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PREFACE

Our original goal for this book was to introduce Bayesian statistics at the ear-
liest possible stage to students with a reasonable mathematical background.
This entailed coverage of a similar range of topics as an introductory statistics
text, but from a Bayesian perspective. The emphasis is on statistical infer-
ence. We wanted to show how Bayesian methods can be used for inference
and how they compare favorably with the frequentist alternatives. This book
is meant to be a good place to start the study of Bayesian statistics. From
the many positive comments we have received from many users, we think
the book succeeded in its goal. A course based on this goal would include
Chapters 1–14.

Our feedback also showed that many users were taking up the book at a
more intermediate level instead of the introductory level original envisaged.
The topics covered in Chapters 2 and 3 would be old hat for these users, so
we would have to include some more advanced material to cater for the needs
of that group. The second edition aimed to meet this new goal as well as
the original goal. We included more models, mainly with a single parameter.
Nuisance parameters were dealt with using approximations. A course based
on this goal would include Chapters 4–16.

xiii
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Changes in the Third Edition

Later feedback showed that some readers with stronger mathematical and
statistical background wanted the text to include more details on how to deal
with multi-parameter models. The third edition contains four new chapters
to satisfy this additional goal, along with some minor rewriting of the existing
chapters. Chapter 17 covers Bayesian inference for Normal observations where
we do not know either the mean or the variance. This chapter extends the
ideas in Chapter 11, and also discusses the two sample case, which in turn
allows the reader to consider inference on the difference between two means.
Chapter 18 introduces the Multivariate Normal distribution, which we need
in order to discuss multiple linear regression in Chapter 19. Finally, Chapter
20 takes the user beyond the kind of conjugate analysis is considered in most
of the book, and into the realm of computational Bayesian inference. The
covered topics in Chapter 20 have an intentional light touch, but still give the
user valuable information and skills that will allow them to deal with different
problems. We have included some new exercises and new computer exercises
which use new Minitab macros and R-functions. The Minitab macros can
be downloaded from the book website: http://introbayes.ac.nz. The new
R functions have been incorporated in a new and improved version of the
R package Bolstad, which can either be downloaded from a CRAN mirror
or installed directly in R using the internet. Instructions on the use and
installation of the Minitab macros and the Bolstad package in R are given
in Appendices C and D respectively. Both of these appendices have been
rewritten to accommodate changes in R and Minitab that have occurred since
the second edition.

Our Perspective on Bayesian Statistics

A book can be characterized as much by what is left out as by what is included.
This book is our attempt to show a coherent view of Bayesian statistics as
a good way to do statistical inference. Details that are outside the scope of
the text are included in footnotes. Here are some of our reasons behind our
choice of the topics we either included or excluded.

In particular, we did not mention decision theory or loss functions when
discussing Bayesian statistics. In many books, Bayesian statistics gets com-
partmentalized into decision theory while inference is presented in the fre-
quentist manner. While decision theory is a very interesting topic in its own
right, we want to present the case for Bayesian statistical inference, and did
not want to get side-tracked.

We think that in order to get full benefit of Bayesian statistics, one really
has to consider all priors subjective. They are either (1) a summary of what
you believe or (2) a summary of all you allow yourself to believe initially. We
consider the subjective prior as the relative weights given to each possible
parameter value, before looking at the data. Even if we use a flat prior to

http://introbayes.ac.nz
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give all possible values equal prior weight, it is subjective since we chose it. In
any case, it gives all values equal weight only in that parameterization, so it
can be considered “objective” only in that parameterization. In this book we
do not wish to dwell on the problems associated with trying to be objective
in Bayesian statistics. We explain why universal objectivity is not possible
(in a footnote since we do not want to distract the reader). We want to leave
him/her with the “relative weight” idea of the prior in the parameterization
in which they have the problem in.

In the first edition we did not mention Jeffreys’ prior explicitly, although
the beta( 1

2
, 1

2
) prior for binomial and flat prior for normal mean are in fact

the Jeffreys’ prior for those respective observation distributions. In the second
edition we do mention Jeffreys’ prior for binomial, Poisson, normal mean, and
normal standard deviation. In third edition we mention the independent Jef-
freys priors for normal mean and standard deviation. In particular, we don’t
want to get the reader involved with the problems about Jeffreys’ prior, such
as for mean and variance together, as opposed to independent Jeffreys’ priors,
or the Jeffreys’ prior violating the likelihood principal. These are beyond the
level we wish to go. We just want the reader to note the Jeffreys’ prior in
these cases as possible priors, the relative weights they give, when they may
be appropriate, and how to use them. Mathematically, all parameterizations
are equally valid; however, usually only the main one is very meaningful. We
want the reader to focus on relative weights for their parameterization as the
prior. It should be (a) a summary of their prior belief (conjugate prior match-
ing their prior beliefs about moments or median), (b) flat (hence objective) for
their parameterization, or (c) some other form that gives reasonable weight
over the whole range of possible values. The posteriors will be similar for all
priors that have reasonable weight over the whole range of possible values.

The Bayesian inference on the standard deviation of the normal was done
where the mean is considered a known parameter. The conjugate prior for
the variance is the inverse chi-squared distribution. Our intuition is about the
standard deviation, yet we are doing Bayes’ theorem on the variance. This
required introducing the change of variable formula for the prior density.

In the second edition we considered the mean as known. This avoided the
mathematically more advanced case where both mean and standard deviation
are unknown. In the third edition we now cover this topic in Chapter 17. In
earlier editions the Student’s t is presented as the required adjustment to
credible intervals for the mean when the variance is estimated from the data.
In the third edition we show in Chapter 17 that in fact this would be the result
when the joint posterior found, and the variance marginalized out. Chapter
17 also covers inference on the difference in two means. This problem is made
substantially harder when one relaxes the assumption that both populations
have the same variance. Chapter 17 derives the Bayesian solution to the well-
known Behrens-Fisher problem for the difference in two population means
with unequal population variances. The function bayes.t.test in the R
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package for this book actually gives the user a numerical solution using Gibbs
sampling. Gibbs sampling is covered in Chapter 20 of this new edition.
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CHAPTER 1

INTRODUCTION TO
STATISTICAL SCIENCE

Statistics is the science that relates data to specific questions of interest. This
includes devising methods to gather data relevant to the question, methods to
summarize and display the data to shed light on the question, and methods
that enable us to draw answers to the question that are supported by the data.
Data almost always contain uncertainty. This uncertainty may arise from
selection of the items to be measured, or it may arise from variability of the
measurement process. Drawing general conclusions from data is the basis for
increasing knowledge about the world, and is the basis for all rational scientific
inquiry. Statistical inference gives us methods and tools for doing this despite
the uncertainty in the data. The methods used for analysis depend on the
way the data were gathered. It is vitally important that there is a probability
model explaining how the uncertainty gets into the data.

Showing a Causal Relationship from Data

Suppose we have observed two variables X and Y . Variable X appears to have
an association with variable Y . If high values of X occur with high values of
variable Y and low values of X occur with low values of Y , then we say the

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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2 INTRODUCTION TO STATISTICAL SCIENCE

X Y

Figure 1.1 Association between two variables.

X Y

Figure 1.2 Association due to causal relationship.

association is positive. On the other hand, the association could be negative
in which high values of variable X occur in with low values of variable Y .
Figure 1.1 shows a schematic diagram where the association is indicated by
the dashed curve connecting X and Y . The unshaded area indicates that X
and Y are observed variables. The shaded area indicates that there may be
additional variables that have not been observed.

We would like to determine why the two variables are associated. There
are several possible explanations. The association might be a causal one. For
example, X might be the cause of Y . This is shown in Figure 1.2, where the
causal relationship is indicated by the arrow from X to Y .

On the other hand, there could be an unidentified third variable Z that
has a causal effect on both X and Y . They are not related in a direct causal
relationship. The association between them is due to the effect of Z. Z is
called a lurking variable, since it is hiding in the background and it affects
the data. This is shown in Figure 1.3.
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X Y

Z

Figure 1.3 Association due to lurking variable.

X Y

Z

Figure 1.4 Confounded causal and lurking variable effects.

It is possible that both a causal effect and a lurking variable may both be
contributing to the association. This is shown in Figure 1.4. We say that the
causal effect and the effect of the lurking variable are confounded . This means
that both effects are included in the association.

Our first goal is to determine which of the possible reasons for the associa-
tion holds. If we conclude that it is due to a causal effect, then our next goal
is to determine the size of the effect. If we conclude that the association is
due to causal effect confounded with the effect of a lurking variable, then our
next goal becomes determining the sizes of both the effects.

1.1 The Scientific Method: A Process for Learning

In the Middle Ages, science was deduced from principles set down many cen-
turies earlier by authorities such as Aristotle. The idea that scientific theories
should be tested against real world data revolutionized thinking. This way of
thinking known as the scientific method sparked the Renaissance.
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The scientific method rests on the following premises:

A scientific hypothesis can never be shown to be absolutely true.

However, it must potentially be disprovable.

It is a useful model until it is established that it is not true.

Always go for the simplest hypothesis, unless it can be shown to be false.

This last principle, elaborated by William of Ockham in the 13th century, is
now known as Ockham’s razor and is firmly embedded in science. It keeps
science from developing fanciful overly elaborate theories. Thus the scientific
method directs us through an improving sequence of models, as previous ones
get falsified. The scientific method generally follows the following procedure:

1. Ask a question or pose a problem in terms of the current scientific hypoth-
esis.

2. Gather all the relevant information that is currently available. This in-
cludes the current knowledge about parameters of the model.

3. Design an investigation or experiment that addresses the question from
step 1. The predicted outcome of the experiment should be one thing if
the current hypothesis is true, and something else if the hypothesis is false.

4. Gather data from the experiment.

5. Draw conclusions given the experimental results. Revise the knowledge
about the parameters to take the current results into account.

The scientific method searches for cause-and-effect relationships between an
experimental variable and an outcome variable. In other words, how changing
the experimental variable results in a change to the outcome variable. Sci-
entific modeling develops mathematical models of these relationships. Both
of them need to isolate the experiment from outside factors that could affect
the experimental results. All outside factors that can be identified as possibly
affecting the results must be controlled. It is no coincidence that the earliest
successes for the method were in physics and chemistry where the few out-
side factors could be identified and controlled. Thus there were no lurking
variables. All other relevant variables could be identified and could then be
physically controlled by being held constant. That way they would not af-
fect results of the experiment, and the effect of the experimental variable on
the outcome variable could be determined. In biology, medicine, engineering,
technology, and the social sciences it is not that easy to identify the relevant
factors that must be controlled. In those fields a different way to control
outside factors is needed, because they cannot be identified beforehand and
physically controlled.
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1.2 The Role of Statistics in the Scientific Method

Statistical methods of inference can be used when there is random variability
in the data. The probability model for the data is justified by the design of
the investigation or experiment. This can extend the scientific method into
situations where the relevant outside factors cannot even be identified. Since
we cannot identify these outside factors, we cannot control them directly.
The lack of direct control means the outside factors will be affecting the
data. There is a danger that the wrong conclusions could be drawn from the
experiment due to these uncontrolled outside factors.

The important statistical idea of randomization has been developed to deal
with this possibility. The unidentified outside factors can be “averaged out”
by randomly assigning each unit to either treatment or control group. This
contributes variability to the data. Statistical conclusions always have some
uncertainty or error due to variability in the data. We can develop a prob-
ability model of the data variability based on the randomization used. Ran-
domization not only reduces this uncertainty due to outside factors, it also
allows us to measure the amount of uncertainty that remains using the prob-
ability model. Randomization lets us control the outside factors statistically,
by averaging out their effects.

Underlying this is the idea of a statistical population, consisting of all possi-
ble values of the observations that could be made. The data consists of obser-
vations taken from a sample of the population. For valid inferences about the
population parameters from the sample statistics, the sample must be “rep-
resentative” of the population. Amazingly, choosing the sample randomly is
the most effective way to get representative samples!

1.3 Main Approaches to Statistics

There are two main philosophical approaches to statistics. The first is often
referred to as the frequentist approach. Sometimes it is called the classical
approach. Procedures are developed by looking at how they perform over all
possible random samples. The probabilities do not relate to the particular
random sample that was obtained. In many ways this indirect method places
the “cart before the horse.”

The alternative approach that we take in this book is the Bayesian ap-
proach. It applies the laws of probability directly to the problem. This offers
many fundamental advantages over the more commonly used frequentist ap-
proach. We will show these advantages over the course of the book.

Frequentist Approach to Statistics

Most introductory statistics books take the frequentist approach to statistics,
which is based on the following ideas:
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Parameters, the numerical characteristics of the population, are fixed but
unknown constants.

Probabilities are always interpreted as long-run relative frequency.

Statistical procedures are judged by how well they perform in the long
run over an infinite number of hypothetical repetitions of the experiment.

Probability statements are only allowed for random quantities. The un-
known parameters are fixed, not random, so probability statements cannot be
made about their value. Instead, a sample is drawn from the population, and
a sample statistic is calculated. The probability distribution of the statistic
over all possible random samples from the population is determined and is
known as the sampling distribution of the statistic. A parameter of the popu-
lation will also be a parameter of the sampling distribution. The probability
statement that can be made about the statistic based on its sampling dis-
tribution is converted to a confidence statement about the parameter. The
confidence is based on the average behavior of the procedure over all possible
samples.

Bayesian Approach to Statistics

The Reverend Thomas Bayes first discovered the theorem that now bears his
name. It was written up in a paper An Essay Towards Solving a Problem
in the Doctrine of Chances. This paper was found after his death by his
friend Richard Price, who had it published posthumously in the Philosophical
Transactions of the Royal Society in 1763 (1763). Bayes showed how inverse
probability could be used to calculate probability of antecedent events from
the occurrence of the consequent event. His methods were adopted by Laplace
and other scientists in the 19th century, but had largely fallen from favor by
the early 20th century. By the middle of the 20th century, interest in Bayesian
methods had been renewed by de Finetti, Jeffreys, Savage, and Lindley, among
others. They developed a complete method of statistical inference based on
Bayes’ theorem.

This book introduces the Bayesian approach to statistics. The ideas that
form the basis of the this approach are:

Since we are uncertain about the true value of the parameters, we will
consider them to be random variables.

The rules of probability are used directly to make inferences about the
parameters.

Probability statements about parameters must be interpreted as “degree
of belief.” The prior distribution must be subjective. Each person can
have his/her own prior, which contains the relative weights that person
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gives to every possible parameter value. It measures how “plausible” the
person considers each parameter value to be before observing the data.

We revise our beliefs about parameters after getting the data by using
Bayes’ theorem. This gives our posterior distribution which gives the
relative weights we give to each parameter value after analyzing the data.
The posterior distribution comes from two sources: the prior distribution
and the observed data.

This has a number of advantages over the conventional frequentist approach.
Bayes’ theorem is the only consistent way to modify our beliefs about the
parameters given the data that actually occurred. This means that the in-
ference is based on the actual occurring data, not all possible data sets that
might have occurred but did not! Allowing the parameter to be a random
variable lets us make probability statements about it, posterior to the data.
This contrasts with the conventional approach where inference probabilities
are based on all possible data sets that could have occurred for the fixed pa-
rameter value. Given the actual data, there is nothing random left with a
fixed parameter value, so one can only make confidence statements, based on
what could have occurred. Bayesian statistics also has a general way of deal-
ing with a nuisance parameter . A nuisance parameter is one which we do not
want to make inference about, but we do not want them to interfere with the
inferences we are making about the main parameters. Frequentist statistics
does not have a general procedure for dealing with them. Bayesian statistics
is predictive, unlike conventional frequentist statistics. This means that we
can easily find the conditional probability distribution of the next observation
given the sample data.

Monte Carlo Studies

In frequentist statistics, the parameter is considered a fixed, but unknown,
constant. A statistical procedure such as a particular estimator for the pa-
rameter cannot be judged from the value it gives. The parameter is unknown,
so we can not know the value the estimator should be giving. If we knew the
value of the parameter, we would not be using an estimator.

Instead, statistical procedures are evaluated by looking how they perform
in the long run over all possible samples of data, for fixed parameter values
over some range. For instance, we fix the parameter at some value. The
estimator depends on the random sample, so it is considered a random variable
having a probability distribution. This distribution is called the sampling
distribution of the estimator, since its probability distribution comes from
taking all possible random samples. Then we look at how the estimator is
distributed around the parameter value. This is called sample space averaging.
Essentially it compares the performance of procedures before we take any data.

Bayesian procedures consider the parameter to be a random variable, and
its posterior distribution is conditional on the sample data that actually oc-
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curred, not all those samples that were possible but did not occur. However,
before the experiment, we might want to know how well the Bayesian proce-
dure works at some specific parameter values in the range.

To evaluate the Bayesian procedure using sample space averaging, we have
to consider the parameter to be both a random variable and a fixed but
unknown value at the same time. We can get past the apparent contradiction
in the nature of the parameter because the probability distribution we put on
the parameter measures our uncertainty about the true value. It shows the
relative belief weights we give to the possible values of the unknown parameter!
After looking at the data, our belief distribution over the parameter values has
changed. This way we can think of the parameter as a fixed, but unknown,
value at the same time as we think of it being a random variable. This allows
us to evaluate the Bayesian procedure using sample space averaging. This is
called pre-posterior analysis because it can be done before we obtain the data.

In Chapter 4, we will find out that the laws of probability are the best way
to model uncertainty. Because of this, Bayesian procedures will be optimal in
the post-data setting, given the data that actually occurred. In Chapters 9
and 11, we will see that Bayesian procedures perform very well in the pre-data
setting when evaluated using pre-posterior analysis. In fact, it is often the
case that Bayesian procedures outperform the usual frequentist procedures
even in the pre-data setting.

Monte Carlo studies are a useful way to perform sample space averaging.
We draw a large number of samples randomly using the computer and cal-
culate the statistic (frequentist or Bayesian) for each sample. The empirical
distribution of the statistic (over the large number of random samples) ap-
proximates its sampling distribution (over all possible random samples). We
can calculate statistics such as mean and standard deviation on this Monte
Carlo sample to approximate the mean and standard deviation of the sampling
distribution. Some small-scale Monte Carlo studies are included as exercises.

1.4 Purpose and Organization of This Text

A very large proportion of undergraduates are required to take a service course
in statistics. Almost all of these courses are based on frequentist ideas. Most
of them do not even mention Bayesian ideas. As a statistician, I know that
Bayesian methods have great theoretical advantages. I think we should be
introducing our best students to Bayesian ideas, from the beginning. There
are not many introductory statistics text books based on the Bayesian ideas.
Some other texts include Berry (1996), Press (1989), and Lee (1989).

This book aims to introduce students with a good mathematics background
to Bayesian statistics. It covers the same topics as a standard introductory
statistics text, only from a Bayesian perspective. Students need reasonable
algebra skills to follow this book. Bayesian statistics uses the rules of prob-
ability, so competence in manipulating mathematical formulas is required.
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Students will find that general knowledge of calculus is helpful in reading this
book. Specifically they need to know that area under a curve is found by
integrating, and that a maximum or minimum of a continuous differentiable
function is found where the derivative of the function equals zero. However,
the actual calculus used is minimal. The book is self-contained with a calculus
appendix that students can refer to.

Chapter 2 introduces some fundamental principles of scientific data gath-
ering to control the effects of unidentified factors. These include the need
for drawing samples randomly, along with some random sampling techniques.
The reason why there is a difference between the conclusions we can draw
from data arising from an observational study and from data arising from a
randomized experiment is shown. Completely randomized designs and ran-
domized block designs are discussed.

Chapter 3 covers elementary methods for graphically displaying and sum-
marizing data. Often a good data display is all that is necessary. The princi-
ples of designing displays that are true to the data are emphasized.

Chapter 4 shows the difference between deduction and induction. Plausi-
ble reasoning is shown to be an extension of logic where there is uncertainty.
It turns out that plausible reasoning must follow the same rules as probabil-
ity. The axioms of probability are introduced and the rules of probability,
including conditional probability and Bayes’ theorem are developed.

Chapter 5 covers discrete random variables, including joint and marginal
discrete random variables. The binomial, hypergeometric, and Poisson distri-
butions are introduced, and the situations where they arise are characterized.

Chapter 6 covers Bayes’ theorem for discrete random variables using a
table. We see that two important consequences of the method are that multi-
plying the prior by a constant, or that multiplying the likelihood by a constant
do not affect the resulting posterior distribution. This gives us the “propor-
tional form” of Bayes’ theorem. We show that we get the same results when
we analyze the observations sequentially using the posterior after the previ-
ous observation as the prior for the next observation, as when we analyze the
observations all at once using the joint likelihood and the original prior. We
demonstrate Bayes’ theorem for binomial observations with a discrete prior
and for Poisson observations with a discrete prior.

Chapter 7 covers continuous random variables, including joint, marginal,
and conditional random variables. The beta, gamma, and normal distributions
are introduced in this chapter.

Chapter 8 covers Bayes’ theorem for the population proportion (binomial)
with a continuous prior. We show how to find the posterior distribution of
the population proportion using either a uniform prior or a beta prior. We
explain how to choose a suitable prior. We look at ways of summarizing the
posterior distribution.

Chapter 9 compares the Bayesian inferences with the frequentist inferences.
We show that the Bayesian estimator (posterior mean using a uniform prior)
has better performance than the frequentist estimator (sample proportion) in



10 INTRODUCTION TO STATISTICAL SCIENCE

terms of mean squared error over most of the range of possible values. This
kind of frequentist analysis is useful before we perform our Bayesian analysis.
We see the Bayesian credible interval has a much more useful interpretation
than the frequentist confidence interval for the population proportion. One-
sided and two-sided hypothesis tests using Bayesian methods are introduced.

Chapter 10 covers Bayes’ theorem for the Poisson observations with a
continuous prior. The prior distributions used include the positive uniform,
the Jeffreys’ prior, and the gamma prior. Bayesian inference for the Poisson
parameter using the resulting posterior include Bayesian credible intervals and
two-sided tests of hypothesis, as well as one-sided tests of hypothesis.

Chapter 11 covers Bayes’ theorem for the mean of a normal distribution
with known variance. We show how to choose a normal prior. We discuss
dealing with nuisance parameters by marginalization. The predictive density
of the next observation is found by considering the population mean a nuisance
parameter and marginalizing it out.

Chapter 12 compares Bayesian inferences with the frequentist inferences
for the mean of a normal distribution. These comparisons include point and
interval estimation and involve hypothesis tests including both the one-sided
and the two-sided cases.

Chapter 13 shows how to perform Bayesian inferences for the difference be-
tween normal means and how to perform Bayesian inferences for the difference
between proportions using the normal approximation.

Chapter 14 introduces the simple linear regression model and shows how
to perform Bayesian inferences on the slope of the model. The predictive
distribution of the next observation is found by considering both the slope
and intercept to be nuisance parameters and marginalizing them out.

Chapter 15 introduces Bayesian inference for the standard deviation σ,
when we have a random sample of normal observations with known mean µ.
This chapter is at a somewhat higher level than the previous chapters and
requires the use of the change-of-variable formula for densities. Priors used
include positive uniform for standard deviation, positive uniform for variance,
Jeffreys’ prior, and the inverse chi-squared prior. We discuss how to choose
an inverse chi-squared prior that matches our prior belief about the median.
Bayesian inferences from the resulting posterior include point estimates, cred-
ible intervals, and hypothesis tests including both the one-sided and two-sided
cases.

Chapter 16 shows how we can make Bayesian inference robust against a
misspecified prior by using a mixture prior and marginalizing out the mixture
parameter. This chapter is also at a somewhat higher level than the others,
but it shows how one of the main dangers of Bayesian analysis can be avoided.

Chapter 17 returns to the problem we discussed in Chapter 11 — that is, of
making inferences about the mean of a normal distribution. In this chapter,
however, we explicitly model the unknown population standard deviation and
show how the approximations we suggested in Chapter 11 are exactly true.
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We also deal with the two sample cases so that inference can be performed
on the difference between two means.

Chapter 18 introduces the multivariate normal distribution and extends the
theory from Chapters 11 and 17 to the multivariate case. The multivariate
normal distribution is essential for the discussion of linear models and, in
particular, multiple regression.

Chapter 19 extends the material from 14 on simple linear regression to the
more familiar multiple regression setting. The methodology for making infer-
ence about the usefulness of explanatory variables in predicting the response
is given, and the posterior predictive distribution for a new observation is
derived.

Chapter 20 provides a brief introduction to modern computational Bayesian
statistics. Computational Bayesian statistics relies heavily on being able to
efficiently sample from potentially complex distributions. This chapter gives
an introduction to a number of techniques that are used. Readers might be
slightly disappointed that we did not cover popular computer programs such
as BUGS and JAGS, which have very efficient general implementations of
many computational Bayesian methods and tie in well to R. We felt that
these topics require almost an entire book in their own right, and as such we
could not do justice to them in such a short space.

Main Points

An association between two variables does not mean that one causes the
other. It may be due to a causal relationship, it may be due to the effect
of a third (lurking) variable on both the other variables, or it may be
due to a combination of a causal relationship and the effect of a lurking
variable.

Scientific method is a method for searching for cause-and-effect relation-
ships and measuring their strength. It uses controlled experiments, where
outside factors that may affect the measurements are controlled. This iso-
lates the relationship between the two variables from the outside factors,
so the relationship can be determined.

Statistical methods extend the scientific method to cases where the out-
side factors are not identified and hence cannot be controlled. The prin-
ciple of randomization is used to statistically control these unidentified
outside factors by averaging out their effects. This contributes to vari-
ability in the data.

We can use the probability model (based on the randomization method)
to measure the uncertainty.

The frequentist approach to statistics considers the parameter to be a
fixed but unknown constant. The only kind of probability allowed is long-
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run relative frequency. These probabilities are only for observations and
sample statistics, given the unknown parameters. Statistical procedures
are judged by how they perform in an infinite number of hypothetical
repetitions of the experiment.

The Bayesian approach to statistics allows the parameter to be considered
a random variable. Probabilities can be calculated for parameters as well
as observations and sample statistics. Probabilities calculated for param-
eters are interpreted as “degree of belief” and must be subjective. The
rules of probability are used to revise our beliefs about the parameters,
given the data.

A frequentist estimator is evaluated by looking at its sampling distribu-
tion for a fixed parameter value and seeing how it is distributed over all
possible repetitions of the experiment.

If we look at the sampling distribution of a Bayesian estimator for a fixed
parameter value, it is called pre-posterior analysis since it can be done
prior to taking the data.

A Monte Carlo study is where we perform the experiment a large number
of times and calculate the statistic for each experiment. We use the
empirical distribution of the statistic over all the samples we took in our
study instead of its sampling distribution over all possible repetitions.



CHAPTER 2

SCIENTIFIC DATA GATHERING

Scientists gather data purposefully, in order to find answers to particular
questions. Statistical science has shown that data should be relevant to the
particular questions, yet be gathered using randomization. The development
of methods to gather data purposefully, yet using randomization, is one of
the greatest contributions the field of statistics has made to the practice of
science.

Variability in data solely due to chance can be averaged out by increas-
ing the sample size. Variability due to other causes cannot be. Statistical
methods have been developed for gathering data randomly, yet relevant to
a specific question. These methods can be divided into two fields. Sample
survey theory is the study of methods for sampling from a finite real popula-
tion. Experimental design is the study of methods for designing experiments
that focus on the desired factors and that are not affected by other possibly
unidentified ones.

Inferences always depend on the probability model which we assume gen-
erated the observed data being the correct one. When data are not gathered
randomly, there is a risk that the observed pattern is due to lurking variables
that were not observed, instead of being a true reflection of the underlying
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pattern. In a properly designed experiment, treatments are assigned to sub-
jects in such a way as to reduce the effects of any lurking variables that are
present, but unknown to us.

When we make inferences from data gathered according to a properly de-
signed random survey or experiment, the probability model for the observa-
tions follows from the design of the survey or experiment, and we can be
confident that it is correct. This puts our inferences on a solid foundation.
On the other hand, when we make inferences from data gathered from a non-
random design, we do not have any underlying justification for the probability
model, we just assume it is true! There is the possibility the assumed proba-
bility model for the observations is not correct, and our inferences will be on
shaky ground.

2.1 Sampling from a Real Population

First, we will define some fundamental terms.

Population. The entire group of objects or people the investigator wants
information about. For instance, the population might consist of New
Zealand residents over the age of eighteen. Usually we want to know
some specific attribute about the population. Each member of the pop-
ulation has a number associated with it — for example, his/her annual
income. Then we can consider the model population to be the set of
numbers for each individual in the real population. Our model popula-
tion would be the set of incomes of all New Zealand residents over the
age of eighteen. We want to learn about the distribution of the popula-
tion. Specifically, we want information about the population Parameters,
which are numbers associated with the distribution of the population,
such as the population mean, median, and standard deviation. Often it
is not feasible to get information about all the units in the population.
The population may be too big, or spread over too large an area, or it
may cost too much to obtain data for the complete population. So we do
not know the parameters because it is infeasible to calculate them.

Sample. A subset of the population. The investigator draws one sample
from the population and gets information from the individuals in that
sample. Sample statistics are calculated from sample data. They are
numerical characteristics that summarize the distribution of the sample,
such as the sample mean, median, and standard deviation. A statistic has
a similar relationship to a sample that a parameter has to a population.
However, the sample is known, so the statistic can be calculated.

Statistical inference. Making a statement about population parameters
on basis of sample statistics. Good inferences can be made if the sample
is representative of the population as a whole! The distribution of the
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sample must be similar to the distribution of the population from which
it came! Sampling bias, a systematic tendency to collect a sample which
is not representative of the population, must be avoided. It would cause
the distribution of the sample to be dissimilar to that of the population,
and thus lead to very poor inferences.

Even if we are aware of something about the population and try to represent
it in the sample, there is probably some other factors in the population that
we are unaware of, and the sample would end up being nonrepresentative in
those factors.

EXAMPLE 2.1

Suppose we are interested in estimating the proportion of Hamilton voters
who approve the Hamilton City Council’s financing a new rugby stadium.
We decide to go downtown one lunch break and draw our sample from
people passing by. We might decide that our sample should be balanced
between males and females the same as the voting age population. We
might get a sample evenly balanced between males and females, but not
be aware that the people we interview during the day are mainly those on
the street during working hours. Office workers would be overrepresented,
while factory workers would be underrepresented. There might be other
biases inherent in choosing our sample this way, and we might not have
a clue as to what these biases are. Some groups would be systematically
underrepresented, and others systematically overrepresented. We cannot
make our sample representative for classifications we do not know.

Surprisingly, random samples give more representative samples than any
non-random method such as quota samples or judgment samples. They not
only minimize the amount of error in the inference, they also allow a (proba-
bilistic) measurement of the error that remains.

Simple Random Sampling (without Replacement)

Simple random sampling requires a sampling frame , which is a list of the
population numbered from 1 to N . A sequence of n random numbers are
drawn from the numbers 1 to N . Each time a number is drawn it is removed
from consideration so that it cannot be drawn again. The items on the list
corresponding to the chosen numbers are included in the sample. Thus, at
each draw, each item not yet selected has an equal chance of being selected.
Every item has equal chance of being in the final sample. Furthermore, every
possible sample of the required size is equally likely.

Suppose we are sampling from the population of registered voters in a
large city. It is likely that the proportion of males in the sample is close
to the proportion of males in the population. Most samples are near the
correct proportions; however, we are not certain to get the exact proportion.
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All possible samples of size n are equally likely, including those that are not
representative with respect to sex.

Stratified Random Sampling

Given that we know what the proportions of males and females are from the
list of voters, we should take that information into account in our sampling
method. In stratified random sampling, the population is divided into sub-
populations called strata. In our case this would be males and females. The
sampling frame would be divided into separate sampling frames for the two
strata. A simple random sample is taken from each stratum where the sample
size in each stratum is proportional to the stratum size. Every item has equal
chance of being selected, and every possible sample that has each stratum rep-
resented in the correct proportions is equally likely. This method will give us
samples that are exactly representative with respect to sex. Hence inferences
from these type of samples will be more accurate than those from simple ran-
dom sampling when the variable of interest has different distributions over the
strata. If the variable of interest is the same for all the strata, then stratified
random sampling will be no more (and no less) accurate than simple random
sampling. Stratification has no potential downside as far as accuracy of the
inference. However, it is more costly, as the sampling frame has to be divided
into separate sampling frames for each stratum.

Cluster Random Sampling

Sometimes we do not have a good sampling frame of individuals. In other cases
the individuals are scattered across a wide area. In cluster random sampling,
we divide that area into neighborhoods called clusters. Then we make a
sampling frame for clusters. A random sample of clusters is selected. All items
in the chosen clusters are included in the sample. This is very cost effective
because the interviewer will not have as much travel time between interviews.
The drawback is that items in a cluster tend to be more similar than items
in different clusters. For instance, people living in the same neighborhood
usually come from the same economic level because the houses were built at
the same time and in the same price range. This means that each observation
gives less information about the population parameters. It is less efficient in
terms of sample size. However, often it is very cost effective, because getting
a larger sample is usually cheaper by this method.

Non-sampling Errors in Sample Surveys

Errors can arise in sample surveys or in a complete population census for rea-
sons other than the sampling method used. These non-sampling errors include
response bias; the people who respond may be somewhat different than those
who do not respond. They may have different views on the matters surveyed.
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Since we only get observations from those who respond, this difference would
bias the results. A well-planned survey will have callbacks, where those in
the sample who have not responded will be contacted again, in order to get
responses from as many people in the original sample as possible. This will
entail additional costs, but is important as we have no reason to believe that
nonrespondents have the same views as the respondents. Errors can also arise
from poorly worded questions. Survey questions should be trialed in a pilot
study to determine if there is any ambiguity.

Randomized Response Methods

Social science researchers and medical researchers often wish to obtain infor-
mation about the population as a whole, but the information that they wish
to obtain is sensitive to the individuals who are surveyed. For instance, the
distribution of the number of sex partners over the whole population would
be indicative of the overall population risk for sexually transmitted diseases.
Individuals surveyed may not wish to divulge this sensitive personal infor-
mation. They might refuse to respond or, even worse, they could give an
untruthful answer. Either way, this would threaten the validity of the survey
results. Randomized response methods have been developed to get around
this problem. There are two questions, the sensitive question and the dummy
question. Both questions have the same set of answers. The respondent uses
a randomization that selects which question he or she answers, and also the
answer if the dummy question is selected. Some of the answers in the sur-
vey data will be to the sensitive question and some will be to the dummy
question. The interviewer will not know which is which. However, the incor-
rect answers are entering the data from known randomization probabilities.
This way, information about the population can be obtained without actu-
ally knowing the personal information of the individuals surveyed, since only
that individual knows which question he or she answered. Bolstad, Hunt,
and McWhirter (2001) describe a Sex, Drugs, and Rock & Roll Survey that
gets sensitive information about a population (Introduction to Statistics class)
using randomized response methods.

2.2 Observational Studies and Designed Experiments

The goal of scientific inquiry is to gain new knowledge about the cause-and-
effect relationship between a factor and a response variable. We gather data to
help us determine these relationships and to develop mathematical models to
explain them. The world is complicated. There are many other factors that
may affect the response. We may not even know what these other factors
are. If we do not know what they are, we cannot control them directly.
Unless we can control them, we cannot make inferences about cause-and-effect
relationships! Suppose, for example, we want to study a herbal medicine for its
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Figure 2.1 Variation among experimental units.

effect on weight loss. Each person in the study is an experimental unit . There
is great variability between experimental units, because people are all unique
individuals with their own hereditary body chemistry and dietary and exercise
habits. The variation among experimental units makes it more difficult to
detect the effect of a treatment. Figure 2.1 shows a collection of experimental
units. The degree of shading shows they are not the same with respect to some
unidentified variable. The response variable in the experiment may depend on
that unidentified variable, which could be a lurking variable in the experiment.

Observational Study

If we record the data on a group of subjects that decided to take the herbal
medicine and compared that with data from a control group who did not, that
would be an observational study. The treatments have not been randomly
assigned to treatment and control group. Instead they self-select. Even if we
observe a substantial difference between the two groups, we cannot conclude
that there is a causal relationship from an observational study. We cannot rule
out that the association was due to an unidentified lurking variable. In our
study, those who took the treatment may have been more highly motivated
to lose weight than those who did not. Or there may be other factors that
differed between the two groups. Any inferences we make on an observational
study are dependent on the assumption that there are no differences between
the distribution of the units assigned to the treatment groups and the control
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group. We cannot know whether this assumption is actually correct in an
observational study.

Designed Experiment

We need to get our data from a designed experiment if we want to be able to
make sound inferences about cause-and-effect relationships. The experimenter
uses randomization to decide which subjects get into the treatment group(s)
and control group respectively. For instance, he/she uses a table of random
numbers, or flips a coin.

We are going to divide the experimental units into four treatment groups
(one of which may be a control group). We must ensure that each group
gets a similar range of units. If we do not, we might end up attributing a
difference between treatment groups to the different treatments, when in fact
it was due to the lurking variable and a biased assignment of experimental
units to treatment groups.

Completely randomized design. We will randomly assign experimental units
to groups so that each experimental unit is equally likely to go to any of the
groups. Each experimental unit will be assigned (nearly) independently of
other experimental units. The only dependence between assignments is that
having assigned one unit to treatment group 1 (for example), the probability
of the other unit being assigned to group 1 is slightly reduced because there is
one less place in group 1. This is known as a completely randomized design.
Having a large number of (nearly) independent randomizations ensures that
the comparisons between treatment groups and control group are fair since
all groups will contain a similar range of experimental units. Units having
high values and units having low values of the lurking variable will be in all
treatment groups in similar proportions. In Figure 2.2 we see that the four
treatment groups have similar range of experimental units with respect to the
unidentified lurking variable.

The randomization averages out the differences between experimental units
assigned to the groups. The expected value of the lurking variable is the same
for all groups, because of the randomization. The average value of the lurking
variable for each group will be close to its mean value in the population
because there are a large number of independent randomizations. The larger
the number of units in the experiment, the closer the average values of the
lurking variable in each group will be to its mean value in the population. If
we find an association between the treatment and the response, then it will be
unlikely that the association was due to any lurking variable. For a large-scale
experiment, we can effectively rule out any lurking variable and conclude that
the association was due to the effect of different treatments.

Randomized block design. If we identify a variable, then we can control for
it directly. It ceases to be a lurking variable. One might think that using
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Figure 2.2 Completely randomized design. Units have been randomly assigned to
four treatment groups.

judgment about assigning experimental units to the treatment and control
groups would lead to similar range of units being assigned to them. The
experimenter could get similar groups according to the criterion (identified
variable) he/she was using. However, there would be no protection against
any other lurking variable that had not been considered. We cannot expect
it to be averaged out if we have not done the assignments randomly!

Any prior knowledge we have about the experimental units should be used
before the randomization. Units that have similar values of the identified
variable should be formed into blocks. This is shown in Figure 2.3. The
experimental units in each block are similar with respect to that variable.
Then the randomization is be done within blocks. One experimental unit
in each block is randomly assigned to each treatment group. The blocking
controls that particular variable, as we are sure that all units in the block are
similar, and one goes to each treatment group. By selecting which one goes
to each group randomly, we are protecting against any other lurking variable
by randomization. It is unlikely that any of the treatment groups was unduly
favored or disadvantaged by the lurking variable. On the average, all groups
are treated the same. Figure 2.4 shows the treatment groups found by a
randomized block design. We see the four treatment groups are even more
similar than those from the completely randomized design.

For example, if we wanted to determine which of four varieties of wheat
gave better yield, we would divide the field into blocks of four adjacent plots
because plots that are adjacent are more similar in their fertility than plots
that are distant from each other. Then within each block, one plot would be
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Figure 2.3 Similar units have been put into blocks.

randomly assigned to each variety. This randomized block design ensures that
the four varieties each have been assigned to similar groups of plots. It protects
against any other lurking variable, by the within-block randomization.

When the response variable is related to the trait we are blocking on, the
blocking will be effective, and the randomized block design will lead to more
precise inferences about the yields than a completely randomized design with
the same number of plots. This can be seen by comparing the treatment
groups from the completely randomized design shown in Figure 2.2 with the
treatment groups from the randomized block design shown in Figure 2.4. The
treatment groups from the randomized block design are more similar than
those from the completely randomized design.

Main Points

Population. The entire set of objects or people that the study is about.
Each member of the population has a number associated with it, so we
often consider the population as a set of numbers. We want to know
about the distribution of these numbers.

Sample. The subset of the population from which we obtain the numbers.

Parameter . A number that is a characteristic of the population distri-
bution, such as the mean, median, standard deviation, and interquartile
range of the whole population.
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Figure 2.4 Randomized block design. One unit in each block randomly assigned
to each treatment group. Randomizations in different blocks are independent of each
other.

Statistic. A number that is a characteristic of the sample distribution,
such as the mean, median, standard deviation, and interquartile range of
the sample.

Statistical inference. Making a statement about population parameters
on the basis of sample statistics.

Simple random sampling . At each draw every item that has not already
been drawn has an equal chance of being chosen to be included in the
sample.

Stratified random sampling . The population is partitioned into subpop-
ulations called strata, and simple random samples are drawn from each
stratum where the stratum sample sizes are proportional to the stratum
proportions in the population. The stratum samples are combined to
form the sample from the population.

Cluster random sampling . The area the population lies in is partitioned
into areas called clusters. A random sample of clusters is drawn, and
all members of the population in the chosen clusters are included in the
sample.

Randomized response methods. These allow the respondent to randomly
determine whether to answer a sensitive question or the dummy ques-
tion, which both have the same range of answers. Thus the respondents
personal information is not divulged by the answer, since the interviewer
does not know which question it applies to.

Observational study . The researcher collects data from a set of experi-
mental units not chosen randomly, or not allocated to experimental or
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control group by randomization. There may be lurking variables due to
the lack of randomization.

Designed experiment . The researcher allocates experimental units to the
treatment group(s) and control group by some form of randomization.

Completely randomized design. The researcher randomly assigns the
units into the treatment groups (nearly) independently. The only de-
pendence is the constraint that the treatment groups are the correct size.

Randomized block design. The researcher first groups the units into blocks
which contain similar units. Then the units in each block are randomly
assigned, one to each group. The randomizations in separate blocks are
performed independent of each other.

Monte Carlo Exercises

2.1. Monte Carlo study comparing methods for random sampling.
We will use a Monte Carlo computer simulation to evaluate the methods
of random sampling. Now, if we want to evaluate a method, we need
to know how it does in the long run. In a real-life situation, we cannot
judge a method by the sample estimate it gives, because if we knew the
population parameter, we would not be taking a sample and estimating
it with a sample statistic.

One way to evaluate a statistical procedure is to evaluate the sampling
distribution which summarizes how the estimate based on that procedure
varies in the long run (over all possible random samples) for a case when
we know the population parameters. Then we can see how closely the
sampling distribution is centered around the true parameter. The closer
it is, the better the statistical procedure, and the more confidence we will
have in it for realistic cases when we do not know the parameter.

