0.96
14.9 0.99
11.3 1.05
15.0 0.82

8.7 0.68
8.2 0.56

a. Construct a scatterplot of corrosion (y) versus
temperature (x). Verify that a linear model is ap-
propriate.

b. Compute the least-squares line for predicting cor-
rosion from temperature.

c. Two steel specimens whose temperatures differ
by 10◦C are submerged in seawater. By how much
would you predict their corrosion rates to differ?

d. Predict the corrosion rate for steel submerged in
seawater at a temperature of 20◦C.

e. Compute the fitted values.

f. Compute the residuals. Which point has the resid-
ual with the largest magnitude?

g. Compute the correlation between temperature
and corrosion rate.

h. Compute the regression sum of squares, the error
sum of squares, and the total sum of squares.

i. Divide the regression sum of squares by the total
sum of squares. What is the relationship between
this quantity and the correlation coefficient?

11. An agricultural scientist planted alfalfa on several
plots of land, identical except for the soil pH. Fol-
lowing are the dry matter yields (in pounds per acre)
for each plot.
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pH 4.6 4.8 5.2 5.4 5.6 5.8 6.0

Yield 1056 1833 1629 1852 1783 2647 2131

a. Construct a scatterplot of yield (y) versus pH (x).
Verify that a linear model is appropriate.

b. Compute the least-squares line for predicting yield
from pH.

c. Compute the fitted value and the residual for each
point.

d. If the pH is increased by 0.1, by how much would
you predict the yield to increase or decrease?

e. Predict the yield for a pH of 5.5.

f. Can the least-squares line be used to predict the
yield for a pH of 7? If so, predict the yield. If not,
explain why not.

g. For what pH would you predict a yield of 1500
pounds per acre?

12. Curing times in days (x) and compressive strengths
in MPa (y) were recorded for several concrete speci-
mens. The means and standard deviations of the x and
y values were x = 5, sx = 2, y = 1350, sy = 100.
The correlation between curing time and compressive
strength was computed to be r = 0.7. Find the equa-
tion of the least-squares line to predict compressive
strength from curing time.

13. Varying amounts of pectin were added to canned jel-
lies, to study the relationship between pectin concen-
tration in % (x) and a firmness index (y). The means
and standard deviations of the x and y values were
x = 3, sx = 0.5, y = 50, sy = 10. The correlation
between curing time and firmness was computed to be
r = 0.5. Find the equation of the least-squares line to
predict firmness from pectin concentration.

14. An engineer wants to predict the value for y when
x = 4.5, using the following data set.

x y z = ln y x y z = ln y

1 0.2 −1.61 6 2.3 0.83
2 0.3 −1.20 7 2.9 1.06
3 0.5 −0.69 8 4.5 1.50
4 0.5 −0.69 9 8.7 2.16
5 1.3 0.26 10 12.0 2.48

a. Construct a scatterplot of the points (x, y).

b. Should the least-squares line be used to predict the
value of y when x = 4.5? If so, compute the least-

squares line and the predicted value. If not, explain
why not.

c. Construct a scatterplot of the points (x, z), where
z = ln y.

d. Use the least-squares line to predict the value of
z when x = 4.5. Is this an appropriate method of
prediction? Explain why or why not.

e. Let ẑ denote the predicted value of z computed in
part (d). Let ŷ = eẑ . Explain why ŷ is a reasonable
predictor of the value of y when x = 4.5.

15. A simple random sample of 100 men aged 25–34 av-
eraged 70 inches in height, and had a standard devia-
tion of 3 inches. Their incomes averaged $34,900 and
had a standard deviation of $17,200. Fill in the blank:
From the least-squares line, we would predict that the
income of a man 70 inches tall would be .

i. less than $34,900.

ii. greater than $34,900.

iii. equal to $34,900.

iv. We cannot tell unless we know the correlation.

16. A mixture of sucrose and water was heated on a hot
plate, and the temperature (in ◦C) was recorded each
minute for 20 minutes by three thermocouples. The
results are shown in the following table.

Time T1 T2 T3

0 20 18 21
1 18 22 11
2 29 22 26
3 32 25 35
4 37 37 33
5 36 46 35
6 46 45 44
7 46 44 43
8 56 54 63
9 58 64 68

10 64 69 62
11 72 65 65
12 79 80 80
13 84 74 75
14 82 87 78
15 87 93 88
16 98 90 91
17 103 100 103
18 101 98 109
19 103 103 107
20 102 103 104
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a. Compute the least-squares line for estimating the
temperature as a function of time, using T1 as the
value for temperature.

b. Compute the least-squares line for estimating the
temperature as a function of time, using T2 as the
value for temperature.

c. Compute the least-squares line for estimating the
temperature as a function of time, using T3 as the
value for temperature.

d. It is desired to compute a single line to estimate
temperature as a function of time. One person sug-

gests averaging the three slope estimates to obtain
a single slope estimate, and averaging the three
intercept estimates to obtain a single intercept es-
timate. Find the equation of the line that results
from this method.

e. Someone else suggests averaging the three tem-
perature measurements at each time to obtain T =
(T1 + T2 + T3)/3. Compute the least-squares line
using T as the value for temperature.

f. Are the results of parts (d) and (e) different?

7.3 Uncertainties in the Least-Squares
Coefficients

In Section 7.2, the linear model was presented (Equation 7.10):

yi = β0 + β1xi + εi

Here εi is the error in the i th observation yi . In practice, εi represents the accumulation
of error from many sources. For example, in the Hooke’s law data, εi can be affected
by errors in measuring the length of the spring, errors in measuring the weights of the
loads placed on the spring, variations in the elasticity of the spring due to changes in
ambient temperature or metal fatigue, and so on. If there were no error, the points would
lie exactly on the least-squares line, and the slopeβ̂1 and intercept β̂0 of the least-squares
line would equal the true values β0 and β1. Because of error, the points are scattered
around the line, and the quantities β̂0 and β̂1 do not equal the true values. Each time the
process is repeated, the values of εi , and thus the values of β̂0 and β̂1, will be different.
In other words, εi , β̂0, and β̂1 are random variables. To be more specific, the errors εi

create uncertainty in the estimates β̂0 and β̂1. It is intuitively clear that if the εi tend
to be small in magnitude, the points will be tightly clustered around the line, and the
uncertainty in the least-squares estimates β̂0 and β̂1 will be small. On the other hand, if
the εi tend to be large in magnitude, the points will be widely scattered around the line,
and the uncertainties (standard deviations) in the least-squares estimates β̂0 and β̂1 will
be larger.

Assume we have n data points (x1, y1), . . . , (xn, yn), and we plan to fit the least-
squares line. In order for the estimates β̂1 and β̂0 to be useful, we need to estimate just
how large their uncertainties are. In order to do this, we need to know something about
the nature of the errors εi . We will begin by studying the simplest situation, in which
four important assumptions are satisfied. These are given in the following box.
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Assumptions for Errors in Linear Models
In the simplest situation, the following assumptions are satisfied:

1. The errors ε1, . . . , εn are random and independent. In particular, the
magnitude of any error εi does not influence the value of the next error εi+1.

2. The errors ε1, . . . , εn all have mean 0.

3. The errors ε1, . . . , εn all have the same variance, which we denote by σ 2.

4. The errors ε1, . . . , εn are normally distributed.

These assumptions are restrictive, so it is worthwhile to discuss briefly the degree
to which it is acceptable to violate them in practice. When the sample size is large, the
normality assumption (4) becomes less important. Mild violations of the assumption of
constant variance (3) do not matter too much, but severe violations should be corrected.
In Section 7.4, we discuss methods to correct certain violations of these assumptions.

Under these assumptions, the effect of the εi is largely governed by the magnitude
of the variance σ 2, since it is this variance that determines how large the errors are
likely to be. Therefore, in order to estimate the uncertainties in β̂0 and β̂1, we must first
estimate the error variance σ 2. Since the magnitude of the variance is reflected in the
degree of spread of the points around the least-squares line, it follows that by measuring
this spread, we can estimate the variance. Specifically, the vertical distance from each
data point (xi , yi ) to the least-squares line is given by the residual ei (see Figure 7.10 in
Section 7.2). The spread of the points around the line can be measured by the sum of
the squared residuals

∑n
i=1 e2

i . The estimate of the error variance σ 2 is the quantity s2

given by

s2 =
∑n

i=1 e2
i

n − 2
=

∑n
i=1(yi − ŷi )

2

n − 2
(7.32)

The estimate of the error variance is thus the average of the squared residuals, except
that we divide by n − 2 rather than n. The reason for this is that since the least-squares
line minimizes the sum

∑n
i=1 e2

i , the residuals tend to be a little smaller than the er-
rors εi . It turns out that dividing by n − 2 rather than n appropriately compensates
for this.

There is an equivalent formula for s2, involving the correlation coefficient r , that is
often easier to calculate.

s2 = (1 − r2)
∑n

i=1(yi − y)2

n − 2
(7.33)

We present a brief derivation of this result. Equation (7.22) (in Section 7.2) shows that
1−r2 = ∑n

i=1(yi − ŷi )
2/

∑n
i=1(yi −y)2. Then

∑n
i=1(yi − ŷi )

2 = (1−r2)
∑n

i=1(yi −y)2,
and it follows that

s2 =
∑n

i=1(yi − ŷi )
2

n − 2
= (1 − r2)

∑n
i=1(yi − y)2

n − 2
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Under assumptions 1 through 4, the observations yi are also random variables. In fact,
since yi = β0 +β1xi +εi , it follows that yi has a normal distribution with mean β0 +β1xi

and variance σ 2. In particular, β1 represents the change in the mean of y associated with
an increase of one unit in the value of x .

Summary
In the linear model yi = β0 + β1xi + εi , under assumptions 1 through 4, the
observations y1, . . . , yn are independent random variables that follow the normal
distribution. The mean and variance of yi are given by

μyi = β0 + β1xi

σ 2
yi

= σ 2

The slope β1 represents the change in the mean of y associated with an increase
of one unit in the value of x .

We can now calculate the means and standard deviations of β̂0 and β̂1. The standard
deviations are of course the uncertainties. Both β̂0 and β̂1 can be expressed as linear
combinations of the yi , so their means can be found using Equation (2.49) and their
standard deviations can be found using Equation (2.53) (both equations in Section 2.5).
Specifically, algebraic manipulation of Equations (7.14) and (7.15) (in Section 7.2)
yields

β̂1 =
n∑

i=1

[
(xi − x)∑n

i=1(xi − x)2

]
yi (7.34)

β̂0 =
n∑

i=1

[
1

n
− x(xi − x)∑n

i=1(xi − x)2

]
yi (7.35)

Using the fact that each of the yi has mean β0 + β1xi and variance σ 2, Equations (2.49)
and (2.53) yield the following results, after further manipulation:

μβ̂0
= β0 μβ̂1

= β1

σβ̂0
= σ

√
1

n
+ x2∑n

i=1(xi − x)2
σβ̂1

= σ√∑n
i=1(xi − x)2

Now β̂0 and β̂1 are unbiased, since their means are equal to the true values. They are also
normally distributed, because they are linear combinations of the independent normal
random variables yi . In practice, when computing the standard deviations, we usually
don’t know the value of σ , so we approximate it with s.
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Summary
Under assumptions 1 through 4 (page 544),

■ The quantities β̂0 and β̂1 are normally distributed random variables.

■ The means of β̂0 and β̂1 are the true values β0 and β1, respectively.

■ The standard deviations of β̂0 and β̂1 are estimated with

sβ̂0
= s

√
1

n
+ x2∑n

i=1(xi − x)2
(7.36)

and

sβ̂1
= s√∑n

i=1(xi − x)2
(7.37)

where s =
√

(1 − r2)
∑n

i=1(yi − y)2

n − 2
is an estimate of the error standard

deviation σ .

Example
7.9 For the Hooke’s law data, compute s, sβ̂1

, and sβ̂0
. Estimate the spring constant and

the unloaded length, and find their uncertainties.

Solution
In Example 7.6 (in Section 7.2) we computed x = 1.9000, y = 5.3885,∑n

i=1(xi − x)2 = 26.6000, and
∑n

i=1(xi − x)(yi − y) = 5.4430. Now compute∑n
i=1(yi − y)2 = 1.1733. The correlation is r = 5.4430/

√
(26.6000)(1.1733) =

0.9743.

Using Equation (7.33), s =
√

(1 − 0.97432)(1.1733)

18
= 0.0575.

Using Equation (7.36), sβ̂0
= 0.0575

√
1

20
+ 1.90002

26.6000
= 0.0248.

Using Equation (7.37), sβ̂1
= 0.0575√

26.6000
= 0.0111.

The More Spread in the x Values, the Better (Within Reason)
In the expressions for both of the uncertainties sβ̂0

and sβ̂1
in Equations (7.36) and (7.37),

the quantity
∑n

i=1(xi − x)2 appears in a denominator. This quantity measures the spread
in the x values; when divided by the constant n − 1, it is just the sample variance of the
x values. It follows that other things being equal, an experiment performed with more
widely spread out x values will result in smaller uncertainties for β̂0 and β̂1, and thus
more precise estimation of the true values β0 and β1. Of course, it is important not to use x
values so large or so small that they are outside the range for which the linear model holds.
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Summary
When one is able to choose the x values, it is best to spread them out widely. The
more spread out the x values, the smaller the uncertainties in β̂0 and β̂1.

Specifically, the uncertainty σβ̂1
in β̂1 is inversely proportional to√∑n

i=1(xi − x)2, or equivalently, to the sample standard deviation of
x1, x2, . . . , xn .

Caution: If the range of x values extends beyond the range where the linear
model holds, the results will not be valid.

There are two other ways to improve the precision of the estimated regression line.
First, one can increase the size of the sum

∑n
i=1(xi − x)2 by taking more observations,

thus adding more terms to the sum. And second, one can decrease the size of the error
variance σ 2, for example, by measuring more precisely. These two methods usually add
to the cost of a project, however, while simply choosing more widely spread x values
often does not.

Example
7.10 Two engineers are conducting independent experiments to estimate a spring constant

for a particular spring. The first engineer suggests measuring the length of the spring
with no load, and then applying loads of 1, 2, 3, and 4 lb. The second engineer suggests
using loads of 0, 2, 4, 6, and 8 lb. Which result will be more precise? By what factor?

Solution
The sample standard deviation of the numbers 0, 2, 4, 6, 8 is twice as great as the
sample standard deviation of the numbers 0, 1, 2, 3, 4. Therefore the uncertainty
σβ̂1

for the first engineer is twice as large as for the second engineer, so the second
engineer’s estimate is twice as precise.

We have made two assumptions in the solution to this example. First, we assumed
that the error variance σ 2 is the same for both engineers. If they are both using the same
apparatus and the same measurement procedure, this could be a safe assumption. But
if one engineer is able to measure more precisely, this needs to be taken into account.
Second, we have assumed that a load of 8 lb is within the elastic zone of the spring,
so that the linear model applies throughout the range of the data.

Inferences on the Slope and Intercept
Given a scatterplot with points (x1, y1), . . . , (xn, yn), we can compute the slope β̂1 and
intercept β̂0 of the least-squares line. We consider these to be estimates of a true slope
β1 and intercept β0. We will now explain how to use these estimates to find confidence
intervals for, and to test hypotheses about, the true values β1 and β0. It turns out that
the methods for a population mean, based on the Student’s t distribution, can be easily
adapted for this purpose.
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We have seen that under assumptions 1 through 4,β̂0 andβ̂1 are normally distributed
with means β0 and β1, and standard deviations that are estimated by sβ̂0

and sβ̂1
. The

quantities (β̂0−β0)/sβ̂0
and (β̂1−β1)/sβ̂1

have Student’s t distributions with n−2 degrees
of freedom. The number of degrees of freedom is n − 2 because in the computation of
sβ̂0

and sβ̂1
we divide the sum of squared residuals by n − 2. When the sample size n is

large enough, the normal distribution is nearly indistinguishable from the Student’s t and
may be used instead. However, most software packages use the Student’s t distribution
regardless of sample size.

Summary

Under assumptions 1 through 4, the quantities
β̂0 − β0

sβ̂0

and
β̂1 − β1

sβ̂1

have Stu-

dent’s t distributions with n − 2 degrees of freedom.

Confidence intervals for β0 and β1 can be derived in exactly the same way as the
Student’s t based confidence interval for a population mean. Let tn−2,α/2 denote the point
on the Student’s t curve with n − 2 degrees of freedom that cuts off an area of α/2 in
the right-hand tail.

Level 100(1 − α)% confidence intervals for β0 and β1 are given by

β̂0 ± tn−2,α/2 · sβ̂0
β̂1 ± tn−2,α/2 · sβ̂1

(7.38)

where

sβ̂0
= s

√
1

n
+ x2∑n

i=1(xi − x)2
sβ̂1

= s√∑n
i=1(xi − x)2

We illustrate the preceding method with some examples.

Example
7.11 Find a 95% confidence interval for the spring constant in the Hooke’s law data.

Solution
The spring constant is β1. We have previously computed β̂1 = 0.2046 (Example 7.6
in Section 7.2) and sβ̂1

= 0.0111 (Example 7.9).

The number of degrees of freedom is n − 2 = 20 − 2 = 18, so the t value for a
95% confidence interval is t18,.025 = 2.101. The confidence interval for β1 is therefore

0.2046 ± (2.101)(0.0111) = 0.2046 ± 0.0233 = (0.181, 0.228)

We are 95% confident that the increase in the length of the spring that will result
from an increase of 1 lb in the load is between 0.181 and 0.228 in. Of course, this
confidence interval is valid only within the range of the data (0 to 3.8 lb).



Navidi-3810214 book November 11, 2013 14:14

7.3 Uncertainties in the Least-Squares Coefficients 549

Example
7.12 In the Hooke’s law data, find a 99% confidence interval for the unloaded length of

the spring.

Solution
The unloaded length of the spring is β0. We have previously computed β̂0 = 4.9997
(Example 7.6) and sβ̂0

= 0.0248 (Example 7.9).
The number of degrees of freedom is n − 2 = 20 − 2 = 18, so the t value

for a 99% confidence interval is t18,.005 = 2.878. The confidence interval for β0 is
therefore

4.9997 ± (2.878)(0.0248) = 4.9997 ± 0.0714 = (4.928, 5.071)

We are 99% confident that the unloaded length of the spring is between 4.928 and
5.071 in.

We can perform hypothesis tests on β0 and β1 as well. We present some examples.

Example
7.13 The manufacturer of the spring in the Hooke’s law data claims that the spring con-

stant β1 is at least 0.215 in./lb. We have estimated the spring constant to be β̂1 =
0.2046 in./lb. Can we conclude that the manufacturer’s claim is false?

Solution
This calls for a hypothesis test. The null and alternate hypotheses are

H0 : β1 ≥ 0.215 versus H1 : β1 < 0.215

The quantity

β̂1 − β1

sβ̂1

has a Student’s t distribution with n − 2 = 20 − 2 = 18 degrees of freedom. Under
H0, we take β1 = 0.215. The test statistic is therefore

β̂1 − 0.215

sβ̂1

We have previously computed β̂1 = 0.2046 and sβ̂1
= 0.0111. The value of the test

statistic is therefore

0.2046 − 0.215

0.0111
= −0.937

Consulting the Student’s t table, we find that the P-value is between 0.10 and 0.25.
We cannot reject the manufacturer’s claim on the basis of these data.



Navidi-3810214 book November 11, 2013 14:14

550 CHAPTER 7 Correlation and Simple Linear Regression

Example
7.14 Can we conclude from the Hooke’s law data that the unloaded length of the spring is

more than 4.9 in.?

Solution
This requires a hypothesis test. The null and alternate hypotheses are

H0 : β0 ≤ 4.9 vs. H1 : β0 > 4.9

The quantity
β̂0 − β0

sβ̂0

has a Student’s t distribution with n − 2 = 20 − 2 = 18 degrees of freedom. Under
H0, we take β0 = 4.9. The test statistic is therefore

β̂0 − 4.9

sβ̂0

We have previously computed β̂0 = 4.9997 and sβ̂0
= 0.0248. The value of the test

statistic is therefore
4.9997 − 4.9

0.0248
= 4.020

Consulting the Student’s t table, we find that the P-value is less than 0.0005. We can
conclude that the unloaded length of the spring is more than 4.9 in.

The most commonly tested null hypothesis is H0 : β1 = 0. If this hypothesis is true,
then there is no tendency for y either to increase or decrease as x increases. This implies
that x and y have no linear relationship. In general, if the hypothesis that β1 = 0 is not
rejected, the linear model should not be used to predict y from x .

Example
7.15 The ability of a welded joint to elongate under stress is affected by the chemical com-

position of the weld metal. In an experiment to determine the effect of carbon content
(x) on elongation (y), 39 welds were stressed until fracture, and both carbon content
(in parts per thousand) and elongation (in percent) were measured. The following
summary statistics were calculated:

n∑
i=1

(xi − x)2 = 0.6561
n∑

i=1

(xi − x)(yi − y) = −3.9097 s = 4.3319

Assuming that x and y follow a linear model, compute the estimated change in
elongation due to an increase of one part per thousand in carbon content. Should we
use the linear model to predict elongation from carbon content?

Solution
The linear model is y = β0 + β1x + ε, and the change in elongation (y) due to a
one part per thousand increase in carbon content (x) is β1. The null and alternate
hypotheses are

H0 : β1 = 0 versus H1 : β1 �= 0
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The null hypothesis says that increasing the carbon content does not affect the elon-
gation, while the alternate hypothesis says that is does. The quantity

β̂1 − β1

sβ̂1

has a Student’s t distribution with n − 2 = 39 − 2 = 37 degrees of freedom. Under
H0, β1 = 0. The test statistic is therefore

β̂1 − 0

sβ̂1

We compute β̂1 and sβ̂1
:

β̂1 =
∑n

i=1(xi − x)(yi − y)∑n
i=1(xi − x)2

= − 3.9097

0.6561
= − 5.959

sβ̂1
= s√∑n

i=1(xi − x)2
= 5.348

The value of the test statistic is

−5.959 − 0

5.348
= − 1.114

The t table shows that the P-value is greater than 0.20. We cannot conclude that the
linear model is useful for predicting elongation from carbon content.

Inferences on the Mean Response
In Example 7.8 (Section 7.2), we estimated the length of a spring under a load of
1.4 lb to be 5.29 in. Since this estimate was based on measurements that were subject
to uncertainty, the estimate itself is subject to uncertainty. For the estimate to be more
useful, we should construct a confidence interval around it to reflect its uncertainty. We
now describe how to do this, for the general case where the load on the spring is x lb.

If a measurement y were taken of the length of the spring under a load of x lb, the
mean of y would be the true length (or “mean response”) β0 + β1x , where β1 is the true
spring constant and β0 is the true unloaded length of the spring. We estimate this length
with ŷ = β̂0 + β̂1x . Since β̂0 and β̂1 are normally distributed with means β0 and β1,
respectively, it follows that ŷ is normally distributed with mean β0 + β1x .

To use ŷ to find a confidence interval, we must know its standard deviation. The
standard deviation can be derived by expressing ŷ as a linear combination of the yi and
using Equation (2.53) (in Section 2.5). Equations (7.34) and (7.35) express β̂1 and β̂0 as
linear combinations of the yi . Since ŷ = β̂0 + β̂1x , these equations, after some algebraic
manipulation, yield

ŷ =
n∑

i=1

[
1

n
+ (x − x)

xi − x∑n
i=1(xi − x)2

]
yi (7.39)

Equation (2.53) now can be used to derive an expression for the standard deviation of
ŷ. The standard deviation depends on the error variance σ 2. Since in practice we don’t
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usually know the value of σ , we approximate it with s. The standard deviation of ŷ is
approximated by

sŷ = s

√
1

n
+ (x − x)2∑n

i=1(xi − x)2
(7.40)

The quantity [ŷ − (β0 + β1x)]/sŷ has a Student’s t distribution with n − 2 degrees of
freedom. We can now provide the expression for a confidence interval for the mean
response.

A level 100(1 −α)% confidence interval for the quantity β0 +β1x is given by

β̂0 + β̂1x ± tn−2,α/2 · sŷ (7.41)

where sŷ = s

√
1

n
+ (x − x)2∑n

i=1(xi − x)2
.

Example
7.16 Using the Hooke’s law data, compute a 95% confidence interval for the length of a

spring under a load of 1.4 lb.

Solution
We will calculate ŷ, sŷ , β̂0, and β̂1, and use expression (7.41). The number of points is
n = 20. In Example 7.9, we computed s = 0.0575. In Example 7.6 (in Section 7.2),
we computed x = 1.9,

∑n
i=1(xi − x)2 = 26.6, β̂1 = 0.2046, and β̂0 = 4.9997. Using

x = 1.4, we now compute

ŷ = β̂0 + β̂1x = 4.9997 + (0.2046)(1.4) = 5.286

Using Equation (7.40) with x = 1.4, we obtain

sŷ = 0.0575

√
1

20
+ (1.4 − 1.9)2

26.6
= 0.0140

The number of degrees of freedom is n −2 = 20−2 = 18. We find that the t value is
t18,.025 = 2.101. Substituting into expression (7.41) we determine the 95% confidence
interval for the length β0 + β1(1.4) to be

5.286 ± (2.101)(0.0140) = 5.286 ± 0.0294 = (5.26, 5.32)

Example
7.17 In a study of the relationship between the permeability (y) of human skin and its

electrical resistance (x), the data presented in the following table were obtained for
50 skin specimens, each 2.54 cm2 in area. Here permeability is measured in μm/h and
resistance is measured in k�. Using a linear model, find a 95% confidence interval
for the mean permeability for skin specimens with resistance 25 k�. (From the article
“Multi-Species Assessment of Electrical Resistance as a Skin Integrity Marker for In
Vitro Percutaneous Absorption Studies,” D. J. Davies, R. J. Ward, and J. R. Heylings,
Toxicology in Vitro, 2004:351–358; values obtained by digitizing a graph.)
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Resistance Permeability Resistance Permeability Resistance Permeability

10.09 11.58 18.67 9.73 25.98 7.01
11.37 13.89 20.28 14.33 26.37 6.66
12.08 11.77 20.17 7.52 26.42 5.35
12.25 9.02 20.17 5.96 26.75 4.05
13.08 9.65 19.94 8.10 26.92 7.16
13.52 9.91 21.72 10.44 27.80 7.07
13.75 12.42 20.94 7.30 27.80 6.47
14.19 9.93 21.44 7.56 28.63 6.50
15.13 10.08 22.05 7.58 28.47 5.30
15.13 5.42 21.66 6.49 28.19 4.93
16.07 12.99 21.72 5.90 28.97 4.36
16.51 10.49 22.66 7.01 29.85 4.28
17.18 8.13 22.10 9.14 30.02 4.88
18.34 5.78 22.82 8.69 31.79 6.02
18.84 7.47 23.99 4.66 34.28 4.67
18.34 7.93 24.82 8.88 34.61 6.12
18.17 9.95 25.70 5.92

Solution
We calculate the following quantities (the computing formulas on page 530 may be
used):

x = 21.7548 y = 7.849
n∑

i=1

(xi − x)2 = 1886.48
n∑

i=1

(yi − y)2 = 325.993

n∑
i=1

(xi − x)(yi − y) = −566.121 β̂0 = 14.3775 β̂1 = −0.300094 s = 1.80337

The estimate of the mean permeability for skin specimens with a resistance of
25 k� is

ŷ = 14.3775 − 0.300094(25) = 6.875

The standard deviation of ŷ is estimated to be

sŷ = s

√
1

n
+ (x − x)2∑n

i=1(xi − x)2

= 1.80337

√
1

50
+ (25 − 21.7548)2

1886.48

= 0.28844

There are n − 2 = 50 − 2 = 48 degrees of freedom. The t value is therefore
t48,0.25 = 2.011. (This value is not found in Table A.3 but can be obtained on many
calculators or with computer software. Alternatively, since there are more than
30 degrees of freedom, one could use z = 1.96.) The 95% confidence interval is

6.785 ± (2.011)(0.28844) = (6.295, 7.455)
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Hypothesis tests on the mean response can be conducted using a Student’s t distri-
bution. Following is an example.

Example
7.18 Refer to Example 7.17. Let μ0 represent the mean permeability of skin whose resis-

tance is 15 k�. Test H0 : μ0 ≤ 9 versus H1 : μ0 > 9.

Solution
Sinceμ0 is the mean permeability of skin whose resistance is 15 k�,μ0 = β0+β1(15).
Now let ŷ = β0 + β1(15). The quantity

ŷ − [β0 + β1(15)]

sŷ
= ŷ − μ0

sŷ

has a Student’s t distribution with n −2 = 48 degrees of freedom. Under H0, we take
μ0 = 9. The test statistic is therefore

ŷ − 9

sŷ

We compute ŷ and sŷ :

ŷ = β̂0 +β̂1(15) = 14.3775 − 0.300094(15) = 9.8761

sŷ = 1.80337

√
1

50
+ (15 − 21.7548)2

1886.48
= 0.37908

The value of the test statistic is
9.8761 − 9

0.37908
= 2.31

There are n − 2 = 50 − 2 = 48 degrees of freedom. This number of degrees
of freedom is not found in Table A.3; however, the P-value can be determined with
a calculator or computer software to be 0.0126. Alternatively, since the number of
degrees of freedom is greater than 30, one can use the z table (Table A.2) to approx-
imate the P-value as 0.0104. It is reasonable to conclude that the mean permeability
is greater than 9 μm/h.

Prediction Intervals for Future Observations
In Example 7.17 we found a confidence interval for the mean permeability of skin
specimens with a resistance of 25 k�. Here is a somewhat different question: Assume
we wish to predict the permeability of a particular skin specimen whose resistance is
25 k�, rather than the mean permeability of all such specimens.

Using values calculated in Example 7.17, we predict this specimen’s permeability
to be ŷ = β̂0 +β̂1(25) = 14.3775 − 0.300094(25) = 6.875. This prediction is the same
as the estimate of the mean permeability for all skin specimens with a resistance of 25.
Now we wish to put an interval around this prediction to indicate its uncertainty. To
compute this prediction interval, we must determine the uncertainty in the prediction.

The mean permeability of skin specimens with a resistance of 25 is β0 + β1(25).
The actual permeability of a particular specimen is equal to β0 + β1(25) + ε, where ε

represents the random difference between the permeability of the particular specimen and
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the mean permeability of all specimens whose resistance is 25. The error in predicting
the permeability of the particular specimen with ŷ is the prediction error

ŷ − [β0 + β1(25)] − ε (7.42)

The uncertainty in the prediction of the strength of the particular weld is the standard
deviation of this prediction error. We briefly show how to compute this standard deviation.
The quantity β0 + β1(25) is constant and does not affect the standard deviation. The
quantities ŷ and ε are independent, since ŷ is calculated from the data in Example 7.17,
while ε applies to a specimen that is not part of that data set. It follows that the standard
deviation of the prediction error (expression 7.42) is approximated by

spred =
√

s2
ŷ + s2

Using Equation (7.40) to substitute for sŷ yields

spred = s

√
1 + 1

n
+ (x − x)2∑n

i=1(xi − x)2
(7.43)

The appropriate expression for the prediction interval can now be determined.

A level 100(1 − α)% prediction interval for the quantity β0 + β1x is given by

β̂0 + β̂1x ± tn−2,α/2 · spred (7.44)

where spred = s

√
1 + 1

n
+ (x − x)2∑n

i=1(xi − x)2
.

Note that the prediction interval is wider than the confidence interval, because the
value 1 is added to the quantity under the square root to account for the additional
uncertainty.

Example
7.19 For the permeability data in Example 7.17, find a 95% prediction interval for the

permeability of a particular skin whose resistance is 25 k�.

Solution
The predicted permeability is ŷ = β̂0 + β̂1(25), which we have calculated in Exam-
ple 7.17 to be 6.875.

Using the quantities presented in Example 7.17, we compute the value of spred to be

spred = 1.80337

√
1 + 1

50
+ (25 − 21.7548)2

1886.48
= 1.8263

There are n − 2 = 50 − 2 = 48 degrees of freedom. The t value is therefore
t48,0.25 = 2.011. (This value is not found in Table A.3 but can be obtained on many
calculators or with computer software. Alternatively, since there are more than 30 degrees
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of freedom, one could use z = 1.96.) The 95% prediction interval is

6.875 ± (2.011)(1.8263) = (3.202, 10.548)

Both the confidence intervals and the prediction intervals described here are specific
to a given x value. In the preceding examples, we took x = 25. By computing the intervals
for many values of x and connecting the points with a smooth curve, we obtain confidence
bands or prediction bands, respectively. Figure 7.13 illustrates 95% confidence bands
and prediction bands for the data presented in Example 7.17. For any given resistance,
the 95% confidence or prediction bands can be read off the figure.
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FIGURE 7.13 Permeability versus resistance for 50 skin specimens. In both plots, the dotted line is the least-squares
line. Left: The two solid curves are the 95% confidence bands. Given any resistance, we are 95% confident that the mean
permeability for skin specimens with that resistance lies between the upper and lower confidence limits. Right: The two
solid curves are the 95% prediction bands. Given any specific skin specimen, we are 95% confident that the permeability
for that particular skin specimen lies between the upper and lower prediction limits corresponding to the resistance of that
skin specimen.

Confidence and prediction bands provide a nice visual presentation of the way in
which the uncertainty depends on the value of the independent variable. Note that both the
confidence interval and the prediction interval are narrowest when x = x , and increases
in width as x moves away from x . This is due to the term (x − x)2 appearing in a
numerator in the expressions for sŷ and spred. We conclude that predictions based on the
least-squares line are more precise near the center of the scatterplot and are less precise
near the edges.

Note that the confidence bands indicate confidence intervals for individual values of
x . They do not provide a confidence region for the true line y = β0 +β1x . In other words,
we cannot be 95% confident that the true line lies between the 95% confidence bands.

Interpreting Computer Output
Nowadays, least-squares calculations are usually done on a computer. The following
output (from MINITAB) is for the Hooke’s law data.
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Regression Analysis: Length versus Weight

The regression equation is
Length = 5.00 + 0.205 Weight (1)

Predictor Coef (2) SE Coef (3) T (4) P (5)
Constant 4.99971 0.02477 201.81 0.000
Weight 0.20462 0.01115 18.36 0.000

S = 0.05749 (6) R−Sq = 94.9% (7) R-Sq(adj) = 94.6%

Analysis of Variance (8)

Source DF SS MS F P
Regression 1 1.1138 1.1138 337.02 0.000
Residual Error 18 0.0595 0.0033
Total 19 1.1733

Unusual Observations (9)

Obs Weight Length Fit SE Fit Residual St Resid
12 2.20 5.5700 5.4499 0.0133 0.1201 2.15R

R denotes an observation with a large standardized residual

Predicted Values for New Observations (10)

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 5.2453 0.0150 ( 5.2137, 5.2769) ( 5.1204, 5.3701)

Values of Predictors for New Observations (11)

New Obs Weight
1 1.20

We will now explain the labeled quantities in the output:

(1) This is the equation of the least-squares line.

(2) Coef: The coefficients β̂0 = 4.99971 and β̂1 = 0.20462.

(3) SE Coef: The standard deviations sβ̂0
and sβ̂1

. (“SE” stands for standard error,
another term for standard deviation.)

(4) T: The values of the Student’s t statistics for testing the hypotheses β0 = 0 and
β1 = 0. The t statistic is equal to the coefficient divided by its standard
deviation.

(5) P: The P-values for the tests of the hypotheses β0 = 0 and β1 = 0. The more
important P-value is that for β1. If this P-value is not small enough to reject the
hypothesis that β1 = 0, the linear model is not useful for predicting y from x . In
this example, the P-values are extremely small, indicating that neither β0 nor β1

is equal to 0.
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(6) S: The estimate s of the error standard deviation.

(7) R-Sq: This is r2, the square of the correlation coefficient r , also called the
coefficient of determination.

(8) Analysis of Variance: This table is not so important in simple linear
regression, where there is only one independent variable. It is more important in
multiple regression, where there are several independent variables. However, it
is worth noting that the three numbers in the column labeled “SS” are the
regression sum of squares

∑n
i=1(ŷi − y)2, the error sum of squares∑n

i=1(yi − ŷi )
2, and their sum, the total sum of squares

∑n
i=1(yi − y)2.

(9) Unusual Observations: Here MINITAB tries to alert you to data points that
may violate some of the assumptions 1 through 4 previously discussed.
MINITAB is conservative and will often list several such points even when the
data are well described by a linear model. In Section 7.4, we will learn some
graphical methods for checking the assumptions of the linear model.

(10) Predicted Values for New Observations: These are confidence intervals and
prediction intervals for values of x that are specified by the user. Here we
specified x = 1.2 for the weight. The “Fit” is the fitted value ŷ = β̂0 + β̂1x , and
“SE Fit” is the standard deviation sŷ . Then come the 95% confidence and
prediction intervals, respectively.

(11) Values of Predictors for New Observations: This is simply a list of the x
values for which confidence and prediction intervals have been calculated. It
shows that these intervals refer to a weight of x = 1.2.

Exercises for Section 7.3

1. A chemical reaction is run 12 times, and the temperature xi (in ◦C) and the yield yi (in percent of a theoretical
maximum) is recorded each time. The following summary statistics are recorded:

x = 65.0 y = 29.05
12∑

i=1

(xi − x)2 = 6032.0

12∑
i=1

(yi − y)2 = 835.42
12∑

i=1

(xi − x)(yi − y) = 1988.4

Let β0 represent the hypothetical yield at a temperature of 0◦C, and let β1 represent the increase in yield caused by
an increase in temperature of 1◦C. Assume that assumptions 1 through 4 on page 544 hold.

a. Compute the least-squares estimates β̂0 and β̂1.
b. Compute the error variance estimate s2.
c. Find 95% confidence intervals for β0 and β1.
d. A chemical engineer claims that the yield increases by more than 0.5 for each 1◦C increase in temperature. Do the

data provide sufficient evidence for you to conclude that this claim is false?
e. Find a 95% confidence interval for the mean yield at a temperature of 40◦C.
f. Find a 95% prediction interval for the yield of a particular reaction at a temperature of 40◦C.

2. Structural engineers use wireless sensor networks to monitor the condition of dams and bridges. The article “Statistical
Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network” (S. Pakzad
and G. Fenves, Journal of Structural Engineering, 2009:863–872) describes an experiment in which accelerometers
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were placed on the Golden Gate Bridge for the purpose of estimating vibration modes. The following output (from
MINITAB) describes the fit of a linear model that predicts the frequency (in Hz) in terms of the damping ratio for
overdamped (damping ratio > 1) modes. There are n = 7 observations.

The regression equation is
Frequency = 0.773 - 0.280 Damping Ratio

Predictor Coef SE Coef T P
Constant 0.77289 0.14534 5.3176 0.003
Damping Ratio —0.27985 0.079258 —3.5309 0.017

a. How many degrees of freedom are there for the Student’s t statistics?
b. Find a 98% confidence interval for β1.
c. Find a 98% confidence interval for β0.
d. Someone claims that the frequency decreases by 0.6 Hz if the damping ratio increases by 1. Use the given output

to perform a hypothesis test to determine whether this claim is plausible.

3. Ozone (O3) is a major component of air pollution in many cities. Atmospheric ozone levels are influenced by
many factors, including weather. In one study, the mean percent relative humidity (x) and the mean ozone levels
(y) were measured for 120 days in a western city. Mean ozone levels were measured in ppb. The following out-
put (from MINITAB) describes the fit of a linear model to these data. Assume that assumptions 1 through 4 on
page 544 hold.

The regression equation is
Ozone = 88.8 − 0.752 Humidity

Predictor Coef SE Coef T P
Constant 88.761 7.288 12.18 0.000
Humidity −0.7524 0.13024 −5.78 0.000

S = 11.43 R-Sq = 22.0% R-Sq(adj) = 21.4%

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 43.62 1.20 ( 41.23 46.00) ( 20.86, 66.37)

Values of Predictors for New Observations

New Obs Humidity
1 60.0

a. What are the slope and intercept of the least-squares line?
b. Is the linear model useful for predicting ozone levels from relative humidity? Explain.
c. Predict the ozone level for a day when the relative humidity is 50%.
d. What is the correlation between relative humidity and ozone level?
e. The output provides a 95% confidence interval for the mean ozone level for days where the relative humidity

is 60%. There are n = 120 observations in this data set. Using the value “SE Fit,” find a 90% confidence
interval.

f. Upon learning that the relative humidity on a certain day is 60%, someone predicts that the ozone level that day
will be 80 ppb. Is this a reasonable prediction? If so, explain why. If not, give a reasonable range of predicted
values.
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4. In an study similar to the one in Exercise 3, the relative humidity and ozone levels were measured for 120 days in
another city. The MINITAB output follows. Assume that assumptions 1 through 4 on page 544 hold.

The regression equation is
Ozone = 29.7 − 0.135 Humidity

Predictor Coef SE Coef T P
Constant 29.703 2.066 14.38 0.000
Humidity −0.13468 0.03798 −3.55 0.001

S = 6.26 R−Sq = 9.6% R−Sq(adj) = 8.9%

a. What is the slope of the least-squares line?
b. Find a 95% confidence interval for the slope.
c. Perform a test of the null hypothesis that the slope is greater than or equal to −0.1. What is the P-value?

5. Refer to Exercises 3 and 4. An atmospheric scientist notices that the slope of the least-squares line in the study
described in Exercise 4 differs from the one in the study described in Exercise 3. He wishes to test the hypothesis
that the effect of humidity on ozone level differs between the two cities. Let βA denote the change in ozone level
associated with an increase of 1 percent relative humidity for the city in Exercise 3, and βB denote the corresponding
increase for the city in Exercise 4.

a. Express the null hypothesis to be tested in terms of βA and βB .
b. Let β̂ A and β̂ B denote the slopes of the least-squares lines. Assume these slopes are independent. There are 120

observations in each data set. Test the null hypothesis in part (a). Can you conclude that the effect of humidity
differs between the two cities?

6. Cardiologists use the short-range scaling exponent α1, which measures the randomness of heart rate patterns, as a
tool to assess risk of heart attack. The article “Applying Fractal Analysis to Short Sets of Heart Rate Variability
Data” (M. Peña et al., Med Biol Eng Comput, 2009:709–717) compared values of α1 computed from long series of
measurements (approximately 40,000 heartbeats) with those estimated from the first 300 beats to determine how well
the long-term measurement (y) could be predicted the short-term one (x). Following are the data (obtained by digitizing
a graph).

Short Long Short Long Short Long Short Long Short Long Short Long

0.54 0.70 1.18 1.19 1.61 1.42 0.79 1.10 1.34 1.31 1.53 1.48
1.02 0.79 0.81 1.19 1.66 1.42 1.27 1.12 1.23 1.33 1.48 1.47
1.40 0.81 0.81 1.20 1.46 1.42 1.16 1.13 1.30 1.33 1.16 1.48
0.88 0.90 1.28 1.23 1.61 1.42 1.34 1.14 1.60 1.34 1.38 1.52
1.68 1.05 1.18 1.23 1.72 1.44 1.08 1.14 0.92 1.34 1.36 1.52
1.16 1.05 0.71 1.24 1.49 1.44 1.14 1.15 1.42 1.35 1.73 1.55
0.82 1.05 1.10 1.27 1.65 1.45 0.91 1.16 1.55 1.35 1.35 1.56
0.93 1.07 0.81 1.29 1.33 1.46 1.03 1.16 1.41 1.39 1.57 1.59
1.26 1.10 1.07 1.30 0.98 1.47 0.82 1.18 1.19 1.40 1.60 1.61

a. Compute the least-squares line for predicting the long-term measurement from the short-term measurement.
b. Compute the error standard deviation estimate s.
c. Compute a 95% confidence interval for the slope.
d. Find a 95% confidence interval for the mean long-term measurement for those with short-term measurements

of 1.2.
e. Can you conclude that the mean long-term measurement for those with short-term measurements of 1.2 is greater

than 1.2? Perform a hypothesis test and report the P-value.
f. Find a 95% prediction interval for the long-term measurement for a particular individual whose short-term mea-

surement is 1.2.
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g. The purpose of a short-term measurement is to substitute for a long-term measurement. For this purpose, which
do you think is more relevant, the confidence interval or the prediction interval? Explain.

7. The coefficient of absorption (COA) for a clay brick is the ratio of the amount of cold water to the amount of boiling
water that the brick will absorb. The article “Effects of Waste Glass Additions on the Properties and Durability of
Fired Clay Brick” (S. Chidiac and L. Federico, Can J Civ Eng, 2007:1458–1466) presents measurements of the (COA)
and the pore volume (in cm3/g) for seven bricks. The results are presented in the following table.

Pore volume COA

1.750 0.80
1.632 0.78
1.594 0.77
1.623 0.75
1.495 0.71
1.465 0.66
1.272 0.63

a. Compute the least-squares line for predicting COA from pore volume.
b. Compute the error standard deviation estimate s.
c. Compute a 95% confidence interval for the slope.
d. Find a 95% confidence interval for the mean COA for bricks with pore volume 1.5 cm3/g.
e. Can you conclude that the mean COA for bricks with pore volume 1.5 cm3/g is less than 0.75? Perform a hypothesis

test and report the P-value.
f. Find a 95% prediction interval for the COA of a particular brick whose pore volume is 1.5 cm3/g.

8. The article “Application of Radial Basis Function Neural Networks in Optimization of Hard Turning of AISI D2 Cold-
Worked Tool Steel With a Ceramic Tool” (S. Basak, U. Dixit, and J. Davim, Journal of Engineering Manufacture,
2007:987–998) presents the results of an experiment in which the surface roughness (in μm) was measured for 27
D2 steel specimens and compared with the roughness predicted by a neural network model. The results are presented
in the following table.

True Predicted True Predicted True Predicted
Value (x) Value (y) Value (x) Value (y) Value (x) Value (y)

0.45 0.42 0.52 0.51 0.57 0.55
0.82 0.70 1.02 0.91 1.14 1.01
0.54 0.52 0.60 0.71 0.74 0.81
0.41 0.39 0.58 0.50 0.62 0.66
0.77 0.74 0.87 0.91 1.15 1.06
0.79 0.78 1.06 1.04 1.27 1.31
0.25 0.27 0.45 0.52 1.31 1.40
0.62 0.60 1.09 0.97 1.33 1.41
0.91 0.87 1.35 1.29 1.46 1.46

To check the accuracy of the prediction method, the linear model y = β0 + β1x + ε is fit. If the prediction method is
accurate, the value of β0 will be 0 and the value of β1 will be 1.

a. Compute the least-squares estimates β̂0 and β̂1.
b. Can you reject the null hypothesis H0 : β0 = 0?
c. Can you reject the null hypothesis H0 : β1 = 1?
d. Do the data provide sufficient evidence to conclude that the prediction method is not accurate?
e. Compute a 95% confidence interval for the mean prediction when the true roughness is 0.8 μm.
f. Someone claims that when the true roughness is 0.8 μm, the mean prediction is only 0.75 μm. Do these data

provide sufficient evidence for you to conclude that this claim is false? Explain.
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9. In a study to determine the relationship between ambient outdoor temperature and the rate of evaporation of water
from soil, measurements of average daytime temperature in ◦C and evaporation in mm/day were taken for 40 days.
The results are shown in the following table.

Temp. Evap. Temp. Evap. Temp. Evap. Temp. Evap.

11.8 2.4 11.8 3.8 18.6 3.5 14.0 1.1
21.5 4.4 24.2 5.0 25.4 5.5 13.6 3.5
16.5 5.0 15.8 2.6 22.1 4.8 25.4 5.1
23.6 4.1 26.8 8.0 25.4 4.8 17.7 2.0
19.1 6.0 24.8 5.4 22.6 3.2 24.7 5.7
21.6 5.9 26.2 4.2 24.4 5.1 24.3 4.7
31.0 4.8 14.2 4.4 15.8 3.3 25.8 5.8
18.9 3.0 14.1 2.2 22.3 4.9 28.3 5.8
24.2 7.1 30.3 5.7 23.2 7.4 29.8 7.8
19.1 1.6 15.2 1.2 19.7 3.3 26.5 5.1

a. Compute the least-squares line for predicting evaporation (y) from temperature (x).
b. Compute 95% confidence intervals for β0 and β1.
c. Predict the evaporation rate when the temperature is 20◦C.
d. Find a 95% confidence interval for the mean evaporation rate for all days with a temperature of 20◦C.
e. Find a 95% prediction interval for the evaporation rate on a given day with a temperature of 20◦C.

10. Three engineers are independently estimating the spring constant of a spring, using the linear model specified by
Hooke’s law. Engineer A measures the length of the spring under loads of 0, 1, 3, 4, and 6 lb, for a total of five
measurements. Engineer B uses the same loads, but repeats the experiment twice, for a total of 10 independent
measurements. Engineer C uses loads of 0, 2, 6, 8, and 12 lb, measuring once for each load. The engineers all use
the same measurement apparatus and procedure. Each engineer computes a 95% confidence interval for the spring
constant.

a. If the width of the interval of engineer A is divided by the width of the interval of engineer B, the quotient will be
approximately .

b. If the width of the interval of engineer A is divided by the width of the interval of engineer C, the quotient will be
approximately .

c. Each engineer computes a 95% confidence interval for the length of the spring under a load of 2.5 lb. Which
interval is most likely to be the shortest? Which interval is most likely to be the longest?

11. In the skin permeability example (Example 7.17) imagine that 95% confidence intervals are to be computed for the
mean permeability for skin with resistances of 15, 20, and 25 k�. Which of the confidence intervals would be the
shortest? Which would be the longest? Explain.

12. Refer to Exercise 1. If 95% confidence intervals are constructed for the yield of the reaction at temperatures of 45◦C,
60◦C, and 75◦C, which confidence interval would be the shortest? Which would be the longest?

13. In a study of copper bars, the relationship between shear stress in ksi (x) and shear strain in % (y) was summarized
by the least-squares line y = − 20.00 + 2.56x . There were a total of n = 17 observations, and the coefficient of
determination was r 2 = 0.9111. If the total sum of squares was

∑
(yi − y)2 = 234.19, compute the estimated error

variance s2.

14. In the manufacture of synthetic fiber, the fiber is often “set” by subjecting it to high temperatures. The object is to
improve the shrinkage properties of the fiber. In a test of 25 yarn specimens, the relationship between temperature in
◦C (x) and shrinkage in % (y) was summarized by the least-squares line y = −12.789 + 0.133x . The total sum of
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squares was
∑

(yi − y)2 = 57.313, and the estimated error variance was s2 = 0.0670. Compute the coefficient of
determination r 2.

15. In the following MINITAB output, some of the numbers have been accidentally erased. Recompute them, using the
numbers still available. There are n = 25 points in the data set.

The regression equation is
Y = 1.71 + 4.27 X

Predictor Coef SE Coef T P
Constant 1.71348 6.69327 (a) (b)
X 4.27473 (c) 3.768 (d)

S = 0.05749 R-Sq = 38.2%

16. In the following MINITAB output, some of the numbers have been accidentally erased. Recompute them, using the
numbers still available. There are n = 20 points in the data set.

Predictor Coef SE Coef T P
Constant (a) 0.43309 0.688 (b)
X 0.18917 0.065729 (c) (d)

S = 0.67580 R-Sq = 31.0%

17. In order to increase the production of gas wells, a procedure known as “hydraulic fracturing” is often used. Fracture
fluid, which consists of fluid mixed with sand, is pumped into the well. The following figure presents a scatterplot of
the monthly production versus the volume of fracture fluid pumped for 255 gas wells. Both production and fluid are
expressed in units of volume per foot of depth of the well. The least-squares line is superimposed. The equation of
the least-squares line is y = 106.11 + 0.1119x .
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a. From the least-squares line, estimate the production for a well into which 4000 gal/ft are pumped.
b. From the least-squares line, estimate the production for a well into which 500 gal/ft are pumped.
c. A new well is dug, and 500 gal/ft of fracture fluid are pumped in. Based on the scatterplot, is it more likely that

the production of this well will fall above or below the least-squares estimate?
d. What feature of the scatterplot indicates that assumption 3 on page 544 is violated?
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7.4 Checking Assumptions and
Transforming Data

The methods discussed so far are valid under the assumption that the relationship between
the variables x and y satisfies the linear model yi = β0 + β1xi + εi , where the errors εi

satisfy assumptions 1 through 4. We repeat these assumptions here.

Assumptions for Errors in Linear Models

1. The errors ε1, . . . , εn are random and independent. In particular, the
magnitude of any error εi does not influence the value of the next error εi+1.

2. The errors ε1, . . . , εn all have mean 0.

3. The errors ε1, . . . , εn all have the same variance, which we denote by σ 2.

4. The errors ε1, . . . , εn are normally distributed.

As mentioned earlier, the normality assumption (4) is less important when the sample
size is large. While mild violations of the assumption of constant variance (3) do not
matter too much, severe violations are a cause for concern.

We need ways to check these assumptions to assure ourselves that our methods are
appropriate. There have been innumerable diagnostic tools proposed for this purpose.
Many books have been written on the topic. We will restrict ourselves here to a few of
the most basic procedures.

The Plot of Residuals versus Fitted Values
The single best diagnostic for least-squares regression is a plot of residuals ei versus
fitted values ŷi , sometimes called a residual plot. Figure 7.14 presents such a plot for
Galton’s height versus forearm data (see Figure 7.1 in Section 7.1 for the original data).
By mathematical necessity, the residuals have mean 0, and the correlation between the
residuals and fitted values is 0 as well. The least-squares line is therefore horizontal,
passing through 0 on the vertical axis. When the linear model is valid, and assumptions
1 through 4 are satisfied, the plot will show no substantial pattern. There should be no
curve to the plot, and the vertical spread of the points should not vary too much over
the horizontal range of the plot, except perhaps near the edges. These conditions are
reasonably well satisfied for Galton’s data. We have no reason to doubt the assumptions
of the linear model.

A bit of terminology: When the vertical spread in a scatterplot doesn’t vary too
much, the scatterplot is said to be homoscedastic. The opposite of homoscedastic is
heteroscedastic.

A good-looking residual plot does not by itself prove that the linear model is appro-
priate, because the assumptions of the linear model can fail in other ways. On the other
hand, a residual plot with a serious defect does clearly indicate that the linear model is
inappropriate.
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FIGURE 7.14 Plot of residuals (ei ) versus fitted values ( ŷi ) for the Galton’s height
versus forearm data. There is no substantial pattern to the plot, and the vertical spread
does not vary too much, except perhaps near the edges. This is consistent with the
assumptions of the linear model.

Summary
If the plot of residuals versus fitted values

■ Shows no substantial trend or curve, and

■ Is homoscedastic, that is, the vertical spread does not vary too much along
the horizontal length of plot, except perhaps near the edges,

then it is likely, but not certain, that the assumptions of the linear model hold.
However, if the residual plot does show a substantial trend or curve, or is

heteroscedastic, it is certain that the assumptions of the linear model do not hold.

In many cases, the residual plot will exhibit curvature or heteroscedasticity, which
reveal violations of assumptions. We will present three examples. Then we will present
a method called transforming the variables, which can sometimes fix violations of
assumptions and allow the linear model to be used.

Example
7.20 Figure 7.15 (page 566) presents a plot of atmospheric ozone concentrations versus

NOx concentrations measured on 359 days in a recent year at a site near Riverside,
California. (NOx stands for oxides of nitrogen, and refers to the sum of NO and
NO2.) Both concentrations are measured in parts per billion (ppb). Next to this plot is
a residual plot. The plot is clearly heteroscedastic; that is, the vertical spread varies
considerably with the fitted value. Specifically, when the fitted value (estimated ozone
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concentration) is large, the residuals tend to be farther from 0. Since the magnitude
of the spread in the residuals depends on the error variance σ 2, we conclude that the
error variance is larger on days where the fitted value is larger. This is a violation
of assumption 3, which states that the variance σ 2 is the same for all observations.
The plot also contains an outlier (where the ozone concentration is near 100). The
residual plot indicates that we should not use this linear model to predict the ozone
concentration from the NOx concentration.
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FIGURE 7.15 (a) Plot of ozone concentration versus NOx concentration. The least-squares line is superimposed.
(b) Plot of residuals (ei ) versus fitted values ( ŷi ) for these data. The vertical spread clearly increases with the fitted
value. This indicates a violation of the assumption of constant error variance.

Example
7.21 (Based on the article “Advances in Oxygen Equivalence Equations for Predicting

the Properties of Titanium Welds,” D. Harwig, W. Ittiwattana, and H. Castner, The
Welding Journal, 2001:126s–136s.) The physical properties of a weld are influenced
by the chemical composition of the weld material. One measure of the chemical
composition is the Ogden–Jaffe number, which is a weighted sum of the percentages
of carbon, oxygen, and nitrogen in the weld. In a study of 63 welds, the hardness of
the weld (measured on the Rockwell B scale) was plotted against the Ogden–Jaffe
number. The plot is presented in Figure 7.16, along with a residual plot. The residual
plot shows a pattern, with positive residuals concentrated in the middle of the plot,
and negative residuals at either end. Technically, this indicates that the errors εi don’t
all have a mean of 0. This generally happens for one of two reasons: Either the
relationship between the variables is nonlinear, or there are other variables that need
to be included in the model. We conclude that we should not use this model to predict
weld hardness from the Ogden–Jaffe number.



Navidi-3810214 book November 11, 2013 14:14

7.4 Checking Assumptions and Transforming Data 567

(a) (b)

100

95

90

85

80

75

6

4

2

0

�2

�4

�6
0.1 0.2 0.3 0.4

Ogden-Jaffe number

R
o
ck

w
el

l 
(B

) 
h
ar

d
n
es

s

75 80 85 90 95 100 105

Fitted value

R
es

id
u
al

FIGURE 7.16 (a) Plot of Rockwell (B) hardness versus Ogden–Jaffe number. The least-squares line is superimposed.
(b) Plot of residuals (ei ) versus fitted values ( ŷi ) for these data. The residuals plot shows a trend, with positive residuals
in the middle and negative residuals at either end.

Example
7.22 These data were presented in Exercise 17 in Section 7.3. For a group of 255 gas wells,

the monthly production per foot of depth of the well is plotted against the volume of
fracture fluid pumped into the well. This plot, along with the residual plot, is presented
in Figure 7.17. The residual plot is strongly heteroscedastic, indicating that the error
variance is larger for gas wells whose estimated production is larger. These of course
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FIGURE 7.17 (a) Plot of monthly production versus volume of fracture fluid for 255 gas wells. (b) Plot of residuals (ei )

versus fitted values ( ŷi ) for the gas well data. The vertical spread clearly increases with the fitted value. This indicates a
violation of the assumption of constant error variance.
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are the wells into which more fracture fluid has been pumped. We conclude that we
should not use this model to predict well production from the amount of fracture fluid
pumped.

Transforming the Variables
If we fit the linear model y = β0 + β1x + ε and find that the residual plot is heteroscedas-
tic, or exhibits a trend or pattern, we can sometimes fix the problem by raising x , y, or
both to a power. It may be the case that a model of the form ya = β0 + β1xb + ε fits the
data well. In general, replacing a variable with a function of itself is called transforming
the variable. Specifically, raising a variable to a power is called a power transformation.
Taking the logarithm of a variable is also considered to be a power transformation, even
though the logarithm is not a power.

Here is a simple example that shows how a power transformation works. The
following table presents values for hypothetical variables x , y, and y2.

x y y2 x y y2

1.0 2.2 4.84 11.0 31.5 992.25
2.0 9.0 81.00 12.0 32.7 1069.29
3.0 13.5 182.25 13.0 34.9 1218.01
4.0 17.0 289.00 14.0 36.3 1317.69
5.0 20.5 420.25 15.0 37.7 1421.29
6.0 23.3 542.89 16.0 38.7 1497.69
7.0 25.2 635.04 17.0 40.0 1600.00
8.0 26.4 696.96 18.0 41.3 1705.69
9.0 27.6 761.76 19.0 42.5 1806.25

10.0 30.2 912.04 20.0 43.7 1909.69

The scatterplot of y versus x is presented in Figure 7.18, along with the residual plot.
Clearly the linear model is inappropriate.
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FIGURE 7.18 (a) Plot of y versus x with the least-squares line superimposed. (b) Plot of residuals versus fitted values.
There is a strong pattern to the residual plot, indicating that the linear model is inappropriate.
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The model y = β0 + β1x + ε does not fit the data. However, we can solve this
problem by using y2 in place of y. Figure 7.19 presents the scatterplot of y2 versus x ,
along with the residual plot. The residual plot is approximately homoscedastic, with no
discernible trend or pattern.
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FIGURE 7.19 (a) Plot of y2 versus x with the least-squares line superimposed. (b) Plot of residuals versus fitted values.
The residual plot is approximately homoscedastic, with no discernible trend or pattern.

We conclude that the model y2 = β0 + β1x + ε is a plausible model for these data.
In this example, we transformed y, but did not need to transform x . In other cases, we
may transform only x , or both x and y.

Determining Which Transformation to Apply
It is possible with experience to look at a scatterplot, or a residual plot, and make an
educated guess as to how to transform the variables. Mathematical methods are also
available to determine a good transformation. However, it is perfectly satisfactory to
proceed by trial and error. Try various powers on both x and y (including ln x and ln y),
look at the residual plots, and hope to find one that is homoscedastic, with no discernible
pattern. A more advanced discussion of transformation selection can be found in Draper
and Smith (1998).

Transformations Don't Always Work
It is important to remember that power transformations don’t always work. Sometimes,
none of the residual plots look good, no matter what transformations are tried. In these
cases, other methods should be used. One of these is multiple regression, discussed in
Chapter 8. Some others are briefly mentioned at the end of this section.
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Residual Plots with Only a Few Points Can Be Hard to Interpret
When there are only a few points in a residual plot, it can be hard to determine whether
the assumptions of the linear model are met. Sometimes such a plot will at first glance
appear to be heteroscedastic, or to exhibit a pattern, but upon closer inspection it turns
out that this visual impression is caused by the placement of just one or two points. It is
sometimes even difficult to determine whether such a plot contains an outlier. When one
is faced with a sparse residual plot that is hard to interpret, a reasonable thing to do is
to fit a linear model, but to consider the results tentative, with the understanding that the
appropriateness of the model has not been established. If and when more data become
available, a more informed decision can be made. Of course, not all sparse residual plots
are hard to interpret. Sometimes there is a clear pattern, which cannot be changed just
by shifting one or two points. In these cases, the linear model should not be used.

Example
7.23 Refer to Example 7.20. Figure 7.15 presented a plot of ozone versus NOx concentra-

tions. It turns out that transforming ozone to its natural logarithm, ln Ozone, produces
a satisfactory linear plot. Figure 7.20 presents the scatterplot of ln Ozone versus NOx ,
and the corresponding residual plot. The residual plot is homoscedastic, with no dis-
cernible pattern. The outlier that was present in the original data is less prominent.
The linear model looks good.
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FIGURE 7.20 (a) Plot of the natural logarithm of ozone concentration versus NOx concentration. The least-squares line
is superimposed. (b) Plot of residuals (ei ) versus fitted values ( ŷi ) for these data. The linear model looks good.
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The following output (from MINITAB) is for the transformed data.

Regression Analysis: LN OZONE versus NOx

The regression equation is
LN OZONE = 3.78 − 0.0101 NOx

Predictor Coef SE Coef T P
Constant 3.78238 0.05682 66.57 0.000
NOx −0.0100976 0.0009497 −10.63 0.000

S = 0.5475 R-Sq = 24.1% R-Sq(adj) = 23.8%

Analysis of Variance

Source DF SS MS F P
Regression 1 33.882 33.882 113.05 0.000
Residual Error 357 106.996 0.300
Total 358 140.878

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 3.2775 0.0289 ( 3.2206, 3.3344) ( 2.1994, 4.3556)

Values of Predictors for New Observations

New Obs NOx
1 50.0

The analysis of the transformed data gives results for the natural log of the ozone
concentration. For some purposes, we can transform back to the original units. For
example, we can use the transformed data to find prediction intervals for ozone values
given a particular NOx value. To do this, we simply use the methods of Section 7.3 to
find the interval for ln Ozone, and then transform this interval back into the original
units. Example 7.24 shows how.

Example
7.24 Using the preceding output, predict the ozone level when the NOx level is 50 ppb,

and find a 95% prediction interval for the ozone level on a day when the NOx level is
50 ppb.

Solution
Let y represent the ozone level on a day when the NOx level is 50 ppb, and let ŷ
represent the predicted value for that level. We first compute the value ln ŷ, which
is the predicted value for ln Ozone, using the coefficient estimates in the MINITAB
output. For a NOx value of 50, the prediction is

ln ŷ = 3.78238 − 0.0100976(50) = 3.2775
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The predicted ozone value is therefore

ŷ = e3.2775 = 26.51

To compute a 95% prediction interval for the ozone level y, we read off the prediction
interval for ln y from the MINITAB output:

2.1994 < ln y < 4.3556

Exponentiating across the inequality yields the 95% prediction interval for the ozone
level:

e2.1994 < y < e4.3556

9.02 < y < 77.91

It is important to note that the method used in Example 7.24 works only for the
prediction interval. It does not work for the confidence interval for the mean response.
When the dependent variable has been transformed, the confidence interval for the mean
response cannot be obtained in the original units.

Example
7.25 Refer to Example 7.21. Figure 7.16 presented a plot of Rockwell (B) hardness versus

the Ogden–Jaffe number for a group of welds. In this case, taking the reciprocal of
the Ogden–Jaffe number (raising to the −1 power) produces an approximately linear
relationship. Figure 7.21 presents the results. Note that in this case, we transformed

(a) (b)

100

95

90

85

80

75

5

4

3

2

1

0

�1

�2

�3

�4

�5
2 3 4 5 6 7 8

(Ogden-Jaffe number)�1

R
o
ck

w
el

l 
(B

) 
h
ar

d
n
es

s

75 80 85 90 95 100

Fitted value

R
es

id
u
al

FIGURE 7.21 (a) Plot of hardness versus (Ogden–Jaffe number)−1. The least-squares line is superimposed. (b) Plot of
residuals (ei ) versus fitted values ( ŷi ) for these data. The linear model looks good.
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the independent variable (x), while in Example 7.23 we transformed the dependent
variable (y).

Example
7.26 Refer to Example 7.22. Figure 7.17 presented a plot of production versus volume of

fracture fluid for 255 gas wells. It turns out that an approximately linear relationship
holds between the logarithm of production and the logarithm of the volume of fracture
fluid. Figure 7.22 presents the results. Note that in this case both variables were
transformed.
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FIGURE 7.22 (a) Plot of the log of production versus the log of the volume of fracture fluid for 255 gas wells, with the
least-squares line superimposed. (b) Plot of residuals versus fitted values. There is no substantial pattern to the residuals.
The linear model looks good.

Outliers and Influential Points
Outliers are points that are detached from the bulk of the data. Both the scatterplot and the
residual plot should be examined for outliers. The first thing to do with an outlier is to try
to determine why it is different from the rest of the points. Sometimes outliers are caused
by data-recording errors or equipment malfunction. In these cases, the outliers can be
deleted from the data set. But many times the cause for an outlier cannot be determined
with certainty. Deleting the outlier is then unwise, because it results in underestimating
the variability of the process that generated the data.

Outliers can often be identified by visual inspection. Many software packages list
points that have unusually large residuals; such a list will contain most of the outliers (and
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sometimes some innocuous points as well). Sometimes transforming the variables will
eliminate outliers by moving them nearer to the bulk of the data. When transformations
don’t help, and when there is no justification for deleting the outliers, one approach is
first to fit the line to the whole data set, and then to remove each outlier in turn, fitting the
line to the data set with the one outlier deleted. If none of the outliers upon removal make
a noticeable difference to the least-squares line or to the estimated standard deviations
of the slope and intercept, then use the fit with the outliers included. If one or more of
the outliers does make a difference when removed, then the range of values for the least-
squares coefficients should be reported. In these cases computing confidence intervals
or prediction intervals, or performing hypothesis tests, should be avoided.

An outlier that makes a considerable difference to the least-squares line when re-
moved is called an influential point. Figure 7.23 presents an example of an influential
outlier, along with one that is not influential. In general, outliers with unusual x values
are more likely to be influential than those with unusual y values, but every outlier should
be checked. Many software packages identify potentially influential points. Further in-
formation on treatment of outliers and influential points can be found in Draper and
Smith (1998), Belsley, Kuh, and Welsch (1980), and Cook and Weisberg (1994).
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FIGURE 7.23 (a) Scatterplot with no outliers. (b) An outlier is added to the plot. There is little change in the least-squares
line, so this point is not influential. (c) An outlier is added to the plot. There is a considerable change in the least-squares
line, so this point is influential.

Finally, we remark that some authors restrict the definition of outliers to points that
have unusually large residuals. Under this definition, a point that is far from the bulk of
the data, yet near the least-squares line, is not an outlier.

The following example features a data set that contains two outliers. In a study to
determine whether the frequency of a certain mutant gene increases with age, the number
of mutant genes in a microgram of DNA was counted for each of 30 men. Two of the men
had extremely large counts; their points are outliers. The least-squares line was fit to all
30 points, to each set of 29 points obtained by deleting an outlier, and then to the 28 points
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that remained after removing both outliers. Figure 7.24 presents scatterplots of frequency
versus age for the full data set and for the sets with one and with both outliers deleted.
The least-squares lines are superimposed. With the outliers included, the equation of the
least-squares line is y = −137.76 + 4.54x . With the outliers removed, the equation of
the least-squares line is y = 31.86 + 1.23x . These results are sufficiently different that
both should be reported.
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FIGURE 7.24 Mutation frequency versus age. (a) The plot contains two outliers, A and B. (b) Outlier A is deleted.
The change in the least-squares line is noticeable although not extreme; this point is somewhat influential. (c) Outlier B
is deleted. The change in the least-squares line is again noticeable but not extreme; this point is somewhat influential as
well. (d) Both outliers are deleted. The combined effect on the least-squares line is substantial.
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Methods Other Than Transforming Variables
Transforming the variables is not the only method for analyzing data when the residual
plot indicates a problem. When the residual plot is heteroscedastic, a technique called
weighted least-squares is sometimes used. In this method, the x and y coordinates of
each point are multiplied by a quantity known as a weight. Points in regions where
the vertical spread is large are multiplied by smaller weights, while points in regions
with less vertical spread are multiplied by larger weights. The effect is to make the
points whose error variance is smaller have greater influence in the computation of the
least-squares line.

When the residual plot shows a trend, this sometimes indicates that more than one
independent variable is needed to explain the variation in the dependent variable. In
these cases, more independent variables are added to the model, and multiple regression
is used. Finally, some relationships are inherently nonlinear. For these, a method called
nonlinear regression can be applied. Multiple regression is covered in Chapter 8. The
other two methods are beyond the scope of this book. A good reference on these topics
is Draper and Smith (1998).

To summarize, we present some generic examples of residual plots in Figure 7.25.
For each one, we present a diagnosis and a prescription.
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FIGURE 7.25 (a) No substantial pattern, plot is homoscedastic. Linear model is OK.
(b) Heteroscedastic. Try a power transformation. (c) Discernible trend to residuals. Try
a power transformation, or use multiple regression. (d) Outlier. Examine the offending
data point to see if it is an error. If not, compute the least-squares line both with and
without the outlier to see if it makes a noticeable difference.
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Checking Independence and Normality
If the plot of residuals versus fitted values looks good, it may be advisable to perform
additional diagnostics to further check the fit of the linear model. In particular, when the
observations occur in a definite time order, it is desirable to plot the residuals against the
order in which the observations were made. If there are trends in the plot, it indicates
that the relationship between x and y may be varying with time. In these cases a variable
representing time, or other variables related to time, should be included in the model as
additional independent variables, and a multiple regression should be performed.

In the air pollution data in Example 7.20, with y representing ozone concentration
and x representing NOx concentration, the residual plot (Figure 7.15) for the model
ln y = β0 + β1x + ε is homoscedastic, with no discernible pattern or trend. These data
were collected over the course of 359 days during a particular year. Figure 7.26 presents
the plot of residuals versus time for these data. There is a clear pattern. The residuals are
positive in the middle of the data, corresponding to the summer, and negative at the ends
of the data, corresponding to the winter. Each residual is equal to the log of the observed
ozone concentration on that day, minus the log of the value predicted by the model. We
conclude that the values predicted by the model are too low in the summer and too high
in the winter. It is clear that knowing the time of the year can improve our prediction
of the ozone concentration over that provided by the model with NOx concentration
as the only independent variable. We therefore would fit a multiple regression model
containing both time and NOx as independent variables. Depending on the results of that
fit, we might make further adjustments to the model. These ideas will be pursued further
in Chapter 8.
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FIGURE 7.26 Plot of residuals versus order of the observations (time) for the ozone
versus NOx data. The model ln Ozone = β0 + β1NOx + ε was fit. The residuals show
a clear pattern with time, indicating that a multiple regression model should be fit, with
time as an additional variable.
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Sometimes a plot of residuals versus time shows that the residuals oscillate with
time. This indicates that the value of each error is influenced by the errors in pre-
vious observations, so therefore the errors are not independent. When this feature is
severe, linear regression should not be used, and the methods of time series analysis
should be used instead. A good reference on time series analysis is Brockwell and
Davis (2003).

To check that the errors are normally distributed, a normal probability plot of the
residuals can be made. If the probability plot has roughly the appearance of a straight
line, the residuals are approximately normally distributed. It can be a good idea to make a
probability plot when variables are transformed, since one sign of a good transformation
is that the residuals are approximately normally distributed. As previously mentioned,
the assumption of normality is not so important when the number of data points is large.
Unfortunately, when the number of data points is small, it can be difficult to detect
departures from normality.

Empirical Models and Physical Laws
How do we know whether the relationship between two variables is linear? In some cases,
physical laws, such as Hooke’s law, give us assurance that a linear model is correct. In
other cases, such as the relationship between the log of the volume of fracture fluid
pumped into a gas well and the log of its monthly production, there is no known physical
law. In these cases, we use a linear model simply because it appears to fit the data well. A
model that is chosen because it appears to fit the data, in the absence of physical theory, is
called an empirical model. In real life, most data analysis is based on empirical models.
It is less often that a known physical law applies. Of course, many physical laws started
out as empirical models. If an empirical model is tested on many different occasions,
under a wide variety of circumstances, and is found to hold without exception, it can
gain the status of a physical law.

There is an important difference between the interpretation of results based on
physical laws and the interpretation of results based on empirical models. A physical
law may be regarded as true, whereas the best we can hope for from an empirical model is
that it is useful. For example, in the Hooke’s law data, we can be sure that the relationship
between the load on the spring and its length is truly linear. We are sure that when we place
another weight on the spring, the length of the spring can be accurately predicted from
the linear model. For the gas well data, on the other hand, while the linear relationship
describes the data well, we cannot be sure that it captures the true relationship between
fracture fluid volume and production.

Here is a simple example that illustrates the point. Figure 7.27 presents 20 triangles
of varying shapes. Assume that we do not know the formula for the area of a triangle.
We notice, however, that triangles with larger perimeters seem to have larger areas, so
we fit a linear model:

Area = β0 + β1 (Perimeter) + ε
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The scatterplot of area versus perimeter, with the least-squares line superimposed, is
shown to the right in Figure 7.27. The equation of the least-squares line is

Area = −1.232 + 1.373 (Perimeter)

The units in this equation are arbitrary. The correlation between area and perimeter is
r = 0.88, which is strongly positive. The linear model appears to fit well. We could use
this model to predict, for example, that a triangle with perimeter equal to 5 will have an
area of 5.633.
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FIGURE 7.27 (a) Twenty triangles. (b) Area versus perimeter for 20 triangles. The correlation between perimeter and
area is 0.88.

Now while this linear model may be useful, it is not true. The linear model correctly
shows that there is a strong tendency for triangles with larger perimeters to have larger
areas. In the absence of a better method, it may be of some use in estimating the areas
of triangles. But it does not help to reveal the true mechanism behind the determination
of area. The true mechanism, of course, is given by the law

Area = 0.5 × base × height

The results predicted by an empirical model may not hold up under replication. For
example, a collection of triangles could be designed in such a way that the ones with
the larger perimeters had smaller areas. In another collection, the area might appear to
be proportional to the square of the perimeter, or to its logarithm. We cannot determine
by statistical analysis of the triangle data how well the empirical model will apply to
a triangle not yet observed. Deciding whether it is appropriate to apply the results of
an empirical model to future observations is a matter of scientific judgment rather than
statistics.
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Summary

■ Physical laws are applicable to all future observations.

■ An empirical model is valid only for the data to which it is fit. It may or
may not be useful in predicting outcomes for subsequent observations.

■ Determining whether to apply an empirical model to a future observation
requires scientific judgment rather than statistical analysis.

Exercises for Section 7.4

1. The following output (from MINITAB) is for the least-squares fit of the model ln y = β0 + β1 ln x + ε, where y
represents the monthly production of a gas well and x represents the volume of fracture fluid pumped in. (A scatterplot
of these data is presented in Figure 7.22.)

Regression Analysis: LN PROD versus LN FLUID

The regression equation is
LN PROD = − 0.444 + 0.798 LN FLUID

Predictor Coef SE Coef T P
Constant −0.4442 0.5853 −0.76 0.449
LN FLUID 0.79833 0.08010 9.97 0.000

S = 0.7459 R−Sq = 28.2% R−Sq(adj) = 27.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 55.268 55.268 99.34 0.000
Residual Error 253 140.756 0.556
Total 254 196.024

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 5.4457 0.0473 ( 5.3526, 5.5389) ( 3.9738, 6.9176)

Values of Predictors for New Observations

New Obs LN FLUID
1 7.3778

a. What is the equation of the least-squares line for predicting ln y from ln x?
b. Predict the production of a well into which 2500 gal/ft of fluid have been pumped.
c. Predict the production of a well into which 1600 gal/ft of fluid have been pumped.
d. Find a 95% prediction interval for the production of a well into which 1600 gal/ft of fluid have been pumped.

(Note: ln 1600 = 7.3778.)
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2. The processing of raw coal involves “washing,” in which coal ash (nonorganic, incombustible material) is removed.
The article “Quantifying Sampling Precision for Coal Ash Using Gy’s Discrete Model of the Fundamental Error”
(Journal of Coal Quality, 1989:33–39) provides data relating the percentage of ash to the volume of a coal particle.
The average percentage of ash for six volumes of coal particles was measured. The data are as follows:

Volume (cm3) 0.01 0.06 0.58 2.24 15.55 276.02
Percent ash 3.32 4.05 5.69 7.06 8.17 9.36

a. Compute the least-squares line for predicting percent ash (y) from volume (x). Plot the residuals versus the fitted
values. Does the linear model seem appropriate? Explain.

b. Compute the least-squares line for predicting percent ash from ln volume. Plot the residuals versus the fitted
values. Does the linear model seem appropriate? Explain.

c. Compute the least-squares line for predicting percent ash from
√

volume. Plot the residuals versus the fitted values.
Does the linear model seem appropriate? Explain.

d. Using the most appropriate model, predict the percent ash for particles with a volume of 50 m3.
e. Using the most appropriate model, construct a 95% confidence interval for the mean percent ash for particles with

a volume of 50 m3.

3. To determine the effect of temperature on the yield of a certain chemical process, the process is run 24 times at various
temperatures. The temperature (in ◦C) and the yield (expressed as a percentage of a theoretical maximum) for each
run are given in the following table. The results are presented in the order in which they were run, from earliest to
latest.

Order Temp Yield Order Temp Yield Order Temp Yield

1 30 49.2 9 25 59.3 17 34 65.9
2 32 55.3 10 38 64.5 18 43 75.2
3 35 53.4 11 39 68.2 19 34 69.5
4 39 59.9 12 30 53.0 20 41 80.8
5 31 51.4 13 30 58.3 21 36 78.6
6 27 52.1 14 39 64.3 22 37 77.2
7 33 60.2 15 40 71.6 23 42 80.3
8 34 60.5 16 44 73.0 24 28 69.5

a. Compute the least-squares line for predicting yield (y) from temperature (x).
b. Plot the residuals versus the fitted values. Does the linear model seem appropriate? Explain.
c. Plot the residuals versus the order in which the observations were made. Is there a trend in the residuals over time?

Does the linear model seem appropriate? Explain.

4. The depth of wetting of a soil is the depth to which water content will increase owing to external factors. The
article “Discussion of Method for Evaluation of Depth of Wetting in Residential Areas” (J. Nelson, K. Chao, and
D. Overton, Journal of Geotechnical and Geoenvironmental Engineering, 2011:293–296) discusses the relationship
between depth of wetting beneath a structure and the age of the structure. The article presents measurements of depth
of wetting, in meters, and the ages, in years, of 21 houses, as shown in the following table.
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Age Depth Age Depth

3 7.6 4 5.5
4 4.6 3 6.1
6 6.1 8 10.7
6 9.1 6 10.4
3 4.3 4 4.6
8 7.3 7 7.0
5 5.2 6 6.1
8 10.4 14 16.8
6 15.5 10 9.1
2 5.8 7 8.8
6 10.7

a. Compute the least-squares line for predicting depth of wetting (y) from age (x).
b. Identify a point with an unusually large x-value. Compute the least-squares line that results from deletion of this

point.
c. Identify another point which can be classified as an outlier. Compute the least-squares line that results from

deletion of the outlier, replacing the point with the unusually large x-value.
d. Which of these two points is more influential? Explain.

5. Good forecasting and control of preconstruction activities leads to more efficient use of time and resources in highway
construction projects. Data on construction costs (in $1000s) and person-hours of labor required on several projects are
presented in the following table and are taken from the article “Forecasting Engineering Manpower Requirements for
Highway Preconstruction Activities” (K. Persad, J. O’Connor, and K. Varghese, Journal of Management Engineering,
1995:41–47). Each value represents an average of several projects, and two outliers have been deleted.

Person- Person-
Hours (x) Cost (y ) Hours (x) Cost (y )

939 251 1069 355
5796 4690 6945 5253
289 124 4159 1177
283 294 1266 802
138 138 1481 945

2698 1385 4716 2327
663 345

a. Compute the least-squares line for predicting y from x .
b. Plot the residuals versus the fitted values. Does the model seem appropriate?
c. Compute the least-squares line for predicting ln y from ln x .
d. Plot the residuals versus the fitted values. Does the model seem appropriate?
e. Using the more appropriate model, construct a 95% prediction interval for the cost of a project that requires 1000

person-hours of labor.

6. The article “Drift in Posturography Systems Equipped with a Piezoelectric Force Platform: Analysis and Numer-
ical Compensation” (L. Quagliarella, N. Sasanelli, and V. Monaco, IEEE Transactions on Instrumentation and
Measurement, 2008:997–1004) reported the results of an experiment to determine the effect of load on the drift in
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signals derived from a piezoelectric force plate. The correlation coefficient y between output and time was computed
for various loads x in kN, as shown in the following table.

x y

0.196 −0.9710
0.245 −0.9735
0.294 −0.9694
0.343 −0.9684
0.392 −0.9624
0.441 −0.9688
0.490 −0.9519
0.539 −0.9573
0.588 −0.9515

a. Compute the least-squares line for predicting y from x .
b. Plot the residuals versus the fitted values. Does the least-squares line seem appropriate?
c. Compute the least-squares line for predicting y from x2.
d. Plot the residuals versus the fitted values. Does the least-squares line seem appropriate?
e. For each model, find a 95% confidence interval for the mean value of y when x = 0.32. Are the confidence

intervals similar?

7. The National Assessment for Educational Progress measured the percentage of eighth grade students who were
proficient in reading and the percentage of students who graduated from high school in each state in the U.S. The
results for the ten most populous states are as follows:

Reading
State Proficiency Graduation Rate

California 60 75
Texas 73 74
New York 75 65
Florida 66 65
Illinois 75 79
Pennsylvania 79 83
Ohio 79 80
Michigan 73 73
Georgia 67 62
North Carolina 71 73

Reading data from 2005, graduation data from 2007

a. Construct a scatterplot of graduation rate (y) versus reading proficiency (x). Which state is an outlier?
b. Compute the least-squares line for predicting graduation rate from reading proficiency, using the data from all ten

states.
c. Remove the outlier and compute the least-squares line, using the data from the other nine states.
d. Is the outlier an influential point? Explain.
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8. The article “Oxidation State and Activities of Chromium Oxides in CaO-SiO2-CrOx Slag System” (Y. Xiao,
L. Holappa, and M. Reuter, Metallurgical and Materials Transactions B, 2002:595–603) presents the amount x
(in mole percent) and activity coefficient y of CrO1.5 for several specimens. The data, extracted from a larger table,
are presented in the following table.

x y x y x y

10.20 2.6 7.13 5.8 5.33 13.1
5.03 19.9 3.40 29.4 16.70 0.6
8.84 0.8 5.57 2.2 9.75 2.2
6.62 5.3 7.23 5.5 2.74 16.9
2.89 20.3 2.12 33.1 2.58 35.5
2.31 39.4 1.67 44.2 1.50 48.0

a. Compute the least-squares line for predicting y from x .
b. Plot the residuals versus the fitted values.
c. Compute the least-squares line for predicting y from 1/x .
d. Plot the residuals versus the fitted values.
e. Using the better fitting line, find a 95% confidence interval for the mean value of y when x = 5.0.

9. A windmill is used to generate direct current. Data are collected on 45 different days to determine the relationship
between wind speed in mi/h (x) and current in kA (y). The data are presented in the following table.

Wind Wind Wind
Day Speed Current Day Speed Current Day Speed Current

1 4.2 1.9 16 3.7 2.1 31 2.6 1.4
2 1.4 0.7 17 5.9 2.2 32 7.7 2.8
3 6.6 2.2 18 6.0 2.6 33 6.1 2.4
4 4.7 2.0 19 10.7 3.2 34 5.5 2.2
5 2.6 1.1 20 5.3 2.3 35 4.7 2.3
6 5.8 2.6 21 5.1 1.9 36 4.0 2.0
7 1.8 0.3 22 4.9 2.3 37 2.3 1.2
8 5.8 2.3 23 8.3 3.1 38 11.9 3.0
9 7.3 2.6 24 7.1 2.3 39 8.6 2.5

10 7.1 2.7 25 9.2 2.9 40 5.6 2.1
11 6.4 2.4 26 4.4 1.8 41 4.2 1.7
12 4.6 2.2 27 8.0 2.6 42 6.2 2.3
13 1.6 1.1 28 10.5 3.0 43 7.7 2.6
14 2.3 1.5 29 5.1 2.1 44 6.6 2.9
15 4.2 1.5 30 5.8 2.5 45 6.9 2.6

a. Compute the least-squares line for predicting y from x . Make a plot of residuals versus fitted values.
b. Compute the least-squares line for predicting y from ln x . Make a plot of residuals versus fitted values.
c. Compute the least-squares line for predicting ln y from x . Make a plot of residuals versus fitted values.
d. Compute the least-squares line for predicting

√
y from x . Make a plot of residuals versus fitted values.

e. Which of the four models (a) through (d) fits best? Explain.
f. For the model that fits best, plot the residuals versus the order in which the observations were made. Do the

residuals seem to vary with time?
g. Using the best model, predict the current when wind speed is 5.0 mi/h.
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h. Using the best model, find a 95% prediction interval for the current on a given day when the wind speed is
5.0 mi/h.

10. Two radon detectors were placed in different locations in the basement of a home. Each provided an hourly measure-
ment of the radon concentration, in units of pCi/L. The data are presented in the following table.

R1 R2 R1 R2 R1 R2 R1 R2

1.2 1.2 3.4 2.0 4.0 2.6 5.5 3.6
1.3 1.5 3.5 2.0 4.0 2.7 5.8 3.6
1.3 1.6 3.6 2.1 4.3 2.7 5.9 3.9
1.3 1.7 3.6 2.1 4.3 2.8 6.0 4.0
1.5 1.7 3.7 2.1 4.4 2.9 6.0 4.2
1.5 1.7 3.8 2.2 4.4 3.0 6.1 4.4
1.6 1.8 3.8 2.2 4.7 3.1 6.2 4.4
2.0 1.8 3.8 2.3 4.7 3.2 6.5 4.4
2.0 1.9 3.9 2.3 4.8 3.2 6.6 4.4
2.4 1.9 3.9 2.4 4.8 3.5 6.9 4.7
2.9 1.9 3.9 2.4 4.9 3.5 7.0 4.8
3.0 2.0 3.9 2.4 5.4 3.5

a. Compute the least-squares line for predicting the radon concentration at location 2 from the concentration at
location 1.

b. Plot the residuals versus the fitted values. Does the linear model seem appropriate?
c. Divide the data into two groups: points where R1 < 4 in one group, points where R1 ≥ 4 in the other. Compute

the least-squares line and the residual plot for each group. Does the line describe either group well? Which one?
d. Explain why it might be a good idea to fit a linear model to part of these data, and a nonlinear model to the other.

11. The article “The Equilibrium Partitioning of Titanium Between Ti3+ and Ti4+ Valency States in CaO-SiO2-TiOx Slags”
(G. Tranell, O. Ostrovski, and S. Jahanshahi, Metallurgical and Materials Transactions B, 2002:61–66) discusses
the relationship between the redox ratio Ti3+/Ti4+ and oxygen partial pressure pO2 in CaO-SiO2-TiOx melts. Several
independent measurements of the redox ratio were made at each of five different partial pressures: 10−7, 10−8, 10−9,
10−10, and 10−12 atmospheres. The results for the runs at 14 mass percent TiOx are presented in the following table.

Oxygen
Partial Pressure Redox Ratio Measurements

10−7 0.011, 0.017, 0.034, 0.039

10−8 0.018, 0.011, 0.026, 0.050, 0.034, 0.068, 0.061

10−9 0.027, 0.038, 0.076, 0.088

10−10 0.047, 0.069, 0.123, 0.162

10−12 0.160, 0.220, 0.399, 0.469

a. Denoting the redox ratio by y and the partial pressure by x , theory states that y should be proportional to xβ for
some β. Express this theoretical relationship as a linear model.

b. Compute the least-squares line for this linear model. Plot the residuals versus the fitted values. Does the linear
model hold?

c. Further theoretical considerations suggest that under the conditions of this experiment, y should be proportional
to x−1/4. Are the data in the preceding table consistent with this theory? Explain.
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12. The article “The Selection of Yeast Strains for the Production of Premium Quality South African Brandy Base
Products” (C. Steger and M. Lambrechts, Journal of Industrial Microbiology and Biotechnology, 2000:431–440)
presents detailed information on the volatile compound composition of base wines made from each of 16 selected
yeast strains. Below are the concentrations of total esters and total volatile acids (in mg/L) in each of the wines.

Esters Acids Esters Acids Esters Acids Esters Acids

284.34 445.70 173.01 265.43 229.55 210.58 312.95 203.62
215.34 332.59 188.72 166.73 144.39 254.82 172.79 342.21
139.38 356.88 197.81 291.72 303.28 215.83 256.02 152.38
658.38 192.59 105.14 412.42 295.24 442.55 170.41 391.30

a. Construct a scatterplot of acid concentration versus ester concentration. Indicate the outlier.
b. Compute the coefficients of the least-squares line for predicting acid level (y) from ester level (x), along with their

estimated standard deviations.
c. Compute the P-value of the test of the null hypothesis H0 : β1 = 0.
d. Delete the outlier, and recompute the coefficients of the least-squares line, along with their estimated standard

deviations.
e. Compute the P-value of the test of the null hypothesis H0 : β1 = 0 for the data with the outlier deleted.
f. Does a linear model appear to be useful for predicting acid concentration from ester concentration? Explain.

13. The article “Mathematical Modeling of the Argon-Oxygen Decarburization Refining Process of Stainless Steel:
Part II. Application of the Model to Industrial Practice” (J. Wei and D. Zhu, Metallurgical and Materials Transactions
B, 2001:212–217) presents the carbon content (in mass %) and bath temperature (in K) for 32 heats of austenitic
stainless steel. These data are shown in the following table.

Carbon % Temp. Carbon % Temp. Carbon % Temp. Carbon % Temp.

19 1975 17 1984 18 1962 17 1983
23 1947 20 1991 19 1985 20 1966
22 1954 19 1965 19 1946 21 1972
16 1992 22 1963 15 1986 17 1989
17 1965 18 1949 20 1946 18 1984
18 1971 22 1960 22 1950 23 1967
12 2046 20 1960 15 1979 13 1954
24 1945 19 1953 15 1989 15 1977

a. Compute the least-squares line for predicting bath temperature (y) from carbon content (x).
b. Identify two outliers. Compute the two least-squares lines that result from the deletion of each outlier individually,

and the least-squares line that results from the deletion of both outliers.
c. Are the least-squares lines computed in parts (a) and (b) similar? If so, report the line that was fit to the full data

set, along with 95% confidence intervals for the slope and intercept. If not, report the range of slopes, without a
confidence interval.

14. The article “Characteristics and Trends of River Discharge into Hudson, James, and Ungava Bays, 1964–2000”
(S. Déry, M. Stieglitz, et al., Journal of Climate, 2005:2540–2557) presents measurements of discharge rate
x (in km3/yr) and peak flow y (in m3/s) for 42 rivers that drain into the Hudson, James, and Ungava Bays. The
data are shown in the following table:
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Discharge Peak Flow Discharge Peak Flow Discharge Peak Flow

94.24 4110.3 17.96 3420.2 3.98 551.8
66.57 4961.7 17.84 2655.3 3.74 288.9
59.79 10275.5 16.06 3470.3 3.25 295.2
48.52 6616.9 14.69 1561.6 3.15 500.1
40.00 7459.5 11.63 869.8 2.76 611.0
32.30 2784.4 11.19 936.8 2.64 1311.5
31.20 3266.7 11.08 1315.7 2.59 413.8
30.69 4368.7 10.92 1727.1 2.25 263.2
26.65 1328.5 9.94 768.1 2.23 490.7
22.75 4437.6 7.86 483.3 0.99 204.2
21.20 1983.0 6.92 334.5 0.84 491.7
20.57 1320.1 6.17 1049.9 0.64 74.2
19.77 1735.7 4.88 485.1 0.52 240.6
18.62 1944.1 4.49 289.6 0.30 56.6

a. Compute the least-squares line for predicting y from x . Make a plot of residuals versus fitted values.
b. Compute the least-squares line for predicting y from ln x . Make a plot of residuals versus fitted values.
c. Compute the least-squares line for predicting ln y from ln x . Make a plot of residuals versus fitted values.
d. Which of the three models (a) through (c) fits best? Explain.
e. Using the best model, predict the peak flow when the discharge is 50.0 km3/yr.
f. Using the best model, find a 95% prediction interval for the peak flow when the discharge is 50.0 km3/yr.

15. The article “Some Parameters of the Population Biology of Spotted Flounder (Ciutharus linguatula Linnaeus, 1758)
in Edremit Bay (North Aegean Sea)” (D. Türker, B. Bayhan, et al., Turkish Journal of Veterinary and Animal Science,
2005:1013–1018) models the relationship between weight W and length L of spotted flounder as W = aLb where a
and b are constants to be estimated from data. Transform this equation to produce a linear model.

16. The article “Mechanistic-Empirical Design of Bituminous Roads: An Indian Perspective” (A. Das and B. Pandey,
Journal of Transportation Engineering, 1999:463–471) presents an equation of the form y = a(1/x1)

b(1/x2)
c for

predicting the number of repetitions for laboratory fatigue failure (y) in terms of the tensile strain at the bottom of
the bituminous beam (x1) and the resilient modulus (x2). Transform this equation into a linear model, and express the
linear model coefficients in terms of a, b, and c.

17. An engineer wants to determine the spring constant for a particular spring. She hangs various weights on one end of
the spring and measures the length of the spring each time. A scatterplot of length (y) versus load (x) is depicted in
the following figure.
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a. Is the model y = β0 + β1x an empirical model or a physical law?
b. Should she transform the variables to try to make the relationship more linear, or would it be better to redo the

experiment? Explain.

Supplementary Exercises for Chapter 7

1. The Beer–Lambert law relates the absorbance A of a solution to the concentration C of a species in solution by
A = M LC , where L is the path length and M is the molar absorption coefficient. Assume that L = 1 cm.
Measurements of A are made at various concentrations. The data are presented in the following table.

Concentration (mol/cm3) 1.00 1.20 1.50 1.70 2.00
Absorbance (L/cm3) 0.99 1.13 1.52 1.73 1.96

a. Let A = β̂0 + β̂1C be the equation of the least-squares line for predicting absorbance (A) from concentration
(C). Compute the values of β̂0 and β̂1.

b. What value does the Beer–Lambert law assign to β0?
c. What physical quantity does β̂1 estimate?
d. Test the hypothesis H0 : β0 = 0. Is the result consistent with the Beer–Lambert law?

