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Preface

This volume is devoted primarily to engineering applications of mechanics
of deformable solids, mainly in the elastic range. It is concerned basically
with unidimensional problems, when just one dimension of a structure is
significantly greater than the other two (bars, beams), or when the functions
of two or three spatial variables reduce to the function of one variable
(circularly-symmetric problems of cylinders, disks and plates).

Problems of this type are of twofold importance. Firstly, many engin-
eering problems can be described with sufficient accuracy just in this way.
Secondly, unidimensional problems with known analytical solutions may
serve either for testing numerical methods or for the analysis of fundamental
concepts and phenomena, whose physical nature in three-dimensional approach
might be obscured by the analytical-numerical aspect. The simplicity of
unidimensionality is sometimes illusory here: in some cases, even unidimen-
sional problems are regarded as too complicated and the qualitative analysis
is made on auxiliary objects which one could define as zerodimensional
(Wagner’s, Shanley’s or Ziegler’s models, and the like). The point should
also be made that it is impossible for unidimensional problems to be separ-
ated out exactly: e.g. when it comes to the problem of elastic torsion of bars
of arbitrary cross-section, partial differential equations need to be solved,
and three-dimensionality effects occur even more distinctly in problems
relating to stress concentration in bars.

Four parts of the present volume are devoted to bars and bar structures,
specifically to statics, dynamics and stability of bars of solid cross-section
and to statics and stability of thin-walled structures. Part Five is comple-
mentary in a way to these problems, it discusses stress concentrations and
contact problems. Somewhat different is Part 6, in which circularly-
symmetric problems of cylinders, disks and circular plates are the unidi-
mensional problems under investigation. Included here have also been rela-
ted two-dimensional axially-symmetric problems of cylinders. The authors
have confined themselves for the most part to the analysis of elastic behaviour
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of structures; however, in Parts 1, 3, 5 and 6, some attention has been
paid to respective inelastic problems.

Beside analysis of single bars, also bar structures have been considered,
admitting their arbitrary irregularity. A possible regularity of bar structures
can greatly simplify calculations; problems of this type have not been exam-
ined in greater detail, but the literature on the subject, which is very extensive
in Polish, has been cited. The deterministic approach has been followed
in all the parts of the book; it can serve as a point of departure for stochastic
approaches which are increasingly used in engineering practice.

Michal Zyczkowski



1. Introduction

In keeping with the title of this part of the volume, the considerations herein
are confined to statics problems. Problems relating to the dynamics and
stability of bars are not considered as these are the subject matter of Parts 2
and 3. Therefore, the three parts together contain the foundations of the
mechanics of bars of compact cross-section and bar structures, being
a part of applied mechanics which in civil engineering is called structural
mechanics. Structural mechanics, also including the mechanics of thin-walled
bars (Part 4) and the mechanics of surface structures (treated separately),
is in turn one of the fields of applied mechanics.

Contrary to its name, structural mechanics is not concerned with struc-
tures in the strict sense but analyses their static schemata, which represent
a certain idealization of actual structures. All structures built of solids take
up a specific amount of three-dimensional space, they are essentially three
dimensional. In most cases, however, such three-dimensional bodies are
replaceable by static schemata composed of bars or of surface elements. Those
parts of a structure determined as bars have two transverse dimensions that
are markedly smaller than the third one, i.e., the length. For surface el-
ements, one dimension (thickness) is significantly smaller than the other two.

Under loads or other non-static actions (e.g. temperature variation), the
structure experiences strains which are accompanied by corresponding states
of stress. The question of causality here, in other words, the question of finding
the relationships between displacements, strains and stresses, on the one
hand, and external causes, on the other, is one of the fundamental problems
of structural mechanics. In principle, it can be treated, for example, as a
boundary problem of the theory of elasticity or plasticity. However, in prac-
tice, considering the rather complex shape of the surface confining the part
of space occupied by the structure, the problem cannot possibly be solved
on the grounds of strictly mathematical theories. Hence, it is necessary to
introduce a number of simplifying assumptions designed to bring theory
closer to engineering practice. These assumptions had been the basis of a field
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of study which was the predecessor of structural mechanics and which came
to be known, though not very logically, as strength of materials. Huber
(1951) tried to replace it with the term engineering stereomechanics but was
unsuccessful in obtaining support. The departures from exact theories intro-
duced into strength of materials lead to numerous contradictions and incon-
sistencies which we should well bear in mind. They are discussed in Chap-
ter 2.

Regarding the physical properties of materials, a linearly elastic or rigidly
plastic model of a body is accepted as a rule in strength of materials and
structural mechanics. The present part will be confined to the assumption
that every material conforms to Hooke’s linear law. The point of departure
for our considerations will therefore be the linear theory of elasticity. This
puts definite constraints on the magnitude of external loads; the stresses
induced by them cannet be in excess of the limit of proportionality, which is
determined experimentally for every material. However, since the moduli
of elasticity are very high as a rule, the strains induced by stresses not ex-
ceeding the elastic limit must consequently be treated as small quantities. As-
suming that the displacements are also much smaller than the dimensions of
elements, we can consider equations of equilibrium neglecting both the
deformations and displacements of a body. As a result of the linearity of
geometric and physical relations, there is the very important and useful
principle of superposition, which allows the effects of the sum of different
causes to be treated as a sum of effects produced by separate causes.

Naturally, we come across structures which, due either to a high deform-
ability of the material or to a high slenderness ratio (whippiness) of the
elements, are subject to displacements or strains that can no longer be treated
as small; we shall not deal with them here. Readers interested in the prob-
lem can find the relevant information in the specialist textbooks by Kachurin
(1965), Perelmuter (1972) or Popov (1948). In Poland, problems relating to
high deflections of very slender bars have been the concern chiefly of
Waszczyszyn (1962) and Waszczyszyn and Zyczkowski (1962).

The aforementioned simplifying assumptions, which are discussed in
detail in Chapter 2, when used as a basis of considerations, lead in effect
to a situation whereby problems which according to the theory of continuous
medium are described by sets of partial differential equations, can be de-
scribed in terms of bar statics by sets of ordinary differential equations. De-
parting from the theory of deformable media and superseding it by a deformable
bar theory can be regarded as the first stage of discretization of a system;
a three-dimensional body is replaced by an unidimensional object—the bar
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axis, linked to which are certain global physical characteristics, displacements,
loads, strains and generalized internal forces.

As noted above, strength of materials and structural mechanics are founded
on mathematically exact theories, yet historically, the foundations of
engineering theories had taken shape earlier than the theory of elasticity
or plasticity. For example, observations concerning the properties of elastic
materials in a uniaxial state of stress and the theoretical foundations of bar
bending and torsion, both date to the 17th century and are associated with
the names of Hooke and brothers J. and J. Bernoulli (1691, 1742). Later
and until the early 19th century, strength of materials was further developed
by such distinguished researchers as Young, Poisson (1811), Euler, Lagrange
(1788), Navier, de Saint-Venant (1856) and Kirchhoff (1876). As for the
beginnings of the general theory of elasticity, we may consider it to be dated
to 1822, when Cauchy (1882) generalized Hooke’s law to a three-axial
state of stress.

Given below is some information and comment concerning other chap-
ters. Chapter 2 deals with the derivation of the differential equations of equi-
librium and kinematics and of the relations between static quantities and
strains in straight and curved bars. It also contains formulae to determine,
knowing the generalized internal forces, the stress distribution in a cross-
section of a bar. In the subsequent chapters, which are no longer concerned
with strength of materials but with the statics of bars and bar structures,
the considerations are confined to determining generalized internal forces.

As we cease to consider single cross-sections, we must first discuss the
modes of support of bars and plot diagrams of the links between elements
that go into the making of bar structures. These problems are discussed in
Chapter 3, in which much attention has been devoted to static determin-
ability and kinematic invariability of bar structures. This question, presented
pictorially in Chapter 3, is re-examined later in Chapter 6, wherein the static-
kinematic analysis is reduced to examination of the algebraic properties of
appropriate matrices.

It may be worthwhile to point out here that the concept of static
determinability or indeterminability of structures is specific to bar structures.
Any other structures, such as plates, disks or shells (excepting shells in mem-
brane state) are always, regardless of the mode of support, hyperstatic. This
is due to the fact that while for bars the number of differential equations
of equilibrium (cf. Chapter 2) equals the number of unknown static quan-
tities, i.e., of internal forces, occurring in these equations, in the case of surface
structures and three-dimensional bodies, the number of generalized internal
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forces acting is larger than the number of differential equations of equilib-
rium. Therefore, if only the boundary conditions permit, all internal forces
in a bar or in a bar structure can be determined on the equilibrium conditions
alone, this being impossible in the case of structures of any other type.

In Chapter 4, we derived the principle of virtual work for deformable
bars, regarding the differential equations of eqilibrium given in Chapter 2
as known and proved. We followed here an argumentation presented, e.g.,
by Nowacki (1952, 1954). A different derivation technique, by which the
calculus of variations is applied to the energy equation, was proposed in the
18th c. by Lagrange (1788). We did not consider other energy theorems
associated with such names as Clapeyron (1857), Menabrea (1858) or
Castigliano (1875). In doing so, we were guided not only by the confines of
the chapter, limited by necessity, but also on the grounds that the universal
character of the principle of virtual work allows also those problems to
be solved, that can be equally well solved on less general energy principles.
We can derive without difficulty Betti’s fundamental principle of
reciprocal work (1872), generalized by Maizel (1951), and other particular
reciprocity theorems that follow from it.

In Chapter 5, the reader will find solutions of the sets of equations de-
rived in Chapter 2. In this way, we are concerned no longer with a single cross-
section but instead we seek functions describing the interesting static and
kinematic quantities over bar length, which depend of course on the bound-
ary conditions. It needs to be made clear that by the general concept of bar
we understand truss members, and equally so straight bars subjected to
bending, called beams, and also in-plane curved bars which in the case of
load acting in the plane of the bar axis are called arches; but when a load is
acting perpendicularly to that plane, they are called in—plane curved bars.
In frameworks, we can also distinguish vertical bars, called columns, and
horizontal ones, called spandrel beams.

We have related in Chapter 2 the displacements and stresses at an arbitrary
point of the bar’s cross-section to the displacements of its axis and to the
generalized internal forces, and correspondingly in Chapter 5, after solving
the ordinary differential equations, the displacements of the axis and the
internal forces to the boundary quantities. In Chapter 6, our concern is to
determine the very same discrete boundary (nodal) quantities using an appro-
priate set of algebraic equations. The sets of these equations are written
in matrix notation which is very convenient for algorithmization of compu-
tations. There is ample literature now on applications of the matrix calculus
to the statics of structures to mention only as examples the monographs
by Asplund (1964, 1966), Livesley (1964), Laursen (1966), Filin (1966),
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Przemieniecki (1969), Mitropolski (1969), Maslennikov (1970) and Zurmiihl
and Falk (1984).

The problem of determining the degree of static indeterminability and
kinematic variability of a structure, brought up again here (cf. Chapter 3),
involves the investigation of the properties of one of the matrices, this being
a routine operation for digital computers. Not considered are other specific
techniques of investigating the kinematic invariability of a structure, suited
to particular kinds of engineering structures. For example, Frackiewicz
and Legat (1967), Frackiewicz and Lewinski (1968, 1970), and Frackiewicz
(1970), dealing with surface trusses, found that in specified cases these
structures become kinematically variable, or according to the nomenclature
used by these investigators, they become “singular”. Incidentally, this feature
has been noted earlier by Schlink (1907), Prager (1926) and others (cf.
Nowacki, 1952).

Static problems concerning bar structures can be solved, generally speak-
ing, by one of two methods: either by the direct flexibility method (force
method) or the direct stiffness method (displacement method). For this
reason, we have concentrated on discussing the general principles of procedure
according to the two methods. All other methods are merely varieties of
these two general methods and differ from each other either in notation or
in the algorithm used to solve a set of canonical equations, or lastly in the
type of structure, to which one of the two methods can be applied. For example,
equations with the direct stiffness method can be solved iteratively by the
Cross method (Cross, 1930; cf. Dasek, 1951; Btaszkowiak and Kaczkowski,
1959, 1966), by the Kani method (Kani, 1954) or by the cracovian method
(R. Dowgird and Z. Dowgird, 1952, 1964; Z. Dowgird, 1956). For regular
bar structures we frequently use the method of differencee quations, in which
usually geometric quantities are the unknowns. The method, dating to the
early years of this century (Griining, 1918; Funk, 1920; Bleich and Melan,
1927), has been revived in connection with the development of computer
techniques. In Poland, it was updated by Gutkowski (1965, 1973), Gut-
kowski et al. (1980), and Frackiewicz (1966). The theory of fibrous media,
which relies on the displacement method, can also be the point of departure
for static analysis of bar structures (cf. e.g., Pela and Wozniak, 1966; Woz-
niak, 1969, 1970).

The finite difference method in the matrix approach is used in Chapter 7
to determine the quantities of interest to us in isostatic structures, namely
in a multispan hinged beam and in a truss. A number of graphic techniques
were devised towards the end of the last century to determine the forces
acting in truss members of isostatic trusses. Thus, using Cremona’s polygon
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of forces (Cremona, 1874, 1879), all members of a plane truss of special
design could be determined. Culmann (1866) and Ritter (1888, 1890)
developed a technique of determining the forces acting in three truss members
present in the cross-section of a truss. The bar-exchange technique devised
by Henneberg (1886) served to determine the forces acting in truss members
where Cremona’s and Ritter’s method proved inapplicable. Lastly, the Williot
diagram (1877) was used to determine the sidesways of plane-truss joints.
Graphic methods, applicable not only to static analysis of trusses, have been
described in many textbooks, especially those earlier dating, both Polish
(e.g., Abakanowicz, 1876; or Thullie, 1917) and others (e.g., Miiller-
Breslau, 1881, 1892), but also sometimes in recent literature. However, in the
computer age the more labourious and less universal graphic techniques
of solving static problems are being replaced more and more by analytical
methods. For this reason, stopping at the above general information, none
of the named (and unnamed) graphic techniques is considered in Chapter 7.

Discussions in Chapter 8 on the applications of the direct flexibility
method in the analysis of statically indeterminate structures, focus on the
important question of selecting the primary system. Also indicated are the
possibilities of diagonalizing the matrix of a set of conditional equations
of the direct flexibility method.

Chapter 9 deals wholly with the applications of the direct stiffness method
in matrix approach in the static analysis of frames, assuming that the exten-
sion of bars, being negligibly small, has no effect on the internal force distribu-
tion in the structure. This assumption, which is being adopted as a rule
in engineering practice, makes it possible to reduce substantially the number
of geometric unknowns; moreover, some frames can be treated as immovable.

Beside problems relating to static analysis of designed structures or of
actual structures, engineers may also be interested in the question of synthesis,
to be understood as an algorithmized operation with the aim of designing
a structure meant to be optimal in a specified sense. This is, however, an
engineering problem which is as a rule outside the scope of structural statics.
This is because only the minimization of the weight of a structure could be the
object of theoretical static investigations. In practice, however, the main point
is usually to satisfy various commercial, technological, service, insulating
and aesthetic requirements, and the like, which are all unrelated to mechanics.
Therefore, by merely mentioning the problem, we call attention to certain
questions relating to synthesis, which are considered in Part 3 of this volume,
referring the reader at the same time to studies by Wasiutyhski (1956)
and Wasiutynski and Brandt (1962, 1963).

Throughout the chapter, we have followed the deterministic approach
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to loads and physical properties of a structural material and to the size and
shape of individual elements. It should however be noted that a good many
studies have been published in the past fifty years, in which problems of static
analysis and safety of structures are approached in a different way, relying
on probability mathematics. The harbinger of this branch of mechanics
was Wierzbicki (1961,, 1961,). Readers interested in the problem will find
a detailed survey of relevant literature as well as information on the
foundations of structural mechanics in the probabilistic approach in studies
by Bolotin (1968), Eimer (1963) or Murzewski (1976).



2. Bars of Solid Cross-Section

2.1. Tension and Bending of a Straight Bar

Tension and bending of a prismatic bar is sometimes considered under the
theory of elasticity (cf. e.g., R. Dowgird and Z. Dowgird, 1964, p. 177), yet
with far-reaching assumptions which narrow the application range of the
relationships derived under this theory. We, therefore, return to the problem
once more, changing at the same time some denotations and adjusting them
to the convention used in the statics of structures.

Let us consider a straight bar in a right-handed coordinate system x; =
=Xx,Xx, =J,x3 =z Let the x-axis coincide with the longitudinal axis
passing through the centres of gravity of the cross-sections of the bar and let
the y- and z-axis be the principal, central axes of inertia of a cross-section.
Shown as an example in Fig. 2.1 is a bar of rectangular cross-section.

=
S s
2,

Fig. 2.1. The coordinate system

The first group of equations expresses the equilibrium conditions of an
element. We arrive at these conditions based on the following argumen-
tation. Stresses occur in the bar material, their components being the functions
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of coordinates x, y, and z. Specifically, the stresses acting in the cross-section

are g,y = Oy, 033 = Ty, 013 = Ty;. Their resultants are calculated from the
equations

N={oda, T,=(v,d4, T, ={s.d4, @1
A A A
M, = S"deA’ M, = - SaxydA, 2.2
A A

where A is the cross-sectional area, N is the longitudinal force, T, and T,
are the transverse forces and M, and M, are the bending moments, whose
positive senses are shown in Fig. 2.1. Assume that the torsion moment

M, = {(toy—1.,2)d4 2.3)
A

equals zero.
The resuitant external loads acting on the axis of the bar have components
as shown in Fig. 2.2. The loads p,, p,, p. are expressed in force units per

2= T

‘l’ —_—

@ )
Fig. 2.2. Components of loading of the bar

unit length [N/m] and the loadings, at moments m,, m,, in moment units
per unit length, i.e., in force units [N]. An element of the considered bar axis
of length dx is under the action of the generalized forces indicated in Fig. 2.3.
The equilibrium conditions for all the forces and moments lead to the
following static, differential relations:

*Mz * m,dx * M, +dM,
T T lpzdx lr;+d7;
Pydx

N - N+dN

A A e
A e Pueam,

Fig. 2.3. Generalized forces acting on bar element




12 STATICS OF BARS AND BAR STRUCTURES PART 1

dN _ dT, _ a7, _
E‘*‘P: =0, —d7+py =0, ' +p, =0, (2.4
dM, _ dM, _

2 —Tokm, =0, SEEiT,tm, =0, 2.5)

their number being equal to the number of unknowns in (2.1) and (2.2).

The second group of equations is represented by geometric relations be-
tween strains and displacements. As for the displacement fields, we preassume
that the displacements of individual points of a body can be expressed by
three functions of variable x:
dv(x,0,0) dw(x,0,0)

dx — dx ’
v(x,y,2) =v(x,0,0), w(x,y,z)=w(x,0,0). 2.7

Functions dependent only on variable x will be denoted in shorter form
omitting the arguments:

f(x,0,0) =f. (2.8)

The assumptions concerning the displacement field, equations (2.6) and
(2.7), constitute a mathematical expression of Bernoulli’s assumptions, which
is fundamental to the theory of bending of bars. According to them, when
a bar is under tension or undergoing bending, its cross-sections (a) remain
plane, (b) remain perpendicular to the axis of the deformed bar and (c) do -
not undergo deformation in their plane. Indeed, calculating the strains from
the relations given, for example, by Mossakowska et al. (1978, p. 23):

d d%v dz
ex(xa Y, Z) = 8ll(xa Y, Z) = Eu_yw—zd—x‘:—’ (2'9)

u(x,y,2) =u(x,0,0)—y (2.6)

SY(x! y! Z) = Sz(x, y! Z) = 0,
‘Y)’z(xa Y, Z) = 2823(x’ Y, Z) = 0,
Var(%,¥,2) = yx:(%,7,2) =0, (2.10

we find that all Bernoulli’s assumptions are satisfied.
Introducing the notations:

du d?w d%
&= Sx(X,O,O) ='Ex-, Xy = —F, x,=?xT, (2.11)
we write equation (2.9) more briefly:
ex(xa ) Z) = e_yxz+zxy- (212)

The symbol ¢ denotes the extension of the bar axis and x,, »,—its curva-
tures or rather their approximate values, calculated from the linearized equa-
tions (2.11).
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The last group of equations express the relations between static and
kinematic quantities. In stress calculations, we use the assumption

Gy(xa Y Z) = 0I'z('xa Y, Z) = 0, (2.13)

which is not contradictory to the previously determined state of strain (2.9),
(2.10) only for a body with Poisson’s ratio » equalling zero.

Considering the possible occurrence of distortional strains &°, x9, %%
due to non-static factors (e.g. temperature increase), we determine the stresses
in the bar according to Hoocke’s law:

0x(x,y,2) = E[e— & —y (2, — x2)+2(x, — %9)], 2.19

Ty (%, 7,2) = 7:,(%,,2) = 7,:(x,y,2) =0, (2.15)
where E stands for Young’s modulus. '

Knowing the stress distribution ¢, in the cross-section of the bar, we can
calculate from egs. (2.1) and (2.2) the values of some of the generalized
internal forces:

N = EA(e—¢£9),

M, = EJ,(x,~x%3), (2.16)

M, = EJ (x,—xJ).

The symbols:

a={d4, 7,=(22d4, J, = {24 2.17)
4 4 4
introduced here denote the crross-sectional area and the principal, central
moments of inertia, respectively.
From the relation (2.16) we can easily find the deformations of the bar
axis:

oy, %, = zfj +22, (2.18)

_l_*_o
—EA &, X

_ M,
Yo EJ,
so that after substituting them into eq. (2.14) we arrive at the relationship
between the stresses o, and the generalized cross-sectional forces:

N M
Gx(xa Y, Z) = —+—yz— Mz

417, 7, y. (2.19)

The zeroing of the shear stresses (2.15), calculated based on the kinematic
assumptions and Hooke’s law, might lead to the conclusion that the transverse
forces (2.1),,3 equal zero. However, since such a conclusion would involve
contradictions in the set of equilibrium equations (2.4), (2.5), we drop the
previously accepted Bernoulli’s assumptions and disregard satisfying Hooke’s
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law. But, to find the shear stress distribution in the cross-section, we do use
the equilibrium equations, since we consider satisfying them, if only in integral
sense, to be a sine qua non.

We, therefore, carry the following argumentation (cf. e.g. Brzoska, 1972,
p. 116). An element of the bar bounded by two cross-sections dx apart is
again divided into two parts with a cross-section parallel to the x-y plane,
located at distance z from this plane (Fig. 2.4a). In order not to complicate
dx

(a)

dx

° \1'\

(b)

o, (x.y.2)

Fig. 2.4. Stress distribution in bar subjected to bending

things, let us assume that in the absence of loads m,, stresses o,(x,y, z),
derived only from the bending moment M,, are acting on the element. Their
distribution projected onto the x-z plane is shown in Fig. 2.4b.

These stresses give a resultant oriented along the x-axis; the value of that
resultant is

do,
dR =AS - dxdA, (2.20)

where A, stands for the part of the cross-sectional area situated beneath
the coordinate z (Fig. 2.4a). Assuming that the shear stresses 7,, = 7y,
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whose resultant is a force dR, are uniformly distributed on the surface b,(z)dx
we obtain

1 do
p—v ——-—x— dA -
Tyz 5.0 AS P (2.21)

Suffice to use Eqs. (2.19) and (2.5), with the aforementioned assumptions
to arrive at the following dependence of the shear stresses on the transverse
force:

T.S,
Tep = 7.5, (2.22)
In this equation:
Sy = Ssz (2.23)

is the static moment of the part of the cross-section denoted by 4,, calcu-
lated with respect to the x-y plane, and b, is the width of the cross-section
measured parallel to the y-axis at distance z from the centre of the cross-
section.

The analogous equation:

- I,
J:b;
requires no additional comment.

Going back to Hooke’s law, we can now easily determine the expressions
for angular (shear) strains

T,S, T,S,
= oz = . 2.25)
Yy GJ.b,’ Ve GJ,b, (

In these expressions G stands for Kirchhoff’s modulus.

Txy

(2.24)

(a) (b)

Fig. 2.5. Shear strains of bar element
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Here, we run into a successive contradiction with the initial assumptions.
From Egs. (2.22)-(2.25) it follows that the shear stresses and the shear strains
which are proportional to them, change at the cross-section level in the manner
indicated schematically in Fig. 1.5a. As a result, an element of the bar of
volume Adx deformed in the way shown in Fig. 2.5b. Maximum shearing
strains occur at near half the height of the element, whereas at the extreme
fibres they equal zero. As we can see, contrary to Bernoulli’s assumptions the
cross-section of the bar remains neither plane nor perpendicular to the bar
axis. For this reason we present in Section 5.2a beam bending theory involv-
ing shear forces, which is based on weaker simplifying assumptions.

The relations derived above, although they refer in principle to a prismatic
bar, are also applicable to bars of a slightly variable cross-section. Using the
above classical theory of bending of bars, we have to bear in mind that it is
an engineering theory. Its assumptions lead to the indicated contradictions
and inconsistencies with the mathematical, exact theory of elasticity. The lower
the ratio of the transverse dimensions of a bar to its length is, the smaller
the errors arising here will be.

2.2. Torsion of a Straight Bar

The classical de Saint-Venant’s torsion theory can be taken to be exact
only in a very special case, namely in the absence of stresses on the side sur-
face of a prismatic bar and in the presence of such a support of the cross-
sections at both ends of the bar that does not restrain their displacements in
a direction parallel to the axis of the bar. Knowing the approximate character
of this solution, should the named assumptions not be met, we shall use
it nevertheless also when the bar is loaded in a more general manner.

(a) (b}

my
N mydx

x «—.———'—»—-’

l l M+ dM,
" M' dx t

Fig. 2.6. Loadings acting on bar subjected to torsion

Our concern will therefore be a straight bar, not necessarily prismatic,
loaded in the manner indicated in Fig. 2.6a. An element of length dx (Fig.
2.6b) will be in equilibrium, if the following equation is satisfied:

dM,
dx

+ my = 0 . (2°26)
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We assume that only shear stresses 7,,, 7,, which together with the twist-
ing moment M, involved in the relation (2.3), occur under torsion. Conse-
quent upon this assumption is the disappearance of all strains except sy,
yx:. Hence, it further follows that a cross-section does not become deformed
in its plane and experiences only warping; in other words, it loses its planar
shape. Displacements of points of the cross-section in its plane are expressed
by linear functions in terms of the coordinates y, z:

v(x,7,2) = v(x,0,0)—zg,(x),

w(x, y,z) = wx, 0, 0)+yp.(x). (2.27)

In these equations, ¢,(x) denotes the angle of rotation of the cross-section
about the x-axis.

In the absence of stresses o, and because body forces X are neglected, the
first of the partial equilibrium equations (cf. Huber, 1949, Vol. I, p. 74)

do, + 0Ty, + 0Ty,

% PR P +X =0 (2.28)
reduces to the form
0Ty 0Ty
__EE_ = 0. (2.29)

The equation will be satisfied in an identical manner if we express the
stresses by derivatives of the stress function y:

Txy = %—y Txz = — 'al' (2'30)

Hence, the shearing strains yx,, ¥, considering Eqs. (2.27), depend on
the stress function in the following manner:

_ Ou(x,y,z) dv _ 1 oy o
v Ty ‘& T TG @31
ou(x,y,z) dw 1 dy o .
Ver = — 5+ P4 = ~G oy +Vxz-
The symbol
d
%, = d‘f; (2.32)
denotes unit twist of bar, G is Kirchhoff’s modulus and y2, = —zx7, y5; = yx!

are distortional shear strains which we treat as functions of distortional twist-
ing »?, being a kind of twist independent of static loads.
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By differentiating the first of the equations of the set (2.31) with respect
to z and the second with respect to y, and by subtracting them by sides, we
obtain the following differential equation for the stress function:

Vip = —2G(x%,— ), (2.33)
where
02 2
2 _
V: = 37 + Pl (2.34)

In the case of a single-connected cross-section the boundary condition
that should be satisfied by the y-function on contour of the cross-section is
(cf. Mossakowska et al., 1978, p. 183)

» =0. (2.35)

We, therefore, have to solve the Poisson’s differential equation (2.33)
with the boundary condition (2.35). It cannot, however, be solved not know-
ing the twist of the rod x, or the twisting moment M, which depends on
torsion angle in the following manner:

M, = GJ,(t,— ). (2.36)

The symbol J, introduced here is the geometric torsional rigidity of a cross-
section and has the dimension of the moment of inertia [m*].

We obtain the additional condition required to calculate the missing
quantities by proceeding from the definition of the twisting moment (2.3).
Substituting into Eq. (2.3) the expression (2.30), we get

_ (9 aw)

It is easily demonstrated that because of the boundary condition (2.35) the
expression (2.37) can be transformed into

M, =2 {ypda. 2.38)
A

In this way, we have obtained all the necessary elements to determine the
twisting moment M,, the twist », and the stress distribution within the cross-
section. It is seen that unlike the previously considered cases, to determine
the stresses acting in a torsioned bar, a partial differential equation needs
to be solved. This is a single operation which consists of finding a y-function
corresponding to a given shape of the cross-section.

In the special case of a bar of symmetrical circular cross-section, the geo-
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metric torsional rigidity J; equals the polar moment of inertia of the cross-
section, whereas the shear stresses are calculated using the equations:

M, _ M

Txy = —J_zs Txz J Y.
t t

(2.39)

This is the only case where torsion does not cause warping of the cross-

section.
In the more general case of a bar of elliptic cross-section we have

b3c?
fo= e
M, 2b?
TX}’ - —TWZ,
M 22 (2.40)

L A S e R

where b and ¢ stand for the lengths of the semi-axes of the ellipse, running
parallel to the y- and z-axis, respectively.

More information on the question of torsion of bars of other cross-sections
can be found in studies by Aratyunyan and Abramyan (1963) and Sokolni-
koff (1956), and in many textbooks on strength of materials.

2.3. In-Plane Curved Bar

Let us consider a bar with a curved axis lying in the x-y plane. We introduce
additional coordinates s, n associated with the bar axis (Fig. 2.7) and assume
moreover that the axis n is one of the principal, centroidal axes of inertia

X

Y s,u

&)
Q
y

Fig. 2.7. Bar curved in plane xy

of the cross-section. The radius curvature of the bar axis ¢ is a function of
the coordinate s.

We shall now consider a bar loaded in its plane and separately a bar under a
load perpendicular to its plane. First, let the loads p;, p., m,, indicated in
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{a) {b)

Ps Pn
e —‘\@ NY m,ds p,,ds
M,
pds

m, P )M;rdM,
Thrdl N+dN
Fig. 2.8. In-plane loadings of bar

Fig. 2.8a, be acting on the bar under consideration. These loads together
with the accompanying internal forces (Fig. 2.8b) satisfy the following equa-
tions of equilibrium:

dN T, _o
ds o T

T, N _,

dS +'E Pn = U,

M, +T,+m, = 0. (2.41)
ds

Wanting to find the dependence of stress on cross-sectional forces, we
assume such a displacement field of the rod that would satisfy all Bernoulli’s
assumptions. Hence, we assume that displacements u(s, n, z) and v(s, n, 2)

(@ —

Fig. 2.9. Cross-sectional displacements of curved bar
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at an arbitrary point of the bar are described by two functions u and v, which
depend only on the variable s:

e—n ——;L:n, v(s, n, z) = v(s). (2.42)

The distribution of displacements u(s, n, z) at the cross-section height accom-
panying the axis displacement u is given in Fig. 2.9a, and those induced by
the angle of rotation dv/ds, are given in Fig. 2.9b. In this particular case,
the axis of the bar does not pass through the centres of gravity of the cross-
sections but is shifted with respect to them by a certain segment 7,, which
we determine below from the static condition.

The displacements (2.42) are accompanied by longitudinal strains, only

0 du o d d [u
g(s,n,z) = o—n [(—d—s——?) ——n(—dgz—+a(—g—))] (2.43)

Hence, the stresses o,(s, n, z) are

u(s,n,z) = u

o(s,n,z) = i@n (e—m), (2.44)
where
du o d*v d[u

express the relative extension and the curvature increment of the bar axis.
The equations (2.45) are a generalization of the relations (2.11) which apply
to strains in a straight bar.

The position of the bar axis is determined from the condition that the longi-
tudinal force N does not depend on the curvature increment x»,. Hence,
it must be

-2 as-o0. (2.46)
s @

The following relations occur between the coordinates n measured from the
bar axis and % measured from the centre of gravity, on the one hand, and the
radii ¢ and r stretching to the bar axis and to the centre of gravity, respect-
ively, (Fig. 2.10) on the other: 4

o =r—"9, Nn=n—1. 2.47)

Using these relations, we obtain

S'j dA =’7°S dd_ _ 4. (2.48)
A n A '—n



22 STATICS OF BARS AND BAR STRUCTURES PART 1

o

e 3}; .

Fig. 2.10. Denotations of geometrical quantities

The parameter

10
"’"7§ - (2.49)

depends on the shape of the cross-section and on the magnitude of the radius
r. For example, for a rectangle of height h, we derive the formula (cf.
Huber, 1951, Part III, p. 26)

_r . r+hj2
v —"’Tln'—‘r_hlz I, (2'50)
and for a circular cross-section of radius a:
V=g
_r-yr-a (2.51)
r+yri-a?

Integrating the stresses (2.44) over the entire cross-section, we obtain the
value of the longitudinal force:

N = EAe. (2.52)

As for the bending moment M,, considering the relation (2.46), it is

2
M, = —SasndA = EgSn—dAx,. (2.53)
4 g er

The integral presented here is easily calculated taking into account the rela-
tions (2.46) and (2.47),; finally:

M, = EAony»,. (2.54)
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Having determined the strains ¢ and %, from equations (2.52) and (2.54),
we arrive at the following relationship between the stress o, and the gener-
alized internal forces:

oa,(s,n,z) = e ({V_ M. n). (2.55)

o—n

Plots of the stresses induced by the generalized internal forces N and M,,
brought over to the shifted bar axis, are depicted in Fig. 2.11.

Fig. 2.11. Stress distributions in curved bar

Taking into account the distortional strains £°and %2, Egs. (2.52) and (2.54)
for internal forces can be generalized:

N =EA(e—¢%, M, = EApny(x,—x2). (2.56)

We use the equations just derived above only when we deal with a strongly
curved bar, i.e., a bar whose cross-section is of a size comparable to the radius
of curvature. In the case of slightly curved bars, it is assumed that the coordi-
nate n measured within the cross-section is very small in relation to the radius
of curvature g. The obvious corollary is that the line joining the centres
of gravxty of the cross-sections (1, = 0) can be regarded again as the bar
axis. The product A7, becomes then equal to the moment of inertia: ~

on’
Aomo =\ ——-d4 ~ Snsz =J, (.57
4 870 i

and the stress distribution o, (Fig. 2.11) becomes linear, in keeping with the
formula

N M,

s = ‘A‘—T"l (2.58)

The shear stress distribution in the cross-section is determined from an
equation of type (2.24).
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Let us consider in turn a bar loaded from the plane. The forces acting on
an element cut out of the bar considered (Fig. 2.12) should satisfy the follow-

ing conditions of equilibrium:

7 [
0
- -~ - M, +dM, M, +dM,
— - . T -
T 7,+dl,
e
Fig. 2.12. Vertical loadings to bar plane

dT,

=0,
ds +p:
dM, M

"4 2L Ttm, =0, 2:59)
ds

dM, M,
——t‘ —_ " +m, = 0.

ds
As for displacements, we assume for the time being that the cross-sections

do not suffer warping. As a result, the displacements u(s, n, z), v(s, n, z) and
w(s, n, z) of individual points of the rod can be expressed by two functions,

w and ¢,, of variable s:

u(s,n,z) = — %L;J» z,
v(s,n,z) = —@¢:2, (260)

w(s,n,z) = wto,n.
These displacements are accompanied by strains:

(s n z) —_‘_Z—_ — ﬂ

&\s, n, - Q_n (Pt Q dS2 )’
_ z dw de;

ysn(s3 n,Z) = - _"T ('—a;—+g ds )’ (261)
_n dw d(p,)

ysz(sa n,Z) - g_n’ (d—S +0 ds J
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and stresses:

0(5.m,2) =~ (=),
Tan(s, 1, 2) = — QGfZ (%0, —%7), (2.62)
(5,1, 2) = 2 (),
where
o = = LW O _dp 1 dw (2.63)

T ds? +?’ =45 T ds

The curvature x, and the torsion x, are expressed by Egs. (2.63) which are
a generalization of Egs. (2.11), and (2.32). In Egs. (2.62), we have considered
the possibility of distortional strains x and x{ occurring,

We confine ourselves in this case to considering a bar of small curvature.
Therefore, using the simplifying assumption

n<ko, (2.64)

we calculate the bending and twisting moments from the equations

M, = SUdeA = EJ,(%,—%3),

‘ (2.65)
M, = S(Tu”"'fmz)dA = GJ,(%,—%°).

A
Hence, the stress o, can be calculated from the relation

M, oz _ M,
oy(s,n,z) = T o—n =T z. (2.66)
As far as the shear stresses are concerned, we avail ourselves of the argumen-
tation given in Section 2.2, because the relations (2.62),,; are applicable only
to a rotationally symmetrical section. The shear stresses will be the sum of
stresses due to the twisting moment and the transverse force. We calculate
the former from Eqs. (2.30), and the latter from (2.22).




3. Fundamental Static-Kinematic Analysis of Bar Structures

3.1. Elements and Their Connections

For the purpose of a fundamental static-kinematic analysis of a skeletal
structure, we assume that all its elements are undeformable. In the present
chapter, we shall regard as elements of a bar structure single bars, straight
or curved, or else such single-branch (Fig. 3.1a) or branched (Fig. 3.1b) bar

fa) | (b) {c)

e
——

Fig, 3.1. Bar systems: (a) single-branch; (b) branched; (c) closed

systems that contain no hinged joints and make no closed circuits (Fig. 3.1c).
In the latter case, only after cutting the circuit do we obtain a bar system
which can be treated as an element.

The elements of a bar structure are connected in various ways to the found-
ation (likewise to be treated as an undeformable body) or to other elements.
A joint preventing any relative displacements between two jointed parts of
a structure is called a rigid joint, and when one of the parts is the foundation,
it is called a fixed support. A diagram of such a connection is given as two
variants in Figs. 3.2a, b. Since a rigid body has six degrees of freedom in space,

{a) {b) {c)

Sy B

W \l\'\ S

Fig. 3.2. Rigid connection
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consequently, six connectors are consequently required to immobilize it.
Each of the connectors deprives the element of one degree of freedom. For
this reason, six connectors will always be found in every rigid joint. If an
element is fixed to the foundation, this is symbolically indicated as shown
in Fig. 3.2c.

(a) | (b) ' | (c)
AN
A —|

i i
Fig. 3.3. Cylindrical hinge

o

Figures 3.3a, b show diagrams of a cylindrical hinge whose axis runs
parallel to the z-axis. This particular hinge requires five connectors, thus
leaving the elements with one degree of freedom, i.e., the elements are allowed
to rotate about the axis of the articulated joint. A cylindrical articulation is
denoted symbolically as shown in Fig. 3.3c.

@ | CR (e
E E :’ -
/

i

Fig. 3.4. Cardan universal joint

A Cardan joint requires as indicated in Figs. 3.4a, b, four connectors.
This leaves the elements free to rotate against each other about two axes
perpendicular to the bar axis. The symbol for this type of joint is shown
in Fig. 3.4c.

(a) (b)

I = a——

Fig. 3.5. Telescopic joint
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Presented in Fig. 3.5 are diagrams and the symbol of the so-called tele-
scopic joint which does not allow the jonted elements to rotate against each
other about the axes of mutual sidesways. Figure 3.6 shows a variation of

(a) (bl (c}

da T

Fig. 3.6. Telescopic-hinged joint

the telescopic joint, in which the rotation of the elements against each other
is not constrained in any way.

Lastly, Figs. 3.7a and b show diagrams of a spherical joint with three
connectors. Such an articulated joint, whose symbols are given in Fig. 3.7c,

{a) (b) {c)

Fig. 3.7. Spherical joint

{a)

v =
{b) L

7 [ —
{c)

| [T [ L
(d) __I A %A;_

Fig. 3.8. Joints in a plane system: (a) rigid; (b) hinged; (c) telescopic; (d) hinged-slip
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allows the two jointed elements to rotate against each other about all three
axes.

For the diagrams to be plotted it is necessary to introduce, as seen in the
drawings, appropriate branchings at the ends of the jointed elements. This
is tantamount to taking into account the transverse dimensions of the jointed
bars.

In the case of plane bar structures, each element has only three degrees
of freedom in the plane of the structure. Consequently, joints in plane struc-
tures are correspondingly simpler. Diagrams and the symbolic connotations
of joints of rigid, hinged, telescopic and hinged-slip type, are shown in Fig. 3.8.

A spherical or cylindrical joint can connect more than two elements. If,
for example, m elements are involved, we then treat the joint as (m — 1)-fold.
This folllows from the fact that for m elements meeting at a single joint to be

{a) (b

L]
=~

b 3
¥

Fig. 3.9. Multiple joint

separated from each other, it is enough to make m—1 cross-sections. Figure
3.9a gives as an example an articulated joint connecting four elements and
Fig. 3.9b, an equivalent set for three single articulations.

3.2. The Static-Kinematic Discriminant

To analyse a bar structure in static-kinematic terms, we must first divide
it into elements in the manner indicated in Figs. 3.1a and b. To this end, we
cut the connectors between adjoining elements, and between the bar elements
and the foundation, although cross-sectioning in the latter case is not always
necessary. For, if we have a bar element build in the foundation, we can treat
it as a kind of extension of the rigid foundation.

The overall number of connectors that have to be cut to divide a structure
into elements is denoted by ¢ and the number of elements thus set free, by e.
Each of the elements now has / degrees of freedom with 2 = 6, when a three-
dimensional problem is involved, and # = 3, when we deal with a two-di-
mensional problem. Hence, to immobilize all the bar elements in space or
in plane, we need he connectors.
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The difference between the number of connectors actually out and the
number of connectors necessary to immobilize all the elements we denote
by the letter n:

n =t—he. 3.1

If the number # is positive, more connectors are then present in the structure
than are necessary to immobilize all the elements, consequently the structure
or at least part of it is over-rigid. If »n is negative, the number of connectors
in the structure is then insufficient to immobilize all the elements and at least
part of the structure is then kinematically variable. For n = 0, we may deal
either with a kinematically invariable system or with a system having one part
over-rigid and the other kinematically variable.

A structural analysis can also be approached in static terms, instead of
kinematic. There is in each of the connectors an unknown axial force involved.
The forces acting on each of the separated stiff elements must satisfy 4 equi-
librium conditions. We have, therefore, combined %e equilibrium conditions,
in which we have ¢ unknown forces acting in the cut connectors. The number
n in Eq. (3.1) can thus be treated as the difference between the number of
static unknowns and the number of equilibrium equations. Owing to the two
interpretations of », we shall call that number the static-kinematic discrimi-
nant of a bar structure.

If n is a positive number, then the static conditions will not suffice to cal-
culate the unknown forces. It is therefore certain that at least part of the
structure can be regarded as statically indeterminate. It is that same part
which we have defined above as over-rigid. When the static-kinematic discrimi-
nant is negative, the number of equations is higher than the number of
unknowns and at least part of the structure is out of equilibrium. That part
is the kinematically variable part. Finally, for n = 0, the number of equilib-
rium equations equals the number of unknowns. In other words, the struc-
ture as a whole can be statically determinate and at the same time kine-
matically invariable, or else a part of it is statically indeterminate, i.e., over-rigid,
and the other one, kinematically variable.

3.3. The Degree of Static Indeterminability and the Degree of Kinematic
Variability of a Structure

The static-kinematic discriminant can be .treated as the difference between the
degree of static indeterminability s and the degree of kinematic variability k:

n=s—k. 3.2
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Positive s connotes the number of static unknowns which cannot be calculated
from the equilibrium conditions alone. It also connotes the number of con-
nectors which when cut will not result in an increased number of degrees
of freedom of elements, i.e., which will not raise the degree of kinematic
variability of a structure. Positive & connotes the number of degrees of freedom
of elements of a structure. It also connotes the number of connectors which
need to be introduced into a structure to immobilize all its elements.

If the static-kinematic discriminant n is positive, the structure is defini-
tely statically indeterminate, but concomitantly may be kinematically variable.
If n is negative, a structure is definitely kinematically variable, but con-
comitantly may be statically indeterminate. Finally, if n = O, then either the
system is statically determinate and kinematically invariable, or statically
indeterminate and at the same time kinematically variable.

Let us consider some of the cases noted using examples.

(a) (b}

3 7 q 3 / 7 9
L ) | \ / \
. 8 7777, 8 10
2
2P 5% 5 /
S
1 6 ] [ |
////‘/7A W//: ooz i

Fig, 3.10. Division of a frame-truss structure into elements

Figure 3.10a shows a plane frame-truss structure which we divide into rigid
elements as shown in Fig. 3.10b. Since we have not separated the frame part
from the foundation at fixed support 6, the number of free elements equals
the number of truss members, e = 9. Since we assume that we are dealing
with a plane structure loaded in its plane, we let & = 3. Calculating the
number of cut-off connectors, we take into account the fact that a plane
hinge involves two connectors (Fig. 3.8b), and a simple support (Fig. 3.8d)
includes one connector. Special care must be taken when multiple hinges
are encountered. As far as the considered structure is concerned, we have
five single hinges (1, 2, 3, 5, 10), two double (4, 9), one triple (7) and one
quadruple (8). Hence, ¢t = (5+2-2+3+4)-2+1 =33 and n=33-3-9
= 6. Since the degree of kinematic variability equals zero, the degree of static

indeterminability of the structure equals the static-kinematic discriminant
and is 6.
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(a) 4 5 7 8 10
A 7y /oY Y A
Vo 2o 37 87 77
{b)
1 4 5 7 8 10
(c)
., 4 5 7 8 10
Z‘T /o .Y A s D S
777, 7% 70 T 7779
74 7

Fig. 3.11. Division of four-span hinged beam into elements

In the case of a four-span hinged beam as shown in Fig. 3.11a, the number
of elements (Fig. 3.11b) e = 5. In dividing the structure into elements, we
have cut t = 4-2+5 = 13 connectors. Since, however, the static-kinematic
discriminant, n = 13—3-5 = —2, is negative, the structure must be kine-
matically variable. The degree of kinematic variability is easiest to determine
as the number of additional connectors necessary to immobilize all the el-
ements. We have introduced them at points 1, 7 and 8 (Fig. 3.11¢c) to find
that £k = 3. Consequently, from Eq. (2.3) we get s = n+k = —2+3 =1.
The structure is, therefore, once hyperstatic. Indeed, should vertical loads
be acting within elements 1-4, i.e., loads parallel to reaction lines 1, 2, 3, these
reactions cannot be calculated from the static conditions. One of them, namely
zeroing of the sum of projections of the forces on the horizontal axis, will
in this case be satisfied in an identical manner, whereas the other two will
be insufficient to calculate the three unknows.

Fig. 3.12. Space truss
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In the case of space trusses, in which all the members are connected at
both ends to spherical hinges, loadings in the form of moments are precluded,
and this applies in particular to moments with vectors parallel to the axes
of the truss members. Consequently, the twisting moments zeroing condition
for each truss member is satisfied in an identical manner and the number
of equilibrium conditions for each member reduces to five. The static-kine-
matic discriminant can therefore be calculated from Eq. (3.1), letting A = 5.

An example of a space truss is shown in Fig. 3.12. The number of elements
is equal to the number of truss members, e = 12. Of the eight spherical joints,
two are single (1, 3), two are double (6, 8), two triple (2, 4) and two quadru-
ple (5,7). Hence, t =2-(1+2+3+4)-3 = 60, and the static-kinematic
discriminant n = 60—5-12 = 0. It is readily seen that the considered truss
is kinematically invariable and isostatic (k = s = 0).

The determination of the degree of kinematic variation of a structure did
not present any particular difficulty in the cited example. Where more compli-
cated structures are involved, the determination of the values of k and s may
prove to be much more difficult. But, it is of major importance in statics
to ascertain whether a structure is not by any chance kinematically variable.
For, statics is concerned with structures at rest, not in motion. All mechanisms
are by their very nature kinematically variable structures, and these are
obviously not of interest to us in this case.

Until recently, kinematic invariability of structures used to be investi-
gated by various graphic methods (cf. Nowacki, 1952, Vol. I, p. 17). In the
computer age, these methods are no longer so important. The static-kinematic
analysis just described has been now replaced by investigation of the alge-
braic properties of certain matrices, discussed in Chapter 6.

{a) (b)
P
—
A A N AN

Fig. 3.13. Temporarily kinematically variable structure

To conclude, we may add that in kinematics we distinguish the concepts.
of unlimited and temporary kinematic variability. For example, the structure
shown in Fig. 3.11 is of the unlimited variable type in the sense that the
respective displacements are comparable with the dimensions of the elements
of the structure. On the other hand, the structure shown in Fig. 3.13a is of the
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temporary variable type, because a very small displacement of the beam is
accompanied by a slope of the connector (Fig. 3.13b), which prevents further
increments of horizontal displacements. In the case of structures required
to have a certain stiffness, this being pertinent particularly in building struc-
tures, we should be wary of both types of kinematic variability.



4. The Principle of Virtual Work and the Reciprocity Theorems

4.1. The Principle of Virtual Work

The underlying principle of mechanics in general, not only structural mech-
anics, is the principle of virtual work, from which all further principles
and methods of solving static problems may be derived. Although Nowacki
(Mossakowska et al., 1978, p. 86) presented in general terms the principle
of virtual work and carried through a proof of it, in our opinion, it will be
useful in a study devoted to bar structures to recall in brief the argumenta-
tion leading to the formulation of this fundamental principle. However,
in order not to complicate matters unduly, we shall prove below the prin-
ciple of virtual work using the example of a straight bar, being one of the
elements of a bar structure. The relations derived therefrom will then be
broaden without proof to arbitrary bar structures.

P,
o, m,(x} i 2k
py(x
/ Y lw,,
my

Vi
A Vbt % (x)
Qi U | P k

/lw' ,U—u %j? 'Y

y i p,ix) P,

. {

Fig. 4.1. Loadings acting on i-k bar

Let us assume that a bar i-k of length / as shown in Fig. 4.1 is in equilibrium
under all the loads indicated in the drawing. Hence, the equilibrium equations
(2.4), (2.5) and (2.6) must be satisfied at every point of the bar axis.
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After introducing the denotations:*

Py ={Px,Py,Pz}, Pm ={m,, mysmz}s (41)
Or ={N, Tys Tz}s 1YY ={Mts Myst}s (42)
00 O
e=J00 -1}{, 4.3)
01 O
we write the set of equilibrium equations concisely in matrix form:
dor doy, '
— = —= =0, 44
o TPp=0, —g-teortp, =0 (4.4

In the above equations, 0 denotes the vectors with all zero entries.
Introducing in turn the denotations:

d
— 0
I dx
p= {pps Pu}, © ={07,0p}, d = il (4.5)
¢ g

in which the unitary matrix I and the zero matrix 0 are 3 x 3 in size, we write
the set of equations (4.4) in the form of a single matrix equation:
do+p =0. (4.6)

The symbol 6 used to denote the full set of generalized internal forces has
been applied by analogy to the denotation of stresses in a three-dimensional
body.

(@) ) (b)
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Fig. 4.2. Cross-sectional rotations: (a) in plane xz; (b) in plane xy

* The braces { } signify that the quantities therein make a single column matrix. The
matrices are given in bold-face print.
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Points lying on the axis of the bar experience displacements u, v, w, and the
cross-sections assigned to those points experience rotations ¢, @,, ..
To generalize, we assume this time that the cross-sectional rotations g¢,, ¢,
are independent of the angles that the deformed axis of the bar makes with
the x-axis. Figure 4.2a shows a cross-section of the bar in projection on xz
plane, and Fig. 4.2b, on xy plane. The line 1-1 represents the cross-section
of the bar in the initial position, and the line 2-2 corresponds to the same
cross-section after rotation. The line 3-3 indicates the position in which the
cross-section would find itself, had it remained perpendicular to the deformed
axis of the bar, 4-4. It is seen that we have dropped here one of Bernoulli’s
assumptions, that a cross-section remains perpendicular to the deformed
axis of a bar.

Hence, the strain equations (2.11), ; take a more general form:

_dg, _ do,
2y = ‘avx*, Hy = *a;‘ > (47)
and, moreover, additional strains appear:
do dw
ﬁv = ’dx =Pz ﬂz = ”d";c' + @y, (48)

which are averaged shear strain angles (cf. Fig. 4.2).