If we use computer simulations to run a large number of hypothetical
repetitions of the procedure with known parameters, this is known as a
Monte Carlo study named after the famous casino. Instead of having
the theoretical sampling distribution, we have the empirical distribution
of the sample statistic over those simulated repetitions. We judge the
statistical procedure by seeing how closely the empirical distribution of
the estimator is centered around the known parameter.

The population. Suppose there is a population made up of 100 individ-
uals, and we want to estimate the mean income of the population from a
random sample of size 20. The individuals come from three ethnic groups
with population proportions of 40%, 40%, and 20%, respectively. There
are twenty neighborhoods, and five individuals live in each one. Now, the
income distribution may be different for the three ethnic groups. Also,
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individuals in the same neighborhood tend to be more similar than indi-
viduals in different neighborhoods.

[Minitab:] Details about the population are contained in the Minitab
worksheet sscsample.mtw. Each row contains the information for an in-
dividual. Column 1 contains the income, column 2 contains the ethnic
group, and column 3 contains the neighborhood. Compute the mean in-
come for the population. That will be the true parameter value that we
are trying to estimate.

[R:] Details about the population can be seen by typing

help(sscsample.data)

In the Monte Carlo study we will approximate the sampling distribution
of the sample means for three types of random sampling, simple random
sampling, stratified random sampling, and cluster random sampling. We
do this by drawing a large number (in this case 200) random samples from
the population using each method of sampling, calculating the sample
mean as our estimate. The empirical distribution of these 200 sample
means approximates the sampling distribution of the estimate.

(a) Display the incomes for the three ethnic groups (strata) using boxplots
on the same scale. Compute the mean income for the three ethnic
groups. Do you see any difference between the income distributions?

[R:] This may be done in R by typing:

boxplot(income~ethnicity, data = sscsample.data)

(b) [Minitab:] Draw 200 random samples of size 20 from the population
using simple random sampling using sscsample and put the output in
columns c6–c9. Details of how to use this macro are in Appendix C.

[R:] Draw 200 random samples of size 20 from the population using
simple random sampling using the sscsample function.

mySamples = list(simple = NULL, strat = NULL,

cluster = NULL)

mySamples$simple = sscsample(20, 200)

The means and the number of observations sampled from each ethnic
group can be seen by typing

mySamples$simple

More details of how to use this function are in Appendix D.
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Answer the following questions from the output:

i. Does simple random sampling always have the strata repre-
sented in the correct proportions?

ii. On the average, does simple random sampling give the strata
in their correct proportions?

iii. Does the mean of the sampling distribution of the sample
mean for simple random sampling appear to be close enough
to the population mean that we can consider the difference
to be due to chance alone? (We only took 200 samples, not
all possible samples.)

(c) [Minitab:] Draw 200 stratified random samples using the macro and
store the output in c11–c14.

[R:] Draw 200 stratified random samples using the function and store
the output in mySamples$strat.

mySamples$strat = sscsample(20, 200, "stratified")

mySamples$strat

Answer the following questions from the output:

i. Does stratified random sampling always have the strata rep-
resented in the correct proportions?

ii. On the average, does stratified random sampling give the
strata in their correct proportions?

iii. Does the mean of the sampling distribution of the sample
mean for stratified random sampling appear to be close enough
to the population mean that we can consider the difference
to be due to chance alone? (We only took 200 samples, not
all possible samples.)

(d) [Minitab:] Draw 200 cluster random samples using the macro and
put the output in columns c16–c19.

[R:] Draw 200 cluster random samples using the function and store
the output in mySamples$cluster.

mySamples$cluster = sscsample(20, 200, "cluster")

mySamples$cluster

Answer the following questions from the output:

i. Does cluster random sampling always have the strata repre-
sented in the correct proportions?

ii. On the average, does cluster random sampling give the strata
in their correct proportions?
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iii. Does the mean of the sampling distribution of the sample
mean for cluster random sampling appear to be close enough
to the population mean that we can consider the difference
to be due to chance alone? (We only took 200 samples, not
all possible samples.)

(e) Compare the spreads of the sampling distributions (standard devi-
ation and interquartile range). Which method of random sampling
seems to be more effective in giving sample means more concentrated
about the true mean?

[R:]

sapply(mySamples, function(x)sd(x$means))

sapply(mySamples, function(x)IQR(x$means))

(f) Give reasons for this.

2.2. Monte Carlo study comparing completely randomized design
and randomized block design. Often we want to set up an experi-
ment to determine the magnitude of several treatment effects. We have
a set of experimental units that we are going to divide into treatment
groups. There is variation among the experimental units in the underly-
ing response variable that we are going to measure. We will assume that
we have an additive model where each of the treatments has a constant
effect. That means the measurement we get for an experimental unit i
given treatment j will be the underlying value for unit i plus the effect
of the treatment for the treatment it receives:

yi,j = ui + Tj ,

where ui is the underlying value for experimental unit i and Tj is the
treatment effect for treatment j. The assignment of experimental units
to treatment groups is crucial.

There are two things that the assignment of experimental units into treat-
ment groups should deal with. First, there may be a “lurking variable”
that is related to the measurement variable, either positively or nega-
tively. If we assign experimental units that have high values of that
lurking variable into one treatment group, that group will be either ad-
vantaged or disadvantaged, depending if there is a positive or negative
relationship. We would be quite likely to conclude that treatment is good
or bad relative to the other treatments, when in fact the apparent differ-
ence would be due to the effect of the lurking variable. That is clearly
a bad thing to occur. We know that to prevent this, the experimental
units should be assigned to treatment groups according to some random-
ization method. On the average, we want all treatment groups to get a
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similar range of experimental units with respect to the lurking variable.
Otherwise, the experimental results may be biased.

Second, the variation in the underlying values of the experimental units
may mask the differing effects of the treatments. It certainly makes it
harder to detect a small difference in treatment effects. The assignment
of experimental units into treatment groups should make the groups as
similar as possible. Certainly, we want the group means of the underlying
values to be nearly equal.

The completely randomized design randomly divides the set of experi-
mental units into treatment groups. Each unit is randomized (almost)
independently. We want to ensure that each treatment group contains
equal numbers of units. Every assignment that satisfies this criterion is
equally likely. This design does not take the values of the other variable
into account. It remains a possible lurking variable.

The randomized block design takes the other variable value into account.
First blocks of experimental units having similar values of the other vari-
able are formed. Then one unit in each block is randomly assigned to each
of the treatment groups. In other words, randomization occurs within
blocks. The randomizations in different blocks are done independently of
each other. This design makes use of the other variable. It ceases to be
a lurking variable and becomes the blocking variable.

In this assignment we compare the two methods of randomly assigning
experimental units into treatment groups. Each experimental unit has an
underlying value of the response variable and a value of another variable
associated with it. (If we do not take the other variable in account, it
will be a lurking variable.) We will run a small-scale Monte Carlo study
to compare the performance of these two designs in two situations.

(a) First we will do a small-scale Monte Carlo study of 500 random as-
signments using each of the two designs when the response variable is
strongly related to the other variable. We let the correlation between
them be ρ = .8.

[Minitab:] The correlation is set by specifying the value of the vari-
able k1 for the Minitab macro Xdesign.

[R:] The correlation is set by specifying the value of corr in the R
function xdesign.

The details of how to use the Minitab macro Xdesign or the R function
xdesign are in Appendix C and Appendix D, respectively. Look at
the boxplots and summary statistics.

i. Does it appear that, on average, all groups have the same
underlying mean value for the other (lurking) variable when
we use a completely randomized design?
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ii. Does it appear that, on average, all groups have the same
underlying mean value for the other (blocking) variable when
we use a randomized block design?

iii. Does the distribution of the other variable over the treatment
groups appear to be the same for the two designs? Explain
any difference.

iv. Which design is controlling for the other variable more effec-
tively? Explain.

v. Does it appear that, on average, all groups have the same
underlying mean value for the response variable when we use
a completely randomized design?

vi. Does it appear that, on average, all groups have the same
underlying mean value for the response variable when we use
a randomized block design?

vii. Does the distribution of the response variable over the treat-
ment groups appear to be the same for the two designs? Ex-
plain any difference.

viii. Which design will give us a better chance for detecting a small
difference in treatment effects? Explain.

ix. Is blocking on the other variable effective when the response
variable is strongly related to the other variable?

(b) Next we will do a small-scale Monte Carlo study of 500 random as-
signments using each of the two designs when the response variable is
weakly related to the other variable. We let the correlation between
them be ρ = .4. Look at the boxplots and summary statistics.

i. Does it appear that, on average, all groups have the same
underlying mean value for the other (lurking) variable when
we use a completely randomized design?

ii. Does it appear that, on average, all groups have the same
underlying mean value for the other (blocking) variable when
we use a randomized block design?

iii. Does the distribution of the other variable over the treatment
groups appear to be the same for the two designs? Explain
any difference.

iv. Which design is controlling for the other variable more effec-
tively? Explain.

v. Does it appear that, on average, all groups have the same
underlying mean value for the response variable when we use
a completely randomized design?

vi. Does it appear that, on average, all groups have the same
underlying mean value for the response variable when we use
a randomized block design?
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vii. Does the distribution of the response variable over the treat-
ment groups appear to be the same for the two designs? Ex-
plain any difference.

viii. Which design will give us a better chance for detecting a small
difference in treatment effects? Explain.

ix. Is blocking on the other variable effective when the response
variable is strongly related to the other variable?

(c) Next we will do a small-scale Monte Carlo study of 500 random as-
signments using each of the two designs when the response variable
is not related to the other variable. We let the correlation between
them be ρ = 0. This will make the response variable independent
of the other variable. Look at the boxplots for the treatment group
means for the other variable.

i. Does it appear that, on average, all groups have the same
underlying mean value for the other (lurking) variable when
we use a completely randomized design?

ii. Does it appear that, on average, all groups have the same
underlying mean value for the other (blocking) variable when
we use a randomized block design?

iii. Does the distribution of the other variable over the treatment
groups appear to be the same for the two designs? Explain
any difference.

iv. Which design is controlling for the other variable more effec-
tively? Explain.

v. Does it appear that, on average, all groups have the same
underlying mean value for the response variable when we use
a completely randomized design?

vi. Does it appear that, on average, all groups have the same
underlying mean value for the response variable when we use
a randomized block design?

vii. Does the distribution of the response variable over the treat-
ment groups appear to be the same for the two designs? Ex-
plain any difference.

viii. Which design will give us a better chance for detecting a small
difference in treatment effects? Explain.

ix. Is blocking on the other variable effective when the response
variable is independent from the other variable?

x. Can we lose any effectiveness by blocking on a variable that
is not related to the response?





CHAPTER 3

DISPLAYING AND SUMMARIZING DATA

We use statistical methods to extract information from data and gain insight
into the underlying process that generated the data. Frequently our data set
consists of measurements on one or more variables over the experimental units
in one or more samples. The distribution of the numbers in the sample will
give us insight into the distribution of the numbers for the whole population.

It is very difficult to gain much understanding by looking at a set of num-
bers. Our brains were not designed for that. We need to find ways to present
the data that allow us to note the important features of the data. The visual
processing system in our brain enables us to quickly perceive the overview we
want, when the data are represented pictorially in a sensible way. They say
a picture is worth a thousand words. That is true, provided that we have
the correct picture. If the picture is incorrect, we can mislead ourselves and
others very badly!

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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3.1 Graphically Displaying a Single Variable

Often our data set consists of a set of measurements on a single variable for a
single sample of subjects or experimental units. We want to get some insight
into the distribution of the measurements of the whole population. A visual
display of the measurements of the sample helps with this.

EXAMPLE 3.1

In 1798 the English scientist Cavendish performed a series of 29 mea-
surements on the density of the Earth using a torsion balance. This
experiment and the data set are described by Stigler (1977). Table 3.1
contains the 29 measurements.

Table 3.1 Earth density measurements by Cavendish

5.50 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65

5.57 5.53 5.62 5.29 5.44 5.34 5.79 5.10 5.27 5.39

5.42 5.47 5.63 5.34 5.46 5.30 5.75 5.68 5.85

Dotplot

A dotplot is the simplest data display for a single variable. Each observation
is represented by a dot at its value along horizontal axis. This shows the
relative positions of all the observation values. It is easy to get a general idea
of the distribution of the values. Figure 3.1 shows the dotplot of Cavendish’s
Earth density measurements.

5.85.65.45.25.0

Figure 3.1 Dotplot of Earth density measurements by Cavendish.

Boxplot (Box-and-Whisker Plot)

Another simple graphical method to summarize the distribution of the data
is to form a boxplot. First we have to sort and summarize the data.

Originally, the sample values are y1, . . . , yn. The subscript denotes the
order (in time) the observation was taken, y1 is the first, y2 is the second, and
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so on up to yn which is last. When we order the sample values by size from
smallest to largest we get the order statistics. They are denoted y[1], · · · , y[n],
where y[1] is the smallest, y[2] is the second smallest, on up to the largest y[n].
We divide the ordered observations into quarters with the quartiles. Q1, the
lower quartile, is the value that 25% of the observations are less than or equal
to it, and 75% or more of the observations are greater than or equal to it. Q2,
the middle quartile, is the value that 50% or more of the observations are less
than or equal to it, and 50% or more of the observations are greater than or
equal to it. Q2 is also known as the sample median. Similarly Q3, the upper
quartile is the value that 75% of the observations are less than or equal to it,
and 25% of the observations are greater than or equal to it. We can find these
from the order statistics:

Q1 = y[n+1
4 ] ,

Q2 = y[n+1
2 ] ,

Q3 = y
[
3(n+1)

4 ]
.

If the subscripts are not integers, we take the weighted average of the two
closest order statistics. For example, Cavendish’s Earth density data n = 29,

Q1 = y[ 30
4 ] .

This is halfway between the 7th- and 8th-order statistics, so

Q1 = 1
2×y[7] + 1

2×y[8] .

The five number summary of a data set is y[1], Q1, Q2, Q3, y[n]. This gives
the minimum, the three quartiles, and the maximum of the observations.
The boxplot or box-and-whisker plot is a pictorial way of representing the five
number summary. The steps are:

Draw and label an axis.

Draw a box with ends at the first and third quartiles.

Draw a line through the box at the second quartile (median).

Draw a line (whisker) from the lower quartile to the lowest observation,
and draw a line (whisker) from the upper quartile to the highest obser-
vation.

Warning: Minitab extends the whiskers only to a maximum length of
1.5 × the interquartile range. Any observation further out than that
is identified with an asterisk (*) to indicate the observation may be an
outlier. This can seriously distort the picture of the sample, because the
criterion does not depend on the sample size. A large sample can look
very heavy-tailed because the asterisks show that there are many possibly
outlying values, when the proportion of outliers is well within the normal



34 DISPLAYING AND SUMMARIZING DATA

range. In Exercise 3.6, we show how this distortion works and how we
can control it by editing the outlier symbol in the Minitab boxplot.

The boxplot divides the observations into quarters. It shows you a lot about
the shape of the data distribution. Examining the length of the whiskers
compared to the box length shows whether the data set has light, normal,
or heavy tails. Comparing the lengths of the whiskers show whether the
distribution of the data appears to be skewed or symmetric. Figure 3.2 shows
the boxplot for Cavendish’s Earth density measurements. It shows that the
data distribution is fairly symmetric but with a slightly longer lower tail.

5.85.65.45.25.0

Figure 3.2 Boxplot of Earth density measurements by Cavendish.

Stem-and-Leaf Diagram

The stem-and-leaf diagram is a quick and easy way of extracting information
about the distribution of a sample of numbers. The stem represents the
leading digit(s) to a certain depth (power of 10) of each data item, and the
leaf represents the next digit of the data item. A stem-and-leaf diagram can
be constructed by hand for a small data set. It is often the first technique
used on a set of numbers. The steps are:

Draw a vertical axis (stem) and scale it for the stem units. Always use a
linear scale!
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Plot leaf for the next digit. We could round off the leaf digit, but usually
we do not bother if we are doing it by hand. In any case, we may have
lost some information by rounding off or by truncating.

Order the leaves with the smallest near stem to the largest farthest away.

State the leaf unit on your diagram.

The stem-and-leaf plot gives a picture of the distribution of the numbers when
we turn it on its side. It retains the actual numbers to within the accuracy
of the leaf unit. We can find the order statistics counting up from the lower
end. This helps to find the quartiles and the median. Figure 3.3 shows a
stem-and-leaf diagram for Cavendish’s Earth density measurements. We use
a two-digit stem, units and tenths, and a one-digit leaf, hundredths.

leaf unit .01

48 8

49

50 7

51 0

52 6799

53 04469

54 2467

55 03578

56 12358

57 59

58 5

Figure 3.3 Stem-and-leaf plot for Cavendish’s Earth density measurements.

There are 29 measurements. We can count down to the X 29+1
2

= X15 to

find that the median is 5.46. We can count down to X 29+1
4

= X7 1
2
. Thus the

first quartile Q1 = 1
2 ×X7 + 1

2 ×X8, which is 5.295.

Frequency Table

Another main approach to simplify a set of numbers is to put it in a frequency
table. This is sometimes referred to as binning the data. The steps are:

Partition possible values into nonoverlapping groups (bins). Usually we
use equal width groups. However, this is not required.

Put each item into the group it belongs in.

Count the number of items in each group.
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Frequency tables are a useful tool for summarizing data into an understand-
able form. There is a trade-off between the loss of information in our summary,
and the ease of understanding the information that remains. We have lost in-
formation when we put a number into a group. We know it lies between the
group boundaries, but its exact value is no longer known. The fewer groups
we use, the more concise the summary, but the greater loss of information. If
we use more groups we lose less information, but our summary is less concise
and harder to grasp. Since we no longer have the information about exactly
where each value lies in a group, it seems logical that the best assumption we
can then make is that each value in the group is equally possible. The Earth
density measurements made by Cavendish are shown as a frequency table in
Table 3.2.

Table 3.2 Frequency table of Earth density measurements by Cavendish

Boundaries Frequency

4.80 < x ≤ 5.00 1

5.00 < x ≤ 5.20 2

5.20 < x ≤ 5.40 9

5.40 < x ≤ 5.60 9

5.60 < x ≤ 5.80 7

5.80 < x ≤ 6.00 1

If there are too many groups, some of them may not contain any obser-
vations. In that case, it is better to lump two or more adjacent groups into
a bigger one to get some observations in every group. There are two ways
to show the data in a frequency table pictorially. They are histograms and
cumulative frequency polygons.

Histogram

This is the most common way to show the distribution of data in the frequency
table. The steps for constructing a histogram are:

Put group boundaries on horizontal axis drawn on a linear scale.

Draw a rectangular bar for each group where the area of bar is propor-
tional to the frequency of that group. For example, this means that if a
group is twice as wide as the others, its height is half that group’s fre-
quency. The bar is flat across the top to show our assumption that each
value in the group is equally possible.
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Do not put any gaps between the bars if the data are continuous.

The scale on the vertical axis is density, which is group frequency divided
by group width. When the groups have equal width, the scale is propor-
tional to frequency, or relative frequency, and they could be used instead
of density. This is not true if unequal width groups are used. It is not
necessary to label the vertical axis on the graph. The shape of the graph
is the important thing, not its vertical scale.

Warning: [Minitab:] If you use unequal group widths in Minitab, you
must click on density in the options dialog box; otherwise, the histogram
will have the wrong shape.

The histogram gives us a picture of how the sample data are distributed.
We can see the shape of the distribution and relative tail weights. We look
at it as representing a picture of the underlying population the sample came
from. This underlying population distribution1 would generally be reasonably
smooth. There is always a trade-off between too many and too few groups. If
we use too many groups, the histogram has a “saw tooth” appearance and the
histogram is not representing the population distribution very well. If we use
too few groups, we lose details about the shape. Figure 3.4 shows histogram
of the Earth density measurements by Cavendish using 12, 6, and 4 groups,
respectively. This illustrates the trade-off between too many and too few
groups. We see that the histogram with 12 groups has gaps and a saw-tooth
appearance. The histogram with 6 groups gives a better representation of
the underlying distribution of Earth density measurements. The histogram
with 4 groups has lost too much detail. The last histogram has unequal width
groups. The height of the wider bars is shortened to keep the area proportional
to frequency.

Cumulative Frequency Polygon

The other way for displaying the data from a frequency table is to construct
a cumulative frequency polygon, sometimes called an ogive. It is particularly
useful because you can estimate the median and quartiles from the graph.
The steps are:

Group boundaries on horizontal axis drawn on a linear scale.

Frequency or percentage shown on vertical axis.

Plot (lower boundary of lowest class, 0).

1In this case, the population is the set of all possible Earth density measurements that
Cavendish could have obtained from his experiment. This population is theoretical, as each
of its elements was only brought into existence by Cavendish performing the experiment.
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Figure 3.4 Histograms of Earth density measurements by Cavendish with different
boundaries. Note that the area is always proportional to frequency.

For each group, plot (upper class boundary, cumulative frequency). We
do not know the exact value of each observation in the group. However,
we do know that all the values in a group must be less than or equal to
the upper boundary.

Join the plotted points with a straight line. Joining them with a straight
line shows that we consider each value in the group to be equally possible.

We can estimate the median and quartiles easily from the graph. To find the
median, go up to 50% on the vertical scale and then draw a horizontal line
across to the cumulative frequency polygon, and then a vertical line down to
the horizontal axis. The value where it hits the axis is the estimate of the
median. Similarly, to find the quartiles, go up to 25% or 75%, go across to
cumulative frequency polygon, and go down to horizontal axis to find lower
and upper quartile, respectively. The underlying assumption behind these
estimates is that all values in a group are evenly spread across the group.
Figure 3.5 shows the cumulative frequency polygon for the Earth density
measurements by Cavendish.
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Figure 3.5 Cumulative frequency polygon of Earth density measurements by
Cavendish.

3.2 Graphically Comparing Two Samples

Sometimes we have the same variable recorded for two samples. For instance,
we may have responses for the treatment group and control group from a
randomized experiment. We want to determine whether or not the treatment
has been effective.

Often a picture can clearly show us this, and there is no need for any
sophisticated statistical inference. The key to making visual comparisons
between two data samples is “do not compare apples to oranges.” By that,
we mean that the pictures for the two samples must be lined up, and with
the same scale. Stacked dotplots and stacked boxplots, when they are lined
up on the same axis, give a good comparison of the samples. Back-to-back
stem-and-leaf diagrams are another good way of comparing two small data
sets. The two samples use common stem, and the leaves from one sample are
on one side of the stem, and the leaves from the other sample are on the other
side of the stem. The leaves of the two sample are ordered, from smallest
closest to stem to largest farthest away. We can put histograms back-to-back
or stack them. We can plot the cumulative frequency polygons for the two
samples on the same axis. If one is always to the left of the other, we can
deduce that its distribution is shifted relative to the other.

All of these pictures can show us whether there are any differences between
the two distributions. For example, do the distributions seem to have the same
location on the number line, or does one appear to be shifted relative to the
other? Do the distributions seem to have the same spread, or is one more
spread out than the other? Are the shapes similar? If we have more than
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two samples, we can do any of these pictures that is stacked. Of course,
back-to-back ones only work for two samples.

EXAMPLE 3.2

Between 1879 and 1882, scientists were devising experiments for deter-
mining the speed of light. Table 3.3 contains measurements collected by
Michelson in a series of experiments on the speed of light. The first 20
measurements were made in 1879, and the next 23 supplementary mea-
surements were made in 1882. The experiment and the data are described
in Stigler (1977).

Table 3.3 Michelson’s speed-of-light measurements.a

Michelson (1879) Michelson (1882)

850 740 883 816

900 1070 778 796

930 850 682 711

950 980 611 599

980 880 1051 781

1000 980 578 796

930 650 774 820

760 810 772 696

1000 1000 573 748

960 960 748 797

851 809

723
aValue in table plus 299,000 km/s.

Figure 3.6 shows stacked dotplots for the two data sets. Figure 3.7
shows stacked boxplots for the two data sets. The true value of the speed
of light in the air is 2999710. We see from these plots that there was a
systematic error (bias) in the first series of measurements that was greatly
reduced in the second.

Back-to-back stem-and-leaf diagrams are another good way to show
the relationship between two data sets. The stem goes in the middle. We
put the leaves for one data set on the right side and put the leaves for
the other on the left. The leaves are ascending order moving away from
the stem. Back-to-back stem-and-leaf diagrams are shown for Michelson’s
data in Figure 3.8. The stem is hundreds, and the leaf unit is 10.
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Figure 3.6 Dotplots of Michelson’s speed-of-light measurements.
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Figure 3.7 Boxplot of Michelson’s speed-of-light measurements.

3.3 Measures of Location

Sometimes we want to summarize our data set with numbers. The most
important aspect of the data set distribution is determining a value that sum-
marizes its location on the number line. The most commonly used measures
of location are the mean and the median. We will look at the advantages and
disadvantages of each one.

Both the mean and the median are members of the trimmed mean fam-
ily, which also includes compromise values between them, depending on the
amount of trimming. We do not consider the mode (most common value) to
be a suitable measure of location for the following reasons. For continuous
data values, each value is unique if we measure it accurately enough. In many
cases, the mode is near one end of the distribution, not the central region.
The mode may not be unique.
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Figure 3.8 Back-to-back stem-and-leaf plots for Michelson’s data.

Mean: Advantages and Disadvantages

The mean is the most commonly used measure of location, because of its
simplicity and its good mathematical properties. The mean of a data set
y1, · · · , yn is simply the arithmetic average of the numbers.

ȳ =
1

n
×

n∑
i=1

yi =
1

n
× (y1 + · · ·+ yn) .

The mean is simple and very easy to calculate. You just make one pass through
the numbers and add them up. Then divide the sum by the size of the sample.

The mean has good mathematical properties. The mean of a sum is the sum
of the means. For example, if y is total income, u is “earned income” (wages
and salaries), v is “unearned income” (interest, dividends, rents), and w is
“other income” (social security benefits and pensions, etc.). Clearly, a persons
total income is the sum of the incomes he or she receives from each source
yi = ui + vi + wi. Then

ȳ = ū+ v̄ + w̄ .

So it doesn’t matter if we take the means from each income source and then
add them together to find the mean total income, or add the each individuals
incomes from all sources to get his/her total income and then take the mean
of that. We get the same value either way.

The mean combines well. The mean of a combined set is the weighted average
of the means of the constituent sets, where weights are proportions each con-
stituent set is to the combined set. For example, the data may come from two
sources, males and females who had been interviewed separately. The overall
mean would be the weighted average of the male mean and the female mean
where the weights are the proportions of males and females in the sample.
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The mean is the first moment or center of gravity of the numbers. We can
think of the mean as the balance point if an equal weight was placed at each
of the data points on the (weightless) number line. The mean would be the
balance point of the line. This leads to the main disadvantage of the mean. It
is strongly influenced by outliers. A single observation much bigger than the
rest of the observations has a large effect on the mean. That makes using the
mean problematic with highly skewed data such as personal income. Figure
3.9 shows how the mean is influenced by an outlier.

Figure 3.9 The mean as the balance point of the data is affected by moving the
outlier.

Calculating mean for grouped data. When the data have been put in a fre-
quency table, we only know between which boundaries each observation lies.
We no longer have the actual data values. In that case there are two assump-
tions we can make about the actual values.

1. All values in a group lie at the group midpoint.

2. All the values in a group are evenly spread across the group.

Fortunately, both these assumptions lead us to the same calculation of the
mean value. The total contribution for all the observations in a group is the
midpoint times the frequency under both assumptions.

ȳ =
1

n

J∑
j=1

nj ×mj

=
J∑
j=1

nj
n
×mj ,

where nj is the number of observations in the jth interval, n is the total
number of observations, and mj is the midpoint of the jth interval.

Median: Advantages and Disadvantages

The median of a set of numbers is the number such that 50% of the numbers
are less than or equal to it, and 50% of the numbers are greater than or equal
to it. Finding the median requires us to sort the numbers. It is the middle
number when the sample size is odd, or it is the average of the two numbers
closest to middle when the sample size is even.

m = y[n+1
2 ] .



44 DISPLAYING AND SUMMARIZING DATA

The median is not influenced by outliers at all. This makes it very suitable
for highly skewed data like personal income. This is shown in Figure 3.10.
However, it does not have same good mathematical properties as mean. The

Figure 3.10 The median as the middle point of the data is not affected by moving
the outlier.

median of a sum is not necessarily the sum of the medians. Neither does it
have good combining properties similar to those of the mean. The median of
the combined sample is not necessarily the weighted average of the medians.
For these reasons, the median is not used as often as the mean. It is mainly
used for very skewed data such as incomes where there are outliers which
would unduly influence the mean, but do not affect the median.

Trimmed mean. We find the trimmed mean with degree of trimming equal
to k by first ordering the observations, then trimming the lower k and upper
k order statistics, and taking the average of those remaining.

x̄k =

∑n−k
i=k+1 x[i]

n− 2k
.

We see that x̄0 (where there is no trimming) is the mean. If n is odd and we
let k = n

2 , then x̄k is the median. Similarly, if n is even and we let k = n−2
2 ,

then x̄k is the median. If k is small, the trimmed mean will have properties
similar to the mean. If k is large, the trimmed mean has properties similar to
the median.

3.4 Measures of Spread

After we have determined where the data set is located on the number line, the
next important aspect of the data set distribution is determining how spread
out the data distribution is. If the data are very variable, the data set will be
very spread out. So measuring spread gives a measure of the variability. We
will look at some of the common measures of variability.

Range: Advantage and Disadvantage

The range is the largest observation minus the smallest:

R = y[n] − y[1] .
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The range is very easy to find. However, the largest and smallest observation
are the observations that are most likely to be outliers. Clearly, the range is
extremely influenced by outliers.

Interquartile Range: Advantages and Disadvantages

The interquartile range measures the spread of the middle 50% of the obser-
vations. It is the third quartile minus first quartile:

IQR = Q3 −Q1 .

The quartiles are not outliers, so the interquartile range is not influenced by
outliers. Nevertheless, it is not used very much in inference because like the
median it doesn’t have good math or combining properties.

Variance: Advantages and Disadvantages

The variance of a data set is the average squared deviation from the mean.2

Var[y] =
1

n
×

n∑
i=1

(yi − ȳ)2 .

In physical terms, it is the second moment of inertia about the mean. En-
gineers refer to the variance as the MSD, mean squared deviation. It has
good mathematical properties, although more complicated than those for the
mean. The variance of a sum (of independent variables) is the sum of the
individual variances.

It has good combining properties, although more complicated than those
for the mean. The variance of a combined set is the weighted average of the
variances of the constituent sets, plus the weighted average of the squares of
the constituent means away from the combined mean, where the weights are
the proportions that each constituent set is to the combined set.

Squaring the deviations from the mean emphasizes the observations far
from the mean. Those observations have large magnitude in a positive or
negative direction already, and squaring them makes them much larger still,
and all positive. Thus the variance is very influenced by outliers. The variance
is in squared units. Thus its size is not comparable to the mean.

Calculating variance for grouped data. The variance is the average squared de-
viation from the mean. When the data have been put in a frequency table, we

2Note that we are defining the variance of a data set using the divisor n. We aren’t making
any distinction over whether our data set is the whole population or only a sample from the
population. Some books define the variance of a sample data set using divisor n− 1. One
degree of freedom has been lost because for a sample, we are using the sample mean instead
of the unknown population mean. When we use the divisor n − 1, we are calculating the
sample estimate of the variance, not the variance itself.
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no longer have the actual data values. In that case there are two assumptions
we can make about the actual values.

1. All values in a group lie at the group midpoint.

2. All the values in a group are evenly spread across the group.

Unfortunately, these two assumptions lead us to different calculation of the
variance. Under the first assumption we get the approximate formula

Var[y] =
1

n

J∑
j=1

nj × (mj − ȳ)2 ,

where nj is the number of observations in the jth interval, n is the total num-
ber of observations, mj is the midpoint of the jth interval. This formula only
contains between-group variation, and ignores the variation for the observa-
tions within the same group. Under the second assumption we add in the
variation within each group to get the formula

Var[y] =
1

n

J∑
j=1

(
nj × (mj − ȳ)2 + nj ×

R2
j

12

)
,

where Rj is the upper boundary minus the lower boundary for the jth group.

Standard Deviation: Advantages and Disadvantages

The standard deviation is the square root of the variance.

sd(y) =

√√√√ 1

n
×

n∑
i=1

(yi − ȳ)2 .

Engineers refer to it as the RMS, root mean square. It is not as affected
by outliers as the variance is, but it is still quite affected. It inherits good
mathematical properties and good combining properties from the variance.
The standard deviation is the most widely used measure of spread. It is in
the same units as mean, so its size is directly comparable to the mean.

3.5 Displaying Relationships Between Two or More Variables

Sometimes our data are measurements for two variables for each experimental
unit. This is called bivariate data. We want to investigate the relationship
between the two variables.
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Scatterplot

The scatterplot is just a two-dimensional dotplot. Mark off the horizontal axis
for the first variable, the vertical axis for the second. Each point is plotted
on the graph. The shape of the “point cloud” gives us an idea as to whether
the two variables are related, and if so, what is the type of relationship.

When we have two samples of bivariate data and want to see if the rela-
tionship between the variables is similar in the two samples, we can plot the
points for both samples on the same scatterplot using different symbols so we
can tell them apart.

EXAMPLE 3.3

The Bears.mtw file stored in Minitab contains 143 measurements on wild
bears that were anesthetized, measured, tagged, and released. Figure
3.11 shows a scatterplot of head length versus head width for these bears.
From this we can observe that head length and head width are related.
Bears with large width heads tend to have heads that are long. We can
also see that male bears tend to have larger heads than female bears.

Female

Male

Figure 3.11 Head length versus head width in black bears.

Scatterplot Matrix

Sometimes our data consists of measurements of several variables on each
experimental unit. This is called multivariate data. To investigate the rela-
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tionships between the variables, form a scatterplot matrix. This means that
we construct the scatterplot for each pair of variables, and then display them
in an array like a matrix. We look at each scatterplot in turn to investigate
the relationship between that pair of the variables. More complicated rela-
tionships between three or more of the variables may be hard to see on this
plot.

EXAMPLE 3.3 (continued)

Figure 3.12 shows a scatterplot matrix showing scatterplots of head length,
head width, neck girth, length, chest girth, and weight for the bear mea-
surement data. We see there are strong positive relationships among the
variables, and some of them appear to be nonlinear.

Head.L

Head.W

Neck.G

Length

Chest.G

Weight

Figure 3.12 Scatterplot matrix of bear data.
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3.6 Measures of Association for Two or More Variables

Covariance and Correlation between Two Variables

The covariance of two variables is the average of first variable minus its mean
times second variable minus its mean:

Cov[x, y] =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) .

This measures how the variables vary together. Correlation between two vari-
ables is the covariance of the two variables divided by product of standard
deviations of the two variables. This standardizes the correlation to lie be-
tween −1 and +1.

Cor[x, y] =
Cov[x, y]√

Var[x]×Var[y]
.

Correlation measures the strength of the linear relationship between two vari-
ables. A correlation of +1 indicates that the points lie on a straight line with
positive slope. A correlation of −1 indicates that the points lie on a straight
line with negative slope. A positive correlation that is less than one indicates
that the points are scattered, but generally low values of the first variable
are associated with low values of the second, and high values of the first are
associated with high values of the second. The higher the correlation, the
more closely the points are bunched around a line. A negative correlation
has low values of the first associated with high values of the second, and high
values of the first associated with low values of the second. A correlation of 0
indicates that there is no association of low values or high values of the first
with either high or low values of the second. It does not mean the variables
are not related, only that they are not linearly related.

When we have more than two variables, we put the correlations in a matrix.
The correlation between x and y equals the correlation between y and x, so
the correlation matrix is symmetric about the main diagonal. The correlation
of any variable with itself equals one.

Table 3.4 Correlation matrix for bear data

Head.L Head.W Neck.G Length Chest.G Weight

Head.L 1.000 .744 .862 .895 .854 .833

Head.W .744 1.000 .805 .736 .756 .756

Neck.G .862 .805 1.000 .873 .940 .943

Length .895 .736 .873 1.000 .889 .875

Chest.G .854 .756 .940 .889 1.000 .966

Weight .833 .756 .943 .875 .966 1.000
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EXAMPLE 3.3 (continued)

The correlation matrix for the bear data is given in Table 3.4. We see that
all the variables are correlated with each other. Looking at the matrix
plot we see that Head.L and Head.W have a correlation of .744, and the
scatterplot of those two variables is spread out. We see that the Head.L
and Length have a higher correlation of .895, and on the scatterplot of
those variables, we see the points lie much closer to a line. We see that
Chest.G and Weight are highly correlated at .966. On the scatterplot we
see those points lie much closer to a line, although we can also see that
actually they seem to lie on a curve that is quite close to a line.

Main Points

Data should always be looked at in several ways as the first stage in any
statistical analysis. Often a good graphical display is enough to show
what is going on, and no further analysis is needed. Some elementary
data analysis tools are:

◦ Order Statistics . The data when ordered smallest to largest. y[1], . . . , y[n].

◦ Median. The value that has 50% of the observations above it and
50% of the observations below it. This is

y[n+1
2 ] .

It is the middle value of the order statistics when n is odd. When n
is even, the median is the weighted average of the two closest order
statistics:

y[n+1
2 ] = 1

2×y[n
2

]+
1
2×y[n

2
+1] .

The median is also known as the second quartile.

◦ Lower quartile. The value that 25% of the observations are below it
and 75% of the observations are above it. It is also known as the first
quartile. It is

Q1 = y[n+1
4 ] .

If n+1
4 is not an integer, we find it by taking the weighted average of

the two closest order statistics.

◦ Upper quartile. The value that 75% of the observations are below it
and 25% of the observations are above it. It is also known as the
upper quartile. It is

Q3 = x
[
3(n+1)

4 ]
.

If 3(n+1)
4 is not an integer, the quartile is found by taking the weighted

average of the two closest order statistics.
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When we are comparing samples graphically, it is important that they
be on the same scale. We have to be able to get the correct visual
comparison without reading the numbers on the axis. Some elementary
graphical data displays are:

◦ Stem-and-leaf diagram. An quick and easy graphic which allows us
to extract information from a sample. A vertical stem is drawn with
a numbers up to stem digit along linear scale. Each number is repre-
sented using its next digit as a leaf unit at the appropriate place along
the stem. The leaves should be ordered away from the stem. It is easy
to find (approximately) the quartiles by counting along the graphic.
Comparisons are done with back-to-back stem-and-leaf diagrams.

◦ Boxplot . A graphic along a linear axis where the central box contains
the middle 50% of the observation, and a whisker goes out from each
end of the box to the lowest and highest observation. There is a line
through the box at the median. So it is a visual representation of the
five numbers y[1], Q1, Q2, Q3, y[n] that give a quick summary of the
data distribution. Comparisons are done with stacked boxplots.

◦ Histogram. A graphic where the group boundaries are put on a linear
scaled horizontal axis. Each group is represented by a vertical bar
where the area of the bar is proportional to the frequency in the
group.

◦ Cumulative frequency polygon (ogive). A graphic where the group
boundaries are put on a linearly scaled horizontal axis. The point
(lower boundary of lowest group, 0) and the points (upper group
boundary, cumulative frequency) are plotted and joined by straight
lines. The median and quartiles can be found easily using the graph.

It is also useful to summarize the data set using a few numerical summary
statistics. The most important summary statistic of a variable is a mea-
sure of location which indicates where the values lie along the number
axis. Some possible measures of location are:

◦ Mean. The average of the numbers. It is easy to use, has good math-
ematical properties, and combines well. It is the most widely used
measure of location. It is sensitive to outliers, so it is not particularly
good for heavy tailed distributions.

◦ Median. The middle order statistic, or the average of the two closest
to the middle. This is harder to find as it requires sorting the data.
It is not affected by outliers. The median doesn’t have the good
mathematical properties or good combining properties of the mean.
Because of this, it is not used as often as the mean. Mainly it is
used with distributions that have heavy tails or outliers, where it is
preferred to the mean.
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◦ Trimmed mean. This is a compromise between the mean and the
median. Discard the k largest and the k smallest order statistics and
take the average of the rest.

The second important summary statistic is a measure of spread, which
shows how spread out are the numbers. Some commonly used measures
of spread are:

◦ Range. This is the largest order statistic minus the smallest order
statistic. Obviously very sensitive to outliers.

◦ Interquartile range (IQR). This is the upper quartile minus the lower
quartile. It measures the spread of the middle 50% of the observations.
It is not sensitive to outliers.

◦ Variance. The average of the squared deviations from the mean.
Strongly influenced by outliers. The variance has good mathematical
properties, and combines well, but it is in squared units and is not
directly comparable to the mean.

◦ Standard deviation. The square root of the variance. This is less
sensitive to outliers than the variance and is directly comparable to
the mean since it is in the same units. It inherits good mathematical
properties and combining properties from the variance.

Graphical display for relationship between two or more variables.

◦ Scatterplot . Look for pattern.

◦ Scatterplot matrix . An array of scatterplots for all pairs of variables.

Correlation is a numerical measure of the strength of the linear relation-
ship between the two variables. It is standardized to always lie between
−1 and +1. If the points lie on a line with negative slope, the correlation
is −1, and if they lie on a line with positive slope, the correlation is +1.
A correlation of 0 doesn’t mean there is no relationship, only that there
is no linear relationship.

Exercises

3.1. A study on air pollution in a major city measured the concentration of
sulfur dioxide on 25 summer days. The measurements were:

3 9 16 23 29

3 11 17 25 35

5 13 18 26 43

7 13 19 27 44

9 14 23 28 46



EXERCISES 53

(a) Form a stem-and-leaf diagram of the sulfur dioxide measurements.

(b) Find the median, lower quartile, and upper quartile of the measure-
ments.

(c) Sketch a boxplot of the measurements.

3.2. Dutch elm disease is spread by bark beetles that breed in the diseased
wood. A sample of 100 infected elms was obtained, and the number of
bark beetles on each tree was counted. The data are summarized in the
following table:

Boundaries Frequency

0 < x ≤ 50 8

50 < x ≤ 100 24

100 < x ≤ 150 33

150 < x ≤ 200 21

200 < x ≤ 400 14

(a) Graph a histogram for the bark beetle data.

(b) Graph a cumulative frequency polygon of the bark beetle data. Show
the median and quartiles on your cumulative frequency polygon.

3.3. A manufacturer wants to determine whether the distance between two
holes stamped into a metal part is meeting specifications. A sample of
50 parts was taken, and the distance was measured to nearest tenth of a
millimeter. The results were:

300.6 299.7 300.2 300.0 300.1

300.0 300 .1 299.9 300.2 300.1

300.5 299.6 300.7 299.9 300.2

299.9 300.4 299.8 300.4 300.4

300.4 300.2 299.4 300.6 299.8

299.7 300.1 299.9 300.0 300.0

300.5 300.1 299.9 299.8 300.2

300.7 300.4 300.0 300.1 300.0

300.2 300.3 300.5 300.0 300.1

300.3 299.9 300.1 300.2 299.5

(a) Form a stem-and-leaf diagram of the measurements.