2. In a test of military ordnance, a large number of bombs were dropped on a target from various heights. The initial
velocity of the bombs in the direction of the ground was 0. Let y be the height in meters from which a bomb is
dropped, let x be the time in seconds for the bomb to strike the ground, let w = x2, and let v = √

y. The relationship
between x and y is given by y = 4.9x2. For each of the following pairs of variables, state whether the correlation
coefficient is an appropriate summary.

a. x and y
b. w and y
c. x and v

d. w and v

e. ln x and ln y

3. Eruptions of the Old Faithful geyser in Yellowstone National Park typically last from 1.5 to 5 minutes. Between
eruptions are dormant periods, which typically last from 50 to 100 minutes. A dormant period can also be thought
of as the waiting time between eruptions. The durations in minutes for 60 consecutive dormant periods are given
in the following table. It is desired to predict the length of a dormant period from the length of the dormant period
immediately preceding it. To express this in symbols, denote the sequence of dormant periods T1, . . . , T60. It is desired
to predict Ti+1 from Ti .

i Ti i Ti i Ti i Ti i Ti i Ti

1 80 11 56 21 82 31 88 41 72 51 67
2 84 12 80 22 51 32 51 42 75 52 81
3 50 13 69 23 76 33 80 43 75 53 76
4 93 14 57 24 82 34 49 44 66 54 83
5 55 15 90 25 84 35 82 45 84 55 76
6 76 16 42 26 53 36 75 46 70 56 55
7 58 17 91 27 86 37 73 47 79 57 73
8 74 18 51 28 51 38 67 48 60 58 56
9 75 19 79 29 85 39 68 49 86 59 83

10 80 20 53 30 45 40 86 50 71 60 57

a. Construct a scatterplot of the points (Ti , Ti+1), for i = 1, . . . , 59.
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b. Compute the least-squares line for predicting Ti+1 from Ti . (Hint: The values of the independent variable (x) are
T1, . . . , T59, and the values of the dependent variable (y) are T2, . . . , T60.)

c. Find a 95% confidence interval for the slope β1.
d. If the waiting time before the last eruption was 70 minutes, what is the predicted waiting time before the next

eruption?
e. Find a 98% confidence interval for the mean waiting time before the next eruption when the time before the last

eruption was 70 minutes.
f. Find a 99% prediction interval for the waiting time before the next eruption, if the time before the last eruption

was 70 minutes.

4. Refer to Exercise 3.

a. Plot the residuals versus the fitted values. Does the plot indicate any serious violations of the standard assumptions?
b. Plot the residuals versus the order of the data. Does the plot indicate any serious violations of the standard

assumptions?

5. A chemist is calibrating a spectrophotometer that will be used to measure the concentration of carbon monoxide
(CO) in atmospheric samples. To check the calibration, samples of known concentration are measured. The true
concentrations (x) and the measured concentrations (y) are given in the following table. Because of random error,
repeated measurements on the same sample will vary. The machine is considered to be in calibration if its mean
response is equal to the true concentration.

True concentration Measured concentration
(ppm) (ppm)

0 1
10 11
20 21
30 28
40 37
50 48
60 56
70 68
80 75
90 86

100 96

To check the calibration, the linear model y = β0 + β1x + ε is fit. Ideally, the value of β0 should be 0 and the value
of β1 should be 1.

a. Compute the least-squares estimates β̂0 and β̂1.
b. Can you reject the null hypothesis H0 : β0 = 0?
c. Can you reject the null hypothesis H0 : β1 = 1?
d. Do the data provide sufficient evidence to conclude that the machine is out of calibration?
e. Compute a 95% confidence interval for the mean measurement when the true concentration is 20 ppm.
f. Compute a 95% confidence interval for the mean measurement when the true concentration is 80 ppm.
g. Someone claims that the machine is in calibration for concentrations near 20 ppm. Do these data provide sufficient

evidence for you to conclude that this claim is false? Explain.

6. The article “Experimental Measurement of Radiative Heat Transfer in Gas-Solid Suspension Flow System”
(G. Han, K. Tuzla, and J. Chen, AIChe Journal, 2002:1910–1916) discusses the calibration of a radiometer. Several
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measurements were made on the electromotive force readings of the radiometer (in volts) and the radiation flux
(in kilowatts per square meter). The results (read from a graph) are presented in the following table.

Heat flux (y) 15 31 51 55 67 89
Signal output (x) 1.08 2.42 4.17 4.46 5.17 6.92

a. Compute the least-squares line for predicting heat flux from the signal output.
b. If the radiometer reads 3.00 V, predict the heat flux.
c. If the radiometer reads 8.00 V, should the heat flux be predicted? If so, predict it. If not, explain why.

7. The article “A Robust Optimization Approach for the Capacitated Vehicle Routing Problem with Demand Uncertainty”
(I. Sungur, F. Ordóñez, and M. Dessouky, IIE Transactions, 2008:509–523) discusses methods to reduce transportation
costs while satisfying demands. In one study, the percent demand that is unmet (y) and the percent of vehicle capacity
(x) needed to meet the expected demand were recorded for 27 different scenarios. The results are presented in the
following table.

x y x y x y

82 0.5 89 0.2 90 0.3
92 0.0 88 0.8 81 0.2
95 0.7 96 1.4 95 1.0
87 1.3 95 0.9 98 1.0
90 0.8 86 1.4 89 1.0
94 1.1 95 0.4 93 1.3
92 0.9 98 1.7 91 1.3
97 1.2 93 1.1 94 1.2
97 1.3 93 0.8 94 0.7

a. Compute the least-squares line for predicting unmet demand (y) from vehicle capacity (x).
b. Compute 95% confidence intervals for β0 and β1.
c. Predict the unmet demand when the vehicle capacity is 93%.
d. Find a 95% confidence interval for the mean unmet demand when the vehicle capacity is 93%.
e. Find a 95% prediction interval for the unmet demand for a scenario whose vehicle capacity is 93%.

8. The article “Optimization of Medium Composition for Lipase Production by Candida rugosa NCIM 3462 Using
Response Surface Methodology” (A. Ragendran and V. Thangavelu, Can J. Microbiol, 2007:643–655) describes a
series of experiments in which lipase was produced from a bacterial culture. In each experiment, the rate of lipase
production (in μmol per ml enzyme per minute) and the cell mass (in g/L) were measured. The results are presented
in the following table.

Cell mass Lipase Cell mass Lipase Cell mass Lipase Cell mass Lipase
(x) (y) (x) (y) (x) (y) (x) (y)

4.50 2.06 3.98 2.10 3.65 2.20 4.15 3.75
4.68 2.10 4.72 2.75 4.23 2.30 4.30 3.15
5.40 3.15 3.41 2.80 4.10 2.40 4.90 5.10
5.45 4.10 4.80 4.60 5.03 4.75 5.23 5.04
4.20 2.20 3.60 2.50 4.19 3.15 5.40 4.96
4.12 3.20 4.95 4.10 4.40 3.90 4.85 5.00
4.00 2.85 3.25 2.15 3.92 3.20 5.10 4.92
4.41 4.50 4.40 4.40 3.50 2.10 4.94 4.98
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a. Compute the least-squares line for predicting lipase production from cell mass.
b. Compute 95% confidence intervals for β0 and β1.
c. In two experiments, the cell masses differed by 1.5 g/L. By how much do you estimate that their lipase productions

will differ?
d. Find a 95% confidence interval for the mean lipase production when the cell mass is 5.0 g/L.
e. Can you conclude that the mean lipase production when the cell mass is 5.0 g/L is less than 4.4? Explain.

9. The article “Copper Oxide Mounted on Activated Carbon as Catalyst for Wet Air Oxidation of Aqueous Phenol.
1. Kinetic and Mechanistic Approaches” (P. Alvarez, D. McLurgh, and P. Plucinski, Industrial Engineering and
Chemistry Research, 2002: 2147–2152) reports the results of experiments to describe the mechanism of the catalytic
wet air oxidation of aqueous phenol. In one set of experiments, the initial oxidation rate (in kilograms of phenol per
kilogram of catalyst per hour) and the oxygen concentration (in mol/m3) were measured. The results (read from a
graph) are presented in the following table.

Rate (y) 0.44 0.49 0.60 0.64 0.72
O2 concentration (x) 3.84 4.76 6.08 7.06 8.28

a. It is known that x and y are related by an equation of the form y = kxr , where r is the oxygen reaction order.
Make appropriate transformations to express this as a linear equation.

b. Estimate the values of k and r by computing the least-squares line.
c. Based on these data, is it plausible that the oxygen reaction order is equal to 0.5? Explain.

10. The article “The Role of Niche Breadth, Resource Availability and Range Position on the Life History of Butterflies”
(A. Komonen, A. Grapputo, et al., Oikos, 2004:41–54) describes a study of several species of butterflies found in
Finland. The following table presents the mean wingspan (in mm) and the flight period, defined as the mean number
of days of appearance in the winged state, for 23 species in the family Lycaenidae.

Flight Flight Flight Flight
Wingspan Period Wingspan Period Wingspan Period Wingspan Period

35.5 19.8 25.9 32.5 28.8 25.9 28.1 18.5
30.6 17.3 31.3 27.5 35.9 23.1 25.9 32.3
30.0 27.5 23.0 31.0 23.0 53.1 28.8 29.1
32.3 22.4 26.3 37.4 24.6 38.8 31.4 37.0
23.9 40.7 23.7 22.6 28.1 36.5 28.5 33.7
27.7 18.3 27.1 23.1 25.4 24.0

a. Compute the least-squares line for predicting the flight period (y) from wingspan (x).
b. Compute 95% confidence intervals for β0 and β1.
c. Two butterflies differ in wingspan by 2 mm. By how much do you estimate that their flight periods will differ?
d. Can you conclude that species of butterflies with larger wingspans have shorter flight periods on average?

Explain.
e. Can you conclude that the mean flight period for butterflies with a wingspan of 30 mm is less than 28 days?
f. A certain butterfly species has a wingspan of 28.5 mm. Find a 95% prediction interval for its flight period.

11. The article “Estimating Population Abundance in Plant Species with Dormant Life-Stages: Fire and the Endangered
Plant Grevillea caleye R. Br.” (T. Auld and J. Scott, Ecological Management and Restoration, 2004:125–129) presents
estimates of population sizes of a certain rare shrub in areas burnt by fire. The following table presents population
counts and areas (in m2) for several patches containing the plant.
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Area Population Area Population Area Population Area Population

3739 3015 2521 707 2259 223 841 1720
5277 1847 213 113 81 15 1500 300

400 17 11958 1392 33 18 228 31
345 142 1200 157 1254 229 228 17
392 40 12000 711 1320 351 10 4

7000 2878 10880 74 1000 92

a. Compute the least-squares line for predicting population (y) from area (x).
b. Plot the residuals versus the fitted values. Does the model seem appropriate?
c. Compute the least-squares line for predicting ln y from ln x .
d. Plot the residuals versus the fitted values. Does the model seem appropriate?
e. Using the more appropriate model, construct a 95% prediction interval for the population in a patch whose area

is 3000 m2.

12. A materials scientist is experimenting with a new material with which to make beverage cans. She fills cans with
liquid at room temperature, and then refrigerates them to see how fast they cool. According to Newton’s law of
cooling, if t is the time refrigerated and y is the temperature drop at time t , then y is related to t by an equation of
the form

ln y = β0 + β1t,

where β0 is a constant that depends on the initial temperature of the can and the ambient temperature of the refrigerator,
and β1 is a constant that depends on the physical properties of the can. The scientist measures the temperature at
regular intervals, and then fits this model to the data. The results are shown in the following figure. A scatterplot,
with the least-squares line superimposed, is on the left, and the residual plot is on the right.
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What should the scientist do next?

i. Try to find a transformation that makes the relationship more linear.
ii. Use the model as is, because Newton’s law of cooling is a physical law.

iii. Use the model as is, because it fits well enough.
iv. Carefully examine the experimental setup to see what might have gone wrong.

13. Monitoring the yield of a particular chemical reaction at various reaction vessel temperatures produces the results
shown in the following table.
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Temp. (◦C) Yield (%) Temp. (◦C) Yield (%)

150 77.4 250 88.9
150 76.7 250 89.2
150 78.2 250 89.7
200 84.1 300 94.8
200 84.5 300 94.7
200 83.7 300 95.9

a. Find the least-squares estimates for β0, β1, and σ 2 for the simple linear model Yield = β0 + β1 Temp + ε.
b. Can you conclude that β0 is not equal to 0?
c. Can you conclude that β1 is not equal to 0?
d. Make a residual plot. Does the linear model seem appropriate?
e. Find a 95% confidence interval for the slope.
f. Find a 95% confidence interval for the mean yield at a temperature of 225◦C.
g. Find a 95% prediction interval for a yield at a temperature of 225◦C.

14. The article “Approach to Confidence Interval Estimation for Curve Numbers” (R. McCuen, Journal of Hydrologic
Engineering, 2002:43–48) discusses the relationship between rainfall depth and runoff depth at several locations.
At one particular location, rainfall depth and runoff depth were recorded for 13 rainstorms. Following is MINITAB
output for a fit of the least-squares line to predict runoff depth from rainfall depth (both measured in inches).

The regression equation is
Runoff = −0.23 + 0.73 Rainfall

Predictor Coef SE Coef T P
Constant −0.23429 0.23996 −0.98 0.350
Rainfall 0.72868 0.06353 11.47 0.000

S = 0.40229 R−Sq = 92.3% R−Sq(adj) = 91.6%

Analysis of Variance

Source DF SS MS F P
Regression 1 21.290 21.290 131.55 0.000
Residual Error 11 1.780 0.16184
Total 12 23.070

a. Predict the runoff for a storm with 2.5 in. of rainfall.
b. Someone claims that if two storms differ in their rainfall by 1 in., then their runoffs will differ, on the average, by

1 in. as well. Is this a plausible claim? Explain.
c. It is a fact that if the rainfall is 0, the runoff is 0. Is the least-squares line consistent with this fact? Explain.

15. Refer to Exercise 14. Someone wants to compute a 95% confidence interval for the mean runoff when the rainfall is
3 in. Can this be computed from the information in the MINITAB output shown in Exercise 14? Or is more information
needed? Choose the best answer.

i. Yes, it can be computed from the MINITAB output.
ii. No, we also need to know the rainfall values that were used to compute the least-squares line.

iii. No, we also need to know the runoff values that were used to compute the least-squares line.
iv. No, we also need to know both the rainfall and the runoff values that were used to compute the least-squares line.
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16. During the production of boiler plate, test pieces are subjected to a load, and their elongations are measured. In one
particular experiment, five tests will be made, at loads (in MPa) of 11, 37, 54, 70, and 93. The least-squares line will
be computed to predict elongation from load. Confidence intervals for the mean elongation will be computed for
several different loads. Which of the following intervals will be the widest? Which will be the narrowest?

i. The 95% confidence interval for the mean elongation under a load of 53 MPa.
ii. The 95% confidence interval for the mean elongation under a load of 72 MPa.

iii. The 95% confidence interval for the mean elongation under a load of 35 MPa.

17. The article “Low-Temperature Heat Capacity and Thermodynamic Properties of 1,1,1-trifluoro-2,2-dichloroethane”
(R. Varushchenko and A. Druzhinina, Fluid Phase Equilibria, 2002:109–119) describes an experiment in which
samples of Freon R-123 were melted in a calorimeter. Various quantities of energy were supplied to the calorimeter
for melting. The equilibrium melting temperatures (t) and fractions melted ( f ) were measured. The least-squares line
was fit to the model t = β0 + β1(1/ f ) + ε, where 1/ f is the reciprocal fraction. The results of the fit are as follows.

The regression equation is
Temperature = 145.74 − 0.052 Reciprocal Frac

Predictor Coef SE Coef T P
Constant 145.736 0.00848 17190.1 0.000
Recip Frac −0.05180 0.00226 −22.906 0.000

S = 0.019516 R−Sq = 97.6% R−Sq(adj) = 97.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 0.200 0.200 524.70 0.000
Residual Error 13 0.00495 0.000381
Total 14 0.205

a. Estimate the temperature at which half of the sample will melt (i.e., f = 1/2).
b. Can you determine the correlation coefficient between equilibrium temperature and reciprocal of the fraction

melted from this output? If so, determine it. If not, explain what additional information is needed.
c. The triple-point temperature is the lowest temperature at which the whole sample will melt (i.e., f = 1). Estimate

the triple-point temperature.

18. The article “Polyhedral Distortions in Tourmaline” (A. Ertl, J. Hughes, et al., The Canadian Mineralogist, 2002:
153–162) presents a model for calculating bond-length distortion in vanadium-bearing tourmaline. To check the
accuracy of the model, several calculated values (x) were compared with directly observed values (y). The results
(read from a graph) are presented in the following table.

Observed Value Calculated Value Observed Value Calculated Value

0.33 0.36 0.74 0.78
0.36 0.36 0.79 0.86
0.54 0.58 0.97 0.97
0.56 0.64 1.03 1.11
0.66 0.64 1.10 1.06
0.66 0.67 1.13 1.08
0.74 0.58 1.14 1.17
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a. Assume that the observed value y is an unbiased measurement of the true value. Show that if the calculated value
x is accurate (i.e., equal to the true value), then y = x + ε, where ε is measurement error.

b. Compute the least-squares line y = β̂0 + β̂1x .
c. Show that if the calculated value is accurate, then the true coefficients are β0 = 0 and β1 = 1.
d. Test the null hypotheses β0 = 0 and β1 = 1.
e. Is it plausible that the calculated value is accurate? Or can you conclude that it is not? Explain.

19. Consider the model y = βx + ε, where the intercept of the line is known to be zero. Assume that values (x1, y1), . . . ,

(xn, yn) are observed, and the least-squares estimate β̂ of β is to be computed.

a. Derive the least-squares estimate β̂ in terms of xi and yi .
b. Let σ 2 denote the variance of ε (which is also the variance of y). Derive the variance σ 2

β̂
of the least-squares

estimate, in terms of σ 2 and the xi .

20. Use Equation (7.34) (page 545) to show that μ
β̂1

= β1.

21. Use Equation (7.35) (page 545) to show that μ
β̂0

= β0.

22. Use Equation (7.34) (page 545) to derive the formula σ 2
β̂1

= σ 2∑n

i=1(xi − x)2
.

23. Use Equation (7.35) (page 545) to derive the formula σ 2
β̂0

= σ 2

(
1

n
+ x2∑n

i=1(xi − x)2

)
.
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Multiple Regression

Introduction

The methods of simple linear regression, discussed in Chapter 7, apply when we wish
to fit a linear model relating the value of a dependent variable y to the value of a
single independent variable x . There are many situations, however, in which a single
independent variable is not enough. For example, the degree of wear on a lubricated
bearing in a machine may depend both on the load on the bearing and on the physical
properties of the lubricant. An equation that expressed wear as a function of load alone
or of lubricant properties alone would fail as a predictor. In situations like this, there are
several independent variables, x1, x2, . . . , x p, that are related to a dependent variable y. If
the relationship between the dependent and independent variables is linear, the technique
of multiple regression can be used.

8.1 The Multiple Regression Model

We describe the multiple regression model. Assume that we have a sample of n items, and
that on each item we have measured a dependent variable y and p independent variables
x1, . . . , x p. The i th sample item thus gives rise to the ordered set (yi , x1i , . . . , x pi ). We
can then fit the multiple regression model

yi = β0 + β1x1i + · · · + βpx pi + εi (8.1)

There are several special cases of the multiple regression model (8.1) that are often used
in practice. One is the polynomial regression model, in which the independent variables
are all powers of a single variable. The polynomial regression model of degree p is

yi = β0 + β1xi + β2x2
i + · · · + βpx p

i + εi (8.2)
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Multiple regression models can also be made up of powers of several variables. For
example, a polynomial regression model of degree 2, also called a quadratic model, in
two variables x1 and x2 is given by

yi = β0 + β1x1i + β2x2i + β3x1i x2i + β4x2
1i + β5x2

2i + εi (8.3)

A variable that is the product of two other variables is called an interaction. In model (8.3),
the variable x1i x2i is the interaction between x1 and x2.

Models (8.2) and (8.3) are considered to be linear models, even though they contain
nonlinear terms in the independent variables. The reason they are still linear models is
that they are linear in the coefficients βi .

Estimating the Coefficients
In any multiple regression model, the estimates β̂0,β̂1, . . . ,β̂ p are computed by least-
squares, just as in simple linear regression. The equation

ŷ = β̂0 + β̂1x1 + · · · +β̂ px p (8.4)

is called the least-squares equation or fitted regression equation. Now define ŷi

to be the y coordinate of the least-squares equation corresponding to the x values
(x1i , . . . , x pi ). The residuals are the quantities ei = yi − ŷi , which are the differences
between the observed y values and the y values given by the equation. We want to com-
pute β̂0,β̂1, . . . ,β̂ p so as to minimize the sum of the squared residuals

∑n
i=1 e2

i . To do
this, we express ei in terms of β̂0,β̂1, . . . ,β̂ p:

ei = yi − β̂0 − β̂1x1i − · · · −β̂ px pi (8.5)

Thus we wish to minimize the sum

n∑
i=1

(yi − β̂0 − β̂1x1i − · · · −β̂ px pi )
2 (8.6)

We can do this by taking partial derivatives of (8.6) with respect to β̂0,β̂1, . . . ,β̂ p,
setting them equal to 0, and solving the resulting p + 1 equations in p + 1 unknowns.
The expressions obtained forβ̂0,β̂1, . . . ,β̂ p are complicated. Fortunately, they have been
coded into many software packages, so that you can calculate them on the computer. For
each estimated coefficient β̂ i , there is an estimated standard deviation sβ̂ i

. Expressions
for these quantities are complicated as well, so nowadays people rely on computers to
calculate them.

Sums of Squares
Much of the analysis in multiple regression is based on three fundamental quantities.
They are the regression sum of squares (SSR), the error sum of squares (SSE), and
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the total sum of squares (SST). We defined these quantities in Section 7.2, in our
discussion of simple linear regression. The definitions hold for multiple regression as
well. We repeat them here.

Sums of Squares
In the multiple regression model

yi = β0 + β1x1i + · · · + βpx pi + εi ,

the following sums of squares are defined:

■ Regression sum of squares: SSR = ∑n
i=1(ŷi − y)2

■ Error sum of squares: SSE = ∑n
i=1(yi − ŷi )

2

■ Total sum of squares: SST = ∑n
i=1(yi − y)2

It can be shown that

SST = SSR + SSE (8.7)

Equation (8.7) is called the analysis of variance identity. This identity is
derived for simple linear regression at the end of Section 7.2.

We will now see how these sums of squares are used to derive the statistics used in
multiple regression. As we did for simple linear regression, we will restrict our discussion
to the simplest case, in which four assumptions about the errors εi are satisfied. We repeat
these assumptions here.

Assumptions for Errors in Linear Models
In the simplest situation, the following assumptions are satisfied:

1. The errors ε1, . . . , εn are random and independent. In particular, the
magnitude of any error εi does not influence the value of the next error εi+1.

2. The errors ε1, . . . , εn all have mean 0.

3. The errors ε1, . . . , εn all have the same variance, which we denote by σ 2.

4. The errors ε1, . . . , εn are normally distributed.

Just as in simple linear regression, these assumptions imply that the observations
yi are independent random variables. To be specific, each yi has a normal distribution
with mean β0 + β1x1i + · · · + βpx pi and variance σ 2. Each coefficient βi represents the
change in the mean of y associated with an increase of one unit in the value of xi , when
the other x variables are held constant.
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Summary
In the multiple regression model yi = β0 + β1x1i + · · · + βpx pi + εi , under
assumptions 1 through 4, the observations y1, . . . , yn are independent random
variables that follow the normal distribution. The mean and variance of yi are
given by

μyi = β0 + β1x1i + · · · + βpx pi

σ 2
yi

= σ 2

Each coefficient βi represents the change in the mean of y associated with an
increase of one unit in the value of xi , when the other x variables are held constant.

The Statistics s2, R2, and F
The three statistics most often used in multiple regression are the estimated error variance
s2, the coefficient of determination R2, and the F statistic. Each of these has an analog
in simple linear regression. We discuss them in turn.

In simple linear regression, the estimated error variance is
∑n

i=1(yi − ŷi )
2/(n − 2).

We divide by n − 2 rather than n because the residuals (ei = yi − ŷi ) tend to be a little
smaller than the errors εi . The reason that the residuals are a little smaller is that the
two coefficients (β̂0 and β̂1) have been chosen to minimize

∑n
i=1(yi − ŷi )

2. Now in the
case of multiple regression, we are estimating p + 1 coefficients rather than just two.
Thus the residuals tend to be smaller still, so we must divide

∑n
i=1(yi − ŷi )

2 by a still
smaller denominator. It turns out that the appropriate denominator is equal to the number
of observations (n) minus the number of parameters in the model (p + 1). Therefore the
estimated error variance is given by

s2 =
∑n

i=1(yi − ŷi )
2

n − p − 1
= SSE

n − p − 1
(8.8)

The estimated variance s2
β̂ i

of each least-squares coefficient β̂ i is computed by mul-
tiplying s2 by a rather complicated function of the variables xi j . In practice, the values
of s2

β̂ i
are calculated on a computer. When assumptions 1 through 4 are satisfied, the

quantity

β̂ i − βi

sβ̂ i

has a Student’s t distribution with n − p − 1 degrees of freedom. The number of degrees
of freedom is equal to the denominator used to compute the estimated error variance
s2 (Equation 8.8). This statistic is used to compute confidence intervals and to perform
hypothesis tests on the values βi , just as in simple linear regression.

In simple linear regression, the coefficient of determination, r2, measures the good-
ness of fit of the linear model. The goodness-of-fit statistic in multiple regression is
a quantity denoted R2, which is also called the coefficient of determination, or the
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proportion of variance explained by regression. The value of R2 is calculated in the
same way as is r2 in simple linear regression (Equation 7.22 in Section 7.2). That is,

R2 =
∑n

i=1(yi − y)2 − ∑n
i=1(yi − ŷi )

2∑n
i=1(yi − y)2

= SST − SSE

SST
= SSR

SST
(8.9)

In simple linear regression, a test of the null hypothesis β1 = 0 is almost always
made. If this hypothesis is not rejected, then the linear model may not be useful. The
analogous null hypothesis in multiple regression is H0 : β1 = β2 = · · · = βp = 0. This
is a very strong hypothesis. It says that none of the independent variables has any linear
relationship with the dependent variable. In practice, the data usually provide sufficient
evidence to reject this hypothesis. The test statistic for this hypothesis is

F =
[∑n

i=1(yi − y)2 − ∑n
i=1(yi − ŷi )

2
]
/p[∑n

i=1(yi − ŷi )2
]
/(n − p − 1)

= [SST − SSE]/p

SSE/(n − p − 1)
= SSR/p

SSE/(n − p − 1)

(8.10)

This is an F statistic; its null distribution is Fp, n−p−1. Note that the denominator of
the F statistic is s2 (Equation 8.8). The subscripts p and n − p − 1 are the degrees of
freedom for the F statistic.

Slightly different versions of the F statistic can be used to test weaker null hypothe-
ses. In particular, given a model with independent variables x1, . . . , x p, we sometimes
want to test the null hypothesis that some of them (say xk+1, . . . , x p) are not linearly re-
lated to the dependent variable. To do this, a version of the F statistic can be constructed
that will test the null hypothesis H0 : βk+1 = · · · = βp = 0. We will discuss this further
in Section 8.3.

An Example
Let us now look at an example in which multiple regression is useful. A mobile ad hoc
computer network consists of several computers (nodes) that move within a network
area. Often messages are sent from one node to another. When the receiving node is out
of range, the message must be sent to a nearby node, which then forwards it from node
to node along a routing path toward its destination. We wish to predict the proportion of
messages that will be successfully delivered, which is called the goodput. It is known that
the goodput is affected by the average node speed and by the length of time that the nodes
pause at each destination. Table 8.1 presents average node speed, average pause time,
and goodput for 25 simulated mobile ad hoc networks. These data were generated for a
study described in the article “Metrics to Enable Adaptive Protocols for Mobile Ad Hoc
Networks” (J. Boleng, W. Navidi, and T. Camp, Proceedings of the 2002 International
Conference on Wireless Networks, 2002:293–298).
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TABLE 8.1 Average node speed, pause time, and goodput for computer networks

Speed Pause Time Goodput Speed Pause Time Goodput
(m/s) (s) (%) (m/s) (s) (%)

5 10 95.111 20 40 87.800
5 20 94.577 20 50 89.941
5 30 94.734 30 10 62.963
5 40 94.317 30 20 76.126
5 50 94.644 30 30 84.855

10 10 90.800 30 40 87.694
10 20 90.183 30 50 90.556
10 30 91.341 40 10 55.298
10 40 91.321 40 20 78.262
10 50 92.104 40 30 84.624
20 10 72.422 40 40 87.078
20 20 82.089 40 50 90.101
20 30 84.937

The following output (from MINITAB) presents the results of fitting the model

Goodput = β0 + β1 Speed + β2 Pause + β3 Speed · Pause

+ β4 Speed2 + β5 Pause2 + ε

The regression equation is
Goodput = 96.0 − 1.82 Speed + 0.565 Pause

+ 0.0247 Speed*Pause + 0.0140 Speed^2
−0.0118 Pause^2

Predictor Coef SE Coef T P
Constant 96.024 3.946 24.34 0.000
Speed −1.8245 0.2376 −7.68 0.000
Pause 0.5652 0.2256 2.51 0.022
Speed*Pa 0.024731 0.003249 7.61 0.000
Speed^2 0.014020 0.004745 2.95 0.008
Pause^2 −0.011793 0.003516 −3.35 0.003

S = 2.942 R−Sq = 93.2% R−Sq(adj) = 91.4%

Analysis of Variance

Source DF SS MS F P
Regression 5 2240.49 448.10 51.77 0.000
Residual Error 19 164.46 8.66
Total 24 2404.95

Predicted Values for New Observations
New
Obs Fit SE Fit 95% CI 95% PI
1 74.272 1.175 (71.812, 76.732) (67.641, 80.903)

Values of Predictors for New Observations
New
Obs Speed Pause Speed*Pause Speed^2 Pause^2
1 25.0 15.0 375 625 225
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Much of the output is analogous to that of simple linear regression. The fitted
regression equation is presented near the top of the output. Below that, the coefficient
estimates β̂ i and their estimated standard deviations sβ̂ i

are shown. Next to each standard
deviation is the Student’s t statistic for testing the null hypothesis that the true value
of the coefficient is equal to 0. This statistic is equal to the quotient of the coefficient
estimate and its standard deviation. Since there are n = 25 observations and p = 5
independent variables, the number of degrees of freedom for the Student’s t statistic
is 25 − 5 − 1 = 19. The P-values for the tests are given in the next column. All the
P-values are small, so it would be reasonable to conclude that each of the independent
variables in the model is useful in predicting the goodput.

The quantity “S” is s, the estimated error standard deviation, and “R-sq” is the
coefficient of determination R2. The adjusted R2, “R-sq(adj),” is primarily used in model
selection. We will discuss this statistic in Section 8.3.

The analysis of variance table is analogous to the one found in simple linear regres-
sion. We’ll go through it column by column. In the degrees of freedom column “DF,”
the degrees of freedom for regression is equal to the number of independent variables
(5). Note that Speed2, Pause2, and Speed · Pause each count as separate independent
variables, even though they can be computed from Speed and Pause. In the next row
down, labeled “Residual Error,” the number of degrees of freedom is 19, which repre-
sents the number of observations (25) minus the number of parameters estimated (6: the
intercept, and coefficients for the five independent variables). Finally, the “Total” degrees
of freedom is one less than the sample size of 25. Note that the total degrees of freedom
is the sum of the degrees of freedom for regression and the degrees of freedom for error.
Going down the column “SS,” we find the regression sum of squares SSR, the error
sum of squares SSE, and the total sum of squares SST. Note that SST = SSR + SSE.
The column “MS” presents the mean squares, which are the sums of squares divided
by their respective degrees of freedom. Note that the mean square for error is equal
to s2, the estimate for the error variance: (s2 = S2 = 2.9422 = 8.66). The column la-
beled “F” presents the mean square for regression divided by the mean square for error
(448.10/8.66 = 51.77, allowing for roundoff error). This is the F statistic shown in
Equation (8.10), and it is used to test the null hypothesis that none of the independent
variables are linearly related to the dependent variable. The P-value for this test is
approximately 0.

The output under the heading “Predicted Values for New Observations” presents
confidence intervals on the mean response and predicted intervals for values of the
dependent variables specified by the user. The values of the dependent variables that have
been specified are listed under the heading “Values of Predictors for New Observations.”
The values of the independent variables in this output are Speed = 25 and Pause = 15.
The quantity 74.242, labeled “Fit,” is the value of ŷ obtained by substituting these values
into the fitted regression equation. The quantity labeled “SE Fit” is the estimated standard
deviation of ŷ, which is used to compute the 95% confidence interval, labeled “95% CI.”
The quantity labeled “95% PI” is the 95% prediction interval for a future observation
of the dependent variable when the independent variables are set to the given values.
Like the confidence interval, this interval is centered at ŷ, but it is wider, just as in simple
linear regression.
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Example
8.1 Use the multiple regression model to predict the goodput for a network with speed

12 m/s and pause time 25 s.

Solution
From the MINITAB output, the fitted model is

Goodput = 96.0 − 1.82 Speed + 0.565 Pause + 0.0247 Speed · Pause

+ 0.0140 Speed2 − 0.0118 Pause2

Substituting 12 for Speed and 25 for Pause, we find that the predicted goodput
is 90.336.

Example
8.2 For the goodput data, find the residual for the point Speed = 20, Pause = 30.

Solution
The observed value of goodput (Table 8.1) is y = 84.937. The predicted value ŷ is
found by substituting Speed = 20 and Pause = 30 into the fitted model presented in
the solution to Example 8.1. This yields a predicted value for goodput of ŷ = 86.350.
The residual is given by y − ŷ = 84.937 − 86.350 = −1.413.

It is straightforward to compute confidence intervals and to test hypotheses regarding
the least-squares coefficients, by using the computer output. Examples 8.3 through 8.5
provide illustrations.

Example
8.3 Find a 95% confidence interval for the coefficient of Speed in the multiple regression

model.

Solution
From the output, the estimated coefficient is −1.8245, with a standard deviation of
0.2376. To find a confidence interval, we use the Student’s t distribution with 19
degrees of freedom. The degrees of freedom for the t statistic is equal to the degrees
of freedom for error. The t value for a 95% confidence interval is t19, .025 = 2.093.
The 95% confidence interval is

−1.8245 ± (2.093)(0.2376) = −1.8245 ± 0.4973 = (−2.3218, −1.3272)

Example
8.4 Test the null hypothesis that the coefficient of Pause is less than or equal to 0.3.

Solution
The estimated coefficient of Pause is β̂2 = 0.5652, with standard deviation sβ̂2

=
0.2256. The null hypothesis is β2 ≤ 0.3. Under H0, we take β2 = 0.3, so the quantity

t = β̂2 − 0.3

0.2256
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has a Student’s t distribution with 19 degrees of freedom. Note that the degrees of
freedom for the t statistic is equal to the degrees of freedom for error. The value of
the t statistic is (0.5652 − 0.3)/0.2256 = 1.1755. The P-value is between 0.10 and
0.25. It is plausible that β2 ≤ 0.3.

Example
8.5 Find a 95% confidence interval for the mean response μyi , and a 95% prediction

interval for a future observation when Speed = 25 and Pause = 15.

Solution
From the output, under the heading “Predicted Values for New Observations,”
the 95% confidence interval is (71.812, 76.732) and the 95% prediction interval
is (67.641, 80.903).

Checking Assumptions in Multiple Regression
In multiple regression, as in simple linear regression, it is important to test the validity of
the assumptions for errors in linear models (presented at the beginning of this section).
The diagnostics for these assumptions used in the case of simple linear regression can
be used in multiple regression as well. These are plots of residuals versus fitted values,
normal probability plots of residuals, and plots of residuals versus the order in which the
observations were made. It is also a good idea to make plots of the residuals versus each
of the independent variables. If the residual plots indicate a violation of assumptions,
transformations of the variables may be tried to cure the problem, as in simple linear
regression.

Figure 8.1 presents a plot of the residuals versus the fitted values for the goodput
data. Figure 8.2 and Figure 8.3 present plots of the residuals versus speed and pause,
respectively. The plot of residuals versus fitted values gives some impression of curvature,
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FIGURE 8.1 Plot of residuals versus fitted values for the Goodput data.
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FIGURE 8.2 Plot of residuals versus Speed for the Goodput data.
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FIGURE 8.3 Plot of residuals versus Pause for the Goodput data.

which is caused primarily by a few points at either end. The plots of residuals versus
independent variables do not indicate any serious violations of the model assumptions.
In practice, one might accept this model as fitting well enough, or one might use model
selection techniques (discussed in Section 8.3) to explore alternative models.

Exercises for Section 8.1

1. In an experiment to determine the factors affecting tensile strength in steel plates, the tensile strength (in kg/mm2),
the manganese content (in parts per thousand), and the thickness (in mm) were measured for a sample of 20 plates.
The following MINITAB output presents the results of fitting the model Tensile strength = β0 + β1 Manganese +
β2 Thickness.
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The regression equation is
Strength = 26.641 + 3.3201 Manganese − 0.4249 Thickness

Predictor Coef StDev T P
Constant 26.641 2.72340 9.78 0.000
Manganese 3.3201 0.33198 10.00 0.000
Thickness −0.4249 0.12606 −3.37 0.004

S = 0.8228 R-Sq = 86.2% R-Sq(adj) = 84.6%

Analysis of Variance

Source DF SS MS F P
Regression 2 72.01 36.005 53.19 0.000
Residual Error 17 11.508 0.6769
Total 19 83.517

a. Predict the strength for a specimen that is 10 mm thick and contains 8.2 ppt manganese.
b. If two specimens have the same thickness, and one contains 10 ppt more manganese, by how much would you

predict their strengths to differ?
c. If two specimens have the same proportion of manganese, and one is 5 mm thicker than the other, by how much

would you predict their strengths to differ?

2. Refer to Exercise 1.

a. Find a 95% confidence interval for the coefficient of Manganese.
b. Find a 99% confidence interval for the coefficient of Thickness.
c. Can you conclude that β1 > 3? Perform the appropriate hypothesis test.
d. Can you conclude that β2 < −0.1? Perform the appropriate hypothesis test.

3. The data used to fit the model in Exercise 1 are presented in the following table, along with the residuals and the fitted
values. Plot the residuals versus the fitted values. Does the plot indicate that the linear model is reasonable? Explain.

Strength Manganese Thickness Residual Fitted Value

47.7 7.4 8.0 −0.111 47.811
50.9 8.8 10.0 −0.709 51.609
51.7 8.8 10.0 0.091 51.609
51.9 8.8 10.0 0.291 51.609
50.0 8.1 7.1 −0.517 50.517
50.5 8.1 9.0 0.790 49.710
50.0 8.1 7.1 −0.517 50.517
49.7 8.1 9.0 −0.010 49.710
50.6 8.1 9.0 0.890 49.710
47.7 7.2 7.2 0.214 47.486
47.1 7.3 7.8 −0.464 47.564
45.0 7.3 11.8 −0.864 45.864
47.6 7.3 8.0 0.121 47.479
45.7 7.3 11.8 −0.164 45.864
47.0 7.3 8.7 −0.181 47.181
45.7 7.3 11.7 −0.206 45.906
48.8 7.3 8.7 1.619 47.181
45.8 7.3 7.8 −1.764 47.564
48.5 7.3 9.0 1.446 47.054
48.6 7.6 7.8 0.040 48.560
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4. The article “Application of Analysis of Variance to Wet Clutch Engagement” (M. Mansouri, M. Khonsari, et al.,
Proceedings of the Institution of Mechanical Engineers, 2002:117–125) presents the following fitted model for
predicting clutch engagement time in seconds (y) from engagement starting speed in m/s (x1), maximum drive torque
in N · m (x2), system inertia in kg · m2 (x3), and applied force rate in kN/s (x4):

y = − 0.83 + 0.017x1 + 0.0895x2 + 42.771x3 + 0.027x4 − 0.0043x2x4

The sum of squares for regression was SSR = 1.08613 and the sum of squares for error was SSE = 0.036310. There
were 44 degrees of freedom for error.

a. Predict the clutch engagement time when the starting speed is 20 m/s, the maximum drive torque is 17 N · m, the
system inertia is 0.006 kg · m2, and the applied force rate is 10 kN/s.

b. Is it possible to predict the change in engagement time associated with an increase of 2 m/s in starting speed? If
so, find the predicted change. If not, explain why not.

c. Is it possible to predict the change in engagement time associated with an increase of 2 N · m in maximum drive
torque? If so, find the predicted change. If not, explain why not.

d. Compute the coefficient of determination R2.
e. Compute the F statistic for testing the null hypothesis that all the coefficients are equal to 0. Can this hypothesis

be rejected?

5. In the article “Application of Statistical Design in the Leaching Study of Low-Grade Manganese Ore Using Aqueous
Sulfur Dioxide” (P. Naik, L. Sukla, and S. Das, Separation Science and Technology, 2002:1375–1389), a fitted model
for predicting the extraction of manganese in % (y) from particle size in mm (x1), the amount of sulfur dioxide in
multiples of the stoichiometric quantity needed for the dissolution of manganese (x2), and the duration of leaching
in minutes (x3) is given as

y = 56.145 − 9.046x1 − 33.421x2 + 0.243x3 − 0.5963x1x2 − 0.0394x1x3 + 0.6022x2x3

+ 0.6901x2
1 + 11.7244x2

2 − 0.0097x2
3

There were a total of n = 27 observations, with SSE = 209.55 and SST = 6777.5.

a. Predict the extraction percent when the particle size is 3 mm, the amount of sulfur dioxide is 1.5, and the duration
of leaching is 20 minutes.

b. Is it possible to predict the change in extraction percent when the duration of leaching increases by one minute?
If so, find the predicted change. If not, explain why not.

c. Compute the coefficient of determination R2.
d. Compute the F statistic for testing the null hypothesis that all the coefficients are equal to 0. Can this hypothesis

be rejected?

6. The article “Earthmoving Productivity Estimation Using Linear Regression Techniques” (S. Smith, Journal of Con-
struction Engineering and Management, 1999:133–141) presents the following linear model to predict earthmoving
productivity (in m3 moved per hour):

Productivity = − 297.877 + 84.787x1 + 36.806x2 + 151.680x3 − 0.081x4 − 110.517x5

− 0.267x6 − 0.016x1x4 + 0.107x4x5 + 0.0009448x4x6 − 0.244x5x6



Navidi-3810214 book November 11, 2013 14:19

608 CHAPTER 8 Multiple Regression

where
x1 = number of trucks
x2 = number of buckets per load
x3 = bucket volume, in m3

x4 = haul length, in m
x5 = match factor (ratio of hauling capacity to loading capacity)
x6 = truck travel time, in s

a. If the bucket volume increases by 1 m3, while other independent variables are unchanged, can you determine the
change in the predicted productivity? If so, determine it. If not, state what other information you would need to
determine it.

b. If the haul length increases by 1 m, can you determine the change in the predicted productivity? If so, determine
it. If not, state what other information you would need to determine it.

7. In a study of the lung function of children, the volume of air exhaled under force in one second is called FEV1.
(FEV1 stands for forced expiratory volume in one second.) Measurements were made on a group of children each
year for two years. A linear model was fit to predict this year’s FEV1 as a function of last year’s FEV1 (in liters), the
child’s gender (0 = Male, 1 = Female), the child’s height (in m), and the ambient atmospheric pressure (in mm). The
following MINITAB output presents the results of fitting the model

FEV1 = β0 + β1 Last FEV1 + β2 Gender + β3 Height + β4 Pressure + ε

The regression equation is
FEV1 = −0.219 + 0.779 Last FEV − 0.108 Gender + 1.354 Height − 0.00134 Pressure

Predictor Coef SE Coef T P
Constant −0.21947 0.4503 −0.49 0.627
Last FEV 0.779 0.04909 15.87 0.000
Gender −0.10827 0.0352 −3.08 0.002
Height 1.3536 0.2880 4.70 0.000
Pressure −0.0013431 0.0004722 −2.84 0.005

S = 0.22039 R-Sq = 93.5% R-Sq(adj) = 93.3%

Analysis of Variance

Source DF SS MS F P
Regression 4 111.31 27.826 572.89 0.000
Residual Error 160 7.7716 0.048572
Total 164 119.08

a. Predict the FEV1 for a boy who is 1.4 m tall, if the measurement was taken at a pressure of 730 mm and last year’s
measurement was 2.113 L.

b. If two girls differ in height by 5 cm, by how much would you expect their FEV1 measurements to differ, other
things being equal?

c. The constant term β0 is estimated to be negative. But FEV1 must always be positive. Is something wrong?
Explain.



Navidi-3810214 book November 11, 2013 14:19

8.1 The Multiple Regression Model 609

8. Refer to Exercise 7.

a. Find a 95% confidence interval for the coefficient of Last FEV.
b. Find a 98% confidence interval for the coefficient of Height.
c. Can you conclude that β2 < − 0.08? Perform the appropriate hypothesis test.
d. Can you conclude that β3 > 0.5? Perform the appropriate hypothesis test.

9. The article “Drying of Pulps in Sprouted Bed: Effect of Composition on Dryer Performance” (M. Medeiros,
S. Rocha, et al., Drying Technology, 2002:865–881) presents measurements of pH, viscosity (in kg/m · s), density
(in g/cm3), and BRIX (in percent). The following MINITAB output presents the results of fitting the model

pH = β0 + β1 Viscosity + β2 Density + β3 BRIX + ε

The regression equation is

pH = −1.79 + 0.000266 Viscosity + 9.82 Density − 0.300 BRIX

Predictor Coef SE Coef T P

Constant −1.7914 6.2339 −0.29 0.778

Viscosity 0.00026626 0.00011517 2.31 0.034

Density 9.8184 5.7173 1.72 0.105

BRIX −0.29982 0.099039 −3.03 0.008

S = 0.379578 R−Sq = 50.0% R−Sq(adj) = 40.6%

Predicted Values for New Observations

New
Obs Fit SE Fit 95% CI 95% PI

1 3.0875 0.1351 (2.8010, 3.3740) (2.2333, 3.9416)

2 3.7351 0.1483 (3.4207, 4.0496) (2.8712, 4.5990)

3 2.8576 0.2510 (2.3255, 3.3896) (1.8929, 3.8222)

Values of Predictors for New Observations

New

Obs Viscosity Density BRIX

1 1000 1.05 19.0

2 1200 1.08 18.0

3 2000 1.03 20.0

a. Predict the pH for a pulp with a viscosity of 1500 kg/m · s, a density of 1.04 g/cm3, and a BRIX of 17.5%.
b. If two pulps differ in density by 0.01 g/cm3, by how much would you expect them to differ in pH, other things

being equal?
c. The constant term β0 is estimated to be negative. But pulp pH must always be positive. Is something wrong?

Explain.
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d. Find a 95% confidence interval for the mean pH of pulps with viscosity 1200 kg/m · s, density 1.08 g/cm3, and
BRIX 18.0%.

e. Find a 95% prediction interval for the pH of a pulp with viscosity 1000 kg/m · s, density 1.05 g/cm3, and BRIX
19.0%.

f. Pulp A has viscosity 2000, density 1.03, and BRIX 20.0. Pulp B has viscosity 1000, density 1.05, and BRIX 19.0.
Which pulp will have its pH predicted with greater precision? Explain.

10. A scientist has measured quantities y, x1, and x2. She believes that y is related to x1 and x2 through the equation
y = αeβ1x1+β2x2δ, where δ is a random error that is always positive. Find a transformation of the data that will enable
her to use a linear model to estimate β1 and β2.

11. The following MINITAB output is for a multiple regression. Something went wrong with the printer, so some of the
numbers are missing. Fill in the missing numbers.

Predictor Coef SE Coef T P
Constant −0.58762 0.2873 (a) 0.086
X1 1.5102 (b) 4.30 0.005
X2 (c) 0.3944 −0.62 0.560
X3 1.8233 0.3867 (d) 0.003

S = 0.869 R−Sq = 90.2% R−Sq(adj) = 85.3%

Analysis of Variance

Source DF SS MS F P
Regression 3 41.76 (e) (f) 0.000
Residual Error 6 (g) 0.76
Total (h) 46.30

12. The following MINITAB output is for a multiple regression. Some of the numbers got smudged and are illegible. Fill
in the missing numbers.

Predictor Coef SE Coef T P
Constant (a) 1.4553 5.91 0.000
X1 1.2127 (b) 1.71 0.118
X2 7.8369 3.2109 (c) 0.035
X3 (d) 0.8943 −3.56 0.005

S = 0.82936 R−Sq = 78.0% R−Sq(adj) = 71.4%

Source DF SS MS F P
Regression (e) (f) 8.1292 11.818 0.001
Residual Error 10 6.8784 (g)
Total 13 (h)
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13. The article “Evaluating Vent Manifold Inerting Requirements: Flash Point Modeling for Organic Acid-Water Mix-
tures” (R. Garland and M. Malcolm, Process Safety Progress, 2002:254–260) presents a model to predict the
flash point (in ◦F) of a mixture of water, acetic acid, propionic acid, and butyric acid from the concentrations
(in weight %) of the three acids. The results are as follows. The variable “Butyric Acid ∗ Acetic Acid” is the
interaction between butyric acid concentration and acetic acid concentration.

Predictor Coef SE Coef T P
Constant 267.53 11.306 23.66 0.000
Acetic Acid −1.5926 0.1295 −12.30 0.000
Propionic Acid −1.3897 0.1260 −11.03 0.000
Butyric Acid −1.0934 0.1164 −9.39 0.000
Butyric Acid*Acetic Acid −0.002658 0.001145 −2.32 0.034

a. Predict the flash point for a mixture that is 30% acetic acid, 35% propionic acid, and 30% butyric acid. (Note: In
the model, 30% is represented by 30, not by 0.30.)

b. Someone asks by how much the predicted flash point will change if the concentration of acetic acid is increased
by 10% while the other concentrations are kept constant. Is it possible to answer this question? If so, answer it. If
not, explain why not.

c. Someone asks by how much the predicted flash point will change if the concentration of propionic acid is increased
by 10% while the other concentrations are kept constant. Is it possible to answer this question? If so, answer it. If
not, explain why not.

14. In the article “Low-Temperature Heat Capacity and Thermodynamic Properties of 1,1,1-trifluoro-2, 2-dichloroethane”
(R. Varushchenko and A. Druzhinina, Fluid Phase Equilibria, 2002:109–119), the relationship between vapor pressure
(p) and heat capacity (t) is given as p = tβ3 · eβ0+β1 t+β2/tδ, where δ is a random error that is always positive. Express
this relationship as a linear model by using an appropriate transformation.

15. The following data were collected in an experiment to study the relationship between extrusion pressure (in KPa) and
wear (in mg).

x 150 175 200 225 250 275

y 10.4 12.4 14.9 15.0 13.9 11.9

The least-squares quadratic model is y = −32.445714 + 0.43154286x − 0.000982857x2.

a. Using this equation, compute the residuals.
b. Compute the error sum of squares SSE and the total sum of squares SST.
c. Compute the error variance estimate s2.
d. Compute the coefficient of determination R2.
e. Compute the value of the F statistic for the hypothesis H0 : β1 = β2 = 0. How many degrees of freedom does

this statistic have?
f. Can the hypothesis H0 : β1 = β2 = 0 be rejected at the 5% level? Explain.
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16. The following data were collected in an experiment to study the relationship between the speed of a cutting tool in
m/s (x) and the lifetime of the tool in hours (y).

x 1 1.5 2 2.5 3

y 99 96 88 76 66

The least-squares quadratic model is y = 101.4000 + 3.371429x − 5.142857x2.

a. Using this equation, compute the residuals.
b. Compute the error sum of squares SSE and the total sum of squares SST.
c. Compute the error variance estimate s2.
d. Compute the coefficient of determination R2.
e. Compute the value of the F statistic for the hypothesis H0 : β1 = β2 = 0. How many degrees of freedom does this

statistic have?
f. Can the hypothesis H0 : β1 = β2 = 0 be rejected at the 5% level? Explain.

17. The November 24, 2001, issue of The Economist published economic data for 15 industrialized nations. Included
were the percent changes in gross domestic product (GDP), industrial production (IP), consumer prices (CP), and
producer prices (PP) from Fall 2000 to Fall 2001, and the unemployment rate in Fall 2001 (UNEMP). An economist
wants to construct a model to predict GDP from the other variables. A fit of the model

GDP = β0 + β1IP + β2UNEMP + β3CP + β4PP + ε

yields the following output:

The regression equation is
GDP = 1.19 + 0.17 IP + 0.18 UNEMP + 0.18 CP − 0.18 PP

Predictor Coef SE Coef T P
Constant 1.18957 0.42180 2.82 0.018
IP 0.17326 0.041962 4.13 0.002
UNEMP 0.17918 0.045895 3.90 0.003
CP 0.17591 0.11365 1.55 0.153
PP −0.18393 0.068808 −2.67 0.023

a. Predict the percent change in GDP for a country with IP = 0.5, UNEMP = 5.7, CP = 3.0, and PP = 4.1.
b. If two countries differ in unemployment rate by 1%, by how much would you predict their percent changes in

GDP to differ, other things being equal?
c. CP and PP are both measures of the inflation rate. Which one is more useful in predicting GDP? Explain.
d. The producer price index for Sweden in September 2000 was 4.0, and for Austria it was 6.0. Other things being

equal, for which country would you expect the percent change in GDP to be larger? Explain.

18. The article “Multiple Linear Regression for Lake Ice and Lake Temperature Characteristics” (S. Gao and H. Stefan,
Journal of Cold Regions Engineering, 1999:59–77) presents data on maximum ice thickness in mm (y), average
number of days per year of ice cover (x1), average number of days the bottom temperature is lower than 8◦C
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(x2), and the average snow depth in mm (x3) for 13 lakes in Minnesota. The data are presented in the following
table.

y x1 x2 x3 y x1 x2 x3

730 152 198 91 730 157 204 90
760 173 201 81 650 136 172 47
850 166 202 69 850 142 218 59
840 161 202 72 740 151 207 88
720 152 198 91 720 145 209 60
730 153 205 91 710 147 190 63
840 166 204 70

a. Fit the model y = β0 +β1x1 +β2x2 +β3x3 +ε. For each coefficient, find the P-value for testing the null hypothesis
that the coefficient is equal to 0.

b. If two lakes differ by 2 in the average number of days per year of ice cover, with other variables being equal, by
how much would you expect their maximum ice thicknesses to differ?

c. Do lakes with greater average snow depth tend to have greater or lesser maximum ice thickness? Explain.

19. In an experiment to estimate the acceleration of an object down an inclined plane, the object is released and its
distance in meters (y) from the top of the plane is measured every 0.1 second from time t = 0.1 to t = 1.0. The data
are presented in the following table.

t y

0.1 0.03
0.2 0.1
0.3 0.27
0.4 0.47
0.5 0.73
0.6 1.07
0.7 1.46
0.8 1.89
0.9 2.39
1.0 2.95

The data follow the quadratic model y = β0 + β1t + β2t2 + ε, where β0 represents the initial position of the object,
β1 represents the initial velocity of the object, and β2 = a/2, where a is the acceleration of the object, assumed to be
constant. In a perfect experiment, both the position and velocity of the object would be zero at time 0. However, due
to experimental error, it is possible that the position and velocity at t = 0 are nonzero.

a. Fit the quadratic model y = β0 + β1t + β2t2 + ε.
b. Find a 95% confidence interval for β2.
c. Find a 95% confidence interval for the acceleration a.
d. Compute the P-value for each coefficient.
e. Can you conclude that the initial position was not zero? Explain.
f. Can you conclude that the initial velocity was not zero? Explain.
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8.2 Confounding and Collinearity

The subtitle of this section is: Fitting separate models to each variable is not the same
as fitting the multivariate model. To illustrate what we are talking about, we review the
gas well data, first described in Exercise 17 in Section 7.3. A total of 255 gas wells
received hydraulic fracturing in order to increase production. In this treatment, fracture
fluid, which consists of fluid mixed with sand, is pumped into the well. The sand holds
open the cracks in the rock, thus increasing the flow of gas. The main questions are these:
Does increasing the volume of fluid pumped increase the production of the well? Does
increasing the volume of sand increase the production of the well?

Other things being equal, deeper wells produce more gas, because they provide more
surface through which the gas can permeate. For this reason, it is appropriate to express
all variables in units per foot of depth of the well. Thus production is measured in units
of ft3 of gas per ft of depth, fluid is measured in units of gal/ft, and sand is measured in
units of lb/ft.

We showed in Figure 7.17 (in Section 7.4) that a log transformation was needed
to obtain homoscedasticity in the plot of production versus fluid. It turns out that a log
transform is also required for the sand variable as well. Figure 8.4 shows the scatterplots
of ln Production versus ln Fluid and ln Production versus ln Sand. Both fluid and sand
appear to be strongly related to production.
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FIGURE 8.4 (a) A plot of the log of production versus the log of volume of fracture fluid for 255 gas wells, with the
least-squares line superimposed. (b) A plot of the log of production versus the log of weight of sand for the same 255
wells. There appear to be strong linear relationships between the log of production and both the log of fluid and the log
of sand.
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To confirm the result that is apparent from the plots in Figure 8.4, we fit two simple
linear regression models:

ln Production = β0 + β1 ln Fluid + ε

ln Production = β0 + β1 ln Sand + ε

The output (from MINITAB) for these models is as follows:

The regression equation is
ln Prod = −0.444 + 0.798 ln Fluid

Predictor Coef SE Coef T P
Constant −0.4442 0.5853 −0.76 0.449
ln Fluid 0.79833 0.08010 9.97 0.000

S = 0.7459 R−Sq = 28.2% R−Sq(adj) = 27.9%

The regression equation is
ln Prod = −0.778 + 0.748 ln Sand

Predictor Coef SE Coef T P
Constant −0.7784 0.6912 −1.13 0.261
ln Sand 0.74751 0.08381 8.92 0.000

S = 0.7678 R−Sq = 23.9% R−Sq(adj) = 23.6%

Both ln Fluid and ln Sand have coefficients that are definitely different from 0 (the
P-values for both are ≈ 0). We therefore might be tempted to conclude immediately
that increasing either the volume of fluid or the volume of sand pumped into a well will
increase production. But first we must consider the possibility of confounding.

The issue of confounding arises this way. Fluid and sand are pumped in together in
a single mixture. It is logical to expect that wells that get more fluid also tend to get more
sand. If this is true, then confounding is a possibility. Figure 8.5 (page 616) presents
the scatterplot of ln Fluid versus ln Sand. Sure enough, the amount of fluid pumped
into a well is highly correlated with the amount of sand pumped in. It is quite possible,
therefore, that either of the two univariate results previously presented may represent
confounding rather than a real relationship. If production depends only on the volume
of fluid, there will still be a relationship in the data between production and sand. If
production depends only on the volume of sand, there will still be a relationship in the
data between production and fluid.

Multiple regression provides a way to resolve the issue. The following output (from
MINITAB) is for the model

ln Production = β0 + β1 ln Fluid + β2 ln Sand + ε (8.11)
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FIGURE 8.5 Scatterplot of ln Fluid versus ln Sand for 255 gas wells. There is clearly a
strong linear relationship. Therefore apparent relationships between either fluid or sand
and production may represent a confounding rather than a causal relationship.

The regression equation is
ln Prod = −0.729 + 0.670 ln Fluid + 0.148 ln Sand

Predictor Coef SE Coef T P
Constant −0.7288 0.6719 −1.08 0.279
ln Fluid 0.6701 0.1687 3.97 0.000
ln Sand 0.1481 0.1714 0.86 0.389

S = 0.7463 R−Sq = 28.4% R−Sq(adj) = 27.8%

We can see that the coefficient of ln Fluid is significantly different from 0, but the
coefficient of ln Sand is not. If we assume that there is no other confounding going on
(e.g., with the location of the wells), we can conclude that increasing the amount of fluid
tends to increase production, but it is not clear that increasing the amount of sand has an
effect. Therefore, one might increase the amount of fluid, but it might not be necessary
to add more sand to it.

A final observation: None of the models have a particularly high value of R2. This
indicates that there are other important factors affecting production that have not been
included in the models. In a more complete analysis, one would attempt to identify
and measure some of these factors in order to build a model with greater predictive
power.



Navidi-3810214 book November 11, 2013 14:19

8.2 Confounding and Collinearity 617

Collinearity
When two independent variables are very strongly correlated, multiple regression may
not be able to determine which is the important one. In this case, the variables are
said to be collinear. The word collinear means to lie on the same line, and when two
variables are highly correlated, their scatterplot is approximately a straight line. The
word multicollinear is sometimes used as well. When collinearity is present, the set of
independent variables is sometimes said to be ill-conditioned. Table 8.2 presents some
hypothetical data that illustrate the phenomenon of collinearity.

First we fit the simple linear models

y = β0 + β1x1 + ε

y = β0 + β1x2 + ε

The following output (from MINITAB) shows that both x1 and x2 have a strong linear
relationship with y. The values of r2 are both around 0.96, so the correlations r between
x1 and y and between x2 and y are both around 0.98.

TABLE 8.2 Collinear data

x1 x2 y

0.1 0.3 3.6
0.2 0.2 0.3
0.6 1.4 6.0
1.4 3.4 10.6
2.0 5.2 8.4
2.0 5.5 11.8
2.1 5.5 12.7
2.1 5.3 6.8
2.8 7.4 9.9
3.6 9.4 16.7
4.2 10.3 16.3
4.5 11.4 19.9
4.7 11.3 20.2
5.3 13.6 22.9
6.1 15.3 26.6
6.8 17.4 28.1
7.5 18.5 31.0
8.2 20.4 28.8
8.5 21.3 32.4
9.4 23.3 35.0
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The regression equation is
Y = 2.90 + 3.53 X1

Predictor Coef SE Coef T P
Constant 2.8988 0.8224 3.52 0.002
X1 3.5326 0.1652 21.38 0.000

S = 2.080 R−Sq = 96.2% R−Sq(adj) = 96.0%

The regression equation is
Y = 2.74 + 1.42 X2

Predictor Coef SE Coef T P
Constant 2.7431 0.8090 3.39 0.003
X2 1.42024 0.06485 21.90 0.000

S = 2.033 R−Sq = 96.4% R−Sq(adj) = 96.2%

Figure 8.6 presents the scatterplot of x2 versus x1. There is clearly a strong linear
relationship, so we suspect that y may really have a relationship with only one of these
variables, with the other being a confounder.
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FIGURE 8.6 The independent variables x1 and x2 are collinear, because they have a
strong linear relationship.

We therefore fit the multiple regression model

y = β0 + β1x1 + β2x2 + ε
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The output (from MINITAB) is as follows.

The regression equation is
Y = 2.72 − 0.49 X1 + 1.62 X2

Predictor Coef SE Coef T P
Constant 2.7248 0.8488 3.21 0.005
X1 −0.490 4.460 −0.11 0.914
X2 1.617 1.791 0.90 0.379

S = 2.091 R−Sq = 96.4% R−Sq(adj) = 96.0%

Surprisingly, the output appears to indicate that neither x1 nor x2 is linearly related
to y, since both have large P-values. What is happening is that the linear relationship
between x1 and x2 is so strong that it is simply impossible to determine which of the two
is responsible for the linear relationship with y. Seen in this light, the large P-values
make sense. It is plausible that the coefficient of x1 is 0 and that only x2 has a real
relationship with y. Therefore the P-value for x1 must be large. Likewise, it is plausible
that the coefficient of x2 is 0 and that only x1 has a real relationship with y. Therefore
the P-value for x2 must be large as well.

In general, there is not much that can be done when variables are collinear. The
only good way to fix the situation is to collect more data, including some values for the
independent variables that are not on the same straight line. Then multiple regression
will be able to determine which of the variables are really important.

Exercises for Section 8.2

1. In an experiment to determine factors related to weld toughness, the Charpy V-notch impact toughness in ft · lb (y)

was measured for 22 welds at 0◦C, along with the lateral expansion at the notch in % (x1), and the brittle fracture
surface in % (x2). The data are presented in the following table.

y x1 x2 y x1 x2 y x1 x2

32 20.0 28 27 16.0 29 25 14.6 36
39 23.0 28 43 26.2 27 25 10.4 29
20 12.8 32 22 9.6 32 20 11.6 30
21 16.0 29 22 15.2 32 20 12.6 31
25 10.2 31 18 8.8 43 24 16.2 36
20 11.6 28 32 20.4 24 18 9.2 34
32 17.6 25 22 12.2 36 28 16.8 30
29 17.8 28

a. Fit the model y = β0 + β1x1 + ε. For each coefficient, test the null hypothesis that it is equal to 0.
b. Fit the model y = β0 + β1x2 + ε. For each coefficient, test the null hypothesis that it is equal to 0.
c. Fit the model y = β0 + β1x1 + β2x2 + ε. For each coefficient, test the null hypothesis that it is equal to 0.
d. Which of the models in parts (a) through (c) is the best of the three? Why do you think so?

2. In a laboratory test of a new engine design, the emissions rate (in mg/s of oxides of nitrogen, NOx ) was measured
as a function of engine speed (in rpm), engine torque (in ft · lb), and total horsepower. (From “In-Use Emissions
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from Heavy-Duty Diesel Vehicles,” J. Yanowitz, Ph.D. thesis, Colorado School of Mines, 2001.) MINITAB output
is presented for the following three models:

NOx = β0 + β1 Speed + β2 Torque + ε

NOx = β0 + β1 Speed + β2 HP + ε

NOx = β0 + β1 Speed + β2 Torque + β3 HP + ε

The regression equation is
NOx = −321 + 0.378 Speed − 0.160 Torque

Predictor Coef SE Coef T P
Constant −320.59 98.14 −3.27 0.003
Speed 0.37820 0.06861 5.51 0.000
Torque −0.16047 0.06082 −2.64 0.013

S = 67.13 R−Sq = 51.6% R−Sq(adj) = 48.3%

The regression equation is
NOx = −380 + 0.416 Speed − 0.520 HP

Predictor Coef SE Coef T P
Constant −380.1 104.8 −3.63 0.001
Speed 0.41641 0.07510 5.54 0.000
HP −0.5198 0.1980 −2.63 0.014

S = 67.19 R−Sq = 51.5% R−Sq(adj) = 48.2%

The regression equation is
NOx = −302 + 0.366 Speed − 0.211 Torque + 0.16 HP

Predictor Coef SE Coef T P
Constant −301.8 347.3 −0.87 0.392
Speed 0.3660 0.2257 1.62 0.116
Torque −0.2106 0.8884 −0.24 0.814
HP 0.164 2.889 0.06 0.955

S = 68.31 R−Sq = 51.6% R−Sq(adj) = 46.4%

Of the variables Speed, Torque, and HP, which two are most nearly collinear? How can you tell?

3. Two chemical engineers, A and B, are working independently to develop a model to predict the viscosity of a product
(y) from the pH (x1) and the concentration of a certain catalyst (x2). Each engineer has fit the linear model

y = β0 + β1x1 + β2x2 + ε

The engineers have sent you output summarizing their results:

Engineer A

Predictor Coef SE Coef T P
Constant 199.2 0.5047 394.7 0.000
pH −1.569 0.4558 −3.44 0.007
Concent. −4.730 0.5857 −8.08 0.000
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Engineer B

Predictor Coef SE Coef T P
Constant 199.0 0.548 363.1 0.000
pH −1.256 1.983 −0.63 0.544
Concent. −3.636 1.952 −1.86 0.112

The engineers have also sent you the following scatterplots of pH versus concentration, but forgot to put their
names on them.

(i) (ii)
Concentration

pH

Concentration

pH

a. Which plot came from which engineer? How do you know?
b. Which engineer’s experiment produced the more reliable results? Explain.

4. The article “Influence of Freezing Temperature on Hydraulic Conductivity of Silty Clay” (J. Konrad and
M. Samson, Journal of Geotechnical and Geoenvironmental Engineering, 2000:180–187) describes a study of
factors affecting hydraulic conductivity of soils. The measurements of hydraulic conductivity in units of 10−8 cm/s
(y), initial void ratio (x1), and thawed void ratio (x2) for 12 specimens of silty clay are presented in the following
table.

y 1.01 1.12 1.04 1.30 1.01 1.04 0.955 1.15 1.23 1.28 1.23 1.30
x1 0.84 0.88 0.85 0.95 0.88 0.86 0.85 0.89 0.90 0.94 0.88 0.90
x2 0.81 0.85 0.87 0.92 0.84 0.85 0.85 0.86 0.85 0.92 0.88 0.92

a. Fit the model y = β0 + β1x1 + ε. For each coefficient, test the null hypothesis that it is equal to 0.
b. Fit the model y = β0 + β1x2 + ε. For each coefficient, test the null hypothesis that it is equal to 0.
c. Fit the model y = β0 + β1x1 + β2x2 + ε. For each coefficient, test the null hypothesis that it is equal to 0.
d. Which of the models in parts (a) to (c) is the best of the three? Why do you think so?
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5. Refer to Exercise 10 in Section 7.4.

a. Divide the data into two groups: points where R1 < 4 in one group, points where R1 ≥ 4 in the other. Compute
the least-squares line for predicting R2 from R1 for each group. (You already did this if you did Exercise 10c in
Section 7.4.)

b. For one of the two groups, the relationship is clearly nonlinear. For this group, fit a quadratic model (i.e., using
R1 and R2

1 as independent variables), a cubic model, and a quartic model. Compute the P-values for each of the
coefficients in each of the models.

c. Plot the residuals versus the fitted values for each of the three models in part (b).
d. Compute the correlation coefficient between R3

1 and R4
1 , and make a scatterplot of the points (R3

1, R4
1).

e. On the basis of the correlation coefficient and the scatterplot, explain why the P-values are much different for
the quartic model than for the cubic model.

f. Which of the three models in part (b) is most appropriate? Why?

6. The following table lists values for three variables measured for 60 consecutive eruptions of the geyser Old Faithful in
Yellowstone National Park. They are the duration of the eruption (x1), the duration of the dormant period immediately
before the eruption (x2), and the duration of the dormant period immediately after the eruption (y). All the times are
in minutes. (Variable x2 was presented in Supplementary Exercise 3 in Chapter 7.)

x1 x2 y x1 x2 y x1 x2 y x1 x2 y

3.5 80 84 1.8 42 91 4.7 88 51 4.1 70 79
4.1 84 50 4.1 91 51 1.8 51 80 3.7 79 60
2.3 50 93 1.8 51 79 4.6 80 49 3.8 60 86
4.7 93 55 3.2 79 53 1.9 49 82 3.4 86 71
1.7 55 76 1.9 53 82 3.5 82 75 4.0 71 67
4.9 76 58 4.6 82 51 4.0 75 73 2.3 67 81
1.7 58 74 2.0 51 76 3.7 73 67 4.4 81 76
4.6 74 75 4.5 76 82 3.7 67 68 4.1 76 83
3.4 75 80 3.9 82 84 4.3 68 86 4.3 83 76
4.3 80 56 4.3 84 53 3.6 86 72 3.3 76 55
1.7 56 80 2.3 53 86 3.8 72 75 2.0 55 73
3.9 80 69 3.8 86 51 3.8 75 75 4.3 73 56
3.7 69 57 1.9 51 85 3.8 75 66 2.9 56 83
3.1 57 90 4.6 85 45 2.5 66 84 4.6 83 57
4.0 90 42 1.8 45 88 4.5 84 70 1.9 57 71

a. Compute the least-squares line for predicting the duration of the dormant period following an eruption (y) from
the duration of the eruption (x1). Is there a linear relationship between the duration of an eruption and the waiting
time until the next eruption occurs?

b. Compute the least-squares line for predicting the duration of the dormant period following an eruption (y) from
the duration of the dormant period preceding the eruption (x2). (You already did this if you did Supplementary
Exercise 3 in Chapter 7. The results in this problem will be slightly different, since there are 60 points instead
of 59.) Is there a linear relationship between the duration of the dormant period preceding an eruption and the
waiting time until the next eruption occurs?

c. Fit the multiple regression model that includes both the duration of the eruption x1 and the duration of the dormant
period preceding the eruption x2 as independent variables.

d. If you could find the value of either x1 or x2 but not both, which one would you want to know to predict y? Would
it help much to know the other one as well? Explain.
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8.3 Model Selection

There are many situations in which a large number of independent variables have been
measured, and we need to decide which of them to include in a model. This is the
problem of model selection, and it is a difficult one. In practice, model selection often
proceeds by ad hoc methods, guided by whatever physical intuition may be available.
We will not attempt a complete discussion of this extensive and difficult topic. Instead,
we will be content to state some basic principles and to present some examples. An
advanced reference such as Miller (2002) can be consulted for information on specific
methods.

Good model selection rests on a basic principle known as Occam’s razor. This
principle is stated as follows:

Occam's Razor
The best scientific model is the simplest model that explains the observed facts.

In terms of linear models, Occam’s razor implies the principle of parsimony:

The Principle of Parsimony
A model should contain the smallest number of variables necessary to fit the
data.

There are some exceptions to the principle of parsimony:

1. A linear model should always contain an intercept, unless physical
theory dictates otherwise.

2. If a power xn of a variable is included in a model, all lower powers x ,
x2, . . . , xn−1 should be included as well, unless physical theory
dictates otherwise.

3. If a product xi x j of two variables is included in a model, then the
variables xi and x j should be included separately as well, unless
physical theory dictates otherwise.

Models that contain only the variables that are needed to fit the data are called parsimo-
nious models. Much of the practical work of multiple regression involves the develop-
ment of parsimonious models.

We illustrate the principle of parsimony with the following example. The data in
Table 8.3 (page 624) were taken from the article “Capacities and Performance
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Characteristics of Jaw Crushers” (S. Sastri, Minerals and Metallurgical Processing,
1994:80–86). Feed rates and amounts of power drawn were measured for several indus-
trial jaw crushers.

TABLE 8.3 Feed rates and power for industrial jaw crushers

Feed Rate Power Feed Rate Power Feed Rate Power Feed Rate Power
(100 tons/h) (kW) (100 tons/h) (kW) (100 tons/h) (kW) (100 tons/h) (kW)

0.10 11 0.20 15 0.91 45 1.36 58
1.55 60 2.91 84 0.59 12 2.36 45
3.00 40 0.36 30 0.27 24 2.95 75
3.64 150 0.14 16 0.55 49 1.09 44
0.38 69 0.91 30 0.68 45 0.91 58
1.59 77 4.27 150 4.27 150 2.91 149
4.73 83 4.36 144 3.64 100

The following MINITAB output presents the results for fitting the model

Power = β0 + β1 FeedRate + ε (8.12)

The regression equation is
Power = 21.0 + 24.6 FeedRate

Predictor Coef SE Coef T P
Constant 21.028 8.038 2.62 0.015
FeedRate 24.595 3.338 7.37 0.000

S = 26.20 R−Sq = 68.5% R−Sq(adj) = 67.2%

From the output, we see that the fitted model is

Power = 21.028 + 24.595 FeedRate (8.13)

and that the coefficient for FeedRate is significantly different from 0 (t = 7.37, P ≈ 0).
We wonder whether a quadratic model might fit better than this linear one. So we fit

Power = β0 + β1 FeedRate + β2 FeedRate2 + ε (8.14)

The results are presented in the following output (from MINITAB). Note that the values
for the intercept and for the coefficient of FeedRate are different than they were in the
linear model. This is typical. Adding a new variable to a model can substantially change
the coefficients of the variables already in the model.
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The regression equation is
Power = 19.3 + 27.5 FeedRate −0.64 FeedRate^2

Predictor Coef SE Coef T P
Constant 19.34 11.56 1.67 0.107
FeedRate 27.47 14.31 1.92 0.067
FeedRate^2 −0.6387 3.090 −0.21 0.838

S = 26.72 R−Sq = 68.5% R−Sq(adj) = 65.9%

The most important point to notice is that the P-value for the coefficient of FeedRate2

is large (0.838). Recall that this P-value is for the test of the null hypothesis that the coef-
ficient is equal to 0. Thus the data provide no evidence that the coefficient of FeedRate2

is different from 0. Note also that including FeedRate2 in the model increases the value
of the goodness-of-fit statistic R2 only slightly, in fact so slightly that the first three digits
are unchanged. It follows that there is no evidence that the quadratic model fits the data
better than the linear model, so by the principle of parsimony, we should prefer the linear
model.

Figure 8.7 provides a graphical illustration of the principle of parsimony. The scat-
terplot of power versus feed rate is presented, and both the least-squares line (8.13) and
the quadratic model (8.14) are superimposed. Even though the coefficients of the models
are different, we can see that the two curves are almost identical. There is no reason to
include the quadratic term in the model. It makes the model more complicated, without
improving the fit.
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FIGURE 8.7 Scatterplot of power versus feed rate for 27 industrial jaw crushers. The
least-squares line and best fitting quadratic model are both superimposed. The two curves
are practically identical, which reflects the fact that the coefficient of FeedRate2 in the
quadratic model does not differ significantly from 0.
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Determining Whether Variables Can Be Dropped from a Model
It often happens that one has formed a model that contains a large number of independent
variables, and one wishes to determine whether a given subset of them may be dropped
from the model without significantly reducing the accuracy of the model. To be specific,
assume that we know that the model

yi = β0 + β1x1i + · · · + βk xki + βk+1xk+1 i + · · · + βpx pi + εi (8.15)

is correct, in that it represents the true relationship between the x variables and y. We
will call this model the “full” model.

We wish to test the null hypothesis

H0 : βk+1 = · · · = βp = 0

If H0 is true, the model will remain correct if we drop the variables xk+1, . . . , x p, so we
can replace the full model with the following reduced model:

yi = β0 + β1x1i + · · · + βk xki + εi (8.16)

To develop a test statistic for H0, we begin by computing the error sum of squares for
both the full and the reduced models. We’ll call them SSEfull and SSEreduced. The number
of degrees of freedom for SSEfull is n − p − 1, and the number of degrees of freedom
for SSEreduced is n − k − 1.

Now since the full model is correct, we know that the quantity SSEfull/(n − p − 1)

is an estimate of the error variance σ 2; in fact it is just s2. If H0 is true, then the reduced
model is also correct, so the quantity SSEreduced/(n − k − 1) is also an estimate of the
error variance. Intuitively, SSEfull is close to (n − p − 1)σ 2, and if H0 is true, SSEreduced

is close to (n −k −1)σ 2. It follows that if H0 is true, the difference (SSEreduced −SSEfull)

is close to (p − k)σ 2, so the quotient (SSEreduced − SSEfull)/(p − k) is close to σ 2. The
test statistic is

f = (SSEreduced − SSEfull)/(p − k)

SSEfull/(n − p − 1)
(8.17)

Now if H0 is true, both numerator and denominator of f are estimates of σ 2, so f is
likely to be near 1. If H0 is false, the quantity SSEreduced tends to be larger, so the value of
f tends to be larger. The statistic f is an F statistic; its null distribution is Fp−k, n−p−1.

The method we have just described is very useful in practice for developing par-
simonious models by removing unnecessary variables. However, the conditions under
which it is formally valid are seldom met in practice. First, it is rarely the case that the full
model is correct; there will be nonrandom quantities that affect the value of the depen-
dent variable y that are not accounted for by the independent variables. Second, for the
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method to be formally valid, the subset of variables to be dropped must be determined
independently of the data. This is usually not the case. More often, a large model is fit,
some of the variables are seen to have fairly large P-values, and the F test is used to
decide whether to drop them from the model. As we have said, this is a useful technique
in practice, but, like most methods of model selection, it should be seen as an informal
tool rather than a rigorous theory-based procedure.

We illustrate the method with an example. In mobile ad hoc computer networks,
messages must be forwarded from computer to computer until they reach their destina-
tions. The data overhead is the number of bytes of information that must be transmitted
along with the messages to get them to the right places. A successful protocol will gener-
ally have a low data overhead. Table 8.4 presents average speed, pause time, link change
rate (LCR), and data overhead for 25 simulated computer networks. The link change
rate for a given computer is the rate at which other computers in the network enter and
leave the transmission range of the given computer. These data were generated for a
study published in the article “Metrics to Enable Adaptive Protocols for Mobile Ad Hoc
Networks” (J. Boleng, W. Navidi, and T. Camp, Proceedings of the 2002 International
Conference on Wireless Networks, 2002:293–298).

TABLE 8.4 Data overhead, speed, pause time, and link change rate for a mobile
computer network

Pause Data Pause Data
Speed Time LCR Overhead Speed Time LCR Overhead
(m/s) (s) (100/s) (kB) (m/s) (s) (100/s) (kB)

5 10 9.426 428.90 20 40 12.117 501.48
5 20 8.318 443.68 20 50 10.284 519.20
5 30 7.366 452.38 30 10 33.009 445.45
5 40 6.744 461.24 30 20 22.125 489.02
5 50 6.059 475.07 30 30 16.695 506.23

10 10 16.456 446.06 30 40 13.257 516.27
10 20 13.281 465.89 30 50 11.107 508.18
10 30 11.155 477.07 40 10 37.823 444.41
10 40 9.506 488.73 40 20 24.140 490.58
10 50 8.310 498.77 40 30 17.700 511.35
20 10 26.314 452.24 40 40 14.064 523.12
20 20 19.013 475.97 40 50 11.691 523.36
20 30 14.725 499.67

We will begin by fitting a fairly large model to these data, namely,

Overhead = β0 + β1 LCR + β2 Speed + β3 Pause + β4 Speed · Pause + β5 LCR2

+ β6 Speed2 + β7 Pause2 + ε



Navidi-3810214 book November 11, 2013 14:19

628 CHAPTER 8 Multiple Regression

The results from fitting this model are as follows.

The regression equation is
Overhead = 368 + 3.48 LCR + 3.04 Speed + 2.29 Pause − 0.0122 Speed*Pause

−0.1041 LCR^2 − 0.0313 Speed^2 − 0.0132 Pause^2

Predictor Coef SE Coef T P
Constant 367.96 19.40 18.96 0.000
LCR 3.477 2.129 1.63 0.121
Speed 3.044 1.591 1.91 0.073
Pause 2.2924 0.6984 3.28 0.004
Speed*Pa −0.01222 0.01534 −0.80 0.437
LCR^2 −0.10412 0.03192 −3.26 0.005
Speed^2 −0.03131 0.01906 −1.64 0.119
Pause^2 −0.01318 0.01045 −1.26 0.224

S = 5.72344 R−Sq = 97.2% R−Sq(adj) = 96.1%

Analysis of Variance

Source DF SS MS F P
Regression 7 19567.5 2795.4 85.33 0.000
Residual Error 17 556.9 32.8
Total 24 20124.3

We can see that LCR, Speed · Pause, Speed2, and Pause2 have large P-values. We
will leave LCR in the model for now, because LCR2 has a very small P-value, and
therefore should stay in the model. We will use the F test to determine whether the
reduced model obtained by dropping Speed · Pause, Speed2, and Pause2 is a reasonable
one. First, from the output for the full model, note that SSEfull = 556.9, and it has 17
degrees of freedom. The number of independent variables in the full model is p = 7.

We now fit the reduced model

Overhead = β0 + β1 LCR + β2 Speed + β3 Pause + β5 LCR2 + ε

The results from fitting this model are as follows.

The regression equation is
Overhead = 359 + 6.69 LCR + 0.777 Speed + 1.67 Pause − 0.156 LCR^2

Predictor Coef SE Coef T P
Constant 359.22 13.01 27.61 0.000
LCR 6.695 1.156 5.79 0.000
Speed 0.7766 0.2054 3.78 0.001
Pause 1.6729 0.1826 9.16 0.000
LCR^2 −1.5572 0.02144 −7.26 0.000

S = 6.44304 R−Sq = 95.9% R−Sq(adj) = 95.0%

Analysis of Variance
Source DF SS MS F P
Regression 4 19294.1 4823.5 116.19 0.000
Residual Error 20 830.3 41.5
Total 24 20124.3
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The P-values for the variables in this model are all quite small. From the output for
this reduced model, we note that SSEreduced = 830.3. The number of variables in this
reduced model is k = 4.

Now we can compute the F statistic. Using Equation (8.17), we compute

f = (830.3 − 556.9)/(7 − 4)

556.9/17
= 2.78

The null distribution is F3,17. From the F table (Table A.8 in Appendix A), we find that
0.05 < P < 0.10. According to the 5% rule of thumb, since P > 0.05, the reduced
model is plausible, but only barely so. Rather than settle for a barely plausible model,
it is wise to explore further, to look for a slightly less reduced model that has a larger
P-value.

To do this, we note that of the three variables we dropped, the variable Speed2 had
the smallest P-value in the full model. We’ll take this as an indication that this might be
the most important of the variables we dropped, and we’ll put it back in the model. We
will now fit a second reduced model, which is

Overhead = β0 + β1 LCR + β2 Speed + β3 Pause + β5 LCR2 + β6 Speed2

The results from fitting this model are as follows.

The regression equation is
Overhead = 373 + 4.80 LCR + 1.99 Speed + 1.45 Pause − 0.123 LCR^2

−0.0212 Speed^2

Predictor Coef SE Coef T P
Constant 372.60 16.93 22.00 0.000
LCR 4.799 1.935 2.48 0.023
Speed 1.993 1.023 1.95 0.066
Pause 1.4479 0.2587 5.60 0.000
LCR^2 −0.12345 0.03400 −3.63 0.002
Speed^2 −0.02120 0.01746 −1.21 0.240

S = 6.36809 R−Sq = 96.2% R−Sq(adj) = 95.2%

Analysis of Variance

Source DF SS MS F P
Regression 5 19353.8 3870.8 95.45 0.000
Residual Error 19 770.5 40.6
Total 24 20124.3

Note that the P-value for Speed2 in this model is large (0.240). This is not good. In
general we do not want to add a variable whose coefficient might be equal to 0. So we prob-
ably won’t want to stick with this model. Let’s compute the value of the F statistic anyway,
just for practice. The value of SSEreduced in this model is 770.5. The number of indepen-
dent variables is k = 5. The value of the F statistic, using Equation (8.17), is therefore

f = (770.5 − 556.9)/(7 − 5)

556.9/17
= 3.26
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The null distribution is F2,17. From the F table (Table A.8), we again find that
0.05 < P < 0.10, so the reduced model is barely plausible at best.

We chose to put Speed2 back into the model because it had the smallest P value
among the variables we originally dropped. But as we have just seen, this does not
guarantee that it will have a small P value when it is put back into the reduced model.
Perhaps one of the other variables we dropped will do better. Of the three variables
originally dropped, the one with the second smallest P value was Pause2. We try replacing
Speed2 in the preceding model with Pause2. So we now fit a third reduced model:

Overhead = β0 + β1 LCR + β2 Speed + β3 Pause + β5 LCR2 + β6 Pause2

The results from fitting this model are as follows.

The regression equation is
Overhead = 345 + 6.484 LCR + 0.707 Speed + 2.85 Pause − 0.145 LCR^2

− 0.0183 Pause^2

Predictor Coef SE Coef T P
Constant 345.42 13.19 26.20 0.000
LCR 6.484 1.050 6.17 0.000
Speed 0.7072 0.1883 3.76 0.001
Pause 2.8537 0.5337 5.35 0.000
LCR^2 −0.14482 0.01996 −7.25 0.000
Pause^2 −0.018334 0.007879 −2.33 0.031

S = 5.83154 R−Sq = 96.8% R−Sq(adj) = 95.9%

Analysis of Variance

Source DF SS MS F P
Regression 5 19478.2 3895.6 114.55 0.000
Residual Error 19 646.1 34.0
Total 24 20124.3

This model looks good, at least at first. All the variables have small P values. We’ll
compute the F statistic to see if this model is plausible. The value of SSEreduced in
this model is 646.1. The number of independent variables is k = 5. The value of the
F statistic, using Equation (8.17), is therefore

f = (646.1 − 556.9)/(7 − 5)

556.9/17
= 1.36

The null distribution is F2,17. From the F table (Table A.8), we find that the 0.10 point on
this F distribution is 2.64. Therefore the P value is much larger than 0.10. This model
is clearly plausible.

We have used an informal method to find a good parsimonious model. It is important
to realize that this informal procedure could have been carried out somewhat differently,
with different choices for variables to drop and to include in the model. We might have
come up with a different final model that might have been just as good as the one we
actually found. In practice, there are often many models that fit the data about equally
well; there is no single “correct” model.
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Best Subsets Regression
As we have mentioned, methods of model selection are often rather informal and ad hoc.
There are a few tools, however, that can make the process somewhat more systematic.
One of them is best subsets regression. The concept is quite simple. Assume that there
are p independent variables, x1, . . . , x p, that are available to be put into the model. Let’s
assume that we wish to find a good model that contains exactly four independent vari-
ables. We can simply fit every possible model containing four of the variables, and rank
them in order of their goodness-of-fit, as measured by the coefficient of determination
R2. The subset of four variables that yields the largest value of R2 is the “best” subset of
size 4. One can repeat the process for subsets of other sizes, finding the best subsets of
size 1, 2, . . . , p. These best subsets can then be examined to see which provide a good
fit, while being parsimonious.

The best subsets procedure is computationally intensive. When there are a lot of
potential independent variables, there are a lot of models to fit. However, for most data
sets, computers today are powerful enough to handle 30 or more independent variables,
which is enough to cover many situations in practice. The following MINITAB output is
for the best subsets procedure, applied to the data in Table 8.4. There are a total of seven
independent variables being considered: Speed, Pause, LCR, Speed · Pause, Speed2,
Pause2, and LCR2.

Best Subsets Regression

Response is Overhead

S
S P p
p a e

S P e u e L
p a e s d C
e u L d e * R

Adj. e s C ^ ^ P ^
Vars R−Sq R−Sq C−p s d e R 2 2 a 2

1 73.7 72.5 140.6 15.171 X
1 54.5 52.6 258.3 19.946 X
2 82.7 81.2 87.0 12.564 X X
2 82.2 80.6 90.3 12.755 X X
3 92.9 91.9 26.5 8.2340 X X X
3 89.6 88.1 46.9 9.9870 X X X
4 95.9 95.0 10.3 6.4430 X X X X
4 95.4 94.5 13.2 6.7991 X X X X
5 96.8 95.9 6.7 5.8315 X X X X X
5 96.7 95.8 7.2 5.9074 X X X X X
6 97.1 96.2 6.6 5.6651 X X X X X X
6 97.0 96.0 7.6 5.8164 X X X X X X
7 97.2 96.1 8.0 5.7234 X X X X X X X

In this output, both the best and the second-best subset are presented, for sizes 1
through 7. We emphasize that the term best means only that the model has the largest
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value of R2, and does not guarantee that it is best in any practical sense. We’ll explain
the output column by column. The first column, labeled “Vars,” presents the number of
variables in the model. Thus the first row of the table describes the best model that can
be made with one independent variable, and the second row describes the second-best
such model. The third and fourth rows describe the best and second-best models that
can be made with two variables, and so on. The second column presents the coefficient
of determination, R2, for each model. Note that the value of R2 for the best subset
increases as the number of variables increases. It is a mathematical fact that the best
subset of k + 1 variables will always have at least as large an R2 as the best subset
of k variables. We will skip over the next two columns for the moment. The column
labeled “s” presents the estimate of the error standard deviation. It is the square root of
the estimate s2 (Equation 8.8 in Section 8.1). Finally, the columns on the right represent
the independent variables that are candidates for inclusion into the model. The name of
each variable is written vertically above its column. An “X” in the column means that
the variable is included in the model. Thus, the best model containing four variables is
the one with the variables Speed, Pause, LCR, and LCR2.

Looking at the best subsets regression output, it is important to note how little
difference there is in the fit between the best and second-best models of each size (except
for size 1). It is also important to realize that the value of R2 is a random quantity; it
depends on the data. If the process were repeated and new data obtained, the values of
R2 for the various models would be somewhat different, and different models would be
“best.” For this reason, one should not use this procedure, or any other, to choose a single
model. Instead, one should realize that there will be many models that fit the data about
equally well.

Nevertheless, methods have been developed to choose a single model, presumably
the “best” of the “best.” We describe two of them here, with a caution not to take them too
seriously. We begin by noting that if we simply choose the model with the highest value of
R2, we will always pick the one that contains all the variables, since the value of R2 nec-
essarily increases as the number of variables in the model increases. The methods for se-
lecting a model involve statistics that adjust the value of R2, so as to eliminate this feature.

The first is the adjusted R2. Let n denote the number of observations, and let k
denote the number of independent variables in the model. The adjusted R2 is defined as
follows:

Adjusted R2 = R2 −
(

k

n − k − 1

)
(1 − R2) (8.18)

The adjusted R2 is always smaller than R2, since a positive quantity is subtracted from
R2. As the number of variables k increases, R2 will increase, but the amount subtracted
from it will increase as well. The value of k for which the value of adjusted R2 is a
maximum can be used to determine the number of variables in the model, and the best
subset of that size can be chosen as the model. In the preceding output, we can see that
the adjusted R2 reaches its maximum (96.2%) at the six-variable model containing the
variables Speed, Pause, LCR, Speed2, Pause2, and LCR2.

Another commonly used statistic is Mallows’ Cp. To compute this quantity, let n
be the number of observations, let p be the total number of independent variables under
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consideration, and let k be the number of independent variables in a subset. As before, let
SSEfull denote the error sum of squares for the full model containing all p variables, and
let SSEreduced denote the error sum of squares for the model containing only the subset
of k variables. Mallows’ C p is defined as

C p = (n − p − 1)SSEreduced

SSEfull
− (n − 2k − 2) (8.19)

For models that contain as many independent variables as necessary, the value of
C p is supposed to be approximately equal to the number of variables, including the
intercept, in the model. To choose a single model, one can either choose the model with
the minimum value of C p, or one can choose the model in which the value of C p is
closest to the number of independent variables in the model. In the preceding output,
both criteria yield the same six-variable model chosen by the adjusted R2 criterion. The
value of C p for this model is 6.6.

Finally, we point out that our ad hoc procedure using the F test yielded the five-
variable model containing the variables Speed, Pause, LCR, Pause2, and LCR2. The
output shows that this model is the best five-variable model in terms of R2. Its adjusted
R2 is 95.9%, and its C p value is 6.7, both of which are close to their optimum values. In
practice, there is no clear reason to prefer the model chosen by adjusted R2 and Mallows’
C p to this model, or vice versa.

Stepwise Regression
Stepwise regression is perhaps the most widely used model selection technique. Its main
advantage over best subsets regression is that it is less computationally intensive, so it
can be used in situations where there are a very large number of candidate independent
variables and too many possible subsets for every one of them to be examined. The version
of stepwise regression that we will describe is based on the P-values of the t statistics for
the independent variables. An equivalent version is based on the F statistic (which is the
square of the t statistic). Before running the algorithm, the user chooses two threshold
P-values, αin and αout, with αin ≤ αout. Stepwise regression begins with a step called
a forward selection step, in which the independent variable with the smallest P-value
is selected, provided that it satisfies P < αin. This variable is entered into the model,
creating a model with a single independent variable. Call this variable x1. In the next
step, also a forward selection step, the remaining variables are examined one at a time
as candidates for the second variable in the model. The one with the smallest P-value is
added to the model, again provided that P < αin.

Now it is possible that adding the second variable to the model has increased the
P-value of the first variable. In the next step, called a backward elimination step, the
first variable is dropped from the model if its P-value has grown to exceed the value
αout. The algorithm then continues by alternating forward selection steps with backward
elimination steps: at each forward selection step adding the variable with the smallest
P-value if P < αin, and at each backward elimination step dropping the variable with
the largest P-value if P > αout. The algorithm terminates when no variables meet the
criteria for being added to or dropped from the model.
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The following output is from the MINITAB stepwise regression procedure, applied
to the data in Table 8.4. The threshold P-values are αin = αout = 0.15. There are a total
of seven independent variables being considered: Speed, Pause, LCR, Speed · Pause,
Speed2, Pause2, and LCR2.

Alpha-to-Enter = 0.15 Alpha-to-Remove = 0.15

Response is Overhead on 7 predictors, with N = 25

Step 1 2 3 4 5
Constant 452.2 437.3 410.7 388.4 338.5

Speed*Pause 0.0470 0.0355 0.0355 0.0304 0.0146
T-Value 8.03 6.00 6.96 5.21 3.52
P-Value 0.000 0.000 0.000 0.000 0.002

Pause 0.74 3.02 3.75 3.24
T-Value 3.40 3.78 4.20 6.25
P-Value 0.003 0.001 0.000 0.000

Pause^2 −0.0380 −0.0442 −0.0256
T-Value −2.94 −3.39 −3.19
P-Value 0.008 0.003 0.005

LCR 0.69 6.97
T-Value 1.62 6.95
P-Value 0.121 0.000

LCR^2 −0.139
T-Value −6.46
P-Value 0.000

S 15.2 12.6 10.8 10.4 5.99
R-Sq 73.70 82.74 87.77 89.19 96.62
R-Sq(adj) 72.55 81.18 86.02 87.02 95.73
Mallows C-p 140.6 87.0 58.1 51.4 7.8

In step 1, the variable Speed · Pause had the smallest P-value (0.000) among
the seven, so it was the first variable in the model. In step 2, Pause had the smallest
P-value (0.003) among the remaining variables, so it was added next. The P-value for
Speed · Pause remained at 0.000 after the addition of Pause to the model; since it did
not rise to a value greater than αout = 0.15, it is not dropped from the model. In steps 3,
4, and 5, the variables Pause2, LCR, and LCR2 are added in turn. At no point does
the P-value of a variable in the model exceed the threshold αout = 0.15, so no vari-
ables are dropped. After five steps, none of the variables remaining have P-values less
than αin = 0.15, so the algorithm terminates. The final model contains the variables
Speed · Pause, Pause, Pause2, LCR, and LCR2.
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The model chosen by stepwise regression is a five-variable model. Comparison with
the best subsets output shows that it is not one of the best two five-variable models in
terms of R2. Still, the model fits well, and in terms of fit alone, it is reasonable. We
point out that this model has the undesirable feature that it contains the interaction term
Speed · Pause without containing the variable Speed by itself. This points out a weak-
ness of all automatic variable selection procedures, including stepwise regression and
best subsets. They operate on the basis of goodness-of-fit alone, and are not able to
take into account relationships among independent variables that may be important to
consider.

Model Selection Procedures Sometimes Find Models
When They Shouldn't
When constructing a model to predict the value of a dependent variable, it might seem
reasonable to try to start with as many candidate independent variables as possible, so
that a model selection procedure has a very large number of models to choose from.
Unfortunately, this is not a good idea, as we will now demonstrate.