Thus, together with Eqs. (2.11); and (2.32) we have six relations which
using the following denotations:

Gu ={u,7),W}, 9, ={<Ps, Py (pz}, (49)
€s ={€’ ﬁya ﬂz}, €, ={xs’xy,x:} (410)
we write in matrix form:
dq, dg,
= u - e 4.11
€ dx +eq,, €, F ( )

Attention should be directed to the duality of the sets of equations (4.4)
and (4.11). Putting into the set of equations (4.4) in place of 61, 04, P, and
Pn, the quantities o, 6,, —€, and —eg, respectively, we get the set (4.11).

Equations (4.11) can be written even more concisely in the form:

€ =4d.q, 4.12)

using the denotations:

l—dA e
dx

q=1{q,9q,), €=1{€,¢}, d = FRE (4.13)
0 I—
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Assume that displacements q experience now virtual increments dq, which
are accompanied by virtual increments of strains de related to the displace-
ments according to a relation of type (4.12).

Regarding virtual displacements, we assume that they are:

(a) very small compared to the bar size (we have made a similar assumption
discussing real displacements of the bar).

(b) arbitrary, in the sense that they are independent of real loads acting
on the bar,

{c) possible, i.e., consistent with the conditions limiting bar motion (if such
constraints actually exist),

(d) time independent,

(e) expressed by class Cl functions.

Each of the six equilibrium equations that enter the matrix equation (4.6)
is multiplied by one of the vector-forming functions dq, added by sides and
integrated in the limits of O to /. The operation in matrix notation takes
the form*

i

{oq"(do+pax = 0. (.19
0

Expanding the integrand in accordance with Egs. (4.5) and (4.13),, we obtain:

!
S (6qf (:;xr +9dq] p,+ dqrecr+ 6q$—‘%§’— + équm) dx =0. 4.15)
]

The expressions in which derivatives of the cross-sectional forces are present
we integrate by parts, getting:

i

[0q"elo+ S dq"pdx—
0
' déq? déq?
Al o o e

Note that the expression by the forces @y is transformable as follows:
doq? déq g
" —dqge = ( dxy_ —eTéqq,)

* The superscript T by a matrix signifies its transposition.

déq, ’
=( dg +e6q¢) — é¢]. @.17)
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We have made use here of Eq. (4.11); and the fact that the matrix —e is
a transposition of the matrix e given by Eq. (4.3). Substituting (4.17) into
(4.16) and transferring the negative expression to the right-hand side of
equality sign, and also using the relations (4.11),, (4.13), and (4.5),, we get

1 ]
(89761 + { 6q7pdx = { s’ dx. (4.18)
0 0

We now expand the first term of the expression in Eq. (4.18):

(69765 = dq"(Da(l)— 597 (0)e(0). (4.19)
The functions dq and o satisfy the following boundary conditions:

0q() = dqi, 0q(0) = d0q;, o) =Qx, () = -Q, (4.20)
where:

6qj = 6{1“: U, W, @5, @y, 'Pz}js

Q,={U,V,W, ¢“’¢Y’¢z}1, j=ik, 4.21)

are respectively the virtual displacements of bar ends and the generalized
boundary forces indicated in Fig. 4.1.

Hence, the left side of the equality (4.18) expresses the work of all loads
(the boundary forces included) done on the virtual displacements. That work
denoted by JL.,, can be expressed in the following form:

OLexy = 8q7Q; +0q7 Q, + | 3q"pdx. (4.22)
0
The right side of the equality (4.18) expresses the work of the internal
forces done on the virtual displacements. That work, denoted by 6L;,, can
also be presented in an expanded form:

] I

OLia = { 0 dx = § (86N + 0B, T, + 08, T, +
0 0

+ 0oty M+ O3, M, + O3, M) dx. 4.23)

The principle of virtual work (4.18) can therefore be formulated most
simply as follows:

6Lext = 6Lint . (4'24)

We have derived it using the example of a single straight bar, but it also holds
in the general case of a structure made up of straight and curved bars. Treat-
ing all the concentrated forces and moments acting on a structure as func-
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tional load distribution p, we can write the expressions for the virtual work
of external loads and the virtual work of internal forces in a general form:

Il
Il

SLew = § 8q7()p()ds = { pT(s) Bq(s)ds, (4.25)

s

OLin, = § 0€7(s)0(s)ds

It
Il

S 67 (s) de(s)ds. (4.26)

Integration is now applied to all members of the structure. We only have
to take care that local coordinates, orthogonal at every point to the bar axis,
be used here, so that the generalized internal forces ¢ and the virtual strains
de retain the same physical meaning which we have given them in the case
of straight bar.

To conclude, it may be worth noting that in introducing the principle
of virtual work, we have made no assumptions concerning the physical laws
governing the deformability of material. The virtual work principle expressed
by the equality (4.24) holds therefore irrespective of whether the structure
material is elastic or not.

4.2. The Principle of Complementary Virtual Work

Consider now a structure on which a certain load p, accompanied by internal
forces o, has been acting even before it experienced actual displacements
and strains. We assume that this virtual load together with the respective
virtual internal forces satisfies at every point of the bar axis the differential
equilibrium equations which in the case of a straight bar take the form (4.6).
We deal therefore with the very same conditions which in the preceding
paragraph were met by real loads.

Displacements q and strains € appear only later under real external loads
p and non-static factors. These displacements, it will be remembered, are
very small compared to the dimensions of the bars; they do not depend, of
course, on virtual loads p, they are compatible with the conditions limiting
movements of the structure; they are time-independent (a linear elastic body
being considered); and they are continuous together with their first deriva-
tives. As we can see, the real displacements q satisfy all the conditions which
in the preceding section we have laid for virtual displacements dq.

Therefore, we can write the principle of complementary virtual work
without proof in the following form:

Loy = Lia:. (4.27)
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The work done by virtual external loads is expressed by the formula (cf.
(4.25))
Lo = {D7()a()ds, (428)

5

and the work done by virtual internal forces is expressed by (cf. (4.23))

L = S&T(s)e (s)ds
=S(ﬁ8+T,,,B,,-!—Tgﬂc—!-ﬁ_l_sxs-!-ﬂ,,x”—!-ﬂcx;)ds. (429)

We have denoted by 7, { the principal, centroidal axes of inertia of cross-
section, which—depending on the element involved—may be various orien-
ted in space.

Four of the six strains in Eq. (4.31) can immediately be related to static
quantities. It will suffice to transform suitably the relations (2.18) and (2.36):

& = i-{-g Hy =
E4 7, (4.30)
M,
%, = EJ +x,,, Wy = EJ +"c

On the other hand, in Chapter 2 we proceeded from Bernoulli’s assump-
tions and the relationship between the averaged shear-strain angles f,, f,
and the corresponding transverse forces T_,,, _f; could not be derived. We deter-
mine this relationship expressing the virtual work done by the transverse
forces T,, T, as an integral over the cross-sectional area of the work done
by the virtual shear stresses 7,,, 7s; on the shear-strain angles y,, y;. For
example, we calculate the product T Py as follows (cf. (2.34), (2.25)):

- _ T,S; T,S, T,T,
A~ ot - | B e -
. B, Ar,,ymdA A "k, (4.31)
where
k, =iS Sedd (4.32)
i3

is a dimensionless parameter which depends on the shape of the cross-section.

The value of this parameter for a rectangular cross-section is ¢ and for an

I-beam with the web lying on the 7-axis is roughly:

k, ~ % (4.33)
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It follows from Eq. (4.31) that the relations between averaged shear-strain
angles and the transverse forces, considering distortional strains, have the
following form:

—_ kﬂ T'l

b =G4
where k; is expressed by an equation analogous to (4.33) with an appropriate
change of the subscript { to 7.

Substituting Eqs. (4.30) and (4.34), we transform the expression (4.29)
for the work done by virtual internal forces, to the following form:

k. T,
+6 b= (4.34)

~ (NN T,T, T,T, MM, MM, MM,
L"“_S(EA thgx thGqit e, e tTE, YT
+ S (Ne®+ T, B0+ T, 3+ M, 22 + M, %2+ M; %) ds. (4.35)
s
Using matrix notation, we get
Lo = | G"E-*6 +87 6% ds. 4.36)
s
We introduce here the following denotations*:
A GA
E = [EA,E_, o4 GJ:, EJ,, EJCJ, (4.37)
kﬂ kt
€ ={e% By, B2, %, %y, #2}. (4.38)
6y Al
| MEEN
|% \
T
o I
2 J
et “a
h,

A8, (6,

Fig. 4.3. Temperature increments on bar surface

* The braces [ ] indicate a diagonal matrix.
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Distortional strains can be induced, for example, by a temperature rise
(s, n, £). We assume that the distribution of that temperature increment is
expressed by a linear function of the variables 7, {:

0(s,n,8) = 0—-0,n+0,C (4.39)
where
0 = 0(s,0,0), 0 =_£(sé;7_,c_)’ 6, =_32(sacn_5) (4.40)

Knowing the temperature increment at the bar surface (Fig. 4.3), we can
express the quantities 0, and 0, as follows:

_ A6, 46,
"= e 0, = — 7 4.41)
where the symbols
46, = 0,—0,, 46, =06,—-6, 4.42)

stand for the differences of temperature increments occurring in extreme
fibres.
The temperature increment (4.41) is accompanied by extension:

(s, m, ) = a(0—0,17+6,0). 4.43)

The symbol o denotes the coefficient of thermal extension. Comparing Eqgs.
(4.43) and (2.12), we arrive at the following expressions for distortional strains
induced by a temperature increment:

&€ =af, x) =af, x=oab;. 4.44)

The distortional strain matrix (4.38) has, therefore, the following form in this
case:

e =«{0,0,0,0,06,,0,}. 4.45)

4.3. The Reciprocal Work Theorem

Consider two different static loads independent of each other, p, and p,,
and acting successively on one and the same elastic structure; and moreover,
let various non-static factors produce successively distortional strains €2
and € in the structure. These causes are accompanied by effects in the form
of displacements q, and g,, strains €, and €, and internal forces o, and o,.

First, we treat the loads with subscript g as virtual loads and the displace-
ments and strains occurring in state » as real quantities. Using the principle
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of complementary virtual work (4.27) and also Eqs. (4.28) and (4.36), we
write

S p; q.ds = S oIE"'e,ds+ S cledds. (4.46)

s s s

Next, changing the order in which the loads are being applied, we treat
the loads occurring in state » as virtual loads, and the respective geometric
quantities in state o as real displacements and strains. Equation (4.27) then
takes the form

S p; q,ds = SG,TE“ans+ S 6lelds. 4.47)

s s s

Subtracting by sides Eqs. (4.46) and (4.47), and considering the equality

SGZE"GvdS = S oTE"'g,ds, (4.48)

s s

we arrive by rearranging the respective terms as the following relation:

Sp[q,ds+§o',regds = Sp,quds+SceTe,?ds. (4.49)
s s s s
This is the essence of the general reciprocal work theorem which was pro-
posed by Maizel (1951) taking distortion into account (cf. Mossakowska
et al., 1978, p. 247). Omitting the distortion factor, we arrive at the following

equation:

Spgr q,ds = S P, q,ds, (4.50)

s
which is a mathematical expression of the reciprocal work theorem, derived
much earlier by Betti.

4.4. The Reciprocal Displacement Theorem

Let us reduce the set of loads p, to a single concentrated force or moment
of unit value. Similarly, let the load p, be a single concentrated force or unit
moment acting in another place.

Figure 4.4 shows a straight bar, on which two unit forces are acting suc-
cessively at different points of the bar axis. The loads p, and p, can there-
fore be expressed with the aid of 8-Dirac’s distribution in the following
manner:

p. =1{0,0, 6(x—x,),0,0,0},

(4.51)
p, ={0,0, 8(x—x,),0,0,0}.
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(a) (b)
., /"
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Xy | W
‘—*—HX 4
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Fig. 4.4. Bar loaded by unit forces

Considering the relation

X2

S Jf(x)0(x—x0)dx = f(xo) for x, < x4 € x,, (4.52)
we write
Spg q.dx = { 0(x—x) w(¥)dx = w,(x)) = W,.,

4.53)
d(x—x)wo(x)dx = wy(x,) = w,,.

Ol oy Ot o,

P g, dx

S .. o

In w,, and w,,, the first subscript refers to the place at which the displacement
occurs, and the second indicates the cause that has induced that displacement.
We obtain, therefore, according to Betti’s reciprocal theorem (4.50) the
relation

Wov = Wy, 4.54)
which expresses in this particular case the substance of Maxwell’s reciprocal
theorem.

Another example is given in Fig. 4.5. In this case:

p, ={0,0,0,0, é(x—x,), 0},
P, = {09 0’ Oa 0, 6(x—x,,), O}a

{a)

(4.55)

2\ Pyve

Fig. 4.5. Bar loaded by unit moments
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from which the following relations are derived:

pg‘ qux = q’yv(xa) = Pyovs
(4.56)

Py 9 dx = @,,.

Ol vy, Dy o

Consequently, Betti’s reciprocal theorem leads in this case to the follow-
ing form of Maxwell’s reciprocal theorem:

Pyev = Pyve- 4.57)
(a) ¢1 (b)
4 ¢ X N b~
! X w, >
/ ) 77 ;/& N A 2~ S
[4 |\\ y [0
X \ X,

Fig. 4.6. Bar loaded by: (a) unit force; (b) unit moment

Finally, Fig. 4.6 gives the loads (4.51); and (4.55), which perform the
work previously calculated in Egs. (4.53); and (4.56),. Hence, we have the
following equality, which is yet another illustration of Maxwell’s reciprocal
theorem:

Wor = Prp- (4.58)

Worth noting here is the seeming incompatibility of the dimensions of the
quantities on the left and right side of the equality sign.

The deflection w,, was induced by a unit moment. We deal, therefore,
with a ratio of a deflection expressed in metres to a structure loading moment,
i.e., a quantity expressed in [N+ m]. Similarly, using the symbol ¢,,, we have
denoted the ratio of an angular quantity expressed in radians to the cause
underlying the rotation, i.e., to a force expressed in newtons. The denomi-
nations of w,, and ¢,,, are therefore identical: [N~1].

Up to the present, we have validated Maxwell’s reciprocal theorem for
particular examples concerning generalized unit forces and displacements
with vectors parallel to the adopted coordinates. We now broaden our con-
siderations to the case of generalized unit forces and displacements with
arbitrarily oriented vectors. Let two generalized unit forces be acting on the
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considered structure, namely 1, and 1,, arbitrarily oriented in space and
applied in principle to different points of the structure; although in special
cases, they may have a common point of application. Where the generalized
force 1, is acting, the other generalized force 1, induces the displacement q,,;
whereas at the point of application of the generalized force 1, there appears
under the load the displacement q,,. If the force in the narrow sense is the
load 1,, then the displacement q,, should be understood as a sidesway vec-
tor. If, on the other hand, a unit moment 1, is acting in the g-system, then
the symbol q,, stands for the angular displacement vector of the cross-section,
in which the moment 1, has been applied. The same interpretation holds
for q,,.
The reciprocal work theorem will take in this case the form

1, "4y =1, q,. (4.59)
Scalar products of two vectors, one of them being unit vector, occur on either
side of the equality sign. Let us project the vector q,, on the direction of 1,
and denote the modulus of this projection by 4,,. This is going to be at
the same time the value of the scalar product on the left side of the equality
(4.59). Similarly, the projection of q,, on the direction 1, has the modulus
d,, which is at the same time the value of the product on the right side of the
equality (4.59). Hence, we can write:

By = . (4.60)

‘This is Maxwell’s reciprocal theorem written in the most concise form.

‘4.5. The Reciprocal Reaction Theorem

‘Consider an arbitrary over-rigid bar structure. Figure 4.7 shows as an example
a crooked bar lying in the xz plane, rigidly fixed at both ends. Let us give
-one of the supports of the structure an arbitrarily oriented unit displacement

(a) {b)

N—>

o
Q,

Fig. 4.7. Structure with its supports experiencing unit displacements
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denoted by 1, (Fig. 4.7a). Depending on whether we deal with a sidesway or
rotation of the support, the vector 1, has a length or angle dimension. The
second state of strain of the structure is induced by a unit displacement 1,
imparted to another support (Fig. 4.7b).

Loads of the kinematic type are accompanied by various reactions appear-
ing at the fixing points. Specifically, a reaction in the form of a generalized
force Q,, appears at the place of occurrence of 1,, but it does so under the
influence of 1,. If 1, is a sidesway, then the reaction Q,, is a force. But if 1,
stands for unit rotation, then the reaction Q, is a moment. In the same
way, the Q,, type of reaction is related to the 1, type of displacement.

It can easily be demonstrated that Betti’s reciprocal theorem (4.50) reduces
in this case to an equality of two scalar products:

Qov 'lg = Qve -1,. (461)

Projecting Q,, on the direction of the unit vector 1, and denoting the modulus
of this projection by k,,, we obtain the value of the left side of the equality
(4.61). Similarly, the length of the projection of Q,, on the direction 1,,

(a) (b)

®, yni

(Dymn

Fig. 4.8. Structure whose support suffered, (a), (b) unit sides way; (), (d) unit rotations
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denoted by k,,, is the value of the scalar product on the right-hand side of
the equality (4.61). Following therefrom is the relation

ko = Ky, (4.62)

which is a mathematical wording of Rayleigh’s reciprocal reaction theorem.

Shown as an example in Fig. 4.8 is a structure whose supports have experi-
enced unit sidesway (Fig. 4.8a, b) and rotations (Fig. 4.8c, d) in directions
parallel to the axes of the adopted coordinate system. The displacements
of the supports are accompanied by reactions whose selected components
are also indicated in the drawings. The particular relations given below
follow from Rayleigh’s reciprocal theorem (4.62):

Ulk = Wu, Qymn = Qynm’ (463)
Uim = Qymla Uln = Qynia Wim = Qymk’ Wkn = Qynk- (464)

In so far as we have in Egs. (4.63) quantities of unquestionably identical
dimensions on both sides of the equality sign, one may have doubts as to the
correctness of equating forces to moments in Egs. (4.64). However, if we
consider, for example, that the symbol Uy, denotes the ratio of the value
of a force (reaction) to the cause of that reaction, i.e., to the angular displace-
ment of the support m, and that the symbol ®,,, denotes the ratio of the
value of a fixing moment to the sidesway of the support i, causing it, it is
easily seen that with such interpretation of the denotations, we get both
quantities expressed in force units on the left and right side of the equality
sign in Egs. (4.64).

4.6. The Reciprocal Displacement and Reaction Theorem

Let us consider in turn an elastic system which experiences two states of
loading independent of each other: static and kinematic. Let a single gener-
alized force 1, with a modulus equalling one, arbitrarily oriented in space,
be acting on a system in state ¢ (Fig. 4.9). In state », one of the supports
experiences a displacement 1, with an arbitrarily oriented unit vector (Fig.

(a) (b)
)
A

Fig. 4.9. Bar: (a) on which a unit generalized force is acting; (b) whose support experiences
unit displacement
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4.9b). Let us denote by Q,,, the reaction to the generalized force 1, at the place
of occurrence of displacemenntt 1,, and by q,,, the displacement where the
generalized force 1, is acting, induced by the displacement of the support
1,. If the generallized force 1, is a force in the narrow sense, then the displace-
ment q,, is a deflection. But when 1, stands for a unit moment, then the
quantity q,, is an angular displacement of the cross-section. Similarly, in the
case of displacement 1,, when it is in the nature of a deflection, the reaction
Q,, is a force. But when 1, is an angular displacement of the support, then
Q,, stands for the fixing moment.

Betti’s reciprocal work theorem (4.50) written vectorially takes in this
case the form:

1, q,,+Qy-1, =0. (4.65)

On the right side of the equality sign we have zero, because in state » the only
forces acting on the system are support reactions (Fig. 4.9b) which do not
perform any work on the displacements occurring in state ¢ (Fig. 4.9a) because
the supports remain immovable.

Let us project the vector g,, on the direction of the unit vector 1, and denote
the projection length by 8,,. Let us also project Q,, on the direction of unit
displacement 1, and denote the vector of the projection by k,,. With these
denotations, Eq. (4.65) can be written in the form

Bpy = —kirg- (4.66)

This is a mathematical description of the reciprocal displacement and reaction
theorem.

(O) 1 ¢yni b‘ [

¢ ykm

q;ykn

Fig. 4.10. Beam under (a), (b) unit generalized forces; (c), (d) experiencing displacements
of supports
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The theorem takes various forms depending on the character of the gener-
alized force 1, and displacements 1,. Figure 4.10 shows a beam loaded in
the xz plane by a unit force (Fig. 4.10a), a unit moment (Fig. 4.10b), a unit
deflection of the support (4.10c) and a unit rotation of the support (Fig. 4.10d).
The relations between the reactions and the corresponding displacements
indicated in the drawings are:

Wim = —Wais  Poem = — W,

4.67
Win = _¢yni9 Pykn = —¢yM° ( )

It is left to the reader to determine the dimensions in which the particular
quantities are to be expressed.

4.7. The Reciprocal Displacement and Intermal Force Theorem

This time, we shall prove the theorem only for particular examples, without
attempting to formulate for the general case. We should explain first of all
geometrical meaning of distortional strains distributed in the form of
é-Dirac’s distribution. For example, let straight] bar lying in the xz plane
(Fig. 4.11) experience elongations defined as follows:

0 for |x—x,]>e,

g = 1
—_— for x—Xxo| < e.
2 I OI =

(a) . (b)

Ko . SR

Fig. 4.11. é-Dirac’s distribution of elongation

In this connection, a segment of initial length 2e (Fig. 4.11a) will have after
deformation the length 2e(l+¢°) = 2e+1 (Fig. 4.11b). As the value of e
decreases, the length of the deformed segment approaches one. Hence, the
symbol £ = 18(x-—x,) signifies that an additional bar segment of unit
length has appeared in the cross-section x = x,.

Assume in turn that the shear strain angle 8 is expressed:

0 for |x—x, > e,
pe =11

— for |x—x,| < e.
2e I Ol\
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{a) (b) (c)

Fig. 4.12. §-Dirac’s distribution of shear strain

It is seen from Fig. 4.12a, which describes the above deformation, that
regardless of the length of the segment, 2e, a transverse jump over a distance
equalling a unit segment occurs between the left and right part of the bar.
Going over from e to zero in the length of the segment (Fig. 4.12b) is tanta-
mount to the appearance in the cross-section x = x, of an element of unit
length, placed perpendicular to the axis of the bar (Fig. 4.12c). This pattern
of distortional, shear strains is described as follows:

BC = 16(x—x,).
Finally, let us consider a case of strain in which a fixed curvature of the

value 512 occurs over the length 2e, expressed as follows:

0 for |x—x| > e,

0 1
"y 55 for lx—xl<e.
la) {b)
n?
1 1
2e X,
_ % ™ e

Fig. 4.13. é-Dirac’s distribution of curvature

Figure 4.13a shows the corresponding strain of the bar, and Fig. 4.13b, the
same strain on passing with the value of e to zero. Consequently, the strain
described by the formula 0 = 18(x—x,) is to be understand as a bend of
the bar axis by a unit angle in the cross-section x = X,.
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A similar reasoning leads us to the conclusion that in describing the:
distortional strain by the formula »? = 18(x—x,) we mean to say that the
right part of the bar has been rotated with respect to the left by unit angle.

Assume now that a distortional strain &) = 1,8(x—x,) appears in state g.

Hence, the matrix (4.40) takes the form
€ ={1,6(x—x,),0,0,0,0,0}.

Let the generalized internal forces forming the matrix o, constructed as in
Egs. (4.5), and (4.2) occur in state ». The work L;, performed on strains
€ by those internal forces is

l {

foresdx = (N1, 60~ x) dx

0 0

= Nyx)1, =N, 1,. (4.68)

It

0
L,

If 2, (x) = 1;6(x—x,) is the strain in state o, then the matrix €J(x) takes
the form

eg(x) = {0: 0: le 6(x_xg): 0: 0: 0}:
and the value of the work performed by the general internal forces occurring
in thate » on the distortional strain in state g is
1
LY = { T,(01,6(—x)dx = To(x) 1, = Tup 1, (4.69)
0
Firstly, in the case of strain xp,(x) = 1, 6(x—x,) we have
eg(x) = {0: 0: 0, 0: lg 6(x_xg): 0}:

and the work performed on these strains by the generalized internal forces
e, (x) is
1
LY, = [ M, (01,60 —x)dx = M, (x)1, = My, 1,. 4.70)
0
Figure 4.14 shows a bend bar, lying in the xz plane, subjected to indepen-
dent of each other, unit force 1; (Fig. 4.14a) and unit moment 1, (Fig. 4.14b).
Moreover, the structure experiences the independent distortional strains
&) = 1, 0(x—Xp), P% = 1,0(x—x,) and =% = 1,8(x—x,) as shown in
Figs. 4.14c, d, e. The states of loading j = i, k are accompanied by the appear-
ance of generalized internal forces, which in cross-sections s = m,n,r
assume the values N;;j, Tyj;, M,s;. On the other hand, the unit strains induce
displacements wj,, ¢,;s at points of attachment of the generalized forces.
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{a) uy {b) w

1
e oz & v RS
ECSE A | z =~ X y‘?
Xm % Xm (&
[ X,
Xp n
X, X
X Xk
{c) {d)
2 V7
Wim Yin .
Z
1 / s z
m L—Y¥
[ X Xi-
=
(/"ykn
ykem
{e)
o

Fig. 4.14. Structure loaded by (a), (b) unit generalized forces; (c)—(e) 8-Dirac’s distributions
of strains

Using this time a more general form of the reciprocal work theorem (4.49)
and considering the relations (4.68)-(4.70), we get:
Wim = Ny, Win = zni> Wy = M,vrl,

@.71)

Pokm = N> Pyin = T, Pykr = My

The reciprocal theorems derived in this chapter have numerous appli-
cations in the statics of bar structures, especially in the determination of what
is known as influence lines, which are discussed later.



5. Internal Forces and Displacements of the Axis of an Element

5.1. The Second Stage of Discretization of a Structure

As we have demonstrated in Chapter 2, all components of the state of stress
at an arbitrary point of the cross-section of a bar can be determined knowing
the internal forces associated with its axis. Likewise, the displacements within
a three-dimensional body and the components of the stage of strain are
determinable on geometric quantities referred to the bar axis. As the first
stage of discretization of a system, we have treated the replacement of a three-
dimensional body by a one-dimensional object in one dimension, which
is the static scheme of a bar.

In the next stage of discretization, we switch from bar axes to certain
selected points on these axes, these being usually the points of intersection
of the axes of several elements. Those points we shall call joints of a structure,
and the bars joining them we shall call elements. In this and the following
chapters, we shall regard as elements only single, unfurcated bars containing
no discontinuities of shape or cross-section over their length. Therefore, the
concept of an element will now be narrower than in Chapter 3. In the sequel
the cross-sections adjacent to joints will be called the characteristic cross-
sections. Putting aside for the time being the methods of determining quan-
tities in characteristic cross-sections, we shall concentrate on the problem
of relating the internal forces and the displacements of the axis of an element
to boundary values which will be considered as known.

We deal exclusively with elements having the shape of a straight or in-plane
curved bar. Bars of more complex shape will not be considered for two rea-
sons. Firstly, they are less commonly used in structures, and secondly, consider-
able difficulty is encountered in their analysis, since all static and geomet-
ric quantities go into a single implicit set of differential equations jointly
of 12th order.
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5.2. A Straight Element under Tension, Compression or Torsion

‘Consider a straight bar whose axis runs from point i (x = 0) to point k
{x = I). Introducing the dimensionless coordinate

§=—, &=1-¢ ¢

N|X

and using denotation

,_ df
f =3 (5.2)

we rewrite the set of equations for a bar under tension or compression (2.4),,
(2.11); and (2.16), in the form

N+pl=0, o =¢l, N=EA(e—¢£. (5.3)

These equations have an identical structure to that of the equations for
- bar under torsion (2.26), (2.32) and (2.36):

Mg’+mgl = O, ¢; = Mgl, Mt = GJ:(M:"M?). (5.4)
Separate analysis of the torsion problem is therefore unnecessary because
all considerations concerning a bar under tension — with suitably altered
denotations—also apply to a bar under torsion.

Considering the initial conditions (4.22), (cf. Fig. 4.1), we first integrate
the equation (5.3),:

&
N = -U—1{p.dz, (5.5)

Using eq. (5.3); we then find ¢. After substituting this function into Eq. (5.3),
and after integrating, we obtain the function expressing displacements:

3 & & &
— aé ., 1 )
u€) = u U'IS—EZ ) (S(ﬁ §de5)d§+l§ e2dg. (5.6)

0
In the special case £4 = const, the function (5.7) assumes a simpler form:

& 3
Ul 2
= | e e dgo 1 ot (57)

Y 0

u(f) = U;—

We would arrive at the same results by reducing the set of equations (5.1)
into a single differential equation of the second order

(EAw'Y = —p 2 +I(EAE°Y, (5.8)

and finding its integral by quadratures.
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We confine our further considerations to the most common case in prac-
tice, EA = const.

The following relations between the boundary values at one end and at
the other end of a bar, may be obtained by letting & = 1 in the functions
(5.5) and (5.7):

t

Ui = - Ui—1{p.de, (5.9)
0
] [2 1 1
w, = uy— gii Fi prf’d§+ls e dé. (5.10)
0

The set of algebraic equations (5.9) and (5.10) must be satisfied irrespective
of the boundary conditions that have been imposed on the solution. It cannot
therefore be required to satisfy more than two given boundary conditions,
and no more than half of them can be in the nature of static conditions.

Consider a particular case, important from an engineering point of view,
in which the geometric boundary conditions at both ends are given. We then
determine from equation (5.10) the value U; and after substituting it into
the functions (5.5) and (5.8), to obtain the equations for the axial force and
for the displacement of cross-sections:

N = — (uk )+

t

1
+1§ p.(Efi €, Eo)dEo — EAf e0ds, (.11)
0 0

1
2

uE) = w b+ pr(so)fz(s 0)déo +

t

+IS e%(£0)f1 (80, £)d&,. (5.12)
0
We have introduced here the following denotations:
J16, &o) = —EH(E—&0)+EH (S0 —8), (5.13)
f2(&, o) = EOE'H(E—50)+§§6H(EO"§)a (5.14)

in which H(x) denotes Heaviside’s function.

The functions f; are Green’s functions of different kind, known in the
mechanics of bar (and surface) structures as influence functions. Their plots
or so-called influence lines, have, by virtue of their pictorial character, found
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wide uses in static analysis of a particular kind of bar structure, namely that
on which loads of fixed direction but of variable position are acting. For
this reason, influence lines are usually used in static analysis of bridge struc-
tures.

Let the only load acting on a bar be a concentrated force P, acting at
a point with the abscissa § = §p. We thereby express the load p, by means
of §-Dirac’s distribution:

P
Px(bo) = —~ 0(§0—&0)- (5.15)
Substituting the expression into Egs. (5.11) and (5.12) we get
N = P b) u(®) = L1869, (519

(a) (b) (c)
hle &) hie.Lo)

= A gy l@ ]-é
® ; !
1%1/550/ NS d ®
1

&
Z ¢ ¢
] F?QH, o B

! 1

e |

Fig. 5.1. Diagrams of Green’s functions

Every ordinate of the influence line shown in Fig. 5.1a can be interpreted as
the value of longitudinal force N in cross-section &, induced by force P, = 1
acting at the site at which we measure the oridnate of the graph. Similarly,
the ordinates of the influence line in Fig. 5.1b multiplied by the parameter
I/EA show how the sidesway u(£) changes as the force P, = 1 moves along
the axis of the bar.

The influence function given in Fig. 5.1c expresses the variation of the
displacement u in a fixed cross-section & under the influence of a unit dis-
tortional extension introduced in an arbitrary cross-section &,:

I2(8) = Als(—¢,), Al =1. (5.17)

We can see that when this additional element is incorporated, for example,
at any place to the left of the considered cross-section (§, < &), the displace-
ment u(£) is then positive and equals &',
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5.3. Straight Element under Bending

Assume that the bar described in the preceding section is now subjected to
bending in the xz-plane. Introducing the dimensionless variable (5.1) and the
denotations (5.2), the equations (2.4);, (2.5),, (2.16),, (4.7);, (4.8), and
(4.36), after suitable rearranging can be given in the form:

T;+p.l=0, M;—-T.l+mil=0, (5.18)
1, 1
Hy = T‘pya ﬂz = Tw +<Py, (519)
GA
M, = El(,=#), T, =%, (5.20)

Since the respective relations applying to bending in the xy plane are analog-
ous to Egs. (5.18)-(5.20), we shall not consider this problem separately.
All that has to be remembered is the difference in the signs of the quantities
m, ¢, M and .

As in the case of a bar under tension, we find the solution by quadratures:

&
T.(6) = - W,~1{p.d¢, (5.21)
V]
3 §
M,y (@) = — B, —~ Wilt—~12{ p,(60) (6—Eo)dbo—1{ m,dE, (5:22)
V] V]

§ §
d d
75 = pu= Bl | S —wr{ S
o 7 o 7

P:(60) (6 — fo)dfo] dé—

3
)
& §
{m,a )d§+IS A dE, (5.23)
0 0

¢

w(§) = Wi-¢yil£+¢}‘ilzs ESJ é(())) d§0+

£—6&

3
+W1138 EJy(£ )

odto— Wil | o5 e+
0
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Et
§—-&;

a4
) ey )

P:(Eo) (¢:— Eo)déo] dé, —

3
§—&o
(e S"”d’f) 4o

podé. (5.24)

g

12

k.
(GA pzds) dé+nr

Mm ClawrPer O3y

12 #y(§o) (E—&o)déo+1

Clawr3 0y Clw3 vy

Since we assume as before that the considered bar is prismatic, we use the
simplified form of Egs. (5.23) and (5.24):

D1 W,z &2
<py(§) ¢yi—i§_—i_—6——

¢- Eo)

§
VP E g
Yo

4

§
2
Yo 0

w(§) = wi—pulf+

(D,,lz Ez W,F’ 53 )
B, 2t E, 6

14
+E,

¢-é&®
6

pz(EO) [ _72(6_60)] dEo+

13
+

my('fo) d'fo -

|
|

(§—40)?
2

&

y

¢ g
—p{ ey - tago+1{ prac. (5.26)
0 0
‘The dimensionless parameter
_ k. EJ,
Y. ="Gar
describes the influence of shear strains.
Letting £ = 1 in Egs. (5.21), (5.22), (5.25) and (5.26), we obtain four
relations that must occur between eight boundary values:
1
W, = —W,—1{p.dé, (5.28)
(V]

(5.27)
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1 1

Dy =—Dy— Wll_IZsz.f’d.f——lSm,.dé.
0 0

1

_ D, WP ? S '
(pyk - (pyi EJy 2EJ}.%; 2EJy OP:‘S dé_.

12

~ 57 Sm §d§+lS 0de,

4
Qyil W[I3

Wy = W —@ul+ 2EJ, +-6~E.77 (1—-6y.)+

1 1

sz(§’3 6y.8)dé+ s+ : Smyf'de—

4

6EJ 2EJ,

—IZstf'dHlSﬂgdf.
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(5.29)

(5.30)

(5.31)

As in the preceding section, we consider a special case here as well, in which
at both ends of the bar, only boundary conditions of geometric nature are
given. We therefore solve the set of equations (5.30), (5.31) with respect
to the unknowns 6,; and W;, and substitute them into equations (5.21),

(5.22), (5.25) and (5.26) to get

Tz(‘s) = z) (‘pyl+(pyk+2 IW )+
1 1

+l Sp,<eo)f3(s, g dgo+ | m 00+
0 0
1

+6(1—-,u,)£l,y~s (1 -28)dE—1201-p) 5 7 Sﬁ°d5’

0

E,
M,(§) = = 2 (9, F(E, 0~ g F(E, D]

EJ, w,,
l

—6(1—p,) Yi—2e+

1
+1{ p.eouce, &) dg+
0

(5.32)
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1

+1{ m (€, £0)dgo— BT, \ 3D FEE, £0)dEg+
0

-
O™

F60-p) TP (-2 BRE,

Ol

Wi — W
l

‘PV(E) = Pyi T(E) + @y YI(E’) - 6(5) +

1

1
57, | PAEISE: )bt B, M, E9dEa

2EJ

1 1

1@, Dage+ | 0@,
[

b

w(&) = w'(§)+w () — 9, 12(8) + 9 J2(E) +
" 1 1

6EJ

1

1
+ IZS %9 (Eo)fao, £) d§o+lS B2 (Eo)f3(&o, £)dé,.
0 0

New denotations appear here:

12y,
T+12y,°

FE, ) = fiE, E)+ (1— ) EoE'o(1—260),
Fo(€, &) = FolE, 50)—;5055—-"2’“ EoEn(1—280) (1-28),

I5(§, §0) = fi(§, E0)—3(1—p) EoEo(1-28),

fo(&, £0) = (6—E0)f2(§, Eo)— (1 — ) EE'EEo(1-2£),

Sf2(€, &) = fa(€, £0)—3(1 —I‘z)fflfoﬁ),

fa(§, &0) = [3E202(80)— (£ — 6y, £V (§o)JH (£ —&o) +
+ [B82Q(&0) — (82 -6y, HI'(Eo)H(Eo — §),

F(§, £o) = 14+3(1—p,) (1—-28) (1-260),

'@ = o®)—p.28), 2 =w(@-zp.28),

0(8) = 6(1—p)EE, V(&) = 1-45+38243u, &8,

po =

PART 1

(5.33)

(5.34)

Sp,(fo)fs(e EdEot gy S (o) a(bo, £)dEo+

(5.35)

(5.36)

(5.37)
(5.38)

(5.39)
(5.40)
(5.41)

(5.42)
(5.43)
(5.44)
(5.45)
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o(8) = 1-352+283,

w(f) = =282+ 83, (5.46)

1(8) = E-382+283,
In deriving the above equations, we have not omitted the influence of trans-
verse forces on strains of the element. In practice, however, we deal mostly
with bars with a high slenderness ratio so that the influence of shear on their
deformation is negligible. As a result, we can use as a rule simplified equations
whereby the general parameters v, and p, have been neglected.

An alternative solution, leading to the same results, consists of reducing
the set of equations (5.18)-(5.20) to a single ordinary differential equation
of the fourth order:

EJ,w"™ = 14(p,—y.p.) + Pm,— EJ, 120" + EJ, 182" (547)

Finding its integral, we can express the deflection angles ¢, and the inter-
nal forces involved by suitable derivatives of the w-function.

The functions (5.37)-(5.46) are influence functions. The diagrams of func-
tions f3, If,,fs and 6/ are given in Fig. 5.2. The first one is the influence line

(a} tw.rfte,, 8
,,/7?
i ®
| B
(b}
Lw. My (S, ¢)
@
1
.
(c)
LwMle, &)
© i1
{d)
tw TR 8)

Fig. 5.2. Influence lines for beam fixed at both ends

of the transverse force of section & from an unit force moving along a bar fixed
at both ends, the second is the influence line of the bending moment from a mov-
ing force, the third, the influence line of the bending moment from a moving
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unit moment, and lastly, the fourth the influence line of the transverse force
from a moving moment. Note that the last line is identical for all cross-
sections of the bar; it is independent of the coordinate & giving the position
of the cross-section. The meaning of the remaining functions in Egs. (5.32)-
(5.35) may be deduced by the reader himself.

In this way, all internal forces and displacements of the axis of an
element can be related algebraically to boundary quantities, both static and
geometric, and also to the static load and the distortional strains occurring
over the length of the element. Thus, a problem requiring in principle that
a set of partial differential equations be solved has been reduced as the result
of the first stage of discretization to ordinary differential equations which
are further reduced to algebraic relations after the second stage.

5.4. Element on an FElastic Foundation

Building structures frequently stand on wall footings which are treated as
beams resting on an elastic foundation. That same model is taken also for
a bar resting on several, closely spaced elastic support elements. One structure
of this type is, for example, a railway rail mounted on sleepers.

Many various models of an elastic foundation have been constructed.
The most widely used is the one- or two-parameter model of Winkler
(1867). We shall therefore discuss in detail the problem of a bar resting
on a Winkler two-parameter foundation. In line with his assumptions, the
passive pressure of the foundation is proportional to the displacements of the
beam resting on it, acting in opposite sense to that of the displacements.
Consequently, if the displacements of a bar subjected to bending are de-
scribed by two functions, w and ¢,, then these displacements are accom-
panied by the following reactions of the foundation:

p’z" = —-K,w, m: = —K,p,. (5.48)

The coefficients of proportionality K,, and K, are determined in various
ways depending on how the elastic support of the bar is effected. If, for
example, soil is to be that support, then we let

K, = »,b, (5.49)

where b is the width of the beam cross-section, and 2, [N/m?], is the foun-
dation modulus which is determined experimentally for different kinds of soil.
Considering also the stiffness of soil to horizontal displacements, given by the
module x,, we can express the coefficient of proportionality K, (cf. Kacz-
kowski, 1968):
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2
K, = x,.b%. (5.50)
The symbol / denotes here the height of the beam cross-section.

If the beam rests on closely spaced cross-beams rigidly fixed at both ends

(Fig. 5.3), we can easily arrive at the expression

24EJ 2GJ;
w = a3c ’ K¢ = ac ’ (551)

T

Fig. 5.3. Continuous beam on elastic supports

in which quantities EJ, GJ;, a, apply to the supporting cross-beams. A simi-
lar foundation was studied by Urbanowski (1956).

Additional loads (5.48) need to be considered now in the equilibrium
equations

T,+lp,—IK,w =0,

M,—IT,+Im,—IK,p, = 0.
The set of equations (5.52) differs fundamentally from the set (5.18). Whereas
the set of two static equations (5.18) contained only two static unknowns,
allowing it to be solved independent of equations involving geometry, the set
of two equations (5.52) contains already four unknowns, including two geo-
metric; therefore, it cannot be solved without considering at the same time
the relations (5.19) and (5.20). Thus, regardless of boundary conditions,
no bar on an elastic foundation can be treated as an isostatic structure, for
it is always a structure inherently hyperstatic.

We must therefore reduce the set of equations (5.25), (5.19) and (5.20)
to a single differential equation which in the case of a bar of constant cross-
section and neglecting distortional strains takes the form

(5.52)

wlv_4twu+4r2w ___,fp' (5.53)
In this equation we have
2 K, 4
4t = K, 2 2w (148,), .
By the 4= (40D (5. 54)
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kz kz
B =gy Kl Bo =G Ke (5.55)
g 0, My
fp = _E.T (1+ﬂ¢)pz’-'szz +—_I— . (5.56)
y

The influence of shear strain is most often neglected in practice and a
single-parameter foundation model (K, = 0) is adopted. Equation (5.53)
then takes a simpler form:

W +4r2w = f,, (5.57)
and in Egs. (5.54), (5.57), we should let
Yz = ﬂw = ﬂ(p =0. (5.58)

Likewise, using other elastic foundation models, we arrive as a rule at
Eq. (5.53). For example, Vlasov and Leontev assume that underlying a beam
is an elastic layer of thickness H, Young’s modulus E, and Poisson’s
number #,. According to their theory, the coefficients (5.54) are calculated
from the formulae (Vlasov and Leontev, 1960, p. 74)

1
E, bHI’S
M = vy E, o"’dc’
1 (5.59)
b S z
2 __ —_—
=17 EJ HO( ) “H

The values of these coefficients depend on how the function ({), which
expresses vertical displacements over the elastic layer, is assumed. These
authors take it, e.g., to be

w(@ =1-¢, or w(c)=ﬂys%y;9, (5.60)

where y is a parameter dependent on the elastic properties of the foundation.
Mathematical descriptions of the models proposed by Filonenko-Borodich
(1945), Wieghardt (cf. Ylinen and Mikkola, 1967) and others also lead to
the differential equation (5.53).
Assuming r > t, we express the integral of the differential equation (5.53)
by the formula

w=A,; Chy&cosv&+AZShy5sinv£+A3Chy5sinv£+
¢
+ A4Sh ubcosvs+ Sf,,(fo) wi(§—&p)déo, (5.61)
0
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in which we have the following new denotations:

u=Vr+t, »v=yr—t, (5.62)
Ch uésinyé—vSh uécosvé
wi(®) = & "“z',‘ifiziyz;‘ o (5.63)

We have expressed the particular integral using Cauchy’s equation (cf. e.g.
Filonenko-Borodich et al., 1949, p. 92), in which the function (5.63) sat-
isfies the homogeneous differential equation (5.53) as well as the following

boundary conditions:
wi(0) = w'(0) = w."(0) =0, w'"(0) =1. (5.64)

In order to determine from the boundary conditions the integration con-
stants 4;, it is first necessary to find the relationships between the remaining
geometric (¢,) and static (M,, T;) quantities and the displacements w. It is
readily apparent that these relations have the form

_ A=y YWty k. Ipi-m,
¥y I(1+8,) GA 1+8, (5.63)
M, — - Elf’ Wy Ky Pw—y,p,, (5.66)
_ EJ, w'—4w' y.lp.—m,
I.=—p 1+8, 1+, (5-67)

If the influence of shear strain is to be neglected, the above equations become
considerably simplified:

w' EJ, .
q’y:_—l_’ Mvz—'l—zyw’

o (5.68)
T, = — lsy (w”’—4tw’)+m,.

The assumption that the foundation is of the one-parameter type (¢ = 0),
is accompanied by further simplifications. We then have (cf. (5.62))

w=v=yr. (5.69)

As a result, the functions (5.61) and (5.63) undergo suitable modifications.
The latter, for example, takes the form

w, (&) = Vls (Chpuésin ué —Shuécos ué). (5.70)
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5.5. Element Subjected to Bending Moment and Large Axial Force

Examining a structure composed of bars loaded by large axial forces, it is
necessary to consider their influence on the flexure of elements. Let us first
lay out the equilibrium conditions for an infinitely small element dx mentally
cut out of the bar. We assume based on the so-called theory of second order
that the equilibrated element has already experienced certain displacements
(Fig. 5.4). In order to achieve greater generality, we further assume that in

wirw wlew +dfwl+w
M+dM
N
R N+dN
T+dT
! dx
3

Fig. 5.4. Element of bar subjected to bending and large axial force

addition to deflections w induced by static loadings, the bar has also experi-
enced deflections w® accompanying distortional strains.

Acting on element dx are forces N and T, the former being by assumption
parallel to the primary axis of the bar and the latter perpendicular to it.
Similarly, loadings p, and p, have a potential character, i.e., they are acting
in fixed directions of a space. Moreover, the bar element is subjected to bend-
ing by moment M.

The conditions of equilibrium lead to the following differential relations:

0

%—I:—+p, =0, %—le+p, =0, ~%g—T+Nd—(y(;-x«w—)— =
It is seen that four unknowns N, T, M and w are involved in the three differ-
ential equations. The problem is therefore statically indeterminate; irrespec-
tive of how the bar is supported, it will always be a statically indeterminate
structure. The internal forces acting in the bar cannot be determined without
introducing additional relationships between the static and geometrical
quantities. Incidentally, we have with a similar situation if a bar is resting
on an elastic foundation.

Setting out from Bernoulli’s assumption, we write

0. (5.71)

2
M= —EJ%. (5.72)
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In this way we have obtained the missing fourth equation in which no new
unknowns are involved.

Equation (5.71) can be solved independent of the other equations of the
set whereby the problem is isostatic with respect to axial forces:

N = No—{p.dx. (5.73)

We determine the value of N, from the boundary condition.

If, however, the boundary conditions are of geometrical nature, not static,
the problem becomes significantly more complicated. The set of equations
(5.71), (5.72) has to be supplemented then with a fifth, physical equation,
namely

_ du 1 d@w°+w) dw 0)
N—EA(—dT?*Tx ax ")

(5.74)

in which a fifth unknown, », makes its appearance. In calculating the elonga-
tion of element dx, we have considered the influence of deflections w:

(14 &%) Ydx2+ (dw®)? = }/dx2+ [d(w° + w)]?; (5.75)

hence

W o~
~

1 d@w°+w) dw

2 dx dx (5.76)

The set of equations becomes non-linear in this case, and considerable diffi-
culty is encountered in solving it.

Since, however, the longitudinal forces in structures used in practice can
be calculated with fair accuracy based on the equilibrium conditions, we shall
therefore concern ourselves further with the set of equations (5.71), (5.72).
After simple transformations it is reducible to the following two differential
equations:

dN
dx tP=0
d2 d2w d dw d dw® )
rra (EJ 3 ) ~dx (N "a*;) =prt gy (N o .77

with two unknowns N and w.

Although this is also non-linear, since Eq. (5.77) contains a product of
unknowns, the solution of (5.73) allows the quantity N occurring in this
equation to be treated as known.

To narrow down the problem somewhat, let us assume that the members
of the structure are prismatic (EJ = const) and that longitudinal force N
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is constant over the entire bar length. From an engineering point of view,
this assumption should not evoke reservations. For, if the bar has a distinctly
variable cross-section or the longitudinal force values vary over a wide range,
then nothing stands in the way of dividing the bar into several shorter el-
ements, in which the values EJ and N differ much less from the respective mean
values occurring in a given segment.

Hence, by introducing dimensionless variable § = x// and the denota-
tions

NI?

2= ey P gaen (5.78)
EJ’ EJ ’ )

we give Eq. (5.77), the form
wV— 20" = f, (5.79)
‘The integral of this equation is the function

&

4 (60 [ShAE—0)— AG— £l d. (5.50)

0
Force T, in keeping with (5.71); is expressed as follows:

EJ 11’ r
T = _F[W — 22w +w)1]. (5.81)

All the relations and equations derived above can also be applied to the
case of a bar loaded by compressive force S. All that needs to be done is to
replace N:

N=-S. (5.82)

‘We then have

-5 . S
A—I'I/—ET—IG, ""l/”ff' (5.83)

Using the known relations
Shic& = isino&, Chicf = cosot, (5.84)

we obtain successively

v 2,0 __ . pzl‘ 24,077
W' +o°w —f, f—TJ' ag°w , (5'85)
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w = B, +B,0é+ Bycoscé+ B,sinoé +
&

45\ 780) [66 — £0) —sino(E— £l ko, (5.86)
T= - _st— W’ +a2(wW°+w)]. (5.87)

5.6. Element in the Shape of in-Plane Curved Bar

The sets of differential equations of equilibrium (1.41) and (1.62) can be
reduced after simple transformations to the form:

dM, M, dm,

a5 N=e¢—5 —ePte—-> (5.88)
d{ &M\ 1 dM, _ d | dm,\ m,
—&;(Q ds? ) ? ds = =D (Qpn) dS( ds )_ 0 ’ (589)
M, =

(5.90)

- as( L
a [ dM,\ d (M, dz dm,
—dr(@*ar) Hs“( g) e em-g 69

Thus, the problem is to solve two third-order differential equations (5.89),
(5.91) and to calculate from Eqs. (5.88) and (5.90) the remaining internal
forces.

In the case of a variable radius of curvature g, closed solutions are difficult
to obtain altogether impossible. For this reason, we shall consider a special
case, though of major practical importance: we assume that the bar axis is
in the shape of a circle of radius r. Introducing angular variable 4, we write
the derivatives with respect to ds = rd® in short form:

dF 1d '
aF _1dF F (5.92)

Hence Eqs. (5.88)-(5.91) take the form:
M+ M, = r*(—p,+p)—r(m; +m,),
M"+M, = —r’p,—r(m,+m;’), (5.93)
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1 1
N =~"—M;'_rpn+m;, T, = ——-;M,’—m,, (5.949)

1 )
Tz = 7 (M;,+M1)+m;+mns Mn = Ml+rml' (595)

A differential equation of the type
M"+M = f(F (5.96)

has the following general integral:
/]

M = A+Bcosd+Csind+ | [1 —cos(® —3o)lf(B6) ds. (5.97)

0

Hence, the integrals of Egs. (5.93), with the boundary conditions given
only at one end:

N(O) = '—Ui’ Tn(o) = _Vi’ Mz(o) = _¢zls

M©) = ~By,  M0) = =B,  T.0) = —W, (5.98)
are written as follows:
M. = —Uifi +Virf— @, +
o
+{ =230, + 1P B0 f — (BN rdds, (5.99)
0
M, = ~Wirfi =By fs —Puf2—
- S [rp2(30)f +my(90) fs + M, (Do) falrdds. (5.100)

0

‘We have introduced the denotations:

fi =fi@®) = 1—cos?, f, =fo(§) =sind,

S5 = fs(® = cos?, fi=f0-9,), i=1,2,3. (5.101)

Substituting the function (5.99) into Egs. (5.94) and the function (5.100)
into Egs. (5.95), we obtain the expressions for the remaining generalized
internal forces:

4

N@) = ~Ufs—Vifs—\ [p(00)fs+Pu(B0)falr dBo,
0 (5.102)

0

T, = Ufi~Vifs+ | [290)f2 — P80 filrdde,

0
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9

T.(9) = — W,~ | p,rad,
0
M) = —Wirfo+Puf2—Pufs + (5.103)
14
+ =P 001Fs + MO0~ (@il ddo.
Given in Fig. 5.5 are two groups of loads acting on a curved cantilever

bar. The first, containing loads acting in the plane of the bar (Fig. 5.5a),

(b)

Fig. 5.5. Two loading groups acting on curved bar

induces generalized internal forces &, 7, and M., and the other, containing
loads acting from the plane (Fig. 5.5b), is accompanied by internal forces
T., M, and M,.