(b) Find the median, lower quartile, and upper quartile of the measure-
ments.
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(c) Sketch a boxplot of the measurements.

(d) Put the measurements in a frequency table with the following classes:

Boundaries Frequency

299.2 < x ≤ 299.6

299.6 < x ≤ 299.8

299.8 < x ≤ 300.0

300.0 < x ≤ 300.2

300.2 < x ≤ 300.4

300.4 < x ≤ 300.8

(e) Construct a histogram of the measurements.

(f) Construct a cumulative frequency polygon of the measurements. Show
the median and quartiles.

3.4. The manager of a government department is concerned about the ef-
ficiency in which his department serves the public. Specifically, he is
concerned about the delay experienced by members of the public waiting
to be served. He takes a sample of 50 arriving customers, and measures
the time each waits until service begins. The times (rounded off to the
nearest second) are:

98 5 6 39 31

46 129 17 1 64

40 121 88 102 50

123 50 20 37 65

75 191 110 28 44

47 6 43 60 12

150 16 182 32 5

106 32 26 87 137

44 13 18 69 107

5 53 54 173 118

(a) Form a stem-and-leaf diagram of the measurements.

(b) Find the median, lower quartile, and upper quartile of the measure-
ments.

(c) Sketch a boxplot of the measurements.

(d) Put the measurements in a frequency table with the following classes:
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Boundaries Frequency

0 < x ≤ 20

20 < x ≤ 40

40 < x ≤ 60

60 < x ≤ 80

80 < x ≤ 100

100 < x ≤ 200

(e) Construct a histogram of the measurements.

(f) Construct a cumulative frequency polygon of the measurements. Show
the median and quartiles.

3.5. A random sample of 50 families reported the dollar amount they had
available as a liquid cash reserve. The data have been put in the following
frequency table:

Boundaries Frequency

0 < x ≤ 500 17

500 < x ≤ 1, 000 15

, 1000 < x ≤ 2, 000 7

2, 000 < x ≤ 4, 000 5

4, 000 < x ≤ 6, 000 3

6, 000 < x ≤ 10, 000 3

(a) Construct a histogram of the measurements.

(b) Construct a cumulative frequency polygon of the measurements. Show
the median and quartiles.

(c) Calculate the grouped mean for the data.

3.6. In this exercise we see how the default settings in for producing boxplots
in Minitab and in R can be misleading because they do not take the sam-
ple size into account. We will generate three samples of different sizes
from the same distribution, and compare their boxplots.

[Minitab:] Generate 250 normal(0, 1) observations and put them in col-
umn c1 by pulling down the Calc menu to the Random Data command
over to Normal and filling in the dialog box. Generate 1,000 normal(0, 1)
observations the same way and put them in column c2, and generate



56 DISPLAYING AND SUMMARIZING DATA

4,000 normal(0, 1) observations the same way and put them in column
c3. Stack these three columns by pulling down the Data3 menu down
to Stack and over to Columns and filling in the dialog box to put the
stacked column into c4, with subscripts into c5. Form stacked boxplots
by pulling down Graph menu to Boxplot command and filling in dialog
box. The Graph variable is c4 and Categorical variable is c5.

[R:]

# We could just use y = rnorm(5250)

# but this the three group sizes clear

y = rnorm(sum(c(250, 1000, 4000)))

x = rep(1:3, c(250, 1000, 4000)))

boxplot(y~x)

(a) What do you notice from the resulting boxplot?

(b) Which sample seems to have a heavier tail?

(c) Why is this misleading?

(d) [Minitab:] Click on the boxplot. Then pull down the Editor menu
down to Select Item and over to Outlier Symbols. Click on Custom in
the dialog box, and select Dot.

[Minitab version 17.2:] Left click any one of the outlying points
in the boxplot. Then right click to bring up the context menu and
select Edit Outlier Symbols. Change the symbols to Custom and use
the dropdown box to select the Dot symbol.

[R:] In R it is easy to make the box width proportional to the (square
root) of the sample size by using the varwidth parameter. Simply
type:

boxplot(y~x, varwidth = TRUE)

(e) Is the graph still as misleading as the original?

3.7. Barker and McGhie (1984) collected 100 slugs from the species Limax
maximus around Hamilton, New Zealand. They were preserved in a
relaxed state, and their length in millimeters (mm) and weight in grams
(g) were recorded. Thirty of the observations are shown below.

3Note this used to be labeled the Manip menu
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Length Weight Length Weight Length Weight

(mm) (g) (mm) (g) (mm) (g)

73 3.68 21 0.14 75 4.94

78 5.48 26 0.35 78 5.48

75 4.94 26 0.29 22 0.36

69 3.47 36 0.88 61 3.16

60 3.26 16 0.12 59 1.91

74 4.36 35 0.66 78 8.44

85 6.44 36 0.62 90 13.62

86 8.37 22 0.17 93 8.70

82 6.40 24 0.25 71 4.39

85 8.23 42 2.28 94 8.23

[Minitab:] The full data are in the Minitab worksheet slug.mtw.

[R:] The full can be accessed in R by typing

data(slug)

(a) [Minitab:] Plot weight on length using Minitab.

[R:] Plot weight on length using R:

plot(weight~length, data = slug)

What do you notice about the shape of the relationship?

(b) Often when we have a nonlinear relationship, we can transform the
variables by taking logarithms and achieve linearity. In this case,
weight is related to volume which is related to length times width
times height. Taking logarithms of weight and length should give a
more linear relationship.

[Minitab:] Plot log(weight) on log(length) using Minitab.

[R:] Plot log(weight) on log(length) using R.

plot(log.wt~log.len, data = slug)

Does this relationship appear to be linear?

(c) From the scatterplot of log(weight) on log(length) can you identify
any points that do not appear to fit the pattern?





CHAPTER 4

LOGIC, PROBABILITY,
AND UNCERTAINTY

Most situations we deal with in everyday life are not completely predictable.
If I think about the weather tomorrow at noon, I cannot be certain whether it
will or will not be raining. I could contact the Meteorological Service and get
the most up-to-date weather forecast possible, which is based on the latest
available data from ground stations and satellite images. The forecast could
be that it will be a fine day. I decide to take that forecast into account and not
take my umbrella. Despite the forecast, it could rain and I could get soaked
going to lunch. There is always uncertainty.

In this chapter we will see that deductive logic can only deal with cer-
tainty. This is of very limited use in most real situations. We need to develop
inductive logic that allows us to deal with uncertainty.

Since we cannot completely eliminate uncertainty, we need to model it. In
real life when we are faced with uncertainty, we use plausible reasoning. We
adjust our belief about something, based on the occurrence or nonoccurrence
of something else. We will see how plausible reasoning should be based on
the rules of probability which were originally derived to analyze the outcome
of games based on random chance. Thus the rules of probability extend logic
to include plausible reasoning where there is uncertainty.

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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4.1 Deductive Logic and Plausible Reasoning

Suppose we know “If proposition A is true, then proposition B is true.” We
are then told “proposition A is true.” Therefore, we know that “B is true.”
It is the only conclusion consistent with the condition. This is a deduction.

Again suppose we know “If proposition A is true, then proposition B is
true.” Then we are told “B is not true.” Therefore, we know that “A is not
true.” This is also a deduction. When we determine a proposition is true by
deduction using the rules of logic, it is certain. Deduction works from the
general to the particular.

We can represent propositions using diagrams. Propositions “A is true” and
“B is true” are each represented by the interior of a circle. The proposition
“if A is true, then B is true” is represented by having circle representing A
lie completely inside B. This is shown in Figure 4.1. The essence of the first
deduction is that if we are in a circle A that lies completely inside circle B,
then we must be inside circle B. Similarly, the essence of the second induction
is that if we are outside of a circle B that completely contains circle A, then
we must be outside circle A.

Figure 4.1 “If A is true then B is true.” Deduction is possible.

Other propositions can be seen in the diagram. Proposition “A and B are
both true” is represented by the intersection, the region in both the circles
simultaneously. In this instance, the intersection equals A by itself. The
proposition “A or B is true” is represented by the union, region in either one
or the other, or both of the circles. In this instance, the union equals B by
itself.

On the other hand, suppose we are told “A is not true.” What can we
now say about B? Traditional logic has nothing to say about this. Both “B
is true” and “B is not true” are consistent with the conditions given. Some
points outside circle A are inside circle B, and some are outside circle B. No
deduction is possible. Intuitively though, we would now believe that it was
less plausible that B is true than we previously did before we were told “A



DEDUCTIVE LOGIC AND PLAUSIBLE REASONING 61

is not true.” This is because one of the ways B could be true, namely that
A and B are both true is now no longer a possibility. And the ways that B
could be false have not been affected.

Similarly, when we are told “B is true,” traditional logic has nothing to
contribute. Both “A is true” and “A is not true” are consistent with the con-
ditions given. Nevertheless, we see that “B is true” increases the plausibility
of “A is true” because one of the ways A could be false, namely both A and
B are false is no longer possible, and the ways that A are true have not been
affected.

Often propositions are related in such a way that no deduction is possible.
Both “A is true” and “A is false” are consistent with both “B is true” and
“B is false.” Figure 4.2 shows this by having the two circles intersect, and
neither is completely inside the other.

Figure 4.2 Both “A is true” and “ A is false” are consistent with both “B is true”
and “B is false.” No deduction is possible here.

Suppose we try to use numbers to measure plausibility of propositions.
When we change our plausibility for some proposition on the basis of the
occurrence of some other proposition, we are making an induction. Induction
works from the particular to the general.

Desired Properties of Plausibility Measures

1. Degrees of plausibility are represented by nonnegative real numbers.

2. They qualitatively agree with common sense. Larger numbers mean greater
plausibility.

3. If a proposition can be represented more than one way, then all represen-
tations must give the same plausibility.

4. We must always take all the relevant evidence into account.

5. Equivalent states of knowledge are always given the same plausibility.
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R. T. Cox showed that any set of plausibilities that satisfies the desired prop-
erties given above must operate according to the same rules as probability.
Thus the sensible way to revise plausibilities is by using the rules of prob-
ability. Bayesian statistics uses the rules of probability to revise our belief
given the data. Probability is used as an extension of logic to cases where de-
ductions cannot be made. Jaynes and Bretthorst (Editor) gives an excellent
discussion on using probability as logic.

4.2 Probability

We start this section with the idea of a random experiment. In a random
experiment, though we make the observation under known repeatable con-
ditions, the outcome is uncertain. When we repeat the experiment under
identical conditions, we may get a different outcome. We start with the fol-
lowing definitions:

Random experiment . An experiment that has an outcome that is not
completely predictable. We can repeat the experiment under the same
conditions and not get the same result. Tossing a coin is an example of
a random experiment.

Outcome. The result of one single trial of the random experiment.

Sample space. The set of all possible outcomes of one single trial of
the random experiment. We denote it Ω. The sample space contains
everything we are considering in this analysis of the experiment, so we
also can call it the universe. In our diagrams we will call it U .

Event . Any set of possible outcomes of a random experiment.

Possible events include the universe, U, and the set containing no outcomes,
the empty set φ. From any two events E and F we can create other events
by the following operations.

Union of two events. The union of two events E and F is the set of
outcomes in either E or F (inclusive or). Denoted E ∪ F

Intersection of two events. The intersection of two events E and F is the
set of outcomes in both E and F simultaneously. Denoted E ∩ F .

Complement of an event . The complement of an event E is the set of
outcomes not in E. Denoted Ẽ

We will use Venn diagrams to illustrate the relationship between events.
Events are denoted as regions in the universe. The relationship between two
events depends on the outcomes they have in common. If all the outcomes in
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Figure 4.3 Event F is a subset of event E.

one event are also in the other event, the first event is a subset of the other.
This is shown in Figure 4.3.

If the events have some outcomes in common, but each has some outcomes
that are not in the other, then they are intersecting events. This is shown in
Figure 4.4. Neither event is contained in the other.

Figure 4.4 E and F are intersecting events.

If the two events have no outcomes in common, they are mutually exclusive
events. In that case the occurrence of one of the events excludes the occurrence
of the other, and vice versa. They are also referred to as disjoint events. This
is shown in Figure 4.5.
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Figure 4.5 Event E and event F are mutually exclusive or disjoint events.

4.3 Axioms of Probability

The probability assignment for a random experiment is an assignment of prob-
abilities to all possible events the experiment generates. These probabilities
are real numbers between 0 and 1. The higher the probability of an event, the
more likely it is to occur. A probability that equals 1 means that the event is
certain to occur, and a probability of 0 means that the event cannot possibly
occur. To be consistent, the assignment of probabilities to events must satisfy
the following axioms.

1. P (A) ≥ 0 for any event A. (Probabilities are nonnegative.)

2. P (U) = 1. (Probability of universe = 1. Some outcome occurs every time
you conduct the experiment.)

3. If A and B are mutually exclusive events, then P (A∪B) = P (A) +P (B).
(Probability is additive over disjoint events.)

The other rules of probability can be proved from the axioms.

1. P (φ) = 0. (The empty set has zero probability.)

U = U ∪ φ and U ∩ φ = φ. Therefore by axiom 3

1 = 1 + P (φ) .
QED

2. P (Ã) = 1− P (A). (The probability of a complement of an event.)

U = A ∪ Ã and A ∩ Ã = φ . Therefore by axiom 3

1 = P (A) + P (Ã) .
QED

3. P (A ∪B) = P (A) + P (B)− P (A ∩B). (The addition rule of probability.)
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Figure 4.6 Two events A and B in the universe U .

A ∪B = A ∪ (Ã ∩B) and they are disjoint. Therefore by axiom 3

P (A ∪B) = P (A) + P (Ã ∩B) .

B = (A ∩B) ∪ (Ã ∩B) , and they are disjoint. Therefore by axiom 3

P (B) = P (A ∩ B) + P (Ã ∩B). Substituting this in previous equation
gives

P (A ∪B) = P (A) + P (B)− P (A ∩B) .
QED

An easy way to remember this rule is to look at the Venn diagram of the
events. The probability of the part A∩B has been included twice, once in
P (A) and once in P (B), so it has to be subtracted out once.

4.4 Joint Probability and Independent Events

Figure 4.6 shows the Venn diagram for two events A and B in the universe
U.

The joint probability of events A and B is the probability that both events
occur simultaneously, on the same repetition of the random experiment. This
would be the probability of the set of outcomes that are in both event A and
event B, the intersection A∩B. In other words the joint probability of events
A and B is P (A ∩B), the probability of their intersection.

If event A and event B are independent, then P (A ∩ B) = P (A) × P (B).
The joint probability is the product of the individual probabilities. If that
does not hold, the events are called dependent events. Note that whether
or not two events A and B are independent or dependent depends on the
probabilities assigned.
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Distinction between independent events and mutually exclusive events. Peo-
ple often get confused between independent events and mutually exclusive
events. This semantic confusion arises because the word independent has
several meanings. The primary meaning of something being independent of
something else is that the second thing has no affect on the first. This is the
meaning of the word independent we are using in the definition of indepen-
dent events. The occurrence of one event does not affect the occurrence or
nonoccurrence of the other events.

There is another meaning of the word independent. That is the political
meaning of independence. When a colony becomes independent of the mother
country, it becomes a distinct separate country. That meaning is covered by
the definition of mutually exclusive or disjoint events.

Independence of two events is not a property of the events themselves,
rather it is a property that comes from the probabilities of the events and
their intersection. This is in contrast to mutually exclusive events, which
have the property that they contain no elements in common. Two mutually
exclusive events each with non-zero probability cannot be independent. Their
intersection is the empty set, so it must have probability zero, which cannot
equal the product of the probabilities of the two events!

Marginal probability. The probability of one of the events A, in the joint event
setting is called its marginal probability. It is found by summing P (A ∩ B)
and P (A ∩ B̃) using the axioms of probability.

A = (A ∩B) ∪ (A ∩ B̃) , and they are disjoint. Therefore by axiom 3

P (A) = P (A ∩ B) + P (A ∩ B̃) . The marginal probability of event A is
found by summing its disjoint parts.
QED

4.5 Conditional Probability

If we know that one event has occurred, does that affect the probability that
another event has occurred? To answer this, we need to look at conditional
probability.

Suppose we are told that the event A has occurred. Everything outside of
A is no longer possible. We only have to consider outcomes inside event A.
The reduced universe Ur = A. The only part of event B that is now relevant
is that part which is also in A. This is B ∩ A. Figure 4.7 shows that, given
that event A has occurred, the reduced universe is now the event A, and the
only relevant part of event B is B ∩A.

Given that event A has occurred, the total probability in the reduced uni-
verse must equal 1. The probability of B given A is the unconditional proba-
bility of that part of B that is also in A, multiplied by the scale factor 1

P (A) .
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r=

Figure 4.7 The reduced universe, given that event A has occurred.

That gives the conditional probability of event B given event A:

P (B|A) =
P (A ∩B)

P (A)
. (4.1)

We see that the conditional probability P (B|A) is proportional to the joint
probability P (A ∩B) but has been rescaled so the probability of the reduced
universe equals 1.

Conditional probability for independent events. Notice that when A and B are
independent events we have

P (B|A) = P (B) ,

since P (B ∩ A) = P (B)× P (A) for independent events, and the factor P (A)
will cancel out. Knowledge about A does not affect the probability of B oc-
curring when A and B are independent events! This shows that the definition
we used for independent events is a reasonable one.

Multiplication rule. Formally, we could reverse the roles of the two events A
and B. The conditional probability of A given B would be

P (A|B) =
P (A ∩B)

P (B)
.

However, we will not consider the two events the same way. B is an unob-
servable event. That is, the occurrence or nonoccurrence of event B is not
observed. A is an observable event that can occur either with event B or
with its complement B̃. However, the chances of A occurring may depend on
which one of B or B̃ has occurred. In other words, the probability of event A
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is conditional on the occurrence or nonoccurrence of event B. When we clear
the fractions in the conditional probability formula we get

P (A ∩B) = P (B)× P (A|B) . (4.2)

This is known as the multiplication rule for probability. It restates the con-
ditional probability relationship of an observable event given an unobservable
event in a way that is useful for finding the joint probability P (A ∩B). Sim-
ilarly,

P (A ∩ B̃) = P (B̃)× P (A|B̃) .

4.6 Bayes’ Theorem

From the definition of conditional probability

P (B|A) =
P (A ∩B)

P (A)
.

We know that the marginal probability of event A is found by summing the
probabilities of its disjoint parts. Since A = (A ∩ B) ∪ (A ∩ B̃) and clearly
(A ∩B) and (A ∩ B̃) are disjoint,

P (A) = P (A ∩B) + P (A ∩ B̃) .

We substitute this into the definition of conditional probability to get

P (B|A) =
P (A ∩B)

P (A ∩B) + P (A ∩ B̃)
.

Now we use the multiplication rule to find each of these joint probabilities.
This gives Bayes’ theorem for a single event:

P (B|A) =
P (A|B)× P (B)

P (A|B)× P (B) + P (A|B̃)× P (B̃)
. (4.3)

Summarizing, we see Bayes’ theorem is a restatement of the conditional prob-
ability P (B|A) where:

1. The probability of A is found as the sum of the probabilities of its disjoint
parts, (A ∩B) and (A ∩ B̃), and

2. Each of the joint probabilities are found using the multiplication rule.

The two important things to note are that the union of B and B̃ is the whole
universe U, and that they are disjoint. We say that events B and B̃ partition
the universe.
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A set of events partitioning the universe. Often we have a set of more than two
events that partition the universe. For example, suppose we have n events
B1, · · · , Bn such that:

The union B1 ∪B2 ∪ · · · ∪Bn = U , the universe, and

Every distinct pair of the events are disjoint, Bi∩Bj = φ for i = 1, . . . , n,
j = 1, . . . , n, and i 6= j.

Then we say the set of events B1, · · · , Bn partitions the universe. An observ-
able event A will be partitioned into parts by the partition. A = (A ∩B1) ∪
(A ∩ B2) ∪ . . . (A ∩Bn). (A ∩Bi) and (A ∩Bj) are disjoint since Bi and Bj
are disjoint. Hence

P (A) =

n∑
j=1

P (A ∩Bj) .

This is known as the law of total probability. It just says the probability
of an event A is the sum of the probabilities of its disjoint parts. Using the
multiplication rule on each joint probability gives

P (A) =
n∑
j=1

P (A|Bj)× P (Bj) .

The conditional probability P (Bi|A) for i = 1, . . . , n is found by dividing each
joint probability by the probability of the event A.

P (Bi|A) =
P (A ∩Bi)
P (A)

.

Using the multiplication rule to find the joint probability in the numerator,
along with the law of total probability in the denominator, gives

P (Bi|A) =
P (A|Bi)× P (Bi)∑n
j=1 P (A|Bj)× P (Bj)

. (4.4)

This is a result known as Bayes’ theorem published posthumously in 1763
after the death of its discoverer, Reverend Thomas Bayes.

EXAMPLE 4.1

Suppose n = 4. Figure 4.8 shows the four unobservable events B1, . . . , B4

that partition the universe U , and an observable event A. Now let us
look at the conditional probability of Bi given A has occurred. Figure
4.9 shows the reduced universe, given that event A has occurred. The
conditional probabilities are the probabilities on the reduced universe,
scaled up so they sum to 1. They are given by Equation 4.4.
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Figure 4.8 Four events Bi for i = 1, . . . , 4 that partition the universe U , along
with event A.

r=

Figure 4.9 The reduced universe given event A has occurred, together with the
four events partitioning the universe.
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Bayes’ theorem is really just a restatement of the conditional probability for-
mula, where the joint probability in the numerator is found by the multipli-
cation rule, and the marginal probability found in the denominator is found
using the law of total probability followed by the multiplication rule. Note
how the events A and Bi for i = 1, . . . , n are not treated symmetrically. The
events Bi for i = 1, . . . , n are considered unobservable. We never know which
one of them occurred. The event A is an observable event. The marginal
probabilities P (Bi) for i = 1, . . . , n are assumed known before we start and
are called our prior probabilities.

Bayes’ Theorem: The Key to Bayesian Statistics

To see how we can use Bayes’ theorem to revise our beliefs on the basis of
evidence, we need to look at each part. LetB1, . . . , Bn be a set of unobservable
events which partition the universe. We start with P (Bi) for i = 1, . . . , n, the
prior probability for the events Bi, for i = 1, . . . , n. This distribution gives
the weight we attach to each of the Bi from our prior belief. Then we find
that A has occurred.

The likelihood of the unobservable events B1, . . . , Bn is the conditional
probability that A has occurred given Bi for i = 1, . . . , n. Thus the likelihood
of event Bi is given by P (A|Bi). We see the likelihood is a function defined
on the events B1, . . . , Bn. The likelihood is the weight given to each of the Bi
events given by the occurrence of A.
P (Bi|A) for i = 1, . . . , n is the posterior probability of event Bi, given

that event A has occurred. This distribution contains the weight we attach to
each of the events Bi for i = 1, . . . n after we know event A has occurred. It
combines our prior beliefs with the evidence given by the occurrence of event
A.

The Bayesian universe. We can get better insight into Bayes’ theorem if we
think of the universe as having two dimensions, one observable, and one un-
observable. We let the observable dimension be horizontal, and let the unob-
servable dimension be vertical. The unobservable events no longer partition
the universe haphazardly. Instead, they partition the universe as rectangles
that cut completely across the universe in a horizontal direction. The whole
universe consists of these horizontal rectangles in a vertical stack. Since we do
not ever observe which of these events occurred, we never know what vertical
position we are in the Bayesian universe.

Observable events are vertical rectangles that cut the universe from top to
bottom. We observe that vertical rectangle A has occurred, so we observe the
horizontal position in the universe.

Each event Bi ∩ A is a rectangle at the intersection of Bi and A. The
probability of the event Bi∩A is found by multiplying the prior probability of
Bi times the conditional probability of A given Bi. This is the multiplication
rule.



72 LOGIC, PROBABILITY, AND UNCERTAINTY

The event A is the union of the disjoint parts A ∩Bi for i = 1, . . . , n. The
probability of A is clearly the sum of the probabilities of each of the disjoint
parts. The probability of A is found by summing the probabilities of each
disjoint part down the vertical column represented by A. This is the marginal
probability of A.

The posterior probability of any particular Bi given A is the proportion of
A that is also in Bi. In other words, the probability of Bi ∩A divided by the
sum of Bj ∩A summed over all j = 1, . . . , n.

In Bayes’ theorem, each of the joint probabilities is found by multiplying
the prior probability P (Bi) times the likelihood P (A|Bi). In Chapter 5, we
will see that the universe set out with two dimensions for two jointly dis-
tributed discrete random variables is very similar to that shown in Figures
4.10 and 4.11. One random variable will be observed, and we will determine
the conditional probability distribution of the other random variable, given
our observed value of the first. In Chapter 6, we will develop Bayes’ theorem
for two discrete random variables in an analogous manner to our development
of Bayes’ theorem for events in this chapter.

EXAMPLE 4.1 (continued)

Figure 4.10 shows the four unobservable events Bi for i = 1, . . . , 4 that
partition the Bayesian universe, together with eventA which is observable.
Figure 4.11 shows the reduced universe, given that event A has occurred.
These figures will give us better insight than Figures 4.8 and 4.9. We
know where in the Bayesian universe we are in the horizontal direction
since we know event A occurred. However, we do not know where we
are in the vertical direction since we do not know which one of the Bi
occurred.

1

2

3

4

Figure 4.10 The Bayesian universe U with four unobservable events Bi for i =
1, . . . , 4 which partition it shown in the vertical dimension, and the observable event
A shown in the horizontal dimension.
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1

2

3

4

Figure 4.11 The reduced Bayesian universe, given A has occurred, together with
the four unobservable events Bi for i = 1, . . . , 4 that partition it.

Multiplying by constant. The numerator of Bayes’ theorem is the prior prob-
ability times the likelihood. The denominator is the sum of the prior proba-
bilities times likelihoods over the whole partition. This division of the prior
probability times likelihood by the sum of prior probabilities times likelihoods
makes the posterior probability sum to 1.

Note that if we multiplied each of the likelihoods by a constant, the denom-
inator would also be multiplied by the same constant. The constant would
cancel out in the division, and we would be left with the same posterior prob-
abilities. Because of this, we only need to know the likelihood to within a
constant of proportionality. The relative weights given to each of the possibil-
ities by the likelihood is all we need. Similarly, we could multiply each prior
probability by a constant. The denominator would again be multiplied by the
same constant, so we would be left with the same posterior probabilities. The
only thing we need in the prior is the relative weights we give to each of the
possibilities. We often write Bayes’ theorem in its proportional form as

posterior ∝ prior × likelihood

This gives the relative weights for each of the events Bi for i = 1, . . . , n after
we know A has occurred. Dividing by the sum of the relative weights rescales
the relative weights so they sum to 1. This makes it a probability distribution.

We can summarize the use of Bayes’ theorem for events by the following
three steps:

1. Multiply prior times likelihood for each of the Bi. This finds the probability
of Bi ∩ A by the multiplication rule.

2. Sum them for i = 1, . . . , n. This finds the probability of A by the law of
total probability.
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3. Divide each of the prior times likelihood values by their sum. This finds
the conditional probability of that particular Bi given A.

4.7 Assigning Probabilities

Any assignment of probabilities to all possible events must satisfy the prob-
ability axioms. Of course, to be useful the probabilities assigned to events
must correspond to the real world. There are two methods of probability
assignment that we will use:

1. Long-run relative frequency probability assignment : The probability of an
event is considered to be the proportion of times it would occur if the exper-
iment was repeated an infinite number of repetitions. This is the method
of assigning probabilities used in frequentist statistics. For example, if I
was trying to assign the probability of getting a head on a toss of a coin, I
would toss it a large number of times and use the proportion of heads that
occurred as an approximation to the probability.

2. Degree of belief probability assignment : the probability of an event is what
I believe it is from previous experience. This is subjective. Someone else
can have a different belief. For example, I could say that I believe the coin
is a fair one, so for me, the probability of getting a head equals .5. Someone
else might look at the coin and observing a slight asymmetry he/she might
decide the probability of getting a head equals .49.

In Bayesian statistics, we will use long-run relative frequency assignments
of probabilities for events that are outcomes of the random experiment, given
the value of the unobservable variable. We call the unobservable variable
the parameter . Think about repeating the experiment over and over again an
infinite number of times while holding the parameter (unobservable) at a fixed
value. The set of all possible observable values of the experiment is called the
sample space of the experiment. The probability of an event is the long-run
relative frequency of the event over all these hypothetical repetitions. We
see the sample space is the observable (horizontal) dimension of the Bayesian
universe.

The set of all possible values of the parameter (unobservable) is called the
parameter space. It is the unobservable (vertical) dimension of the Bayesian
universe. In Bayesian statistics we also consider the parameter value to be
random. The probability I assign to an event “the parameter has a certain
value” cannot be assigned by long-run relative frequency. To be consistent
with the idea of a fixed but unknown parameter value, I must assign proba-
bilities by degree of belief. This shows the relative plausibility I give to all the
possible parameter values before the experiment. Someone else would have
different probabilities assigned according to his/her belief.
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I am modeling my uncertainty about the parameter value by a single ran-
dom draw from my prior distribution. I do not consider hypothetical repeti-
tions of this draw. I want to make my inference about the parameter value
drawn this particular time, given this particular data. Earlier in the chap-
ter we saw that using the rules of probability is the only consistent way to
update our beliefs given the data. So probability statements about the pa-
rameter value are always subjective, since they start with subjective prior
belief.

4.8 Odds and Bayes Factor

Another way of dealing with uncertain events that we are modeling as random
is to form the odds of the event. The odds for an event C equals the probability
of the event occurring divided by the probability of the event not occurring:

odds(C) =
P (C)

P (C̃)
.

Since the probability of the event not occurring equals one minus the proba-
bility of the event, there is a one-to-one relationship between the odds of an
event and its probability.

odds(C) =
P (C)

(1− P (C))
.

If we are using prior probabilities, we get the prior odds — in other words, the
ratio before we have analyzed the data. If we are using posterior probabilities,
we get the posterior odds.

Solving the equation for the probability of event C we get

P (C) =
odds(C)

(1 + odds(C))
.

We see that there is a one-to-one correspondence between odds and probabil-
ities.

Bayes Factor (B)

The Bayes factor B contains the evidence in the data D that occurred relevant
to the question about C occurring. It is the factor by which the prior odds is
changed to the posterior odds:

prior odds(C)×B = posterior odds(C) .

We can solve this relationship for the Bayes factor to get

B =
posterior odds

prior odds
.
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We can substitute in the ratio of probabilities for both the posterior and prior
odds to find

B =
P (D|C)

P (D|C̃)
.

Thus the Bayes factor is the ratio of the probability of getting the data which
occurred given the event, to the probability of getting the data which occurred
given the complement of the event. If the Bayes factor is greater than 1, then
the data has made us believe that the event is more probable than we thought
before. If the Bayes factor is less than 1, then the data has made us believe
that the event is less probable than we originally thought.

4.9 Beat the Dealer

In this section we take a diversion into the gambling world. This story re-
counts the journey of an American mathematician to the Blackjack tables of
Las Vegas. Armed with an understanding of the laws of probability, along
with early access to a computer, Edward Thorp, a Professor of Mathematics,
developed a strategy that could beat the casinos at their own game. It illus-
trates that observing one event changes the probability of another event, and
it also illustrates many other statistical ideas introduced in this chapter.

The game of blackjack, or twenty-one, has the player and the dealer com-
peting to get a score as close as possible to twenty-one, without going bust
(over twenty-one). Initially both are dealt two cards, one face up and one face
down. Each face card counts ten, and each number card counts its own value,
while an ace can be counted either as one or eleven, whichever is advanta-
geous. The player can ask to be dealt a card, face up, as long as he/she has
not gone bust. If the player holds before going bust, then the dealer must be
dealt a card, face up when the dealer’s total is under sixteen, and must hold
if the total is seventeen or over.

The casino had set the payoff assuming that the player’s probability of
winning is calculated starting from a full deck that has just been shuffled.
That way they had thought that they were setting a small advantage to the
house. The law of averages would ensure that over the long run the house
would gain, and the player would lose.

However, as actually played, the deck was not shuffled after every hand.
Rather, the cards that had been played (some of which have been observed)
were put aside, and the next hand was dealt from the remaining cards. They
would continue this way until almost all of the cards had been played before
stopping and shuffling. Thorp realized that the real probability the player has
of winning a hand depends on the cards that remain in the deck.
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The conditional probability of winning given the cards that remain in
the deck is what counts, not the unconditional probability calculated
assuming a complete shuffled deck.

Although the long-run odds were against the player, sometimes the actual
odds would be in favor of the player. If Thorp could identify those times, by
making large bets at those times and betting the minimum at other times,
overall he would be able to win. This was in the early days of computing, and
he had access to IBM 704 computer. He wrote a program that would simulate
the playing blackjack with strategies that depend on the cards that had been
seen, and he ran the program thousands of times.

This is a Monte Carlo study. He determined that a simple strategy that
only depends on the observed ratio of cards over five to those five or
under would be effective. This strategy is known as “card counting” and
is not illegal.

He went to Las Vegas and proved his strategy by winning lots of money. Of
course, the casino was not happy at having to pay out. The reason they were
not shuffling the deck between each hand was that they considered shuffling
to be dead time during which the casino was not making money. They did not
want to shuffle each time, just in case someone was counting cards. One of the
first countermeasures they devised was to increase the number of decks of cards
used. This would make the ratio of over fives to five and under less variable.
However, Thorp continued his Monte Carlo study with more decks and found
that it still worked, particularly after many hands had been played and only
a few cards remained. He resumed winning, until the casinos banned him.
Interested readers can read more about this in Thorp (1962). Card counting
continues to be legal, but casinos try to identify those practicing it and ban
them from playing. Casinos are private establishments and have the right
to ban anyone they wish. Of course, the casinos could just shuffle the deck
between each hand. But they have decided that their overall best strategy
is to allow card counting but identify successful practitioners and ban them
from further play.

One may ask “What about the other cards that have been played, but not
observed? Shouldn’t they also be taken into account?” Of course, the actual
probability of winning depends on all the cards that remain in the deck. The
probabilities found by Thorp, which depend only on the cards observed, have
averaged the cards that have been played but not seen over all the possible
values.

Main Points

Deductive logic. A logical process for determining the truth of a state-
ment from knowing the truth or falsehood of other statements that the
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first statement is a consequence of. Deduction works from the general
to the particular. We can make a deduction from a known population
distribution to determine the sampling distribution of a statistic.

Deductions do not have the possibility of error.

Inductive logic. A process, based on plausible reasoning, for inferring
the truth of the statement from knowing the truth or falsehood of other
statements which are consequences of the first statement. It works from
the particular to the general. Statistical inference is an inductive process
for making inferences about the parameter, on the basis of the observed
statistic from the sampling distribution given the parameter.

There is always the possibility of error when making an inference.

Plausible reasoning should be based on the rules of probability to be
consistent. They are:

◦ Probability of an event is a nonnegative number.

◦ Probability of the sample space (universe) equals 1.

◦ The probability is additive over disjoint events.

A random experiment is an experiment where the outcome is not exactly
predictable, even when the experiment is repeated under the identical
conditions.

The set of all possible outcomes of a random experiment is called the
sample space Ω. In frequentist statistics, the sample space is the universe
for analyzing events based on the experiment.

The union of two events A and B is the set of outcomes in A or B. This
is an inclusive or. The union is denoted A ∪B.

The intersection of two events A and B is the set of outcomes in both A
and B simultaneously. The intersection is denoted A ∩B.

The complement of event A is the set of outcomes not in A. The com-
plement of event A is denoted Ã.

Mutually exclusive events have no elements in common. Their intersec-
tion P (A ∩B) equals the empty set, φ.

The conditional probability of event B given event A is given by

P (B|A) =
P (A ∩B)

P (A)
.

The event B is unobservable. The event A is observable. We could
nominally write the conditional probability formula for P (A|B), but the
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relationship is not used in that form. We do not treat the events symmet-
rically. The multiplication rule is the definition of conditional probability
cleared of the fraction.

P (A ∩B) = P (B)× P (A|B) .

It is used to assign probabilities to compound events.

The law of total probability says that given events B1, . . . , Bn that parti-
tion the sample space (universe), along with another event A, then

P (A) =

n∑
j=1

P (Bj ∩A)

because probability is additive over the disjoint events, (A ∩B1) . . . (A ∩
Bn). When we find the probability of each of the intersections A∩Bj by
the multiplication rule, we get

P (A) =
∑
j

P (Bj)× P (A|Bj) .

Bayes’ theorem is the key to Bayesian statistics:

P (Bi|A) =
P (Bi)× P (A|Bi)∑
j P (Bj)× P (A|Bj)

.

This comes from the definition of conditional probability. The marginal
probability of the event A is found by the law of total probability, and
each of the joint probabilities is found from the multiplication rule. P (Bi)
is called the prior probability of event Bi, and P (Bi|A) is called the
posterior probability of event Bi.

In the Bayesian universe, the unobservable events B1, . . . , Bn which par-
tition the universe are horizontal slices, and the observable event A is a
vertical slice. The probability P (A) is found by summing the P (A ∩Bi)
down the column. Each of the P (A ∩ Bi) is found by multiplying the
prior P (Bi) times the likelihood P (A|Bi). So Bayes’ theorem can be
summarized by saying that the posterior probability is the prior times
likelihood divided by the sum of the prior times likelihood.

The Bayesian universe has two dimensions. The sample space forms the
observable (horizontal) dimension of the Bayesian universe. The parame-
ter space is the unobservable (vertical) dimension. In Bayesian statistics,
the probabilities are defined on both dimensions of the Bayesian universe.

The odds of an event A is the ratio of the probability of the event to the
probability of its complement:

odds(A) =
P (A)

P (Ã)
.
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If it is found before analyzing the data, it is the prior odds. If it is found
after analyzing the data, it is the posterior odds.

The Bayes factor is the amount of evidence in the data that changes the
prior odds to the posterior odds:

B × prior odds = posterior odds .

Exercises

4.1. There are two events A and B. P (A) = .4 and P (B) = .5. The events A
and B are independent.

(a) Find P (Ã).

(b) Find P (A ∩B).

(c) Find P (A ∪B).

4.2. There are two events A and B. P (A) = .5 and P (B) = .3. The events A
and B are independent.

(a) Find P (Ã).

(b) Find P (A ∩B).

(c) Find P (A ∪B).

4.3. There are two events A and B. P (A) = .4 and P (B) = .4. P (Ã ∩ B) =
.24.

(a) Are A and B independent events? Explain why or why not.

(b) Find P (A ∪B).

4.4. There are two events A and B. P (A) = .7 and P (B) = .8. P (Ã∩B̃) = .1.

(a) Are A and B independent events? Explain why or why not.

(b) Find P (A ∪B).

4.5. A single fair die is rolled. Let the event A be “the face showing is even.”
Let the event B be “the face showing is divisible by 3.”

(a) List out the sample space of the experiment.

(b) List the outcomes in A, and find P (A).

(c) List the outcomes in B, and find P (B).

(d) List the outcomes in A ∩B, and find P (A ∩B).

(e) Are the events A and B independent? Explain why or why not.
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4.6. Two fair dice, one red and one green, are rolled. Let the event A be “the
sum of the faces showing is equal to seven.” Let the event B be “the
faces showing on the two dice are equal.”

(a) List out the sample space of the experiment.

(b) List the outcomes in A, and find P (A).

(c) List the outcomes in B, and find P (B).

(d) List the outcomes in A ∩B, and find P (A ∩B).

(e) Are the events A and B independent? Explain why or why not.

(f) How would you describe the relationship between event A and event
B?

4.7. Two fair dice, one red and one green, are rolled. Let the event A be “the
sum of the faces showing is an even number.” Let the event B be “the
sum of the faces showing is divisible by 3.”

(a) List the outcomes in A, and find P (A).

(b) List the outcomes in B, and find P (B).

(c) List the outcomes in A ∩B, and find P (A ∩B).

(d) Are the events A and B independent? Explain why or why not.

4.8. Two dice are rolled. The red die has been loaded. Its probabilities are
P (1) = P (2) = P (3) = P (4) = 1

5 and P (5) = P (6) = 1
10 . The green

die is fair. Let the event A be “the sum of the faces showing is an even
number.” Let the event B be “the sum of the faces showing is divisible
by 3.”

(a) List the outcomes in A, and find P (A).

(b) List the outcomes in B, and find P (B).

(c) List the outcomes in A ∩B, and find P (A ∩B).

(d) Are the events A and B independent? Explain why or why not.

4.9. Suppose there is a medical diagnostic test for a disease. The sensitivity of
the test is .95. This means that if a person has the disease, the probability
that the test gives a positive response is .95. The specificity of the test is
.90. This means that if a person does not have the disease, the probability
that the test gives a negative response is .90, or that the false positive rate
of the test is .10. In the population, 1% of the people have the disease.
What is the probability that a person tested has the disease, given the
results of the test is positive? Let D be the event “the person has the
disease” and let T be the event “the test gives a positive result.”

4.10. Suppose there is a medical screening procedure for a specific cancer that
has sensitivity = .90, and specificity = .95. Suppose the underlying rate
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of the cancer in the population is .001. Let B be the event “the person
has that specific cancer,” and let A be the event “the screening procedure
gives a positive result.”

(a) What is the probability that a person has the disease given the results
of the screening is positive?

(b) Does this show that screening is effective in detecting this cancer?

4.11. In the game of blackjack, also known as twenty-one, the player and the
dealer are dealt one card face-down and one card face-up. The object is
to get as close as possible to the score 21, without exceeding that. Aces
count either 1 or 11, face cards count 10, and all other cards count at their
face value. The player can ask for more cards to be dealt to him, provided
that he has not gone bust (exceeded 21) and lost. Getting 21 on the deal
(an ace and a face card or 10) is called a “blackjack.” Suppose 4 decks of
cards are shuffled together and dealt from. What is the probability the
player gets a blackjack?

4.12. After the hand, the cards are discarded, and the next hand continues with
the remaining cards in the deck. The player has had an opportunity to
see some of the cards in the previous hand, those that were dealt face-up.
Suppose he saw a total of 4 cards, and none of them were aces, nor were
any of them a face card or a ten. What is the probability the player gets
a blackjack on this hand?



CHAPTER 5

DISCRETE
RANDOM VARIABLES

In the previous chapter, we looked at random experiments in terms of events.
We also introduced probability defined on events as a tool for understanding
random experiments. We showed how conditional probability is the logical
way to change our belief about an unobserved event given that we observed
another related event. In this chapter we introduce discrete random variables
and probability distributions.