A correlation coefficient can be computed between any two variables. Sometimes,
two variables that have no real relationship will be strongly correlated, just by chance.
For example, the statistician George Udny Yule noticed that the annual birthrate in Great
Britain was almost perfectly correlated (r = −0.98) with the annual production of pig
iron in the United States for the years 1875–1920. Yet no one would suggest trying to
predict one of these variables from the other. This illustrates a difficulty shared by all
model selection procedures. The more candidate independent variables that are provided,
the more likely it becomes that some of them will exhibit meaningless correlations with
the dependent variable, just by chance.

We illustrate this phenomenon with a simulation. We generated a simple random
sample y1, . . . , y30 of size 30 from a N (0, 1) distribution. We will denote this sample
by y. Then we generated 20 more independent samples of size 30 from a N (0, 1)

distribution; we will denote these samples by x1, . . . , x20. To make the notation clear,
the sample xi contains 30 values xi1, . . . , xi30. We then applied both stepwise regression
and best subsets regression to these simulated data. None of the xi are related to y; they
were all generated independently. Therefore the ideal output from a model selection
procedure would be to produce a model with no dependent variables at all. The actual
behavior was quite different. The following two MINITAB outputs are for the stepwise
regression and best subsets procedures. The stepwise regression method recommends
a model containing six variables, with an adjusted R2 of 41.89%. The best subsets
procedure produces the best-fitting model for each number of variables from 1 to 20.
Using the adjusted R2 criterion, the best subsets procedure recommends a 12-variable
model, with an adjusted R2 of 51.0%. Using the minimum Mallows’ C p criterion, the
“best” model is a five-variable model.

Anyone taking this output at face value would believe that some of the independent
variables might be useful in predicting the dependent variable. But none of them are. All
the apparent relationships are due entirely to chance.
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Stepwise Regression: Y versus X1, X2, . . .

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.15

Response is Y on 20 predictors, with N = 30

Step 1 2 3 4 5 6
Constant 0.14173 0.11689 0.12016 0.13756 0.09070 0.03589

X15 −0.38 −0.38 −0.28 −0.32 −0.28 −0.30
T-Value −2.08 −2.19 −1.60 −1.87 −1.69 −1.89
P-Value 0.047 0.037 0.122 0.073 0.105 0.071

X6 0.39 0.55 0.57 0.57 0.52
T-Value 2.04 2.76 2.99 3.15 2.87
P-Value 0.051 0.010 0.006 0.004 0.009

X16 −0.43 −0.43 −0.55 −0.73
T-Value −1.98 −2.06 −2.60 −3.07
P-Value 0.058 0.050 0.016 0.005

X12 0.33 0.42 0.49
T-Value 1.79 2.29 2.66
P-Value 0.086 0.031 0.014

X3 −0.42 −0.52
T-Value −1.83 −2.23
P-Value 0.080 0.035

X17 0.35
T-Value 1.53
P-Value 0.140

S 1.15 1.09 1.04 0.998 0.954 0.928
R-Sq 13.33 24.92 34.75 42.15 49.23 53.91
R-Sq(adj) 10.24 19.36 27.22 32.90 38.66 41.89
Mallows C-p 5.5 3.3 1.7 1.0 0.4 0.7
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Best Subsets Regression: Y versus X1, X2, . . .

Response is Y

X X X X X X X X X X X

Mallows X X X X X X X X X 1 1 1 1 1 1 1 1 1 1 2

Vars R-Sq R-Sq(adj) C-p S 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

1 13.3 10.2 5.5 1.1539 X

2 28.3 23.0 2.0 1.0685 X X

3 34.8 27.2 1.7 1.0390 X X X

4 43.2 34.1 0.6 0.98851 X X X X

5 49.2 38.7 0.4 0.95391 X X X X X

6 53.9 41.9 0.7 0.92844 X X X X X X

7 57.7 44.3 1.3 0.90899 X X X X X X X

8 61.2 46.4 2.1 0.89168 X X X X X X X X

9 65.0 49.3 2.7 0.86747 X X X X X X X X X

10 67.6 50.5 3.8 0.85680 X X X X X X X X X X

11 69.2 50.4 5.2 0.85803 X X X X X X X X X X X

12 71.3 51.0 6.4 0.85267 X X X X X X X X X X X X

13 72.4 49.9 8.0 0.86165 X X X X X X X X X X X X X

14 73.0 47.8 9.8 0.87965 X X X X X X X X X X X X X X

15 74.2 46.5 11.4 0.89122 X X X X X X X X X X X X X X X

16 74.5 43.1 13.3 0.91886 X X X X X X X X X X X X X X X X

17 74.8 39.2 15.1 0.94985 X X X X X X X X X X X X X X X X X

18 75.1 34.2 17.1 0.98777 X X X X X X X X X X X X X X X X X X

19 75.1 27.9 19.0 1.0344 X X X X X X X X X X X X X X X X X X X

20 75.2 20.1 21.0 1.0886 X X X X X X X X X X X X X X X X X X X X

How can one determine which variables, if any, in a selected model are really related
to the dependent variable, and which were selected only by chance? Statistical methods
are not much help here. The most reliable method is to repeat the experiment, collecting
more data on the dependent variable and on the independent variables that were selected
for the model. Then the independent variables suggested by the selection procedure can
be fit to the dependent variable using the new data. If some of these variables fit well in
the new data, the evidence of a real relationship becomes more convincing.

We summarize our discussion of model selection by emphasizing four points.
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Summary
When selecting a regression model, keep the following in mind:

■ When there is little or no physical theory to rely on, many different models
will fit the data about equally well.

■ The methods for choosing a model involve statistics (R2, the F statistic,
C p), whose values depend on the data. Therefore if the experiment is
repeated, these statistics will come out differently, and different models
may appear to be “best.”

■ Some or all of the independent variables in a selected model may not
really be related to the dependent variable. Whenever possible,
experiments should be repeated to test these apparent relationships.

■ Model selection is an art, not a science.

Exercises for Section 8.3
1. True or false:

a. For any set of data, there is always one best model.
b. When there is no physical theory to specify a model, there is usually no best model, but many that are about

equally good.
c. Model selection methods such as best subsets and stepwise regression, when properly used, are scientifically

designed to find the best available model.
d. Model selection methods such as best subsets and stepwise regression, when properly used, can suggest models

that fit the data well.

2. The article “Experimental Design Approach for the Optimization of the Separation of Enantiomers in Preparative
Liquid Chromatography” (S. Lai and Z. Lin, Separation Science and Technology, 2002: 847–875) describes an
experiment involving a chemical process designed to separate enantiomers. A model was fit to estimate the cycle
time (y) in terms of the flow rate (x1), sample concentration (x2), and mobile-phase composition (x3). The results of
a least-squares fit are presented in the following table. (The article did not provide the value of the t statistic for the
constant term.)

Predictor Coefficient T P

Constant 1.603
x1 −0.619 −22.289 0.000
x2 0.086 3.084 0.018
x3 0.306 11.011 0.000
x2

1 0.272 8.542 0.000
x2

2 0.057 1.802 0.115
x2

3 0.105 3.300 0.013
x1x2 −0.022 −0.630 0.549
x1x3 −0.036 −1.004 0.349
x2x3 0.036 1.018 0.343
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Of the following, which is the best next step in the analysis?

i. Nothing needs to be done. This model is fine.
ii. Drop x2

1 , x2
2 , and x2

3 from the model, and then perform an F test.
iii. Drop x1x2, x1x3, and x2x3 from the model, and then perform an F test.
iv. Drop x1 and x2

1 from the model, and then perform an F test.
v. Add cubic terms x3

1 , x3
2 , and x3

3 to the model to try to improve the fit.

3. In the article referred to in Exercise 2, a model was fit to investigate the relationship between the independent
variables given in Exercise 2 and the amount of S-isomer collected. The results of a least-squares fit are presented in
the following table. (The article did not provide the value of the t statistic for the constant term.)

Predictor Coefficient T P

Constant 3.367
x1 −0.018 −1.729 0.127
x2 1.396 135.987 0.000
x3 0.104 10.098 0.000
x2

1 0.017 1.471 0.184
x2

2 −0.023 −0.909 0.394
x2

3 −0.030 −2.538 0.039
x1x2 −0.006 −0.466 0.655
x1x3 0.012 0.943 0.377
x2x3 0.055 4.194 0.004

Of the following, which is the best next step in the analysis? Explain your reasoning.

i. Drop x2
1 , x2

2 , and x2
3 from the model, and then perform an F test.

ii. Nothing needs to be done. This model is fine.
iii. Add cubic terms x3

1 , x3
2 , and x3

3 to the model to try to improve the fit.
iv. Drop x1x2, x1x3, and x2x3 from the model, and then perform an F test.
v. Drop x2

2 , x1x2, and x1x3 from the model, and then perform an F test.

4. An engineer measures a dependent variable y and independent variables x1, x2, and x3. MINITAB output for the
model y = β0 + β1x1 + β2x2 + β3x3 + ε is presented as follows.

The regression equation is
Y= 0.367 + 1.61 X1 − 5.51 X2 + 1.27 X3

Predictor Coef SE Coef T P
Constant 0.3692 0.9231 0.40 0.698
X1 1.6121 1.3395 1.21 0.254
X2 5.5049 1.4959 3.68 0.004
X3 1.2646 1.9760 0.64 0.537

Of the following, which is the best next step in the analysis? Explain your reasoning.

i. Add interaction terms x1x2 and x2x3 to try to find more variables to put into the model.
ii. Add the interaction term x1x3 to try to find another variable to put into the model.

iii. Nothing needs to be done. This model is fine.
iv. Drop x1 and x3, and then perform an F test.
v. Drop x2, and then perform an F test.

vi. Drop the intercept (Constant), since it has the largest P-value.
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5. The article “Simultaneous Optimization of Mechanical Properties of Steel by Maximizing Exponential Desirability
Functions” (K. J. Kim and D. K. J. Lin, Journal of the Royal Statistical Society Series C, Applied Statistics, 2000:
311–325) presents measurements on 72 steel plates. The following MINITAB output presents the results of a study to
determine the relationship between yield strength (in kg/mm2), and the proportion of carbon, manganese, and silicon,
each measured in percent. The model fit is

Yield strength = β0 + β1 Carbon + β2 Manganese + β3 Silicon + ε

The regression equation is
Yield Strength = 24.677 − 19.402 Carbon + 14.720 Manganese + 70.720 Silicon

Predictor Coef StDev T P
Constant 24.677 5.8589 4.21 0.000
Carbon −19.402 28.455 −0.68 0.498
Manganese 14.720 5.6237 2.62 0.011
Silicon 70.720 45.675 1.55 0.126

Of the following, which is the best next step in the analysis? Explain your reasoning.

i. Add interaction terms Carbon · Manganese and Manganese · Silicon to try to find more variables to put into the
model.

ii. Add the interaction term Carbon · Silicon to try to find another variable to put into the model.
iii. Nothing needs to be done. This model is fine.
iv. Drop Carbon and Silicon, and then perform an F test.
v. Drop Manganese, and then perform an F test.

6. The following MINITAB output is for a best subsets regression involving five dependent variables X1, . . . , X5. The
two models of each size with the highest values of R2 are listed.

Best Subsets Regression: Y versus X1, X2, X3, X4, X5

Response is Y

Mallows X X X X X
Vars R-Sq R-Sq(adj) C-p S 1 2 3 4 5

1 77.3 77.1 133.6 1.4051 X
1 10.2 9.3 811.7 2.7940 X
2 89.3 89.0 14.6 0.97126 X X
2 77.8 77.3 130.5 1.3966 X X
3 90.5 90.2 3.6 0.91630 X X X
3 89.4 89.1 14.6 0.96763 X X X
4 90.7 90.3 4.3 0.91446 X X X X
4 90.6 90.2 5.3 0.91942 X X X X
5 90.7 90.2 6.0 0.91805 X X X X X

a. Which variables are in the model selected by the minimum Cp criterion?
b. Which variables are in the model selected by the adjusted R2 criterion?
c. Are there any other good models?
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7. The following is supposed to be the result of a best subsets regression involving five independent variables X1, . . . , X5.
The two models of each size with the highest values of R2 are listed. Something is wrong. What is it?

Best Subsets Regression

Response is Y

Adj. X X X X X
Vars R-Sq R-Sq C-p s 1 2 3 4 5

1 69.1 68.0 101.4 336.79 X
1 60.8 59.4 135.4 379.11 X
2 80.6 79.2 55.9 271.60 X X
2 79.5 77.9 60.7 279.59 X X
3 93.8 92.8 13.4 184.27 X X X
3 93.7 92.7 18.8 197.88 X X X
4 91.4 90.4 5.5 159.59 X X X X
4 90.1 88.9 5.6 159.81 X X X X
5 94.2 93.0 6.0 157.88 X X X X X

8. The article “Effect of Granular Subbase Thickness on Airfield Pavement Structural Response” (K. Gopalakrishnan
and M. Thompson, Journal of Materials in Civil Engineering, 2008:331–342) presents a study of the amount of
surface deflection caused by aircraft landing on an airport runway. A load of 160 kN was applied to a runway surface,
and the amount of deflection in mm (y) was measured at various distances in m (x) from the point of application.
The results are presented in the following table.

x y

0.000 3.24
0.305 2.36
0.610 1.42
0.914 0.87
1.219 0.54
1.524 0.34
1.830 0.24

a. Fit the linear model y = β0 + β1x + ε. For each coefficient, test the hypothesis that the coefficient is equal to 0.
b. Fit the quadratic model y = β0 + β1x + β2x2 + ε. For each coefficient, test the hypothesis that the coefficient is

equal to 0.
c. Fit the cubic model y = β0 + β1x + β2x2 + β3x3 + ε. For each coefficient, test the hypothesis that the coefficient

is equal to 0.
d. Which of the models in parts (a) through (c) is the most appropriate? Explain.
e. Using the most appropriate model, estimate the deflection at a distance of 1 m.

9. (Continues Exercise 7 in Section 8.1.) To try to improve the prediction of FEV1, additional independent variables are
included in the model. These new variables are Weight (in kg), the product (interaction) of Height and Weight, and
the ambient temperature (in ◦C). The following MINITAB output presents results of fitting the model

FEV1 = β0 + β1 Last FEV1 + β2 Gender + β3 Height + β4 Weight + β5 Height · Weight

+ β6 Temperature + β7 Pressure + ε
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The regression equation is
FEV1 = −0.257 + 0.778 Last FEV − 0.105 Gender + 1.213 Height − 0.00624 Weight
+ 0.00386 Height*Weight − 0.00740 Temp − 0.00148 Pressure

Predictor Coef SE Coef T P
Constant −0.2565 0.7602 −0.34 0.736
Last FEV 0.77818 0.05270 14.77 0.000
Gender −0.10479 0.03647 −2.87 0.005
Height 1.2128 0.4270 2.84 0.005
Weight −0.0062446 0.01351 −0.46 0.645
Height*Weight 0.0038642 0.008414 0.46 0.647
Temp −0.007404 0.009313 −0.79 0.428
Pressure −0.0014773 0.0005170 −2.86 0.005

S = 0.22189 R-Sq = 93.5% R-Sq(adj) = 93.2%

Analysis of Variance

Source DF SS MS F P
Regression 7 111.35 15.907 323.06 0.000
Residual Error 157 7.7302 0.049237
Total 164 119.08

a. The following MINITAB output, reproduced from Exercise 7 in Section 8.1, is for a reduced model in which
Weight, Height · Weight, and Temp have been dropped. Compute the F statistic for testing the plausibility of the
reduced model.

The regression equation is
FEV1 = −0.219 + 0.779 Last FEV − 0.108 Gender + 1.354 Height − 0.00134 Pressure

Predictor Coef SE Coef T P
Constant −0.21947 0.4503 −0.49 0.627
Last FEV 0.779 0.04909 15.87 0.000
Gender −0.10827 0.0352 −3.08 0.002
Height 1.3536 0.2880 4.70 0.000
Pressure −0.0013431 0.0004722 −2.84 0.005

S = 0.22039 R-Sq = 93.5% R-Sq(adj) = 93.3%

Analysis of Variance

Source DF SS MS F P
Regression 4 111.31 27.826 572.89 0.000
Residual Error 160 7.7716 0.048572
Total 164 119.08

b. How many degrees of freedom does the F statistic have?
c. Find the P-value for the F statistic. Is the reduced model plausible?
d. Someone claims that since each of the variables being dropped had large P-values, the reduced model must be

plausible, and it was not necessary to perform an F test. Is this correct? Explain why or why not.
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e. The total sum of squares is the same in both models, even though the independent variables are different. Is there
a mistake? Explain.

10. In a study to determine the effect of vehicle weight in tons (x1) and engine displacement in in3 (x2) on fuel economy in
miles per gallon (y), these quantities were measured for ten automobiles. The full quadratic model y = β0 + β1x1 +
β2x2 + β3x2

1 + β4x2
2 + β5x1x2 + ε was fit to the data, and the sum of squares for error was SSE = 62.068. Then the

reduced model y = β0 +β1x1 +β2x2 + ε was fit, and the sum of squares for error was SSE = 66.984. Is it reasonable
to use the reduced model, rather than the full quadratic model, to predict fuel economy? Explain.

11. In a study of the causes of bearing wear, a machine was run 24 times, with various loads (denoted x1), oil viscosities
(x2), and ambient temperatures (x3). The wear, denoted y, was modeled as y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 +
β5x1x3 + β6x2x3 + ε. When this model was fit to the data, the sum of squares for error was SSE = 9.37. Then
the reduced model y = β0 + β1x1 + β2x2 + β3x3 was fit, and the sum of squares for error was SSE = 27.49.
Is it reasonable to use the reduced model, rather than the model containing all the interactions, to predict wear?
Explain.

12. In rock blasting, the peak particle velocity (PPV) depends both on the distance from the blast and on the amount
of charge. The article “Prediction of Particle Velocity Caused by Blasting for an Infrastructure Excavation Covering
Granite Bedrock” (A. Kahriman, Mineral Resources Engineering, 2001:205–218) presents data on PPV, scaled
distance (which is equal to the distance divided by the square root of the charge), and the amount of charge. The
following table presents the values of PPV, scaled distance, and amount of charge for 15 blasts.

Scaled Distance Amount of
PPV (mm/s) (m/kg0.5) Charge (kg)

1.4 47.33 4.2
15.7 9.6 92.0

2.54 15.8 40.0
1.14 24.3 48.7
0.889 23.0 95.7
1.65 12.7 67.7
1.4 39.3 13.0

26.8 8.0 70.0
1.02 29.94 13.5
4.57 10.9 41.0
6.6 8.63 108.8
1.02 28.64 27.43
3.94 18.21 59.1
1.4 33.0 11.5
1.4 34.0 175.0

a. Fit the model ln PPV = β0 +β1 ln Scaled Distance+β2 ln Charge+ ε. Compute the P-value for testing H0 : βi = 0
for β0, β1, and β2.

b. The article claims that the model ln PPV = β0 + β1 ln Scaled Distance + ε is appropriate. Fit this model. Compute
the P-value for testing H0 : βi = 0 for β0, β1, and β2.

c. Which model do you prefer? Why?
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13. The article “Ultimate Load Analysis of Plate Reinforced Concrete Beams” (N. Subedi and P. Baglin, Engineering
Structures, 2001:1068–1079) presents theoretical and measured ultimate strengths (in kN) for a sample of steel-
reinforced concrete beams. The results are presented in the following table (two outliers have been deleted).

Let y denote the measured strength, x the theoretical strength, and t the true strength, which is unknown. Assume
that y = t +ε, where ε is the measurement error. It is uncertain whether t is related to x by a linear model t = β0 +β1x
or by a quadratic model t = β0 + β1x + β2x2.

Theoretical Measured Theoretical Measured

991 1118 1516 1550
785 902 1071 1167

1195 1373 1480 1609
1021 1196 1622 1756
1285 1609 2032 2119
1167 1413 2032 2237
1519 1668 660 640
1314 1491 565 530
1743 1952 738 893

791 844 682 775

a. Fit the linear model y = β0 + β1x + ε. For each coefficient, find the P-value for the null hypothesis that the
coefficient is equal to 0.

b. Fit the quadratic model y = β0 + β1x + β2x2 + ε. For each coefficient, find the P-value for the null hypothesis
that the coefficient is equal to 0.

c. Plot the residuals versus the fitted values for the linear model.
d. Plot the residuals versus the fitted values for the quadratic model.
e. Based on the results in parts (a) through (d), which model seems more appropriate? Explain.
f. Using the more appropriate model, estimate the true strength if the theoretical strength is 1500.
g. Using the more appropriate model, find a 95% confidence interval for the true strength if the theoretical strength

is 1500.

14. The article “Permanent Deformation Characterization of Subgrade Soils from RLT Test” (A. Puppala, L. Mohammad,
et al., Journal of Materials in Civil Engineering, 1999:274–282) presents measurements of plastic strains (in percent)
on soils at various confining and deviatoric stresses in kPa. The following table presents the plastic strains (y), the
confining stress (x1), and the deviatoric stress (x2) for tests on a sandy soil.

y x1 x2 y x1 x2

0.01 21 21 0.01 70 140
0.02 21 35 0.07 70 210
0.05 21 52.5 0.002 105 70
0.09 21 70 0.0003 105 105
0.003 35 35 0.0009 105 140
0.006 35 70 0.01 105 210
0.05 35 105 0.001 140 70
0.23 35 140 0.0003 140 105
0.003 70 35 0.0005 140 210
0.0008 70 70 0.03 140 280
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a. Fit the model y = β0 + β1x1 + β2x2 + ε. Plot the residuals versus the fitted values. Does the model seem
appropriate?

b. Fit the model ln y = β0 + β1 ln x1 + β2 ln x2 + ε. Plot the residuals versus the fitted values. Does the model seem
appropriate?

c. Use the more appropriate of the models from (a) and (b) to predict y when x1 = 50 and x2 = 100.
d. Is the model you used in part (c) improved by including an interaction term? Explain.

15. The article “Vehicle-Arrival Characteristics at Urban Uncontrolled Intersections” (V. Rengaraju and V. Rao, Journal
of Transportation Engineering, 1995:317–323) presents data on traffic characteristics at 10 intersections in Madras,
India. The following table provides data on road width in m (x1), traffic volume in vehicles per lane per hour (x2),
and median speed in km/h (x3).

y x1 x2 y x1 x2

35.0 76 370 26.5 75 842
37.5 88 475 27.5 92 723
26.5 76 507 28.0 90 923
33.0 80 654 23.5 86 1039
22.5 65 917 24.5 80 1120

a. Fit the model y = β0 + β1x1 + β2x2 + ε. Find the P-values for testing that the coefficients are equal to 0.
b. Fit the model y = β0 + β1x1 + ε. Find the P-values for testing that the coefficients are equal to 0.
c. Fit the model y = β0 + β1x2 + ε. Find the P-values for testing that the coefficients are equal to 0.
d. Which of the models (a) through (c) do you think is best? Why?

16. The following table presents measurements of mean noise levels in dBA (y), roadway width in m (x1), and mean speed
in km/h (x2), for 10 locations in Bangkok, Thailand, as reported in the article “Modeling of Urban Area Stop-and-Go
Traffic Noise” (P. Pamanikabud and C. Tharasawatipipat, Journal of Transportation Engineering, 1999:152–159).

y x1 x2 y x1 x2

78.1 6.0 30.61 78.1 12.0 28.26
78.1 10.0 36.55 78.6 6.5 30.28
79.6 12.0 36.22 78.5 6.5 30.25
81.0 6.0 38.73 78.4 9.0 29.03
78.7 6.5 29.07 79.6 6.5 33.17

Construct a good linear model to predict mean noise levels using roadway width, mean speed, or both, as predictors.
Provide the standard deviations of the coefficient estimates and the P-values for testing that they are different from 0.
Explain how you chose your model.

17. The article “Modeling Resilient Modulus and Temperature Correction for Saudi Roads” (H. Wahhab, I. Asi, and
R. Ramadhan, Journal of Materials in Civil Engineering, 2001:298–305) describes a study designed to predict
the resilient modulus of pavement from physical properties. The following table presents data for the resilient
modulus at 40◦C in 106 kPa (y), the surface area of the aggregate in m2/kg (x1), and the softening point of the
asphalt in ◦C (x2).
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y x1 x2 y x1 x2 y x1 x2

1.48 5.77 60.5 3.06 6.89 65.3 1.88 5.93 63.2
1.70 7.45 74.2 2.44 8.64 66.2 1.90 8.17 62.1
2.03 8.14 67.6 1.29 6.58 64.1 1.76 9.84 68.9
2.86 8.73 70.0 3.53 9.10 68.6 2.82 7.17 72.2
2.43 7.12 64.6 1.04 8.06 58.8 1.00 7.78 54.1

The full quadratic model is y = β0 + β1x1 + β2x2 + β3x1x2 + β4x2
1 + β5x2

2 + ε. Which submodel of this full
model do you believe is most appropriate? Justify your answer by fitting two or more models and comparing the
results.

18. The article “Models for Assessing Hoisting Times of Tower Cranes” (A. Leung and C. Tam, Journal of Construction
Engineering and Management, 1999: 385–391) presents a model constructed by a stepwise regression procedure to
predict the time needed for a tower crane hoisting operation. Twenty variables were considered, and the stepwise
procedure chose a nine-variable model. The adjusted R2 for the selected model was 0.73. True or false:

a. The value 0.73 is a reliable measure of the goodness of fit of the selected model.
b. The value 0.73 may exaggerate the goodness of fit of the model.
c. A stepwise regression procedure selects only variables that are of some use in predicting the value of the dependent

variable.
d. It is possible for a variable that is of no use in predicting the value of a dependent variable to be part of a model

selected by a stepwise regression procedure.

Supplementary Exercises for Chapter 8

1. The article “Advances in Oxygen Equivalence Equations for Predicting the Properties of Titanium Welds”
(D. Harwig, W. Ittiwattana, and H. Castner, The Welding Journal, 2001:126s–136s) reports an experiment to predict
various properties of titanium welds. Among other properties, the elongation (in %) was measured, along with the
oxygen content and nitrogen content (both in percent). The following MINITAB output presents results of fitting
the model

Elongation = β0 + β1 Oxygen + β2 Nitrogen + β3 Oxygen · Nitrogen

The regression equation is
Elongation = 46.80 − 130.11 Oxygen − 807.1 Nitrogen + 3580.5 Oxy*Nit

Predictor Coef SE Coef T P
Constant 46.802 3.702 12.64 0.000
Oxygen −130.11 20.467 −6.36 0.000
Nitrogen −807.10 158.03 −5.107 0.000
Oxy*Nit 3580.5 958.05 3.737 0.001

S = 2.809 R-Sq = 74.5% R-Sq(adj) = 72.3%
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Analysis of Variance

Source DF SS MS F P
Regression 3 805.43 268.48 34.03 0.000
Residual Error 35 276.11 7.89
Total 38 1081.54

a. Predict the elongation for a weld with an oxygen content of 0.15% and a nitrogen content of 0.01%.
b. If two welds both have a nitrogen content of 0.006%, and their oxygen content differs by 0.05%, what would

you predict their difference in elongation to be?
c. Two welds have identical oxygen contents, and nitrogen contents that differ by 0.005%. Is this enough information

to predict their difference in elongation? If so, predict the elongation. If not, explain what additional information
is needed.

2. Refer to Exercise 1.

a. Find a 95% confidence interval for the coefficient of Oxygen.
b. Find a 99% confidence interval for the coefficient of Nitrogen.
c. Find a 98% confidence interval for the coefficient of the interaction term Oxygen · Nitrogen.
d. Can you conclude that β1 < − 75? Find the P-value.
e. Can you conclude that β2 > − 1000? Find the P-value.

3. The following MINITAB output is for a multiple regression. Some of the numbers got smudged, becoming illegible.
Fill in the missing numbers.

Predictor Coef SE Coef T P
Constant (a) 0.3501 0.59 0.568
X1 1.8515 (b) 2.31 0.040
X2 2.7241 0.7124 (c) 0.002

S = (d) R-Sq = 83.4% R-Sq(adj) = 80.6%

Analysis of Variance

Source DF SS MS F P
Regression (e) (f) (g) (h) 0.000
Residual Error 12 17.28 1.44
Total (i) 104.09

4. An engineer tries three different methods for selecting a linear model. First she uses an informal method based on
the F statistic, as described in Section 8.3. Then she runs the best subsets routine, and finds the model with the best
adjusted R2 and the one with the best Mallows Cp. It turns out that all three methods select the same model. The
engineer says that since all three methods agree, this model must be the best one. One of her colleagues says that
other models might be equally good. Who is right? Explain.

5. In a simulation of 30 mobile computer networks, the average speed, pause time, and number of neighbors were
measured. A “neighbor” is a computer within the transmission range of another. The data are presented in the
following table.
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Neighbors Speed Pause Neighbors Speed Pause Neighbors Speed Pause

10.17 5 0 9.36 5 10 8.92 5 20
8.46 5 30 8.30 5 40 8.00 5 50

10.20 10 0 8.86 10 10 8.28 10 20
7.93 10 30 7.73 10 40 7.56 10 50

10.17 20 0 8.24 20 10 7.78 20 20
7.44 20 30 7.30 20 40 7.21 20 50

10.19 30 0 7.91 30 10 7.45 30 20
7.30 30 30 7.14 30 40 7.08 30 50

10.18 40 0 7.72 40 10 7.32 40 20
7.19 40 30 7.05 40 40 6.99 40 50

a. Fit the model with Neighbors as the dependent variable, and independent variables Speed, Pause, Speed · Pause,
Speed2, and Pause2.

b. Construct a reduced model by dropping any variables whose P-values are large, and test the plausibility of the
model with an F test.

c. Plot the residuals versus the fitted values for the reduced model. Are there any indications that the model is
inappropriate? If so, what are they?

d. Someone suggests that a model containing Pause and Pause2 as the only dependent variables is adequate. Do
you agree? Why or why not?

e. Using a best subsets software package, find the two models with the highest R2 value for each model size from
one to five variables. Compute Cp and adjusted R2 for each model.

f. Which model is selected by minimum Cp? By adjusted R2? Are they the same?

6. The data in Table SE6 (page 649) consist of yield measurements from many runs of a chemical reaction. The quantities
varied were the temperature in ◦C (x1), the concentration of the primary reactant in % (x2), and the duration of the
reaction in hours (x3). The dependent variable (y) is the fraction converted to the desired product.

a. Fit the linear model y = β0 + β1x1 + β2x2 + β3x3 + ε.
b. Two of the variables in this model have coefficients significantly different from 0 at the 15% level. Fit a linear

regression model containing these two variables.
c. Compute the product (interaction) of the two variables referred to in part (b). Fit the model that contains the two

variables along with the interaction term.
d. Based on the results in parts (a) through (c), specify a model that appears to be good for predicting y from x1, x2,

and x3.
e. Might it be possible to construct an equally good or better model in another way?
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TABLE SE6 Data for Exercise 6

x1 x2 x3 y x1 x2 x3 y x1 x2 x3 y

50 19 4.0 27.464 70 27 10.0 38.241 70 31 6.0 35.091
90 38 8.0 49.303 80 32 6.5 34.635 60 23 7.0 34.372
70 28 6.5 37.461 50 26 9.0 44.963 50 19 6.0 26.481
70 25 5.5 36.478 50 22 4.0 30.012 60 22 7.5 36.739
60 26 6.5 33.776 80 34 6.5 41.077 70 30 9.5 36.185
70 29 5.0 35.092 50 21 10.0 41.964 70 25 8.0 38.725
60 23 5.5 31.307 80 34 7.5 44.152 50 17 9.5 32.707
70 28 5.5 37.863 60 22 2.5 29.901 70 28 7.0 32.563
80 34 6.5 41.109 60 24 5.0 26.706 60 25 5.5 36.006
70 26 4.5 28.605 60 23 4.0 28.602 70 25 5.5 33.127
70 26 8.0 35.917 60 29 6.5 33.401 70 29 5.0 32.941
70 26 8.0 33.489 70 27 7.5 41.324 70 29 6.5 33.650
60 30 5.0 31.381 70 32 4.0 24.000 50 19 4.5 34.192
60 26 7.0 38.067 60 25 5.5 38.158 60 24 6.5 24.115
70 25 7.5 31.278 60 26 3.5 25.412 60 26 7.5 37.614
70 31 5.5 32.172 70 28 7.5 37.671 60 28 6.0 29.612
60 27 7.5 36.109 60 22 5.5 27.979 60 22 6.5 39.106
60 23 6.0 31.535 60 22 4.5 31.079 60 28 7.5 36.974
60 23 6.0 33.875 60 27 7.0 30.778 60 25 4.0 28.334
60 24 9.0 37.637 60 25 6.0 28.221 50 20 8.5 33.767
70 31 5.5 40.263 60 23 6.5 30.495 60 26 9.5 38.358
80 32 6.0 36.694 60 27 7.5 38.710 60 25 4.0 33.381
60 26 10.0 45.620 80 31 4.5 27.581 60 29 4.0 37.672
70 28 4.5 38.571 80 36 4.5 38.705 70 30 6.0 36.615
60 24 4.0 19.163 60 22 7.5 40.525 60 26 8.0 39.351
50 21 7.0 31.962 70 28 4.5 29.420 60 24 6.5 38.611
50 17 2.0 23.147 60 26 7.0 37.898 60 25 6.0 36.460
80 34 8.5 40.278 60 25 7.0 40.340 60 24 5.5 23.449
70 27 5.5 32.725 60 24 5.0 27.891 60 24 5.0 23.027
60 24 2.5 28.735 70 32 7.5 38.259 70 26 8.0 31.372

7. In a study to predict temperature from air pressure in a piston–cylinder device, 19 measurements were made of
temperature in ◦F (y) and air pressure in psi (x). Three models were fit: the linear model y = β0 + β1x + ε, the
quadratic model y = β0 + β1x + β2x2 + ε, and the cubic model y = β0 + β1x + β2x2 + β3x3 + ε. The residuals and
fitted values for each model are presented in the following table. Plot the residuals versus the fitted values for each
model. For each model, state whether the model is appropriate, and explain.
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Linear Model Quadratic Model Cubic Model

Residual Fit Residual Fit Residual Fit

−56.2 125.6 11.2 58.2 3.3 66.1
−34.0 153.1 −7.4 126.5 −6.7 125.7

8.4 179.8 4.9 183.4 9.2 179.0
21.4 207.2 −3.6 232.2 0.9 227.8
28.6 234.7 −8.2 271.5 −5.9 269.2
46.9 260.9 8.1 299.7 7.3 300.5
47.2 288.1 15.7 319.6 12.1 323.2
8.5 314.4 −7.0 329.8 −11.7 334.6

−7.1 342.0 4.0 330.9 1.0 333.9
−47.1 139.3 −1.3 93.6 −4.1 96.4
−1.6 166.2 9.1 155.5 12.1 152.5
38.0 220.9 5.9 253.0 9.5 249.4
35.7 247.8 −3.2 286.7 −2.4 286.0
34.1 275.1 −2.1 311.3 −4.5 313.7
34.6 301.1 9.9 325.8 5.5 330.2
1.0 328.2 −2.4 331.6 −6.7 335.9

−23.2 355.3 4.1 327.9 3.5 328.5
−50.7 368.4 −5.0 322.7 −2.1 319.9
−72.9 382.1 −5.7 314.9 2.1 307.1

8. The voltage output (y) of a battery was measured over a range of temperatures (x) from 0◦C to 50◦C. The following
figure is a scatterplot of voltage versus temperature, with three fitted curves superimposed. The curves are the
linear model y = β0 + β1x + ε, the quadratic model y = β0 + β1x = β2x2 + ε, and the cubic model y =
β0 + β1x + β2x2 + β3x3 + ε. Based on the plot, which of the models should be used to describe the data? Explain.

i. The linear model.
ii. The quadratic model.

iii. The cubic model.
iv. All three appear to be about equally good.
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9. Refer to Exercise 2 in Section 8.2.

a. Using each of the three models in turn, predict the NOx emission when Speed = 1500, Torque = 400, and
HP = 150.

b. Using each of the three models in turn, predict the NOx emission when Speed = 1600, Torque = 300, and
HP = 100.

c. Using each of the three models in turn, predict the NOx emission when Speed = 1400, Torque = 200, and
HP = 75.

d. Which model or models appear to be the best? Choose one of the answers, and explain.
i. The model with Speed and Torque as independent variables is the best.

ii. The model with Speed and HP as independent variables is the best.
iii. The model with Speed, Torque, and HP as independent variables is the best.
iv. The model with Speed and Torque and the model with Speed and HP are about equally good; both are better

than the model with Speed, Torque, and HP.
v. The model with Speed and Torque and the model with Speed, Torque, and HP are about equally good; both

are better than the model with Speed and HP.
vi. The model with Speed and HP and the model with Speed, Torque, and HP are about equally good; both are

better than the model with Speed and Torque.
vii. All three models are about equally good.

10. This exercise illustrates a reason for the exceptions to the rule of parsimony (see page 623).

a. A scientist fits the model Y = β1C + ε, where C represents temperature in ◦C and Y can represent any outcome.
Note that the model has no intercept. Now convert ◦C to ◦F (C = 0.556F − 17.78). Does the model have an
intercept now?

b. Another scientist fits the model Y = β0 +β2C2, where C and Y are as in part (a). Note the model has a quadratic
term, but no linear term. Now convert ◦C to ◦F (C = 0.556F − 17.78). Does the model have a linear term now?

c. Assume that x and z are two different units that can be used to measure the same quantity, and that z = a + bx ,
where a �= 0. (◦C and ◦F are an example.) Show that the no-intercept models y = βx and y = βz cannot both
be correct, so that the validity of a no-intercept model depends on the zero point of the units for the independent
variable.

d. Let x and z be as in part (c). Show that the models y = β0 + β2x2 and y = β0 + β2z2 cannot both be correct,
and, thus, that the validity of such a model depends on the zero point of the units for the independent variable.

11. The data presented in the following table give the tensile strength in psi (y) of paper as a function of the percentage
of hardwood content (x).

Hardwood Tensile Hardwood Tensile
Content Strength Content Strength

1.0 26.8 7.0 52.1
1.5 29.5 8.0 56.1
2.0 36.6 9.0 63.1
3.0 37.8 10.0 62.0
4.0 38.2 11.0 62.5
4.5 41.5 12.0 58.0
5.0 44.8 13.0 52.9
5.5 44.7 14.0 38.2
6.0 48.5 15.0 32.9
6.5 50.1 16.0 21.9
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a. Fit polynomial models of degrees 1, 2, and so on to predict tensile strength from hardwood content. For each
one, use the F test to compare it with the model of degree one less. Stop when the P-value of the F test is greater
than 0.05. What is the degree of the polynomial model chosen by this method?

b. Using the model from part (a), estimate the hardwood concentration that produces the highest tensile strength.

12. The article “Enthalpies and Entropies of Transfer of Electrolytes and Ions from Water to Mixed Aqueous Organic
Solvents” (G. Hefter, Y. Marcus, and W. Waghorne, Chemical Reviews, 2002:2773–2836) presents measurements of
entropy and enthalpy changes for many salts under a variety of conditions. The following table presents the results for
entropies of transfer (in J/K · mol) from water to water + methanol of NaCl (table salt) over a range of concentrations
of methanol:

Concentration (%) Entropy

5 1
10 −1
20 −7
30 −17
40 −28
50 −39
60 −52
70 −65
80 −80
90 −98

100 −121

a. Fit polynomial models of degrees 1, 2, and 3 to predict the entropy (y) from the concentration (x).
b. Which degree polynomial is the most appropriate? Explain.
c. Using the most appropriate model, find 99% confidence intervals for the coefficients.

13. A paint company collects data on the durability of its paint and that of its competitors. They measured the lifetimes
of three samples of each type of paint in several American cities. The results are given in Table SE13.

TABLE SE13 Data for Exercise 13

Avg. Temp (◦F) Mean Annual Lifetime (years)

City January July Precipitation (in.) Sponsor's Paint Competitor's Paint

Atlanta, GA 41.9 78.6 48.6 11.5 10.7 12.3 10.8 11.1 10.2
Boston, MA 29.6 73.5 43.8 11.7 10.1 12.5 10.7 11.6 11.0
Kansas City, KS 28.4 80.9 29.3 12.3 13.4 12.8 11.8 12.2 11.3
Minneapolis, MN 11.2 73.1 26.4 10.5 9.9 11.2 10.4 9.6 9.2
Dallas, TX 45.0 86.3 34.2 11.2 10.6 12.0 10.6 10.1 11.4
Denver, CO 29.5 73.3 15.3 15.2 14.2 13.8 13.4 14.4 13.2
Miami, FL 67.1 82.4 57.5 8.7 7.9 9.4 8.1 8.6 7.6
Phoenix, AZ 52.3 92.3 7.1 11.1 11.8 12.4 10.9 10.1 9.9
San Francisco, CA 48.5 62.2 19.7 16.7 17.2 15.9 15.8 15.4 14.9
Seattle, WA 40.6 65.3 38.9 14.2 14.1 13.6 12.6 13.6 14.1
Washington, DC 35.2 78.9 39.0 12.6 11.5 12.0 11.9 10.9 11.4
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a. Prior testing suggests that the most important factors that influence the lifetimes of paint coatings are the minimum
temperature (estimated by the average January temperature), the maximum temperature (estimated by the average
July temperature), and the annual precipitation. Using these variables, and products and powers of these variables,
construct a good model for predicting the lifetime of the sponsor’s paint and a good model (perhaps different)
for predicting the lifetime of the competitor’s paint.

b. Using the models developed in part (a), compute the expected lifetimes for these two paints for someone living
in Cheyenne, Wyoming, where the January mean temperature is 26.1◦F, the July mean temperature is 68.9◦F,
and the mean annual precipitation is 13.3 in.

14. The article “Two Different Approaches for RDC Modelling When Simulating a Solvent Deasphalting Plant”
(J. Aparicio, M. Heronimo, et al., Computers and Chemical Engineering, 2002:1369–1377) reports flow rate (in
dm3/h) and specific gravity measurements for a sample of paraffinic hydrocarbons. The natural logs of the flow rates
(y) and the specific gravity measurements (x) are presented in the following table.

y x

−1.204 0.8139
−0.580 0.8171

0.049 0.8202
0.673 0.8233
1.311 0.8264
1.959 0.8294
2.614 0.8323
3.270 0.8352

a. Fit the linear model y = β0 + β1x + ε. For each coefficient, test the hypothesis that the coefficient is equal to 0.
b. Fit the quadratic model y = β0 + β1x + β2x2 + ε. For each coefficient, test the hypothesis that the coefficient is

equal to 0.
c. Fit the cubic model y = β0 +β1x +β2x2 + β3x3 + ε. For each coefficient, test the hypothesis that the coefficient

is equal to 0.
d. Which of the models in parts (a) through (c) is the most appropriate? Explain.
e. Using the most appropriate model, estimate the flow rate when the specific gravity is 0.83.

15. The article “Measurements of the Thermal Conductivity and Thermal Diffusivity of Polymer Melts with the Short-
Hot-Wire Method” (X. Zhang, W. Hendro, et al., International Journal of Thermophysics, 2002:1077–1090) reports
measurements of the thermal conductivity (in W ·m−1 · K −1) and diffusivity of several polymers at several temperatures
(in 1000◦C). The following table presents results for the thermal conductivity of polycarbonate.

Cond. Temp. Cond. Temp. Cond. Temp. Cond. Temp.

0.236 0.028 0.259 0.107 0.254 0.159 0.249 0.215
0.241 0.038 0.257 0.119 0.256 0.169 0.230 0.225
0.244 0.061 0.257 0.130 0.251 0.181 0.230 0.237
0.251 0.083 0.261 0.146 0.249 0.204 0.228 0.248

a. Denoting conductivity by y and temperature by x , fit the linear model y = β0 + β1x + ε. For each coefficient,
test the hypothesis that the coefficient is equal to 0.

b. Fit the quadratic model y = β0 + β1x + β2x2 + ε. For each coefficient, test the hypothesis that the coefficient is
equal to 0.
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c. Fit the cubic model y = β0 +β1x +β2x2 +β3x3 + ε. For each coefficient, test the hypothesis that the coefficient
is equal to 0.

d. Fit the quartic model y = β0 + β1x + β2x2 + β3x3 + β4x4 + ε. For each coefficient, test the hypothesis that the
coefficient is equal to 0.

e. Which of the models in parts (a) through (d) is the most appropriate? Explain.
f. Using the most appropriate model, estimate the conductivity at a temperature of 120◦C.

16. The article “Electrical Impedance Variation with Water Saturation in Rock” (Q. Su, Q. Feng, and Z. Shang, Geophysics,
2000:68–75) reports measurements of permeabilities (in 10−3μm2), porosities (in percent), and surface area per unit
volume of pore space (in 104 cm−1) for several rock samples. The results are presented in the following table, denoting
ln Permeability by y, porosity by x1, and surface area per unit volume by x2.

y x1 x2 y x1 x2

−0.27 19.83 9.55 0.58 10.52 20.03
2.58 17.93 10.97 −0.56 18.92 13.10
3.18 21.27 31.02 −0.49 18.55 12.78
1.70 18.67 28.12 −0.01 13.72 40.28

−1.17 7.98 52.35 −1.71 9.12 53.67
−0.27 10.16 32.82 −0.12 14.39 26.75
−0.53 17.86 57.66 −0.92 11.38 75.62
−0.29 13.48 21.10 2.18 16.59 9.95

4.94 17.49 9.15 4.46 16.77 7.88
1.94 14.18 11.72 2.11 18.55 88.10
3.74 23.88 5.43 −0.04 18.02 10.95

a. Fit the model y = β0 + β1x1 + β2x2 + β3x1x2 + ε. Compute the analysis of variance table.
b. Fit the model y = β0 + β1x1 + β2x2 + ε. Compute the analysis of variance table.
c. Fit the model y = β0 + β1x1 + ε. Compute the analysis of variance table.
d. Compute the F statistics for comparing the models in parts (b) and (c) with the model in part (a). Which model

do you prefer? Why?

17. The article “Groundwater Electromagnetic Imaging in Complex Geological and Topographical Regions: A Case
Study of a Tectonic Boundary in the French Alps” (S. Houtot, P. Tarits, et al., Geophysics, 2002:1048–1060) presents
measurements of concentrations of several chemicals (in mmol/L) and electrical conductivity (in 10−2 S/m) for several
water samples in various locations near Gittaz Lake in the French Alps. The results for magnesium and calcium are
presented in the following table. Two outliers have been deleted.

Conductivity Magnesium Calcium Conductivity Magnesium Calcium

2.77 0.037 1.342 1.10 0.027 0.487
3.03 0.041 1.500 1.11 0.039 0.497
3.09 0.215 1.332 2.57 0.168 1.093
3.29 0.166 1.609 3.27 0.172 1.480
3.37 0.100 1.627 2.28 0.044 1.093
0.88 0.031 0.382 3.32 0.069 1.754
0.77 0.012 0.364 3.93 0.188 1.974
0.97 0.017 0.467 4.26 0.211 2.103
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a. To predict conductivity (y) from the concentrations of magnesium (x1) and calcium (x2), fit the full quadratic
model y = β0 + β1x1 + β2x2 + β3x2

1 + β4x2
2 + β5x1x2 + ε. Compute the analysis of variance table.

b. Use the F test to investigate some submodels of the full quadratic model. State which model you prefer and why.
c. Use a best subsets routine to find the submodels with the maximum adjusted R2 and the minimum Mallows Cp.

Are they the same model? Comment on the appropriateness of this (these) model(s).

18. The article “Low-Temperature Heat Capacity and Thermodynamic Properties of 1,1,1-trifluoro-2, 2-dichloroethane”
(R. Varushchenko and A. Druzhinina, Fluid Phase Equilibria, 2002:109–119) presents measurements of the molar
heat capacity (y) of 1,1,1-trifluoro-2,2-dichloroethane (in J · K−1 · mol−1) at several temperatures (x) in units of
10 K. The results for every tenth measurement are presented in the following table.

y x y x

5.7037 1.044 60.732 6.765
16.707 1.687 65.042 7.798
29.717 2.531 71.283 9.241
41.005 3.604 75.822 10.214
48.822 4.669 80.029 11.266
55.334 5.722

a. Fit the simple linear model y = β0 + β1x + ε. Make a residual plot, and comment on the appropriateness of the
model.

b. Fit the simple linear model y = β0 + β1 ln x + ε. Make a residual plot, and comment on the appropriateness of
the model.

c. Compute the coefficients and their standard deviations for polynomials of degrees 2, 3, 4, and 5. Make residual
plots for each.

d. The article cited at the beginning of this exercise recommends the quartic model y = β0 + β1x + β2x2 + β3x3 +
β4x4 + ε. Does this seem reasonable? Why or why not?

19. The article “Lead Dissolution from Lead Smelter Slags Using Magnesium Chloride Solutions” (A. Xenidis,
T. Lillis, and I. Hallikia, The AusIMM Proceedings, 1999:37–44) discusses an investigation of leaching rates of
lead in solutions of magnesium chloride. The data in the following table (read from a graph) present the percentage
of lead that has been extracted at various times (in minutes).

Time (t) 4 8 16 30 60 120
Percent extracted (y) 1.2 1.6 2.3 2.8 3.6 4.4

a. The article suggests fitting a quadratic model y = β0 +β1t +β2t2 + ε to these data. Fit this model, and compute
the standard deviations of the coefficients.

b. The reaction rate at time t is given by the derivative dy/dt = β1 + 2β2t . Estimate the time at which the reaction
rate will be equal to 0.05.

c. The reaction rate at t = 0 is equal to β1. Find a 95% confidence interval for the reaction rate at t = 0.
d. Can you conclude that the reaction rate is decreasing with time? Explain.

20. The article “The Ball-on-Three-Ball Test for Tensile Strength: Refined Methodology and Results for Three Hohokam
Ceramic Types” (M. Beck, American Antiquity, 2002:558–569) discusses the strength of ancient ceramics. The
following table presents measured weights (in g), thicknesses (in mm), and loads (in kg) required to crack the
specimen for a collection of specimens dated between A.D. 1100 and 1300 from the Middle Gila River, in Arizona.
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Weight (x1) Thickness (x2) Load (y)

12.7 5.69 20
12.9 5.05 16
17.8 6.53 20
18.5 6.51 36
13.4 5.92 27
15.2 5.88 35
13.2 4.09 15
18.3 6.14 18
16.2 5.73 24
14.7 5.47 21
18.2 7.32 30
14.8 4.91 20
17.7 6.72 24
16.0 5.85 23
17.2 6.18 21
14.1 5.13 13
16.1 5.71 21

a. Fit the model y = β0 + β1x1 + β2x2 + ε.
b. Drop the variable whose coefficient has the larger P-value, and refit.
c. Plot the residuals versus the fitted values from the model in part (b). Are there any indications that the model is

not appropriate?

21. Piecewise linear model: Let x̃ be a known constant, and suppose that a dependent variable y is related to an independent
variable x1 as follows:

y =
{

β0 + β1x1 + ε if x1 ≤ x̃
β∗

0 + β∗
1 x1 + ε if x1 > x̃

In other words, y and x1 are linearly related, but different lines are appropriate depending on whether x1 ≤ x̃ or

x1 > x̃ . Define a new independent variable x2 by

x2 =
{

0 if x1 ≤ x̃
1 if x1 > x̃

Also define β2 = β∗
0 − β0 and β3 = β∗

1 − β1. Find a multiple regression model involving y, x1, x2, β0, β1, β2, and β3

that expresses the relationship described here.

22. The article “Seismic Hazard in Greece Based on Different Strong Ground Motion Parameters” (S. Koutrakis,
G. Karakaisis, et al., Journal of Earthquake Engineering, 2002:75–109) presents a study of seismic events in Greece
during the period 1978–1997. Of interest is the duration of “strong ground motion,” which is the length of time that the
acceleration of the ground exceeds a specified value. For each event, measurements of the duration of strong ground
motion were made at one or more locations. Table SE22 presents, for each of 121 such measurements, the data for
the duration of time y (in seconds) that the ground acceleration exceeded twice the acceleration due to gravity, the
magnitude m of the earthquake, the distance d (in km) of the measurement from the epicenter, and two indicators of
the soil type s1 and s2, defined as follows: s1 = 1 if the soil consists of soft alluvial deposits, s1 = 0 otherwise, and
s2 = 1 if the soil consists of tertiary or older rock, s2 = 0 otherwise. Cases where both s1 = 0 and s2 = 0 correspond
to intermediate soil conditions. The article presents repeated measurements at some locations, which we have not
included here.
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TABLE SE22 Data for Exercise 22

y m d s1 s2 y m d s1 s2 y m d s1 s2

8.82 6.4 30 1 0 4.31 5.3 6 0 0 5.74 5.6 15 0 0
4.08 5.2 7 0 0 28.27 6.6 31 1 0 5.13 6.9 128 1 0

15.90 6.9 105 1 0 17.94 6.9 33 0 0 3.20 5.1 13 0 0
6.04 5.8 15 0 0 3.60 5.4 6 0 0 7.29 5.2 19 1 0
0.15 4.9 16 1 0 7.98 5.3 12 1 0 0.02 6.2 68 1 0
5.06 6.2 75 1 0 16.23 6.2 13 0 0 7.03 5.4 10 0 0
0.01 6.6 119 0 1 3.67 6.6 85 1 0 2.17 5.1 45 0 1
4.13 5.1 10 1 0 6.44 5.2 21 0 0 4.27 5.2 18 1 0
0.02 5.3 22 0 1 10.45 5.3 11 0 1 2.25 4.8 14 0 1
2.14 4.5 12 0 1 8.32 5.5 22 1 0 3.10 5.5 15 0 0
4.41 5.2 17 0 0 5.43 5.2 49 0 1 6.18 5.2 13 0 0

17.19 5.9 9 0 0 4.78 5.5 1 0 0 4.56 5.5 1 0 0
5.14 5.5 10 1 0 2.82 5.5 20 0 1 0.94 5.0 6 0 1
0.05 4.9 14 1 0 3.51 5.7 22 0 0 2.85 4.6 21 1 0

20.00 5.8 16 1 0 13.92 5.8 34 1 0 4.21 4.7 20 1 0
12.04 6.1 31 0 0 3.96 6.1 44 0 0 1.93 5.7 39 1 0

0.87 5.0 65 1 0 6.91 5.4 16 0 0 1.56 5.0 44 1 0
0.62 4.8 11 1 0 5.63 5.3 6 1 0 5.03 5.1 2 1 0
8.10 5.4 12 1 0 0.10 5.2 21 1 0 0.51 4.9 14 1 0
1.30 5.8 34 1 0 5.10 4.8 16 1 0 13.14 5.6 5 1 0

11.92 5.6 5 0 0 16.52 5.5 15 1 0 8.16 5.5 12 1 0
3.93 5.7 65 1 0 19.84 5.7 50 1 0 10.04 5.1 28 1 0
2.00 5.4 27 0 1 1.65 5.4 27 1 0 0.79 5.4 35 0 0
0.43 5.4 31 0 1 1.75 5.4 30 0 1 0.02 5.4 32 1 0

14.22 6.5 20 0 1 6.37 6.5 90 1 0 0.10 6.5 61 0 1
0.06 6.5 72 0 1 2.78 4.9 8 0 0 5.43 5.2 9 0 0
1.48 5.2 27 0 0 2.14 5.2 22 0 0 0.81 4.6 9 0 0
3.27 5.1 12 0 0 0.92 5.2 29 0 0 0.73 5.2 22 0 0
6.36 5.2 14 0 0 3.18 4.8 15 0 0 11.18 5.0 8 0 0
0.18 5.0 19 0 0 1.20 5.0 19 0 0 2.54 4.5 6 0 0
0.31 4.5 12 0 0 4.37 4.7 5 0 0 1.55 4.7 13 0 1
1.90 4.7 12 0 0 1.02 5.0 14 0 0 0.01 4.5 17 0 0
0.29 4.7 5 1 0 0.71 4.8 4 1 0 0.21 4.8 5 0 1
6.26 6.3 9 1 0 4.27 6.3 9 0 1 0.04 4.5 3 1 0
3.44 5.4 4 1 0 3.25 5.4 4 0 1 0.01 4.5 1 1 0
2.32 5.4 5 1 0 0.90 4.7 4 1 0 1.19 4.7 3 1 0
1.49 5.0 4 1 0 0.37 5.0 4 0 1 2.66 5.4 1 1 0
2.85 5.4 1 0 1 21.07 6.4 78 0 1 7.47 6.4 104 0 0
0.01 6.4 86 0 1 0.04 6.4 105 0 1 30.45 6.6 51 1 0
9.34 6.6 116 0 1 15.30 6.6 82 0 1 12.78 6.6 65 1 0

10.47 6.6 117 0 0

Use the data in Table SE22 to construct a linear model to predict duration y from some or all of the variables
m, d , s1, and s2. Be sure to consider transformations of the variables, as well as powers of and interactions between
the independent variables. Describe the steps taken to construct your model. Plot the residuals versus the fitted
values to verify that your model satisfies the necessary assumptions. In addition, note that the data are presented in
chronological order, reading down the columns. Make a plot to determine whether time should be included as an
independent variable.
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23. The article “Estimating Resource Requirements at Conceptual Design Stage Using Neural Networks” (A. Elazouni,
I. Nosair, et al., Journal of Computing in Civil Engineering, 1997:217–223) suggests that certain resource require-
ments in the construction of concrete silos can be predicted from a model. These include the quantity of concrete in
m3 (y), the number of crew-days of labor (z), or the number of concrete mixer hours (w) needed for a particular job.
Table SE23A defines 23 potential independent variables that can be used to predict y, z, or w. Values of the de-
pendent and independent variables, collected on 28 construction jobs, are presented in Table SE23B (page 659) and
Table SE23C (page 660). Unless otherwise stated, lengths are in meters, areas in m2, and volumes in m3.

a. Using best subsets regression, find the model that is best for predicting y according to the adjusted R2

criterion.
b. Using best subsets regression, find the model that is best for predicting y according to the minimum Mallows

Cp criterion.
c. Find a model for predicting y using stepwise regression. Explain the criterion you are using to determine which

variables to add to or drop from the model.
d. Using best subsets regression, find the model that is best for predicting z according to the adjusted R2

criterion.
e. Using best subsets regression, find the model that is best for predicting z according to the minimum Mallows Cp

criterion.
f. Find a model for predicting z using stepwise regression. Explain the criterion you are using to determine which

variables to add to or drop from the model.
g. Using best subsets regression, find the model that is best for predicting w according to the adjusted R2

criterion.
h. Using best subsets regression, find the model that is best for predicting w according to the minimum Mallows

Cp criterion.
i. Find a model for predicting w using stepwise regression. Explain the criterion you are using to determine which

variables to add to or drop from the model.

TABLE SE23A Descriptions of Variables for Exercise 23

x1 Number of bins x13 Breadth-to-thickness ratio
x2 Maximum required concrete per hour x14 Perimeter of complex
x3 Height x15 Mixer capacity
x4 Sliding rate of the slipform (m/day) x16 Density of stored material
x5 Number of construction stages x17 Waste percent in reinforcing steel
x6 Perimeter of slipform x18 Waste percent in concrete
x7 Volume of silo complex x19 Number of workers in concrete crew
x8 Surface area of silo walls x20 Wall thickness (cm)
x9 Volume of one bin x21 Number of reinforcing steel crews
x10 Wall-to-floor areas x22 Number of workers in forms crew
x11 Number of lifting jacks x23 Length-to-breadth ratio
x12 Length-to-thickness ratio
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TABLE SE23B Data for Exercise 23

y z w x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1,850 9,520 476 33 4.5 19.8 4.0 4 223 11,072 14,751 335 26.1 72
932 4,272 268 24 3.5 22.3 4.0 2 206 2,615 8,875 109 27.9 64
556 3,296 206 18 2.7 20.3 5.0 2 130 2,500 5,321 139 28.4 48
217 1,088 68 9 3.2 11.0 4.5 1 152 1,270 1,675 141 11.6 40
199 2,587 199 2 1.0 23.8 5.0 1 79 1,370 7,260 685 17.1 21

56 1,560 120 2 0.5 16.6 5.0 1 43 275 1,980 137 22.0 15
64 1,534 118 2 0.5 18.4 5.0 1 43 330 825 165 23.6 12

397 2,660 133 14 3.0 16.0 4.0 1 240 5,200 18,525 371 12.8 74
1,926 11,020 551 42 3.5 16.0 4.0 4 280 15,500 3,821 369 12.8 88

724 3,090 103 15 7.8 15.0 3.5 1 374 4,500 5,600 300 12.2 114
711 2,860 143 25 5.0 16.0 3.5 1 315 2,100 6,851 87 24.8 60

1,818 9,900 396 28 4.8 22.0 4.0 3 230 13,500 13,860 482 17.6 44
619 2,626 202 12 3.0 18.0 5.0 1 163 1,400 2,935 115 26.4 36
375 2,060 103 12 5.8 15.0 3.5 1 316 4,200 4,743 350 11.8 93
214 1,600 80 12 3.5 15.0 4.5 1 193 1,300 2,988 105 20.6 40
300 1,820 140 6 2.1 14.0 5.0 1 118 800 1,657 133 17.0 24
771 3,328 256 30 3.0 14.0 5.0 3 165 2,800 2,318 92 19.9 43
189 1,456 91 12 4.0 17.0 4.5 1 214 2,400 3,644 200 13.6 53
494 4,160 320 27 3.3 20.0 4.5 3 178 6,750 3,568 250 14.0 44
389 1,520 95 6 4.1 19.0 4.0 1 158 2,506 3,011 401 11.8 38
441 1,760 110 6 4.0 22.0 5.0 1 154 2,568 3,396 428 14.1 35
768 3,040 152 12 5.0 24.0 4.0 1 275 5,376 6,619 448 14.5 65
797 3,180 159 9 5.0 25.0 4.0 1 216 4,514 5,400 501 14.8 52
261 1,131 87 3 3.0 17.5 4.0 1 116 1,568 2,030 522 10.5 24
524 1,904 119 6 4.4 18.8 4.0 1 190 3,291 3,572 548 9.8 42

1,262 5,070 169 15 7.0 24.6 3.5 1 385 8,970 9,490 598 12.9 92
839 7,080 354 9 5.2 25.5 4.0 1 249 5,845 6,364 649 13.9 60

1,003 3,500 175 9 5.7 27.7 4.0 1 246 6,095 6,248 677 15.1 60
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TABLE SE23C Data for Exercise 23

x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23

19.6 17.6 745 0.50 800 6.00 5.50 10 24 7 20 1.12
16.0 16.0 398 0.25 600 7.00 5.00 10 20 6 20 1.00
15.3 13.5 262 0.25 850 7.00 4.50 8 20 5 18 1.13
17.0 13.8 152 0.25 800 5.00 4.00 8 25 6 16 1.23
28.1 27.5 79 0.15 800 7.50 3.50 5 20 4 14 1.02
20.3 20.0 43 0.15 600 5.00 4.00 5 15 1 12 1.02
24.0 18.3 43 0.15 600 5.05 4.25 5 15 2 12 1.31
27.5 23.0 240 0.25 600 6.00 4.00 8 20 7 22 1.20
27.5 23.0 1121 0.25 800 8.00 4.00 10 20 9 24 1.20
21.2 18.4 374 0.75 800 5.00 3.50 10 25 12 24 1.15
10.6 10.0 315 0.50 800 6.00 4.00 10 25 11 20 1.06
20.0 20.0 630 0.50 800 7.00 5.00 10 25 9 18 1.00
13.7 13.9 163 0.25 600 6.00 4.50 8 18 11 18 1.20
20.4 20.4 316 0.50 800 6.50 3.50 10 25 6 14 1.00
13.6 10.2 193 0.50 800 5.00 3.50 10 25 4 14 1.33
13.6 12.8 118 0.25 800 5.00 3.75 8 25 6 14 1.06
13.6 9.6 424 0.25 800 5.00 3.75 8 25 6 14 1.42
18.5 16.0 214 0.50 600 6.00 4.00 8 20 4 14 1.15
19.5 16.0 472 0.25 600 6.50 4.50 10 20 3 14 1.20
21.0 12.8 158 0.50 800 5.50 3.50 6 25 8 14 1.30
20.8 16.0 154 0.50 800 7.00 4.00 8 36 8 14 1.35
23.4 17.3 275 0.50 600 7.50 5.50 8 22 11 16 1.40
16.8 15.4 216 0.50 800 8.00 5.50 8 28 12 16 1.10
26.8 17.8 116 0.25 850 6.50 3.00 6 25 5 14 1.50
23.6 16.1 190 0.50 850 6.50 4.50 5 28 9 16 1.45
23.6 16.6 385 0.75 800 8.00 6.50 15 25 16 20 1.43
25.6 16.0 249 0.50 600 8.00 5.50 12 25 13 16 1.60
22.3 14.3 246 0.50 800 8.50 6.00 8 28 16 16 1.55

24. The article referred to in Exercise 23 presents values for the dependent and independent variables for 10 additional
construction jobs. These values are presented in Tables SE24A and SE24B (page 661).

a. Using the equation constructed in part (a) of Exercise 23, predict the concrete quantity (y) for each of these 10
jobs.

b. Denoting the predicted values by ŷ1, . . . , ŷ10 and the observed values by y1, . . . , y10, compute the quantities
yi − ŷi . These are the prediction errors.

c. Now compute the fitted values ŷ1, . . . , ŷ28 from the data in Exercise 23. Using the observed values y1, . . . , y28

from those data, compute the residuals yi − ŷi .
d. On the whole, which are larger, the residuals or the prediction errors? Why will this be true in general?
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TABLE SE24A Data for Exercise 24

y z w x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1,713 3,400 170 6 4.2 27.0 4.0 1 179 4,200 4,980 700.0 15.1 42
344 1,616 101 3 3.4 20.0 5.0 1 133 2,255 2,672 751.5 16.7 30
474 2,240 140 3 3.4 28.0 5.0 1 116 2,396 3,259 798.8 17.0 24

1,336 5,700 190 15 7.0 26.0 3.5 1 344 12,284 9,864 818.9 16.0 86
1,916 9,125 365 18 5.6 26.5 3.5 2 307 15,435 8,140 852.5 12.4 68
1,280 11,980 599 9 2.1 28.3 4.0 1 283 8,064 8,156 896.0 14.0 68
1,683 6,390 213 12 7.9 29.0 3.5 1 361 11,364 10,486 947.0 13.4 87

901 2,656 166 6 5.4 29.5 4.5 1 193 5,592 5,696 932.0 14.8 39
460 2,943 150 3 3.0 30.0 5.0 1 118 2,943 3,540 981.0 17.2 26
826 3,340 167 6 4.9 29.8 4.5 1 211 6,000 6,293 1,000.0 15.1 50

TABLE SE24B Data for Exercise 24

x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23

22.5 14.8 179 0.50 850 8.0 5.0 6 28 11 16 1.52
32.0 18.8 133 0.25 800 7.5 3.0 10 25 7 14 1.70
24.6 15.0 116 0.25 800 9.0 4.0 10 28 9 14 1.65
20.2 21.1 344 0.75 850 8.5 6.5 12 28 19 18 1.72
30.0 13.2 540 0.50 600 6.5 7.0 15 25 12 18 1.75
25.3 14.3 283 0.25 800 7.5 6.5 14 30 20 16 1.80
22.7 14.0 361 0.75 800 9.0 7.0 10 30 25 18 1.42
20.5 16.0 193 0.50 850 9.5 5.5 10 30 15 16 1.20
26.0 20.1 118 0.25 600 10.0 4.0 10 25 8 14 1.30
32.0 20.0 211 0.50 600 9.5 5.0 10 25 13 16 1.90
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Factorial
Experiments

Introduction

Experiments are essential to the development and improvement of engineering and
scientific methods. Only through experimentation can different variants of a method
be compared to see which are most effective. To be useful, an experiment must be de-
signed properly, and the data it produces must be analyzed correctly. In this chapter we
will discuss the design of and the analysis of data from a class of experiments known as
factorial experiments.

9.1 One-Factor Experiments

We begin with an example. The article “An Investigation of the CaCO3-CaF2-K2SiO3-
SiO2-Fe Flux System Using the Submerged Arc Welding Process on HSLA-100 and
AISI-1081 Steels” (G. Fredrickson, M.S. Thesis, Colorado School of Mines, 1992)
describes an experiment in which welding fluxes with differing chemical compositions
were prepared. Several welds using each flux were made on AISI-1018 steel base metal.
The results of hardness measurements, on the Brinell scale, of five welds using each of
four fluxes are presented in Table 9.1.

TABLE 9.1 Brinell hardness of welds using four different fluxes

Flux Sample Values Sample Mean Sample Standard Deviation

A 250 264 256 260 239 253.8 9.7570
B 263 254 267 265 267 263.2 5.4037
C 257 279 269 273 277 271.0 8.7178
D 253 258 262 264 273 262.0 7.4498



Navidi-3810214 book November 11, 2013 14:22

9.1 One-Factor Experiments 663

Figure 9.1 presents dotplots for the hardnesses using the four fluxes. Each sample
mean is marked with an “X.” It is clear that the sample means differ. In particular, the
welds made using flux C have the largest sample mean and those using flux A have the
smallest. Of course, there is uncertainty in the sample means, and the question is whether
the sample means differ from each other by a greater amount than could be accounted
for by uncertainty alone. Another way to phrase the question is this: Can we conclude
that there are differences in the population means among the four flux types?
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FIGURE 9.1 Dotplots for each sample in Table 9.1. Each sample mean is marked with
an “X.” The sample means differ somewhat, but the sample values overlap considerably.

This is an example of a factorial experiment. In general a factorial experiment in-
volves several variables. One variable is the response variable, which is sometimes
called the outcome variable or the dependent variable. The other variables are called
factors. The question addressed by a factorial experiment is whether varying the levels
of the factors produces a difference in the mean of the response variable. In the exper-
iment described in Table 9.1, the hardness is the response, and there is one factor: flux
type. Since there is only one factor, this is a one-factor experiment. There are four
different values for the flux-type factor in this experiment. These different values are
called the levels of the factor and can also be called treatments. Finally, the objects
upon which measurements are made are called experimental units. The units assigned
to a given treatment are called replicates. In the preceding experiment, the welds are the
experimental units, and there are five replicates for each treatment.

In this welding experiment, the four particular flux compositions were chosen
deliberately by the experimenter, rather than at random from a larger population of
fluxes. Such an experiment is said to follow a fixed effects model. In some experiments,
treatments are chosen at random from a population of possible treatments. In this case
the experiment is said to follow a random effects model. The methods of analysis for
these two models are essentially the same, although the conclusions to be drawn from
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them differ. We will focus on fixed effects models. Later in this section, we will discuss
some of the differences between fixed and random effects models.

Completely Randomized Experiments
In this welding experiment, a total of 20 welds were produced, five with each of the
four fluxes. Each weld was produced on a different steel base plate. Therefore, to run
the experiment, the experimenter had to choose, from a total of 20 base plates, a group
of 5 to be welded with flux A, another group of 5 to be welded with flux B, and so
on. The best way to assign the base plates to the fluxes is at random. In this way, the
experimental design will not favor any one treatment over another. For example, the
experimenter could number the plates from 1 to 20, and then generate a random ordering
of the integers from 1 to 20. The plates whose numbers correspond to the first five
numbers on the list are assigned to flux A, and so on. This is an example of a completely
randomized experiment.

Definition
A factorial experiment in which experimental units are assigned to treatments at
random, with all possible assignments being equally likely, is called a completely
randomized experiment.

In many situations, the results of an experiment can be affected by the order in
which the observations are taken. For example, the performance of a machine used to
make measurements may change over time, due, for example, to calibration drift, or
to warm-up effects. In cases like this, the ideal procedure is to take the observations
in random order. This requires switching from treatment to treatment as observations
are taken, rather than running all the observations that correspond to a given treatment
consecutively. In some cases changing treatments involves considerable time or expense,
so it is not feasible to switch back and forth. In these cases, the treatments should be run
in a random order, with all the observations corresponding to the first randomly chosen
treatment being run first, and so on.

In a completely randomized experiment, it is appropriate to think of each treatment
as representing a population, and the responses observed for the units assigned to that
treatment as a simple random sample from that population. The data from the experiment
thus consist of several random samples, each from a different population. The population
means are called treatment means. The questions of interest concern the treatment
means—whether they are all equal, and if not, which ones are different, how big the
differences are, and so on.

One-Way Analysis of Variance
To make a formal determination as to whether the treatment means differ, a hypothesis
test is needed. We begin by introducing the notation. We have I samples, each from a
different treatment. The treatment means are denoted

μ1, . . . , μI
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It is not necessary that the sample sizes be equal, although it is desirable, as we will
discuss later in this section. The sample sizes are denoted

J1, . . . , JI

The total number in all the samples combined is denoted by N .

N = J1 + J2 + · · · + JI

The hypotheses we wish to test are

H0 : μ1 = · · · = μI versus H1 : two or more of the μi are different

If there were only two samples, we could use the two-sample t test (Section 6.7) to test
the null hypothesis. Since there are more than two samples, we use a method known
as one-way analysis of variance (ANOVA). To define the test statistic for one-way
ANOVA, we first develop the notation for the sample observations. Since there are
several samples, we use a double subscript to denote the observations. Specifically, we
let Xi j denote the j th observation in the i th sample. The sample mean of the i th sample is
denoted Xi..

Xi. =
∑Ji

j=1 Xi j

Ji
(9.1)

The sample grand mean, denoted X .., is the average of all the sampled items taken
together:

X .. =
∑I

i=1

∑Ji
j=1 Xi j

N
(9.2)

With a little algebra, it can be shown that the sample grand mean is also a weighted
average of the sample means:

X .. =
∑I

i=1 Ji Xi.

N
(9.3)

Example
9.1 For the data in Table 9.1, find I , J1, . . . , JI , N , X23, X3., X ...

Solution
There are four samples, so I = 4. Each sample contains five observations, so
J1 = J2 = J3 = J4 = 5. The total number of observations is N = 20. The quantity
X23 is the third observation in the second sample, which is 267. The quantity X3.

is the sample mean of the third sample. This value is X3. = 271.0. Finally, we use
Equation (9.3) to compute the sample grand mean X ...

X .. = (5)(253.8) + (5)(263.2) + (5)(271.0) + (5)(262.0)

20
= 262.5
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Figure 9.2 presents the idea behind one-way ANOVA. The figure illustrates several
hypothetical samples from different treatments, along with their sample means and the
sample grand mean. The sample means are spread out around the sample grand mean.
One-way ANOVA provides a way to measure this spread. If the sample means are highly
spread out, then it is likely that the treatment means are different, and we will reject H0.

X1.
� X2.

� X..
� X3.

� X4.
�

FIGURE 9.2 The variation of the sample means around the sample grand mean can
be due both to random uncertainty and to differences among the treatment means. The
variation within a given sample around its own sample mean is due only to random
uncertainty.

The variation of the sample means around the sample grand mean is measured by a
quantity called the treatment sum of squares (SSTr for short), which is given by

SSTr =
I∑

i=1

Ji (Xi. − X ..)
2 (9.4)

Each term in SSTr involves the distance from the sample means to the sample grand
mean. Note that each squared distance is multiplied by the sample size corresponding
to its sample mean, so that the means for the larger samples count more. SSTr provides
an indication of how different the treatment means are from each other. If SSTr is large,
then the sample means are spread out widely, and it is reasonable to conclude that the
treatment means differ and to reject H0. If on the other hand SSTr is small, then the
sample means are all close to the sample grand mean and therefore to each other, so it is
plausible that the treatment means are equal.

An equivalent formula for SSTr, which is a bit easier to compute by hand, is

SSTr =
I∑

i=1

Ji Xi.
2 − N X ..

2
(9.5)

In order to determine whether SSTr is large enough to reject H0, we compare it to
another sum of squares, called the error sum of squares (SSE for short). SSE measures
the variation in the individual sample points around their respective sample means. This
variation is measured by summing the squares of the distances from each point to its
own sample mean. SSE is given by

SSE =
I∑

i=1

Ji∑
j=1

(Xi j − Xi.)
2 (9.6)
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The quantities Xi j − Xi. are called the residuals, so SSE is the sum of the squared
residuals. SSE, unlike SSTr, depends only on the distances of the sample points from
their own means and is not affected by the location of treatment means relative to one
another. SSE therefore measures only the underlying random variation in the process
being studied. It is analogous to the error sum of squares in regression.

An equivalent formula for SSE, which is a bit easier to compute by hand, is

SSE =
I∑

i=1

Ji∑
j=1

X2
i j −

I∑
i=1

Ji Xi.
2

(9.7)

Another equivalent formula for SSE is based on the sample variances. Let s2
i denote the

sample variance of the i th sample. Then

s2
i =

∑Ji
j=1(Xi j − Xi.)

2

Ji − 1
(9.8)

It follows from Equation (9.8) that
∑Ji

j=1(Xi j − Xi.)
2 = (Ji − 1)s2

i . Substituting into
Equation (9.6) yields

SSE =
I∑

i=1

(Ji − 1)s2
i (9.9)

Example
9.2 For the data in Table 9.1, compute SSTr and SSE.

Solution
The sample means are presented in Table 9.1. They are

X1. = 253.8 X2. = 263.2 X3. = 271.0 X4. = 262.0

The sample grand mean was computed in Example 9.1 to be X .. = 262.5. We now
use Equation (9.4) to calculate SSTr.

SSTr = 5(253.8−262.5)2+5(263.2−262.5)2+5(271.0−262.5)2+5(262.0−262.5)2

= 743.4

To compute SSE we will use Equation (9.9), since the sample standard deviations
si have already been presented in Table 9.1.

SSE = (5 − 1)(9.7570)2 + (5 − 1)(5.4037)2 + (5 − 1)(8.7178)2 + (5 − 1)(7.4498)2

= 1023.6

We can use SSTr and SSE to construct a test statistic, provided the following two
assumptions are met.
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Assumptions for One-Way ANOVA
The standard one-way ANOVA hypothesis tests are valid under the following
conditions:

1. The treatment populations must be normal.

2. The treatment populations must all have the same variance, which we
will denote by σ 2.

Before presenting the test statistic, we will explain how it works. If the two assump-
tions for one-way ANOVA are approximately met, we can compute the means of SSE
and SSTr. The mean of SSTr depends on whether H0 is true, because SSTr tends to be
smaller when H0 is true and larger when H0 is false. The mean of SSTr satisfies the
condition

μSSTr = (I − 1)σ 2 when H0 is true (9.10)

μSSTr > (I − 1)σ 2 when H0 is false (9.11)

The likely size of SSE, and thus its mean, does not depend on whether H0 is true. The
mean of SSE is given by

μSSE = (N − I )σ 2 whether or not H0 is true (9.12)

Derivations of Equations (9.10) and (9.12) are given at the end of this section.
The quantities I − 1 and N − I are the degrees of freedom for SSTr and SSE,

respectively. When a sum of squares is divided by its degrees of freedom, the quantity
obtained is called a mean square. The treatment mean square is denoted MSTr, and
the error mean square is denoted MSE. They are defined by

MSTr = SSTr

I − 1
MSE = SSE

N − I
(9.13)

It follows from Equations (9.10) through (9.13) that

μMSTr = σ 2 when H0 is true (9.14)

μMSTr > σ 2 when H0 is false (9.15)

μMSE = σ 2 whether or not H0 is true (9.16)

Equations (9.14) and (9.16) show that when H0 is true, MSTr and MSE have the
same mean. Therefore, when H0 is true, we would expect their quotient to be near 1. This
quotient is in fact the test statistic. The test statistic for testing H0 : μ1 = · · · = μI is

F = MSTr

MSE
(9.17)

When H0 is true, the numerator and denominator of F are on average the same size, so
F tends to be near 1. In fact, when H0 is true, this test statistic has an F distribution with
I − 1 and N − I degrees of freedom, denoted FI−1,N−I . When H0 is false, MSTr tends
to be larger, but MSE does not, so F tends to be greater than 1.
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Summary
The F test for One-Way ANOVA
To test H0 : μ1 = · · · = μI versus H1 : two or more of the μi are different:

1. Compute SSTr =
I∑

i=1

Ji (Xi. − X ..)
2 =

I∑
i=1

Ji Xi.
2 − N X ..

2
.

2. Compute SSE =
I∑

i=1

Ji∑
j=1

(Xi j − Xi.)
2 =

I∑
i=1

Ji∑
j=1

X2
i j −

I∑
i=1

Ji Xi.
2

=
I∑

i=1

(Ji − 1)s2
i .

3. Compute MSTr = SSTr

I − 1
and MSE = SSE

N − I
.

4. Compute the test statistic: F = MSTr

MSE
.

5. Find the P-value by consulting the F table (Table A.8 in Appendix A)
with I − 1 and N − I degrees of freedom.

We now apply the method of analysis of variance to the example with which we
introduced this section.

Example
9.3 For the data in Table 9.1, compute MSTr, MSE, and F . Find the P-value for testing

the null hypothesis that all the means are equal. What do you conclude?

Solution
From Example 9.2, SSTr = 743.4 and SSE = 1023.6. We have I = 4 samples and
N = 20 observations in all the samples taken together. Using Equation (9.13),

MSTr = 743.4

4 − 1
= 247.8 MSE = 1023.6

20 − 4
= 63.975

The value of the test statistic F is therefore

F = 247.8

63.975
= 3.8734

To find the P-value, we consult the F table (Table A.8). The degrees of freedom are
4 − 1 = 3 for the numerator and 20 − 4 = 16 for the denominator. Under H0, F has
an F3,16 distribution. Looking at the F table under 3 and 16 degrees of freedom, we
find that the upper 5% point is 3.24 and the upper 1% point is 5.29. Therefore the
P-value is between 0.01 and 0.05 (see Figure 9.3 on page 670; a computer software
package gives a value of 0.029 accurate to two significant digits). It is reasonable to
conclude that the population means are not all equal, and, thus, that flux composition
does affect hardness.
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0 3.873.24 5.29

5% 

1% 

FIGURE 9.3 The observed value of the test statistic is 3.87. The upper 5% point of the
F3,16 distribution is 3.24. The upper 1% point of the F3,16 distribution is 5.29. Therefore
the P-value is between 0.01 and 0.05. A computer software package gives a value
of 0.029.

Confidence Intervals for the Treatment Means
The observations on the i th treatment are assumed to be a simple random sample from a
normal population with mean μi and variance σ 2. To construct a confidence interval for
μi , the first step is to estimate the population variance σ 2. One way to do this would be
to use the sample variance s2

i of the observations on the i th treatment. However, since
we assume that all observations for all treatments have the same variance, it is better to
combine all the sample variances into one “pooled” estimate. To do this, note that SSE is
a weighted sum of the sample variances (Equation 9.9) and MSE is the weighted average
(Equation 9.13). The quantity MSE is therefore the pooled estimate of the variance σ 2.
Since Xi. is the sample mean of Ji observations, the variance of Xi. is σ 2/Ji , estimated
with MSE/Ji . The number of degrees of freedom for MSE is N − I . The quantity

Xi. − μi√
MSE/Ji

has a Student’s t distribution with N − I degrees of freedom. A confidence interval for
μi can therefore be constructed by the method described in Section 5.3.

A level 100(1 − α)% confidence interval for μi is given by

Xi. ± tN−I, α/2

√
MSE

Ji
(9.18)

Example
9.4 Find a 95% confidence interval for the mean hardness of welds produced with flux A.

Solution
From Table 9.1, X1. = 253.8. The value of MSE was computed in Example 9.3 to
be 63.975. There are I = 4 treatments, J1 = 5 observations for flux A, and N = 20
observations altogether. From the Student’s t table we obtain t16, .025 = 2.120. The
95% confidence interval is therefore
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253.8 ± 2.120

√
63.975

5
= 253.8 ± 7.6

The ANOVA Table
The results of an analysis of variance are usually summarized in an analysis of variance
(ANOVA) table. This table is much like the analysis of variance table produced in multiple
regression. The following output (from MINITAB) shows the analysis of variance for
the weld data presented in Table 9.1.

One-way ANOVA: A, B, C, D

Source DF SS MS F P
Factor 3 743.40 247.800 3.87 0.029
Error 16 1023.60 63.975
Total 19 1767.00

S = 7.998 R-Sq = 42.07% R-Sq(adj) = 31.21%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev ----+---------+---------+---------+-----
A 5 253.80 9.76 (-------∗------)
B 5 263.20 5.40 (------∗-------)
C 5 271.00 8.72 (-------∗-------)
D 5 262.00 7.45 (-------∗-------)

----+---------+---------+---------+-----
250 260 270 280

Pooled StDev = 8.00

In the ANOVA table, the column labeled “DF” presents the number of degrees of
freedom for both the treatment (“Factor”) and error (“Error”) sum of squares. The column
labeled “SS” presents SSTr (in the row labeled “Factor”) and SSE (in the row labeled
“Error”). The row labeled “Total” contains the total sum of squares, which is the sum
of SSTr and SSE. The column labeled “MS” presents the mean squares MSTr and MSE.
The column labeled “F” presents the F statistic for testing the null hypothesis that all
the population means are equal. Finally, the column labeled “P” presents the P-value
for the F test. Below the ANOVA table, the value “S” is the pooled estimate of the error
standard deviation σ , computed by taking the square root of MSE. The quantity “R-sq”
is R2, the coefficient of determination, which is equal to the quotient SSTr/SST. This
is analogous to the multiple regression situation (see Equation 8.9 in Section 8.1). The
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value “R-Sq(adj)” is the adjusted R2, equal to R2 − [(I − 1)/(N − I )](1 − R2), again
analogous to multiple regression. The quantities R2 and adjusted R2 are not used as
much in analysis of variance as they are in multiple regression. Finally, sample means
and standard deviations are presented for each treatment group, along with a graphic that
illustrates a 95% confidence interval for each treatment mean.

Example
9.5 In the article “Review of Development and Application of CRSTER and MPTER

Models” (R. Wilson, Atmospheric Environment, 1993:41–57), several measurements
of the maximum hourly concentrations (in μg/m3) of SO2 are presented for each of
four power plants. The results are as follows (two outliers have been deleted):

Plant 1: 438 619 732 638
Plant 2: 857 1014 1153 883 1053
Plant 3: 925 786 1179 786
Plant 4: 893 891 917 695 675 595

The following output (from MINITAB) presents results for a one-way ANOVA. Can
you conclude that the maximum hourly concentrations differ among the plants?

One-way ANOVA: Plant 1, Plant 2, Plant 3, Plant 4

Source DF SS MS F P
Plant 3 378610 126203 6.21 0.006
Error 15 304838 20323
Total 18 683449

S = 142.6 R-Sq = 55.40% R-Sq(adj) = 46.48%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -------+---------+---------+---------+--
1 4 606.8 122.9 (------∗-------)
2 5 992.0 122.7 (------∗-----)
3 4 919.0 185.3 (-------∗-------)
4 6 777.7 138.8 (-----∗-----)

-------+---------+---------+---------+--
600 800 1000 1200

Pooled StDev = 142.6
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Solution
In the ANOVA table, the P-value for the null hypothesis that all treatment means are
equal is 0.006. Therefore we conclude that not all the treatment means are equal.

Checking the Assumptions
As previously mentioned, the methods of analysis of variance require the assumptions
that the observations on each treatment are a sample from a normal population and that
the normal populations all have the same variance. A good way to check the normality
assumption is with a normal probability plot. If the sample sizes are large enough, one
can construct a separate probability plot for each sample. This is rarely the case in
practice. When the sample sizes are not large enough for individual probability plots
to be informative, the residuals Xi j − Xi. can all be plotted together in a single plot.
When the assumptions of normality and constant variance are satisfied, these residuals
will be normally distributed with mean zero and should plot approximately on a straight
line. Figure 9.4 presents a normal probability plot of the residuals for the weld data of
Table 9.1. There is no evidence of a serious violation of the assumption of normality.
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�5�10�15 0 5 10

FIGURE 9.4 Probability plot for the residuals from the weld data. There is no evidence
of a serious violation of the assumption of normality.

The assumption of equal variances can be difficult to check, because with only a
few observations in each sample, the sample standard deviations can differ greatly (by
a factor of 2 or more) even when the assumption holds. For the weld data, the sample
standard deviations range from 5.4037 to 9.7570. It is reasonable to proceed as though
the variances were equal.

The spreads of the observations within the various samples can be checked visually
by making a residual plot. This is done by plotting the residuals Xi j − Xi. versus the
fitted values, which are the sample means Xi.. If the spreads differ considerably among
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the samples, the assumption of equal variances is suspect. If one or more of the samples
contain outliers, the assumption of normality is suspect as well. Figure 9.5 presents a
residual plot for the weld data. There are no serious outliers, and the spreads do not differ
greatly among samples.
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FIGURE 9.5 Residual plot of the values Xi j − Xi. versus Xi. for the weld data. The
spreads do not differ greatly from sample to sample, and there are no serious outliers.

Balanced versus Unbalanced Designs
When equal numbers of units are assigned to each treatment, the design is said to be
balanced. Although one-way analysis of variance can be used with both balanced and
unbalanced designs, balanced designs offer a big advantage. A balanced design is much
less sensitive to violations of the assumption of equality of variance than an unbalanced
one. Since moderate departures from this assumption can be difficult to detect, it is
best to use a balanced design whenever possible, so that undetected violations of the
assumption will not seriously compromise the validity of the results. When a balanced
design is impossible to achieve, a slightly unbalanced design is preferable to a severely
unbalanced one.

Summary

■ With a balanced design, the effect of unequal variances is generally not great.

■ With an unbalanced design, the effect of unequal variances can be substantial.

■ The more unbalanced the design, the greater the effect of unequal variances.
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The Analysis of Variance Identity
In both linear regression and analysis of variance, a quantity called the total sum of squares
is obtained by subtracting the sample grand mean from each observation, squaring these
deviations, and then summing them. An analysis of variance identity is an equation that
expresses the total sum of squares as a sum of other sums of squares. We have presented
analysis of variance identities for simple linear regression (at the end of Section 7.2) and
for multiple regression (Equation 8.7 in Section 8.1).

The total sum of squares for one-way ANOVA is given by

SST =
I∑

i=1

Ji∑
j=1

(Xi j − X ..)
2 (9.19)

An equivalent formula is given by

SST =
I∑

i=1

Ji∑
j=1

X2
i j − N X ..

2
(9.20)

Examining Equations (9.5), (9.7), and (9.20) shows that the total sum of squares is equal
to the treatment sum of squares plus the error sum of squares. This is the analysis of
variance identity for one-way analysis of variance.

The Analysis of Variance Identity

SST = SSTr + SSE (9.21)

An Alternate Parameterization
Our presentation of one-way analysis of variance, as a method to compare several treat-
ment means by using random samples drawn from each treatment population, is one
natural way to view the subject. There is another way to express these same ideas, in
somewhat different notation, that is sometimes useful.

For each observation Xi j , define εi j = Xi j − μi , the difference between the ob-
servation and its mean. By analogy with linear regression, the quantities εi j are called
errors. It is clearly true that

Xi j = μi + εi j (9.22)

Now since Xi j is normally distributed with mean μi and variance σ 2, it follows that εi j

is normally distributed with mean 0 and variance σ 2.
In a single-factor experiment, we are interested in determining whether the treatment

means are all equal. Given treatment means μ1, . . . , μI , the quantity

μ = 1

I

I∑
i=1

μi (9.23)
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is the average of all the treatment means. The quantity μ is called the population grand
mean. The i th treatment effect, denoted αi , is the difference between the i th treatment
mean and the population grand mean:

αi = μi − μ (9.24)

It follows from the definition of αi that
∑I

i=1 αi = 0.
We can now decompose the treatment means as follows:

μi = μ + αi (9.25)

Combining Equations (9.22) and (9.25) yields the one-way analysis of variance model:

Xi j = μ + αi + εi j (9.26)

The null hypothesis H0 : μ1 = · · · = μI is equivalent to H0 : α1 = · · · = αI = 0.
In one-way ANOVA, it is possible to work with the treatment means μi , as we have

done, rather than with the treatment effects αi . In multi-factor experiments, however, the
treatment means by themselves are not sufficient and must be decomposed in a manner
analogous to the one described here. We will discuss this further in Section 9.3.

Power
When designing a factorial experiment, it is important that the F test have good power,
that is, a large probability of rejecting the null hypothesis of equality if in fact the
treatment means are not all equal. An experiment with low power is not of much use,
since it is unlikely to detect a difference in treatments even if one exists. In what follows,
we will assume that the experiment is balanced and that the assumptions of normality
and equal variance hold. Assume the number of levels is fixed at I .

The power of any test depends first on the rejection criterion: The larger the level at
which one is willing to reject, the greater the power. The 5% level is the one most often
used in practice. Once the rejection level is set, the power of the F test depends on three
quantities: (1) the spread in the true means as measured by the quantity

∑
i α2

i where αi

is the i th treatment effect, (2) the error standard deviation σ , and (3) the sample size J .
Note that if the null hypothesis is true, then

∑
i α2

i = 0. The larger
∑

i α2
i is, the farther

from the truth is the null hypothesis, and the larger is the power, which is the probability
that the null hypothesis is rejected.

A power calculation can serve either of two purposes: to determine the sample size
for each treatment necessary to achieve a desired power, or to determine how much
power one has with a given sample size. In a traditional power calculation, one specifies
the quantity

∑
i α2

i that one wishes to detect and the value of σ one expects to encounter.
Then one can compute the power for a given sample size, or the sample size needed to
achieve a given power. In practice, one rarely knows how to specify a value for

∑
i α2

i , but
one can often specify the size of a difference between the largest and smallest treatment
means that one wishes to detect. For example, in the weld experiment, a metallurgist
might be able to specify that a difference of 10 or more between the largest and smallest
treatment means is scientifically important, but it is unlikely that she could specify a
scientifically important value for

∑
i α2

i .
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In MINITAB, one can specify the size of a scientifically important difference
between the largest and smallest treatment means and compute the sample size nec-
essary to guarantee that the power to detect that difference will be at least a specified
amount. We present an example.

Example
9.6 A metallurgist wants to repeat the weld experiment with four different fluxes and

wants the design to be sensitive enough so that it is likely to detect a difference of
10 or more in Brinell hardness at the 5% level. He assumes that the error standard
deviation will be about the same as the value of 7.998 calculated in the experiment
we have been discussing. The following output (from MINITAB) shows the result
of a power calculation for an experiment with five observations per treatment. What
is the power? What recommendation would you give the metallurgist regarding the
usefulness of this proposed experiment?

One-way ANOVA

Alpha = 0.05 Assumed standard deviation = 7.998
Number of Levels = 4

SS Sample Maximum
Means Size Power Difference

50 5 0.281722 10

The sample size is for each level.

Solution
The power is 0.281772. This means that the probability that the proposed experiment
will detect a difference of 10 between the largest and smallest treatment means may
be no more than about 0.28. The appropriate recommendation is not to run this exper-
iment; it has too little chance of success. Instead, the sample size necessary to provide
adequate power should be calculated, and if feasible, an experiment of that size should
be run.

Example
9.7 The metallurgist in Example 9.6 has taken your advice and has computed the sample

size necessary to provide a power of 0.90 to detect a difference of 10 at the 5% level.
The results (from MINITAB) follow. What is the power? How many observations
will be necessary at each level? How many observations will be necessary in total?
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One-way ANOVA

Alpha = 0.05 Assumed standard deviation = 7.998
Number of Levels = 4

SS Sample Target Maximum
Means Size Power Actual Power Difference

50 20 0.9 0.914048 10

The sample size is for each level.

Solution
The needed sample size is 20 per level; with four levels there will be 80 observations
in total. Note that the actual power of the experiment is approximately 0.914, which
is higher than the “target power” of 0.90 that was requested. The reason for this is
that the power provided by a sample size of 19 per level could be somewhat less than
0.90; a sample size of 20 is the smallest that is guaranteed to provide a power of 0.90
or more.

Random Effects Models
In many factorial experiments, the treatments are chosen deliberately by the experi-
menter. These experiments are said to follow a fixed effects model. In some cases, the
treatments are chosen at random from a population of possible treatments. In these cases
the experiments are said to follow a random effects model. In a fixed effects model,
the interest is on the specific treatments chosen for the experiment. In a random effects
model, the interest is in the whole population of possible treatments, and there is no
particular interest in the ones that happened to be chosen for the experiment.

The article describing the weld experiment states that the treatments were chosen
deliberately and do not represent a random sample from a larger population of flux
compositions. This experiment therefore follows a fixed effects model. The four power
plants in Example 9.5 are a sample of convenience; they are plants at which measurements
were readily available. In some cases it is appropriate to treat a sample of convenience
as if it were a simple random sample (see the discussion in Section 1.1). If these conditions
hold, then the power plant experiment may be considered to follow a random effects
model; otherwise it must be treated as a fixed effects model.

There is an important difference in interpretation between the results of a fixed
effects model and those of a random effects model. In a fixed effects model, the only
conclusions that can be drawn are conclusions about the treatments actually used in
the experiment. In a random effects model, however, since the treatments are a simple
random sample from a population of treatments, conclusions can be drawn concerning
the whole population, including treatments not actually used in the experiment.

This difference in interpretations results in a difference in the null hypotheses to be
tested. In the fixed effects model, the null hypothesis of interest is H0 : μ1 = · · · = μI .
In the random effects model, the null hypothesis of interest is

H0 : the treatment means are equal for every treatment in the population
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In the random effects model, the assumption is made that the population of treatment
means is normal.