The displacements of the in-plane curved bar can be calculated proceeding
from the geometric relations (2.45), (2.63), which, if we consider the shear
strains accompanying the transverse forces, take a more general form:

du v _ de. do

8——3‘9——'?, Ky = ds" ﬂn_'a‘+ ¢ zs (5'104)
dq;n ‘Pt _ d(p! (pn _ dw

W= gt M T a e P e (5.105)

The set of these six differential equations can be reduced without difficulty
to a set of two third-order differential equations independent of each other:

d? du d [u ﬂ,.
re) (Qa)‘r*a;('g) rra o+ S

d [ dw) 1dw ag.\, b:
‘d—s(g ds? )+—E_E§ T ds (Q ds )+?+x, ds g5 (@)

(5.106)
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The remaining generalized displacements depend on the displacements u, w
occurring in these equations:

0=0% g
TeE T (5.107M
_i( ﬂ) l_i( &—p .
(pz—dSQdS—*-Q dSQ) n>
- dzw____ __dﬁz__*. X,
(Pt - Q dSz Q dS Q%n, (5 108)
dw )
(PII:—H'*':BZ'

An analogy between the relations (5.104)-(5.108) and (5.88)-(5.91) is
readily noticeable here.

Going over to a particular case, namely ¢ = r = const, with the boundary
conditions at the initial point of the bar given:

u0) =u, 90) =9, w0)=w,
(Pt(o) = Q1 (Pn(o) = @i, (Pz(o) = Q2. (5109)
We obtain relations analogous to the static relations (5.99)-(5.109):

u(® = ufs+0,fo+@urfi+

+ § [6(0)fs +BaBo)fa + %:(B0) i1 dBo,
o(#) = —;,fz +ofs+@urfa+ (5.110)

+ § [— 6@o)fz +BaBo)fs +x.(Bo)rfelrdds,

’ ]

@:(9) = @aut § x,rdd;
W) = wi+@urh—gutfa+

+:S: [8.(80) +%:(Bo) rfs — #a(Do) 31 rd o,

8 .111)

(D = pufs+oufat+ S ["t(ﬁo)f s+ %4,(00) f]r d B,
0

L

2D = —pufs+oufs+ | [=6B)fs + % (30)fslrdds.

0o
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The practical application of Eqgs. (5.110), (5.111) is confined to statically
determinate bars.

Aiming to find the displacements and internal forces in a statically inde-
terminate bar, we should put into the equilibrium equations (2.41) in place
of the generalized internal forces, expressions relating them to strains (cf.
(2.56), (4.34)) and express the strains by displacements in accordance with
Eqgs. (5.104) and (5.105). Consequently, we obtain two sets of differential
equations, each containing three unknown displacements:

o’ —u—(1+e)o +re,

2
= a,,ra°'—rﬂ,?— -"G—ZCALPS,
1+ ) 40" —a,0—rg,

2.
0 0 por_ Tk (5.112)
“'lra +rﬂﬂ GA p'l’

u+v' +y,re; —re,

, Tk
= B+ yur ! — s
r’ ’ ’ rzk
w +rq9,, =rﬂ2 - GAsz,

=Wy, rgy —(L+y) rga+ (v +v)re;

= —rB+yar?ui+y. riuy — 'Gkg m,, (5.113)
“()’z'*‘)’s)"P:r*‘)’s"P;'—)’z'(P:
, rk,
= ysr2ud —y,rixd — o™

The dimensionless parameters in these equations are:

L _E_J_
G =6 A

_E J, ./
Yz = 'EW’C:’ Ve = E,‘Z‘kz-

k.

o, =

(5.114)

These sets of equations when solved with respect to # and w lead to two
identical (with respect to the left-hand side) differential equations of the
sixth order:
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W2 4o = p(e0V + £+ BV 1 O) 4

A b (P ~m)
2w ke,

— g @) (B P, (5.115)

WY 2wV W = r(BY +2680"" +BY) +

A = — )+
r3 r3

+gr O 2 —m +m") = o patmi +my) —

Ik (Y +2p) +p.). (5.116)
GA

All the other displacements, and what follows all the internal forces, are
a function of displacements u, w. Leaving out the tedious derivations, we
present here only the final expressions for generalized displacements, relating
them to the static and geometric quantities given by the initial conditions
(5.98) and (5.99):

u(®) = ufs+ofr+ourfi+

L]

+{ 1200+ 8200 + 12001111 a0+

0

2
+ ErJz_ (—Uirgi+Virg;—D,.83)+
2 4
+ ——ErJ S [—Ds(Bo) 181 +Pu(Po)r82—m (Do) 3] rddy, (5.117)
0

() = —ufr+ofstoarfa+t
?

+§ 1= @i + BB + 200 1 r a0 +
b (= Urrga +Virga~B.fi)+

L]

S [—Pu(B0) B2 +Pu(Bo) rE s —m, (Do) fi]rdD,, (5.118)

0

r2

+ B,
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L]

@ (P = ¢,,+S%2rd19+ é (—Uirgs+Virfy =D, 9+
o z
8

+E—;-S["Ps(ﬁo)rés'i‘l’n(ﬁo)'ﬂ—mz(ﬂo)(ﬁ—ﬁo)]rdﬁo’ (5.119)
70

w(® = wi+eurfi—eurfa+
5

+{ 18290+ % @0)efs 3D 1D, -

0

2
Z7 (Warhy + oy + By hy) -

9

2 7 ~ -~
- —E.rj— S [22(Bo) rhy +m, (Do) hy + my (Do) h,1rdd,, (5.120)
"o

(P = Qufs+oufo+
s

+{ RO, + 200 f1rdd, +

0

r
+E—J,, (=Wirhs+ D, hy— D, he)+

]

+ g ) [P s 4 m@hu—mi 3 helrdd,, (5.121)
"o

@n(®) = —@ufotoufs+
s

+{ -2 +42007 1706 +

0

r

Y E

(Wirhy+ Dy he — Dy hs)+
9

+ 5 \ (s Bo) s 4,00 = (o) s 0. (5.122)
"o

Besides the function (5.101), we have introduced here a number of new func-
tions:

g = gl(fﬂ) = %— 3;1,24:&5"119_{. # 1900519,
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g =g = 1“00519—m dsind,

2
g3 = g:;('ﬁ) = 19—Sin19, (5123)
ge = 8u(®) = I—HZJL sina—iﬂzﬁ’_" dcosd;
1434, . 1+ pu,
by = @) = (u+y) - —F sind+ —ZE 9cosd,
hy = h () = y,(l—cosﬁ)——l—%’u—'ﬁsinﬁ,
By = hy(®) = “é"‘ (sin®—Bcos D),
hy = hy(d) = 1‘2"‘ sind— “é"' Hcosd, (5.124)
hs = hs(®) = 1SEsing+ “é"‘ dcosd,
he = he(P) = 1’;"‘ dsind,
gl =gi(19_190) (l= 1,2, 3s4)s
b =h@®-9) (=1,2,..,6)
in which we have the denotations (5.114) and:
J, EJ,
—_ Yz =_n 5.12
Y= TG (5129

Obviously, as seen in this case, the boundary quantities at the initial point
of the bar could be related to those that correspond to the boundary conditions
at the other end of it. Since, however, the general formulae are very compli-
cated, we do not attempt to cite them.

We have derived the equations for displacements of a curved bar con-
sidering both the influence of the principal factors, twisting and bending mo-
ments in the first place, and the less important ones associated with the
longitudinal force and the transverse forces. In practice, those second-ranking
factors can as a rule be neglected. This leads to a simplification of Eqgs. (5.123)
and (5.124), wherein we should led:

v =y, =y, =0. (5.126)
The more slender, the bar considered, the smaller the unavoidable errors
in calculation will be.
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ExaAMPLE 5.1

Find the internal forces and the displacements of a circular bar resting on
n articulated supports equally spaced apart (Fig. 5.6). The bar is under
a uniformly distributed load p,.

Fig. 5.6. Circular bar resting on n supports

On account of the symmetry of the structure and the loads with respect
to n axes of symmetry, we consider only a segment of the bar situated between
two neighbouring axes of symmetry, which make an angle « = =/n (Fig. 5.7).
Because the bar is loaded aut of the plane, all the static and geometric quan-

Fig. 5.7. Bar segment between neighbouring axes of symmetry

tities occurring when a load is acting in the plane of the bar, are therefore
identically equal to zero. Furthermore, it follows from the symmetry con-
ditions that

Wi = ¢H = ¢tk = 0; @Cni = Qg = W = 0. (a)

On the basis of (5.100) and (5.103) and considering boundary conditions
(a);, we get ultimately the following expression for generalized internal
forces:
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2% snd_ = —
M, =p,r (sinoc sin?® 19), T, p.rd,
(b)
M, =p,r? (—3— cosf}—l).
sin &

The problem is therefore evidently statically determinate; all the internal
forces have been determined without having to use geometric relationships.
In the second stage, we proceed to calculate the displacements. For this
purpose, we first determine from Eqs. (2.56) and (4.34) the strains:

__.pzrz a% H _ ___pzrkz
# = (sinoc sind 19), B. = ~Gd ?,

©

_ Par o _
*n =FJ, (sinoc cosd 1)'

By substituting them into Eqgs. (5.111) and performing appropriate inte-
gration using the initial geometric conditions, we obtain

4 2
w =Pl [( I+p @ coso+ 1+3p )(cosa—cosﬁ)+

~ EJ, 2 sinZ« 2 sina
ltp, «a i S Bet¥s 2 g2
t = (asina 19sm19)+——T—(oc 99|, (d)
_pr’ l4p, x 0 9)—
e = Er §4~[sin2a cosacos?+ P (cos ?+ysind) 2], (e)
P lhp o Hcosd— — cosocsim‘}) +
#n = EJ, 2 sina sin o
«
- : f
+ (19 P smﬁ)]. (f)

Note the possibility of performing an interesting pass to the limit. Let us
assume that the product 2ra = I/ is a constant quantity independent of «
and pass with angle a to zero. As a result of this pass to the limit, the circular
bar turns into an infinitely long, straight beam resting on an infinite number
of supports of constant, spacing / (Fig. 5.8a). Owing to the multiple symmetry
of this statically indeterminate system, we can separate out of that beam an
element with clamped both ends (Fig. 5.8b).

Examine the limits to which the functions (b)-(f), expressing the general-
ized internal forces and displacements of the bar, approach. We consider
in detail, for example, the formula for bending moment:
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{a) D,

(o) .

(A
2%

Flg 5.8. Circular bar after limit transition: (a) continuous beam; (b) beam fixed at both
777 ends — a segment of continuous beam; (c) diagram of moments

2 5 @cosP—sina
M, —11—1'1(1)10 I a2sin
(1 ) o _a ot +
SN X S T T AN VRN T 1)
T a0 4 2 ad o
o ’IT_-H+—§—!_“.'.
21
= p—zi“ (1-38?). (2)

We hawe used here expansions of trigonometric functions into Maclaurin
series and we have introduced the denotation:

¢ 2x

f=—="1. (h)
The plot of the function (g) is given in Fig. 5.8c.

In a similar manner, we find:
M=o, T.=-Zlg 0)
wf=—£41—K1—552+48 (1-8),

384EJ, Ve

" _ .
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where
 _E Ju
V: =G A”R

Therefore, setting out from an isostatic structure in a limit, we have ob-
tained a solution for a hyperstatic structure: a beam fixed at both ends.

k. L9

ExAMPLE 5.2

Determine the displacements and internal forces in an element that is in the
form of a circular arc with articulated supports at both ends and that has
a uniformly distributed radial load p, acting on it (Fig. 5.9a). On account

(Q) (b) o,

Fig. 5.9. Two-hinged circular arc

of the symmetry of the structure and the loadings involved, we can consider
half of the bar provided the support conditions at the ends as shown in Fig.
5.9b are given. Assuming the origin of the coordinate system is on the axis
of symmetry and considering the fact that the load is acting only in the plane
of the bar, we have the following boundary conditions:

Vi=0, =0, ¢;=0,
M(x) =0, u(@)=0, o(x)=0.
The unknown initial quantities, U;, @,; and v;, indicated in Fig. 5.9b are

calculated from the given boundary conditions at the other end of the bar;
putting them into Egs. (5.99), (5.102), (5.117)~(5.119), we get:

(a)

M, = —p,r? sz:]na (cos?—cos o),
N = ——p,,r(l— sz;]na cosﬁ), (b)
T, = —p,r Zvsin« sind,

4
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Pt [ 1+v+y,

= A 5 (¥sinacos¥— acosasin )+

+cos o(Psin o — asin 19)] ,

4
v = ‘2’:‘;1 —ZAl[ l+a:2+y,, (o —acosacos P —Psinasind)— (©
- (acosa— 1;’;21& sina) (cosz?—cosa)] ,

Par® 2vsina
P = —“‘EJ—Z A
where
A = 2acos?a+(1+v+y,)a—(3—v+y,)sinacose. (d)

Note that if the influence of longitudinal forces on strains are neglected,
i.e., if ¥ = 0, both the bending moment and the transverse force as well as
all the displacements equal zero, and the longitudinal force has a constant
value, N = —p,r.

Having at hand the functions (b) and (c), we can pass to the limit in a man-
ner similar to that described in Example 5.1. Fixing the value of the product
2ra = I and passing with angle « to zero, we obtain results for a straight

(sin®— dcosa),

Pa=b,

7 7

" i

Fig. 5.10. Circular arc after limit transition—simply supported beam

bar with hinged supports at the ends (Fig. 5.10). Performing suitable trans-
formations (cf. (h) from Example 5.1) we arrive at the functions

2
Mo=-Pl gy, N0, T,--Plg ©
u=290,

pal* 2, z4 ’ 2
v =_§84TJ, [S—6&2+ £ +48y,(1 - £7)], (f)

N Ly
@z = 48EJZ 5(3 E )’
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in which besides the symbol (h) from Example (5.1) a new denotation is intro-
duced

,_E I
=G AR

As distinct from the previous example, in which we proceeded from an
isostatic system by pass to the limit to obtain a solution for a hyperstatic
system, in the present example we started out from a hyperstatic structure
and by pass to the limit we obtained a solution of an isostatic problem.

k,. (@



6. Static Equations of Bar Structures and Fundamental
Solution Methods

6.1. General Remarks

In Chapter 2, we considered an isolated cross-section of one of the elements
of a structure. We demonstrated that it was sufficient to know the general-
ized internal forces acting in that section, using appropriate simplifying
assumptions, to be able to find the stress distribution over the entire cross-
section of a bar.

Chapter 5 was devoted to the problem of determining the distributions
of displacements and generalized internal forces within a simple element.
For this purpose, it was necessary to know the loads acting over the length
of the bar and also the geometric and static boundary quantities. Those
boundary quantities are the displacements of joints and the generalized forces
in characteristic cross-sections.

Thus, all that remained to be done was to calculate the displacements
of joints and the generalized forces in characteristic cross-sections, and this
problem will be our concern in the present and following chapters. The sought
geometric and static quantities make a certain set of discrete unknowns which
in order to be calculated require the solution of a set of algebraic equations.

In this way, from problems described in principle by sets of partial differ-
ential equations (cf. Chapter 2) through problems in which sets of ordinary
differential equations had to be solved, we encounter in this chapter problems
which consist in finding solutions of sets of algebraic equations. This means
at the same time a switch from considerations of a single cross-section, by
way of analysis of an isolated element, to static analysis of a complete bar
structure composed of many elements.

The general principles of constructing and solving sets of kinematic equa-
tions, equilibrium equations and elasticity equations will be presented using
the simple example of a space truss and a plane frame. We shall also discuss
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matrices describing the static-kinematic properties of a structure. In the
following chapters, we shall present in greater detail the methods used in the
statics of bar structures.

6.2. Equations of Kinematics, Equilibrium and Elasticity for a Space Truss

As we have mentioned in Chapter 3, the space truss is a structure composed
of straight bars with ends connected to spherical hinges. The structure thus
formed should be kinematically invariable in the sense that as long as the
bars do not suffer extensions no displacement of the joints can take place.
We shall return to this question later.

However, strictly speaking, a space truss has as many degrees of freedom
as there are bars with spherical hinges at both ends, since each bar can rotate
about its axis. But, this is not very important, since according to the concept
of a truss design we understand not only the technique by which it has been
constructed but also the character of loading. A truss can be loaded exclusive-
ly by forces acting direct on the joint, whereas any loading by moments
and any loading within bars is out of question. Due to this limitation of the
mode of loading of a truss, each of its members (bars) can be subjected either
to tension or compression, and outside the axial force, it does not transmit
any other generalized internal forces.

The static scheme of a truss just described departs a long way from the
real structure. In engineering practice, the construction of spherical hinges
are not even attampted. Stiff joints will be found as a rule at bar linkage
points, and hence the question of bars being free to rotate about their axes
does not come in all. None the less, on account of the considerable slenderness
ratio of truss members, the bending and twisting moments which occur in
them due to the stiffness of the joints, are not very great and the accompany-
ing stresses can be viewed as of secondary importance. One of the methods

yv

Wi

Fig. 6.1. Truss member in primary position and after displacement of joints
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to calculate these stresses has been described in the monograph by Blasz-
kowiak and Kaczkowski (1959, 1966).

Let us number the truss members from 1 to e and allow the quantities
applying to the member numbered j (Fig. 6.1), such as length, cross-sectional
area, etc., to be denoted by a suitable superscript (I/, 4/).

We denote the truss joints by numbers 1 to w. In the Cartesian coordinates
X, ¥, z, the original position of the joint numbered i is described by three com-
ponents, appropriately marked by subscripts: x;, yi, z;.

The original length of the truss member j situated between joints i, k
is calculated using the formula

F =y a—x)+ =) +(z~ 2. (6.1)

Let us treat the bar member as a vector whose origin is at joint / and the
final point at joint k, k£ > i. The directional cosines of that bar are

cos(x,j) = o = xkl_j-&,
cos(y, j) = B =27, ()

The truss joints { and k experience displacements, their components being
Upy, Tm»> Wy (m = i, k). These are accompanied by an extension of the truss
member j, which can easily be determined by projecting the joint displacement
differences on the axis of the member:

AV = (u—u) o + @, —v) '+ (ze—z))y’. (6.3)
Introducing matrix notation:

b =[x, B, 9V, (6.4)

Gn =, 0, Whn, (m=10,k), ¢ ={q, q}, (6.5
we express the extension of truss member j in a more concise form:

Al = [-V, b]¢g'. (6.6)

We array the extension of all the truss members in a single column matrix

with the number of components e equalling the number of truss members
(elements):

€ = (A1, AR, .., AF)}. (6.7)
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Let us also construct a vector containing the displacement components of
all the truss joints, numbering w:

q=1{q:,49. -, qu}. (6.8)

In vector §, we have considered both the unknowns displacements of free
joints and the known (forced) displacements of the supports.

A linear relation occurs between the extensions of truss members and the
displacements of joints (cf. Eq. (6.6)), having the following general structure:

€= ﬁﬁ. 6.9)

The matrix B is composed of submatrices b’ given by the relation (6.4) and
it explains the system of connections between truss joints. To be more specific

Fig. 6.2. Space truss

in our further considerations, we now consider the truss shown in Fig. 6.2,
whose matrix B has the structure:

i 2 3 4 5

L bt bt

2 —b? b?

3 —b? b3

4 _b4 b4

B =’ ::: b o (6.10)

71 —b7 b’

8 —p® bt

9 —b° b°

10 _blo blo
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The numbering of the rows corresponds to the successive numbers of the
truss members, whereas the numbers of columns refer to the truss joints.
It is seen from the matrix (6.10) that, for example, between joints 1 and 5
there is the truss member 1, and between joints 2 and 5, the member 2, and so
forth, and also that, for example, the truss members 2, 5, 8 and 9 meet at
joint 2.

1t will be useful for practical reasons to regroup the displacements generat-
ing the vector § so that the unknown quantities are located in its top part:

q = {v;, W, Wy, V3, %, Us, Vs, Ws}, 6.11)
and the known displacements of supports in its bottom part:

r={u,u,,v,, Uz, W, Uy, Wa }. (6.12)
Hence, we have

q={q,r}. (6.13)

Such a change in the order of components of the vector § requires a suitable
restructuring of the matrix B:

B = [B,B,]. (6.14)

The matrix B should contain those columns of the matrix (6.10), which relate
to displacements of the free joints and the matrix B,, the columns which
relate to displacements of the supports. Considering Eq. (6.4), we write:

1 T ;o4 i 5
v w : wll v, ,u 9 W
~ 1 1 t [ [P § 1 1-
! —ﬁ _y 1 | 1 I“ ﬁ y
2 =y i a2 B oy?
1 1 3 | | 3 3 3
3 | I—ﬂ 1 I“ ﬁ y
4 | | e AT AR A
S| gy L
B=¢| -p5 —5, . B | ) 6.15)
7 | 7 |
B R T A
8 =Y ﬁs I i
RN A
. | - £° _
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1 ‘I 2 'I 3 ! 4
v o, u v, u w : u w
1 [ | | -
I |
2 —a? —f2, :
| b w3 a3
3 I ) @ y |
4 i | | — ot —y‘
5 _aS | aS ﬂs | |
1 1 1
B, = 6f —af, ot 8 (6.16)
AT ! ! 7 7
? ® | { 1 « y
8 | _as —ﬂs | as 78 :
i I el Pm === B B
9 | —of —ﬂ9 | - 0
| | |
10 B 1 : __aIO _7,10 : alO yw“
We present the relation (6.9) in the following form:
€ = Bq+B,r. (6.17)

When the supports experience no displacements, we leave out the second
term of the above formula.

The longitudinal forces in all truss members and the support reactions
are unknown static quantities in the truss. These forces together with external
loadings should satisfy all the equilibrium conditions. Specifically, the pro-
jections on the axes x, y, z of all the forces acting on each truss joint should
equal zero. Since the number of truss joints is w, the number of equilibrium
equations that can be composed, is then 3w for a space truss and 2w for a
plane truss.

We can construct from the forces acting in the truss members a single
column matrix whose number of components equals the number of elements e:

¢ ={N',N?, ..., N°}. (6.18)
The external forces acting on joints, including support reactions, are set
together into a vector:

Q={Q:, Q... Q}, Q={U,V,Wh. (6.19)
Given as an example in Fig. 6.2 are the external forces acting on joint 5.

We derive the equilibrium equations using the principle of virtual work.
Let us give all the joints (including support joints) certain virtual increments
of displacements which we treat as components of the vector:

64 = {dq,, dq,, ..., dq,,}, Oq, ={0u, dv, ow},. (6.20)
The virtual displacement increments are accompanied by virtual extensions
of the bars, forming a single column matrix

de = {041, 8412, ..., dAl°}. (6.21)
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The relation (6.9) occurs between the virtual strains de and the virtual dis-
placements 4q:
de = Boq. (6.22)

In accordance with the principle of virtual work, the work done by external
forces Q on displacements dq equals the work done by internal forces o on
virtual strains de. We write this matrix relation as follows:

847Q = ¢’ (6.23)

Considering the relation (6.22), we express the above formula in a mod-
ified form:

847Q = 647B%e. (6.24)

However since, the virtual displacements dq are arbitrary, for the equation
of work (6.24) to be satisfied regardless of the displacement values, an entire
set of separate equations of equilibrium has to be satisfied:

Q = B%. (6.25)

As in the case of displacements §, we divide the vector of joint loadings
Q into two subvectors:
Q ={Q,R}. (6.26)

The first subvector embraces all known external forces and the other, unknown
support reactions. For the truss in Fig. 6.2, these subvectors have the structure
(cf. (6.11), (6.12)):

Q ={V, W1, W,,V3,V,, Us, Vs, Ws},

R ={U,, U,,V,, Us, W3, U,, Wa3.
The set of equilibrium equations (6.25) can therefore be split into two subsets,
using the denotations (6.14)-(6.16):

B¢ =Q, Ble =R. (6.28)

The third group of equations covers the relations between geometric

quantities € and static quantities . Considering the distortional strains €°,
we write these relations in the following form:

6.27)

€ =E-l¢+¢€°, (6.29)
or inversely:
¢ = E(e—¢€"). (6.30)

The square symmetric matrix of elasticity E has in the case of a truss a diag-
onal structure:

E = [EAYD, ..., EA [V, ..., EA°[l|. (6.31)
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Introducing the denotation

6® = —Ee°, 6.32)
we write Eq. (6.30) in a different form:

¢ = Ee+a°. (6.33)
As we can see, the matrix ¢® can be treated as a specification of the forces
acting in the members of a truss which has not experienced strains (e = 0).
In other words, in a truss whose joints suffer no displacements, internal forces
are liable to appear in those truss members which if set free would undergo
change in their length. For example, a uniform temperature increment by

t deg would produce in member j of a truss with immobilized joints a longi-
tudinal force of the value

EA’

N© = — 7 o tl = —FEAla,t,
because the extension of a free member would be
AP = o, th.

6.3. Equations of Kinematics, Equilibrium and Elasticity for a Plane Frame

In frames, the influence of longitudinal strains induced by axial forces is many
times less than the influence of deflection of bars. Although inextensibility
of bars is generally assumed in calculating frames, we shall not neglect,
nevertheless, the effect of extensibility in the formulae derived and we shall
assume that each of the joints i has three degrees of freedom in the xp plane:

q; = {u, v, <P}1 (634)

Fig. 6.3. Framework member before and after displacement of joints
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Unlike in the case of trusses whereby just one quantity, extension, de-
scribed the state of strain of a whole bar, in the case of framework bars, we need
to know the generalized strains at both ends of an element. These are the
relative angular displacements between the joint and the bar chord, and also
the increment in bar length. Figure 6.3 shows bar j situated between joint
iand k. Tts directional cosines o, 8’ are expressed by Egs. (6.1), and the initial
length M—assuming z* = z,—by Eq. (6.2). We determine the extension of the
bar AN from Eq. (6.3) and the angular displacement of the chord 3’ from
the formula

P o= — “";“' B+ ”";”' o, (6.35)

The quantities below are the parameters describing strain of the bar:

Pu =PV, Qu=q—y, AU, (6.36)
with which we construct column matrix
€ = {pu, Pu, AV}, 6.37)

It is easily seen that for ¢, = ¢, = 3’ the element will remain straight.
The strains (6.37) are related to the displacements of joints i, k in the fol-
lowing manner:

€ = [By, Bul{q:, 4, }, (6.38)
where the matrices By, By; for i < k have the form
o W - p P
! i

B, = g o , By=|p o e (6.39)

2 BT
—al —p 0 ol B0
X 3

Fig. 6.4. Plane frame
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By constructing a common vector of the displacements of all joints (support
joints included):

1=1{4:,9, -}, (6.40)
and a common column matrix of the strains of all elements:
€ ={e', €2, ...,€}, (6.41)

the relationship between them can be expressed by the general formula (6.9).
Tn this case as well, the structure of matrix B will depend on the system of
connections between joints. For example, for the frame in Fig. 6.4, the matrix
has the form

o1 B, B,
B =2 B23 B32 . (6.42)
3 B3, Bys

We regroup the displacements that go into the vector (6.40) in much the
same way as for trusses. We place the unknown quantities in the top part
of the vector:

q={%,"2svzsq’2,"3,vs,q’3}, (643)
and the known displacements of supports, in the bottom part:
r ={u, vy, Uy, Vs, Pa} (6.44)

When the displacement vector q takes the form (6.13), columns of matrix
B have to be regrouped according to Eq. (6.14). The submatrices B and B,
for the frame in Fig. 6.4 will have the form

1 1 4
1
L2 s u v ‘uvcp
9 'uvp ' wvp L
-1 o
1 ! [
0Byl 0 B
0 | N L
R U |
0: : —al _ﬂll
i 1 - e
B = 0 ] B23 { B32 ’ B,. = 0 0 I (6.45)
0, | 0 0,0
Ty T T T i
0o, | 00
0: 0 1B34 0 0 :
_0 Foo 0 0 1By,
0 o0,
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With the above denotations, the set of equations of geometric nature ulti-
mately takes the form (6.17):

The frame is not only loaded by generalized forces acting directly on joints:
Q ={Q1a Q23"'a Qw}a Ql ={Us Va ¢}i' (646)

but also by forces acting within individual elements. The loads acting on bar
j are shown in Fig. 6.5:

P’ = {p:(6), p,(8), m(§)}. (6.47)

pite)

pite)

Fig. 6.5. Loadings acting on member of a plane frame

We have assumed that they are functions of the dimensionless variable &,
measured in each bar from the joint of lower number, varying from 0 to 1.
The loadings of all the bars can be arrayed to make a matrix

P ={p\ P% ..., P°}. (6.48)

We take for the basic quantities of generalized internal forces the bending
moments in characteristic cross-sections (Fig. 6.6) and the mean axial forces

Fig. 6.6. Moments in characteristic cross-sections of the frame
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acting within the bars (cf. trusses). Although the bending moment in cross-
section 1-2 placed in an articulated joint equals in principle zero we do not
preclude an external moment acting there. Using those generalized internal
forces we form a column matrix, structurally similar to the matrix (6.41):

¢ ={c¢',6% ...,0°}, ¢ = {M,;,M,, N} (6.49)

To obtain the equilibrium equations we use also in this case the principle
of virtual work. We therefore give virtual displacements to all the joints of
the frame:

0q ={8qy, dq;, ..., 6qu},  dq, = {du, dv, dp},. (6.50)

We demand at the same time that the displacements of joints be accompanied
by such virtual strains of bars, at which the virtual work done by the internal
forces would reduce to the work done by the generalized internal forces laid
in the matrix (6.49). The bars must therefore remain straight, and only at
their ends can slope discontinuities occur. We obtain this effect introducing
a hinge at every bar-joint connection and giving virtual displacements to the

duy

GVCD?

6U4

Fig. 6.7. Virtual displacements of frame

joints of the modified structure. Figure 6.7 shows the modified scheme of
the frame from Fig. 6.4 together with virtual displacements of the structure.
Hence, the virtual displacements of the bar are (cf. (6.35), (6.36), (6.3)):

Sy = __‘5“_"1_15&,31_,_@;_‘5%“1, (6.51)
Opu = Op,—dy!,  Op, = op,— Oy, (6.52)
0Al = (du,— du) o’ + (S, — bv)) B (6.53)
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We array these strains in a single-column matrix:

de = {0¢!, d€?, ..., e},

d€’ = {Spy, by, A1}, (6.54)
It is easily seen that a relationship analogous to (6.9) occurs between the
virtual strains (6.54) and the virtual displacements (6.50):

de = Béj. (6.55)
For the frame in Fig. 6.4, the matrix B is given by Eq. (6.42).

Considering that loadings also occur within bars, we must find the form
of virtual displacements between individual joints. Since we have assumed
that all the bars remain straight, we express their displacements by linear
functions:

0w (&) = Su &' + du &,

(&) = dv, &' + 0, £,

o' (&) = oy (6.56)
Taking the above displacements to construct the vector
of! = {Su(£), dv(8), dyY (6.57)
and using the relation (6.51), we write
0f/ = [Ny, Nyl{dq,, dq,}. (6.58)
The matrices Ny, Ny; for i < k have the structure
& 00 & 00
S A R A €
N T T

We construct from the vectors (6.57) a common vector setting together
virtual displacements within all elements of the structure

of = {of, 612, ..., of¢}. (6.60)

The dependence of displacements &f within elements on displacements
of joints 4§ is expressed generally by the formula

of = N&g, (6.61)

in which the matrix N is constructed in much the same way as the matrix B-
For example, for the frame from Fig. 6.4, it is:

N12 N21

N = N,; N, . (6.62)
N34 N43
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After clarifying these points we can now proceed to write the equation for
virtual work, i.e., to equate the virtual work done by external loads to the

virtual work done by internal forces:

6ﬁTQ+S Tpds = de’o. (6.63)

s

Putting the relations (6.61) and (6.55) into eq. (6.63), we arrive at the form

T Q + 047 S NTpds = 6§7B7e. (6.64)
Based on the argumentation followed in discussing the equality (6.24), we
arrive at the set of equilibrium equations

Q+ [ R7pds = B7. (6.65)
s
Proceeding in like manner as in the case of trusses, we regroup the quan-

tities forming the vector Q and separate the known quantities forming
the vector Q from the unknown reactions that go into the vector R. For the
frame from Fig. 6.4, these vectors have the form

Q ={¢ls U23V23¢23 Us, V3s¢3}s (666)

R ={Uy, ¥V, U, Vs, ¢4}- (6.67)
The matrices B (cf. (6.45)) and N must also be reconstructed along similar
lines. In the particular case of the frame in Fig. 6.4, we obtain the matrices N
and N, into which the matrix N should be resolved, using the analogy between
these matrices and the matrices (6.45):

_ _ - & 0' N
0! I )
0 ' 0
O:Nzl:o 1 51:
0' | _ﬂ_ %
JER O It l—ll
o
N = 0 ! N23 ! N32 ’ N, == 0 0 { 0 . (6.68)
| I
O o 0
i [ N Vo
0, i
0 0'
I i
glolN“ 0 O:N43
- h - I

Using the above denotations, the set of equilibrium equations (6.65)
can be written in the form of two subsets:

Q+Qf =BT6, R+RF =Blg, (6.69)
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in which there is

Q= SNTpds, R? = SN,Tpds. (6.70)

s s
All that remains to be determined are the relations occurring between
strains and loads. Let us consider, therefore, one of the frame bars numbered
J» placed between joints i and k. Acting on the ends of the bar are moments
My, M,; inducing angular displacements at joints ¥, ¢, measured from the
chord of the bar (Fig. 6.8a). Moreover, the bar is under loads distributed

{a) {b) mp/ {c)

P
M M My m’ ] Yo
,/ Gui 4. . ., - . cat ky,
. M g ! Ny z o A
/ Yy k ~Fy )

Fig. 6.8. Rotations of characteristic cross-sections under (a) bar-end-moments; (b) static
loads; (c) distortional strains

over its length and these are accompanied by rotations at the end cross-sections,
o%, of (Fig. 6.8b). In the end, the bar is liable to experience distortional
strains which result in additional rotations of the same cross-sections ¢,
o2 (Fig. 6.8¢c).

The respective relations are determined from the equations derived in
Section 5.3. For example, following from Eqs. (5.33) are the relations between
the quantities given in Fig. 6.8a:

M EJ' [4=3u' 2-3u'[o¥
wl _ hr[ /‘j /‘j (pnl; , ©.71)
Mki I 2_3‘u 4_3‘11 P
where in keeping with Egs. (5.36) and (5.27) we have
1297 i K EJ

Jj — = Y
=151y ¥V T GG (6.72)

It is easy to arrive therefrom at inverse relations

[‘P:k] 14 [ 2+6y) —1+6y7|[ My 673
¢ki - 6EJ'1 _1+6yj 2+6yj Mki ) (. )

The determinations of the remaining angles shown in Figs. 6.8b, ¢ should
not present any particular difficulty. We either make use of suitable integrals
of a differential equation (cf. Section 5.2) or of the principle of virtual work.
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Considering not only the angular strains but the extension of a bar as well,
using the denotations (6.37), (6.49),, we get:

e = (E)'e/+e/P+€/°, (6.74)
where:
24+6y/ —1+6p/
V=146 246y

jy-1 — .
(E/) CEF ] 5l (6.75)
Al
The strains of all the bars of the frame are expressed as
€ = E lo+e’+€° 6.76)

The symmetric matrix of deformability E~! is a quasidiagonal matrix con-
sisting of the submatrices (6.75):

(El)—l
E-! = E (6.77)
(Ee)—l
The inverse relation to (6.76) has the form
¢ = E(e—€e’—¢€), (6.78)
or by introducing the denotations
6® = —E(e?+€) (6.79)
it is expressed by Eq. (6.33). The elasticity matrix
Kl "
e=| ¥. | (6.80)
. .
consists of the submatrices
4—3u) 234
B — gl{*f 2-3u 4-3u o1 (6.81)
J!

Among the components of the matrix a° there are the moments Mg, My,
which will appear in end cross-sections when the angles @i, @i are zero.
These moments can be induced either by static loads within the bar or by
non-static factors (distortions).
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6.4. Analysis of a Complete Set of Equations

The equations of kinematics (6.17), equilibrium (6.28), (6.69) and elasticity
(6.33) have, regardless of the type of bar structure involved, the following
general form:

e =Bq+Br (1), (6.82)
B'e = Q+Qf (g), B/o=R+R" (n), (6.83)
¢ = Ee+g, ). (6.84)

Each of the matrix equations consists of a certain number of single equa-
tions. We have parenthesized their actual number, expressed by the sym-
bols t, g, r, next to the respective equations of the set (6.82)-(6.84). In trusses,
the quantities QF, R? equal zero in the absence of loads acting within the
truss members.

In the set of equations just given, we have the following unknowns: par-
ameters describing the strains in an element, making the matrix € (¢), displace-
ments of free joints set together in the vector q (g), support reactions making
the vector R (r) and generalized forces in selected cross-sections of bars,
going into the matrix 6 (¢). As we can see, the number of unknowns corresponds
to the number of equations, which does not however, mean that the set can
uniquely be solved for every load.

Of fundamental importance in the further analysis of the set of equations
(6.82)-(6.84) is the matrix B of dimensions txg. For ¢ < g the number of
equilibrium equations is higher than the number of static unknowns, and the
structure is kinematically variable. We must therefore exclude this case from
further considerations. The set of equations considered, regardless of the
kind of load, then has a unique solution and only then if the order* of matrix
B equals the number of its columns g, which we shall call the degree of geo-
metric indeterminability of a structure. If the order of matrix B, which we
denote by the symbol b, was lower than the degree of geometric indetermi-
nability g, the structure would then kinematically variable. The degree of
kinematic variability is calculated from the formula

k=g-b. (6.85)
It is also applicable to the case where ¢t < g.

The difference between the numbers ¢ and g, which give the dimensions
of the matrix B, is the static-kinematic discriminant of the structure:

n=t-—g. (6.86)

* We shall call the order of matrix B the dimension of its greatest non-singular square
matrix which can be separated out of matrix B by cancelling appropriate rows and columns.
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However, since the degree of static indeterminability s equals the sum
of numbers n and k in accordance with Eq. (3.2), we thus have

s =1t—b.

As we have previously noted, we ignore kinematically variable structures.
Consequently, we shall not deal with such sets of equations (6.82)-(6.84),
in which the order of matrix B is lower than the number of its columns.
Hence, the degree of static indeterminability of a structure will be equal
to the static-kinematic discriminant, expressed by Eq. (6.86). It is self-evident
that in the case of a statically determinate structure, the matrix B will be
a non-singular square matrix.

It is easily verified that both the truss in Fig. 6.2 and the frame in Fig. 6.4,
whose matrices B given by Eqs. (6.15) and (6.86); have the dimensions 10 x 8
and 9x7 respectively, are twofold, statically indeterminate structures. The
degree of geometric indeterminability of these structures is 8 and 7, respect-
ively.

As for the frame, it could also be treated as a structure sixfold geometri-
cally indeterminate. For, we need not be interested in the value of angle ¢,
can get rid of this quantity in the set of equations, giving up at the same time
the equilibrium condition for the moments in joint 1, incidentally a condition
which is identically satisfied. This would involve the necessity of suitably
restructuring the elasticity matrix of bar 1; the matrix E! would be of the size
2x2. As a result of all these operations, which would disturb the order in
which the matrices described in Section 5.3 should be constructed, the matrix
B would diminish in size by one row and one column.

6.5. Isostatic Structures

Proceeding in discussing the principal methods of solving the set of equations
(6.82)-(6.84), we begin with the special case in which the matrix B is a non-
singular square matrix. The structure is then isostatic, and the easiest way
to calculate all the unknown quantitites is by finding first of all the internal
forces o from the equilibrium conditions (6.83), :

s =B-T(Q+Q?). (6.87)

Substituting these generalized internal forces into Egs. (6.83), we can calcu-
late the support reactions:

R = B/B""(Q+Q")—R". (6.88)
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As for strains € we determine them not from Eq. (6.84) but from the set of
inverse equations (6.76):

€ =E B T(Q+Q") +€”+¢€°. (6.89)

Finally, we determine from the set of equations (6.82) the displacements of
the joints:

q =B E"'BT(Q+Q?)+B (e’ +€°)—B~1B,r. (6.90)

Note that the internal forces (6.87) in an isostatic structure depend exclus-
ively on external static loads, but do not depend either on the settlement
of supports r or on distortional strains €®. The matrix B-*E-*B~T = F
relating the displacements q to the load Q is, as can be seen, a symmetric
matrix. The symmetry of this matrix, called the flexibility matrix, substantiates
Maxwell’s reciprocal theorem previously proved. In a reverse approach, the
reciprocity theorems serve to prove that the matrix of a set of equilibrium
equations must be a transposition of the matrix of equations of kinematics.
This is the essence od Clebsch’s theorem (Clebsch, 1862).

6.6. The Direct Stiffness Method (Displacement Method)

In the case of a rectangular matrix B, we can choose between two procedures.
The first—natural for matrix calculus—Ileads through eliminations of static
quantities and strains € to a set of equilibrium equations, in which only dis-
placements q are the unknowns. On these grounds, the procedure is called
the direct stiffness method (displacement method). Attention should be drawn
to an analogy between the described procedure to eliminate the unknowns
and a method which under the theory of elasticity leads to what is known
as displacement equations (Mossakowska et al., 1978, p. 73).

We substitute the strains € expressed by Eq. (6.82) into egs. (6.84) and the
internal forces & by the displacements q:

¢ = EBq+EB,r+¢°. (6.91)

Next, we substitute the above internal forces into the equilibrium equations
(6.83),:

BTEBq = Q+Q?—BTEB,r—B7¢°. (6.92)

In this way, we have obtained a set of g equations in which there are g unknown
displacements making the vector q. The matrix

BEB = K, (6.93)

called the stiffness matrix is of course symmetric.
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Solving the set (6.91), we calculate the internal forces o which we put
in turn into Eqs. (6.83) to calculate the reactions

R = B'EBq+BTEB,r+Bl ¢’ —R”. (6.94)

The symmetry of the matrix BTEB, follows from Rayleigh’s reciprocal reac-
tion theorem.

6.7. The Direct Flexibility Method (Force Method)

The other technique of solving the set of equations (6.82)-(6.84), which for-
mally is more complicated, is founded on an analogous argumentation to
that which according to the theory of elasticity leads to the Beltrami-Michell
stress equations (Mossakowska ef al., 1978, p. 85). By eliminations, which
will be discussed below, we arrive by this procedure at a set of equations
in which the only unknowns are static quantities.

Using this method, we must first suitably split each of the single column
matrices € and o into two submatrices:

€ ={¢,€}, ©={o,X}. (6.95)
The dimensions of the matrices €, and o, should be equal to the dimension g
of the matrix B. Consequently, the dimensions of the other submatrices, €,,
and X, will be n (6.86), i.c., they will be as great as the degree of static inde-
terminability of the structure.

This approach makes it necessary to suitably split the matrices B, B, and
E-L:

BS B st‘ E—l Css CSX
B=ls|" » 8.l ~le. ¢l (6.96)

We demand that the matrix B,, which is a square matrix of size gxg, be
non-singular. It follows that the decomposition of the matrices € and o into
the submatrices (6.95) cannot be arbitrary.

For the truss from Fig. 6.2, in which the number of elements e = 10,
eight terms occupying the top part of the matrices (6.7) and (6.18) can be
assigned to each of the matrices €, and o, and to each of the matrices €,
and X, two terms numbered 9 and 10. This means that we recognize the
forces N, and N,;, to be statically indeterminate quantities, and the truss
whose rods 9 and 10 have been cut, as the primary statically determinate
system. The dashed horizontal line in Egs. (6.15), (6.16) separates the matrix
B, from B,, and B, from B,,.

A similar decomposition of the matrices € and o into top and bottom part
would be wrong for the frame from Fig. 6.4, since the top part of matrix B
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given by Eq. (6.45) would be singular. Taking the axial force in bar 3 and the
bending moment M,; for the unknowns would mean that the frame shown
in Fig. 6.9a is the primary system. However, since it is a kinematically variable
system, we must abandon such a decomposition of the matrices € and @.

{a) {b)
3 3

Fig. 6.9. Primary structure: (a) irregular; (b) regular

On the other hand, if we put the quantities @5, and @4, into the matrix
€, and, correspondingly, M3, and M,; into the matrix X, then the frame
shown in Fig. 6.9b will be the primary system, kinematically invariable.
The consequence of such a decomposition of the matrices € and ¢ will be
a suitable restructuring of the matrices (6.45). Their parts (cf. (6.96)) will

have the form:

1 - T B oA
0 B, 0 —Br A0
0 — gt —pt
B,=|0 , By=| 0 0 ,
0 B, B, 0 0 0
0 0 0
0000 —a® =30 0 0 o® p* 0
6.97)
0000 —p313 a3/ 1
B. ={0 000 —pB3B 3|3 0]’
(6.98)

B 00 83 =3P 0
{0 0 g -3k 1)
After decomposing the matrices, we give the set of equations (6.82)-(6.84)
the form:

€ = B;q+B,r, 69
€. = B,q+B.r, (6. 9
B:GS+BIX = Q+QP’

(6.100)

Bf6,+BL.X = R+R?,
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€, = C;;0,+Cy X +€ +¢f!

€ = stcs+CxxX+€g+€g-
We solve the set of equations (6.99); with respect to the unknown displace-
ment q:

q = B;'e,—B;'B,r (6.102)
and put the displacements thus expressed into the second group of geometric
relations (6.99),:

€, = B,B;'¢,—B,B;!B,r+B,,r. (6.103)
In this way, we have obtained a set of » equations, in which only strains €
occur as unknowns. Therefore, we deal here with an equivalent of a set of
compatibility equations known from the mechanics of continuous media
(cf. Mossakowska et al., 1978, p. 28). It follows from the matrix equation
(6.103) that strains in the elements of a statically indeterminate structure
are not independent of each other; a continuous system satisfying all support
conditions cannot possibly be constructed of arbitrarily deformed elements.

Let us treat the internal forces o, in the set of equations (6.100), as unknowns
which we express by other quantities:

6, = B;T(Q+Q?)—B;"BIX. (6.104)
Substituting the above expression into the remaining group of equations
(6.101), we get

€, = C;,B;T(Q+Q")—C,B; "B X+C,, X +€+€?,

€, = C,,B;T(Q+Q")—C,B;"BIX+C, X +€ +¢€3.

The strains thus calculated are substituted into the set of compatibility
equations (6.103), which after ordering and introducing the denotations:

(6.101)

(6.105)

F = B,B;'C,B; "Bl —C,,B; "Bl —B,B;'C,, +C,., (6.106)
F? = (C,,—B,B;!1C,)B;T(Q+Q")+e—B,B; !¢, (6.107)
F' = (B,B;'B,,~B,J)r, F° =¢e2—B,B;'’, (6.108)

takes the form
FX+FP+F +F° = 0. (6.109)

The above set consists of 7 canonical equations of the force method, in
which # numbers of generalized forces X are the unknowns. After solving
the set (6.109) and determining the unknowns X, we calculate the other inter-
nal forces o,. From Egs. (6.100), we determine the support reactions R,
from Egs. (6.101) the strains €, and from (6.102) the displacements of joints q.
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6.8. Final Remarks

Comparing the methods presented for solving the set of equations (6.82)-(6.84),
we find that the most universal method and simplest in matrix notation, is
the displacement method. It is equally applicable to statically indeterminate
and determinate systems. It leads to a single set of equations with a symmetric
matrix (6.93), g xg in size. By virtue of the two advantages just named, the
method is now the most widely used in engineering practice. Almost all digi-
tal computer programmes used for static analysis of bar structures are based
on it.

Regarding statically determinate systems, they can also be calculated
in the previously described manner (cf. (6.87)-(6.90)). By this technique,
we solve first a set of static equations, whose non-symmetric matrix BT is
likewise g x g in size. In spite of the asymmetry of the matrix, the set of equa-
tions can quite easily be solved in most cases, and the inverse of the matrix
BT is determined by elementary consideration.

As for the force method, the first thing that needs to be done is to select
a primary system that is statically determinate, in other words, to select
static quantities which we shall treat as redundant unknowns. This is a very
important operation since the right choice of redundant unknowns is deter-
minant of whether the set of canonical equations of the force method will
be well- or ill-conditioned. This operation requires intellectual intervention
of man, and practically cannot be automated by entrusting it to a digital
computer.

The next operation is to invert the asymmetric matrix B,(BT), g x g in size.
Since the primary system is statically determinate, finding the inverse of matrix
B, is therefore as simple as inverting matrix B” for an isostatic system.

As a result of numerous transformations, which have been discussed above,
we arrive at a set of canonical equations of the direct flexibility method,
whose symmetric matrix (6.106) is nx n in size.

Although in matrix notation the direct flexibility method may seem unduly
complicated, in many cases applying it may prove to be more an advantage
than solving the system by the direct stiffness method. This is true in particular
when the degree of static indeterminability, s = n, is significantly lower than
the degree of geometric indeterminability. In both examples of bar structures
considered in Sections 6.2 and 6.3, this was precisely the case.



7. Isostatic Systems

Making use of the principles discussed in general terms in Chapter 6, we shall
now concern ourselves in greater detail with the static analysis of several iso-
static systems most common in practice.

7.1. Multi Span Hinged Beams

Hinged beams, schematically represented in Fig. 7.1a are used chiefly in
bridge and industrial structures. The problem, which consists in finding

7 2 3 4 5 [ 7 8
— o i =
(b) 4 5
. 7 2 3 A A 6 7 8
— ~ 7 5
(c)

2 8
T
i
(?\\.: )
b
d ;
w, RETII R 1 B AL 7Y
VAN B B 7R 1.

R4 /f/{/

Fig. 7.1. Multispan hinged beam: (a), (b) the schemes of the beam; (c) mode of trans-
mission of loadings; (d) modified scheme
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generalized plots of the internal forces in a beam and also in finding the beam’s
deflection line, can be broken down into several simpler problems wherein
single, simply supported or cantilever beams are successively examined.
In Fig. 7.1b we have the same beam as in Fig. 7.1a but showing also its
structure. We start calculations from the uppermost beam 4-5 and then
consider successively beams 5-8, 2~ and [-2 (Fig. 7.1c). After determining
the bending moments and the shear forces, this being an elementary problem,
we calculate the curvatures » and the shear strain angles 8. We treat these
quantities as secondary loads acting on the structure which has been suitably
modified as shown in Fig. 7.1d. The moments due to the secondary loads
are deflections, and the transverse forces are angular displacements of
cross-sections.

The described procedure, although conceptually simple, is nevertheless
very tedious; specifically the many successive integrations and other math-
ematical operations that need to be performed require great care. Although
the functions thus derived, which express the distribution of generalized

{c)

(d)

¢W,.1 *w, V,.,

Fig. 7.2. Part of a beam: (a) loading; (b) diagram of moments; (c) virtual displacement;
(d) equivalent loadings
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internal forces or deflections, allow the sought quantities to be determined
in an arbitrary cross-section, these values are practically calculated not at
infinitely many points on the axis but in selected cross-sections whose number
is obviously finite. For this reason, we shall discuss in more detail the pro-
cedure to be followed to determine the generalized internal forces and the
displacements in preselected cross-sections of a beam.

First of all, we divide the hinged beam considered into segments in such
a way as to get the dividing points to fall on all the discontinuity sites, i.e.,
beneath supports, at hinges, at places of change in the cross-section or loading,
at points of application of concentrated forces, and the like. Apart from that,
wherever we find the segments between the discontinuity points too long,
we divide them into an arbitrary number of shorter segments as required.
The more minute the division we use, the more accurate the results will be.
We approximate load p acting on the beam by forces linearly distributed
over individual segments, and we also assume that moments m (if any are
acting on the beam at all) are constant in each segment (Fig. 7.2a). Moreover,
concentrated forces P, may be acting in joints, their values in support joints
being unknown. These loads are accompanied by bending moments whose
plot is given segmentally in Fig. 7.2b.