A random variable describes the outcome of the experiment in terms of a
number. If the only possible outcomes of the experiment are distinct numbers
separated from each other (e.g., counts), then we say that the random variable
is discrete. There are good reasons why we introduce random variables and
their notation:

It is quicker to describe an outcome as a random variable having a par-
ticular value than to describe that outcome in words. Any event can
be formed from outcomes described by the random variable using union,
intersection, and complements.

The probability distribution of the discrete random variable is a numer-
ical function. It is easier to deal with a numerical function than with
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probabilities being a function defined on sets (events). The probability
of any possible event can be found from the probability distribution of
the random variable using the rules of probability. So instead of having
to know the probability of every possible event, we only have to know
the probability distribution of the random variable.

It becomes much easier to deal with compound events made up from
repetitions of the experiment.

5.1 Discrete Random Variables

A number that is determined by the outcome of a random experiment is called
a random variable. Random variables are denoted by uppercase letters, e.g.,
Y . The value the random variable takes is denoted by lowercase letters, e.g.,
y. A discrete random variable, Y , can only take on the distinct values yk.
There can be a finite possible number of values; for example, the random
variable defined as “number of heads in n tosses of a coin” has possible values
0, 1, . . . , n. Or there can be a countably infinite number of possible values;
for example, the random variable defined as “number of tosses until the first
head” has possible values 1, 2, . . . ,∞ . The key thing for discrete random
variables is that the possible values are separated by gaps.

Thought Experiment 1: Roll of a die
Suppose we have a fair six sided die. Our random experiment is to roll it,
and we let the random variable Y be the number on the top face. There are
six possible values 1, 2, . . . , 6. Since the die is fair, those six values are equally
likely. Now, suppose we take independent repetitions of the random variable
and record each occurrence of Y . Table 5.1 shows the proportion of times each
face has occurred in a typical sequence of rolls of the die, after 10, 100, 1,000,
and 10,000 rolls. The last column shows the true probabilities for a fair die.

Table 5.1 Typical results of rolling a fair die

Proportion After

Value 10 Rolls 100 Rolls 1,000 Rolls 10,000 Rolls . . . Probability

1 0.1 0.17 0.182 0.1668 . . . 0.1666

2 0.2 0.13 0.182 0.1739 . . . 0.1666

3 0.3 0.20 0.176 0.1716 . . . 0.1666

4 0.1 0.21 0.159 0.1685 . . . 0.1666

5 0.1 0.09 0.150 0.1592 . . . 0.1666

6 0.2 0.20 0.151 0.1600 . . . 0.1666
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We note that the proportions taking any value are getting closer and closer
to the true probability of that value as n increases to ∞. We could draw
graphs of the proportions having each value. These are shown in Figure 5.1.
The graphs are at zero for any other y value, and they have a spike at each
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Figure 5.1 Proportions resulting from 10, 100, 1,000, and 10,000 rolls of a fair die.

possible value where the spike height equals the proportion of times that value
occurred. The sum of spike heights equals one.

Thought Experiment 2: Random sampling from a finite population
Suppose we have a finite population of size N. There can be at most a finite
number of possible values, and they must be discrete, since there must be a gap
between every pair of two real numbers. Some members of the population have
the same value, so there are only K possible values y1, . . . , yK. The probability
of observing the value yk is the proportion of population having that value.

We start by randomly drawing from the population with replacement. Each
draw is done under identical conditions. If we continue doing the sampling,
then eventually we will have seen all possible values. After each draw we
update the proportions in the accumulated sample that have each value. We
sketch a graph with a spike at each value in the sample equal to the proportion
in the sample having that value. The updating of the graph at step n is made
by scaling all the existing spikes down by the ratio n−1

n and adding 1
n to the

spike at the value observed. The scaling changes the proportions after the first
n − 1 observations to the proportions after the first n observations. As the
sample size increases, the sample proportions get less variable. In the limit as
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the sample size n approaches infinity, the spike at each value approaches its
probability.

Thought Experiment 3: Number of tails before first head from in-
dependent coin tosses
Each toss of a coin results in either a head or a tail. The probability of getting
a head remains the same on each toss. The outcomes of each toss are indepen-
dent of each other. This is an example of what we call Bernoulli trials. The
outcome of a trial is either a success (head) or failure (tail), the probability of
success remains constant over all trials, and we are taking independent trials.
We are counting the number of failures before the first success. Every non-
negative integer is a possible value, and there are an infinite number of them.
They must be discrete, since there is a gap between every pair of nonnegative
integers.

We start by tossing the coin and counting the number of tails until the
first head occurs. Then we repeat the whole process. Eventually we reach a
state where most of the time we get a value we have gotten before. After each
sequence of trials until the first head, we update the proportions that have each
value. We sketch a graph with a spike at each value equal to the proportion
having that value. As in the previous example, the updating of the graph at
step n is made by scaling all the existing spikes down by the ratio (n − 1)/n
and adding 1/n to the spike at the value observed. The sample proportions
get less variable as the sample size increases, and in the limit as n approaches
infinity, the spike at each value approaches its probability.

5.2 Probability Distribution of a Discrete Random Variable

The proportion functions that we have seen in the three thought experiments
are spike functions. They have a spike at each possible value, zero at all other
values, and the sum of the spike heights equals one. In the limit as the sample
size approaches infinity, the proportion of times a value occurs approaches the
probability of that value, and the proportion graphs approach the probability
function

f(yk) = P (Y = yk)

for all possible values y1, . . . , yk of the discrete random variable. For any other
value y, it equals zero.

Expected Value of a Discrete Random Variable

The expected value of a discrete random variable Y is defined to be the sum
over all possible values of each possible value times its probability:

E[Y ] =
∑
k=1

yk × f(yk) . (5.1)
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The expected value of a random variable is often called the mean of the
random variable and is denoted µ. It is like the sample mean of an infinite
sample of independent repetitions of the random variable. The sample mean
of a random sample of size n repetitions of the random variable is

ȳ =
1

n

n∑
i=1

yi .

Here yi is the value that occurs on the ith repetition. We are summing over
all repetitions. Grouping together all repetitions that have the same possible
value, we get

ȳ =
∑
k

nk
n
× yk ,

where nk is the number of observations that have value yk, and we are now
summing over all possible values. Note that each of the yi (observed values)
equals one of the yk (possible values). But in the limit as n approaches∞, the
relative frequency nk

n
approaches the probability f(yk), so the sample mean,

ȳ, approaches the expected value, E[Y ]. This shows that the expected value
of a random variable is like the sample mean of an infinite size random sample
of that variable.

The Variance of a Discrete Random Variable

The variance of a random variable is the expected value of square of the
variable minus its mean.

Var[Y ] = E[Y − E[Y ]]2

=
∑
k

(yk − µ)2 × f(yk) . (5.2)

This is like the sample variance of an infinite size random sample of that
variable. We note that if we square the term in brackets, break the sum into
three sums, and factor the constant terms out of each sum, we get

Var[Y ] =
∑
k

y2
k × f(yk)− 2µ×

∑
k

ykf(yk) + µ2 ×
∑
k

f(yk)

= E[Y 2]− µ2 .

Since µ = E[Y ], this gives another useful formula for computing the variance.

Var[Y ] = E[Y 2]− [E[Y ]]2 . (5.3)



88 DISCRETE RANDOM VARIABLES

EXAMPLE 5.1

Let Y be a discrete random variable with probability function given in
the following table.

yi f(yi)

0 .20

1 .15

2 .25

3 .35

4 .05

To find E[Y ] we use Equation 5.1, which gives

E[Y ] = 0× .20 + 1× .15 + 2× .25 + 3× .35 + 4× .05

= 1.90 .

Note that the expected value does not have to be a possible value of the
random variable Y . It represents an average. We will find Var[Y ] in two
ways and see that they give equivalent results. First, we use the definition
of variance given in Equation 5.2.

Var[Y ] = (0− 1.90)2 × .20 + (1− 1.90)2 × .15 + (2− 1.90)2 × .25

+ (3− 1.90)2 × .35 + (4− 1.90)2 × .05

= 1.49 .

Second, we will use Equation 5.3. We calculate

E[Y 2] = 02 × .20 + 12 × .15 + 22 × .25 + 32 × .35 + 42 × .05

= 5.10 .

Putting that result in Equation 5.3, we get

Var[Y ] = 5.10− 1.902

= 1.49 .

The Mean and Variance of a Linear Function of a Random Variable

Suppose W = a × Y + b, where Y is a discrete random variable. Clearly, W
is another number that is the outcome of the same random experiment that
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Y came from. Thus W , a linear function of a random variable Y , is another
random variable. We wish to find its mean.

E[aY + b] =
∑
k

(ayk + b)× f(yk)

=
∑
k

ayk × f(yk) +
∑

b× f(yk)

= a
∑

ykf(yk) + b
∑

f(yk) .

Since
∑
ykf(yk) = µ and

∑
f(yk) = 1, the mean of the linear function is the

linear function of the mean:

E[aY + b] = aE[Y ] + b . (5.4)

Similarly, we may wish to know its variance.

Var[aY + b] =
∑
k

(ayk + b− E[aY + b])2f(yk)

=
∑
k

[a(yk − E[Y ]) + b− b)]2f(yk)

= a2
∑
k

(yk − E[Y ])2f(yk) .

Thus the variance of a linear function is the square of the multiplicative con-
stant a times the variance :

Var[aY + b] = a2 Var[Y ] . (5.5)

The additive constant b does not enter into it.

EXAMPLE 5.1 (continued)

Suppose W = −2Y + 3. Then from Equation 5.4 we have

E[W ] = −2 E[Y ] + 3

= −2× 1.90 + 3

= −.80

and from Equation 5.5 we have

Var[W ] = (−2)2 ×Var[Y ]

= 4× 1.49

= 5.96 .
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5.3 Binomial Distribution

Let us look at three situations and see what characteristics they have in com-
mon.

Coin tossing. Suppose we toss the same coin n times, and count the number
of heads that occur. We consider that any one toss is not influenced by
the outcomes of previous tosses; in other words, the outcome of one toss is
independent of the outcomes of previous tosses. Since we are always tossing
the same coin, the probability of getting a head on any particular toss remains
constant for all tosses. The possible values of the total number of heads
observed in the n tosses are 0, . . . , n.

Drawing from an urn with replacement. An urn contains balls of two colors, red
and green. The proportion of red balls is π. We draw a ball at random from
the urn, record its color, then return it to the urn, and remix the balls before
the next random draw. We make a total of n draws and count the number
of times we drew a red ball. Since we replace and remix the balls between
draws, each draw takes place under identical conditions. The outcome of
any particular draw is not influenced by the previous draw outcomes. The
probability of getting a red ball on any particular draw remains equal to π,
the proportion of red balls in the urn. The possible values of the total number
of red balls drawn are 0, . . . , n.

Random sampling from a very large population. Suppose we draw a random
sample of size n from a very large population. The proportion of items in
the population having some attribute is π. We count the number of items
in the sample that have the attribute. Since the population is very large
compared to the sample size, removing a few items from the population does
not perceptibly change the proportion of remaining items having the attribute.
For all intents and purposes it remains π. The random draws are taken under
almost identical conditions. The outcome of any draw is not influenced by the
previous outcomes. The possible values of the number of items drawn that
have the attribute is 0, . . . , n.

Characteristics of the Binomial Distribution

These three cases all have the following things in common.

There are n independent trials. Each trial can result either in a “success”
or a “failure.”

The probability of “success” is constant over all the trials. Let π be the
probability of “success.”

Y is the number of “successes” that occurred in the n trials. Y can take
on integer values 0, 1, . . . , n.
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These are the characteristics of the binomial(n, π) distribution. The binomial
probability function can be found from these characteristics using the laws of
probability. Any sequence having exactly y successes out of the n independent
trials has probability equal to πy(1 − π)n−y, no matter in which order they
occur. The event {Y = y} is the union of all sequences such sequences. The
sequences are disjoint, so the probability function of the binomial random
variable Y given the parameter value π is written as

f(y|π) =

(
n

y

)
πy(1− π)n−y (5.6)

for y = 0, 1, . . . , n where the binomial coefficient(
n

y

)
=

n!

y!× (n− y)!

represents the number of sequences having exactly y successes out of n trials
and πy(1−π)n−y is the probability of any particular sequence having exactly
y successes out of n trials.

Mean of binomial. The mean of the binomial(n, π) distribution is the sample
size times the probability of success since

E[Y |π] =
n∑
y=0

y × f(y|π)

=
n∑
y=0

y ×
(
n

y

)
πy(1− π)n−y .

We write this as a conditional mean because it is the mean of Y given the
value of the parameter π. The first term in the sum is 0, so we can start the
sum at y = 1. We cancel y in the remaining terms, and factor out nπ. This
gives

E[Y |π] =
n∑
y=1

nπ

(
n− 1

y − 1

)
πy−1(1− π)n−y .

Factoring nπ out of the sum and substituting n′ = n− 1 and y′ = y − 1, we
get

E[Y |π] = nπ

n′∑
y′=0

(
n′

y′

)
πy
′
(1− π)n

′−y′ .

We see the sum is a binomial probability function summed over all possible
values. Hence it equals one, and the mean of the binomial is

E[Y |π] = nπ . (5.7)
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Variance of binomial. The variance is the sample size times the probability of
success times the probability of failure. We write this as a conditional variance
since it is the variance of Y given the value of the parameter π. Note that

E[Y (Y − 1)|π] =
n∑
y=0

y(y − 1)× f(y|π)

=

n∑
y=0

y(y − 1)×
(
n

y

)
πy(1− π)n−y .

The first two terms in the sum equal 0, so we can start summing at y = 2.
We cancel y(y − 1) out of the remaining terms and factor out n(n− 1)π2 to
get

E[Y (Y − 1)|π] =

n∑
y=2

n(n− 1)π2

(
n− 2

y − 2

)
πy−2(1− π)n−y .

Substituting y′ = y − 2 and n′ = n− 2, we get

E[Y (Y − 1)|π] = n(n− 1)π2
n−2∑
y′=0

(
n′

y′

)
πy
′
(1− π)n

′

= n(n− 1)π2

since we are summing a binomial distribution over all possible values. The
variance can be found by

Var[Y |π] = E[Y 2|π]− [E[Y |π]]2

= E[Y (Y − 1)|π] + E[Y |π]− [E[Y |π]]2

= n(n− 1)π2 + nπ − [nπ]2 .

Hence the variance of the binomial is the sample size times the probability of
success times the probability of failure.

Var[Y |π] = nπ(1− π) . (5.8)

5.4 Hypergeometric Distribution

The hypergeometric distribution models sampling from an urn without re-
placement. There is an urn containing N balls, R of which are red. A sequence
of n balls is drawn randomly from the urn without replacement. Drawing a red
ball is called a “success.” The probability of success π does not stay constant
over all the draws. At each draw the probability of “success” is the propor-
tion of red balls remaining in the urn, which does depend on the outcomes of
previous draws. Y is the number of “successes” in the n trials. Y can take on
integer values 0, 1, . . . , n.
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Probability Function of Hypergeometric

The probability function of the hypergeometric random variable Y given the
parameters N,n,R is written as

f(y|N,R, n) =

(
R
y

)
×
(
N−R
n−y

)(
N
n

)
for possible values y = 0, 1, . . . , n.

Mean and variance of hypergeometric. The conditional mean of the hyperge-
ometric distribution is given by

E[Y |N,R, n] = n× R

N
.

The conditional variance of the hypergeometric distribution is given by

Var[Y |N,R, n] = n× R

N
×
(

1− R

N

)
×
(
N − n
N − 1

)
We note that R

N is the proportion of red balls in the urn. The mean and
variance of the hypergeometric are similar to that of the binomial, except
that the variance is smaller due to the finite population correction factor
N−n
N−1

.

5.5 Poisson Distribution

The Poisson distribution is another distribution for counts.1 Specifically, the
Poisson is a distribution which counts the number of occurrences of rare events
over a period of time or space. Unlike the binomial which counts the number
of events (successes) in a known number of independent trials, the number of
trials in the Poisson is so large that it is not known. Nevertheless, looking at
the binomial gives us way to start our investigation of the Poisson. Let Y be
a binomial random variable where n is very large, and π is very small. The
binomial probability function is

P (Y = y|π) =

(
n

y

)
πy(1− π)n−y

=
n!

(n− y)!y!
πy(1− π)n−y

1First studied by Simeon Poisson (1781–1840).
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for y = 0, . . . , n. Since π is small, the only terms that have appreciable
probability are those where y is much smaller than n. We will look at the
probabilities for those small values of y. Let µ = nπ. The probability function
is

P (Y = y|µ) =
n!

(n− y)!y!

(µ
n

)y (
1− µ

n

)n−y
.

Rearranging the terms, we get

P (Y = y|µ) =
n

n
× n− 1

n
× . . .× n− y + 1

n
× µy

y!

(
1− µ

n

)n (
1− µ

n

)−y
.

But all the values n
n
, n−1

n
, . . . , n−y+1

n
are approximately equal to 1 since y is

much smaller than n. We let n approach infinity, and π approach 0 in such a
way that µ = nπ is constant. We know that

lim
n→∞

(
1− µ

n

)n
= e−µ and lim

n→∞

(
1− µ

n

)−y
= 1,

so the Poisson probability function is given by

f(y|µ) =
µye−µ

y!
(5.9)

for y = 0, 1, . . .. Thus the Poisson(µ) distribution can be used to approximate
a binomial(n, π) when n is large, π is very small, and µ = nπ.

Characteristics of the Poisson Distribution

Think of the period of time (or space) divided into n equal parts. The total
number of occurrences is the sum of the number of occurrences in all n parts.
We see from the Poisson approximation to the binomial that the Poisson
distribution is a limiting case of the binomial distribution as n → ∞ and
π → 0 at such a rate that nπ = µ is constant.

In the binomial, the probability of success remains constant over all the
trials. It follows that the instantaneous rate of occurrences per unit time
(or space) for the Poisson is constant.

In the binomial, the trials are independent. Thus the Poisson occurrences
in any two non-overlapping intervals will be independent of each other.
It follows that the Poisson occurrences are randomly occurring through
time at the constant instantaneous rate.

In the binomial each trial contributes either one success or one failure. It
follows that Poisson counts occur one at a time.

The possible values are y = 0, 1, . . . .
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Mean and variance of Poisson. The mean of the Poisson(µ) can be found by

E[y|µ] =

∞∑
y=0

y
µye−µ

y!

=
∞∑
y=1

µye−µ

(y − 1)!

We let y′ = y − 1 and factor out µ:

E[y|µ] = µ

∞∑
y′=0

µy
′
e−µ

y′!
.

The sum equals one since it is the the sum is over all possible values of a
Poisson distribution, so the mean of the Poisson(µ) is

E[y|µ] = µ .

Similarly, we can evaluate

E[y × (y − 1)|µ] =

∞∑
y=0

y × (y − 1]× µye−µ

y!

=
∞∑
y=2

µye−µ

(y − 2)!

We let y′ = y − 2, and factor out µ2

E[y × (y − 1)|µ] = µ2
∞∑
y′=0

µy
′
e−µ

y′!
.

The sum equals one since it is the the sum is over all possible values of a
Poisson distribution, so E[y × (y − 1)|µ] for a Poisson(µ) is given by

E[y × (y − 1)|µ] = µ2 .

The Poisson variance is given by

Var[y|µ] = E[y2|µ)− [E[y|µ]]2

= E[y × (y − 1)|µ] + E[y|µ]− [E(y|µ]]2

= µ2 + µ− µ2

= µ .

Thus we see the mean and variance of a Poisson(µ) are both equal to µ.
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Table 5.2 Universe of joint experiment

(x1, y1) . . . (x1, yj) . . . (x1, yJ)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

(xi, y1) . . . (xi, yj) . . . (xi, yJ)

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

(xI , y1) . . . (xI , yj) . . . (xI , yJ)

5.6 Joint Random Variables

When two (or more) numbers are determined from the outcome of a random
experiment, we call it a joint experiment. The two numbers are called joint
random variables and denoted X,Y . If both the random variables are discrete,
they each have separated possible values xi for i = 1, . . . , I and yj for j =
1, . . . , J . The universe for the experiment is the set of all possible outcomes
of the experiment which are all possible ordered pairs of possible values. The
universe of the joint experiment is shown in Table 5.2.

The joint probability function of two discrete joint random variables is
defined at each point in the universe:

f(xi, yj) = P (X = xi, Y = yj)

for i = 1, . . . , I , and j = 1, . . . , J . This is the probability that X = xi and
Y = yj simultaneously, in other words, the probability of the intersection of
the events X = xi and Y = yj . These joint probabilities can be put in a table.

We might want to consider the probability distribution of just one of the
joint random variables, for instance, Y . The event Y = yj for some fixed
value yj is the union of all events X = xi, Y = yj, where i = 1, . . . , I, and
they are all disjoint. Thus

P (Y = yj) = P (∪i(X = xi, Y = yj)) =
∑
i

P (X = xi, Y = yj)

for j = 1, . . . , J , since probability is additive over a disjoint union. This
probability distribution of Y by itself is called the marginal distribution of Y .
Putting this relationship in terms of the probability function, we get

f(yj) =
∑
i

f(xi, yj) (5.10)
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Table 5.3 Joint and marginal probability distributions

y1 . . . yj . . . yJ

x1 f(x1, y1) . . . f(x1, yj) . . . f(x1, yJ) f(x1)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xi f(xi, y1) . . . f(xi, yj) . . . f(xi, yJ) f(xi)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xI f(xI , y1) . . . f(xI , yj) . . . f(xI , yJ ) f(xI)

f(y1) . . . f(yj) . . . f(yJ)

for j = 1, . . . J . So we see that the individual probabilities of Y is found by
summing the joint probabilities down the columns. Similarly the individual
probabilities of X can be found by summing the joint probabilities across
the rows. We can write them on the margins of the table, hence the names
marginal probability distribution of Y and X respectively. The joint prob-
ability distribution and the marginal probability distributions are shown in
Table 5.3. The joint probabilities are in the main body of the table, and the
marginal probabilities for X and Y are in the right column and bottom row,
respectively.

The expected value of a function of the joint random variables is given by

E[h(X,Y )] =
∑
i

∑
j

h(xi, yj)× f(xi, yj) .

Often we wish to find the expected value of a sum of random variables. In
that case

E[X + Y ] =
∑
i

∑
j

(xi + yj)× f(xi, yj ]

=
∑
i

∑
j

xi × f(xi, yj) +
∑
i

∑
j

yj × f(xi, yj)

=
∑
i

xi
∑
j

f(xi, yj) +
∑
j

yj
∑
i

f(xi, yj)

=
∑
i

xi × f(xi) +
∑
j

yj × f(yj) .
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We see the mean of the sum of two random variables is the sum of the means.

E[X + Y ] = E[X] + E[Y ] . (5.11)

This equation always holds.

Independent Random Variables

Two (discrete) random variables X and Y are independent of each other if
and only if every element in the joint distribution table equals the product of
the corresponding marginal distributions. In other words,

f(xi, yj) = f(xi)× f(yj)

for all possible xi and yj .
The variance of a sum of random variables is given by

Var[X + Y ] = E(X + Y − E[X + Y ])2

=
∑
i

∑
j

(xi + yj − (E[X] + E[Y ])2 × f(xi, yj)

=
∑
i

∑
j

[(xi − E[X]) + (yj − E[Y ])]2 × f(xi, yj) .

Multiplying this out and breaking it into three separate sums gives

Var[X + Y ] =
∑
i

∑
j

(xi − E[X])2 × f(xi, yj)

+
∑
i

∑
j

2(xi − E[X])(yj − E[Y ])f(xi, yj)

+
∑
i

∑
j

(yj − E[Y ])2 × f(xi, yj) .

The middle term is 2 × the covariance of the random variables. For indepen-
dent random variables the covariance is given by

Cov[X,Y ] =
∑
i

∑
j

(xi − E[X ])× (yj − E[Y ])f(xi, yj)

=
∑
i

(xi − E[X])f(xi)×
∑
j

(yj − E[Y ])f(yj) .

This is clearly equal to 0. Hence for independent random variables we have

Var[X + Y ] =
∑
i

(xi − E[X]))2 × f(xi) +
∑
j

(yj − E[Y ])2 × f(yj) .
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We see the variance of the sum of two independent random variables is the
sum of the variances.

Var[X + Y ] = Var[X ] + Var[Y ] . (5.12)

This equation only holds for independent2 random variables!

EXAMPLE 5.2

Let X and Y be jointly distributed discrete random variables. Their joint
probability distribution is given in the following table:

Y

1 2 3 4 f(x)

1 .02 .04 .06 .08

X 2 .03 .01 .09 .17

3 .05 .15 .15 .15

f(y)

We find the marginal distributions of X and Y by summing across the
rows and summing down the columns, respectively. That gives the table

Y

1 2 3 4 f(x)

1 .02 .04 .06 .08 .2

X 2 .03 .01 .09 .17 .3

3 .05 .15 .15 .15 .5

f(y) .1 .2 .3 .4

We see that the joint probability f(xi, yj) is not always equal to the
product of the marginal probabilities f(xi) × f(yj). Therefore the two
random variables X and Y are not independent.

Mean and variance of a difference between two independent random variables.
When we combine the results of Equations 5.10 and 5.11 with the results of
Equations 5.4 and 5.5, we find the that mean of a difference between random
variables is

E[X − Y ] = E[X]− E[Y ] . (5.13)

If the two random variables are independent, we find that the variance of their
difference is

Var[X − Y ] = Var[X ] + Var[Y ] . (5.14)

2In general, the variance of a sum of two random variables is given by Var[X + Y ] =
Var[X] + 2×Cov[X,Y ] + Var[Y ].
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Variability always adds for independent random variables, regardless of whether
we are taking the sum or taking the difference.

5.7 Conditional Probability for Joint Random Variables

If we are given Y = yj , the reduced universe is the set of ordered pairs where
the second element is yj . This is shown in Table 5.4. It is the only part of
the universe that remains, given Y = yj . The only part of the event X = xi
that remains is the part in the reduced universe. This is the intersection of
the events X = xi and Y = yj . Table 5.5 shows the original joint probability
function in the reduced universe, along with the marginal probability. We see
that this is not a probability distribution. The sum of the probabilities in the
reduced universe sums to the marginal probability, not to one!

The conditional probability that random variable X = xi, given Y = yj is
the probability of the intersection of the events X = xi and Y = yj divided by
the probability that Y = yj from Equation 4.1. Dividing the joint probability
by the marginal probability scales it up so the probability of the reduced
universe equals 1. The conditional probability is given by

f(xi|yj) = P (X = xi|Y = yj) =
P (X = xi, Y = yj)

P (Y = yj)
. (5.15)

When we put this in terms of the joint and marginal probability functions,
we get

f(xi|yj) =
f(xi, yj)

f(yj)
. (5.16)

Table 5.4 Reduced universe given Y = yj

. . . . (x1, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xi, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xI , yj) . . . .
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Table 5.5 Joint probability function values in the reduced universe Y = yj . The
marginal probability is found by summing down the column.

. . . . f(x1, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xi, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xI , yj) . . . .

. . . . f(yj) . . . .

The conditional probability distribution. Letting xi vary across all possible
values of X gives us the conditional probability distribution of X|Y = yj .
The conditional probability distribution is defined on the reduced universe
given Y = yj . The conditional probability distribution is shown in Table
5.6. Each entry was found by dividing the i,j entry in the joint probability
table by jth element in the marginal probability. The marginal probability
is f(yj) =

∑
i f(xi, yj) and is found by summing down the jth column of

the joint probability table. So the conditional probability of xi given yj is
the jth column in the joint probability table, divided by the sum of the joint
probabilities in the jth column.

EXAMPLE 5.2 (continued)

If we want to determine the conditional probability P (X = 2|Y = 2),
we plug in the joint and marginal probabilities into Equation 5.15. This
gives

P (X = 2|Y = 2) =
P (X = 2, Y = 2)

P (Y = 2)

=
.01

.2
= .05 .
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Table 5.6 The conditional probability function defined on the reduced universe
Y = yj

. . . . f(x1|yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xi|yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . f(xI |yj) . . . .

Conditional probability as multiplication rule. Using similar arguments, we
could find that the conditional probability function of Y given X = xi is
given by

f(yj |xi) =
f(xi, yj)

f(xi)
.

However, we will not use the relationship in this form, since we do not consider
the random variables interchangeably. In Bayesian statistics, the random
variable X is the unobservable parameter. The random variable Y is an
observable random variable that has a probability distribution depending on
the parameter. In the next chapter we will use the conditional probability
relationship as the multiplication rule

f(xi, yj) = f(xi)× f(yj |xi) (5.17)

when we develop Bayes’ theorem for discrete random variables.

Main Points

A random variable Y is a number associated with the outcome of a ran-
dom experiment.

If the only possible values of the random variable are a finite set of sep-
arated values, y1, . . . , yK the random variable is said to be discrete.

The probability distribution of the discrete random variable gives the
probability associated with each possible value.

The probability of any event associated with the random experiment can
be calculated from the probability function of the random variable using
the laws of probability.



MAIN POINTS 103

The expected value of a discrete random variable is

E[Y ] =
∑
k

ykf(yk) ,

where the sum is over all possible values of the random variable. It is the
mean of the distribution of the random variable.

The variance of a discrete random variable is the expected value of the
squared deviation of the random variable from its mean.

Var[Y ] = E(Y − E[Y ])2 =
∑
k

(yk − E[Y ])2f(yk) .

Another formula for the variance is

Var[Y ] = E[Y 2]− [E[Y ]]2 .

The mean and variance of a linear function of a random variable aY + b
are

E[aY + b] = aE[Y ] + b

and
Var[aY + b] = a2 × Var[Y ] .

The binomial(n, π) distribution models the number of successes in n in-
dependent trials where each trial has the same success probability, π.

The binomial distribution is used for sampling from a finite population
with replacement.

The hypergeometric distribution is used for sampling from a finite popu-
lation without replacement.

The Poisson(µ) distribution counts the number of occurrences of a rare
event. Occurrences are occurring randomly through time (or space) at a
constant rate and occur one at a time. It is also used to approximate the
binomial(n, π) where n is large and π is small and we let µ = nπ.

The joint probability distribution of two discrete random variables X and
Y is written as joint probability function

f(xi, yj) = P (X = xi, Y = yj) .

Note: (X = xi, Y = yj) is another way of writing the intersection (X =
xi ∩ Y = yj). This joint probability function can be put in a table.

The marginal probability distribution of one of the random variables can
be found by summing the joint probability distribution across rows (for
X) or by summing down columns (for Y ).
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The mean and variance of a sum of independent random variables are

E[X + Y ] = E[X] + E[Y ]

and
Var[X + Y ] = Var[X] + Var[Y ] .

The mean and variance of a difference between independent random vari-
ables are

E[X − Y ] = E[X]− E[Y ]

and
Var[X − Y ] = Var[X] + Var[Y ] .

Conditional probability function of X given Y = yj is found by

f(xi|yj) =
f(xi, yj)

f(yj)
.

This is the joint probability divided by the marginal probability that
Y = yj .

The joint probabilities on the reduced universe Y = yj are not a proba-
bility distribution. They sum to the marginal probability f(yj), not to
one.

Dividing the joint probabilities by the marginal probability scales up the
probabilities, so the sum of probabilities in the reduced universe is one.

Exercises

5.1. A discrete random variable Y has discrete distribution given in the fol-
lowing table:

yi f(yi)

0 .2

1 .3

2 .3

3 .1

4 .1

(a) Calculate P (1 < Y ≤ 3).

(b) Calculate E[Y ].
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(c) Calculate Var[Y ].

(d) Let W = 2Y + 3. Calculate E[W ].

(e) Calculate Var[W ].

5.2. A discrete random variable Y has discrete distribution given in the fol-
lowing table:

yi f(yi)

0 .1

1 .2

2 .3

5 .4

(a) Calculate P (0 < Y < 2).

(b) Calculate E[Y ].

(c) Calculate Var[Y ].

(d) Let W = 3Y − 1. Calculate E[W ].

(e) Calculate Var[W ].

5.3. Let Y be binomial(n = 5, π = .6).

(a) Calculate the mean and variance by filling in the following table:

yi f(yi) yi × f(yi) y2
i × f(yi)

0

1

2

3

4

5

Sum

i. E[Y ] =

ii. Var[Y ] =

(b) Calculate the mean and variance of Y using Equations 5.7 and 5.8,
respectively. Do you get the same results as in part (a)?

5.4. Let Y be binomial(n = 4, π = .3).

(a) Calculate the mean and variance by filling in the following table:
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yi f(yi) yi × f(yi) y2
i × f(yi)

0

1

2

3

4

Sum

i. E[Y ] =

ii. Var[Y ] =

(b) Calculate the mean and variance of Y using Equations 5.7 and 5.8,
respectively. Do you get the same as you got in part (a)?

5.5. Suppose there is an urn containing 20 green balls and 30 red balls. A
single trial consists of drawing a ball randomly from the urn, recording
its color, and then putting it back in the urn. The experiment consists
of 4 independent trials.

(a) List each outcome (sequence of 4 trials) in the sample space together
with its probability. What do you notice about the probabilities of
outcomes that have the same number of green balls?

(b) Let Y be the number of green balls drawn. List the outcomes that
make up each of the following events:
Y = 0 Y = 1 Y = 2 Y = 3 Y = 4

(c) What can you say about P (Y = y) in terms of “number of outcomes
where Y = y, and the probability of any particular sequence of out-
comes where Y = y.

(d) Explain how this relates to the binomial probability function.

5.6. Suppose there is an urn containing 20 green balls and 30 red balls. A
single trial consists of drawing a ball randomly from the urn, recording
its color. This time the ball is not returned to the urn. The experiment
consists of 4 independent trials.

(a) List each outcome (sequence of 4 trials) in the sample space together
with its probability. What do you notice about the probabilities of
outcomes that have the same number of green balls.

(b) Let Y be the number of green balls drawn. List the outcomes that
make up each of the following events:
Y = 0 Y = 1 Y = 2 Y = 3 Y = 4
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(c) What can you say about P (Y = y) in terms of “number of outcomes
where Y = y, and the probability of any particular sequence of out-
comes where Y = y.

(d) Explain what this means in terms of the hypergeometric distribution.
Hint: write this in terms of factorials, then rearrange the terms.

5.7. Let Y have the Poisson(µ = 2) distribution.

(a) Calculate P (Y = 2).

(b) Calculate P (Y ≤ 2).

(c) Calculate P (1 ≤ Y < 4).

5.8. Let Y have the Poisson(µ = 3) distribution.

(a) Calculate P (Y = 3).

(b) Calculate P (Y ≤ 3).

(c) Calculate P (1 ≤ Y < 5).

5.9. Let X and Y be jointly distributed discrete random variables. Their joint
probability distribution is given in the following table:

X Y

1 2 3 4 5 f(x)

1 .02 .04 .06 .08 .05

2 .08 .02 .10 .02 .03

3 .05 .05 .03 .02 .10

4 .10 .04 .05 .03 .03

f(y)

(a) Calculate the marginal probability distribution of X.

(b) Calculate the marginal probability distribution of Y .

(c) Are X and Y independent random variables? Explain why or why
not.

(d) Calculate the conditional probability P (X = 3|Y = 1).
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5.10. Let X and Y be jointly distributed discrete random variables. Their joint
probability distribution is given in the following table:

X Y

1 2 3 4 5 f(x)

1 .015 .030 .010 .020 .025

2 .030 .060 .020 .040 .050

3 .045 .090 .030 .060 .075

4 .060 .120 .040 .080 .100

f(y)

(a) Calculate the marginal probability distribution of X.

(b) Calculate the marginal probability distribution of Y .

(c) Are X and Y independent random variables? Explain why or why
not.

(d) Calculate the conditional probability P (X = 2|Y = 3).



CHAPTER 6

BAYESIAN INFERENCE
FOR DISCRETE RANDOM VARIABLES

In this chapter we introduce Bayes’ theorem for discrete random variables.
Then we see how we can use it to revise our beliefs about the parameter,
given the sample data that depends on the parameter. This is how we will
perform statistical inference in a Bayesian manner.

We will consider the parameter to be random variableX, which has possible
values x1, . . . , xI . We never observe the parameter random variable. The
random variable Y , which depends on the parameter, has possible values
y1, . . . , yJ . We make inferences about the parameter random variable X given
the observed value Y = yj using Bayes’ theorem.

The Bayesian universe consists of the all possible ordered pairs (xi, yj) for
i = 1, . . . , I and j = 1, . . . , J . This is analogous to the universe we used for
joint random variables in the last chapter. However, we will not consider the
random variables X and Y the same way. The events (X = x1), . . . , (X = xI)
partition the universe, but we never observe which one has occurred. The
event Y = yj is observed.

We know that the Bayesian universe has two dimensions, the horizontal
dimension which is observable, and the vertical dimension which is unobserv-
able. In the horizontal direction it goes across the sample space which is the

Introduction to Bayesian Statistics, 3rd ed.
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set of all possible values, {y1, . . . , yJ}, of the observed random variable Y . In
the vertical direction it goes through the parameter space, which is the set of
all possible parameter values, {x1, . . . , xI}. The Bayesian universe for discrete
random variables is shown in Table 6.1. This is analogous the Bayesian uni-
verse for events described in Chapter 4. The parameter value is unobserved.
Probabilities are defined at all points in the Bayesian universe.

Table 6.1 The Bayesian universe

(x1, y1) (x1, y2) . . . (x1, yj) . . . (x1, yJ )

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

(xi, y1) (xi, y2) . . . (xi, yj) . . . (xi, yJ)

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

(xI , y1) (x1, y2) . . . (xI , yj) . . . (xI , yJ )

We will change our notation slightly. We will use f() to denote a proba-
bility distribution (conditional or unconditional) that contains the observable
random variable Y , and g() to denote a probability distribution (conditional
or unconditional) that only contains the (unobserved) parameter random vari-
able X. This clarifies the distinction between Y , the random variable that we
will observe, and X, the unobserved parameter random variable that we want
to make our inference about. Each of the joint probabilities in the Bayesian
universe is found using the multiplication rule

f(xi, yj) = g(xi)× f(yj |xi) .

The marginal distribution of Y is found by summing the columns. We show
the joint and marginal probability function in Table 6.2. Note that this is
similar to how we presented the joint and marginal distribution for two discrete
random variables in the previous chapter (Table 5.3). However, now we have
moved the marginal probability function of X over to the left-hand side and
call it the prior probability function of the parameter X to indicate it is known
to us at the beginning. We also note the changed notation.

When we observe Y = yj , the reduced Bayesian universe is the set of
ordered pairs in the jth column. This is shown in Table 6.3. The posterior
probability function of X given Y = yj is given by

g(xi|yj) =
g(xi)× f(yj |xi)∑ni
i=1 g(xi)× f(yj|xi)

.
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Table 6.2 The joint and marginal distributions of X and Y

prior y1 . . . yj . . . yJ

x1 g(x1) f(x1, y1) . . . f(x1, yj) . . . f(x1, yJ)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xi g(xi) f(xi, y1) . . . f(xi, yj) . . . f(xi, yJ)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

xI g(xI) f(xI , y1) . . . f(xI , yj) . . . f(xI , yJ )

f(y1) . . . f(yj) . . . f(yJ )

Table 6.3 The reduced Bayesian universe given Y = yj

. . . . (x1, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xi, yj) . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . (xI , yj) . . . .

Let us look at the parts of the formula.

The prior distribution of the discrete random variable X is given by the
prior probability function g(xi), for i = 1, . . . , n. This is what we believe
the probability of each xi to be before we look at the data. It must come
from prior experience, not from the current data.

Since we observed Y = yj , the likelihood of the discrete parameter ran-
dom variable is given by the likelihood function f(yj |xi) for i = 1, . . . , n.
This is the conditional probability function of Y given X = xi evaluated
at yj , the value that actually occurred and where X is allowed to vary
over its whole range for xi, . . . , xn. We must know the form of the con-
ditional observation distribution, as it shows how the distribution of the
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observation Y depends on the value of the random variable X, but we
see that it only needs to be evaluated at the value that actually occurred,
yj . The likelihood function is the conditional observation distribution
evaluated on the reduced universe.

The posterior probability distribution of the discrete random variable is
given by the posterior probability function g(xi|yj) evaluated at xi for
i = 1, . . . , n, given Y = yj

The formula gives us a method for revising our belief probabilities about the
possible values of X given that we observed Y = yj .

EXAMPLE 6.1

There is an urn containing a total of 5 balls, some of which may be red
and the rest of which are green. We do not know how many of the balls
are red. Let the random variable X be the number of red balls in the urn.
Possible values of X are xi = i for i = 0, . . . , 5. Since we do not have any
idea about the number of red balls, we will assume all possible values are
equally likely. Our prior distribution of X is g(0) = g(1) = g(2) = g(3) =
g(4) = g(5) = 1/6

We will draw a ball at random from the urn. The random variable
Y is equal to 1 if draw is red and 0 otherwise. Conditional observation
distribution of Y |X is P (Y = 1|X = xi) = i/5 and P (Y = 0|X =
xi) = (5 − i)/5. The joint probabilities are found by multiplying the
prior probabilities times the conditional observation probabilities. The
marginal probabilities of Y are found by summing the joint probabilities
down the columns. These are shown in Table 6.4.

Suppose the selected ball is red, so the reduced universe is in the column
labelled yj = 1. The conditional observation probabilities in that column
are highlighted. They form the likelihood function. Table 6.5 shows the
steps for finding the posterior distribution of X given Y = 1.

Notice that the only column that was used to find the posterior prob-
ability distribution was the in the reduced universe, the column Y = 1.
The joint probability came from multiplying the prior probabilities times
the likelihood function. The posterior probability equals the prior prob-
ability times likelihood divided by the sum of prior probabilities times
likelihoods:

f(xi|yj) = P (X = xi|Y = yj) =
g(xi)× f(yj |xi)∑ni
i=1 g(xi)× f(yj |xi)

.

Thus a simpler way of finding the posterior probability is to use only the
column in the reduced universe. Its probability is product of the prior
times the likelihood. This is shown in Table 6.6.
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Table 6.4 The joint and marginal probability distributions

xi prior yj = 0 yj = 1

probability

0 1/6 1
6
× 5

5
= 5

30
1
6
× 0

5
=0

1 1/6 1
6
× 4

5
= 4

30
1
6
× 1

5
= 1

30

2 1/6 1
6
× 3

5
= 3

30
1
6
× 2

5
= 2

30

3 1/6 1
6
× 2

5
= 2

30
1
6
× 3

5
= 3

30

4 1/6 1
6
× 1

5
= 1

30
1
6
× 4

5
= 4

30

5 1/6 1
6
× 0

5
= 0

30
1
6
× 5

5
= 5

30

f(yj)
15
30

15
30

= 1
2

Table 6.5 Finding the posterior probabilities of X |Y = 1

xi prior yj = 0 yj = 1 posterior

probability probability

0 1/6 1
6
× 5

5
= 5

30
1
6
× 0

5
=0 0

1 1/6 1
6
× 4

5
= 4

30
1
6
× 1

5
= 1

30
1
30
/ 1

2
= 1

15

2 1/6 1
6
× 3

5
= 3

30
1
6
× 2

5
= 2

30
2
30
/ 1

2
= 2

15

3 1/6 1
6
× 2

5
= 2

30
1
6
× 3

5
= 3

30
3
30
/ 1

2
= 3

15

4 1/6 1
6
× 1

5
= 1

30
1
6
× 4

5
= 4

30
4
30
/ 1

2
= 4

15

5 1/6 1
6
× 0

5
= 0

30
1
6
× 5

5
= 5

30
5
30
/ 1

2
= 5

15

f(yj)
15
30

15
30

= 1
2

Steps for Bayes’ Theorem Using a Table

Set up a table with columns for parameter value, prior, likelihood, prior
× likelihood and posterior.