Interestingly enough, although the null hypothesis for the random effects model
differs from that of the fixed effects model, the hypothesis test is exactly the same. The
F test previously described is used for the random effects model as well as for the fixed
effects model.

Example
9.8 In Example 9.5, assume that it is reasonable to treat the four power plants as a random

sample from a large population of power plants, and furthermore, assume that the
SO2 concentrations in the population of plants are normally distributed. Can we
conclude that there are differences in SO2 concentrations among the power plants in
the population?

Solution
This is a random effects model, so we can use the F test to test the null hypothesis that
all the treatment means in the population are the same. The results of the F test are
shown in Example 9.5. The P-value is 0.006. We therefore reject the null hypothesis
and conclude that there are differences in mean SO2 concentrations among the power
plants in the population.

Derivations of Equations (9.10) and (9.12)
In what follows it will be easier to use the notation E( ) to denote the mean of a quantity
and V ( ) to denote the variance. So, for example, E(SSE) = μSSE, E(SSTr) = μSSTr,
and V (Xi j ) denotes the variance of Xi j .

We will show that E(SSE) = E[
∑I

i=1

∑Ji
j=1(Xi j − Xi.)

2] = (N − I )σ 2, whether
or not the population means are equal. This is Equation (9.12).

We begin by adding and subtracting the treatment mean μi from each term in∑I
i=1

∑Ji
j=1(Xi j − Xi.)

2 to obtain

SSE =
I∑

i=1

Ji∑
j=1

[(Xi j − μi ) − (Xi. − μi )]
2

Multiplying out yields

SSE =
I∑

i=1

Ji∑
j=1

(Xi j − μi )
2 −

I∑
i=1

Ji∑
j=1

2(Xi j − μi )(Xi. − μi ) +
I∑

i=1

Ji∑
j=1

(Xi. − μi )
2

(9.27)
Now

∑Ji
j=1 (Xi j − μi ) = Ji (Xi. − μi ). Substituting into the middle term of the right-

hand side of (9.27) yields

SSE =
I∑

i=1

Ji∑
j=1

(Xi j − μi )
2 − 2

I∑
i=1

Ji (Xi. − μi )
2 +

I∑
i=1

Ji∑
j=1

(Xi. − μi )
2

Since
I∑

i=1

Ji∑
j=1

(Xi. − μi )
2 =

I∑
i=1

Ji (Xi. − μi )
2
, this simplifies to
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SSE =
I∑

i=1

Ji∑
j=1

(Xi j − μi )
2 −

I∑
i=1

Ji (Xi. − μi )
2

(9.28)

Taking means of both sides of (9.28) yields

E(SSE) =
I∑

i=1

Ji∑
j=1

E(Xi j − μi )
2 −

I∑
i=1

Ji E(Xi. − μi )
2

(9.29)

Now E(Xi j ) = E(Xi.) = μi . The population variances are all equal; denote their
common value by σ 2. It follows that

E(Xi j − μi )
2 = Var(Xi j ) = σ 2

E(Xi. − μi )
2 = Var(Xi.) = σ 2

Ji

Substituting into (9.29) yields

E(SSE) =
I∑

i=1

Ji∑
j=1

σ 2 −
I∑

i=1

Jiσ
2

Ji
= Nσ 2 − Iσ 2 = (N − I )σ 2

This completes the derivation of E(SSE).
We now show that E(SSTr) = E[

∑I
i=1 Ji (Xi. − X ..)

2] = (I − 1)σ 2 under the
assumption that the treatment means are all equal to a common value denoted by μ.
This is Equation (9.10).

We begin by adding and subtracting the common treatment mean μ from each

term in
∑I

i=1 Ji (Xi. − X ..)
2 to obtain

SSTr =
I∑

i=1

Ji [(Xi. − μ) − (X .. − μ)]2

Multiplying out, we obtain

SSTr =
I∑

i=1

Ji (Xi. − μ)
2 − 2

I∑
i=1

Ji (Xi. − μ)(X .. − μ) +
I∑

i=1

Ji (X .. − μ)
2

(9.30)

Now

X .. =
I∑

i=1

Ji Xi.

N

so

X .. − μ =
I∑

i=1

Ji (Xi. − μ)

N

and
I∑

i=1

Ji (Xi. − μ) = N (X .. − μ)
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Substituting into the middle term of the right-hand side of (9.30), we obtain

SSTr =
I∑

i=1

Ji (Xi. − μ)
2 − 2N (X .. − μ)

2 +
I∑

i=1

Ji (X .. − μ)
2

Since
I∑

i=1

Ji = N , we obtain

SSTr =
I∑

i=1

Ji (Xi. − μ)
2 − N (X .. − μ)

2

Taking means of both sides yields

E(SSTr) =
I∑

i=1

Ji E(Xi. − μ)
2 − NE(X .. − μ)

2
(9.31)

Now E(Xi.) = E(X ..) = μ, so

E(Xi. − μ)
2 = Var(Xi.) = σ 2

Ji

E(X .. − μ)
2 = Var(X ..) = σ 2

N
Substituting into (9.31) yields

E(SSTr) =
I∑

i=1

Jiσ
2

Ji
− Nσ 2

N
= (I − 1)σ 2

Exercises for Section 9.1
1. A study is made of the effect of curing temperature on the compressive strength of a certain type of concrete. Five

concrete specimens are cured at each of four temperatures, and the compressive strength of each specimen is measured
(in MPa). The results are as follows:

Temperature (◦C) Strengths

0 31.2 29.6 30.8 30.0 31.4
10 30.0 27.7 31.1 31.3 30.6
20 35.9 36.8 35.0 34.6 36.5
30 38.3 37.0 37.5 36.1 38.4

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that the mean strength differs with temperature?

2. The article “Nutrient Deprivation Improves Field Performance of Woody Seedlings in a Degraded Semi-arid Shrub-
land” (R. Trubata, J. Cortina, and A. Vilagrosaa, Ecological Engineering, 2011:1164–1173) presents a study that
investigated the effect of varying the type of fertilizer on the height of certain Mediterranean woody tree species.
In one experiment, three samples, each consisting of ten trees, were grown with three different fertilizers. One, the
control group, was grown with a standard fertilizer. Another was grown with a fertilizer containing only half the
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nutrients of the standard fertilizer. The third was grown with the standard fertilizer to which a commercial slow-
release fertilizer had been added. Following are the heights of the trees after one year. These data are consistent with
the means and standard deviations reported in the article.

Fertilizer Height

Control 17.9 12.2 14.9 13.8 26.1 15.4 20.3 16.9 20.8 14.8
Deficient 7.0 6.9 13.3 11.1 11.0 16.5 12.7 12.4 17.1 9.0
Slow-release 19.8 20.3 16.1 17.9 12.4 12.5 17.4 19.9 27.3 14.4

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that the heights differ among the types of fertilizer?

3. The removal of ammoniacal nitrogen is an important aspect of treatment of leachate at landfill sites. The rate of removal
(in percent per day) is recorded for several days for each of several treatment methods. The results are presented in
the following table. (Based on the article “Removal of Ammoniacal Nitrogen from Landfill Leachate by Irrigation
onto Vegetated Treatment Planes,” S. Tyrrel, P. Leeds-Harrison, and K. Harrison, Water Research, 2002:291–299.)

Treatment Rate of Removal

A 5.21 4.65
B 5.59 2.69 7.57 5.16
C 6.24 5.94 6.41
D 6.85 9.18 4.94
E 4.04 3.29 4.52 3.75

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that the treatment methods differ in their rates of removal?

4. The antibiotic gentamicin sulphate is often blended with acrylic bone cement to help prevent infection following
joint replacement surgery. The article “Incorporation of Large Amounts of Gentamicin Sulphate Into Acrylic Bone
Cement: Effect on Handling and Mechanical Properties, Antibiotic Release, and Biofilm Formation” (N. Dunne,
P. McAfee, et al., Journal of Engineering in Medicine, 2008:355–365) presents a study of the effect of the amount of
antibiotic added on various properties of the cement. Following are measurements of the setting time of the cement,
for six levels of antibiotic amount, and three replications per level. The measurements are consistent with means and
standard deviations presented in the article.

Antibiotic per
40 g Cement Setting Time (min)

0 g 12.7 14.1 13.2
0.5 g 13.5 14.5 14.6

1 g 12.7 13.4 13.2
2 g 12.7 13.6 14.1
3 g 13.4 13.5 14.3
4 g 14.5 13.5 14.9

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that there are differences among the mean setting times?
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5. The article “Influence of Age on Masonry Bond Strength and Mortar Microstructure” (H. Sugo, A. Page, and
S. Lawrence, Can J Civ Eng, 2007:1433–1442) investigates the effect of age on tensile strength of mortar. Several
specimens of various ages were loaded until failure, and the maximum load (in MPa) was recorded for each. The
results are presented in the following table.

Age (days) Maximum load (MPa)

3 1.69, 1.69, 1.97, 2.09, 1.81, 1.53, 1.63, 1.70, 1.73, 1.72, 1.48, 1.15
7 1.82, 1.86, 1.72, 1.73, 1.70, 1.44, 2.00, 1.78, 1.47, 1.32, 1.87, 1.57

28 2.76, 2.60, 2.38, 2.06, 1.81, 2.76, 2.41, 2.29, 2.00, 2.15, 0.97, 1.91, 2.26
90 1.18, 1.46, 2.02, 2.16, 1.79, 1.74, 2.08, 1.99, 1.63, 1.95, 1.66, 2.34

180 2.60, 2.28, 2.42, 2.66, 2.24, 2.53, 1.66, 2.33, 2.02, 2.28, 2.18, 2.27, 2.24, 1.81, 1.93
365 2.16, 1.51, 2.44, 2.13, 2.01, 2.00, 2.09, 2.18, 2.48, 1.99, 2.15, 2.14, 1.56, 1.94, 1.75

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that there are differences among the mean maximum loads?

6. Archaeologists can determine the diets of ancient civilizations by measuring the ratio of carbon-13 to carbon-12 in
bones found at burial sites. Large amounts of carbon-13 suggest a diet rich in grasses such as maize, while small
amounts suggest a diet based on herbaceous plants. The article “Climate and Diet in Fremont Prehistory: Economic
Variability and Abandonment of Maize Agriculture in the Great Salt Lake Basin” (J. Coltrain and S. Leavitt, American
Antiquity, 2002:453–485) reports ratios, as a difference from a standard in units of parts per thousand, for bones from
individuals in several age groups. The data are presented in the following table.

Age Group (years) Ratio

0–11 17.2 18.4 17.9 16.6 19.0 18.3 13.6 13.5 18.5 19.1 19.1 13.4
12–24 14.8 17.6 18.3 17.2 10.0 11.3 10.2 17.0 18.9 19.2
25–45 18.4 13.0 14.8 18.4 12.8 17.6 18.8 17.9 18.5 17.5 18.3 15.2 10.8 19.8 17.3

19.2 15.4 13.2
46+ 15.5 18.2 12.7 15.1 18.2 18.0 14.4 10.2 16.7

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that the concentration ratios differ among the age groups?

7. The article “Secretion of Parathyroid Hormone Oscillates Depending on the Change in Serum Ionized Calcium
During Hemodialysis and May Affect Bone Metabolism” (T. Kitahara, K, Ueki et al., Nephron Clinical Practice,
2005:c9–c17) presents measurements of basal ionized calcium (Ca) levels for four groups of patients with differing
levels of basal intact parathyroid hormone (PTH). The following results are consistent with means and standard
deviations presented in the article.

Group Ca levels (mM)

I 1.23 1.02 1.33 1.36 1.11 1.51 1.51 1.30 1.36 1.34 1.27 1.43 1.21 1.69 1.28
1.33 1.49

II 1.18 1.16 1.07 1.21 1.01 1.26 1.37 1.09 1.28 1.33 0.98 0.99 1.24 1.12 1.26
1.27 1.26 1.33 1.26 1.32

III 1.04 1.32 1.29 0.95 1.38 1.08 1.65 1.14 1.44 1.37 1.11 0.82 1.31 1.09 1.46

IV 1.35 1.67 1.38 1.05 1.32 0.95 1.21 1.21 1.22 1.13 1.51 0.72 1.33 1.46
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a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that there are differences among the mean Ca levels?

8. The article “Impact of Free Calcium Oxide Content of Fly Ash on Dust and Sulfur Dioxide Emissions in a Lignite-
Fired Power Plant” (D. Sotiropoulos, A. Georgakopoulos, and N. Kolovos, Journal of Air and Waste Management,
2005:1042–1049) presents measurements of dust emissions, in mg/m3, for four power plants. Thirty measurements
were taken for each plant. The sample means and standard deviations are presented in the following table:

Mean Standard Deviation Sample Size

Plant 1 211.50 24.85 30
Plant 2 214.00 35.26 30
Plant 3 211.75 33.53 30
Plant 4 236.08 23.09 30

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that there are differences among the mean emission levels?

9. A certain chemical reaction was run three times at each of three temperatures. The yields, expressed as a percent of
a theoretical maximum, were as follows:

Temperature (◦C) Yields

70 81.1 82.6 77.4
80 93.3 88.9 86.0
90 87.8 89.2 88.5

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that the mean yield differs with temperature?

10. An experiment to compare the lifetimes of four different brands of spark plug was carried out. Five plugs of each
brand were used, and the number of miles until failure was recorded for each. Following is part of the MINITAB
output for a one-way ANOVA.

One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Brand 3 176.482 (a) (e) (f)
Error (b) (c) (d)
Total 19 235.958

Fill in the missing numbers for (a) through (f) in the table. You may give a range for the P-value.

11. Refer to Exercise 10. Is it plausible that the brands of spark plug all have the same mean lifetime?
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12. Four different types of solar energy collectors were tested. Each was tested at five randomly chosen times, and the
power (in watts) was measured. The results were as follows.

Collector Power

A 1.9 1.6 2.0 1.8 1.6
B 1.7 1.9 1.8 1.7 1.7
C 1.2 0.9 1.2 0.9 1.4
D 1.5 1.0 1.4 1.3 1.4

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that the mean power differs for different collectors?

13. An experiment was performed to determine whether the annealing temperature of ductile iron affects its tensile
strength. Five specimens were annealed at each of four temperatures. The tensile strength (in ksi) was measured for
each. The results are presented in the following table.

Temperature (◦C) Sample Values

750 19.72 20.88 19.63 18.68 17.89
800 16.01 20.04 18.10 20.28 20.53
850 16.66 17.38 14.49 18.21 15.58
900 16.93 14.49 16.15 15.53 13.25

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that there are differences among the mean strengths?

14. Refer to Exercise 12.

a. Compute the quantity s = √
MSE, the estimate of the error standard deviation σ .

b. Assuming s to be the error standard deviation, find the sample size necessary in each treatment to provide a power
of 0.90 to detect a maximum difference of 0.2 in the treatment means at the 5% level.

c. Using a more conservative estimate of 1.5s as the error standard deviation, find the sample size necessary in
each treatment to provide a power of 0.90 to detect a maximum difference of 0.2 in the treatment means at
the 5% level.

15. Refer to Exercise 13.

a. Compute the quantity s = √
MSE, the estimate of the error standard deviation σ .

b. Assuming s to be the error standard deviation, find the sample size necessary in each treatment to provide a power
of 0.90 to detect a maximum difference of 2 in the treatment means at the 5% level.

c. Using a more conservative estimate of 1.5s as the error standard deviation, find the sample size necessary in
each treatment to provide a power of 0.90 to detect a maximum difference of 2 in the treatment means at
the 5% level.

16. The article “The Lubrication of Metal-on-Metal Total Hip Joints: A Slide Down the Stribeck Curve” (S. Smith,
D. Dowson, and A. Goldsmith, Proceedings of the Institution of Mechanical Engineers, 2001:483–493) presents
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results from wear tests done on metal artificial hip joints. Joints with several different diameters were tested. The data
presented in the following table on head roughness are consistent with the means and standard deviations reported in
the article.

Diameter (mm) Head Roughness (nm)

16 0.83 2.25 0.20 2.78 3.93
28 2.72 2.48 3.80
36 5.99 5.32 4.59

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that mean roughness varies with diameter? Explain.

17. The article “Multi-objective Scheduling Problems: Determination of Pruned Pareto Sets” (H. Taboada and D. Coit, IIE
Transactions, 2008:552–564), presents examples in a discussion of optimization methods for industrial scheduling
and production planning. In one example, seven different jobs were performed on each of five machines. The means
and standard deviations of the processing times for each machine are presented in the following table.

Machine Mean SD Sample Size

A 25.43 10.67 7
B 23.71 13.92 7
C 44.57 15.90 7
D 23.14 12.75 7
E 58.00 19.11 7

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that there are differences among the mean processing times?

18. The article “Withdrawal Strength of Threaded Nails” (D. Rammer, S. Winistorfer, and D. Bender, Journal of Structural
Engineering, 2001:442–449) describes an experiment comparing the withdrawal strengths for several types of nails.
The data presented in the following table are consistent with means and standard deviations reported in the article for
three types of nails: annularly threaded, helically threaded, and smooth shank. All nails had diameters within 0.1 mm
of each other, and all were driven into the same type of lumber.

Nail Type Withdrawal Strength (N/mm)

Annularly threaded 36.57 29.67 43.38 26.94 12.03 21.66 41.79 31.50 35.84 40.81
Helically threaded 14.66 24.22 23.83 21.80 27.22 38.25 28.15 36.35 23.89 28.44
Smooth shank 12.61 25.71 17.69 24.69 26.48 19.35 28.60 42.17 25.11 19.98

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that the mean withdrawal strength is different for different nail types?

19. The article “Solid-Phase Chemical Fractionation of Selected Trace Metals in Some Northern Kentucky Soils”
(A. Karathanasis and J. Pils, Soil and Sediment Contamination, 2005:293–308) presents pH measurements of soil
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specimens taken from three different types of soils. The results in the following table are consistent with means and
standard deviations reported in the article.

Soil Type pH Measurements

Alluvium 6.53, 6.03, 6.75, 6.82, 6.24
Glacial Till 6.07, 6.07, 5.36, 5.57, 5.48, 5.27, 5.80, 5.03, 6.65
Residuum 6.03, 6.16, 6.63, 6.13, 6.05, 5.68, 6.25, 5.43, 6.46, 6.91, 5.75, 6.53

a. Construct an ANOVA table. You may give a range for the P-value.
b. Can you conclude that there are differences among the mean pH levels?

20. The following MINITAB output presents a power calculation.

Alpha = 0.05 Assumed standard deviation = 142.6 Number of Levels = 4

Sample Target Maximum
SS Means Size Power Actual Power Difference

20000 14 0.85 0.864138 200

The sample size is for each level.

a. What is the power requested by the experimenter?
b. To guarantee a power of 0.864138, how many observations must be taken for all treatments combined?
c. What is the difference between treatment means that can be detected with a power of at least 0.864138?
d. Is the power to detect a maximum difference of 250 greater than 0.864138 or less than 0.864138? Explain.

9.2 Pairwise Comparisons in One-Factor
Experiments

In a one-way ANOVA, an F test is used to test the null hypothesis that all the treatment
means are equal. If this hypothesis is rejected, we can conclude that the treatment means
are not all the same. But the test does not tell us which ones are different from the rest.
Sometimes an experimenter has in mind two specific treatments, i and j , and wants to
study the difference μi − μ j . In this case a method known as Fisher’s least significant
difference (LSD) method is appropriate and can be used to construct confidence intervals
for μi −μ j or to test the null hypothesis that μi −μ j = 0. At other times, an experimenter
may want to determine all the pairs of means that can be concluded to differ from each
other. In this case a type of procedure called a multiple comparisons method must be
used. We will discuss two methods of multiple comparisons, the Bonferroni method and
the Tukey–Kramer method.
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Fisher's Least Significant Difference (LSD) Method
We begin by describing Fisher’s LSD method for constructing confidence intervals. The
confidence interval for the difference μi − μ j is centered at the difference in sample
means Xi. − X j.. To determine how wide to make the confidence interval, it is necessary
to estimate the standard deviation of Xi. − X j.. Let Ji and Jj be the sample sizes at levels
i and j , respectively. Since by assumption all observations are normally distributed
with variance σ 2, it follows that Xi. − X j. is normally distributed with mean μi − μ j

and variance σ 2(1/Ji + 1/Jj ). The variance σ 2 is estimated with MSE, for reasons
explained previously in the discussion about confidence intervals for the treatment means
(Section 9.1). Now the quantity

(Xi. − X j.) − (μi − μ j )√
MSE(1/Ji + 1/Jj )

has a Student’s t distribution with N − I degrees of freedom. (The value N − I is the
number of degrees of freedom used in computing MSE; see Equation 9.13.) The quan-
tity tN−I, α/2

√
MSE(1/Ji + 1/Jj ) is called the least significant difference. This quantity

forms the basis for confidence intervals and hypothesis tests.

Fisher's Least Significant Difference Method for Confidence Intervals
and Hypothesis Tests
The Fisher’s least significant difference confidence interval, at level
100(1 − α)%, for the difference μi − μ j is

Xi. − X j. ± tN−I, α/2

√
MSE

(
1

Ji
+ 1

Jj

)
(9.32)

To test the null hypothesis H0 : μi − μ j = 0, the test statistic is

Xi. − X j.√
MSE

(
1

Ji
+ 1

Jj

) (9.33)

If H0 is true, this statistic has a Student’s t distribution with N − I degrees of
freedom. Specifically, if

|Xi. − X j.| > tN−I, α/2

√
MSE

(
1

Ji
+ 1

Jj

)
(9.34)

then H0 is rejected at level α.

The reason that the quantity tN−I, α/2
√

MSE(1/Ji + 1/Jj ) is called the least signif-
icant difference is that the null hypothesis of equal means is rejected at level α whenever
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the difference in sample means |Xi. − X j.| exceeds this value. When the design is
balanced, with all sample sizes equal to J , the least significant difference is equal to
tN−I, α/2

√
2MSE/J for all pairs of means.

Example
9.9 In the weld experiment discussed in Section 9.1, hardness measurements were made

for five welds from each of four fluxes A, B, C, and D. The sample mean hardness
values were X A. = 253.8, X B. = 263.2, XC. = 271.0, and X D. = 262.0. The
following output (from MINITAB) presents the ANOVA table.

One-way ANOVA: A, B, C, D

Source DF SS MS F P
Factor 3 743.40 247.800 3.87 0.029
Error 16 1023.60 63.975
Total 19 1767.00

S = 7.998 R-Sq = 42.07% R-Sq(adj) = 31.21%

Before the experiment was performed, the carbon contents of the fluxes were
measured. Flux B had the lowest carbon content (2.67% by weight), and flux C had
the highest (5.05% by weight). The experimenter is therefore particularly interested
in comparing the hardnesses obtained with these two fluxes. Find a 95% confidence
interval for the difference in mean hardness between welds produced with flux B and
those produced with flux C. Can we conclude that the two means differ?

Solution
We use expression (9.32). The sample means are 271.0 for flux C and 263.2 for flux
B. The preceding output gives the quantity MSE as 63.975. (This value was also
computed in Example 9.3 in Section 9.1.) The sample sizes are both equal to 5. There
are I = 4 levels and N = 20 observations in total. For a 95% confidence interval, we
consult the t table to find the value t16, .025 = 2.120. The 95% confidence interval is
therefore 271.0 − 263.2 ± 2.120

√
63.975(1/5 + 1/5) or (−2.92, 18.52).

To perform a test of the null hypothesis that the two treatment means are equal,
we compute the value of the test statistic (expression 9.33) and obtain

271.0 − 263.2√
63.975(1/5 + 1/5)

= 1.54

Consulting the t table with N − I = 16 degrees of freedom, we find that P is
between 2(0.05) = 0.10 and 2(0.10) = 0.20 (note that this is a two-tailed test). We
cannot conclude that the treatment means differ.
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If it is desired to perform a fixed-level test at level α = 0.05 as an alterna-
tive to computing the P-value, the critical t value is t16,.025 = 2.120. The left-
hand side of the inequality (9.34) is |271.0 − 263.2| = 7.8. The right-hand side
is 2.120

√
63.975(1/5+1/5) = 10.72. Since 7.8 does not exceed 10.72, we do not

reject H0 at the 5% level.

The following output (from MINITAB) presents 95% Fisher LSD confidence inter-
vals for each difference between treatment means in the weld experiment.

Fisher 95% Individual Confidence Intervals
All Pairwise Comparisons

Simultaneous confidence level = 81.11%

A subtracted from:

Lower Center Upper ------+---------+---------+---------+---
B −1.324 9.400 20.124 (--------∗--------)
C 6.476 17.200 27.924 (--------∗--------)
D −2.524 8.200 18.924 (--------∗--------)

------+---------+---------+---------+---
−12 0 12 24

B subtracted from:

Lower Center Upper ------+---------+---------+---------+---
C −2.924 7.800 18.524 (--------∗-------)
D −11.924 −1.200 9.524 (--------∗--------)

------+---------+---------+---------+---
−12 0 12 24

C subtracted from:

Lower Center Upper ------+---------+---------+---------+---
D −19.724 −9.000 1.724 (--------∗-------)

------+---------+---------+---------+---
−12 0 12 24

The values labeled “Center” are the differences between pairs of treatment means.
The quantities labeled “Lower” and “Upper” are the lower and upper bounds, respec-
tively, of the confidence interval. Of particular note is the simultaneous confidence level
of 81.11%. This indicates that although we are 95% confident that any given confidence
interval contains its true difference in means, we are only 81.11% confident that all the
confidence intervals contain their true differences.

In Example 9.9, a single test was performed on the difference between two spe-
cific means. What if we wanted to test every pair of means, to see which ones we
could conclude to be different? It might seem reasonable to perform the LSD test on
each pair. However, this is not appropriate, because when several tests are performed,
the likelihood of rejecting a true null hypothesis increases. This is the multiple testing
problem, which is discussed in some detail in Section 6.14. This problem is revealed
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in the preceding output, which shows that the confidence is only 81.11% that all the
95% confidence intervals contain their true values. When several confidence intervals or
hypothesis tests are to be considered simultaneously, the confidence intervals must be
wider, and the criterion for rejecting the null hypotheses more strict, than in situations
where only a single interval or test is involved. In these situations, multiple comparisons
methods are used to produce simultaneous confidence intervals and simultaneous
hypothesis tests. If level 100(1−α)% simultaneous confidence intervals are constructed
for differences between every pair of means, then we are confident at the 100(1 − α)%
level that every confidence interval contains the true difference. If simultaneous hypoth-
esis tests are conducted for all null hypotheses of the form H0 : μi − μ j = 0, then we
may reject, at level α, every null hypothesis whose P-value is less than α.

The Bonferroni Method of Multiple Comparisons
The Bonferroni method, discussed in Section 6.14, is a general method, valid anytime
that several confidence intervals or tests are considered simultaneously. The method
is simple to apply. Let C be the number of pairs of differences to be compared. For
example, if there are I treatments, and all pairs of differences are to be compared, then
C = I (I − 1)/2. The Bonferroni method is the same as the LSD method, except that α

is replaced with α/C .

The Bonferroni Method for Simultaneous Confidence Intervals and
Hypothesis Tests
Assume that C differences of the form μi − μ j are to be considered. The
Bonferroni simultaneous confidence intervals, at level 100(1 − α)%, for the C
differences μi − μ j are

Xi. − X j. ± tN−I, α/(2C)

√
MSE

(
1

Ji
+ 1

Jj

)
(9.35)

We are 100(1−α)% confident that the Bonferroni confidence intervals contain
the true value of the difference μi − μ j for all C pairs under consideration.

To test C null hypotheses of the form H0 : μi − μ j = 0, the test statistics
are

Xi. − X j.√
MSE

(
1

Ji
+ 1

Jj

)

To find the P-value for each test, consult the Student’s t table with N − I
degrees of freedom, and multiply the P-value found there by C .

Specifically, if

|Xi. − X j.| > tN−I, α/(2C)

√
MSE

(
1

Ji
+ 1

Jj

)

then H0 is rejected at level α.
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Example
9.10 For the weld data discussed in Example 9.9, use the Bonferroni method to determine

which pairs of fluxes, if any, can be concluded, at the 5% level, to differ in their effect
on hardness.

Solution
There are I = 4 levels, with J = 5 observations at each level, for a total of N = 20
observations in all. With four levels, there are a total of C = (4)(3)/2 = 6 pairs of
means to compare.

To test at the α = 5% level, we compute α/(2C) = 0.004167. The critical t value
is t16,.004167. This value is not in the table; it is between t16,.005 = 2.921 and t16,.001 =
3.686. Using computer software, we calculated t16,.004167 = 3.0083. Without software,
one could roughly approximate this value by interpolation. Now MSE = 63.975 (see
Example 9.9), so tN−I, α/(2C)

√
MSE(1/Ji + 1/Jj ) = 3.0083

√
63.975(1/5 + 1/5) =

15.22. The four sample means are as follows:

Flux A B C D
Mean hardness 253.8 263.2 271.0 262.0

There is only one pair of sample means, 271.0 and 253.8, whose difference is greater
than 15.22. We therefore conclude that welds produced with flux A have different
mean hardness than welds produced with flux C. None of the other differences are
significant at the 5% level.

Although easy to use, the Bonferroni method has the disadvantage that as the number
of pairs C becomes large, the confidence intervals become very wide, and the hypothesis
tests have low power. The reason for this is that the Bonferroni method is a general
method, not specifically designed for analysis of variance or for normal populations. In
many cases C is fairly large, in particular it is often desired to compare all pairs of means.
In these cases, a method called the Tukey–Kramer method is superior, because it is
designed for multiple comparisons of means of normal populations. We now describe
this method.

The Tukey--Kramer Method of Multiple Comparisons
The Tukey–Kramer method is based on a distribution called the Studentized range dis-
tribution, rather than on the Student’s t distribution. The Studentized range distribution
has two values for degrees of freedom, which for the Tukey–Kramer method are I and
N − I . (In comparison, the F test uses I − 1 and N − I degrees of freedom.) The
Tukey–Kramer method uses the 1 − α quantile of the Studentized range distribution
with I and N − I degrees of freedom; this quantity is denoted qI,N−I,α . Table A.9 (in
Appendix A) presents values of qI,N−I,α for various values of I , N , and α. The mechan-
ics of the Tukey–Kramer method are the same as those for the LSD method, except that
tN−I, α/2

√
MSE(1/Ji + 1/Jj ) is replaced with qI,N−I,α

√
(MSE/2)(1/Ji + 1/Jj ). The

quantity qI,N−I,α
√

(MSE/2)(1/Ji + 1/Jj ) is sometimes called the honestly significant
difference (HSD), in contrast to Fisher’s least significant difference.
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The Tukey–Kramer Method for Simultaneous Confidence Intervals
and Hypothesis Tests
The Tukey–Kramer level 100(1 − α)% simultaneous confidence intervals for
all differences μi − μ j are

Xi. − X j. ± qI,N−I,α

√
MSE

2

(
1

Ji
+ 1

Jj

)
(9.36)

We are 100(1 − α)% confident that the Tukey–Kramer confidence intervals
contain the true value of the difference μi − μ j for every i and j .

To test all null hypotheses H0 : μi −μ j = 0 simultaneously, the test statistics
are

Xi. − X j.√
MSE

2

(
1

Ji
+ 1

Jj

)

The P-value for each test is found by consulting the Studentized range table
(Table A.9) with I and N − I degrees of freedom.

For every pair of levels i and j for which

|Xi. − X j.| > qI,N−I,α

√
MSE

2

(
1

Ji
+ 1

Jj

)

the null hypothesis H0 : μi − μ j = 0 is rejected at level α.

A note on terminology: When the design is balanced, with all sample sizes equal to
J , the quantity

√
(MSE/2)(1/Ji + 1/Jj ) is equal to

√
MSE/J for all pairs of levels. In

this case, the method is often simply called Tukey’s method.

Example
9.11 For the weld data in Table 9.1 (in Section 9.1), use the Tukey–Kramer method to

determine which pairs of fluxes, if any, can be concluded, at the 5% level, to differ in
their effect on hardness?

Solution
There are I = 4 levels, with J = 5 observations at each level, for a total of N = 20
observations in all. To test at level α = 0.05, we consult the Studentized range table
(Table A.9) to find q4,16,.05 = 4.05.

The value of MSE is 63.975 (see Example 9.9). Therefore qI,N−I,α
√

MSE/J =
4.05

√
63.975/5 = 14.49. The four sample means are as follows:

Flux A B C D
Mean hardness 253.8 263.2 271.0 262.0
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There is only one pair of sample means, 271.0 and 253.8, whose difference is greater
than 14.49. We therefore conclude that welds produced with flux A have a different
mean hardness than welds produced with flux C. None of the other differences are
significant at the 5% level.

Comparing the results of Example 9.11 with those of Example 9.10 shows that in this
case the Tukey–Kramer method is slightly more powerful than the Bonferroni method,
since its critical value is only 14.49 while that of the Bonferroni method was 15.22.
When all possible pairs are compared, as in this example, the Tukey–Kramer method
is always more powerful than the Bonferroni method. When only a few of the possible
pairs are to be compared, the Bonferroni method is sometimes more powerful.

Sometimes only a single test is performed, but the difference that is tested is chosen
by examining the sample means and choosing two whose difference is large. In these
cases a multiple comparisons method should be used, even though only one test is being
performed. Example 9.12 illustrates the idea.

Example
9.12 An engineer examines the weld data in Table 9.1 and notices that the two treatments

with the largest difference in sample means are flux A and flux C. He decides to test
the null hypothesis that the mean hardness for welds produced with flux A differs
from that for welds produced with flux C. Since he will only perform one test, he
uses the Fisher LSD method rather than the Bonferroni or Tukey–Kramer method.
Explain why this is wrong.

Solution
The engineer has examined every pair of means and has chosen the two whose dif-
ference is largest. Although he is formally performing only one test, he has chosen
that test by comparing every pair of sample means. For this reason he should use a
multiple comparisons procedure, such as the Bonferroni or Tukey–Kramer method.

The following output (from MINITAB) presents the Tukey–Kramer 95% simulta-
neous confidence intervals for the weld data.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons

Individual confidence level = 98.87%

A subtracted from:

Lower Center Upper ------+---------+---------+---------+---
B −5.087 9.4000 23.887 (--------∗---------)
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C 2.713 17.200 31.687 (--------∗---------)
D −6.287 8.200 22.687 (--------∗---------)

------+---------+---------+---------+---
−15 0 15 30

B subtracted from:

Lower Center Upper ------+---------+---------+---------+---
C −6.687 7.800 22.287 (--------∗---------)
D −15.687 −1.200 13.287 (--------∗---------)

------+---------+---------+---------+---
−15 0 15 30

C subtracted from:

Lower Center Upper ------+---------+---------+---------+---
D −23.487 −9.000 5.487 (---------∗---------)

------+---------+---------+---------+---
−15 0 15 30

The values labeled “Center” are the differences between pairs of treatment means.
The quantities labeled “Lower” and “Upper” are the lower and upper bounds, respec-
tively, of the confidence interval. We are 95% confident that every one of these confidence
intervals contains the true difference in treatment means. Note that the “Individual con-
fidence level” is 98.87%. This means that we are 98.87% confident that any one specific
confidence interval contains its true value. Finally we point out that because the con-
fidence level for the Tukey–Kramer intervals is higher than that for the Fisher LSD
intervals, the Tukey–Kramer intervals are wider.

Example
9.13 In Example 9.5 (in Section 9.1), several measurements of the maximum hourly con-

centrations (in μg/m3) of SO2 were presented for each of four power plants, and it was
concluded that the mean concentrations at the four plants were not all the same. The
following output (from MINITAB) presents the Tukey–Kramer 95% simultaneous
confidence intervals for mean concentrations at the four plants. Which pairs of plants,
if any, can you conclude with 95% confidence to have differing means?

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons

Individual confidence level = 98.87%
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1 subtracted from:

Lower Center Upper -----+---------+---------+---------+----
2 109.4 385.3 661.1 (--------∗--------)
3 21.4 312.3 603.1 (--------∗---------)
4 −94.6 170.9 436.4 (--------∗--------)

-----+---------+---------+---------+----
−300 0 300 600

2 subtracted from:

Lower Center Upper -----+---------+---------+---------+----
3 −348.9 −73.0 202.9 (---------∗--------)
4 −463.4 −214.3 34.7 (-------∗-------)

-----+---------+---------+---------+----
−300 0 300 600

3 subtracted from:

Lower Center Upper -----+---------+---------+---------+----
4 −406.8 −141.3 124.1 (--------∗--------)

-----+---------+---------+---------+----
−300 0 300 600

Solution
Among the simultaneous confidence intervals, there are two that do not contain 0.
These are the intervals for μ1 − μ2 and for μ1 − μ3. Therefore we conclude that the
mean concentrations differ between plants 1 and 2 and between plants 1 and 3.

Exercises for Section 9.2
1. The article “Organic Recycling for Soil Quality Conservation in a Sub-Tropical Plateau Region” (K. Chakrabarti,

B. Sarkar, et al., J. Agronomy and Crop Science, 2000:137–142) reports an experiment in which soil specimens were
treated with six different treatments, with two replicates per treatment, and the acid phosphate activity (in μmol
p-nitrophenol released per gram of oven-dry soil per hour) was recorded. An ANOVA table for a one-way ANOVA
follows.

One-way ANOVA: Treatments A, B, C, D, E, F

Source DF SS MS F P
Treatment 5 1.18547 0.23709 46.64 0.000
Error 6 0.03050 0.00508
Total 11 1.21597
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The treatment means were

Treatment A B C D E F
Mean 0.99 1.99 1.405 1.63 1.395 1.22

a. Can you conclude that there are differences in acid phosphate activity among the treatments?
b. Use the Tukey–Kramer method to determine which pairs of treatment means, if any, are different at the 5% level.
c. Use the Bonferroni method to determine which pairs of treatment means, if any, are different at the

5% level.
d. Which method is more powerful in this case, the Tukey–Kramer method or the Bonferroni method?
e. The experimenter notices that treatment A had the smallest sample mean, while treatment B had the largest.

Of the Fisher LSD method, the Bonferroni method, and the Tukey–Kramer method, which, if any, can be used to
test the hypothesis that these two treatment means are equal?

2. The article “Optimum Design of an A-pillar Trim with Rib Structures for Occupant Head Protection” (H. Kim and
S. Kang, Proceedings of the Institution of Mechanical Engineers, 2001:1161–1169) discusses a study in which several
types of A-pillars were compared to determine which provided the greatest protection to occupants of automobiles
during a collision. Following is a one-way ANOVA table, where the treatments are three levels of longitudinal spacing
of the rib (the article also discussed two insignificant factors, which are omitted here). There were nine replicates
at each level. The response is the head injury criterion (HIC), which is a unitless quantity that measures the impact
energy absorption of the pillar.

One-way ANOVA: Spacing

Source DF SS MS F P
Spacing 2 50946.6 25473.3 5.071 0.015
Error 24 120550.9 5023.0
Total 26 171497.4

The treatment means were

Treatment A B C
Mean 930.87 873.14 979.41

a. Can you conclude that the longitudinal spacing affects the absorption of impact energy?
b. Use the Tukey–Kramer method to determine which pairs of treatment means, if any, are different at the

5% level.
c. Use the Bonferroni method to determine which pairs of treatment means, if any, are different at the 5% level.
d. Which method is more powerful in this case, the Tukey–Kramer method or the Bonferroni method?

3. Acrylic resins used in the fabrication of dentures should not absorb much water, since water sorption reduces strength.
The article “Reinforcement of Acrylic Resin for Provisional Fixed Restorations. Part III: Effects of Addition of Titania
and Zirconia Mixtures on Some Mechanical and Physical Properties” (W. Panyayong, Y. Oshida, et al., Bio-Medical
Materials and Engineering, 2002:353–366) describes a study of the effect on water sorption of adding titanium
dioxide (TiO2) and zirconium dioxide (ZrO2) to a standard acrylic resin. Twelve specimens from each of several
formulations, containing various amounts of TiO2 and ZrO2, were immersed in water for one week, and the water
sorption (in μg/mm2) was measured in each. The results are presented in the following table.
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Volume %

Formulation TIO2 ZrO2 Mean Standard Deviation

A (control) 0 0 24.03 2.50
B 1 1 14.88 1.55
C 1 2 12.81 1.08
D 1 0.5 11.21 2.98
E 2 2 16.05 1.66
F 2 4 12.87 0.96
G 2 1 15.23 0.97
H 3 3 15.37 0.64

a. Use the Bonferroni method to determine which of the noncontrol formulations (B through H) differ, at the 5%
level, in their mean water sorption from the control formulation A.

b. Repeat part (a) using the Tukey–Kramer method.
c. Which method is more powerful for these comparisons? Why?

4. Refer to Exercise 2 in Section 9.1.

a. Use the Bonferroni method to determine which means, if any, differ from the mean of the control group at the
5% level.

b. Use the Tukey–Kramer method to determine which means, if any, differ from the mean of the control group at
the 5% level.

c. Which is the more powerful method to find the treatments whose mean differs from that of the control group,
the Bonferroni method or the Tukey–Kramer method?

5. Refer to Exercise 13 in Section 9.1.

a. Use the Bonferroni method to determine which pairs of means, if any, are different at the 5% level.
b. Use the Tukey–Kramer method to determine which pairs of means, if any, are different at the 5% level.
c. Which is the more powerful method to find all the pairs of treatments whose means are different, the Bonferroni

method or the Tukey–Kramer method?

6. Refer to Exercise 1 in Section 9.1. A scientist wants to determine whether the mean strength of specimens cured at
30◦C differs from the mean strengths of specimens cured at 0◦C, 10◦C, and 20◦C.

a. Use the Bonferroni method to determine which of the means, if any, for 0◦C, 10◦C, and 20◦C differ from the mean
for 30◦C. Use the 5% level.

b. Use the Tukey–Kramer method to determine which of the means, if any, 0◦C, 10◦C, and 20◦C differ from the
mean for 30◦C. Use the 5% level.

c. Which is the more powerful method to find all the treatments whose means differ from that of the 30◦C temperature,
the Bonferroni method or the Tukey–Kramer method?

7. Refer to Exercise 13 in Section 9.1. A metallurgist wants to determine whether the mean tensile strength for specimens
annealed at 900◦C differs from the mean strengths for specimens annealed at 750◦C, 800◦C, and 850◦C.

a. Use the Bonferroni method to determine which of the means, if any, for 750◦C, 800◦C, and 850◦C differ from the
mean for 900◦C.

b. Use the Tukey–Kramer method to determine which of the means, if any, for 750◦C, 800◦C, and 850◦C differ from
the mean for 900◦C.

c. Which is the more powerful method to find all the pairs of treatments whose means differ from the 900◦C mean,
the Bonferroni method or the Tukey–Kramer method?



Navidi-3810214 book November 11, 2013 14:22

9.2 Pairwise Comparisons in One-Factor Experiments 699

8. Refer to Exercise 3 in Section 9.1.

a. Use the Fisher LSD method to find a 95% confidence interval for the difference between the means for treatments
B and D.

b. Use the Tukey–Kramer method to determine which pairs of treatments, if any, differ at the 5% level.

9. Refer to Exercise 5 in Section 9.1.

a. Use the Fisher LSD method to find a 95% confidence interval for the difference between the means for specimens
aged 3 days and specimens aged 365 days.

b. Use the Tukey–Kramer method to determine which pairs of treatments, if any, differ at the 5% level.

10. Refer to Exercise 9 in Section 9.1.

a. Use the Fisher LSD method to find a 95% confidence interval for the difference between the means for temperatures
of 70◦C and 90◦C.

b. Use the Tukey–Kramer method to determine which pairs of temperatures, if any, differ at the 5% level.

11. Refer to Exercise 16 in Section 9.1.

a. Use the Fisher LSD method to find a 95% confidence interval for the difference between the means for a diameter
of 16 and a diameter of 36.

b. Use the Tukey–Kramer method to determine which pairs of diameters, if any, differ at the 5% level.

12. Refer to Exercise 18 in Section 9.1.

a. Use the Fisher LSD method to find a 95% confidence interval for the difference between the means for annularly
threaded and smooth shank nails.

b. Use the Tukey–Kramer method to determine which pairs of nail types, if any, differ at the 5% level.

13. In an experiment to determine the effect of catalyst on the yield of a certain reaction, the mean yields for reactions
run with each of four catalysts were X 1. = 89.88, X 2. = 89.51, X 3. = 86.98, and X 4. = 85.79. Assume that five runs
were made with each catalyst.

a. If MSE = 3.85, compute the value of the F statistic for testing the null hypothesis that all four catalysts have the
same mean yield. Can this null hypothesis be rejected at the 5% level?

b. Use the Tukey–Kramer method to determine which pairs of catalysts, if any, may be concluded to differ at the
5% level.

14. In an experiment to determine the effect of curing time on the compressive strength of a certain type of concrete, the
mean strengths, in MPa, for specimens cured for each of four curing times were X 1. = 1316, X 2. = 1326, X 3. = 1375,
and X 4. = 1389. Assume that four specimens were cured for each curing time.

a. If MSE = 875.2, compute the value of the F statistic for testing the null hypothesis that all four curing times have
the same mean strength. Can this null hypothesis be rejected at the 5% level?

b. Use the Tukey–Kramer method to determine which pairs of curing times, if any, may be concluded to differ at the
5% level.

15. For some data sets, the F statistic will reject the null hypothesis of no difference in mean yields, but the Tukey–Kramer
method will not find any pair of means that can be concluded to differ. For the four sample means given in Exercise 13,
assuming a sample size of 5 for each treatment, find a value of MSE so that the F statistic rejects the null hypothesis of
no difference at the 5% level, while the Tukey–Kramer method does not find any pair of means to differ at the 5% level.

16. For some data sets, the F statistic will reject the null hypothesis of no difference in mean yields, but the Tukey–Kramer
method will not find any pair of means that can be concluded to differ. For the four sample means given in Exercise 14,
assuming a sample size of 4 for each treatment, find a value of MSE so that the F statistic rejects the null hypothesis of
no difference at the 5% level, while the Tukey–Kramer method does not find any pair of means to differ at the 5% level.
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9.3 Two-Factor Experiments

In one-factor experiments, discussed in Sections 9.1 and 9.2, the purpose is to determine
whether varying the level of a single factor affects the response. Many experiments
involve varying several factors, each of which may affect the response. In this section,
we will discuss the case in which there are two factors. The experiments, naturally
enough, are called two-factor experiments. We illustrate with an example.

A chemical engineer is studying the effects of various reagents and catalysts on the
yield of a certain process. Yield is expressed as a percentage of a theoretical maximum.
Four runs of the process were made for each combination of three reagents and four
catalysts. The results are presented in Table 9.2. In this experiment there are two factors,
the catalyst and the reagent. The catalyst is called the row factor, since its value varies
from row to row in the table, while the reagent is called the column factor. These
designations are arbitrary, in that the table could just as easily have been presented with
the rows representing the reagents and the columns representing the catalysts.

TABLE 9.2 Yields for runs of a chemical process with various combinations of reagent
and catalyst

Reagent

Catalyst 1 2 3
A 86.8 82.4 86.7 83.5 93.4 85.2 94.8 83.1 77.9 89.6 89.9 83.7
B 71.9 72.1 80.0 77.4 74.5 87.1 71.9 84.1 87.5 82.7 78.3 90.1
C 65.5 72.4 76.6 66.7 66.7 77.1 76.7 86.1 72.7 77.8 83.5 78.8
D 63.9 70.4 77.2 81.2 73.7 81.6 84.2 84.9 79.8 75.7 80.5 72.9

In general, there are I levels of the row factor and J levels of the column factor. (In
Table 9.2, I = 4 and J = 3.) There are therefore IJ different combinations of the two
factors. The terminology for these factor combinations is not standardized. We will refer
to each combination of factors as a treatment, but some authors use the term treatment
combination. Recall that the units assigned to a given treatment are called replicates.
When the number of replicates is the same for each treatment, we will denote this number
by K . Thus in Table 9.2, K = 4.

When observations are taken on every possible treatment, the design is called a
complete design or a full factorial design. Incomplete designs, in which there are no
data for one or more treatments, can be difficult to interpret, except for some special cases.
When possible, complete designs should be used. When the number of replicates is the
same for each treatment, the design is said to be balanced. For one-factor experiments,
we did not need to assume that the design was balanced. With two-factor experiments,
unbalanced designs are more difficult to analyze than balanced designs. We will restrict
our discussion to balanced designs. As with one-factor experiments, the factors may
be fixed or random. The methods that we will describe apply to models where both
effects are fixed. Later we will briefly describe models where one or both factors are
random.



Navidi-3810214 book November 11, 2013 14:22

9.3 Two-Factor Experiments 701

In a completely randomized design, each treatment represents a population, and the
observations on that treatment are a simple random sample from that population. We
will denote the sample values for the treatment corresponding to the i th level of the
row factor and the j th level of the column factor by Xi j1, . . . , Xi j K . We will denote
the population mean outcome for this treatment by μi j . The values μi j are often called
the treatment means. In general, the purpose of a two-factor experiment is to determine
whether the treatment means are affected by varying either the row factor, the column
factor, or both. The method of analysis appropriate for two-factor experiments is called
two-way analysis of variance.

Parameterization for Two-Way Analysis of Variance
In a two-way analysis of variance, we wish to determine whether varying the level of the
row or column factors changes the value of μi j . To do this, we must express μi j in terms
of parameters that describe the row and column factors separately. We’ll begin this task
by describing some notation for the averages of the treatment means for the different
levels of the row and column factors.

For any level i of the row factor, the average of all the treatment means μi j in the
i th row is denoted μi.. We express μi. in terms of the treatment means as follows:

μi. = 1

J

J∑
j=1

μi j (9.37)

Similarly, for any level j of the column factor, the average of all the treatment means
μi j in the j th column is denoted μ. j . We express μ. j in terms of the treatment means as
follows:

μ. j = 1

I

I∑
i=1

μi j (9.38)

Finally, we define the population grand mean, denoted by μ, which represents the
average of all the treatment means μi j . The population grand mean can also be expressed
as the average of the quantities μi. or of the quantities μ. j :

μ = 1

I

I∑
i=1

μi. = 1

J

J∑
j=1

μ. j = 1

I J

I∑
i=1

J∑
j=1

μi j (9.39)

Table 9.3 (page 702) illustrates the relationships among μi j , μi., μ. j , and μ.
Using the quantities μi., μ. j , and μ, we can decompose the treatment mean μi j as

follows:

μi j = μ + (μi. − μ) + (μ. j − μ) + (μi j − μi. − μ. j + μ) (9.40)

Equation (9.40) expresses the treatment mean μi j as a sum of four terms. In practice,
simpler notation is used for the three rightmost terms in Equation (9.40):

αi = μi. − μ (9.41)

β j = μ. j − μ (9.42)

γi j = μi j − μi. − μ. j + μ (9.43)
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TABLE 9.3 Treatment means and their averages across rows and down
columns

Column Level
Row Level 1 2 · · · J Row Mean

1 μ11 μ12 · · · μ1J μ1.

2 μ21 μ22 · · · μ2J μ2.

...
...

... · · ·
...

...
I μI 1 μI 2 · · · μI J μI.

Column Mean μ.1 μ.2 · · · μ.J μ

Each of quantities μ, αi , β j , and γi j has an important interpretation:

■ The quantity μ is the population grand mean, which is the average of all the
treatment means.

■ The quantity αi = μi. − μ is called the i th row effect. It is the difference between
the average treatment mean for the i th level of the row factor and the population
grand mean. The value of αi indicates the degree to which the i th level of the row
factor tends to produce outcomes that are larger or smaller than the population
grand mean.

■ The quantity β j = μ. j − μ is called the j th column effect. It is the difference
between the average treatment mean for the j th level of the column factor and the
population grand mean. The value of β j indicates the degree to which the j th level
of the column factor tends to produce outcomes that are larger or smaller than the
population grand mean.

■ The quantity γi j = μi j − μi. − μ. j + μ is called the ij interaction. The effect of a
level of a row (or column) factor may depend on which level of the column (or
row) factor it is paired with. The interaction terms measure the degree to which this
occurs. For example, assume that level 1 of the row factor tends to produce a large
outcome when paired with column level 1, but a small outcome when paired with
column level 2. In this case γ1,1 would be positive, and γ1,2 would be negative.

Both row effects and column effects are called main effects to distinguish them
from the interactions. Note that there are I row effects, one for each level of the row
factor, J column effects, one for each level of the column factor, and IJ interactions,
one for each treatment. Furthermore, it follows from the definitions of quantities μi.,
μ. j , and μ in Equations (9.37) through (9.39) that the row effects, column effects, and
interactions satisfy the following constraints:

I∑
i=1

αi = 0
J∑

j=1

β j = 0
I∑

i=1

γi j =
J∑

j=1

γi j = 0 (9.44)

We now can express the treatment means μi j in terms of αi , β j , and γi j . From Equa-
tion (9.40) it follows that

μi j = μ + αi + β j + γi j (9.45)
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For each observation Xi jk , define εi jk = Xi jk − μi j , the difference between the obser-
vation and its treatment mean. The quantities εi jk are called errors. It follows that

Xi jk = μi j + εi jk (9.46)

Combining Equations (9.46) and (9.45) yields the two-way ANOVA model:

Xi jk = μ + αi + β j + γi j + εi jk (9.47)

When the interactions γi j are all equal to 0, the additive model is said to apply. Under
the additive model, Equation (9.45) becomes

μi j = μ + αi + β j (9.48)

and Equation (9.47) becomes

Xi jk = μ + αi + β j + εi jk (9.49)

Under the additive model, the treatment mean μi j is equal to the population grand mean
μ, plus an amount αi that results from using row level i plus an amount β j that results
from using column level j . In other words, the combined effect of using row level i along
with column level j is found by adding the individual main effects of the two levels.
When some or all of the interactions are not equal to 0, the additive model does not hold,
and the combined effect of a row level and a column level cannot be determined from
their individual main effects.

We will now show how to estimate the parameters for the full two-way model (9.47).
The procedure for the additive model is exactly the same, except that the interactions γi j

are not estimated. The procedure is straightforward. We first define some notation for
various averages of the data Xi jk , using the data in Table 9.2 as an example. Table 9.4
presents the average yield for the four runs for each reagent and catalyst in Table 9.2.

TABLE 9.4 Average yields Xi j . for runs of a chemical process using different combina-
tions of reagent and catalyst

Reagent
Catalyst 1 2 3 Row Mean Xi..

A 84.85 89.13 85.28 86.42
B 75.35 79.40 84.65 79.80
C 70.30 76.65 78.20 75.05
D 73.18 81.10 77.23 77.17

Column Mean X. j. 75.92 81.57 81.34 Sample Grand Mean X... = 79.61

Each number in the body of Table 9.4 is the average of the four numbers in the
corresponding cell of Table 9.2. These are called the cell means. They are denoted Xi j.

and are defined by

Xi j. = 1

K

K∑
k=1

Xi jk (9.50)
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Averaging the cell means across the rows produces the row means Xi..:

Xi.. = 1

J

J∑
j=1

Xi j. = 1

J K

J∑
j=1

K∑
k=1

Xi jk (9.51)

Averaging the cell means down the columns produces the column means X . j.:

X . j. = 1

I

I∑
i=1

Xi j. = 1

I K

I∑
i=1

K∑
k=1

Xi jk (9.52)

The sample grand mean X ... can be found by computing the average of the row means,
the average of the column means, the average of the cell means, or the average of all the
observations:

X ... = 1

I

I∑
i=1

Xi.. = 1

J

J∑
j=1

X . j. = 1

I J

I∑
i=1

J∑
j=1

Xi j. = 1

I J K

I∑
i=1

J∑
j=1

K∑
k=1

Xi jk (9.53)

Now we describe how to estimate the parameters in the two-way ANOVA model.
The fundamental idea is that the best estimate of the treatment mean μi j is the cell
mean Xi j., which is the average of the sample observations having that treatment. It
follows that the best estimate of the quantity μi. is the row mean Xi.., the best estimate
of the quantity μ. j is the column mean X . j., and the best estimate of the population
grand mean μ is the sample grand mean X .... We estimate the row effects αi , the column
effects β j , and the interactions γi j by substituting these estimates into Equations (9.41)
through (9.43).

α̂i = Xi.. − X ... (9.54)

β̂ j = X . j. − X ... (9.55)

γ̂i j = Xi j. − Xi.. − X . j. + X ... (9.56)

The row effects, column effects, and interactions satisfy constraints given in Equa-
tion (9.44). By performing some algebra, it can be shown that their estimates satisfy the
same constraints:

I∑
i=1

α̂i = 0
J∑

j=1

β̂ j = 0
I∑

i=1

γ̂i j =
J∑

j=1

γ̂i j = 0 (9.57)

Example
9.14 Compute the estimated row effects, column effects, and interactions for the data in

Table 9.2.

Solution
Using the quantities in Table 9.4 and Equations (9.54) through (9.56), we compute

α̂1 = 86.42 − 79.61 = 6.81 α̂2 = 79.80 − 79.61 = 0.19
α̂3 = 75.05 − 79.61 = −4.56 α̂4 = 77.17 − 79.61 = −2.44
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β̂1 = 75.92 − 79.61 = −3.69 β̂2 = 81.57 − 79.61 = 1.96

β̂3 = 81.34 − 79.61 = 1.73

γ̂11 = 2.12 γ̂12 = 0.75 γ̂13 = −2.87
γ̂21 = −0.76 γ̂22 = −2.36 γ̂23 = 3.12
γ̂31 = −1.06 γ̂32 = −0.36 γ̂33 = 1.42
γ̂41 = −0.30 γ̂42 = 1.97 γ̂43 = −1.67

Using Two-Way ANOVA to Test Hypotheses
A two-way analysis of variance is designed to address three main questions:

1. Does the additive model hold?

2. If so, is the mean outcome the same for all levels of the row factor?

3. If so, is the mean outcome the same for all levels of the column factor?

In general, we ask questions 2 and 3 only when we believe that the additive model
may hold. We will discuss this further later in this section. The three questions are
addressed by performing hypothesis tests. The null hypotheses for these tests are as
follows:

1. To test whether the additive model holds, we test the null hypothesis that all the
interactions are equal to 0:

H0 : γ11 = γ12 = · · · = γI J = 0

If this null hypothesis is true, the additive model holds.

2. To test whether the mean outcome is the same for all levels of the row factor, we
test the null hypothesis that all the row effects are equal to 0:

H0 : α1 = α2 = · · · = αI = 0

If this null hypothesis is true, then the mean outcome is the same for all levels of
the row factor.

3. To test whether the mean outcome is the same for all levels of the column factor,
we test the null hypothesis that all the column effects are equal to 0:

H0 : β1 = β2 = · · · = βJ = 0

If this null hypothesis is true, then the mean outcome is the same for all levels of
the column factor.

We now describe the standard tests for these null hypotheses. For the tests to be
valid, the following conditions must hold:
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Assumptions for Two-Way ANOVA
The standard two-way ANOVA hypothesis tests are valid under the following
conditions:

1. The design must be complete.

2. The design must be balanced.

3. The number of replicates per treatment, K , must be at least 2.

4. Within any treatment, the observations Xi j1, . . . , Xi j K are a simple
random sample from a normal population.

5. The population variance is the same for all treatments. We denote this
variance by σ 2.

Just as in one-way ANOVA, the standard tests for these null hypotheses are based
on sums of squares. Specifically, they are the row sum of squares (SSA), the column sum
of squares (SSB), the interaction sum of squares (SSAB), and the error sum of squares
(SSE). Also of interest is the total sum of squares (SST), which is equal to the sum
of the others. Formulas for these sums of squares are as follows:

SSA = J K
I∑

i=1

α̂2
i = J K

I∑
i=1

(Xi.. − X ...)
2 = J K

I∑
i=1

Xi..
2 − I J K X ...

2
(9.58)

SSB = I K
J∑

j=1

β̂2
j = I K

J∑
j=1

(X . j. − X ...)
2 = I K

J∑
j=1

X . j.
2 − I J K X ...

2
(9.59)

SSAB = K
I∑

i=1

J∑
j=1

γ̂ 2
i j = K

I∑
i=1

J∑
j=1

(Xi j. − Xi.. − X . j. + X ...)
2

= K
I∑

i=1

J∑
j=1

Xi j.
2 − J K

I∑
i=1

Xi..
2 − I K

J∑
j=1

X . j.
2 + I J K X ...

2
(9.60)

SSE =
I∑

i=1

J∑
j=1

K∑
k=1

(Xi jk − Xi j.)
2 =

I∑
i=1

J∑
j=1

K∑
k=1

X2
i jk − K

I∑
i=1

J∑
j=1

Xi j.
2

(9.61)

SST =
I∑

i=1

J∑
j=1

K∑
k=1

(Xi jk − X ...)
2 =

I∑
i=1

J∑
j=1

K∑
k=1

X2
i jk − I J K X ...

2
(9.62)

It can be seen from the rightmost expressions in Equations (9.58) through (9.62) that
the total sum of squares, SST, is equal to the sum of the others. This is the analysis
of variance identity for two-way ANOVA.
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The Analysis of Variance Identity

SST = SSA + SSB + SSAB + SSE (9.63)

Along with each sum of squares is a quantity known as its degrees of freedom. The
sums of squares and their degrees of freedom are generally presented in an ANOVA
table. Table 9.5 presents the degrees of freedom for each sum of squares, along with the
computationally most convenient formula. We point out that the degrees of freedom for
SST is the sum of the degrees of freedom for the other sums of squares.

TABLE 9.5 ANOVA table for two-way ANOVA

Source Degrees of Freedom Sum of Squares

Rows (SSA) I − 1 J K
I∑

i=1

α̂2
i = J K

I∑
i=1

Xi..
2 − I J K X ...

2

Columns (SSB) J − 1 I K
J∑

j=1

β̂ 2
j = I K

J∑
j=1

X . j.
2 − I J K X ...

2

Interactions (SSAB) (I − 1)(J − 1) K
I∑

i=1

J∑
j=1

γ̂ 2
i j = K

I∑
i=1

J∑
j=1

Xi j.
2 − J K

I∑
i=1

Xi..
2

−I K
J∑

j=1

X . j.
2 + I J K X ...

2

Error (SSE) IJ (K − 1)

I∑
i=1

J∑
j=1

K∑
k=1

(Xi jk −Xi j.)
2 =

I∑
i=1

J∑
j=1

K∑
k=1

X 2
i jk−K

I∑
i=1

J∑
j=1

Xi j.
2

Total (SST) IJK − 1
I∑

i=1

J∑
j=1

K∑
k=1

(Xi jk − X ...)
2 =

I∑
i=1

J∑
j=1

K∑
k=1

X 2
i jk − I J K X ...

2

Note that the magnitude of SSA depends on the magnitude of the estimated row
effects α̂i . Therefore when the true row effects αi are equal to 0, SSA will tend to be
smaller, and when some of the true row effects are not equal to 0, SSA will tend to be
larger. We will therefore reject H0 : α1 = · · · = αI = 0 when SSA is sufficiently large.
Similarly, SSB will tend to be smaller when the true column effects β j are all equal to
0 and larger when some column effects are not zero, and SSAB will tend to be smaller
when the true interactions γi j are all equal to 0 and larger when some interactions are not
zero. We will therefore reject H0 : β1 = · · · = βJ = 0 when SSB is sufficiently large,
and we will reject H0 : γ11 = · · · = γI J = 0 when SSAB is sufficiently large.

We can determine whether SSA, SSB, and SSAB are sufficiently large by comparing
them to the error sum of squares, SSE. As in one-way ANOVA (Section 9.1), SSE depends
only on the distances between the observations and their own cell means. SSE therefore
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measures only the random variation inherent in the process and is not affected by the
values of the row effects, column effects, or interactions. To compare SSA, SSB, and
SSAB with SSE, we first divide each sum of squares by its degrees of freedom, producing
quantities known as mean squares. The mean squares, denoted MSA, MSB, MSAB,
and MSE, are defined as follows:

MSA = SSA

I − 1
MSB = SSB

J − 1
MSAB = SSAB

(I − 1)(J − 1)

MSE = SSE

I J (K − 1)
(9.64)

The test statistics for the three null hypotheses are the quotients of MSA, MSB,
and MSAB with MSE. The null distributions of these test statistics are F distributions.
Specifically,

■ Under H0 : α1 = · · · = αI = 0, the statistic
MSA

MSE
has an FI−1, I J (K−1)

distribution.

■ Under H0 : β1 = · · · = βJ = 0, the statistic
MSB

MSE
has an FJ−1, I J (K−1)

distribution.

■ Under H0 : γ11 = · · · = γI J = 0, the statistic
MSAB

MSE
has an F(I−1)(J−1), I J (K−1)

distribution.

In practice, the sums of squares, mean squares, and test statistics are usually calcu-
lated with the use of a computer. The following output (from MINITAB) presents the
ANOVA table for the data in Table 9.2.

Two-way ANOVA: Yield versus Catalyst, Reagent

Source DF SS MS F P
Catalyst 3 877.56 292.521 9.36 0.000
Reagent 2 327.14 163.570 5.23 0.010
Interaction 6 156.98 26.164 0.84 0.550
Error 36 1125.33 31.259
Total 47 2487.02

S = 5.591 R-sq = 54.75% R-Sq(adj) = 40.93%

The labels DF, SS, MS, F, and P refer to degrees of freedom, sum of squares, mean
square, F statistic, and P-value, respectively. As in one-way ANOVA, the mean square
for error (MSE) is an estimate of the error variance σ 2 and the quantity labeled “S” is the
square root of MSE and is an estimate of the error standard deviation σ . The quantities
“R-sq” and “R-sq(adj)” are computed with formulas analogous to those in one-way
ANOVA.
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Example
9.15 Use the preceding ANOVA table to determine whether the additive model is plausible

for the yield data. If the additive model is plausible, can we conclude that either the
catalyst or the reagent affects the yield?

Solution
We first check to see if the additive model is plausible. The P-value for the interactions
is 0.55, which is not small. We therefore do not reject the null hypothesis that all the
interactions are equal to 0, and we conclude that the additive model is plausible. Since
the additive model is plausible, we now ask whether the row or column factors affect
the outcome. We see from the table that the P-value for the row effects (Catalyst) is
approximately 0, so we conclude that the catalyst does affect the yield. Similarly, the
P-value for the column effects (Reagent) is small (0.010), so we conclude that the
reagent affects the yield as well.

Example
9.16 The article “Uncertainty in Measurements of Dermal Absorption of Pesticides”

(W. Navidi and A. Bunge, Risk Analysis, 2002:1175–1182) describes an experiment
in which a pesticide was applied to skin at various concentrations and for various
lengths of time. The outcome is the amount of the pesticide that was absorbed into
the skin. The following output (from MINITAB) presents the ANOVA table. Is the
additive model plausible? If so, do either the concentration or the duration affect the
amount absorbed?

Two-way ANOVA: Absorbed versus Concentration, Duration

Source DF SS MS F P
Concent 2 49.991 24.996 107.99 0.000
Duration 2 19.157 9.579 41.38 0.000
Interaction 4 0.337 0.084 0.36 0.832
Error 27 6.250 0.231
Total 35 75.735

Solution
The P-value for the interaction is 0.832, so we conclude that the additive model is
plausible. The P-values for both concentration and dose are very small. Therefore
we can conclude that both concentration and duration affect the amount absorbed.

Checking the Assumptions
A residual plot can be used to check the assumption of equal variances, and a normal
probability plot of the residuals can be used to check normality. The residual plot plots
the residuals Xi jk − Xi j. versus the fitted values, which are the sample means Xi j..
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Figures 9.6 and 9.7 present both a normal probability plot and a residual plot for the
yield data found in Table 9.2. The assumptions appear to be well satisfied.
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FIGURE 9.6 Normal probability plot for the residuals from the yield data. There is no
evidence of a strong departure from normality.
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FIGURE 9.7 Residual plot for the yield data. There is no evidence against the assump-
tion of equal variances.

Don't Interpret the Main Effects When the Additive
Model Doesn't Hold
When the interactions are small enough so that the additive model is plausible, interpre-
tation of the main effects is fairly straightforward, as shown in Examples 9.15 and 9.16.
When the additive model does not hold, however, it is not always easy to interpret the
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main effects. Here is a hypothetical example to illustrate the point. Assume that a process
is run under conditions obtained by varying two factors at two levels each. Two runs
are made at each of the four combinations of row and column levels. The yield of the
process is measured each time, with the results presented in the following table.

Column Level
Row Level 1 2

1 51, 49 43, 41
2 43, 41 51, 49

Clearly, if it is desired to maximize yield, the row and column factors matter—we
want either row level 1 paired with column level 1 or row level 2 paired with column
level 2.

Now look at the following ANOVA table.

Source DF SS MS F P
Row 1 0.0000 0.0000 0.00 1.000
Column 1 0.0000 0.0000 0.00 1.000
Interaction 1 128.00 128.00 64.00 0.001
Error 4 8.0000 2.0000
Total 7 136.00

The main effects sum of squares for both the row and column main effects are equal to
0, and their P-values are equal to 1, which is as large as a P-value can be. If we follow
the procedure used in Examples 9.15 and 9.16, we would conclude that neither the row
factor nor the column factor affects the yield. But it is clear from the data that the row
and column factors do affect the yield. What is happening is that the row and column
factors do not matter on the average. Level 1 of the row factor is better if level 1 of the
column factor is used, and level 2 of the row factor is better if level 2 of the column
factor is used. When averaged over the two levels of the column factor, the levels of the
row factor have the same mean yield. Similarly, the column levels have the same mean
yield when averaged over the levels of the row factor. When the effects of the row levels
depend on which column levels they are paired with, and vice versa, the main effects
can be misleading.

It is the P-value for the interactions that tells us not to try to interpret the main
effects. This P-value is quite small, so we reject the additive model. Then we know
that some of the interactions are nonzero, so the effects of the row levels depend on the
column levels, and vice versa. For this reason, when the additive model is rejected, we
should not try to interpret the main effects. We need to look at the cell means themselves
in order to determine how various combinations of row and column levels affect the
outcome.



Navidi-3810214 book November 11, 2013 14:22

712 CHAPTER 9 Factorial Experiments

Summary
In a two-way analysis of variance:

■ If the additive model is not rejected, then hypothesis tests for the main
effects can be used to determine whether the row or column factors affect
the outcome.

■ If the additive model is rejected, then hypothesis tests for the main effects
should not be used. Instead, the cell means must be examined to determine
how various combinations of row and column levels affect the outcome.

Example
9.17 The thickness of the silicon dioxide layer on a semiconductor wafer is crucial to its

performance. In the article “Virgin Versus Recycled Wafers for Furnace Qualifica-
tion: Is the Expense Justified?” (V. Czitrom and J. Reece, Statistical Case Studies for
Process Improvement, SIAM-ASA, 1997:87–103), oxide layer thicknesses were mea-
sured for three types of wafers: virgin wafers, wafers recycled in-house, and wafers
recycled by an external supplier. In addition, several furnace locations were used to
grow the oxide layer. A two-way ANOVA for three runs at one wafer site for the three
types of wafers at three furnace locations was performed. The data are presented in
the following table, followed by the results (from MINITAB).

Furnace Location Wafer Type Oxide Layer Thickness (A
◦

)

1 Virgin 90.1 90.7 89.4
1 In-house 90.4 88.8 90.6
1 External 92.6 90.0 93.3
2 Virgin 91.9 88.6 89.7
2 In-house 90.3 91.9 91.5
2 External 88.3 88.2 89.4
3 Virgin 88.1 90.2 86.6
3 In-house 91.0 90.4 90.2
3 External 91.5 89.8 89.8

Two-way ANOVA for Thickness versus Wafer, Location

Source DF SS MS F P
Wafer 2 5.8756 2.9378 2.07 0.155
Location 2 4.1089 2.0544 1.45 0.262
Interaction 4 21.349 5.3372 3.76 0.022
Error 18 25.573 1.4207
Total 26 56.907
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Since recycled wafers are cheaper, the company hopes that there is no difference
in the oxide layer thickness among the three types of chips. If possible, determine
whether the data are consistent with the hypothesis of no difference. If not possible,
explain why not.

Solution
The P-value for the interactions is 0.022, which is small. Therefore the additive model
is not plausible, so we cannot interpret the main effects. A good thing to do is to make
a table of the cell means. Table 9.6 presents the sample mean for each treatment.

TABLE 9.6 Sample means for each treatment

Furnace Wafer Type

Location Virgin In-House External Row Mean

1 90.067 89.933 91.967 90.656
2 90.067 91.233 88.633 89.978
3 88.300 90.533 90.367 89.733

Column Mean 89.478 90.566 90.322

From Table 9.6, it can be seen that the thicknesses do vary among wafer types,
but no one wafer type consistently produces the thickest, or the thinnest, oxide layer.
For example, at furnace location 1 the externally recycled wafers produce the thickest
layer while the in-house recycled wafers produce the thinnest. At furnace location
2 the order is reversed: The in-house wafers produce the thickest layer while the
external ones produce the thinnest. This is due to the interaction of furnace location
and wafer type.

A Two-Way ANOVA Is Not the Same as Two One-Way ANOVAs
Example 9.17 presented a two-way ANOVA with three row levels and three column
levels, for a total of nine treatments. If separate one-way ANOVAs were run on the row
and column factors separately, there would be only six treatments. This means that in
practice, running separate one-way ANOVAs on each factor may be less costly than
running a two-way ANOVA. Unfortunately, this “one-at-a-time” design is sometimes
used in practice for this reason. It is important to realize that running separate one-way
analyses on the individual factors can give results that are misleading when interactions
are present. To see this, look at Table 9.6. Assume that an engineer is trying to find the
combination of furnace and location that will produce the thinnest oxide layer. He first
runs the process once at each furnace location, using in-house recycled wafers, because
those wafers are the ones currently being used in production. Furnace location 1 produces
the thinnest layer for in-house wafers. Now the engineer runs the process once for each
wafer type, all at location 1, which was the best for the in-house wafers. Of the three
wafer types, in-house wafers produce the thinnest layer at location 1. So the conclusion
drawn from the one-at-a-time analysis is that the thinnest layers are produced by the
combination of in-house wafers at furnace location 1. A look at Table 9.6 shows that the
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conclusion is false. There are two combinations of furnace location and wafer type that
produce thinner layers than this.

The one-at-a-time method assumes that the wafer that produces the thinnest layers
at one location will produce the thinnest layers at all locations, and that the location that
produces the thinnest layers for one wafer type will produce the thinnest layers for all
types. This is equivalent to assuming that there are no interactions between the factors,
which in the case of the wafers and locations is incorrect. In summary, the one-at-a-time
method fails because it cannot detect interactions between the factors.

Summary

■ When there are two factors, a two-factor design must be used.

■ Examining one factor at a time cannot reveal interactions between the
factors.

Interaction Plots
Interaction plots can help to visualize interactions. Figure 9.8 presents an interaction
plot for the wafer data. We describe the method by which this plot was constructed. The
vertical axis represents the response, which is layer thickness. One factor is chosen to
be represented on the horizontal axis. We chose furnace location; it would have been
equally acceptable to have chosen wafer type. Now we proceed through the levels of
the wafer-type factor. We’ll start with external wafers. The three cell means for external
wafers, as shown in Table 9.6, are 91.967, 88.633, and 90.367, corresponding to furnace
locations 1, 2, and 3, respectively. These values are plotted above their respective furnace
locations and are connected with line segments. This procedure is repeated for the other
two wafer types to complete the plot.
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FIGURE 9.8 Interaction plot for the wafer data. The lines are far from parallel, indi-
cating substantial interaction between the factors.
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For the wafer data, the means for external wafers follow a substantially different
pattern than those for the other two wafer types. This is the source of the significant inter-
action and is the reason that the main effects of wafer and furnace type cannot be easily
interpreted. In comparison, for perfectly additive data, for which the interaction esti-
mates γ̂i j are equal to 0, the line segments in the interaction plot are parallel. Figure 9.9
illustrates this hypothetical case.

Levels of factor A

M
ea

n 
re

sp
on

se Levels of
factor B 

FIGURE 9.9 Interaction plot for hypothetical data with interaction estimates γ̂i j equal
to 0. The line segments are parallel.

Figure 9.10 presents an interaction plot for the yield data. The cell means were
presented in Table 9.4. The lines are not parallel, but their slopes match better than
those for the wafer data. This indicates that the interaction estimates are nonzero, but
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FIGURE 9.10 Interaction plot for yield data.
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are smaller than those for the wafer data. In fact, the P-value for the test of the null
hypothesis of no interaction was 0.550 (see page 712). The deviation from parallelism
exhibited in Figure 9.10 is therefore small enough to be consistent with the hypothesis
of no interaction.

Multiple Comparisons in Two-Way ANOVA
An F test is used to test the null hypothesis that all the row effects (or all the column
effects) are equal to 0. If the null hypothesis is rejected, we can conclude that some of
the row effects (or column effects) differ from each other. But the hypothesis test does
not tell us which ones are different from the rest. If the additive model is plausible, then a
method of multiple comparisons known as Tukey’s method (related to the Tukey–Kramer
method described in Section 9.2) can be applied to determine for which pairs the row
effects or column effects can be concluded to differ from one another. The method is
described in the following box.

Tukey's Method for Simultaneous Confidence Intervals and Hypothesis
Tests in Two-Way ANOVA
Let I be the number of levels of the row factor, J be the number of levels
of the column factor, and K be the sample size for each treatment. Then, if
the additive model is plausible, the Tukey level 100(1 − α)% simultaneous
confidence intervals for all differences αi − α j (or all differences βi − β j ) are

α̂i − α̂ j ± qI,IJ(K−1),α

√
MSE

J K
β̂i − β̂j ± qJ,IJ(K−1),α

√
MSE

I K

We are 100(1 − α)% confident that the Tukey confidence intervals contain the
true value of the difference αi − α j (or βi − β j ) for every i and j .

For every pair of levels i and j for which |α̂i − α̂ j | > qI,IJ(K−1),α

√
MSE

J K
,

the null hypothesis H0 : αi − α j = 0 is rejected at level α.

For every pair of levels i and j for which | β̂i − β̂ j | > qJ,IJ(K−1),α

√
MSE

I K
,

the null hypothesis H0 : βi − β j = 0 is rejected at level α.

Example
9.18 In Example 9.14, the main effects and interactions were computed for the yield data in

Table 9.2. An ANOVA table for these data was presented on page 708. If appropriate,
use Tukey’s method to determine which pairs of catalysts and which pairs of reagents
can be concluded to differ, at the 5% level, in their effect on yield.
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Solution
From the ANOVA table, the P-value for interactions is 0.550. Therefore the additive
model is plausible, so it is appropriate to use Tukey’s method. Catalyst is the row
factor and reagent is the column factor, so I = 4, J = 3, and K = 4. From the
ANOVA table, MSE = 31.259.

We first find all pairs for which the row effects differ at the 5% level. For the
row effects, we should use the value q4,36,.05. This value is not found in the Stu-
dentized range table (Table A.9 in Appendix A). We will therefore use the value
q4,30,.05 = 3.85, which is close to (just slightly greater than) q4,36,.05. We compute
q4,30,.05

√
MSE/J K = 3.85

√
31.259/12 = 6.21.

In Example 9.14, the estimated row effects were computed to be

α̂1 = 6.81 α̂2 = 0.19 α̂3 = −4.56 α̂4 = −2.44

The pairs of row effects whose differences are greater than 6.21 are α̂1 and α̂2, α̂1

and α̂3, and α̂1 and α̂4. We conclude that the mean yield of catalyst A differs from the
mean yields of catalysts B, C, and D, but we cannot conclude that the mean yields of
catalysts B, C, and D differ from each other.

We now find all pairs for which the column effects differ at the 5% level. For
the column effects, we should use the value q3,36,.05, but since this value is not found
in the Studentized range table, we will use the value q3,30,05 = 3.49. We compute
q3,30,.05

√
MSE/I K = 3.49

√
31.259/16 = 4.88.

In Example 9.14, the estimated column effects were computed to be

β̂1 = −3.69 β̂2 = 1.96 β̂3 = 1.73

The pairs of column effects whose differences are greater than 4.88 are β̂1 and β̂2

and β̂1 and β̂3. We conclude that the mean yield of reagent 1 differs from the mean
yields of reagents 2 and 3, but we cannot conclude that the mean yields of reagents 2
and 3 differ from each other.

Two-Way ANOVA when K = 1
The F tests we have presented require the assumption that the sample size K for each
treatment be at least 2. The reason for this is that when K = 1, the error sum of squares
(SSE) will be equal to 0, since Xi jk = Xi j. for each i and j . In addition, the degrees of
freedom for SSE, which is IJ (K − 1), is equal to 0 when K = 1.

When K = 1, a two-way ANOVA cannot be performed unless it is certain that the
additive model holds. In this case, since the interactions are assumed to be zero, the
mean square for interaction (MSAB; see Equation 9.64) and its degrees of freedom can
be used in place of MSE to test the main row and column effects.

Random Factors
Our discussion of two-factor experiments has focused on the case where both factors
are fixed. Such an experiment is said to follow a fixed effects model. Experiments can
also be designed in which one or both factors are random. If both factors are random,
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the experiment is said to follow a random effects model. If one factor is fixed and one
is random, the experiment is said to follow a mixed model.

In the one-factor case, the analysis is the same for both fixed and random effects
models, while the null hypothesis being tested differs. In the two-factor case, both the
methods of analysis and the null hypotheses differ among fixed effects models, random
effects models, and mixed models. Methods for models in which one or more effects are
random can be found in more advanced texts, such as Hocking (2014).

Unbalanced Designs
We have assumed that the design is balanced, that is, that the number of replications is the
same for each treatment. The methods described here do not apply to unbalanced designs.
However, unbalanced designs that are complete may be analyzed with the methods of
multiple regression. An advanced text such as Draper and Smith (1998) may be consulted
for details.

Exercises for Section 9.3
1. To assess the effect of piston ring type and oil type on piston ring wear, three types of piston ring and four types of oil

were studied. Three replications of an experiment, in which the number of milligrams of material lost from the ring
in four hours of running was measured, were carried out for each of the 12 combinations of oil type and piston ring
type. With oil type as the row effect and piston ring type as the column effect, the following sums of squares were
observed: SSA = 1.0926, SSB = 0.9340, SSAB = 0.2485, SSE = 1.7034.

a. How many degrees of freedom are there for the effect of oil type?
b. How many degrees of freedom are there for the effect of piston ring type?
c. How many degrees of freedom are there for interactions?
d. How many degrees of freedom are there for error?
e. Construct an ANOVA table. You may give ranges for the P-values.
f. Is the additive model plausible? Provide the value of the test statistic and the P-value.
g. Is it plausible that the main effects of oil type are all equal to 0? Provide the value of the test statistic and the

P-value.
h. Is it plausible that the main effects of piston ring type are all equal to 0? Provide the value of the test statistic and

the P-value.

2. A machine shop has three machines used in precision grinding of cam rollers. Three machinists are employed to grind
rollers on the machines. In an experiment to determine whether there are differences in output among the machines or
their operators, each operator worked on each machine on four different days. The outcome measured was the daily
production of parts that met specifications. With the operator as the row effect and the machine as the column effect,
the following sums of squares were observed: SSA = 3147.0, SSB = 136.5, SSAB = 411.7, SSE = 1522.0.

a. How many degrees of freedom are there for the operator effect?
b. How many degrees of freedom are there for the machine effect?
c. How many degrees of freedom are there for interactions?
d. How many degrees of freedom are there for error?
e. Construct an ANOVA table. You may give ranges for the P-values.
f. Is the additive model plausible? Provide the value of the test statistic and the P-value.
g. Is it plausible that the main effects of operator are all equal to 0? Provide the value of the test statistic and the

P-value.
h. Is it plausible that the main effects of machine are all equal to 0? Provide the value of the test statistic and the

P-value.
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3. An experiment to determine the effect of mold temperature on tensile strength involved three different alloys and five
different mold temperatures. Four specimens of each alloy were cast at each mold temperature. With mold temperature
as the row factor and alloy as the column factor, the sums of squares were: SSA = 69,738, SSB = 8958, SSAB =
7275, and SST = 201,816.

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Is the additive model plausible? Explain.
c. Is it plausible that the main effects of mold temperature are all equal to 0? Provide the value of the test statistic

and the P-value.
d. Is it plausible that the main effects of alloy are all equal to 0? Provide the value of the test statistic and the P-value.

4. The effect of curing pressure on bond strength was tested for four different adhesives. There were three levels of curing
pressure. Five replications were performed for each combination of curing pressure and adhesive. With adhesive as
the row factor and curing pressure as the column factor, the sums of squares were: SSA = 155.7, SSB = 287.9,
SSAB = 156.7, and SST = 997.3.

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Is the additive model plausible? Explain.
c. Is it plausible that the main effects of curing pressure are all equal to 0? Provide the value of the test statistic and

the P-value.
d. Is it plausible that the main effects of adhesive are all equal to 0? Provide the value of the test statistic and the

P-value.

5. The article “Change in Creep Behavior of Plexiform Bone with Phosphate Ion Treatment” (R. Regimbal, C. DePaula,
and N. Guzelsu, Bio-Medical Materials and Engineering, 2003:11–25) describes an experiment to study the effects
of saline and phosphate ion solutions on mechanical properties of plexiform bone. The following table presents the
yield stress measurements for six specimens treated with either saline (NaCl) or phosphate ion (Na2HPO4) solution,
at a temperature of either 25◦C or 37◦C. (The article presents means and standard deviations only; the values in the
table are consistent with these.)

Solution Temperature Yield Stress (MPa)

NaCl 25◦C 138.40 130.89 94.646 96.653 116.90 88.215
NaCl 37◦C 92.312 147.28 116.48 88.802 114.37 90.737
Na2HPO4 25◦C 120.18 129.43 139.76 132.75 137.23 121.73
Na2HPO4 37◦C 123.50 128.94 102.86 99.941 161.68 136.44

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of the test statistic and the P-value.
d. Can the effect of solution (NaCl versus Na2HPO4) on yield stress be described by interpreting the main effects

of solution? If so, interpret the main effects, including the appropriate test statistic and P-value. If not, explain
why not.

e. Can the effect of temperature on yield stress be described by interpreting the main effects of temperature? If so,
interpret the main effects, including the appropriate test statistic and P-value. If not, explain why not.

6. The article “Variance Reduction Techniques: Experimental Comparison and Analysis for Single Systems” (I. Sabun-
cuoglu, M. Fadiloglu, and S. Çelik, IIE Transactions, 2008:538–551) describes a study of methods for reducing
variance in estimators of the mean inventory on hand. Two systems, the serial line system and the inventory system,
were studied, along with two schemes for proportional sampling. The results given below (in percent) are consistent
with the means and standard deviations reported in the article.
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System Scheme Reduction

Serial Line A 6.4 5.8 5.1 8.4 7.0 8.4 8.5 7.5 7.0 7.9
Serial Line B 4.7 4.7 3.8 5.3 10.6 4.5 8.2 10.8 5.1 5.7
Inventory A 11.0 8.9 9.3 9.2 7.9 9.7 9.0 12.5 6.7 9.8
Inventory B 8.9 7.0 10.7 10.3 6.2 12.2 7.0 9.5 8.7 9.7

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of a test statistic and the P-value.
d. Can the effect of system on reduction be described by interpreting the main effects of system? If so, interpret the

main effects, including the appropriate test statistic and P-value. If not, explain why not.
e. Can the effect of scheme on reduction be described by interpreting the main effects of scheme? If so, interpret the

main effects, including the appropriate test statistic and P-value. If not, explain why not.

7. The effect of curing pressure on bond strength (in MPa) was tested for two different adhesives. There were three
levels of curing pressure. Three replications were performed for each combination of curing pressure and adhesive.
The results are presented in the following table.

Adhesive Curing Pressure Bond Strength

A Low 8.1 8.8 6.3
A Medium 6.6 6.4 8.1
A High 3.5 4.1 2.6
B Low 5.1 6.0 3.7
B Medium 2.9 5.2 5.6
B High 4.5 0.8 3.2

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Is the additive model plausible? Provide the value of the test statistic and the P-value.
c. Can the effect of adhesive on the bond strength be described by interpreting the main effects of adhesive? If so,

interpret the main effects. If not, explain why not.
d. Can the effect of curing pressure on the bond strength be described by interpreting the main effects of curing

pressure? If so, interpret the main effects. If not, explain why not.

8. Adding glass particles to clay brick may improve the structural properties of the brick. The article “Effects of Waste
Glass Additions on the Properties and Durability of Fired Clay Brick” (S. Chidiac and L. Federico, Can J Civ Eng,
2007:1458–1466) describes experiments in which the compressive strength (in MPa) was measured for bricks with
varying amounts of glass content and glass particle size. The results in the following table are consistent with means
and standard deviations presented in the article.

Glass Content (%) Size Strength (MPa)

5 Coarse 78.7 70.8 78.6 81.7 79.2
5 Fine 73.0 90.1 71.4 93.8 82.7

10 Coarse 80.1 76.9 76.5 84.3 77.7
10 Fine 76.2 80.1 121.2 81.4 61.2
15 Coarse 90.3 95.8 103.1 99.5 73.3
15 Fine 141.1 144.1 122.4 134.5 124.9

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
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c. Is the additive model plausible? Provide the value of a test statistic and the P-value.
d. Can the effect of glass content on strength be described by interpreting the main effects of glass content? If so,

interpret the main effects, including the appropriate test statistic and P-value. If not, explain why not.
e. Can the effect of particle size on strength be described by interpreting the main effects of particle size? If so,

interpret the main effects, including the appropriate test statistic and P-value. If not, explain why not.

9. The article “Application of Radial Basis Function Neural Networks in Optimization of Hard Turning of AISI D2 Cold-
Worked Tool Steel With a Ceramic Tool” (S. Basak, U. Dixit, and J. Davim, Journal of Engineering Manufacture,
2007:987–998) presents the results of an experiment in which tool wear was computed for various values of three
factors. We consider two of those factors, cutting speed and cutting time. The results are presented in the following
table.

Speed (m/min) Time (min) Wear (mm)

80 5 5 6 5 5 4 3
80 10 8 8 8 8 8 8
80 15 11 10 9 9 10 9

150 5 9 11 9 8 10 9
150 10 14 14 15 13 17 18
150 15 16 15 26 24 24 25
220 5 34 33 19 21 18 20
220 10 60 59 29 31 28 31
220 15 65 64 31 33 75 80

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of a test statistic and the P-value.
d. Can the effect of speed on wear be described by interpreting the main effects of speed? If so, interpret the main

effects, including the appropriate test statistic and P-value. If not, explain why not.
e. Can the effect of time on wear be described by interpreting the main effects of time? If so, interpret the main

effects, including the appropriate test statistic and P-value. If not, explain why not.

10. The lifetime of a tool was investigated under three settings for feed rate and three settings for speed. Four tools were
tested under each combination of settings. The results (in hours) were as follows.

Feed Rate Speed Lifetime

Light Slow 60.6 57.0 61.4 59.7
Light Medium 57.8 59.4 62.8 58.2
Light Fast 56.5 52.3 58.1 53.9
Medium Slow 51.2 53.1 48.3 51.6
Medium Medium 49.6 48.1 49.8 51.1
Medium Fast 45.7 48.6 45.0 49.2
Heavy Slow 44.8 46.7 41.9 51.3
Heavy Medium 46.6 41.4 38.3 37.9
Heavy Fast 37.2 32.8 39.9 35.9

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Is the additive model plausible? Provide the value of a test statistic and the P-value.
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c. Can the effect of feed rate on lifetime be described by interpreting the main effects of feed rate? If so, interpret
the main effects, using multiple comparisons at the 5% level if necessary. If not, explain why not.

d. Can the effect of the speed on lifetime be described by interpreting the main effects of distance? If so, interpret
the main effects, using multiple comparisons at the 5% level if necessary. If not, explain why not.

11. Artificial joints consist of a ceramic ball mounted on a taper. The article “Friction in Orthopaedic Zirconia Taper
Assemblies” (W. Macdonald, A. Aspenberg, et al., Proceedings of the Institution of Mechanical Engineers, 2000:
685–692) presents data on the coefficient of friction for a push-on load of 2 kN for taper assemblies made from two
zirconium alloys and employing three different neck lengths. Five measurements were made for each combination of
material and neck length. The results presented in the following table are consistent with the cell means and standard
deviations presented in the article.

Taper Material Neck Length Coefficient of Friction

CPTi-ZrO2 Short 0.254 0.195 0.281 0.289 0.220
CPTi-ZrO2 Medium 0.196 0.220 0.185 0.259 0.197
CPTi-ZrO2 Long 0.329 0.481 0.320 0.296 0.178
TiAlloy-ZrO2 Short 0.150 0.118 0.158 0.175 0.131
TiAlloy-ZrO2 Medium 0.180 0.184 0.154 0.156 0.177
TiAlloy-ZrO2 Long 0.178 0.198 0.201 0.199 0.210

a. Compute the main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of the test statistic, its null distribution, and the P-value.
d. Can the effect of material on the coefficient of friction be described by interpreting the main effects of material?

If so, interpret the main effects. If not, explain why not.
e. Can the effect of neck length on the coefficient of friction be described by interpreting the main effects of neck

length? If so, interpret the main effects, using multiple comparisons at the 5% level if necessary. If not, explain
why not.

12. The article “Anodic Fenton Treatment of Treflan MTF” (D. Saltmiras and A. Lemley, Journal of Environmental
Science and Health, 2001:261–274) describes a two-factor experiment designed to study the sorption of the herbicide
trifluralin. The factors are the initial trifluralin concentration and the Fe2:H2O2 delivery ratio. There were three
replications for each treatment. The results presented in the following table are consistent with the means and
standard deviations reported in the article.

Initial Delivery
Concentration (M) Ratio Sorption (%)

15 1:0 10.90 8.47 12.43
15 1:1 3.33 2.40 2.67
15 1:5 0.79 0.76 0.84
15 1:10 0.54 0.69 0.57
40 1:0 6.84 7.68 6.79
40 1:1 1.72 1.55 1.82
40 1:5 0.68 0.83 0.89
40 1:10 0.58 1.13 1.28

100 1:0 6.61 6.66 7.43
100 1:1 1.25 1.46 1.49
100 1:5 1.17 1.27 1.16
100 1:10 0.93 0.67 0.80
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a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of the test statistic, its null distribution, and the P-value.

13. Refer to Exercise 12. The treatments with a delivery ratio of 1:0 were controls, or blanks. It was discovered after the
experiment that the high apparent levels of sorption in these controls was largely due to volatility of the trifluralin.
Eliminate the control treatments from the data.

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of the test statistic, its null distribution, and the P-value.
d. Construct an interaction plot. Explain how the plot illustrates the degree to which interactions are present.

14. The article “Use of Taguchi Methods and Multiple Regression Analysis for Optimal Process Development of High
Energy Electron Beam Case Hardening of Cast Iron” (M. Jean and Y. Tzeng, Surface Engineering, 2003:150–156)
describes a factorial experiment designed to determine factors in a high-energy electron beam process that affect
hardness in metals. Results for two factors, each with three levels, are presented in the following table. Factor A is the
travel speed in mm/s, and factor B is accelerating voltage in volts. The outcome is Vickers hardness. There were six
replications for each treatment. In the article, a total of seven factors were studied; the two presented here are those
that were found to be the most significant.

A B Hardness

10 10 875 896 921 686 642 613
10 25 712 719 698 621 632 645
10 50 568 546 559 757 723 734
20 10 876 835 868 812 796 772
20 25 889 876 849 768 706 615
20 50 756 732 723 681 723 712
30 10 901 926 893 856 832 841
30 25 789 801 776 845 827 831
30 50 792 786 775 706 675 568

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of the test statistic and the P-value.
d. Can the effect of travel speed on the hardness be described by interpreting the main effects of travel speed? If so,

interpret the main effects, using multiple comparisons at the 5% level if necessary. If not, explain why not.
e. Can the effect of accelerating voltage on the hardness be described by interpreting the main effects of accelerating

voltage? If so, interpret the main effects, using multiple comparisons at the 5% level if necessary. If not, explain
why not.

15. The article “T-Bracing for Stability of Compression Webs in Wood Trusses” (R. Leichti, I. Hofaker, et al., Journal
of Structural Engineering, 2002:374–381) presents results of experiments in which critical buckling loads (in kN) for
T-braced assemblies were estimated by a finite-element method. The following table presents data in which the factors
are the length of the side member and its method of attachment. There were 10 replications for each combination of
factors. The data are consistent with the means and standard deviations given in the article.
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Attachment Length Critical Buckling Load

Adhesive Quarter 7.90 8.71 7.72 8.88 8.55 6.95 7.07 7.59 7.77 7.86
Adhesive Half 14.07 13.82 14.77 13.39 11.98 12.72 9.48 13.59 13.09 12.09
Adhesive Full 26.80 28.57 24.82 23.51 27.57 25.96 24.28 25.68 21.64 28.16
Nail Quarter 6.92 5.38 5.38 5.89 6.07 6.37 7.14 6.71 4.36 6.78
Nail Half 9.67 9.17 10.39 10.90 10.06 9.86 10.41 10.24 9.31 11.99
Nail Full 20.63 21.15 24.75 20.76 21.64 21.47 25.25 22.52 20.45 20.38

a. Compute all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of a test statistic and the P-value.
d. Can the effect of attachment method (nail versus adhesive) on the critical buckling load be described by interpreting

the main effects of attachment method? If so, interpret the main effects. If not, explain why not.
e. Can the effect of side member length on the critical buckling load be described by interpreting the main effects of

side member length? If so, interpret the main effects, using multiple comparisons at the 5% level if necessary. If
not, explain why not.