To determine the relationship between the moment values in joints and the
external load, we give the beam such a virtual displacement (Fig. 7.2c)that
the work done by the generalized internal forces should reduce to the work
done by moments M;_,, M,, M;,,. Hence, we have

1 1 1 1
ow [-—M_ —+M, (H.*__)_M _]
! ot z’i ! z’i z’i+1 . z'i+1

z'i+1

A A A
=6W1P1+6W1[P1—1%+P1(Ti+ 3 )+P1+1 16+1]+

+ dwy(my—m, o). (7.1)
The quantities
A A A A
Wi =P1+P1—1—é‘+P1(Ti+ i3+1)+pi+1_i—61+mi_mi+1 (7.2)

can be treated as concentrated forces (Fig. 7.2d) which induce bending
moments in joints of the beam, of exactly the same value as the loads shown

in Fig. 7.2a,
Let us construct the following matrices:
i"= {PO’PI’PZ;---;Pn}; (7.3)

P= {Po,PuPz, ---’pn}’ (7'4)
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m= {m,m,, .., m}, 1.5)
W = {WO! WI!W2!"'!Wn}r (7.6)
M = {M01M11M2! "'!Mn}r (7.7)
o 1 2 n—1 n
o L _1 )
A A
Jov a1
B = A M A A , (7.8)
_1 1
"L An An
() 1 2..n—1 n
24, A 7o
i =% Ay 224,422, A, 1.’ 1.9)
_ Aw 22, | m
1T 2 n-1 n
o |T—1 B
1 1 —1
b= , (7.10)
n—1 1 -1
n 1

where n denotes the number of segments into which the hinged beam ha§
been divided. Using these denotations, the static relations following from
Egs. (7.1), (7.2) can be written as follows:

BM =W, W =P+ip+bm. (7.11)

Figure 7.3a,b show as an example a hinged beam together with forces w
acting on it and a plot of the moments.

The set (7.11) consists of n+1 equations, and the matrices M, W contains
n+1 number of bending moments and joint forces respectively occurring at
all points of the division, not exclusing the terminal points. Eliminating
from the set the known moment values (in the beam from Fig. 7.3, M,
= M, = 0) and ignoring the equations in which unknown force values W,
W) occur on the right-hand side, we get the set of equations

BM=W, W=P+ap+bm, (7.12)
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Fig. 7.3. Hinged beam: (a) equivalent loading; (b) diagram of moments; (c) modified scheme;

elastic weights; (d) deflection line

Here, matrix B” for the beam from Fig. 7.3 is formed by cancelling columns

2 and 8 and rows 0 and 6 in the matrix

4] 1 3 4 5
Jor 1.1
AL AT
11
? h 75
1,1 1
} A A, 7
BT_4 _.i _1_+_l__ __L
= PV T A
s 111
s s 7
7
8

6 7
L
s
Lt
b Tp
L
s

(7.13)
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Similarly, the matrices P, W, a, b are derived from the matrices (7.3), (7.6),
(7.9), (7.10) by cancelling in them the rows with numbers corresponding
to those of the supports. For example, for the beam from Fig. 7.3, we have

M = {MO’MI’MS’M4’M5’M63 M7}3 (714)
W = {Wr, Wy Wi, Wo, Ws, W, Ws}- (7-15)

Just the matrix B (unlike B) is non-singular, and the set of equations (7.12),
can be inverted:

M =B~ TW. (1.16)

B-T is a so-called influence matrix of bending moments. Each of its rows,
say, row numbered i, contains the values of the bending moment appearing
in cross-section i due to a unit force acting at successive joints of the beam.
These are therefore the ordinates of the influence line of moment M;.

On the other hand, each column of B~T, say, that numbered k, contains
the values of the bending moments accompanying the setting-up of an el-
ementary force in joint k. These are therefore the ordinate of the plot of mo-
ments induced by force W, = 1.

Since the plot of bending moments induced by concentrated forces is
a broken line, the transverse forces ‘constant in each interval, are determined

Lk L i B

from the relations
T =A"1H"™M = A~ 1™, (7.17)
l=[11,12,...,lnj, (7.18)

and the matrix ¢ is formed from b by cancelling in the latter the rows corre-
sponding in number to the joints in which the bending moments are zero.

The bending moments are accompanied by the appearance of curvatures
%, and the transverse forces, by shear angles . Both strains can be treated
as secondary loadings. Figures 7.4a, b show a segment of these loadings
referring to a beam of piece-wise constant cross-section. The deflection line
of the beam has in joints the ordinates indicated in Fig. 7.4c. The virtual
load (Fig. 7.4d) induces moments M and transverse forces T, whose plots
are given in Figs. 7.4d, e. The principle of virtual work leads to the equality

Wiy 1 1 ) Wist
- +[—+ W —
}'i (}'i }'i+l ! }'i+l

A
= 6E7, —— (M 1+2M1)+6Ei.;1 QM+ M, )+

k; kiyy
T, —
* G4, T GA,,,

Tiss. (7.19)
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Fig. 7.4. Part of a beam: (a), (b) secondary loadings; (c) deflection line; (d), (¢) diagrams
of moments and transverse forces induced by virtual loading; (f) elastic weights

Considering the relation

T, = _Mt_"i‘!_t-_l (1.20)

and introducing the denotation

EJ;k,

el ML 21
GA 7 (7.21)

i =3
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we write the right-hand side of Eq. (7.19) in the form

w; = 1—62)" Ez"’—“Mi—x"i‘(l-;y‘ I?}, 1+;"+1 ;}:—:1 )MH—
+ 1_267‘“ ;}:1 My (1.22)
Let us introduce the denotations:
w = {wo, W, Wz, ..., W}, (7.23)
@ = {wo, W1, Wz, .., Dy}, (7.24)
ltyo Ao 1-2y0 4o i
3, 6  Jo
S =% 1_270_]3 1+yo ﬁ+ 1+71£ 1—271_&1_ . (7.25)

6 J 3 S 3 4 6 Jy
The geometric relations and the elasticity equations can then be written in
the form

Bv=®, & =SM. (7.26)

The quantities w; can be treated as substitutes, concentrated at the slope
discontinuity points of the axis, equivalent to strains continuously distrib-
uted in individual intervals of the beam. Those slope discontinuity points
of the axis, being secondary loadings, are represented in the form of con-
centrated forces called elastic weights (Nowacki, 1952), that act on a suitably
modified system (Fig. 7.3c). The plot of moments inducing secondary load-
ings is an approximation of the deflection line of the beam considered (Fig.
7.3d).

Proceeding in like manner as in the case of static equations, we remove
from the set of equations of geometry (7.26) those equations which contain
unknown reactions on the right-hand side, i.e., the slope discontinuity angles
of the axes at hinges and the angles of rotation of the end cross-sections
of the beam. At the same time, we can neglect in vector w the zero terms, i.e.,
the displacement values of support joints. Thus, cancelling in B the columns
with numbers relating to support joints and also the rows which bear the
numbers of articulated joints, we get the set of equations

Bw = w. (1.27)
For the beam from Fig. 7.3, the matrix B is a transposition of the matrix
(7.13), and the matrices w and w have the form:

W = {w;, Wy, W3, Wy, Ws, W7, Wg}, (7.28)

® = {wg, Wy, W3, W4, Vs, Ve, W7} (7.29)
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In an analogous manner, cancelling in S the columns and rows which
bear the numbers of articulated joints, we obtain a symmetric matrix S,
relating elastic weights w to the bending moments M:

w = SM. (7.30)
Hence, using Eqgs. (7.27), (7.30) and (7.16) in a successive manner, we get

w =B =B"!SM =B !SB~"W. (7.31)
The symmetric matrix

D =B~'SB~" (1.32)

is an influence matrix of displacements w. The row numbered i contains
a specification of the ordinates of the influence line of displacement w;. In-
cidentally, these ordinates are identical to the values arrayed in column i
in which we have the ordinates of the deflection line induced by the unit
force set up in joint i.

ExampLE 7.1

Determine the matrices and influence lines of the static and geometric quan-
tities for the beam in Fig. 7.3, assuming that all segments A, are the
same length A, and that the beam has a constant cross-section described
by the quantities J; = J, y, = y. According to these assumptions, the matrix B
(cf. (7.13)) takes the form

1 2 3 4 5 7 8

=1 ! o
2 -1 : 1
: -1 2 -1 3
B=- -1 2 -1 45 @
-1 2+ 5
—1'l -1 6
_ | 2 ~-117
and S (cf. (7.25)) is
0 1 3 4 5 6 7
242y 1-2y | TJo
1-2y 444y, 1
A I|4+4y 1-2y 3
S = SEJ : 1-2y 444y 1-2y 4. (b
| 1-2y 444y 1-2y 5
: 1-2y 444y 1-2y s
- ! 1-2y 444y |7
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Matrix B can be inverted using any of the known matrix inversion algo-
rithms. But, knowing the physical meaning of the factors of matrix B~1,
we can also take a different course. Given as examples in Fig. 7.5 are the
three non-zero influence lines of the bending moments at the dividing points

Fig. 7.5. Influence lines of bending moments

of the beam. In keeping with the principles discussed in Chapter 5, the influ-
ence lines can be treated as plots of moments from secondary unit loadings
acting on the modified system, and it is an elementary problem to determine
the bending moments from so simple loadings in an isostatic structure. We array
the ordinates of these influence lines in columns and put them into the ma-
trix B1:

0 1 3 4 5 6 7
4 , <y
1
-8 —4, 2
-6 -3 3 2 1 3
- Al —4 2" 2 a4 2 4
Bl=—— ! C
41 -2 -1, 1 2 3 5 ©
_____ T T
2 11—1 -2 -3 —4 7
4 2,-2 -4 -6 —8 —4|s

It is easily verified that the rows of matrix (c) contain an array of values
of the moments indiced by the unit forces acting at successive joints of the
beam considered (Fig. 7.6).
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3 4 564 7 8
3
-3 1
Ik | 3¢

Fig. 7.6. Diagrams of moments induced by the unit forces

We obtain the influence matrix of transverse forces by performing oper-
ations following from the relation (7.17), which we reduce to the form:

T = cTBTW. @
The matrix ¢ is constructed from the matrix b (7.10) by cancelling in it
columns 2 and 8:

o 1 3 4 5 6 7
1] =1 1: -
2 -1
3 : 1

r 4 -1 1

e = |‘ 1 . (e)
6 | -1 1
7 ; -1 1
3 i -1

Hence, after multiplying the matrices according to Eq. (d) we get the influ-
ence matrix of transverse forces:

1 2 3 4 5 7 8

44 3 2 1 -1 =21

4 3 2 1 —1 =22

3 2 1 —1 =213

1 1 1 2 1 -1 =24
2B =7 -1 =2 1 =1 =2|s" Q)

-1 =2 =3 —1 —2]|s

4 47

B 41s
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It should be noted that the influence lines of transverse forces (Fig. 7.7a)
plotted on matrix (f) apply to a beam loaded indirectly. For only then can
transmission of loadings from the platform to selected joints of the beam
be guarantee. But, the influence lines of transverse forces in a beam loaded

(a) P=1
1 tLI I
5

i

0 1 2 3 4 ] 7 8
(b} v 6%/]%
1
(C) LT, /I_%_
\ 1
(d) il T3 /l-%
3
(e) ; :
LA < ) 13

Fig. 7.7. Influence lines of transverse forces in indirectly loaded beam

directly under will easily be obtained extending the right and left branches
of the influence line right up to the cross-section considered. For example,
Fig. 7.7¢ shows the influence line of a transverse force in a cross-section
placed in interval 4.
Performing the operations prescribed by Eq. (7.32), we can determine
influence matrix of displacements:
1 2 3 4 5 7 8

8+8y20+8y 15+6y 1044y 5+2y —5-2y —10—4y |1
64+16y48+12y32+8y 16+4y—16—4y —32-8y |2

54+ 15y 46+ 10y 26+ 5y,—27—3y —54—6y |3

_ A 48412y 30+ 6y —32—2y —64—4y |4
24EJ sym. 22+7yl;'-—25—y ~50—2y |s
| 44+1ly 92+14y |7

| 208 +28y |s

(2)

It is already easy to plot on the basis of this matrix the influence lines of joint
displacements (Fig. 7.8); these lines are at the same time the deflection lines
of the beam induced by the unit forces.



120 STATICS OF BARS AND BAR STRUCTURES PART 1
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Fig. 7.8. Influence line of displacements of beam joints

The influence matrices thus determined allow the generalized internal
forces and the deflection lines from arbitrary loadings to be plotted without
difficulty. For example, in the case of a load p uniformly distributed over
the entire length of a beam, the vector of equivalent concentrated forces
(7.15) has the following components:

W =pi{l,1,1,1,1,1,%}. s}
la)
A 7

Fig. 7.9. Diagrams: (a) bending moments; (b) transverse forces; (c) deflections
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Multiplying the transposed matrix (c) and the matrices (f) and (g) by the
vector (h), we obtain the ordinates of plots of the quantities sought:

2
M=”_’21_ ~10, —4,2,2,0, —4, —1}. )
A .
=——2—{6,4, 2,0, —2, —4, 3,1}, (J)
pA*
W = Lo {48+ 24y, 148-+40y, 135+42y, 92+ 36y, 49-+22y,

—15+6y, —14+4y}. (k)

The plots in question are given in Fig. 7.9. Regarding the plot of transverse
forces, the stepped line represents the plot of transverse forces induced by
concentrated forces. Connecting with a straight line the points placed in the
middle of each sector of the stepped plot, we obtain the plot of transverse
forces due to loads acting directly on the beam. We can read from it, e.g.,
the reaction values in support joints.

7.2. Plane Trusses

A general method for determining the longitudinal forces in bars and the
sidesways of joints in a space truss was given in Sections 6.2 and 6.4. The same
method can of course be applied to plane trusses. However, in many cases,
in particular in bridge engineering, trusses generally have the character of
a hinged multi-span beam, and vertical forces are their principal loads.
In trusses of this type, we are usually not interested in the horizontal compo-
nents of the joint displacements since vertical displacements are fundamental
here, significantly greater than horizontal. The forces in truss members and

fa) 6 12
1 5 7, 17 13 17
3 g 15
2 L\ 8 10 7% 5 Ng
s
| P wy 4 %2 ‘W3 w, Ws =
~./w, S
(b)
Wy W, w3 w, Wy
%
AN
0%

Fig. 7.10. Truss and deflection line of its bottom flange
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the vertical displacements of truss joints are determined as a rule using influ-
ence lines (or matrices). However, since every influence line can be treated
as demonstrated before as a certain deflection line, we first present the gen-
eral principles of determining the deflection line of that truss flange along
which the load is moving.

Given as an example in Fig. 7.10a is a truss and the deflection line of its
bottom flange which takes the shape of a broken line. This line can be treated
as a plot of secondary moments due to secondary concentrated loadings.
Consequently, in order to determine the deflection line it is necessary to
determine the slope discontinuity angles w of the flange and to apply these
secondary loadings to a suitably modified beam system (Fig. 7.10b).

We calculate the slope discontinuity angles using the principle of comple-
mentary virtual work. Therefore, we have to apply virtual loadings capable
of doing the work on slope discontinuity angles of the flange involved (Fig.
7.11). Being self-equilibrating these loadings induce internal forces in only

NEAVAN
FERNE I

{ A ! A ]
Fig. 7.11. Virtual loading

few truss members. Knowing the real extensions A4/ of all truss members,
extensions making the single-column matrix € (cf. Eq. (6.3)), we can calculate
slope discontinuity angles w of the flange from the formula

w = Ze. (7.33)

The symbol w used here denotes a vector constructed of elastic weights (cf.
(7.29)). The matrix Z contains a specification of forces acting within the
members of the truss which is being subjected to successive self-equilibrated
virtual loadings (Fig. 7.11).

We apply elastic weights to an hinged beam (Fig. 7.10b). We find from
Eq. (7.31) the unknown deflection line ordinates making the vector w (cf.
(7.28)). Considering the relation (7.33), we have therefore

w=B"1w =B"1Ze. (7.34)

However, the extensions of truss members €, neglecting distortional exten-
sions, are proportional to longitudinal forces N making the matrix o:

€ = E o, (7.35)
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where the matrix E is given by Eq. (6.31). If only the vertical forces within
the joints of the bottom flange, making the matrix W, are acting on the truss,
the relationship between the longitudinal forces making the matrix ¢ and the
external loadings W can be written:

o = AW, (7.36)

where A is the influence matrix of internal forces. Finally, by putting (7.36)
into (7.35) and (7.34) we get the relationship between displacements and
external forces:

w =B 1ZE'AW. (7.37)

We know, however, that in view of Maxwell’s theorem the matrix
B-!ZE~! A must be symmetric. It follows that the influence matrix of the
forces within the truss members is

A=ZTBT. (7.38)

Its physical meaning is easy to explain. The influence line of the axial force
in truss member & is, it will be recalled, the deflection line of that flange of
the truss along which a unit force is moving, the deflection being due to an
extension of member k by 4L, = 1. We get from Eq. (7.34) the ordinates
of this influence line assuming that all components of € are zero excepting
components k which is of unit value. Hence the vector containing the ordi-
nates of the influence line of force N; is obtained from the formula

Wk = B—lzk, (7.39)

where Z; is the kth column of Z. The set of ordinates of all the influence
lines is obviously expressed by (cf. (7.38))

AT =B-'Z. (7.40)

ExAMPLE 7.2

Determine the influence matrix of the axial forces for the truss from Fig.
7.10a.

Applying the virtual loadings given in Fig. 7.11, to successive truss joints,
we obtain forces in its joints having the values indicated either in Fig. 7.12a
(joints 1, 3, 5) or in Fig. 7.12b (joints 2, 4). To determine these forces is an
elementary problem which can be solved, for example, by way of successive
equilibration of joints or using intersections by three truss members. These
forces are arrayed in the matrix
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Fig. 7.12. Forces induced in bars by virtual loading
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We construct the matrix B~ as described in Section 7.1 (cf. Eq. (c) from
Example 7.1). For the beam from Fig. 10b:

1 2 3 4 s
—4 -8 -6 —4 —27o
2 -4 =3 =2 —1|1
B“=Z 3 2 1fs. (b)
2 4 2|4
1 2 3]s

It is easily seen that the influence matrix A calculated in Eq. (7.38) has
the form
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0 1 3 4 5
A
1 —
P
A
21 —-°
h
3 1
A
4] ——
h
A Y
s| — -2 —
r r
22 y.
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A A 34 A A
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2h  4n 4R 2h  4n
A A2 12 32
. 2r 4r ar 2r 4—r_
_ Figure 7.13 gives the plots of influence lines of the forces in several truss

members. These lines can be treated as plots of secondary moments from
the loadings specified in matrix (a).
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Fig. 7.13. Influence lines of forces in some truss members



8. The Direct Flexibility Method (Force Method)

8.1. The Set of Canonical Equations of the Direct Flexibility Method

Whereas the derivation of the conditional equations of the direct flexibility
method by the technique described in Section 6.4 appears to be quite compli-
cated, once we have acquired proficiency in determining the internal forces
in isostatic structures, we can obtain the set of equations sought without
any particular difficulty, and in effect, solve the considered problem.

As we already know (cf. Section 3.3), a hyperstatic structure is an over-rigid
structure; the number of single connectors ¢, between e elements, is higher
than the number of members Ae necessary to immobilize all elements. After
finding the degree of static indeterminability of a structure s we cut off men-
tally s number of redundant connectors reducing the structure to a system
which we call the primary isostatic system. But as we eliminate the redundant
members, care should be taken that we do not get in effect, a kinematically
variable structure, and at the same time, still hyperstatic.

In the hyperstatic structure considered, certain generalized forces occur
in the members recognized as redundant. We shall treat these forces as primary
static unknowns and call them redundant quantities denoted by X; (i = 1, 2,
..., 8). In an isostatic primary system these forces act in exactly the same way
as does external loading.

The known external forces together with the unknown generalized forces
X; give rise to generalized internal forces which in the cross-section generally
given by the coordinate s can be arrayed in a single column matrix o(s).
Using the principle of superposition, we write

6(5) = 0p(8)+ Y 0()Xi. @.1)
=1

The symbol op(s) in the above formula denotes a set of internal forces

caused by known external loading, and o;(s) is a single column matrix

containing a specification of the internal forces accompanying load X; = 1.
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Constructing a matrix from the columns o;(s):

Gx(s) = [61(5), 62(5), ..., 65(5)], 8.2)
and putting together the unknowns X; into a single column matrix:
X = {XI,XZ,'--’XS}, (83)

we give the relation (8.1) the form
o(s) = 65(s) +ox(s)X. (8.4

In this way, the internal forces are determined with an accuracy to constants
X. With the same accuracy we can determine the strains

€(s) = E~1(s)a(s)+€°(s)
= E~'(s)6x(s) X +E~1(s)6p(s) +€°(s). (8.5)
Distortional strains have also been allowed for in the above formula.
Assume that before the real strains (8.5) appeared, vitrual forces ¢X
were already acting on the isostatic primary system at places where the redun-

dant members had been cut. These forces were accompanied by generalized
internal forces

d6(s) = ox(s)0X, (8.6)
and also by support reactions
OR = A, 8X. ®8.7)

The matrix A, relates the reaction values to the causes that generated them.
Virtual forces dX do the work on mutual displacements 8§ of the cut parts
od redundant members, and likewise reactions R do the work on the displace-
ments of supports r. The work done by these external loadings equals
the work done by virtual internal forces on real strains:
8X78+R™r = { 867 (s)e (s)ds, (8.8)

or considering the relations (8.6), (8.7):

0X78+ OXTATr = 0XT { 6} (s)e(s)ds. (8.9)

2
Since Eq. (8.9) is to be satisfied regardless of the values of virtual forces
06X, therefore, neglecting the matrix 6X7, we obtain from a single equation
of work a set of equations geometric in nature. Considering at the same time
the fact that the mutual displacements & of the cut members in a real, hyper-
static structure equal zero, we write the set of these equations as follows:

8 = {oZ(s)e(s)ds—ATr = 0. (8.10)

s
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Using the relation (8.5) and introducing the denotations

D= Sc%(s)E"(S)cx(S)dS: (8.11)

5

8o = [ GE(E1()0,(s)ds+ [ eZ(s)e%(s)ds—ATr, (8.12)

s s

we get the following set of canonical equations of the force method:
DX+8, = 0. (8.13)

We calculate the components of the square symmetric flexibility matrix D
from the relation

S = [T OE(ou(dds G,k =1,2,...,9). (8.14)
The symbol d,, denotes the mutual displacement in the cut member / induced
by force X = 1. The matrix

8o = {b0, 820, -5 050} (8.15)
contains a specification of free terms (independent of X) calculated from the
formula

8o = { TODE1()0p(s)ds+ | o7 (s)€2(s)ds— AT (8.16)
The above expression connotes the mutual displacement of the cut parts of
member i induced by known external loadings, distortional strains and settle-
ment of supports. The symbol A, denotes the ith column of A,.

After solving the set of equations (8.13):

X = —D-15,, 8.17)

we can calculate now the internal forces from formula (8.4).
The procedure will be explained using a simple example of a plane frame.

ExAMPLE 8.1

Let us find the internal forces in the frame from Fig. 8.1a induced by: (a)
static loading, (b) distortional strains accompanying temperature variation,
(c¢) displacements of supports.

The structure is twice hyperstatic. Suffice therefore to remove two members
to obtain a primary isostatic system. Exchanging the stiff connection in joint
1 for an hinged connection, we remove one member and separating the bar
at joint C from the support, we remove the other (Fig. 8.1b). In order to show
how the redundant X, is acting, we had to shift a little the support C.
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Fig. 8.1. Statically indeterminate frame: (a) considered structure; (b) primary system

In the primary system, the loadings X; = 1 and X, = 1 induce general-
ized internal forces o, and o,, whose plots are given in Fig. 8.2a, b, and
loading p induces forces o, the relevant plots are given in Fig. 8.2c. On prac-
tical grounds, it is convenient to ascertain at the beginning which side of

(a)
Xy=1 1
YACRNIE 1 @
M. E N, T.
e K
L I s ls
(b}
T e
Sy g o] = B c
b T8
(c) P LD
T, 2l
P-ltz Me l(j A | e @_p_ZIC
L3 ||

Fig. 8.2. Diagrams of moments, longitudinal forces and transverse forces in basic structure
induced by (a), (b) forces X; = 1; (c) external loading

individual bars are bottom. This facilitates the marking of the bending mo-
ments. We take it conventionally that the bending moments causing tension
on bottom side are positive. The bottom side of bars in the considered frame

are indicated in Fig. 8.1a by a dashed line.
In the case of a plane frame, the matrices ¢ and E-! have the structure

L. 11 &
¢ ={M,N, T}, El“[ﬁﬁ'@z]‘ (a)
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In this connection, Eq. (8.14) takes the form

_ MM, NN, I, T,
6,,‘—8( 5 T B4 +k GA ds. )

Performing appropriate integrations, we get the matrix

1
2 | (I +%x+y; +2
D— IgJ I 3 1+271) 3 , ©
’ 3 L(3+5v,+2y5)

with the following dimensionless parameters:

n-—I’J’ v——J’ v_ls J,

r s ’ ! AP 132 ’ 2 IP AS Ifz ’ (d)

_E kyJ, _E kJ,
"EGA4LL PTG 41
To calculate the values &;, we must first construct the matrix A,, relating
the reactions to redundants X. By arraying the reactions and displacements
of the supports in single column matrices

R = {Uy, Wy, Ug, Wy, Wc}, r= {u,, wy, ug, wg, wc}, ©
we get (cf. Fig. 8.2a, b):
_1 0 1 0 0
AT =| & J; . )
0 -1 0 2 —1i

As for the distortional strain matrix, it has in our example the following
components:

t
e ={°“A s 0}. @®
h
Hence, after performing the operations prescribed by Eq. (8.16) we get
10 = 8ip+ Bi4+ 8+ Oy + 04, (h)
where:
I 1
01p = 1—1275'.7:’ O1u = —1:(“4—“3),
_ ol _ _ o 4,17,
02p = m(l 24v;), Oy = TR )

621‘ = zattls, 62w = WA—2W3+Wc,
0140 = 8y, = 6y, = 85, = 0.
The geometric meaning of all these quantities is explained in Fig. 8.3.
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Fig. 8.3. Displacements of primary system induced by (a), (b) forces X; = 1; (c) external
loading; (d), (e) temperature changes; (f), (g) displacements of supports

To give the reader an idea of the order of magnitude of parameters (d),
let us assume for the sake of exemplification that the frame is made up of
bars of rectangular cross-sections, bxh, and bxh, in size, where A/,
= hJl. = 1/10, /I, = 1/2, E/G = 5/2. Based on these assumptions, we
find using formulae (d):

1 1 1 1

% =4, Vx=-3—66, v2=_1—2(70—’ 71=W, 72=7466- §))

Evidently, we would not have made any appreciable error neglecting in our
calculations the influences of longitudinal forces (v;) and shear forces (y;)
on deformations of the frame. Therefore, in calculating frameworks composed
of sufficiently slender bars, only the influence of moments (bending and
twisting) on deformations is considered as a rule. The situation changes only
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for frames made of very short bars. Assuming, for example, that A,/
= h,Jl, = 1/4, with the previous assumptions still holding, we obtain par-

o\* .
ameters »; and y; ( 4 ) times as great:

4 1 1 1 _ b

x s Vx—ﬁ, 1’2—"@3 71—T6: 72-64-
In further calculations, we neglect the influence of longitudinal and shear
forces on the displacement values as this may result only in minor quanti-
tative changes, not in any qualitative changes. Hence, the matrix D takes

the form
22
1 2|5 3
R I A ®
6 EJ, 3 4]
Its inverse is easy to find
4, -3
M

6 EJ

-1 _ T TYr
D = o | _3 221
L |

From Eq. (8.17) we calculate the unknowns:

-5 [ 3] -4
X =|_16|a+|_2|at| 3 e,
lr B lr N " lr .
(a) (b)
g gN‘SN
-Sa,\ &°$ S) 3a, o ¥ ©
3 -Sq, 3a,
® 3
(c)
g
-4ay ' -4a,
@

)
Q
(a2}

©

Fig. 8.4. Diagrams of moments induced by (a) statical loading, (b) temperature changes
and vertical displacements of supports
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a __6,_ EJ, uy,—ug
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Figure 8.4 gives the plots of moments due to individual external factors.
We obtain these moments, in accordance with Eq. (8.4), using the principle
of superposition:

M=MP+M1X1+M2X2. (n)

8.2. Influence Lines

The influence lines of arbitrary quantities from a moving force can be
treated, as we know, as deflection lines of the elements of a structure, along
which the force is moving. For example, for the frame in Fig. 8.1a, we can
expect that only a load acting on the beam I-2-C can change its position and
value. We are interested in the influence lines of the force moving solely
along the beam.

It is convenient to start seeking the influence lines of arbitrary internal
force and reactions from finding the influence lines of the redundant quan-
tities. The equation for these influence lines are obtained from Eq. (8.17):

X(x) = —D~18,(x). (8.18)

The coordinate x generally gives the position of the unit force, and the func-
tions whose plots are the influence lines of displacements d;4(x) are compo-
nents of vector 8,(x). From Maxwell’s theorem it follows that the influence
lines of displacements d,;,(x) are the deflection lines of the respective members
of the structure accompanying unit loadings X; = 1. Hence, the deflection
lines of the beam shown in Fig. 8.3a, b are the influence lines of the quantity
d;0 being sought.

Let us denote the components of matrix —D~! by symbols §,,. The equa-
tion for the influence line of the redundant unknown X; can then be written

X,(%) = ) e Seo(). 8.19)

This means that the influence line of the redundant X; is the deflection line
induced by generalized forces §;, attached at action points of redundants X;.
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Fig. 8.5. Deformation of primary system under loadings fu

Figure 8.5 shows the loadings and the accompanying deformations of the
frame, where the deflection lines of the beam are the influence lines of X;.
Under the influence of the loadings indicated in Fig. 8.5, bending moments
in the frame appear, whose plots relating only to the beam are shown in
Fig. 8.6.

(@) {b)
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Fig. 8.6. Diagrams of bending moments induced by loadings B acting

It will prove useful to solve the following auxiliary problem. Consider
bar i~k simply supported and loaded at the ends by bending moments M,,
M. The supports of the bar experience displacements w;, w, (Fig. 8.7).

Wee

! L

Fig. 8.7. Deflection of simple supported beam induced by end moments and displacements
of supports

Therefore, we have to find the integral of the following differential equa-
tion:

W= —Px+lf, (8.20)
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into which we can bring the set of equations (6.19). In Eq. (8.20):

M 1
* =T fj[Mi(l_‘S)‘*'Mk‘S],
8.21)
g kT _ ke MM, dw
“GdT 64 1 ¥ Tae
Substituting the relations (8.21) into Eq. (8.20) and integrating, we get
12
w=w&"+ Wk‘f‘*'ﬁj[Min(E)‘*'Mkwu(f')]- (8.22)
We have introduced here the following denotations (cf. Fig. 8.8):
o) = §-38+38, & =1-§. (8.23)
N
| : .
>
e 1

Fig. 8.8. Diagram of function wy (&)

After finding the influence lines of the redundants, we find the equation
for the influence lines of internal forces or reactions using the principle of
superposition:

0() = Cr()+ D QX (). (8.24)
k=1

QOr(x) in the above equation denotes the influence function of the static quan-
tity in an isostatic primary system considered, Oy is the value of the considered
quantity induced by generalized force X; = 1 and X,(x) is the previously
found influence line of the redundant quantity.

The argumentation just presented applies equally to frameworks as to
trusses. The influence lines—as deflection lines of the truss—are determined,
of course, by the elastic weights method. In between joints, the deflection
line of the truss is a straight line (cf. (8.22)).

ExampLE 8.2

Let us find the influence lines of redundants, generalized external forces in
cross-section « and of reactions U,, W, and Wj for the frame in Fig. 8.1a.
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Knowing the plots of the moments given in Fig. 8.6 and considering the
values given in Eq. (1) from Example 8.1, we can readily write on Eq. (8.18):

Xi720) = — 5 Bow(®)+ 20w (@],

l @
XEOE) = 5 6ou(®),
and
X172(@) = 5 Bow(®) ~ 0y @],
®)

44
X3°@) = t- g ou®.
The shapes of these lines are shown in Fig. 8.9.

{a) {b)

i X, il X,

{b)

il M, =) -al,

alrw
1

c)

e i.L X

®

{d)

Q il alX,

® al,
(e
il Mg e

Fig. 8.10. Influence line of bending moment in cross-section a—a
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Let us consider in turn the influence line of bending moment M, in the
cross-section located in span 1-2 (Fig. 8.10a), given by the coordinate «
(¢’ = I—a). In the case of force P = 1 moving along the isostatic primary
system, the moment M, varies as illustrated by the plot of influence line M,»
(Fig. 8.10b). The moments in cross-section  induced by generalized forces
Xy=1are M,;, =1, My, = o, (cf. Fig. 8.2a, b). Hence, it is necessary to
add to the influence line of M, the influence lines of X 1 and o}, X, (Fig. 8.10c, d).
The influence line of M, is a superposition of all three lines (Fig. 8.10a).
In a similar manner we find the influence line of T,. However, since T,, = 0

{a)

(b)

®

L W o -
=
(b) L iL. X,
@ W
(c) iLw,

Fig. 8.12. Influence line of reaction W
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and T, = 1 (cf. Fig. 8.2a, b), the influence line of T, (Fig. 8.11c) is, therefore,
a superposition of two influence lines only, T, and X, (Fig. 8.11a, b).

In the primary system, neither force P = 1 nor X, = 1 induces any longi-
tudinal force (N, = Ny, == 0) in cross-section a. Consequently, the influ-
ence line od N, is the influence line of redundant X, multiplied by Ny, = 1//
(Fig. 8.11d). It is easily seen that it is at the same time the influence line of
—U,, because the positive sense of reaction U, is opposite to that shown
in Fig. 8.2a. The method of finding the influence lines of W, and W, (Figs.
8.12, 8.13) requires no further comment.

(a iL W
1
® 2
{b)
-2
il -2, ©
\/
®
(c) ‘
il Wy

~_ [ >

Fig. 8.13. Influence line of reaction W5
ExAMPLE 8.3

Find the influence lines of redundant X; and of the forces in truss members
of a onefold hyperstatic truss as shown in Fig. 8.14a. We assume that force
P =1 may act on the joints of both the bottom and top flange.

It will therefore be convenient in this case to suspend a weightless and
unloaded platform under the truss (Fig. 8.14b), whose joints will experience
exactly the same vertical displacements, as do the joints of the top and bot-
tom flanges of the truss. We take as redundant the axial force in truss mem-
ber 12. Consequently, two trusses simply supported (Fig. 8.14c) will make
the isostatic primary system.
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£ iy

Fig. 8.14. Two-span truss: (a) considered structure; (b) truss with weight less platform;
(c) primary system

Using one of the methods described in Section 7.2, we determine the axial
forces induced by loading X, = 1 and array them in a single column matrix:

G, =%{ﬂa—la—ﬂ12’ﬂa —'3a ~ﬂa4’ﬂa—5’ —ﬂa6}a (a)
where (cf. Fig. 8.14b):
//
= —1"— (b)
Since a symmetric truss is involved here, we have confined ourselves to putt-
ing in matrix (a) only the forces acting in truss members /-12,
Denoting the cross-sectional areas of the bottom flange by A4,, those of

the top flange by 4, and those of the cross braces by A, we express the
deformability matrix E-? as follows:

A
E™! = E[ﬂ@h zﬂgka 290: ﬂgka 2’ ﬂgka 29ga ﬂ@ka 2’ ﬂgka Qa_l’ (C)
where:
_ As _ As
O = ‘A:‘, Qg —A—g- @)
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The product of matrix (c) thus expressed and matrix (a) is an array of
extensions of the truss members induced by force X; = 1:

e, =E-lo, ={4', 47, ..., AI'?}. (e)
In this connection, we determine the value &8,, this time from the relation
A
D= 611 = 20'{‘E—161 = m—;(35+389g+3ﬂ39k) (f)
Assuming, for example, the following values:
3 1
.3=’2“’ @a=’2“’ o =4, ®
we get
_ 2t 2 -1 _ 2 E4,
D—611——2———EA‘1, D =57 (h)
The influence line of redundant X, is the deflection line of the truss under
load X; = —1/8,,. This force induces extensions of the truss members,
which we calculate from the formula
1
=E 1 ———
e =g
=—6%{—9,2,9,—2, -9,6,9, -4, -9,10,9, -3}, )

in which we have already considered assumptions (g).

We determine from Eq. (7.39) the slope discontinuity angles w of the
deflection line of the platform suspended under the truss (Fig. 8.14b). We
obtain the matrix Z as an array of internal forces induced by the virtual
loadings given in Fig. 8.15:

(a) {b) -

>|-

3-['@
[
[

>

>hs

>f-

s 2 %?7% Jl% B

Fig. 8.15. Forces in truss members induced by virtual loadings
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1 2 3 4 5 6 7 8 9 10 11 12

81 -p
1 ﬂ -1 ﬂ
zZ= 61 -p
g -1 B
. -1 - 0]

The fact is that the virtual loadings also induce forces in the suspension bars
of the platform, but because the load X, is not accompanied by extensions
of these bars, those forces can be neglected in matrix Z.

Hence, in accordance with (7.39):

-

()

[V I S ¥

1
w =Ze =—-{2,2,6,4,10}. k)

The deflection line of the platform is a plot of secondary moments from
secondary loadings w. Using the method described in Section 7.1, we find
successively:

{a)
2 1.2 1.5 |4 |l
l63h 163h 63h l63b 163h l l Y l l
o ~ig
cnl'.o o3 | ~je :::
Al Rl T
{b)
\J\@J/\IGD/I/
<le =<|<
ela Rlz
{c)
\\, @
~i<
|3 ~ <<
wnjm
~Ig el

Fig. 8.16. Influence lines of redundant truss member in the case of a force moving (a)
along cross braces; (b) over bottom flange; (¢) over top flange
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-2 —1 7 54321
i -1 2 -1 A 48642
B=_}T -'1 2 -'1 ’ B‘1=g 36963 ’ (1)
-1 2 -1 24628 4
B -1 2 12345,
and the ordinates of the influence line of X, are obtained from the formula
X, =B 'w =219, 16,21,20, 15} (m)
1 63 h ’ ’ ’ ’ .
{a) 1
v
7 JAY
<< 7 Vs
o)y
{b) ©
‘~<|4: ~jle <=le ~e -\‘;4:
< -—!.‘! Rle & == =
L- 28 e 8|&
{c}
AN
7
d< <le =€ << ~|<
oy AR er o
1 i t 1 1
e ] T T T

AY
<< Z
<|< IN ,<'(\\
ﬁ,g \Nylm O'N \
Y =i~ = N P
NN 2
1 | \ N

Fig. 8.17. Influence line of forces in truss members 6 and 7
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The plot of this influence line is shown in Fig. 8.16a. It expresses the depend-
ence of force N2 = X, on the position of force P = 1 moving along the
cross braces. But, it will suffice to connect using straight segments the ordi-
nates of this line at even numbered joints to obtain the influence line for the
force moving along the bottom flange (Fig. 8.16b). By joining the odd-
numbered ordinates we obtain the influence line of the force moving along
the top flange (Fig. 8.16c).
The influence line of the force in bar i is determined from the formula

N = Ni+NiX,. (n)
Specifically, for i = 6, 7, we read from Eq. (a)
1 B 1
6 __ _ 7 - _F -
Ni=-7 N 6 4"

The plots of influence lines N8, N (Fig. 8.17a, c) are plots of secondary
moments from the elastic weights arrayed in matrix (j), columns 6, 7. The
superposition performed in accordance with Eq. (n) results in the influence
lines given in Fig. 8.17b, d. A suitable modification of connections between
the ordinates yields influence lines which are valid for a force moving not
along cross braces but along one of the flanges. The dashed lines in Fig.
8.17b, d apply to a force travelling along the bottom flange.

8.3. Selection of the Primary System

As we have mentioned above, the force method allows much freedom in
selecting the redundant unknowns and the primary system, and it will depend
on the actual choice how much work will be required for calculations and how
accurate the results will be. The former depends on the degree of filling of
flexibility matrix D. Therefore, we should work towards getting as many
quantities d;; as possible to equal zero.

That is precisely why, for example, for the continuous beam described
in Fig. 8.18a we eliminate by our choice primary systems in the form of a
single beam resting on extreme supports (Fig. 8.18b) or in the form of a can-
tilever (Fig. 8.18c) since we would obtain in either case a complete matrix
D. It follows that for the system in Fig. 8.18b, the plots of all moments M,
are spread over the entire length of the beam, and in the cantilever case (Fig.
8.18c), each of the plots of m, has values other than zero at least in the first
span of the beam. Therefore, none of the quantities d; equals zero. On the
other hand, taking a primary scheme as in Fig. 8.18d, in other words,
assuming that the bending moments in support cross-sections are the redun-
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2 e e n In

N>

fl % x X, X

N S S N
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1
M, My

Fig. 8.18. Various possibilities of choosing the primary system for continuous beam

dant unknowns, we arrive at a set of three-term equations with the three-
diagonal flexibility matrix
011 Oy,
621 622 623
D= 632 633 634 . (8.25)

6’1. n—1 6’"1_

As we can see, each of the plots M; spreads only over to two spans (Fig.
8.18g), due to which:

MM,
% = \—gF

ds=0 for |k—i]>2. (8.26)

s
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The more spans there are in a continuous beam, the more evident will be
the advantage accruing from the use of such a primary system.

Similarly, in the case of an over-rigid truss as in Fig. 8.19a, it is better to
assume the forces in cross braces to be unknown (Fig. 8.19c) rather than to

(a)
{b)
X X X X, Xs
JA
(c)
X Xz X3 X Xs
% 777

Fig. 8.19. Two methods of choosing the basic structure for plane truss

assume the forces in vertical members to be redundant (Fig. 8.19b). In the
former case, we would deal with a complete flexibility matrix D, and in the
latter, the matrix would have the form given in Eq. (8.25).

(a) (b) (c)
P P P P p p
p l 2 l F) Z
M M
N Y
= +

Fig. 8.20. Symmetric frame
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For symmetric structures, it pays to split the loading into a symmetric
and antisymmetric part and to solve separately each of the component prob-
lems. For example, we treat an asymmetric loading of the 12-fold statically
indeterminate frame in Fig. 8.20a as the sum of the loadings indicated in
Fig. 8.20b, c. For symmetric and antisymmetric loading alike, we consider
half of the frame under various support conditions on the axis of symmetry
of the structure. A frame symmetrically loaded (Fig. 8.21a) is eightfold hyper-
static and a frame antisymmetrically loaded (Fig. 8.22a) fourfold hyperstatic.

{a) 'ﬂ (b) (c) {d) (e {f) {g)
M7
X M,
& N 8
&, N i v ;
2 . "
2, N "
% . "
—, N 7]
M, M,
e g4

Fig. 8.21. Half-frame symmetrically loaded: (a) considered structure; (b) primary system;
(©)-(f) diagrams of moments induced by forces X; = 1; (g) diagram of moments from
external loading

() (c) (d) (e)
1
Ml.
Pl
L1
M, Ms
\
£ |
MZ
S~

7

Fig. 8.22. Half-frame antisymmetrically loaded: (a) considered structure; (b) primary
system; (¢), (d) diagrams of moments induced by forces X; = 1; (e) diagram of moments
from external loading
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By selecting primary systems in the manner indicated in Figs. 8.21b and
8.22b, we arrive at sets of three-term equations with the three-diagonal flexi-
bility matrix (8.25). The plots of moments M, given in Figs. 8.2l1c-g and
8.22c—¢ indicate that the relation (8.26) applies here.

(@) (b) (c)

§ vz

\
N b
§ VA

N
. b4

N
. 7
Vo

Fig. 8.23. Symmetric truss: (a) considered structure; (b) half-truss symmetrically loaded;
(c) half-truss antisymmetrically loaded

The truss from Fig. 8.23a is 12-fold hyperstatic. After resolving the load
into symmetric and antisymmetric, we can consider successively the trusses
diagrammatically presented in Fig. 8.23b, c. In the case of symmetric load-

(a) (b) c)

N N
, AN <.
Xy=1
N N
NN \\
X,=1
N\ N3 X
; | ﬂ§
X4=1
N N
N <A
=1
X, N §
N
X5=1
N N N6

W

\
N ¢x5=1 %//

Fig. 8.24. Redundant truss members in the case of symmetrical loading (non-zero forces
occur in thickened members)
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ing, the joints lying on the axis of symmetry cannot experience horizontal
sidesways (Fig. 8.23b), whereas antisymmetric loading cannot be accompanied
by vertical displacements of these joints (Fig. 8.23c). Both truss systems are
sixfold hyperstatic.

It would be wrong to take a primary system in the form of a truss canti-
lever, since this would lead to the complete matrix of a set of equations. But,
by cutting the external vertical truss members and removing the vertical
component of reaction in the outer support joint, we obtain primary systems
(Figs. 8.24, 9.25), in which the redundant forces induce axial forces only

{a) . (b) (c)
N7
X7=1‘ 77 NW/Z 7
8
\ o
777 = T 7
o= ) Ny
b 77 Xg=1 i
Nig
Xin=1 77 7
10 N,
1
7. el V4
N

24
2

7
lx,zﬂ

Fig. 8.25. Redundant truss members in the case of antisymmetrical loading

in a few truss members. Members in which non-zero axial forces occur are
indicated in the diagrams by a bold line. In the case of a symmetric system
(Fig. 8.24), we arrive at a set of equations with the five-diagonal flexibility
matrix:
—611 612 613 N
621 622 623 624
D= 531 532 533 534 535 s (8-27)

. 6n.n—2 6n.n—1 6nn_
wherein with denotations of type (6.18), (6.31), we have
6 =6fE ‘e, =0 for |k—i|> 3. (8.28)
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With antisymmetric loading (Fig. 8.25), the set of canonical equations has
a band matrix of type (8.25).

The kind of primary system selected has a bearing not only on the num-
ber of non-zero terms d;, but on the accuracy of results as well. For example,
in the case of two-, three- and four-span continuous beams (Fig. 8.26) uni-

{b) lc)

ay AN JAN
» T%pl T%pl T Tﬁp/ T%%pl ?}ﬁzpl 7

Fig. 8.26. Continuous beams

formly loaded, a beam resting on extreme supports taken for the primary
system would involve calculations requiring high accuracy, increasing with
the number of spans in the beam. This is due to the fact that the plot of mo-
ments induced by redundants alone has increasingly greater ordinates. Cons~
sequently, a one percent error made in the determination of the redundants

(a) (b) (c)

2p!

Fig. 8.27. Diagrams of moments from external loading for different primary schemes



8. THE DIRECT FLEXIBILITY METHOD 151

gives errors on the order of 5%, 119/ and 299 in two-, three- and four-span
beams, respectively, for the bending moments actually occurring over the
supports.

On the other hand, the influence of the number of unknowns on the accu-
racy of results cannot be manifested if we take support moments for the
redundants. This is due to the fact that the state of strain and stress of the
primary system under an external load is far from the real state, more so
in the case of an incorrect choice of redundants than in the case of a correct
choice of the primary system and redundants. Figure 8.27 shows on the same
scale the plots of the ultimate moments and the plots of moments Mp for
various primary systems relating to the beams in Fig. 8.26.

It should be noted that an additional difficuity in improving the accuracy
of results by means of increasing the number of unknowns comes from the
fact that if a wrong primary system has been selected, we then get a set of
equations whereby the greater the size of matrix D, the worse it is conditioned

A suitable selection of the primary system may lead in an extreme case,
to complete diagonalization of the flexibility matrix D, which obviously
greatly facilitates its inversion and further calculations. Getting a diagonal-
ized matrix D is simple particularly for symmetric structures. For example,
cutting a three-span beam on the axis of symmetry, tantamount to taking
the bending moment and the transverse force in the central cross-section

(a) X,
B Y
5 & W B 2
XZ
(b M,
1@
{c) f
4 ",
&z

Fig. 8.28. Use of the symmetry of a structure in the choice of primary scheme

(Fig. 8.28a) for the unknown redundants, results in the plots of moments M;
given in Fig. 8.28b, c. Since one plot is symmetric and the other antisymmetric,
4y, = 0, and D has the diagonal matrix form: D = [d,;, §.,].
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The same effect will be obtained in chosing the position of the hinge
(Fig. 8.29a) in such way as to get the zeroing conditions for the quantity
0, satisfied :

EJ T 6EJ(—e)?

2(1
612=SM1M,_ i = =59

[a) X, X,
» ‘&l \IL”\[ Pay
(T A
(b} M, S,
1}@ -f;
(c) "

Fig. 8.29. Primary scheme leading to an uncoupled system of equations

It follows that by taking the second hinge to be at distance e = //5, we obtain
a diagonal flexibility matrix.

One of the ways of reducing the number of terms d,; in D is the use of the
group unknowns method which consists of introducing in place of primary
unknowns X appropriate linear combinations of these quantities:

X = GxyY. (8.29)

The new unknowns Y are termed group unknowns. The non-singular matrix
Gxy is a transformation matrix of one set of unknowns into another.

The primary set of canonical equations of the direct flexibility method
(8.13) can be written using slightly modified denotations:

DyX+805 = 0. (8.30)

Putting into it the relation (8.19) and multiplying the set (8.30) by matrix
GT, we get

GiyDxGxyY+GYy8ox = 0. (8.31)
With the denotations

Dy = G)TrnyGxY: Soy = G&y 8ox (8-32)
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the set of equations (8.31) takes the form
DyY+80Y = 0. (8.33)
A skilful selection of the coeflicients of a matrix Gyy results in matrix Dy
with a smaller number of non-zero terms 4;;. )
The operations described can be repeated several times, the end effect

being a diagonal matrix. Thus, for example, we pass from group unknowns
Y to subsequent unknowns Z

Y = Gy;Z, (8.34)
satisfying the set of equations

D,Z+8,, =0, (8.35)
where:

D, = G;zDrGrz = G;ZG;YDXGXYGYZs
8oz = G;zsor = G§ZG§Y80x-

Hence, the transformation matrix of unknowns X into Z is
Gxz = GxyGyz. (8.37)

The procedure will be explained using the example of a sixfold hyperstatic
frame as in Fig. 8.30a. In the first stage of calculations, we select the primary
system in the manner indicated in Fig. 8.30b. The plots of moments M;
induced by loadings X; =1 (i=1,2,...,6) are shown in Fig. 8.30c~h,

(8.36)

{a)
{c) (d}) : (e) .
1]+ D[
M M, l M, |
& @
1 7 ] 7
{f) 4® {9) 7 1 (h
1 1
MS
L 40 1 Bl

Fig. 8.30. Six-fold statically indeterminate frame: (a) considered structure; (b) primary
system; (c)~(h) diagrams of moments induced by forces X; = 1
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Matrix Dy of the respective set of equations is a complete matrix containing
no factors &;, equalling zero. By performing the first transformation of the
unknowns, we utilize the symmetry of the system; three group unknowns,
Y,, Y, Y., result in symmetric plots of the moments (Fig. 8.31a—c) and the
(a) c)

(b)
f : = ; 1 @
1
S’

1 1 _15 -
{d) (e) 1 ol o

1B 1 ‘ ¢4 Dt
INED:

Q é Jo e\
1 2 -1 1 1

- -1 -
! 2

OSTE

N|-‘r®

(f) 4

| —
L
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N
0]

,‘Z
@\Q N

[N

Fig. 8.31. Diagrams of moments induced by group forces ¥; = 1

following three, Y,, Y., Y; result in antisymmetric plots (Fig. 8.31d-f). The
transformation matrix Gxy has, therefore, the following structure:

a b ¢ d e f

1
2
Gyy = 8.38
xr =, 1 —1| (8.38)
5
[

The successive columns of this matrix contain arrays of values X; (i = 1, 2,
..., 6) which jointly produce the state ¥, =1 (r = a,b, ...,f). Dy has in
this case the form

—6aa 6ab -
Osa Opp Spc
O 6

& e , 8.39

dus Bar Bus ©-39)

aed 6ee 6:}‘

- 6!" afe 6ff_

and the set of six equations with six unknowns is split into two independent
sets, each of them containing three equations with three unknowns.
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We select in turn the linear combinations of states Y, so as to get as many
coefficients of the new matrix D, as possible to equal zero. The new group

unknowns Z (R = 4, B, ..., F) correspond to group unknowns Y, according
to the relation (8.34) in which

A4 B C D E F

al’l —-% -
b 1
Gyz = -3 1 | _y (8.40)
e 1
7L - 1
(a) (b) , 1 (c)
| 11® e @
Ma |; Mb l\ Mc
1 1
) e . o
16) 7/ D[
My M, M,
ERNE
1 2 -1 -2 2

Fig. 8.32. Diagrams of moment induced by group forces Zz = 1

From the plots of moments My shown in Fig. 8.32, we can easily determine
which of the factors of matrix D, will be zero:

‘6‘4‘4
6BB
D, = Occ , (8.41)
6DD
6EE 6EF

- 61’ E 61’1’_

As we can see, a suitable selection of the group unknowns has made it
possible to break down the implicit set of six equations and replace it by
four equations each containing one unknown and by a set of two equations
with two unknowns.