Put in the parameter values, the prior, and the likelihood in their respec-
tive columns.

Multiply each element in the prior column by the corresponding element
in the likelihood column and put the results in the prior × likelihood
column.

Sum the prior × likelihood column.

Divide each element of prior × likelihood column by the sum.
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Table 6.6 Simplified table for finding the posterior probabilities of X|Y = 1

xi prior likelihood prior × likelihood posterior

0 1/6 0
5

1
6
× 0

5
=0 0

1 1/6 1
5

1
6
× 1

5
= 1

30
1
30
/ 1

2
= 1

15

2 1/6 2
5

1
6
× 2

5
= 2

30
2
30
/ 1

2
= 2

15

3 1/6 3
5

1
6
× 3

5
= 3

30
3
30
/ 1

2
= 3

15

4 1/6 4
5

1
6
× 4

5
= 4

30
4
30
/ 1

2
= 4

15

5 1/6 5
5

1
6
× 5

5
= 5

30
5
30
/ 1

2
= 5

15

f(yj)
15
30

= 1
2

Put these posterior probabilities in the posterior column!

6.1 Two Equivalent Ways of Using Bayes’ Theorem

We may have more than one data set concerning a parameter. They might not
even become available at the same time. Should we wait for the second data
set, combine it with the first, and then use Bayes’ theorem on the combined
data set? This would mean that we have to go back to scratch every time more
data became available, which would result in a lot of work. Another approach
requiring less work would be to use the posterior probabilities given the first
data set, as the prior probabilities for analyzing the second data set. We will
find that these two approaches lead to the same posterior probabilities. This
is a significant advantage to Bayesian methods. In frequentist statistics, we
would have to use the first approach, re-analyzing the combined data set when
the second one arrives.

Analyzing the observations sequentially one at a time. Suppose that we ran-
domly draw a second ball out of the urn without replacing the first. Suppose
the second draw resulted in a green ball, so Y = 0. We want to find the pos-
terior probabilities of X given the results of the two observations, red first,
green second. We will analyze the observations in sequence using Bayes’ the-
orem each time. We will use the same prior probabilities as before for the first
draw. However, we will use the posterior probabilities from the first draw as
the prior probabilities for the second draw. The results are shown in Table
6.7.

Analyzing the observations all together in a single step. Alternatively, we could
consider both draws together, then revise the probabilities using Bayes’ theo-
rem only once. Initially, we are in the same state of knowledge as before. So
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Table 6.7 The posterior probability distribution after second observation

xi prior likelihood prior × likelihood posterior

0 0 ?? 0 0/ 1
3

= 0

1 1/15 4
4

1
15

1
15
/ 1

3
= 1

5

2 2/15 3
4

1
10

1
10
/ 1

3
= 6

20

3 3/15 2
4

1
10

1
10
/ 1

3
= 6

20

4 4/15 1
4

1
15

1
15
/ 1

3
= 1

5

5 5/15 0
4

0 0/ 1
3

= 0
1
3

1.00

we take the same prior probabilities that we originally used for the first draw
when we were analyzing the observations in sequence. All possible values of X
are equally likely. The prior probability function is g(x) = 1

6 for x = 0, . . . , 5.
Let Y1 and Y2 be the outcome of the first and second draw, respectively.

The probabilities of the second draw depend on the balls left after the first
draw. By the multiplication rule, the observation probability conditional on
X is

f(y1, y2|x) = f(y1|x)× f(y2|y1, x) .

The joint distribution of X and Y1, Y2 is given in Table 6.8. The first ball
was red, second was green, so the reduced universe probabilities are in column
yj1 , yj2 = 1, 0. The likelihood function given by the conditional observation
probabilities in that column are highlighted.

Table 6.8 The joint distribution of X,Y1, Y2 and marginal distribution of Y1, Y2

xi prior yj1 , yj2 yj1 , yj2 yj1 , yj2 yj1 , yj2

0,0 0,1 1,0 1,1

0 1/6 1
6
× 5

5
× 4

4
1
6
× 5

5
× 0

4
1
6
× 0

5
× 4

4
1
6
× 0

5
× 0

4

1 1/6 1
6
× 4

5
× 3

4
1
6
× 4

5
× 1

4
1
6
× 1

5
× 4

4
1
6
× 1

5
× 0

4

2 1/6 1
6
× 3

5
× 2

4
1
6
× 3

5
× 2

4
1
6
× 2

5
× 3

4
1
6
× 2

5
× 1

4

3 1/6 1
6
× 2

5
× 1

4
1
6
× 2

5
× 3

4
1
6
× 3

5
× 2

4
1
6
× 3

5
× 2

4

4 1/6 1
6
× 1

5
× 0

4
1
6
× 1

5
× 4

4
1
6
× 4

5
× 1

4
1
6
× 4

5
× 3

4

5 1/6 1
6
× 0

5
× 0

4
1
6
× 0

5
× 4

4
1
6
× 5

5
× 0

4
1
6
× 5

5
× 4

4

f(y1, y2) 40/120 20/120 20/120 40/120

The first ball was red, second was green, so the reduced universe probabili-
ties are in column yj1 , yj2 = 1, 0. The posterior probability of X given Y1 = 1
and Y2 = 0 is found by rescaling the probabilities in the reduced universe so
they sum to 1. This is shown in Table 6.9. We see this is the same as the
posterior probabilities we found analyzing the observations sequentially, using
the posterior after the first as the prior for the second. This shows that it



116 BAYESIAN INFERENCE FOR DISCRETE RANDOM VARIABLES

Table 6.9 The posterior probability distribution given Y1 = 1 and Y2 = 0

xi prior yj1 , yj2 yj1 , yj2 yj1 , yj2 yj1 , yj2 posterior

0,0 0,1 1,0 1,1

0 1/6 20
120

0 0 0 0 =0

1 1/6 12
120

4
120

4
120

0 4
120

/ 20
120

= 1
5

2 1/6 6
120

6
120

6
120

2
120

6
120

/ 20
120

= 3
10

3 1/6 2
120

6
120

6
120

6
120

6
120

/ 20
120

= 3
10

4 1/6 0 4
120

4
120

12
120

4
120

/ 20
120

= 1
5

5 1/6 0 0 0 20
120

0 = 0

f(y1, y2) 20/120 1.00

makes no difference whether you analyze the observations one at a time in
sequence using the posterior after the previous step as the prior for the next
step, or whether you analyze all observations together in a single step starting
with your initial prior!

Since we only use the column corresponding to the reduced universe, it is
simpler to find the posterior by multiplying prior times likelihood and rescaling
to make it a probability distribution. This is shown in Table 6.10.

Table 6.10 The posterior probability distribution after both observations

xi prior likelihood prior × likelihood posterior

0 1/6 0
20

0
120

0
120

/ 1
6

= 0

1 1/6 4
20

4
120

4
120

/ 1
6

= 1
5

2 1/6 6
20

6
120

6
120

/ 1
6

= 3
10

3 1/6 6
20

6
120

6
120

/ 1
6

= 3
10

4 1/6 4
20

4
120

4
120

/ 1
6

= 1
5

5 1/6 0
20

0
120

0
120

/ 1
6

= 0
1
6

1.00

6.2 Bayes’ Theorem for Binomial with Discrete Prior

We will look at using Bayes’ theorem when the observation comes from the
binomial distribution, and there are only a few possible values for the pa-
rameter. Y |π has the binomial(n, π) distribution. (There are n independent
trials, each of which can result in “success” or “failure” and the probability of
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success π remains the same for all trials. Y is the total number of “successes”
over the n trials.) There are I discrete possible values of π1, . . . , πI .

Set up a table for the observation distributions. Row i correspond to the
binomial(n, πi) probability distribution. Column j corresponds to Y = j
(There are n + 1 columns corresponding to 0, . . . , n.) These binomial proba-
bilities can be found in Table B.1 in Appendix B. The conditional observation
probabilities in the reduced universe (column that corresponds to the actual
observed value) is called the likelihood .

We decide on our prior probability distribution of the parameter. They
give our prior belief about each possible value of the parameter π. If we
have no idea beforehand, we can choose the prior distribution that has
all values equally likely.

The joint probability distribution of the parameter π and the observation
Y is found by multiplying the conditional probability of Y |π by the prior
probability of π.

The marginal distribution of Y is found by summing the joint distribution
down the columns.

Now take the observed value of Y . It is the only column that is now relevant.
It contains the probabilities of the reduced universe. Note that it is the
prior times the likelihood. The posterior probability of each possible value
of π is found by dividing that row’s element in the relevant column by the
marginal probability of Y in that column.

EXAMPLE 6.2

Let Y |π be binomial(n = 4, π). Suppose we consider that there are only
three possible values for π, .4,.5, and .6. We will assume they are equally
likely. The prior distribution of π and joint distribution of π and Y are
given in Table 6.11. The joint probability distribution f(πi, yj) is found
by multiplying the conditional observation distribution f(yj |πi) times the
prior distribution g(πi). In this case, the conditional observation prob-
abilities come from the binomial(n = 4, π) distribution. These binomial
probabilities come from Table B.1 in Appendix B. Suppose Y = 3 was
observed. The reduced universe is the column for Y = 3. The conditional
observation probabilities in that column is called the likelihood and is
highlighted.

The marginal distribution of Y is found by summing the joint distri-
bution of π and Y down the columns. The prior distribution of π, joint
probability distribution of (π, Y ), and marginal probability distribution
of Y are shown in Table 6.12. Given that Y = 3 was observed, only the
column labeled 3 is relevant. The prior distribution of π, joint proba-
bility distribution of (π, Y ), marginal probability distribution of Y , and
posterior probability distribution of π|Y = 3 are shown in Table 6.13.
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Table 6.11 The joint probability distribution found by multiplying marginal
distribution of π (the prior) by the conditional distribution of Y given π (which is
binomial). Y = 3 was observed, so the binomial probabilities of Y = 3 (the likelihood)
are highlighted.

π prior 0 1 2 3 4

.4 1
3

1
3
×.1296 1

3
×.3456 1

3
×.3456 1

3
× .1536 1

3
×.0256

.5 1
3

1
3
×.0625 1

3
×.2500 1

3
×.3750 1

3
× .2500 1

3
×.0625

.6 1
3

1
3
×.0256 1

3
×.1536 1

3
×.3456 1

3
× .3456 1

3
×.1296

Table 6.12 The joint and marginal probability distributions. Y = 3 was observed,
so those probabilities are highlighted.

π prior 0 1 2 3 4

.4 1
3

.0432 .1152 .1152 .0512 .0085

.5 1
3

.0208 .0833 .1250 .0833 .0208

.6 1
3

.0085 .0512 .1152 .1152 .0432

marginal .0725 .2497 .3554 .2497 .0725

Table 6.13 The joint, marginal, and posterior probability distribution of π given
Y = 3. Note the posterior is found by dividing the joint probabilities in the relevant
column by their sum.

π prior 0 1 2 3 4 posterior

.4 1
3

.0432 .1152 .1152 .0512 . 0085 .0512
.2497

= .205

.5 1
3

.0208 .0833 .1250 .0833 .0208 .0833
.2497

= .334

.6 1
3

.0085 .0512 .1152 .1152 .0432 .1152
.2497

= .461

marginal .0725 .2497 .3554 .2497 .0725 1.000

Note that the posterior is proportional to prior times likelihood. We
did not have to set up the whole joint probability table. It is easier to only
look at the reduced universe column. The posterior is equal to prior times
likelihood divided by the marginal probability of the observed value. The
results are shown in Table 6.14.

Setting up the Table for Bayes’ Theorem on Binomial with Discrete Prior

Set up a table with columns for parameter value, prior, likelihood, prior
× likelihood, and posterior.
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Table 6.14 The simplified table for finding posterior distribution given Y = 3

π prior likelihood prior × likelihood posterior

.4 1
3

.1536 .0512 .0512
.2497

= .205

.5 1
3

.2500 .0833 .0833
.2497

= .334

.6 1
3

.3456 .1152 .1152
.2497

= .461

marginal P (Y = 3) .2497 1.000

Put in the parameter values, the prior, and the likelihood in their respec-
tive columns. The likelihood values are binomial(n,πi) evaluated at the
observed value of y. They can be found in Table B.1, or evaluated from
the formula.

Multiply each element in the prior column by the corresponding element
in the likelihood column and put in the prior × likelihood column.

Sum these prior × likelihood.

Divide each element of prior × likelihood column by the sum of prior ×
likelihood column. (This rescales them to sum to 1.)

Put these in the posterior column!

Table 6.15 The simplified table for finding posterior distribution given Y = 3.
Note we are using the proportional likelihood where we have absorbed that part of
the binomial distribution that does not depend on π into the constant.

π prior likelihood prior × likelihood posterior

(proportional) (proportional)

.4 1 .43 × .61 = .0384 .0384 .0384
.1873

= .205

.5 1 .53 × .51 = .0625 .0625 .0625
.1873

= .334

.6 1 .63 × .41 = .0864 .0864 .0864
.1873

= .461

marginal sum .1873 1.000

6.3 Important Consequences of Bayes’ Theorem

Multiplying all the prior probabilities by a constant does not change the result of
Bayes’ theorem. Each of the prior× likelihood entries in the table would be
multiplied by the constant. The marginal entry found by summing down the
column would also be multiplied by the same constant. Thus the posterior
probabilities would be the same as before, since the constant would cancel out.
The relative weights we are giving to each parameter value, not the actual
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weights, are what counts. If there is a formula for the prior, any part of it
that does not contain the parameter can be absorbed into the constant. This
may make calculations simpler for us!

Multiplying the likelihood by a constant does not change the result of Bayes’
theorem. The prior× likelihood values would also be multiplied by the same
constant, which would cancel out in the posterior probabilities. The likelihood
can be considered the weights given to the possible values by the data. Again,
it is the relative weights that are important, not the actual weights. If there
is a formula for the likelihood, any part that does not contain the parameter
can be absorbed into the constant, simplifying our calculations!

EXAMPLE 6.2 (continued)

We used a prior that gave each value equal prior probability. In this
example there are three possible values, so each has a prior probability
equal to 1

3 . Let us multiply each of the 3 prior probabilities by the constant
3 to give prior weights equal to 1. This will simplify our calculations. The
observations are binomial(n = 4, π), and y = 3 was observed. The formula
for the binomial likelihood is

f(y|π) =

(
4

3

)
π3(1− π)1 .

The binomial coefficient
(

4
3

)
does not contain the parameter, so it is a

constant over the likelihood column. To simplify our calculations, we will
absorb it into the constant and use only the part of the likelihood that
contains the parameter. In Table 6.15 we see that this gives us the same
result we obtained before.

6.4 Bayes’ Theorem for Poisson with Discrete Prior

We will see how to apply Bayes’ theorem when the observation comes from a
Poisson(µ) distribution and we have a discrete prior distribution over a few
discrete possible values for µ. Y |mu is the number of counts of a process that
is occurring randomly through time at a constant rate. The possible values of
the parameter are µ1, . . . , µI . We decide on the prior probability distribution,
g(µi) for i = 1, . . . , I. These give our belief weight for each possible value
before we have looked at the data. In Section 6.2 we learned that we do not
have to use the full range of possible observations. Instead, we set up a table
only using the reduced universe column, i.e., the value that was observed.

Setting up the Table for Bayes’ Theorem on Poisson with Discrete Prior

Set up table with columns for parameter value, prior, likelihood, prior ×
likelihood, and posterior.
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Put the parameter value, prior, and likelihood in their respective columns.
The likelihood values are Poisson(µ) probabilities evaluated at the ob-
served value of y. They can be found in Table B.5 in Appendix B, or
evaluated from the Poisson formula.

Multiply each element in the prior column by the corresponding element
in the likelihood column, and enter them in the prior × likelihood column.

Divide each prior × likelihood by the sum of the prior × likelihood column
and put them in the posterior column.

EXAMPLE 6.3

Let Y |µ be Poisson(µ). Suppose that we believe there are only four pos-
sible values for µ, 1,1.5,2, and 2.5. Suppose we consider that the two
middle values, 1.5 and 2, are twice as likely as the two end values 1 and
2.5. Suppose y = 2 was observed. Plug the value y = 2 into formula

f(y|µ) =
µye−µ

y!

to give the likelihood. Alternatively, we could find the values for the like-
lihood from Table B.5 in Appendix B. The results are shown in the Table
6.16. Note: We could use the proportional prior and the proportional
likelihood and we would get the same results for the posterior.

Table 6.16 The simplified table for finding posterior distribution given Y = 2

µ prior likelihood prior × likelihood posterior

1.0 1
6

1.02e−1.0

2!
= .1839 .0307 .0307

.2473
= .124

1.5 1
3

1.52e−1.5

2!
= .2510 .0837 .0837

.2473
= .338

2.0 1
3

2.02e−2.0

2!
= .2707 .0902 .0902

.2473
= .365

2.5 1
6

2.52e−2.5

2!
= .2565 .0428 .0428

.2473
= .173

marginal P (Y = 2) .2473 1.000

Main Points

The Bayesian universe has two dimensions. The vertical dimension is the
parameter space and is unobservable. The horizontal dimension is the
sample space and we observe which value occurs.

The reduced universe is the column for the observed value.
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For discrete prior and discrete observation, the posterior probabilities are
found by multiplying the prior × likelihood and then dividing by their
sum.

When our data arrives in batches we can use the posterior from the first
batch as the prior for the second batch. This is equivalent to combining
both batches and using Bayes’ theorem only once, using our initial prior.

Multiplying the prior by a constant does not change the result. Only
relative weights are important.

Multiplying the likelihood by a constant does not change the result.

This means we can absorb any part of formula that does not contain the
parameter into the constant. This greatly simplifies calculations.

Exercises

6.1. There is an urn containing 9 balls, which can be either green or red. The
number of red balls in the urn is not known. One ball is drawn at random
from the urn, and its color is observed.

(a) What is the Bayesian universe of the experiment.

(b) Let X be the number of red balls in the urn. Assume that all possible
values of X from 0 to 9 are equally likely. Let Y1 = 1 if the first ball
drawn is red, and Y1 = 0 otherwise. Fill in the joint probability table
for X and Y1 given below:

X prior Y1 = 0 Y1 = 1

(c) Find the marginal distribution of Y1 and put it in the table.

(d) Suppose a red ball was drawn. What is the reduced Bayesian universe?

(e) Calculate the posterior probability distribution of X.

(f) Find the posterior distribution of X by filling in the simplified table:
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X prior likelihood prior × likelihood posterior

marginal P (Y1 = 1)

6.2. Suppose that a second ball is drawn from the urn, without replacing the
first. Let Y2 = 1 if the second ball is red, and let it be 0 otherwise. Use
the posterior distribution of X from the previous question as the prior
distribution for X . Suppose the second ball is green. Find the posterior
distribution of X by filling in the simplified table:

X prior likelihood prior × likelihood posterior

marginal P (Y2 = 0)

6.3. Suppose we look at the two draws from the urn (without replacement) as
a single experiment. The results were first draw red, second draw green.
Find the posterior distribution of X by filling in the simplified table.
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X prior likelihood prior × likelihood posterior

marginal P (Y1 = 1, Y2 = 0)

6.4. Let Y1 be the number of successes in n = 10 independent trials where
each trial results in a success or failure, and π, the probability of success,
remains constant over all trials. Suppose the 4 possible values of π are
.20, .40, .60, and .80. We do not wish to favor any value over the others
so we make them equally likely. We observe Y1 = 7. Find the posterior
distribution by filling in the simplified table.

π prior likelihood prior × likelihood posterior

marginal P (Y1 = 7)

6.5. Suppose another 5 independent trials of the experiment are performed
and Y2 = 2 successes are observed. Use the posterior distribution for π
from Exercise 6.4 as the prior distribution for π. Find the new posterior
distribution by filling in the simplified table.
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π prior likelihood prior × likelihood posterior

marginal P (Y2 = 2)

6.6. Suppose we combine all the n = 15 trials all together and think of them
as a single experiment where we observed a total of 9 successes. Start
with the initial equally weighted prior from Exercise 6.4 and find the
posterior after the single combined experiment. What do the results of
Exercises 6.4 – 6.6 show?

π prior likelihood prior × likelihood posterior

marginal P (Y = 9)

6.7. Let Y be the number of counts of a Poisson random variable with mean
µ. Suppose the 5 possible values of µ are 1, 2, 3, 4, and 5. We do not
have any reason to give any possible value more weight than any other
value, so we give them equal prior weight. Y = 2 was observed. Find the
posterior distribution by filling in the simplified table.

µ prior likelihood prior × likelihood posterior

marginal P (Y = 2
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Computer Exercises

6.1. The Minitab macro BinoDP or the equivalent R function is used to find
the posterior distribution of the binomial probability π when the obser-
vation distribution of Y |π is binomial(n, π) and we have a discrete prior
for π. Details for invoking BinoDP are found in Appendix C, and details
for the equivalent R function are found in Appendix D.

Suppose we have 8 independent trials and each has one of two possible
either success or failure. The probability of success remains constant for
each trial. In that case, Y |π is binomial(n = 8, π). Suppose we only
allow that there are 6 possible values of π, 0, .2, .4, .6, .8, and 1.0. In
that case we say that we have a discrete distribution for π. Initially we
have no reason to favor one possible value over another. In that case we
would give all the possible values of π probability equal to 1

6 .

π g(π)

0 .166666

.2 .166666

.4 .166666

.6 .166666

.8 .166666

1.0 .166666

Suppose we observe 3 “successes” in the 8 trials.

[Minitab:] Use the Minitab macro BinoDP to find the posterior distri-
bution g(π|y).

[R:] Use the R function binodp to find the posterior distribution g(π|y).

(a) Identify the matrix of conditional probabilities from the output. Re-
late these conditional probabilities to the binomial probabilities in
Table B.1.

(b) What column in the matrix contains the likelihoods?

(c) Identify the matrix of joint probabilities from the output. How are
these joint probabilities found?

(d) Identify the marginal probabilities of Y from the output. How are
these found?

(e) How are the posterior probabilities found?

6.2. Suppose we take an additional 7 trials and achieve 2 successes.
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(a) Let the posterior after the 8 trials and 3 successes in the previous
problem be the prior. Use BinoDP in Minitab, or binodp in R, to
find the new posterior distribution for π.

(b) In total, we have taken 15 trials and achieved 5 successes. Go back
to the original prior and use BinoDP in Minitab, or binodp in R, to
find the posterior after the 15 trials and 5 successes.

(c) What does this show?

6.3. [Minitab:] The Minitab macro PoisDP is used to find the posterior
distribution when the observation distribution of Y |µ is Poisson(µ) and
we have a discrete prior distribution for µ. Details for invoking PoisDP
are in Appendix C.

[R:] The R function poisdp is used to find the posterior distribution
when the observation distribution of Y |µ is Poisson(µ) and we have a
discrete prior distribution for µ. The details for using poisdp are in
Appendix D.

Suppose there are six possible values µ = 1, . . . , 6 and the prior probabil-
ities are given by

µ g(µ)

1 .10

2 .15

3 .25

4 .25

5 .15

6 .10

Suppose the first observation is Y1 = 2. Use PoisDP in Minitab, or the
R function poisdp, to find the posterior distribution g(µ|y).

(a) Identify the matrix of conditional probabilities from the output. Re-
late these conditional probabilities to the Poisson probabilities in Ta-
ble B.5.

(b) What column in the matrix contains the likelihoods?

(c) Identify the matrix of joint probabilities from the output. How are
these joint probabilities found?

(d) Identify the marginal probabilities of Y from the output. How are
these found?

(e) How are the posterior probabilities found?

6.4. Suppose we take a second observation. We let the posterior after the first
observation Y1 = 2 which we found in the previous exercise be the prior
for the second observation.
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(a) The second observation Y2 = 1. Use PoisDP in Minitab, or poisdp

in R, to find the new posterior distribution for µ.

(b) Identify the matrix of conditional probabilities from the output. Re-
late these conditional probabilities to the Poisson probabilities in Ta-
ble B.5.

(c) What column in the matrix contains the likelihoods?

(d) Identify the matrix of joint probabilities from the output. How are
these joint probabilities found?

(e) Identify the marginal probabilities of Y from the output. How are
these found?

(f) How are the posterior probabilities found?



CHAPTER 7

CONTINUOUS
RANDOM VARIABLES

When we have a continuous random variable, we believe all values over some
range are possible if our measurement device is sufficiently accurate. There is
an uncountably infinite number of real numbers in an interval, so the proba-
bility of getting any particular value must be zero. This makes it impossible
to find the probability function of a continuous random variable the same way
we did for a discrete random variable. We will have to find a different way to
determine its probability distribution. First we consider a thought experiment
similar to those done in Chapter 5 for discrete random variables.

Thought Experiment 4 We start taking a sequence of independent trials
of the random variable. We sketch a graph with a spike at each value in the
sample equal to the proportion in the sample having that value. After each
draw we update the proportions in the accumulated sample that have each
value, and update our graph. The updating of the graph at step n is made
by scaling all the existing spikes down by the ratio n−1

n
and adding 1

n
to the

spike at the value observed at trial n. This keeps the sum of the spike heights
equal to 1. Figure 7.1 shows this after 25 draws. Because there are infinitely
many possible numbers, it is almost inevitable that we do not draw any of the
previous values, so we get a new spike at each draw. After n draws we will
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have n spikes, each having height 1
n

. Figure 7.2 shows this after 100 draws.
As the sample size, n, approaches infinity, the heights of the spikes shrink to
zero. This means the probability of getting any particular value is zero. The
output of this thought experiment is not the probability function, which gives
the probability of each possible value. This is not like the output of the thought
experiments in Chapter 6 where the random variable was discrete.

Figure 7.1 Sample probability function after 25 draws.

Figure 7.2 Sample probability function after 100 draws.
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What we do notice is that there are some places with many spikes close by,
and there are other places with very few spikes close by. In other words, the
density of spikes varies. We can think of partitioning the interval into subin-
tervals, and recording the number of observations that fall into each subin-
terval. We can form a density histogram by dividing the number in each
subinterval by the width of the subinterval. This makes the area under the
histogram equal to one. Figure 7.3 shows the density histogram for the first
100 observations. Now let n increase, and let the width of the subintervals

Figure 7.3 Density histogram after 100 draws.

decrease, but at a slower rate than n. Figures 7.4 and 7.5 show the density
histogram for the first 1,000 and for the first 10,000 observations, respectively.
The proportion of observations in a subinterval approaches the probability of
being in the subinterval. As n increases, we get a larger number of shorter
subintervals. The histograms get closer and closer to a smooth curve.

7.1 Probability Density Function

The smooth curve is called the probability density function (pdf). It is the
limiting shape of the histograms as n goes to infinity, and the width of the
bars goes to 0. Its height at a point is not the probability of that point. The
thought experiment showed us that probability was equal to zero at every
point. Instead, the height of the curve measures how dense is the probability
at that point.

Since the areas under the histograms all equaled one, the total area under
the probability density function must also equal 1:∫ ∞

−∞
f(y) dy = 1 . (7.1)



132 CONTINUOUS RANDOM VARIABLES

Figure 7.4 Density histogram after 1,000 draws.

Figure 7.5 Density histogram after 10,000 draws.

The proportion of the observations that lie in an interval (a, b) is given by the
area of the histogram bars that lie in the interval. In the limit as n increases
to infinity, the histograms become the smooth curve, the probability density
function. The area of the bars that lie in the interval becomes the area under
the curve over that interval. The proportion of observations that lie in the
interval becomes the probability that the random variable lies in the interval.
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We know the area under a curve is found by integration, so we can find the
probability that the random variable lies in the interval (a, b) by integrating
the probability density function over that range:

P (a < Y < b) =

∫ b

a

f(y) dy . (7.2)

Mean of a Continuous Random Variable

In Section 3.3 we defined the mean of the random sample of observations from
the random variable to be

ȳ =

∑n
i=1 yi
n

.

Suppose we put the observations in a density histogram where all groups have
equal width. The grouped mean of the data is

ȳ =
∑
j

mj
nj
n
,

where mj is the midpoint of the jth bar and
nj
n

is its relative frequency.
Multiplying and dividing by the width of the bars, we get

ȳ =
∑
j

mj × width×
nj

n× width ,

where the relative frequency density
nj

n×width gives the height of bar j. Mul-
tiplying it by width gives the area of the bar. Thus the sample mean is the
midpoint of each bar times the area of that bar summed over all bars.

Suppose we let n increase without bound, and let the number of bars
increase, but at a slower rate. For example, as n increases by a factor of
4, we let the number of bars increase by a factor of 2 so the width of each
bar is divided by 2. As n increases without bound, each observation in a
group becomes quite close to the midpoint of the group, the number of bars
increase without bound, and the width of each bar goes to zero. In the
limit, the midpoint of the bar containing the point y approaches y, and the
height of the bar containing point y (which is the relative frequency density)
approaches f(y). So, in the limit, the relative frequency density approaches
the probability density and the sample mean reaches its limit

E[Y ] =

∫ ∞
−∞

yf(y) dy , (7.3)

which is called the expected value of the random variable. The expected value
is like the mean of all possible values of the random variable. Sometimes it is
referred to as the mean of the random variable Y and denoted µ.
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Variance of a Continuous Random Variable

The expected value E[(Y −E[Y ])2] is called the variance of the random vari-
able. We can look at the variance of a random sample of numbers and let the
sample size increase.

Var[y] =
1

n
×

n∑
i=1

(yi − ȳ)2 .

As we let n increase, we decrease the width of the bars. This makes each
observation become closer to the midpoint of the bar it is in. Now, when we
sum over all groups, the variance becomes

Var[y] =
∑
j

nj
n

(mj − ȳ)2 .

We multiply and divide by the width of the bar to get

Var[y] =
∑
j

nj
n× width

× width× (mj − ȳ)2 .

This is the square of the midpoint minus the mean times the area of the bar
summed over all bars. As n increases to ∞, the relative frequency density
approaches the probability density, the midpoint of the bar containing the
point y approaches y, and the sample mean ȳ approaches the expected value
E[Y ], so in the limit the variance becomes

Var[Y ] = E[(Y − E[Y ])2] =

∫ ∞
−∞

(y − µ)2f(y) dy . (7.4)

The variance of the random variable is denoted σ2. We can square the term
in brackets,

Var[Y ] =

∫ ∞
−∞

(y2 − 2µy + µ2)f(y) dy ,

break the integral into three terms,

Var[Y ] =

∫ ∞
−∞

y2 f(y) dy − 2µ

∫ ∞
−∞

y f(y) dy + µ2

∫ ∞
−∞

f(y) dy ,

and simplify to get an alternate form for the variance:

Var[Y ] = E[Y 2]− [E[Y ]]2 . (7.5)
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7.2 Some Continuous Distributions

Uniform Distribution

The random variable has the uniform (0, 1) distribution if its probability
density function is constant over the interval [0,1], and 0 everywhere else.

g(x) =

{
1 for 0 ≤ x ≤ 1,

0 for x /∈ [0, 1]

It is easily shown that the mean and variance of a uniform (0,1) random
variable are 1

2 and 1
12 , respectively.

Beta Family of Distributions

The beta(a, b) distribution is another commonly used distribution for a con-
tinuous random variable that can only take on values 0 ≤ x ≤ 1. It has the
probability density function

g(x; a, b) =

{
k × xa−1(1− x)b−1 for 0 ≤ x ≤ 1,

0 for x /∈ [0, 1]

The most important thing is that xa−1(1−x)b−1 determines the shape of the
curve, and k is only the constant needed to make this a probability density
function. Figure 7.6 shows the graphs of this for a = 2 and b = 3 for a number
of values of k. We see that the curves all have the same basic shape but have
different areas under the curves. The value of k = 12 gives area equal to 1,
so that is the one that makes a density function. The distribution with shape
given by xa−1(1 − x)b−1 is called the beta(a, b) distribution. The constant
needed to make the curve a density function is given by the formula

k =
Γ(a+ b)

Γ(a)Γ(b)
,

where Γ(c) is the Gamma function, which is a generalization of the factorial
function.1 The probability density function of the beta(a, b) distribution is
given by

g(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 . (7.6)

All we need remember is that Γ(a+b)
Γ(a)Γ(b)

is the constant needed to make the

curve with shape given by xa−1(1 − x)b−1 a density. a equals one plus the
power of x, and b equals one plus the power of (1− x).

1When c is an integer, Γ(c) = (c− 1)!. The Gamma function always satisfies the equation
Γ(c) = (c− 1)× Γ(c− 1) whether or not c is an integer.
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Figure 7.6 The curve g(x) = kx1(1− x)2 for several values of k.

This curve can have different shapes depending on the values a and b, so the
beta(a, b) is actually a family of distributions. The uniform(0,1) distribution
is a special case of the beta(a, b) distribution, where a = 1 and b = 1.

Mean of a beta distribution. The expected value of a continuous random vari-
able x is found by integrating the variable times the density function over the
whole range of possible values. (Since the beta(a, b) density equals 0 for x
outside the interval [0, 1], the integration only has to go from 0 to 1, not −∞
to ∞.) For a random variable having the beta(a, b) distribution,

E[X] =

∫ 1

0

x× g(x; a, b)dx =

∫ 1

0

x× Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 dx .

However, by using our understanding of the beta distribution, we can evaluate
this integral without having to do the integration. First move the constant
out in front of the integral, then combine the x terms by adding exponents:

E[X] =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

x× xa−1(1− x)b−1dx =
Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

xa(1− x)b−1 dx .

We recognize the part under the integral sign as a curve that has the beta(a+
1, b) shape. So we must multiply inside the integral by the appropriate con-
stant to make it integrate to 1, and multiply by the reciprocal of the constant
outside of the integral to keep the balance:

E[X] =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)

∫ 1

0

Γ(a+ b+ 1)

Γ(a+ 1)Γ(b)
xa(1− x)b−1 dx .
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The integral equals 1, and when we use the fact that Γ(c) = (c− 1)×Γ(c− 1)
and do some cancellation, we get the simple formula

E[X ] =
a

a+ b
(7.7)

for the mean of a beta(a, b) random variable.

Variance of a beta distribution. The expected value of a function of a contin-
uous random variable is found by integrating the function times the density
function over the whole range of possible values. For a random variable having
the beta(a, b) distribution,

E[X2] =

∫ 1

0

x2 × Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 dx .

When we evaluate this integral using the properties of the beta(a, b) distribu-
tion, we get

E[X2] =
a(a+ 1)

(a+ b+ 1)(a+ b)
.

When we substitute this formula and the formula for the mean of the beta(a, b)
into Equation 7.5 and simplify, we find the variance of the random variable
having the beta(a, b) distribution is given by

Var[X] =
ab

(a+ b)2(a+ b+ 1)
. (7.8)

Finding beta probabilities. When X has the beta(a, b) distribution, we often
want to calculate probabilities such as

P (X ≤ x0) =

∫ x0

0

g(x; a, b) dx .

[Minitab:] This can easily be done in Minitab. Pull down the Calc menu
to Probability Distributions command, over to Beta. . . subcommand, and fill
out the dialog box.

Gamma Family of Distributions

The gamma(r, v) distribution is used for continuous random variables that
can take on nonnegative values 0 ≤ x < ∞. Its probability density function
is given by

g(x; r, v) = k × xr−1e−vx for 0 ≤ x <∞ .

The shape of the curve is determined by xr−1e−vx, while k is only the constant
needed to make this a probability density. Figure 7.7 shows the graphs of this
for the case where r = 4 and v = 4 for several values of k. Clearly the curves
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Figure 7.7 The curve g(x) = kx3e−4x for several values of k.

have the same basic shape, but have different areas under the curve. The
curve with k = 42.6667 will have area equal to 1, so it is the exact density.

The distribution having shape given by xr−1e−vx is called the gamma(r, v)
distribution. The constant needed to make this a probability density function
is given by

k =
vr

Γ(r)
,

where Γ(r) is the Gamma function. The probability density of the gamma(r, v)
distribution is given by

g(x; r, v) =
vrxr−1e−vx

Γ(r)
(7.9)

for 0 ≤ x <∞.

Mean of Gamma distribution. The expected value of a gamma(r, v) random
variable x is found by integrating the variable x times its density function
over the whole range of possible values. It will be

E[X] =

∫ ∞
0

xg(x; r, v) dx

=

∫ ∞
0

x
vrxr−1e−vx

Γ(r)
dx

=
vr

Γ(r)

∫ ∞
0

xre−vx dx .
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We recognize the part under the integral to be a curve that has the shape
of a gamma(r + 1, v) distribution. We multiply inside the integral by the
appropriate constant to make it integrate to 1, and outside the integral we
multiply by its reciprocal to keep the balance.

E[X ] =
vr

Γ(r)
× Γ(r + 1)

vr+1

∫ ∞
0

vr+1

Γ(r + 1)
xre−vx dx .

This simplifies to give

E[X] =
r

v
. (7.10)

Variance of a gamma distribution. First we find

E[X2] =

∫ ∞
0

x2g(x; r, v) dx

=
vr

Γ(r)

∫ ∞
0

xr+1e−vx dx .

We recognize the shape of a gamma(r+2, v) under the curve, so this simplifies
to

E[X2] =
(r + 1)r

v2
.

When we substitute this, and the formula for the mean of the gamma(r, v) into
Equation 7.5 and simplify we find the variance of the gamma(r, v) distribution
to be

Var[X ] =
r

v2
. (7.11)

Finding gamma probabilities. When X has the gamma(r, v) distribution we
often want to calculate probabilities such as

P (X ≤ x0) =

∫ x0

0

g(x; r, v) dx .

This can easily be done in Minitab. Pull down the Calc menu to Probability
Distributions command, over to Gamma. . . subcommand, and fill out the
dialog box. Note: In Minitab the shape parameter is r and the scale parameter
is 1

v .

Normal Distribution

Very often data appear to have a symmetric bell-shaped distribution. In the
early years of statistics, this shape seemed to occur so frequently that it was
thought to be normal. The family of distributions with this shape has become
known as the normal distribution family. It is also known as the Gaussian
distribution after the mathematician Gauss, who studied its properties. It is



140 CONTINUOUS RANDOM VARIABLES

the most widely used distribution in statistics. We will see that there is a good
reason for its frequent occurrence. However, we must remain aware that the
term normal distribution is only a name, and distributions with other shapes
are not abnormal.

The normal(µ, σ2) distribution is the member of the family having mean
µ and variance σ2. The probability density function of a normal(µ, σ2) dis-
tribution is given by

g(x|µ, σ2) = ke−
1

2σ2 (x−µ)2

for −∞ < x < ∞, where k is the constant value needed to make this a

probability density. The shape of the curve is determined by e−
1

2σ2 (x−µ)2

.

Figure 7.8 shows the curve ke−
1

2σ2 (x−µ)2

for several values of k. Changing the
value of k only changes the area under the curve, not its basic shape. To be
a probability density function, the area under the curve must equal 1. The
value of k that makes the curve a probability density is k = 1√

2πσ
.
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Figure 7.8 The curve g(x) = ke−
1
2

(x−0)2 for several values of k.

Central limit theorem. The central limit theorem says that if you take a ran-
dom sample y1, . . . , yn from any shape distribution having mean µ and vari-
ance σ2, then the limiting distribution of ȳ−µ

σ/
√
n

is normal(0, 1). The shape of

the limiting distribution is normal despite the original distribution not nec-
essarily being normal. A linear transformation of a normal distribution is
also normal, so the shape of ȳ and

∑
y are also normal. Amazingly, n does

not have to be particularly large for the shape to be approximately normal,
n ≥ 25 is sufficient.

The key factor of the central limit distribution is that when we are averaging
a large number of independent effects, each of which is small in relation to the
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Figure 7.9 The area between −.62 and 1.37 split into two parts.

sum, the distribution of the sum approaches the normal shape regardless of the
shapes of the individual distributions. Thus any random variable that arises as
the sum of a large number of independent effects will be approximately normal!
This explains why the normal distribution is encountered so frequently.

Finding probabilities using standard normal table. The standard normal density
has mean µ = 0 and variance σ2 = 1. Its probability density function is given
by

f(z) =
1√
2π
e−

1
2 z

2

.

We note that this curve is symmetric about z = 0. Unfortunately, Equation
7.2, the general form for finding the probability P (a ≤ z ≤ b), is not of any
practical use here. There is no closed form for integrating the standard normal
probability density function. Instead, the area between 0 and z for values of
z between 0 and 3.99 has been numerically calculated and tabulated in Table
B.2 in Appendix B. We use this table to calculate the probability we need.

EXAMPLE 7.1

Suppose we want to find P (−.62 ≤ Z ≤ 1.37). In Figure 7.9 we see that
the shaded area between−.62 and 1.37 is the sum of the two areas between
−.62 and 0 and between 0 and 1.37, respectively. The area between −.62
and 0 is the same as the area between 0 and +.62 because the standard
normal density is symmetric about 0. In Table B.2 we find this area equals
.2324. The area between 0 and 1.37 equals .4147 from the table. So

P (−.62 ≤ Z ≤ 1.37) = .2324 + .4147

= .6471 .

Any normal distribution can be transformed into a standard normal by
subtracting the mean and then dividing by the standard deviation. This lets
us find any normal probability using the areas under the standard normal
density found in Table B.2.
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EXAMPLE 7.2

Suppose we know Y is normal with mean µ = 10.8 and standard deviation
σ = 2.1, and suppose we want to find the probability P (Y ≥ 9.9).

P (Y ≥ 9.9) = P (Y − 10.8 ≥ 9.9− 10.8)

= P

(
Y − 10.8

2.1
≥ 9.9− 10.8

2.1

)
.

The left side is a standard normal. The right side is a number. We find
this probability from the standard normal:

P (Y ≥ 9.9) = P (Z ≥ −.429)

= .1659 + .5000

= .6659 .

Finding beta probabilities using normal approximation. We can approximate a
beta(a, b) distribution by the normal distribution having the same mean and
variance. This approximation is very effective when both a and b are greater
than or equal to ten.