16. The article referred to in Exercise 15 also presents measurements of Young’s modulus for side members of T-braced
assemblies. The following table presents data in which the factors are the length of the side member and its method
of attachment. There were 10 replications for each combination of factors. The data (in kN/mm2) are consistent with
the means and standard deviations given in the article.

Attachment Length Young's Modulus

Adhesive Quarter 9.56 10.67 8.82 8.40 9.23 8.20 10.23 9.58 7.57 8.05
Adhesive Half 8.74 9.24 10.77 9.10 8.08 11.14 10.00 9.17 9.79 8.13
Adhesive Full 9.84 9.80 8.31 7.37 10.12 9.18 8.93 8.65 7.89 9.07
Nail Quarter 10.24 9.38 9.38 7.48 9.23 9.64 8.45 8.12 8.86 8.07
Nail Half 9.84 9.34 9.64 8.21 10.43 9.48 7.46 9.51 10.20 9.66
Nail Full 7.96 8.32 8.73 9.37 9.12 7.98 9.84 8.89 10.10 8.07

a. Compute all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model plausible? Provide the value of a test statistic and the P-value.
d. Can the effect of attachment method (nail versus adhesive) on Young’s modulus be described by interpreting the

main effects of attachment method? If so, interpret the main effects. If not, explain why not.
e. Can the effect of side member length on Young’s modulus be described by interpreting the main effects of side

member length? If so, interpret the main effects, using multiple comparisons at the 5% level if necessary. If not,
explain why not.

17. Each of three operators made two weighings of several silicon wafers. Results are presented in the following table
for three of the wafers. All the wafers had weights very close to 54 g, so the weights are reported in units of μg above
54 g. (Based on the article “Revelation of a Microbalance Warmup Effect,” J. Buckner, B. Chin, et al., Statistical
Case Studies for Industrial Process Improvement, SIAM-ASA, 1997:39–45.)

Wafer Operator 1 Operator 2 Operator 3

1 11 15 10 6 14 10
2 210 208 205 201 208 207
3 111 113 102 105 108 111
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a. Construct an ANOVA table. You may give ranges for the P-values.
b. Can it be determined from the ANOVA table whether there is a difference in the measured weights among the

operators? If so, provide the value of the test statistic and the P-value. If not, explain why not.

18. Refer to Exercise 17. It turns out that the measurements of operator 2 were taken in the morning, shortly after the
balance had been powered up. A new policy was instituted to leave the balance powered up continuously. The three
operators then made two weighings of three different wafers. The results are presented in the following table.

Wafer Operator 1 Operator 2 Operator 3

1 152 156 156 155 152 157
2 443 440 442 439 435 439
3 229 227 229 232 225 228

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Compare the ANOVA table in part (a) with the ANOVA table in part (a) of Exercise 17. Would you recommend

leaving the balance powered up continuously? Explain your reasoning.

19. The article “Cellulose Acetate Microspheres Prepared by O/W Emulsification and Solvent Evaporation Method”
(K. Soppinmath, A Kulkarni, et al., Journal of Microencapsulation, 2001:811–817) describes a study of the effects
of the concentrations of polyvinyl alcohol (PVAL) and dichloromethane (DCM) on the encapsulation efficiency
in a process that produces microspheres containing the drug ibuprofen. There were three concentrations of PVAL
(measured in units of % w/v) and three of DCM (in mL). The results presented in the following table are consistent
with the means and standard deviations presented in the article.

PVAL DCM = 50 DCM = 40 DCM = 30

0.5 98.983 99.268 95.149 96.810 94.572 86.718 75.288 74.949 72.363
1.0 89.827 94.136 96.537 82.352 79.156 80.891 76.625 76.941 72.635
2.0 95.095 95.153 92.353 86.153 91.653 87.994 80.059 79.200 77.141

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Discuss the relationships among PVAL concentration, DCM concentration, and encapsulation efficiency.

9.4 Randomized Complete Block Designs

In some experiments, there are factors that vary and have an effect on the response, but
whose effects are not of interest to the experimenter. For example, in one commonly
occurring situation, it is impossible to complete an experiment in a single day, so the
observations have to be spread out over several days. If conditions that can affect the
outcome vary from day to day, then the day becomes a factor in the experiment, even
though there may be no interest in estimating its effect.

For a more specific example, imagine that three types of fertilizer are to be evaluated
for their effect on yield of fruit in an orange grove, and that three replicates will be
performed, for a total of nine observations. An area is divided into nine plots, in three
rows of three plots each. Now assume there is a water gradient along the plot area, so
that the rows receive differing amounts of water. The amount of water is now a factor in
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the experiment, even though there is no interest in estimating the effect of water amount
on the yield of oranges.

If the water factor is ignored, a one-factor experiment could be carried out with
fertilizer as the only factor. Each of the three fertilizers would be assigned to three of
the plots. In a completely randomized experiment, the treatments would be assigned
to the plots at random. Figure 9.11 presents two possible random arrangements. In the
arrangement on the left, the plots with fertilizer A get more water than those with the
other two fertilizers. In the plot on the right, the plots with fertilizer C get the most water.
When the treatments for one factor are assigned completely at random, it is likely that
they will not be distributed evenly over the levels of another factor.

A

B

B

A

C

C

B

A

C

More water

Less water

C

A

A

B

C

A

C

B

B

More water

Less water

FIGURE 9.11 Two possible arrangements for three fertilizers, A, B, and C, assigned
to nine plots completely at random. It is likely that the amounts of water will differ for
the different fertilizers.

If the amount of water in fact has a negligible effect on the response, then the
completely randomized one-factor design is appropriate. There is no reason to worry
about a factor that does not affect the response. But now assume that the water level
does have a substantial impact on the response. Then Figure 9.11 shows that in any one
experiment, the estimated effects of the treatments are likely to be thrown off the mark, or
biased, by the differing levels of water. Different arrangements of the treatments bias the
estimates in different directions. If the experiment is repeated several times, the estimates
are likely to vary greatly from repetition to repetition. For this reason, the completely
randomized one-factor design produces estimated effects that have large uncertainties.

A better design for this experiment is a two-factor design, with water as the second
factor. Since the effects of water are not of interest, water is called a blocking factor,
rather than a treatment factor. In the two-factor experiment, there are nine treatment–
block combinations, corresponding to the three fertilizer treatment levels and the three
water block levels. With nine experimental units (the nine plots), it is necessary to assign
one plot to each combination of fertilizer and water. Figure 9.12 presents two possible
arrangements.
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Block 2

Block 3

Block 1
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Less water

FIGURE 9.12 Two possible arrangements for three fertilizers, A, B, and C, with the re-
striction that each fertilizer must appear once at each water level (block). The distribution
of water levels is always the same for each fertilizer.
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In the two-factor design, each treatment appears equally often (once, in this exam-
ple) in each block. As a result, the effect of the blocking factor does not contribute to
uncertainty in the estimate of the main effects of the treatment factor. Because each treat-
ment must appear equally often in each block, the only randomization in the assignment
of treatments to experimental units is the order in which the treatments appear in each
block. This is not a completely randomized design; it is a design in which the treatments
are randomized within blocks. Since every possible combination of treatments and
blocks is included in the experiment, the design is complete. For this reason the design
is called a randomized complete block design.

Randomized complete block designs can be constructed with several treatment fac-
tors and several blocking factors. We will restrict our discussion to the case where there
is one treatment factor and one blocking factor. The data from a randomized complete
block design are analyzed with a two-way ANOVA, in the same way that data from any
complete, balanced two-factor design would be. There is one important consideration,
however. The only effects of interest are the main effects of the treatment factor. In order
to interpret these main effects, there must be no interaction between treatment and
blocking factors.

Example
9.19 Three fertilizers are studied for their effect on yield in an orange grove. Nine plots

of land are used, divided into blocks of three plots each. A randomized complete
block design is used, with each fertilizer applied once in each block. The results, in
pounds of harvested fruit, are presented in the following table, followed by MINITAB
output for the two-way ANOVA. Can we conclude that the mean yields differ among
fertilizers? What assumption is made about interactions between fertilizer and plot?
How is the sum of squares for error computed?

Fertilizer Plot 1 Plot 2 Plot 3

A 430 542 287
B 367 463 253
C 320 421 207

Two-way ANOVA: Yield versus Block, Fertilizer

Source DF SS MS F P
Fertilizer 2 16213.6 8106.778 49.75 0.001
Block 2 77046.9 38523.44 236.4 0.000
Error 4 651.778 162.9444
Total 8 93912.2

Solution
The P-value for the fertilizer factor is 0.001, so we conclude that fertilizer does have
an effect on yield. The assumption is made that there is no interaction between the
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fertilizer and the blocking factor (plot), so that the main effects of fertilizer can be
interpreted. Since there is only one observation for each treatment–block combination
(i.e., K = 1), the sum of squares for error (SSE) reported in the output is really SSAB,
the sum of squares for interaction, and the error mean square (MSE) is actually MSAB.
(See the discussion on page 717.)

A closer look at the ANOVA table in Example 9.19 shows that in this experiment,
blocking was necessary to detect the fertilizer effect. To see this, consider the experiment
to be a one-factor experiment. The sum of squares for error (SSE) would then be the sum of
SSE for the blocked design plus the sum of squares for blocks, or 651.778 + 77,046.9 =
77,698.7. The degrees of freedom for error would be equal to the sum of the degrees
of freedom for error in the blocked design plus the degrees of freedom for blocks, or
2 + 4 = 6. The error mean square (MSE) would then be 77,698.7/6 ≈ 12,950 rather
than 162.9444, and the F statistic for the fertilizer effect would be less than 1, which
would result in a failure to detect an effect.

In general, using a blocked design reduces the degrees of freedom for error, which
by itself tends to reduce the power to detect an effect. However, unless the blocking
factor has very little effect on the response, this will usually be more than offset by a
reduction in the sum of squares for error. Failing to include a blocking factor that affects
the response can reduce the power greatly, while including a blocking factor that does
not affect the response reduces the power only modestly in most cases. For this reason
it is a good idea to use a blocked design whenever it is thought to be possible that the
blocking factor is related to the response.

Summary

■ A two-factor randomized complete block design is a complete balanced
two-factor design in which the effects of one factor (the treatment factor)
are of interest, while the effects of the other factor (the blocking factor) are
not of interest. The blocking factor is included to reduce the uncertainty in
the main effect estimates of the treatment factor.

■ Since the object of a randomized complete block design is to estimate the
main effects of the treatment factor, there must be no interaction between
the treatment factor and the blocking factor.

■ A two-way analysis of variance is used to estimate effects and to perform
hypothesis tests on the main effects of the treatment factor.

■ A randomized complete block design provides a great advantage over a
completely randomized design when the blocking factor strongly affects
the response and provides a relatively small disadvantage when the
blocking factor has little or no effect. Therefore, when in doubt, it is a
good idea to use a blocked design.
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Example
9.20 The article “Experimental Design for Process Settings in Aircraft Manufacturing”

(R. Sauter and R. Lenth, Statistical Case Studies: A Collaboration Between Academe
and Industry, SIAM–ASA, 1998:151–157) describes an experiment in which the
quality of holes drilled in metal aircraft parts was studied. One important indicator
of hole quality is “excess diameter,” which is the difference between the diameter of
the drill bit and the diameter of the hole. Small excess diameters are better than large
ones. Assume we are interested in the effect of the rotational speed of the drill on
the excess diameter of the hole. Holes will be drilled in six test pieces (coupons), at
three speeds: 6000, 10,000, and 15,000 rpm. The excess diameter can be affected not
only by the speed of the drill, but also by the physical properties of the test coupon.
Describe an appropriate design for this experiment.

Solution
A randomized complete block design is appropriate, with drill speed as the treatment
factor, and test coupon as the blocking factor. Since six observations can be made
in each block, each drill speed should be used twice in each block. The order of the
speeds within each block should be chosen at random.

Example
9.21 The design suggested in Example 9.20 has been adopted, and the experiment has

been carried out. The results (from MINITAB) follow. Does the output indicate any
violation of necessary assumptions? What do you conclude regarding the effect of
drill speed on excess diameter?

Two-way ANOVA: Excess Diameter versus Block, Speed

Source DF SS MS F P
Block 5 0.20156 0.0403117 1.08 0.404
Speed 2 0.07835 0.0391750 1.05 0.370
Interaction 10 0.16272 0.0162717 0.44 0.909
Error 18 0.67105 0.0372806
Total 35 1.11368

S = 0.1931 R-Sq = 39.74% R-Sq(adj) = 0.00%

Solution
In a randomized complete block design, there must be no interaction between the
treatment factor and the blocking factor, so that the main effect of the treatment factor
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may be interpreted. The P-value for interactions is 0.909, which is consistent with the
hypothesis of no interactions. Therefore there is no indication in the output of any
violation of assumptions. The P-value for the main effect of speed is 0.370, which is
not small. Therefore we cannot conclude that excess hole diameter is affected by drill
speed.

Example 9.22 shows that a paired design (see Section 6.8), in which a t test is used
to compare two population means, is a special case of a randomized block design.

Example
9.22 A tire manufacturer wants to compare the tread wear of tires made from a new material

with that of tires made from a conventional material. There are 10 tires of each type.
Each tire will be mounted on the front wheel of a front-wheel drive car and driven
for 40,000 miles. Then the tread wear will be measured for each tire. Describe an
appropriate design for this experiment.

Solution
The response is the tread wear after 40,000 miles. There is one factor of interest:
the type of tire. Since the cars may differ in the amounts of wear they produce, the
car is a factor as well, but its effect is not of interest. A randomized complete block
design is appropriate, in which one tire of each type is mounted on the front wheels of
each car.

You may note that the randomized complete block design in Example 9.22 is the
same design that is used when comparing two population means with a paired t test,
as discussed in Section 6.8. The paired design described there is a special case of a
randomized complete block design, in which the treatment factor has only two levels,
and each level appears once in each block. In fact, a two-way analysis of variance applied
to data from such a design is equivalent to the paired t test.

Multiple Comparisons in Randomized Complete Block Designs
Once an ANOVA table has been constructed, then if the F test shows that the treatment
main effects are not all the same, a method of multiple comparisons may be used to
determine which pairs of effects may be concluded to differ. We describe Tukey’s method,
which is a special case of the Tukey–Kramer method described in Section 9.2. The degrees
of freedom, and the mean square used, differ depending on whether each treatment
appears only once, or more than once, in each block.
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Tukey's Method for Multiple Comparisons in Randomized Complete
Block Designs
In a randomized complete block design, with I treatment levels, J block levels,
and treatment main effects α1, . . . , αI :

■ If each treatment appears only once in each block, then the null
hypothesis H0 : αi − α j = 0 is rejected at level α for every pair of
treatments i and j for which

|Xi. − X j.| > qI,(I−1)(J−1),α

√
MSAB

J
where MSAB is the mean square for interaction.

■ If each treatment appears K > 1 times in each block, then the null
hypothesis H0 : αi − α j = 0 is rejected at level α for every pair of
treatments i and j for which

|Xi.. − X j..| > qI,IJ(K−1),α

√
MSE

J K
where MSE is the mean square for error.

For more information on randomized block designs, a text on design of experiments,
such as Montgomery (2013a), can be consulted.

Exercises for Section 9.4
1. Recycling newsprint is important in reducing waste. The article “The Influence of Newspaper Aging on Optical

Properties of its De-inked Pulp” (M. Rahmaninia, A Latibari, et al., Turkish J Eng Env Sci, 2008:35–39) presents the
results of an experiment to determine the effects of the age of newsprint on the brightness (in percent) of the recycled
paper. Four aging periods were considered, along with five concentrations of sodium hydroxide (NaOH), used to
de-ink the paper. The effect of the sodium hydroxide concentration is not of interest. The results are presented in the
following table.

NaOH Concentration

Age (Months) 0% 0.5% 1% 1.5% 2%

0 54.6 54.3 55.5 56.3 56.6
4 45.6 44.1 43.7 45.6 47.1
8 46.1 45.9 46.4 45.0 47.9

12 44.0 44.1 45.2 43.7 46.5

a. Identify the blocking factor and the treatment factor.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Can you conclude that brightness differs with age? Explain.
d. Which pairs of ages, if any, can you conclude to have differing brightnesses? Use the 5% level.
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2. A study was done to see which of four machines is fastest in performing a certain task. There are three operators;
each performs the task twice on each machine. A randomized block design is employed. The MINITAB output
follows.

Source DF SS MS F P
Machine (i) 257.678 (ii) (iii) 0.021
Block (iv) 592.428 (v) (vi) 0.000
Interaction (vii) (viii) (ix) (x) 0.933
Error (xi) 215.836 17.986
Total (xii) 1096.646

a. Fill in the missing numbers (i) through (xii) in the output.
b. Does the output indicate that the assumptions for the randomized block design are satisfied? Explain.
c. Can you conclude that there are differences among the machines? Explain.

3. Four lighting methods were used in each of three rooms. For each method and each room, the illuminance (in lux)
was measured in three separate occasions, resulting in three replications of the experiment. The only effect of interest
is the lighting type; the room is a blocking factor. The following sums of squares were calculated: sum of squares
for blocks = 11432, sum of squares for treatments = 9943, sum of squares for interactions = 6135, total sum of
squares = 51376.

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Are the assumptions for a randomized complete block design satisfied? Explain.
c. Does the ANOVA table provide evidence that lighting type affects illuminance? Explain.

4. Three different corrosion-resistant coatings are being considered for use on iron pipes. Ten pieces of pipe are marked
off in six equal segments. For each pipe, two segments received coating A, two received coating B, and the remaining
two received coating C. The pipes were placed in a corrosive environment for a period of time; then the depth of
the deepest pit (in mm) caused by corrosion was measured for each segment on each pipe. The effect of interest
is the coating; the pipe is a blocking factor, and there were two replications on each pipe. The following sums of
squares were calculated: sum of squares for blocks = 11.2, sum of squares for treatments = 4.8, sum of squares for
interactions = 18.4, total sum of squares = 44.7.

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Are the assumptions for a randomized complete block design satisfied? Explain.
c. Does the ANOVA table provide evidence that mean pit depth differs among coatings? Explain.

5. The article “Genotype-Environment Interactions and Phenotypic Stability Analyses of Linseed in Ethiopia”
(W. Adguna and M. Labuschagne, Plant Breeding, 2002:66–71) describes a study in which seed yields of 10 varieties
of linseed were compared. Each variety was grown on six different plots. The yields, in kilograms per hectare, are
presented in the following table.
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Plot

Variety 1 2 3 4 5 6

A 2032 1377 1343 1366 1276 1209
B 1815 1126 1338 1188 1566 1454
C 1739 1311 1340 1250 1473 1617
D 1812 1313 1044 1245 1090 1280
E 1781 1271 1308 1220 1371 1361
F 1703 1089 1256 1385 1079 1318
G 1476 1333 1162 1363 1056 1096
H 1745 1308 1190 1269 1251 1325
I 1679 1216 1326 1271 1506 1368
J 1903 1382 1373 1609 1396 1366

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Can you conclude that the varieties have differing mean yields?

6. The article “Sprinkler Technologies, Soil Infiltration, and Runoff” (D. DeBoer and S. Chu, Journal of Irrigation and
Drainage Engineering, 2001:234–239) presents a study of the runoff depth (in mm) for various sprinkler types. Each
of four sprinklers was tested on each of four days, with two replications per day (there were three replications on
a few of the days; these are omitted). It is of interest to determine whether runoff depth varies with sprinkler type;
variation from one day to another is not of interest. The data are presented in the following table.

Sprinkler Day 1 Day 2 Day 3 Day 4

A 8.3 5.5 7.8 4.5 10.7 9.8 10.6 6.6
B 6.5 9.5 3.7 3.6 7.7 10.6 3.6 6.7
C 1.8 1.2 0.5 0.3 1.7 1.9 2.2 2.1
D 0.7 0.8 0.1 0.5 0.1 0.5 0.3 0.5

a. Identify the blocking factor and the treatment factor.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Are the assumptions of a randomized complete block design met? Explain.
d. Can you conclude that there are differences in mean runoff depth between some pairs of sprinklers? Explain.
e. Which pairs of sprinklers, if any, can you conclude, at the 5% level, to have differing mean runoff depths?

7. The article “Bromate Surveys in French Drinking Waterworks” (B. Legube, B. Parinet, et al., Ozone Science and
Engineering, 2002:293–304) presents measurements of bromine concentrations (in μg/L) at several waterworks.
The measurements made at 15 different times at each of four waterworks are presented in the following table. (The
article also presented some additional measurements made at several other waterworks.) It is of interest to determine
whether bromine concentrations vary among waterworks; it is not of interest to determine whether concentrations vary
over time.

Time
Waterworks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A 29 9 7 35 40 53 38 38 41 34 42 35 38 35 36
B 24 29 21 24 20 25 15 14 8 12 14 35 32 38 33
C 25 17 20 24 19 19 17 23 22 27 17 33 33 39 37
D 31 37 34 30 39 41 34 34 29 33 33 34 16 31 16
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a. Construct an ANOVA table. You may give ranges for the P-values.
b. Can you conclude that bromine concentration varies among waterworks?
c. Which pairs of waterworks, if any, can you conclude, at the 5% level, to have differing bromine concentrations?
d. Someone suggests that these data could have been analyzed with a one-way ANOVA, ignoring the time factor,

with 15 observations for each of the four waterworks. Does the ANOVA table support this suggestion? Explain.

8. The article “Multi-objective Scheduling Problems: Determination of Pruned Pareto Sets” (H. Taboada and D. Coit, IIE
Transactions, 2008:552–564), presents examples in a discussion of optimization methods for industrial scheduling
and production planning. In one example, seven different jobs were performed on each of five machines. The cost of
each job on each machine is presented in the following table. Assume that it is of interest to determine whether costs
differ between machines, but that it is not of interest whether costs differ between jobs.

Job

Machine 1 2 3 4 5 6 7

A 16 24 18 22 26 20 22
B 22 18 30 20 28 18 26
C 12 12 15 18 22 12 16
D 18 28 16 26 34 18 18
E 14 14 11 16 18 10 12

a. Identify the blocking factor and the treatment factor.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Can you conclude that there are differences in costs between some pairs of machines? Explain.
d. Which pairs of machines, if any, can you conclude, at the 5% level, to have differing mean costs?

9. You have been given the task of designing a study concerning the lifetimes of five different types of electric motor.
The initial question to be addressed is whether there are differences in mean lifetime among the five types. There are
20 motors, four of each type, available for testing. A maximum of five motors can be tested each day. The ambient
temperature differs from day to day, and this can affect motor lifetime.

a. Describe how you would choose the five motors to test each day. Would you use a completely randomized design?
Would you use any randomization at all?

b. If Xi j represents the measured lifetime of a motor of type i tested on day j , express the test statistic for testing
the null hypothesis of equal lifetimes in terms of the Xi j .

10. An engineering professor wants to determine which subject engineering students find most difficult among statistics,
physics, and chemistry. She obtains the final exam grades for four students who took all three courses last semester
and who were in the same sections of each class. The results are presented in the following table.

Student

Course 1 2 3 4
Statistics 82 94 78 70
Physics 75 70 81 83
Chemistry 93 82 80 70

a. The professor proposes a randomized complete block design, with the students as the blocks. Give a reason that
this is likely not to be appropriate.

b. Describe the features of the data in the preceding table that suggest that the assumptions of the randomized
complete block design are violated.
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9.5 2p Factorial Experiments

When an experimenter wants to study several factors simultaneously, the number of
different treatments can become quite large. In these cases, preliminary experiments are
often performed in which each factor has only two levels. One level is designated as the
“high” level, and the other is designated as the “low” level. If there are p factors, there
are then 2p different treatments. Such experiments are called 2p factorial experiments.
Often, the purpose of a 2p experiment is to determine which factors have an important
effect on the outcome. Once this is determined, more elaborate experiments can be
performed, in which the factors previously found to be important are varied over several
levels. We will begin by describing 23 factorial experiments.

Notation for 23 Factorial Experiments
In a 23 factorial design, there are three factors and 23 = 8 treatments. The main effect
of a factor is defined to be the difference between the mean response when the factor is
at its high level and the mean response when the factor is at its low level. It is common to
denote the main effects by A, B, and C . As with any factorial experiment, there can be
interactions between the factors. With three factors, there are three two-way interactions,
one for each pair of factors, and one three-way interaction. The two-way interactions are
denoted by AB, AC , and BC , and the three-way interaction by ABC . The treatments
are traditionally denoted with lowercase letters, with a letter indicating that a factor is at
its high level. For example, ab denotes the treatment in which the first two factors are at
their high level and the third factor is at its low level. The symbol “1” is used to denote
the treatment in which all factors are at their low levels.

Estimating Effects in a 23 Factorial Experiment
Assume that there are K replicates for each treatment in a 23 factorial experiment. For
each treatment, the cell mean is the average of the K observations for that treatment. The
formulas for the effect estimates can be easily obtained from the 23 sign table, presented
as Table 9.7 on page 736. The signs are placed in the table as follows. For the main
effects A, B, C , the sign is + for treatments in which the factor is at its high level, and −
for treatments where the factor is at its low level. So for the main effect A, the sign is +
for treatments a, ab, ac, and abc, and − for the rest. For the interactions, the signs are
computed by taking the product of the signs in the corresponding main effects columns.
For example, the signs for the two-way interaction AB are the products of the signs in
columns A and B, and the signs for the three-way interaction ABC are the products of
the signs in columns A and B and C .

Estimating main effects and interactions is done with the use of the sign table. We
illustrate how to estimate the main effect of factor A. Factor A is at its high level in the
rows of the table where there is a “+” sign in column A. Each of the cell means Xa ,
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TABLE 9.7 Sign table for a 23 factorial experiment

Treatment Cell Mean A B C AB AC BC ABC

1 X 1 − − − + + + −
a Xa + − − − − + +
b X b − + − − + − +
ab Xab + + − + − − −
c X c − − + + − − +
ac Xac + − + − + − −
bc X bc − + + − − + −
abc Xabc + + + + + + +

Xab, Xac, and Xabc is an average response for runs made with factor A at its high level.
We estimate the mean response for factor A at its high level to be the average of these
cell means.

Estimated mean response for A at high level = 1

4
(Xa + Xab + Xac + Xabc)

Similarly, each row with a “−” sign in column A represents a treatment with factor A
set to its low level. We estimate the mean response for factor A at its low level to be the
average of the cell means in these rows.

Estimated mean response for A at low level = 1

4
(X1 + Xb + Xc + Xbc)

The estimate of the main effect of factor A is the difference in the estimated mean
response between its high and low levels.

A effect estimate = 1

4
(−X1 + Xa − Xb + Xab − Xc + Xac − Xbc + Xabc)

The quantity inside the parentheses is called the contrast for factor A. It is computed
by adding and subtracting the cell means, using the signs in the appropriate column of
the sign table. Note that the number of plus signs is the same as the number of mi-
nus signs, so the sum of the coefficients is equal to 0. The effect estimate is obtained
by dividing the contrast by half the number of treatments, which is 23/2, or 4. Esti-
mates for other main effects and interactions are computed in an analogous manner.
To illustrate, we present the effect estimates for the main effect C and for the two-way
interaction AB:

C effect estimate = 1

4
(−X1 − Xa − Xb − Xab + Xc + Xac + Xbc + Xabc)

AB interaction estimate = 1

4
(X1 − Xa − Xb + Xab + Xc − Xac − Xbc + Xabc)
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Summary
The contrast for any main effect or interaction is obtained by adding and sub-
tracting the cell means, using the signs in the appropriate column of the sign
table.

For a 23 factorial experiment,

Effect estimate = contrast

4
(9.65)

Example
9.23 A 23 factorial experiment was conducted to estimate the effects of three factors on the

yield of a chemical reaction. The factors were A: catalyst concentration (low or high),
B: reagent (standard formulation or new formulation), and C: stirring rate (slow or
fast). Three replicates were obtained for each treatment. The yields, presented in the
following table, are measured as a percent of a theoretical maximum. Estimate all
effects and interactions.

Treatment Yield Cell Mean

1 71.67 70.55 67.40 69.8733
a 78.46 75.42 81.77 78.5500
b 77.14 78.25 78.33 77.9067
ab 79.72 76.17 78.41 78.1000
c 72.65 71.03 73.54 72.4067
ac 80.10 73.91 74.81 76.2733
bc 80.20 73.49 74.86 76.1833
abc 75.58 80.28 71.64 75.8333

Solution
We use the sign table (Table 9.7) to find the appropriate sums and differences of the
cell means. We present the calculations for the main effect A, the two-way interaction
BC , and the three-way interaction ABC :

A effect estimate = 1

4
(−69.8733 + 78.5500 − 77.9067 + 78.1000

− 72.4067 + 76.2733 − 76.1833 + 75.8333) = 3.0967

BC interaction estimate = 1

4
(69.8733 + 78.5500 − 77.9067 − 78.1000

− 72.4067 − 76.2733 + 76.1833 + 75.8333) = −1.0617

ABC interaction estimate = 1

4
(−69.8733 + 78.5500 + 77.9067 − 78.1000

+ 72.4067 − 76.2733 − 76.1833 + 75.8333) = 1.0667
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We present all the estimated effects in the following table, rounded off to the same
precision as the data:

Term Effect

A 3.10
B 2.73
C −0.93
AB −3.18
AC −1.34
BC −1.06
ABC 1.07

For each effect, we can test the null hypothesis that the effect is equal to 0. When the
null hypothesis is rejected, this provides evidence that the factors involved actually affect
the outcome. To test these null hypotheses, an ANOVA table is constructed containing the
appropriate sums of squares. For the tests we present to be valid, the number of replicates
must be the same for each treatment and must be at least 2. In addition, the observations
in each treatment must constitute a random sample from a normal population, and the
populations must all have the same variance.

We compute the error sum of squares (SSE) by adding the sums of squared deviations
from the sample means for all the treatments. To express this in an equation, let s2

1 , . . . , s2
8

denote the sample variances of the observations in each of the eight treatments, and let
K be the number of replicates per treatment. Then

SSE = (K − 1)

8∑
i=1

s2
i (9.66)

Each main effect and interaction has its own sum of squares as well. These are easy to
compute. The sum of squares for any effect or interaction is computed by squaring its
contrast, multiplying by the number of replicates K , and dividing by the total number
of treatments, which is 23 = 8.

Sum of squares for an effect = K (contrast)2

8
(9.67)

When using Equation (9.67), it is best to keep as many digits in the effect estimates as
possible, in order to obtain maximum precision in the sum of squares. For presentation
in a table, effect estimates and sums of squares may be rounded to the same precision as
the data.

The sums of squares for the effects and interactions have one degree of freedom
each. The error sum of squares has 8(K − 1) degrees of freedom. The method for
computing mean squares and F statistics is the same as the one presented in Section 9.3
for a two-way ANOVA table. Each mean square is equal to its sum of squares divided by
its degrees of freedom. The test statistic for testing the null hypothesis that an effect or
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interaction is equal to 0 is computed by dividing the mean square for the effect estimate
by the mean square for error. When the null hypothesis is true, the test statistic has an
F1, 8(K−1) distribution.

Example
9.24 Refer to Example 9.23. Construct an ANOVA table. For each effect and interaction,

test the null hypothesis that it is equal to 0. Which factors, if any, seem most likely to
have an effect on the outcome?

Solution
The ANOVA table follows. The sums of squares for the effects and interactions
were computed by using Equation (9.67). The error sum of squares was computed by
applying Equation (9.66) to the data in Example 9.23. Each F statistic is the quotient of
the mean square with the mean square for error. Each F statistic has 1 and 16 degrees of
freedom.

Sum of Mean
Source Effect Squares df Square F P

A 3.10 57.54 1 57.54 7.34 0.015
B 2.73 44.72 1 44.72 5.70 0.030
C −0.93 5.23 1 5.23 0.67 0.426
AB −3.18 60.48 1 60.48 7.71 0.013
AC −1.34 10.75 1 10.75 1.37 0.259
BC −1.06 6.76 1 6.76 0.86 0.367
ABC 1.07 6.83 1 6.83 0.87 0.365
Error 125.48 16 7.84
Total 317.78 23

The main effects of factors A and B, as well as the AB interaction, have fairly
small P-values. This suggests that these effects are not equal to 0 and that factors A
and B do affect the outcome. There is no evidence that the main effect of factor C , or
any of its interactions, differ from 0. Further experiments might focus on factors A and
B. Perhaps a two-way ANOVA would be conducted, with each of the factors A and B
evaluated at several levels, to get more detailed information about their effects on the
outcome.

Interpreting Computer Output
In practice, analyses of factorial designs are usually carried out on a computer. The
following output (from MINITAB) presents the results of the analysis described in
Examples 9.23 and 9.24.
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Factorial Fit: Yield versus A, B, C

Estimated Effects and Coefficients for Yield (coded units)

Term Effect Coef SE Coef T P
Constant 75.641 0.5716 132.33 0.000
A 3.097 1.548 0.5716 2.71 0.015
B 2.730 1.365 0.5716 2.39 0.030
C −0.933 −0.467 0.5716 −0.82 0.426
A∗B −3.175 −1.587 0.5716 −2.78 0.013
A∗C −1.338 −0.669 0.5716 −1.17 0.259
B∗C −1.062 −0.531 0.5716 −0.93 0.367
A∗B∗C 1.067 0.533 0.5716 0.93 0.365

S = 2.80040 R-Sq = 60.51% R-Sq(adj) = 43.24%

Analysis of Variance for Yield (coded units)

Source DF Seq SS Adj SS Adj MS F P
Main Effects 3 107.480 107.480 35.827 4.57 0.017
2-Way Interactions 3 77.993 77.993 25.998 3.32 0.047
3-Way Interactions 1 6.827 6.827 6.827 0.87 0.365
Residual Error 16 125.476 125.476 7.842
Pure Error 16 125.476 125.476 7.842

Total 23 317.776

The table at the top of the output presents estimated effects and coefficients. The
phrase “coded units” means that the values 1 and −1, rather than the actual values,
are used to represent the high and low levels of each factor. The estimated effects are
listed in the column labeled “Effect.” In the next column are the estimated coefficients,
each of which is equal to one-half the corresponding effect. While the effect repre-
sents the difference in the mean response between the high and low levels of a factor,
the coefficient represents the difference between the mean response at the high level
and the grand mean response, which is half as much. The coefficient labeled “Con-
stant” is the mean of all the observations, that is, the sample grand mean. Every coef-
ficient estimate has the same standard deviation, which is shown in the column labeled
“SE Coef.”

MINITAB uses the Student’s t statistic, rather than the F statistic, to test the hy-
potheses that the effects are equal to zero. The column labeled “T” presents the value of
the Student’s t statistic, which is equal to the quotient of the coefficient estimate (Coef)
and its standard deviation. Under the null hypothesis, the t statistic has a Student’s t
distribution with 8(K − 1) degrees of freedom. The P-values are presented in the col-
umn labeled “P.” The t test performed by MINITAB is equivalent to the F test described
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in Example 9.24. The t8(K−1) statistic can be computed by taking the square root of
the F1, 8(K−1) statistic and applying the sign of the effect estimate. The P-values are
identical.

We’ll discuss the analysis of variance table next. The column labeled “DF” presents
degrees of freedom. The columns labeled “Seq SS” (sequential sum of squares) and “Adj
SS” (adjusted sum of squares) will be identical in all the examples we will consider and
will contain sums of squares. The column labeled “Adj MS” contains mean squares,
or sums of squares divided by their degrees of freedom. We will now explain the rows
involving error. The row labeled “Pure Error” is concerned with the error sum of squares
(SSE) (Equation 9.66). There are 8(K − 1) = 16 degrees of freedom (DF) for pure
error. The sum of squares for pure error, found in each of the next two columns is the
error sum of squares (SSE). Under the column “Adj MS” is the mean square for error.
The row above the pure error row is labeled “Residual Error.” The sum of squares for
residual error is equal to the sum of squares for pure error, plus the sums of squares
for any main effects or interactions that are not included in the model. The degrees of
freedom for the residual error sum of squares is equal to the degrees of freedom for
pure error, plus the degrees of freedom (one each) for each main effect or interaction
not included in the model. Since in this example all main effects and interactions are
included in the model, the residual error sum of squares and its degrees of freedom are
equal to the corresponding quantities for pure error. The row labeled “Total” contains
the total sum of squares (SST). The total sum of squares and its degrees of freedom are
equal to the sums of the corresponding quantities for all the effects, interactions, and
residual error.

Going back to the top of the table, the first row is labeled “Main Effects.” There
are three degrees of freedom for main effects, because there are three main effects
(A, B, and C), with one degree of freedom each. The sequential sum of squares is
the sum of the sums of squares for each of the three main effects. The mean square
(Adj MS) is the sum of squares divided by its degrees of freedom. The column labeled
“F” presents the F statistic for testing the null hypothesis that all the main effects are
equal to zero. The value of the F statistic (4.57) is equal to the quotient of the mean square
for main effects (35.827) and the mean square for (pure) error (7.842). The degrees of
freedom for the F statistic are 3 and 16, corresponding to the degrees of freedom for the
two mean squares. The column labeled “P” presents the P-value for the F test. In this
case the P-value is 0.017, which indicates that not all the main effects are zero.

The rows labeled “2-Way Interactions” and “3-Way Interactions” are analogous
to the row for main effects. The P-value for two-way interactions is 0.047, which is
reasonably strong evidence that at least some of the two-way interactions are not equal
to zero. Since there is only one three-way interaction (A ∗ B ∗ C), the P-value in the
row labeled “3-Way Interactions” is the same (0.365) as the P-value in the table at the
top of the MINITAB output for A ∗ B ∗ C .

Recall that the hypothesis tests are performed under the assumption that all the
observations have the same standard deviation σ . The quantity labeled “S” is the estimate
of σ and is equal to the square root of the mean square for error (MSE). The quantities
“R-sq” and “R-sq(adj)” are the coefficients of determination R2 and the adjusted R2,
respectively, and are computed by methods analogous to those in one-way ANOVA.
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Estimating Effects in a 2p Factorial Experiment
A sign table can be used to obtain the formulas for computing effect estimates in any 2p

factorial experiment. The method is analogous to the 23 case. The treatments are listed
in a column. The sign for any main effect is + in the rows corresponding to treatments
where the factor is at its high level, and − in rows corresponding to treatments where
the factor is at its low level. Signs for the interactions are found by multiplying the signs
corresponding to the factors in the interaction. The estimate for any effect or interaction
is found by adding and subtracting the cell means for the treatments, using the signs in
the appropriate columns, to compute a contrast. The contrast is then divided by half the
number of treatments, or 2p−1, to obtain the effect estimate.

Summary
For a 2p factorial experiment:

Effect estimate = contrast

2p−1
(9.68)

As an example, Table 9.8 presents a sign table for a 25 factorial experiment. We list the
signs for the main effects and for selected interactions.

Sums of squares are computed by a method analogous to that for a 23 experiment.
To compute the error sum of squares (SSE), let s1, . . . , s2p be the sample variances of
the observations in each of the 2p treatments. Then

SSE = (K − 1)

2p∑
i=1

s2
i

The degrees of freedom for error is 2p(K − 1), where K is the number of replicates
per treatment. The sum of squares for each effect and interaction is equal to the square
of the contrast, multiplied by the number of replicates K and divided by the number of
treatments 2p. The sums of squares for the effects and interactions have one degree of
freedom each.

Sum of squares for an effect = K (contrast)2

2p
(9.69)

F statistics for main effects and interactions are computed by dividing the sum of squares
for the effect by the mean square for error. The null distribution of the F statistic is
F1, 2p(K−1).

Factorial Experiments without Replication
When the number of factors p is large, it is often not feasible to perform more than
one replicate for each treatment. In this case, it is not possible to compute SSE, so the
hypothesis tests previously described cannot be performed. If it is reasonable to assume
that some of the higher-order interactions are equal to 0, then the sums of squares for
those interactions can be added together and treated like an error sum of squares. Then
the main effects and lower order interactions can be tested.
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TABLE 9.8 Sign table for the main effects and selected interactions for a 25 factorial
experiment

Treatment A B C D E AB C DE ABDE ABC DE

1 − − − − − + − + −
a + − − − − − − − +
b − + − − − − − − +
ab + + − − − + − + −
c − − + − − + + + +
ac + − + − − − + − −
bc − + + − − − + − −
abc + + + − − + + + +
d − − − + − + + − +
ad + − − + − − + + −
bd − + − + − − + + −
abd + + − + − + + − +
cd − − + + − + − − −
acd + − + + − − − + +
bcd − + + + − − − + +
abcd + + + + − + − − −
e − − − − + + + − +
ae + − − − + − + + −
be − + − − + − + + −
abe + + − − + + + − +
ce − − + − + + − − −
ace + − + − + − − + +
bce − + + − + − − + +
abce + + + − + + − − −
de − − − + + + − + −
ade + − − + + − − − +
bde − + − + + − − − +
abde + + − + + + − + −
cde − − + + + + + + +
acde + − + + + − + − −
bcde − + + + + − + − −
abcde + + + + + + + + +

Example
9.25 A 25 factorial experiment was conducted to estimate the effects of five factors on the

quality of lightbulbs manufactured by a certain process. The factors were A: plant
(1 or 2), B: machine type (low or high speed), C: shift (day or evening), D: lead wire
material (standard or new), and E: method of loading materials into the assembler
(manual or automatic). One replicate was obtained for each treatment. Table 9.9 on
page 744 presents the results. Compute estimates of the main effects and interactions,
and their sums of squares. Assume that the third-, fourth-, and fifth-order interactions
are negligible, and add their sums of squares to use as a substitute for an error sum
of squares. Use this substitute to test hypotheses concerning the main effects and
second-order interactions.
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TABLE 9.9

Treatment Outcome Treatment Outcome Treatment Outcome Treatment Outcome

1 32.07 d 35.64 e 25.10 de 40.60
a 39.27 ad 35.91 ae 39.25 ade 37.57
b 34.81 bd 47.75 be 37.77 bde 47.22
ab 43.07 abd 51.47 abe 46.69 abde 56.87
c 31.55 cd 33.16 ce 32.55 cde 34.51
ac 36.51 acd 35.32 ace 32.56 acde 36.67
bc 28.80 bcd 48.26 bce 28.99 bcde 45.15
abc 43.05 abcd 53.28 abce 48.92 abcde 48.72

TABLE 9.10

Term Effect Sum of Squares Term Effect Sum of Squares

A 6.33 320.05 AB D −0.29 0.67
B 9.54 727.52 AB E 0.76 4.59
C −2.07 34.16 AC D 0.11 0.088
D 6.70 358.72 AC E −0.69 3.75
E 0.58 2.66 ADE −0.45 1.60
AB 2.84 64.52 BC D 0.76 4.67
AC 0.18 0.27 BC E −0.82 5.43
AD −3.39 91.67 B DE −2.17 37.63
AE 0.60 2.83 C DE −1.25 12.48
BC −0.49 1.95 ABC D −2.83 63.96
B D 4.13 136.54 ABC E 0.39 1.22
B E 0.65 3.42 AB DE 0.22 0.37
C D −0.18 0.26 AC DE 0.18 0.24
C E −0.81 5.23 BC DE −0.25 0.52
DE 0.24 0.46 ABC DE −1.73 23.80
ABC 1.35 14.47

Solution
We compute the effects, using the rules for adding and subtracting observations given
by the sign table, and the sums of squares, using Equation (9.69). See Table 9.10.

Note that none of the three-, four-, or five-way interactions are among the larger
effects. If some of them were, it would not be wise to combine their sums of squares.
As it is, we add the sums of squares of the three-, four-, and five-way interactions.
The results are presented in the following output (from MINITAB).

Factorial Fit: Response versus A, B, C, D, E

Estimated Effects and Coefficients for
Response (coded units)

Term Effect Coef SE Coef T P
Constant 39.658 0.5854 67.74 0.000
A 6.325 3.163 0.5854 5.40 0.000
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B 9.536 4.768 0.5854 8.14 0.000
C −2.066 −1.033 0.5854 −1.76 0.097
D 6.696 3.348 0.5854 5.72 0.000
E 0.576 0.288 0.5854 0.49 0.629
A∗B 2.840 1.420 0.5854 2.43 0.027
A∗C 0.183 0.091 0.5854 0.16 0.878
A∗D −3.385 −1.693 0.5854 −2.89 0.011
A∗E 0.595 0.298 0.5854 0.51 0.618
B∗C −0.494 −0.247 0.5854 −0.42 0.679
B∗D 4.131 2.066 0.5854 3.53 0.003
B∗E 0.654 0.327 0.5854 0.56 0.584
C∗D −0.179 −0.089 0.5854 −0.15 0.881
C∗E −0.809 −0.404 0.5854 −0.69 0.500
D∗E 0.239 0.119 0.5854 0.20 0.841

S = 3.31179 R−Sq = 90.89% R−Sq(adj) = 82.34%

Analysis of Variance for Response (coded units)

Source DF Seq SS Adj SS Adj MS F P
Main Effects 5 1443.1 1443.1 288.62 26.31 0.000
2-Way Interactions 10 307.1 307.1 30.71 2.80 0.032
Residual Error 16 175.5 175.5 10.97
Total 31 1925.7

The estimates have not changed for the main effects or two-way interactions.
The residual error sum of squares (175.5) in the analysis of variance table is found
by adding the sums of squares for all the higher-order interactions that were dropped
from the model. The number of degrees of freedom (16) is equal to the sum of the
degrees of freedom (one each) for the 16 higher-order interactions. There is no sum
of squares for pure error (SSE), because there is only one replicate per treatment.
The residual error sum of squares is used as a substitute for SSE to compute all the
quantities that require an error sum of squares.

We conclude from the output that factors A, B, and D are likely to affect the
outcome. There seem to be interactions between some pairs of these factors as well.
It might be appropriate to plan further experiments to focus on factors A, B, and D.

Using Probability Plots to Detect Large Effects
An informal method that has been suggested to help determine which effects are large
is to plot the effect and interaction estimates on a normal probability plot. If in fact none
of the factors affect the outcome, then the effect and interaction estimates form a simple
random sample from a normal population and should lie approximately on a straight line.
In many cases, most of the estimates will fall approximately on a line, and a few will plot
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far from the line. The main effects and interactions whose estimates plot far from the
line are the ones most likely to be important. Figure 9.13 presents a normal probability
plot of the main effect and interaction estimates from the data in Example 9.25. It is
clear from the plot that the main effects of factors A, B, and D, and the AB and B D
interactions, stand out from the rest.
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FIGURE 9.13 Normal probability plot of the effect estimates from the data in Exam-
ple 9.25. The main effects of factors A, B, and D stand out as being larger than the
rest.

Fractional Factorial Experiments
When the number of factors is large, it may not be feasible to perform even one replicate
for each treatment. In these cases, observations may be taken only for some fraction
of the treatments. If these treatments are chosen correctly, it is still possible to obtain
information about the factors.

When each factor has two levels, the fraction must always be a power of 2, i.e.,
one-half, one-quarter, etc. An experiment in which half the treatments are used is called
a half-replicate; if one-quarter of the treatments are used, it is a quarter-replicate,
and so on. A half-replicate of a 2p experiment is often denoted 2p−1, to indicate that
while there are p factors, there are only 2p−1 treatments being considered. Similarly, a
quarter-replicate is often denoted 2p−2. We will focus on half-replicate experiments.

We present a method for choosing a half-replicate of a 25 experiment. Such an
experiment will have 16 treatments chosen from the 32 in the 25 experiment. To choose
the 16 treatments, start with a sign table for a 24 design that shows the signs for the main
effects and the highest-order interaction. This is presented as Table 9.11.

Table 9.11 has the right number of treatments (16), but only four factors. To transform
it into a half-replicate for a 25 design, we must introduce a fifth factor, E . We do this
by replacing the highest-order interaction by E . This establishes the signs for the main
effect of E . Then in each row where the sign for E is +, we add the letter e to the
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TABLE 9.11 Sign table for the main effects and
four-way interaction in a 24 factorial experiment

Treatment A B C D ABC D

1 − − − − +
a + − − − −
b − + − − −
ab + + − − +
c − − + − −
ac + − + − +
bc − + + − +
abc + + + − −
d − − − + −
ad + − − + +
bd − + − + +
abd + + − + −
cd − − + + +
acd + − + + −
bcd − + + + −
abcd + + + + +

treatment, indicating that factor E is to be set to its high level for that treatment. Where
the sign for E is −, factor E is set to its low level. The resulting design is called the
principal fraction of the 25 design. Table 9.12 presents the signs for the main effects
and selected interactions of this design.

TABLE 9.12 Sign table for the main effects and selected interactions for the principal
fraction of a 25 factorial experiment

Treatment A B C D E = ABC D AB C DE AC DE

e − − − − + + + −
a + − − − − − − −
b − + − − − − − +
abe + + − − + + + +
c − − + − − + + −
ace + − + − + − − −
bce − + + − + − − +
abc + + + − − + + +
d − − − + − + + −
ade + − − + + − − −
bde − + − + + − − +
abd + + − + − + + +
cde − − + + + + + −
acd + − + + − − − −
bcd − + + + − − − +
abcde + + + + + + + +
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There is a price to be paid for using only half of the treatments. To see this, note
that in Table 9.12 the AB interaction has the same signs as the C DE interaction, and the
AC DE interaction has the same signs as the main effect for B. When two effects have
the same signs, they are said to be aliased. In fact, the main effects and interactions in a
half-fraction form pairs in which each member of the pair is aliased with the other. The
alias pairs for this half-fraction of the 25 design are

{A, BC DE} {B, AC DE} {C, AB DE} {D, ABC E} {E, ABC D}
{AB, C DE} {AC, B DE} {AD, BC E} {AE, BC D} {BC, ADE}
{B D, AC E} {B E, AC D} {C D, AB E} {C E, AB D} {DE, ABC}
When two effects are aliased, their effect estimates are the same, because they in-

volve the same signs. In fact, when the principal fraction of a design is used, the estimate
of any effect actually represents the sum of that effect and its alias. Therefore for the prin-
cipal fraction of a 25 design, each main effect estimate actually represents the sum of the
main effect plus its aliased four-way interaction, and each two-way interaction estimate
represents the sum of the two-way interaction and its aliased three-way interaction.

In many cases, it is reasonable to assume that the higher-order interactions are
small. In the 25 half-replicate, if the four-way interactions are negligible, the main effect
estimates will be accurate. If in addition the three-way interactions are negligible, the
two-way interaction estimates will be accurate as well.

In a fractional design without replication, there is often no good way to compute an
error sum of squares, and therefore no rigorous way to test the hypotheses that the effects
are equal to 0. In many cases, the purpose of a fractional design is simply to identify
a few factors that appear to have the greatest impact on the outcome. This information
may then be used to design more elaborate experiments to investigate these factors. For
this purpose, it may be enough simply to choose those factors whose effects or two-way
interactions are unusually large, without performing hypothesis tests. This can be done
by listing the estimates in decreasing order, and then looking to see if there are a few that
are noticeably larger than the rest. Another method is to plot the effect and interaction
estimates on a normal probability plot, as previously discussed.

Example
9.26 In an emulsion liquid membrane system, an emulsion (internal phase) is dispersed

into an external liquid medium containing a contaminant. The contaminant is removed
from the external liquid through mass transfer into the emulsion. Internal phase leak-
age occurs when portions of the extracted material spill into the external liquid. In the
article “Leakage and Swell in Emulsion Liquid Membrane Systems: Batch Experi-
ments” (R. Pfeiffer, W. Navidi, and A. Bunge, Separation Science and Technology,
2003:519–539), the effects of five factors were studied to determine the effect on
leakage in a certain system. The five factors were A: surfactant concentration, B: in-
ternal phase lithium hydroxide concentration, C: membrane phase, D: internal phase
volume fraction, and E: extraction vessel stirring rate. A half-fraction of a 25 design
was used. The data are presented in the following table (in the actual experiment,
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each point actually represented the average of two measurements). Leakage is mea-
sured in units of percent. Assume that the third-, fourth-, and fifth-order interactions
are negligible. Estimate the main effects and two-way interactions. Which, if any,
stand out as being noticeably larger than the rest?

Treatment Leakage Treatment Leakage Treatment Leakage Treatment Leakage

e 0.61 c 0.35 d 2.03 cde 1.45
a 0.13 ace 0.075 ade 0.64 acd 0.31
b 2.23 bce 7.31 bde 11.72 bcd 1.33
abe 0.095 abc 0.080 abd 0.56 abcde 6.24

Solution
Using the sign table (Table 9.12), we compute estimates for the main effects and
two-way interactions, shown in the following table.

Term Effect Term Effect

A −2.36 AE −1.15
B 3.00 BC 0.20
C −0.11 B D 0.86
D 1.68 B E 2.65
E 2.64 C D −1.30
AB −1.54 C E 0.61
AC 1.43 DE 1.32
AD 0.17

Note that we do not bother to compute sums of squares for the estimates, because we
have no SSE to compare them to. To determine informally which effects may be most
worthy of further investigation, we rank the estimates in order of their absolute values:
B: 3.00, B E: 2.65, E: 2.64, A: −2.36, D: 1.68, and so forth. It seems reasonable to
decide that there is a fairly wide gap between the A and D effects, and therefore that
factors A, B, and E are most likely to be important.

Exercises for Section 9.5

1. Construct a sign table for the principal fraction for a 24 design. Then indicate all the alias pairs.

2. Give an example of a factorial experiment in which failure to randomize can produce incorrect results.

3. A chemical reaction was run using two levels each of temperature (A), reagent concentration (B), and pH (C). For each
factor, the high level is denoted 1, and the low level is denoted −1. The reaction was run twice for each combination
of levels, and the yield (in percent) was recorded. The results were as follows.
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A B C Yields Mean Yield

–1 –1 –1 74, 71 72.5
1 –1 –1 73, 74 73.5

–1 1 –1 78, 74 76.0
1 1 –1 86, 89 87.5

–1 –1 1 71, 68 69.5
1 –1 1 77, 77 77.0

–1 1 1 75, 85 80.0
1 1 1 92, 82 87.0

a. Compute estimates of the main effects and interactions, and the sum of squares and P-value for each.
b. Which main effects and interactions, if any, are important?
c. Other things being equal, will the mean yield be higher when the temperature is high or low? Explain.

4. The article “Efficient Pyruvate Production by a Multi-Vitamin Auxotroph of Torulopsis glabrata: Key Role and
Optimization of Vitamin Levels” (Y. Li, J. Chen, et al. Applied Microbiology and Biotechnology, 2001:680–685)
investigates the effects of the levels of several vitamins in a cell culture on the yield (in g/L) of pyruvate, a useful
organic acid. The data in the following table are presented as two replicates of a 23 design. The factors are A: nicotinic
acid, B: thiamine, and C: biotin. (Two statistically insignificant factors have been dropped. In the article, each factor
was tested at four levels; we have collapsed these to two.)

A B C Yields Mean Yield

–1 –1 –1 0.55, 0.49 0.520
1 –1 –1 0.60, 0.42 0.510

–1 1 –1 0.37, 0.28 0.325
1 1 –1 0.30, 0.28 0.290

–1 –1 1 0.54, 0.54 0.540
1 –1 1 0.54, 0.47 0.505

–1 1 1 0.44, 0.33 0.385
1 1 1 0.36, 0.20 0.280

a. Compute estimates of the main effects and interactions, and the sum of squares and P-value for each.
b. Is the additive model appropriate?
c. What conclusions about the factors can be drawn from these results?

5. The article cited in Exercise 4 also investigated the effects of the factors on glucose consumption (in g/L). A single
measurement is provided for each combination of factors (in the article, there was some replication). The results are
presented in the following table.

A B C Glucose Consumption

–1 –1 –1 68.0
1 –1 –1 77.5

–1 1 –1 98.0
1 1 –1 98.0

–1 –1 1 74.0
1 –1 1 77.0

–1 1 1 97.0
1 1 1 98.0
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a. Compute estimates of the main effects and the interactions.
b. Is it possible to compute an error sum of squares? Explain.
c. Are any of the interactions among the larger effects? If so, which ones?
d. Assume that it is known from past experience that the additive model holds. Add the sums of squares for the

interactions, and use that result in place of an error sum of squares to test the hypotheses that the main effects are
equal to 0.

6. A metal casting process for the production of turbine blades was studied. Three factors were varied. They were A:
the temperature of the metal, B: the temperature of the mold, and C: the pour speed. The outcome was the thickness
of the blades, in mm. The results are presented in the following table.

A B C Thickness

–1 –1 –1 4.61
1 –1 –1 4.51

–1 1 –1 4.60
1 1 –1 4.54

–1 –1 1 4.61
1 –1 1 4.61

–1 1 1 4.48
1 1 1 4.51

a. Compute estimates of the main effects and the interactions.
b. Is it possible to compute an error sum of squares? Explain.
c. Plot the estimates on a normal probability plot. Does the plot show that some of the factors influence the thickness?

Explain.

7. The article “An Investigation into the Ball Burnishing of Aluminium Alloy 6061-T6” (M. El-Axir, J Engineering
Manufacture, 2007:1733–1742) presents the results of study that investigated the effects of three burnishing factors
on the reduction in diameter of the workpiece (in μm). The factors are A: Burnishing speed, B: Burnishing force, and
C: Burnishing feed. The results presented in the following table form a 23 factorial design (some additional results
are omitted).

A B C Reduction

–1 –1 –1 570
1 –1 –1 353

–1 1 –1 778
1 1 –1 769

–1 –1 1 544
1 –1 1 319

–1 1 1 651
1 1 1 625

a. Compute estimates of the main effects and the interactions.
b. Is it possible to compute an error sum of squares? Explain.
c. Are any of the interactions among the larger effects? If so, which ones?
d. Someone claims that the additive model holds. Do the results tend to support this statement? Explain.
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8. In a 2p design with one replicate per treatment, it sometimes happens that the observation for one of the treatments is
missing, due to experimental error or to some other cause. When this happens, one approach is to replace the missing
value with the value that makes the highest-order interaction equal to 0. Refer to Exercise 7. Assume the observation
for the treatment where A, B, and C are all at their low level (−1) is missing.

a. What value for this observation makes the three-way interaction equal to 0?
b. Using this value, compute estimates for the main effects and the interactions.

9. Safety considerations are important in the design of automobiles. The article “An Optimum Design Methodology
Development Using a Statistical Technique for Vehicle Occupant Safety” (J. Hong, M. Mun, and S. Song, Proceedings
of the Institution of Mechanical Engineers, 2001:795–801) presents results from an occupant simulation study. The
outcome variable is chest acceleration (in g) 3 ms after impact. Four factors were considered. They were A: the airbag
vent characteristic, B: the airbag inflator trigger time, C: the airbag inflator mass flow rate, and D: the stress–strain
relationship of knee foam. The results (part of a larger study) are presented in the following table. There is one
replicate per treatment.

Treatment Outcome Treatment Outcome Treatment Outcome Treatment Outcome

1 85.2 c 66.0 d 85.0 cd 62.6
a 79.2 ac 69.0 ad 82.0 acd 65.4
b 84.3 bc 68.5 bd 84.7 bcd 66.3
ab 89.0 abc 76.4 abd 82.2 abcd 69.0

a. Compute estimates of the main effects and the interactions.
b. If you were to design a follow-up study, which factor or factors would you focus on? Explain.

10. In a small-disc test a small, disc-shaped portion of a component is loaded until failure. The article “Optimizing the
Sensitivity of the Small-Disc Creep Test to Damage and Test Conditions” (M. Evans and D. Wang, J. Strain Analysis,
2007:389–413) presents the results of a factorial experiment to estimate the effects of properties of the disc on the
time to failure (in ms). The data in the following table are presented as a 25 design. The factors are A: hole diameter,
B: disc diameter, C: disc thickness, D: punch head radius, and E: friction coefficient. Two other factors discussed in
the article are not considered here.

Treatment Outcome Treatment Outcome Treatment Outcome Treatment Outcome

1 2486.8 d 2912.3 e 2508.6 de 2915.0
a 1328.1 ad 1507.2 ae 1319.4 ade 1536.7
b 2470.2 bd 2885.3 be 2446.8 bde 2872.8
ab 1303.2 abd 1491.8 abe 1303.3 abde 1477.9
c 6817.4 cd 7723.0 ce 6864.7 cde 7731.6
ac 3845.2 acd 4289.3 ace 3875.0 acde 4345.1
bc 7045.1 bcd 7952.8 bce 6994.2 bcde 7969.1
abc 3992.2 abcd 4505.5 abce 3961.2 abcde 4494.5

a. Compute estimates of the main effects and the interactions.
b. If you were to design a follow-up experiment, which factors would you focus on? Why?
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11. The article “Factorial Design for Column Flotation of Phosphate Wastes” (N. Abdel-Khalek, Particulate Science
and Technology, 2000:57–70) describes a 23 factorial design to investigate the effect of superficial air velocity (A),
frothier concentration (B), and superficial wash water velocity (C) on the percent recovery of P2O5. There were two
replicates. The data are presented in the following table.

A B C Percent Recovery

–1 –1 –1 56.30 54.85
1 –1 –1 70.10 72.70

–1 1 –1 65.60 63.60
1 1 –1 80.20 78.80

–1 –1 1 50.30 48.95
1 –1 1 65.30 66.00

–1 1 1 60.53 59.50
1 1 1 70.63 69.86

a. Compute estimates of the main effects and interactions, along with their sums of squares and P-values.
b. Which factors seem to be most important? Do the important factors interact? Explain.

12. The article “An Application of Fractional Factorial Designs” (M. Kilgo, Quality Engineering, 1988:19–23) describes
a 25−1 design (half-replicate of a 25 design) involving the use of carbon dioxide (CO2) at high pressure to extract oil
from peanuts. The outcomes were the solubility of the peanut oil in the CO2 (in mg oil/liter CO2), and the yield of
peanut oil (in percent). The five factors were A: CO2 pressure, B: CO2 temperature, C: peanut moisture, D: CO2 flow
rate, and E: peanut particle size. The results are presented in the following table.

Treatment Solubility Yield Treatment Solubility Yield

e 29.2 63 d 22.4 23
a 23.0 21 ade 37.2 74
b 37.0 36 bde 31.3 80
abe 139.7 99 abd 48.6 33
c 23.3 24 cde 22.9 63
ace 38.3 66 acd 36.2 21
bce 42.6 71 bcd 33.6 44
abc 141.4 54 abcde 172.6 96

a. Assuming third- and higher-order interactions to be negligible, compute estimates of the main effects and inter-
actions for the solubility outcome.

b. Plot the estimates on a normal probability plot. Does the plot show that some of the factors influence the solubility?
If so, which ones?

c. Assuming third- and higher-order interactions to be negligible, compute estimates of the main effects and inter-
actions for the yield outcome.

d. Plot the estimates on a normal probability plot. Does the plot show that some of the factors influence the yield?
If so, which ones?

13. In a 25−1 design (such as the one in Exercise 12) what does the estimate of the main effect of factor A actually
represent?
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i. The main effect of A.
ii. The sum of the main effect of A and the BC DE interaction.

iii. The difference between the main effect of A and the BC DE interaction.
iv. The interaction between A and BC DE .

Supplementary Exercises for Chapter 9

1. The article “Gypsum Effect on the Aggregate Size and Geometry of Three Sodic Soils Under Reclamation” (I. Lebron,
D. Suarez, and T. Yoshida, Journal of the Soil Science Society of America, 2002:92–98) reports on an experiment in
which gypsum was added in various amounts to soil samples before leaching. One of the outcomes of interest was
the pH of the soil. Gypsum was added in four different amounts. Three soil samples received each amount added.
The pH measurements of the samples are presented in the following table.

Gypsum (g/kg) pH

0.00 7.88 7.72 7.68
0.11 7.81 7.64 7.85
0.19 7.84 7.63 7.87
0.38 7.80 7.73 8.00

Can you conclude that the pH differs with the amount of gypsum added? Provide the value of the test statistic and
the P-value.

2. The article referred to in Exercise 1 also considered the effect of gypsum on the electric conductivity (in dS m−1)
of soil. Two types of soil were each treated with three different amounts of gypsum, with two replicates for each
soil–gypsum combination. The data are presented in the following table.

Soil Type

Gypsum (g/kg) Las Animas Madera

0.00 1.52 1.05 1.01 0.92
0.27 1.49 0.91 1.12 0.92
0.46 0.99 0.92 0.88 0.92

a. Is there convincing evidence of an interaction between the amount of gypsum and soil type?
b. Can you conclude that the conductivity differs among the soil types?
c. Can you conclude that the conductivity differs with the amount of gypsum added?

3. Penicillin is produced by the Penicillium fungus, which is grown in a broth whose sugar content must be carefully
controlled. Several samples of broth were taken on each of three successive days, and the amount of dissolved sugars
(in mg/mL) was measured on each sample. The results were as follows:

Day 1: 4.8 5.1 5.1 4.8 5.2 4.9 5.0 4.9 5.0 4.8 4.8 5.1 5.0
Day 2: 5.4 5.0 5.0 5.1 5.2 5.1 5.3 5.2 5.2 5.1 5.4 5.2 5.4
Day 3: 5.7 5.1 5.3 5.5 5.3 5.5 5.1 5.6 5.3 5.2 5.5 5.3 5.4

Can you conclude that the mean sugar concentration differs among the three days?
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4. The following MINITAB output is for a two-way ANOVA. Something went wrong with the printer, and some of the
numbers weren’t printed.

Two-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Row 3 145.375 (d) (g) (j)
Column 2 15.042 (e) (h) (k)
Interaction 6 (b) 4.2000 (i) (l)
Error (a) (c) (f)
Total 23 217.870

Fill in the missing numbers in the table for (a) through (l). You may give ranges for the P-values.

5. An experiment was performed to determine whether different types of chocolate take different amounts of time to
dissolve. Forty people were divided into five groups. Each group was assigned a certain type of chocolate. Each person
dissolved one piece of chocolate, and the dissolve time (in seconds) was recorded. For comparison, each person in
each group also dissolved one piece of butterscotch candy; these pieces were identical for all groups. The data, which
include the group, the dissolve times for both chocolate and butterscotch, the difference between the dissolve times,
and the ratio of the dissolve times, are presented in the following table. Note that the design is slightly unbalanced;
group 3 has nine people and group 5 has only seven.

Group Chocolate Butterscotch Difference Ratio

1 135 60 75 2.25
1 865 635 230 1.36
1 122 63 59 1.94
1 110 75 35 1.47
1 71 37 34 1.92
1 81 58 23 1.40
1 2405 1105 1300 2.18
1 242 135 107 1.79
2 42 38 4 1.11
2 30 30 0 1.00
2 104 110 −6 0.95
2 124 118 6 1.05
2 75 40 35 1.88
2 80 91 −11 0.88
2 255 121 134 2.11
2 71 71 0 1.00
3 51 53 −2 0.96
3 47 40 7 1.18
3 90 155 −65 0.58
3 65 90 −25 0.72
3 27 33 −6 0.82

Continued on page 756
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Group Chocolate Butterscotch Difference Ratio

3 105 68 37 1.54
3 90 72 18 1.25
3 54 52 2 1.04
3 93 77 16 1.21
4 48 30 18 1.60
4 85 55 30 1.55
4 82 50 32 1.64
4 46 22 24 2.09
4 64 46 18 1.39
4 125 45 80 2.78
4 69 30 39 2.30
4 73 44 29 1.66
5 105 45 60 2.33
5 99 58 41 1.71
5 45 23 22 1.96
5 137 64 73 2.14
5 170 105 65 1.62
5 153 93 60 1.65
5 49 28 21 1.75

a. To test whether there are differences in the mean dissolve times for the different types of chocolate, someone
suggests performing a one-way ANOVA, using the dissolve times for the chocolate data. Do these data appear to
satisfy the assumptions for a one-way ANOVA? Explain.

b. Someone else suggests using the differences (Chocolate − Butterscotch). Do these data appear to satisfy the
assumptions for a one-way ANOVA? Explain.

c. Perform a one-way analysis of variance using the ratios. Can you conclude that the mean ratio of dissolve times
differs for different types of chocolate?

6. The article “Stability of Silico-Ferrite of Calcium and Aluminum (SFCA) in Air-Solid Solution Limits Between
1240◦C and 1390◦C and Phase Relationships within the Fe2O3-CaO-Al2O3-SiO2 (FCAS) System” (T. Patrick and
M. Pownceby, Metallurgical and Materials Transactions B, 2002:79–90) investigates properties of silico-ferrites of
calcium and aluminum (SFCA). The data in the following table present the ratio of the weights of Fe2O3 and CaO
for SFCA specimens with several different weight percents of Al2O3 and C4S3.

Al2O3(%) C4S3 Fe2O3/CaO

1.0 Low (3%–6%) 7.25 6.92 6.60 6.31
1.0 Medium (7%–10%) 6.03 5.78 5.54 5.31
1.0 High (11%–14%) 5.10 4.90 4.71 4.53
5.0 Low (3%–6%) 6.92 6.59 6.29 6.01
5.0 Medium (7%–10%) 5.74 5.26 5.04 4.84
5.0 High (11%–14%) 4.84 4.65 4.47 4.29

10.0 Low (3%–6%) 6.50 6.18 5.89 5.63
10.0 Medium (7%–10%) 5.37 5.14 4.92 4.71
10.0 High (11%–14%) 4.52 4.33 4.16 3.99

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
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c. Do the data indicate that there are any interactions between the weight percent of Al2O3 and the weight percent
of C4S3? Explain.

d. Do the data convincingly demonstrate that the Fe2O3/CaO ratio depends on the weight percent of Al2O3? Explain.
e. Do the data convincingly demonstrate that the Fe2O3/CaO ratio depends on the weight percent of C4S3? Explain.

7. A component can be manufactured according to either of two designs and with either a more expensive or a less
expensive material. Several components are manufactured with each combination of design and material, and the
lifetimes of each are measured (in hours). A two-way analysis of variance was performed to estimate the effects of
design and material on component lifetime. The cell means and main effect estimates are presented in the following
table.

Cell Means

Design 1 Design 2

More expensive 118 120
Less expensive 60 122

Main Effects

More expensive 14
Less expensive −14
Design 1 −16
Design 2 16

ANOVA table

Source DF SS MS F P

Material 1 2352.0 2352.0 10.45 0.012
Design 1 3072.0 3072.0 13.65 0.006
Interaction 1 2700.0 2700.0 12.00 0.009
Error 8 1800.0 225.00
Total 11 9924.0

The process engineer recommends that design 2 should be used along with the more expensive material. He argues
that the main effects of both design 2 and the more expensive material are positive, so using this combination will
result in the longest component life. Do you agree with the recommendation? Why or why not?

8. The article “Case Study Based Instruction of DOE and SPC” (J. Brady and T. Allen, The American Statistician,
2002:312–315) presents the result of a 24−1 factorial experiment to investigate the effects of four factors on the yield
of a process that manufactures printed circuit boards. The factors were A: transistor power output (upper or lower
specification limit), B: transistor mounting approach (screwed or soldered), C: transistor heat sink type (current or
alternative configuration), and D: screw position on the frequency adjustor (one-half or two turns). The results are
presented in the following table. The yield is a percent of a theoretical maximum.

A B C D Yield

–1 –1 –1 –1 79.8
1 –1 –1 1 69.0

–1 1 –1 1 72.3
1 1 –1 –1 71.2

–1 –1 1 1 91.3
1 –1 1 –1 95.4

–1 1 1 –1 92.7
1 1 1 1 91.5
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a. Estimate the main effects of each of the four factors.
b. Assuming all interactions to be negligible, pool the sums of squares for interaction to use in place of an error sum

of squares.
c. Which of the four factors, if any, can you conclude to affect the yield? What is the P-value of the relevant test?

9. The article “Combined Analysis of Real-Time Kinematic GPS Equipment and Its Users for Height Determination”
(W. Featherstone and M. Stewart, Journal of Surveying Engineering, 2001:31–51) presents a study of the accuracy
of global positioning system (GPS) equipment in measuring heights. Three types of equipment were studied, and
each was used to make measurements at four different base stations (in the article a fifth station was included, for
which the results differed considerably from the other four). There were 60 measurements made with each piece of
equipment at each base. The means and standard deviations of the measurement errors (in mm) are presented in the
following table for each combination of equipment type and base station.

Instrument A Instrument B Instrument C

Standard Standard Standard
Mean Deviation Mean Deviation Mean Deviation

Base 0 3 15 −24 18 −6 18
Base 1 14 26 −13 13 −2 16
Base 2 1 26 −22 39 4 29
Base 3 8 34 −17 26 15 18

a. Construct an ANOVA table. You may give ranges for the P-values.
b. The question of interest is whether the mean error differs among instruments. It is not of interest to determine

whether the error differs among base stations. For this reason, a surveyor suggests treating this as a randomized
complete block design, with the base stations as the blocks. Is this appropriate? Explain.

10. Vermont maple sugar producers sponsored a testing program to determine the benefit of a potential new fertilizer
regimen. A random sample of 27 maple trees in Vermont were chosen and treated with one of three levels of fertilizer
suggested by the chemical producer. In this experimental setup, nine trees (three in each of three climatic zones) were
treated with each fertilizer level and the amount of sap produced (in mL) by the trees in the subsequent season was
measured. The results are presented in the following table.

Southern Zone Central Zone Northern Zone

Low fertilizer 76.2 80.4 74.2 79.4 87.9 86.9 84.5 85.2 80.1
Medium fertilizer 87.0 95.1 93.0 98.2 94.7 96.2 88.4 90.4 92.2
High fertilizer 84.2 87.5 83.1 90.3 89.9 93.2 81.4 84.7 82.2

a. Estimate the main effects of fertilizer levels and climatic zone, and their interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Test the hypothesis that there is no interaction between fertilizer levels and climatic zone.
d. Test the hypothesis that there is no difference in sap production for the three fertilizer levels.

11. A civil engineer is interested in several designs for a drainage canal used to divert floodwaters from around a city. The
drainage times of a reservoir attached to each of five different channel designs obtained from a series of experiments
using similar initial flow conditions are given in the following table.
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Channel Type Drainage time (min)

1 41.4 43.4 50.0 41.2
2 37.7 49.3 52.1 37.3
3 32.6 33.7 34.8 22.5
4 27.3 29.9 32.3 24.8
5 44.9 47.2 48.5 37.1

a. Can you conclude that there is a difference in the mean drainage times for the different channel designs?
b. Which pairs of designs, if any, can you conclude to differ in their mean drainage times?

12. A process that manufactures vinyl for automobile seat covers was studied. Three factors were varied: the proportion
of a certain plasticizer (A), the rate of extrusion (B), and the temperature of drying (C). The outcome of interest was
the thickness of the vinyl (in mils). A 23 factorial design with four replicates was employed. The results are presented
in the following table. (Based on the article “Split-Plot Designs and Estimation Methods for Mixture Experiments
with Process Variables,” S. Kowalski, J. Cornell, and G. Vining, Technometrics, 2002:72–79.)

A B C Thickness

–1 –1 –1 7 5 6 7
1 –1 –1 6 5 5 5

–1 1 –1 8 8 4 6
1 1 –1 9 5 6 9

–1 –1 1 7 6 5 5
1 –1 1 7 7 11 10

–1 1 1 6 4 5 8
1 1 1 8 11 11 9

a. Estimate all main effects and interactions.
b. Construct an ANOVA table. You may give ranges for the P-values.
c. Is the additive model appropriate? Explain.
d. What conclusions about the factors can be drawn from these results?

13. In the article “Occurrence and Distribution of Ammonium in Iowa Groundwater” (K. Schilling, Water Environment
Research, 2002:177–186), ammonium concentrations (in mg/L) were measured at a large number of wells in the
state of Iowa. These included five types of bedrock wells. The number of wells of each type, along with the mean
and standard deviation of the concentrations in those wells, is presented in the following table.

Well Type Sample Size Mean Standard Deviation

Cretaceous 53 0.75 0.90
Mississippian 57 0.90 0.92
Devonian 66 0.68 1.03
Silurian 67 0.50 0.97
Cambrian–Ordovician 51 0.82 0.89

Can you conclude that the mean concentration differs among the five types of wells?

14. The article “Enthalpies and Entropies of Transfer of Electrolytes and Ions from Water to Mixed Aqueous Organic
Solvents” (G. Hefter, Y. Marcus, and W. Waghorne, Chemical Reviews, 2002:2773–2836) presents measurements of
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entropy and enthalpy changes for many salts under a variety of conditions. The following table presents the results
for enthalpy of transfer (in kJ/mol) from water to water + methanol of NaCl (table salt) for several concentrations of
methanol. Four independent measurements were made at each concentration.

Concentration (%) Enthalpy

5 1.62 1.60 1.62 1.66
10 2.69 2.66 2.72 2.73
20 3.56 3.45 3.65 3.52
30 3.35 3.18 3.40 3.06

a. Is it plausible that the enthalpy is the same at all concentrations? Explain.
b. Which pairs of concentrations, if any, can you conclude to have differing enthalpies?

15. Refer to Exercise 11.

a. Compute the quantity s = √
MSE, the estimate of the error standard deviation σ .

b. Assuming s to be the error standard deviation, find the sample size necessary in each treatment to provide a power
of 0.90 to detect a maximum difference of 10 in the treatment means at the 5% level.

c. Using a more conservative estimate of 1.5s as the error standard deviation, find the sample size necessary in
each treatment to provide a power of 0.90 to detect a maximum difference of 10 in the treatment means at the
5% level.

16. Refer to Exercise 14.

a. Compute the quantity s = √
MSE, the estimate of the error standard deviation σ .

b. Assuming s to be the error standard deviation, find the sample size necessary in each treatment to provide a power
of 0.80 to detect a maximum difference of 0.1 in the treatment means at the 5% level.

c. Using a more conservative estimate of 1.5s as the error standard deviation, find the sample size necessary in
each treatment to provide a power of 0.80 to detect a maximum difference of 0.1 in the treatment means at the
5% level.

17. The article “Factorial Experiments in the Optimization of Alkaline Wastewater Pretreatment” (M. Prisciandaro,
A. Del Borghi, and F. Veglio, Industrial Engineering and Chemistry Research, 2002:5034–5041) presents the results
of several experiments to investigate methods of treating alkaline wastewater. One experiment was an unreplicated
24 design. The four factors were A: concentration of sulfuric acid, B: temperature, C: time, and D: concentration
of calcium chloride. The outcome variable is the amount of precipitate in kg/m3. The results are presented in the
following table.

A B C D Outcome A B C D Outcome

–1 –1 –1 –1 6.4 –1 –1 –1 1 11.9
1 –1 –1 –1 12.9 1 –1 –1 1 13.1

–1 1 –1 –1 8.6 –1 1 –1 1 12.1
1 1 –1 –1 12.9 1 1 –1 1 16.0

–1 –1 1 –1 7.4 –1 –1 1 1 12.4
1 –1 1 –1 12.0 1 –1 1 1 16.5

–1 1 1 –1 10.7 –1 1 1 1 15.3
1 1 1 –1 15.0 1 1 1 1 18.3
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a. Estimate all main effects and interactions.
b. Which effects seem to be larger than the others?
c. Assume that all third- and higher-order interactions are equal to 0, and add their sums of squares. Use the result

in place of an error sum of squares to compute F statistics and P-values for the main effects. Which factors can
you conclude to have an effect on the outcome?

d. The article described some replicates of the experiment, in which the error mean square was found to be 1.04, with
four degrees of freedom. Using this value, compute F statistics and P-values for all main effects and interactions.

e. Do the results of part (d) help to justify the assumption that the third- and higher-order interactions are equal to
0? Explain.

f. Using the results of part (d), which factors can you conclude to have an effect on the outcome?

18. The Williamsburg Bridge is a suspension bridge that spans the East River, connecting the boroughs of Brooklyn
and Manhattan in New York City. An assessment of the strengths of its cables is reported in the article “Estimating
Strength of the Williamsburg Bridge Cables” (R. Perry, The American Statistician, 2002:211–217). Each suspension
cable consists of 7696 wires. From one of the cables, wires were sampled from 128 points. These points came from
four locations along the length of the cable (I, II, III, IV). At each location there were eight equally spaced points
around the circumference of the cable (A, B, C, D, E, F, G, H). At each of the eight points, wires were sampled from
four depths: (1) the external surface of the cable, (2) two inches deep, (3) four inches deep, and (4) seven inches
deep (the cable is 9.625 inches in radius). Under assumptions made in the article, it is appropriate to consider this
as a two-factor experiment with circumferential position and depth as the factors, and with location providing four
replicates for each combination of these factors. The minimum breaking strength (in lbf) is presented in the following
table for each of the 128 points.

Location

Circumference Depth I II III IV

A 1 6250 5910 5980 5800
A 2 6650 6690 6780 5540
A 3 5390 6080 6550 5690
A 4 6510 6580 6700 5980
B 1 6200 6240 6180 6740
B 2 6430 6590 6500 6110
B 3 5710 6230 6450 6310
B 4 6510 6600 6250 5660
C 1 5570 5700 6390 6170
C 2 6260 6290 5630 6990
C 3 6050 6120 6290 5800
C 4 6390 6540 6590 6620
D 1 6140 6210 5710 5090
D 2 5090 6000 6020 6480
D 3 5280 5650 5410 5730
D 4 6300 6320 6650 6050
E 1 4890 4830 5000 6490
E 2 5360 5640 5920 6390
E 3 5600 5500 6250 6510
E 4 6640 6810 5760 5200
F 1 5920 5300 5670 6200
F 2 5880 5840 7270 5230

Continued on page 762
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Location

Circumference Depth I II III IV

F 3 6570 6130 5800 6200
F 4 6120 6430 6100 6370
G 1 6070 6980 6570 6980
G 2 6180 6340 6830 6260
G 3 6360 6420 6370 6550
G 4 6340 6380 6480 7020
H 1 5950 5950 6450 5870
H 2 6180 6560 5730 6550
H 3 6560 6560 6450 6790
H 4 6700 6690 6670 6600

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Can you conclude that there are interactions between circumferential position and depth? Explain.
c. Can you conclude that the strength varies with circumferential position? Explain.
d. Can you conclude that the strength varies with depth? Explain.

19. In the article “Nitrate Contamination of Alluvial Groundwaters in the Nakdong River Basin, Korea” (J. Min, S. Yun,
et al., Geosciences Journal, 2002:35–46), several chemical properties were measured for water samples taken from
irrigation wells at three locations. The following table presents the means, standard deviations, and sample sizes for
pH measurements.

Location Mean SD Sample Size

Upstream 6.0 0.2 49
Midstream 6.2 0.4 31
Downstream 6.4 0.6 30

Do the data prove conclusively that the pH differs at the different locations?

20. The article cited in Exercise 19 provides measures of electrical conductivity (in μS/cm). The results are presented in
the following table.

Location Mean SD Sample Size

Upstream 463 208 49
Midstream 363 98 31
Downstream 647 878 30

Can a one-way analysis of variance be used to determine whether conductivity varies with location? Or is one of the
necessary assumptions violated? Explain.

21. The article “Factorial Experiments in the Optimization of Alkaline Wastewater Pretreatment” (M. Prisciandaro,
A. Del Borghi, and F. Veglio, Industrial Engineering and Chemistry Research, 2002:5034–5041) presents the results



Navidi-3810214 book November 11, 2013 14:22

Supplementary Exercises for Chapter 9 763

of an experiment to investigate the effects of the concentrations of sulfuric acid (H2SO4) and calcium chloride
(CaCl2) on the amount of black mud precipitate in the treatment of alkaline wastewater. There were three levels of
each concentration, and two replicates of the experiment were made at each combination of levels. The results are
presented in the following table (all measurements are in units of kg/m3).

H2SO4 CaCl2 Precipitate

110 15 100.2 98.2
110 30 175.8 176.2
110 45 216.5 206.0
123 15 110.5 105.5
123 30 184.7 189.0
123 45 234.0 222.0
136 15 106.5 107.0
136 30 181.7 189.0
136 45 211.8 201.3

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Is the additive model plausible? Explain.
c. Can you conclude that H2SO4 concentration affects the amount of precipitate? Explain.
d. Can you conclude that CaCl2 concentration affects the amount of precipitate? Explain.

22. Fluid inclusions are microscopic volumes of fluid that are trapped in rock during rock formation. The article “Fluid
Inclusion Study of Metamorphic Gold-Quartz Veins in Northwestern Nevada, U.S.A.: Characteristics of Tectonically
Induced Fluid” (S. Cheong, Geosciences Journal, 2002:103–115) describes the geochemical properties of fluid
inclusions in several different veins in northwest Nevada. The following table presents data on the maximum salinity
(% NaCl by weight) of inclusions in several rock samples from several areas.

Area Salinity

Humboldt Range 9.2 10.0 11.2 8.8
Santa Rosa Range 5.2 6.1 8.3
Ten Mile 7.9 6.7 9.5 7.3 10.4 7.0
Antelope Range 6.7 8.4 9.9
Pine Forest Range 10.5 16.7 17.5 15.3 20.0

Can you conclude that the salinity differs among the areas?

23. The article “Effect of Microstructure and Weathering on the Strength Anisotropy of Porous Rhyolite” (Y. Matsukura,
K. Hashizume, and C. Oguchi, Engineering Geology, 2002:39–47) investigates the relationship between the angle
between cleavage and flow structure and the strength of porous rhyolite. Strengths (in MPa) were measured for a
number of specimens cut at various angles. The mean and standard deviation of the strengths for each angle are
presented in the following table.
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Angle Mean Standard Deviation Sample Size

0◦ 22.9 2.98 12
15◦ 22.9 1.16 6
30◦ 19.7 3.00 4
45◦ 14.9 2.99 5
60◦ 13.5 2.33 7
75◦ 11.9 2.10 6
90◦ 14.3 3.95 6

Can you conclude that strength varies with the angle?

24. The article “Influence of Supplemental Acetate on Bioremediation for Dissolved Polycyclic Aromatic Hydrocarbons”
(T. Ebihara and P. Bishop, Journal of Environmental Engineering, 2002:505–513) describes experiments in which
water containing dissolved polyaromatic hydrocarbons (PAH) was fed into sand columns. PAH concentrations were
measured at various depths after 25, 45, and 90 days. Assume that three independent measurements were made at
each depth at each time. The data presented in the following table are naphthalene concentrations (in mg/L) that are
consistent with means and standard deviations reported in the article.

Depth 25 days 45 days 90 days

0 11.15 11.39 11.36 9.28 8.15 8.59 7.68 7.59 7.41
5 14.40 11.78 11.92 9.44 9.34 9.33 7.53 7.92 7.12

15 11.51 11.01 11.09 9.34 9.11 8.94 7.43 7.47 7.53
30 12.77 12.18 11.65 9.37 9.27 9.05 7.60 7.48 7.84
50 11.71 11.29 11.20 9.25 8.97 9.29 7.76 7.84 7.68
75 11.18 11.45 11.27 9.09 8.86 8.78 7.72 7.61 7.74

a. Construct an ANOVA table. You may give ranges for the P-values.
b. Perform a test to determine whether the additive model is plausible. Provide the value of the test statistic and the

P-value.
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10
Statistical Quality
Control

Introduction

As the marketplace for industrial goods has become more global, manufacturers have
realized that the quality and reliability of their products must be as high as possible for
them to be competitive. It is now generally recognized that the most cost-effective way
to maintain high quality is through constant monitoring of the production process. This
monitoring is often done by sampling units of production and measuring some quality
characteristic. Because the units are sampled from some larger population, these methods
are inherently statistical in nature.

One of the early pioneers in the area of statistical quality control was Dr. Walter
A. Shewart of the Bell Telephone Laboratories. In 1924, he developed the modern control
chart, which remains one of the most widely used tools for quality control to this day.
After World War II, W. Edwards Deming was instrumental in stimulating interest in
quality control; first in Japan, and then in the United States and other countries. The
Japanese scientist Genichi Taguchi played a major role as well, developing methods of
experimental design with a view toward improving quality. In this chapter, we will focus
on the Shewart control charts and on cumulative sum (CUSUM) charts, since these are
among the most powerful of the commonly used tools for statistical quality control.

10.1 Basic Ideas

The basic principle of control charts is that in any process there will always be variation
in the output. Some of this variation will be due to causes that are inherent in the process
and are difficult or impossible to specify. These causes are called common causes or
chance causes. When common causes are the only causes of variation, the process is
said to be in a state of statistical control, or, more simply, in control.



Navidi-3810214 book November 11, 2013 14:36

766 CHAPTER 10 Statistical Quality Control

Sometimes special factors are present that produce additional variability. Machines
that are malfunctioning, operator error, fluctuations in ambient conditions, and variations
in the properties of raw materials are among the most common of these factors. These
are called special causes or assignable causes. Special causes generally produce a
higher level of variability than do common causes; this variability is considered to be
unacceptable. When a process is operating in the presence of one or more special causes,
it is said to be out of statistical control.

Control charts enable the quality engineer to decide whether a process appears to
be in control, or whether one or more special causes are present. If the process is found
to be out of control, the nature of the special cause must be determined and corrected, so
as to return the process to a state of statistical control. There are several types of control
charts; which ones are used depend on whether the quality characteristic being measured
is a continuous variable, a binary variable, or a count variable. For example, when
monitoring a process that manufactures aluminum beverage cans, the height of each can
in a sample might be measured. Height is a continuous variable. In some situations, it
might be sufficient simply to determine whether the height falls within some specification
limits. In this case the quality measurement takes on one of only two values: conforming
(within the limits) or nonconforming (not within the limits). This measurement is a binary
variable, since it has two possible values. Finally, we might be interested in counting the
number of flaws on the surface of the can. This is a count variable.

Control charts used for continuous variables are called variables control charts.
Examples include the X chart, the R chart, and the S chart. Control charts used for binary
or count variables are called attribute control charts. The p chart is most commonly
used for binary variables, while the c chart is commonly used for count variables.

Collecting Data---Rational Subgroups
Data to be used in the construction of a control chart are collected in a number of
samples, taken over a period of time. These samples are called rational subgroups.
There are many different strategies for choosing rational subgroups. The basic principle
to be followed is that all the variability within the units in a rational subgroup should
be due to common causes, and none should be due to special causes. In general, a good
way to choose rational subgroups is to decide which special causes are most important
to detect, and then choose the rational subgroups to provide the best chance to detect
them. The two most commonly used methods are

■ Sample at regular time intervals, with all the items in each sample
manufactured near the time the sampling is done.

■ Sample at regular time intervals, with the items in each sample drawn from
all the units produced since the last sample was taken.

For variables data, the number of units in each sample is typically small, often between
three and eight. The number of samples should be at least 20. In general, many small
samples taken frequently are better than a few large samples taken less frequently. For
binary and for count data, samples must in general be larger.
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Control versus Capability
It is important to understand the difference between process control and process
capability. A process is in control if there are no special causes operating. The distin-
guishing feature of a process that is in control is that the values of the quality characteristic
vary without any trend or pattern, since the common causes do not change over time.
However, it is quite possible for a process to be in control, and yet to be producing output
that does not meet a given specification. For example, assume that a process produces
steel rods whose lengths vary randomly between 19.9 and 20.1 cm, with no apparent
pattern to the fluctuation. This process is in a state of control. However, if the design
specification calls for a length between 21 and 21.2 cm, very little of the output would
meet the specification. The ability of a process to produce output that meets a given
specification is called the capability of the process. We will discuss the measurement of
process capability in Section 10.5.

Process Control Must Be Done Continually
There are three basic phases to the use of control charts. First, data are collected. Second,
these data are plotted to determine whether the process is in control. Third, once the
process is brought into control, its capability may be assessed. Of course, a process that
is in control and capable at a given time may go out of control at a later time, as special
causes re-occur. For this reason processes must be continually monitored.

Similarities Between Control Charts and Hypothesis Tests
Control charts function in many ways like hypothesis tests. The null hypothesis is that
the process is in control. The control chart presents data that provide evidence about the
truth of this hypothesis. If the evidence against the null hypothesis is sufficiently strong,
the process is declared out of control. Understanding how to use control charts involves
knowing what data to collect and knowing how to organize those data to measure the
strength of the evidence against the hypothesis that the process is in control.

Exercises for Section 10.1

1. Indicate whether each of the following quality char-
acteristics is a continuous, binary, or count variable.

a. The number of flaws in a plate glass window.

b. The length of time taken to perform a final
inspection of a finished product.

c. Whether the breaking strength of a bolt meets a
specification.

d. The diameter of a rivet head.

2. True or false:

a. Control charts are used to determine whether spe-
cial causes are operating.

b. If no special causes are operating, then most of
the output produced will meet specifications.

c. Variability due to common causes does not in-
crease or decrease much over short periods
of time.

d. Variability within the items sampled in a rational
subgroup is due to special causes.

e. If a process is in a state of statistical control, there
will be almost no variation in the output.

3. Fill in the blank. The choices are: is in control; has
high capability.
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a. If the variability in a process is approximately con-
stant over time, the process .

b. If most units produced conform to specifications,
the process .

4. Fill in the blank: Once a process has been brought
into a state of statistical control,

i. It must still be monitored continually.

ii. Monitoring can be stopped for a while, since it
is unlikely that the process will go out of control
again right away.

iii. The process need not be monitored again, unless
it is redesigned.

5. True or false:

a. When a process is in a state of statistical control,
then most of the output will meet specifications.

b. When a process is out of control, an unaccept-
ably large proportion of the output will not meet
specifications.

c. When a process is in a state of statistical control,
all the variation in the process is due to causes
that are inherent in the process itself.

d. When a process is out of control, some of the
variation in the process is due to causes that are
outside of the process.

6. Fill in the blank: When sampling units for rational
subgroups,

i. it is more important to choose large samples than
to sample frequently, since large samples provide
more precise information about the process.

ii. it is more important to sample frequently than to
choose large samples, so that special causes can
be detected more quickly.

10.2 Control Charts for Variables

When a quality measurement is made on a continuous scale, the data are called variables
data. For these data an R chart or S chart is first used to control the variability in
the process, and then an X -chart is used to control the process mean. The methods
described in this section assume that the measurements follow an approximately normal
distribution.

We illustrate with an example. The quality engineer in charge of a salt packaging
process is concerned about the moisture content in packages of salt. To determine whether
the process is in statistical control, it is first necessary to define the rational subgroups,
and then to collect some data. Assume that for the salt packaging process, the primary
concern is that variation in the ambient humidity in the plant may be causing variation
in the mean moisture content in the packages over time. Recall that rational subgroups
should be chosen so that the variation within each sample is due only to common causes,
not to special causes. Therefore a good choice for the rational subgroups in this case is
to draw samples of several packages each at regular time intervals. The packages in each
sample will be produced as close to each other in time as possible. In this way, the ambi-
ent humidity will be nearly the same for each package in the sample, so the within-group
variation will not be affected by this special cause. Assume that five packages of salt are
sampled every 15 minutes for eight hours, and that the moisture content in each package
is measured as a percentage of total weight. The data are presented in Table 10.1.

Since moisture is measured on a continuous scale, these are variables data. Each
row of Table 10.1 presents the five moisture measurements in a given sample, along with
their sample mean X , their sample standard deviation s, and their sample range R (the
difference between the largest and smallest value). The last row of the table contains
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TABLE 10.1 Moisture content for salt packages, as a percentage of total weight

Sample Sample Values Mean (X) Range (R) SD (s)

1 2.53 2.66 1.88 2.21 2.26 2.308 0.780 0.303
2 2.69 2.38 2.34 2.47 2.61 2.498 0.350 0.149
3 2.67 2.23 2.10 2.43 2.54 2.394 0.570 0.230
4 2.10 2.26 2.51 2.58 2.28 2.346 0.480 0.196
5 2.64 2.42 2.56 2.51 2.36 2.498 0.280 0.111
6 2.64 1.63 2.95 2.12 2.67 2.402 1.320 0.525
7 2.58 2.69 3.01 3.01 2.23 2.704 0.780 0.327
8 2.31 2.39 2.60 2.40 2.46 2.432 0.290 0.108
9 3.03 2.68 2.27 2.54 2.63 2.630 0.760 0.274

10 2.86 3.22 2.72 3.09 2.48 2.874 0.740 0.294
11 2.71 2.80 3.09 2.60 3.39 2.918 0.790 0.320
12 2.95 3.54 2.59 3.31 2.87 3.052 0.950 0.375
13 3.14 2.84 3.77 2.80 3.22 3.154 0.970 0.390
14 2.85 3.29 3.25 3.35 3.59 3.266 0.740 0.267
15 2.82 3.71 3.36 2.95 3.37 3.242 0.890 0.358
16 3.17 3.07 3.14 3.63 3.70 3.342 0.630 0.298
17 2.81 3.21 2.95 3.04 2.85 2.972 0.400 0.160
18 2.99 2.65 2.79 2.80 2.95 2.836 0.340 0.137
19 3.11 2.74 2.59 3.01 3.03 2.896 0.520 0.221
20 2.83 2.74 3.03 2.68 2.49 2.754 0.540 0.198
21 2.76 2.85 2.59 2.23 2.87 2.660 0.640 0.265
22 2.54 2.63 2.32 2.48 2.93 2.580 0.610 0.226
23 2.27 2.54 2.82 2.11 2.69 2.486 0.710 0.293
24 2.40 2.62 2.84 2.50 2.51 2.574 0.440 0.168
25 2.41 2.72 2.29 2.35 2.63 2.480 0.430 0.186
26 2.40 2.33 2.40 2.02 2.43 2.316 0.410 0.169
27 2.56 2.47 2.11 2.43 2.85 2.484 0.740 0.266
28 2.21 2.61 2.59 2.24 2.34 2.398 0.400 0.191
29 2.56 2.26 1.95 2.26 2.40 2.286 0.610 0.225
30 2.42 2.37 2.13 2.09 2.41 2.284 0.330 0.161
31 2.62 2.11 2.47 2.27 2.49 2.392 0.510 0.201
32 2.21 2.15 2.18 2.59 2.61 2.348 0.460 0.231

X = 2.6502 R = 0.6066 s = 0.2445

the mean of the sample means (X), the mean of the sample ranges (R), and the mean of
the sample standard deviations (s).