Knowing the matrices (8.38) and (8.40), we can pass on the basis of Eq.
(8.37) directly from the unknowns X to Z:
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A4 B C D E F

11 -3 I 1 -4
2 1 1 1
3 -3 1 -3 1
Gxz =, ~11 3 -1 (8.42)
5 1 -1 -1
6|1 —3 -1 -1 3

The respective numbers arrayed in the matrix (8.42) can be found in Fig.
8.32. It is self-evident that instead of having to calculate the factors of ma-
trices D, and 8,7 in Eqs. (8.36), it is better to make use of direct relations:

s = | ngs ds,  Bpo =\ ng" ds (R,S=4,B,..F). (8.43)
s s

In the special case of a frame or an unhinged arch, the diagonalization
effect can also be obtained in D by the suitable choice of the point of appli-
cation of the redundants and by their suitable orientation. Consider a bar
fixed on both sides, whose curved axis lies in the xy plane. The bar is under
the load of forces acting also in this plane (Fig. 8.33a). Neither the internal

(c)

Fig. 8.33. Curved bar: (a) considered structure; (b) transfer of support to elastic pole;
(c) primary system

forces nor the deformations of the bar will change, if we transfer the fasten-
ing of one of its ends (say, B) to the end of an infinitely rigid arm rigidly
connected to a frame at joint B (Fig. 8.33b). We take for the isostatic primary
system a cantilever with three unknown redundants acting at the end of it
(Fig. 8.33¢c).

The point of application of the redundants, called the elastic pole, and the
directions of the axes X, y along which the redundants X, and X are acting
arc selected from the condition under which all terms é;, disappear, for i # k.
Since

Ml = ]-s M2 = is M3 =f, (844)
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we demand that the following conditions be satisfied:

EJ
5 =Slds=o (8.45)
13 EJ ’ . J
-

Treating the bar as a body with a selfweight:

1

g = EJ (8.46)

per unit length of the axis, the conditions (8.45) can be interpreted as nulling
the static moments and the centrifugal moment of the body considered.
This means first that the elastic pole lies in the centre of gravity of a bar of
unit weight given by Eq. (8.46), and secondly that the axes X, ¥, along which
the redundants are acting, are the principal axes of inertia of the bar.

Following further this analogy, we find that the coefficients of the diagonal
matrix D express the mass and the principal moments of a bar weighting
(8.46):

8y =\mds, 8y = [uwrds, 855 = {wpds. (8.47)

§ s s

The elastic pole technique can also be used for an out-of-plane, loaded
curved bar, and for a bar making a closed plane circuit. However, the appli-
cability of this technique is rather limited. !

To conclude, it should be noted once again that the selection of redundants
is of paramount importance for the direct flexibility method. The practical
usefulness of the direct flexibility method depends largely on the ingenuity
of the engineer who is allowed substantial freedom to use his inventiveness
and experience. For this reason, the force method lends itself less to complete
algorithmization with the aid of computer technique than does the direct
stiffness method. This does not preclude, however, abandoning the use of
digital computers for labourious calculations though well prepared before-
hand by man’s conceptual work.

It must be noted that several techniques of automatic selection of the
primary system have been proposed in the literature (cf. Robinson, 1973).



9. The Direct Stiffness Method (Displacement Method)

9.1. Frames with Inextensible Bars

The general principles of procedure for the direct stiffness method have al-
ready been discussed in Section 6.4. It can be used, for example, for trusses
(Section 6.2), in which the truss members experience estensions, those being
the sole strains in these elements. In the case of frames, as we have demon-
strated in earlier sections, the influence of longitudinal and transverse forces
on strains is slight and can be neglected as a rule. In most cases, therefore
the model of a framework is an arrangement of bars which experience bend-
ing alone, but are not susceptible to the action of axial forces. Possible
extensions of these bars can be caused by non-static agents, e.g., by a rise
in temperature.

By assuming bars to be inextensible, it becomes possible to make a distinc-
tion between frames with displaceable and non-displaceable joints*. Frames,
in which none of the joints can experience sidesways, will be referred to simply
as non-displaceable frames, all others, displaceable. To find out which kind
of frame is involved, we replace all joints of a frame by hingesand check
whether or not the substitute truss thus formed is kinematically variable.
The degree of kinematic variability of the substitute truss is the number of
geometric parameters describing the sidesways of all joints of the frame.
Hence, the degree of geometric indeterminability of a plane frame equals
the number of free joints plus the degree of kinematic variability. In calcu-
lating the degree of geometric indeterminability of a space frame with inex-
tensible bars, the number of joints should be multiplied by three and the
degree of kinematic variability of the substitute truss added to the product.

Whereas the chords of bars in a non-displaceable frame experience no
rotations, those in a displaceable frame do rotate at certain angles. Their
values (like the sidesway values of joints) can be expressed by geometric

* Sidesways of joints are involved here.
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parameters, linearly independent of each other, whose number equals the
degree of kinematic variability of the substitute truss. The selection of these
parameters in the case of frame of an orthogonal grid does not present any
appreciable difficulty. For example, the frame in Fig. 9.1a is a 17-fold geo-

fal 4 9 10
3 4 5 /\ \/4 Vv’;
77
| T

Fig. 9.1. Frame with orthogonal network

metrically indeterminate structure because outside the angular displacements
of twelve joints, five unknown sidesways occur in addition: three horizontal,
bars /-2, 3—-7 and 8-12, and two vertical, bars 4-9 and 5-10.

However, instead of operating with sidesway quantities which differ in
denomination from angular displacements of joints, it is better to take for
the unknowns the angular displacements of chords y; (Fig. 9.1b). Using
these five quantities, we can express the angular displacements of the chords

of all bars:
Y1 = VY2 = VY1, VY16 = Y27 = Y2,
Yig = Y40 = Ys5,10 = V6,11 = ¥7,12 = V3,

Yia = Ygo = Y45 VYss = Yo,10 = VY5,

_ vils+y,ls
wAS l5+16 )
I +vysl
Vse = Vio.11 = __'»‘1411_'»"53,
3

Somewhat more troublesome is to relate the angular displacements of chords

(and joints) to the quantitics taken as unknown for frames of non-ortho-
gonal grid.
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EXAMPLE 9.1

Let us establish the equations of the direct stiffness method for the frame
in Fig. 9.2a.

The structure is sixfold geometrically indeterminate. Outside the rotations
of joints, there are two geometric parameters describing the rotations of
chords. Figure 9.2b shows the displacements of bars accompanying the
rotation of the chord of bar a by angle g5. Owing to the parallelism of bars

(b) (c)

45,

s

Fig. 9.2. Frame with non-orthogonal network

a and b, the entire top part of the frame shifts horizontally by segment 4 g5,
while bar b rotates by angle $g5. Figure 9.2c shows the deformation of the
frame caused by rotation of bar e by angle g¢ about point Og found on the
intersection of bars & and f. It is readily apparent that both bars experience
identical rotations by angle 22 ge.

Hence, we have

@1 =q1, @P2=4q2, P3=4q3%qs;, Pas =da+{s,

wa =4gs, 1Pb=0-8‘15, 'Pc=0, wd ='Pf=3‘16,

Y =gs.
Neglecting possible displacements of supports, we write the relation (6.82)
as follows:

€ = Bq, (2)
where

€ = {P14, Pr2> P28> P12> P21s P23s P32, P3a> Pazs Pass P14} ®)
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14]1 -1 -
B2 —-0.8
2B 1 -0.8
12| 1
21 1

B=2 1 -3
32 1 1-3
34 1
43 1
41 1 1-3
141 -3

, ©

9= {41,92,---:96}- d

By using the principle of virtual work, we derive the equilibrium condi-
tions whose general form is given by Eq. (6.83),. Regarding the first four
equations, their meaning is obvious: the sums of moments acting on success-
ive joints must equal zero. We multiply the first four columns of B by the
single column matrix of the moments in end cross-sections:

¢ = {MuaMsz,MzsaMu,M21,M23,M32,M34,M43,M41aM14}- ©

With the aim of determining the fifth equation, we subject the frame to virtual
displacement 8¢, analogous to that shown in Fig. 9.2b. The work done by
external loadings and the moments in end cross-sections on these displace-
ments is:

M146q5+(M32+M23)'0.85q5+P'46q5 = 0.

/4

Fig. 9.3. Bar-end-moments doing work on virtual rotations of chords
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It is easily seen that the fifth column of B contains (with opposite signs) the
coefficients occurring by the moments in end cross-sections in the equation
above. The first non-zero term of vector QF appears here: Qf = 4P,

By calculating the virtual work done on displacement dgs (cf. Fig. 9.2¢),
it should be noted that moments M, and M,, act not only on bars d and f,
but also on joints 3 and 4 rotating along with bar e (Fig. 9.3). Hence, the

virtual work in this case:

(M23+My4)30q6+ (M3, + My, )(3—1) g+ P+ 30gs - §‘+P' 64q¢ °§ =0.
We find the respective coefficients with opposite signs in the sixth column
of B, The next term of vector QF is QF = 6P+18p.

Using Eqgs. (6.71) and (6.73) and neglecting the influence of shear forces,
we obtain the elasticity matrix

3,8 _
4xb 23
20 4xb
42
. 2 4
_E td 2 : ©)
238 48
43¢ 2x°
2x° 4xf
4xf 2%’
_ 2l 4xl
where EJ°[I° relating to bar ¢ has been taken as a comparative quantity
and the denotations

» =—§c——§‘— (i=a,b,d,e,f) (2
have been introduced.

Multiplying the matrix in accordance with Eq. (6.93), we obtain the stiﬂ'nesds
matrix:

K= E—J: X
Ic
T3ut+4+4nS 2 0 2% —3x° —16x"
2 Qb +4+4d  2x? 0 —48x0  —16x
0 238 i +4xe  2x" 0 — 1454
X 20 0 2x¢ 4t +anS 0 — 14!
—3x —4.8% 0 0 3x°+7.68x 0
—16x —1664  —14wd —14xS 0 76x% + 76"

()
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The right-hand side of the set of equations (6.92) is—in the present example
—the sum of the vector

Q° = {0,0,0,0,4P, 6P+18p}, G)
and the product—B7a®, where
6° = {0,0,0,0,0,0,0,3p, —3p, %P, ——%P}

is an array of moments in end cross-sections induced by an external load
acting on a structure with joints experiencing neither angular displacements
nor sidesways. Performing the prescribed operations, we obtain finally the
right-hand side of the set of equations:

Q*—B"¢® = {1P,0, —3p,3p— 1P, 4P, P +18p}.

9.2. Frames on Continuous Foundations

We have discussed in Section 5.4 elements resting on an elastic foundation.
These elements may serve as models of continuous foundations, on which
frameworks are frequently based. The principles of composing the canonical
equations of the direct stiffness method given in Section 6.3 apply also to
frames containing elements on an elastic foundation. A fundamental difference
appears in the structure of the elasticity matrix E, and what follows, in the
transformation equations of the displacement method, which relate static
boundary quantities with displacements.

We must therefore begin with our considerations from a bar with no
external loads acting over its length and with its ends experiencing forced
displacements (Fig. 9.4). Assume that the bar rests on a two-parameter

vi§)

Vi

V’Lﬁiﬁ%?%??§

Fig. 9.4. Bar on elastic foundation

Winkler’s foundation and that it is sufficiently slender to allow the influence
of shear strains on deflection to be neglected. The solution of the problem is
described by functions analogous to (5.61) and (5.67), which in the case of
a bar subjected to beding in plane xy have the form
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v = A, Ch ubcosvé+ A, Sh uésinvé + A3 Ch p€sinvé + A,Sh uécosvé,
v’ EJ, ,, EJ,
¢Z=T, Alz—_—'——l2 v, Ty=_ 13
We determine the integration constants from the boundary conditions
v(0) =v;, (1) =9,
7'(0) =lp,;, o) =gy,
and then by performing suitable transformations and operations we arrive
at the relationships between static and geometric quantities:

(0" —4tv"). 9.1)

9.2)

Mz!k - « ﬂ ) _6_ *(pzi_
Mzk! _ EJz ﬂ & 6 -9 P2k
We{ T} & 6 v —elloil ©-3)
W =6 -9% —e¢  yllo/L

The coefficients of the above matrix of the transformation are expressed as
follows:

vCS — ucs
AW ?) = 20 g
nCs—vSc
Blu,») = Zﬂvm’
v2S2 4+ u?s?
'9(["’)) = ('uz_H,z) 282 - ‘uzsz ’
S 9.4)
s
(S([l, V) = 2‘u’l’(ﬂz+1'2) m .
vCS+ ucs
sy) = W) G g
_ uCs+vSc
e(p,v) = 2uv(u®+v?) m ,
where:
C=Chu, S=Shy, c=cosy, s =siny. (9.5)

The above equations apply also to the special case of a beam resting on
a one-parameter Winkler’s foundation. Considering the relation (5.69),
Eqgs. (9.4) take as simpler form:

CS—cs Cs— Sc
oc([t) - 2.“ S2 s2 ﬂ([t) = 2.“ S2_ ’
S? +s Ss
Y =27 5= W) =4 -6)
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r() = 4p’ f;f*“, e(p) = 4p? —*gitff :
Equations of type (9.3) and (6.9) applying to other support schemes of bar
ends and also appropriate numerical tables can be found, for example, in
the monograph by Blaszkowiak and Kaczkowski (1966).

Note that in the case of bars resting on an elastic foundation, angular
displacements of chords cannot be taken for the geometric unknowns and
just displacements of joints. The further procedure is exactly the same as

that discussed in Section 6.6.

ExXAMPLE 9.2

Compose the canonical equations of the direct stiffness method for the frame
shown in Fig. 9.5a.

(a) p (b)

1HHJHHH4 —

I
????????J lvz__

&y
L |

Fig. 9.5. Rectangular frame on continuous footing

Considering the symmetry of the structure and the loadings, the frame
should be treated as a three fold geometrically indeterminate structure, in
which the unknowns are:

Pr= —@Ps =G, Q2= —@3=(>,
U =9, =v3 =0, =l,q;.
The equilibrium equations for joints / and 2 and the equilibrium equation

for the vertical forces acting on bar /-2 (Fig. 9.5b) lead to the set of canoni-
cal equations:

2EJ, 4EJ, 2EJ, 101 | e
Lt L 0 N V)
2EJ 4EJ EJ EJ
E 2 4+ (a /3) = (8- 5) Sl g |+ 0 |=o0.
12 12
EJ EJ 12
0 @-2 -9 ,13 e| | -5
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9.3. Frames Loaded by Considerable Axial Forces

In many cases, the axial forces occurring in frame bars are so great that their
influence on the bending of the bars cannot be neglected. To allow for this
influence in our considerations, it is necessary to make appropriate general-
izations for the transformation formulae of the direct stiffness method.
This is easily achieved setting out from the formulae and equations derived
in Section 5.5.

(c) (d)

Fig. 9.6. Diagrams of bars by large axial forces

Let us consider successively the schemes of bars shown in Fig. 9.6. Using
appropriate conditions of equilibrium, we obtain:
(a) for a bar elastically clamped at both ends (Fig. 9.6a)

| My, a g -9 Pi

J
M, == B a =93] o], 9.7
kal _?9 —‘19 o Y

whereby using the denotations

C=Ch2, S =Shi, (9.8)



9. THE DIRECT STIFFNESS METHOD 167

we have
iC-S S—1
“) =2 s PN = Agmerss
Cc-1 S ©9)
) - — 33 .
) =4 AS=2C+2’ o(4) =4 AS—2C+2’

(b) for a bar clamped at one end and simply supported at the other
(Fig. 9.6):

M“‘ EJ a' —a' ¢i
IWk,] N [—oc' 6’] [y} ? (9.10)
where:
S C
— 12 =
a'() =14 Te=5° 6'(A) = A2 =S’ (9.11)

(c) for a bar clamped at one end and clamped at the other but so that it
can slide:

wl= 7l 2l
9.12

[Mki I ﬂl' al' ¢k b ( )
where:

d"(}') = A%’ ﬂn(z) —_ _i (9.13)

(d) for a cantilever bar (Fig. 9.6d):

EJ

M“ = T ot"'tp,, (9.14)
where:

e —_ S

() = 1. 9.15)

Using the general solution (5.80) with homogeneous boundary conditions, we
determine the generalized boundary forces induced by external loading acting
transverse to the bar axis or by initial deflection. For the bars presented in
Fig. 9.6, they are successively

(@ w0 =w(0) =wd) =w'() =0,

® wO) =w(0) =w1) =w’'(1) =0, 9.1
©) w@O) =w@©) =w) =w"1) =0, (-16)
d w©) =w©) =w’'(l) =w"(1)-A?w'(1) =0
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fa) 5 (b) ,

Mig | T 1 M v T
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L { ' . ! 7
way @WE we {wk‘:,

{c)

N \\\‘l/ \i;i
N
@..,
MO

ki

|
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Fig. 9.7. Bars with different support conditions uniformly loaded

For example, uniformly distributed loading p, (Fig. 9.7) induces support
reactions equalling the following values respectively:

0 _ _ o__pzlz 0 _ o___pzl
(@ Mi=-M;= ———2?9(1), Wi = Wq = 5 s
o _ _ P’ o _ pzl 1
o _ Pl __l_)
Wki = 2 (1 oc(l) s (9
A7
MO = pzlz MY = —p |2 S—4
(© it = —'m)—, ki= —P: BFERE
I'Vi?; = _pzl,
AS—C+1
(d‘) Mi(l)( = pzlz AZC H] m")‘ = _pzl-

In the case of compressed struts, argument A is an imaginary number (5.83),
and functions (9.9), (9.11), (9.13) and (9.15) with the connotations

cosoc =c¢, Ssing =s (9.18)

take the form:

s—ac g—s5
oc(o)—az 2c—os ’ ‘3(6)—02 2c—os ’
9.19)
1—c¢ )
= 2 = g3 —
¥o) =0 2—2c—os’ 8(0) = o 2—2c—os’
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’ — 2 § ’ — 3 ¢
«(0) =o' ———, (0 =0'——-, (9.20)

a"(0) = a%, B(0) = --‘sf, a""(a) = —a%. (9.21)

The knowledge of transformation formulae in precise form enables more
accurate static analysis of frameworks loaded by considerable axial forces.
Tables of functions (9.19)-(9.21) can be found, for example, in a paper by
Chwalla (1959) and in monographs by Btaszkowiak and Kaczkowski (1959,
1966).

Proceeding to establish the conditional equations of the displacement
method, it is first necessary to determine the values of the axial forces, since
it is precisely these values on which the rigidities of individual bars depend.
On the other hand, until the problem is solved, the exact values of the axial
forces cannot be known. To break this vicious circle, we must out of necessity
confine ourselves to rough estimates of the axial force values.

In the case of frames without sidesway the usual procedure is to substi-
tute the frame by a truss by replacing rigid joints with hinges. The axial forces
in the members of such a comparable truss are treated as approximate values
of the forces occurring in the frame.

The problem gets somewhat more complicated for frames with sidesway
since the equivalent truss would then be geometrically variable. For this
reason, one can hardly recommend any particular procedural principle,
since the method of estimating the axial force values will depend on the actual
pattern of the frame. A multi-story frame is shown as an example in Fig. 9.8a.

() {b) (c)
| ZETXXXXREEEE! RETEEXRZIXRIITRN ——
RETRIRE! RETETARTEN N R
TEY! T NI RTIIEY
LT N N (Y
RERR IRR1 T RETTTARTRARTEIREA -
o REER! N N l”iL o
RE! pritivl, o = = —
L

s 77

Fig. 9.8. Multi-stage frame: technique of approximate determination of axial forces

w7 7 T 77 7 b
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The axial forces deriving from vertical loadings can be determined proceeding
in much the same way as for a frame without sidesway (Fig. 9.8b). We assume,
however, that the horizontal loadings (Fig. 9.8c) are accompanied by the
appearance of axial forces only in extreme columns:

Ne =S8 = ﬂ (9.22)

L

The symbol W stands here for the resultant of all horizontal forces located
above the cross-section intersecting the story considered at half its height.
The meaning of symbols 4 and L is explained in Fig. 9.8c.

Knowing the approximate values of the axial forces, we can determine
the respective parameters ¢ or 4 and put them into the transformation for-
mulae, by means of which we form the elasticity matrix of frame E.

Having obtained the results, we can correct, if necessary, the values of
the axial forces and repeat the calculation using the altered elasticity matrix.

It should be strongly emphasized that if axial forces are considered, the
use of the principle of superposition is practically precluded. A change in
the loading induces as a rule changes of the axial forces, which causes in
turn a change in matrices E and K. Consequently, we cannot consider, for
example, wind loading and vertical loadings separately and then take their
sum. Hence, if the wind is acting on a structure loaded by vertical forces,
we have to consider the two loadings jointly.

We shall demonstrate using a simple example the numerical differences
obtained based on the theory of first order and of second order.

ExampLE 9.3

Determine the internal forces in the frame in Fig. 9.9a, in which all the bars
are of identical length / and have identical cross-section with moment of

() P {b) p

y P P
Y Y Y YV YYYYVYYY JId vy vy viyvyy
§§ 1 2 §!4 1 2

8 [ 8 [
N7 A % Z.
Sia Szl

Fig. 9.9. Frame loaded by large axial forces
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inertia J. Assume further, that the loadings indicated in the diagram are re-
lated to the parameters describing the rigidity of the columns as follows:

EJ EJ
P=2—i2—, p=2—13—. (a)

The approximate values of the axial forces (cf. Fig. 9.9b) are:

EJ | EJ
S =pl+P =47, Sic=5 = (b)

According to Egs. (5.83), (9.19) and (9.20), we calculate successively

o =2, 0=1,

a(2) = 3436, Q) =2152, «(1) = 2.795. ©
The moments at joints in a structure with non-rotable joints are:
_pl*  EJ
M= =ar ©
pl? EJ

M?z = _Mgl = —f = —W'
If we therefore form from all the moments at the joints, the matrix

6 = {My,, M3, Mg, , My, M5,, M5}, (e)
then matrix ¢° will have the form

6 — ?g,o,o, ~1,1,0). ()
We write the equilibrium conditions of joints briefly as:

BT =0, (8
in which

BT 110100 ®

“jooo0oo01 1}

From equations of the (6.71) type and from Egs. (9.7) and (9.10), we obtain
the following elasticity matrix of the structure:

3
3.436 2.152

E = EIJ_ 2.152 3.436

N B
>N

2.795_
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and further the rigidity matrix

Er[10436 2
== T = e =
K =BEB =, [ 2 6.795]’

and the matrix of free terms

EJ|1 1
Bl = —T{Tz"’ z}-
Hence, having solved the set of equations
Kq = —B"¢°,
we obtain
q = {p;, 9.} = {—0.00348, —0.02350}.

6)

8]

M

(m)

The moments at joints (e) are determined from the relation

¢ = EBq+¢°

=EI{{0.2396, —0.0120, —0.0075, —0.2276, 0.0657, —0.0657}. (n)

Only now can we obtain more accurate values of the axial forces:

Si.= %J (0.0657 +0.0120 +0.0075) = 0.0852

Siz = -?2{ (4+0.2396+0.2276 —0.0657) = 4.4015

EJ
Si2 = 0.0657 -,

Sye = l;;f (1-0.2276+0.0657) = 0.8381

Hence, the respective values of ¢ are:
014 = 0.292, olB = 2.098,
0'12 = 0.256, 0'20 = 0.915.

EJ

EJ

—IT"

EJ

2

)]

()]

Substituting these values into Eqs. (9.19) and (9.20), we find the new elas-

ticity matrix

' 2.983
3.375 2.170
EJ 2.170 3.375

, (@

] 3.991 2.002
2.002 3.991
2.828
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and the corresponding rigidity matrix

EJ [10.349 2.002
K _Tl 2.002 6,819]' )
This time, we calculate the initial moments (cf. (d)) from Egs. (9.17):
o __ P _ £
M?, = 25, ) 0.2507 7
o _ _po. - PP _ _ £7
M3, = -M3, = W) 0.1669 T
Proceeding further as in the first approximation, we obtain successively:
q = {—0.00356, —0.02343}, (s)

o =—L;l{0.2400, -0.0120, -—-0.0077, —0.2280, 0.0663, —0.0663, (t)

S, 4 = 0.0860 ? Sip = 4.4017?,
EJ EJ ®
Siz = 0.0663 -, S, = 08383~
014 = 0293, 5 = 2.098,
(w)

0y, =0.257, 0@5c =0.916.

A comparison of values (w) and (p) shows that the second approximation
is—in engineering sense—exact. But if we compare the values of moments
at joints (n) obtained in the first approximation and those obtained in the
second aproximation (t), we find that already in the first approximation
we obtain results charged with an error of barely 0-0.9 per cent. Only in cross-
section Bl, in which the absolute value is more than 30 times less than that
of the moment in cross-section 14, was the error 2.6 per cent. Therefore,
in practice it would be sufficient to stop at the first approximation, and so
it is done as a rule.

For the sake of comparison, we may also mention that with the influence
of axial forces neglected, we obtain the following moments at joints:

c =E—}I{0.2397, —0.0137, —0.0068, —0.2260, 0.0685, —0.0685}.

In this case, in horizontal bars, in which relatively small axial forces occur,
the errors are also not too great, 0.1 to 3.2 percent. On the other hand, the
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errors are quite considerable, up to 14.2 per cent, in the bar loaded by the
highest axial force.

To conclude, it should be noted that the precise transformation formulae
derived in this section, which allow for the influence of axial forces in terms
of the theory of second order, enable the stability study of plane and space
frames. The stability problems in bars and bar structures are discussed in
Part 3 of the present volume.
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1. Introduction

In this brief part of the volume in which the subject matter is confined to the
dynamics of bars and bar structures, we must take if for granted that the
fundamental principles underlying dynamics are known to the reader from
analytical mechanics. We refer in particular to Newton’s laws (1687) and
d’Alembert’s principle (1743), as well as Lagrange’s equations (1760), based
on FEuler’s variational calculus (1744), and the most general principle of dy-
namics developed by Hamilton (1824). Those interested are referred to works
in the area of theoretical mechanics and vibration theory (e.g. Whittaker,
1944 ; Ziemba, 1957, 1959; Landau and Lifshits, 1961 ; Rubinowicz and Krdli-
kowski, 1971; Babakov, 1965; Wilde and Wizmur, 1977; Osinski, 1980),
and to monographs devoted entirely to the dynamics of solids (Dzygadlo
et al., 1966; Fung, 1969; Counor, 1973, and others) or to structural dynamics
(Timoshenko, 1955; Filippov, 1955, 1965, 1970; Snitko, 1960; Nowacki,
1972; Biggs, 1964; Hurty and Rubinstein, 1964; Panovko, 1971; Sulocki,
1976; Wierzbicki, 1980, and others). Similarly, we assume that the reader is
familiar with such concepts as dynamical degrees of freedom or generalized
Lagrange’s coordinates.

Instead, we shall concentrate on problems strictly related to bar structures
and discuss first and foremost the methods of solving dynamic problems,
which pertain specifically to these structures, However,-it should be made
clear that the subject matter even though confined must be handled very
concisely, considering that extensive monographs are devoted to the dynamics
of bar structures alone (e.g. Chudnovskii, 1952; Kolousek, 1953; Lisowski,
1959; Solecki and Szamkiewicz, 1964).

As we have explained in Part 1, before proceeding to solve problems in the
area of structural statics, we must first make a suitable schematization of the
real structure considered, namely to replace a three-dimensional body by
a system composed of bar or surface elements. A similar schematization
is required when we intend to analyse its vibrations.

In dynamic problems, we deal, in addition to time variable external load-
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ings, with forces of inertia proportional to mass of the body and accel-
erations of motion, and also with forces induced by the resistance of the
medium, which are taken as a rule to be proportional to velocity. Every real
body is made of a material with its mass distributed over the entire three-
dimensional area occupied by the body. The mass distribution within a body
describes therefore the density ¢ of the material that goes into its making
measured in kg/m3. As a result, the forces of inertia occurring in nature are
always volume forces of the dimension (N/m3). In bar structures, in the first,
basic state of discretization, the density of the material g is replaced by the
mass x4 (kg/m) distributed along the bar axis. The general relationship be-
tween the mass per unit length of the bar axis and the density of the material is:

= od4, (1.1)

A

in the case of a homogeneous body it takes the form:

p=ed, (1.2)
where A4 is the cross-sectional area.

In addition, we relate the mass moments of inertia of a cross-section to
unit length of the bar axis, defined as follows:

I, = {024, I, ={op2da, I, =1+1,. (1.3)
A A

In the particular case of a homogeneous body (cf. Part 1, Eq. (2.17)):
Iy = QJY’ Iz = QJza IO = QJOa (1'4)

where J, is the polar moment of inertia of a cross-sectional area.

In this part of the book, we shall generalize the assumption concerning
the mechanical properties of bodies. Along with linearly elastic bodies, we shall
consider also structures of viscoelastic material. For its model we take the
so-called Kelvin-Voigt model, which is discussed in Chapter 2. It is a body
model most commonly used in dynamics, since it enables us to map well the
so-called internal damping effects, observable during vibrations of a structure.
Similarly, the resistance of a viscous medium is accompanied by external
damping of vibration of a bar structure. Of course, the material model and
types of damping considered do not cover all the problems involved here,
to which many authors have devoted monographs and separate dissertations
(e.g. Bieniek, 1952; Sorokin, 1962; Nowacki, 1963; Derski and Ziemba,
1968 ; Pisarenko et al., 1976; Osinski, 1978).

In Chapter 2, our concern is dynamic analysis of single bars with a uni-
formly distributed mass, ie., structural elements having infinitely-many
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dynamic degrees of freedom. After deriving the differential equations of motion,
we consider longitudinal, torsional and flexural (transverse) vibrations of
straight and curved bars. In our considerations of transverse vibration of
a straight bar, we have taken the model of the so-called Timoshenko’s beam
(1955), i.e., one in which both rotational inertia and strains due to shear
forces are taken into account. Omission of these factors leads to solutions
applying to vibrations of a slender bar most commonly used in engineering
practice. The influence of constant axial forces and of an elastic foundation
on transverse vibration of a straight bar has also been considered.

As for methods of solving the equations of motion, they can be classified
most generally as analytical or numerical. Of the analytical methods we may
cite as examples, the Laplace transform method, consistently used by Nowacki
{1963, 1972) and the modal analysis involving the problem of determining the
free vibration frequency of a structure. In Chapter 2, we use the latter method.
The solutions thus obtained are exact in the sense that all quantities of
interest to us can be determined in every cross-section and at every instant
with preassumed arbitrary accuracy which depends only on the number
of terms considered in the infinite series.

The solutions have been used in Chapter 3 for vibration analysis of bar
structures. Two different approaches to the problem have been presented.
An argumentation typical of the direct flexibility method leads to Volterra’s
integral equations. One of the techniques of approximate solving of these
equations has been given. Using the direct flexibility method, it is not necess-
ary to determine the frequency and form of free vibrations for the whole
of the structure, which is sometimes rather troublesome. It will suffice to
know the form of free vibration of individual comprising elements. The other
approach, based on the direct stiffness method aims at finding the values
and eigenfunctions of the structure as a whole. The application of this tech-
nique requires a generalization of the transformation formulae of the direct
stiffness method.

Finally, in Chapter 4, we have demonstrated certain approximate methods
of numerical analysis of vibration of a structure. They are based on an a priori
reduction of the number of degrees of freedom; a structure with infinitely
many degrees of freedom has been replaced by one with a finite number.
As a result, a problem described by a single partial differential equation
changes into one described by a finite number of ordinary differential equations.
That reduction of the degrees of freedom can be performed in different ways,
but it always leads to the same type of a matrix-differential equation.

Of the many existing techniques for solving this equation, one analogous
to that given in Chapter 2 has been chosen and is discussed in greater detail.
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It consists in expressing the solution by a sum of eigenvectors multiplied
by the respective time functions. There are still many other techniques of
matrix-differential integration of equations of motion. Numerous monographs
treat these techniques and other problems involved with the use of matrix
calculus in dynamics (e.g. Pestel and Leckie, 1963; Rakowski, 1968; Bishop
et al., 1972; Legras, 1974; Bathe and Wilson, 1976; Pietrzak et al., 1979;
Zurmiihl and Falk, 1984). A method developed by Newmark (1959) has
come to be widely used, and in Poland, Langer’s method (1974) has become
very popular. Since these are genmeral methods, applicable not only to bar
structures, not much space has been devoted to them in this chapter.

We may also mention the space-time finite elements method whose foun-
dations were laid by Oden (1969) and Argyris and Scharpf (1969), and which
was advanced by a different approach by Kaczkowski (1975, 1979). It dif-
fers essentially from the afore-named methods as it leads directly to a set of
algebraic equations, omitting the stage, in which motion is described by
a set of ordinary differential equations. For lack of space the method could
not be discussed, even cursorily.

As seen from this brief survey of the contents, we have confined ourselves
in this part of the book (like in the preceding part) to linear problems of the
dynamics of bars and bar structures, presenting at the same time selected
methods of solving them. For we proceed from the assumptions that a reader
interested in more involved problems, non-linear in particular, will have
to fall back on more comprehensive textbooks and monographs devoted
exclusively to problems of structural dynamics. The enclosed references may
prove of assistance in finding appropriate sources.



2. Bars with Infinitely Many Dynamic Degrees of Freedom

2.1. General Relations

To derive the equations of motion for a bar of continuously distributed mass,
we may use the fundamental principles of dynamics. Below, we base our
considerations on d’Alembert’s principle. In this connection, the loadings
occurring in the differential equations of static equilibrium, derived in Part 1,
will be complemented with forces of inertia and possibly with external resis-
tance forces. For example, the static equations for a straight bar (cf. Part 1,
Eqs. (2.4), (2.5) and (2.26)) convert to the dynamic equilibrium equations:
oN

—a';"‘[lu—"cuu'l'px = 0, (2'1)
oM, . .

axt _Io(pt_cs(pt'l'mt = Oa (2'2)
oT, . .

T o= Laivtpe = 0,

o @.3)
3xy—T=_Iy¢y—Cy¢y+my =0,

oT. . .

axy fﬂv—é—vv+py =0,

oM 2.4
Tx! +Ty_Iz¢z_Cz¢z+mz = 0.

Considering the analogies occurring between equations relating to longi-
tudinal vibrations (2.1) and transverse vibrations in the zx plane (2.3), on the
one hand, and equations relating to torsional vibrations (2.2) and transverse
vibrations in the xy plane (2.4), on the other, we shall consider below only
longitudinal vibrations and transverse vibrations in the zx plane. The solutions
for torsional vibration will have the same form as the functions describing
longitudinal vibration, with the denotations being suitably changed. Likewise,
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transverse vibrations in the xy plane are easily described, once the solutions
for vibrations of a bar in plane zx are known.

In these equations, we have used denotations given by Egs. (1.1) and (1.3),
which in the special case of a homogeneous bar can be replaced by Egs.
(1.2) and (1.4). The symbols { denote coefficients of external resistance which
is by assumption proportional to the corresponding velocity of motion.

The main difference between static and dynamic equations is that the
number of static equilibrium equations corresponds to the number of unknowns
which are the internal forces, whereas in dynamic cases, the number of
unknowns, which covers also displacements, is higher than the number of
dynamic equilibrium equations. It follows that if only the boundary conditions
permit, the set of equations of bar statics can be solved without having to
determine the displacements of the structure; the problem of bar statics is
said to be internally isostatic. Dynamic problems of bar structures on the
other hand—regardless of the boundary conditions—are by their very nature
internally hyperstatic.

A complete set of equations, whose number corresponds to that of the
unknowns therein, must contain both dynamic equilibrium equations of type
(3.1)-(3.4) and equations of geometry (cf. Part 1, Eqs. (2.11), (2.32), (4.7)
and (4.8)):

du
= 2.5
-3 )
d ow
Hy = ;;y , B= M +@,, (2.6)

and also the relations between strains and internal forces.

The latter relations in the case of a body not dissipating elastic energy can
be demonstrated in exactly the same way as in static terms (cf. Part 1, Egs.
(4.32), (4.36)). If, however, the energy dissipation effect within a vibrating
body is to be considered, we should take in place of an elastic body model
one of the viscoelastic body models, the Kelvin-Voigt model as a rule.

Fig. 2.1. Kelvin~Voigt viscoelastic body model
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Various other rheological models, comprehensively discussed, for example,
in monographs by Nowacki (1963) or Derski and Ziemba (1968), are appli-
cable to the description of very slow phenomena, such as creep or relaxation,
which are observable at least over many hours, but most often over a time
measured in years. But, in dynamics we deal with phenomena taking place
in seconds.

The Kelvin—Voigt model, presented schematically in Fig. 2.1, leads in
uniaxial states of stress to the following stress—strain relations:

G = Ee-{-r)Eé = E(8+tE'8),

. . 2.7
T =Gy+ney = Gly+1sy). @7
The quantities
= e = e
ty = 5 ¢ e 2.8)

are so-called retardation times of longitudinal and transverse vibrations and
these parameters are determined experimentally.

Setting out from the relations (2.7) and the definitions of internal forces
(cf. Part 1, Egs. (2.1)-(2.3)), we obtain the relations between internal forces
and strains:

N = EA(e+152), (2.9)

. GA .
M, = EJ,(%,+1te,), T,= k—(ﬂ,+t6ﬂ,). (2.10)

2.2. Vibration of a Straight Bar
2.2.1. The differential equations of motion

Substituting the relations (2.5) and (2.6) into Egs. (2.9) and (2.10) and then
into the equilibrium equations (2.1)-(2.4), we obtain a set of differential
equations of motion for a straight bar:

o\ o du *u du .
(1+tE——at)—ax (EA——ax) —nGr —bagr +P: =0, L@.11)
o\ 0 | GA[ow 0w ow
(1+’G 3t) ox [ K, (6x +"”)] ~H gz gy P =0

a\ o 3 a\[GA [ow

(”’E a:) o (E’v 5 ) (‘* ’Gw) [7:('55*"”’)]‘
& 3
y a;’;y Cy ¢Py my =0.

(2.12)
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It is apparent that Eq. (2.11) contains other unknowns than does the set
of equation (2.12). It follows that longitudinal vibrations can be considered
independent of transverse vibrations. However, the principle of superposition
can be used here only when the absolute values of longitudinal forces are small
against the critical forces causing buckling of the structure. We return to this
problem in Section 2.4.

In order to solve the two vibration problems described by Egs. (2.11)
and (2.12), we use below the method of expanding the quantities sought
into a series of eigenfunctions.

2.2.2. Longitudinal (torsional) vibrations of a straight bar

The integral of the differential equation (2.11) consists of the general integral
of a homogeneous equation and the particular integral of a non-homogeneous
equation. Therefore, we first let p, = 0 and anticipate a solution in the form

u(x, t) = a(x)f1()+b(x)1(2), (2.13)

where the time functions have the structure
f1 =e *cosw’t, f, =e %*sinw't. 2.19)

The symbols @ and @’ denote undamped and damped vibration frequency,

respectively, and « is the damping coefficient. The derivatives of the function
(2.14) are expressed:

fl = —aof, —0'f;, f1 = — (02 =0 f; + 2a00'f;,

f2 = olfy—anf;, ..f.'z = —2000’f; — (0 - do?)f,.

Substituting the function (2.13) into the differential equation (2.11) and
using the relations (2.15), we arrive at the set of ordinary differential equa-
tions for the eigenfunctions a(x) and b(x):

(2.15)

2

+ A2a+ e(gxg

d2a
dx?

+y2b) =0,
(2.16)

dx? dx?

In these equations we have used the denotations:

2 2
—e(d a+y2a) + 3% .

2 - M=)+l 00
EA(I—tEw) ’
Rl TR
EAt; 1—tgaw

(2.17)
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The set of equations (2.16) can be separated in the case

22 =92 (2.18)
Equating the respective terms given by Eqs. (2.17), we arrive at the relation
utg(w’? +o2w?)—2uaw+ ¢, = 0. (2.19)

In turn, the assumption of the relation between damped and undamped vi-
brations (@', @) and the coefficient of damping «:

0 =w)l-o, (2.20)

allows the determination of the coefficient of damping according to Eq.
(2.19)

1 u
& = E(tEw+ /fw ) (2.21)

Substituting Eqs. (2.20) and (2.21) we find that

2

2 _ 2 _ MO
A2 =92 = A
It follows that with the assumptions (2.18) and (2.20) satisfied, the eigen-
functions a(x) relating to damped vibration can be used in the same form as
for undamped vibration. These functions should satisfy the differential
equation
d?a
dx?

(2.22)

+2%a =0 (2.23)

and also given the boundary conditions. The integral of this equation is the
function

a = Acos Ax+ Bsin ix. (2.29)

The homogeneous boundary conditions lead to a set of two homogeneous
equations on account of the integration constants A, B. Hence, the condition
for the existence of non-zero solutions is the vanishing of the principal deter-
minant of the system. We obtain therefore a trigonometric equation having
an infinite number of roots A, related by Eq. (2.22) with free vibration
frequencies wy.

Since the matrix of the set of equations expressing the boundary conditions
is singular, we cannot determine uniquely the values of the integration con-
stants, but we can certainly determine their proportions. In order to get rid
of that non-uniqueness we have to normalize the eigenfunctions. For this
purpose, we fall back on the following argumentation. Each of the eigen-
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functions (in a more general case, EA # const) satisfies a different differential
equation:

da,

dx(EA o )+/twkak =0,

da da,

(2.25)

Let us multiply the first of these equations by the eigenfunction a; and the
second by a; and integrate the difference of the two products over the bar
length. The fact to be considered here is that regardless of the boundary
conditions that all the eigenfunctions are required to satisfy, the following
relation must hold:

! !
d da, _ _S da; da,
§a, = (EA o )d -\ % 4. (2.26)

In this way, we arrive at the equality
1
(@} —o}) {q,uadx =0, 2.27)
0
from which it follows that for w; #
1
{apa,dx = 0. (2.28)
0

On the other hand, for j = k, we assume that

atpdx = m, (2.29)

O Cguemy ™

where m denotes the norm expressed in mass units, e.g.,

!
= {udx. (2.30)
0

The relations (2.28) and (2.29) are written in a more concise form:
!
{a,uacdx = ma,, (2.31)
0
in which we have used the Kronecker symbol d.
From equality (2.28) it follows that the eigenfunctions are mutually ortho-
gonal to the weight of the masses which need not necessarily be uniformly
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distributed over the bar. But, sometimes we have multiple roots of the fre-
quency equation, for example, for j # k, we get w; = wy. The equality (2.27)
is then also satisfied when the unlike eigenfunctions are orthogonal. But,
it is always possible, by a suitable linear combination of non-orthogonal
vibration forms, to find forms satisfying the condition (2.28). We return
to this question below.

Thus, the general integral of the differential equation (2.11) has the form

Y

u(x, 1) = O a0 al). (2:32)
k=1

The functions ¢,(¢) in (2.32) are generalized Lagrangian coordinates given
by the formula

gi(t) = Cee™n'sin(wy t+ 1), (2.33)

where C; and ¢, denote the integration constants dependent on the initial
conditions of motion.

We obtain the particular integral of the non-homogeneous differential
equation (2.11) by expanding both the load p, and the displacement u, into
series of eigenfunctions:

P 1) = Y a@pult),

k=1

(2.34)

0

u(x, 1) = ) ax)fi(t),
k=1
where f;(¢) are the functions sought, and p,,(¢) is determined from the formula
1
Pu() = px, DG dx. 239)
0

Substituting the series (2.34) into Eq. (2.11) and considering the relations
(2.21)-(2.23) we get

f;:+2akwkf;‘+w,fﬁ‘ = p;,‘ , k=1,2,.. (2.36)

We find the integral of this equation without difficulty using Cauchy’s method:

t
AO) = | Palto)emtene=sins 1=t dro @37

0
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The complete solution of the damped longitudinal vibration problem
for a straight bar therefore has the form

o0

u(e, 1) = Y a@g)+AO). (2.38)
k=1

We get the undamped vibration by putting o = 0 in all the above
equations.

ExAMPLE 2.1

Find the longitudinal vibrations of a bar fixed in cross-section x = /, with
its end x = 0 loaded from instant z = 0 by force P = const. Hence, the
external loading is given in the form of function:

p(x,t) = PA(x)H(), (a)
where d(x) and H(t) are Dirac and Heaviside distributions, respectively.

The boundary conditions which the eigenfunctions (2.24) are required
to satisfy

EA%x"l(O) =0, a() =0, ()

lead to the relations

Bo=o, n=dlE

©
Using further the condition (2.31) and assuming m = wul/2, we find the value
of the constant 4; = 1 and arrive at the following expression for the nor-
malized function:

2k—-1 lx_) @

a.(x) = cos(——z—— ]

According to Egs. (2.35) and (2.37), substituting (a) and performing a suit-
able integration, we find the function:

2P , O .,
f;; = W[l —e‘“‘k“’k‘(coswkt+ Mkzz sinw; t)] . (e)
However, since at the initial instant, both the displacements of the bar and
the displacement velocities equal zero by assumption, the solution of the

problem is thus expressed by the function
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2P a 1 2k—1 =wx
uee =l e\ T
H k=1

.
x [1—e-“umx‘(cosw;‘t+akw—f‘smw,"t)], )
k

and in the absence of damping:

* Eiplzz:(zk 7 (2k2 : ﬂx)(l ~cosent). ®

The last series can be summed. As a result, we obtain a closed expression for
displacements of a vibrating bar:

0 for —x < ct—4l< x.

E% "‘_“4_{’:_"_ for —(—%x) < ct— @&+l < I-x,
R %i';_" for —x < ct—(4j+2)l < %, ®

%‘M’_"’:f for —(I—-x) < ct—(@4j+3)l < I-x,

where

_1/E4 _4/E .
i ]/e @

is the rate of propagation of an undamped longitudinal wave in the bar, and j
takes the values 0, 1, 2, ...

2.2.3. Transverse vibrations of a straight bar

We now consider the set of equations (2.12) applying to vibrations of a bar
in plane xz. We examine only the case of a bar of constant cross-section.

Proceeding in like manner as for longitudinal vibrations, we seek the sol-
ution of homogeneous equations in the form

w(x, t) = a(x)fi (1) +aX)f2 (1),
Py(x, 1) = bE)f,(F) +b(x)5(1),

where the functions f; and their derivatives are given by Eqgs. (2.14) and (2.15).
Putting the functions (2.39) into the differential equations (2.12), we get
a set of equations which using the assumptions:

(2.39)
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_ Cw _ &y
g =16, 7—7,

1 fw _ 1 gy
"= z(G“*‘ﬁw‘)—?(’E‘” z,w)

is reducible to the form

d’a ., . db
o TRt =0

da (4% )
_a;_b.m (dx’ +2.Eb) = 0.

In these equations:

(2.40)

(2.41)

=2, =2, (2.42)

_/64(_,/ G _1/E, (_y/E
cs_l/kz/‘(—]/kzg)’ CE—‘/ I, (_]/ e) (2.43)

denote the rates of propagation of shear and bending waves in the bar (the
parenthetized formulae apply to a bar of a homogeneous material, for which
the relations (1.2) and (1.4) hold). The quantity

EJ,k
2 _ y>z,
® = — (2.44)

describes the influence of shear strain on vibrations of a beam.
The set of equations (2.41) can be reduced to the relation:

_ 14%22% da x*  d%a
b=- 1+%%22 dx 1+#222 dx? (2.45)

and to a differential equation of the fourth order for the eigenfunction (a):

2 2 2
(:x2+22)(:2 +22)a——i—a—0 (2.46)

It is easily seen that with the denotations

P,y = —]/ ]/(/12 A§)2+4—2¢(22+2£) (2.47)

the integral of the differential equation (2.46) takes the form
a(x) = AChyx+ BShyx+ Ccosvx+ Dsinvx. (2.48)
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The boundary conditions which the function (2.48) should satisfy, lead
to a set of linear equations on account of the integration constants. The
determinant of the set equated to zero gives a transcendental equation, from
which an infinite number of eigenvalues w; can be determined.

In the special case of a beam simply supported at both ends, the functions
(2.48), which satisfy all the boundary conditions, are expressed by the formula

a, = D,sinv, x, (2.49)
where
’, =LI’F_ r=1,2, .. (2.50)

But, from the relations (2.42)-(2.45), it follows that the function b, can be
expressed as follows:

b = _ﬂ_ c2v2_ﬁ(02+x2w2) D,cosv,x. (2.51)
r CIZ£+”2w3 EVr Iy G r r r

Putting the known quantity », into Eq. (2.47) and using the relations
(2.42)-(2.54) we get the biquadratic equation for vibration frequency o,:

(? — c2v2) (2 — c&v?) — ,icéwf =0, (2.52)
y

which has two positive roots:

wj’ Wy

B 2
V21 @rametary @-dmobardaitia
Iy Iy I)'

(2.53)

This means that one and the same form of the function a,, expressing deflec-
tions of the beam, is accompanied by two different vibration frequencies,
w; and w,. However, considering the fact that the functions b; and b, describ-
ing the angular displacements of cross-sections will differ from each other
by the value of the coefficient dependent on frequency (cf. (2.51)), we find
that the general forms of vibrations corresponding to different frequencies
are not identical. Hence, the free vibrations of the beam according to rth
sinusoid (2.49) are described by the function

wix, 1) = a,(x)[g,()+ ()], 2.54)

in which the time functions are given by Eq. (2.33). The four integration
constants, C;, Cy, @;, @, in these functions can be selected based on the four
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initial conditions of motion, in which initial displacement and angular dis-
placements and initial velocities of these displacements occur.

The Timoshenko’s beam model discussed above takes into account both
the influence of shear strains and the influence of rotational inertia of the
cross-sections of the beam on its vibration. Neglecting these two factors
(justifiable in the case of a flexible bar) is tantamount to assuming that the
shear stiffness of the beam, GA/k;, is infinitely great and the mass moment
of inertia I, equals zero. It follows further that the angle of inclination of
the cross-section is not a quantity independent of beam deflections but is
associated with it according to the relation

ow
Py = — (2.55)
Finally from Eq. (2.12),, with damping neglected, it follows that
ow % 3w
e (3x+ ) J,.a,+m,.- EJ,.as m,. (2.56)

Substituting this relation into Eq. (3.17),, we get a single differential equa-

tion

d*w Pw om

EJjy— tth——5 = =z

I T TPt

which is most commonly used in practice.
Proceeding in the described manner, we arrive without difficulty at the

solution of the problem:

(2.57)

W, 1) = ) a(@gt) +AO. (2.58)
k=1
In this equation:
ak(x) = Ak Ch Akx‘l‘Bk Sh Akx + Ckcos Akx+ Dk sin Akx, (2.59)
9(t) = cpsin(wet+@y), (2.60)

1

k

[
70 =2 [0, 004 22 00, 1) atersinan s dzoct,

(2.61)

J
W, = A2 ]/ 2.62
% i u (2.62)

The integration constants in the eigenfunction (2.59) are, of course, not
arbitrary but have to be determined from the boundary conditions of the
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problem and from normalization of the eigenfunctions. On the other hand,
the constants ¢, and ¢, in the function (2.60) depend on the initial conditions
of motion. If at the initial instant the bar remains at rest, in a state of static
equilibrium, the constant ¢, then equals zero and the solution (2.58) does
not contain the function g.