EXAMPLE 7.3

Suppose Y has the beta(12, 25) distribution and we wish to find
P (Y > .4). The mean and variance of Y are

E[Y ] =
12

37
= .3243 and Var[Y ] =

12× 25

372 × 38
= .005767 ,

respectively. We approximate the beta(12, 25) distribution with a nor-
mal(.3243, .005767) distribution. The approximate probability is

P (Y > .4) = P

(
Y − .3243√
.005767

>
.4− .3243√
.005767

)
= P (Z > .997)

= .1594 .

Finding gamma probabilities using normal approximation is not recommended.
As r approaches infinity the gamma(r, v) distribution approaches the nor-
mal(m, s2) distribution where m = r

v and s2 = r
v2 . However, the approach

is very slow, and the gamma probabilities calculated using the normal ap-
proximation will not be very accurate unless r is quite large (Johnson et al.,
1970). Johnson et al. (1970) recommend that the normal approximation to
the gamma not be used for this reason, and they give other approximations
that are more accurate.
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7.3 Joint Continuous Random Variables

We consider two (or more) random variables distributed together. If both X
and Y are continuous random variables, they have joint density f(x, y), which
measures the probability density at the point (x, y). This would be found by
dividing the plane into rectangular regions by partitioning both the x axis
and y axis. We look at the proportion of the sample that lie in a region. We
increase n, the sample size of the joint random variables without bound, and
at the same time decrease the width of the regions (in both dimensions) at
a slower rate. In the limit, the proportion of the sample lying in the region
centered at (x, y) approaches the joint density f(x, y). Figure 7.10 shows a
joint density function.
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Figure 7.10 A joint density.

We might be interested in determining the density of one of the joint ran-
dom variables by itself, its marginal density. When X and Y are joint random
variables that are both continuous, the marginal density of Y is found by in-
tegrating the joint density over the whole range of X:

f(y) =

∫ ∞
−∞

f(x, y) dx ,

and vice versa. (Finding the marginal density by integrating the joint den-
sity over the whole range of one variable is analogous to finding the marginal
probability distribution by summing the joint probability distribution over all
possible values of one variable for jointly distributed discrete random vari-
ables.)
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Conditional Probability Density

The conditional density of X given Y = y is given by

f(x|y) =
f(x, y)

f(y)
.

We see that the conditional density of X given Y = y is proportional to the
joint density where Y = y is held fixed. Dividing by the marginal density
f(y) makes the integral of the conditional density over the whole range of x
equal 1. This makes it a proper density function.

7.4 Joint Continuous and Discrete Random Variables

It may be that one of the variables is continuous, and the other is discrete. For
instance, let X be continuous, and let Y be discrete. In that case, f(x, yj)
is a joint probability–probability density function. In the x direction it is
continuous, and in the y direction it is discrete. This is shown in Figure 7.11.
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Figure 7.11 A joint continuous and discrete distribution.

In this case, the marginal density of the continuous random variable X is
found by

f(x) =
∑
j

f(x, yj) ,

and the marginal probability function of the discrete random variable Y is
found by

f(yj) =

∫
f(x, yj) dx .
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The conditional density of X given Y = yj is given by

f(x|yj) =
f(x, yj)

f(yj)
=

f(x, yj)∫
f(x, yj) dx

.

We see that this is proportional to the joint probability–probability density
function f(x, yj) where x is allowed to vary over its whole range. Dividing by
the marginal probability f(yj) just scales it to be a proper density function
(integrates to 1).
Similarly, the conditional distribution of Y = yj given x is found by

f(yj |x) =
f(x, yj)

f(x)
=

f(x, yj)∑
j f(x, yj)

.

This is also proportional to the joint probability–probability density function
f(x, yj) where x is fixed, and Y is allowed to take on all the possible values
y1, . . . , yJ .

Main Points

The probability that a continuous random variable equals any particular
value is zero!

The probability density function of a continuous random variable is a
smooth curve that measures the density of probability at each value.
It is found as the limit of density histograms of random samples of the
random variable, where the sample size increases to infinity and the width
of the bars goes to zero.

The probability a continuous random variable lies between two values a
and b is given by the area under the probability density function between
the two values. This is found by the integral

P (a < X < b) =

∫ b

a

f(x) dx .

The expected value of a continuous random variable X is found by inte-
grating x times the density function f(x) over the whole range.

E[X ] =

∫ ∞
−∞

x f(x) dx .

A beta(a, b) random variable has probability density

f(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 for 0 ≤ x ≤ 1 .
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The mean and variance of a beta(a, b) random variable are given by

E[X] =
a

a+ b
and Var[X] =

a× b
(a+ b)2 × (a+ b+ 1)

.

A gamma(r, v) random variable has probability density

g(x; r, v) =
vrxr−1e−vx

Γ(r)
for 0 ≤ x <∞ .

The mean and variance of a gamma(r, v) random variable are given by

E[X] =
r

v
and Var[X] =

r

v2
.

A normal(µ, σ2) random variable has probability density

g(x|µ, σ2) =
1√
2πσ

e−
1

2σ2 (x−µ)2

,

where µ is the mean, and σ2 is the variance.

The central limit theorem says that for a random sample y1, . . . yn from
any distribution f(y) having mean µ and variance σ2, the distribution of

ȳ − µ
σ/
√
n

is approximately normal(0, 1) for n > 25. This is regardless of the shape
of the original density f(y).

By reasoning similar to that of the central limit theorem, any random
variable that is the sum of a large number of independent random vari-
ables will be approximately normal. This is the reason why the normal
distribution occurs so frequently.

The marginal distribution of y is found by integrating the joint distribu-
tion f(x, y) with respect to x over its whole range.

The conditional distribution of x given y is proportional to the joint
distribution f(x, y) where y fixed and x is allowed to vary over its whole
range.

f(x|y) =
f(x, y)

f(y)
.

Dividing by the marginal distribution of f(y) scales it properly so that
f(y|x) integrates to 1 and is a probability density function.
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Exercises

7.1. Let X have a beta(3, 5) distribution.

(a) Find E[X ].

(b) Find Var[X].

7.2. Let X have a beta(12, 4) distribution.

(a) Find E[X ].

(b) Find Var[X].

7.3. Let X have the uniform distribution.

(a) Find E[X ].

(b) Find Var[X].

(c) Find P (X ≤ .25).

(d) Find P (.33 < X < .75).

7.4. Let X be a random variable having probability density function

f(x) = 2x for 0 ≤ x ≤ 1 .

(a) Find P (X ≥ .75).

(b) Find P (.25 ≤ X ≤ .6).

7.5. Let Z have the standard normal distribution.

(a) Find P (0 ≤ Z ≤ .65).

(b) Find P (Z ≥ .54).

(c) Find P (−.35 ≤ Z ≤ 1.34).

7.6. Let Z have the standard normal distribution.

(a) Find P (0 ≤ Z ≤ 1.52).

(b) Find P (Z ≥ 2.11).

(c) Find P (−1.45 ≤ Z ≤ 1.74).

7.7. Let Y be normally distributed with mean µ = 120 and variance σ2 = 64.

(a) Find P (Y ≤ 130).

(b) Find P (Y ≥ 135).

(c) Find P (114 ≤ Y ≤ 127).

7.8. Let Y be normally distributed with mean µ = 860 and variance σ2 = 576.
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(a) Find P (Y ≤ 900).

(b) Find P (Y ≥ 825).

(c) Find P (840 ≤ Y ≤ 890).

7.9. Let Y be distributed according to the beta(10, 12) distribution.

(a) Find E[Y ].

(b) Find Var[Y ].

(c) Find P (Y > .5) using the normal approximation.

7.10. let Y be distributed according to the beta(15, 10) distribution.

(a) Find E[Y ].

(b) Find Var[Y ].

(c) Find P (Y < .5) using the normal approximation.

7.11. Let Y be distributed according to the gamma(12, 4) distribution.

(a) Find E[Y ].

(b) Find Var[Y ].

(c) Find P (Y ≤ 4)

7.12. Let Y be distributed according to the gamma(26, 5) distribution.

(a) Find E[Y ].

(b) Find Var[Y ].

(c) Find P (Y > 5)



CHAPTER 8

BAYESIAN INFERENCE
FOR BINOMIAL PROPORTION

Frequently there is a large population where π, a proportion of the population,
has some attribute. For instance, the population could be registered voters
living in a city, and the attribute is “plans to vote for candidate A for mayor.”
We take a random sample from the population and let Y be the observed
number in the sample having the attribute, in this case the number who say
they plan to vote candidate A for mayor.

We are counting the total number of “successes” in n independent trials
where each trial has two possible outcomes, “success” and “failure.” Success
on trial i means the item drawn on trial i has the attribute. The probability
of success on any single trial is π, the proportion in the population having
the attribute. This proportion remains constant over all trials because the
population is large.

The conditional distribution of the observation Y , the total number of
successes in n trials given the parameter π, is binomial(n, π). The conditional
probability function for y given π is given by

f(y|π) =

(
n

y

)
πy(1− π)n−y for y = 1, . . . , n .

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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Here we are holding π fixed and are looking at the probability distribution of
y over its possible values.

If we look at this same relationship between π and y, but hold y fixed at
the number of successes we observed, and let π vary over its possible values,
we have the likelihood function given by

f(y|π) =

(
n

y

)
πy(1− π)n−y for 0 ≤ π ≤ 1 .

We see that we are looking at the same relationship as the distribution of
the observation y given the parameter π, but the subject of the formula has
changed to the parameter, for the observation held at the value that actually
occurred.

To use Bayes’ theorem, we need a prior distribution g(π) that gives our
belief about the possible values of the parameter π before taking the data. It
is important to realize that the prior must not be constructed from the data.
Bayes’ theorem is summarized by posterior is proportional to the prior times
the likelihood. The multiplication in Bayes’ theorem can only be justified when
the prior is independent of the likelihood!1 This means that the observed data
must not have any influence on the choice of prior! The posterior distribution
is proportional to prior distribution times likelihood:

g(π|y) ∝ g(π)× f(y|π) .

This gives us the shape of the posterior density, but not the exact posterior
density itself. To get the actual posterior, we need to divide this by some
constant k to make sure it is a probability distribution, meaning that the area
under the posterior integrates to 1. We find k by integrating g(π) × f(y|π)
over the whole range. So, in general,

g(π|y) =
g(π)× f(y|π)∫ 1

0
g(π)× f(y|π) dπ

, (8.1)

which requires an integration. Depending on the prior g(π) chosen, there may
not necessarily be a closed form for the integral, so it may be necessary to do
the integration numerically. We will look at some possible priors.

8.1 Using a Uniform Prior

If we do not have any idea beforehand what the proportion π is, we might
like to choose a prior that does not favor any one value over another. Or,

1We know that for independent events (or random variables) the joint probability (or den-
sity) is the product of the marginal probabilities (or density functions). If they are not
independent, this does not hold. Likelihoods come from probability functions or probabil-
ity density functions, so the same pattern holds. They can only be multiplied when they
are independent.
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we may want to be as objective as possible and not put our personal belief
into the inference. In that case we should use the uniform prior that gives
equal weight to all possible values of the success probability π. Although this
does not achieve universal objectivity (which is impossible to achieve), it is
objective for this formulation of the problem2:

g(π) = 1 for 0 ≤ π ≤ 1 .

Clearly, we see that in this case, the posterior density is proportional to the
likelihood:

g(π|y) =

(
n

y

)
πy(1− π)n−y for 0 ≤ π ≤ 1 .

We can ignore the part that does not depend on π. It is a constant for all
values of π, so it does not affect the shape of the posterior. When we examine
that part of the formula that shows the shape of the posterior as a function
of π, we recognize that this is a beta(a, b) distribution where a = y + 1 and
b = n− y + 1. So in this case, the posterior distribution of π given y is easily
obtained. All that is necessary is to look at the exponents of π and (1 − π).
We did not have to do the integration.

8.2 Using a Beta Prior

Suppose a beta(a, b) prior density is used for π:

g(π; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
πa−1(1− π)b−1 for 0 ≤ π ≤ 1 .

The posterior is proportional to prior times likelihood. We can ignore the
constants in the prior and likelihood that do not depend on the parameter,
since we know that multiplying either the prior or the likelihood by a constant
will not affect the results of Bayes’ theorem. This gives

g(π|y) ∝ πa+y−1(1− π)b+n−y−1 for 0 ≤ π ≤ 1 ,

which is the shape of the posterior as a function of π. We recognize that this
is the beta distribution with parameters a′ = a+ y and b′ = b + n− y. That
is, we add the number of successes to a and add the number of failures to b:

g(π|y) =
Γ(n+ a+ b)

Γ(y + a)Γ(n− y + b)
πy+a−1(1− π)n−y+b−1

2There are many possible parameterizations of the problem. Any one-to-one function of
the parameter would also be a suitable parameter. The prior density for the new parameter
could be found from the prior density of the original parameter using the change of variable
formula and would not be flat. In other words, it would favor some values of the new
parameter over others. You can be objective in a given parameterization, but it would not
be objective in the new formulation. Universal objectivity is not attainable.
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Figure 8.1 Some beta distributions.

for 0 ≤ π ≤ 1. Again, the posterior density of π has been easily obtained
without having to go through the integration.

Figure 8.1 shows the shapes of beta(a, b) densities for values of a = .5, 1, 2, 3
and b = .5, 1, 2, 3. This shows the variety of shapes that members of the
beta(a, b) family can take. When a < b, the density has more weight in the
lower half. The opposite is true when a > b. When a = b, the beta(a, b)
density is symmetric. When a = 1

2 much more weight is given to values near
0, and when b = 1

2 much more weight is given to values near 1. We note
that the uniform prior is a special case of the beta(a, b) prior where a = 1 and
b = 1.
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Conjugate Family of Priors for Binomial Observation is the Beta Family

When we examine the shape of the binomial likelihood function as a function
of π, we see that this is of the same form as the beta(a, b) distribution, a
product of π to a power times (1 − π) to another power. When we multiply
the beta prior times the binomial likelihood, we add the exponents of π and
(1−π), respectively. So we start with a beta prior, and we get a beta posterior
by the simple rule “add successes to a, add failures to b.” This makes using
beta(a, b) priors when we have binomial observations particularly easy. Using
Bayes’ theorem moves us to another member of the same family.

We say that the beta distribution is the conjugate3 family for the binomial
observation distribution. When we use a prior from the conjugate family, we
do not have to do any integration to find the posterior. All we have to do is
use the observations to update the parameters of the conjugate family prior
to find the conjugate family posterior. This is a big advantage.

Jeffreys’ prior for binomial. The beta( 1
2 ,

1
2) prior is known as the Jeffreys’ prior

for the binomial. If we think of the parameter as an index of all possible den-
sities the observation could come from, then any continuous function of the
parameter would give an equally valid index.4 Jeffreys’ method gives a prior5

that is invariant under any continuous transformation of the parameter. That
means that Jeffreys’ prior is objective in the sense that it does not depend
on the particular parameterization we used.6 However, for most parameter-
izations, the Jeffreys’ prior gives more weight to some values than to others
so it is usually informative, not noninformative. For further information on
Jeffreys’ method for finding invariant priors refer to Press (1989), O’Hagan
(1994), and Lee (1989). We note that Jeffreys’ prior for the binomial is just a
particular member of the beta family of priors, so the posterior is found using
the same updating rules.

3Conjugate priors only exists when the observation distribution comes from the exponential
family. In that case the observation distribution can be written f(y|θ) = a(θ)b(y)ec(θ)×T (y).
The conjugate family of priors will then have the same functional form as the likelihood of
the observation distribution.
4If ψ = h(θ) is a continuous function of the parameter θ, then gψ(ψ), the prior for ψ that
corresponds to gθ(θ), the prior for θ is found by the change of variable formula gψ(ψ) =

gθ(θ(ψ))× dθ
dψ

.
5Jeffreys’ invariant prior for parameter θ is given by g(θ) ∝

√
I(θ|y), where I(θ|y) is known

as Fisher’s information and is given by I(θ|y) = −E
(
∂2 log f(y|θ)

∂θ2

)
.

6If we had used another parameterization and found the Jeffreys’ prior for that parameter-
ization, then transformed it to our original parameter using the change of variable formula,
we would have the Jeffreys’ prior for the original parameter.
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8.3 Choosing Your Prior

Bayes’ theorem gives you a method to revise your (belief) distribution about
the parameter, given the data. In order to use it, you must have a distribution
that represents your belief about the parameter, before we look at the data.7

This is your prior distribution. In this section we propose some methods to
help you choose your prior, as well as things to consider in prior choice.

Choosing a Conjugate Prior When You Have Vague Prior Knowledge

When you have vague prior knowledge, one of the beta(a, b) prior distribu-
tions shown in Figure 8.1 would be a suitable prior. For example, if your
prior knowledge about π, is that π is very small, then beta(.5, 1), beta(.5, 2),
beta(.5, 3), beta(1, 2), or beta(1, 3) would all be satisfactory priors. All of these
conjugate priors offer easy computation of the posterior, together with putting
most of the prior probability at small values of π. It does not matter very
much which one you chose; the resulting posteriors given the data would be
very similar.

Choosing a Conjugate Prior When You Have Real Prior Knowledge by

Matching Location and Scale

The beta(a, b) family of distributions is the conjugate family for binomial(n, π)
observations. We saw in the previous section that priors from this family have
significant advantages computationally. The posterior will be a member of
the same family, with the parameters updated by simple rules. We can find
the posterior without integration. The beta distribution can have a number
of shapes. The prior chosen should correspond to your belief. We suggest
choosing a beta(a, b) that matches your prior belief about the (location) mean
and (scale) standard deviation8. Let π0 be your prior mean for the proportion,
and let σ0 be your prior standard deviation for the proportion.

The mean of beta(a, b) distribution is a
a+b

. Set this equal to what your
prior belief about the mean of the proportion to give

π0 =
a

a+ b
.

7This could be elicited from your coherent betting strategy about the parameter value.
Having a coherent betting strategy means that if someone started offering you bets about
the parameter value, you would not take a worse bet than one you already rejected, nor
would you refuse to take a better bet than one you already accepted.
8Some people would say that you should not use a conjugate prior just because of these
advantages. Instead, you should elicit your prior from your coherent betting strategy. I do
not think most people carry around a coherent betting strategy in their head. Their prior
belief is less structured. They have a belief about the location and scale of the parameter
distribution. Choosing a prior by finding the conjugate family member that matches these
beliefs will give a prior on which a coherent betting strategy could be based!
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The standard deviation of beta distribution is
√

ab
(a+b)2(a+b+1) . Set this equal

to what your prior belief about the standard deviation for the proportion.
Noting that a

a+b = π0 and b
a+b = 1− π0, we see

σ0 =

√
π0(1− π0)

a+ b+ 1
.

Solving these two equations for a and b gives your beta(a, b) prior.

Precautions Before Using Your Conjugate Prior

1. Graph your beta(a, b) prior. If the shape looks reasonably close to what
you believe, you will use it. Otherwise, you can adjust π0 and σ0 until
you find a prior whose graph approximately corresponds to your belief. As
long as the prior has reasonable probability over the whole range of values
that you think the parameter could possibly be in, it will be a satisfactory
prior.

2. Calculate the equivalent sample size of the prior. We note that the sample
proportion π̂ = y

n from a binomial(n,π) distribution has variance equal

to π(1−π)
n . We equate this variance (at π0, the prior mean) to the prior

variance.
π0(1− π0)

neq
=

ab

(a+ b)2 × (a+ b+ 1)
.

Since π0 = a
a+b

and (1 − π0) = b
a+b

, the equivalent sample size is neq =
a+b+1. It says that the amount of information about the parameter from
your prior is equivalent to the amount from a random sample of that size.
You should always check if this is unrealistically high. Ask yourself, “Is
my prior knowledge about π really equal to the knowledge about π that
I would obtain if I checked a random sample of size neq? If it is not, you
should increase your prior standard deviation and recalculate your prior.
Otherwise, you would be putting too much prior information about the
parameter relative to the amount of information that will come from the
data.

Constructing a General Continuous Prior

Your prior shows the relative weights you give each possible value before you
see the data. The shape of your prior belief may not match the beta shape.
You can construct a discrete prior that matches your belief weights at several
values over the range you believe possible, and then interpolate between them
to make the continuous prior. You can ignore the constant needed to make
this a density, because when you multiply the prior by a constant, the constant
gets cancelled out by Bayes’ theorem. However, if you do construct your prior
this way, you will have to evaluate the integral of the prior times likelihood
numerically to get the posterior. This will be shown in the following example.
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Table 8.1 Chris’s prior weights. The shape of his continuous prior is found by
linearly interpolating between them.

Value Weight

0 0

.05 1

.1 2

.3 2

.4 1

.5 0

EXAMPLE 8.1

Three students are constructing their prior belief about π, the proportion
of Hamilton residents who support building a casino in Hamilton. Anna
thinks that her prior mean is .2, and her prior standard deviation is .08.
The beta(a, b) prior that satisfies her prior belief is found by

.2× .8
a+ b+ 1

= .082 .

Therefore her equivalent sample size is a+ b+ 1 = 25. For Anna’s prior,
a = 4.8 and b = 19.2.

Bart is a newcomer to Hamilton, so he is not aware of the local feeling
for or against the proposed casino. He decides to use a uniform prior. For
him, a = b = 1. His equivalent sample size is a+ b+ 1 = 3.

Chris cannot fit a beta(a, b) prior to match his belief. He believes his
prior probability has a trapezoidal shape. He gives heights of his prior in
Table 8.1, and he linearly interpolates between them to get his continuous
prior. When we interpolate between these points, we see that Chris’s prior
is given by

g(π) =


20π for 0 ≤ π ≤ .10 ,

2 for .10 ≤ π ≤ .30 ,

5− 10π for .30 ≤ π ≤ .50 .

The three priors are shown in the Figure 8.2. Note that Chris’s prior is
not actually a density since it does not have area equal to one. However,
this is not a problem since the relative weights given by the shape of the
distribution are all that is needed since the constant will cancel out.

Effect of the Prior

When we have enough data, the effect of the prior we choose will be small
compared to the data. In that case we will find that we can get very similar
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Anna's prior 
Bart's prior 
Chris' prior 

1.00.90.80.70.60.50.40.30.20.10.0

5

4

3

2

1

0

Figure 8.2 Anna’s, Bart’s, and Chris’ prior distribution.

posteriors despite starting from quite different priors. All that is necessary
is that they give reasonable weight over the range that is indicated by the
likelihood. The exact shape of the prior does not matter very much. The
data are said to “swamp the prior.”

EXAMPLE 8.1 (continued)

The three students take a random sample of n = 100 Hamilton residents
and find their views on the casino. Out of the random sample, y = 26
said they support building a casino in Hamilton. Anna’s posterior is
beta(4.8 + 26, 19.2 + 74). Bart’s posterior is beta(1 + 26, 1 + 74). Chris’
posterior is found using Equation 8.1. We need to evaluate Chris’ prior
numerically.

[Minitab:] To do this in Minitab, we integrate Chris’ prior× likelihood
using the Minitab macro tintegral.

[R:] To do this in R, we integrate Chris’ prior × likelihood using the R
function sintegral.

The three posteriors are shown in Figure 8.3. We see that the three
students end up with very similar posteriors, despite starting with priors
having quite different shapes.
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Anna's posterior 
Bart's posterior 
Chris' posterior 

1.00.90.80.70.60.50.40.30.20.10.0
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Figure 8.3 Anna’s, Bart’s, and Chris’ posterior distributions.

8.4 Summarizing the Posterior Distribution

The posterior distribution summarizes our belief about the parameter after
seeing the data. It takes into account our prior belief (the prior distribution)
and the data (likelihood). A graph of the posterior shows us all we can know
about the parameter, after the data. A distribution is hard to interpret. Often
we want to find a few numbers that characterize it. These include measures
of location that determine where most of the probability is on the number
line, as well as measures of spread that determine how widely the probability
is spread. They could also include percentiles of the distribution. We may
want to determine an interval that has a high probability of containing the
parameter. These are known as Bayesian credible intervals and are somewhat
analogous to confidence intervals. However, they have the direct probability
interpretation that confidence intervals lack.

Measures of Location

First, we want to know where the posterior distribution is located on the
number line. There are three possible measures of location we will consider:
posterior mode, posterior median, and posterior mean.

Posterior mode. This is the value that maximizes the posterior distribution.
If the posterior distribution is continuous, it can be found by setting the
derivative of the posterior density equal to zero. When the posterior g(π|y)



SUMMARIZING THE POSTERIOR DISTRIBUTION 159

is beta(a′, b′), its derivative is given by

g′(π|y) = (a′ − 1)πa
′−2 × (1− π)b

′−1 + πa
′−1 × (−1)(b′ − 1)(1− π)b

′−2 .

(Note: The prime ′ has two meanings in this equation; g′(π|y) is the derivative
of the posterior, while a′ and b′ are the constants of the beta posterior found by
the updating rules.) Setting g′(π|y) equal to 0 and solving gives the posterior
mode

mode =
a′ − 1

a′ + b′ − 2
.

The posterior mode has some potential disadvantages as a measure of location.
First, it may lie at or near one end of the distribution, and thus not be
representative of the distribution as a whole. Second, there may be multiple
local maximums. When we set the derivative function equal to zero and solve,
we will find all of them and the local minimums as well.

Posterior median. This is the value that has 50% of posterior distribution
below it, 50% above it. If g(π|y) is beta(a′, b′), it is the solution of∫ median

0

g(π|y) dπ = .5 .

The only disadvantage of the posterior median is that it has to be found
numerically. It is an excellent measure of location.

Posterior mean. The posterior mean is a very frequently used measure of
location. It is the expected value, or mean, of the posterior distribution.

m′ =

∫ 1

0

πg(π|y) dπ . (8.2)

The posterior mean is strongly affected when the distribution has a heavy
tail. For a skewed distribution with one heavy tail, the posterior mean may
be quite a distance away from most of the probability. When the posterior
g(π|y) is beta(a′, b′) the posterior mean equals

m′ =
a′

a′ + b′
. (8.3)

The beta(a, b) distribution is bounded between 0 and 1, so it does not have
heavy tails. The posterior mean will be a good measure of location for a beta
posterior.

Measures of Spread

The second thing we want to know about the posterior distribution is how
spread out it is. If it has large spread, then our knowledge about the param-
eter, even after analyzing the observed data, is still imprecise.
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Posterior variance. This is the variance of posterior distribution.

Var[π|y] =

∫ 1

0

(π −m′)2g(π|y) dπ . (8.4)

When we have a beta(a′, b′) posterior the posterior variance is

Var[π|y] =
a′ × b′

(a′ + b′)2 × (a′ + b′ + 1)
. (8.5)

The posterior variance is greatly affected for heavy-tailed distributions. For
a heavy tailed distribution, the variance will be very large, yet most of the
probability is very concentrated quite close the middle of the distribution. It
is also in squared units, which makes it hard to interpret its size in relation
to the size of the mean. We overcome these disadvantages of the posterior
variance by using the posterior standard deviation.

Posterior standard deviation. This is the square root of posterior variance. It
is in terms of units, so its size can be compared to the size of the mean, and
it will be less affected by heavy tails.

Percentiles of the posterior distribution. The kth percentile of the posterior
distribution is the value πk, which has k % of the area below it. It is found
numerically by solving

k = 100×
∫ πk

−∞
g(π|y) dπ .

Some percentiles are particularly important. The first (or lower) quartile
Q1 is the 25th percentile. The second quartile, Q2 (or median), is the 50th

percentile, and the third (or upper) quartile, Q3, is the 75th percentile.

The interquartile range. The interquartile range

IQR = Q3 −Q1

is a useful measure of spread that is not affected by heavy tails.

EXAMPLE 8.1 (continued)

Anna, Bart, and Chris computed some measures of location and spread
for their posterior distributions. Anna and Bart used Equations 8.3 and
8.5 to find their posterior mean and variance, respectively, since they had
beta posteriors. Chris used Equations 8.2 and 8.4 to find his posterior
mean and variance since his posterior did not have the beta distribution.
He evaluated the integrals numerically using the Minitab macro tintegral.
Their posterior means, medians, standard deviations, and interquartile
ranges are shown in Table 8.2. We see clearly that the posterior distribu-
tions have similar summary statistics, despite the different priors used.
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Table 8.2 Measures of location and spread of posterior distributions

Person Posterior Mean Median Std. Dev. IQR

Anna beta(30.8, 93.2) .248 .247 .039 .053

Bart beta(27, 75) .265 .263 .043 .059

Chris numerical .261 .255 .041 .057

8.5 Estimating the Proportion

A point estimate π̂ is a statistic calculated from the data used as an estimate
of the parameter π. Suitable Bayesian point estimates are single values such as
measures of location calculated from the posterior distribution. The posterior
mean and posterior median are often used as point estimates.

The posterior mean square of an estimate. The posterior mean square of an
estimator π̂ of the proportion π is

PMSE[π̂] =

∫ 1

0

(π − π̂)2 g(π|y) dπ . (8.6)

It measures the average squared distance (with respect to the posterior) that
the estimate is away from the true value. Adding and subtracting the posterior
mean m′, we get

PMSE[π̂] =

∫ 1

0

(π −m′ +m′ − π̂)2 g(π|y) dπ .

Multiplying out the square we get

PMSE[π̂] =

∫ 1

0

[(π −m′)2 + 2(π −m′)(m′ − π̂) + (m′ − π̂)2] g(π|y) dπ .

We split the integral into three integrals. Since both m′ and π̂ are constants
with respect to the posterior distribution when we evaluate the integrals, we
get

PMSE[π̂] = Var[π|y] + 0 + (m′ − π̂)2 . (8.7)

This is the posterior variance of π plus the square of the distance π̂ is away
from the posterior mean m′.

The last term is a square and is always greater than or equal to zero. We
see that on average, the squared distance the true value is away from the
posterior mean m′ is less than that for any other possible estimate π̂, given
our prior belief and the observed data. The posterior mean is the optimum
estimator post-data. That’s a good reason to use the posterior mean as the
estimate, and it explains why the posterior mean is the most widely used
Bayesian estimate. We will use the posterior mean as our estimate for π.
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8.6 Bayesian Credible Interval

Often we wish to find a high probability interval for the parameter. A range
of values that has a known high posterior probability, (1 − α), of contain-
ing the parameter is known as a Bayesian credible interval. It is sometimes
called Bayesian confidence interval. In the next chapter we will see that cred-
ible intervals answer a more relevant question than do ordinary frequentist
confidence intervals, because of the direct probability interpretation.

There are many possible intervals with same (posterior) probability. The
shortest interval with given probability is preferred. It would be found by
having the equal heights of the posterior density at the lower and upper end-
points, along with a total tail area of α. The upper and lower tails would not
necessarily have equal tail areas. However, it is often easier to split the total
tail area into equal parts and find the interval with equal tail areas.

Bayesian Credible Interval for π

If we used a beta(a, b) prior, the posterior distribution of π|y is beta(a′, b′). An
equal tail area 95% Bayesian credible interval for π can be found by obtaining
the difference between the 97.5th and the 2.5th percentiles. Using Minitab,
pull down Calc menu to Probability Distributions over to Beta. . . and fill in
the dialog box. Without Minitab, we approximate the beta(a′, b′) posterior
distribution by the normal distribution having the same mean and variance:

(π|y) is approximately N [m′; (s′)2]

where the posterior mean is given by

m′ =
a′

a′ + b′
,

and the posterior variance is expressed as

(s′)2 =
a′b′

(a′ + b′)2(a′ + b′ + 1)
.

The (1− α)× 100% credible region for π is approximately

m′ ± zα
2
× s′ , (8.8)

where zα
2

is the value found from the standard normal table. For a 95%
credible interval, z.025 = 1.96. The approximation works very well if we have
both a′ ≥ 10 and b′ ≥ 10.

EXAMPLE 8.1 (continued)

Anna, Bart, and Chris calculated 95% credible intervals for π having equal
tail areas two ways: using the exact (beta) density function and using the
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Table 8.3 Exact and approximate 95% credible intervals

Person Posterior Credible Interval Credible Interval

Distribution Exact Normal Approximation

Lower Upper Lower Upper

Anna beta(30.8, 93.2) .177 .328 .173 .324

Bart beta(27, 75) .184 .354 .180 .350

Chris numerical .181 .340 .181 .341

normal approximation. These are shown in Table 8.3. Anna, Bart, and
Chris have slightly different credible intervals because they started with
different prior beliefs. But the effect of the data was much greater than the
effect of their priors and they end up with very similar credible intervals.
We see that in each case, the 95% credible interval for π calculated using
the normal approximation is nearly identical to the corresponding exact
95% credible interval.

Main Points

The key relationship is posterior ∝ prior× likelihood. This gives us the
shape of the posterior density. We must find the constant to divide this
by to make it a density, e.g., integrate to 1 over its whole range.

The constant we need is k =
∫ 1

0
g(π)×f(y|π) dπ. In general, this integral

does not have a closed form, so we have to evaluate it numerically.

If the prior is beta(a, b), then the posterior is beta(a′, b′) where the con-
stants are updated by simple rules a′ = a + y (add number of successes
to a) and b′ = b+ n− y (add number of failures to b).

The beta family of priors is called the conjugate family for binomial ob-
servation distribution. This means that the posterior is also a member
of the same family, and it can easily be found without the need for any
integration.

It makes sense to choose a prior from the conjugate family, which makes
finding the posterior easier. Find the beta(a, b) prior that has mean and
standard deviation that correspond to your prior belief. Then graph it
to make sure that it looks similar to your belief. If so, use it. If you have
no prior knowledge about π at all, you can use the uniform prior which
gives equal weight to all values. The uniform is actually the beta(1, 1)
prior.
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If you have some prior knowledge, and you cannot find a member of the
conjugate family that matches it, you can construct a discrete prior at
several values over the range and interpolate between them to make the
prior continuous. Of course, you may ignore the constant needed to make
this a density, since any constant gets cancelled out by when you divide
by
∫
prior × likelihood to find the exact posterior.

The main thing is that your prior must have reasonable probability over
all values that realistically are possible. If that is the case, the actual
shape does not matter very much. If there is a reasonable amount of
data, different people will get similar posteriors, despite starting from
quite different shaped priors.

The posterior mean is the estimate that has the smallest posterior mean
square. This means that, on average (with respect to posterior), it is
closer to the parameter than any other estimate. In other words, given
our prior belief and the observed data, the posterior mean will be, on
average, closer to the parameter than any other estimate. It is the most
widely used Bayesian estimate because it is optimal post-data.

A (1 − α) × 100% Bayesian credible interval is an interval that has a
posterior probability of 1− α of containing the parameter.

The shortest (1−α)× 100% Bayesian credible interval would have equal
posterior density heights at the lower and upper endpoints; however, the
areas of the two tails would not necessarily be equal.

Equal tail area Bayesian credible intervals are often used instead, because
they are easier to find.

Exercises

8.1. In order to determine how effective a magazine is at reaching its target
audience, a market research company selects a random sample of people
from the target audience and interviews them. Out of the 150 people in
the sample, 29 had seen the latest issue.

(a) What is the distribution of y, the number who have seen the latest
issue?

(b) Use a uniform prior for π, the proportion of the target audience that
has seen the latest issue. What is the posterior distribution of π?

8.2. A city is considering building a new museum. The local paper wishes to
determine the level of support for this project, and is going to conduct
a poll of city residents. Out of the sample of 120 people, 74 support the
city building the museum.
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(a) What is the distribution of y, the number who support the building
the museum?

(b) Use a uniform prior for π, the proportion of the target audience that
support the museum. What is the posterior distribution of π?

8.3. Sophie, the editor of the student newspaper, is going to conduct a survey
of students to determine the level of support for the current president of
the students’ association. She needs to determine her prior distribution
for π, the proportion of students who support the president. She decides
her prior mean is .5, and her prior standard deviation is .15.

(a) Determine the beta(a, b) prior that matches her prior belief.

(b) What is the equivalent sample size of her prior?

(c) Out of the 68 students that she polls, y = 21 support the current
president. Determine her posterior distribution.

8.4. You are going to take a random sample of voters in a city in order to
estimate the proportion π who support stopping the fluoridation of the
municipal water supply. Before you analyze the data, you need a prior
distribution for π. You decide that your prior mean is .4, and your prior
standard deviation is .1.

(a) Determine the beta(a, b) prior that matches your prior belief.

(b) What is the equivalent sample size of your prior?

(c) Out of the 100 city voters polled, y = 21 support the removal of flu-
oridation from the municipal water supply. Determine your posterior
distribution.

8.5. In a research program on human health risk from recreational contact
with water contaminated with pathogenic microbiological material, the
National Institute of Water and Atmospheric Research (NIWA) instituted
a study to determine the quality of New Zealand stream water at a variety
of catchment types. This study is documented in McBride et al. (2002),
where n = 116 one-liter water samples from sites identified as having a
heavy environmental impact from birds (seagulls) and waterfowl. Out of
these samples, y = 17 samples contained Giardia cysts.

(a) What is the distribution of y, the number of samples containing Gi-
ardia cysts?

(b) Let π be the true probability that a one-liter water sample from this
type of site contains Giardia cysts. Use a beta(1, 4) prior for π. Find
the posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).
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(e) Compute a 95% credible interval for π using the normal approximation
found in part (d).

8.6. The same study found that y = 12 out of n = 145 samples identified as
having a heavy environmental impact from dairy farms contained Giardia
cysts.

(a) What is the distribution of y, the number of samples containing Gi-
ardia cysts?

(b) Let π be the true probability that a one-liter water sample from this
type of site contains Giardia cysts. Use a beta(1, 4) prior for π. Find
the posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).

(e) Compute a 95% credible interval for π using the normal approximation
found in part (d).

8.7. The same study found that y = 10 out of n = 174 samples identified
as having a heavy environmental impact from pastoral (sheep) farms
contained Giardia cysts.

(a) What is the distribution of y, the number of samples containing Gi-
ardia cysts?

(b) Let π be the true probability that a one-liter water sample from this
type of site contains Giardia cysts. Use a beta (1, 4) prior for π. Find
the posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).

(e) Compute a 95% credible interval for π using the normal approximation
found in part (d).

8.8. The same study found that y = 6 out of n = 87 samples within municipal
catchments contained Giardia cysts.

(a) What is the distribution of y, the number of samples containing Gi-
ardia cysts?

(b) Let π be the true probability that a one-liter water sample from a site
within a municipal catchment contains Giardia cysts. Use a beta(1, 4)
prior for π. Find the posterior distribution of π given y.

(c) Summarize the posterior distribution by its first two moments.

(d) Find the normal approximation to the posterior distribution g(π|y).

(e) Calculate a 95% credible interval for π using the normal approxima-
tion found in part (d).
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Computer Exercises

8.1. We will use the Minitab macro BinoBP or R function binobp to find the
posterior distribution of the binomial probability π when the observation
distribution of Y |π is binomial(n, π) and we have a beta(a, b) prior for π.
The beta family of priors is the conjugate family for binomial observa-
tions. That means that if we start with one member of the family as the
prior distribution, we will get another member of the family as the poste-
rior distribution. It is especially easy, for when we start with a beta(a, b)
prior, we get a beta(a′, b′) posterior where a′ = a+ y and b′ = b+ n− y.

Suppose we have 15 independent trials and each trial results in one of two
possible outcomes, success or failure. The probability of success remains
constant for each trial. In that case, Y |π is binomial(n = 15, π). Sup-
pose that we observed y = 6 successes. Let us start with a beta(1, 1) prior.

[Minitab:] The details for invoking BinoBP are given in Appendix C.
Store π, the prior g(π), the likelihood f(y|π), and the posterior g(π|y) in
columns c1–c4 respectively.

[R:] The details for using binobp are given in Appendix D.

(a) What are the posterior mean and standard deviation?

(b) Find a 95% credible interval for π.

8.2. Repeat part (a) with a beta(2, 4) prior.

[Minitab:] Store the likelihood and posterior in columns c5 and c6

respectively.

8.3. Graph both posteriors on the same graph. What do you notice? What
do you notice about the two posterior means and standard deviations?
What do you notice about the two credible intervals for π?

8.4. We will use the Minitab macro BinoGCP or the R function binogcp to
find the posterior distribution of the binomial probability π when the
observation distribution of Y |π is binomial(n, π) and we have a general
continuous prior for π. Suppose the prior has the shape given by

g(π) =


π for π ≤ .2 ,
.2 for .2 < π ≤ .3 ,
.5− π for .3 < π ≤ .5 ,
0 for .5 < π .
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Store the values of π and prior g(π) in columns c1 and c2, respectively.
Suppose out of n = 20 independent trials, y = 7 successes were observed.

(a) [Minitab:] Use BinoGCP to determine the posterior distribution
g(π|y). Details for invoking BinoGCP are given in Appendix C.

[R:] Use binogcp to determine the posterior distribution g(π|y). De-
tails for using binogcp are given in Appendix D.

(b) Find a 95% credible interval for π by using tintegral in Minitab, or
the quantile function in R upon the results of binogcp.

8.5. Repeat the previous question with a uniform prior for π.

8.6. Graph the two posterior distributions on the same graph. What do you
notice? What do you notice about the two posterior means and standard
deviations? What do you notice about the two credible intervals for π?



CHAPTER 9

COMPARING BAYESIAN AND
FREQUENTIST INFERENCES FOR
PROPORTION

The posterior distribution of the parameter given the data gives the complete
inference from the Bayesian point of view. It summarizes our belief about the
parameter after we have analyzed the data. However, from the frequentist
point of view there are several different types of inference that can be made
about the parameter. These include point estimation, interval estimation,
and hypothesis testing. These frequentist inferences about the parameter
require probabilities calculated from the sampling distribution of the data,
given the fixed but unknown parameter. These probabilities are based on all
possible random samples that could have occurred. These probabilities are
not conditional on the actual sample that did occur!

In this chapter we will see how we can do these types of inferences using
the Bayesian viewpoint. These Bayesian inferences will use probabilities cal-
culated from the posterior distribution. That makes them conditional on the
sample that actually did occur.

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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9.1 Frequentist Interpretation of Probability and Parameters

Most statistical work is done using the frequentist paradigm. A random sam-
ple of observations is drawn from a distribution with an unknown parameter.
The parameter is assumed to be a fixed but unknown constant. This does not
allow any probability distribution to be associated with it. The only proba-
bility considered is the probability distribution of the random sample of size
n, given the parameter. This explains how the random sample varies over all
possible random samples, given the fixed but unknown parameter value. The
probability is interpreted as long-run relative frequency.

Sampling Distribution of Statistic

Let Y1, . . . , Yn be a random sample from a distribution that depends on a pa-
rameter θ. Suppose a statistic S is calculated from the random sample. This
statistic can be interpreted as a random variable, since the random sample
can vary over all possible samples. Calculate the statistic for each possible
random sample of size n. The distribution of these values is called the sam-
pling distribution of the statistic. It explains how the statistic varies over
all possible random samples of size n. Of course, the sampling distribution
also depends on the unknown value of the parameter θ. We will write this
sampling distribution as

f(s|θ) .