We assume that each of the 32 samples in Table 10.1 is a sample from a normal
population with mean μ and standard deviation σ . The quantity μ is called the process
mean, and σ is called the process standard deviation. The idea behind control charts
is that each value of X approximates the process mean during the time its sample was
taken, while the values of R and s can be used to approximate the process standard
deviation. If the process is in control, then the process mean and standard deviation
are the same for each sample. If the process is out of control, the process mean μ or
the process standard deviation σ , or both, will differ from sample to sample. Therefore
the values of X , R, and s will vary less when the process is in control than when the
process is out of control. If the process is in control, the values of X , R, and s will almost
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always be contained within computable limits, called control limits. If the process is
out of control, the values of X , R, and s will be more likely to exceed these limits. A
control chart plots the values of X , R, or s, along with the control limits, so that it can
be easily seen whether the variation is large enough to conclude that the process is out
of control.

Now let’s see how to determine whether the salt packaging process is in a state of
statistical control with respect to moisture content. Since the variation within each sample
is supposed to be due only to common causes, this variation should not be too different
from one sample to another. Therefore the first thing to do is to check to make sure that
the amount of variation within each sample, measured either by the sample range or
the sample standard deviation, does not vary too much from sample to sample. For this
purpose the R chart can be used to assess variation in the sample range, or the S chart can
be used to assess variation in the sample standard deviation. We will discuss the R chart
first, since it is the more traditional. We will discuss the S chart at the end of this section.

Figure 10.1 presents the R chart for the moisture data. The horizontal axis represents
the samples, numbered from 1 to 32. The sample ranges are plotted on the vertical axis.
Most important are the three horizontal lines. The line in the center is plotted at the value
R and is called the center line. The upper and lower lines indicate the 3σ upper and
lower control limits (UCL and LCL, respectively). The control limits are drawn so that
when the process is in control, almost all the points will lie within the limits. A point
plotting outside the control limits is evidence that the process is out of control.
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FIGURE 10.1 R chart for the moisture data.

To understand where the control limits are plotted, assume that the 32 sample ranges
come from a population with mean μR and standard deviation σR . The values of μR and
σR will not be known exactly, but it is known that for most populations, it is unusual to
observe a value that differs from the mean by more than three standard deviations. For
this reason, it is conventional to plot the control limits at points that approximate the
values μR ±3σR . It can be shown by advanced methods that the quantities μR ±3σR can
be estimated with multiples of R; these multiples are denoted D3 and D4. The quantity
μR − 3σR is estimated with D3 R, and the quantity μR + 3σR is estimated with D4 R.
The quantities D3 and D4 are constants whose values depend on the sample size n. A
brief table of values of D3 and D4 follows. A more extensive tabulation is provided in
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Table A.10 (in Appendix A). Note that for sample sizes of 6 or less, the value of D3 is 0.
For these small sample sizes, the quantity μR − 3σR is negative. In these cases the lower
control limit is set to 0, because it is impossible for the range to be negative.

n 2 3 4 5 6 7 8

D3 0 0 0 0 0 0.076 0.136
D4 3.267 2.575 2.282 2.114 2.004 1.924 1.864

Example
10.1 Compute the 3σ R chart upper and lower control limits for the moisture data in

Table 10.1.

Solution
The value of R is 0.6066 (Table 10.1). The sample size is n = 5. From the table,
D3 = 0 and D4 = 2.114. Therefore the upper control limit is (2.114)(0.6066) =
1.282, and the lower control limit is (0)(0.6066) = 0.

Summary
In an R chart, the center line and the 3σ upper and lower control limits are given by

3σ upper limit = D4 R

Center line = R

3σ lower limit = D3 R

The values D3 and D4 depend on the sample size. Values are tabulated in
Table A.10.

Once the control limits have been calculated and the points plotted, the R chart can
be used to assess whether the process is in control with respect to variation. Figure 10.1
shows that the range for sample number 6 is above the upper control limit, providing
evidence that a special cause was operating and that the process variation is not in control.
The appropriate action is to determine the nature of the special cause, and then delete
the out-of-control sample and recompute the control limits. Assume it is discovered that
a technician neglected to close a vent, causing greater than usual variation in moisture
content during the time period when the sample was chosen. Retraining the technician
will correct that special cause. We delete sample 6 from the data and recompute the
R chart. The results are shown in Figure 10.2 (page 772). The process variation is now
in control.

Now that the process variation has been brought into control, we can assess whether
the process mean is in control by plotting the X chart. The X chart is presented in
Figure 10.3 (page 772). The sample means are plotted on the vertical axis. Note that
sample 6 has not been used in this chart since it had to be deleted in order to bring the
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FIGURE 10.2 R chart for the moisture data, after deleting the out-of-control sample.
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FIGURE 10.3 X chart for the moisture data. Sample 6 has been deleted to bring the
process variation under control. However, the X chart shows that the process mean is
out of control.

process variation under control. Like all control charts, the X chart has a center line and
upper and lower control limits.

To compute the center line and the control limits, we can assume that the process
standard deviation is the same for all samples, since the R chart has been used to bring
the process variation into control. If the process mean μ is in control as well, then it too
is the same for all samples. In that case the 32 sample means are drawn from a normal
population with mean μX = μ and standard deviation σX = σ/

√
n, where n is the

sample size, equal to 5 in this case. Ideally, we would like to plot the center line at μ and
the 3σ control limits at μ ± 3σX . However, the values of μ and σX are usually unknown
and have to be estimated from the data. We estimate μ with X , the average of the sample
means. The center line is therefore plotted at X . The quantity σX can be estimated by
using either the average range R or by using the sample standard deviations. We will use
R here and discuss the methods based on the standard deviation at the end of the section,
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in conjunction with the discussion of S charts. It can be shown by advanced methods
that the quantity 3σX can be estimated with A2 R, where A2 is a constant whose value
depends on the sample size. A short table of values of A2 follows. A more extensive
tabulation is provided in Table A.10.

n 2 3 4 5 6 7 8
A2 1.880 1.023 0.729 0.577 0.483 0.419 0.373

Summary
In an X chart, when R is used to estimate σX , the center line and the 3σ upper
and lower control limits are given by

3σ upper limit = X + A2 R

Center line = X

3σ lower limit = X − A2 R

The value A2 depends on the sample size. Values are tabulated in Table A.10.

Example
10.2 Compute the 3σ X chart upper and lower control limits for the moisture data in

Table 10.1.

Solution
With sample 6 deleted, the value of X is 2.658, and the value of R is 0.5836. The
sample size is n = 5. From the table, A2 = 0.577. Therefore the upper control
limit is 2.658 + (0.577)(0.5836) = 2.995, and the lower control limit is 2.658 −
(0.577)(0.5836) = 2.321.

The X chart clearly shows that the process mean is not in control, as there are several
points plotting outside the control limits. The production manager installs a hygrometer
to monitor the ambient humidity and determines that the fluctuations in moisture content
are caused by fluctuations in ambient humidity. A dehumidifier is installed to stabilize
the ambient humidity. After this special cause is remedied, more data are collected, and a
new R chart and X chart are constructed. Figure 10.4 (page 774) presents the results. The
process is now in a state of statistical control. Of course, the process must be continually
monitored, since new special causes are bound to crop up from time to time and will
need to be detected and corrected.

Note that while control charts can detect the presence of a special cause, they cannot
determine its nature, nor how to correct it. It is necessary for the process engineer to have
a good understanding of the process, so that special causes detected by control charts
can be diagnosed and corrected.
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FIGURE 10.4 R chart and X chart after special cause is remedied. The process is now
in a state of statistical control.

Summary
The steps in using the R chart and X chart are

1. Choose rational subgroups.

2. Compute the R chart.

3. Determine the special causes for any out-of-control points.

4. Recompute the R chart, omitting samples that resulted in out-of-control points.

5. Once the R chart indicates a state of control, compute the X chart, omitting
samples that resulted in out-of-control points on the R chart.

6. If the X chart indicates that the process is not in control, identify and correct
any special causes.

7. Continue to monitor X and R.
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Control Chart Performance
There is a close connection between control charts and hypothesis tests. The null
hypothesis is that the process is in a state of control. A point plotting outside the 3σ con-
trol limits presents evidence against the null hypothesis. As with any hypothesis test, it
is possible to make an error. For example, a point will occasionally plot outside the 3σ

limits even when the process is in control. This is called a false alarm. It can also happen
that a process that is not in control may not exhibit any points outside the control limits,
especially if it is not observed for a long enough time. This is called a failure to detect.

It is desirable for these errors to occur as infrequently as possible. We describe the
frequency with which these errors occur with a quantity called the average run length
(ARL). The ARL is the number of samples that must be observed, on average, before a
point plots outside the control limits. We would like the ARL to be large when the process
is in control, and small when the process is out of control. We can compute the ARL
for an X chart if we assume that process mean μ and the process standard deviation σ

are known. Then the center line is located at the process mean μ and the control limits
are at μ ± 3σX . We must also assume, as is always the case with the X chart, that the
quantity being measured is approximately normally distributed. Examples 10.3 through
10.6 show how to compute the ARL.

Example
10.3 For an X chart with control limits at μ ± 3σX , compute the ARL for a process that is

in control.

Solution
Let X be the mean of a sample. Then X ∼ N (μ, σ 2

X
). The probability that a point

plots outside the control limits is equal to P(X < μ−3σX )+ P(X > μ+3σX ). This
probability is equal to 0.00135 + 0.00135 = 0.0027 (see Figure 10.5). Therefore, on
the average, 27 out of every 10,000 points will plot outside the control limits. This is
equivalent to 1 every 10,000/27 = 370.4 points. The average run length is therefore
equal to 370.4.

� � 3�X
z = �3

� �� � 3�X�

z = 3

0.00135 0.00135

FIGURE 10.5 The probability that a point plots outside the 3σ control limits, when
the process is in control, is 0.0027 (0.00135 + 0.00135).

The result of Example 10.3 can be interpreted as follows: If a process is in control,
we expect to observe about 370 samples, on the average, before finding one that plots
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outside the control limits, causing a false alarm. Note also that the ARL in Example 10.3
was 10,000/27, which is equal to 1/0.0027, where 0.0027 is the probability that any
given sample plots outside the control limits. This is true in general.

Summary
The average run length (ARL) is the number of samples that will be observed, on
the average, before a point plots outside the control limits. If p is the probability
that any given point plots outside the control limits, then

ARL = 1

p
(10.1)

If a process is out of control, the ARL will be less than 370.4. Example 10.4 shows
how to compute the ARL for a situation where the process shifts to an out-of-control
condition.

Example
10.4 A process has mean μ = 3 and standard deviation σ = 1. Samples of size n = 4 are

taken. If a special cause shifts the process mean to a value of 3.5, find the ARL.

Solution
We first compute the probability p that a given point plots outside the control limits.
Then ARL = 1/p. The control limits are plotted on the basis of a process that is in
control. Therefore they are at μ±3σX , where μ = 3 and σX = σ/

√
n = 1/

√
4 = 0.5.

The lower control limit is thus at 1.5, and the upper control limit is at 4.5. If X is the
mean of a sample taken after the process mean has shifted, then X ∼ N (3.5, 0.52). The
probability that X plots outside the control limits is equal to P(X < 1.5) + P(X >

4.5). This probability is 0.0228 (see Figure 10.6). The ARL is therefore equal to
1/0.0228 = 43.9. We will have to observe about 44 samples, on the average, before
detecting this shift.

z = �4 z = 2
3.51.5 4.5

0.0228≈ 0

FIGURE 10.6 The process mean has shifted from μ = 3 to μ = 3.5. The upper control
limit of 4.5 is now only 2σX above the mean, indicated by the fact that z = 2. The
lower limit is now 4σX below the mean. The probability that a point plots outside the
control limits is 0.0228 (0 + 0.0228).
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Example
10.5 Refer to Example 10.4. An upward shift to what value can be detected with an ARL

of 20?

Solution
Let m be the new mean to which the process has shifted. Since we have specified
an upward shift, m > 3. In Example 10.4 we computed the control limits to be 1.5
and 4.5. If X is the mean of a sample taken after the process mean has shifted, then
X ∼ N (m, 0.52). The probability that X plots outside the control limits is equal to
P(X < 1.5) + P(X > 4.5) (see Figure 10.7). This probability is equal to 1/ARL =
1/20 = 0.05. Since m > 3, m is closer to 4.5 than to 1.5. We will begin by assuming
that the area to the left of 1.5 is negligible and that the area to the right of 4.5 is equal
to 0.05. The z-score of 4.5 is then 1.645, so (4.5 − m)/0.5 = 1.645. Solving for m,
we have m = 3.68. We finish by checking our assumption that the area to the left of
1.5 is negligible. With m = 3.68, the z-score for 1.5 is (1.5 − 3.68)/0.5 = − 4.36.
The area to the left of 1.5 is indeed negligible.

1.5 4.5
z = �4.36 z = 1.645

m

0.05≈ 0

FIGURE 10.7 Solution to Example 10.5.

Example
10.6 Refer to Example 10.4. If the sample size remains at n = 4, what must the value of

the process standard deviation σ be to produce an ARL of 10 when the process mean
shifts to 3.5?

Solution
Let σ denote the new process standard deviation. The new control limits are 3 ±
3σ/

√
n, or 3 ± 3σ/2. If the process mean shifts to 3.5, then X ∼ N (3.5, σ 2/4). The

probability that X plots outside the control limits is equal to P(X < 3 − 3σ/2) +
P(X > 3+3σ/2). This probability is equal to 1/ARL = 1/10 = 0.10 (see Figure 10.8,
page 778). The process mean, 3.5, is closer to 3 + 3σ/2 than to 3 − 3σ/2. We will
assume that the area to the left of 3 − 3σ/2 is negligible and that the area to the right
of 3 + 3σ/2 is equal to 0.10. The z-score for 3 + 3σ/2 is then 1.28, so

(3 + 3σ/2) − 3.5

σ/2
= 1.28
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Solving for σ , we obtain σ = 0.58. We finish by checking that the area to the left
of 3 − 3σ/2 is negligible. Substituting σ = 0.58, we obtain 3 − 3σ/2 = 2.13. The
z-score is (2.13 − 3.5)/(0.58/2) = − 4.72. The area to the left of 3 − 3σ/2 is indeed
negligible.

3 � 3�/2 3 � 3�/23.5
z = �4.72 z = 1.28

0.10≈ 0

FIGURE 10.8 Solution to Example 10.6.

Examples 10.4 through 10.6 show that X charts do not usually detect small shifts
quickly. In other words, the ARL is high when shifts in the process mean are small. In
principle, one could reduce the ARL by moving the control limits closer to the centerline.
This would reduce the size of the shift needed to detect an out-of-control condition, so
that changes in the process mean would be detected more quickly. However, there is a
trade-off. The false alarm rate would increase as well, because shifts outside the control
limits would be more likely to occur by chance. The situation is much like that in fixed-
level hypothesis testing. The null hypothesis is that the process is in control. The control
chart performs a hypothesis test on each sample. When a point plots outside the control
limits, the null hypothesis is rejected. With the control limits at ± 3σX , a type I error
(rejection of a true null hypothesis) will occur about once in every 370 samples. The
price to pay for this low false alarm rate is lack of power to reject the null hypothesis
when it is false. Moving the control limits closer together is not the answer. Although it
will increase the power, it will also increase the false alarm rate.

Two of the ways in which practitioners have attempted to improve their ability
to detect small shifts quickly are by using the Western Electric rules to interpret the
control chart and by using CUSUM charts. The Western Electric rules are described
next. CUSUM charts are described in Section 10.4.

The Western Electric Rules
Figure 10.9 presents an X chart. While none of the points fall outside the 3σ control
limits, the process is clearly not in a state of control, since there is a nonrandom pattern
to the sample means. In recognition of the fact that a process can fail to be in control even
when no points plot outside the control limits, engineers at the Western Electric company
in 1956 suggested a list of conditions, any one of which could be used as evidence that
a process is out of control. The idea behind these conditions is that if a trend or pattern
in the control chart persists for long enough, it can indicate the absence of control, even
if no point plots outside the 3σ control limits.

To apply the Western Electric rules, it is necessary to compute the 1σ and 2σ control
limits. The 1σ control limits are given by X ± A2 R/3, and the 2σ control limits are
given by X ± 2A2 R/3.
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FIGURE 10.9 This X chart exhibits nonrandom patterns, indicating a lack of statistical
control, even though no points plot outside the 3σ control limits. The 1σ and 2σ control
limits are shown on this plot, so that the Western Electric rules can be applied.

The Western Electric Rules
Any one of the following conditions is evidence that a process is out of control:

1. Any point plotting outside the 3σ control limits.

2. Two out of three consecutive points plotting above the upper 2σ limit, or
two out of three consecutive points plotting below the lower 2σ limit.

3. Four out of five consecutive points plotting above the upper 1σ limit, or
four out of five consecutive points plotting below the lower 1σ limit.

4. Eight consecutive points plotting on the same side of the center line.

In Figure 10.9, the Western Electric rules indicate that the process is out of control
at sample number 8, at which time four out of five consecutive points have plotted above
the upper 1σ control limit. For more information on using the Western Electric rules to
interpret control charts, see Montgomery (2013b).

The S chart
The S chart is an alternative to the R chart. Both the S chart and the R chart are used
to control the variability in a process. While the R chart assesses variability with the
sample range, the S chart uses the sample standard deviation. Figure 10.10 (page 780)
presents the S chart for the moisture data in Table 10.1.
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FIGURE 10.10 S chart for the moisture data. Compare with Figure 10.1.

Note that the S chart for the moisture data is similar in appearance to the R chart
(Figure 10.1) for the same data. Like the R chart, the S chart indicates that the variation
was out of control in sample 6.

To understand where the control limits are plotted, assume that the 32 sample stan-
dard deviations come from a population with mean μs and standard deviation σs . Ideally
we would like to plot the center line at μs and the control limits at μs ± 3σs . These
quantities are typically unknown. We approximate μs with s, the average of the sample
standard deviations. Thus the center line is plotted at s. It can be shown by advanced
methods that the quantities μs ± 3σs can be estimated with multiples of s; these mul-
tiples are denoted B3 and B4. The quantity μs − 3σs is estimated with B3s, while the
quantity μs + 3σs is estimated with B4s. The quantities B3 and B4 are constants whose
values depend on the sample size n. A brief table of values of B3 and B4 follows.
A more extensive tabulation is provided in Table A.10 (Appendix A). Note that for sam-
ples of size 5 or less, the value of B3 is 0. For samples this small, the value of μs − 3σs

is negative. In these cases the lower control limit is set to 0, because it is impossible for
a standard deviation to be negative.

n 2 3 4 5 6 7 8

B3 0 0 0 0 0.030 0.118 0.185
B4 3.267 2.568 2.266 2.089 1.970 1.882 1.815

Example
10.7 Compute the center line and the 3σ S chart upper and lower control limits for the

moisture data in Table 10.1.

Solution
The value of s is 0.2445 (Table 10.1). The sample size is n = 5. From the table
immediately preceding, B3 = 0 and B4 = 2.089. Therefore the upper control limit is
(2.089)(0.2445) = 0.5108, and the lower control limit is (0)(0.2445) = 0.
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Summary
In an S chart, the center line and the 3σ upper and lower control limits are given by

3σ upper limit = B4s

Center line = s

3σ lower limit = B3s

The values B3 and B4 depend on the sample size. Values are tabulated in
Table A.10.

The S chart in Figure 10.10 shows that the process variation is out of control in
sample 6. We delete this sample and recompute the S chart. Figure 10.11 presents the
results. The variation is now in control. Note that this S chart is similar in appearance to
the R chart in Figure 10.2.
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FIGURE 10.11 S chart for the moisture data, after deleting the out-of-control sample.
Compare with Figure 10.2.

Once the variation is in control, we compute the X chart to assess the process mean.
Recall that for the X chart, the center line is at X , and the upper and lower control
limits would ideally be located a distance 3σX above and below the center line. Since we
used the S chart to assess the process variation, we will estimate the quantity 3σX with a
multiple of s. Specifically, we estimate 3σX with A3s, where A3 is a constant whose value
depends on the sample size n. A brief table of values of A3 follows. A more extensive
tabulation is provided in Table A.10.

n 2 3 4 5 6 7 8
A3 2.659 1.954 1.628 1.427 1.287 1.182 1.099
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Summary
In an X chart, when s is used to estimate σX , the center line and the 3σ upper
and lower control limits are given by

3σ upper limit = X + A3s

Center line = X

3σ lower limit = X − A3s

The value A3 depends on the sample size. Values are tabulated in Table A.10.

If Western Electric rules are to be used, 1σ and 2σ control limits must be computed.
The 1σ limits are X ± A3s/3; the 2σ limits are X ± 2A3s/3.

Example
10.8 Compute the 3σ X chart upper and lower control limits for the moisture data in

Table 10.1.

Solution
With sample 6 deleted, the value of X is 2.658, and the value of s is 0.2354. The
sample size is n = 5. From the table, A3 = 1.427. Therefore the upper control
limit is 2.658 + (1.427)(0.2354) = 2.994, and the lower control limit is 2.658 −
(1.427)(0.2354) = 2.322.

The X chart for the moisture data with sample 6 deleted is shown in Figure 10.12.
The control limits are very similar to those calculated from the sample ranges, as shown
in Figure 10.3. Figure 10.12 indicates that the process is out of control. After taking
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FIGURE 10.12 X chart for the moisture data. The control limits are based on the
sample standard deviations rather than the sample ranges. Compare with Figure 10.3.
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corrective action, a new S chart and X chart are constructed. Figure 10.13 presents the
results. The process is now in a state of statistical control.

X chart

s = 0.231

UCL = 0.483

LCL = 0
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FIGURE 10.13 S chart and X chart after special cause is remedied. The process is
now in a state of statistical control. Compare with Figure 10.4.

In summary, the S chart is an alternative to the R chart, to be used in combination
with the X chart. For the moisture data, it turned out that the two charts gave very
similar results. This is true in many cases, but it will sometimes happen that the results
differ.

Which Is Better, the S Chart or the R Chart?
Both the R chart and S chart have the same purpose: to estimate the process standard
deviation and to determine whether it is in control. It seems more natural to estimate
the process standard deviation with the sample standard deviation s than with the range
R. In fact, when the population is normal, s is a more precise estimate of the process
standard deviation than is R, because it has a smaller uncertainty. To see this intuitively,
note that the computation of s involves all the measurements in each sample, while the
computation of R involves only two measurements (the largest and the smallest). It turns
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out that the improvement in precision obtained with s as opposed to R increases as the
sample size increases. It follows that the S chart is a better choice, especially for larger
sample sizes (greater than 5 or so). The R chart is still widely used, largely through
tradition. At one time, the R chart had the advantage that the sample range required less
arithmetic to compute than did the sample standard deviation. Now that most calculations
are done electronically, this advantage no longer holds. So the S chart is in general the
better choice.

Samples of Size 1
Sometimes it is necessary to define rational subgroups in such a way that each sample
can contain only one value. For example, if the production rate is very slow, it may not
be convenient to wait to accumulate samples larger than n = 1. It is impossible to compute
a sample range or a sample standard deviation for a sample of size 1, so R charts and
S charts cannot be used. Several other methods are available. One method is the CUSUM
chart, discussed in Section 10.4.

Exercises for Section 10.2

1. The quality-control plan for a certain production pro-
cess involves taking samples of size 4. The results
from the last 30 samples can be summarized as
follows:

30∑
i=1

Xi = 712.5
30∑

i=1

Ri = 143.7
30∑

i=1

si = 62.5

a. Compute the 3σ control limits for the R chart.

b. Compute the 3σ control limits for the S chart.

c. Using the sample ranges, compute the 3σ control
limits for the X chart.

d. Using the sample standard deviations, compute the
3σ control limits for the X chart.

2. The following X chart depicts the last 50 samples
taken from the output of a process. Using the West-
ern Electric rules, is the process detected to be out of
control at any time? If so, specify at which sample the
process is first detected to be out of control and which
rule is violated.

3�

2�

1�

�1�

�2�

�3�

X 

0 10 20 30 40 50

3. The thickness, in mm, of metal washers is measured
on samples of size 5. The following table presents the
means, ranges, and standard deviations for 20 consec-
utive samples.
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Sample X R s

1 2.49 0.12 0.07
2 2.45 0.17 0.06
3 2.51 0.13 0.06
4 2.53 0.25 0.09
5 2.49 0.11 0.06
6 2.44 0.11 0.06
7 2.44 0.12 0.05
8 2.42 0.18 0.06
9 2.42 0.08 0.05

10 2.47 0.06 0.02
11 2.54 0.19 0.07
12 2.45 0.09 0.04
13 2.54 0.21 0.07
14 2.55 0.10 0.05
15 2.50 0.25 0.08
16 2.53 0.11 0.04
17 2.58 0.16 0.07
18 2.59 0.09 0.03
19 2.60 0.12 0.05
20 2.56 0.14 0.06

The means are X = 2.505, R = 0.1395, and
s = 0.057.

a. Calculate the 3σ control limits for the R chart.
Is the variance under control? If not, delete the
samples that are out of control and recompute X
and R.

b. Based on the sample range R, calculate the 3σ con-
trol limits for the X chart. Based on the 3σ limits,
is the process mean in control? If not, when is it
first detected to be out of control?

c. Based on the Western Electric rules, is the process
mean in control? If not, when is it first detected to
be out of control?

4. Repeat Exercise 3, using the S chart in place of the
R chart.

5. A process has mean 12 and standard deviation 3. The
process is monitored by taking samples of size 5 at
regular intervals. The process is declared to be out of
control if a point plots outside the 3σ control limits on
an X chart.

a. If the process mean shifts to 14, what is the average
number of samples that will be drawn before the
shift is detected on an X chart?

b. An upward shift to what value will be detected with
an ARL of 4?

c. If the sample size remains at 5, to what value must
the standard deviation be reduced to produce an
ARL of 4 when the process mean shifts to 14?

d. If the standard deviation remains at 3, what sample
size must be used to produce an ARL no greater
than 4 when the process mean shifts to 14?

6. A process has mean 8 and standard deviation 2. The
process is monitored by taking samples of size 4 at
regular intervals. The process is declared to be out of
control if a point plots outside the 3σ control limits on
an X chart.

a. If the process mean shifts to 9, what is the average
number of samples that will be drawn before the
shift is detected on an X chart?

b. An upward shift to what value will be detected
with an ARL of 8?

c. If the sample size remains at 4, to what value must
the standard deviation be reduced to produce an
ARL of 8 when the process mean shifts to 9?

d. If the standard deviation remains at 2, what sample
size must be used to produce an ARL no greater
than 8 when the process mean shifts to 9?

7. A process is monitored by taking samples at regular
intervals and is declared to be out of control if a point
plots outside the 3σ control limits on an X chart. As-
sume the process is in control.

a. What is the probability that a false alarm will occur
within the next 50 samples?

b. What is the probability that a false alarm will occur
within the next 100 samples?

c. What is the probability that there will be no false
alarm within the next 200 samples?

d. Fill in the blank: The probability is 0.5 that there
will be a false alarm within the next
samples.

8. Samples of eight bolts are taken periodically, and their
diameters (in mm) are measured. The following table
presents the means, ranges, and standard deviations
for 25 consecutive samples.
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Sample X R s

1 9.99 0.28 0.09
2 10.02 0.43 0.13
3 10.10 0.16 0.05
4 9.90 0.26 0.09
5 9.92 0.22 0.07
6 10.05 0.40 0.15
7 9.97 0.08 0.03
8 9.93 0.48 0.15
9 10.01 0.25 0.09

10 9.87 0.29 0.10
11 9.90 0.39 0.14
12 9.97 0.27 0.08
13 10.02 0.20 0.07
14 9.99 0.37 0.13
15 9.99 0.20 0.06
16 10.04 0.26 0.09
17 10.07 0.23 0.07
18 10.04 0.35 0.12
19 9.95 0.25 0.09
20 9.98 0.15 0.06
21 9.98 0.30 0.10
22 10.02 0.14 0.06
23 9.94 0.24 0.07
24 10.04 0.13 0.04
25 10.04 0.24 0.07

The means are X = 9.9892, R = 0.2628, and
s = 0.0880.

a. Calculate the 3σ control limits for the R chart.
Is the variance under control? If not, delete the
samples that are out of control and recompute X
and R.

b. Based on the sample range R, calculate the 3σ con-
trol limits for the X chart. Based on the 3σ limits,
is the process mean in control? If not, when is it
first detected to be out of control?

c. Based on the Western Electric rules, is the process
mean in control? If not, when is it first detected to
be out of control?

9. Repeat Exercise 8, using the S chart in place of the
R chart.

10. A certain type of integrated circuit is connected to its
frame by five wires. Thirty samples of five units each
were taken, and the pull strength (in grams) of one wire
on each unit was measured. The data are presented in
Table E10 on page 787. The means are X = 9.81,
R = 1.14, and s = 0.4647.

a. Compute the 3σ limits for the R chart. Is the vari-
ance out of control at any point? If so, delete the
samples that are out of control and recompute X
and R.

b. Compute the 3σ limits for the X chart. On the basis
of the 3σ limits, is the process mean in control? If
not, at what point is it first detected to be out of
control?

c. On the basis of the Western Electric rules, is the
process mean in control? If not, when is it first
detected to be out of control?

11. Repeat Exercise 10, using the S chart in place of the
R chart.

12. Copper wires are coated with a thin plastic coat-
ing. Samples of four wires are taken every hour, and
the thickness of the coating (in mils) is measured.
The data from the last 30 samples are presented in
Table E12 on page 788. The means are X = 150.075,
R = 6.97, and s = 3.082.

a. Compute the 3σ limits for the R chart. Is the vari-
ance out of control at any point? If so, delete
the samples that are out of control and recompute
X and R.

b. Compute the 3σ limits for the X chart. On the basis
of the 3σ limits, is the process mean in control? If
not, at what point is it first detected to be out of
control?

c. On the basis of the Western Electric rules, is the
process mean in control? If not, when is it first
detected to be out of control?

13. Repeat Exercise 12, using the S chart in place of the
R chart.
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TABLE E10 Data for Exercise 10

Sample Sample Values X R s

1 10.3 9.8 9.7 9.9 10.2 9.98 0.6 0.26
2 9.9 9.4 10.0 9.4 10.2 9.78 0.8 0.36
3 9.0 9.9 9.6 9.2 10.6 9.66 1.6 0.63
4 10.1 10.6 10.3 9.6 9.7 10.06 1.0 0.42
5 10.8 9.4 9.9 10.1 10.1 10.06 1.4 0.50
6 10.3 10.1 10.0 9.5 9.8 9.94 0.8 0.30
7 8.8 9.3 9.9 8.9 9.3 9.24 1.1 0.43
8 9.4 9.7 9.4 9.9 10.5 9.78 1.1 0.45
9 9.1 8.9 9.8 9.0 9.3 9.22 0.9 0.36

10 8.9 9.4 10.6 9.4 8.7 9.40 1.9 0.74
11 9.0 8.6 9.9 9.6 10.5 9.52 1.9 0.75
12 9.5 9.2 9.4 9.3 9.6 9.40 0.4 0.16
13 9.0 9.4 9.7 9.4 8.6 9.22 1.1 0.43
14 9.4 9.2 9.4 9.3 9.7 9.40 0.5 0.19
15 9.4 10.2 9.0 8.8 10.2 9.52 1.4 0.66
16 9.6 9.5 10.0 9.3 9.4 9.56 0.7 0.27
17 10.2 8.8 10.0 10.1 10.1 9.84 1.4 0.59
18 10.4 9.4 9.9 9.4 9.9 9.80 1.0 0.42
19 11.1 10.5 10.6 9.8 9.4 10.28 1.7 0.68
20 9.3 9.9 10.9 9.5 10.6 10.04 1.6 0.69
21 9.5 10.2 9.7 9.4 10.0 9.76 0.8 0.34
22 10.5 10.5 10.1 9.5 10.3 10.18 1.0 0.41
23 9.8 8.9 9.6 9.8 9.6 9.54 0.9 0.37
24 9.3 9.7 10.3 10.1 9.7 9.82 1.0 0.39
25 10.2 9.6 8.8 9.9 10.2 9.74 1.4 0.58
26 10.8 9.5 10.5 10.5 10.1 10.28 1.3 0.50
27 10.4 9.9 10.1 9.9 10.9 10.24 1.0 0.42
28 11.0 10.8 10.1 9.2 9.9 10.20 1.8 0.72
29 10.3 10.0 10.6 10.0 11.1 10.40 1.1 0.46
30 10.9 10.6 9.9 10.0 10.8 10.44 1.0 0.46
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TABLE E12 Data for Exercise 12

Sample Sample Values X R s

1 146.0 147.4 151.9 155.2 150.125 9.2 4.22
2 147.1 147.5 151.4 149.4 148.850 4.3 1.97
3 148.7 148.4 149.6 154.1 150.200 5.7 2.65
4 151.3 150.0 152.4 148.2 150.475 4.2 1.81
5 146.4 147.5 152.9 150.3 149.275 6.5 2.92
6 150.2 142.9 152.5 155.5 150.275 12.6 5.37
7 147.8 148.3 145.7 149.7 147.875 4.0 1.66
8 137.1 156.6 147.2 148.9 147.450 19.5 8.02
9 151.1 148.1 145.6 147.6 148.100 5.5 2.27

10 151.3 151.3 142.5 146.2 147.825 8.8 4.29
11 151.3 153.5 150.2 148.7 150.925 4.8 2.02
12 151.9 152.2 149.3 154.2 151.900 4.9 2.01
13 152.8 149.1 148.5 146.9 149.325 5.9 2.50
14 152.9 149.9 151.9 150.4 151.275 3.0 1.38
15 149.0 149.9 153.1 152.8 151.200 4.1 2.06
16 153.9 150.8 153.9 145.0 150.900 8.9 4.20
17 150.4 151.8 151.3 153.0 151.625 2.6 1.08
18 157.2 152.6 148.4 152.6 152.700 8.8 3.59
19 152.7 156.2 146.8 148.7 151.100 9.4 4.20
20 150.2 148.2 149.8 142.1 147.575 8.1 3.75
21 151.0 151.7 148.5 147.0 149.550 4.7 2.19
22 143.8 154.5 154.8 151.6 151.175 11.0 5.12
23 143.0 156.4 149.2 152.2 150.200 13.4 5.64
24 148.8 147.7 147.1 148.2 147.950 1.7 0.72
25 153.8 145.4 149.5 153.4 150.525 8.4 3.93
26 151.6 149.3 155.0 149.0 151.225 6.0 2.77
27 149.4 151.4 154.6 150.0 151.350 5.2 2.32
28 149.8 149.0 146.8 145.7 147.825 4.1 1.90
29 155.8 152.4 150.2 154.8 153.300 5.6 2.51
30 153.9 145.7 150.7 150.4 150.175 8.2 3.38

10.3 Control Charts for Attributes

The p Chart
The p chart is used when the quality characteristic being measured on each unit has
only two possible values, usually “defective” and “not defective.” In each sample, the
proportion of defectives is calculated; these sample proportions are then plotted. We will
now describe how the center line and control limits are calculated.

Let p be the probability that a given unit is defective. If the process is in control, this
probability is constant over time. Let k be the number of samples. We will assume that
all samples are the same size, and we will denote this size by n. Let Xi be the number
of defective units in the i th sample, and let p̂i = Xi/n be the proportion of defective
items in the i th sample. Now Xi ∼ Bin(n, p), and if np > 10, it is approximately true
that p̂i ∼ N (p, p(1 − p)/n) (see page 295). Since p̂i has mean μ = p and standard
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deviation σ = √
p(1 − p)/n, it follows that the center line should be at p, and the 3σ

control limits should be at p ± 3
√

p(1 − p)/n. Usually p is not known and is estimated
with p = ∑k

i=1 p̂i/k, the average of the sample proportions p̂i .

Summary
In a p chart, where the number of items in each sample is n, the center line and
the 3σ upper and lower control limits are given by

3σ upper limit = p + 3

√
p(1 − p)

n
Center line = p

3σ lower limit = p − 3

√
p(1 − p)

n
These control limits will be valid if n p > 10.

We illustrate these ideas with Example 10.9.

Example
10.9 In the production of silicon wafers, 30 lots of size 500 are sampled, and the proportion

of defective wafers is calculated for each sample. Table 10.2 presents the results.
Compute the center line and 3σ control limits for the p chart. Plot the chart. Does the
process appear to be in control?

TABLE 10.2 Number and proportion defective, for Example 10.9

Number Proportion Number Proportion
Sample Defective Defective ( p̂) Sample Defective Defective ( p̂)

1 17 0.034 16 26 0.052
2 26 0.052 17 19 0.038
3 31 0.062 18 31 0.062
4 25 0.050 19 27 0.054
5 26 0.052 20 24 0.048
6 29 0.058 21 22 0.044
7 36 0.072 22 24 0.048
8 26 0.052 23 30 0.060
9 25 0.050 24 25 0.050

10 21 0.042 25 26 0.052
11 18 0.036 26 28 0.056
12 33 0.066 27 22 0.044
13 29 0.058 28 31 0.062
14 17 0.034 29 18 0.036
15 28 0.056 30 23 0.046
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Solution
The average of the 30 sample proportions is p = 0.050867. The center line is
therefore plotted at 0.050867. The control limits are plotted at 0.050867 ±
3
√

(0.050867)(0.949133)/500. The upper control limit is therefore 0.0803, and the
lower control limit is 0.0214. Figure 10.14 presents the p chart. The process appears
to be in control.
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FIGURE 10.14 p chart for the data in Table 10.2.

The sample size needed to construct a p chart is usually much larger than that needed
for an X chart. The reason is that the sample size must be large enough so that there will
be several defective items in most of the samples. If defective items are not common,
the sample size must be quite large.

Interpreting Out-of-Control Signals in Attribute Charts
When an attribute control chart is used to monitor the frequency of defective units, a
point plotting above the upper control limit requires quite a different response than a
point plotting below the lower control limit. Both conditions indicate that a special cause
has changed the proportion of defective units. A point plotting above the upper control
limit indicates that the proportion of defective units has increased, so action must be taken
to identify and remove the special cause. A point plotting below the lower control limit,
however, indicates that the special cause has decreased the proportion of defective units.
The special cause still needs to be identified, but in this case, action should be taken to
make it continue, so that the proportion of defective items can be decreased permanently.

The c Chart
The c chart is used when the quality measurement is a count of the number of defects,
or flaws, in a given unit. A unit may be a single item, or it may be a group of items
large enough so that the expected number of flaws is sufficiently large. Use of the c chart
requires that the number of defects follow a Poisson distribution. Assume that k units
are sampled, and let ci denote the total number of defects in the i th unit. Let λ denote the
mean total number of flaws per unit. Then ci ∼ Poisson(λ). If the process is in control,
the value of λ is constant over time. Now if λ is reasonably large, say λ > 10, then
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ci ∼ N (λ, λ), approximately (see page 299). Note that the value of λ can in principle be
made large enough by choosing a sufficiently large number of items per unit. The c chart
is constructed by plotting the values ci . Since ci has mean λ and standard deviation equal
to

√
λ, the center line should be plotted at λ and the 3σ control limits should be plotted

at λ ± 3
√

λ. Usually the value of λ is unknown and has to be estimated from the data.
The appropriate estimate is c = ∑k

i=1 ci/k, the average number of defects per unit.

Summary
In a c chart, the center line and the 3σ upper and lower control limits are given by

3σ upper limit = c + 3
√

c

Center line = c

3σ lower limit = c − 3
√

c

These control limits will be valid if c > 10.

Example 10.10 illustrates these ideas.

Example
10.10 Rolls of sheet aluminum, used to manufacture cans, are examined for surface flaws.

Table 10.3 presents the numbers of flaws in 40 samples of 100 m2 each. Compute
the center line and 3σ control limits for the c chart. Plot the chart. Does the process
appear to be in control?’

Solution
The average of the 40 counts is c = 12.275. The center line is therefore plotted
at 12.275. The 3σ control limits are plotted at 12.275 ± 3

√
12.275. The upper

control limit is therefore 22.7857, and the lower control limit is 1.7643. Figure 10.15
(page 792) presents the c chart. The process appears to be in control.

TABLE 10.3 Number of flaws, for Example 10.10

Number of Number of Number of Number of
Sample Flaws (c) Sample Flaws (c) Sample Flaws (c) Sample Flaws (c)

1 16 11 14 21 11 31 10
2 12 12 11 22 16 32 10
3 9 13 10 23 16 33 10
4 13 14 9 24 13 34 12
5 15 15 9 25 12 35 14
6 5 16 14 26 17 36 10
7 13 17 10 27 15 37 15
8 11 18 12 28 13 38 12
9 15 19 8 29 15 39 11

10 12 20 14 30 13 40 14
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c = 12.275

UCL = 22.786

LCL = 1.764
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FIGURE 10.15 c chart for the data in Table 10.3.

Exercises for Section 10.3

1. A process is monitored for defective items by taking a
sample of 200 items each day and calculating the pro-
portion that are defective. Let pi be the proportion of
defective items in the i th sample. For the last 30 sam-
ples, the sum of the proportions is

∑30

i=1 pi = 1.64.
Calculate the center line and the 3σ upper and lower
control limits for a p chart.

2. The target fill weight for a box of cereal is 350 g. Each
day a sample of 300 boxes is taken, and the number
that are underweight is counted. The number of under-
weight boxes for each of the last 25 days is as follows:

23 12 19 19 20 19 21 27 26 23 26 22 25
30 30 22 25 27 29 35 39 43 41 39 29

a. Compute the upper and lower 3σ limits for a
p chart.

b. Is the process in control? If not, when is it first
detected to be out of control?

3. A process is monitored for defective items by period-
ically taking a sample of 100 items and counting the
number that are defective. In the last 50 samples, there
were a total of 622 defective items. Is this enough
information to compute the 3σ control limits for a
p chart? If so, compute the limits. If not, state what
additional information would be required.

4. Refer to Exercise 3. In the last 50 samples, there were
a total of 622 defective items. The largest number of
defectives in any sample was 24, while the smallest
number was 6. Is this enough information to deter-
mine whether the process was out of control at any

time during the last 50 samples? If so, state whether
or not the process was out of control. If not, state what
additional information would be required to make the
determination.

5. A newly designed quality-control program for a cer-
tain process involves sampling 20 items each day and
counting the number of defective items. The numbers
of defectives in the first 10 samples are 0, 0, 1, 0, 1,
0, 0, 0, 1, 0. A member of the quality-control team
asks for advice, expressing concern that the numbers
of defectives are too small to construct an accurate
p chart. Which of the following is the best advice?

i. Nothing needs to be changed. An accurate p chart
can be constructed when the number of defective
items is this small.

ii. Since the proportion of items that are defective is
so small, it isn’t necessary to construct a p chart
for this process.

iii. Increase the value of p to increase the number of
defectives per sample.

iv. Increase the sample size to increase the number
of defectives per sample.

6. A process that produces mirrors for automobiles is
monitored by taking samples of 1500 mirrors and
counting the total number of visual flaws on all the
sample mirrors. Let ci be the total number of flaws
on the mirrors in the i th sample. For the last 70 sam-
ples, the quantity

∑70

i=1 ci = 876 has been calculated.
Compute the center line and the 3σ upper and lower
control limits for a c chart.
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7. Refer to Exercise 6. The number of flaws in the 34th
sample was 27. Is it possible to determine whether the
process was in control at this time? If so, state whether
or not the process was in control. If not, state what ad-
ditional information would be required to make the
determination.

8. Each hour, a 10 m2 section of fabric is inspected
for flaws. The numbers of flaws observed for the last
20 hours are as follows:

38 35 35 49 33 48 40 47 45 46
41 53 36 41 51 63 35 58 55 57

a. Compute the upper and lower 3σ limits for a
c chart.

b. Is the process in control? If not, when is it first
detected to be out of control?

10.4 The CUSUM Chart

One purpose of an X chart is to detect a shift in the process mean. Unless a shift is fairly
large, however, it may be some time before a point plots outside the 3σ control limits.
Example 10.4 (in Section 10.2) showed that when a process mean shifts by an amount
equal to σX , the average run length (ARL) is approximately 44, which means that on the
average 44 samples must be observed before the process is judged to be out of control.
The Western Electric rules (Section 10.2) provide one method for reducing the ARL.
CUSUM charts provide another.

One way that small shifts manifest themselves is with a run of points above or below
the center line. The Western Electric rules are designed to respond to runs. Another way
to detect smaller shifts is with cumulative sums. Imagine that a process mean shifts
upward slightly. There will then be a tendency for points to plot above the center line.
If we add the deviations from the center line as we go along, and plot the cumulative
sums, the points will drift upward and will exceed a control limit much sooner than they
would in an X chart.

We now describe how to plot the points in a CUSUM chart. We assume that we have
m samples of size n, with sample means X1, . . . , Xm . To begin, a target value μ must
be specified for the process mean. Often μ is taken to be the value X . Then an estimate
of σX , the standard deviation of the sample means, is needed. This can be obtained
either with sample ranges, using the estimate σX ≈ A2 R/3, or with sample standard
deviations, using the estimate σX ≈ A3s/3. If there is only one item per sample (n = 1),
then an external estimate is needed. Even a rough guess can produce good results, so the
CUSUM procedure can be useful when n = 1. Finally two constants, usually called k
and h, must be specified. Larger values for these constants result in longer average run
lengths, and thus fewer false alarms, but also result in longer waiting times to discover
that a process is out of control. The values k = 0.5 and h = 4 or 5 are often used, because
they provide a reasonably long ARL when the process is in control but still have fairly
good power to detect a shift of magnitude 1σX or more in the process mean.

For each sample, the quantity Xi −μ is the deviation from the target value. We define
two cumulative sums, SH and SL. The sum SH is always either positive or zero and signals
that the process mean has become greater than the target value. The sum SL is always
either negative or zero and signals that the process mean has become less than the target
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value. Both these sums are computed recursively: in other words, the current value in the
sequence is used to compute the next value. The initial values of SH and SL are

SH0 = 0 SL0 = 0 (10.2)

For i ≥ 1 the values are

SHi = max[0, Xi − μ − kσX + SHi−1] (10.3)

SLi = min[0, Xi − μ + kσX + SLi−1] (10.4)

If SHi > hσX for some i , it is concluded that the process mean has become greater than
the target value. If SLi < −hσX for some i , it is concluded that the process mean has
become less than the target value.

Figure 10.16 presents a CUSUM chart for the data in Figure 10.9 (in Section 10.2).
The values k = 0.5 and h = 4 were used. The value 2.952 is the quantity hσX = 4(0.738).
The CUSUM chart indicates an out-of-control condition on the tenth sample. For these
data, the CUSUM chart performs about as well as the Western Electric rules, which
determined that the process was out of control at the eighth sample (see Figure 10.9).
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FIGURE 10.16 CUSUM chart for the data in Figure 10.9.

Summary
In a CUSUM chart, two cumulative sums, SH and SL, are plotted.

The initial values are SH0 = SL0 = 0. For i ≥ 1,

SHi = max[0, Xi − μ − kσX + SHi−1]

SLi = min[0, Xi − μ + kσX + SLi−1]

The constants k and h must be specified. Good results are often obtained for the
values k = 0.5 and h = 4 or 5.

If for any i , SHi > hσX or SLi < −hσX , the process is judged to be out of
control.
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There are several other methods for constructing CUSUM charts, which are equiva-
lent, or nearly equivalent, to the method presented here. Some people define the deviations
to be the z-scores zi = (Xi − μ)/σX , and then use zi in place of Xi − μ, and k in place
of kσX in the formulas for SH and SL. With this definition, the control limits are plotted
at ±h rather than ±hσX .

Other methods for graphing the CUSUM chart are available as well. The most
common alternative is the “V-mask” approach. A text on statistical quality control, such
as Montgomery (2013b), can be consulted for further information.

Exercises for Section 10.4

1. Refer to Exercise 3 in Section 10.2.

a. Delete any samples necessary to bring the process
variation under control. (You did this already if you
did Exercise 3 in Section 10.2.)

b. Use R to estimate σX (σX is the difference between
X and the 1σ control limit on an X chart).

c. Construct a CUSUM chart, using X for the target
mean μ, and the estimate of σX found in part (b)
for the standard deviation. Use the values k = 0.5
and h = 4.

d. Is the process mean in control? If not, when is it
first detected to be out of control?

e. Construct an X chart, and use the Western Electric
rules to determine whether the process mean is in
control. (You did this already if you did Exercise 3
in Section 10.2.) Do the Western Electric rules give
the same results as the CUSUM chart? If not, how
are they different?

2. Refer to Exercise 8 in Section 10.2.

a. Delete any samples necessary to bring the process
variation under control. (You did this already if you
did Exercise 8 in Section 10.2.)

b. Use R to estimate σX (σX is the difference between
X and the 1σ control limit on an X chart).

c. Construct a CUSUM chart, using X for the target
mean μ, and the estimate of σX found in part (b)
for the standard deviation. Use the values k = 0.5
and h = 4.

d. Is the process mean in control? If not, when is it
first detected to be out of control?

e. Construct an X chart, and use the Western Electric
rules to determine whether the process mean is in
control. (You did this already if you did Exercise 8
in Section 10.2.) Do the Western Electric rules give
the same results as the CUSUM chart? If not, how
are they different?

3. Refer to Exercise 10 in Section 10.2.

a. Delete any samples necessary to bring the process
variation under control. (You did this already if you
did Exercise 10 in Section 10.2.)

b. Use R to estimate σX (σX is the difference between
X and the 1σ control limit on an X chart).

c. Construct a CUSUM chart, using X for the target
mean μ, and the estimate of σX found in part (b)
for the standard deviation. Use the values k = 0.5
and h = 4.

d. Is the process mean in control? If not, when is it
first detected to be out of control?

e. Construct an X chart, and use the Western Elec-
tric rules to determine whether the process mean
is in control. (You did this already if you did Exer-
cise 10 in Section 10.2.) Do the Western Electric
rules give the same results as the CUSUM chart?
If not, how are they different?

4. Refer to Exercise 12 in Section 10.2.

a. Delete any samples necessary to bring the process
variation under control. (You did this already if you
did Exercise 12 in Section 10.2.)

b. Use R to estimate σX (σX is the difference between
X and the 1σ control limit on an X chart).
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c. Construct a CUSUM chart, using X for the target
mean μ, and the estimate of σX found in part (b)
for the standard deviation. Use the values k = 0.5
and h = 4.

d. Is the process mean in control? If not, when is it
first detected to be out of control?

e. Construct an X chart, and use the Western Elec-
tric rules to determine whether the process mean
is in control. (You did this already if you did Exer-
cise 12 in Section 10.2.) Do the Western Electric
rules give the same results as the CUSUM chart?
If not, how are they different?

5. Concrete blocks to be used in a certain application
are supposed to have a mean compressive strength of
1500 MPa. Samples of size 1 are used for quality con-
trol. The compressive strengths of the last 40 samples
are given in the following table.

Sample Strength Sample Strength

1 1487 21 1507
2 1463 22 1474
3 1499 23 1515
4 1502 24 1533
5 1473 25 1487
6 1520 26 1518
7 1520 27 1526
8 1495 28 1469
9 1503 29 1472

10 1499 30 1512
11 1497 31 1483
12 1516 32 1505
13 1489 33 1507
14 1545 34 1505
15 1498 35 1517
16 1503 36 1504
17 1522 37 1515
18 1502 38 1467
19 1499 39 1491
20 1484 40 1488

Previous results suggest that a value of σ = 15 is
reasonable for this process.

a. Using the value 1500 for the target mean μ, and
the values k = 0.5 and h = 4, construct a CUSUM
chart.

b. Is the process mean in control? If not, when is it
first detected to be out of control?

6. A quality-control apprentice is preparing a CUSUM
chart. The values calculated for SL and SH are pre-
sented in the following table. Three of the values have
been calculated incorrectly. Which are they?

Sample SL SH

1 0 0
2 0 0
3 0 0
4 −1.3280 0
5 −1.4364 0
6 −2.0464 0
7 −1.6370 0
8 −0.8234 0.2767
9 −0.4528 0.1106

10 0 0.7836
11 0.2371 0.0097
12 0.7104 0
13 0 0.2775
14 0 0.5842
15 0 0.3750
16 0 0.4658
17 0 0.1866
18 0 0.3277
19 −0.2036 0
20 0 −0.7345
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10.5 Process Capability

Once a process is in a state of statistical control, it is important to evaluate its ability to
produce output that conforms to design specifications. We consider variables data, and
we assume that the quality characteristic of interest follows a normal distribution.

The first step in assessing process capability is to estimate the process mean and
standard deviation. These estimates are denoted μ̂ and σ̂ , respectively. The data used to
calculate μ̂ and σ̂ are usually taken from control charts at a time when the process is
in a state of control. The process mean is estimated with μ̂ = X . The process standard
deviation can be estimated by using either the average sample range R or the average
sample standard deviation s. Specifically, it has been shown that σ̂ can be computed
either by dividing R by a constant called d2, or by dividing s by a constant called c4.
The values of the constants d2 and c4 depend on the sample size. Values are tabulated in
Table A.10 (in Appendix A).

Summary
If a quality characteristic from a process in a state of control is normally dis-
tributed, then the process mean μ̂ and standard deviation σ̂ can be estimated
from control chart data as follows:

μ̂ = X

σ̂ = R

d2
or σ̂ = s

c4

The values of d2 and c4 depend on the sample size. Values are tabulated in
Table A.10.

Note that the process standard deviation σ is not the same quantity that is used to
compute the 3σ control limits on the X chart. The control limits are μ ± 3σX , where σX
is the standard deviation of the sample mean. The process standard deviation σ is the
standard deviation of the quality characteristic of individual units. They are related by
σX = σ/

√
n, where n is the sample size.

To be fit for use, a quality characteristic must fall between a lower specification
limit (LSL) and an upper specification limit (USL). Sometimes there is only one limit;
this situation will be discussed at the end of this section. The specification limits are
determined by design requirements. They are not the control limits found on control
charts. We will assume that the process mean falls between the LSL and the USL.

We will discuss two indices of process capability, C pk and C p. The index C pk de-
scribes the capability of the process as it is, while C p describes the potential capability
of the process. Note that the process capability index C p has no relation to the quan-
tity called Mallows’ C p that is used for linear model selection (see Chapter 8). It is a
coincidence that the two quantities have the same name.
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The index C pk is defined to be the distance from μ̂ to the nearest specification
limit, divided by 3σ̂ . Figure 10.17 presents an illustration where μ̂ is closer to the upper
specification limit.

�^LSL USL

FIGURE 10.17 The normal curve represents the population of units produced by a
process. The process mean is closer to the upper specification limit (USL) than to the
lower specification limit (LSL). The index Cpk is therefore equal to (USL − μ̂)/3σ̂ .

Definition
The index C pk is equal either to

μ̂ − LSL

3σ̂
or

USL − μ̂

3σ̂

whichever is less.

By convention, the minimum acceptable value for C pk is 1. That is, a process
is considered to be minimally capable if the process mean is three standard deviations
from the nearest specification limit. A C pk value of 1.33, indicating that the process mean
is four standard deviations from the nearest specification limit, is generally considered
good.

Example
10.11 The design specifications for a piston rod used in an automatic transmission call for

the rod length to be between 71.4 and 72.8 mm. The process is monitored with an X
chart and an S chart, using samples of size n = 5. These show the process to be in
control. The values of X and s are X = 71.8 mm and s = 0.20 mm. Compute the
value of C pk . Is the process capability acceptable?

Solution
We estimate μ̂ = X = 71.8. To compute σ̂ , we find, from Table A.10, that c4 =
0.9400 when the sample size is 5. Therefore σ̂ = s/c4 = 0.20/0.9400 = 0.2128.
The specification limits are LSL = 71.4 mm and USL = 72.8 mm. The value μ̂ is
closer to the LSL than to the USL. Therefore

C pk = μ̂ − LSL

3σ̂
= 71.8 − 71.4

(3)(0.2128)

= 0.6266

Since C pk < 1, the process capability is not acceptable.



Navidi-3810214 book November 11, 2013 14:36

10.5 Process Capability 799

Example
10.12 Refer to Example 10.11. Assume that it is possible to adjust the process mean to any

desired value. To what value should it be set to maximize the value of C pk? What will
the value of C pk be?

Solution
The specification limits are LSL = 71.4 and USL = 72.8. The value of C pk will be
maximized if the process mean is adjusted to the midpoint between the specification
limits; that is, if μ = 72.1. The process standard deviation is estimated with σ̂ =
0.2128. Therefore the maximum value of C pk is (72.1−71.4)/(3)(0.2128) = 1.0965.
The process capability would be acceptable.

The capability that can potentially be achieved by shifting the process mean to the
midpoint between the upper and lower specification limits is called the process capability
index, denoted C p. If the process mean is at the midpoint between LSL and USL, then
the distance from the mean to either specification limit is equal to one-half the distance
between the specification limits, that is μ − LSL = USL − μ = (USL − LSL)/2 (see
Figure 10.18). It follows that

Cp = USL − LSL

6σ̂
(10.5)

The process capability index C p measures the potential capability of the process, that is
the greatest capability that the process can achieve without reducing the process standard
deviation.

�LSL USL

FIGURE 10.18 A process has maximum capability when the process mean is at
the midpoint between the specification limits. In this case μ − LSL = USL − μ =
(USL − LSL)/2.

Example
10.13 Specifications for the output voltage of a certain electric circuit are 48 to 52 V. The

process is in control with σ̂ = 0.482 V. Compute the process capability index C p.
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Solution

C p = USL − LSL

6σ̂
= 52 − 48

(6)(0.482)

= 1.38

The process capability is potentially good.

Estimating the Proportion of Nonconforming Units
from Process Capability
Many people use the value of C p to try to estimate the proportion of units that will
be nonconforming. For example, if C p = 1, then the specification limits are equal to
μ̂ − 3σ̂ and μ̂ + 3σ̂ , respectively. Therefore a unit will be nonconforming only if it is
more than three standard deviations from the process mean. Now for a normal population,
the proportion of items that are more than three standard deviations from the mean is
equal to 0.0027. Therefore it is often stated that a process with Cp = 1 will produce 27
nonconforming parts per 10,000.

The problem with this is that the normality assumption is only approximate for
real processes. The approximation may be very good near the middle of the curve, but
it is often not good in the tails. Therefore the true proportion of nonconforming parts
may be quite different from that predicted from the normal curve, especially when the
proportion is very small. In general, estimates of small probabilities that are based on a
normal approximation are extremely crude at best.

Six-Sigma Quality
The term “six-sigma quality” has become quite prevalent in discussions of quality control
during the last few years. A process is said to have six-sigma quality if the process
capability index C p has a value of 2.0 or greater. Equivalently, a process has six-sigma
quality if the difference USL − LSL is at least 12σ . When a process has six-sigma quality,
then if the process mean is optimally adjusted, it is six standard deviations from each
specification limit. In this case the proportion of nonconforming units will be virtually
zero.

An important feature of a six-sigma process is that it can withstand moderate shifts
in process mean without significant deterioration in capability. For example, even if the
process mean shifts by 3σ in one direction or the other, it is still 3σ from the nearest
specification limit, so the capability index will still be acceptable.

Example
10.14 Refer to Example 10.13. To what value must the process standard deviation be reduced

in order for the process to attain six-sigma quality?
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Solution
To attain six-sigma quality, the value of C p must be at least 2.0. The value of σ for
which this occurs is found by setting C p = 2.0 and solving for σ . We obtain

2.0 = 52 − 48

6σ

from which σ = 0.33.

One-Sided Tolerances
Some characteristics have only one specification limit. For example, strengths usually
have a lower specification limit but no upper limit, since for most applications a part
cannot be too strong. The analog of C pk when there is only a lower specification limit
is the lower capability index C pl ; when there is only an upper limit, it is the upper
capability index C pu . Each of these quantities is defined to be the difference between
the estimated process mean μ̂ and the specification limit, divided by 3σ̂ .

Summary
If a process has only a lower specification limit (LSL), then the lower capability
index is

C pl = μ̂ − LSL

3σ̂

If a process has only an upper specification limit (USL), then the upper capability
index is

C pu = USL − μ̂

3σ̂

There is no analog for C p for processes with only one specification limit.

Exercises for Section 10.5

1. The thickness specification for aluminum sheets is
0.246–0.254 mm. Data from an X chart, based on sam-
ples of size 6, that shows that the process is in control,
yield values of X = 0.248 and s = 0.002.

a. Compute the value of Cpk for this process.

b. Is the process capability acceptable? Explain.

2. The specification for the diameters of ball bearings
is 15.40–15.60 mm. Data from an X chart, based on
samples of size 8, that shows that the process is in
control, yield values of X = 15.52 and R = 0.05.

a. Compute the value of Cpk for this process.

b. Is the process capability acceptable? Explain.

3. Refer to Exercise 2.

a. To what value should the process mean be set to
maximize the process capability?

b. What will the process capability then be?

4. Refer to Exercise 1.

a. To what value should the process mean be set to
maximize the process capability?
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b. Is it possible to make the process capability ac-
ceptable simply by adjusting the process mean?
Explain.

c. When the process mean is adjusted to its optimum
value, what value must be attained by the process
standard deviation so that the process capability is
acceptable?

d. When the process mean is adjusted to its opti-
mum value, what value must be attained by the
process standard deviation so that the process has
six-sigma quality?

5. A process has a process capability index of Cp = 1.2.

a. Assume the process mean is set to its optimal value.
Express the upper and lower specification limits in
terms of the process mean and standard deviation.

b. Using the normal curve, estimate the proportion of
units that will be nonconforming.

c. Is it likely or unlikely that the true proportion of
nonconforming units will be quite different from
the estimate in part (b)? Explain.

Supplementary Exercises for Chapter 10

1. A process is monitored for defective items by taking a
sample of 300 items each day and calculating the pro-
portion that are defective. Let pi be the proportion of
defective items in the i th sample. For the last 100 sam-
ples, the sum of the proportions is

∑100

i=1 pi = 5.83.
Calculate the center line and the 3σ upper and lower
control limits for a p chart.

2. Someone constructs an X chart where the control lim-
its are at ±2.0σX rather than at ±3σX .

a. If the process is in control, what is the ARL for this
chart?

b. If the process mean shifts by 0.5σX , what is the
ARL for this chart?

c. In units of σX , how large an upward shift can be
detected with an ARL of 10?

3. Samples of three resistors are taken periodically,
and the resistances, in ohms, are measured. The fol-
lowing table presents the means, ranges, and standard
deviations for 30 consecutive samples.

Sample X R s

1 5.114 0.146 0.077
2 5.144 0.158 0.085
3 5.220 0.057 0.031
4 5.196 0.158 0.081
5 5.176 0.172 0.099
6 5.222 0.030 0.017
7 5.209 0.118 0.059
8 5.212 0.099 0.053
9 5.238 0.157 0.085

10 5.152 0.104 0.054
11 5.163 0.051 0.026
12 5.221 0.105 0.055
13 5.144 0.132 0.071
14 5.098 0.123 0.062
15 5.070 0.083 0.042
16 5.029 0.073 0.038
17 5.045 0.161 0.087
18 5.008 0.138 0.071
19 5.029 0.082 0.042
20 5.038 0.109 0.055
21 4.962 0.066 0.034
22 5.033 0.078 0.041
23 4.993 0.085 0.044
24 4.961 0.126 0.066
25 4.976 0.094 0.047
26 5.005 0.135 0.068
27 5.022 0.120 0.062
28 5.077 0.140 0.074
29 5.033 0.049 0.026
30 5.068 0.146 0.076
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The means are X = 5.095, R = 0.110, and s = 0.058.

a. Compute the 3σ limits for the R chart. Is the vari-
ance out of control at any point? If so, delete the
samples that are out of control and recompute X
and R.

b. Compute the 3σ limits for the X chart. On the basis
of the 3σ limits, is the process mean in control? If
not, at what point is it first detected to be out of
control?

c. On the basis of the Western Electric rules, is the
process mean in control? If not, when is it first
detected to be out of control?

4. Repeat Exercise 3, using the S chart in place of the
R chart.

5. Refer to Exercise 3.

a. Delete any samples necessary to bring the process
variation under control. (You did this already if you
did Exercise 3.)

b. Use R to estimate σX (σX is the difference between
X and the 1σ control limit on an X chart).

c. Construct a CUSUM chart, using X for the target
mean μ, and the estimate of σX found in part (b)
for the standard deviation. Use the values k = 0.5
and h = 4.

d. Is the process mean in control? If not, when is it
first detected to be out of control?

e. Construct an X chart, and use the Western Elec-
tric rules to determine whether the process mean

is in control. (You did this already if you did Ex-
ercise 3.) Do the Western Electric rules give the
same results as the CUSUM chart? If not, how are
they different?

6. A process is monitored for flaws by taking a sample
of size 70 each hour and counting the total number of
flaws in the sample items. The total number of flaws
over the last 50 samples is 1085.

a. Compute the center line and upper and lower 3σ

control limits.

b. The tenth sample had five flaws. Was the process
out of control at that time? Explain.

7. To set up a p chart to monitor a process that produces
computer chips, samples of 300 chips are taken daily,
and the number of defective chips in each sample is
counted. The numbers of defective chips for each of
the last 20 days are as follows:

12 13 11 10 15 9 1 10 9 15
8 13 11 9 16 12 19 20 18 9

a. Compute the upper and lower 3σ limits for a
p chart.

b. At which sample is the process first detected to be
out of control?

c. Suppose that the special cause that resulted in the
out-of-control condition is determined. Should this
cause be remedied? Explain.
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TABLE A.1 Cumulative binomial distribution

F (x) = P(X ≤ x) =
x∑

k=0

n!
k!(n − k)!

pk(1 − p)(n−k)

p

n x 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

2 0 0.902 0.810 0.640 0.562 0.490 0.360 0.250 0.160 0.090 0.062 0.040 0.010 0.003
1 0.997 0.990 0.960 0.938 0.910 0.840 0.750 0.640 0.510 0.438 0.360 0.190 0.098
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 0 0.857 0.729 0.512 0.422 0.343 0.216 0.125 0.064 0.027 0.016 0.008 0.001 0.000
1 0.993 0.972 0.896 0.844 0.784 0.648 0.500 0.352 0.216 0.156 0.104 0.028 0.007
2 1.000 0.999 0.992 0.984 0.973 0.936 0.875 0.784 0.657 0.578 0.488 0.271 0.143
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 0 0.815 0.656 0.410 0.316 0.240 0.130 0.062 0.026 0.008 0.004 0.002 0.000 0.000
1 0.986 0.948 0.819 0.738 0.652 0.475 0.313 0.179 0.084 0.051 0.027 0.004 0.000
2 1.000 0.996 0.973 0.949 0.916 0.821 0.688 0.525 0.348 0.262 0.181 0.052 0.014
3 1.000 1.000 0.998 0.996 0.992 0.974 0.938 0.870 0.760 0.684 0.590 0.344 0.185
4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 0 0.774 0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.001 0.000 0.000 0.000
1 0.977 0.919 0.737 0.633 0.528 0.337 0.187 0.087 0.031 0.016 0.007 0.000 0.000
2 0.999 0.991 0.942 0.896 0.837 0.683 0.500 0.317 0.163 0.104 0.058 0.009 0.001
3 1.000 1.000 0.993 0.984 0.969 0.913 0.812 0.663 0.472 0.367 0.263 0.081 0.023
4 1.000 1.000 1.000 0.999 0.998 0.990 0.969 0.922 0.832 0.763 0.672 0.410 0.226

5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6 0 0.735 0.531 0.262 0.178 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000 0.000
1 0.967 0.886 0.655 0.534 0.420 0.233 0.109 0.041 0.011 0.005 0.002 0.000 0.000
2 0.998 0.984 0.901 0.831 0.744 0.544 0.344 0.179 0.070 0.038 0.017 0.001 0.000
3 1.000 0.999 0.983 0.962 0.930 0.821 0.656 0.456 0.256 0.169 0.099 0.016 0.002
4 1.000 1.000 0.998 0.995 0.989 0.959 0.891 0.767 0.580 0.466 0.345 0.114 0.033

5 1.000 1.000 1.000 1.000 0.999 0.996 0.984 0.953 0.882 0.822 0.738 0.469 0.265
6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7 0 0.698 0.478 0.210 0.133 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000 0.000
1 0.956 0.850 0.577 0.445 0.329 0.159 0.063 0.019 0.004 0.001 0.000 0.000 0.000
2 0.996 0.974 0.852 0.756 0.647 0.420 0.227 0.096 0.029 0.013 0.005 0.000 0.000
3 1.000 0.997 0.967 0.929 0.874 0.710 0.500 0.290 0.126 0.071 0.033 0.003 0.000
4 1.000 1.000 0.995 0.987 0.971 0.904 0.773 0.580 0.353 0.244 0.148 0.026 0.004

5 1.000 1.000 1.000 0.999 0.996 0.981 0.938 0.841 0.671 0.555 0.423 0.150 0.044
6 1.000 1.000 1.000 1.000 1.000 0.998 0.992 0.972 0.918 0.867 0.790 0.522 0.302
7 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Continued on page 806
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TABLE A.1 Cumulative binomial distribution (continued)

p

n x 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

8 0 0.663 0.430 0.168 0.100 0.058 0.017 0.004 0.001 0.000 0.000 0.000 0.000 0.000
1 0.943 0.813 0.503 0.367 0.255 0.106 0.035 0.009 0.001 0.000 0.000 0.000 0.000
2 0.994 0.962 0.797 0.679 0.552 0.315 0.145 0.050 0.011 0.004 0.001 0.000 0.000
3 1.000 0.995 0.944 0.886 0.806 0.594 0.363 0.174 0.058 0.027 0.010 0.000 0.000
4 1.000 1.000 0.990 0.973 0.942 0.826 0.637 0.406 0.194 0.114 0.056 0.005 0.000

5 1.000 1.000 0.999 0.996 0.989 0.950 0.855 0.685 0.448 0.321 0.203 0.038 0.006
6 1.000 1.000 1.000 1.000 0.999 0.991 0.965 0.894 0.745 0.633 0.497 0.187 0.057
7 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.983 0.942 0.900 0.832 0.570 0.337
8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

9 0 0.630 0.387 0.134 0.075 0.040 0.010 0.002 0.000 0.000 0.000 0.000 0.000 0.000
1 0.929 0.775 0.436 0.300 0.196 0.071 0.020 0.004 0.000 0.000 0.000 0.000 0.000
2 0.992 0.947 0.738 0.601 0.463 0.232 0.090 0.025 0.004 0.001 0.000 0.000 0.000
3 0.999 0.992 0.914 0.834 0.730 0.483 0.254 0.099 0.025 0.010 0.003 0.000 0.000
4 1.000 0.999 0.980 0.951 0.901 0.733 0.500 0.267 0.099 0.049 0.020 0.001 0.000

5 1.000 1.000 0.997 0.990 0.975 0.901 0.746 0.517 0.270 0.166 0.086 0.008 0.001
6 1.000 1.000 1.000 0.999 0.996 0.975 0.910 0.768 0.537 0.399 0.262 0.053 0.008
7 1.000 1.000 1.000 1.000 1.000 0.996 0.980 0.929 0.804 0.700 0.564 0.225 0.071
8 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.990 0.960 0.925 0.866 0.613 0.370
9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

10 0 0.599 0.349 0.107 0.056 0.028 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1 0.914 0.736 0.376 0.244 0.149 0.046 0.011 0.002 0.000 0.000 0.000 0.000 0.000
2 0.988 0.930 0.678 0.526 0.383 0.167 0.055 0.012 0.002 0.000 0.000 0.000 0.000
3 0.999 0.987 0.879 0.776 0.650 0.382 0.172 0.055 0.011 0.004 0.001 0.000 0.000
4 1.000 0.998 0.967 0.922 0.850 0.633 0.377 0.166 0.047 0.020 0.006 0.000 0.000

5 1.000 1.000 0.994 0.980 0.953 0.834 0.623 0.367 0.150 0.078 0.033 0.002 0.000
6 1.000 1.000 0.999 0.996 0.989 0.945 0.828 0.618 0.350 0.224 0.121 0.013 0.001
7 1.000 1.000 1.000 1.000 0.998 0.988 0.945 0.833 0.617 0.474 0.322 0.070 0.012
8 1.000 1.000 1.000 1.000 1.000 0.998 0.989 0.954 0.851 0.756 0.624 0.264 0.086
9 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.972 0.944 0.893 0.651 0.401

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

11 0 0.569 0.314 0.086 0.042 0.020 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.898 0.697 0.322 0.197 0.113 0.030 0.006 0.001 0.000 0.000 0.000 0.000 0.000
2 0.985 0.910 0.617 0.455 0.313 0.119 0.033 0.006 0.001 0.000 0.000 0.000 0.000
3 0.998 0.981 0.839 0.713 0.570 0.296 0.113 0.029 0.004 0.001 0.000 0.000 0.000
4 1.000 0.997 0.950 0.885 0.790 0.533 0.274 0.099 0.022 0.008 0.002 0.000 0.000

5 1.000 1.000 0.988 0.966 0.922 0.753 0.500 0.247 0.078 0.034 0.012 0.000 0.000
6 1.000 1.000 0.998 0.992 0.978 0.901 0.726 0.467 0.210 0.115 0.050 0.003 0.000
7 1.000 1.000 1.000 0.999 0.996 0.971 0.887 0.704 0.430 0.287 0.161 0.019 0.002
8 1.000 1.000 1.000 1.000 0.999 0.994 0.967 0.881 0.687 0.545 0.383 0.090 0.015

Continued on page 807
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TABLE A.1 Cumulative binomial distribution (continued)

p

n x 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

11 9 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.970 0.887 0.803 0.678 0.303 0.102
10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.980 0.958 0.914 0.686 0.431
11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

12 0 0.540 0.282 0.069 0.032 0.014 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.882 0.659 0.275 0.158 0.085 0.020 0.003 0.000 0.000 0.000 0.000 0.000 0.000
2 0.980 0.889 0.558 0.391 0.253 0.083 0.019 0.003 0.000 0.000 0.000 0.000 0.000
3 0.998 0.974 0.795 0.649 0.493 0.225 0.073 0.015 0.002 0.000 0.000 0.000 0.000
4 1.000 0.996 0.927 0.842 0.724 0.438 0.194 0.057 0.009 0.003 0.001 0.000 0.000

5 1.000 0.999 0.981 0.946 0.882 0.665 0.387 0.158 0.039 0.014 0.004 0.000 0.000
6 1.000 1.000 0.996 0.986 0.961 0.842 0.613 0.335 0.118 0.054 0.019 0.001 0.000
7 1.000 1.000 0.999 0.997 0.991 0.943 0.806 0.562 0.276 0.158 0.073 0.004 0.000
8 1.000 1.000 1.000 1.000 0.998 0.985 0.927 0.775 0.507 0.351 0.205 0.026 0.002
9 1.000 1.000 1.000 1.000 1.000 0.997 0.981 0.917 0.747 0.609 0.442 0.111 0.020

10 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.980 0.915 0.842 0.725 0.341 0.118
11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.986 0.968 0.931 0.718 0.460
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

13 0 0.513 0.254 0.055 0.024 0.010 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.865 0.621 0.234 0.127 0.064 0.013 0.002 0.000 0.000 0.000 0.000 0.000 0.000
2 0.975 0.866 0.502 0.333 0.202 0.058 0.011 0.001 0.000 0.000 0.000 0.000 0.000
3 0.997 0.966 0.747 0.584 0.421 0.169 0.046 0.008 0.001 0.000 0.000 0.000 0.000
4 1.000 0.994 0.901 0.794 0.654 0.353 0.133 0.032 0.004 0.001 0.000 0.000 0.000

5 1.000 0.999 0.970 0.920 0.835 0.574 0.291 0.098 0.018 0.006 0.001 0.000 0.000
6 1.000 1.000 0.993 0.976 0.938 0.771 0.500 0.229 0.062 0.024 0.007 0.000 0.000
7 1.000 1.000 0.999 0.994 0.982 0.902 0.709 0.426 0.165 0.080 0.030 0.001 0.000
8 1.000 1.000 1.000 0.999 0.996 0.968 0.867 0.647 0.346 0.206 0.099 0.006 0.000
9 1.000 1.000 1.000 1.000 0.999 0.992 0.954 0.831 0.579 0.416 0.253 0.034 0.003

10 1.000 1.000 1.000 1.000 1.000 0.999 0.989 0.942 0.798 0.667 0.498 0.134 0.025
11 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.987 0.936 0.873 0.766 0.379 0.135
12 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.990 0.976 0.945 0.746 0.487
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

14 0 0.488 0.229 0.044 0.018 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.847 0.585 0.198 0.101 0.047 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000
2 0.970 0.842 0.448 0.281 0.161 0.040 0.006 0.001 0.000 0.000 0.000 0.000 0.000
3 0.996 0.956 0.698 0.521 0.355 0.124 0.029 0.004 0.000 0.000 0.000 0.000 0.000
4 1.000 0.991 0.870 0.742 0.584 0.279 0.090 0.018 0.002 0.000 0.000 0.000 0.000

5 1.000 0.999 0.956 0.888 0.781 0.486 0.212 0.058 0.008 0.002 0.000 0.000 0.000
6 1.000 1.000 0.988 0.962 0.907 0.692 0.395 0.150 0.031 0.010 0.002 0.000 0.000
7 1.000 1.000 0.998 0.990 0.969 0.850 0.605 0.308 0.093 0.038 0.012 0.000 0.000

Continued on page 808
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TABLE A.1 Cumulative binomial distribution (continued)

p

n x 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

14 8 1.000 1.000 1.000 0.998 0.992 0.942 0.788 0.514 0.219 0.112 0.044 0.001 0.000
9 1.000 1.000 1.000 1.000 0.998 0.982 0.910 0.721 0.416 0.258 0.130 0.009 0.000

10 1.000 1.000 1.000 1.000 1.000 0.996 0.971 0.876 0.645 0.479 0.302 0.044 0.004
11 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.960 0.839 0.719 0.552 0.158 0.030
12 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.953 0.899 0.802 0.415 0.153
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.993 0.982 0.956 0.771 0.512
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

15 0 0.463 0.206 0.035 0.013 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.829 0.549 0.167 0.080 0.035 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.964 0.816 0.398 0.236 0.127 0.027 0.004 0.000 0.000 0.000 0.000 0.000 0.000
3 0.995 0.944 0.648 0.461 0.297 0.091 0.018 0.002 0.000 0.000 0.000 0.000 0.000
4 0.999 0.987 0.836 0.686 0.515 0.217 0.059 0.009 0.001 0.000 0.000 0.000 0.000

5 1.000 0.998 0.939 0.852 0.722 0.403 0.151 0.034 0.004 0.001 0.000 0.000 0.000
6 1.000 1.000 0.982 0.943 0.869 0.610 0.304 0.095 0.015 0.004 0.001 0.000 0.000
7 1.000 1.000 0.996 0.983 0.950 0.787 0.500 0.213 0.050 0.017 0.004 0.000 0.000
8 1.000 1.000 0.999 0.996 0.985 0.905 0.696 0.390 0.131 0.057 0.018 0.000 0.000
9 1.000 1.000 1.000 0.999 0.996 0.966 0.849 0.597 0.278 0.148 0.061 0.002 0.000

10 1.000 1.000 1.000 1.000 0.999 0.991 0.941 0.783 0.485 0.314 0.164 0.013 0.001
11 1.000 1.000 1.000 1.000 1.000 0.998 0.982 0.909 0.703 0.539 0.352 0.056 0.005
12 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.973 0.873 0.764 0.602 0.184 0.036
13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.965 0.920 0.833 0.451 0.171
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.987 0.965 0.794 0.537

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

16 0 0.440 0.185 0.028 0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.811 0.515 0.141 0.063 0.026 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.957 0.789 0.352 0.197 0.099 0.018 0.002 0.000 0.000 0.000 0.000 0.000 0.000
3 0.993 0.932 0.598 0.405 0.246 0.065 0.011 0.001 0.000 0.000 0.000 0.000 0.000
4 0.999 0.983 0.798 0.630 0.450 0.167 0.038 0.005 0.000 0.000 0.000 0.000 0.000

5 1.000 0.997 0.918 0.810 0.660 0.329 0.105 0.019 0.002 0.000 0.000 0.000 0.000
6 1.000 0.999 0.973 0.920 0.825 0.527 0.227 0.058 0.007 0.002 0.000 0.000 0.000
7 1.000 1.000 0.993 0.973 0.926 0.716 0.402 0.142 0.026 0.007 0.001 0.000 0.000
8 1.000 1.000 0.999 0.993 0.974 0.858 0.598 0.284 0.074 0.027 0.007 0.000 0.000
9 1.000 1.000 1.000 0.998 0.993 0.942 0.773 0.473 0.175 0.080 0.027 0.001 0.000

10 1.000 1.000 1.000 1.000 0.998 0.981 0.895 0.671 0.340 0.190 0.082 0.003 0.000
11 1.000 1.000 1.000 1.000 1.000 0.995 0.962 0.833 0.550 0.370 0.202 0.017 0.001
12 1.000 1.000 1.000 1.000 1.000 0.999 0.989 0.935 0.754 0.595 0.402 0.068 0.007
13 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.982 0.901 0.803 0.648 0.211 0.043
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.974 0.937 0.859 0.485 0.189

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.990 0.972 0.815 0.560
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Continued on page 809
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TABLE A.1 Cumulative binomial distribution (continued)

p

n x 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

17 0 0.418 0.167 0.023 0.008 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.792 0.482 0.118 0.050 0.019 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.950 0.762 0.310 0.164 0.077 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.000
3 0.991 0.917 0.549 0.353 0.202 0.046 0.006 0.000 0.000 0.000 0.000 0.000 0.000
4 0.999 0.978 0.758 0.574 0.389 0.126 0.025 0.003 0.000 0.000 0.000 0.000 0.000

5 1.000 0.995 0.894 0.765 0.597 0.264 0.072 0.011 0.001 0.000 0.000 0.000 0.000
6 1.000 0.999 0.962 0.893 0.775 0.448 0.166 0.035 0.003 0.001 0.000 0.000 0.000
7 1.000 1.000 0.989 0.960 0.895 0.641 0.315 0.092 0.013 0.003 0.000 0.000 0.000
8 1.000 1.000 0.997 0.988 0.960 0.801 0.500 0.199 0.040 0.012 0.003 0.000 0.000
9 1.000 1.000 1.000 0.997 0.987 0.908 0.685 0.359 0.105 0.040 0.011 0.000 0.000

10 1.000 1.000 1.000 0.999 0.997 0.965 0.834 0.552 0.225 0.107 0.038 0.001 0.000
11 1.000 1.000 1.000 1.000 0.999 0.989 0.928 0.736 0.403 0.235 0.106 0.005 0.000
12 1.000 1.000 1.000 1.000 1.000 0.997 0.975 0.874 0.611 0.426 0.242 0.022 0.001
13 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.954 0.798 0.647 0.451 0.083 0.009
14 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.988 0.923 0.836 0.690 0.238 0.050

15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.981 0.950 0.882 0.518 0.208
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.992 0.977 0.833 0.582
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

18 0 0.397 0.150 0.018 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.774 0.450 0.099 0.039 0.014 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.942 0.734 0.271 0.135 0.060 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000
3 0.989 0.902 0.501 0.306 0.165 0.033 0.004 0.000 0.000 0.000 0.000 0.000 0.000
4 0.998 0.972 0.716 0.519 0.333 0.094 0.015 0.001 0.000 0.000 0.000 0.000 0.000

5 1.000 0.994 0.867 0.717 0.534 0.209 0.048 0.006 0.000 0.000 0.000 0.000 0.000
6 1.000 0.999 0.949 0.861 0.722 0.374 0.119 0.020 0.001 0.000 0.000 0.000 0.000
7 1.000 1.000 0.984 0.943 0.859 0.563 0.240 0.058 0.006 0.001 0.000 0.000 0.000
8 1.000 1.000 0.996 0.981 0.940 0.737 0.407 0.135 0.021 0.005 0.001 0.000 0.000
9 1.000 1.000 0.999 0.995 0.979 0.865 0.593 0.263 0.060 0.019 0.004 0.000 0.000

10 1.000 1.000 1.000 0.999 0.994 0.942 0.760 0.437 0.141 0.057 0.016 0.000 0.000
11 1.000 1.000 1.000 1.000 0.999 0.980 0.881 0.626 0.278 0.139 0.051 0.001 0.000
12 1.000 1.000 1.000 1.000 1.000 0.994 0.952 0.791 0.466 0.283 0.133 0.006 0.000
13 1.000 1.000 1.000 1.000 1.000 0.999 0.985 0.906 0.667 0.481 0.284 0.028 0.002
14 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.967 0.835 0.694 0.499 0.098 0.011

15 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.940 0.865 0.729 0.266 0.058
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.986 0.961 0.901 0.550 0.226
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 0.982 0.850 0.603
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

19 0 0.377 0.135 0.014 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.755 0.420 0.083 0.031 0.010 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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TABLE A.1 Cumulative binomial distribution (continued)

p

n x 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95

19 2 0.933 0.705 0.237 0.111 0.046 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.987 0.885 0.455 0.263 0.133 0.023 0.002 0.000 0.000 0.000 0.000 0.000 0.000
4 0.998 0.965 0.673 0.465 0.282 0.070 0.010 0.001 0.000 0.000 0.000 0.000 0.000

5 1.000 0.991 0.837 0.668 0.474 0.163 0.032 0.003 0.000 0.000 0.000 0.000 0.000
6 1.000 0.998 0.932 0.825 0.666 0.308 0.084 0.012 0.001 0.000 0.000 0.000 0.000
7 1.000 1.000 0.977 0.923 0.818 0.488 0.180 0.035 0.003 0.000 0.000 0.000 0.000
8 1.000 1.000 0.993 0.971 0.916 0.667 0.324 0.088 0.011 0.002 0.000 0.000 0.000
9 1.000 1.000 0.998 0.991 0.967 0.814 0.500 0.186 0.033 0.009 0.002 0.000 0.000

10 1.000 1.000 1.000 0.998 0.989 0.912 0.676 0.333 0.084 0.029 0.007 0.000 0.000
11 1.000 1.000 1.000 1.000 0.997 0.965 0.820 0.512 0.182 0.077 0.023 0.000 0.000
12 1.000 1.000 1.000 1.000 0.999 0.988 0.916 0.692 0.334 0.175 0.068 0.002 0.000
13 1.000 1.000 1.000 1.000 1.000 0.997 0.968 0.837 0.526 0.332 0.163 0.009 0.000
14 1.000 1.000 1.000 1.000 1.000 0.999 0.990 0.930 0.718 0.535 0.327 0.035 0.002

15 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.977 0.867 0.737 0.545 0.115 0.013
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.954 0.889 0.763 0.295 0.067
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.990 0.969 0.917 0.580 0.245
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.986 0.865 0.623
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20 0 0.358 0.122 0.012 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.736 0.392 0.069 0.024 0.008 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.925 0.677 0.206 0.091 0.035 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.984 0.867 0.411 0.225 0.107 0.016 0.001 0.000 0.000 0.000 0.000 0.000 0.000
4 0.997 0.957 0.630 0.415 0.238 0.051 0.006 0.000 0.000 0.000 0.000 0.000 0.000

5 1.000 0.989 0.804 0.617 0.416 0.126 0.021 0.002 0.000 0.000 0.000 0.000 0.000
6 1.000 0.998 0.913 0.786 0.608 0.250 0.058 0.006 0.000 0.000 0.000 0.000 0.000
7 1.000 1.000 0.968 0.898 0.772 0.416 0.132 0.021 0.001 0.000 0.000 0.000 0.000
8 1.000 1.000 0.990 0.959 0.887 0.596 0.252 0.057 0.005 0.001 0.000 0.000 0.000
9 1.000 1.000 0.997 0.986 0.952 0.755 0.412 0.128 0.017 0.004 0.001 0.000 0.000

10 1.000 1.000 0.999 0.996 0.983 0.872 0.588 0.245 0.048 0.014 0.003 0.000 0.000
11 1.000 1.000 1.000 0.999 0.995 0.943 0.748 0.404 0.113 0.041 0.010 0.000 0.000
12 1.000 1.000 1.000 1.000 0.999 0.979 0.868 0.584 0.228 0.102 0.032 0.000 0.000
13 1.000 1.000 1.000 1.000 1.000 0.994 0.942 0.750 0.392 0.214 0.087 0.002 0.000
14 1.000 1.000 1.000 1.000 1.000 0.998 0.979 0.874 0.584 0.383 0.196 0.011 0.000

15 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.949 0.762 0.585 0.370 0.043 0.003
16 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.984 0.893 0.775 0.589 0.133 0.016
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.965 0.909 0.794 0.323 0.075
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.976 0.931 0.608 0.264
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.988 0.878 0.642

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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TABLE A.2 Cumulative normal distribution (z table)

0z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

−3.6 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
−3.5 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002

−3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
−3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
−3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
−3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
−0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
−0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

Continued on page 812
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TABLE A.2 Cumulative normal distribution (continued)

0 z

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
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TABLE A.3 Upper percentage points for the Student's t distribution

a

0 t

α

ν 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 318.309 636.619
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.385 3.646

35 0.255 0.682 1.306 1.690 2.030 2.438 2.724 3.340 3.591
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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TABLE A.4 Tolerance factors for the normal distribution

Confidence Level 95% Confidence Level 99%

Sample Percent of Population Contained Percent of Population Contained
Size n 90% 95% 99% 90% 95% 99%

2 32.0187 37.6746 48.4296 160.1940 188.4915 242.3004
3 8.3795 9.9158 12.8613 18.9304 22.4009 29.0553
4 5.3692 6.3699 8.2993 9.3984 11.1501 14.5274
5 4.2749 5.0787 6.6338 6.6118 7.8550 10.2602

6 3.7123 4.4140 5.7746 5.3366 6.3453 8.3013
7 3.3686 4.0074 5.2481 4.6129 5.4877 7.1868
8 3.1358 3.7317 4.8907 4.1473 4.9355 6.4683
9 2.9670 3.5317 4.6310 3.8223 4.5499 5.9660

10 2.8385 3.3794 4.4330 3.5821 4.2647 5.5943

11 2.7372 3.2592 4.2766 3.3970 4.0449 5.3075
12 2.6550 3.1617 4.1496 3.2497 3.8700 5.0792
13 2.5868 3.0808 4.0441 3.1295 3.7271 4.8926
14 2.5292 3.0124 3.9549 3.0294 3.6081 4.7371
15 2.4799 2.9538 3.8785 2.9446 3.5073 4.6053

16 2.4371 2.9029 3.8121 2.8717 3.4207 4.4920
17 2.3995 2.8583 3.7538 2.8084 3.3453 4.3934
18 2.3662 2.8188 3.7022 2.7527 3.2792 4.3068
19 2.3366 2.7835 3.6560 2.7034 3.2205 4.2300
20 2.3099 2.7518 3.6146 2.6594 3.1681 4.1614

25 2.2083 2.6310 3.4565 2.4941 2.9715 3.9039
30 2.1398 2.5494 3.3497 2.3848 2.8414 3.7333
35 2.0899 2.4900 3.2719 2.3063 2.7479 3.6107
40 2.0516 2.4445 3.2122 2.2468 2.6770 3.5177
45 2.0212 2.4083 3.1647 2.1998 2.6211 3.4443

50 1.9964 2.3787 3.1259 2.1616 2.5756 3.3846
60 1.9578 2.3328 3.0657 2.1029 2.5057 3.2929
70 1.9291 2.2987 3.0208 2.0596 2.4541 3.2251
80 1.9068 2.2720 2.9859 2.0260 2.4141 3.1725
90 1.8887 2.2506 2.9577 1.9990 2.3819 3.1303

100 1.8738 2.2328 2.9343 1.9768 2.3555 3.0955
200 1.7981 2.1425 2.8158 1.8651 2.2224 2.9207
300 1.7670 2.1055 2.7671 1.8199 2.1685 2.8499
400 1.7492 2.0843 2.7392 1.7940 2.1377 2.8094
500 1.7373 2.0701 2.7206 1.7769 2.1173 2.7826

600 1.7287 2.0598 2.7071 1.7644 2.1024 2.7631
700 1.7220 2.0519 2.6967 1.7549 2.0911 2.7481
800 1.7167 2.0456 2.6884 1.7473 2.0820 2.7362
900 1.7124 2.0404 2.6816 1.7410 2.0746 2.7264

1000 1.7087 2.0361 2.6759 1.7358 2.0683 2.7182
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TABLE A.5 Critical points for the Wilcoxon signed-rank test

slow sup

a a

n slow sup α

4 1 9 0.1250
0 10 0.0625

5 3 12 0.1562
2 13 0.0938
1 14 0.0625
0 15 0.0312

6 4 17 0.1094
3 18 0.0781
2 19 0.0469
1 20 0.0312
0 21 0.0156

7 6 22 0.1094
5 23 0.0781
4 24 0.0547
3 25 0.0391
2 26 0.0234
1 27 0.0156
0 28 0.0078

8 9 27 0.1250
8 28 0.0977
6 30 0.0547
5 31 0.0391
4 32 0.0273
3 33 0.0195
2 34 0.0117
1 35 0.0078
0 36 0.0039

9 11 34 0.1016
10 35 0.0820

9 36 0.0645
8 37 0.0488
6 39 0.0273
5 40 0.0195
4 41 0.0137
3 42 0.0098
2 43 0.0059
1 44 0.0039

n slow sup α

10 15 40 0.1162
14 41 0.0967
11 44 0.0527
10 45 0.0420

9 46 0.0322
8 47 0.0244
6 49 0.0137
5 50 0.0098
4 51 0.0068
3 52 0.0049

11 18 48 0.1030
17 49 0.0874
14 52 0.0508
13 53 0.0415
11 55 0.0269
10 56 0.0210

8 58 0.0122
7 59 0.0093
6 60 0.0068
5 61 0.0049

12 22 56 0.1018
21 57 0.0881
18 60 0.0549
17 61 0.0461
14 64 0.0261
13 65 0.0212
10 68 0.0105

9 69 0.0081
8 70 0.0061
7 71 0.0046

13 27 64 0.1082
26 65 0.0955
22 69 0.0549
21 70 0.0471
18 73 0.0287
17 74 0.0239
13 78 0.0107

n slow sup α

12 79 0.0085
10 81 0.0052

9 82 0.0040

14 32 73 0.1083
31 74 0.0969
26 79 0.0520
25 80 0.0453
22 83 0.0290
21 84 0.0247
16 89 0.0101
15 90 0.0083
13 92 0.0054
12 93 0.0043

15 37 83 0.1039
36 84 0.0938
31 89 0.0535
30 90 0.0473
26 94 0.0277
25 95 0.0240
20 100 0.0108
19 101 0.0090
16 104 0.0051
15 105 0.0042

16 43 93 0.1057
42 94 0.0964
36 100 0.0523
35 101 0.0467
30 106 0.0253
29 107 0.0222
24 112 0.0107
23 113 0.0091
20 116 0.0055
19 117 0.0046

17 49 104 0.1034
48 105 0.0950
42 111 0.0544
41 112 0.0492

n slow sup α

35 118 0.0253
34 119 0.0224
28 125 0.0101
27 126 0.0087
24 129 0.0055
23 130 0.0047

18 56 115 0.1061
55 116 0.0982
48 123 0.0542
47 124 0.0494
41 130 0.0269
40 131 0.0241
33 138 0.0104
32 139 0.0091
28 143 0.0052
27 144 0.0045

19 63 127 0.1051
62 128 0.0978
54 136 0.0521
53 137 0.0478
47 143 0.0273
46 144 0.0247
38 152 0.0102
37 153 0.0090
33 157 0.0054
32 158 0.0047

20 70 140 0.1012
69 141 0.0947
61 149 0.0527
60 150 0.0487
53 157 0.0266
52 158 0.0242
44 166 0.0107
43 167 0.0096
38 172 0.0053
37 173 0.0047

For n > 20, compute z = S+ − n(n + 1)/4√
n(n + 1)(2n + 1)/24

and use the z table (Table A.2).
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TABLE A.6 Critical points for the Wilcoxon rank-sum test

wlow wup

a a

m n wlow wup α

2 5 4 12 0.0952
3 13 0.0476

6 4 14 0.0714
3 15 0.0357

7 4 16 0.0556
3 17 0.0278

8 5 17 0.0889
4 18 0.0444
3 19 0.0222

3 4 7 17 0.0571
6 18 0.0286

5 8 19 0.0714
7 20 0.0357
6 21 0.0179

6 9 21 0.0833
8 22 0.0476
7 23 0.0238

7 9 24 0.0583
8 25 0.0333
7 26 0.0167
6 27 0.0083

8 10 26 0.0667
9 27 0.0424
8 28 0.0242
7 29 0.0121
6 30 0.0061

4 4 12 24 0.0571
11 25 0.0286
10 26 0.0143

5 13 27 0.0556
12 28 0.0317

m n wlow wup α

11 29 0.0159
10 30 0.0079

6 14 30 0.0571
13 31 0.0333
12 32 0.0190
11 33 0.0095
10 34 0.0048

7 15 33 0.0545
14 34 0.0364
13 35 0.0212
12 36 0.0121
11 37 0.0061
10 38 0.0030

8 16 36 0.0545
15 37 0.0364
14 38 0.0242
13 39 0.0141
12 40 0.0081
11 41 0.0040

5 5 20 35 0.0754
19 36 0.0476
18 37 0.0278
17 38 0.0159
16 39 0.0079
15 40 0.0040