ExXAMPLE 2.2

Determine the vibrations of a beam simply supported at both ends, induced
by force P travelling along the beam with constant velocity v (Fig. 2.2).

v
—_—

yP
A JAY

vt

{

Fig. 2.2. Beam loaded by a moving force
The external load is therefore given in the form of the distribution:
Pz(xa t) = Pd(x—vt). (a)

The normalized eigenfunctions, assuming the norm m = ul/2, have in this
case the form

a(x) =sindyx, where A = —’fli (b)
The angular frequency of free vibrations, in accordance with (2.62) is
k*n? EJ.
oy = _Iz——l/ ”" . ©

Performing successively the operations described by Eq. (2.61), we get

P
oy

sin A, vt u sinew, ¢ ]
=T nT —atny d
P[A%(A%Ejy’_vzl*‘) 7)]/ EJ, R (REJ,—v*u) |’ @

and introducing the denotations

fi =

¢l
S S 5(x0-—7)t0)sin }bkxsinwk(t—to)dxodto
00

_x _ v = #
E'_ Ia t_l’ G—-Iv]/EJ,’ (e)
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we obtain the solution of the problem:

, o 2P
- EJ,

sinknésinknt _ O_Z c
2 kznz(kzn:z _ 0.2) - k31t:3(k21t:2 — 0.2)

® ®© _sinkw& sin kz'n:zl
| |
k

The first of the above series is slower to converge than is the second, but
it can be summed and brought to a closed form (cf. Kaczkowski, 1963).
As a result, the solution of the problem can be given in the form

PP | /[sincé'siner singésinot’ ,
il [( asing ‘ET)H(E"”(W'E’ )H(’“f)]
o sinknésinkn"-
2PP? sinknsink>r?—
T H, "; Pt —o?) ®
where
f=1-¢ 1 =1-r, (h)

and H denotes Heaviside’s function.

Note that the solutions given in form (f) or (g) relate to the time interval
during which force P is present on the beam (0 < 7 < 1). But, the beam con-
tinues to vibrate after the force has gone, and we obtain the function expressing
these vibrations by taking in place of a variable upper integration limit, ¢,
in Eq. (d), a constant value, //v, equalling the time of travel of the force
over the entire length of the beam. Hence, we have: for 7 > 1

4]
w = 2P13 osinkné -
EJy & k3r3(k*r? —o?)

[(— 1)*sink?w? i —sinkznzg]. G

It is worth noting that in the case:

o =jm, (k)

where j is a natural number, the denominators of the respective terms in the
series (f), (g) and (j) become equal to zero. The velocity value following from
the relations (e) and (k):

Ver = %l/ ETJ’ 0
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is called a critical velocity*. But, the fact that the force has reached a critical
velocity does not at all mean that the deflections of the beam become infi-
nitely great. A simple pass to the limit enables us to obtain solutions also in
case (k). We thus obtain:

. g2 T
Y 2P [ ksinknr—jsink T:jsinkﬂ§+Sinjﬂt_jﬂtcosjﬂtsin i
= Bl R 2 il ¥
ot
or:
w = P {Tsinjrésinjrt —2jnécosjrnésinjnt —4jrrsinjnécosjrr
= 2E7, L J J 8J J YT TSI JTCs COSJ

—2j?w2étv+ 2jr[(cosjnésinjrt—jrt) H(E — 7) + (sinjrné cos jmrr—

. 2P o sinkré . T
—jrHH(z- 8]} - Jj E _—sink?r—
EJ,m* k3(k?*—j? ’

yT Z:} ( 7% J

for 0 < T < 1, and
L 2PP < jsinkné
"~ EJ,m* L K3(Kk2—j?)
k=1

k#Jj

[(- IYsink?n" - —sin kznl,] -~
j j

PI3 sinjrécosjrt
- m
EJ, j3m3 (m)

for T > 1.

2.3. Vibrations of a Curved Bar

In the present section, we confine our considerations to showing a way by
which it is possible to determine undamped vibrations of a bar, with the
omission of shear strains and rotational inertia of a cross-section.

* Following Kaczkowski’s (1963) publication, the author received two letters from
Timoshenko. In his letter, dated April 8, 1964, he wrote, among others: “Many years
ago (Le Genie Civil, 24 December 1921, p. 555) I was interested in vibration of an infinitely
long rail supported by a continuous elastic foundation”. Noting further the existence of
a critical velocity, he wrote: “It would be interesting to investigate the physical meaning
of this conclusion”.

Our further considerations and formulae are in a way a delayed answer to the question
posed by Timoshenko.
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2.3.1. In-plane vibrations of a bar

In the case of vibrations in the plane of a bar, the static equilibrium equations
given in Part 1, Eq. (2.41) must be supplemented now with forces of inertia,
and the ordinary derivatives must be replaced by partial derivatives:

oN T,

s —p =0,
3378' —uv =0, (2.63)
M. o Tim, =o.

ds

We denote the radius of curvature of the bar by r (instead of g). We get rid
of the transverse force in the set of equations (2.63):

oM,
Tn" - ds —ihz (2°64)

and obtain the following set of two differential equations:

N LM iipe+ ™ =0
35 "7 s TP 7 =0

M, N_ . im

(2.65)

Proceeding from Egs. (2.45), (2.59) and (2.60) from Part 1, we express
the above equations in terms of displacements:

/] ou v 1 ¢ % & |u . m;, _
'a:[EA ('a?"?)]+ 75{” [ 57t s (r)}'”“ﬂ“—r =9
(2.66)
92 v v om,
‘?F{EJz[asz o )”J’ EA(—“_) —# - o =0
The set of equations (2.66) can be made explicit assuming that the radius
of curvature of the bar and the quantities describing its cross-sections are

constant. The coordinate s measured along the axis of the bar can be replaced
by the angular variable &:

s =rd. 2.67)

Since we have neglected damping, we can therefore anticipate that free vibra-
tions (in the absence of external loadings), will take place according to har-
monic time functions:
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u@d, 1) = Y u (e,
P )
- (2.68)
o(d,1) = ) y(PHe,
k=1
Finally, denoting
(... EA EJ,
=), - = . = 2.
=Y o= ey = 2.69)

and substituting the relation (2.68) into Eqs. (2.66), we get the following
set of ordinary homogeneous differential equations:
(o) +uton—gn =0, for k=1,2,.. (2.70)
—yu +ou—yo +(1-@)v, =0,
Performing a few simple operations of this set, we can relate the function v
to the function u:

v m 2y — 3N,
v = — PP TRt ui+ =9y @71)
(1-9)y—oy—9%)
The function u, on its part should satisfy the differential equation of the sixth
order:

1

u¥’+(2+—l—)u}‘v+ (I—L——l—)ui'+i(l—-—)uk =0. 2.72)
? 2 Y 2

The further procedure is similar to that for a straight bar. Seeking the general

integral of Eq. (2.72) in the form

U, = eM®, (2.73)
we arrive at the following characteristic equation:

zg+(z+i)a;+(1—i-i)zg+i(1—i) —o. @74)
2 ¥ Y 2

Its roots depend on parameters ¢ and y, each of them being dependent on
its part from the free vibration frequency w,. The general integral of Eq.
(2.72) will contain six integration constants, which should be determined
from the boundary conditions of the problem and from the normalization
conditions of eigenfunctions. The equation, from which the free vibration
frequencies can be determined theoretically, is a transcedental equation formed
by equating the determinant of the sixth degree to zero.

As we can see, the problem does not lend itself practically to an analytical
solution; consequently, it has to be solved by numerical methods or by various
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approximate techniques. The problem turns out to be somewhat simpler
if we neglect the longitudinal deformations of the bar, in other words, if we
assume that the tensile rigidity, EA4, is infinitely great.

2.3.2. Vibrations normal to the plane of a bar

In the case of vibrations normal to the plane of a bar, we modify the static
equilibrium equations given in Part 1, Eq. (2.62):

oT, .. oM, M, _

—a?—‘uw+p, —0, Os + — Tz+mn —0,

B (2.75)
% e +m, = 0.

We have neglected here the effects of damping and strains due to shear forces
and the rotational inertia with respect to the n-axis, normal to the axis of the
bar. We eliminate from the set the shear force:

oM, M,

as + - +mn’ (2.76)

T, =
;

and obtain a set of two equations:

’M, (M,)_ iy O o
oz T as\r ) TPt 5 =0
(2.77)
oM, M,
s pe+m, = 0.

We now use Egs. (2.66) and (2.68) from Part 1 to arrive at the following set
of two equations with two unknowns:

02 2w (p,) 2 {GJ, (a<p, 1 ow v om,
32[EJ( P tasl T \as Tras)| TPt =9,

8 dp, 12 El, [ & (2.78)
(pt w —- L3 . w _qi T -
os IGJ'( 3s r s )] r ( ds? + r) T+ m, = 0.

Assuming as before a constant cross-section and a constant radius of
curvature r and assuming further that the external loading equals zero and
that the displacements are harmonic time functions:

w(d, t) = Zwk(ﬁ)e’"’k',
=t (2.79)

P, 1) = ) gu(®)er,
k=1
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we get the following set of ordinary differential equations:

—awlV +Bw +w+ (a+ B rey. =0,

' I 2.80
(a+Bw +Proun—(e—erpy =0, (2:80)
in which we have used the denotations:
_ EJ, _ GJ, _ I
o = —r%,%—', ﬂ = r4l'm),% N &€ = rzﬂ . (2.81)
Eliminating from this set the function ¢,:
— aﬂwllcv+a(a+2ﬂ)wl:’—ﬂwk (2.82)

Pu = ra—e)@+p ‘

we arrive at a single differential equation of the sixth order for the w-function:

w,‘v‘+(2+—§)w,“"+(l—g—%)w,:’+(%—aiﬂ)wk = 0. (2.83)

The analytical solution of this equation presents similar difficulty to that
encountered in the case of in-plane vibration of a curved bar.

More information on vibration of an arch or ring will be found in a study
by Federhofer (1950); Dobrzanski (1963) describes a procedure for obtaining
solutions for vibration of a spatially curved bar.

2.4. The Influence of Axial Forces and Elastic Foundation on Transverse
Vibrations of a Bar

In preceding sections we have assumed the deformations of a bar to be so
small that their influence on the position of individual forces can be neglected.
No appreciable errors result therefrom, provided that the absolute values
of axial forces are not very great in the sense that they are at least one order
of magnitude less than the values of the critical forces causing instability
of the bar. Otherwise, we must consider the eccentricities of axial forces in the
equilibrium equations. We should distinguish here two cases. In the first,
the axial force is constant, and only the transverse loading is time-dependent,
setting the bar into transverse vibrations. Subjected to loading of this type,
for example, are factory chimneys or TV towers (cf. Naleszkiewicz and
Szaniawski, 1953). Likewise, strings in musical instruments are under con-
stant tension, and they are forced to vibrate by appropriate actions perpen-
dicular to the string axis.

In the second case, bot the axial force and the transverse loading are time
functions. We deal then with coupled longitudinal-transverse vibration.
This type of vibration occurs in principle in every framework or truss; the
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transverse vibration of bars in one direction are transmitted as longitudinal
vibration to bars in the other direction. But, in spite of that and considering
the great mathematical difficulties that would be encountered in treating
the vibration of a structure as a non-linear coupled vibration problem, and
also on account of the negligible influence of that coupled action on the
final results, only the influence of the constant axial forces on vibration of
a structure is considered, if at all, in engineering practice.

In the literature, on the other hand, we come across solutions involving
a mixed problem, in which the axial force is treated as a known quantity,
constant over the entire bar length and only time-dependent. The differential
equation remains then a linear equation, but with time variable factors. This
is a problem of so-called parametric vibration and of the related dynamic
stability. These questions are, however, outside the scope of the present
part of the volume.

Along with the influence of constant axial forces we consider in this para-
graph the effect of an elastic foundation on undamped transverse vibration
of a bar. We take the bar to be sufficiently slender for the influence of rotational
inertia and shear strains to be neglected, and we also assume that Winkler’s
model is the elastic foundation model (cf. Part 1, Section 5.4).

dx

i A

X

+dN

a7,

(#w+K wldx T +3;*-dx

!
I_

w

My o p,dx
y M,
IR T\ flw e
e
T, ;—»
N

Fig. 2.3. Segment of transversely vibrating bar

With these assumptions, we consider an element of the bar, dx long, to-
gether with the loads acting on it (Fig. 2.3). The element has experienced
the displacements indicated in the figure.

Thus, we have the following dynamic equations:

aT,
ox

oM, aw
-37_T2+N7x +m,, =0,

=0,

(2.84)
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The solution of the static equation:

dN

we treat as known.
Eliminating from the set (2.85) the transverse force T, and using the relation

32

M,=—-E],— pal v (2.86)
we get the differential equation for deflection w:
a*w /] Bw 3

We seek the general mtegral, in the same way as before, in the form

o0

e, 1) = > a()a ), (2.89)
k=1
where
9(t) = cesin(wit+ ;). (2.89)

In this way, we reduce the homogeneous, partial differential equation
to the following set of ordinary differential equations:

»dx*  dx

The integral of Eq. (2.90) in closed form can be obtained in the special
case N = const (p, = 0). We will concern ourselves with this particular case
henceforth. Therefore, using the denotations

£y o ( dak) (ot —k.b)ay =0, k=1,2,... (2.90)

— N 2 __ 1 2
Ve = *m—, Ok —_ETy(ﬂa)k_kzb), (2.91)
Yo Ve = ]/1/7:3 + 0Lt (2.92)
we write the integral of Eq. (2.90) as follows (cf. (2.48)):
ak(x) = AkChtpkx-}-BkShﬂpkx+Ckcosvkx+DkSinvkx. (2.93)

Proceeding as in Section 2.2.3 on the basis of the boundary conditions which
the functions (2.93) are required to satisfy, we arrive at a set of homogeneous
equations with respect to the integration constants. Equating the determinant
of this set to zero, we get the equation (usually transcedental) for parameters
(2.92) dependent on free vibration frequency.
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In a special case of a bar of length /, simply supported at both ends, the
function (2.93) will satisfy the boundary conditions, if it is reduced to the form

a,‘ = D,‘Sin’l’,‘x, (2.94)
and the parameter », takes the value
vy = —'%’5 (2.95)

Using Eqgs. (2.92), (2.93), we find

EJ N k.b
— 2 ¥y z
O =% ]/ u l/l ' EJv? + EJ (2.96)

The further procedure has been described in Section 2.2.3. Note that the
undamped vibration frequency of the bar expressed by Eq. (2.97) increases
with the tensile force N, whereas the compressive force (N < 0) produces
a downward trend in the vibration frequency which becomes equal to zero
as the axial force assumes the value

N, = —EJ v} - kvzzb . (2.97)

k

We have applied here one of the techniques of determining the critical load
causing a buckling of the bar. Structural stability problems are discussed
in the next part of the volume.

To conclude, we should note the fact that assuming the bar bending
stiffness EJ, = 0 and the foundation module k, = 0, we obtain the values

N
Wy =V —_— 2.98
)/ asn

applying to a transversely vibrating string pulled by force N.



3. Vibration of Composed Bar Structures

3.1. General Remarks

Modal analysis, previously discussed, is a general method in so far that it
can be applied equally well to structures made of straight bars, for which
bars the solutions of homogeneous equations given in Section 2.2 are known.
However, in the case of skeletal structures the difficulty lies in finding the
eigenvalues and the corresponding forms of free vibration. Certain possibil-
ities of surmounting this obstacle are afforded by the displacement method,
considered in Section 3.3.

A further difficulty with modal analysis presents in the process of nor-
malizing the eigenforms. They require normalizing when vibrations forced
by a moving load or by a load arbitrarily variable in time have to be deter-
mined.

In Section 3.2, we present a technique for determining vibrations in a structure
composed of straight bars, by which it is no longer necessary to find the global
forms of free vibration and the corresponding free vibration frequencies
of the whole system. This method is based on an argumentation typical the
direct flexibility method discussed in Part 1. However, to obtain results using
this method, a suitable equation or a set of Volterra’s integral equations
needs to be solved.

3.2. The Direct Flexibility Method (Force Method). Volterra’s Integral Equations

The procedure specific to the direct flexibility method, it will be recalled,
consists in that a real structure is replaced by a so-called primary system
with a smaller number of external or internal constraints, and in place of the
eliminated constraints, general forces are introduced. Along with external
loadings, these forces should induce exactly the same strains in the primary
system as those developing in the real structure. In dynamics, this condition
should be supplemented with the statement that these strains should be ident-
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ical at every instant. This is connected, of course, with the fact that the gener-
alized forces introduced at the places of the removed constraints are unknown
time functions.

The procedure will be explained using example of a continuous beam,
a structure rather widely used, especially in civil engineering. Consider two
adjoining spans of the continuous beam shown in Fig. 3.1a. Let an arbitrar-
ily distributed, time-variable load consisting of vertical forces p, and mo-
ments m,, be acting on each span. In order not to complicate things unduly,

lal x,t)

r-1 I, £/ ¢t r Trenittrn [/ ¢ r+
%« M 2 AN
; m,(x,t) ; m, q(xt)
} Il' | 1ro1 J
(b) D, 1ix.t)
D,,(X,f) r+
X, 4t} X.(t) X, 4]
LY ({7 \¥4 Ly ALY
n AN VA AN A
m(x.t) m, (x.t)
(c)
pix.t) Proylx.t)
(pqmbd (gt Tk
LA \AA
A 7 Z4
6r-1,p (” 6,..‘,(') 6,,1.9(0
(d)
18(t-ty) 8y ralt=tp)
(e 18(t-t,)
6r,r(t-t0)
Z Z “Z4
(f) 18(t-t,)

8, rult-t)

%

7

%

Fig. 3.1. Part of a continuous beam: (a) considered structure; (b) primary scheme;
(c) displacements induced by external loading, (d)-(f) displacements induced by unit
impulses acting in hinges
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let us assume that the deflection of each span, w,, satisfies Eq. (2.57), in which
shear strains, rotational inertia and damping are not considered.

Introducing hinges over the supports, we obtain a primary system on
which, beside external loads p, and m, (r = 1,2, ..., n), support moments
X, (r=1,2,...,5)are acting. These are unknown for the time being and
are also treated for the present as external loads (Fig. 3.1b). They must be
so well matched that under no circumstances should a corner point of the
bending line occur over any of the supports. The symbols » and s stand for
the number of spans and the number of unknown support moments, re-
spectively. The primary system cannot be said to be isostatic because no
such concept exists in dynamics.

Using the principle of superposition, we first consider separately the state
of external loadings p, and m, at zero values of the support moments. Such
a load acting on simply supported beams makes them vibrate (Fig. 3.1c),
the vibration exhibiting corner angles 4,,,(t) over the supports. We can solve
this problem using Egs. (2.58)-(2.62), and also the results from Example 2.2:

1

2 (_1)k+1 4 [
6r.p(t) = pr(x > b )+
©VELp, k=1 § § o

+ z—m'(xo, to)] sin kv;x sinkZw!(t—1to)dx,dt, +

sy

© ot
X sin x1° sink2w}, ; (t—to)dxodt,. (ENY)

In this equation, "
Wl = ' ]/i{ r=1,2,...,n, (3.2)

is the first, so-called fundamental vibration frequency of beam r, simply sup-
ported at both ends.

Next, we have to find the solutions of the auxiliary problems presented
graphically in Fig. 3.1d, e, f. Involved here is the determination of functions
expressing the corner angle of the beam over the support r due to impulse
loadings by moments applied at instant #, successively over supports r—1,
rand r+1. As a result, we have in Fig. 3.1d, e, f the symbol 8(t—?,) denoting
the Dirac delta distribution, whereas the symbols with subscripts (e.g.
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0, ,_1(t—1t,)) denote the corner angles over support r. These angles are
functions of f—t, i.e., the length of time between istant ?,, the instant
application of load, and instant ¢, at which the angle of interest is being
determined.

Having solved the auxiliary problems, we can express the global corner
angle induced over support r by the unknowns X,_,(f), X,(¢) and X, ,(?)
and by the external load:

t t

§ Xom100) 81, s (1= 10)dto + | Xi(20) 8, (1= o) dto +

0 0

t

+§ X001 00) 8,41 (1= to)dto + 8, ,(2) = 0. (3.3)
0

Obviously, that angle must be equal to zero at every instant . The number
of equations of type (3.3) corresponds to the number of unknowns X,(z).
In this way, we have obtained a set of Volterra’s three-membered integral

equations of the Ist kind.
In order to find the functions constituting the kernels of these integral
equations, we must first determine the vibration of a simply supported beam,
loaded at instant ¢,, at a point with coordinate x,,, by a unit impulse moment

180x -x,)8(t-t,)

r-1 r\ r
1
7 x, | I e, A/,
I

Fig. 3.2. Span of a continuous beam loaded by unit impuise moment

(Fig. 3.2). Therefore, we must perform the integration given by Eq. (2.61),
assuming that the load m, is given by the equation
m(x,t) = 16(x—x,,) 6(t—t,). (3.9

For this purpose, Eq. (2.61)—in the part applying to loading by the moment—
has to be expressed in a somewhat different form:

QM‘N-

t
1
510 = x| § G e, o) W) simo( =t Aoty
Yy 0 0o
Ir

- S L w35 § s 10 . ) e simab =)o

0

(3.5)



3. VIBRATION OF COMPOSED BAR STRUCTURES 213

Since the deflections of the beam r equal zero at both ends, the final form
of the integral (3.5) using the relations (2.55) is:

Iy

t

1

f;‘(t) = r wk g Smr(xo, to)(prk(xo)slnwr(t—to)dxodto (3.6)’
r'r 6 b

Substituting now the relation (3.4) into Eq. (3.6), we get

f;c( ) = -—"'T(prk(xm)s“lwr(t ) (3'7)

rwr

The deflection of the beam loaded in the manner shown in Fig. 3.2 is
therefore expressed by the function

w,(x, 1) _~Z PP SN~ 1), (3.8)

However, this time we are interested not so much in the deflection as in the
angular displacements of cross-sections of the beam considered:

(24
ow, \ | .
B, 1) = = = ; —‘; PE) ) SN 1), (39

Equation (3.9) already enables us to find the appropriate expressions for the
kernels of the integral equation (3.3). It sufficestolet x = /,, X, = 0, tm = &,
and to change the sign of the expression (3.9), on account of the difference
of the senses of the loadings given in Figs. 3.1d and 3.2, to get

1 = 1
r r—l(t_ tO) - - 74— k (prk(lr) (prk(o) SInwr(t— tO) (3' 10)

" k=1

In order to find the kernels 8, ,.(f—t,) we have to take the sum of the two
angles occurring by support r; in span r, it is necessary to let x = x, = /,
and in span r+1, x = x, = 0. Hence, we have

O, (t—1t0) = —I—Z thp,k(l,)smw,(t—to)+

1 1 .
+ Z —— 7140 sinwp, (1 —1o). 3.11)

Brsy o=l Wryy

We obtain the quantity 6, .. ,(t—t;) = 0, ..(t—1,) from Eq. (3.10) by replac-
ing the subscript r by r+1.
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Using Eqgs. (b) and (c) from Example 2.2 and the denotations (3.2), we can
present the expressions (3.10) and (3.11) in a more specified form:

0

2 .
6r.r—1(t—t0) = = (—1)k+151nk2w}(t—t0)’ (312)
LVEIp, &=l
6r,r(t—t0) = —’2—‘2 Sinka,}(t—to)-*-
I'I/E‘Iflur k=1
2 O
+ sink?wl 1 (1—1y). (3.13)

Ir+1 ]/EJr+1,ur+1 k=1

Evidently, we have in this way dispensed of the need to determine the
frequency and form of free vibration for the structure as a whole, instead
we have used solutions for a single simply supported beam, in which the
frequencies and forms of free vibration are explicitly determinable. But a new
problem has emerged, namely that of solving a set of Volterra’s equations.
Without attempting to get an exact solution of such a set, one of the numerical
techniques should be applied here.

The technique presented below consists of approximating the unknown
functions X,(z) by piece-wise linear functions (Fig. 3.3). As a result, in place

j=1 x!

r

Jjh

Fig. 3.3. Approximation of function X,(¢)

of the functions X,(t), their ordinates X/ at specified instants become the
unknowns:

t,=jh, j=12,.. (3.14)

At the same time, we demand that the continuity conditions (3.3) which
should be satisfied, in principle, at any instant ¢, be now satisfied only in
a countable set of instants ¢;.

Thus putting

t

X,(t)=X,‘—’T, r=1,2,...,s, O0<t<h, .15
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into the first time interval, we write the conditions (3.3) for instant ¢, = h:
X 8+ X O X, 605+ 6, = 0. (3.16)
We have used here the denotations:
h
o5t =0, =Sl,;’- 8 s(h—to)dty, s=r—1,r,r+l, (3.17)
V]
6rlp = 0,,(h).

In this way, we have obtained a set of three-membered algebraic equations
with respect to unknown values X!, which can be solved without difficulty.

In the subsequent intervals, the functions X,(¢) can be expressed by the
general formula

G e R e S [ 22Y (3.18)

The condition (3.3) in successive instants ¢; can therefore be expressed:

Xi_ 607 +Xi S +Xi,, 0+

i1
(X O X S X ) + 8, = O, (3.19)

m=1
where:

jh
o= | 27D (h-toar,
(- 1h
h
tl

= S—h— S, (h—1t)dt, =62, (3.20)
(4]

mh
om = { BT (hto)dio+
(m—1)h

(m+1)h
S (m+Dh—

05, L Ghto)dto

mh
h
= Sth {8, s [G—mh+h—t,1+ 6, [(j—m)h—h+t,]1}dty, (321

0o

8, = 6,,(jh). (3.22)
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All the quantities X7* in Eq. (3.19) occurring under the summation sign
are already determined from the conditions of type (3.3) at instants m < j,
where the quantities X/ are calculated from the set of equations (3.19)
having the same matrix of coefficients §/7/ = 8!5! = 62, as that in the set
(3.16). This means that after a single inversion of the matrix of Egs. (3.16),
the subsequent values can be obtained recurrently.

By substituting the expressions (3.12) and (3.13) into Egs. (3.20) and (3.21)
and performing appropriate integrations, we get:

(=1t sink?e,
O = EJ-n: Z ke, ) (3.23)
21 1 sink?e, )
o __ r - o
O = EJ.=? ; k? (1 ke, +
2Ir+1 i 1 ( Sink2‘£r+1 )
thew L\ Hae ) (3.24)
. RN 1—cosk?s, sink2e,(j—m)
jom r Vet r r
r,r—1 EJ,.TCZ ;( 1) k2 k2£r ) (325)
siom _ 4 i 1—cosk?, sink?e,(j=m)
nr T EJ,w? k? k?e,
4l ., Z l—cosk &1 sink?e (j— m)
.26
EJ,.+17T k €1 ’ (3 )
where
& = wlh. (3.27)

As much as the series in Eqs. (3.12), (3.13) may evoke reservations on account
of their divergence, all the series in Eqs. (3.23)-(3.26) are convergent.

(a) meg—L> (b)

K n Xt

Z 2

Fig. 3.4. Diagram of a beam loaded by model of vehicle

le—— —>®

N B
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The presented method of solving dynamic problems can be used, of course,
in other cases of bar structures. We arrive at Volterra’s integral equations,
for example, also in the case of a vehicle of non-negligible mass moving
along a bar structure. The simplest model of such a system is shown in Fig.
3.4a. A viscoelastic element, modelling the suspension of the vehicle, has been
assumed to be present between mass m and the beam.

Treating the interaction force (Fig. 3.4b) as an unknown, we use the
condition

X(0) = K(Wn—wp) +0(Wp—Wy), (3.28)

where K and % denote the viscoelastic characteristic of the suspension, and
w,. and w, stand for vertical displacements of the mass and the beam at the
place at which the vehicle happens to be at a given instant. This condition
leads to Volterra’s integral equation of the 2nd kind (cf. Kaczkowski, 1965).
If no viscoelastic element is present between the mass and the beam, the
condition

W = Wp (3.29)

reduces the problem to Volterra’s integral equation of the 1st kind. In either
case, the method just described can be used.

3.3. The Direct Stiffness Method (Displacement Method)

In the present section we confine our considerations to presenting a method
for determining the frequencies and forms of free vibration in frameworks
and also for finding solutions involving vibration forced by loads harmonically
variable in time. We shall neglect damping, the influence of strains due to
shear forces and the influence of rotational inertia under bending.

Both in the case of free and forced vibration, the structure as a whole,
consequently each of its elements, will experience harmonic vibration. We must

Fig. 3.5. Vibration amplitude of bar ik
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therefore consider first of all a single bar, being an element of the bar structure
considered. Assume that leads harmonically variable with angular frequency
0 are acting on a bar fixed at both ends, whose projection on the xz plane
is shown in Fig. 3.5:

P(x, ) = p(x)e”. (3.30)
At the same time, both supports of the bar experience displacements with the
same frequency:

9.(t) = q.e*, s=1ik. (3.31)
The single column matrices occurring in Egs. (3.30), (3.31) in the general
case of spatial vibration, have six components each, which we array:

p(x) = {Px(x) ’ mx(x)’ Py(x), mz(x) ’ pz(x) s my(x)}’ (332)

q; ={us, Pxss Vss Pzsy Wy, ¢pys}, § = l’k (333)

Using the principle of superposition, we consider for the present the case
of no external load p acting on the bar. From Eqs. (2.24) and (2.59) after
introducing the dimensionless variable & = x/I, we can express the displace-
ment amplitudes of the bar axis as follows:

u(é) = Acos A, &+ Bsin A, &,

@x(8) = Ccos A &+ Dsin A, &,

9(8) = ECh 4,&+ FSh 4,£+Gcos A, &+ Hsin A, &, (3.39)
w(é) = JChA, £+ KShA, &+ Leos 4,6+ Msin 4,,€.
The dimensionless parameters occurring here:
_wy/L _ A
l..—l@]/EA, Ay Ie]/GJ,’
= (3.35)

2, =ll/e]/_;’-‘;, A, =zl/0‘/E"Jy

have been obtained from Eqs. (2.22) and (2.62), taking into account the
previously introduced dimensionless variable &. Since in this case, the vi-
bration frequency @ is treated as known, the values of parameters (3.35) are
defined exactly.

Altogether, twelve integration constants occur in the functions (3.34),
and these should be determined from twelve geometric boundary conditions.
Using them we obtain:
sin 4, &' sin, &

sind,  “*sind, ’

u(®) = u

(3.36)
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sin A, &’ sin A, &
sin A, * sind, ’

v(&) = 0,[4,f3(4:£) — B, fo(4,E)]+

+ l‘,’{j‘ [B; £o(AoE) ~ Ao fu(2 8+ 0 Aufs (Ao £)— B, ful B £)]

1P (g 1,00~ 4SRN, (339)
WE) = WA Sy ()~ Bu fu O]
P 15, 1)~ A €1+

A SO ) B D1+
1P (B £ ()~ Al (339

w

Px(8) = pu (3.37)

Two of four Krylov (or Krylov—Prager) functions occur in the above express-
ions:

i), fix) = REERE
_ (3.40)
), fulr) = SREESRT

The tables of these functions can be found, among others in a textbook by
Solecki and Szymkiewicz (1964). We have also introduced the notations:

4 = Ch A, —cos 2,

" 1-ChZacosi,’ (3.41)
,_ ShZ tsin4, _

Bf’Br—'m‘};, r=9,w.

Knowing the functions describing the displacements of the bar axis, we can
determine using the equations given in Part 1 the generalized internal forces,

P U Ui Doy
. > — P ——
yd yd X
v W W,
i

/ / Vki
¢yik i ¢zik ¢yki i
A

Fig. 3.6. Amplitudes of boundary forces acting on bar ik
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and specifically their boundary values. Performing appropriate operations,
we obtain finally the matrix relationship between boundary forces (Fig. 3.6)
and displacements:

Qik E, E; l (3.42
Qui Eki Ei -42)
where:
Qs = {U.n djxss Vss djzss Wss djys}s § = ik, kl; (343)
Ei, Ex
B4 :
I Ky
GJ
i Bx
EJ, EJ,
'1—370 _'t”‘lTa., “
= ,» (3.
EJ, EJ, (3.44)
t Tt %
EJ, _ EJ,
B v T > B,
E.
+ 1'21!' Py "—‘E'lly Xy

Elks Eki
_E4 ]
T
GJ,
T
EJ, EJ,
T &y i'_lz“' v
= E . (3.45)
_ EJ, EJ,
ek b
EJ EJ
- _73_)' Ew ; 'lTy 6w
EJ EJ
. N
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The functions occurring in the matrices (3.44), (3.45):

ty = p(4)) = A,cotdy,

v, =v(d) = ?I}:Z’ i=u,x, (3.46)
sty =, S S,

. = B0y = 3, Tl

8, = ) = B o, .
b = 8 = B e |
o=yt = i TR,

e = e(h) = A2 Sh4,+sin 4, N

1—ChA,cosi,’

are tabulated, e.g. in the monographs by Kolousek (1953) and Btaszkowiak
and Kaczkowski (1959, 1966). B

The functions (3.47) are easily generalized, taking into account the influ-
ence of constant axial forces on transverse vibration. Without citing an ap-
propriate derivation based on the solution (2.93), we present below the de-
rived formulae from a textbook by Nowacki (1967, p. 830):

2 2
a(y,,v,) = 2 A”L (y, Chy,siny, —,Shy,coss,).

r o7 :
By, v) = v Y (»,Shy, —yp,siny,),

Sy, ) = "Z”' [2y,, Shy,siny, — (2 —v2) (1 —Chy,cosy,)],
' (3.48)

2

2
o(y,,v,) = w’;vr v, (Chy, —cosy,),

2 2
7(’/’.-,1’.-) = u)r;vr wrv.-(u)..Shu),.+v,.sinv,.),

2 2
ey, v) = y),j-v,. v (p,Shy,cosv, +v,Chy,sinw,).
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The following denotations are used in them:

Ar = 21/)rvr(1 _Chy)rcosvr)'*'('pf_vrz)Sh'IJPSinvrs r=9,w, (349)

V) 2o

Pos Vo = Il -'/ 2EJ t 2EJ.°
/102 TN (2 N

W’vw —IVV 2EJ i EJY .

Tables of the functions (3.48) can be found in a paper by Witkowski and
Zyszko (1965).

The functions (3.36)-(3.39) may also prove useful when we want to deter-
mine the values of generalized boundary forces induced by a load acting
within a bar. For, as we know from the reciprocal displacement and reaction
theorem, the influence lines are deflection lines induced by unit displacements
of the respective supports with opposite senses to the positive senses of the
reactions sought. Consequently, we can use the following formulae for reac-
tions to a harmonically variable external load acting on a bar fixed at both
ends:

(3.50)

1
v = -{ B @,
° 3.51)
v = - {25t @ytae,
0
1
Ve = = 4 f3(48) = B, fu(3, )] [,,,(g) T (5)] 1
1
= — (4.2 &)~ B, £ (3 E)py(§) 1dE +
0
1
+ 3 § [, 203 E) = Bufs (A EYm,(E) dE, (3.52)
0

1

o8 =~ BAGE - 4SRN O+
° o

1

v\ BAGO- 1AM @, e, (3.59)
0
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For example, in the case of a bar loaded in its mid-length by harmonically
variable concentrated force P (Fig. 3.7), we have

P
P& = 2 8E-Y), (3.59)
¢zoikei9f 1P i6t ¢z()kiei"
Qi k
¢ D+
{ |
V,: iz {V: i9t

Fig. 3.7. Bar ik loaded by a harmonically variable force

and putting Egs. (3.52) and (3.53) into this function and considering the rela-
tions (3.40), (3.41), we get

Ve = —P[A,fa(_zzi)_gvf4(%)]

_P Sh 4, +sin 4,
2 Chsin A, +ShA;cos 4,
P &(X)

- -5y (3.55)

e () 4]

_ Pl Ch A, —cos 2,
"4 2, ChA’sin2,+Sh2a,cos,
_ Pl sk

- o) .56
7y (3:56)

r zv
Ay = 5 (3.57)

Knowing the relationships between the generalized boundary forces and the
load acting within the bar, on the one hand, and the displacements of its
ends, on the other, we can make use of the analytical procedure typical for
the displacement method, described in Part 1, Chapters 6 and 9. The set
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of equations (6.82)-(6.84) undergoes, however, certain changes. The point
is that this time we have related the boundary forces directly to displace-
ments, giving up the intermediate stage of strain determination.

With such factors of secondary ranking as displacements of supports or
distortional strains omitted, we write the set of equations (6.82)-(6.84), Part 1,
in the case of harmonic vibrations, as follows:

q=Bq, B's=Q+Q? ¢ =Ej. (3.58)

The symbol § (in place of €) denotes here the array of displacements of all
bars in local coordinates associated with the axes of these bars.

Ridding the set of equations (3.58) successively of the quantities ¢ and (,
we arrive at a set of conditional equations of the displacement method, with
displacements q as the sole unknowns:

Kq = Q+Q~. (3.59)
We construct the siffness matrix K in the familiar manner:
K = B"EB. (3.60)

Having determined displacements q from Eq. (3.58),, we calculate displace-
ments q associated with local coordinates of individual bars, and from
Egs. (3.36)-(3.39) we find the functions expressing the displacements within
particular bars; differentiating them, we arrive at the distribution of gener-
alized internal forces, and to be more exact, of their amplitudes, in the struc-
ture as a whole.

~ In the particular case of no external load, we deal with free vibrations,
whose frequencies are determined from the condition

detK = 0. (3.61)

This transcendental equation has an infinite number of elements 6 = w,.
Corresponding to each of these frequencies is a different vibration form which
with an accuracy to a constant value can be determined from Egs. (3.36)-(3.39),
finding beforehand the displacements of joints corresponding to that form.

It should, however, be noted that by using the described procedure such
forms of free vibration for which the joints experience no displacements may
be overlooked. It is necessary, therefore, to check separately whether such
forms of vibration are at all possible. Only after they have been considered,
can the collection of vibration forms obtained make a complete system of
functions with a frequency spectrum containing no gaps.

Given as an example in Fig. 3.8a is a frame consisting of three identical
bars; also shown are two forms of free vibration a; and g, for which the
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{a) {b}

)

() ” (d 7

-

Fig. 3.8. Vibration forms corresponding to one and the same natural vibration frequency

joint of the frame does not experience rotations. These are, moreover, vibra-
tion forms corresponding to one and the same frequency w; = w, but fail-
ing to satisfy the orthogonality condition. However, using a linear combi-
nation of the initial forms, the mutually orthogonal forms a; = a;+a;,
a, = aj—a, shown in Fig. 3.8c, d are easily determined.

To normalize the eigenfunctions it is necessary to perform integration over
all bars of the system according to the formula

1,
S qi (x)m, q,(x)dx = m, (3.62)
0

)

?
i=1
in which we have
q,(x) = {w(x), 2i(x), wi(x), Psi(x)}, (3.63)
my o= [y, s s logl, i=1,2,...,p. (3.64)

How the derived relations are to be used will be demonstrated in the simple
example of a plane frame.

ExampLE 3.1

Let an external load in the form of a force harmonically variable in time be
acting on the frame shown in Fig. 3.9. Determine the vibration amplitudes
of the joints and the frequencies and forms of free vibration.
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Fig. 3.9. Frame loaded by a harmonically variable force

The displacements of bar ends 41, 12 and 2B in local coordinates can
be arrayed in the vector

a = {ﬁl!é}l’ <P1§ ul,vl, <P1, u2,7)2, <P2;ﬁz, ‘525 ‘Pz}, (a)
which with displacements q in the global system

q={u1,7)1,¢1,u2,‘02,¢2} (b)
is connected by means of the matrix

?’g 0 —-10

B = , B,=}1 0 0{. (c)
0 1 0 01
0 B,

The above submatrices, unitary I and zero 0 have the dimensions 3 x 3.
The elasticity matrix of the structure

E = IE,u s EIZ’ Ezn] (d)

consists of submatrices, which on the basis of Egs. (3.44), (3.45) can be written:

EA,
e
EJ, EJ,
EAI = EZB = T Vs _Tﬁs ’ (e)
EJ, EJ;

_?.!_08 _'ls— O
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EA, :
A |
EJ, '.
BV | symm.
r I
E.ZI, s, EJ,A a’:
I [Alad
Eyp=|--om ol e . ®
EA, \ EA,
_T r y"T— 3
r | r
EJ, EJ, EJ,
E e E
EJ, EJ, ! EJ, . EJ
) = % gk s aid

The above matrices contain functions expressed by Egs. (3.46), (3.47):
e = p(Au), v =v(Aa), o = (i)
ﬂk = ﬂ(lvk)5 & = '9(}%), O = 6(lvk), (g)
Ve = y(An)s & = e(Au), k=r,s,

in which in keeping with (3.35):

A,,—IkB]/EAk ,,_1,,'/ l/EJk (b)

Performing the operations prescribed by Eq. (3.60) we find the stiffness
matrix of the system:

K;; K
K=[ 11 12], )
K;: K,
TEJ, EA EJ, |
g0 “E
EA, EJ, EJ,
K1, Kz = 0 I /»‘s+—l—3“}’r iTﬂr s
EJ, EJ, EJ, EJ,
~ - I: "9.! + Irz ﬂr Is a.l+ I, “r_ (J)
—EIA—'V, 0 0
Ko Ku=| o0 B 2B,
Ir : I3
- J, EJ,
0 1’2 6, Tﬂ'
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Using the formulae (3.58), we determine the vector of the free terms:

P e(A) Pl 8(hs) ! |
P =g » VU, — 7 ’ 0, 0, 0 s
Q ! 2 y(A) 4 y(4y) f &)
Z’ - ADS
vs T 2 .

It is easily seen that like in statics, the longitudinal deformability of bars
has a negligible influence on the vibration of bar structures. We shall, there-
fore, make on major error, if we presume that v; = v, = 0, u; = u,.

The vector of the sought displacements contains, therefore, only three
components independent of each other:

q={u, e, 9} )]
Performing an appropriate limiting procedure, we give the stiffness matrix
the form

2%i Vs— £l.,3’L A5
symm.
k| B BB, 7 o
Assume, for example, that
L=1I=I, J,=J=J,
e Ve (n)
r s = MW =P i .
We then have
Aop = Aps = A =1, (0)
and the following set of equations of the displacement method:
22.256 —5.948 —5.948 || uy PP 0.5014
—5948 7980 2007||lp. | = 57 —0.1253
—5948 2.007 7980} |y, 0

has the following solution (for comparison, the solution of a corresponding
static problem is given in parentheses):

3
{u, lpy, lp;} =PTIJ{0.O2812, —0.00001, 0.02097}

3
(= %{f {0.02530, —0.00149, 0.01934 }).
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Equating the determinant of matrix (m) to zero leads to the following
transcendental equation:

2y — A9 Qa+ B) - 28%]Q2x~ p) = 0. ®

For high values of 4, this equation can be substituted by an asymptotic
equation:

(cos A—sinA—}) (cos A—sin2+3) = 0. Q)
The approximate roots of this equation have values given by the formulae:

A, _3%_3n+1 932 for n=5,9,13,..,

hy = 3”_}37:—1 932 for n=6,10,14, ..,

A, =_2”_4+_1--7:—1209 for n=71,11,15, ..,

A, = 2—’14-—7r+1209 for n=8,612,16,..

Several successive eigenvalues 4 and displacements of joints corresponding
to free vibration forms (unnormalized) are specified in Table 3.1. Exemplary
forms of free vibration are presented diagrammatically in Fig. 3.10.

1.81

Fig. 3.10. Forms of free vibration of frame
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230
TaBLe 3.1
n 1 2 3 4 5 6 7 8 9 10
An 1.79 | 3.55 4.51 671 { 743 | 9,85 | 10.51} 1299 13.71 | 16.13
uy 1.81 0 -0.12 0 0 1 0
Iy 1 1 1 1 1 11 1
Ip, 1 - 1 1| - - 1 1| =1 ’ -1




4. Structures with a Finite Number of Dynamic Degrees of
Freedom

4.1. Some Techniques of Reducing the Number of Degrees of Freedom

4.1.1. General remarks

In many cases it is altogether impossible to find exact, analytical solutions
to dynamic problems described by partial differential equations. We also
frequently give up seeking analytical solutions, in favour of using computers
where every problem has to be worded algebraically. In a successive discre-
tization stage we describe therefore the displacements sought by a finite number
of generalized Lagrangian coordinates, in other words, by time functions
expressing displacements of specified points of a structure. Correspondingly,
the number of dynamic degrees of freedom decreases, since even with a con-
tinuous mass distribution along the bars, the position of each elementary
body point udx depends in a specified manner on the generalized coordinates.
This spatial discretization of functions describing the motion of a bar can be
achieved by many different methods. Two of them are briefly discussed below.

4.1.2. The finite difference method

The differential equations of motion for a straight or curved bar can be
written generally in the form

L f+L,f+L.f = p, 4.1)

where the symbols L, denote matrices composed of various differential
operators with respect to a spatial variable, and by f we have denoted vectors
consisting of the components of the displacements sought. As for the vector
P, its components are external loadings. Operator matrices L, may contain
constant coefficients or coefficients dependent on the spatial variable.

For example, in the case of a curved in-plane loaded bar the set of equa-
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tions of motion (2.72) is identical to the matrix equation (4.1) with the sub-
stitutions:

d a4y 10 of{..\l11 @ 92 a(
a—s(EAa )+7 ?[EJ‘E?(T)]TBE(EJ’W)_EE Ed--

1 \ s
2 af... EA 0 2 2 EA
_‘EF[E’=5;(T)]+T$ _W(EJza—sf)"7
4.2
—u 0
L, = 0, L3 = [ g —,u]’
4.3)

m, om,
f={u,‘l)}, P={Ps ’ Pn— 95 }

On the other hand, damped vibration of a straight bar, with considerable
axial forces taken into account, is described by a single differential equation
(cf. (2.72)). 1t can also be presented as the matrix equation (4.1) but the
matrices therein degenerate into single operators or terms:

4 4 2
L, = EJ”%_—;_)C(N%)-FICZI) = EJ,,—;;[—N*;F'FP;W;;'FI\}Z’,
94
L, = EJ,IE~a~xT+ S “4.4)
L; =4,
f=w, P=Pz+—aini- 4.5)
ox

Using the finite difference method, we divide the bar under study into seg-
ments (usually of identical length), and we treat the ordinates of the functions
sought at the dividing points, called nodes, as unknown quantities. They
form a vector with n components, where the number of unknowns » depends
on the number of dividing points, the number of unknown functions occur-
ring in vector f and the boundary conditions of the problem.

Let us consider for the sake of example a straight bar whose end x = 0
cannot experience displacements. Dividing the bar into identical segments g,
we denote the uknown ordinates of the only function w sought at the dividing
points, i.e., the generalized coordinates, by the symbols:

q(t) = wlka, 1), k=1,2,...,n (4.6)

If the bar end x = [ can experience displacements w, the number n equals
the number of segments into which the bar has been divided. Otherwise, the
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number of unknowns is reduced by one, i.e., equals the number of internal
dividing points of the bar.

We replace the derivatives in operators L, by corresponding difference
quotients, which for the node x = ka (Fig. 4.1) have the form:

ka
—]
a a a a ,
\ Gk -2 Gpe1 i L/ Ties2
\'h__——

Fig. 4.1. Approximation of displacements of a vibrating bar

ow _ 1(_ + )
% - 94 9i-1t+9k+1),

*w 1

-5)‘7 = ?—(qk_l—zqk+qk+l)s

> 1 ()]
w

oxs W(_qk—2+zqk—1—zqk+1+qk+2)s

2w 1
e F(qk—2_4qk—1 +6g,—4Gx+1+xr2), EtC.

Hence, the difference equation in the case of operators L, given by Eqgs. (4.4)
takes the form:

EJ,
a4y (Gx-2—4Gk—1 +6gx— 4k s 1 + Qs 2) —

N,
"7:‘(qk-l—zqk+qk+1)+£2i;(—qk—1 +qxr )+
EJ, . . . ] .
+ (k:Dhaqi+ e te(Qr-2— 4Gk -1+ 606Gk — 4G 1 + Grs2) T+

om,
4.8
ra (4.8

+ S+ Gy = P+

In the vicinity of the bar ends, this equation undergoes certain modifications
which depend on the boundary conditions of the problem. At any rate, we get
as many difference equations of type (4.8) as there are degrees of freedom
allowed to the bar in question.
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Most conveniently, the system of these equations can be written in matrix
form:

Kq+Cq+Mq = Q. 4.9

The matrices of stiffness K, damping C and masses M are square matrices,
size nx n, whereas the generalized coordinates g, and loads @, form vectors
containing # components each.

4.1.3. The finite element method

Using the finite element method we likewise divide a bar (a structure) into
segments and assume that the displacements within each of them depend
on those generalized coordinates that express the displacements of the joints
bounding a given segment (element). In other words, we assume that an approxi-
mate solution of an appropriate set of differential equations has the form:

f(x, t) = N(x)q(t)’ (410)

where N(x) is a matrix composed of predetermined shape functions assigned
to successive components of the vector of generalized coordinates q(¢). The
function N;(x) has non-zero values only within the elements neighbouring
on a joint whose displacement is expressed, e.g., by the generalized coordi-
nate g;(t).

The point of departure for further considerations can be either one of the
energy methods (e.g. Ritz’s) or orthogonalization methods (Galerkin’s),
or the principle of virtual work. We shall make use of the last method. Treat-
ing the matrix-differential equation (4.1) as a set of equilibrium conditions
for the generalized forces acting on element dx, we multiply this set by virtual
increments of displacements 6f and integrate the product over all bars of
the structure:

{ o7 (L 4+ LT+ Lyf—p)ds = 0. (4.11)

Using in place of displacements f their approximation (4.10) and express-
ing in a similar manner the virtual displacements:

of(x, ) = N(x)dq(). 4.12)
we bring Eq. (4.11) to the form

§ 8a"NT[(L,N) g+ (L. N)@ + (L Ny — plds = 0. (4.13)

s

However, since the virtual increments q can be arbitrary, the single scalar
equation (4.13) can be replaced by a set of n equations for components of
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vector q. This set has the form (4.9) but the matrices K, C and M and the
vector of free terms Q are now calculated using the formulae:

K ={N"L,Nds, € ={N"L,Nds, (4.14)

3

M = {NTL,Nds,

Q = {NTpds. (4.15)

Equations (4.14) require, according to the structure of particular operator
matrices L;, simple transformations whereby several integrations are per-
formed in parts. For example, for operators L; given by Egs. (4.4), we give the
matrices (4.14) the form:

1 ! 1

[ @NT &N S dNT __dN S .
K = (STx'i—EJyEz—dx'i— OT&—NE‘dx'F : N kszdx’
’dz T d?N I
N
C =S dx? EJ,tg dx? dx+ SNTCdex, (4.16)
0
M = {NTuNdx.

0

The finite element method applied do dynamics has been discussed more
comprehensively, for example, by Zienkiewicz (1977). A certain variant
of that method is the rigid finite element method developed by Kruszewski
et al. (1975).

4.2. Integration Techniques for Matrix Equations of Motion

4.2.1. The modal superposition technique

As in the case of structures with infinitely many degrees of freedom, we have
been using a series of eigenfunctions to express vibration, so in the case of
vibration described by matrix-differential equations of type (4.9), we can
present the solution in the form of a sum of eigenvectors multiplied by the
corresponding time functions.

Therefore, we consider first the homogeneous equation

Kq+Cq+Mi =0, @.17
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Let us assume that its solution can be given in the form:

q(t) = ae", 4.18)

where a denotes a vector, unknown for the time being and composed of time
independent parameters. Substituting the above relation into Eq. (4.17),
we get the set of algebraic equations:

(K+Cr+Mr?a =0, 4.19)
which is homogeneous with respect to the components of vector a.

The condition for the existence of a non-zero solution of the set (4.19)
is the vanishing of the determinant of the set:

det[K +Cr+Mr?] = 0. (4.20)
This equation has 2n roots which are complex numbers (cf. (2.24)):
Fris Ty = —“kwkiiw;‘, k= 1,2,...,". (421)

The symbols w, denote vibration frequencies of the structure in the absence
of damping, w, are damped vibration frequencies. Substituting the denota-
tions (4.21) into the condition (4.20), we get:
det[K ~ Coy, — M(w2 — a2 0}) + i, (C—2Ma 0p)] = 0. 4.22)
The condition (4.22) will be satisfied if the two following conditions are
simultaneously satisfied:
det[C-2Mo,w,] = O, 4.23)
det[K— Coy 0, + Mo wf —Mw;?] = 0. (4.29)
From the first condition, we can determine the values for a,w,, and from

the second, the damped vibration frequencies.
For vibration of a system with one degree of freedom the following rela-

tion (cf. (2.20)) occurs:

o = o) T—al. (4.25)
Assuming that the relation also occurs in the present case, the relation (4.24)
can be replaced by the condition, at which we would have arrived for un-
damped vibration:

det[K —Mw}] = 0. (4.26)

Corresponding to each eigenvalue is a different eigenvector

ak = {alk,aZk,...,a"k}, k= 1,2,...,", (4.27)
whose components should satisfy the set of homogeneous equations:

[K—-Mowila, =0, k=1,2,..,n (4.28)
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However, since for each value of w, there is a set with a singular matrix (cf.
(4.26)), it allows only the proportions between individual components of the
eigenvector to be determined. In other words, the set (4.28) consists of only
n—1 linearly independent equations containing » unknown values a;,. Such
a sct can therefore be solved with an accuracy to one constant, which may
be an arbitrary, non-zero component of vector a,. Hence, in n sets of type
(4.28) we have in all n(n—1) equations containing n2 unknowns. The missing
n equations are obtained from the eigenvector normalization condition.