However, we must remember that in frequentist statistics, the parameter θ is
a fixed but unknown constant, not a random variable. The sampling distri-
bution measures how the statistic varies over all possible samples, given the
unknown fixed parameter value. This distribution does not have anything to
do with the actual data that occurred. It is the distribution of values of the
statistic that could have occurred, given that specific parameter value. Fre-
quentist statistics uses the sampling distribution of the statistic to perform
inference on the parameter. From a Bayesian perspective, this is a backwards
form of inference.1

This contrasts with Bayesian statistics where the complete inference is the
posterior distribution of the parameter given the actual data that occurred:

g(θ|data) .

Any subsequent Bayesian inference such as a Bayesian estimate or a Bayesian
credible interval is calculated from the posterior distribution. Thus the es-

1Frequentist statistics performs inferences in the parameter space, which is the unobservable
dimension of the Bayesian universe, based on a probability distribution in the sample space,
which is the observable dimension.
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timate or the credible interval depends on the data that actually occurred.
Bayesian inference is straightforward.2

9.2 Point Estimation

The first type of inference we consider is point estimation, where a single
statistic is calculated from the sample data and used to estimate the unknown
parameter. The statistic depends on the random sample, so it is a random
variable, and its distribution is its sampling distribution. If its sampling
distribution is centered close to the true but unknown parameter value θ, and
the sampling distribution does not have much spread, the statistic could be
used to estimate the parameter. We would call the statistic an estimator of the
parameter and the value it takes for the actual sample data an estimate. There
are several theoretical approaches for finding frequentist estimators, such as
maximum likelihood estimation (MLE)3 and uniformly minimum variance
unbiased estimation (UMVUE). We will not go into them here. Instead, we
will use the sample statistic that corresponds to the population parameter we
wish to estimate, such as the sample proportion as the frequentist estimator
for the population proportion. This turns out to be the same estimator that
would be found using either of the main theoretical approaches (MLE and
UMVUE) for estimating the binomial parameter π.

From a Bayesian perspective, point estimation means that we would use a
single statistic to summarize the posterior distribution. The most important
number summarizing a distribution would be its location. The posterior mean
or the posterior median would be good candidates here. We will use the
posterior mean as the Bayesian estimate because it minimizes the posterior
mean squared error, as we saw in the previous chapter. This means it will
be the optimal estimator, given our prior belief and this sample data (i.e.,
post-data).

Frequentist Criteria for Evaluating Estimators

We do not know the true value of the parameter, so we cannot judge an es-
timator from the value it gives for the random sample. Instead, we will use
a criterion based on the sampling distribution of the estimator that is the
distribution of the estimator over all possible random samples. We compare
possible estimators by looking at how concentrated their sampling distribu-
tions are around the parameter value for a range of fixed possible values.
When we use the sampling distribution, we are still thinking of the estimator

2Bayesian statistics performs inference in the parameter space based on a probability dis-
tribution in the parameter space.
3Maximum likelihood estimation was pioneered by R. A. Fisher.
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as a random variable because we have not yet obtained the sample data and
calculated the estimate. This is a pre-data analysis.

Although this “what if the parameter has this value” type of analysis comes
from a frequentist point of view, it can be used to evaluate Bayesian estimators
as well. It can be done before we obtain the data, and in Bayesian statistics
it is called a pre-posterior analysis. The procedure is used to evaluate how
the estimator performs over all possible random samples, given that param-
eter value. We often find that Bayesian estimators perform very well when
evaluated this way, sometimes even better than frequentist estimators.

Unbiased Estimators

The expected value of an estimator is a measure of the center of its distribu-
tion. This is the average value that the estimator would have averaged over
all possible samples. An estimator is said to be unbiased if the mean of its
sampling distribution is the true parameter value. That is, an estimator θ̂ is
unbiased if and only if

E[θ̂] =

∫
θ̂f(θ̂|θ) dθ̂ = θ ,

where f(θ̂|θ) is the sampling distribution of the estimator θ̂ given the parame-
ter θ. Frequentist statistics emphasizes unbiased estimators because averaged
over all possible random samples, an unbiased estimator gives the true value.
The bias of an estimator θ̂ is the difference between its expected value and
the true parameter value.

Bias[θ̂, θ] = E[θ̂]− θ . (9.1)

Unbiased estimators have bias equal to zero.
In contrast, Bayesian statistics does not place any emphasis on being un-

biased. In fact, Bayesian estimators are usually biased.

Minimum Variance Unbiased Estimator

An estimator is said to be a minimum variance unbiased estimator if no
other unbiased estimator has a smaller variance. Minimum variance unbiased
estimators are often considered the best estimators in frequentist statistics.
The sampling distribution of a minimum variance unbiased estimator has the
smallest spread (as measured by the variance) of all sampling distributions
that have mean equal to the parameter value.

However, it is possible that there may be biased estimators that, on aver-
age, are closer to the true value than the best unbiased estimator. We need to
look at a possible trade-off between bias and variance. Figure 9.1 shows the
sampling distributions of three possible estimators of θ. Estimator 1 and esti-
mator 2 are seen to be unbiased estimators. Estimator 1 is the best unbiased
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Figure 9.1 Sampling distributions of three estimators.

estimator, since it has the smallest variance among the unbiased estimators.
Estimator 3 is seen to be a biased estimator, but it has a smaller variance than
estimator 1. We need some way of comparison that includes biased estimators,
to find which one will be closest, on average, to the parameter value.

Mean Squared Error of an Estimator

The (frequentist) mean squared error of an estimator θ̂ is the average squared
distance the estimator is away from the true value:

MSE[θ̂] = E[θ̂ − θ]2

=

∫
(θ̂ − θ)2 f(θ̂|θ) dθ̂ . (9.2)

The frequentist mean squared error is calculated from the sampling distribu-
tion of the estimator, which means the averaging is over all possible samples
given that fixed parameter value. It is not the posterior mean square cal-
culated from the posterior distribution that we introduced in the previous
chapter. It turns out that the mean squared error of an estimator is the
square of the bias plus the variance of the estimator:

MSE[θ̂] = Bias[θ̂, θ]2 + Var[θ̂] . (9.3)

Thus it gives a better frequentist criterion for judging estimators than the
bias or the variance alone. An estimator that has a smaller mean squared
error is closer to the true value averaged over all possible samples.
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9.3 Comparing Estimators for Proportion

Bayesian estimators often have smaller mean squared errors than frequentist
estimators. In other words, on average, they are closer to the true value. Thus
Bayesian estimators can be better than frequentist estimators, even when
judged by the frequentist criterion of mean squared error. The frequentist
estimator for π is

π̂f =
y

n
,

where y, the number of successes in the n trials, has the binomial (n, π)

distribution. π̂f is unbiased, and Var[π̂f ] = π×(1−π)
n . Hence the mean squared

error of π̂f equals

MSE[π̂f ] = 02 + Var[π̂f ]

=
π × (1− π)

n
.

Suppose we use the posterior mean as the Bayesian estimate for π, where
we use the Beta(1,1) prior (uniform prior). The estimator is the posterior
mean, so

π̂B = m′ =
a′

a′ + b′
,

where a′ = 1 + y and b′ = 1 + n− y. We can rewrite this as a linear function
of y, the number of successes in the n trials:

π̂B =
y + 1

n+ 2
=

y

n+ 2
+

1

n+ 2
.

Thus, the mean of its sampling distribution is

nπ

n+ 2
+

1

n+ 2
,

and the variance of its sampling distribution is[
1

n+ 2

]2

× nπ(1− π) .

Hence from Equation 9.3, the mean squared error is

MSE[π̂B] =

[
nπ

n+ 2
+

1

n+ 2
− π

]2

+

[
1

n+ 2

]2

× nπ(1− π)

=

[
1− 2π

n+ 2

]2

+

[
1

n+ 2

]2

× nπ(1− π) .

For example, suppose π = .4 and the sample size is n = 10. Then

MSE[π̂f ] =
.4× .6

10
= .024



INTERVAL ESTIMATION 175

and

MSE[π̂B ] =

[
1− 2× .4

12

]2

+

[
1

12

]2

× 10× .4× .6

= .0169 .

Next, suppose π = .5 and n = 10. Then

MSE[π̂f ] =
.5× .5

10
= .025

and

MSE[π̂B ] =

[
1− 2× .5

12

]2

+

[
1

12

]2

× 10× .5× .5

= .01736 .

We see that, on average (for these two values of π), the Bayesian posterior
estimator is closer to the true value than the frequentist estimator. Figure 9.2
shows the mean squared error for the Bayesian estimator and the frequentist
estimator as a function of π. We see that over most (but not all) of the range,
the Bayesian estimator (using uniform prior) is better than the frequentist
estimator.4

9.4 Interval Estimation

The second type of inference we consider is interval estimation. We wish
to find an interval (l, u) that has a predetermined probability of containing
the parameter. In the frequentist interpretation, the parameter is fixed but
unknown; and before the sample is taken, the interval endpoints are random
because they depend on the data. After the sample is taken and the endpoints
are calculated, there is nothing random, so the interval is said to be a confi-
dence interval for the parameter. We know that a predetermined proportion
of intervals calculated for random samples using this method will contain the
true parameter. But it does not say anything at all about the specific interval
we calculate from our data.

In Chapter 8, we found a Bayesian credible interval for the parameter π
that has the probability that we want. Because it is found from the posterior
distribution, it has the coverage probability we want for this specific data.

4The frequentist estimator, π̂f = y
n

, would be Bayesian posterior mean if we used the prior

g(π) ∝ π−1(1− π)−1. This prior is improper since it does not integrate to 1. An estimator
is said to be admissible if no other estimator has smaller mean squared error over the whole
range of possible values. Wald (1950) showed that Bayesian posterior mean estimators that
arose from proper priors are always admissible. Bayesian posterior mean estimators from
improper priors sometimes are admissible, as in this case.



176 COMPARING BAYESIAN AND FREQUENTIST INFERENCES FOR PROPORTION
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Figure 9.2 Mean squared error for the two estimators.

Confidence Intervals

Confidence intervals are how frequentist statistics tries to find an interval
that has a high probability of containing the true value of the parameter θ. A
(1− α)× 100% confidence interval for a parameter θ is an interval (l, u) such
that

P (l ≤ θ ≤ u) = 1− α .

This probability is found using the sampling distribution of an estimator for
the parameter. There are many possible values of l and u that satisfy this.
The most commonly used criteria for choosing them are (1) equal ordinates
(heights) on the sampling distribution and (2) equal tail area on the sampling
distribution. Equal ordinates will find the shortest confidence interval. How-
ever, the equal tail area intervals are often used because they are easier to
find. When the sampling distribution of the estimator is symmetric, the two
criteria will coincide.

The parameter θ is regarded as a fixed but unknown constant. The end-
points l and u are random variables since they depend on the random sample.
When we plug in the actual sample data that occurred for our random sam-
ple and calculate the values for l and u, there is nothing left that is random.
The interval either contains the unknown fixed parameter or it does not, and
we do not know which is true. The interval can no longer be regarded as a
probability interval.

Under the frequentist paradigm, the correct interpretation is that (1−α)×
100% of the random intervals calculated this way will contain the true value.
Therefore we have (1 − α) × 100% confidence that our interval does. It is
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a misinterpretation to make a probability statement about the parameter θ
from the calculated confidence interval.

Often, the sampling distribution of the estimator used is approximately
normal, with mean equal to the true value. In this case, the confidence interval
has the form

estimator ± critical value × standard deviation of the estimator,

where the critical value comes from the standard normal table. For example,
if n is large, then the sample proportion

π̂f =
y

n

is approximately normal with mean π and standard deviation
√

π(1−π)
n

. This

gives an approximate (1−α)× 100% equal tail area confidence interval for π:

π̂f ± zα2 ×
√
π̂f (1− π̂f )

n
. (9.4)

Comparing Confidence and Credible Intervals for π

The probability calculations for the confidence interval are based on the sam-
pling distribution of the statistic. In other words, how it varies over all possible
samples. Hence the probabilities are pre-data. They do not depend on the
particular sample that occurred. This is in contrast to the Bayesian credible
interval calculated from the posterior distribution that has a direct (degree
of belief) probability interpretation conditional on the observed sample data.
The Bayesian credible interval is more useful to the scientist whose data we
are analyzing. It summarizes our beliefs about the parameter values that
could credibly be believed given the observed data that occurred. In other
words, it is post-data. He/she is not concerned about data that could have
occurred but did not.

EXAMPLE 9.1 (continued from Chapter 8, p. 162)

Out of a random sample of n = 100 Hamilton residents, y = 26 said they
support building a casino in Hamilton. A frequentist 95% confidence
interval for π is

.26± 1.96

√
.26× .74

100
= (.174, .346) .

Compare this with the 95% credible intervals for π calculated by the three
students in Chapter 8 and shown in Table 8.3.
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9.5 Hypothesis Testing

The third type of inference we consider is hypothesis testing. Scientists do not
like to claim the existence of an effect where the discrepancy in the data could
be due to chance alone. If they make their claims too quickly, later studies
would show their claim was wrong, and their scientific reputation would suffer.

Hypothesis testing, sometimes called significance testing5, is the frequentist
statistical method widely used by scientists to guard against making claims
unjustified by the data. The nonexistence of the treatment effect is set up as
the null hypothesis that “the shift in the parameter value caused by the treat-
ment is zero.” The competing hypothesis that there is a nonzero shift in the
parameter value caused by the treatment is called the alternative hypothesis.
Two possible explanations for the discrepancy between the observed data and
what would be expected under the null hypothesis are proposed.

(1) The null hypothesis is true, and the discrepancy is due to random chance
alone.

(2) The null hypothesis is false. This causes at least part of the discrepancy.

To be consistent with Ockham’s razor, we will stick with explanation (1),
which has the null hypothesis being true and the discrepancy being due to
chance alone, unless the discrepancy is so large that it is very unlikely to be
due to chance alone. This means that when we accept the null hypothesis as
true, it does not mean that we believe it is literally true. Rather, it means that
chance alone remains a reasonable explanation for the observed discrepancy,
so we cannot discard chance as the sole explanation.

When the discrepancy is too large, we are forced to discard explanation
(1) leaving us with explanation (2), that the null hypothesis is false. This
gives us a backward way to establish the existence of an effect. We conclude
the effect exists (the null hypothesis is false) whenever the probability of the
discrepancy between what occurred and what would be expected under the
null hypothesis is too small to be attributed to chance alone.

Because hypothesis testing is very well established in science, we will show
how it can be done in a Bayesian manner. There are two situations we will
look at. The first is testing a one-sided hypothesis where we are only inter-
ested in detecting the effect in one direction. We will see that in this case,
Bayesian hypothesis testing works extremely well, without the contradictions
required in frequentist tests. The Bayesian test of a one-sided null hypothesis
is evaluated from the posterior probability of the null hypothesis.

5Significance testing was developed by R. A. Fisher as an inferential tool to weigh the
evidence against a particular hypothesis. Hypothesis testing was developed by Neyman
and Pearson as a method to control the error rate in deciding between two competing
hypotheses. These days, the two terms are used almost interchangeably, despite their
differing goals and interpretations. This continues to cause confusion.
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The second situation is where we want to detect a shift in either direction.
This is a two-sided hypothesis test, where we test a point hypothesis (that
the effect is zero) against a two-sided alternative. The prior density of a
continuous parameter measures probability density, not probability. The prior
probability of the null hypothesis (shift equal to zero) must be equal to 0. So
its posterior probability must also be zero,6 and we cannot test a two-sided
hypothesis using the posterior probability of the null hypothesis. Rather, we
will test the credibility of the null hypothesis by seeing if the null value lies in
the credible interval. If the null value does lie within the credible interval, we
cannot reject the null hypothesis, because the null value remains a credible
value.

9.6 Testing a One-Sided Hypothesis

The effect of the treatment is included as a parameter in the model. The
hypothesis that the treatment has no effect becomes the null hypothesis the
parameter representing the treatment effect has the null value that corre-
sponds to no effect of the treatment.

Frequentist Test of One-Sided Hypothesis

The probability of the data (or results even more extreme) given that the
null hypothesis is true is calculated. If this is below a threshold called the
level of significance, the results are deemed to be incompatible with the null
hypothesis, and the null hypothesis is rejected at that level of significance.
This establishes the existence of the treatment effect. This is similar to a
“proof by contradiction.” However, because of sampling variation, complete
contradiction is impossible. Even very unlikely data are possible when there is
no treatment effect. So hypothesis tests are actually more like “proof by low
probability.” The probability is calculated from the sampling distribution,
given that the null hypothesis is true. This makes it a pre-data probability.

EXAMPLE 9.2

Suppose we wish to determine if a new treatment is better than the stan-
dard treatment. If so, π, the proportion of patients who benefit from
the new treatment, should be better than π0, the proportion who benefit
from the standard treatment. It is known from historical records that

6We are also warned that frequentist hypothesis tests of a point null hypothesis never
“accept” the null hypothesis; rather, they “cannot reject the null hypothesis.”
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Table 9.1 Null distribution of Y with a rejection region for a one-sided hypothesis
test

Value f(y|π = .6) Region

0 .0001 accept

1 .0016 accept

2 .0106 accept

3 .0425 accept

4 .1115 accept

5 .2007 accept

6 .2508 accept

7 .2150 accept

8 .1209 accept

9 .0403 reject

10 .0060 reject

π0 = .6. A random group of 10 patients are given the new treatment. Y ,
the number who benefit from the treatment will be binomial(n, π). We
observe y = 8 patients that benefit. This is better than we would expect
if π = .6. But, is it enough better for us to conclude that π > .6 at the
10% level of significance?

The steps are:

1. Set up a null hypothesis about the (fixed but unknown) parameter. For
example, H0 : π ≤ .6. (The proportion who would benefit from the new
treatment is less than or equal to the proportion who benefit from the
standard treatment.) We include all π values less than the null value
.6 in with the null hypothesis because we are trying to determine if the
new treatment is better. We have no interest in determining if the new
treatment is worse. We will not recommend it unless it is demonstrably
better than the standard treatment.

2. The alternative hypothesis is H1 : π > .6. (The proportion who would
benefit from the new treatment is greater than the proportion who benefit
from the standard treatment.)

3. The null distribution of the test statistic is the sampling distribution of
the test statistic, given that the null hypothesis is true. In this case, it will
be binomial(n, .6) where n = 10 is the number of patients given the new
treatment.
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4. We choose level of significance for the test to be as close as possible to
α = 5%. Since y has a discrete distribution, only some values of α are
possible, so we will have to choose a value either just above or just below
5%.

5. The rejection region is chosen so that it has a probability of α under the
null distribution.7 If we choose the rejection region y ≥ 9, then α = .0463.
The null distribution with the rejection region for the one-sided hypothesis
test is shown in Table 9.1.

6. If the value of the test statistic for the given sample lies in the rejection
region, then reject the null hypothesis H0 at level α. Otherwise, we cannot
reject H0. In this case, y = 8 was observed. This lies in the acceptance
region.

7. The P -value is the probability of getting what we observed, or something
even more unlikely, given the null hypothesis is true. The P-value is put
forward as measuring the strength of evidence against the null hypothesis.8

In this case, the P -value = .1672.

8. If the P-value < α, the test statistic lies in the rejection region, and vice
versa. So an equivalent way of testing the hypothesis is to reject if P -
value < α.9 Looking at it either way, we cannot reject the null hypothesis
H0 : π ≤ .6. y = .8 lies in the acceptance region, and the p-value > .05.
The evidence is not strong enough to conclude that π > .6.

There is much confusion about the P -value of a test. It is not the posterior
probability of the null hypothesis being true given the data. Instead, it is the
tail probability calculated using the null distribution. In the binomial case

P -value =
n∑
yobs

f(y|π0) ,

where yobs is the observed value of y. Frequentist hypothesis tests use a
probability calculated on all possible data sets that could have occurred (for
the fixed parameter value), but the hypothesis is about the parameter value
being in some range of values.

7This approach is from Neyman and Pearson.
8This approach is from R. A. Fisher.
9Both α and P-value are tail areas calculated from the null distribution. However, α
represents the long-run rate of rejecting a true null hypothesis, and P-value is looked at as
the evidence against this particular null hypothesis by this particular data set. Using tail
areas as simultaneously representing both the long-run and a particular result is inherently
contradictory.
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Bayesian Tests of a One-Sided Hypothesis

We wish to test

H0 : π ≤ π0 versus H1 : π > π0

at the level of significance α using Bayesian methods. We can calculate the
posterior probability of the null hypothesis being true by integrating the pos-
terior density over the correct region:

P (H0 : π ≤ π0|y) =

∫ π0

0

g(π|y) dπ . (9.5)

We reject the null hypothesis if that posterior probability is less than the
level of significance α. Thus a Bayesian one-sided hypothesis test is a “test by
low probability” using the probability calculated directly from the posterior
distribution of π. We are testing a hypothesis about the parameter using the
posterior distribution of the parameter. Bayesian one-sided tests use post-data
probability.

EXAMPLE 9.2 (continued)

Suppose we use a beta(1, 1) prior for π. Then given y = 8, the posterior
density is beta(9, 3). The posterior probability of the null hypothesis is

P (π ≤ .6|y = 8) =

∫ .6

0

Γ(12)

Γ(3)Γ(9)
π8(1− π)2dπ

= .1189

when we evaluate it numerically. This is not less than .05, so we cannot
reject the null hypothesis at the 5% level of significance. Figure 9.3 shows
the posterior density. The probability of the null hypothesis is the area
under the curve to the left of π = .6.

9.7 Testing a Two-Sided Hypothesis

Sometimes we might want to detect a change in the parameter value in either
direction. This is known as a two-sided test since we are wanting to detect any
changes from the value π0. We set this up as testing the point null hypothesis
H0 : π = π0 against the alternative hypothesis H1 : π 6= π0.

Frequentist Test of a Two-Sided Hypothesis

The null distribution is evaluated at π0, and the rejection region is two-sided,
as are p-values calculated for this test.
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Figure 9.3 Posterior probability of the null hypothesis, H0 : π ≤ .6 is the shaded
area.

EXAMPLE 9.3

A coin is tossed 15 times, and we observe 10 heads. Are 10 heads out of
15 tosses enough to determine that the coin is not fair? In other words,
is π the probability of getting a head different than 1

2?
The steps are:

1. Set up the null hypothesis about the fixed but unknown parameter π. It
is H0 : π = .5.

2. The alternative hypothesis is H1 : π 6= .5. We are interested in determining
a difference in either direction, so we will have a two-sided rejection region.

3. The null distribution is the sampling distribution of Y when the null hy-
pothesis is true. It is binomial(n = 15, π = .5).

4. Since Y has a discrete distribution, we choose the level of significance for
the test to be as close to 5% as possible.

5. The rejection region is chosen so that it has a probability of α under the
null distribution. If we choose rejection region {Y ≤ 3} ∪ {Y ≥ 12}, then
α = .0352. The null distribution and rejection region for the two-sided
hypothesis are shown in Table 9.2.

6. If the value of the test statistic lies in the rejection region, then we reject
the null hypothesis H0 at level α. Otherwise, we cannot reject H0. In this
case, y = 10 was observed. This lies in the region where we cannot reject
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Table 9.2 Null distribution of Y with the rejection region for two-sided hypothesis
test

Value f(y|π = .5) Region

0 .0000 reject

1 .0005 reject

2 .0032 reject

3 .0139 reject

4 .0417 accept

5 .0916 accept

6 .1527 accept

7 .1964 accept

8 .1964 accept

9 .1527 accept

10 .0916 accept

11 .0417 accept

12 .0139 reject

13 .0032 reject

14 .0005 reject

15 .0000 reject
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the null hypothesis. We must conclude that chance alone is sufficient to
explain the discrepancy, so π = .5 remains a reasonable possibility.

7. The P-value is the probability of getting what we got (10) or something
more unlikely, given the null hypothesis H0 is true. In this case we have a
two-sided alternative, so the p-value is the P (Y ≥ 10) + P (Y ≤ 5) = .302.
This is larger than α, so we cannot reject the null hypothesis.

Relationship between two-sided hypothesis tests and confidence intervals. While
the null value of the parameter usually comes from the idea of no treatment
effect, it is possible to test other parameter values. There is a close relationship
between two-sided hypothesis tests and confidence intervals. If you are testing
a two-sided hypothesis at level α, there is a corresponding (1 − α) × 100%
confidence interval for the parameter. If the null hypothesis

H0 : π = π0

is rejected, then the value π0 lies outside the confidence interval, and vice
versa. If the null hypothesis is accepted (cannot be rejected), then π0 lies
inside the confidence interval, and vice versa. The confidence interval “sum-
marizes” all possible null hypotheses that would be accepted if they were
tested.

Bayesian Test of a Two-Sided Hypothesis

From the Bayesian perspective, the posterior distribution of the parameter
given the data sums up our entire belief after the data. However, the idea
of hypothesis testing as a protector of scientific credibility is well established
in science. So we look at using the posterior distribution to test a point null
hypothesis versus a two-sided alternative in a Bayesian way.

If we use a continuous prior, we will get a continuous posterior. The proba-
bility of the exact value represented by the point null hypothesis will be zero.
We cannot use posterior probability to test the hypothesis. Instead, we use a
correspondence similar to the one between confidence intervals and hypothesis
tests, but with credible interval instead.

Compute a (1 − α) × 100% credible interval for π. If π0 lies inside the
credible interval, accept (do not reject) the null hypothesis H0 : π = π0; and
if π0 lies outside the credible interval, then reject the null hypothesis.

EXAMPLE 9.3 (continued)

If we use a uniform prior distribution, then the posterior is the beta(10 +
1, 5 + 1) distribution. A 95% Bayesian credible interval for π found using
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the normal approximation is

11

17
+ 1.96×

√
11× 6

((11 + 6)2 × (11 + 6 + 1))
= .647± .221

= (.426, .868) .

The null value π = .5 lies within the credible interval, so we cannot reject
the null hypothesis. It remains a credible value.

Main Points

The posterior distribution of the parameter given the data is the entire
inference from a Bayesian perspective. Probabilities calculated from the
posterior distribution are post-data because the posterior distribution is
found after the observed data has been taken into the analysis.

Under the frequentist perspective there are specific inferences about the
parameter: point estimation, confidence intervals, and hypothesis tests.

Frequentist statistics considers the parameter a fixed but unknown con-
stant. The only kind of probability allowed is long-run relative frequency.

The sampling distribution of a statistic is its distribution over all possible
random samples given the fixed parameter value. Frequentist statistics
is based on the sampling distribution.

Probabilities calculated using the sampling distribution are pre-data be-
cause they are based on all possible random samples, not the specific
random sample we obtained.

An estimator of a parameter is unbiased if its expected value calculated
from the sampling distribution is the true value of the parameter.

Frequentist statistics often call the minimum variance unbiased estimator
the best estimator.

The mean squared error of an estimator measures its average squared
distance from the true parameter value. It is the square of the bias plus
the variance.

Bayesian estimators are often better than frequentist estimators even
when judged by the frequentist criteria such as mean squared error.

Seeing how a Bayesian estimator performs using frequentist criteria for
a range of possible parameter values is called a pre-posterior analysis,
because it can be done before we obtain the data.
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A (1−α)×100% confidence interval for a parameter θ is an interval (l, u)
such that

P (l ≤ θ ≤ u) = 1− α ,
where the probability is found using the sampling distribution of an es-
timator for θ. The correct interpretation is that (1 − α) × 100% of the
random intervals calculated this way do contain the true value. When
the actual data are put in and the endpoints calculated, there is nothing
left to be random. The endpoints are numbers; the parameter is fixed
but unknown. We say that we are (1−α)× 100% confident that the cal-
culated interval covers the true parameter. The confidence comes from
our belief in the method used to calculate the interval. It does not say
anything about the actual interval we got for that particular data set.

A (1−α)× 100% Bayesian credible interval for θ is a range of parameter
values that has posterior probability (1− α).

Frequentist hypothesis testing is used to determine whether the actual
parameter could be a specific value. The sample space is divided into a
rejection region and an acceptance region such that the probability the
test statistic lies in the rejection region if the null hypothesis is true is less
than the level of significance α. If the test statistic falls into the rejection
region, we reject the null hypothesis at level of significance α.

Or we could calculate the P-value. If the P -value< α, we reject the null
hypothesis at level α.

The P-value is not the probability the null hypothesis is true. Rather,
it is the probability of observing what we observed, or even something
more extreme, given that the null hypothesis is true.

We can test a one-sided hypothesis in a Bayesian manner by comput-
ing the posterior probability of the null hypothesis. This probability is
found by integrating the posterior density over the null region. If this
probability is less than the level of significance α, then we reject the null
hypothesis.

We cannot test a two-sided hypothesis by integrating the posterior prob-
ability over the null region because, with a continuous prior, the prior
probability of a point null hypothesis is zero, so the posterior probability
will also be zero. Instead, we test the credibility of the null value by
observing whether or not it lies within the Bayesian credible interval. If
it does, the null value remains credible and we cannot reject it.

Exercises

9.1. Let π be the proportion of students at a university who approve the
government’s policy on students’ allowances. The students’ newspaper is
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going to take a random sample of n = 30 students at a university and
ask if they approve of the governments policy on student allowances.

(a) What is the distribution of y, the number who answer “yes”?

(b) Suppose 8 out of the 30 students answered yes. What is the frequentist
estimate of π.

(c) Find the posterior distribution g(π|y) if we use a uniform prior.

(d) What would be the Bayesian estimate of π?

9.2. The standard method of screening for a disease fails to detect the presence
of the disease in 15% of the patients who actually do have the disease. A
new method of screening for the presence of the disease has been devel-
oped. A random sample of n = 75 patients who are known to have the
disease is screened using the new method. Let π be the probability the
new screening method fails to detect the disease.

(a) What is the distribution of y, the number of times the new screening
method fails to detect the disease?

(b) Of these n = 75 patients, the new method failed to detect the disease
in y = 6 cases. What is the frequentist estimator of π?

(c) Use a beta(1, 6) prior for π. Find g(π|y), the posterior distribution of
π.

(d) Find the posterior mean and variance.

(e) If π ≥ .15, then the new screening method is no better than the
standard method. Test

H0 : π ≥ .15 versus H1 : π < .15

at the 5% level of significance in a Bayesian manner.
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9.3. In the study of water quality in New Zealand streams, documented in
McBride et al. (2002), a high level of Campylobacter was defined as a
level greater than 100 per 100 ml of stream water. n = 116 samples
were taken from streams having a high environmental impact from birds.
Out of these, y = 11 had a high Campylobacter level. Let π be the true
probability that a sample of water from this type of stream has a high
Campylobacter level.

(a) Find the frequentist estimator for π.

(b) Use a beta(1, 10) prior for π. Calculate the posterior distribution
g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator
for π?

(d) Find a 95% credible interval for π.

(e) Test the hypothesis

H0 : π = .10 versus H1 : π 6= .10

at the 5% level of significance.

9.4. In the same study of water quality, n = 145 samples were taken from
streams having a high environmental impact from dairying. Out of these
y = 9 had a high Campylobacter level. Let π be the true probability that
a sample of water from this type of stream has a high Campylobacter
level.

(a) Find the frequentist estimator for π.

(b) Use a beta(1, 10) prior for π. Calculate the posterior distribution
g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator
for π?

(d) Find a 95% credible interval for π.

(e) Test the hypothesis

H0 : π = .10 versus H1 : π 6= .10

at the 5% level of significance.

9.5. In the same study of water quality, n = 176 samples were taken from
streams having a high environmental impact from sheep farming. Out
of these y = 24 had a high Campylobacter level. Let π be the true
probability that a sample of water from this type of stream has a high
Campylobacter level.

(a) Find the frequentist estimator for π.
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(b) Use a beta(1, 10) prior for π. Calculate the posterior distribution
g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator
for π?

(d) Test the hypothesis

H0 : π ≥ .15 versus H1 : π < .15

at the 5% level of significance.

9.6. In the same study of water quality, n = 87 samples were taken from
streams in municipal catchments. Out of these y = 8 had a high Campy-
lobacter level. Let π be the true probability that a sample of water from
this type of stream has a high Campylobacter level.

(a) Find the frequentist estimator for π.

(b) Use a beta(1, 10) prior for π. Calculate the posterior distribution
g(π|y).

(c) Find the posterior mean and variance. What is the Bayesian estimator
for π?

(d) Test the hypothesis

H0 : π ≥ .10 versus H1 : π < .10

at the 5% level of significance.

Monte Carlo Exercises

9.1. Comparing Bayesian and frequentist estimators for π. In Chap-
ter 1 we learned that the frequentist procedure for evaluating a statis-
tical procedure, namely looking at how it performs in the long-run, for
a (range of) fixed but unknown parameter values can also be used to
evaluate a Bayesian statistical procedure. This “what if the parameter
has this value ” type of analysis would be done before we obtained the
data and is called a pre-posterior analysis. It evaluates the procedure
by seeing how it performs over all possible random samples, given that
parameter value. In Chapter 8 we found that the posterior mean used as
a Bayesian estimator minimizes the posterior mean squared error. Thus
it has optimal post-data properties, in other words after making use of
the actual data. We will see that Bayesian estimators have excellent pre-
data (frequentist) properties as well, often better than the corresponding
frequentist estimators.

We will perform a Monte Carlo study approximating the sampling dis-
tribution of two estimators of π. The frequentist estimator we will use
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is π̂f = y
n

, the sample proportion. The Bayesian estimator we will use

is π̂B = y+1
n+2

, which equals the posterior mean when we used a uniform
prior for π. We will compare the sampling distributions (in terms of bias,
variance, and mean squared error) of the two estimators over a range of
π values from 0 to 1. However, unlike the exact analysis we did in Sec-
tion 9.3, here we will do a Monte Carlo study. For each of the parameter
values, we will approximate the sampling distribution of the estimator by
an empirical distribution based on 5,000 samples drawn when that is the
parameter value. The true characteristics of the sampling distribution
(mean, variance, mean squared error) are approximated by the sample
equivalent from the empirical distribution. You can use either Minitab
or R for your analysis.

(a) For π = .1, .2, . . . , .9

i. Draw 5,000 random samples from binomial(n = 10, π).

ii. Calculate the frequentist estimator π̂f = y
n for each of the

5,000 samples.

iii. Calculate the Bayesian estimator π̂B = y+1
n+2

for each of the
5,000 samples.

iv. Calculate the means of these estimators over the 5,000 sam-
ples, and subtract π to give the biases of the two estimators.
Note that this is a function of π.

v. Calculate the variances of these estimators over the 5,000
samples. Note that this is also a function of π.

vi. Calculate the mean squared error of these estimators over the
5,000 samples. The first way is

MSE[π̂] = (bias(π̂))2 + Var[π̂] .

The second way is to take the sample mean of the squared
distance the estimator is away from the true value over all
5,000 samples. Do it both ways, and see that they give the
same result.

(b) Plot the biases of the two estimators versus π at those values and
connect the adjacent points. (Put both estimators on the same graph.)

i. Does the frequentist estimator appear to be unbiased over the
range of π values?

ii. Does the Bayesian estimator appear to be unbiased over the
range of the π values?

(c) Plot the mean squared errors of the two estimators versus π over the
range of π values, connecting adjacent points. (Put both estimators
on the same graph.)

i. Does your graph resemble Figure 9.2?
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ii. Over what range of π values does the Bayesian estimator
have smaller mean squared error than that of the frequentist
estimator?



CHAPTER 10

BAYESIAN INFERENCE FOR POISSON

The Poisson distribution is used to count the number of occurrences of rare
events which are occurring randomly through time (or space) at a constant
rate. The events must occur one at a time. The Poisson distribution could be
used to model the number of accidents on a highway over a month. However, it
could not be used to model the number of fatalities occurring on the highway,
since some accidents have multiple fatalities.

Bayes’ Theorem for Poisson Parameter with a Continuous Prior

We have a random sample y1, . . . , yn from a Poisson(µ) distribution. The
proportional form of Bayes’ theorem is given by posterior ∝ prior × likelihood

g(µ|y1, . . . , yn) ∝ g(µ)× f(y1, . . . , yn|µ) .

The parameter µ can have any positive value, so we should use a continuous
prior defined on all positive values. The proportional form of Bayes’ theorem
gives the shape of the posterior. We need to find the scale factor to make it

Introduction to Bayesian Statistics, 3rd ed.
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a density. The actual posterior is given by

g(µ|y1, . . . , yn) =
g(µ)× f(y1, . . . , yn|µ)∫∞

0
g(µ)× f(y1, . . . , yn|µ) dµ

. (10.1)

This equation holds for any continuous prior g(µ). However, the integration
would have to be done numerically except for the few special cases which we
will investigate.

Likelihood of Poisson parameter. The likelihood of a single draw from a Pois-
son(µ) distribution is given by

f(y|µ) =
µye−µ

y!

for y = 0, 1, . . . and µ > 0. The part that determines the shape of the
likelihood is

f(y|µ) ∝ µye−µ .
When y1, . . . , yn is a random sample from a Poisson(µ) distribution, the like-
lihood of the random sample is the product of the original likelihoods. This
simplifies to

f(y1, . . . , yn|µ) =
n∏
i=1

f(yi|µ)

∝ µ
∑
yie−nµ .

We recognize this as the likelihood where
∑
yi is a single draw from a Pois-

son(nµ) distribution. It has the shape of a gamma(r′, v′) density where
r′ =

∑
yi + 1 and v′ = n

10.1 Some Prior Distributions for Poisson

In order to use Bayes’ theorem, we will need the prior distribution of the
Poisson parameter µ. In this section we will look at several possible prior
distributions of µ for which we can work out the posterior density without
having to do the numerical integration.

Positive uniform prior density. Suppose we have no idea what the value of µ is
prior to looking at the data. In that case, we would consider that we should
give all positive values of µ equal weight. So we let the positive uniform prior
density be

g(µ) = 1 for µ > 0 .

Clearly this prior density is improper since its integral over all possible values
is infinite. Nevertheless, the posterior will be proper in this case1 and we can

1There are cases where an improper prior will result in an improper posterior, so no inference
is possible.
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use it for making inference about µ. The posterior will be proportional to
prior times likelihood, so in this case the proportional posterior will be

g(µ|y1, . . . , yn) ∝ g(µ) f(y1, . . . , yn|µ)

∝ 1× µ
∑
yie−nµ .

The posterior is the same shape as the likelihood function so we know that
it is a gamma(r′, v′) density where r′ =

∑
y + 1 and v′ = n. Clearly the

posterior is proper despite starting from an improper prior.

Jeffreys’ prior for Poisson. The parameter indexes all possible observation
distributions. Any one-to-one continuous function of the parameter would give
an equally valid index.2 Jeffreys’ method gives us priors which are objective
in the sense that they are invariant under any continuous transformation of
the parameter. The Jeffreys’ prior for the Poisson is

g(µ) ∝ 1
√
µ

for µ > 0 .

This also will be an improper prior, since its integral over the whole range
of possible values is infinite. However, it is not non-informative since it gives
more weight to small values. The proportional posterior will be the prior
times likelihood. Using the Jeffreys’ prior the proportional posterior will be

g(µ|y1, . . . , yn) ∝ g(µ) f(y1, . . . , yn|µ)

∝ 1
√
µ
× µ

∑
yie−nµ

∝ µ
∑
y− 1

2 e−nµ ,

which we recognize as the shape of a gamma(r′, v′) density where r′ =
∑
y+ 1

2
and v′ = n. Again, we have a proper posterior despite starting with an
improper prior.

Conjugate family for Poisson observations is the gamma family. The conjugate
prior for the observations from the Poisson distribution with parameter (µ)
will have the same form as the likelihood. Hence it has shape given by

g(µ) ∝ e−kµelog µ×l

∝ µle−kµ .

2If ψ = h(θ) is a continuous function of the parameter θ, then gψ(ψ), the prior for ψ that

corresponds to gθ(θ) is found by the change of variable formula gψ(ψ) = gθ(θ(ψ))× dθ
dψ

.
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The distribution having this shape is known as the gamma(r, v) distribution
and has density given by

g(µ; r, v) =
vrµr−1e−vµ

Γ(r)
,

where r − 1 = l and v = k and vr

Γ(r) is the scale factor needed to make this a

density. When we have a single Poisson(µ) observation, and use gamma(r, v)
prior for µ, the shape of the posterior is given by

g(µ|y) ∝ g(µ)× f(y|µ)

∝ vrµr−1e−vµ

Γ(r)
× µye−µ

y!

∝ µr−1+ye−(v+1)µ .

We recognize this to be a gamma(r′, v′) density where the constants are up-
dated by the simple formulas r′ = r+y and v′ = v+1. We add the observation
y to r, and we add 1 to v. Hence when we have a random sample y1, . . . , yn
from a Poisson(µ) distribution, and use a gamma(r, v) prior , we repeat the
updating after each observation, using the posterior from the ith observation
as the prior for the i + 1st observation. We end up with a a gamma(r′, v′)
posterior where r′ = r +

∑
y and v′ = v + n. The simple updating rules are

“add the sum of the observations to r” , and “add the number of observations
to v.” Note: these same updating rules work for the positive uniform prior,
and the Jeffreys’ prior for the Poisson.3 We use Equation 7.10 and Equation
7.11 to find the posterior mean and variance. They are:

E[µ|y] =
r′

v′
and Var[µ|y] =

r′

(v′)2
,

respectively.

Choosing a conjugate prior. The gamma(r, v) family of distributions is the
conjugate family for Poisson(µ) observations. It is advantageous to use a
prior from this family, as the posterior will also be from this family and can
be found by the simple updating rules. This avoids having to do any numerical
integration. We want to find the gamma(r, v) that matches our prior belief.

We suggest that you summarize your prior belief into your prior mean m,
and your prior standard deviation s. Your prior variance will be the square of

3The positive uniform prior g(µ) = 1 has the form of a gamma(1, 0) prior, and the Jeffreys’

prior for the Poisson g(µ) = u−
1
2 has the form of a gamma( 1

2
, 0) prior. They can be

considered limiting cases of the gamma(r, v) family where v → 0.
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your prior standard deviation. Then we find the gamma conjugate prior that
matches those first two prior moments. That means that r and v will be the
simultaneous solutions of the two equations

m =
r

v
and s2 =

r

v2
.

Hence
v =

m

s2
.

Substitute this into the first equation and solve for r. We find

r =
m2

s2
.

This gives your gamma(r, v) prior.

Precautions before using your conjugate prior.

1. Graph your prior. If the shape looks reasonably close to your prior be-
lief then use it. Otherwise you can adjust your prior mean m and prior
standard deviation s until you find a prior with shape matching your prior
belief.

2. Calculate the equivalent sample size of your prior. This is the size of a
random sample of Poisson(µ) variables that matches the amount of prior
information about µ that you are putting in with your prior. We note that
if y1, . . . , yn is a random sample from Poisson(µ), then ȳ will have mean µ
and variance µ

n . The equivalent sample size will be the solution of

µ

neq
=

r

v2
.