6 21 39 0.0628
20 40 0.0411
19 41 0.0260
18 42 0.0152
17 43 0.0087
16 44 0.0043

m n wlow wup α

7 22 43 0.0530
21 44 0.0366
20 45 0.0240
19 46 0.0152
18 47 0.0088
17 48 0.0051
16 49 0.0025

8 24 46 0.0637
23 47 0.0466
22 48 0.0326
21 49 0.0225
20 50 0.0148
19 51 0.0093
18 52 0.0054
17 53 0.0031

6 6 29 49 0.0660
28 50 0.0465
27 51 0.0325
26 52 0.0206
25 53 0.0130
24 54 0.0076
23 55 0.0043

7 30 54 0.0507
29 55 0.0367
28 56 0.0256
27 57 0.0175
26 58 0.0111
25 59 0.0070
24 60 0.0041

8 32 58 0.0539
31 59 0.0406

m n wlow wup α

30 60 0.0296
29 61 0.0213
28 62 0.0147
27 63 0.0100
26 64 0.0063
25 65 0.0040

7 7 40 65 0.0641
39 66 0.0487
37 68 0.0265
36 69 0.0189
35 70 0.0131
34 71 0.0087
33 72 0.0055
32 73 0.0035

8 42 70 0.0603
41 71 0.0469
39 73 0.0270
38 74 0.0200
36 76 0.0103
35 77 0.0070
34 78 0.0047

8 8 52 84 0.0524
51 85 0.0415
50 86 0.0325
49 87 0.0249
46 90 0.0103
45 91 0.0074
44 92 0.0052
43 93 0.0035

When m and n are both greater than 8, compute z = W − m(m + n + 1)/2√
mn(m + n + 1)/12

and use the z table (Table A.2).
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TABLE A.7 Upper percentage points for the χ2 distribution

0

a

c 2
n, a

α

ν 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

31 14.458 15.655 17.539 19.281 21.434 41.422 44.985 48.232 52.191 55.003
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328
33 15.815 17.074 19.047 20.867 23.110 43.745 47.400 50.725 54.776 57.648
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.192 18.509 20.569 22.465 24.797 46.059 49.802 53.203 57.342 60.275

36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.586 19.960 22.106 24.075 26.492 48.363 52.192 55.668 59.893 62.883
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181
39 19.996 21.426 23.654 25.695 28.196 50.660 54.572 58.120 62.428 65.476
40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766

For ν > 40, χ2
ν,α ≈ 0.5(zα + √

2ν − 1)2.
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TABLE A.8 Upper percentage points for the F distribution

0

a

Fn1, n2,a

ν1

ν2 α 1 2 3 4 5 6 7 8 9

1 0.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86
0.050 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54
0.010 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5928.36 5981.07 6022.47
0.001 405284 500012 540382 562501 576405 585938 592874 598144 603040

2 0.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38
0.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38
0.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39
0.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39

3 0.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24
0.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81
0.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35
0.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86

4 0.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94
0.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00
0.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66
0.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47

5 0.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32
0.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77
0.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16
0.001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24

6 0.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96
0.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10
0.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98
0.001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69

7 0.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72
0.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68
0.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72
0.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33

8 0.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56
0.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39
0.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91
0.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77

9 0.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44
0.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18
0.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35
0.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11

Continued on page 819



Navidi-3810214 book November 11, 2013 14:40

APPENDIX A Tables 819

TABLE A.8 Upper percentage points for the F distribution (continued)

ν1

ν2 α 10 12 15 20 25 30 40 50 60

1 0.100 60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79
0.050 241.88 243.91 245.95 248.01 249.26 250.10 251.14 251.77 252.20
0.010 6055.85 6106.32 6157.29 6208.73 6239.83 6260.65 6286.78 6302.52 6313.03
0.001 606316 611276 616292 621362 624430 626486 659725 660511 6610390

2 0.100 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47
0.050 19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48
0.010 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48
0.001 999.40 999.42 999.43 999.45 999.46 999.47 999.47 999.48 999.48

3 0.100 5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.15
0.050 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.58 8.57
0.010 27.23 27.05 26.87 26.69 26.58 26.50 26.41 26.35 26.32
0.001 129.25 128.32 127.37 126.42 125.84 125.45 124.96 124.66 124.47

4 0.100 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.80 3.79
0.050 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.70 5.69
0.010 14.55 14.37 14.20 14.02 13.91 13.84 13.75 13.69 13.65
0.001 48.05 47.41 46.76 46.10 45.70 45.43 45.09 44.88 44.75

5 0.100 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14
0.050 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.44 4.43
0.010 10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.20
0.001 26.92 26.42 25.91 25.39 25.08 24.87 24.60 24.44 24.33

6 0.100 2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.77 2.76
0.050 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.75 3.74
0.010 7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.09 7.06
0.001 18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21

7 0.100 2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51
0.050 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.32 3.30
0.010 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82
0.001 14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.20 12.12

8 0.100 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.35 2.34
0.050 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01
0.010 5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.07 5.03
0.001 11.54 11.19 10.84 10.48 10.26 10.11 9.92 9.80 9.73

9 0.100 2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.22 2.21
0.050 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.80 2.79
0.010 5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.52 4.48
0.001 9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.26 8.19

Continued on page 820
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TABLE A.8 Upper percentage points for the F distribution (continued)

ν1

ν2 α 1 2 3 4 5 6 7 8 9

10 0.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35
0.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02
0.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94
0.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96

11 0.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27
0.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90
0.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63
0.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12

12 0.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21
0.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80
0.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39
0.001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48

13 0.100 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16
0.050 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71
0.010 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19
0.001 17.82 12.31 10.21 9.07 8.35 7.86 7.49 7.21 6.98

14 0.100 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12
0.050 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65
0.010 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03
0.001 17.14 11.78 9.73 8.62 7.92 7.44 7.08 6.80 6.58

15 0.100 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09
0.050 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59
0.010 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89
0.001 16.59 11.34 9.34 8.25 7.57 7.09 6.74 6.47 6.26

16 0.100 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06
0.050 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54
0.010 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78
0.001 16.12 10.97 9.01 7.94 7.27 6.80 6.46 6.19 5.98

17 0.100 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03
0.050 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49
0.010 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68
0.001 15.72 10.66 8.73 7.68 7.02 6.56 6.22 5.96 5.75

18 0.100 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00
0.050 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46
0.010 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60
0.001 15.38 10.39 8.49 7.46 6.81 6.35 6.02 5.76 5.56

19 0.100 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98
0.050 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42
0.010 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52
0.001 15.08 10.16 8.28 7.27 6.62 6.18 5.85 5.59 5.39

20 0.100 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96
0.050 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39
0.010 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46
0.001 14.82 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24

Continued on page 821
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TABLE A.8 Upper percentage points for the F distribution (continued)

ν1

ν2 α 10 12 15 20 25 30 40 50 60

10 0.100 2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.12 2.11
0.050 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.64 2.62
0.010 4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.12 4.08
0.001 8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.19 7.12

11 0.100 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.04 2.03
0.050 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.51 2.49
0.010 4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.81 3.78
0.001 7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.42 6.35

12 0.100 2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.97 1.96
0.050 2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.40 2.38
0.010 4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.57 3.54
0.001 7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.83 5.76

13 0.100 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.92 1.90
0.050 2.67 2.60 2.53 2.46 2.41 2.38 2.34 2.31 2.30
0.010 4.10 3.96 3.82 3.66 3.57 3.51 3.43 3.38 3.34
0.001 6.80 6.52 6.23 5.93 5.75 5.63 5.47 5.37 5.30

14 0.100 2.10 2.05 2.01 1.96 1.93 1.91 1.89 1.87 1.86
0.050 2.60 2.53 2.46 2.39 2.34 2.31 2.27 2.24 2.22
0.010 3.94 3.80 3.66 3.51 3.41 3.35 3.27 3.22 3.18
0.001 6.40 6.13 5.85 5.56 5.38 5.25 5.10 5.00 4.94

15 0.100 2.06 2.02 1.97 1.92 1.89 1.87 1.85 1.83 1.82
0.050 2.54 2.48 2.40 2.33 2.28 2.25 2.20 2.18 2.16
0.010 3.80 3.67 3.52 3.37 3.28 3.21 3.13 3.08 3.05
0.001 6.08 5.81 5.54 5.25 5.07 4.95 4.80 4.70 4.64

16 0.100 2.03 1.99 1.94 1.89 1.86 1.84 1.81 1.79 1.78
0.050 2.49 2.42 2.35 2.28 2.23 2.19 2.15 2.12 2.11
0.010 3.69 3.55 3.41 3.26 3.16 3.10 3.02 2.97 2.93
0.001 5.81 5.55 5.27 4.99 4.82 4.70 4.54 4.45 4.39

17 0.100 2.00 1.96 1.91 1.86 1.83 1.81 1.78 1.76 1.75
0.050 2.45 2.38 2.31 2.23 2.18 2.15 2.10 2.08 2.06
0.010 3.59 3.46 3.31 3.16 3.07 3.00 2.92 2.87 2.83
0.001 5.58 5.32 5.05 4.78 4.60 4.48 4.33 4.24 4.18

18 0.100 1.98 1.93 1.89 1.84 1.80 1.78 1.75 1.74 1.72
0.050 2.41 2.34 2.27 2.19 2.14 2.11 2.06 2.04 2.02
0.010 3.51 3.37 3.23 3.08 2.98 2.92 2.84 2.78 2.75
0.001 5.39 5.13 4.87 4.59 4.42 4.30 4.15 4.06 4.00

19 0.100 1.96 1.91 1.86 1.81 1.78 1.76 1.73 1.71 1.70
0.050 2.38 2.31 2.23 2.16 2.11 2.07 2.03 2.00 1.98
0.010 3.43 3.30 3.15 3.00 2.91 2.84 2.76 2.71 2.67
0.001 5.22 4.97 4.70 4.43 4.26 4.14 3.99 3.90 3.84

20 0.100 1.94 1.89 1.84 1.79 1.76 1.74 1.71 1.69 1.68
0.050 2.35 2.28 2.20 2.12 2.07 2.04 1.99 1.97 1.95
0.010 3.37 3.23 3.09 2.94 2.84 2.78 2.69 2.64 2.61
0.001 5.08 4.82 4.56 4.29 4.12 4.00 3.86 3.77 3.70

Continued on page 822
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TABLE A.8 Upper percentage points for the F distribution (continued)

ν1

ν2 α 1 2 3 4 5 6 7 8 9

21 0.100 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95
0.050 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37
0.010 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40
0.001 14.59 9.77 7.94 6.95 6.32 5.88 5.56 5.31 5.11

22 0.100 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93
0.050 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34
0.010 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35
0.001 14.38 9.61 7.80 6.81 6.19 5.76 5.44 5.19 4.99

23 0.100 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92
0.050 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32
0.010 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30
0.001 14.20 9.47 7.67 6.70 6.08 5.65 5.33 5.09 4.89

24 0.100 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91
0.050 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30
0.010 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26
0.001 14.03 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80

25 0.100 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89
0.050 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28
0.010 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22
0.001 13.88 9.22 7.45 6.49 5.89 5.46 5.15 4.91 4.71

26 0.100 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88
0.050 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27
0.010 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18
0.001 13.74 9.12 7.36 6.41 5.80 5.38 5.07 4.83 4.64

27 0.100 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87
0.050 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25
0.010 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15
0.001 13.61 9.02 7.27 6.33 5.73 5.31 5.00 4.76 4.57

28 0.100 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87
0.050 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24
0.010 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12
0.001 13.50 8.93 7.19 6.25 5.66 5.24 4.93 4.69 4.50

29 0.100 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86
0.050 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22
0.010 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09
0.001 13.39 8.85 7.12 6.19 5.59 5.18 4.87 4.64 4.45

30 0.100 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85
0.050 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21
0.010 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07
0.001 13.29 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39

31 0.100 2.87 2.48 2.27 2.14 2.04 1.97 1.92 1.88 1.84
0.050 4.16 3.30 2.91 2.68 2.52 2.41 2.32 2.25 2.20
0.010 7.53 5.36 4.48 3.99 3.67 3.45 3.28 3.15 3.04
0.001 13.20 8.70 6.99 6.07 5.48 5.07 4.77 4.53 4.34
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TABLE A.8 Upper percentage points for the F distribution (continued)

ν1

ν2 α 10 12 15 20 25 30 40 50 60

21 0.100 1.92 1.87 1.83 1.78 1.74 1.72 1.69 1.67 1.66
0.050 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.94 1.92
0.010 3.31 3.17 3.03 2.88 2.79 2.72 2.64 2.58 2.55
0.001 4.95 4.70 4.44 4.17 4.00 3.88 3.74 3.64 3.58

22 0.100 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.65 1.64
0.050 2.30 2.23 2.15 2.07 2.02 1.98 1.94 1.91 1.89
0.010 3.26 3.12 2.98 2.83 2.73 2.67 2.58 2.53 2.50
0.001 4.83 4.58 4.33 4.06 3.89 3.78 3.63 3.54 3.48

23 0.100 1.89 1.84 1.80 1.74 1.71 1.69 1.66 1.64 1.62
0.050 2.27 2.20 2.13 2.05 2.00 1.96 1.91 1.88 1.86
0.010 3.21 3.07 2.93 2.78 2.69 2.62 2.54 2.48 2.45
0.001 4.73 4.48 4.23 3.96 3.79 3.68 3.53 3.44 3.38

24 0.100 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.62 1.61
0.050 2.25 2.18 2.11 2.03 1.97 1.94 1.89 1.86 1.84
0.010 3.17 3.03 2.89 2.74 2.64 2.58 2.49 2.44 2.40
0.001 4.64 4.39 4.14 3.87 3.71 3.59 3.45 3.36 3.29

25 0.100 1.87 1.82 1.77 1.72 1.68 1.66 1.63 1.61 1.59
0.050 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.84 1.82
0.010 3.13 2.99 2.85 2.70 2.60 2.54 2.45 2.40 2.36
0.001 4.56 4.31 4.06 3.79 3.63 3.52 3.37 3.28 3.22

26 0.100 1.86 1.81 1.76 1.71 1.67 1.65 1.61 1.59 1.58
0.050 2.22 2.15 2.07 1.99 1.94 1.90 1.85 1.82 1.80
0.010 3.09 2.96 2.81 2.66 2.57 2.50 2.42 2.36 2.33
0.001 4.48 4.24 3.99 3.72 3.56 3.44 3.30 3.21 3.15

27 0.100 1.85 1.80 1.75 1.70 1.66 1.64 1.60 1.58 1.57
0.050 2.20 2.13 2.06 1.97 1.92 1.88 1.84 1.81 1.79
0.010 3.06 2.93 2.78 2.63 2.54 2.47 2.38 2.33 2.29
0.001 4.41 4.17 3.92 3.66 3.49 3.38 3.23 3.14 3.08

28 0.100 1.84 1.79 1.74 1.69 1.65 1.63 1.59 1.57 1.56
0.050 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.79 1.77
0.010 3.03 2.90 2.75 2.60 2.51 2.44 2.35 2.30 2.26
0.001 4.35 4.11 3.86 3.60 3.43 3.32 3.18 3.09 3.02

29 0.100 1.83 1.78 1.73 1.68 1.64 1.62 1.58 1.56 1.55
0.050 2.18 2.10 2.03 1.94 1.89 1.85 1.81 1.77 1.75
0.010 3.00 2.87 2.73 2.57 2.48 2.41 2.33 2.27 2.23
0.001 4.29 4.05 3.80 3.54 3.38 3.27 3.12 3.03 2.97

30 0.100 1.82 1.77 1.72 1.67 1.63 1.61 1.57 1.55 1.54
0.050 2.16 2.09 2.01 1.93 1.88 1.84 1.79 1.76 1.74
0.010 2.98 2.84 2.70 2.55 2.45 2.39 2.30 2.25 2.21
0.001 4.24 4.00 3.75 3.49 3.33 3.22 3.07 2.98 2.92

31 0.100 1.81 1.77 1.71 1.66 1.62 1.60 1.56 1.54 1.53
0.050 2.15 2.08 2.00 1.92 1.87 1.83 1.78 1.75 1.73
0.010 2.96 2.82 2.68 2.52 2.43 2.36 2.27 2.22 2.18
0.001 4.19 3.95 3.71 3.45 3.28 3.17 3.03 2.94 2.87
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TABLE A.8 Upper percentage points for the F distribution (continued)

ν1

ν2 α 1 2 3 4 5 6 7 8 9

32 0.100 2.87 2.48 2.26 2.13 2.04 1.97 1.91 1.87 1.83
0.050 4.15 3.29 2.90 2.67 2.51 2.40 2.31 2.24 2.19
0.010 7.50 5.34 4.46 3.97 3.65 3.43 3.26 3.13 3.02
0.001 13.12 8.64 6.94 6.01 5.43 5.02 4.72 4.48 4.30

33 0.100 2.86 2.47 2.26 2.12 2.03 1.96 1.91 1.86 1.83
0.050 4.14 3.28 2.89 2.66 2.50 2.39 2.30 2.23 2.18
0.010 7.47 5.31 4.44 3.95 3.63 3.41 3.24 3.11 3.00
0.001 13.04 8.58 6.88 5.97 5.38 4.98 4.67 4.44 4.26

34 0.100 2.86 2.47 2.25 2.12 2.02 1.96 1.90 1.86 1.82
0.050 4.13 3.28 2.88 2.65 2.49 2.38 2.29 2.23 2.17
0.010 7.44 5.29 4.42 3.93 3.61 3.39 3.22 3.09 2.98
0.001 12.97 8.52 6.83 5.92 5.34 4.93 4.63 4.40 4.22

35 0.100 2.85 2.46 2.25 2.11 2.02 1.95 1.90 1.85 1.82
0.050 4.12 3.27 2.87 2.64 2.49 2.37 2.29 2.22 2.16
0.010 7.42 5.27 4.40 3.91 3.59 3.37 3.20 3.07 2.96
0.001 12.90 8.47 6.79 5.88 5.30 4.89 4.59 4.36 4.18

36 0.100 2.85 2.46 2.24 2.11 2.01 1.94 1.89 1.85 1.81
0.050 4.11 3.26 2.87 2.63 2.48 2.36 2.28 2.21 2.15
0.010 7.40 5.25 4.38 3.89 3.57 3.35 3.18 3.05 2.95
0.001 12.83 8.42 6.74 5.84 5.26 4.86 4.56 4.33 4.14

37 0.100 2.85 2.45 2.24 2.10 2.01 1.94 1.89 1.84 1.81
0.050 4.11 3.25 2.86 2.63 2.47 2.36 2.27 2.20 2.14
0.010 7.37 5.23 4.36 3.87 3.56 3.33 3.17 3.04 2.93
0.001 12.77 8.37 6.70 5.80 5.22 4.82 4.53 4.30 4.11

38 0.100 2.84 2.45 2.23 2.10 2.01 1.94 1.88 1.84 1.80
0.050 4.10 3.24 2.85 2.62 2.46 2.35 2.26 2.19 2.14
0.010 7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.92
0.001 12.71 8.33 6.66 5.76 5.19 4.79 4.49 4.26 4.08

39 0.100 2.84 2.44 2.23 2.09 2.00 1.93 1.88 1.83 1.80
0.050 4.09 3.24 2.85 2.61 2.46 2.34 2.26 2.19 2.13
0.010 7.33 5.19 4.33 3.84 3.53 3.30 3.14 3.01 2.90
0.001 12.66 8.29 6.63 5.73 5.16 4.76 4.46 4.23 4.05

40 0.100 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79
0.050 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12
0.010 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89
0.001 12.61 8.25 6.59 5.70 5.13 4.73 4.44 4.21 4.02

50 0.100 2.81 2.41 2.20 2.06 1.97 1.90 1.84 1.80 1.76
0.050 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07
0.010 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.78
0.001 12.22 7.96 6.34 5.46 4.90 4.51 4.22 4.00 3.82

60 0.100 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74
0.050 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04
0.010 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72
0.001 11.97 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69

120 0.100 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68
0.050 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96
0.010 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56
0.001 11.38 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38
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TABLE A.8 Upper percentage points for the F distribution (continued)

ν1

ν2 α 10 12 15 20 25 30 40 50 60

32 0.100 1.81 1.76 1.71 1.65 1.62 1.59 1.56 1.53 1.52
0.050 2.14 2.07 1.99 1.91 1.85 1.82 1.77 1.74 1.71
0.010 2.93 2.80 2.65 2.50 2.41 2.34 2.25 2.20 2.16
0.001 4.14 3.91 3.66 3.40 3.24 3.13 2.98 2.89 2.83

33 0.100 1.80 1.75 1.70 1.64 1.61 1.58 1.55 1.53 1.51
0.050 2.13 2.06 1.98 1.90 1.84 1.81 1.76 1.72 1.70
0.010 2.91 2.78 2.63 2.48 2.39 2.32 2.23 2.18 2.14
0.001 4.10 3.87 3.62 3.36 3.20 3.09 2.94 2.85 2.79

34 0.100 1.79 1.75 1.69 1.64 1.60 1.58 1.54 1.52 1.50
0.050 2.12 2.05 1.97 1.89 1.83 1.80 1.75 1.71 1.69
0.010 2.89 2.76 2.61 2.46 2.37 2.30 2.21 2.16 2.12
0.001 4.06 3.83 3.58 3.33 3.16 3.05 2.91 2.82 2.75

35 0.100 1.79 1.74 1.69 1.63 1.60 1.57 1.53 1.51 1.50
0.050 2.11 2.04 1.96 1.88 1.82 1.79 1.74 1.70 1.68
0.010 2.88 2.74 2.60 2.44 2.35 2.28 2.19 2.14 2.10
0.001 4.03 3.79 3.55 3.29 3.13 3.02 2.87 2.78 2.72

36 0.100 1.78 1.73 1.68 1.63 1.59 1.56 1.53 1.51 1.49
0.050 2.11 2.03 1.95 1.87 1.81 1.78 1.73 1.69 1.67
0.010 2.86 2.72 2.58 2.43 2.33 2.26 2.18 2.12 2.08
0.001 3.99 3.76 3.51 3.26 3.10 2.98 2.84 2.75 2.69

37 0.100 1.78 1.73 1.68 1.62 1.58 1.56 1.52 1.50 1.48
0.050 2.10 2.02 1.95 1.86 1.81 1.77 1.72 1.68 1.66
0.010 2.84 2.71 2.56 2.41 2.31 2.25 2.16 2.10 2.06
0.001 3.96 3.73 3.48 3.23 3.07 2.95 2.81 2.72 2.66

38 0.100 1.77 1.72 1.67 1.61 1.58 1.55 1.52 1.49 1.48
0.050 2.09 2.02 1.94 1.85 1.80 1.76 1.71 1.68 1.65
0.010 2.83 2.69 2.55 2.40 2.30 2.23 2.14 2.09 2.05
0.001 3.93 3.70 3.45 3.20 3.04 2.92 2.78 2.69 2.63

39 0.100 1.77 1.72 1.67 1.61 1.57 1.55 1.51 1.49 1.47
0.050 2.08 2.01 1.93 1.85 1.79 1.75 1.70 1.67 1.65
0.010 2.81 2.68 2.54 2.38 2.29 2.22 2.13 2.07 2.03
0.001 3.90 3.67 3.43 3.17 3.01 2.90 2.75 2.66 2.60

40 0.100 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.48 1.47
0.050 2.08 2.00 1.92 1.84 1.78 1.74 1.69 1.66 1.64
0.010 2.80 2.66 2.52 2.37 2.27 2.20 2.11 2.06 2.02
0.001 3.87 3.64 3.40 3.14 2.98 2.87 2.73 2.64 2.57

50 0.100 1.73 1.68 1.63 1.57 1.53 1.50 1.46 1.44 1.42
0.050 2.03 1.95 1.87 1.78 1.73 1.69 1.63 1.60 1.58
0.010 2.70 2.56 2.42 2.27 2.17 2.10 2.01 1.95 1.91
0.001 3.67 3.44 3.20 2.95 2.79 2.68 2.53 2.44 2.38

60 0.100 1.71 1.66 1.60 1.54 1.50 1.48 1.44 1.41 1.40
0.050 1.99 1.92 1.84 1.75 1.69 1.65 1.59 1.56 1.53
0.010 2.63 2.50 2.35 2.20 2.10 2.03 1.94 1.88 1.84
0.001 3.54 3.32 3.08 2.83 2.67 2.55 2.41 2.32 2.25

120 0.100 1.65 1.60 1.55 1.48 1.44 1.41 1.37 1.34 1.32
0.050 1.91 1.83 1.75 1.66 1.60 1.55 1.50 1.46 1.43
0.010 2.47 2.34 2.19 2.03 1.93 1.86 1.76 1.70 1.66
0.001 3.24 3.02 2.78 2.53 2.37 2.26 2.11 2.02 1.95
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TABLE A.9 Upper percentage points for the Studentized range qν1,ν2

0

a

qn1,  n2,a

ν1

ν2 α 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0.10 8.93 13.44 16.36 18.49 20.15 21.51 22.64 23.62 24.48 25.24 25.92 26.54 27.10 27.62
0.05 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07 50.59 51.96 53.20 54.33 55.36
0.01 90.02 135.0 164.3 185.6 202.2 215.8 227.2 237.0 245.6 253.2 260.0 266.2 271.8 277.0

2 0.10 4.13 5.73 6.77 7.54 8.14 8.63 9.05 9.41 9.72 10.01 10.26 10.49 10.70 10.89
0.05 6.08 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 14.39 14.75 15.08 15.38 15.65
0.01 14.04 19.02 22.29 24.72 26.63 28.20 29.53 30.68 31.69 32.59 33.40 34.13 34.81 35.43

3 0.10 3.33 4.47 5.20 5.74 6.16 6.51 6.81 7.06 7.29 7.49 7.67 7.83 7.98 8.12
0.05 4.50 5.91 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.15 10.35 10.52
0.01 8.26 10.62 12.17 13.33 14.24 15.00 15.64 16.20 16.69 17.13 17.53 17.89 18.22 18.52

4 0.10 3.01 3.98 4.59 5.04 5.39 5.68 5.93 6.14 6.33 6.49 6.65 6.78 6.91 7.02
0.05 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66
0.01 6.51 8.12 9.17 9.96 10.58 11.10 11.55 11.93 12.27 12.57 12.84 13.09 13.32 13.53

5 0.10 2.85 3.72 4.26 4.66 4.98 5.24 5.46 5.65 5.82 5.97 6.10 6.22 6.34 6.44
0.05 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 7.72
0.01 5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70 10.89 11.08 11.24

6 0.10 2.75 3.56 4.07 4.44 4.73 4.97 5.17 5.34 5.50 5.64 5.76 5.87 5.98 6.07
0.05 3.46 4.34 4.90 5.31 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 7.14
0.01 5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.49 9.65 9.81 9.95

7 0.10 2.68 3.45 3.93 4.28 4.55 4.78 4.97 5.14 5.28 5.41 5.53 5.64 5.74 5.83
0.05 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 6.76
0.01 4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71 8.86 9.00 9.12

8 0.10 2.63 3.37 3.83 4.17 4.43 4.65 4.83 4.99 5.13 5.25 5.36 5.46 5.56 5.64
0.05 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 6.48
0.01 4.75 5.64 6.20 6.63 6.96 7.24 7.47 7.68 7.86 8.03 8.18 8.31 8.44 8.55

9 0.10 2.59 3.32 3.76 4.08 4.34 4.54 4.72 4.87 5.01 5.13 5.23 5.33 5.42 5.51
0.05 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 6.28
0.01 4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78 7.91 8.03 8.13

10 0.10 2.56 3.27 3.70 4.02 4.26 4.47 4.64 4.78 4.91 5.03 5.13 5.23 5.32 5.40
0.05 3.15 3.88 4.33 4.65 4.91 5.12 5.31 5.46 5.60 5.72 5.83 5.93 6.03 6.11
0.01 4.48 5.27 5.77 6.14 6.43 6.67 6.88 7.05 7.21 7.36 7.49 7.60 7.71 7.81

11 0.10 2.54 3.23 3.66 3.96 4.20 4.40 4.57 4.71 4.84 4.95 5.05 5.15 5.23 5.31
0.05 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.99
0.01 4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25 7.36 7.46 7.56

12 0.10 2.52 3.20 3.62 3.92 4.16 4.35 4.51 4.65 4.78 4.89 4.99 5.08 5.16 5.24
0.05 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.51 5.62 5.71 5.80 5.88
0.01 4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06 7.17 7.26 7.36

Continued on page 827
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TABLE A.9 Upper percentage points for the Studentized range qν1,ν2 (continued)

ν1

ν2 α 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13 0.10 2.50 3.18 3.59 3.88 4.12 4.30 4.46 4.60 4.72 4.83 4.93 5.02 5.10 5.18
0.05 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 5.79
0.01 4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90 7.01 7.10 7.19

14 0.10 2.49 3.16 3.56 3.85 4.08 4.27 4.42 4.56 4.68 4.79 4.88 4.97 5.05 5.12
0.05 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 5.72
0.01 4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77 6.87 6.96 7.05

15 0.10 2.48 3.14 3.54 3.83 4.05 4.23 4.39 4.52 4.64 4.75 4.84 4.93 5.01 5.08
0.05 3.01 3.67 4.08 4.37 4.60 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.58 5.65
0.01 4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66 6.76 6.84 6.93

16 0.10 2.47 3.12 3.52 3.80 4.03 4.21 4.36 4.49 4.61 4.71 4.81 4.89 4.97 5.04
0.05 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59
0.01 4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56 6.66 6.74 6.82

17 0.10 2.46 3.11 3.50 3.78 4.00 4.18 4.33 4.46 4.58 4.68 4.77 4.86 4.93 5.01
0.05 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11 5.21 5.31 5.39 5.47 5.55
0.01 4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48 6.57 6.66 6.73

18 0.10 2.45 3.10 3.49 3.77 3.98 4.16 4.31 4.44 4.55 4.65 4.75 4.83 4.90 4.98
0.05 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27 5.35 5.43 5.50
0.01 4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41 6.50 6.58 6.65

19 0.10 2.44 3.09 3.47 3.75 3.97 4.14 4.29 4.42 4.53 4.63 4.72 4.80 4.88 4.95
0.05 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23 5.32 5.39 5.46
0.01 4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34 6.43 6.51 6.58

20 0.10 2.44 3.08 3.46 3.74 3.95 4.12 4.27 4.40 4.51 4.61 4.70 4.78 4.85 4.92
0.05 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20 5.28 5.36 5.43
0.01 4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.29 6.37 6.45 6.52

24 0.10 2.42 3.05 3.42 3.69 3.90 4.07 4.21 4.34 4.45 4.54 4.63 4.71 4.78 4.85
0.05 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10 5.18 5.25 5.32
0.01 3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11 6.19 6.26 6.33

30 0.10 2.40 3.02 3.39 3.65 3.85 4.02 4.16 4.28 4.38 4.47 4.56 4.64 4.71 4.77
0.05 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00 5.08 5.15 5.21
0.01 3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93 6.01 6.08 6.14

40 0.10 2.38 2.99 3.35 3.60 3.80 3.96 4.10 4.21 4.32 4.41 4.49 4.56 4.63 4.69
0.05 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.74 4.82 4.90 4.98 5.05 5.11
0.01 3.82 4.37 4.70 4.93 5.11 5.27 5.39 5.50 5.60 5.69 5.76 5.83 5.90 5.96

60 0.10 2.36 2.96 3.31 3.56 3.75 3.91 4.04 4.16 4.25 4.34 4.42 4.49 4.56 4.62
0.05 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81 4.88 4.94 5.00
0.01 3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60 5.67 5.73 5.79

120 0.10 2.34 2.93 3.28 3.52 3.71 3.86 3.99 4.10 4.19 4.28 4.35 4.42 4.48 4.54
0.05 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71 4.78 4.84 4.90
0.01 3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.38 5.44 5.50 5.56 5.61

∞ 0.10 2.33 2.90 3.24 3.48 3.66 3.81 3.93 4.04 4.13 4.21 4.28 4.35 4.41 4.47
0.05 2.77 3.31 3.63 3.86 4.03 4.17 4.29 4.39 4.47 4.55 4.62 4.68 4.74 4.80
0.01 3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29 5.35 5.40 5.45
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TABLE A.10 Control chart constants

n A2 A3 B3 B4 D3 D4 c4 d2

2 1.880 2.659 0.000 3.267 0.000 3.267 0.7979 1.128
3 1.023 1.954 0.000 2.568 0.000 2.575 0.8862 1.693
4 0.729 1.628 0.000 2.266 0.000 2.282 0.9213 2.059
5 0.577 1.427 0.000 2.089 0.000 2.114 0.9400 2.326
6 0.483 1.287 0.030 1.970 0.000 2.004 0.9515 2.534

7 0.419 1.182 0.118 1.882 0.076 1.924 0.9594 2.704
8 0.373 1.099 0.185 1.815 0.136 1.864 0.9650 2.847
9 0.337 1.032 0.239 1.761 0.184 1.816 0.9693 2.970

10 0.308 0.975 0.284 1.716 0.223 1.777 0.9727 3.078
11 0.285 0.927 0.321 1.679 0.256 1.744 0.9754 3.173

12 0.266 0.866 0.354 1.646 0.283 1.717 0.9776 3.258
13 0.249 0.850 0.382 1.618 0.307 1.693 0.9794 3.336
14 0.235 0.817 0.406 1.594 0.328 1.672 0.9810 3.407
15 0.223 0.789 0.428 1.572 0.347 1.653 0.9823 3.472
16 0.212 0.763 0.448 1.552 0.363 1.637 0.9835 3.532

17 0.203 0.739 0.466 1.534 0.378 1.622 0.9845 3.588
18 0.194 0.718 0.482 1.518 0.391 1.609 0.9854 3.640
19 0.187 0.698 0.497 1.503 0.403 1.597 0.9862 3.689
20 0.180 0.680 0.510 1.490 0.415 1.585 0.9869 3.735
21 0.173 0.663 0.523 1.477 0.425 1.575 0.9876 3.778

22 0.167 0.647 0.534 1.466 0.434 1.566 0.9882 3.819
23 0.162 0.633 0.545 1.455 0.443 1.557 0.9887 3.858
24 0.157 0.619 0.555 1.445 0.452 1.548 0.9892 3.895
25 0.153 0.606 0.565 1.435 0.459 1.541 0.9896 3.931

For n > 25: A3 ≈ 3/
√

n, B3 ≈ 1 − 3/
√

2n, and B4 ≈ 1 + 3/
√

2n.



Partial Derivatives

This appendix presents the mechanics of computing partial derivatives, which are needed
in Section 3.4. We begin by recalling that a derivative specifies the rate of change of one
variable with respect to another. For example, the volume v of a sphere whose radius
is r is given by v = 4πr3. If r is allowed to increase (or decrease), the rate at which v

increases (or decreases) is given by the derivative of v with respect to r : dv/dr = 12πr2.
Partial derivatives are needed when the quantity whose rate of change is to be

calculated is a function of more than one variable. Here is an example: The volume v

of a cylinder with radius r and height h is given by v = πr2h. If either r or h changes,
v will change as well. Now imagine that h is constant, and r is allowed to increase.
The rate of increase in v is given by the partial derivative of v with respect to r . This
derivative is denoted ∂v/∂r , and it is computed exactly like the ordinary derivative of v

with respect to r , treating h as a constant: ∂v/∂r = 2πrh.
Now assume that r is constant, and h is increasing. The rate of increase in v is the

partial derivative of v with respect to h, denoted ∂v/∂h. It is computed exactly like the
ordinary derivative of v with respect to h, treating r as a constant: ∂v/∂h = πr2.

If v is a function of several variables, v = f (x1, x2, . . . , xn), then the partial
derivative of v with respect to any one of the variables x1, x2, . . . , xn is com-
puted just like the ordinary derivative, holding the other variables constant.

Examples B.1 and B.2 show that computing partial derivatives is no more difficult
than computing ordinary derivatives.

Example
B.1 Let v = 12x2 y + 3xy2. Find the partial derivatives of v with respect to x and y.

Solution
To compute ∂v/∂x , hold y constant, and compute the derivative with respect to x .
The result is

∂v

∂x
= 24xy + 3y2
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To compute ∂v/∂y, hold x constant, and compute the derivative with respect to y.
The result is

∂v

∂y
= 12x2 + 6xy

Example
B.2 Let v = x3 y + y3z − xz3

x2 + y2 + z2
. Find the partial derivatives of v with respect to x , y,

and z.

Solution
To compute ∂v/∂x , hold both y and z constant, and compute the derivative with
respect to x , using the quotient rule:

∂v

∂x
= (3x2 y − z3)(x2 + y2 + z2) − (x3 y + y3z − xz3)(2x)

(x2 + y2 + z2)2

Similarly, we compute the partial derivatives of v with respect to y and z:

∂v

∂y
= (x3 + 3y2z)(x2 + y2 + z2) − (x3 y + y3z − xz3)(2y)

(x2 + y2 + z2)2

∂v

∂z
= (y3 − 3xz2)(x2 + y2 + z2) − (x3 y + y3z − xz3)(2z)

(x2 + y2 + z2)2

Exercises for Appendix B

In the following exercises, compute all partial derivatives.

1. v = 3x + 2xy4

2. w = x3 + y3

x2 + y2

3. z = cos x sin y2

4. v = exy

5. v = ex(cos y + sin z)

6. w =
√

x2 + 4y2 + 3z2

7. z = ln(x2 + y2)

8. v = ey2
cos(xz) + ln(x2 y + z)

9. v = 2xy3 − 3xy2

√
xy

10. z =
√

sin(x2 y)
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Answers to
Odd-Numbered
Exercises

Section 1.1
1. (a) The population consists of all the times the process could be run. It is conceptual.

(b) The population consists of all the registered voters in the state. It is tangible.
(c) The population consists of all people with high cholesterol levels. It is tangible.
(d) The population consists of all concrete specimens that could be made from the new formulation. It is conceptual.
(e) The population consists of all bolts manufactured that day. It is tangible.

3. (a) False (b) True

5. (a) No. What is important is the population proportion of defectives; the sample percentage is only an approxi-
mation. The population proportion for the new process may in fact be greater or less than that of the old process.

(b) No. The population proportion for the new process may be 12% or more, even though the sample proportion
was only 11%.

(c) Finding two defective circuits in the sample.

7. A good knowledge of the process that generated the data.

9. (a) A controlled experiment.
(b) Yes, because it is based on a controlled experiment rather than an observational study.

Section 1.2
1. False

3. No. In the sample 1, 2, 4 the mean is 7/3, which does not appear at all.

5. The sample size can be any odd number.

7. Yes. If all the numbers on the list are the same, the standard deviation will equal 0.

9. The mean and standard deviation both increase by 5%.

11. 169.6 cm

13. (a) All would be divided by 2.54.
(b) Not exactly the same, since the measurements would be a little different the second time.

15. (a) The tertiles are 45 and 77.5. (b) The quintiles are 32, 47.5, 75, and 85.5.
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Section 1.3
1. (a)

Stem Leaf

0 011112235677
1 235579
2 468
3 11257
4 14699
5 5
6 16
7 9
8 0099
9

10
11 0
12 7
13 7

(b) Here is one histogram. Other choices for the end-
points are possible.
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The boxplot shows one outlier.
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3. Stem Leaf

1 1588
2 00003468
3 0234588
4 0346
5 2235666689
6 00233459
7 113558
8 568
9 1225

10 1
11
12 2
13 06
14
15
16
17 1
18 6
19 9
20
21
22
23 3

There are 23 stems in this plot. An advantage of this plot over the one in Figure 1.6 is that the values are given to
the tenths digit instead of to the ones digit. A disadvantage is that there are too many stems, and many of them are
empty.

5. (a)

2 3 4 5 6 7
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(b)

1

2

3

4

5

6

7

Catalyst A

Y
ie

ld

Catalyst B

(c) The yields for catalyst B are considerably more spread out than those for catalyst A. The median yield for catalyst
A is greater than the median for catalyst B. The median yield for B is closer to the first quartile than the third,
but the lower whisker is longer than the upper one, so the median is approximately equidistant from the extremes
of the data. Thus the yields for catalyst B are approximately symmetric. The largest yield for catalyst A is an
outlier; the remaining yields for catalyst A are approximately symmetric.

7. (a) Closest to 30% (b) 240–260 mg/dL

9. (a) (b)18

15

12

9

6

3

0
1 3 5 7 9 11 13 15 17 19 21 23 25
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nc

y

Emissions (g/gal)

0.15

0.1

0.05

0
1 3 5 7 9 11 13 15 17 19 21 23 25

D
en

si
ty

Emissions (g/gal)

(c) Yes, the shapes of the histograms are the same.

11. (a)

40

50

60

70

80

90

100

N
um

be
r 

A
bs

en
t

(b) Yes. The value 100 is an outlier.
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13. (ii)

15. (a) A: 4.60, B: 3.86 (b) Yes.

12

10

8

6

4

2

0

(c) No. The minimum value of
−2.235 is an “outlier,” since it
is more than 1.5 times the in-
terquartile range below the first
quartile. The lower whisker
should extend to the smallest
point that is not an outlier, but
the value of this point is not
given.

17. (a) 500

400

300

200

100

0

Fr
ac

tu
re

 s
tr

es
s 

(M
Pa

)

(b) The boxplot indicates that the value 470 is an outlier.

(c)

0 100 200 300 400 500
Fracture strength (MPa) 

(d) The dotplot indicates that the value 384 is detached
from the bulk of the data, and thus could be considered
to be an outlier.

19. (a) 60

50

40

30

20

10

0
5 10 15

x

y The relationship is nonlinear.
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(b)

4

3.5

3

2.5

2

1.5

1

0.5
0 5 10 15

x

ln
 y The relationship is approximately linear.

(c) It would be easier to work with x and ln y, because the relationship is approximately linear.

Supplementary Exercises for Chapter 1

1. (a) The mean will be divided by 2.2.
(b) The standard deviation will be divided by 2.2.

3. (a) False (b) True (c) False (d) True

5. (a) It is not possible to tell by how much the mean changes.
(b) If there are more than two numbers on the list, the median is unchanged. If there are only two numbers on the list,

the median is changed, but we cannot tell by how much.
(c) It is not possible to tell by how much the standard deviation changes.

7. (a) The mean decreases by 0.774. (b) The mean changes to 24.226.
(c) The median is unchanged.
(d) It is not possible to tell by how much the standard deviation changes.

9. Statement (i) is true.

11. (a) Incorrect (b) Correct (c) Incorrect (d) Correct

13. (a) Skewed to the left. The 85th percentile is much closer to the median (50th percentile) than the 15th percentile is.
Therefore the histogram is likely to have a longer left-hand tail than right-hand tail.

(b) Skewed to the right. The 15th percentile is much closer to the median (50th percentile) than the 85th percentile
is. Therefore the histogram is likely to have a longer right-hand tail than left-hand tail.
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15. (a)
0.25

0.2

0.15

0.1

0.05

0
6 9 12 13 14 15 16 17 18 20 23

D
en

si
ty

 Log
2
 population

(b) 0.14
(c) Approximately symmetric

(d) 0.25

0.2

0.15

0.1

0.05

0

D
en

si
ty

0 2 4 6 8
Population (in millions)

The data on the raw scale are skewed so much to the right that it is impossible to see the features of the histogram.
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17. (a)
0.25

0.2

0.15

0.1

0.05

0

D
en

si
ty

0 2 4 10 15 20 25 30 50
Number of shares owned

(b) 3.35 (c) 1.88 (d) 7.70

19. (a) 70

60

50

40

30

20

10

0

L
oa

d 
(k

g)

Sacaton Gila Plain Casa Grande 

(b) Each sample contains one outlier.
(c) In the Sacaton boxplot, the median is about midway between the first and third quartiles, suggesting that the data

between these quartiles are fairly symmetric. The upper whisker of the box is much longer than the lower whisker,
and there is an outlier on the upper side. This indicates that the data as a whole are skewed to the right. In the
Gila Plain boxplot data, the median is about midway between the first and third quartiles, suggesting that the data
between these quartiles are fairly symmetric. The upper whisker is slightly longer than the lower whisker, and
there is an outlier on the upper side. This suggests that the data as a whole are somewhat skewed to the right. In
the Casa Grande boxplot, the median is very close to the first quartile. This suggests that there are several values
very close to each other about one-fourth of the way through the data. The two whiskers are of about equal length,
which suggests that the tails are about equal, except for the outlier on the upper side.

Section 2.1
1. 0.88

3. (a) {TTTT, TTTF, TTFT, TTFF, TFTT, TFTF, TFFT, TFFF, FTTT, FTTF, FTFT, FTFF, FFTT, FFTF, FFFT, FFFF}
(b) 1/8 (c) 1/4 (d) 5/16
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5. (a) {1, 2, 31, 32, 41, 42, 341, 342, 431, 432} (b) {1, 2} (c) {341, 342, 431, 432}
(d) {31, 32, 341, 342, 431, 432} (e) {1, 31, 41, 341, 431}
(f) A and E are mutually exclusive because they have no outcomes in common. B and E are not mutually exclusive

because they both contain the outcomes 341, 342, 431, and 432. C and E are not mutually exclusive because they
both contain the outcomes 341, 342, 431, and 432. D and E are not mutually exclusive because they both contain
the outcomes 41, 341, and 431.

7. (a) 0.48 (b) 0.63

9. (a) 0.20 (b) 0.95

11. (a) False (b) True

13. (a) 0.5 (b) 0.5 (c) 0.2

15. (a) 0.13 (b) 0.20 (c) 0.02

17. 0.94

19. (a) False (b) True (c) False (d) True

Section 2.2
1. (a) 64 (b) 8 (c) 24

3. 70

5. (a) 336 (b) 56

7. 1,048,576

9. (a) 368 = 2.8211 × 1012 (b) 368 − 268 = 2.6123 × 1012 (c) 0.9260

11. 0.5238

Section 2.3
1. 0.25

3. (a) 1/3 (b) 5/14 (c) 2/7

5. Given that a student is an engineering major, it is almost certain that the student took a calculus course. Therefore
P(B|A) is close to 1. Given that a student took a calculus course, it is much less certain that the student is an
engineering major, since many nonengineering majors take calculus. Therefore P(A|B) is much less than 1, so
P(B|A) > P(A|B).

7. (a) 0.03 (b) 0.68 (c) 0.32

9. 5/12

11. (a) 0.8 (b) 0.125 (c) 0.12 (d) 0.167 (e) 0.88 (f) 0.205 (g) 0.795

13. (a) 0.98 (b) 0.02 (c) 0.72 (d) 0.18

15. (a) 0.88 (b) 0.1715 (c) 0.4932 (d) 0.8433

17. (a) 0.8 (b) 0.7 (c) 0.7 (d) Yes

19. (a) 0.41 (b) 0.57 (c) 0.45 (d) 0.55 (e) 0.53 (f) 0.02 (g) 0.55
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21. (a) That the gauges fail independently.
(b) One cause of failure, a fire, will cause both gauges to fail. Therefore, they do not fail independently.
(c) Too low. The correct calculation would use P(second gauge fails}first gauge fails) in place of P(second gauge

fails). Because there is a chance that both gauges fail together in a fire, the condition that the first gauge fails makes
it more likely that the second gauge fails as well. Therefore P(second gauge fails|first gauge fails) > P(second
gauge fails).

23. (a) 3/10 (b) 2/9 (c) 1/15 (d) 7/30 (e) 3/10
(f) No. P(B) �= P(B|A) [or P(A ∩ B) �= P(A)P(B)]

25. n = 10,000. The two components are a simple random sample from the population. When the population is large,
the items in a simple random sample are nearly independent.

27. (a) 0.89 (b) 0.90

29. (a) 0.011 (b) 0.0033

31. (a) 9/16 (b) 1/4 (c) 4/9 (d) 1/4

33. (a) 5.08 × 10−5 (b) 0.9801 (c) 0.0001 (d) 0.9801

35. 0.9125

37. (a) 0.9904 (b) 0.1 (c) 0.2154 (d) 7

Section 2.4
1. (a) Discrete (b) Continuous (c) Discrete (d) Continuous (e) Discrete

3. (a) 2.3 (b) 1.81 (c) 1.345 (d)
y 10 20 30 40 50

p(y) 0.4 0.2 0.2 0.1 0.1 (e) 23 (f) 181 (g) 13.45

5. (a)
x 1 2 3 4 5

p(x) 0.70 0.15 0.10 0.03 0.02 (b) 0.85 (c) 0.05 (d) 1.52 (e) 0.9325

7. (a) c = 1/15 (b) 2/15 (c) 11/3 (d) 14/9 (e) 1.2472

9. (a) x p1(x)

0 0.2
1 0.16
2 0.128
3 0.1024
4 0.0819
5 0.0655

(b) x p2(x)

0 0.4
1 0.24
2 0.144
3 0.0864
4 0.0518
5 0.0311

(c) p2(x) appears to be the better model. Its probabilities are all fairly close to the proportions of days observed in
the data. In contrast, the probabilities of 0 and 1 for p1(x) are much smaller than the observed proportions.

(d) No, this is not right. The data are a simple random sample, and the model represents the population. Simple
random samples generally do not reflect the population exactly.

11. (a) 2 (b) 0.81 (c) 0.09 (d) 0.9 (e) 0.162

13. (a) 1/16 (b) 106.67 � (c) 9.4281 � (d) F(x) =
{

0 x < 80
x2/1600 − x/10 + 4 80 ≤ x < 120

1 x ≥ 120
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15. (a) 10 months (b) 10 months (c) F(t) =
{

0 t < 0
1 − e−0.1t t ≥ 0

(d) 0.6988

17. With this process, the probability that a ring meets the specification is 0.641. With the process in Exercise 16, the
probability is 0.568. Therefore this process is better than the one in Exercise 16.

19. (a) 67/256 (b) 109/256 (c) 2.4% (d) 0.64 (e) F(x) =
{

0 x < 0
x3/16 − 3x4/256 0 ≤ x < 4

1 x ≥ 4

21. (a) 0.0272 (b) 0.6 (c) 0.04 (d) F(x) =
{

0 x ≤ 0
4x3 − 3x4 0 ≤ x < 1
1 x ≥ 1

(e) 0.8192

23. (a) 0.2428 (b) 0.5144 (c) 3 (d) 0.5684 (e) 0.5832 (f) F(x) =
{

0 x < 2
(−x3 + 9x2 − 28)/52 2 ≤ x < 4

1 x ≥ 4

25. (a) 1 − 3e−2 = 0.5940 (b) 0.3587 (c) 2 (d) F(x) =
{

0 x ≤ 0
1 − (x + 1)e−x x > 0

Section 2.5
1. (a) μ = 28.5, σ = 1.2 (b) μ = −2.7, σ = 0.412 (c) μ = 36.7, σ = 0.566

3. μ = 3600 hours, σ = 60 hours

5. (a) μ = 0.6 mm (b) σ = 0.0894 mm

7. (a) 0.650 (b) 0.158

9. (a) 150 cm (b) 0.447 cm

11. (a) μ = 252, 000 gallons (b) σ = 12.961 gallons (c) 0.15 gallons (d) 7.7512 × 10−6 gallons

13. (a) 0.2993 (b) 0.00288

15. (a) 0.3 (b) 0.45 (c) 0.135 (d) μX = 10 (e) μY = 5

17. (a) μ = 40.25, σ = 0.11 (b) n ≈ 52

Section 2.6
1. (a) 0.17 (b) 0.60 (c) 0.26 (d) 0.67 (e) 0.74 (f) 0.33 (g) 0.10

3. (a) pY |X (0 | 0) = 0.3846, pY |X (1 | 0) = 0.4231, pY |X (2 | 0) = 0.1923
(b) pX |Y (0 | 1) = 0.2292, pX |Y (1 | 1) = 0.4792, pX |Y (2 | 1) = 0.2917
(c) 0.8077 (d) 1.0625

5. (a) 2.11 (b) 1.4135 (c) 0.24

7. (a) 2X + 3Y (b) $5.44 (c) $3.67

9. (a) pX (0) = 0.10, pX (1) = 0.20, pX (2) = 0.30, pX (3) = 0.25, pX (4) = 0.15
(b) pY (0) = 0.16, pY (1) = 0.19, pY (2) = 0.26, pY (3) = 0.23, pY (4) = 0.16
(c) No. pX,Y (0, 0) = 0.06, but pX (0)pY (0) = (0.10)(0.16) �= 0.06. (d) μX = 2.15, μY = 2.04
(e) σX = 1.1948, σy = 1.3032 (f) 1.0540 (g) 0.6769
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11. (a) pY |X (0 | 4) = 0, pY |X (1 | 4) = 0, pY |X (2 | 4) = 0.1333, pY |X (3 | 4) = 0.4000, pY |X (4 | 4) = 0.4667
(b) pX |Y (0 | 3) = 0, pX |Y (1 | 3) = 0.0870, pX |Y (2 | 3) = 0.2609, pX |Y (3 | 3) = 0.3913, pX |Y (4 | 3) = 0.2609
(c) 3.3333 (d) 2.8261

13. (a) μZ = 2.24 (b) σZ = 1.5108 (c) 0.25

15. (a) pY |X (0|3) = 0.14286, pY |X (1|3) = 0.28571, pY |X (2|3) = 0.28571, pY |X (3|3) = 0.28571
(b) pX |Y (0|1) = 0.29412, pX |Y (1|1) = 0.47059, pX |Y (2|1) = 0.17647, pX |Y (3|1) = 0.05882
(c) E(Y |X = 3) = 1.7143 (d) E(X |Y = 1) = 1

17. (a) −0.000193 (b) −0.00232

19. (a) −1/64 (b) −0.2055 (c) fY |X (y | 0.5) =

⎧⎨
⎩

12y2 + 3

7
0 < y < 1

0 for other values of y
(d) 9/14

21. (a) f (x, y) =
{

e−x−y x > 0 and y > 0
0 otherwise

(b) P(X ≤ 1 and Y > 1) = e−1 − e−2 = 0.2325

(c) 1 (d) 2 (e) 1 − 3e−2 = 0.5940

23. (a) 0.3X + 0.7Y (b) μ = $6, σ = $2.52

(c) μ = $6, σ = 0.03
√

1.4K 2 − 140K + 10,000 (d) K = $50

(e) For any correlation ρ, the risk is 0.03
√

K 2 + (100 − K )2 + 2ρK (100 − K ). If ρ �= 1 this quantity is minimized
when K = 50.

25. (a) σM1 = σM2 = 2.2361
(b) μM1,M2 = μR2+E1 R+E2 R+E1 E2

= μR2 + μE1μR + μE2μR + μE1μE2 = μR2 .
(c) μM1μM2 = μR+E1μR+E2 = (μR + μE1)(μR + μE2) = μRμR = μ2

R .
(d) Cov(M1, M2) = μM1 M2 − μM1μM2 = μR2 − μ2

R = σ 2
R .

(e) ρM1,M2 = Cov(M1, M2)

σM1σM2

= 4

(2.2361)(2.2361)
= 0.8.

27. (a) Cov(aX, bY ) = μaX ·bY −μaXμbY = μabXY − aμX bμY = abμXY −abμXμY = ab(μXY −μXμY ) = ab Cov(X, Y ).
(b) ρaX,bY = Cov(aX, bY )/(σaXσbY ) = ab Cov(X, Y )/(abσXσY ) = Cov(X, Y )/(σXσY ) = ρX,Y .

29. (a) V (X − (σX/σY )Y ) = σ 2
X + (σX/σY )2σ 2

Y − 2(σX/σY )Cov(X, Y ) = 2σ 2
X − 2(σX/σY )Cov(X, Y )

(b) V (X − (σX/σY )Y ) ≥ 0
2σ 2

X − 2(σX/σY )Cov(X, Y ) ≥ 0
2σ 2

X − 2(σX/σY )ρX,Y σXσY ≥ 0
2σ 2

X − 2ρX,Y σ 2
X ≥ 0

1 − ρX,Y ≥ 0
ρX,Y ≤ 1

(c) V (X + (σX/σY )Y ) ≥ 0
2σ 2

X + 2(σX/σY )Cov(X, Y ) ≥ 0
2σ 2

X + 2(σX/σY )ρX,Y σXσY ≥ 0
2σ 2

X + 2ρX,Y σ 2
X ≥ 0

1 + ρX,Y ≥ 0
ρX,Y ≥ −1
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31. μY = 0.5578, σY = 0.1952.

33. (a)
∫ ∞

−∞
∫ ∞

−∞ f (x, y) dxdy = ∫ d

c

∫ b

a
kdxdy = k

∫ d

c

∫ b

a
dxdy = 1. Therefore k = 1

(b − a)(d − c)
.

(b) fX (x) = ∫ d

c
kdy = d − c

(b − a)(d − c)
= 1

b − a

(c) fY (y) = ∫ b

a
kdx = b − a

(b − a)(d − c)
= 1

d − c

(d) f (x, y) = 1

(b − a)(d − c)
= 1

b − a

1

d − c
= fX (x) fY (y)

Supplementary Exercises for Chapter 2
1. 0.9997

3. (a) 0.15 (b) 0.6667

5. 0.3439

7. 0.82

9. 1/3

11. (a) 0.3996 (b) 0.0821 (c) fX (x) =
{

1
2
e−x/2 x > 0

0 x ≤ 0
(d) fY (y) =

{
1
3
e−y/3 y > 0

0 y ≤ 0
(e) Yes, f (x, y) = fX (x) fY (y).

13. (a) 0.0436 (b) 0.0114 (c) 0.7377

15. 1/3

17. (a) μ = 6, σ 2 = 9 (b) μ = 4, σ 2 = 10 (c) μ = 0, σ 2 = 10 (d) μ = 16, σ 2 = 328

19. (a) For additive concentration: p(0.02) = 0.22, p(0.04) = 0.19, p(0.06) = 0.29, p(0.08) = 0.30, and p(x) = 0 for
x �= 0.02, 0.04, 0.06, or 0.08. For tensile strength: p(100) = 0.14, p(150) = 0.36, p(200) = 0.50, and p(x) = 0
for x �= 100, 150, or 200.

(b) No, X and Y are not independent. For example, P(X = 0.02 ∩ Y = 100) = 0.05, but P(X = 0.02) P(Y =
100) = (0.22)(0.14) = 0.0308. (c) 0.947 (d) 0.867 (e) The concentration should be 0.06.

21. (a) pY |X (100 | 0.06) = 0.138, pY |X (150 | 0.06) = 0.276, pY |X (200 | 0.06) = 0.586
(b) pX |Y (0.02 | 100) = 0.357, pX |Y (0.04 | 100) = 0.071, pX |Y (0.06 | 100) = 0.286, pX |Y (0.08|100) = 0.286
(c) 172.4 (d) 0.0500

23. (a) μ = 3.75, σ = 6.68 (b) μ = 2.90, σ = 4.91 (c) μ = 1.08, σ = 1.81
(d) Under scenario A, 0.85; under scenario B, 0.89; and under scenario C, 0.99.

25. (a) The joint probability mass function is

y
x 0 1 2

0 0.0667 0.2000 0.0667
1 0.2667 0.2667 0
2 0.1333 0 0

(b) 0.8 (c) 0.6 (d) 0.6532 (e) 0.6110 (f) −0.2133 (g) −0.5345
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27. (a) μX = 9/14 = 0.6429 (b) σ 2
X = 199/2940 = 0.06769 (c) Cov(X, Y ) = −5/588 = −0.008503

(d) ρX,Y = −25/199 = −0.1256

29. (a) pX (0) = 0.6, pX (1) = 0.4, pX (x) = 0 if x �= 0 or 1. (b) pY (0) = 0.4, pY (1) = 0.6, pY (y) = 0 if y �= 0 or 1.
(c) Yes. It is reasonable to assume that knowledge of the outcome of one coin will not help predict the outcome of

the other.
(d) p(0, 0) = 0.24, p(0, 1) = 0.36, p(1, 0) = 0.16, p(1, 1) = 0.24, p(x, y) = 0 for other values of (x, y).

31. (a) pX,Y (x, y) = 1/9 for x = 1, 2, 3 and y = 1, 2, 3. (b) pX (1) = pX (2) = pX (3) = 1/3. pY is the same.

(c) μX = μY = 2 (d) μXY = 4 (e) Cov(X, Y ) = 0.

33. (a) μX = ∫ ∞
−∞ x f (x) dx. Since f (x) = 0 for x ≤ 0, μX = ∫ ∞

0
x f (x) dx .

(b) μX = ∫ ∞
0

x f (x) dx ≥ ∫ ∞
k

x f (x) dx ≥ ∫ ∞
k

k f (x) dx = k P(X ≥ k)

(c) μX/k ≥ k P(X ≥ k)/k = P(X ≥ k)

(d) μX = μ(Y−μY )2 = σ 2
Y

(e) P(|Y − μY | ≥ kσY ) = P((Y − μY )2 ≥ k2σ 2
Y ) = P(X ≥ k2σ 2

Y )

(f) P(|Y − μY | ≥ kσY ) = P(X ≥ k2σ 2
Y ) ≤ μX/(k2σ 2

Y ) = σ 2
Y /(k2σ 2

Y ) = 1/k2

35. (a) 1 and n + 1 (b) 2.3756 (c) 5.4271 (d) n + 1 − n(1 − p)n (e) p < 0.2057

Section 3.1
1. (ii)

3. (a) True (b) False (c) False (d) True

5. (a) No, we cannot determine the standard deviation of the process from a single measurement.
(b) Yes, the bias can be estimated to be 2 lb, because the reading is 2 lb when the true weight is 0.

7. (a) Yes, the uncertainty can be estimated with the standard deviation of the five measurements, which is 21.3 μg.
(b) No, the bias cannot be estimated, since we do not know the true value.

9. We can get a more accurate estimate by subtracting the bias of 26.2 μg, obtaining 100.8 μg above 1 kg.

11. (a) No, they are in increasing order, which would be highly unusual for a simple random sample.
(b) No, since they are not a simple random sample from a population of possible measurements, we cannot estimate

the uncertainty.

Section 3.2
1. (a) 1.2 (b) 0.5 (c) 0.8485

3. 9

5. 1.01 ± 0.30 mm

7. 6.6 ± 0.3 N·m
9. 0.500 ± 0.005

11. (a) 64.04 ± 0.39◦F (b) 64.04 ± 0.11◦F

13. (a) The uncertainty in the average of nine measurements is approximately equal to s/
√

9 = 0.081/3 = 0.027 cm.
(b) The uncertainty in a single measurement is approximately equal to s, which is 0.081 cm.
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15. (a) 87.0 ± 0.7 mL (b) 0.5 mL (c) 25

17. (a) At 65◦C, the yield is 70.14 ± 0.28. At 80◦C, the yield is 90.50 ± 0.25. (b) 20.36 ± 0.38

19. (a) 0.016 (b) 0.0089
(c) The uncertainty in 1

2
X + 1

2
Y is 0.0091. The uncertainty in 10

15
X + 5

15
Y is 0.011.

(d) c = 0.24; the minimum uncertainty is 0.0078.

Section 3.3
1. (a) 3.6 (b) 0.15 (c) 0.225 (d) 0.15 (e) 2.2167 (f) 0.2728

3. 157.1 ± 1.3 cm3

5. (a) 1.7289 ± 0.0058 s (b) 9.79 ± 0.11 m/s2

7. (a) 0.2555 ± 0.0005 m/s (b) 0.256 ± 0.026 m/s (c) 0.2555 ± 0.0002 m/s

9. (a) 2.3946 ± 0.0011 g/mL

11. (a) 1.9% (b) 5.3% (c) 5.9% (d) 0.37%

13. 9.802 m/s2 ± 6.0%

15. (a) 1.856 s ± 0.29% (b) 9.799 m/s2 ± 0.54%

17. (a) 0.2513 m/s ± 0.33% (b) 0.2513 m/s ± 2.0% (c) 0.2513 m/s ± 0.57%

19. 2.484 g/mL ± 0.19%

Section 3.4
1. (a) 250 ± 16 (b) 125 ± 10 (c) 17.50 ± 0.56

3. (a) 30.2 ± 1.4 m (b) Reducing the uncertainty in θ to 0.01 radians.

5. (a) 14.25 ± 0.25 MPa (b) Reducing the uncertainty in P1 to 0.2 MPa.

7. (a) 1.320 ± 0.075 cm (b) Reducing the uncertainty in p to 0.1 cm.

9. (a) 0.867 ± 0.082 cm2/mol (b) Reducing the uncertainty in L to 0.05 cm.

11. (a) 32.6 ± 3.4 MPa (b) Reducing the uncertainty in k to 0.025 mm−1.
(c) Implementing the procedure would reduce the uncertainty in τ only to 3.0 MPa. It is probably not worthwhile to

implement the new procedure for a reduction this small.

13. (a) 710.68 ± 0.15 g (b) Reducing the uncertainty in b to 0.1 g.

15. (a) 2264 ± 608 N/mm2 (b) R

17. 0.0626 ± 0.0013 min−1

19. (a) No, they both involve the quantities h and r . (b) 2.68c ± 0.27c

21. 283.49 mm/s ± 2.5%

23. 1.41 cm ± 6.4%
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25. 0.487 ± 1.7%

27. 3347.9 N/mm2 ± 29%

29. (a) 17.59 μm ± 18% (b) 5.965 μm3 ± 30% (c) 2.95c ± 11% (d) No

31. 5.0%

Supplementary Exercises for Chapter 3

1. (a) 9.0 (b) 0.0078 (c) 0.32 (d) 361

3. (a) 2.08 mm (b) 0.29 mm

5. (a) (1.854 ± 0.073) × 106 W (b) 3.9% (c) Reducing the uncertainty in H to 0.05.

7. (a) 6.57 ± 0.17 kcal (b) 2.6% (c) Reducing the uncertainty in the mass to 0.005 g.

9. (a) 26.32 ± 0.33 mm/year (b) 3.799 ± 0.048 years

11. 19.25 ± 0.091 mm

13. (a) 1.4% (b) Reducing the uncertainty in l to 0.5%

15. (a) Yes, the estimated strength is 80,000 lb in both cases.
(b) No, for the ductile wire method the squares of the uncertainties of the 16 wires are added, to obtain σ =√

16 × 202 = 80. For the brittle wire method, the uncertainty in the strength of the weakest wire is multiplied by
the number of wires, to obtain σ = 16 × 20 = 320.

17. (a) 113.1 ± 6.1 m3/s (b) 100.5 ± 5.4 m3/s (c) Yes, the relative uncertainty is 5.4%.

19. (a) 10.04 ± 0.95 s−1 (b) 10.4 ± 1.2 s−1 (c) 0.78 (d) 0.63

21. (a) 32,833 ± 36 m2 (b) 12,894 ± 14 m2

(c) This is not correct. Let s denote the length of a side of the square. Since S and C are both computed in terms
of s, they are not independent. In order to compute σA correctly, we must express A directly in terms of s:
A = s2 + 2πs2/8 = s2(1 + π/4). So σA = (d A/ds)σs = 2s(1 + π/4)σs = 65 m2.

23. (a) P3 = 11.16871 ± 0.10 MPa (b) 11.16916
(c) No. The difference between the two estimates is much less than the uncertainty.

Section 4.1
1. (a) μX = 0.4, σ 2

X = 0.24 (b) No, a Bernoulli random variable has possible values 0 and 1. The possible values of
Y are 0 and 2. (c) μY = 0.8, σ 2

Y = 0.96

3. (a) 0.05 (b) 0.20 (c) 0.23 (d) Yes (e) No
(f) No. If the surface has both discoloration and a crack, then X = 1, Y = 1, and Z = 1, but X + Y = 2.

5. (a) 1/2 (b) 1/2 (c) 1/4 (d) Yes (e) Yes
(f) Yes. If both coins come up heads, then X = 1, Y = 1, and Z = 1, so Z = XY . If not, then Z = 0, and either X ,

Y , or both are equal to 0 as well, so again Z = XY .

7. (a) Since the possible values of X and Y are 0 and 1, the possible values of the product Z = XY are also 0 and 1.
Therefore Z is a Bernoulli random variable.

(b) pZ = P(Z = 1) = P(XY = 1) = P(X = 1 and Y = 1) = P(X = 1)P(Y = 1) = pX pY .
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Section 4.2
1. (a) 0.247 (b) 0.318 (c) 0.0824 (d) 0.0288 (e) 2.1 (f) 1.47

3. (a) 0.3456 (b) 0.2031 (c) 0.6826 (d) 0.8119

5. (a) 0.0852 (b) 0.8891 (c) 0.2824

7. (a) 0.1028 (b) 0.6477 (c) 0.0388 (d) 3 (e) 1.597

9. (a) 0.6630 (b) 0.5760

11. (a) 0.120 ± 0.032 (b) 0.050 ± 0.015 (c) 0.070 ± 0.036

13. (a) 0.96 (b) 0.0582

15. (a) 0.216 (b) X ∼ Bin(5, 0.216) (c) 0.0619

17. (a) 0.9914 (b) 4

19. (a) 1.346 × 10−4

(b) Yes, only about 13 or 14 out of every 100,000 samples of size 10 would have seven or more defective items.
(c) Yes, because seven defectives in a sample of size 10 is an unusually large number for a good shipment.
(d) 0.4557 (e) No, in about 45% of the samples of size 10, two or more items would be defective.
(f) No, because two defectives in a sample of size 10 is not an unusually large number for a good shipment.

21. (a) 0.8369 (b) 9

23. (a) Y = 7X + 300 (b) $930 (c) $21

25. 0.225 ± 0.064

Section 4.3
1. (a) 0.0733 (b) 0.0183 (c) 0.0916 (d) 0.9084 (e) 4 (f) 2

3. (a) 0.1339 (b) 0.0174 (c) 0.4589 (d) 6 (e) 2.45

5. (a) 0.2240 (b) 0.5768 (c) 3 (d) 1.732

7. (a) 0.1563 (b) 0.0688 (c) 0.6767

9. (ii)

11. 78 ± 12

13. (a) 0.0516 (b) 0.1859 (c) X ∼ Bin(N , 0.6) (d) 0.00960

15. (a) 0.2592 (b) 1.54 m

17. (a) 12.5 (b) 7.0 (c) 2.5 (d) 1.9 (e) 5.5 ± 3.1

19. (a) 7.295 × 10−3 (b) Yes. If the mean concentration is 7 particles per mL, then only about 7 in every thousand
1 mL samples will contain 1 or fewer particles.
(c) Yes, because 1 particle in a 1 mL sample is an unusually small number if the mean concentration is 7 particles
per mL. (d) 0.4497 (e) No. If the mean concentration is 7 particles per mL, then about 45% of all
1 mL samples will contain 6 or fewer particles.
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(f) No, because 6 particles in a 1 mL sample is not an unusually small number if the mean concentration is 7 particles
per mL.

21. 0.271 ± 0.019

Section 4.4
1. 0.3576

3. 0.0314

5. (a) 0.1244 (b) 7.5 (c) 11.25

7. (iv)

9. (a) 0.992 (b) 0.8 (c) 1.25

11. (a) 0.3 (b) μX = 1.2 (c) 0.7483

13. (a) 0.1904 (b) 0.5314 (c) 0.9162

15. (a) 0.0411 (b) 0.1275

17. P(X = n) = p(1 − p)n−1 P(Y = 1) =
(n

1

)
p1(1 − p)n−1 = np(1 − p)n−1. So P(X = n) = (1/n)P(Y = 1).

Section 4.5
1. (a) 0.8023 (b) 0.2478 (c) 0.4338 (d) 0.7404

3. (a) 1.00 (b) −2.00 (c) 1.50 (d) 0.83 (e) 1.45

5. (a) 0.0668 (b) 13.44 hours (c) 23rd percentile (d) 0.4649

7. (a) 0.0073 (b) ≈ 420 (c) 91st percentile (d) 0.4186

9. (a) 0.0228 (b) 1144 hours (c) 89th percentile (d) 0.3721

11. (a) 0.0336 (b) Yes, the proportion of days shut down in this case would be only 0.0228.

13. (a) 0.06 cm (b) 0.01458 cm (c) 0.2451 (d) 0.0502 cm (e) 0.7352
(f) The hole diameter should have mean 15.02 cm. The probability of meeting the specification will then be 0.8294.

15. (a) 0.0475 (b) 12.07 oz (c) 0.0215 oz

17. (a) 7.8125 N/m2 (b) 4.292 N/m2 (c) 76.65 N/m2

19. Let a = 1/σ and let b = −μ/σ . Then Z = a X + b. Equation (4.25) shows that Z ∼ N (0, 1).

21. (a) 0.9633 (b) 0.1867

23. (a) 0.1587 (b) 0.04605

25. (a) The mean is 114.8 J; the standard deviation is 5.006 J.
(b) Yes, only 0.15% of bolts would have breaking torques less than 100 J.
(c) The mean is 117.08 J; the standard deviation is 8.295 J. About 2% of the bolts would have breaking torques less

than 100 J, so the shipment would not be accepted.
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(d) The bolts in part (c) are stronger.
(e) The method is certainly not valid for the bolts in part (c). This sample contains an outlier (140), so the normal

distribution should not be used.

Section 4.6
1. (a) 3.5966 (b) 0.5293 (c) 3.3201 (d) 5.5400

3. (a) 25.212 (b) 3.9828 (c) 24.903 (d) 0.2148 (e) 27.666

5. (a) ln I ∼ N (1, 0.2), ln R ∼ N (4, 0.1), and I and R are independent. Therefore ln V ∼ N (5, 0.3). μV = 5 and
σ 2

V = 0.3. (b) 0.7054 (c) 0.3917 (d) 172.43 (e) 148.41 (f) 101.99 (g) 73.62
(h) 299.19

7. (a) 46.711 N/mm (b) 33.348 N/mm (c) Annularly threaded nails. The probability is 0.3372 versus 0.0516
for helically threaded nails. (d) 0.0985. (e) A helically threaded nail. Only about 0.01% of annularly
threaded nails have strengths this small, while about 4.09% of helically threaded nails do. We can be pretty sure that
it was a helically threaded nail.

9. (a) $1.0565 (b) 0.0934 (c) $1.0408 (d) 0.2090

11. ln X1, . . . , ln Xn are independent normal random variables, so ln P = a1 ln X1 + · · · + an ln Xn is a normal random
variable. It follows that P is lognormal.

Section 4.7
1. (a) 2.2222 (b) 4.9383 (c) 0.2592 (d) 1.5403

3. (a) 4 microns (b) 4 microns (c) 0.5276 (d) 0.0639 (e) 2.7726 microns (f) 5.5452 microns
(g) 18.4207 microns

5. (a) 0.0770 (b) 0.3528

7. No. If the lifetimes were exponentially distributed, the proportion of used components lasting longer than five years
would be the same as the proportion of new components lasting longer than five years, because of the lack of memory
property.

9. (a) 1/3 year (b) 1/3 year (c) 0.0498 (d) 0.2212 (e) 0.9502

11. (a) 0.6065 (b) 0.0821 (c) The time of the first replacement will be greater than 100 hours if and only if
each of the bulbs lasts longer than 100 hours. (d) 0.9179 (e) P(T ≤ t) = 1 − e−0.025t .
(f) Yes, T ∼ Exp(0.025). (g) 40 hours (h) T ∼ Exp(nλ)

Section 4.8
1. (a) 7.5 (b) 4.3301 (c) 0.4 (d) 0.2276

3. (a) 8 (b) 4 (c) 0.00175 (d) 0.9344

5. λ = 2, σ 2 = 4

7. (a) 0.6667 (b) 1.4907 (c) 0.8231 (d) 0.0208 (e) 0.0550

9. (a) 0.8490 (b) 0.5410 (c) 1899.2 hours (d) 8.761 × 10−4

11. (a) 0.3679 (b) 0.2978 (c) 0.4227
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13. (a) 0.3679 (b) 0.1353
(c) The lifetime of the system will be greater than five hours if and only if the lifetimes of both components are greater

than five hours. (d) 0.8647 (e) P(T ≤ t) = 1 − e−0.08t2
(f) Yes, T ∼ Weibull(2, 0.2828).

15. μX2 =
∫ b

a

x2 1

b − a
dx = a2 + ab + b2

3
. σ 2

X = a2 + ab + b2

3
−

(
a + b

2

)2

= (b − a)2

12
.

17. (a) F(x) =
{

0 x ≤ 0
x 0 < x ≤ 1
1 x > 1

(b) P(X ≤ x) = P((b −a)U +a ≤ x) = P(U ≤ (x −a)/(b −a)) = F((x −a)/(b −a)) =

⎧⎪⎨
⎪⎩

0 x ≤ a
x − a

b − a
a < x ≤ b

1 x > b
(c) The cdf of X is that of a random variable distributed U (a, b).

Section 4.9
1. iii.

3. (a) Bias = 0, Variance = 1/2, MSE = 1/2 (b) Bias = 0, Variance = 5/9, MSE = 5/9 (c) Bias = μ/2,
Variance = 1/8, MSE = μ2/4 + 1/8 (d) For −1.2247 < μ < 1.2247 (e) For −1.3123 < μ < 1.3123

5. 1/X

7. (a)
X

n − X
(b)

1

X − 1
(c) eX

9.

∑n

i=1 X 2
i

n

Section 4.10
1. (a) No (b) No (c) Yes

3. 0.999

0.99

0.95
0.9

0.75

0.5

0.25

0.1
0.05

0.01

0.001

2 2.5 3 3.5 4 4.5

These data do not appear to come from an approximately
normal distribution.
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5. 0.999

0.99

0.95
0.9

0.75

0.5

0.25

0.1
0.05

0.01

0.001

0 5 10 15 20 25

The PM data do not appear to come from an approxi-
mately normal distribution.

7. Yes. If the logs of the PM data come from a normal population, then the PM data come from a lognormal population,
and vice versa.

Section 4.11
1. (a) 0.2743 (b) 0.0359

3. 0.1894

5. (a) 0.0606 (b) 15.34 kg (c) 136

7. (a) 0.0793 (b) 192.6 minutes

9. 68

11. (a) 0.9418 (b) 0.2327 (c) 0.9090 (0.8409 is a spurious root.)

13. (a) 0.0475 (b) 0.8531

15. (a) 0.6578 (b) 0.4714 (c) 0.6266 (d) 48.02 mL

17. (a) 0.0002 (b) Yes. Only about 2 in 10,000 samples of size 1000 will have 75 or more nonconforming tiles if
the goal has been reached. (c) No, because 75 nonconforming tiles in a sample of 1000 is an unusually large
number if the goal has been reached. (d) 0.3594 (e) No. More than one-third of the samples of size 1000
will have 53 or more nonconforming tiles if the goal has been reached. (f) Yes, because 53 nonconforming tiles
in a sample of 1000 is not an unusually large number if the goal has been reached.

19. 0.0307

Section 4.12
1. (a) X ∼ Bin(100, 0.03), Y ∼ Bin(100, 0.05) (b) Answers will vary. (c) ≈ 0.72 (d) ≈ 0.18

(e) The distribution deviates somewhat from the normal.

3. (a) μA = 6 exactly (simulation results will be approximate), σ 2
A ≈ 0.25.

(b) ≈ 0.16 (c) The distribution is approximately normal.

5. (a) ≈ 0.25 (b) ≈ 0.25 (c) ≈ 0.61
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7. (a,b,c) Answers will vary. (d) ≈ 0.025

9. (a) Answers will vary. (b) ≈ 2.7 (c) ≈ 0.34 (d) ≈ 1.6
(e) System lifetime is not approximately normally distributed. (f) Skewed to the right.

11. (a) Answers will vary. (b) ≈ 10,090 (c) ≈ 1250 (d) ≈ 0.58 (e) ≈ 0.095
(f) The distribution differs somewhat from normal.

13. (a) λ̂ = 0.25616 (b,c,d) Answers will vary. (e) Bias ≈ 0.037, σλ̂ ≈ 0.12.

Supplementary Exercises for Chapter 4

1. 0.9744

3. (a) 0.2503 (b) 0.4744 (c) 0.1020 (d) 0.1414 (e) 0.8508

5. (a) 0.9044 (b) 0.00427 (c) 0.00512

7. (a) 0.6826 (b) z = 1.28 (c) 0.0010

9. (a) 0.0668 (b) 0.6687 (c) 0.0508

11. (a) 0.6915 (b) 0.5160 (c) 0.0469 (0.1271 is a spurious root.)

13. (a) 28.0 ± 3.7 (b) 28 mL

15. (a) 0.0749 (b) 4.7910 cm (c) 4

17. (a) 0.4889 (b) 0.8679

19. (a) 0.4090 (b) No. More than 40% of the samples will have a total weight of 914.8 oz or less if the claim is
true. (c) No, because a total weight of 914.8 oz is not unusually small if the claim is true.
(d) ≈ 0 (e) Yes. Almost none of the samples will have a total weight of 910.3 oz or less if the claim is true.
(f) Yes, because a total weight of 910.3 oz is unusually small if the claim is true.

21. (a) e−1 (b) 1 − e−1/2 (c) − ln(ln2) = 0.3665

23. (a) fX (x) = e−(x−α)/β

β[1 + e−(x−α)/β]2
(b) fX (α − x) = fX (α + x) = ex/β

β[1 + ex/β]2
(c) Since fX (x) is symmetric

around α, its center of mass is at x = α.

25. (a) P(X > s) = P(First s trials are failures) = (1 − p)s .
(b) P(X > s + t | X > s) = P(X > s + t and X > s)/P(X > s) = P(X > s + t)/P(X > s) =

(1 − p)s+t/(1 − p)s = (1 − p)t = P(X > t). Note that if X > s + t , it must be the case that X > s, which is the
reason that P(X > s + t and X > s) = P(X > s + t).

(c) Let X be the number of tosses of the penny needed to obtain the first head. Then P(X > 5 | X > 3) = P(X >

2) = 1/4. The probability that the nickel comes up tails twice is also 1/4.

27. (a) FY (y) = P(Y ≤ y) = P(7X ≤ y) = P(X ≤ y/7) = 1 − e−λy/7. (b) fY (y) = F ′
Y (y) = (λ/7)e−λy/7.

29. (a)
P(X = x)

P(X = x − 1)
= e−λλx/x!

e−λλx−1/(x − 1)!
= e−λλx(x − 1)!

e−λλx−1x!
= λ

x
.

(b) P(X = x) ≥ P(X = x − 1) if and only if
λ

x
≥ 1 if and only if x ≤ λ.
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Section 5.1
1. (a) 1.96 (b) 2.33 (c) 2.57 or 2.58 (d) 1.28

3. Up, down

5. (a) (49.61, 50.39) (b) (49.48, 50.52) (c) 86.64% (d) 171 (e) 296

7. (a) (175.50, 180.50) (b) (174.70, 181.30) (c) 88.12% (d) 189 (e) 327

9. (a) (1.538, 1.582) (b) (1.534, 1.586) (c) 92.66% (d) 385 (e) 543

11. (a) (11.718, 12.082) (b) (11.66, 12.14) (c) 66.80% (d) 465 (e) 806

13. (a) 132.72 (b) ≈ 90%

15. (a) 349.65 (b) 98.17%

17. (a) 84.471 (b) 93.94%

19. 280

21. (0.21525, 0.23875)

23. (a) False (b) True (c) False

25. The supervisor is underestimating the confidence. The statement that the mean cost is less than $160 is a one-sided
upper confidence bound with confidence level 97.5%.

Section 5.2
1. (a) 0.40 (b) (0.294, 0.517) (c) (0.272, 0.538) (d) 89 (e) 127 (f) 95.15%

3. (a) (0.629, 0.831) (b) (0.645, 0.815) (c) 300 (d) 210 (e) 0.0217

5. (a) (0.07672, 0.08721) (b) (0.07506, 0.08887) (c) 87.29%

7. 0.8113

9. (a) (0.0529, 0.1055) (b) 697 (c) (0.0008, 0.556)

11. (a) (0.107, 0.148) (b) (0.103, 0.152) (c) (0.09525, 0.15695)

13. (a) 381 (b) (0.1330, 0.2900) (c) 253

15. (a) (0.840, 0.900) (b) 486 (c) 748

Section 5.3
1. (a) 1.796 (b) 2.447 (c) 63.657 (d) 2.048

3. (a) 95% (b) 98% (c) 99% (d) 80% (e) 90%

5. (2.352, 3.524)

7. Yes, there are no outliers. A 95% confidence interval is (203.81, 206.45).
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9. (a)
1.3 1.305 1.31 1.315 1.32 1.325

(b) Yes, the 99% confidence interval is
(1.3012, 1.3218).

(c)

1.3 1.31 1.33 1.34 1.35 1.36 1.37 1.38 1.391.32
(d) No, the data set contains an outlier.

11. (1.956, 2.104)

13. (0.2198, 0.2642)

15. (a) 2.3541 (b) 0.888 (c) 3.900

17. (a) (10.0302, 33.3698) (b) No. The minimum possible value is 0, which is less than two sample standard
deviations below the sample mean. Therefore it is impossible to observe a value that is two or more sample standard
deviations below the sample mean. This suggests that the sample may not come from a normal population.

Section 5.4
1. (122.54, 137.46)

3. (0.6591, 0.7409)

5. (0.1301, 0.3499)

7. (3.100, 20.900)

9. (11.018, 32.982)

11. (a) (−1.789, 2.589)

(b) No, since 0 is in the confidence interval, it may be regarded as being a plausible value for the mean difference in
hardness.

13. It is not possible. The amounts of time spent in bed and spent asleep in bed are not independent.

Section 5.5
1. (0.0591, 0.208)

3. (a) (0.0124, 0.0633) (b) Under the first plan, the width of the 98% confidence interval would be about ±0.0250.
Under the second plan, the width of the 98% confidence interval would be about ±0.0221. Under the third plan,
the width of the 98% confidence interval would be about ±0.0233. Therefore the second plan, in which 500
additional patients are treated with drug coated stents, provides the greatest increase in precision.

5. (−0.0486, 0.6285)

7. No. The sample proportions come from the same sample rather than from two independent samples.

9. (−0.0176, 0.1772)

11. No, these are not simple random samples.
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Section 5.6
1. (0.1234, 0.8766)

3. (1.8197, 15.580)

5. (7.798, 30.602)

7. (20.278, 25.922)

9. (1.1093, 2.8907)

11. (0.765, 7.022)

13. (38.931, 132.244)

15. (2628.2, 3773.8)

Section 5.7
1. (2.090, 11.384)

3. (5.4728, 9.9272)

5. (24.439, 38.361)

7. (9.350, 10.939)

9. (a) (0.747, 2.742) (b) 80%

Section 5.8
1. (a) 23.337 (b) 4.404 (c) 16.750 (d) 0.412 (e) 30.813 (f) 14.041

3. (4.41, 19.95)

5. (36.04, 143.84)

7. (a) 0.0614 (b) (0.041, 0.117)

9. (0.00392, 0.0225)

11. χ 2
100,0.975 = 127.72, χ 2

100,0.025 = 72.28, 95% confidence interval is (35.39, 47.05)

Section 5.9
1. (a) (96.559, 106.241) (b) (96.321, 106.479)

3. (a) (3.8311, 7.9689) (b) (3.3875, 8.4125)

5. (a) (83.454, 89.666) (b) (79.808, 93.312)

Section 5.10
1. (a) X ∗ ∼ N (8.5, 0.22), Y ∗ ∼ N (21.2, 0.32) (b) Answers will vary. (c) σP ≈ 0.18

(d) Yes, P is approximately normally distributed. (e) ≈ (13.1, 13.8)

3. (a) Yes, A is approximately normally distributed. (b) σA ≈ 0.24 (c) ≈ (6.1, 7.1)
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5. (a) N (0.27, 0.402/349) and N (1.62, 1.702/143). Since the values 0.27 and 1.62 are sample means, their variances
are equal to the population variances divided by the sample sizes. (b) No, R is not approximately normally
distributed. (c) σR ≈ 0.71 (d) It is not appropriate, since R is not approximately normally distributed.

7. (a, b, c) Answers will vary.

9. (a) Coverage probability for Agresti–Coull ≈ 0.98; for traditional interval ≈ 0.89. Mean length for Agresti–Coull
≈ 0.51; for traditional interval ≈ 0.585. (b) Coverage probability for Agresti–Coull ≈ 0.95; for traditional
interval ≈ 0.95. Mean length for Agresti–Coull ≈ 0.42; for traditional interval ≈ 0.46. (c) Coverage probability
for Agresti–Coull ≈ 0.96; for traditional interval ≈ 0.92. Mean length for Agresti–Coull ≈ 0.29; for traditional
interval ≈ 0.305. (d) The traditional method has coverage probability close to 0.95 for n = 17, but less than
0.95 for both n = 10 and n = 40. (e) Agresti–Coull has greater coverage probability for sample sizes 10 and
40, nearly the same for 17. (f) The Agresti–Coull method.

Supplementary Exercises for Chapter 5
1. (1.942, 19.725)

3. (0.0374, 0.0667)

5. (0.084, 0.516)

7. (a) (0.0886, 0.241) (b) 584

9. The narrowest interval, (4.20, 5.83), is the 90% confidence interval, the widest interval, (3.57, 6.46), is the 99%
confidence interval, and (4.01, 6.02) is the 95% confidence interval.

11. (−0.420, 0.238)

13. 93

15. (a) False (b) False (c) True (d) False

17. (a) (36.804, 37.196) (b) 68% (c) The measurements come from a normal population.
(d) (36.774, 37.226)

19. (a) Since X is normally distributed with mean nλ, it follows that for a proportion 1 − α of all possible samples,
−zα/2σX < X − nλ < zα/2σX . Multiplying by −1 and adding X across the inequality yields X − zα/2σX < nλ <

X + zα/2σX , which is the desired result.
(b) Since n is a constant, σX/n = σX/n = √

nλ/n = √
λ/n. Therefore σλ̂ = σX/n.

(c) Divide the inequality in part (a) by n.
(d) Substitute

√
λ̂/n for σλ̂ in part (c) to show that for a proportion 1 − α of all possible samples, λ̂ − zα/2

√
λ̂/n <

λ < λ̂ + zα/2

√
λ̂/n. The interval λ̂ ± zα/2

√
λ̂/n is therefore a level 1 − α confidence interval for λ.

(e) (53.210, 66.790)

21. (a) 234.375 ± 19.639 (b) (195.883, 272.867)
(c) There is some deviation from normality in the tails of the distribution. The middle 95% follows the normal curve

closely, so the confidence interval is reasonably good.

23. (a,b,c) Answers will vary.

Section 6.1
1. (a) 0.0094 (b) 0.94%

3. (a) 0.2670 (b) 26.7%
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5. (a) 0.0014 (b) If the mean number of sick days were 5.4, the probability is only 0.0014 of observing a sample with
a mean less than or equal to the mean of 4.5 that was actually observed. Since this is a very small probability, we
are convinced that the mean number of sick days is less than 5.4.

7. (a) ≈ 0 (b) If the mean daily output were 740 tons or more, the probability of observing a sample mean as small as
the value of 715 that was actually observed is nearly 0. Therefore we are convinced that the mean daily output is not
740 tons or more, but instead is less than 740 tons.

9. (a) P = 0.1131 (b) If the profit margin were 10%, the probability is 0.1131 of observing a sample with a mean
less than or equal to the mean of 8.24 that was actually observed. A probability of 0.1131 is not small enough to
reject H0, so it is plausible that the mean profit margin is 10% or more.

11. (ii)

13. P = 0.0456

15. (a) 0.2153 (b) 2.65 (c) 0.0040

Section 6.2
1. P = 0.5

3. (iv)

5. (a) True (b) False (c) True (d) False

7. iii.

9. (a) H0 : μ ≤ 8 (b) H0 : μ ≤ 60,000 (c) H0 : μ = 10

11. (a) (ii) The scale is out of calibration. (b) (iii) The scale might be in calibration. (c) No. The scale is in
calibration only if μ = 10. The strongest evidence in favor of this hypothesis would occur if X = 10. But since there
is uncertainty in X , we cannot be sure even then that μ = 10.

13. No, she cannot conclude that the null hypothesis is true.

15. (i)

17. (a) Yes. Quantities greater than the upper confidence bound will have P-values less than 0.05. Therefore P < 0.05.
(b) No, we would need to know the 99% upper confidence bound to determine whether P < 0.01.

19. Yes, we can compute the P-value exactly. Since the 95% upper confidence bound is 3.45, we know that 3.40 +
1.645s/

√
n = 3.45. Therefore s/

√
n = 0.0304. The z-score is (3.40 − 3.50)/0.0304 = −3.29. The P-value is

0.0005, which is less than 0.01.

21. (a) No. The P-value is 0.196, which is greater than 0.05.
(b) The value 73 is contained in the 95% confidence interval for μ. Therefore the null hypothesis μ = 73 cannot be

rejected at the 5% level.

Section 6.3
1. Yes, P = 0.0146.

3. No, P = 0.1292.

5. Yes, P = 0.0158.
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7. No, P = 0.1867.

9. No, P = 0.2846.

11. Yes, P = 0.0040.

13. (a) 0.69 (b) −0.49 (c) 0.3121

Section 6.4
1. (a) t2 = 0.6547, 0.50 < P < 0.80 (P = 0.5799). The scale may well be calibrated correctly.

(b) The t test cannot be performed, because the sample standard deviation cannot be computed from a sample of size 1.

3. (a) H0 : μ ≤ 5 vs. H1 : μ > 5 (b) t7 = 2.2330, 0.025 < P < 0.05 (P = 0.03035).
(c) Yes, the P-value is small, so we conclude that the mean flow rate is more than 5 gpm.

5. (a) Yes, t19 = −3.7841, 0.0005 < P < 0.001 (P = 0.0006272).
(b) No, t19 = −0.91736, 0.10 < P < 0.25 (P = 0.1852).

7. (a)
3.8 4 4.2

(b) Yes, t6 = 1.4194, 0.20 <P< 0.50 (P = 0.2056),
do not reject H0.

(c)
3.9 4.1 4.24 4.3

(d) No, the sample contains an outlier.

9. Yes, t17 = 6.1136, P < 0.0005 (P = 1.147 × 10−5).

11. Yes, t9 = −5.9165, P < 0.0005 (P = 0.0001122).

13. (a) 6.0989 (b) 9.190 (c) 17.384 (d) −1.48

Section 6.5
1. Yes, P ≈ 0.

3. Yes, P = 0.0002.

5. No, P = 0.1635.

7. (a) H0 : μ1 − μ2 ≤ 0 vs. H1 : μ1 − μ2 > 0, P = 0.2119. We cannot conclude that the mean score on one-tailed
questions is greater.

(b) H0 : μ1 − μ2 = 0 vs. H1 : μ1 − μ2 �= 0, P = 0.4238. We cannot conclude that the mean score on one-tailed
questions differs from the mean score on two-tailed questions.

9. (a) Yes, P = 0.0233. (b) No, P = 0.1492.

11. No, P = 0.3050.

13. (a) (i) 11.128, (ii) 0.380484 (b) 0.0424, similar to the P-value computed with the t statistic.
(c) (−0.3967, 5.7367)

Section 6.6
1. (a) H0 : p1 − p2 ≥ 0 vs. H1 : p1 − p2 < 0 (b) P = 0.1492 (c) Machine 1

3. Yes, P = 0.0034.
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5. Yes, P = 0.0062.

7. P = 0.0643. The evidence suggests that heavy packaging reduces the proportion of damaged shipments, but may
not be conclusive.

9. No, P = 0.2843.

11. No, P = 0.238.

13. No, because the two samples are not independent.

15. (a) 0.660131 (b) 49 (c) 1.79 (d) 0.073

Section 6.7
1. (a) Yes, t3 = 2.5740, 0.025 < P < 0.050 (P = 0.04110). (b) No, t3 = 0.5148, 0.25 < P < 0.40 (P = 0.3211).

3. No, t26 = −1.3412, 0.10 < P < 0.20 (P = 0.1915).

5. Yes, t16 = 10.502, P < 0.0005 (P = 6.914 × 10−9).

7. No, t6 = −0.8885, 0.10 < P < 0.25 (P = 0.2042).

9. Yes, t27 = −4.0093, P < 0.0005 (P = 0.0002159).

11. Yes, t12 = 4.7129, P < 0.0005 (P = 0.0002515).

13. Yes, t20 = 2.9056, 0.001 < P < 0.005 (P = 0.004372).

15. No, t14 = 1.0236, 0.20 < P < 0.50 (P = 0.3234).

17. (a) 0.197 (b) 0.339 (c) −1.484 (d) −6.805

Section 6.8
1. No, t13 = 1.4593, 0.10 < P < 0.20 (P = 0.1682).

3. Yes, t9 = 2.6434, 0.02 < P < 0.05 (P = 0.02676).

5. Yes, t7 = −3.0151, 0.01 < P < 0.02 (P = 0.01952).

7. Yes, t4 = 4.7900, 0.001 < P < 0.005 (P = 0.004356).

9. No, t6 = 1.3693, 0.20 < P < 0.50 (P = 0.2199).

11. (a) Let μR be the mean number of miles per gallon for taxis using radial tires, and let μB be the mean number of
miles per gallon for taxis using bias tires. The appropriate null and alternate hypotheses are H0 : μR − μB ≤
0 vs. H1 : μR − μB > 0. The value of the test statistic is t9 = 8.9532, so P < 0.0005.

(b) The appropriate null and alternate hypotheses are H0 : μR − μB ≤ 2 vs. H1 : μR − μB > 2. The value of the test
statistic is t9 = 3.3749, so 0.001 < P < 0.005.

13. (a) 1.1050 (b) 2.8479 (c) 4.0665 (d) 3.40

Section 6.9
1. (a) Yes. S+ = 25, P = 0.0391. (b) No. S+ = 7, P > 0.1094.