Let us construct using all the eigenvectors a square matrix called a modal
matrix:

A = [319329---9 an]9 (429)
and correspondingly, using the free vibration frequencies, a diagonal matrix
Q = [0, w0, ..., 0. (4.30)

We can now replace the set of equations (4.28) consisting of n subsets by
a matrix set

KA-MAQ? =0, (4.31)

where 0 denotes a zero square matrix, nx #. By multiplying Eq. (4.31) by
AT we get:

ATKA = ATMAQ2 4.32)

Based on the symmetry of matrices K and M, it follows that the products
of ATKA and ATMA are also symmetric matrices. But the product of the
symmetric matrix ATMA by the non-unitary diagonal 'matrix 22 can be
a symmetric matrix only when ATMA is likewise a diagonal matrix. Conse-
quently, both products of ATKA and ATMA are diagonal matrices. We have
proved in this way that the eigenvectors are orthogonal to each other, both
with weight factor K and with weight factor M. But we should recall here the
reservation that in the case of multiple roots of Eq. (4.26), the orthogonality
of eigenvectors is not so obvious and requires additional operations (de-
scribed briefly in Section 3.3).

In addition, let us demand that the matrix ATMA be the product of the
norm m by the unitary matrix:

A™™A = ml. 4.33)
In this way we obtain » additional equations:
ajMa, =m, k=1,2,...,n, 4.34)

which together with the set (4.31) allow all the components of the modaJ
matrix (4.29) to be uniquelly determined. N
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Note that following from the formuia (4.33) is the relation
Al = 1L A™, (4.35)
m

and from formula (4.32)
ATKA = mQ2. (4.36)

It should be remembered, however, that the eigenvectors should satisfy
at the same time the condition following from the assumption (4.23):

[C—2Mu, wi]a, = 0. 4.37)
Performing similar operations as before, we arrive at the equation

ATCA = 2A"MAaQ, (4.38)
and because of the equality (4.33), it follows that

a = [ay, a, ..., %)= _2%n_ATCA9-l' 4.39)

This condition will be satisfied provided that the product of ATCA is a diag-
onal matrix. Specifically, this is the case if the damping matrix C can be
expressed as the sum of two matrices proportional to the stiffness matrix
K and the mass matrix M respectively:

C = xK+uM. (4.40)
We then have

! (ZQ+ Q7). 4.41)

Therefore, we write the general integral of the homogeneous matrix-
differential equation (4.17) in the form

q(r) = Af(t), (4.42)
where

f(t) = {(h(®,£0), ... (D)}, (4.43)

fi(®) = Gre~*¥sin(wit+¢), k=1,2,..,n. (4.44)

We determine the integration constants Gy, ¢ from the initial conditions

of motion described by generalized coordinates. The number of these con-

ditions, 2n, corresponds to the number of integration constants sought.
Seeking a particular integral of the non-homogeneous equation (4.9),
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we shall follow Cauchy’s method used for solving single differential equations.
We assume therefore that the solution of Eq. (4.9) has the following structure :

t
a0 = { g*t—)M1Q(v)dx. (4.45)
0
Taking into account the dimensions of matrices q, M, and Q, we easily
find that matrix q* must be of size nxn. Hence, it is a matrix consisting of
n integrals of the homogeneous equation, each of them having a structure

of type (4.42):

q*(1) = Alf,(0), £2(1), .., £.(0)], (4.46)
f. = {flk(t)’ka(t)a "".f;lk(t)}’ (4.47)
Ju = Gue®sin(wpt+ou), i, k=1,2,...,n. (4.48)

We also demand from the functional matrix g*(¢) that it satisfy the following
initial conditions:

q*(0) =0, q*0) =1. (4.49)
Obviously, the zero matrices 0 and the unitary matrix T all have the size
nxn. In this way, we have obtained 2n* conditions from which we can deter-
mine n2 constants Gy and n® parameters @, occurring in the matrix (4.46).

The first of these conditions (4.49) will be satisfied for

=0 for i,k=1,2,...,n. (4.50)
This enables the matrix (4.46) to be presented as follows:

q*(t) = AF ()G, 4.51)
where F(¢) is a diagonal matrix:

F(t) = [e~“!sinw; t, e~ %" sinwsy 1, ..., e~ **r'sinw, ], (4.52)

and the matrix G is constructed of the coefficients Gy:
Gy, Gz ... Gy
G —_ G21 G22 G2n . (4.53)

Go Gup ... Gy,

The second initial condition (4.49) leads to the relation

4*(0) = AQ'G =1, (4.54)
where &' denotes a diagonal matrix composed of damped vibration fre-
quencies w;. Considering Eqs. (4.35) and (4.54), we get

QG = A = _m‘_ArM. (4.55)
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Hence it follows that
G = L QAT (4.56)
m
Putting the matrix G successively into formulae (4.51):
q*() = 7:1— AF(HQ ~1A™ 4.57)

and (4.45), we arrive at the following particular integral of the set of non-
homogeneous differential equations (4.9):

qr) = %

t
S AF(t— Q' 'ATQ(7)d~. (4.58)
0

Thus, along with the general integral (4.43) we finally have the complete
solution of the damped vibration problem for a structure with a finite num-
ber of dynamic degrees of freedom.

The modal superposition technique described is therefore fairly general,
leading to exact solutions of a discretized set of equations of type (4.9).
However, the use of this technique involves the need to find values and
eigenvectors, which in the case of a structure with many dynamic degrees
of freedom may prove very troublesome. Furthermore, if damping is to be
taken into account, certain assumptions (4.40) concerning the structure
of the damping matrix C need to be made.

4.2.2. Direct integration methods for equations of motion

A different argumentation underlies methods of direct, numerical integration
of the sets of equations (4.9). They consist in determining the ordinates of
functions ¢,(¢) in successive instants, giving up at the same time an exact
determination of variation of these functions between adjoining instants.
We thus come to a successive stage of discretization, and the problem is
reduced to a set of algebraic equations; solving it can safely be left to a digital
computer.

The numerical integration techniques do not impose any limitations on
the form of damping matrix C, and their use, we need no longer cope with
the problem of determining the eigenvalues and eigenvectors. They lead,
however, to loss accurate results than does the modal superposition technique,
because of the requirement of yet one more discretization of the solution.

There are a number of methods of direct integration but for lack of space
we have to confine ourselves to sketching the most typical difference diagrams.
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The derivatives with respect to time in Eq. (4.9) can be replaced by differ-
ence quotients (cf. (4.7)). This leads to the following set of equations at
instants ¢ = sh, where / is the time interval between successive instants that
have elapsed since the beginning of the observations:

S+1 s—1
—q

S—1__ 9o S+1
Kq'+C 1 VR k. il

2h h?
s=0,1,2, ...

Each of the vectors q° contains » components.
Following from Eq. (4.59) is the recurrence formula

= QF, 4.59)

-1
g =[M+Cg] [Q’hz+(2M—Kh2)q’—(M—CA’%)qs‘l]. (4.60)

Since in dynamic problems the initial conditions of motion are given, we
can determine from Egs. (4.60) the displacements successively at instants
s=12,..

More general and more commonly used is the recurrence method de-
veloped by Newmark (1959). He set out from the assumption that between
displacement, velocity and acceleration vectors the following relations occur:

¢ =4 = h{(1-9)§ +p4™ ],
. 1 .
qs+1 - qs - hqs+h2 [(__Z__ﬂ) qs+ﬂqs+1] ,
where the parameters 8 and y can take values from the intervals:
0<p<l, O0<y<l. (4.62)
Using the relations (4.61), Newmark arrived at the following recurrence
formula:
O+ = M+ yhC+ K (BIPQ* +
+G+Hy=20RQ +G—y+ QT+
+[2M - (1-2p) hC— (3 +y—20) *K]q* —
~M-(1—-9)hC+(C—y+pAKig 1], (4.63)
Following a different argumentation, Zienkiewicz (1977) arrived at an
identical formula,
It is easily seen that the difference equation (4.60) is a special type of Eq.
(4.63), when we let § =0, y = 1/2.
The selection of values for parameters 8 and y involves the problem of

fixing the integration step over time, 4. For, depending on the values of these
parameters actually selected, the recurrence process may be either uncon-

(4.61)
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ditionally or conditionally stable. The recurrence process will be numerically
stable, if under arbitrary initial conditions and in the absence of external
loadings, all the components of the displacement vector are limited after

a large, arbitrary number of recurrences.
In the case of conditional numerical stability, the length of the integration
step h cannot be in excess of a specified limited value. For example, if

B < G+y), (4.64)
then the integration step must satisfy the condition

h < 2_____ R (4.65)
Omax ‘/(% + )’)2 —'4ﬁ
where @, denotes the root of the highest value in Eq. (4.26). From the
above condition we find that the difference scheme (4.60) in particular will
be stable, if the inequality below is satisfied:

he_ 2 (4.66)

wmax

The constraints on parameters § and ¢ according to Zienkiewicz (1977)
are given below which, if satisfied, make the recurrence process uncondi-
tionally stable:

B=iG+»: v=i i-y+B=0. (4.67)
The stability and accuracy of various recurrence schemes is considered more
comprehensively by Langer (1979) and Kacprzyk and Lewiriski (1983).

The briefly described integration techniques for equations of motion
involving a structure with a finite number of degrees of freedom are universal

insofar that they are applicable not only to bar structures but to structures
of any type that can be approximated by a discrete system.
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Introduction

In the design of structural elements which can be defined as slender or thin-
walled, the analysis of the stability of equilibrium is no less important than
the analysis of the equilibrium itself. In fact, an unstable equilibrium stands
little chance of being established: it is only possible for certain types of loading
controlled by displacements, whereas in the case of control by external forces
it cannot practically come about. The stability analysis of equilibrium requires
not only departure from the principle of rigidification, consequently, requir-
ing consideration of changes in geometry, but frequently a dynamic ap-
proach as well, namely consideration of the stability of motion about the
equilibrium point.

Real structures exhibit imperfections in shape and in the mode of appli-
cation of the load, and they also feature non-homogeneity of the material.
As a result, next to the stability analysis of perfect structures, the influence
of imperfections on the behaviour of structures must be considered. These
are either certain stability problems or problems related to them through
significant effects of the changes in geometry; hence, they are discussed in
some aspects in the present part.



1. Fundamental Concepts and Stability Criteria

1.1. The Definition of Stability of Equilibrium of an Elastic Body

The stability of equilibrium of an elastic body can be defined in most general
terms as a particular case of stability of motion of that body. We shall con-
sider first a system with one degree of freedom, described by a generalized
coordinate, ¢ = ¢(¢). Lapunov (1907) defined the stable motion of such
a system as that kind of motion for which minor disturbances of the initial
position and initial velocity cause minor |disturbances of position and
velocity at any instant ¢. In a special case, we shall call the equilibrium of
a system stable when giving it a certain small deflection, ¢(0), and a certain
small velocity, g(0) (disturbances of the zero state), causes motion with
small displacements and velocities at any instant ¢ In other words, the
equilibrium point ¢ = 0 is stable when 8, and 8, can be matched to every
pair of arbitrarily small positive numbers ¢,, &, so that if |¢(0)] < é; and
1g(0)] < 8,, then |q(¢)| < &, and |gq(t)| < &, for O < ¢t < co. Formally,
the definition can also be written as a single pair of numbers &, d, for example,

considering the norm }/g%+4¢%, but in fact an additional parameter occurs

then on reducing ¢ and ¢ to dimensionless form which is necessary for a

physically correct norm to be introduced. If lim ¢(f) = lim ¢(¢t) = 0, we
t—>w

t—©
then speak of asymptotic stability. If motion is constrained by &; and &,
only for 0 < ¢t < ¢;, then the equilibrium is stable only in a certain finite
time interval.

In the case of a deformable system, in particular an elastic system, the
kind of equilibrium depends generally on the value of the loading forces.
It is usually sufficient to consider only loadings P; growing proportionally,
P, = AP, (simple loading), where A is called the loading parameter and P;,
are certain constants. If at 4 = A, the motion about the equilibrium point
ceases to be stable, the value of the loading parameter A, is said to be the
critical value.
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Lapunov’s definition can be generalized in various ways in the case of con-
tinuous deformable systems with an infinite number of degrees of freedom.
Koiter (1963, 1965) proposed to replace |g| and |¢] in this definition with
appropriate Gauss’ norms (L,) for the lengths of displacement vectors u
and velocity vectors u, namely

ull, = ]/W
il = VW

where V stands for volume of the body, M—its mass, p—density of the ma-
terial, and u, = u,(x, y, z}—displacements; moreover, Einstein’s summation
convention (summation over i) has been applied in Egs. (1.1). With such
a generalization the equilibrium point is stable, if the inequalities |u(0)||,
< 8, and ||#(0)||], < 6, imply that |[u(f)]l; < & and [lu@)|l; < & for
0 <t < oo. It is sometimes more convenient to consider the amplitudes
instead of the norms (l.1), this corresponding under certain additional
assumptions to Chebyshev’s norms for displacements and velocities. The
dependence of the stability region on the adopted norm was investigated
by Shield and Green (1963), Movchan (1963) and Nemat-Nasser and Herrmann

(1966).

(1.1)

1.2. The Kinetic Criterion of Stability

A direct application of Lapunov’s definition to the study of the stability of
equilibrium is called the kinetic criterion of stability; in order to avoid ter-
minological misunderstandings we use here the term “kinetic criterion in the
broader sense”. Its application will be demonstrated using the example of
a system with a finite number of degrees of freedom.

Consider motion about the equilibrium point q = 0, where q denotes
a column vector with n generalized coordinates (displacements). We confine
ourselves to a linear case, admitting a dependence of the forces (acting on
the system when deflected from the equilibrium position) on the displacements
and on the velocities. In matrix notation the equations of motion then have
the form

MG+Cq+Kq =0, (1.2)

where M denotes a square matrix of inertia (a symmetric, positively defined
mass matrix), whereas the square matrices C and K describe the forces acting
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on the system while in motion. For classification, we decompose the latter
matrices into symmetric and antisymmetric part according to the scheme
C = C,+C,, rewriting (1.2) in the form

Mg+ (C,+C)q+ (K, +K,)q = 0. (1.3)
The forces (— K,q) have the potential
U = —%qTqu’ (1.4)

where the superscript T denotes a transposed matrix. These forces are said
to be conservative or monogenic (H. H. E. Leipholz)-in most classical sta-
bility problems, only forces of this type are involved. All other forces are
called non-conservative or polygenic and as proposed by Ziegler (1953, 1956),
they are classified as follows: (— K,q)—circulatory forces, e.g., where follower
loadings are involved; (—C,{q)—dissipative forces, e.g., viscous friction
forces; (—C,@)—gyroscopic forces causing no energy dissipation, e.g. in
the case of rotating shafts.

Considering the solution of Eq. (1.2) in the typical form for linear equa-
tions

q = ae”, (1.5)

where A may be a complex number, we obtain the following equation with
an unknown column vector of amplitudes a:

Mi2+Ci+K)a = 0. (1.6)
The condition for the existence of non-trivial solutions of this equation
det(M22+C1+K) =0, a.n

where det denotes a determinant formed of the square matrix, is an equation
of degree 2n with respect to A. It has n pairs of complex, conjugate roots

}‘J = yfiiwj’ j = 1a2a e Ny (1.8)

where w; are the frequencies of oscillating motion and y;—coefficients de-
scribing the increase or decrease of the amplitude. The motion about the
equilibrium point is stable, and consequently the equilibrium is also stable
when all the amplitudes are decreasing time functions (asymptotically stable
motion). In this case, loss of stability takes place when the real part of one of
the roots y; equals zero. If at the same time w; = 0, loss od stability is said
to take place by divergence (buckling), but if w; # 0, it then takes place by
flutter (growth of the amplitude of vibration). The condition y; = w; = 0
signifies the possibility of an equilibrium existing in an adjacent position
(neutral equilibrium in the tested position) and it is called the static criterion
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of stability, whereas y; = 0 at w; # 0 is called the kinetic criterion of sta-
bility (in narrower sense). Thus, the kinetic criterion in the broader sense
covers the static criterion and the Kinetic criterion in the narrower sense. The
case where some y; are identically equal to zero should be considered separ-
ately. In that case, if all w; are different, then the corresponding amplitudes
of vibration are constant: the loss of stability by flutter is liable to occur
here when two frequencies w; become equal, since then a term of the type
tsin wt with an infinitely growing amplitude becomes involved.
Equation (1.7) after expanding has the form

a012n+a112n—1+ ves +a2"_1 l'*‘az" = 0, (1.9)

where the coefficients a; depend generally on the loading parameter 4. The
non-negativity conditions for the real parts of all the roots of Eq. (1.9) have
been formulated by Routh and Hurwitz. They have the form 4, > 0, k = 1,
2, ..., 2n, where the last determinant has the form

a a, 0 0 0 0
as a, a, a, 0 ... 0
Azn = 05 a4 as a; a; . 0 (1'10)

and the determinant 4, is the principal subdeterminant of the determinant
A,, (formed by retaining only k of the first rows and columns).

For n = 2 (two degrees of freedom, the simplest case in which the matrices
can be asymmetric) we obtain four conditions which, assuming a, > 0,
can be reduced to a; > 0, a3 > 0, a, > 0 and

a,a,a;—apa:—asa? > 0 (1.11)

(from which it also follows that @, > 0). The criterion (1.11) is the kinetic
criterion in the narrower sense; the static criterion is obviously a, > 0, since
only then does the imaginary part of the root 4; pass simultaneously through
Zero.

If a, = a; = 0, then the condition (1.11) will not be satisfied, and equat-
ing the left-hand side to zero is an identity and does not constitute a criterion
for loss of stability. Thus, the loss of stability by flutter takes place when the
roots of the biquadratic equation (1.9) become equal; hence, the kinetic cri-
terion of stability in the narrower sense takes the form

a:—-4aya, > 0, (1.12)
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with a, > 0, a, > 0, a, > 0. For limit transition a; —» 0, a; - 0, the cri-
terion (1.11) does not pass as a rule into (1.12); a transition of this type occurs
only in the particular case

. a a,
lim = =2—"*%, (1.13)
a0 @3 a,

a3-»0

The non-vanishing odd coefficients occur primarily as the result of viscous
damping; therefore, if (1.13) does not occur, then, in a non-conservative
case, even small damping may exert a significant, discontinuous effect on the
critical value of the loading parameter A.

In the general case of a system with » degrees of freedom, (1.9) , the static
criterion for loss of stability has the form

a,, =0 it means detK =0, (1.14)

An effective form of the criterion (1.14) can of course be formulated by
a purely static analysis, without dynamic considerations. In a conservative
case where the matrix K is a symmetric matrix, the loss of stability can be
defined only by the static criterion (1.14) (flutter cannot take place), so that
dynamic analysis is actually unnecessary (Ziegler, 1952; Bolotin, 1961).
This applies likewise to the occurrence of gyroscopic forces, defined by
the matrix C,, since buckling then cannot be preceded by flutter (Leipholz
et al, 1978). Furthermore, Leipholz (1974) has given certain sufficient
conditions justifying the application of the static criterion alone to some
non-conservative problems (“conservative systems of the second kind”).
In a general non-conservative case, the loss of stability may be determined
by either the static criterion or by the kinetic criterion in the narrower sense.

1.3. The Static Criterion of Stability

The static criterion for loss of stability (1.14), which expresses the vanishing
of vibration frequency w, signifies the existence of an equilibrium also in
a certain position adjacent to that under investigation. In that case, either
a certain new form of equilibrium develops, in other words a bifurcation
of the equilibrium form takes place, or else the loading parameter /1 reaches
a local maximum, which in a load-controlled process means the appearance
of a jump called snap-through. (In a particular case, a horizontal inflexion
point of the displacement-force curve, reducing the jump to zero, is also
possible). In the event of bifurcation, the primary form of equilibrium ceases
to be stable in most cases, but the new form of equilibrium may be equally
stable as unstable.
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For an elastic body with an infinite number of degrees of freedom, the
equilibrium can be described by a certain set of differential equations, non-
linear in general and of the form

N“[ll]+/1N2,[ll] = 0, i= 1,2, g R, (1.15)

where Ny; and N,; denote respective differential operators, u—displacement
vector. To investigate the stability of the equilibrium, we have to consider
the effect of geometry changes on the distribution of the internal forces and
reactions, i.e., the principle of rigidification has to be neglected. The analysis
of stability is closely associated with the study of non-uniqueness of sol-
utions of the set of equations (1.15); in view of the departure from the prin-
ciple of rigidification, Kirchhoff’s theorem of uniqueness of solutions in linear
elasticity theory ceases to be valid. The general theory of the static criterion
of stability, based on the equations of non-linear elasticity theory, was
developed by Biezeno and Hencky (1928), Trefftz (1933), Novozhilov (1948),
Ishlinsky (1954) and Bolotin (1956).

If homogeneous boundary conditions are linked to Egs. (1.15) and if
the basic equilibrium position is described by the function # = 0 (where u may
denote just some characteristic components of the displacement vector, e.g.
deflections of a bar), the bifurcation can then also be described by a set of
linear differential equations

Ly[u]+ALy,[u] =0, i=1,2,..,n, (1.16)

where the linear operators L,; and L,; are formed from N,; and N,; by omitting
the non-linear expressions (this being, however, not equivalent to returning
to the principle of rigidification). The problem (1.16) is a problem of eigen-
values and it enables an exact determination of the critical values of the
loading parameter A (Jasinski, 1956), but not the determination of the dis-
placements, i.e., it does not define the postcritical behaviour of the system
These displacements, ¥ = u(x, y, z), are determined only with the accuracy
to a constant. For a system with an infinite number of degrees of freedom
we obtain an infinite sequence of eigenvalues A;, each of them corresponding
to neutral equilibrium, whereas the smallest of them gives the practically
important value of the critical loading A. To analyse the loss of stability
causing a snap-through, it is necessary as a rule to use equations of non-linear
theory of (1.15) type: the loss-of-stability condition requires that the loading
parameter / reaches the maximum. In addition, an exact analysis of bifur-
cation, with non-zero displacements in the fundamental state, u # 0, calls
for the use of non-linear equations; the possibility of linearization has been
considered in general terms by Wesolowski (1974).
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1.4. The Energy Form of the Static Criterion

We confine ourselves at first to a conservative system with n degrees of
freedom, denoting arbitrarily selected generalized coordinates by ¢;, i =1,
2, ..., n. The sum of the potential energy of elastic strain L, and of the poten-
tial U which (with an appropriately chosen arbitrary constant) equals the
work done by external forces L, with opposite sign

I=L+U=L,--L, (1.17)

shall be called the total potential energy.

A necessary and sufficient condition of equilibrium of a system (for any
form of equilibrium) is for I7 to be stationary with respect to the generalized
coordinates

ol(g;, 4) _
9q;
Denote the coordinates ¢; determined by the Egs. (1.18), i.e., corresponding
to the equilibrium point with parameter A, by ¢F and the corresponding

value of total potential energy by IT%. The increment of the coordinates and

of the energy in relation to the balance point is denoted by u; and v, respect-
ively

0, ij=1,2,..,n (1.18)

w=q—qf, v=II-II" 1.19)
Expanding v into Taylor’s series and taking (1.18) into account, we can write
1 QiUT® 1 3IE
V9= — 77— —_——
3 24,00, uu; + § 74,94,54, wuu+ ..., (1.20)

where the superscript E connotes that the given derivative is calculated at
a point corresponding to the equilibrium point, ¢; = ¢¥, and in addition,
Einstein’s summation convention is used. The stability of equilibrium depends
in the first place on the quadratic form v,,, being the first non-vanishing
term of the series (1.20).

By a suitable linear transformation of the generalized coordinates

wy =gy, i,j=1,2,..,n, dete;#0, (1.21)

the quadratic form v, is reducible to diagonal form

1
U =5 Ciw?, (1.22)

where C; are certain constants dependent on the loading parameter. The
diagonal form (1.22) greatly facilitates the analysis of stability; the coordi-
nates w; are called the principal coordinates and C; are called the coefficients
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of stability. If all coefficients C,; are positive, the quadratic form (1.22) then
being positive definite, every change of the coordinates u; or v; causes an
increase in the total potential energy /7, and the equilibrium of the investigated
system is stable. The vanishing to the lowest coefficient C; signifies the critical
state and a negative values of just one C; signifies instability. The number
of negative coefficients C; is called the degree of instability of the system.
The stability or instability of the critical state, and also the case of semidefi-
niteness of the quadratic form v,,, irrespective of the value of parameter A,
require investigation of further terms of the series (1.20) (Thompson and
Hunt, 1973; Huseyin, 1975).

For systems with two degrees of freedom, the diagonalization (1.21) cor-
responds to seeking the principal values of a plane tensor. They are given
by the formulae

1{o31 %1 ) /1 {02 I\ oI \2
Cio=loat+—g |+ ~(»——— ) ( ) , (1.23
e 2( 8q3 ' g5 V 4\ 8¢} 9q3 39, 04> 1.23)
and the condition of critical state has the form
T o211 ( Il \?
— = 1.24
ot o \agoas) (1.24)

For a system with n degrees of freedom, the critical-state condition can be
written in the following form (Rzhanitzin, 1955; Volmir, 1963):

o1

det ——— =
09,04,

(1.25)

In the case of the function /T being analytic, the condition (1.25) is a necessary
but not sufficient condition of the critical state.

For systems with an infinite number of degrees of freedom, the positive
definiteness of the quadratic form v, turns into positive definiteness of the
second variation, 62/ > 0. The vanishing of the second variation

&I =0 (1.26)

is the criterion of neutral equilibrium, i.e., the criterion of the critical state
(a necessary condition). This criterion is very convenient for analysis of snap-
through problems. On the other hand, the criterion of bifurcation can be
expressed in a simpler way as the condition of equilibrium in the new, adjac-
ent position

oI, =0, (1.27)
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where the subscript ¢ means that the total potential energy is calculated not
for the fundamental trajectory but for the new forming one. We find, more-
over, that the minimum value od I7, in the adjacent position equals zero, i.e.,

I,=0 (1.28)

is also a criterion of bifurcation. The criterion (1.27) is the basis of Ritz’s
approximate energy method and (1.28) is the basis of Timoshenko’s energy
method (Volmir, 1963).

1.5. Stability Versus Buckling

By buckling we understand usually the result of loss of stability of the basic
form of equilibrium by bifurcation, i.e., the transition of the system to a new
equilibrium path. In practice, such an idealized effect is not likely to take
place, since in the case of bars under compression, for example, the assumptions
of perfect axiality of loading and a perfectly straight axis of bar must hold.
It will therefore be useful to broaden the meaning of the term “buckling”.
As proposed by Wierzbicki (1954) we shall call the phenomenon just
described “buckling in the mathematical sense”, emphasizing in this way
the idealized assumptions of the analysis. On the other hand, by “buckling
in the engineering sense” we shall understand all associated phenomena, e.g.
eccentric compression of bars with a small initial curvature. Although
the analysis of this type of problems is often not a stability analysis in the
strict sense, it merits, nevertheless, joint treatment on account of the similar
character of the phenomena and the similar approach to the problem (e.g.
the necessity of departing from the principle of rigidification), and also owing
to the possibility of limit transition from buckling in the engineering sense
to buckling in the mathematical sense.



2. Elastic Stability of Axially Compressed Prismatic Bars

2.1. The Euler Problem

We confine ourselves at first to loadings of a spatially fixed direction, i.e.,
loadings which on loosing stability retain their direction with respect to
space, and having a fixed point of application with respect to matter. Such
loadings are conservative and the static criterion for stability is sufficient
for their critical value to be determined. For a single concentrated force P,
the respective critical values for various support modes of a bar were
determined in the mid-18th century by L. Euler, considering the equilibrium
of the bar in an adjacent position (neutral equilibrium of the straight po-
sition).

For statically determinate support modes, we can use directly the basic
equation of elastic bending

Ew' = —-M, @.1)

where E—Young’s modulus, J—axial moment of inertia of cross-section (the
least moment of inertia if buckling is possible in any direction), w—deflec-
tion, M—bending moment which, taking an appropriate reference system,
can be determined by the formula

M = Pw. 2.2

Calculation of the critical force is reduced here to the problem of eigenvalues
for the differential equation

w'+k?w =0, k =1V PJEJ, (2.3)

with two homogeneous boundary conditions. In the case of static indeter-
minability, more boundary conditions are involved; on the other hand, in
Egs. (2.2) and (2.3), we do have unknown reactions. It is more convenient
then to use a more general, fourth-order equation of bending

w4+ k2w =0 24
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where the number of boundary conditions always conforms to the order
of equation. In formulating the boundary conditions involving the transverse
force, notice should be taken of two possible definitions of this force
(Timoshenko and Gere, 1961). To distinguish between them we call the force
tangent to rotated cross-section—the material transverse force T,

T, = —EJw", 2.5)
and the force tangent to cross-section of primary orientation—the spatial
transverse force T

T, = —EJw'"' —Pw'. 2.6)
Both expressions are appropriate to formulate the boundary conditions, but

should be consistent in expressing the respective transverse force by the
external loading.

The general integral of Eq. (2.4) has the form
w = C;sinkx+C,coskx+Cyx+Cy. 2.7

Fig. 2.1. General case of support of bar ends

In the general case of a bar with elastically clamped ends (Fig. 2.1), the system
of axes can be fixed with the lower support, to be treated as immovable;
one of the boundary conditions then always has the form w(0) = 0, whereas
the other three conditions can be written in the form

w'(0) = v w"(0),

wi(l) = —yp, Iw"()),

w(l) = —yBw" D) +k*w (D], (2.8
where the dimensionless positive constants y, and y, describe the rigidity
(or rather flexibility) of the clamping (rotation) and y describes the rigidity
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of the sidesway. The values of these constants in typical particular cases of
support modes of bar and the corresponding least eigenvalues k/ are listed

in Table 2.1.

TasLE 2.1. Typical cases of support of bar ends

Case E !
[}
H 1
”. 2
Y = 0 0 0 0 0
¥ = 00 0 0 00 0
Y= 00 0 o0 0 0
ky l ; ™ n 4.4934 2r
P 2 1 1 0.6992 0.5
Degree of re-
dundancy 0 0 1 1 2

In a general case, for the boundary conditions (2.8) to be satisfied the
determinant

0 1 0 |
2 1 0

x 2]q; ; vk ! 2 =0 (2.9)
kcoskl—y, k2Isinkl —ksinkl—1y, k*Icoskl 1 0
sinkl coskl I+yk2P 1

has to vanish, i.e., after expanding, the eigenvalues k/ are given by the trans-
cendental equation

2— 2+ (py +92) (1 +yk21%) k) cos kil +
+[= 14y, +y, 2P (9 v~y +yy w k2P kisinkl = 0. (2.10)

The least critical force P.., called the Eulerian force P, in the present case,
can generally be determined by the formula

n2EJ

I

P, =Py = k*EJ = (2.11)
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In this formula, /, = ul denotes reduced (effective) length; u = =/kl is a coef-
ficient of support mode, whose values are given by (2.10) and depend on
¥, ¥, and ¥, and for particular case are also listed in Table 2.1.

The critical stress in a bar ¢, (positive under compression) can be deter-
mined by the formula

O =~ = 373~ = 32 (2.12)

where A4 denotes the cross-sectional area of the bar, A = [ [i—slenderness
ratio of the bar, i = }/ J]/A—radius of gyration of cross-section. The condition
of perfectly elastic buckling can be written in the form o, < oy, Where oy
denotes the limit of proportionality of material under compression; it follows
that

S VA= v 2.13)

H

where the limiting slenderness ratio A,;,, is a dimensionless material constant
whose value for many structural materials is about 100.

In the case of relatively short bars of a material of high elastic limit,
a shortening of the bar before the loss of stability may have a significant
effect. That effect can be taken into account by distinguishing the material
coordinate X, 0 < X < I, from the space coordinate x and the current length
of the arc of the bar axis s. The basic equations of small deflections under

longitudinal force N = — P, with consistent allowance for the compressibil-
ity of the axis have the form
do dw ds P
kA =" =y 14
Bag=—M =4 &~ '"& @.14)
where ¢ denotes the angle of deflection (slope). It follows therefrom that
d’w P P )
i) =0 @19

and under boundary conditions of simple support w(X = 0) = w(X =1) = 0,
we obtain

_ n2EJ

~ P(1-P./E4)’
This is a quadratic equation with respect to the critical force P.; finally
we have

P, (2.16)

= . — - Q.17
14+Y1—4P;/EA  i+iy/1-4n2[2*’ '

cr
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where Py denotes the critical force without the compressibility effect con-
sidered. For 4 < 2m, elastic buckling of the bar cannot take place at all.

The influence of shear on the value of the critical force can be considered
in two ways: either by neglecting or considering in the calculation of the
transverse force the additional rotation of the cross-section due to shear
(Timoshenko and Gere, 1961). The more accurate of the two is the latter
method which leads to the differential equation

d?w P nP
T (1+ GA) =0, (2.18)

where G denotes the shear modulus, and » stands for a coefficient dependent
on the shape of the cross-section (# = 1.2 for rectangular cross-section,
n = 2-+6 for typical thin-walled cross-sections). The respective value of the
critical force is

2Pg Pg

4n n
‘I/I+GA 1+aP5

and it is to be noted that the latter form of this formula, which though approxi-
mate is more commonly used in the literature, corresponds to ommission
of the additional rotation of the cross-section in calculating the transverse
force. The value (2.19) is usually not much smaller than Pg; larger differences
are likely to occur in the case of helical springs or built-up columns, latticed
or joined by batten plates (Timoshenko and Gere, 1961).

Pcr=

Q

, (2.19)

2.2. The Influence of the Behaviour of Loading on the Critical Value

If the bar loading is acting not at the rigid support but at the free end of the
bar or between supports, the behaviour of loading in the course of loss of
stability then has a significant influence on the critical value. For the sake
of example we consider a bar clamped at one end, and loaded at the free
end by a concentrated force (Fig. 2.2).

Both the point of application and the direction of the force may change
during loss of stability. The shift of the point of application of the force e and
the angle of its rotation against the deformed axis of the bar y may depend
on the bending deflection f and the slope a. It turns out that only the linear
terms of the respective functions influence the critical value; therefore, the
behaviour of loading can be described by four dimensionless parameters,
o, %, u, v, as follows:
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¥
%@—*
Z 7 2w

Fig. 2.2. General case of behaviour of loading during buckling

= gLa+9f,
¢ = olatdf (2.20)
X =,uoc+v§.

Thus, a moment M and a loading component H perpendicular to the unde-
formed bar (“horizontal”) are formed in the course of buckling at the free
end

M = Pe = Pl(goc+19§),

@.21)

H = Ple—y) = Poc—P(,uoc+vl;~) (na v—)

where 7 = 1—u is called the “tangency coefficient” describing the rotation
of the force with respect to space, which for some applications is more con-
venient than u. Before the loss of stability, when « = f =0, obviously
M = H =0 as well and the load is acting axially. Exemplary values of par-
ameters o, #, u and » are given in Fig. 2.3 for several selected cases of
behaviour of loading (Feodosev, 1950; Gajewski and Zyczkowski, 1970).

The behaviour of loading (2.21) is non-conservative in general. Since the
moment M does elementary work on the angle (—da), and so does the ele-
mentary force H on the displacement (—df), the conservativeness condition,
i.e., the condition for the existence of a potential, has the form

oM _ oH

“F = T and hence & =1—pu =7. 2.22)
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Fig. 2.3. Exemplary behaviour of loading during buckling

All the loadings shown in Fig. 2.3 satisfy the condition (2.22); hence, they
are all conservative. The force tangent to the deformed bar axis (a follower
force of a materially fixed direction) is described by the values of parameters
p=17%=pu=v=0 (ie.,, n = 1); hence, it is non-conservative.

In the case of conservative loadings (2.22), and also in certain non-con-
servative cases (e.g. in systems defined as “conservative of the second kind”
(Leipholz, 1974), the critical load value can be determined by the static
criterion. The equilibrium in an adjacent position is described here again
by Eq. (2.4) with the general integral (2.7), and the boundary conditions,
besides w(0) = 0, have the form

w'(0) = v, w"(0),

w(l) = —k’l[gw’(l) +9 W—EQ] : (2.23)

w'(l) = —k’[yw’(l)+v wg’)].

The additional parameter y, indicates the possibility of elastic clamping of
the lower end; for rigid clamping, y; = 0. The conditions (2.23) can be
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treated as more general than (2.8), namely (2.22) transform to (2.8) by formal
substitution (satisfying the condition of conservativeness)

o=1p:k?P, 6=0, p=1, »=1}k"P, (2.24)

which, however, exceeds the assumption that the above coefficients are con-
stant and independent of the loading parameter k.

Taking into account the boundary condition (2.23) and equating to zero
the respective determinant, we arrive at the following transcendental equation
which is more convenient to express by the parameter 7 instead of u

[2vo+ 290 — (n+ RNkl [2vo+v+ 2790 —(n+ )+ 1+
+ (o + o+ nB)yp, k1 kicoskl+ [y — (vo+ o+ P E21* +
+@o+v+nd—n—8+1)y, k**]sinkl =0, 2.25)

resulting in the critical load within the application range of the static criterion.
The limits of this range were studied by Kordas (1963).

Equation (2.25) is symmetrical with respect to parameters # and 7, con-
sequently interchange of the values of these parameters causes no change
in the critical load. This conclusion turns out to also hold if the more general,
kinetic criterion for stability is used. The system which is formed from a given
system by interchange of the values of coefficients # and 7 is called an adjoint
system. For conservative loadings, & = %, (2.22); hence, the adjoint system
is identical to the initial one, whereas in the case of non-conservative loadings

3 P [
x
Y
W zZ,w 7z ZwW
m (2)

Fig. 2.4. Example of adjoint systems

the critical values calculated for the initial system may be used directly for
the adjoint system. Exemplary adjoint systems are given in Fig. 2.4: for the
first system (follower force), 9 = & = y =» =0 (i.e,, 5 = 1) and for the
second (a force of a fixed direction of the action line),p =7 =v» =0, & = 1.
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The basic theorems for adjoint systems have been proved by Nemat-Nasser
and Herrmann (1966), Ballio (1967) and Barta (1967).

A general analysis of stability in non-conservative cases ¢ # 7 can be
carried out using the kinetic criterion for stability. We shall demonstrate the
application of this criterion with the example of a one-parameter problem,
using for this purpose the parameter » (the tangency coefficient, Fig. 2.5)

% p
x A
A
a
by ——— 3
iz 2 z,w

Fig. 2.5. Follower loading with tangency coefficient %

and assuming ¢ = ¢ =» = 0 plus p, = 0 (rigid clamping). Such a load
is non-conservative, except in the case where 7 = 0 (Eulerian load, of spa-
tially fixed direction and materially fixed point of application). When % < 0,
we call the load antitangential; for 0 < 5 <1, subtangential; for n = 1,
tangential; and for n > 1, supertangential. The source of a tangential force
can be, for example, a jet engine axially attached to a bar.

The equation of small transverse vibrations about a straight equilibrium
position

EJWY +Pw’ +mw =0, (2.26)

where m denotes the mass of unit length of the bar and the derivatives with
respect to time ¢ and marked by dots, can be reduced by substituting w(x, ?)
= el*!f(x) into the ordinary differential equation

EJfY+Pf" —mo*f = 0, 2.27)
with the general integral
J(x) = C;shk,x+C,chk,x+ Cssink, x+ C4cosk, x. (2.28)

The coefficients k, and k, (actually ik,) are the roots of the respective char-
acteristic equation and equal

B Y W)
2 =5 ]/ Py me 2.29)

*oEr vV aeEnt Er
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The boundary conditions (2.23) in the present case, y; =p =9 =» =0,
4 = 1—m, lead to a transcendental equation of the form

Ak, ka2, m) = Fy(ky, k) +7F, (K1, k) =0, (2.30)
where

F, =2k k3 —k, k, (k3 —k?)shk, Isink, I+ (k} +k3)chk, Icosk, 1,

F, = (K2 —k)[(k:—k?) +2k, k,shk, Isink,]— .31

—(k3—k?)chk, Icosk, 1].

Equation (2.30) relates the natural vibration frequency w to the force P.
The static criterion for loss of stability reduces to @ = 0; then also k; = 0
and k% = P/EJ; the transcendental equation (2.30) becomes a trigonometric
equation, and its solution can be written in the form

2 2

Pd—éfn—I:lE—J = n—lz(arc cosnzl) . (2.32)
Obviously, the same result can be obtained from (2.25).

The static criterion does not lead to any result at # < 0.5. The critical
force is then defined by the kinetic criterion in the narrower sense; in the
absence of damping it reduces to the demand that the root @ of Eq. (2.30)
be a double root (transition of beat into flutter). This root is double if the
following relation holds as well:

oA _[OF, ok, A OF, akz) ( OF, ok, A OF, akz) _
0 “(ak1 70 Tk, o) T\ Gk, e Tk, )=

Calculating the derivatives ok, /dw and 0Jk,/dw from (2.29), substituting
into (2.33) and rearranging, we obtain

(2.33)

[ R N . ) @34)
The set of equations (2.30) and (2.34) determines the functions p = p(7)
and o = w(n). The first makes the critical force dependent on the tangency
coefficient # and the second gives the corresponding double frequency cw.

The relation p = p(n) has been thoroughly investigated by Kordas
and Zyczkowski (1963). The curve reaches a minimum at point 7 = 0.5,
being p = 1.62646. However, since the kinetic criterion in the narrower
sense is valid for 7 > 0.5, the function p = p(z) increases monotonically
in this interval. For # = 1 (the tangential force), we get p = 2.03158, i.e.,
P, =20.0509 EJ/t?; Beck (1952) was first to obtain this value. This
force is more than eight times as great as the Fulerian value p = 0.25 for
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n = 0. Likewise, the stress condition of safety for a bar under a tangential
force justifies the assertion that it is significantly less dangerous than a force
of fixed direction (Kowalski and Zyczkowski, 1967). For 7 - o we obtain
an asymptotic value p — 4.8405. That value is nearly 20 times as great as the
Eulerian value. The plot of the function p = p(#) is given in Fig. 2.6.

Asymptote

Kinetic
Static criterion

criterion

h A
-0 -05 0f 05 10 15 20 g
Fig. 2.6. Dependence of the critical force on the tangency coefficient

The influence of the compressibility of the axis on the critical value of
loading in the non-conservative case considered here was investigated by
Hauger (1975). He demonstrated that when taking compressibility into
account there exists a certain boundary value 7 (dependent on slenderness
ratio 4) above which the loss of stability does not take place at all.

In the application range of the kinetic criterion in the narrower sense,
the critical force depends on two factors which for the static criterion are
insignificant, namely on mass distribution (which may to a certain degree
be independent of the rigidity distribution of the bar along the axis) and of
the possible damping of vibrations about the equilibrium position.

The influence of the mass distribution has been investigated by Pfliiger
(1955), Deyneko and Leonov (1955), Kordas and Zyczkowski (1963). Pfliiger
assumed that the mass is in part continuously distributed and in part con-
centrated at the free end; the other two papers considered two concentrated
masses, placed in the centre of the bar and at its free end, but Deyneko
and Leonov (1955) confined themselves to # = 1 and Kordas and Zycz-
kowski (1963) investigated the entire variation range of 7. All the authors
found a certain most unfavourable mass distribution at which the critical
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force is least (less than about 20/ of the force calculated for a uniform mass
distribution).

The influence of damping of vibrations on the value of the critical force
was investigated in the first place on a simple model with two degrees of
freedom, proposed by Ziegler (1953), Fig. 2.7. When internal friction (in

x A he.

Fig. 2.7. Ziegler’s model with two degrees of freedom

hinges) is considered, this causes a reduction of the critical force, i.e.,
destabilization (Ziegler, 1956; Herrmann and Jong, 1966). On the other
hand, the influence of external friction has a stabilizing effect (Gajewski and
Zyczkowski, 1972; Gajewski, 1972) when the coefficients for the two types
of friction tend toward zero, the corresponding critical load depends on the
ratio of the coefficients.

For Ziegler’s model loaded as in Fig. 2.7, the equation of small vibrations
is easiest to derive on the basis of Lagrange’s equation of the second kind,
generalized to the case of dissipative forces

d ( aE,,) oL, oD ,
JR— < L + = N 1= 1, 2’ (2.35)
dt \ o9, op;  Opy 2

where E is the kinetic energy, L, the elastic strain energy, D the dissipation
function, and Q, the generalized forces, both with and without a potential.
(In place of L, we can also put the total potential energy I7 (1.17), and then
by Q, we should understand only the forces having no potential.) In the case
considered, allowing both for internal and external damping, the following
relations hold:
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12 .
E, = -5 [(Pm; +3m3) ¢F +ym, @, 2+ v*m, $31,
1 2 2
L, = 5 [(c1+c)pi—2¢, 0, @2+, 93],

1 . . . .
D =7[(b1+b2)¢%—2b2¢1¢2+b2¢§]+
(2.36)

1 . . . .
+7[(a211+%rz)¢%+yrz¢1 @2 +y2T2 93,
P]
0, = *2—(%—77‘?2),

Pl
0, = “‘2—(1—77)‘?2 s

where ! denotes the length of the whole bar model, « and y describe the posi-
tion of concentrated masses m, and m, (Fig. 2.7), ¢; denote elastic rigidity
of hinges, b; are the coefficients of internal damping, z; = /2%, are the coef-
ficients of external damping and 7 is the tangency coefficient.

Substituting (2.36) into (2.35), we obtain a matrix equation of type (1.2),
in which

M= 'ocz,,:l+im2 %;;mZ] 2.
| zym2 ym;
c - by +by+ ol +37; —b2+§y12]
| —b+3yT, b +y*1, |’ @.37)
X - (¢, +c;—3 Pl —cz+§PI17]
L —C2 02+%Pl(1“77) ’
_ r(pl
1= .‘P2]'

Matrix C is symmetric (no gyroscoping forces occurring), and matrix K
is symmetric only for n = 0, whereas in a general case, the system is non-con-
servative. Considering the solution in the form (1.5), we arrive at a set of
linear homogeneous algebraic equations, and equating to zero the principal
determinant of these equations gives the vibration frequency and enables
stability analysis.

In the particular case « = y = % (concentrated masses placed in the centre
of the component bars), m, = m, = m and ¢, = ¢, = ¢, we obtain the
following quartic equation:
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244+ (168, +160B, + T, + T,)2° +
+[(176-24(2—n)f +256B, B, +16B, T, + 144B, T, +
+16B, T, + T, T,))2* + [1282— f+7nf) B, +
+256(1+7nB8—p)B,+8QR+nf—p) Ty +
+8(20+278—5P) T,)2 + 64[4— 6(1 —n) B+ (1 —7) f2] = 0. (2.38)

In this equation, the following dimensionless quantities were introduced

1/2
Q = l(-’i) a)’ ﬂ = .£l_ ,
c c
= Lm ) Ti = —‘Ei:
Iy me lyme’
The static criterion 2 = 0 defines the first and second critical force by a simple
formula, in which the damping coefficients B; and T; do not occur

2z q/2" 5
Bi.2 =3F ]/—1—_—" (2.40)

The above formula is not valid- in the interval 5/9 < n < 1, in which the
critical force can be determined only by the kinetic criterion in the narrower
sense. In the absence of dampings, B, = T; = 0, Eq. (2.38) is a biquadratic
equation and the criterion takes the form (1.12). Hence,

(2.39)

'Bi l=1,2

_ 6(20—-9n) £12)/ —9n% + 14n—4

2.41
Pr.a 992 —329+32 2.41)
y e
20} £=1, £=1
15
|
I
| .
10r L static
l criterion
X = 00 _
5
Static N i x=1
criterion | x=0
1 | N I |

0 04 08 12 % 7

Fig. 2.8. Dependence of critical force on tangency coefficient for Ziegler’s model
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Even if only one type of damping is considered, Eq. (2.38) is acomplete
quadratic equation, and the criterion for stability takes the form (1.11). Also
following therefrom is a quadratic equation for critical force 4, though much
more complicated in structure. The respective equations are transformed to
(2.41) only in the particular case (1.13) which generally does not occur.

An exemplary plot of § = f(n) is given in Fig. 2.8. Homogeneous damping
has been assumed here, B, = B, = B, Ty = T, = T, and the critical force
is presented in terms of the ratio T/B = x with T'— 0 and B — 0. The ex-
ternal damping causes the critical force to grow, whereas with pure internal
damping » = 0, we obtain essential destabilization in relation to the results
of Eq. (2.41).

The influence of damping on the stability of real bars was investigated
by Bolotin and Zhinzher (1969). They established an essential destabilization
due to damping, leading to the disappearance of discontinuity of the function
p = p(n) at point 5 = 0.5, clearly visible in Fig. 2.6 in the case of no
damping.

The influence of the behaviour of loading on the loss of stability is very
significant in the case of bars in tension. With the Eulerian behaviour of
loading (materially fixed point of application, direction fixed in space), the
bar cannot lose stability at all (if we disregard the effects of great strains
leading to a decrease of the bar cross-section). With a more general behaviour

"5
P
Fig. 2.9. Example of loss of stability of a bar under tension

of loading, loss of stability is possible (e.g. loading of a vessel by a liquid,
Fig. 2.9). Problems of this type were investigated by Gajewski and Palej
(1974).
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2.3. Postcritical Behaviour of Bars under Compression

Linearized equations of the type (2.3) or (2.4) allow the critical force to
be determined but do not determine the deflections during buckling, and
they do not allow an analysis of the stability of a deflected bar. Such analysis
is possible only on the basis of exact non-linear equations, using the exact
formula for curvature » = —dg/ds. In the case of a prismatic bar loaded
by a concentrated force of fixed direction, instead of (2.3) we can write

de W
—EJTS— =rw, -d—s = slneg. (2.42)
Hence,
EJp' +Psing =0, 2.43)

where denoted by primes is the differentiation with respect to the variable
measured along arc s (the compressibility of the axis has been neglected
here; it was considered by Pfliiger (1964) and Waszczyszyn and Zyczkowski
(1962)). Equation (2.43) has a form analogous to the equation of motion
of a pendulum (Kirchhoff’s analogy). The boundary conditions for a bar
clamped at one end, Fig. 2.10, can be written in the form ¢'(0) = w(0) = ()

Fig. 2.10. Postcritical behaviour of a bar clamped at one end

= 0; moreover, we denote w(!) = f, ¢(0) = «. Integrating (2.43), we obtain
first

2
EJ 9’2 = P(cosp—cosa), 2.49)

and hence,

¢’ = —ky2 y/cosp—cosa. (2.45)
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Further integration leads to elliptic integrals. Tn order to reduce them to
normal form, the functions of angle ¢ should be expressed by the functions
of @/2 and an auxiliary unknown # should be introduced by means of the

formula

sin % = sin—;— sind. (2.46)
We then obtain
F(ﬁ, sin%) = k(l—s), (2.47)

where F denotes an incomplete elliptic integral of the first kind. For s = 0
we have ¢ = a, i.e., # = ©/2, and hence the slope at the free end is given
by the equation
.o .o
K(sm-z—) = kl, sin - = K_ k], (2.48)
where K denotes complete elliptic integral of the first kind, and K_, is the

inverse function with respect to this integral, The deflection w can be deter-
mined by the equations (2.42), (2.45) and (2.46):

dw = 2sin - cos ¥ ds = 2sin > sin @ 1—sin2 > sin?dds, (2.49)
2 2 2 2
dw = — 2 sin % sinddd, w=->sin> cosd (2.50)
= ? Sln—i sin , w = 'E 3 . .
Letting s = / and & = 0, we calculate the bending deflection
2 .« 2
f= & S5 = —k—K_l(kl). (2.51)

Similarly using the relation dx = cosgds, we can find the axial displacement
of the free end of the bar (approaching of the bar ends) from the formula
2 (. a)
=2_= = 2.52
u=2l kE(s1n2 , (2.52)
where E denotes the complete elliptic integral of the second kind. The function
(2.52) is a compound function because o depends on loading force P accord-
ing to Eq. (2.48).
More convenient formulae are obtained by denoting the ratio of force P
to Eulerian force by m
P 4p? 4k1?