(c) No. S+ = 23, P > 2(0.0781) = 0.1562.
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3. (a) No. S+ = 134, z = −0.46, P = 0.3228. (b) Yes. S+ = 249.5, z = 2.84, P = 0.0023.
(c) Yes. S+ = 70.5, z = −2.27, P = 0.0232.

5.
Difference 0.01 0.01 −0.01 0.03 0.05 −0.05 −0.07 −0.11 −0.13 0.15
Signed rank 2 2 −2 4 5.5 −5.5 −7 −8 −9 10

S+ = 2 + 2 + 4 + 5.5 + 10 = 23.5. From the table, P > 2(0.1162) = 0.2324. Do not reject.

7. Yes. W = 34, P = 2(0.0087) = 0.0174.

9. No. W = 168, z = 0.31, P = 0.7566.

Section 6.10
1. (a) H0 : p1 = 0.85, p2 = 0.10, p3 = 0.05 (b) 425, 50, 25 (c) χ 2

2 = 10.4412
(d) 0.005 < P < 0.01 (P = 0.005404). The true percentages differ from 85%, 10%, and 5%.

3. The expected values are

Near Low Middle High
Poor Poor Income Income Income

Men 222.01 100.88 302.19 486.76 491.16
Women 281.99 128.12 383.81 618.24 623.84

χ 2
4 = 108.35, P ≈ 0. It is reasonable to conclude that the proportions in the various income categories differ between

men and women.

5. Yes, χ 2
4 = 10.829, 0.025 < P < 0.05 (P = 0.02856).

7. (a) 10.30 13.35 13.35
6.96 9.02 9.02
9.74 12.62 12.62

(b) χ 2
4 = 6.4808, P > 0.10 (P = 0.1660). There is no evidence that the rows and columns are not independent.

9. (iii)

11. χ 2
3 = 2.1333, P > 0.1 (P = 0.5452). There is no evidence that the engineer’s claim is incorrect.

13. Yes, χ 2
11 = 41.3289, P < 0.005 (P = 0.00002115).

Section 6.11
1. χ 2

10 = 19.2, 0.025 < P < 0.05 (P = 0.0378).

3. χ 2
24 = 6.83, P < 0.01 (P = 0.000463).

5. χ 2
24 = 17.75, P > 0.1 (P = 0.1851).

7. χ 2
19 = 14.38, P > 0.2 (P = 0.4779).

9. 2.51

11. (a) 0.01 (b) 0.02

13. No, F12,8 = 1.602, P > 0.10 (P = 0.25642).
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Section 6.12
1. (a) True (b) False (c) False

3. (a) H0 : μ ≥ 90 vs. H1 : μ < 90 (b) X < 89.3284
(c) This is not an appropriate rejection region. The rejection region should consist of values for X that will make

the P-value of the test less than a chosen threshold level. This rejection region consists of values for which the
P-value will be greater than some level.

(d) This is an appropriate rejection region. The level of the test is 0.0708.
(e) This is not an appropriate rejection region. The rejection region should consist of values for X that will make the

P-value of the test less than a chosen threshold level. This rejection region contains values of X for which the
P-value will be large.

5. (a) Type I error (b) Correct decision (c) Correct decision (d) Type II error

7. The 1% level

Section 6.13
1. (a) True (b) True (c) False (d) False

3. Increase

5. (a) H0 : μ ≥ 50,000 vs. H1 : μ < 50,000. H1 is true. (b) The level is 0.1151; the power is 0.4207.
(c) 0.2578 (d) 0.4364 (e) 618

7. (ii)

9. (a) Two-tailed (b) p = 0.5 (c) p = 0.4
(d) Less than 0.7. The power for a sample size of 150 is 0.691332, and the power for a smaller sample size of 100

would be less than this.
(e) Greater than 0.6. The power for a sample size of 150 is 0.691332, and the power for a larger sample size of 200

would be greater than this.
(f) Greater than 0.65. The power against the alternative p = 0.4 is 0.691332, and the alternative p = 0.3 is farther

from the null than p = 0.4. So the power against the alternative p = 0.3 is greater than 0.691332.
(g) It’s impossible to tell from the output. The power against the alternative p = 0.45 will be less than the

power against p = 0.4, which is 0.691332. But we cannot tell without calculating whether it will be less
than 0.65.

11. (a) Two-tailed (b) Less than 0.9. The sample size of 60 is the smallest that will produce power greater than or
equal to the target power of 0.9.

(c) Greater than 0.9. The power is greater than 0.9 against a difference of 3, so it will be greater than 0.9 against any
difference greater than 3.

Section 6.14
1. Several tests have been performed, so we cannot interpret the P-values in the way that we do when only one test is

performed.

3. (a) The Bonferroni-adjusted P-value is 0.012. Since this value is small, we can conclude that this setting reduces the
proportion of defective parts.

(b) The Bonferroni-adjusted P-value is 0.18. Since this value is not so small, we cannot conclude that this setting
reduces the proportion of defective parts.

5. 0.0025
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7. (a) No. If the mean burnout amperage is equal to 15 A every day, the probability of rejecting H0 is 0.05 each day.
The number of times in 200 days that H0 is rejected is then a binomial random variable with n = 200, p = 0.05.
The probability of rejecting H0 10 or more times in 200 days is then approximately equal to 0.5636. So it would
not be unusual to reject H0 10 times in 200 trials if H0 is always true.

(b) Yes. If the mean burnout amperage is equal to 15 A every day, the probability of rejecting H0 is 0.05 each day.
The number of times in 200 days that H0 is rejected is then a binomial random variable with n = 200, p = 0.05.
The probability of rejecting H0 20 or more times in 200 days is then approximately equal to 0.0010. So it would
be quite unusual to reject H0 20 times in 200 trials if H0 is always true.

Section 6.15
1. (a) (ii) and (iv) (b) (i), (ii), and (iv)

3. No, the value 103 is an outlier.

5. (a) s2
A = 200.28, s2

B = 39.833, s2
A/s2

B = 5.02. (b) No, the F test requires the assumption that the data are
normally distributed. These data contain an outlier (103), so the F test should not be used. (c) P ≈ 0.37.

7. (a) The test statistic is t = X − 7

s/
√

7
. H0 will be rejected if |t | > 2.447. (b) ≈ 0.60.

9. (a) V = 26.323, σV = 0.3342 (b) z = 3.96, P ≈ 0. (c) Yes, V is approximately normally distributed.

Supplementary Exercises for Chapter 6

1. This requires a test for the difference between two means. The data are unpaired. Let μ1 represent the population mean
annual cost for cars using regular fuel, and let μ2 represent the population mean annual cost for cars using premium
fuel. Then the appropriate null and alternate hypotheses are H0 : μ1 − μ2 ≥ 0 vs. H1 : μ1 − μ2 < 0. The test statistic
is the difference in the sample mean costs between the two groups. The z table should be used to find the P-value.

3. This requires a test for a population proportion. Let p represent the population proportion of defective parts under
the new program. The appropriate null and alternate hypotheses are H0 : p ≥ 0.10 vs. H1 : p < 0.10. The test statistic
is the sample proportion of defective parts. The z table should be used to find the P-value.

5. (a) H0 : μ ≥ 16 vs. H1 : μ < 16 (b) t9 = −2.7388 (c) 0.01 < P < 0.025 (P = 0.01145), reject H0.

7. (a) H0 : μ1−μ2 = 0 vs. H1 : μ1−μ2 �= 0 (b) t6 = 2.1187 (c) 0.05 < P < 0.10 (P = 0.0784), H0 is suspect.

9. Yes. z = 4.61, P ≈ 0.

11. (a) Reject H0 if X ≥ 100.0196 or if X ≤ 99.9804. (b) Reject H0 if X ≥ 100.01645 or if X ≤ 99.98355.
(c) Yes (d) No (e) 13.36%

13. (a) 0.05 (b) 0.1094

15. The Bonferroni-adjusted P-value is 0.1228. We cannot conclude that the failure rate on line 3 is less than 0.10.

17. (a) Both samples have a median of 20. (b) W = 281.5, z = 2.03, P = 0.0424. The P-value is fairly small. If
the null hypothesis stated that the population medians were equal, this would provide reasonably strong evidence
that the population medians were in fact different.
(c) No, the X sample is heavily skewed to the right, while the Y sample is strongly bimodal. It does not seem

reasonable to assume that these samples came from populations of the same shape.

19. (a) Let μA be the mean thrust/weight ratio for fuel A, and let μB be the mean thrust/weight ratio for fuel B. The
appropriate null and alternate hypotheses are H0 : μA − μB ≤ 0 vs. H1 : μA − μB > 0.

(b) Yes. t29 = 2.0339, 0.025 < P < 0.05 (P = 0.02560).
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21. (a) Yes. (b) The conclusion is not justified. The engineer is concluding that H0 is true because the test failed
to reject.

23. No. χ 2
2 = 2.1228, P > 0.10 (P = 0.3460).

Section 7.1
1. 0.8214

3. (a) The correlation coefficient is appropriate. The points are approximately clustered around a line.
(b) The correlation coefficient is not appropriate. The relationship is curved, not linear.
(c) The correlation coefficient is not appropriate. The plot contains outliers.

5. More than 0.6

7. (a) Between temperature and yield, r = 0.7323; between stirring rate and yield, r = 0.7513; between temperature
and stirring rate, r = 0.9064.

(b) No, the result might be due to confounding, since the correlation between temperature and stirring rate is far from 0.
(c) No, the result might be due to confounding, since the correlation between temperature and stirring rate is far from 0.

9. (a) (0.7272, 0.9838). (b) No, z = 0.51, P = 0.3050. (c) Yes, t8 = 7.1965, P < 0.0005 (P = 0.00004638).

11. (−0.95256, −0.95042)

13. Yes, t21 = −2.710, 0.01 < P < 0.02 (P = 0.0131).

Section 7.2
1. (a) 319.27 lb (b) 5.65 lb

3. 0.8492

5. (a) 18.869 in. (b) 70.477 in. (c) No, some of the men whose points lie below the least-squares line will
have shorter arms.

7. y = 19.499 + 1.3458x .

9. (a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Damping Ratio
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y 
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The linear model is appropriate.

(b) y = 4.3416 − 4.9051x (c) 0.9810 Hz (d) 0.6627 Hz (e) No, because all the modes in the data set have
damping ratios less than 1. (f) 0.47738
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11. (a)
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The linear model is appropriate.

(b) y = −2090.9 + 737.1x (c) (1299.7, −243.72), (1447.1, 385.86), (1742.0, −112.99), (1889.4, −37.406),
(2036.8, −253.83), (2184.2, 462.75), (2331.7, −200.67) (d) 73.71 (e) 1963.1 (f) No, because a pH of
7 is outside the range of the data. (g) 4.872

13. y = 20 + 10x

15. (iii)

Section 7.3
1. (a) β̂0 = 7.6233, β̂1 = 0.32964 (b) 17.996 (c) For β0: (−0.744, 15.991), for β1: (0.208, 0.451)

(d) Yes. t10 = −3.119, 0.005 < P < 0.01 (P = 0.00545). (e) (16.722, 24.896) (f) (10.512, 31.106)

3. (a) The slope is −0.7524; the intercept is 88.761.
(b) Yes, the P-value for the slope is ≈ 0, so humidity is related to ozone level.
(c) 51.14 ppb (d) −0.469 (e) (41.6, 45.6)
(f) No. A reasonable range of predicted values is given by the 95% prediction interval, which is (20.86, 66.37).

5. (a) H0 : βA − βB = 0 (b) Yes. z = −4.55, P ≈ 0.

7. (a) y = 0.11453 + 0.39685x . (b) 0.021934 (c) (0.24695, 0.54675) (d) (0.68735, 0.73226)

(e) Yes, t5 = −4.60, 0.001 < P < 0.005 (P = 0.00292). (f) (0.64912, 0.77050)

9. (a) y = −0.32584 + 0.22345x . (b) For β0, (−2.031, 1.379), for β1, (0.146, 0.301).
(c) 4.14 (d) (3.727, 4.559) (e) (1.585, 6.701)

11. The confidence interval for 20 � would be the shortest. The confidence interval for 15 � would be the longest.

13. 1.388

15. (a) 0.256 (b) 0.80 (c) 1.13448 (d) 0.001

17. (a) 553.71 (b) 162.06 (c) Below
(d) There is a greater amount of vertical spread on the right side of the plot than on the left.

Section 7.4
1. (a) ln y = −0.4442 + 0.79833 ln x (b) 330.95 (c) 231.76 (d) (53.19, 1009.89)
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3. (a) y = 20.162 + 1.269x

(b) 15
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Fitted value
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ua

l

There is no apparent pattern to the residual plot. The
linear model looks fine.

(c) 15

10

5
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l

The residuals increase over time. The linear model is
not appropriate as is. Time, or other variables related
to time, must be included in the model.

5. (a) y = −235.32 + 0.695x .

(b) 1500
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�500
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0 1000 2000 3000 4000 5000

Fitted value

R
es

id
ua

l The residual plot shows a pattern, with positive
residuals at the higher and lower fitted values, and
negative residuals in the middle. The model is not
appropriate.

(c) ln y = −0.0745 + 0.925 ln x .
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(d) 0.6
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The residual plot shows no obvious pattern. The
model is appropriate.

(e) The log model is more appropriate. The 95% prediction interval is (197.26, 1559.76).

7. (a)

55 60 65 70 75 80
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85

California California is an outlier.

(b) y = 30.1218+0.5958x (c) y = −22.7145+1.3046x (d) Yes. The slope and intercept change substantially.

9. (a) 0.6
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The least-squares line is y = 0.833 + 0.235x .
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(b)
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Fitted value

The least-squares line is y = 0.199 + 1.207 ln x .
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The least-squares line is ln y = −0.0679 + 0.137x .
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Fitted value

The least-squares line is
√

y = 0.956 + 0.0874x .

(e) The model y = 0.199 + 1.207 ln x fits best. Its residual plot shows the least pattern.
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(f) 1
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The residuals show no pattern with time.

(g) 2.14 (h) (1.689, 2.594)

11. (a) The model is log10 y = β0 + β1 log10 x + ε. Note that the natural log (ln) could be used in place of log10, but
common logs are more convenient since partial pressures are expressed as powers of 10.

(b)
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The least-squares line is log10 y = − 3.277 −
0.225 log10 x . The linear model appears to fit quite
well.

(c) The theory says that the coefficient β1 of log10 x in the linear model is equal to −0.25. The estimated value is β̂ =
−0.225. We determine whether the data are consistent with the theory by testing the hypotheses H0 : β1 = −0.25
vs. H1 : β1 �= −0.25. The value of the test statistic is t21 = 0.821, so 0.20 < P < 0.50. We do not reject H0, so
the data are consistent with the theory.

13. (a) y = 2049.87 − 4.270x (b) (12, 2046) and (13, 1954) are outliers. The least-squares line with (12, 2046)
deleted is y = 2021.85 − 2.861x . The least-squares line with (13, 1954) deleted is y = 2069.30 − 5.236x . The
least-squares line with both outliers deleted is y = 2040.88 − 3.809x .

(c) The slopes of the least-squares lines are noticeably affected by the outliers. They ranged from −2.861 to −5.236.

15. ln W = β0 + β1 ln L + ε, where β0 = ln a and β1 = b.

17. (a) A physical law. (b) It would be better to redo the experiment. If the results of an experiment violate a
physical law, then something was wrong with the experiment, and you can’t fix it by transforming variables.
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Supplementary Exercises for Chapter 7
1. (a) β̂0 = −0.0390, β̂1 = 1.017 (b) 0 (c) The molar absorption coefficient M . (d) Testing H0 : β0 = 0 vs.

H1 : β0 �= 0, t3 = −0.428 and 0.50 < P < 0.80 (P = 0.697), so the data are consistent with the Beer–Lambert law.

3. (a) 100

90

80

70

60

50

40
40 50 60 70 80 90 100

(b) Ti+1 = 120.18 − 0.696Ti . (c) (−0.888, −0.503) (d) 71.48 minutes (e) (68.40, 74.56)
(f) (45.00, 97.95)

5. (a) β̂0 = 0.8182, β̂1 = 0.9418 (b) No. t9 = 1.274, 0.20 < P < 0.50 (P = 0.235).
(c) Yes. t9 = −5.358, P < 0.001 (P = 0.000457).
(d) Yes, since we can conclude that β1 �= 1, we can conclude that the machine is out of calibration.
(e) (18.58, 20.73) (f) (75.09, 77.23) (g) No, when the true value is 20, the result of part (e) shows that a
95% confidence interval for the mean of the measured values is (18.58, 20.73). Therefore it is plausible that the mean
measurement will be 20, so that the machine is in calibration.

7. (a) y = −2.6903 + 0.0391x (b) For β0: (−6.0171, 0.6366), for β1: (0.0030, 0.0752). (c) 0.9465
(d) (0.7848, 1.1082) (e) (0.1118, 1.7812)

9. (a) ln y = β0 + β1 ln x , where β0 = ln k and β1 = r .
(b) The least-squares line is ln y = −1.7058 + 0.65033 ln x . Therefore r̂ = 0.65033 and k̂ = e−1.7058 = 0.18162.
(c) t3 = 4.660, P = 0.019. No, it is not plausible.

11. (a) y = 337.13 + 0.098006x . (b)
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(c) ln y = −0.46584 + 0.81975 ln x . (d)
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Fitted value
(e) (38.75, 5103.01)

13. (a) β̂0 = 60.263, β̂1 = 0.11653, s2 = 0.38660. (b) Yes. t10 = 80.956, P ≈ 0. (c) Yes. t10 = 36.294, P ≈ 0.

(d) 1
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Fitted value

The linear model appears to be appropriate.

(e) (0.10938, 0.12369) (f) (86.083, 86.883) (g) (85.041, 87.925)

15. (ii)

17. (a) 145.63 (b) Yes. r = −√
R-Sq = −0.988. Note that r is negative because the slope of the least-squares line

is negative. (c) 145.68.

19. (a) We need to minimize the sum of squares S = ∑
(yi − β̂xi )

2. We take the derivative with respect to β̂ and set it

equal to 0, obtaining −2
∑

xi (yi − β̂xi ) = 0. Then
∑

xi yi − β̂
∑

x2
i = 0, so β̂ = ∑

xi yi/
∑

x2
i .

(b) Let ci = xi/
∑

x2
i . Then β̂ = ∑

ci yi , so σ 2
β̂

= ∑
c2

i σ
2 = σ 2

∑
x2

i /
(∑

x2
i

)2 = σ 2/
∑

x2
i .
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21. From the answer to Exercise 20, we know that
∑n

i=1(xi − x) = 0,
∑n

i=1 x(xi − x) = 0, and
∑n

i=1 xi (xi − x) =∑n

i=1(xi − x)2. Now

μ
β̂0

=
n∑

i=1

[
1

n
− x(xi − x)∑n

i=1(xi − x)2

]
μyi

=
n∑

i=1

[
1

n
− x(xi − x)∑n

i=1(xi − x)2

]
(β0 + β1xi )

= β0

n∑
i=1

1

n
+ β1

n∑
i=1

xi

n
− β0

∑n

i=1 x(xi − x)∑n

i=1(xi − x)2
− β1

∑n

i=1 xi x(xi − x)∑n

i=1(xi − x)2

= β0 + β1x − 0 − β1x

∑n

i=1 xi (xi − x)∑n

i=1(xi − x)2

= β0 + β1x − 0 − β1x

= β0

23.
σ 2

β̂0
=

n∑
i=1

[
1

n
− x(xi − x)∑n

i=1(xi − x)2

]2

σ 2

=
n∑

i=1

[
1

n2
− 2x

n

(xi − x)∑n

i=1(xi − x)2
+ x2

∑n

i=1(xi − x)2[∑n

i=1(xi − x)2
]2

]
σ 2

=
[

n∑
i=1

1

n2
− 2

x

n

∑n

i=1(xi − x)∑n

i=1(xi − x)2
+ x2

∑n

i=1(xi − x)2[∑n

i=1(xi − x)2
]2

]
σ 2

=
[

1

n
− 2

x

n
(0) + x2∑n

i=1(xi − x)2

]
σ 2

=
[

1

n
+ x2∑n

i=1(xi − x)2

]
σ 2

Section 8.1
1. (a) 49.617 kg/mm2 (b) 33.201 kg/mm2 (c) 2.1245 kg/mm2

3.

45 46 47 48 49 50 51 52
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l There is no obvious pattern to the residual plot, so
the linear model appears to fit well.
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5. (a) 25.465 (b) No, the predicted change depends on the values of the other independent variables, because of the
interaction terms. (c) 0.9691 (d) F9,17 = 59.204. Yes, the null hypothesis can be rejected.

7. (a) 2.3411 L (b) 0.06768 L (c) Nothing is wrong. In theory, the constant estimates FEV1 for an individual
whose values for the other variables are all equal to zero. Since these values are outside the range of the data (e.g.,
no one has zero height), the constant need not represent a realistic value for an actual person.

9. (a) 3.572 (b) 0.098184 (c) Nothing is wrong. The constant estimates the pH for a pulp whose values for
the other variables are all equal to zero. Since these values are outside the range of the data (e.g., no pulp has zero
density), the constant need not represent a realistic value for an actual pulp. (d) (3.4207, 4.0496)

(e) (2.2333, 3.9416) (f) Pulp B. The standard deviation of its predicted pH (SE Fit) is smaller than that of
pulp A (0.1351 vs. 0.2510).

11. (a) −2.05 (b) 0.3512 (c) −0.2445 (d) 4.72 (e) 13.92 (f) 18.316 (g) 4.54 (h) 9

13. (a) 135.92◦F (b) No. The change in the predicted flash point due to a change in acetic acid concentration depends
on the butyric acid concentration as well, because of the interaction between these two variables.
(c) Yes. The predicted flash point will change by –13.897◦F.

15. (a) 0.2286, −0.5743, 0.3514, 0.1057, −0.1114, 0.0000 (b) SSE = 0.5291, SST = 16.7083 (c) s2 = 0.1764
(d) R2 = 0.9683 (e) F = 45.864. There are 2 and 3 degrees of freedom. (f) Yes, the P-value corresponding to

the F statistic with 2 and 3 degrees of freedom is between 0.001 and 0.01, so it is less than 0.05.

17. (a) 2.0711 (b) 0.17918 (c) PP is more useful, because its P-value is small, while the P-value of CP is fairly
large. (d) The percent change in GDP would be expected to be larger in Sweden, because the coefficient of
PP is negative.

19. (a) y = −0.012167 + 0.043258t + 2.9205t2 (b) (2.830, 3.011) (c) (5.660, 6.022) (d) β̂0: t7 =
−1.1766, P = 0.278, β̂1: t7 = 1.0017, P = 0.350, β̂2: t7 = 76.33, P = 0.000. (e) No, the P-value of 0.278 is
not small enough to reject the null hypothesis that β0 = 0. (f) No, the P-value of 0.350 is not small enough to
reject the null hypothesis that β1 = 0.

Section 8.2
1. (a)

Predictor Coef StDev T P

Constant 6.3347 2.1740 2.9138 0.009
x1 1.2915 0.1392 9.2776 0.000

β0 differs from 0 (P = 0.009), β1 differs from 0 (P = 0.000).

(b)
Predictor Coef StDev T P

Constant 53.964 8.7737 6.1506 0.000
x2 −0.9192 0.2821 −3.2580 0.004

β0 differs from 0 (P = 0.000), β1 differs from 0 (P = 0.004).

(c)
Predictor Coef StDev T P

Constant 12.844 7.5139 1.7094 0.104
x1 1.2029 0.1707 7.0479 0.000
x2 −0.1682 0.1858 −0.90537 0.377

β0 may not differ from 0 (P = 0.104), β1 differs from 0 (P = 0.000), β2 may not differ from 0 (P = 0.377).
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(d) The model in part (a) is the best. When both x1 and x2 are in the model, only the coefficient of x1 is significantly
different from 0. In addition, the value of R2 is only slightly greater (0.819 vs. 0.811) for the model containing
both x1 and x2 than for the model containing x1 alone.

3. (a) Plot (i) came from engineer B, and plot (ii) came from engineer A. We know this because the variables x1 and x2

are both significantly different from 0 for engineer A but not for engineer B. Therefore engineer B is the one who
designed the experiment to have the dependent variables nearly collinear.

(b) Engineer A’s experiment produced the more reliable results. In engineer B’s experiment, the two dependent
variables are nearly collinear.

5. (a) For R1 < 4, the least-squares line is R2 = 1.23 + 0.264R1. For R1 ≥ 4, the least-squares line is R2 =
−0.190 + 0.710R1.

(b) The relationship is clearly nonlinear when R1 < 4.

Predictor Coef StDev T P

Constant 1.2840 0.26454 4.8536 0.000
R1 0.21661 0.23558 0.91947 0.368
R2

1 0.0090189 0.044984 0.20049 0.843

Predictor Coef StDev T P

Constant −1.8396 0.56292 −3.2680 0.004
R1 4.4987 0.75218 5.9809 0.000
R2

1 −1.7709 0.30789 −5.7518 0.000
R3

1 0.22904 0.039454 5.8053 0.000

Predictor Coef StDev T P

Constant −2.6714 2.0117 −1.3279 0.200
R1 6.0208 3.6106 1.6675 0.112
R2

1 −2.7520 2.2957 −1.1988 0.245
R3

1 0.49423 0.61599 0.80234 0.432
R4

1 −0.02558 0.05930 −0.43143 0.671

(c)
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(d) 250
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The correlation coefficient between R3
1 and R4

1 is
0.997.

(e) R3
1 and R4

1 are nearly collinear.
(f) The cubic model is best. The quadratic is inappropriate because the residual plot exhibits a pattern. The residual

plots for both the cubic and quartic models look good; however, there is no reason to include R4
1 in the model

since it merely confounds the effect of R3
1 .

Section 8.3
1. (a) False (b) True (c) False (d) True

3. v.

5. iv.

7. The four-variable model with the highest value of R2 has a lower R2 than the three-variable model with the highest
value of R2. This is impossible.

9. (a) 0.2803 (b) Three degrees of freedom in the numerator and 157 in the denominator. (c) P > 0.10.
The reduced model is plausible. (d) This is not correct. It is possible for a group of variables to be fairly
strongly related to an independent variable, even though none of the variables individually is strongly related.

(e) No mistake. If y is the dependent variable, then the total sum of squares is
∑

(yi − y)2. This quantity does not
involve the independent variables.

11. No, F3,17 = 10.96, P < 0.001.

13. (a)
Predictor Coef StDev T P

Constant 37.989 53.502 0.71004 0.487
x 1.0774 0.041608 25.894 0.000

(b)
Predictor Coef StDev T P

Constant −253.45 132.93 −1.9067 0.074
x 1.592 0.22215 7.1665 0.000
x2 −0.00020052 0.000085328 −2.3499 0.031
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Quadratic model

(e) The quadratic model seems more appropriate. The P-value for the quadratic term is fairly small (0.031), and the
residual plot for the quadratic model exhibits less of a pattern. (There are a couple of points somewhat detached
from the rest of the plot, however.)

(f) 1683.5 (g) (1634.7, 1732.2)

15. (a) Predictor Coef StDev T P

Constant 25.613 10.424 2.4572 0.044
x1 0.18387 0.12353 1.4885 0.180
x2 −0.015878 0.0040542 −3.9164 0.006

(b) Predictor Coef StDev T P

Constant 14.444 16.754 0.86215 0.414
x1 0.17334 0.20637 0.83993 0.425
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(c) Predictor Coef StDev T P

Constant 40.370 3.4545 11.686 0.000
x2 −0.015747 0.0043503 −3.6197 0.007

(d) The model containing x2 as the only independent variable is best. There is no evidence that the coefficient of x1

differs from 0.

17. The model y = β0 +β1x2 +ε is a good one. One way to see this is to compare the fit of this model to the full quadratic
model. The ANOVA table for the full model is

Source DF SS MS F P

Regression 5 4.1007 0.82013 1.881 0.193
Residual error 9 3.9241 0.43601
Total 14 8.0248

The ANOVA table for the model y = β0 + β1x2 + ε is

Source DF SS MS F P

Regression 1 2.7636 2.7636 6.8285 0.021
Residual error 13 5.2612 0.40471
Total 14 8.0248

From these two tables, the F statistic for testing the plausibility of the reduced model is
(5.2612 − 3.9241)/(5 − 1)

3.9241/9
=

0.7667. The null distribution is F4,9, P > 0.10. The large P-value indicates that the reduced model is plausible.

Supplementary Exercises for Chapter 8

1. (a) 24.6% (b) 5.43% (c) No, we need to know the oxygen content.

3. (a) 0.207 (b) 0.8015 (c) 3.82 (d) 1.200 (e) 2 (f) 86.81 (g) 43.405 (h) 30.14 (i) 14

5. (a)
Predictor Coef StDev T P

Constant 10.84 0.2749 39.432 0.000
Speed −0.073851 0.023379 −3.1589 0.004
Pause −0.12743 0.013934 −9.1456 0.000
Speed2 0.0011098 0.00048887 2.2702 0.032
Pause2 0.0016736 0.00024304 6.8861 0.000
Speed · Pause −0.00024272 0.00027719 −0.87563 0.390

Analysis of Variance

Source DF SS MS F P

Regression 5 31.304 6.2608 56.783 0.000
Residual error 24 2.6462 0.11026
Total 29 33.95
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(b) We drop the interaction term Speed · Pause.

Predictor Coef StDev T P

Constant 10.967 0.23213 47.246 0.000
Speed −0.079919 0.022223 −3.5961 0.001
Pause −0.13253 0.01260 −10.518 0.000
Speed2 0.0011098 0.00048658 2.2809 0.031
Pause2 0.0016736 0.0002419 6.9185 0.000

Analysis of Variance

Source DF SS MS F P

Regression 4 31.22 7.8049 71.454 0.000
Residual error 25 2.7307 0.10923
Total 29 33.95

Comparing this model with the one in part (a), F1,24 = 0.77, P > 0.10.

(c) 1
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Fitted value

There is some suggestion of heteroscedasticity, but it
is hard to be sure without more data.

(d) No, compared with the full model containing Speed, Pause, Speed2, and Pause2, and Speed · Pause, the F statistic
is F3, 24 = 15.70, and P < 0.001.
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(e)
S
p
e
e
d

S P *
S P p a P
p a e u a
e u e s u
e s d e s

Vars R-Sq R-Sq(adj) C-p S d e 2 2 e
1 61.5 60.1 92.5 0.68318 X
1 60.0 58.6 97.0 0.69600 X
2 76.9 75.2 47.1 0.53888 X X
2 74.9 73.0 53.3 0.56198 X X
3 90.3 89.2 7.9 0.35621 X X X
3 87.8 86.4 15.5 0.39903 X X X
4 92.0 90.7 4.8 0.33050 X X X X
4 90.5 89.0 9.2 0.35858 X X X X
5 92.2 90.6 6.0 0.33205 X X X X X

(f) The model containing the dependent variables Speed, Pause, Speed2, and Pause2 has both the lowest value of Cp

and the largest value of adjusted R2.
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The residual plot shows an obvious curved pattern, so the
linear model is not appropriate.
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Fitted value

There is no obvious pattern to the residual plot, so the quadratic
model appears to fit well.
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Cubic model

Fitted value

There is no obvious pattern to the residual plot, so the
cubic model appears to fit well.

9. (a) 182.52, 166.55, 187.56 (b) 236.39, 234.18, 237.02 (c) 176.80, 163.89, 180.78
(d) (iv). The output does not provide much to choose from between the two-variable models. In the three-variable

model, none of the coefficients are significantly different from 0, even though they were significant in the two-
variable models. This suggests collinearity.

11. (a) Following are the values of SSE and their degrees of freedom for models of degrees 1, 2, 3, and 4.

Linear 18 2726.55
Quadratic 17 481.90
Cubic 16 115.23
Quartic 15 111.78

To compare quadratic vs. linear, F1,17 = (2726.55 − 481.90)/(18 − 17)

481.90/17
= 79.185, P ≈ 0.

To compare cubic vs. quadratic, F1,16 = (481.90 − 115.23)/(17 − 16)

115.23/16
= 50.913, P ≈ 0.

To compare quartic vs. cubic, F1,15 = (115.23 − 111.78)/(16 − 15)

111.78/15
= 0.463, P > 0.10.

The cubic model is selected by this procedure.
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(b) The cubic model is y = 27.937 + 0.48749x + 0.85104x2 − 0.057254x3. The estimate y is maximized when
dy/dx = 0. dy/dx = 0.48749 + 1.70208x − 0.171762x2. Therefore x = 10.188.

13. (a) Let y1 represent the lifetime of the sponsor’s paint, y2 represent the lifetime of the competitor’s paint, x1 repre-
sent January temperature, x2 represent July temperature, and x3 represent precipitation. Then one good model
for y1 is y1 = −4.2342 + 0.79037x1 + 0.20554x2 − 0.082363x3 − 0.0079983x1x2−0.0018349x2

1 . A good model
for y2 is y2 = 6.8544+0.58898x1 +0.054759x2 −0.15058x3 −0.0046519x1x2 +0.0019029x1x3 −0.0035069x2

1 .
(b) ŷ1 = 13.83, ŷ2 = 13.90.

15. (a)
Predictor Coef StDev T P

Constant 0.25317 0.0065217 38.819 0.000
x −0.041561 0.040281 −1.0318 0.320

(b)
Predictor Coef StDev T P

Constant 0.21995 0.0038434 57.23 0.000
x 0.58931 0.06146 9.5886 0.000
x2 −2.2679 0.2155 −10.524 0.000

(c)
Predictor Coef StDev T P

Constant 0.22514 0.0068959 32.648 0.000
x 0.41105 0.20576 1.9977 0.069
x2 −0.74651 1.6887 −0.44206 0.666
x3 −3.6728 4.043 −0.90843 0.382

(d) Predictor Coef StDev T P

Constant 0.23152 0.013498 17.152 0.000
x 0.10911 0.58342 0.18702 0.855
x2 3.4544 7.7602 0.44515 0.665
x3 −26.022 40.45 −0.64333 0.533
x4 40.157 72.293 0.55548 0.590

(e) The quadratic model. The coefficient of x3 in the cubic model is not significantly different from 0. Neither is the
coefficient of x4 in the quartic model.

(f) 0.258

17. (a)
Predictor Coef StDev T P

Constant −0.093765 0.092621 −1.0123 0.335
x1 0.63318 2.2088 0.28666 0.780
x2 2.5095 0.30151 8.3233 0.000
x2

1 5.318 8.2231 0.64672 0.532
x2

2 −0.3214 0.17396 −1.8475 0.094
x1x2 0.15209 1.5778 0.09639 0.925
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Analysis of Variance

Source DF SS MS F P

Regression 5 20.349 4.0698 894.19 0.000
Residual error 10 0.045513 0.0045513
Total 15 20.394

(b) The model containing the variables x1, x2, and x2
2 is a good one. Here are the coefficients along with their standard

deviations, followed by the analysis of variance table.

Predictor Coef StDev T P

Constant −0.088618 0.068181 −1.2997 0.218
x1 2.1282 0.30057 7.0805 0.000
x2 2.4079 0.13985 17.218 0.000
x2

2 −0.27994 0.059211 −4.7279 0.000

Analysis of Variance

Source DF SS MS F P

Regression 3 20.346 6.782 1683.9 0.000
Residual error 12 0.048329 0.0040275
Total 15 20.394

The F statistic for comparing this model to the full quadratic model is F2,10= (0.048329 − 0.045513)/(12−10)

0.045513/10
=

0.309, P > 0.10, so it is reasonable to drop x2
1 and x1x2 from the full quadratic model. All the remaining coeffi-

cients are significantly different from 0, so it would not be reasonable to reduce the model further.

(c) The model with the best adjusted R2 (0.99716) contains the variables x2, x2
1 , and x2

2 . This model is also the
model with the smallest value of Mallows’ Cp (2.2). This is not the best model, since it contains x2

1 but not x1.
The model containing x1, x2, and x2

2 , suggested in the answer to part (b), is better. Note that the adjusted R2 for the
model in part (b) is 0.99704, which differs negligibly from that of the model with the largest adjusted R2 value.

19. (a) Predictor Coef StDev T P

Constant 1.1623 0.17042 6.8201 0.006
t 0.059718 0.0088901 6.7174 0.007
t2 −0.00027482 0.000069662 −3.9450 0.029

(b) 17.68 minutes (c) (0.0314, 0.0880) (d) The reaction rate is decreasing with time if β2 < 0.
We therefore test H0 : β2 ≥ 0 vs. H1 : β2 < 0. The test statistic is t3 = 3.945, P = 0.029/2 = 0.0145. It is
reasonable to conclude that the reaction rate decreases with time.

21. y = β0 + β1x1 + β2x2 + β3x1x2 + ε.
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23. (a) The 17-variable model containing the independent variables x1, x2, x3, x6, x7, x8, x9, x11, x13, x14, x16, x18, x19, x20,
x21, x22, and x23 has adjusted R2 equal to 0.98446. The fitted model is

y = −1569.8 − 24.909x1 + 196.95x2 + 8.8669x3 − 2.2359x6 − 0.077581x7 + 0.057329x8

− 1.3057x9 − 12.227x11 + 44.143x13 + 4.1883x14 + 0.97071x16 + 74.775x18

+ 21.656x19 − 18.253x20 + 82.591x21 − 37.553x22 + 329.8x23

(b) The eight-variable model containing the independent variables x1, x2, x5, x8, x10, x11, x14, and x21 has Mallows’
Cp equal to 1.7. The fitted model is

y = −665.98 − 24.782x1 + 76.499x2 + 121.96x5 + 0.024247x8 + 20.4x10 − 7.1313x11 + 2.4466x14 + 47.85x21

(c) Using a value of 0.15 for both α-to-enter and α-to-remove, the equation chosen by stepwise regression is y =
−927.72 + 142.40x5 + 0.081701x7 + 21.698x10 + 0.41270x16 + 45.672x21.

(d) The following 13-variable model has adjusted R2 equal to 0.95402. (There are also two 12-variable models whose
adjusted R2 is only very slightly lower.)

z = 8663.2 − 313.31x3 − 14.46x6 + 0.358x7 − 0.078746x8 + 13.998x9 + 230.24x10

− 188.16x13 + 5.4133x14 + 1928.2x15 − 8.2533x16 + 294.94x19 + 129.79x22 − 3020.7x23

(e) The two-variable model z = −1660.9 + 0.67152x7 + 134.28x10 has Mallows’ Cp equal to −4.0.
(f) Using a value of 0.15 for both α-to-enter and α-to-remove, the equation chosen by stepwise regression is z =

−1660.9 + 0.67152x7 + 134.28x10

(g) The following 17-variable model has adjusted R2 equal to 0.97783.

w = 700.56 − 21.701x2 − 20.000x3 + 21.813x4 + 62.599x5 + 0.016156x7

− 0.012689x8 + 1.1315x9 + 15.245x10 + 1.1103x11 − 20.523x13 − 90.189x15

− 0.77442x16 + 7.5559x19 + 5.9163x20 − 7.5497x21 + 12.994x22 − 271.32x23

(h) The following 13-variable model has Mallows’ Cp equal to 8.0.

w = 567.06 − 23.582x2 − 16.766x3 + 90.482x5 + 0.0082274x7 − 0.011004x8 + 0.89554x9

+12.131x10 − 11.984x13 − 0.67302x16 + 11.097x19 + 4.6448x20 + 11.108x22 − 217.82x23

(i) Using a value of 0.15 for both α-to-enter and α-to-remove, the equation chosen by stepwise regression is w =
130.92 − 28.085x2 + 113.49x5 + 0.16802x9 − 0.20216x16 + 11.417x19 + 12.068x21 − 78.371x23.

Section 9.1
1. (a) Source DF SS MS F P

Temperature 3 202.44 67.481 59.731 0.000
Error 16 18.076 1.1297
Total 19 220.52

(b) Yes. F3, 16 = 59.731, P < 0.001 (P ≈ 0).

3. (a) Source DF SS MS F P

Treatment 4 19.009 4.7522 2.3604 0.117
Error 11 22.147 2.0133
Total 15 41.155

(b) No. F4,11 = 2.3604, P > 0.10 (P = 0.117).
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5. (a)
Source DF SS MS F P

Age 5 3.8081 0.76161 7.9115 0.000
Error 73 7.0274 0.096266
Total 78 10.835

(b) Yes, F5,73 = 7.9115, P < 0.01

7. (a)
Source DF SS MS F P

Group 3 0.19218 0.064062 1.8795 0.142
Error 62 2.1133 0.034085
Total 65 2.3055

(b) No. F3,62 = 1.8795, P > 0.10 (P = 0.142).

9. (a)
Source DF SS MS F P

Temperature 2 148.56 74.281 10.530 0.011
Error 6 42.327 7.0544
Total 8 190.89

(b) Yes. F2, 6 = 10.530, 0.01 < P < 0.05 (P = 0.011).

11. No, F3,16 = 15.8255, P < 0.001 (P ≈ 4.8 × 10−5).

13. (a)
Source DF SS MS F P

Temperature 3 58.650 19.550 8.4914 0.001
Error 16 36.837 2.3023
Total 19 95.487

(b) Yes, F3,16 = 8.4914, 0.001 < P < 0.01 (P = 0.0013).

15. (a) s = 1.517 (b) 18 (c) 38

17. (a) Source DF SS MS F P

Machine 4 6862 1715.5 7.8825 0.000
Error 30 6529.1 217.64
Total 34 13391

(b) Yes, F4,30 = 7.8825, P ≈ 0

19. (a) Source DF SS MS F P

Soil 2 2.1615 1.0808 5.6099 0.0104
Error 23 4.4309 0.19265
Total 25 6.5924

(b) Yes, F2,23 = 5.6099, 0.01 < P < 0.05 (P = 0.0104).
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Section 9.2
1. (a) Yes, F5,6 = 46.64, P ≈ 0.

(b) q6,6,.05 = 5.63. The value of MSE is 0.00508. The 5% critical value is therefore 5.63
√

0.00508/2 = 0.284. Any
pair that differs by more than 0.284 can be concluded to be different. The following pairs meet this criterion: A
and B, A and C, A and D, A and E, B and C, B and D, B and E, B and F, D and F.

(c) t6,.025/15 = 4.698 (the value obtained by interpolating is 4.958). The value of MSE is 0.00508. The 5% critical
value is therefore 4.698

√
2(0.00508)/2 = 0.335. Any pair that differs by more than 0.335 may be concluded to

be different. The following pairs meet this criterion: A and B, A and C, A and D, A and E, B and C, B and D,
B and E, B and F, D and F.

(d) The Tukey–Kramer method is more powerful, since its critical value is smaller (0.284 vs. 0.335).
(e) Either the Bonferroni or the Tukey–Kramer method can be used.

3. (a) MSE = 2.9659, Ji = 12 for all i . There are seven comparisons to be made. Now t88,.025/7 = 2.754, so the 5% critical
value is 2.754

√
2.9659(1/12 + 1/12) = 1.936. All the sample means of the noncontrol formulations differ from

the sample mean of the control formulation by more than this amount. Therefore we conclude at the 5% level that
all the noncontrol formulations differ from the control formulation.

(b) There are seven comparisons to be made. We should use the Studentized range value q7,88,.05. This value is not in the
table, so we will use q7,60,.05 = 4.31, which is only slightly larger. The 5% critical value is 4.31

√
2.9659/12 = 2.14.

All the noncontrol formulations differ from the sample mean of the control formulation by more than this amount.
Therefore we conclude at the 5% level that all the noncontrol formulations differ from the control formulation.

(c) The Bonferroni method is more powerful, because it is based on the actual number of comparisons being made,
which is 7. The Tukey–Kramer method is based on the largest number of comparisons that could be made, which
is (7)(8)/2 = 28.

5. (a) t16,.025/6 = 3.0083 (the value obtained by interpolating is 3.080). The value of MSE is 2.3023. The 5% critical
value is therefore 3.0083

√
2(2.3023)/5 = 2.8869. We may conclude that the mean for 750◦C differs from the

means for 850◦C and 900◦C, and that the mean for 800◦ differs from the mean for 900◦C.
(b) q4,16,.05 = 4.05. The value of MSE is 2.3023. The 5% critical value is therefore 4.05

√
2.3023/5 = 2.75. We may

conclude that the mean for 750◦C differs from the means for 850◦C and 900◦C, and that the mean for 800◦ differs
from the mean for 900◦C.

(c) The Tukey–Kramer method is more powerful, because its critical value is smaller.

7. (a) t16,.025/3 = 2.6730 (the value obtained by interpolating is 2.696). The value of MSE is 2.3023. The 5% critical
value is therefore 2.6730

√
2(2.3023)/5 = 2.5651. We may conclude that the mean for 900◦C differs from the

means for 750◦C and 800◦C.
(b) q4,16,.05 = 4.05. The value of MSE is 2.3023. The 5% critical value is therefore 4.05

√
2.3023/5 = 2.75. We may

conclude that the mean for 900◦C differs from the means for 750◦C and 800◦C.
(c) The Bonferroni method is more powerful, because its critical value is smaller.

9. (a) t73,.025 = 1.993, M SE = 0.096266, the sample sizes are 12 and 15. The sample means are X 1 = 1.6825,
X 6 = 2.0353. The 95% confidence interval is 0.3528 ± 1.993

√
0.096266(1/12 + 1/15), or (0.1133, 0.5923).

(b) The sample sizes are J1 = 12, J2 = 12, J3 = 13, J4 = 12, J5 = 15, J6 = 15. M SE = 0.096266. We should use
the Studentized range value q6,73,.05. This value is not in the table, so we will use q6,60,.05 = 4.16, which is only slightly
larger. The values of q6,60,.05

√
(M SE/2)(1/Ji + 1/Jj ) and the values of the differences |Xi. − X j.| are presented in

the following two tables.
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q6,60,.05

√
(M SE/2)(1/Ji + 1/Jj )

1 2 3 4 5 6
1 − 0.37260 0.36536 0.37260 0.35348 0.35348
2 0.37260 − 0.36536 0.37260 0.35348 0.35348
3 0.36536 0.36536 − 0.36536 0.34584 0.34584
4 0.37260 0.37260 0.36536 − 0.35348 0.35348
5 0.35348 0.35348 0.34584 0.35348 − 0.33326
6 0.35348 0.35348 0.34584 0.35348 0.33326 −

|Xi. − X j.|
1 2 3 4 5 6

1 0 0.0075 0.49904 0.15083 0.5475 0.35283
2 0.0075 0 0.49154 0.14333 0.54 0.34533
3 0.49904 0.49154 0 0.34821 0.048462 0.14621
4 0.15083 0.14333 0.34821 0 0.39667 0.202
5 0.5475 0.54 0.048462 0.39667 0 0.19467
6 0.35283 0.34533 0.14621 0.202 0.19467 0

The differences that are significant at the 5% level are: mean 1 differs from means 3 and 5; mean 2 differs from means
3 and 5; and mean 4 differs from mean 5.

11. (a) t8,.025 = 2.306, MSE = 1.3718. The sample means are X 1 = 1.998 and X 3 = 5.300. The sample sizes are J1 = 5
and J3 = 3. The 95% confidence interval is therefore 3.302 ± 2.306

√
1.3718(1/5 + 1/3), or (1.330, 5.274).

(b) The sample means are X 1 = 1.998, X 2 = 3.0000, X 3 = 5.300. The sample sizes are J1 = 5, J2 = J3 = 3. The
upper 5% point of the Studentized range is q3,8,.05 = 4.04. The 5% critical value for |X 1 − X 2| and for |X 1 − X 3| is
4.04

√
(1.3718/2)(1/5 + 1/3) = 2.44, and the 5% critical value for |X 2 − X 3| is 4.04

√
(1.3718/2)(1/3 + 1/3) =

2.73. Therefore means 1 and 3 differ at the 5% level.

13. (a) MSTr = 19.554 so F = 19.554/3.85 = 5.08. There are 3 and 16 degrees of freedom, so 0.01 < P < 0.05. The
null hypothesis of no difference is rejected at the 5% level.

(b) q4,16 .05 = 4.05, so catalysts whose means differ by more than 4.05
√

3.85/5 = 3.55 are significantly different at
the 5% level. Catalysts 1 and 2 both differ significantly from catalyst 4.

15. Any value of MSE satisfying 5.099 < MSE < 6.035.

Section 9.3
1. (a) 3 (b) 2 (c) 6 (d) 24

(e) Source DF SS MS F P

Oil 3 1.0926 0.36420 5.1314 0.007
Ring 2 0.9340 0.46700 6.5798 0.005
Interaction 6 0.2485 0.041417 0.58354 0.740
Error 24 1.7034 0.070975
Total 35 3.9785

(f) Yes. F6,24 = 0.58354, P > 0.10 (P = 0.740).
(g) No, some of the main effects of oil type are nonzero. F3,24 = 5.1314, 0.001 < P < 0.01 (P = 0.007).
(h) No, some of the main effects of piston ring type are nonzero. F2,24 = 6.5798, 0.001 < P < 0.01 (P = 0.005).
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3. (a)

Source DF SS MS F P

Mold Temp. 4 69,738 17,434.5 6.7724 0.000
Alloy 2 8958 4479.0 1.7399 0.187
Interaction 8 7275 909.38 0.35325 0.939
Error 45 115,845 2574.3
Total 59 201,816

(b) Yes. F8,45 = 0.35325, P > 0.10 (P = 0.939).
(c) No, some of the main effects of mold temperature are nonzero. F4,45 = 6.7724, P < 0.001 (P ≈ 0).
(d) Yes. F3,45 = 1.7399, P > 0.10, (P = 0.187).

5. (a)
Main Effects of

Solution

NaCl −9.1148
Na2HPO4 9.1148

Main Effects of
Temperature

25◦C 1.8101
37◦C −1.8101

Interactions

Temperature
Solution 25◦C 37◦C

NaCl −0.49983 0.49983
Na2HPO4 0.49983 −0.49983

(b)
Source DF SS MS F P

Solution 1 1993.9 1993.9 5.1983 0.034
Temperature 1 78.634 78.634 0.20500 0.656
Interaction 1 5.9960 5.9960 0.015632 0.902
Error 20 7671.4 383.57
Total 23 9750.0

(c) Yes, F1,20 = 0.015632, P > 0.10 (P = 0.902).
(d) Yes, since the additive model is plausible. The mean yield stress differs between Na2HPO4 and NaCl: F1,20 =

5.1983, 0.01 < P < 0.05 (P = 0.034).
(e) There is no evidence that the temperature affects yield stress: F1,20 = 0.20500, P > 0.10 (P = 0.656).

7. (a)

Source DF SS MS F P

Adhesive 1 17.014 17.014 10.121 0.008
Pressure 2 35.663 17.832 10.607 0.002
Interaction 2 4.3544 2.1772 1.2951 0.310
Error 12 20.173 1.6811
Total 17 77.205 4.5415

(b) Yes. F2,12 = 1.2951, P > 0.10 (P = 0.310).
(c) Yes, since the additive model is plausible. The mean strength differs between the two adhesives: F1,12 = 10.121,

P < 0.01 (P = 0.008).
(d) Yes, since the additive model is plausible. The mean strength differs among the pressure: F2,12 = 10.607, P < 0.01

(P = 0.002).
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9. (a)
Main Effects of

Speed

80 −13.074
120 −5.7593
150 19.463

Main Effects of
Time

5 −8.4259
10 −0.2037
15 8.6296

Interactions

Time

Speed 5 10 15

80 5.6481 0.75926 −6.4074
120 2.3704 −0.018519 −2.3519
150 −8.0185 −0.74074 8.7593

(b)
Source DF SS MS F P

Speed 2 10796 5397.9 63.649 0.000
Time 2 2619.1 1309.6 15.442 0.000
Interaction 4 1357.5 339.38 4.0018 0.007
Error 45 3816.3 84.807
Total 53 18589

(c) No, F4,45 = 4.0018, P < 0.01 (P = 0.007) (d) No, because the additive model is rejected.
(e) No, because the additive model is rejected.

11. (a)
Main Effects of

Material

CPTi-ZrO2 0.044367
TiAlloy-ZrO2 −0.044367

Main Effects of
Neck Length

Short −0.018533
Medium −0.024833
Long 0.043367

Interactions

Neck Length
Short Medium Long

CPTi-ZrO2 0.0063333 −0.023767 0.017433
TiAlloy-ZrO2 0.0063333 0.023767 −0.017433

(b) Source DF SS MS F P

Taper Material 1 0.059052 0.059052 23.630 0.000
Neck Length 2 0.028408 0.014204 5.6840 0.010
Interaction 2 0.0090089 0.0045444 1.8185 0.184
Error 24 0.059976 0.002499
Total 29 0.15652

(c) Yes, the interactions may plausibly be equal to 0. The value of the test statistic is 1.8185, its null distribution is
F2,24, and P > 0.10 (P = 0.184).

(d) Yes, since the additive model is plausible. The mean coefficient of friction differs between CPTi-ZrO2 and
TiAlloy-ZrO2: F1,24 = 23.630, P < 0.001.

(e) Yes, since the additive model is plausible. The mean coefficient of friction is not the same for all neck lengths:
F2,24 = 5.6840, P ≈ 0.01. To determine which pairs of effects differ, we use q3,24,.05 = 3.53. We compute
3.53

√
0.002499/10 = 0.056. We conclude that the effect of long neck length differs from both short and medium

lengths, but we cannot conclude that the effects of short and medium lengths differ from each other.
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13. (a)
Main Effects of
Concentration

15 0.16667
40 −0.067778

100 −0.098889

Main Effects of
Delivery Ratio

1:1 0.73333
1:5 −0.30000
1:10 −0.43333

Interactions

Delivery Ratio
Concentration 1:1 1:5 1:10

15 0.66778 −0.30222 −0.36556
40 −0.20111 −0.064444 0.26556

100 −0.46667 0.36667 0.10000

(b) Source DF SS MS F P

Concentration 2 0.37936 0.18968 3.8736 0.040
Delivery Ratio 2 7.34 3.67 74.949 0.000
Interaction 4 3.4447 0.86118 17.587 0.000
Error 18 0.8814 0.048967
Total 26 12.045

(c) No. The value of the test statistic is 17.587, its null distribution is F4,18, and P ≈ 0.

(d) 3

2.5

2

1.5

1

0.5

0
1:1 1:5 1:10

Delivery ratio

So
rp

tio
n 

(%
)

Concentration = 15 

Concentration = 40 

Concentration = 100 
The slopes of the line segments are quite different
from one another, indicating a high degree of inter-
action.

15. (a)
Main Effects of

Attachment

Nail −1.3832
Adhesive 1.3832

Main Effects of
Length

Quarter −7.1165
Half −2.5665
Full 9.683

Interactions

Length
Attachment Quarter Half Full

Nail 0.48317 0.33167 −0.51633
Adhesive −0.48317 −0.33167 0.51633

(b) Source DF SS MS F P

Attachment 1 114.79 114.79 57.773 0.000
Length 2 3019.8 1509.9 759.94 0.000
Interaction 2 10.023 5.0115 2.5223 0.090
Error 54 107.29 1.9869
Total 59 3251.9

(c) The additive model is barely plausible: F2,54 = 2.5223, 0.05 < P < 0.10 (P = 0.090).
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(d) Yes, the attachment method does affect the critical buckling load: F1,54 = 57.773, P ≈ 0.
(e) Yes, the side member length does affect the critical buckling load: F2,54 = 759.94, P ≈ 0. To determine which

effects differ at the 5% level, we should use q3,54,.05. This value is not found in Table A.9, so we approximate it
with q3,40,.05 = 3.44. We compute 3.44

√
1.9869/20 = 1.08. We conclude that the effects of quarter, half, and full

all differ from each other.

17. (a)
Source DF SS MS F P

Wafer 2 114,661.4 57,330.7 11,340.1 0.000
Operator 2 136.78 68.389 13.53 0.002
Interaction 4 6.5556 1.6389 0.32 0.855
Error 9 45.500 5.0556
Total 17 114,850.3

(b) There are differences among the operators. F2,9 = 13.53, 0.01 < P < 0.001 (P = 0.002).

19. (a) Source DF SS MS F P

PVAL 2 125.41 62.704 8.2424 0.003
DCM 2 1647.9 823.94 108.31 0.000
Interaction 4 159.96 39.990 5.2567 0.006
Error 18 136.94 7.6075
Total 26 2070.2

(b) Since the interaction terms are not equal to 0 (F4,18 = 5.2567, P = 0.006), we cannot interpret the main effects.
Therefore we compute the cell means. These are

DCM (mL)
PVAL 50 40 30

0.5 97.8 92.7 74.2
1.0 93.5 80.8 75.4
2.0 94.2 88.6 78.8

We conclude that a DCM level of 50 mL produces greater encapsulation efficiency than either of the other levels.
If DCM = 50, the PVAL concentration does not have much effect. Note that for DCM = 50, encapsulation
efficiency is maximized at the lowest PVAL concentration, but for DCM = 30 it is maximized at the highest
PVAL concentration. This is the source of the significant interaction.

Section 9.4
1. (a) NaOH concentration is the blocking factor, age is the treatment factor.

(b)
Source DF SS MS F P

Treatment 3 386.33 128.78 211.14 0.000
Blocks 4 13.953 3.4882 5.7192 0.008
Error 12 7.3190 0.6099
Total 19 407.60
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(c) Yes, F3,12 = 211.14, P ≈ 0
(d) q4, 12 .05 = 4.20, MSAB = 0.6099, and J = 5. The 5% critical value is therefore 4.20

√
0.6099/5 = 1.4669. The

sample means are X 0 = 55.46, X 4 = 45.22, X 8 = 46.26, and X 12 = 44.47. We therefore conclude that age 0
differs from ages 4, 8, and 12, and that age 8 differs from age 12.

3. (a)
Source DF SS MS F P

Lighting 3 9943 3314.3 3.3329 0.036
Block 2 11,432 5716.0 5.7481 0.009
Interaction 6 6135 1022.5 1.0282 0.431
Error 24 23,866 994.42
Total 35 51,376

(b) Yes. The P-value for interactions is large (0.431).
(c) Yes. The P-value for lighting is small (0.036).

5. (a)
Source DF SS MS F P

Variety 9 339,032 37,670 2.5677 0.018
Block 5 1,860,838 372,168 25.367 0.000
Error 45 660,198 14,671
Total 59 2,860,069

(b) Yes, F9,45 = 2.5677, P = 0.018.

7. (a)
Source DF SS MS F P

Waterworks 3 1253.5 417.84 4.8953 0.005
Block 14 1006.1 71.864 0.84193 0.622
Error 42 3585.0 85.356
Total 59 5844.6

(b) Yes, F3,42 = 4.8953, P = 0.005. (c) To determine which effects differ at the 5% level, we should use
q4,42,.05. This value is not found in Table A.9, so we approximate it with q4,40,.05 = 3.79. The 5% critical value is
3.79

√
85.356/15 = 9.04. The sample means are X A = 34.000, X B = 22.933, X C = 24.800, X D = 31.467. We

can conclude that A differs from both B and C.
(d) The P-value for the blocking factor is large (0.622), suggesting that the blocking factor (time) has only a small

effect on the outcome. It might therefore be reasonable to ignore the blocking factor and perform a one-way
ANOVA.

9. (a) One motor of each type should be tested on each day. The order in which the motors are tested on any given
day should be chosen at random. This is a randomized block design, in which the days are the blocks. It is not a
completely randomized design, since randomization occurs only within blocks.

(b) The test statistic is

∑5

i=1(Xi. − X ..)
2∑4

j=1

∑5

i=1(Xi j − Xi. − X . j − X ..)2/12
.
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Section 9.5
1. A B C D

1 – – – –
ad + – – +
bd – + – +
ab + + – –
cd – – + +
ac + – + –
bc – + + –
abcd + + + +

The alias pairs are {A, BC D}, {B, AC D}, {C, AB D}, {D, ABC}, {AB, C D}, {AC, B D},
and {AD, BC}

3. (a)
Term Effect DF SS MS F P

A 6.75 1 182.25 182.25 11.9508 0.009
B 9.50 1 361.00 361.00 23.6721 0.001
C 1.00 1 4.00 4.00 0.2623 0.622
AB 2.50 1 25.00 25.00 1.6393 0.236
AC 0.50 1 1.00 1.00 0.0656 0.804
BC 0.75 1 2.25 2.25 0.1475 0.711
ABC −2.75 1 30.25 30.25 1.9836 0.197
Error 8 122.00 15.25
Total 15 727.75

(b) Factors A and B (temperature and concentration) seem to have an effect on yield. There is no evidence that pH
has an effect. None of the interactions appear to be significant. Their P-values are all greater than 0.19.

(c) Since the effect of temperature is positive and statistically significant, we can conclude that the mean yield is
higher when temperature is high.

5. (a)
Term Effect

A 3.3750
B 23.625
C 1.1250
AB −2.8750
AC −1.3750
BC −1.6250
ABC 1.8750

(b) No, since the design is unreplicated, there is no error sum of squares.
(c) No, none of the interaction terms are nearly as large as the main effect of factor B.
(d) If the additive model is known to hold, then the following ANOVA table shows that the main effect of B is not

equal to 0, while the main effects of A and C may be equal to 0.

Sum of Mean
Term Effect DF Squares Square F P

A 3.3750 1 22.781 22.781 2.7931 0.170
B 23.625 1 1116.3 1116.3 136.86 0.000
C 1.1250 1 2.5312 2.5312 0.31034 0.607
Error 4 32.625 8.1562
Total 7 1174.2
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7. (a)
Term Effect

A −119.25
B 259.25
C −82.75
AB 101.75
AC −6.25
BC −52.75
ABC −2.25

(b) No, because there is only one replication.
(c) The AB interaction is among the larger effects.
(d) No, because the AB interaction is large.

9. (a) Term Effect

A 1.2
B 3.25
C −16.05
D −2.55
AB 2.0
AC 2.9
AD −1.2
BC 1.05
B D −1.45
C D −1.6
ABC −0.8
AB D −1.9
AC D −0.15
BC D 0.8
ABC D 0.65

(b) Factor C is the only one that really stands out.

11. (a)
Sum of Mean

Term Effect DF Squares Square F P

A 14.245 1 811.68 811.68 691.2 0.000
B 8.0275 1 257.76 257.76 219.5 0.000
C −6.385 1 163.07 163.07 138.87 0.000
AB −1.68 1 11.29 11.29 9.6139 0.015
AC −1.1175 1 4.9952 4.9952 4.2538 0.073
BC −0.535 1 1.1449 1.1449 0.97496 0.352
ABC −1.2175 1 5.9292 5.9292 5.0492 0.055
Error 8 9.3944 1.1743
Total 15 1265.3

(b) All main effects are significant, as is the AB interaction. Only the BC interaction has a P-value that is reasonably
large. All three factors appear to be important, and they seem to interact considerably with each other.

13. ii.



Navidi-3810214 book November 11, 2013 14:43

896 Answers to Odd-Numbered Exercises

Supplementary Exercises for Chapter 9

1.
Source DF SS MS F P

Gypsum 3 0.013092 0.0043639 0.28916 0.832
Error 8 0.12073 0.015092
Total 11 0.13383

The value of the test statistic is F3,8 = 0.28916; P > 0.10 (P = 0.832). There is no evidence that the pH differs with
the amount of gypsum added.

3.
Source DF SS MS F P

Day 2 1.0908 0.54538 22.35 0.000
Error 36 0.87846 0.024402
Total 38 1.9692

We conclude that the mean sugar content differs among the three days (F2,36 = 22.35, P ≈ 0).

5. (a) No. The variances are not constant across groups. In particular, there is an outlier in group 1.
(b) No, for the same reasons as in part (a).
(c)

Source DF SS MS F P

Group 4 5.2029 1.3007 8.9126 0.000
Error 35 5.1080 0.14594
Total 39 10.311

We conclude that the mean dissolve time differs among the groups (F4,35 = 8.9126, P ≈ 0).

7. The recommendation is not a good one. The engineer is trying to interpret the main effects without looking at the
interactions. The small P-value for the interactions indicates that they must be taken into account. Looking at the cell
means, it is clear that if design 2 is used, then the less expensive material performs just as well as the more expensive
material. The best recommendation, therefore, is to use design 2 with the less expensive material.

9. (a) Source DF SS MS F P

Base 3 13,495 4498.3 7.5307 0.000
Instrument 2 90,990 45,495 76.164 0.000
Interaction 6 12,050 2008.3 3.3622 0.003
Error 708 422,912 597.33
Total 719 539,447

(b) No, it is not appropriate because there are interactions between the row and column effects (F6,708 = 3.3622,
P = 0.003).

11. (a) Yes. F4,15 = 8.7139, P = 0.001. (b) q5,20 = 4.23, MSE = 29.026, J = 4. The 5% critical value is
therefore 4.23

√
29.026/4 = 11.39. The sample means for the five channels are X 1 = 44.000, X 2 = 44.100,

X 3 = 30.900, X 4 = 28.575, X 5 = 44.425. We can therefore conclude that channels 3 and 4 differ from channels
1, 2, and 5.

13. No. F4,289 = 1.5974, P > 0.10 (P = 0.175).

15. (a) s = 5.388 (b) 10 (c) 22



Navidi-3810214 book November 11, 2013 14:43

Answers to Odd-Numbered Exercises 897

17. (a) Term Effect Term Effect Term Effect Term Effect

A 3.9875 AB −0.1125 B D −0.0875 AC D 0.4875
B 2.0375 AC 0.0125 C D 0.6375 BC D −0.3125
C 1.7125 AD −0.9375 ABC −0.2375 ABC D −0.7125
D 3.7125 BC 0.7125 AB D 0.5125

(b) The main effects are noticeably larger than the interactions, and the main effects for A and D are noticeably larger
than those for B and C .

(c)
Sum of Mean

Term Effect DF Squares Square F P

A 3.9875 1 63.601 63.601 68.415 0.000
B 2.0375 1 16.606 16.606 17.863 0.008
C 1.7125 1 11.731 11.731 12.619 0.016
D 3.7125 1 55.131 55.131 59.304 0.001
AB –0.1125 1 0.050625 0.050625 0.054457 0.825
AC 0.0125 1 0.000625 0.000625 0.00067231 0.980
AD –0.9375 1 3.5156 3.5156 3.7818 0.109
BC 0.7125 1 2.0306 2.0306 2.1843 0.199
B D –0.0875 1 0.030625 0.030625 0.032943 0.863
C D 0.6375 1 1.6256 1.6256 1.7487 0.243
Interaction 5 4.6481 0.92963
Total 15 158.97

We can conclude that each of the factors A, B, C , and D has an effect on the outcome.

(d) The F statistics are computed by dividing the mean square for each effect (equal to its sum of squares) by the
error mean square 1.04. The degrees of freedom for each F statistic are 1 and 4. The results are summarized in
the following table.

Sum of Mean
Term Effect DF Squares Square F P

A 3.9875 1 63.601 63.601 61.154 0.001
B 2.0375 1 16.606 16.606 15.967 0.016
C 1.7125 1 11.731 11.731 11.279 0.028
D 3.7125 1 55.131 55.131 53.01 0.002
AB −0.1125 1 0.050625 0.050625 0.048678 0.836
AC 0.0125 1 0.000625 0.000625 0.00060096 0.982
AD −0.9375 1 3.5156 3.5156 3.3804 0.140
BC 0.7125 1 2.0306 2.0306 1.9525 0.235
B D −0.0875 1 0.030625 0.030625 0.029447 0.872
C D 0.6375 1 1.6256 1.6256 1.5631 0.279
ABC −0.2375 1 0.22563 0.22563 0.21695 0.666
AB D 0.5125 1 1.0506 1.0506 1.0102 0.372
AC D 0.4875 1 0.95063 0.95063 0.91406 0.393
BC D −0.3125 1 0.39062 0.39062 0.3756 0.573
ABC D −0.7125 1 2.0306 2.0306 1.9525 0.235

(e) Yes. None of the P-values for the third- or higher-order interactions are small.
(f) We can conclude that each of the factors A, B, C , and D has an effect on the outcome.
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19. Yes, F2,107 = 9.4427, P < 0.001.

21. (a) Source DF SS MS F P

H2SO4 2 457.65 228.83 8.8447 0.008
CaCl2 2 38,783 19,391 749.53 0.000
Interaction 4 279.78 69.946 2.7036 0.099
Error 9 232.85 25.872
Total 17 39,753

(b) The P-value for interactions is 0.099. One cannot rule out the additive model.
(c) Yes, F2,9 = 8.8447, 0.001 < P < 0.01 (P = 0.008).
(d) Yes, F2,9 = 749.53, P ≈ 0.000.

23. Yes, F6,39 = 20.302, P ≈ 0.

Section 10.1
1. (a) Count (b) Continuous (c) Binary (d) Continuous

3. (a) is in control (b) has high capability

5. (a) False (b) False (c) True (d) True

Section 10.2
1. (a) LCL = 0, UCL = 10.931 (b) LCL = 0, UCL = 4.721 (c) LCL = 20.258, UCL = 27.242

(d) LCL = 20.358, UCL = 27.142

3. (a) LCL = 0, UCL = 0.2949, the variance is in control.
(b) LCL = 2.4245, UCL = 2.5855. The process is out of control for the first time on sample 8.
(c) 1σ limits are 2.4782, 2.5318; 2σ limits are 2.4513, 2.5587. The process is out of control for the first time on

sample 7, where two out of the last three samples are below the lower 2σ control limit.

5. (a) 15.27 (b) 15.13 (c) 1.92 (d) 13

7. (a) 0.126 (b) 0.237 (c) 0.582 (d) 257

9. (a) LCL = 0.0163, UCL = 0.1597. The variance is in control.
(b) LCL = 9.8925, UCL = 10.0859. The process is out of control for the first time on sample 3.
(c) 1σ limits are 9.9570, 10.0214; 2σ limits are 9.9247, 10.0537. The process is out of control for the first time on

sample 3, where one sample is above the upper 3σ control limit.

11. (a) LCL = 0, UCL = 0.971. The variance is in control.
(b) LCL = 9.147, UCL = 10.473. The process is in control.
(c) 1σ limits are 9.589, 10.031; 2σ limits are 9.368, 10.252. The process is out of control for the first time on

sample 9, where two of the last three sample means are below the lower 2σ control limit.

13. (a) LCL = 0, UCL = 6.984. The variance is out of control on sample 8. After deleting this sample, X = 150.166,
R = 6.538, s = 2.911. The new limits for the S chart are 0 and 6.596. The variance is now in control.

(b) LCL = 145.427, UCL = 154.905. The process is in control.
(c) 1σ limits are 148.586, 151.746; 2σ limits are 147.007, 153.325. The process is in control (recall that sample 8

has been deleted).
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Section 10.3
1. Center line is 0.0547, LCL is 0.00644, UCL is 0.1029.

3. Yes, the 3σ control limits are 0.0254 and 0.2234.

5. (iv)

7. It was out of control. The UCL is 23.13.

Section 10.4
1. (a) No samples need be deleted. (b) σX = (0.577)(0.1395)/3 = 0.0268

(c)
0.4
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(d) The process is out of control on sample 8. (e) The Western Electric rules specify that the process is out of
control on sample 7.

3. (a) No samples need be deleted. (b) σX = (0.577)(1.14)/3 = 0.219

(c)
CUSUM chart
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(d) The process is out of control on sample 9. (e) The Western Electric rules specify that the process is out of
control on sample 9.

5. (a) CUSUM chart
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UCL = 60

LCL = �60
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Sample number

(b) The process is in control.

Section 10.5
1. (a) Cpk = 0.3172 (b) No, since Cpk < 1 the process capability is not acceptable.

3. (a) 15.50 (b) 1.8980

5. (a) μ ± 3.6σ (b) 0.0004
(c) Likely. The normal approximation is likely to be inaccurate in the tails.

Supplementary Exercises for Chapter 10

1. Center line is 0.0583, LCL is 0.0177, UCL is 0.989.

3. (a) LCL = 0, UCL = 0.283. The variance is in control.
(b) LCL = 4.982, UCL = 5.208. The process is out of control on sample 3.
(c) 1σ limits are 5.057, 5.133; 2σ limits are 5.020, 5.170. The process is out of control for the first time on sample

3, where a sample mean is above the upper 3σ control limit.

5. (a) No samples need be deleted. (b) σX = (1.023)(0.110)/3 = 0.0375
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(c) CUSUM chart
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(d) The process is out of control on sample 4. (e) The Western Electric rules specify that the process is out of
control on sample 3.

7. (a) LCL = 0.0061, UCL = 0.0739 (b) Sample 7
(c) No. This special cause improves the process. It should be preserved rather than eliminated.

Appendix B

1.
∂v

∂x
= 3 + 2y4,

∂v

∂y
= 8xy3

2.
∂w

∂x
= 3x2

x2 + y2
− 2x(x3 + y3)

(x2 + y2)2
,

∂w

∂y
= 3y2

x2 + y2
− 2y(x3 + y3)

(x2 + y2)2

3.
∂z

∂x
= − sin x sin y2,

∂z

∂y
= 2y cos x cos y2

4.
∂v

∂x
= yexy ,

∂v

∂y
= xexy

5.
∂v

∂x
= ex(cos y + sin z),

∂v

∂y
= −ex sin y,

∂v

∂z
= ex cos z

6.
∂w

∂x
= x√

x2 + 4y2 + 3z2
,

∂w

∂y
= 4y√

x2 + 4y2 + 3z2
,

∂w

∂z
= 3z√

x2 + 4y2 + 3z2

7.
∂z

∂x
= 2x

x2 + y2
,

∂z

∂y
= 2y

x2 + y2

8.
∂v

∂x
= 2xy

x2 y + z
− zey2

sin(xz),
∂v

∂y
= x2

x2 y + z
+ 2yey2

cos(xz),
∂v

∂z
= 1

x2 y + z
− xey2

sin(xz)

9.
∂v

∂x
=

√
y5

x
− 3

2

√
y3

x
,

∂v

∂y
= 5

√
xy3 − 9

2
√

xy

10.
∂z

∂x
= xy cos(x2 y)√

sin(x2 y)
,

∂z

∂y
= x2 cos(x2 y)

2
√

sin(x2 y)
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INDEX
23 factorial experiment

analysis of variance table, 739
effect estimates, 737
effect sum of squares, 738
error sum of squares, 738
F test, 738–739
hypothesis test, 739
notation, 735
sign table, 736

2p factorial experiment
effect estimates, 742
effect sum of squares, 742
error sum of squares, 742
F test, 742
sign table, 743
without replication, 742

A
Accuracy, 165
Addition rule for probabilities, 57
Additive model, 703
Adjusted R2, 632
Aliasing, 748
Alternate hypothesis, 401
Analysis of variance

one-way, see One-way analysis of variance
two-way, see Two-way analysis of variance

Analysis of variance identity
for multiple regression, 598
for one-way analysis of variance, 675
for simple linear regression, 538
for two-way analysis of variance, 707

Analysis of variance table
in 23 factorial experiment, 739
in multiple regression, 602
in one-way analysis of variance, 671
in simple linear regression, 558
in two-way analysis of variance, 707

ARL, 775
Assignable causes, 768
Average, 14
Average run length, 775

B
Backward elimination, 633
Balanced design, 674, 700
Bayes’ rule, 79–81
Bayesian statistics, 411

Bernoulli distribution, 200–202
mean, 202
probability mass function, 200–201
variance, 202

Bernoulli trial, 200
Best subsets regression, 631–633
Bias, 166

of non-linear functions, 180, 187
Binomial distribution, 203–212

mean, 209
normal approximation to, 295
probability mass function, 206
sum of Bernoulli random variables, 208
variance, 209

Bivariate data, 37
Bonferroni method, 494–495, 691
Bootstrap, 312–314

and confidence intervals, 388–391
and testing hypotheses, 498
estimating bias with, 311–312
non-parametric, 313–314
parametric, 313–314

Boxplot, 33–37
comparative, 35
representing outliers in, 33

C
c chart, 790–792

control limits for, 791
C p , see Mallows’ C p , see Process capability

index
C pk , see Process capability index
Cell mean, 703
Central limit theorem, 290–299

for binomial distribution, 295
for Poisson distribution, 299
for sample mean, 290
for sum, 290
sample size needed for validity, 291

Chance cause, 765
Chebyshev’s inequality, 110–111
Chi-square distribution, 375–376. 460

special case of gamma distribution, 275
Chi-square statistic, 464, 465
Chi-square test, 463–470

degrees of freedom for, 464, 467
for goodness-of-fit, 463–465
for homogeneity, 465–468
for independence, 469–470

902
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for standard deviation, 473–474
for variance, 473–474

Coefficient of determination
and proportion of variance explained by

regression, 537
in multiple regression, 600
in simple linear regression, 536

Coefficient of variation, 182
Collinearity, 617–619
Column effect, 702

estimate of, 704
Column factor, 700
Column mean, 703–704
Column sum of squares, 706
Combinations, 65
Common cause, 765
Complete design, 700, 727
Completely randomized experiment, 664
Conditional expectation, 139–140
Conditional probability, 71

tree diagrams for, 78
Conditional probability density function, 138
Conditional probability mass function, 137
Confidence bound, 332–333, 340, 351
Confidence interval

based on random sample, 333
bootstrap and, 388–391
confidence level, see Confidence level
determining sample size, 331, 340
difference between means, 356, 365, 367
difference between proportions, 360, 361
for correlation, 521–524
for mean, 326, 348
for mean response, 552
for proportion, 339, 341
for slope and intercept, 548
for standard deviation, 378
for variance, 378
one-sided, 332–333, 340, 351
paired data, 372
relationship to hypothesis tests, 413–414
simultaneous, see Multiple comparisons
small sample, 348, 352, 365, 367
Student’s t distribution and, 347–348, 365

Confidence level
and probability, 328–330
interpretation of, 328

Confounding, 518
and multiple regression, 614–616

Contingency table, 466
Continuity correction, 295–298

accuracy of, 298
for Poisson distribution, 299

Continuous random variable, 92, 101–110
cumulative distribution function of, 104–106
mean of, 107
probability density function of, 102–103
standard deviation of, 107
variance of, 107

Control chart
c chart, see c chart
CUSUM chart, see CUSUM chart
for attribute data, see p chart
for binary data, see p chart
for count data, see c chart
for variables data, see X chart
p chart, see p chart
R chart, see R chart
S chart, see S chart
X chart, see X chart

Control limits
for c chart, 791
for p chart, 789
for S chart, 781
for R chart, 771
for X chart, 773, 782

Controlled experiment, 521
reduces risk of confounding, 521

Correlated, 512
Correlation, 146–148, 509–524

and independence, 148
confidence interval for, see Confidence interval
hypothesis test for, see Hypothesis test
is not causation, 518
population, 146, 511
sample, 511

Correlation coefficient, 511
and outliers, 517
and proportion of variance explained by

regression, 537
howit works, 515
measures goodness-of-fit, 535–537
measures linear association, 516–520

Counting
combinations, 65
fundamental principle of, 63
permutations, 63

Covariance, 142–146
and independence, 148

Critical point, 480
Cumulative distribution function

continuous, 104–106
discrete, 94–96

Cumulative sum, 794
Cumulative sum chart, see CUSUM chart
CUSUM chart, 793–795
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D
Data

categorical, 11
numerical, 11
qualitative, 11
quantitative, 11

Dependent measurements
upper bound for uncertainty in a linear combination

of, 176
upper bound for uncertainty in a non-linear function

of, 189
Dependent variable, 527
Descriptive statistics, 2, 20
Discrete random variable, 91, 93–101

cumulative distribution function of, 94–96
mean of, 97
probability mass function of, 93, 95
standard deviation of, 98
variance of, 98

Distribution-free tests, 454–461
rank-sum test, 458–460
signed-rank test, 454–458

Dotplot, 26–27

E
Effect sum of squares

in 23 factorial experiment, 738
in 2p factorial experiment, 742

Empirical model, 578, 580
Erlang distribution, 275
Error

random, 165
systematic, 165

Error mean square
in one-way analysis of variance, 668
in two-way analysis of variance, 708

Error sum of squares
in 23 factorial experiment, 738
in 2p factorial experiment, 742
in multiple regression, 598, 602
in one-way analysis of variance, 666, 667
in simple linear regression, 536, 558
in two-way analysis of variance, 706

Errors
in one-way analysis of variance, 675
in simple linear regression, 527
in two-way analysis of variance, 703

Event(s), 49
addition rule, 56–57
complement of, 50
exhaustive, 76
independent, 73
intersection of, 50

multiplication rule, 74
mutually exclusive, 51
union of, 50

Exhaustive events, 76
Expectation, see Population mean

conditional, see Conditional expectation
Expected value, see Population mean
Exponential distribution, 262–270

cumulative distribution function, 262
lack of memory property, 266
mean, 263
probability density function, 262
relationship to Poisson process, 264
variance, 263

F
F distribution, 475

degrees of freedom for, 475
F test

for equality of variance, 475–477
in 23 factorial experiment, 738–739
in 2p factorial experiment, 742
in multiple regression, 626
in one-way analysis of variance, 669
in two-way analysis of variance, 708

Factorial experiment, 10, 662
23 design, see 23 factorial experiment
2p design, see 2p factorial experiment
fractional, see Fractional factorial experiment

Failure to detect, 775
False alarm, 775
Fisher’s least significant difference, 688
Fitted value, 529
Fixed effects model, 663, 717
Fixed-level testing, 479–482
Forward selection, 633
Fractional factorial experiment, 746–749

aliasing in, 748
half-replicate, 746
principal fraction, 747
quarter-replicate, 746

Frequencies, 22
Frequency table, 27
Frequentist probability, 411
Full factorial design, 700
Fundamental principle of counting, 63

G
Gamma distribution, 273–276
Gamma function, 273
Gaussian distribution, see Normal distribution
Geometric distribution, 233–234

mean, 234
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probability mass function, 234
variance, 234

Goodness-of-fit, 535–537
Gosset, William Sealy (Student), 219, 344
Grand mean

population, 676, 701, 702
sample, 665, 703–704

H
Half-replicate, 746
Hazard function, 278
Heteroscedastic, 564
Histogram, 27–32

bimodal, 31
class intervals, 27
skewed, 31
symmetric, 31
unimodal, 31

Homoscedastic, 564
Honestly significant difference, 692
Hypergeometric distribution, 230–233

mean, 232
probability mass function, 231
variance, 232

Hypothesis test
Bonferroni method, 494–495, 691
bootstrap and, 498
Chi-square test, see Chi-square test
choosing null hypothesis, 412
critical point, 480
F test, see F test
fixed-level test, 479–482
for correlation, 521–524
for difference between means, 431, 443, 445
for difference between proportions, 433
for equality of variance, 475–477
for goodness-of-fit, 463–465
for mean, 407, 425
for proportion, 420
for slope and intercept, 549–551
for variance, 473
in 23 factorial experiment, 738
in one-way analysis of variance, 669
in two-way analysis of variance, 708
Mann-Whitney test, see Wilcoxon rank-sum test
multiple testing problem, 493–495
one-tailed, 407
P-value, see P-value
paired data, 450
power, see Power
randomization test, 498–500
rank-sum test, see Wilcoxon rank-sum test
rejecting null hypothesis, 402, 409–410, 479

rejection region, 480
relationship to confidence intervals, 413–414
significance level, 477–478
simultaneous, see Multiple comparisons
steps in performing, 404
t test, see Student’s t test
two-tailed, 407
type I error, 482
type II error, 482

I
i.i.d., see Independent and identically distributed
Ill-conditioned, 617
Independent and identically distributed, 123
Independent events, 73

multiplication rule for, 74
Independent random variables, 120, 141
Independent variable, 527
Inferential statistics, 2
Influential point, 574
Interaction

and interpretation of main effects, 710–713
estimate of, 704
in multiple regression, 597
in two-way analysis of variance, 702
mean square, 708
sum of squares, 706

Interaction mean square, 708
Interaction sum of squares, 706
Intercept

confidence interval for, 548–549
hypothesis test for, 549–550

Interquartile range, 33

J
Joint probability density function, 129–130
Joint probability mass function, 127, 129
Jointly continuous random variables, 129
Jointly discrete random variables, 127

K
Kilogram, The, 168

L
Lack of memory property, 266
Law of total probability, 77
Least significant difference, 688
Least-squares coefficients

in multiple regression, 597
normally distributed, 546
relationship to correlation coefficient, 530
standard deviations of, 546
unbiased, 545
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Least-squares line, 527–539
computing, 530
don’t extrapolate, 533
don’t use when data aren’t linear, 533–534
goodness-of-fit of, 535–537

Level of a hypothesis test, see Significance level
Levels of a factor, 663
Linear combination of measurements

uncertainty in, 170
upper bound for uncertainty in, 176

Linear combination of random variables, 119, 148
mean of, 120, 148
variance of, 121, 148

Linear model, 527
Linearizing the problem, 184, 192
Lognormal distribution, 256–260

mean, 257
outliers, 259
probability density function, 256
relationship to normal, 256
use of z table with, 257–258
variance, 257

M
Main effect, 702

interpretation of, 710–713
Mallows’ C p , 632–633
Mann-Whitney test, see Wilcoxon rank-sum test
Marginal probability density function, 131
Marginal probability mass function, 128, 129
Maximum likelihood estimation, 282–284

desirable properties of, 284
Mean

cell, 703
column, 703–704
conditional, see Conditional expectation
confidence interval for, see Confidence interval
grand, see Grand mean
hypothesis test for, see Hypothesis test
of a continuous random variable, 107
of a discrete random variable, 97
of a function of random variables, 134–137
of a linear combination of random variables, 119, 148
population, see Population mean
row, 703, 704
sample, see Sample mean
trimmed, 18

Mean response, 551–552
confidence interval for, 552

Mean square
for error, see Error mean square
for interaction, see Interaction mean square
for treatment, see Treatment mean square

Median
population, 108–110
sample, 17

Mixed model, 718
Mode, 19

of a histogram, 31
Model selection, 623–638

art not science, 638
Occam’s razor, 623
principle of parsimony, 623
principle of parsimony, exceptions to, 623

Multisample experiment, 10
Multinomial distribution, 237–239
Multinomial trial, 237, 461
Multiple comparisons

Bonferroni method, 494–495, 691
in one-way analysis of variance, 691–696
in randomized complete block designs, 730–731
in two-way analysis of variance, 716–717
Tukey’s method, 716, 731
Tukey-Kramer method, 692–693

Multiple regression
analysis of variance table, 602
and collinearity, 617–619
assumptions in, 598
can detect confounding, 614–616
F test, 626
least squares coefficients, 597
model selection, see Model selection
multiple regression model, 596
sums of squares, 598

Multiplication rule for probabilities, 74
Multivariate data, 37–38
Mutually exclusive events, 51

N
Negative binomial distribution, 234–237

mean, 236
probability mass function, 235
sum of geometric random variables, 236
variance, 236

Nonparametric tests, see Distribution-free tests
Normal approximation, see Central Limit Theorem
Normal distribution, 241–252

mean, 242
median, 242
outliers, 251
probability density function, 241
standard deviation, 242
standard normal population, 243
standard units, 242
variance, 242
z-score, 243
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Null hypothesis, 401
choosing, 412
in one-way analysis of variance, 665
in two-way analysis of variance, 705
put on trial, 401
rejecting, 402, 409–410, 479

O
Observational study, 12

and confounding, 521
Observed significance level, 404
Occam’s razor, 623
One-factor experiment, 662–681, 687–694
One-sample experiment, 10
One-way analysis of variance

analysis of variance identity, 675
analysis of variance table, 671
assumptions in, 669
error sum of squares, 666, 667
F test, 669
fixed effects model, 663
hypothesis test, 668
null hypothesis, 665
random effects model, 663, 678–679
total sum of squares, 671, 675
treatment sum of squares, 666

Outcome variable, 663
Outlier, 17

and simple linear regression, 573–575
and Student’s t distribution, 347
and the correlation coefficient, 517
and the lognormal distribution, 259
and the normal distribution, 251
and use of median, 18
and use of trimmed mean, 18
deletion of, 17
extreme, 33
in boxplots, 33

P
p chart, 788–790

control limits for, 789
P-value, 401, 404

interpreting, 402–403, 404
not the probability that H0 is true, 411

Parameter, 23
Parsimony, 623
Percentile

population, 108–110
sample, 20

Permutation, 63–65
Permutation test, 499
Physical law, 578

Point estimation, 280–284
Poisson distribution, 215–227

approximation to binomial, 215–218
mean, 219
normal approximation to, 299
probability mass function, 218
variance, 219

Poisson process
estimating the rate, 222
rate estimate is unbiased, 223
relationship to exponential distribution, 264
uncertainty in rate estimate, 223

Polynomial regression model, 596
Pooled variance

and the Student’s t distribution, 367, 443
in one-way analysis of variance, 670

Population, 3
conceptual, 6
tangible, 6

Population correlation, 146, 511
Population mean

confidence interval for, see Confidence interval
hypothesis test for, see Hypothesis test
of a continuous random variable, 107
of a discrete random variable, 97

Population proportion
confidence interval for, see Confidence interval
estimation of, 209
Hypothesis test for, see Hypothesis test

Population standard deviation
confidence interval for, see Confidence interval
of a continuous random variable, 107
of a discrete random variable, 98

Population variance
confidence interval for, see Confidence interval
hypothesis test for, see Hypothesis test
of a continuous random variable, 107
of a discrete random variable, 98

Power, 484–490
depends on alternate hypothesis, 484, 486–487
determining sample size, 487
in one-way analysis of variance, 676–678
steps in computing, 484

Power transformation, 568
Precision, 165
Prediction interval, 379–382

comparison with confidence interval, 381
in linear regression, 554–555
one-sided, 381
sensitive to departures from normality, 382

Principal fraction, 747
Principle of parsimony, 623

exceptions to, 623
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Probability
addition rule, 56–57
axioms of, 53
conditional, 71
frequentist, 411
multiplication rule, 74
subjective, 411
tree diagrams for, 78
unconditional, 69

Probability density function, 102–103
conditional, 138
joint, 130
marginal, 131

Probability distribution, 93, 102
Probability distributions

Bernoulli, see Bernoulli distribution
Binomial, see Binomial distribution
Chi-square, see Chi-square distribution
Exponential, see Exponential distribution
F, see F distribution
Gamma, see Gamma distribution
Gaussian, see Normal distribution
Geometric, see Geometric distribution
Hypergeometric, see Hypergeometric distribution
Lognormal, see Lognormal distribution
Multinomial, see Multinomial distribution
Negative binomial, see Negative binomial distribution
Normal, see Normal distribution
Poisson, see Poisson distribution
t, see Student’s t distribution
Weibull, see Weibull distribution

Probability histogram, 100
Probability mass function, 93, 95

conditional, 137
joint, 127, 129
marginal, 128, 129

Probability plot, 285–288
interpreting, 288
to detect effects in factorial experiments, 745–746

Process capability, 797–801
vs. process control, 767

Process capability index
C p , 799
C pk , 798
C pl , 801
C pu , 801

Propagation of error formula
multivariate, 186
results only approximate, 180, 186
univariate, 180

Proportion
confidence interval for, see Confidence interval
estimation of, see Population proportion
hypothesis test for, see Hypothesis test

population, see Population proportion
sample, see Sample proportion

Q
QQ plot, 288
Quadratic regression model, 597
Quantile-Quantile plot, 288
Quarter-replicate, 746
Quartile, 19

first quartile, 19
second quartile, 19
third quartile, 19

R
R2, see Coefficient of determination
R chart

comparison with S chart, 783–784
control limits for, 771
steps for using, 774

Random effects model, 663, 678–679
Random error, 165
Random sample, see Simple random sample
Random uncertainty, see Uncertainty
Random variable

continuous, see Continuous random variable
discrete, see Discrete random variable
independent, 120, 141
jointly continuous, 129–134
jointly discrete, 127–129
linear combination of, see Linear combination of random

variables
sum of, see Sum of random variables

Randomization test, 498–500
Randomization within blocks, 727
Randomized complete block design, 725–731

Tukey’s method in, 731
Range, 19
Rank tests, see Distribution-free tests
Rank-sum test, 458–460
Rational subgroups, 766
Regression coefficients, 527

confidence intervals for, 548
hypothesis tests for, 549

Regression sum of squares
in multiple regression, 598, 602
in simple linear regression, 536, 558

Rejection region, 480
Relative frequencies, 22, 27
Relative uncertainty

for a function of one measurement, 182–183
for a function of several measurements, 190–192
two methods for computing, 182

Reliability analysis, 81



Navidi-3810214 nav01331˙Ind˙902-910 December 6, 2013 10:9

Index 909

Residual
in one-way analysis of variance, 667
in simple linear regression, 529

Residual plot, 564
in multiple regression, 604–605
interpreting, 565, 576
trend in, 576

Response variable, 663
Row effect, 702

estimate of, 704
Row factor, 700
Row mean, 703–704
Row sum of squares, 706

S
S chart

comparison with R chart, 783–784
control limits for, 781

Sample, 3
cluster, 10
of convenience, 4
simple random, 3
stratified random, 10
weighted, 10

Sample mean, 14
central limit theorem for, 290
mean of, 123, 150
standard deviation of, 123, 150
uncertainty in, 172
variance of, 123, 150

Sample median, 17–18
Sample proportion, 22, 209

as estimate of population proportion, 210
unbiased, 210
uncertainty, 210

Sample space, 48
with equally likely outcomes, 55

Sample standard deviation, 15
Sample variance, 15
Sampling variation, 5
Sampling with replacement, 9
Scatterplot, 37–38
Sign table, 736, 743
Signed-rank test, 454–458
Significance level, 479
Simple linear regression

analysis of variance table, 558
and outliers, 573–575
assumptions in, 544, 564
plot of residuals vs. time, 577
transformation of variables in, 568–573

Simple random sample, 3
Simulation

bootstrap, see Bootstrap

comparison with propagation of error, 314
used in reliability analysis, 309–311
used to check normality, 307–309
used to construct confidence intervals, 383–392
used to estimate bias, 311–312
used to estimate means and variances, 307
used to estimate power, 501–502
used to estimate probabilities, 303–307
used to perform hypothesis tests, 497–502

Simultaneous confidence intervals, see Multiple comparisons
Simultaneous hypothesis tests, see Multiple comparisons
Six-sigma quality, 800–801
Slope

confidence interval for, 548
hypothesis test for, 549

Special cause, 766
Specification limit, 797
Standard deviation

confidence interval for, see Confidence interval
population, see Population standard deviation
sample, see Sample standard deviation

Standard error of the mean, 21
Standard normal population, 243
Standard units, 242
Statistic, 23
Statistical significance, 410–411, 479

not the same as practical significance, 413
Statistical uncertainty, see Uncertainty
Stem-and-leaf plot, 25–26
Stepwise regression, 633–635
Studentized range distribution, 692
Student’s t distribution, 344–347

and outliers, 347
and sample mean, 345
confidence intervals using, 347–348, 365
degrees of freedom for, 344–345, 365
in hypothesis testing, see Student’s t test

Student’s t test
one-sample, 425
two-sample, 443, 445

Subjective probability, 411
Success probability, see Population proportion
Sum of random variables

central limit theorem for, 290
mean of, 119, 148
variance of, 121, 149

Sum of squares
for columns, see Column sum of squares
for error, see Error sum of squares
for interaction, see Interaction sum of squares
for rows, see Row sum of squares
for treatment, see Treatment sum of squares
total, see Total sum of squares

Summary statistics, 13–23
Systematic error, 165
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T
t distribution, see Student’s t distribution
t test, see Student’s t test
Test of significance, see Hypothesis test
Test statistic, 404
Tests of hypotheses, see Hypothesis test
Tolerance interval, 382–383
Total sum of squares

in multiple regression, 598, 602
in one-way analysis of variance, 675
in simple linear regression, 536, 558
in two-way analysis of variance, 706

Transforming variables, 568–573
Treatment effect, 676
Treatment mean square, 668
Treatment sum of squares, 666
Treatments, 663, 700
Tukey’s method

in one-way ANOVA, see Tukey-Kramer method
in randomized complete block designs, 731
in two-way ANOVA, 716

Tukey-Kramer method, 692–693
Two-factor experiment, 700–718
Two-way analysis of variance

additive model, 703
analysis of variance identity, 707
analysis of variance table, 707
assumptions in, 706
balanced design, 700
cell mean, 703
column effect, 702
column factor, 700
column mean, 703–704
column sum of squares, 706
complete design, 700
error sum of squares, 706
estimates of effects, 704
F test, 708
full factorial design, 700
interaction, 702
interaction sum of squares, 706
interpretation of main effects, 710–713
main effect, 702
mean squares, 708
null hypotheses, 705
one observation per cell, 717
row effect, 702
row factor, 700
row mean, 704
row sum of squares, 706
total sum of squares, 706

Type I error, 482
Type II error, 482

U
Unbiased, 165
Uncertainty

and standard deviation, 166
estimated with sample standard deviation, 168
for a function of one measurement, 180–181
for a function of several measurements, 186–189
in sample mean, 172
relative, see Relative uncertainty
upper bound for a linear combination of dependent

measurements, 176
upper bound for a non-linear function of dependent

measurements, 189
Unconditional probability, 69
Uncorrelated, 148, 512
Uniform distribution, 271–273

mean, 272
probability density function, 272
standard deviation, 272

V
Variance

confidence interval for, see Confidence interval
hypothesis test for, see Hypothesis test
of a continuous random variable, 107
of a discrete random variable, 98
of a linear combination of random variables, 148
pooled, see Pooled variance
population, see Population variance
sample, see Sample variance

Venn diagram, 50

W
Waiting time, 262
Weibull distribution, 276–278

cumulative distribution function, 276
mean, 277
probability density function, 276
variance, 277

Western Electric rules, 779
Wilcoxon rank-sum test, 458–460
Wilcoxon signed-rank test, 454–458

X
X chart

steps for using, 774
control limits for, 773, 782

Z
z test, 403, 419, 424
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