276 STABILITY OF BARS AND BAR STRUCTURES PART 3

namely
. T
Sln% = K“(E ]/m),
f_ 4 ( —) )
T — n'/’; K_1 > ]/m , (254)

)

Since the minimal value of the integral K is =/2, the function K_, is deter-
mined only for an argument not smaller than =/2, ie., m > 1, therefore
only in the postcritical region.

The tangent to the free end of the bar will be horizontal if & = n/2. From
Eq. (2.48) it follows that kI = K(=/4) = 1.8541; hence, m = 1.3932, and the
corresponding value of approaching of the bar ends is u/l = 0.5431. The
parameters of maximum bending deflection f are given by the transcendental
equation

E-2(1-k)K =0, (2.55)

where k, denotes the modulus of the elliptic integral. (The traditional deno-
tation k has been replaced here by k. to distinguish the modulus from the
symbol k =}/ PJEJ; in the present case, k., = sin(«/2).) Equation (2.55)
follows from the differentiation of (2.51) and from the use of the formula
for the derivative dK/dk,.. The root of Eq. (2.55) is k. = 0.83745, hence the
corresponding angle o = 113°45’; from Eq. (2.48), kI = 2.0773, hence

N!Q
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[}

-

~100°

0.5F50°

1 L 1 1 -

0 05 1 15 2 25 I m

Fig. 2.11. Generalized displacements of free end in terms of loading
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m = 1.7489 and (f/Dmax = 0.8063. The free end of the bar will touch the
base plane if u = 1, i.e. in view of (2.52), 2E = K. The root of this equation
is k, = 0.90891, hence « = 130°43’, from Eq. (2.48), ki =K = 23211,
hence m = 2.1834; the corresponding deflection value f// = 0.7832. The plots.
of functions (2.54) are given in Fig. 2.11, and typical deflection lines and
trajectory of the free end of the bar, in Fig. 2.12.

\Ix

s,

08 7
///// \
g -

0.6 /
04 / ]

\
02 ] -

-02

02 04

Fig. 2.12. The buckling process: deflection lines in relation to parameter m and locus of
the free end positions

Convenient approximate formulae are obtained by expanding the elliptic
integrals into power series and by performing suitable operations on the
series. Inversion of the series for complete elliptic integral of the first kind

25

256k2+ ) (2.56)

K(k,) = %(1+%k§+6—94-k;‘+
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is given by (Zyczkowski, 1965,)

2 9(2 167 (2 2
Hence,
sin - Zl/l/m—l[l-—- (/m=1)+ 257 (/1) + ] 2.58)

S8 l/ Ym—t[ 9, — 167 2

T== —— |1 §(;/m ) il 28 Vm-1)*+ .| (2.59)
Similarly, by expanding the integral E into a series and then substituting
(2.57), we find the displacement u from the series

u 2 — 3 — 2
5= 2—?7[1—(Vm—1)+7(1/m—1) + ] (2.60)

The series (2.60) allows easy determination of the derivative d(u/l)/dm at
the point m =1 (at critical force). This derivative equals 2, i.e., du/dP
= 2l[Pg; the axial flexibility of the bar, equal du/dP = I/EA in the subcriti-
cal range, at P = P, grows stepwise to attain

du _ 1 21 / ( ) 222 )
dP |p-p, " EA "B, T EA\' TR
(Rzhanitsin, 1955).
Equations (2.48)-(2.61) apply to the equilibrium branch of a deformed
bar, which corresponds to bifurcation at the first critical force. The boundary
condition ¢ = « for s = 0 can also be satisfied letting # = 3x/2, & = 5%/2, ...

(2.61)

P

N
N

Fig. 2.13. Example of a bar whose postcritical behaviour may be unstable
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in Eq. (2.46); we then obtain the description of the other branches of equilib-
rium (Malkin, 1926; Frisch-Fay, 1962). The equilibrium of a deflected bar is
stable only along the first branch; the other branches are unstable (Love,
1892; Popov, 1948). With other than Eulerian behaviour of loading, even
the first branch of equilibrium may be unstable; Stern (1979), investigating the
postcritical behaviour of the bar shown in Fig. 2.13, found that with /, < 0.6/
the deflected equilibrium form is unstable. In the range of small deflections,
this bar does not differ significantly from the bar shown in Fig. 2.3a (force
oriented to a fixed pole), whereas in the case of finite deflections, certain
differences occur due to the motion of the pole along the axis.

2.4. Stability of Bars under Distributed Loadings

In the case of a bar clamped at one end, which is subjected to the action of
a concentrated force and a distributed axial loading of direction fixed in
space and with a materially fixed point of application (e.g. dead weight,
Fig. 2.14), the bending moment is given by the formula

X

M = Pw+ {g(&)w(x) - w(&)]dé. (2.62)

0

wix)
R

wié) | o

Fig. 2.14. Bar under concentrated force and distributed loading

We confine ourselves to the case g(£) = const; after substituting into the
basic equation of bending (2.1) and differentiating to eliminate the integral,
we obtain

EJW"' + Pw' +gxw’ = 0. (2.63)
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The general integral of this equation can be expressed by the Bessel function
J, as follows:

P+gx)?
w = Cll/P+qx11,_,,[3 ]/( ZZ"J) ]+

P+gx)?
+C )/ Praxl- x,3[3] ( 2;{])]. (2.64)

Deflections w need not be calculated here, since the two boundary conditions
w' () =0 and w’(0) = 0 already determine the critical state f(P,gq) = 0.
By differentiating and using the formulae for derivatives of the Bessel functions,
we obtain the following transcendental equation:

(P+ql)3 2 p3
J"-"[a e |7P\3V gt

P+al’
+J_x,.,,[3 (zg?]fz/s( |/ ) (265)

Should a distributed loading be acting alone, P = 0, the first term ap-
proaches zero and we obtain the equation

qP\
J_ 1,3(3 I/EJ) =0. (2.66)

The first root of the equation J_,;3(x) = 0 equals x = 1.8663, following
from which is either a distributed critical loading g., or a critical length /.,
if the load (e.g. dead weight) is known

ger = 7.8369 LIE_{,, I, =1 9863 1 L;J. (2.67)
Greenhill (1881) was first to obtain these values.

Using Eq. (2.63), we can determine the critical state also in the case where
the upper end of the bar is clamped with sidesway (horizontal sidesway),
since then just a constant clamping moment becomes involved in Eq. (2.62),
which disappears with differentiation, and the boundary conditions w’(0)
w'(l) = 0 do not require w(x) to be calculated. The critical state f(P,q) = 0
is given here by the equation

(P+ql)3 2 P3
i | 3 e |3V e )

(P+ql)3 2 "Pf)_
_1_1,3[3] ~ 5 Ty 5V 57 =0. (2.68)
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For P = 0, the second term disappears and we get

Ger = 18.9564 (2.69)

In other cases of support of bar ends, horizontal reactions R occur; in the
formula for moment (2.62), terms of Rx type appear, and hence Eq. (2.63)
becomes a non-homogeneous equation (the corresponding fourth-order
equation would be a homogeneous equation). The general integral of this
equation is expressed no longer by a Bessel function but by Lommel functions.
The coefficients in the formulae for ¢, are (Dinnik, 1913): 18.61 for a simple
support at both ends; 29.50 for a simply supported lower end and clamped
upper end; 52.31 for simply supported upper end and clamped lower end;
73.56 for clamping at both ends without horizontal sidesway.

In the non-conservative case of distributed tangential loadings (of ma-
terially fixed direction) and a concentrated force of Eulerian type, the bending
moment is given by the formula

X

M = Pw+ {q@)w(x) - w(@®) - (x— W (O] dé, (2.70)

V]

and after differentiating twice we obtain the equation

EJwWY +Pw"” +qxw” = 0. (2.71)
This equation is also valid for general, non-conservative concentrated load-
ing P, because the second derivative of the moment from horizontal com-
ponent H disappears. This equation is analogous to (2.63) but with w’ replaced
by w”. In the case of both ends simply supported, the boundary conditions
w’(0) = w’(l) =0 lead to a complete analogy with the aforementioned
clamping with sidesway for conservative loading: we obtain Eq. (2.68), and
in the case P = 0, the critical load ¢, is given by (2.69) (Pfliger, 1950).

In the adjoint case of a loading of a spatially fixed direction and point of
application, the bending moment is

M = Pw+qxw. (2.72)
The equation of bending
EJw’+Pw+qgxw =0 (2.73)
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shows again an analogy to (2.63), and in the case of a simple support at both
ends w(0) = w(J) = 0, we obtain once more (2.68) and (2.69) in agreement
with the general theorem of adjoint systems (Barta, 1967).

In the case of clamping of just one end of the bar, under a distributed
tangential loading, the critical value can be determined only by using the
kinetic criterion. Leipholz (1962) obtained the approximate value

Gor = 40_7_E13i, 2.74)
which is about five times as great as in the conservative case (2.67). Other
cases of support of bar ends were considered by Hauger (1966), whereas the
case of distributed tangential loading with loading of fixed direction, acting
simultaneously, was investigated by Sugiyama and Kawagoe (1975).

Related problems of loss of stability of a bar under a distributed loading
are involved in aeroelasticity in analysis of a bar in a parallel fluid flow.
By the simplest, “local” hypothesis of the action of such a flow on the bar
during loss of stability, it is assumed that the distributed transverse loading
p acting on an element of the bar is proportional to the slope (Fig. 2.15):

p = 2BbUW, (2.75)

AERRRRRCS

Fig. 2.15. Bar in a parallel fluid flow

where B is a constant describing the properties of the fluid, b is the width
of bar of rectangular cross-section (a plate) and U is the stream velocity.
The hypothesis (2.75) is sometimes called the Aypothesis of plane cross-sec-
tions (Ilyushin, 1960) or the piston law (Ashley and Zartarian) and it finds
justification particularly when considering bars in supersonic gas flow.
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The case of simultaneous, distributed (“lateral”) loading p and concen-
trated axial force (head resistance) P was considered by Kordas (1965).
The loading (2.75) is non-conservative, yet the static criterion made it
possible to determine the critical velocity of the stream U as well as a certain
part of the interaction curve f(P, U) = 0 which divides the PU plane into
regions corresponding to stability and instability. The linearized fourth-order
equation of bending takes the form

EJw"Y + Pw'~2BbUw' = 0. (2.76)

In seeking a solution in the form w(x) = Ce**, we obtain a characteristic
equation determining k. It is a quartic equation with one root, k; = 0, whereas
the remaining three are given by Cardano’s formulae

ky = =2, ks =oa+if, ke =oa—if, Q.77)

where

Lo (I/BbU V74 I/BbU I/Zf),

Lz_( BbU VA ]/BbU 2.78)

(%) +(%) |

The general integral of Eq. (2.76) has, therefore, the form
w = C;+Cre"* 4 C3e%sin fx + C, e cos fx. (2.79)

The boundary conditions are very simple when the head resistance behaves
like a tangential force: w(0) = w'(0) = w”()) = w'”’(l) = 0. Equating to zero
the determinant of the set of linear homogeneous equations leads to a tran-
scendental equation yielding the interaction curve f(P, U) = 0:

206~ 3 [(3a2 — B%)sin Bl +4afcos fl]+ f (a2 + ) = 0. (2.80)

In the particular case P = 0, it follows from (2.78) that § = —a}/3 and Eq.
(2.80) is simplified to the form (Movchan, 1956)

4

2e=3% cos(al)/3)+1 = 0. (2.81)
The least root of this equation, in absolute value, equals a/ = —0.92493;
hence,

= 3.1651 — -5~ E7 . (2.82)

‘BbI®
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The interaction curve f(P, U) = 0 has been investigated in the range of the
static criterion and of the kinetic criterion in the narrower sense, for various
values of the tangency coefficient 7 of concentrated force P (Kordas, 1965). The
kinetic criterion also determines a certain negative critical value of the stream
velocity U at P = 0 (despite the fact that the negative value of p in Eq. (2.76)
has a stabilizing character and the static criterion cannot be sufficient in this
case); this value marks the beginning of flutter on the “tension side” and its
absolute value is nearly 20 times as great as (2.82).

2.5. Stability of Bars in an Elastic Medium

In the simplest model of an elastic foundation, proposed by Winkler, the
reaction of the foundation ¢, is proportional to the deflection of the bar
q. = c¢w (the local response hypothesis). The basis equation of bending for
a bar compressed by axial force P and permanently joined (bilaterally) with
a Winklerian foundation, i.e., located in an elastic medium, has the form

wY+k2w” +rw =0, (2.83)
where the following notations have been introduced
Y (4
o = k2, = (2.84)

The roots y; of characteristic equation (2.83) can be determined by the for-
mula

k2 k*
:ul 2,3,4 = _“z‘i‘l/T—'r- (2.85)

These roots for a compressive force P and for a positive (stabilizing) foundation
coefficient » cannot be real; they can, however, be complex or purely imaginary,
depending on the sign of the expression under the root. The sign depends on
an unknown value of the critical force which in turn depends on how the
bar ends are supported; in the general case, we should consider k* > 4r
(“strong support of bar ends”) and k* = 4r, as well as k* < 4r (“weak support
of bar ends”).

Under the assumption k* > 4r, all roots u; are imaginary; we €xpress
them in the form y; = im;, where

m = —ms = V L ]/__;

e e
-

(2.86)

my; = —My =
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and the general integral of Eq. (2.83) has the form

w = C,sinm, x+ Cycosm;x+ Cysinm,x+ C,cosm,x. 2.87)
For k* = 4r, the roots are likewise imaginary, but equal in pairs

my=m, = —My=—my = k/[/5= m, (2.88)
and the general integral is

w = C,sinmx+ C,cosmx+ Cyxsinmx+ Cyxcosmx. (2.89)

For k* < 4r, we deal with two pairs of conjugate complex roots
pu= *(oxxpi), where

o« = ;)/]/Zf—kz, g = ;]/|,/47+ k2, (2.90)
and
w = C,e~**sinfx+C,e”"*cosfx+ C; e sin fix+ C,e**cos fx. (2.91)

It turns out that the case of a simple support at both ends comes under “strong
fixing” (just like clamping at both ends). Assuming k* > 4r and using the
integral (2.87) with boundary conditions w(0) = w''(0) = w() = w"() =0
and equating the determinant of the set of linear equations to zero, we arrive
at the equation

(m?—m3)2sinm, Isinm,] = 0. (2.92)

Hence, in view of the assumption m, # m, (following from k* > 4r), we obtain
my! = nw or m,l = nx, i.e., after using (2.86)

_ P nin? rl?
TE TPt
The number of half-waves n must be an integer. However, the critical force
(2.93) need not necessarily reach a minimum value for n = 1; the plots of
functions P = P(r) are straight lines for individual », from which we should
select the line yielding the minimum value of P for a given value of r (Fig.
2.16). The adjacent straight lines intersect at points with abscissae r = n*(n+
+1)?w?/I2. But, assuming that n need not be an integer and finding that
number from the analytical condition of minimum P, we determine the envel-
ope of the family of straight lines (2.93); in this way we obtain a certain
convenient lower estimation of the exact value, namely

k2 (2.93)

n= Tl? Vr, Po=2EIyr=2yEJc. (2.94)

This parabola is indicated in Fig. 2.16 by a broken line. It is seen that the
parabola (2.94), being the lower estimation, meets the condition k* = 4r.
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0 10 20
=
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Fig. 2.16. Critical force for a bar in elastic medium

Consequently, the adopted assumption k* > 4r was in fact justified. The
value (2.94) is an exact value for an inifinitely long bar.

The stability of the postcritical behaviour of a simply supported bar in
an elastic medium has been studied by Lekkerkerker (1962), Thompson and
Hunt (1973); it turns out that only in two intervals, 0 < rl*/n* < 1/3 and
4 < rlI?/n? < 16/3, is the postcritical behaviour stable, whereas in the remain-
ing intervals it is unstable.

As an example of a bar “with weak fixing at the ends” we consider a bar
with one end free; the simplest result is obtained taking the other end to
extend to infinity, Fig. 2.17. Assume k* < 4r in the case considered and use

zwl

Fig. 2.17. Example of a bar with “weak support of ends”

the integral (2.91). Two boundary conditions in infinity lead to the conclusion
C; = C4 = 0, whereas the other two have the form w(0) = 0 and w'”’(0)+
+k2w’(0) = 0. Using these conditions and equating the determinant to zero,
we obtain the equation (Rzhanitsin, 1955)

P+ = k2, kR = ‘l/% =Vr. (2.95)
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Therefore, the critical force equals in this case half the force for an infinitely
long simply supported bar. In light of (2.95), the assumption k* < 4r is
obviously justifiable.

The buckling of bars partially placed in an elastic medium was considered
by Granholm (1929) and by Sutocki (1955) who also allowed for non-homo-
geneity of the foundation, r = r(x).

In many engineering applications, a correct description of the response
of a foundation does not admit a local hypothesis of the Winkler type, but
is of an integral character (e.g. a foundation of elastic half-plane type or
elastic half-space type). The loss of stability is described then by a integro-
differential equation; some general considerations and some particular cases
have been discussed by Rzhanitsin (1955).

2.6. Multi-Span Bars. Elastic Supports

The calculation of critical forces for multi-span bars, possibly of step-wise
variable stiffness, can be based on the general integral (2.7) and does not
present any particular difficulty; it may however prove cumbersome, especially
in the case of elastic supports and with a considerable number of spans of
different length. Many special studies have been devoted to this problem,
e.g. by Schleusner (1938), Kornoukhov (1949), Zweiling (1953), Vetter (1960).
Equations determining the critical force are derived mostly by the force or
displacement method in several variants, e.g. by the generalized equation of
three moments.

A convenient matrix approach, useful both in analytical and numerical
approaches, was proposed in somewhat differing variants by Rzhanitsin (1955)
(initial parameters method), Schnell (1955), and Falk (1956,, 1956,) (transfer
matrix method). Consider the bar interval 0 < x < /; (in each interval, the
variable x can be counted from zero) and denote the deflection, the slope, the
bending moment and the transverse force at point x =0 by w;_,, wi_,,
M;_, and T;_,, respectively. The four constants C,; in the integral (2.7) can
be expressed by the above quantities; finally we obtain

i T,_ .
w = (&—1+ : l)smkx+

k k3EJ
M. T, _ M,
+ ———kziE} coskx — —k———;E} X+ (wi-—l —‘k‘z*iEjl)- (2.96)

The relation (2.96) makes it possible to express the geometric and static
quantities at the point x = /; by the quantities at the point x = 0. Jn matrix
notation we obtain



288 STABILITY OF BARS AND BAR STRUCTURES PART 3

Wi =AW/, (2.97)

where W, denotes the column vector of state

M, (2.98)

=
I
|

and A, the transfer matrix for span i

_1 sinkl;  1—coskl, _kI,—sinkI,—

k 7 i3
. 0 coskl, - sir;ckl, _ I—Zcz)skl, | .
0 ksinkl, coskl, - Si’;ck"
0 0 0 1 i}

Owing to the possibility of a discontinuity of the function occurring at the
interval boundary (e.g. on the support), the left-side limit of the function has
been denoted by W~ and the right-side by W+*. The relationship between
these quantities can also be written in matrix form

Wi = BW;, (2.100)
where B; denotes the transfer matrix for the node i; for an elastic support
of stiffness B; = R;/w;, where R; stands for the reaction, this matrix equals

"1 00 0
0100

B,=| 0 010]. (2.101)
B
001

Performing in this way successive multiplication of the matrices we express
W; (where n denotes the number of intervals) by Wg

W,,_ = AFIBFI—IAN-I e Alwa-.
Two components of vector W¢ are known by virtue of the boundary conditions

and two remain unknown. The vector W, also furnishes two boundary
conditions; using (2.102) to express the respective equations by the unknown

(2.102)
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components of vector Wg and then equating the determinant of this set to
zero, we can determine the critical state. Denoting the resultant product
of the transfer matrices by a;;:

a1 12 413 Qa4
dz; Qzz dz3 Qs
AB,_A,_,...A = , 2.103
nn—1+<%n—1 1 ds; A3z 33 Asq ( )
A4y Qa2 Qa3 Qaa
we obtain for simple support at both ends (the first and third equation being
expressed by the second and fourth component of vector W§

A12834,— 032814 =0, (2.104)
and for both ends clamped

A13024— 033054 =0, (2.105)
for clamped left-hand end and simply supported right-hand end

1303, — 33814 = 0, (2.106)

and so forth. For a rigid intermediate support, §; — oo, but additional con-
ditions come into play here, w; = 0. There is no major difficulty with general-
izing the method to the case of step-wise variable rigidity on supports.
Rakowski (1969) proposed a generalization of the matrix method to the
case of bars in an elastic medium.

We consider as an example a two-span bar with spans of equal length /,
simply supported at the ends and elastically supported at the middle support;
we denote the stiffness of this support by g. Multiplying the matrices A, B; A,
and using the condition (2.104), we obtain (after performing numerous reduc-
tions) the equation

sinkl/[f(klcoskl—sinkl)—2Pkcoskl] = 0. 2.107)

If 8 = 0, we get kI = m/2 for simply supported bar 2/ in length. The critical
force increases with §, reaching the value k/ = =, i.e.,
2E 2

P, = “1—2J for B = Pum = %P— = ’2%E!‘ (2.108)
At this value of §, we deal with double bifurcation of the equilibrium, since
then also sink/ = 0: besides the symmetric form of equilibrium in the adjacent
position (vanishing of the square bracket), the antisymmetric form is also
possible. As f continues to grow, the critical value remains constant; it is

given by Eq. (2.108) and corresponds to two antisymmetric half-waves,
characteristic for rigid behaviour of the middle support.



3. Approximate Calculation Methods for Critical Loadings

3.1. The Collocation Method

Approximate analytical methods of calculating critical loadings corresponding
to bifurcation (eigenvalues) consist in reducing a system with an infinite num-
ber of degrees of freedom to one with # degrees of freedom. This is generally
accomplished by assuming an approximate equation of deflection line in the
form of a sum
n
W) = ) awi(), @)
=1

where w;(x) are functions satisfying all or only some boundary conditions
(we shall further omit the summation sign, using the summation conven-
tion). The diverse approaches provide an optimal selection of coefficients a;
and of the critical loading parameter /4. The simplest methods of this type,
collocation and iteration methods, are employed either directly or in com-
bination with other methods.

The collocation method (Frazer et al., 1937) demands that the differential
equations of general form (1.16) be satisfied at » points (nodes) x;, j= 1,2, ...,n.
We obtain the set of equations

Ll [aiwi]Ix=x,+AL2[aiwi]’x=xl = 0, (32)

i.e., in view of the assumed linearity of operators L, and L,, we obtain a set
of linear equations with respect to coefficients a; of the type

(yy+By;Ma, =0, j=1,2,..,n. (3.3)
Equating the determinant of this set to zero
det(a, +8,4) = 0 349

gives n eigenvalues (critical loadings) A. Usually, the first critical force, the
most important from an engineering point of view, is determined with suffi-
cient accuracy but the higher eigenvalues may even prove to be complex,
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and hence charged with a qualitative error (Collatz, 1949). This method
permits, however, a considerable uncertainty. In the event of not a very
careful choice of function w(x) or not a very careful spacing of nodes x;,
even the value of the first critical force will not be sufficiently accurate, and
the error may equally well be from below or from above. In determining the
critical force for a simply supported prismatic bar of length 2/, -/ < x </
and assuming (3.1) in the form of even polynominals of variable x, taking
n = 3 leads to an accuracy of 0.0015% for the first critical force and fairly
good estimates for the two subsequent forces with the collocation nodes at
points &, = 1/6, & = 1/2, & = 5/6, where & = x/I. However, with the
nodes spaced at points & =0, & = 1/3, & = 2/3, the accuracy drops
tenfold for the first critical force, and complex values, therefore completely
wrong, are obtained for the subsequent critical forces (Collatz, 1949).

3.2. The Iteration Method

The iteration method in analytical version was given by Engesser (1893,
1909) and in graphical version by Vianello (1898). Consider as an example
Eq. (2.1) with substituted (2.2), i.e.

rr P —
Witz w = 0. (3.5)

Integrating this equation twice we can write
P
wx) = — S dx S B w(x)dx. (3.6

By substituting on the right-hand side a certain approximate function wg(x),
we obtain, after integrating and taking into account the boundary conditions,
the next approximation wy..(x). Requirement of equality of w, and Wy,
at a certain point x = x, (collocation for the equation integrated twice)
determines an approximate value of critical force P. In the case of a statically
indeterminate support, the expression for the bending moment (2.2) contains
unknown reactions; however, in integrating (3.6) the boundary conditions
we have at hand are in excess, thus allowing the reactions to be calculated.
The iterative scheme (3.6) is as a rule very rapidly converging, although
exceptional cases exhibiting no convergence are also known (Zweiling,
1953).

By taking the first approximation for a simply supported prismatic bar
of length 2/ to be w; = 1 —&? (the possible multiplier in front of the function
is irrelevant here), we obtain successively
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CPE(5 1, 1,
W2 = g7 (ﬁ"’z’é*“lz&)’ .
_P214(61_5£2+L§4_ 1 56) '
Ws =FijT\360 247 T24° T 360 )

Hence, by assuming the collocation node at point & = 0 (the centre of simply
supported bar), we obtain successively P = 2.4 EJ[I>, P = 24590 EJ/I>.
More accurate results can be obtained taking, for example, the collocation
node to be at point & = 1/3 (since then, in the presence of symmetry, the
point £ = —1/3 is also a node), namely successively P = 2.4545 EJ/I?,
P = 2.4636 EJ/I? ... instead of the exact value P = 2.4674 EJ/I%.

3.3. Energy (Variational) Methods

As we have noted in Section 1.4, the static criterion of critical state can also
be expressed by the condition of the vanishing of the total potential energy
IT = L,—L; in the adjacent position. In the case of a concentrated load of
fixed direction, the work done by external forces, involving an infinitely small
deflection w = w(x), can be expressed by the formula

0| N

!

L= P[l— S V1 —-(dw/d.x)zdx] = SW'de (3.8)
0 0

since by expanding the root into a power series, the higher powers of w’ can

be omitted. The potential energy of elastic strain with the assumed deflection

line w = w(x) is

4

L, = i{ Ew"2dx; (3.9)
1]
hence
!
I = 1§ (w2 - Pw?)dx. (3.10)

0
The Euler-Lagrange equation for this functional has the form

(EJW"Y'+Pw" = 0. (3.11)

This is Eq. (2.4) generalized to the case of variable rigidity EJ; hence, the
exact solution realizes the stationary value of the functional (3.10). It is
a minimum equalling zero, leading to the formula
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1
{ Eror2ax
PeP= . (3.12)

i
S w'2dx
0

The Euler-Lagrange equation for the functional (3.12) is also (3.11) (variation
of the quotient of functionals is calculated as a differential of the quotient
of functions). The exact solution corresponds to the minimum of the functional
(3.12); hence, every approximate solution carries an error from above.

The use of Eq. (3.5) or (3.6) in the first term of the integral (3.10), i.e.,
the substitution of the iterated function into (3.9) without changes (3.8),
leads to the formula

1
2.,2
1+ = IS(P W —Pw’z)dx. (.13)
0

2 EJ

This is the so-called complementary energy, equal to the total energy /7 in
the case of an exact solution, but it is generally different from (3.10). The
second-order equation (3.5) is the Euler-Lagrange equation for the functional
I1*; hence, corresponding to the exact solution is the stationary value (3.13).
It also equals zero, and we thus have

P=P, =7 . (3.14)

Equation (3.5) is also the Euler-Lagrange equation for the functional (3.14).
The exact solution corresponds here again to minimum P, ; hence, the approxi-
mate solutions are also charged with an error from above.

Taking w(x) in the form of a sum (3.1), we can determine the most accurate
value of P, from the condition of minimum of this force 9P, /da; = O (this
being equivalent to the diagonalization described in Section 1.4) or from the
condition of stationarity of /7 or I7*. The latter approach, leading to simpler
calculations, is called the Ritz method (Ritz, 1909). For a statically indeter-
minate support of a bar, the formula for bending energy, expressed by the
bending moment, contains also unknown reactions; these can be left in an
equation of the type (3.14) and P can be minimized with respect to them as
additional parameters.
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With a prescribed function w(x) being different from the exact solution,
the approximate equation (3.14) always gives more accurate results than
does Eq. (3.12) (Lang, 1947). On the other hand, using the iteration (3.6)
also in the second term of the integral (3.10), we return to the very same
functional I1, yet not for the initial function w = w, but for the function
“corrected by way of iteration”, w = w,. The corresponding value of the
critical force is now more accurate than the value (2.14) calculated for w = w, .
With the Engesser—Vianello iterative process (3.6) being convergent, the
approximate values, defined alternately by Eq. (3.12) and (3.14), make a mono-
tone sequence, converging much more rapidly to the exact value of P,, than
does the sequence derived from the classical iterative method combined with
one-point collocation. We use as an example a sequence of functions (3.7) for
approximate calculation of the critical force in a simply supported bar of
length 2/. The results are presented in Table 3.1.

TasLE 3.1. Approximate values of the critical force calculated by the use of the energy

method
No. Formula Function in Funct}on n Approximate value
numerator denominator
1 (3.12) wy Wi 3
5
2 (3.19) w, wy = Cwy 5 = 2.5
.. 42
3 (3.12) A ws —— = 2.4706
17
, 153
4 (3.1 ws w, = Cwy & = 2.467742
1705
5 3.12 wy 4 ——— = 2.467439
G.12) 3 s 691
exact value 2.467401

As an example of a bar with statically indeterminate support, we consider
a bar clamped at point x = 0 and simply supported at point x = 1. By using
a function satisfying the geometric boundary conditions

w=I(E2-8%, &=x/I (3.15)

(the multiplier in front of the function is irrelevant), we can represent the
bending moment and the complementary energy by the equations
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M = RI(1-§)—PIE &),
_ 1 (35R213_ TPRI® PP
~20\ B & T E

(3.16)
H*

- 14PI) ,

where R denotes the reaction perpendicular to the x-axis. Minimizing II*
with respect to R, we obtain R = P/10; substitution of this value into II*
and equating I7* to zero leads to the following approximate formula:

280 EJ EJ
B Nl =21'54T 3.17)
instead of the exact value P,, = 20.19 EJ/I?. Formula (3.12) does not require
the reaction R to the determined, but we then obtain a much less accurate
approximation, P, = 30 EJ/I%.

The energy method is used mostly to calculate critical loads for non-
prismatic bars or with a longitudinal force variable along the axis N = N(x);
in the latter case, Eq. (3.8) requires an appropriate generalization, namely

P, =

Nl»—ﬂ

1
L = SN(x)w”(x)dx. (3.18)
0

For non-conservative loads, the energy method reduces to the Lagrange
equations of the second kind (2.35), in which the coefficients a; in the expression
(3.1) apply to the generalized coordinates ¢; (Kordas and Zyczkowski,
1963); these equations can also be interpreted as following from Hamilton’s
variational principle (Levinson, 1966).

3.4. Orthogonalization Methods

By applying the basic transformation of the calculus of variations to the
stationarity condition for the functional /I, (3.10), we obtain
1 1

1
S [(EJW”)”+PW”] 6wdx+EJw”t5w' + Ts ow l = 0’ (319)
0 0 0

where T, denotes the spatial transverse force (2.6). With both geometric
and static boundary conditions satisfied by the function w, the last two terms
in (3.19) vanish in most cases. Assuming a deflection w(x) in the form (3.1),
we obtain dw = Zwi(x) da;, and since 8a; are arbitrary, (3.19) leads to the
conclusion

1

§ [(Ewy + P w(dx =0, i=1,2,..,n. (3.20)
0
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Equations (3.20) are called Bubnov-Galerkin equations (Bubnov, 1913; Galer-
kin, 1915) and express orthogonality of the left-hand side of the differential
equation (3.11) with the individual approximating functions w;(x). Applying
a similar transformation to the condition of stationarity of the functional
I7*, (3.13), we obtain the equation

!

P .
S(w +ﬁw) wix)dx =0, i=1,2,...,n, (3.21)

which expresses the orthogonality of w; with the left-hand side of the differ-
ential equation (3.5). In a more general case, if the bending moment is not
given by the simple formula M = Pw, Eqgs. (3.21) take the form

S{w"+ M[w(x)’x A]l wi(x)dx = 0 (3.22)
and they are also called Bubnow-Galerkin equations. The equation (3.20)
or (3.22) leads to a set of algebraic linear equations of (3.3) type and they
determine an approximate value of the critical force by using the condition
(3.49).

The accuracy of results from calculations based on (3.20) and (3.22) cor-
responds to the accuracy of Egs. (3.12) and (3.14), provided that the functions
w;(x) satisfy both the geometric and static boundary conditions; otherwise,
the accuracy may be less and furthermore the approximation error may no
longer necessarily result in overstimation. The integrals (3.20) and (3.22) are
usually simpler to calculate than are the integrals in Egs. (3.12) and (3.14),
but an additional complication arises when the more accurate Eq. (3.22)
is used in statically indeterminate cases, where unknown reactions appear
in the equation of bending moment M. It is necessary then to use iteration
of the type (3.6) and before using the orthogonalization method, it is also
necessary to determine the reactions from the excessive boundary conditions.

The Bubnov-Galerkin equations in the forms (3.20) and (3.22) which
do not account for possible “boundary terms”, are not of the invariant type
with respect to the adopted reference system (namely, the way of defining
deflections w): Actually, if in one system the last term in (3.19) disappears on
account of w = 0, then as the system is changed, this term generally does not
vanish. The selection of a convenient system is very important particularly
in the case of a bar with a free end: in order to get the last term to vanish
at this point, it is useful to take a system so that w = 0, since the alternative
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condition T, = O at this place introduces through k2 an unknown value of the
critical force into the boundary conditions (2.6).

In the case of non-prismatic bars, the position of the multiplier EJ plays
an essential role in equations expressing orthogonalization. In Eq. (3.20),
it is placed in the numerator and in Egs. (3.21) and (3.22), in the denomina-
tor. Other formulations of orthogonality equations, e.g.

;

| (E1w + Myw,(x)dx =0, (3.23)

0

or

S’ [w“'+ (—%)”] wi(x)dx =0, (3.24)
0

do not follow from the conditions of stationarity of any functional, they do
not guarantee approximation errors from above, and the error value itself
is generally higher than if Eqs. (3.20) and (3.22) are used, although in special
cases the error may be lower.

The Bubnov-Galerkin method has been generalized to non-conservative
loadings by Bolotin (1961) and Leipholz (1963, 1967).

3.5. The Trace of the Kernel of Integral Equation Method

The energy and orthogonalization methods lead to estimates of critical load-
ing from above. For estimates from below we can use the trace of the kernel
of integral equation method, which has been adapted to bar stability problems
by Mazurkiewicz (1961, 1962).

Equation (3.6) can be transformed to the form of Fredholm’s integral
equation of the second kind

)

w(x) = PS Glx, £)
0

Ol e, (3.25)

where G(x, £) is Green’s function adjusted to the boundary conditions of the
problem. By introducing a new unknown, z(x) = w(x)/) EJ(x), we obtain
the integral equation

i

2(9) = P{K(x, &)z(8)d¢ (3.26)

0
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with a symmetric kernel

K G /. 3.27
® 9= VE@E® G20
A lower estimation of the critical force is given by the equation
1
P = (3.28)

1
A, = T 1 ?
V4 I/(S)dx(s) [K(x, O)2dE

where 4, is called the second trace of the kernel of integral equation. For
example, for a simply supported prismatic bar we obtain P, = 9.487 EJ/I?
with a 4% error from below. A further increase in accuracy can be achieved
by calculating the higher kernel traces.

3.6. The Method of Assumption of an Exact Solution

The stability analysis of non-prismatic and non-homogeneous bars makes
it possible to apply a convenient inverse method. Thus, if we assume a certain
equation of deflection line w = w(x), we can find from Eq. (2.1) such a distribu-
tion of rigidity EJ(x) of the bar, for which the function w(x) is the exact
solution

_ MIw(), %, P]

Elx) = — —— 3.29
By introducing into the assumed equation of deflection line a certain number
of free parameters, w = w(x; a;,da,, ..., d,), we can subsequently select

their value so as to obtain minimum deviations of the resultant rigidity (3.29)
from the rigidity of the bar under consideration. The application of this
method to elastic-plastic analysis of non-prismatic bars has been discussed
by Zyczkowski (1954).

3.7. The Finite Difference Method

Dividing a bar into n equal parts of length » = I/n and substituting, for
example, in Eq. (3.3), in place of the second derivative a suitable difference
scheme, we obtain a set of algebraic equations

2

W,H+(ﬂ”—-z)w,+w,_1 =0, i=1,2,..,n—1. (3.30)
EJ,

This set contains 7+ 1 unknown nodal deflections w;. The other two equations
are obtained from the boundary conditions, e.g., w, = w, = O in the case
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of simple support. The condition for the existence of non-zero solutions
of the homogeneous set of linear equations (3.30)

Pn?

7571‘_2 0 0 .0 0
Ph?
1 75'—-77—2 1 0 0
Ph? =0 (3.31)
0 1 fJ;—z .0 0
Ph?
0 0 0 1 F -2

gives an approximate value for the critical force P. The condition (3.31) is
of the (3.4) type, but in relation to this general condition, it shows essential
simplification resulting from the numerous zero terms in the determinant.

3.8. The Finite Flement Method

Consider a bar element 0 < x < h; and assume a certain distribution of
deflections in this element due to loss of stability, and depending moreover,
on four free parameters w = w(x; a,, a,, a;, a,). By expressing these par-
ameters by deflections w and slopes @ on the ends of the element, x;, = 0
and x;,; = h, we can write-

W = W(X; Wi, @iy Wiry, Pisr)- (3.32)

The function (3.32) is called the shape function. By treating the bending
moments M and the transverse (spatial) forces T, = T and the axial force
N as external loadings for the element, we can determine the virtual work
done by these loadings using the formula

0L, = —T; 0w+ M0+ Ty 1 OWy s — My Buys +

ht

+N {wowdx. (3.33)

0
Assuming the material to be elastic, the virtual work due to bending is

hy
oL, = SEJw”éw”dx (3.39)

0
and after substituting (3.32) it can also be expressed in terms of w;, @;, Wiy
and ¢;,;. The comparison of (3.33) and (3.34) allows Ty, M;, Ti.:, Myyy
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to be expresssed by linear functions of w;, ¢;, W;41, @i41; in matrix form,
we can write

F = K8, (3.35)

where the square matrix K;, 4 x4, is called the stiffness matrix of the element.
By “superposing” the stiffness matrices of individual elements, we can con-
struct the global stiffness matrix K, (2n+2)x (2n+2), for the whole bar.
Taking into account the boundary conditions for the bar leads to a set of
homogeneous linear equations of type (3.3) and, consequently, to the condi-

tion that gives an approximate value of the critical force of type (3.4).
3

The cubic function @ = Y. a;x’ is the simplest shape function depend-
J=0

ent on four parameters; expressing the coefficients a; by deflection and
slopes at interval boundaries, we obtain

Qy = Wy,

a = ¢l9

3 1
a, = 71? (Wu-l—wi)—h—II (Pi+1+29),

2 1
as = —F(WI+I—W[)+”I;?(¢1+1 +¢Pl)- (3'36)

The virtual work done by longitudinal force N and the virtual work due to
bending—assuming constant bending rigidity EJ; in the element considered—
are respectively:

i
N { wowdx = Nhila, 8a, + (@, da, +a, da;) by +
0
+(as da, +%a, 6ay +a, das)hi +
+3 (a3 6a, +a, ba) h} +2as das ki, (3.37)
0L, = EJ,h[4a, da, +6(a; ba, +a, das) h,+12a; das h?). (3.38)

In the case of variable rigidity EJ = EJ(x), we take either a certain- mean
value for the element considered or we perform numerical integration of (3.34).
Comparing 8L, and 6L, and expressing a; by w;, ¢;, wiq and @;. (3.36),
we obtain the relationship between generalized forces T and M and general-
ized displacements w and ¢. In matrix form—dividing M by 4; and multi-
plying ¢ by h; so as to equalize the dimensions—we obtain
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12-84  6—4A4 —124%4 654l w

= 2 ., (3.39)
B -12454 —6fA 12-54 =6+ Gd || Wi
6—1-6/1 2+QT)A —6+16A 4—'1*5/1 (Pi+1h1
where
Ph?
A= £ (3.40)

denotes a dimensionless parameter of loading.
The matrix (3.39) enables direct calculation of the critical forces in the case

of approximation of a bar with one finite element. For a simply supported

bar, M, = M, = w, = w, = 0, expressing M, and M, by non-zero compo-

nents of the vector of generalized displacements ¢, and ¢,, we obtain the

condition

54—12§A 2+_,%0A‘ 3

(3.41)
2454 4-24

i 3

from which A4, = 12, A, = 60 (instead of =2 and 4=?). A better accuracy
will be obtained in the case of a bar clamped at one end. Expressing T), = M,
= 0 by the non-zero displacements w, and ¢,, we obtain the condition

l 12-%¢4 6-;,4

6—54 4—2 4
from which A, = %(13—}/124) = 2.4860 and A, = 32.1807 (instead of
w2/4 and 9w?/4). For a bar clamped at point x = 0 and simply supported
at point x = h, we express the zeroing of M, by the only non-zero, generalized
displacement ¢, , obtaining A = 30 in accordance with the result of the energy
formula (3.12) applied to the cubic parabola (3.15).

For a bar clamped at both ends, the approximation with one finite el-
ement, taking the shape function in the form of a cubic parabola, is ineffec-
tive. Dividing the bar into two elements and superposing two stiffness matrices
K; and K, by the summation of generalized forces T, and M, from both
adjacent intervals, we express the global matrix for the structure as follows
(assuming h, = h, = h, EJ; = EJ, = EJ)

=0, (3.42)
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-
M,
“h
T,
EJ
My =
h
T
M;
L h
T12-84 6—&A —12+484 6—3%A 0 0 || w
4—2A —6+754 2+5541 0 0 @ h
24-124 0 —12+84  6-LA|] w,
% 8—2A4 —6+54 2414 || guh
(symmetrically) 12-84 —6+54 1] ws
- 4—2A || psh_
(3.43)

We construct the global stiffness matrix (2n+2)x (2r+2) for n elements
in a similar way. The generalized forces T, and M, now have the character
of external loadings for the bar; consequently, for the node lying between the
supports we have as a rule T, = M, = 0. For a bar clamped at both ends
and of length / = 2h, we have w, = ¢; = w3 = @3 = 0, and expressing
T, = M, = 0 in the function of non-zero displacements w, and ¢,, we obtain

24224 - 0
I

= 0.
0 8-24

(3.44)

Hence, A; = 10 and A, = 30 (instead of the exact values w2 and 20.19).
For a simply supported bar expressing M; = M, = T, = M; = 0 by non-
ZEro @y, W, @2, @3, We obtain the condition

4-24 —6+54 2+54 0

—64+iA 24-24 0 6-%4
=0. 3.45
2424 0 8-242424]"° (3.43)
0 —AA 2444 4-24

Hence, A, = 2.4860, A, =12, A; = 32.1807 and A4 = 60. This clearly
improves the accuracy compared to (3.41) (for comparison, the A calculated
here should be multiplied by 4).

The finite element method is chiefly being developed for two- and three-
dimensional structures; noteworthy contributions concerned with bar sta-
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bility include foremost: Hartz (1965), Hicks (1967), Nethercot and Rockey
(1971), as well as extensive chapters in the books of Przemieniecki (1968)

and Nath (1974).

3.9. Approximate Formulae for Combined Loadings

For purposes of stability analysis of a structure under » independent loadings
P;,,i=1,2,..,n,the critical state can be described by an equation of the

type
f(PI’PZ’---’Pn)=0- (346)

Equation (3.46) describes a certain hypersurface in a space of loadings P;.
Schaefer (1934) and Papkovich (1934, 1941) proved that in the case of con-
servative loadings and of neglected geometry changes in the fundamental state,
this surface is a convex surface. In that case, the approximate linear equation

P,
Il 34
Z o=, (3.47)

where P;., denote the critical values of loadings each acting separately, repre-
sents in the range of positive P; a lower estimate of the critical state under
combined loadings (Dunkerley’s equation). In the case where the sign of
one of the loadings, say P;, does not contribute to the loss of stability (e.g.,
under torsion), we frequently use approximate formulae of the type

; Pl 2 P2

(Picr) +P2cr =1 (348)
(Pfliiger, 1964).

For non-conservative loadings, the limit surface may be concave; in that
case, (3.47) may no longer give the lower estimate (e.g., concentrated Eulerian
force and lateral loading by a fluid flow). If, however, the limit curve con-
sists of two concave segments, just the reverse holds. Namely, the linear
equation (3.47) may give an excessively strong lower estimate (e.g., for
a concentrated follower force and lateral loading by a fluid flow).

Comprehensive studies on the stability of structures under combined
loadings have been carried out by Huseyin (1975).




4. Compressed Elastic Bars with Initial Imperfections

4.1. Classification of Theories

The stability of bars is analysed as a rule assuming axial action of loading
and a perfectly straight bar axis before buckling. Real bars, however, depart
from these assumptions, it is important, therefore, to evaluate the results
obtained for perfect bars from the viewpoint of bars with initial imperfec-
tions.

The theory of such bars based on the principle of rigidification (theory
of first order) is altogether unsuitable to describe instability and related phe-
nomena. However, if the influence of deflections on the distribution of internal
forces and reactions is taken into account in geometrically linear approach
(theory of second order), it can be used where subcritical forces are involved,
but cannot be used to evaluate deflections under critical force and under
supercritical forces. To describe the latter problems, it is necessary to use
a geometrically non-linear theory, which Chwalla (1953) referred to as the
theory of third order. The theory of third order, which we have already used
before in Section 2.3 in reference to axially compressed bars, admits finite dis-
placements, assuming at the same time that the strains remain infinitely
small; where the theory of finite strains has to be used additionally, one can
speak, for the sake of distinction, of the theory of fourth order (Skrzypek,
1979).

4.2. Small Deflections of Eccentrically Compressed Bars

Using the theory of second order for an eccentrically compressed bar clamped
at one end, we obtain the equation

EJw"+P(w+e) =0, 4.1)
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where e denotes eccentricity which we assume to occur in the principal plane
(Fig. 4.1). Taking into account the boundary conditions w(0) = 0, with
w'(l) = 0 leads for a prismatic bar to the equation of deflection line

w = e(tank/sinkx +coskx—1), 4.2)

s

Fig. 4.1. Eccentrically compressed bar

where k = 1/ P/EJ, (2.3). The maximum deflection S = w() and the maxi-
mum bending moment M, = M(/) are respectively

1—coskl Pe

f= ——‘—:We, Mo:P(e+'f)=_c(—)—S_k_T. (43)

As compared with the more accurate theory of third order (Section 4.4),
these equations determine f and M, with an error from above. With a force
approaching the critical force for an axially compressed bar, k/ — =/2, we
obtain f— o, M, — oo, which is an absolutely wrong result; a correct
result will be obtained only by using the theory of third order. The fact that
according to the theory of second order the bending deflection tends to infin-
ity may however serve as a condition specifying critical loadings for perfect
bars.

The maximum stress due to bending compression, assuming the material
to be elastic, is

Pe P

suplo| = Weoskl +—Z, 4.4

where W denotes the elastic bending modulus. These stresses depend non-

linearly on force P; the non-linearity is associated with the factor cos k/ in

the denominator (“secant formula”). For this reason, strength calculations
must relate the factor of safety directly to force P, not to stresses.

In the case considered, loss of stability does not actually take place (if

possible buckling from xz plane is excluded). But it is liable to occur with
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other types of eccentric loading, e.g. in the case of a simply supported bar
loaded as in Fig. 4.2 (Zimmermann’s bar, Zimmermann, 1930). For this bar,
the differential equation of bending has the form

EJw”+P[w+e(l—%x~)] =0 4.5)

Fig. 4.2. Bar compressed with two eccentricities (Zimmermann’s bar)

and after integrating and considering the boundary conditions w(0) = w(l)
= 0, we obtain

W= (— 1+coskl sinkx+coskx—1+3x—). (4.6)

sinkl/ I

When kI — 7, the coefficient of the first term in (4.6) becomes indeterminate
of 0/0 type; indeed, the boundary conditions are then satisfied at any value
of this coefficient, which means bifurcation of the equilibrium form. However,
since this bifurcation does not take place at w = 0, therefore we cannot
claim that the respective value of force P = w2EJ/I? is the exact critical
value. The exact value can be calculated only when we use the exact express-
ion for curvature, i.e., on the basis of theory of third order. According to
Cornelius (1944), the critical force tends to zero, i.e., bifurcation takes place
right from the beginning of the loading process.

4.3. Small Deflections of Compressed Bars with Initial Curvature

The equation of bending for weakly curved bars

EJ(x—x%.) = M, (4.7
where x_ = %x_(x) = —w"(x) denotes the initial curvature, prior to the
application of the load, in the case M = Pw and according to the theory
of second order, takes the form

EJw'+Pw = EJw'. (4.8)
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Equation (4.8) shows an analogy to equations of forced vibrations; the gen-
eral solution of it for a prismatic bar can be expressed by the Duhamel integral
of the form

w = C,sinkx+ Cycoskx+ - S W (&)sink(x— £)dE. (4.9)

k

For most applications it is more convenient, however, to use Fourier series.
In the case of bars clamped at one end x = /, and with a free end x = 0, we
can describe the initial deflection line and the deflection line under loading
by the series

Qj—1)mx

w_(x) = Za,sin 3] ,

=1
w(x) = ZA,sm &- l)nx’

where initial amplitudes a; are treated as known values, whereas amplitudes
Aj need to be determined. Substituting (4.10) into (4.8) and comparing the
coeflicients on both sides of the equation, we obtain

(2j—1)%q; P 4PI?

Aj= ———_(2j__1)2_m, m‘—‘—P-E—=W. (4.11)
Also, in this case, the deflections under force P = Pg tend toward infinity
(if a, # 0); obviously, this result is wrong, whereas the correct result can be
obtained only according to the theory of third order. In the case a; = 0, the
coefficient A4, for Eulerian force is arbitrary, which means bifurcation;
however, also in this case the exact value of the critical force can be deter-
mined only based on the theory of finite deflections.

For a simple support we can use in place of (4.10) the series

(4.10)

0

. jmx
W_(x) = Zajslnil—',

=1

. 4.12)
w(x) = ZA,sinﬂrTx
Jj=1
We then obtain
12 2
4=S4  p 4.13)

j?—-m Py n2EJ
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The fastest to grow is the amplitude of the first sinusoid 4,. We denote
the increment of this amplitude by 4,

m

6 =A1—a1 = l—m

a. (4.19)

Taking for an imperfect real bar experimental values of two increments of
the amplitudes 4, and &,, corresponding to forces P, and P,, and substi-
tuting into (4.14), we obtain as set of two equations. In this set, we can elim-
inate the initial amplitude, which is difficult to measure, and represent the
critical force for a perfect straight bar by the simple equation (Southwell,
1932):

_ 0,— 6,
Pe= 5 @13
P, Py

With a larger number of measurements, average values can be used. The
different variants of application of Southwell’s equation have been discussed
by Gregory (1967).

4.4. Finite Deflections of Eccentrically Compressed Bars with Initial Curvature

A more accurate stability analysis of compressed bars with initial imperfec-
tions in the Eulerian force range is obtainable based on the theory of third
order. We present this problem making use of paper by Zyczkowski (1960).
Unlike as in Section 2.3, we take here for the dependent variable not angle
@ but deflections w. The independent variable s will be measured along the
arc, the compressibility of the axis being neglected.

In the s-w system the curvature of the bar axis can be determined by the
equation

LI N
ds ds ds - '/l—w'z ’ (4.16)

where the dashes denote differentiation with respect to variable s. The sub-
stitution of (4.16) into (4.7) makes an analytical solution possible but only
for x»_ = const (the initial curvature corresponds to a circular arc), and
we shall consider only this case here. In the reference system given in Fig.
4.3, Eq. (4.7) takes the form

Pw W
EJ  y1-w?

+x%_ =0. 4.17)
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Fig. 4.3. Finite deflections of an eccentrically compressed bar

To simplify the notation of the integrals and elliptic functions obtained
later, we introduce dimensionless variables with the multiplier /2

T T
X=2rs Y=, (4.18)

and in addition, we introduce the dimensionless parameters

mo B 4PE L wm
_b_a T,
Py mEJ Z 4.19)
™
O =5/ Y=

We now write Eq. (4.17) in the form

Y+ (my+y)y 1-y? =0, (4.20)

where the dashes denote differentiation with 