Setting the mean equal to the prior mean µ = r
v the equivalent sample size

of the gamma(r, v) prior for µ is neq = v. We check to make sure this is not
too large. Ask yourself “Is my prior knowledge about µ really equal to the
knowledge I would get about µ if I took a random sample of size neq from
the Poisson(µ) distribution?” If the answer is no, then you should increase
your prior standard deviation and recalculate your prior. Otherwise you
are putting in too much prior information relative to the amount you will
be getting from the data.

EXAMPLE 10.1

The weekly number of traffic accidents on a highway has the Poisson(µ)
distribution. Four students are going to count the number of traffic ac-
cidents for each of the next eight weeks. They are going to analyze this
in a Bayesian manner, so they each need a prior distribution. Aretha
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Table 10.1 Diana’s relative prior weights. The shape of her continuous prior is
found by linearly interpolating between those values. The constant gets canceled
when finding the posterior using Equation 10.1.

Value Weight

0 0

2 2

4 2

8 0

10 0

says she has no prior information, so will assume all possible values are
equally likely. Thus she will use the positive uniform prior g(µ) = 1 for
µ > 0, which is improper. Byron also says he has no prior information,
but he wants his prior to be invariant if the parameter is multiplied by
a constant. Thus, he uses the Jeffreys’ prior for the Poisson which is
g(µ) = µ−1/2 which will also be improper. Chase decides that he believes
the prior mean should be 2.5, and the prior standard deviation is 1. He
decides to use the gamma(r, v) that matches his prior mean and standard
deviation, and finds that v = 2.5 and r = 6.25. His equivalent sample size
is neq = 2.5, which he decides is acceptable since he will be putting infor-
mation worth 2.5 observations and there will be 8 observations from the
data. Diana decides that her prior distribution has a trapezoidal shape
found by interpolating the prior weights given in Table 10.1. The shapes
of the four prior distributions are shown in Figure 1.1. The number of
accidents on the highway over the next 8 weeks are:

3, 2, 0, 8, 2, 4, 6, 1.

Aretha will have a gamma(27, 8) posterior, Byron will have a gamma(26.5, 8)
posterior, and Chase will have a gamma(32.25, 10.5) posterior. Diana
finds her posterior numerically using Equation 10.1. The four posterior
distributions are shown in Figure 10.2. We see that the four posterior dis-
tributions are similarly shaped, despite the very different shape priors.

Summarizing the Posterior Distribution

The posterior density explains our complete belief about the parameter given
the data. It shows the relative belief weights we give each possible parameter
value, taking into account both our prior belief and the data, through the
likelihood. However, a posterior distribution is hard to interpret, and we like
to summarize it with some numbers.
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Aretha's prior 
Byron's prior  
Chase's prior  
Diana's prior  

1050

Figure 10.1 The shapes of Aretha’s, Byron’s, Chase’s, and Diana’s prior
distributions.

Aretha's posterior 
Byron's posterior  
Chase's posterior  
Diana's posterior  

1050

Figure 10.2 Aretha’s, Byron’s, Chase’s, and Diana’s posterior distributions.

When we are summarizing a distribution, the most important summary
number would be a measure of location, which characterizes where the distri-
bution is located along the number line. Three possible measures of location
are the posterior mode, the posterior median, and the posterior mean. The
posterior mode is the found by setting the derivative of the posterior density
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equal to zero, and solving. When the posterior distribution is gamma(r′, v′),
its derivative is given by

g′(µ|y) = (r′ − 1)µr
′−2e−v

′µ − v′e−v
′µµr

′−1

= µr
′−2e−v

′µ[r′ − 1− v′µ] .

When we set that equal to zero and solve, we find the posterior mode is

mode =
r′ − 1

v′
.

When the posterior distribution is gamma(r′, v′) the posterior median can be
found using Minitab or R. The posterior mean will be

m′ =
r′

v′
.

If the posterior distribution has been found numerically, then both the pos-
terior median and mean will both have to be found numerically using the
Minitab macro tintegral or the R functions mean and median.

The second most important summary number would be a measure of spread,
that characterizes how spread out the distribution is. Some possible measures
of spread include the interquartile range IQR = Q3 − Q1 and the standard
deviation s′. When the posterior distribution is gamma(r′, v′), the IQR can
be found using Minitab or R. The posterior standard deviation will be the
square root of the posterior variance. If the posterior distribution has been
found numerically, then the IQR and the posterior variance can be found
numerically.

EXAMPLE 10.1 (continued)

The four students calculate measures of location and spread to summa-
rize their posteriors. Aretha, Byron, and Chase have gamma posteriors,
so they can calculate them easily using the formulas, and Diana has a
numerical posterior so she has to calculate them numerically using the
Minitab macro tintegral or the R sintegral function. The results are
shown in Table 10.2.

10.2 Inference for Poisson Parameter

The posterior distribution is the complete inference in the Bayesian approach.
It explains our complete belief about the parameter given the data. It shows
the relative belief weights we can give every possible parameter value. How-
ever, in the frequentist approach there are several types of inference about
the parameter we can make. These are point estimation, interval estimation,
and hypothesis testing. In this section we see how we can do these inferences
on the parameter µ of the Poisson distribution using the Bayesian approach,
and we compare these to the corresponding frequentist inferences.
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Table 10.2 Measures of location and spread of posterior distributions

Person Posterior Mean Median Mode St.Dev. IQR

Aretha gamma(27, 8) 3.375 3.333 3.25 .6495 .8703

Byron gamma(26 1
2
, 8) 3.313 3.271 3.187 .6435 .8622

Chase gamma(32 1
4
, 10 1

2
) 3.071 3.040 2.976 .5408 .7255

Diana Numerical 3.353 3.318 .6266 .8502

Point Estimation

We want to find the value of the parameter µ that best represents the posterior
and use it as the point estimate. The posterior mean square of µ̂, an estimator
of the Poisson mean, measures the average squared distance away from the
true value with respect to the posterior.4 It is given by

PMSE[µ̂] =

∫ ∞
0

(µ̂− µ)2g(µ|y1, . . . , yn) dµ

=

∫ ∞
0

(µ̂−m′ +m′ − µ)2g(µ|y1, . . . , yn) dµ ,

where m′ is the posterior mean. Squaring the term and separating the integral
into three integrals, we see that

PMSE[µ̂] = Var[µ|y] + 0 + (m′ − µ̂)2 .

We see that the last term is always nonnegative, so that the estimator that
has smallest posterior mean square is the posterior mean. On the average the
squared distance the true value is away from the posterior mean is smaller than
for any other possible estimator.5 That is why we recommend the posterior
mean

µ̂B =
r′

v′

as the Bayesian point estimate of the Poisson parameter. The frequentist
point estimate is µ̂f = ȳ, the sample mean.

Comparing estimators for the Poisson parameter. Bayesian estimators can have
superior properties, despite being biased. They often perform better than
frequentist estimators, even when judged by frequentist criteria. The mean
squared error of an estimator

MSE[µ̂] = Bias[µ̂]2 + Var[µ̂] (10.2)

4The estimator that minimizes the average absolute distance away from the true value is
the posterior median.
5This is the squared-error loss function approach.
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measures the average squared distance the estimator is from the true value.
The averaging is over all possible values of the sample, so it is a frequentist
criterion. It combines the bias and the variance of the estimator into a single
measure. The frequentist estimator of the Poisson parameter is

µ̂f =

∑
yi
n

.

This is unbiased, so its mean square equals its variance

MSE[µ̂f ] =
µ

n
.

When we use a gamma(r, v) prior the posterior will be a gamma(r′, v′). The
bias will be

Bias[µ̂B, µB ] = E[µ̂B ]− µ

= E

[
r +

∑
yi

v + n

]
− µ

=
r − vµ
v + n

.

The variance will be

Var[µ̂B ] =

(
1

v + n

)2∑
Var[yi]

=
nµ

(v + n)2
.

Often we can find a Bayesian estimator that has smaller mean squared error
over the range where we believe the parameter lies.

Suppose we are going to observe the number of chocolate chips in a random
sample of six chocolate chip cookies. We know that the number of chocolate
chips in a single cookie is a Poisson(µ) random variable and we want to
estimate µ. We know that µ should be close to 2. The frequentist estimate
µ̂f = ȳ will be unbiased and its mean squared error will be

MSE[µ̂f ] =
µ

6
.

Suppose we decide to use a gamma(2, 1) prior, which has prior mean 2 and
prior variance 2. Using Equation 9.2, we find the mean squared error of the
Bayesian estimator will be

MSE[µ̂B] =

(
2− µ
1 + 6

)2

+
6µ

(1 + 6)2
.

The mean squared errors of the two estimators are shown in Figure 10.3. We
see that, on average, the Bayesian estimator is closer to the true value than
the frequentist estimator in the range from .7 to 5. Since that is the range in
which we believe that µ lies, the Bayesian estimator would be preferable to
the frequentist one.
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Bayes       
Frequentist 

543210

2

1

0

Figure 10.3 The mean squared error for the two estimators.

Bayesian Credible Interval for µ

An equal tail area 95% Bayesian credible interval for µ can be found by
obtaining the difference between the 97.5th and the 2.5th percentiles of the
posterior. When we used either the gamma(r, v) prior, the positive uniform

prior g(µ) = 1 for µ > 0, or the Jeffreys’ prior g(µ) = µ−
1
2 the posterior

is gamma(r′, v′). Using Minitab, pull down the Calc menu to Probability
Distributions and over to Gamma. . . and fill in the dialog box.

If we had started with a general continuous prior, the posterior would not
be a gamma. The Bayesian credible interval would still be the difference
between the 97.5th and the 2.5th percentiles of the posterior, but we would
find these percentiles numerically.

EXAMPLE 10.1 (continued)

The four students calculated their 95% Bayesian credible intervals for µ.
Aretha, Byron, and Chase all had gamma(r′, v′) posteriors, with different
values of r′ and v′ because of their different priors. Chase has a shorter
credible interval because he put in more prior information than the others.
Diana used a general continuous prior so she had to find the credible
interval numerically. They are shown in Table 10.3.

Bayesian Test of a One-Sided Hypothesis

Sometimes we have a null value of the Poisson parameter, µ0. This is the
value that the parameter has had before in the past. For instance, the random
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Table 10.3 Exact 95% credible intervals

Person Posterior Credible Interval

Lower Upper

Aretha gamma(27, 8) 2.224 4.762

Byron gamma(26 1
2
, 8) 2.174 4.688

Chase gamma(32 1
4
, 10 1

2
) 2.104 4.219

Diana numerical 2.224 4.666

variable Y may be the number of defects occurring in a bolt of cloth, and µ is
the mean number of defects per bolt. The null value µ0 is the mean number
of defects when the machine manufacturing the cloth is under control. We are
interested in determining if the Poisson parameter value has got larger than
the null value. This means the rate of defects has increased. We set this up
as a one-sided hypothesis test

H0 : µ ≤ µ0 versus H1 : µ > µ0 .

Note: The alternative is in the direction we wish to detect. We test this
hypothesis in the Bayesian manner by computing the posterior probability of
the null hypothesis. This is found by integrating the posterior density over
the correct region

P (µ ≤ µ0) =

∫ µ0

0

g(µ|y1, . . . , yn) dµ . (10.3)

If the posterior distribution is gamma(r, s) we can find this probability us-
ing Minitab. Pull down the Calc menu to the Probability Distributions and
over to Gamma. . . and fill in the dialog box. Otherwise, we can evaluate
this probability numerically. We compare this probability with the level of
significance α. If the posterior probability of the null hypothesis is less than
α, then we reject the null hypothesis at the α level of significance.

EXAMPLE 10.1 (continued)

The four students decide to test the null hypothesis

H0 : µ ≤ 3 versus H1 : µ > 3

at the 5% level of significance. Aretha, Byron, and Chase all have gamma(r′, v′)
posteriors each with their own values of the constants. They each calcu-
late the posterior probability of the null hypothesis using Minitab. Diana
has a numerical prior, so she must evaluate the integral numerically. The
results are shown in Table 10.4.
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Table 10.4 Posterior probability of null hypothesis

Person Posterior P (µ ≤ 3.0|y1, . . . , yn)

=
∫ 3

0
g(µ|y1, . . . , yn) dµ

Aretha gamma(27, 8) .2962

Byron gamma(26 1
2
, 8) .3312

Chase gamma(32 1
4
, 10 1

2
) .4704

Diana numerical .3012

Bayesian Test of a Two-Sided Hypothesis

Sometimes we want to test whether or not the Poisson parameter value has
changed from its null value in either direction. We would set that up as a
two-sided hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0

Since we started with a continuous prior, we will have a continuous posterior.
The probability that the continuous parameter taking on the null value will
be 0, so we cannot test the hypothesis by calculating its posterior probability.
Instead, we test the credibility of the null hypothesis by observing whether
or not the null value µ0 lies inside the (1− α)× 100% credible interval for µ.
If it lies outside, we can reject the null hypothesis and conclude µ 6= µ0. If
it lies inside the credible interval, we cannot reject the null hypothesis. We
conclude µ0 remains a credible value.

Main Points

The Poisson distribution counts the number of occurrence of a rare events
which occur randomly through time (or space) at a constant rate. The
events must occur one at a time.

The posterior ∝ prior × likelihood is the key relationship. We cannot
use this for inference because it only has the shape of the posterior, and
is not an exact density.

The constant k =
∫
prior×likelihood is needed to find the exact posterior

density

posterior =
prior × likelihood∫
prior × likelihood

so that inference is possible.
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The gamma family of priors is the conjugate family for Poisson observa-
tions.

If the prior is gamma(r, v), then the posterior is gamma(r′, v′) where the
constants are updated by the simple rules r′ = r +

∑
y (add sum of

observations tor, and v′ = v + n (add number of observations to v.

It makes sense to use prior from conjugate family if possible. Determine
your prior mean and prior standard deviation. Choose the gamma(r, v)
prior that has this prior mean and standard deviation. Graph it to make
sure it looks similar to your prior belief.

If you have no prior knowledge, you can use a positive uniform prior
density g(µ) = 1 for µ > 0, which has the form of a gamma(1, 0). Or, you

can use the Jeffreys’ prior for the Poisson g(µ) ∝ µ−
1
2 for µ > 0, which

has the form of a gamma( 1
2
, 0). Both of these are improper priors (their

integral over the whole range is infinite). Nevertheless, the posteriors will
work out to be proper, and can be found from the same simple rules.

If you cannot find a member of the conjugate family that matches your
prior belief, construct a discrete prior using your belief weights at several
values over the range. Interpolate between them to make your general
continuous prior. You can ignore the constant needed to make this an
exact density since it will get canceled out when you divide by

∫
prior×

likelihood.

With a good choice of prior the Bayesian posterior mean performs better
than the frequentist estimator when judged by the frequentist criterion
of mean squared error.

The (1−α)× 100% Bayesian credible interval gives a range of values for
the parameter µ that has posterior probability of 1− α.

We test a one-sided hypothesis in a Bayesian manner by calculating the
posterior probability of the null hypothesis. If this is less than the level
of significance alpha, then we reject the null hypothesis.

We cannot test a two-sided hypothesis by calculating the posterior proba-
bility of the null hypothesis, since it must equal 0 whenever we use a con-
tinuous prior. Instead, we test the credibility of the null hypothesis value
by observing whether or not the null value lies inside the (1−α)× 100%
credible interval. If it lies outside the credible interval, we reject the null
hypothesis at the level of significance α. Otherwise, we accept that the
null value remains credible.
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Exercises

10.1. The number of particles emitted by a radioactive source during a ten
second interval has the Poisson(µ) distribution. The radioactive source
is observed over five non-overlapping intervals of ten seconds each. The
number of particles emitted during each interval are: 4, 1, 3, 1, 3.

(a) Suppose a prior uniform distribution is used for µ.

i. Find the posterior distribution for µ.

ii. What are the posterior mean, median, and variance in this
case?

(b) Suppose Jeffreys’ prior is used for µ.

i. Find the posterior distribution for µ.

ii. What are the posterior mean, median, and variance in this
case?

10.2. The number of claims received by an insurance company during a week
follows a Poisson(µ) distribution. The weekly number of claims observed
over a ten week period are: 5, 8, 4, 6, 11, 6, 6, 5, 6, 4.

(a) Suppose a prior uniform distribution is used for µ.

i. Find the posterior distribution for µ.

ii. What are the posterior mean, median, and variance in this
case?

(b) Suppose Jeffreys’ prior is used for µ.

i. Find the posterior distribution for µ.

ii. What are the posterior mean, median, and variance in this
case?

10.3. The Russian mathematician Ladislaus Bortkiewicz noted that the Poisson
distribution would apply to low-frequency events in a large population,
even when the probabilities for individuals in the population varied. In
a famous example he showed that the number of deaths by horse kick
per year in the cavalry corps of the Prussian army follows the Poisson
distribution. The following data is reproduced from Hoel (1984).

y (deaths) 0 1 2 3 4

n(y) (frequency) 109 65 22 3 1

(a) Suppose a prior uniform distribution is used for µ.

i. Find the posterior distribution for µ.
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ii. What are the posterior mean, median, and variance in this
case?

(b) Suppose Jeffreys’ prior is used for µ.

i. Find the posterior distribution for µ.

ii. What are the posterior mean, median, and variance in this
case?

10.4. The number of defects per 10 meters of cloth produced by a weaving
machine has the Poisson distribution with mean µ. You examine 100
meters of cloth produced by the machine and observe 71 defects.

(a) Your prior belief about µ is that it has mean 6 and standard deviation
2. Find a gamma(r, v) prior that matches your prior belief.

(b) Find the posterior distribution of µ given that you observed 71 defects
in 100 meters of cloth.

(c) Calculate a 95% Bayesian credible interval for µ.

Computer Exercises

10.1. We will use the Minitab macro PoisGamP, or poisgamp function in R,
to find the posterior distribution of the Poisson probability µ when we
have a random sample of observations from a Poisson(µ) distribution
and we have a gamma(r, v) prior for µ. The gamma family of priors is
the conjugate family for Poisson observations. That means that if we
start with one member of the family as the prior distribution, we will get
another member of the family as the posterior distribution. The simple
updating rules are “add sum of observations to r” and “add sample size
to v. When we start with a gamma(r, v) prior, we get a gamma(r′, v′)
posterior where r′ = r +

∑
(y) and v′ = v + n.

Suppose we have a random sample of five observations from a Poisson(µ)
distribution. They are:

3 4 3 0 1

(a) Suppose we start with a positive uniform prior for µ. What gamma(r, v)
prior will give this form?

(b) [Minitab:] Find the posterior distribution using the Minitab macro
PoisGamP or the R function poisgamp.

[R:] Find the posterior distribution using the R function poisgamp.

(c) Find the posterior mean and median.

(d) Find a 95% Bayesian credible interval for µ.
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10.2. Suppose we start with a Jeffreys’ prior for the Poisson parameter µ.

g(µ) = µ−
1
2

(a) What gamma(r, v) prior will give this form?

(b) Find the posterior distribution using the macro PoisGamP in Minitab
or or the function poisgamp in R.

(c) Find the posterior mean and median.

(d) Find a 95% Bayesian credible interval for µ.

10.3. Suppose we start with a gamma(6, 2) prior for µ. Find the posterior
distribution using the macro PoisGamP in Minitab or or the function
poisgamp in R.

(a) Find the posterior mean and median.

(b) Find a 95% Bayesian credible interval for µ.

10.4. Suppose we take an additional five observations from the Poisson(µ).
They are:

1 2 3 3 6

(a) Use the posterior from Computer Exercise 10.3 as the prior for the
new observations and find the posterior distribution using the macro
PoisGamP in Minitab or or the function poisgamp in R.

(b) Find the posterior mean and median.

(c) Find a 95% Bayesian credible interval for µ.

10.5. Suppose we use the entire sample of ten Poisson(µ) observations as a sin-
gle sample. We will start with the original prior from Computer Exercise
10.3.

(a) Find the posterior given all ten observations using the Minitab macro
PoisGamP or the R function poisgamp.

(b) What do you notice from Computer Exercises 10.3–10.5?

(c) Test the null hypothesis H0 : µ ≤ 2 vs H1 : µ > 2 at the 5% level of
significance.

10.6. We will use the Minitab macro PoisGCP, or the R function poisgcp,
to find the posterior when we have a random sample from a Poisson(µ)
distribution and general continuous prior. Suppose we use the data from
Computer Exercise 10.4, and the prior distribution is given by

g(µ) =


µ for 0 < µ ≤ 2

2 for 2 < µ ≤ 4

4− µ
2 for 4 < µ ≤ 8

0 for 8 < µ
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[Minitab:] Store the values of µ and prior g(µ) in columns c1 and c2.
[R:]

g = createPrior(c(0 ,2, 4, 8), c(0, 2, 2, 0))

mu = seq(0, 8, length = 100)

y = c(1, 2, 3,3, 6)

results = poisgcp(y, "user", mu = mu, mu.prior = g(mu))

(a) Use PoisGCP in Minitab, or the function poisgcp in R, to determine
the posterior distribution g(µ|y1 : . . . , yn).

(b) Use Minitab macro tintegral to find the posterior mean, median, and
standard deviation, or the R functions mean, median and sd.

(c) Find a 95% Bayesian credible interval for µ by using tintegral in
Minitab or the function quantile applied to the results of poisgcp

in R.



CHAPTER 11

BAYESIAN INFERENCE FOR NORMAL
MEAN

Many random variables seem to follow the normal distribution, at least ap-
proximately. The reasoning behind the central limit theorem suggests why
this is so. Any random variable that is the sum of a large number of similar-
sized random variables from independent causes will be approximately normal.
The shapes of the individual random variables “average out” to the normal
shape. Sample data from the sum distribution will be well approximated by
a normal. The most widely used statistical methods are those that have been
developed for random samples from a normal distribution. In this chapter we
show how Bayesian inference on a random sample from a normal distribution
is done.

11.1 Bayes’ Theorem for Normal Mean with a Discrete Prior

For a Single Normal Observation

We are going to take a single observation from the conditional density f(y|µ)
that is known to be normal with known variance σ2. The standard devia-
tion, σ, is the square root of the variance. There are only m possible values

Introduction to Bayesian Statistics, 3rd ed.
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µ1, . . . , µm for the mean. We choose a discrete prior probability distribution
over these values, which summarizes our prior belief about the parameter, be-
fore we take the observation. If we really do not have any prior information,
we would give all values equal prior probability. We only need to choose the
prior probabilities up to a multiplicative constant, since it is only the relative
weights we give to the possible values that are important.

The likelihood gives relative weights to all the possible parameter values
according to how likely the observed value was given each parameter value. It
looks like the conditional observation distribution given the parameter, µ, but
instead of the parameter being fixed and the observation varying, we fix the
observation at the one that actually occurred, and vary the parameter over
all possible values. We only need to know it up to a multiplicative constant
since the relative weights are all that is needed to apply Bayes’ theorem. The
posterior is proportional to prior times likelihood, so it equals

g(µ|y) =
prior × likelihood∑
prior × likelihood .

Any multiplicative constant in either the prior or likelihood would cancel out.

Likelihood of Single Observation

The conditional observation distribution of y|µ is normal with mean µ and
variance σ2, which is known. Its density is

f(y|µ) =
1√

2π σ
e−

1
2σ2 (y−µ)2

.

The likelihood of each parameter value is the value of the observation distribu-
tion at the observed value. The part that does not depend on the parameter µ
is the same for all parameter values, so it can be absorbed into the proportion-
ality constant. The part that gives the shape as a function of the parameter
µ is the important part. Thus the likelihood shape is given by

f(y|µ) ∝ e−
1

2σ2 (y−µ)2

, (11.1)

where y is held constant at the observed value and µ is allowed to vary over
all possible values.

Table for Performing Bayes’ Theorem

We set up a table to help us find the posterior distribution using Bayes’
theorem. The first and second columns contain the possible values of the
parameter µ and their prior probabilities. The third column contains the
likelihood, which is the observation distribution evaluated for each of the
possible values µi where y is held at the observed value. This puts a weight
on each possible value µi proportional to the probability of getting the value
actually observed if µi is the parameter value. There are two methods we can
use to evaluate the likelihood.



BAYES’ THEOREM FOR NORMAL MEAN WITH A DISCRETE PRIOR 213

Table 11.1 Method 1: Finding posterior using likelihood from Table B.3 “ordinates
of normal distribution”

µ Prior z Likelihood Prior × Likelihood Posterior

2.0 .2 -1.2 .1942 .03884 .1238

2.5 .2 -.7 .3123 .06246 .1991

3.0 .2 -.2 .3910 .07820 .2493

3.5 .2 .3 .3814 .07628 .2431

4.0 .2 .8 .2897 .05794 .1847

.31372 1.0000

Finding likelihood from the “ordinates of normal distribution” table. The first
method is to find the likelihood from the “ordinates of the normal distribu-
tion” table. Let

z =
y − µ
σ

for each possible value of µ. Z has a standardized normal(0, 1) distribu-
tion. The likelihood can be found by looking up f(z) in the “ordinates of the
standard normal distribution” given in Table B.3 in Appendix B. Note that
f(−z) = f(z) because of standard normal distribution is symmetric about 0 .

Finding the likelihood from the normal density function. The second method is
to use the normal density formula given in Equation 11.1, holding y fixed at
the observed value and varying µ over all possible values.

EXAMPLE 11.1

Suppose y|µ is normal with mean µ and known variance σ2 = 1. We know
there are only five possible values for µ. They are 2.0, 2.5, 3.0, 3.5, and 4.
We let them be equally likely for our prior. We take a single observation
of y and obtain the value y = 3.2. Let

z =
y − µ
σ

.

The values for the likelihood f(z) are found in Table B.3, “ordinates of
normal distribution,” in Appendix B. Note that f(−z) = f(z) because of
standard normal density is symmetric about 0. The posterior probability
is the prior × likelihood divided by sum of prior × likelihood. The results
are shown in Table 11.1.

If we evaluate the likelihood using the normal density formula, the
likelihood is proportional to

e−
1

2σ2 (y−µ)2

,
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Table 11.2 Method 2: Finding posterior using likelihood from normal density
formula

µ Prior Likelihood Prior × Likelihood Posterior

(ignoring constant)

2.0 .2 e−
1
2

(3.2−2.0)2 =.4868 .0974 .1239

2.5 .2 e−
1
2

(3.2−2.5)2 =.7827 .1565 .1990

3.0 .2 e−
1
2

(3.2−3.0)2 =.9802 .1960 .2493

3.5 .2 e−
1
2

(3.2−3.5)2 =.9560 .1912 .2432

4.0 .2 e−
1
2

(3.2−4.0)2 =.7261 .1452 .1846

.7863 1.0000

where y is held at 3.2 and µ varies over all possible values. Note, we are
absorbing everything that does not depend on µ into the proportionality
constant. The posterior probability is the prior × likelihood divided by
sum of prior × likelihood. The results are shown in Table 11.2. We
note that the results agree with what we found before except for small
round-off errors.

For a Random Sample of Normal Observations

Usually we have a random sample y1, . . . , yn of observations instead of a single
observation. The posterior is always proportional to the prior × likelihood.
The observations in a random sample are all independent of each other, so
the joint likelihood of the sample is the product of the individual observation
likelihoods. This gives

f(y1, . . . , yn|µ) = f(y1|µ)× f(y2|µ)× · · · × f(yn|µ) .

Thus given a random sample,1 Bayes’ theorem with a discrete prior is given
by

g(µ|y1, . . . , yn) ∝ g(µ)× f(y1|µ)× . . .× f(yn|µ) .

We are considering the case where the distribution of each observation yj |µ is
normal with mean µ and variance σ2, which is known.

1de Finetti introduced a condition weaker than independence called exchangeability. Ob-
servations are exchangeable if the conditional density of the sample f(y1, . . . , yn) is the un-
changed for any permutation of the subscripts. In other words, the order the observations
were taken has no useful information. de Finetti (1991) shows that when the observations
are exchangeable, f(y1, . . . , yn) =

∫
v(θ)×w(y1|θ)×w(yn|θ) dθ, for some parameter θ where

v(θ) is some prior distribution and w(y|θ) is some conditional distribution. The observations
are conditionally independent, given θ. The posterior g(θ) ∝ v(θ)×w(y1|θ)×w(yn|θ). This
allows us to treat the exchangeable observations as if they come from a random sample.
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Finding the posterior probabilities analyzing observations sequentially one at a
time. We could analyze the observations one at a time, in sequence y1, . . . , yn,
letting the posterior from the previous observation become the prior for the
next observation. The likelihood of a single observation yj is the column of
values of the observation distribution at each possible parameter value at that
observed value. The posterior is proportional to prior times likelihood.

EXAMPLE 11.2

Suppose we take a random sample of four observations from a normal
distribution having mean µ and known variance σ2 = 1. The observations
are 3.2, 2.2, 3.6, and 4.1.

The possible values of µ are 2.0, 2.5, 3.0, 3.5, and 4.0. Again, we will
use the prior that gives them all equal weight. We want to use Bayes’
theorem to find our posterior belief about µ given the whole random
sample. The posterior equals

g(µ|y) =
prior × likelihood∑
prior × likelihood

.

The results of analyzing the observations one at a time are shown in Table
11.3. This is clearly a lot of work for a large sample. We will see that it
is much easier to use the whole sample together.

Finding the posterior probabilities analyzing the sample all together in a single
step. The posterior is proportional to the prior × likelihood, and the joint
likelihood of the sample is the product of the individual observation likeli-
hoods. Each observation is normal, so it has a normal likelihood. This gives
the joint likelihood

f(y1, . . . , yn|µ) ∝ e−
1

2σ2 (y1−µ)2

× e−
1

2σ2 (y2−µ)2

× · · · × e−
1

2σ2 (yn−µ)2

.

Adding the exponents gives

f(y1, . . . , yn|µ) ∝ e−
1

2σ2 [(y1−µ)2+(y2−µ)2+···+(yn−µ)2] .

We look at the term in brackets

[(y1 − µ)2 + · · ·+ (yn − µ)2] = y2
1 − 2y1µ+ µ2 + · · ·+ y2

n − 2ynµ+ µ2

and combine similar terms to get

= (y2
1 + · · ·+ y2

n)− 2µ(y1 + · · ·+ yn) + nµ2 .



216 BAYESIAN INFERENCE FOR NORMAL MEAN

Table 11.3 Analyzing observations one at a timea

µ Prior1 Likelihood1 Prior1 × Likelihood1 Posterior1

(ignoring constant)

2.0 .2 e−
1
2

(3.2−2.0)2 =.4868 .0974 .1239

2.5 .2 e−
1
2

(3.2−2.5)2 =.7827 .1565 .1990

3.0 .2 e−
1
2

(3.2−3.0)2 =.9802 .1960 .2493

3.5 .2 e−
1
2

(3.2−3.5)2 =.9560 .1912 .2432

4.0 .2 e−
1
2

(3.2−4.0)2 =.7261 .1452 .1846

.7863 1.0000

µ Prior2 Likelihood2 Prior2 × Likelihood2 Posterior2

(ignoring constant)

2.0 .1239 e−
1
2

(2.2−2.0)2 =.9802 .1214 .1916

2.5 .1990 e−
1
2

(2.2−2.5)2 =.9560 .1902 .3002

3.0 .2493 e−
1
2

(2.2−3.0)2 =.7261 .1810 .2857

3.5 .2432 e−
1
2

(2.2−3.5)2 =.4296 .1045 .1649

4.0 .1846 e−
1
2

(2.2−4.0)2 =.1979 .0365 .0576

.6336 1.0000

µ Prior3 Likelihood3 Prior3 × Likelihood3 Posterior3

(ignoring constant)

2.0 .1916 e−
1
2

(3.6−2.0)2 =.2780 .0533 .0792

2.5 .3002 e−
1
2

(3.6−2.5)2 =.5461 .1639 .2573

3.0 .2857 e−
1
2

(3.6−3.0)2 =.8353 .2386 .3745

3.5 .1649 e−
1
2

(3.6−3.5)2 =.9950 .1641 .2576

4.0 .0576 e−
1
2

(3.6−4.0)2 =.9231 .0532 .0835

.6731 1.0000

µ Prior4 Likelihood4 Prior4 × Likelihood4 Posterior4

(ignoring constant)

2.0 .0792 e−
1
2

(4.1−2.0)2 =.1103 .0087 .0149

2.5 .2573 e−
1
2

(4.1−2.5)2 =.2780 .0715 .1226

3.0 .3745 e−
1
2

(4.1−3.0)2 =.5461 .2045 .3508

3.5 .2576 e−
1
2

(4.1−3.5)2 =.8352 .2152 .3691

4.0 .0835 e−
1
2

(4.1−4.0)2 =.9950 .0838 .1425

.5830 1.0000
aNote: The prior for observation i is the posterior after previous observation i− 1.
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When we substitute this back in, factor out n, and complete the square we
get

f(y1, . . . , yn|µ) ∝ e
− n

2σ2

[
µ2−2µȳ+ȳ2−ȳ2+

y2
1+···+y2

n
n

]

∝ e−
n

2σ2 [µ2−2µȳ+ȳ2] × e
− n

2σ2

[
y2
1+···+y2

n
n −ȳ2

]
.

The likelihood of the normal random sample y1, . . . , yn is proportional to the
likelihood of the sample mean ȳ. When we absorb the part that does not
involve µ into the proportionality constant we get

f(y1, . . . , yn|µ) ∝ e−
1

2σ2/n
(ȳ−µ)2

.

We recognize that this likelihood has the shape of a normal distribution with

mean µ and variance σ2

n
. We know ȳ, the sample mean, is normally distributed

with mean µ and variance σ2

n
. So the joint likelihood of the random sample

is proportional to the likelihood of the sample mean, which is

f(ȳ|µ) ∝ e−
1

2σ2/n
(ȳ−µ)2

. (11.2)

We can think of this as drawing a single value, ȳ, the sample mean, from the

normal distribution with mean µ and variance σ2

n . This will make analyzing
the random sample much easier.

We substitute in the observed value of ȳ, the sample mean, and calculate its
likelihood. Then we just find the posterior probabilities using Bayes’ theorem
in only one table. This is much less work!

EXAMPLE 11.2 (continued)

In the preceding example the sample mean was ȳ = 3.275. We use the
likelihood of ȳ which is proportional to the likelihood of the whole sample.
The results are shown in Table 11.4. We see that they agree with the
previous results to three figures. The slight discrepancy in the fourth
decimal place is due to the accumulation of round off errors when we
analyze the observations one at a time. It is clearly easier to use ȳ to
summarize the sample, and perform the calculations for Bayes’ theorem
only once.2

2ȳ is said to be a sufficient statistic for the parameter µ. The likelihood of a random
sample y1, . . . , yn can be replaced by the likelihood of a single statistic only if the statistic
is sufficient for the parameter. One-dimensional sufficient statistics only exist for some
distributions, notably those that come from the one-dimensional exponential family.
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Table 11.4 Analyze the observations all together using likelihood of sample mean

µ Prior1 Likelihoodȳ Prior1 × Likelihoodȳ Posteriorȳ

2.0 .2 e
− 1

2×1/4
(3.275−2.0)2

=.0387 .0077 .0157

2.5 .2 e
− 1

2×1/4
(3.275−2.5)2

=.3008 .0602 .1228

3.0 .2 e
− 1

2×1/4
(3.275−3.0)2

=.8596 .1719 .3505

3.5 .2 e
− 1

2×1/4
(3.275−3.5)2

=.9037 .1807 .3685

4.0 .2 e
− 1

2×1/4
(3.275−4.0)2

=.3495 .0699 .1425

.4904 1.0000

11.2 Bayes’ Theorem for Normal Mean with a Continuous Prior

We have a random sample y1, . . . , yn from a normal distribution with mean
µ and known variance σ2. It is more realistic to believe that all values of
µ are possible, at least all those in an interval. This means we should use
a continuous prior. We know that Bayes’ theorem can be summarized as
posterior proportional to prior times likelihood

g(µ|y1, . . . , yn) ∝ g(µ)× f(y1, . . . , yn|µ) .

Here we allow g(µ) to be a continuous prior density. When the prior was
discrete, we evaluated the posterior by dividing the prior × likelihood by the
sum of the prior × likelihood over all possible parameter values. Integration
for continuous variables is analogous to summing for discrete variables. Hence
we can evaluate the posterior by dividing the prior × likelihood by the integral
of the prior × likelihood over the whole range of possible parameter values.
Thus

g(µ|y1, . . . , yn) =
g(µ)× f(y1, . . . , yn|µ)∫
g(µ)× f(y1, . . . , yn|µ) dµ

. (11.3)

For a normal distribution, the likelihood of the random sample is proportional
to the likelihood of the sample mean, ȳ. So

g(µ|y1, . . . , yn) =
g(µ)× e−

1
2σ2/n

(ȳ−µ)2∫
g(µ)× e−

1
2σ2/n

(ȳ−µ)2

dµ
.

This works for any continuous prior density g(µ). However, it requires an
integration, which may have to be done numerically. We will look at some
special cases where we can find the posterior without having to do the inte-
gration. For these cases, we have to be able to recognize when a density must
be normal from the shape given in Equation 11.1.
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Flat Prior Density for µ (Jeffrey’s Prior for Normal Mean)

We know that the actual values the prior gives to each possible value is not
important. Multiplying all the values of the prior by the same constant would
multiply the integral of the prior times likelihood by the same constant, so it
would cancel out, and we would obtain the same posterior. What is important
is that the prior gives the relative weights to all possible values that we believe
before looking at the data.

The flat prior gives each possible value of µ equal weight. It does not
favor any value over any other value, g(µ) = 1. The flat prior is not really
a proper prior distribution since −∞ < µ < ∞, so it cannot integrate to 1.
Nevertheless, this improper prior works out all right. Even though the prior
is improper, the posterior will integrate to 1, so it is proper. The Jeffreys’
prior for the mean of a normal distribution turns out to be the flat prior.

A single normal observation y. Let y be a normally distributed observation
with mean µ and known variance σ2. The likelihood is given by

f(y|µ) ∝ e−
1

2σ2 (y−µ)2

,

if we ignore the constant of proportionality. Since the prior always equals 1,
the posterior is proportional to this. We rewrite it as

g(µ|y) ∝ e−
1

2σ2 (µ−y)2

.

We recognize from this shape that the posterior is a normal distribution with
mean y and variance σ2.

A normal random sample y1, . . . yn. In the previous section we showed that
the likelihood of a random sample from a normal distribution is proportional
to likelihood of the sample mean ȳ. We know that ȳ is normally distributed

with mean µ and variance σ2

n
. Hence the likelihood has shape given by

f(ȳ|µ) ∝ e−
1

2σ2/n
(ȳ−µ)2

,

where we are ignoring the constant of proportionality. Since the prior always
equals 1, the posterior is proportional to this. We can rewrite it as

g(µ|ȳ) ∝ e−
1

2σ2/n
(µ−ȳ)2

.

We recognize from this shape that the posterior distribution is normal with

mean ȳ and variance σ2

n
.

Normal Prior Density for µ

Single observation. The observation y is a random variable taken from a nor-
mal distribution with mean µ and variance σ2 which is assumed known. We
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have a prior distribution that is normal with mean m and variance s2. The
shape of the prior density is given by

g(µ) ∝ e−
1

2s2
(µ−m)2

,

where we are ignoring the part that does not involve µ because multiplying
the prior by any constant of proportionality will cancel out in the posterior.
The shape of the likelihood is

f(y|µ) ∝ e−
1

2σ2 (y−µ)2

,

where we ignore the part that does not depend on µ because multiplying the
likelihood by any constant will cancel out in the posterior. The prior times
likelihood is

g(µ)× f(y|µ) ∝ e
− 1

2

[
(µ−m)2

s2
+

(y−µ)2

σ2

]
.

Putting the terms in exponent over the common denominator and expanding
them out gives

∝ e
− 1

2

[
σ2(µ2−2µm+m2)+s2(y2−2yµ+µ2)

σ2s2

]
.

We combine the like terms

∝ e
− 1

2

[
(σ2+s2)µ2−2(σ2m+s2y)µ+m2σ2+y2s2

σ2s2

]

and factor out (σ2 + s2)/(σ2s2). Completing the square and absorbing the
part that does not depend on µ into the proportionality constant, we have

∝ e
− 1

2σ2s2/(σ2+s2)

[
µ2−2

(σ2m+s2y)

σ2+s2
µ+(

(σ2m+s2y)

σ2+s2
)2

]

∝ e
− 1

2σ2s2/(σ2+s2)

[
µ− (σ2m+s2y)

σ2+s2

]2

.

We recognize from this shape that the posterior is a normal distribution having
mean and variance given by

m′ =
(σ2m+ s2y)

σ2 + s2
and (s′)2 =

σ2s2

(σ2 + s2)
, (11.4)

respectively. We started with a normal(m, s2) prior, and ended up with a
normal [m′, (s′)2] posterior. This shows that the normal(m, s2) distribution
is the conjugate family for the normal observation distribution with known
variance. Bayes’ theorem moves from one member of the conjugate family to
another member. Because of this we do not need to perform the integration
in order to evaluate the posterior. All that is necessary is to determine the
rule for updating the parameters.



BAYES’ THEOREM FOR NORMAL MEAN WITH A CONTINUOUS PRIOR 221

Simple updating rule for normal family. The updating rules given in Equation
11.4 can be simplified. First we introduce the precision of a distribution that is
the reciprocal of the variance. Precisions are additive. The posterior precision

1

(s′)2
=

(
σ2s2

σ2 + s2

)−1

=
σ2 + s2

σ2s2
=

1

s2
+

1

σ2
.

Thus the posterior precision equals prior precision plus the observation preci-
sion. The posterior mean is given by

m′ =
(σ2m+ s2y)

σ2 + s2
=

σ2

σ2 + s2
×m+

s2

σ2 + s2
× y .

This can be simplified to

m′ =
1/s2

1/σ2 + 1/s2
×m+

1/σ2

1/σ2 + 1/s2
× y .

Thus the posterior mean is the weighted average of the prior mean and the
observation, where the weights are the proportions of the precisions to the
posterior precision.

This updating rule also holds for the flat prior. The flat prior has infi-
nite variance, so it has zero precision. The posterior precision will equal the
observation precision

1/σ2 = 0 + 1/σ2 ,

and the posterior variance equals the observation variance σ2. The flat prior
does not have a well-defined prior mean. It could be anything. We note that

0

1/σ2
× anything +

1/σ2

1/σ2
× y = y ,

so the posterior mean using flat prior equals the observation y

A random sample y1, . . . , yn. A random sample y1, . . . , yn is taken from a
normal distribution with mean µ and variance σ2, which is assumed known.
We have a prior distribution that is normal with mean m and variance s2

given by

g(µ) ∝ e−
1

2s2
(µ−m)2

,

where we are ignoring the part that does not involve µ because multiplying
the prior by any constant will cancel out in the posterior.

We use the likelihood of the sample mean, ȳ which is normally distributed

with mean µ and variance σ2

n . The precision of ȳ is ( nσ2 ). We see that this is
the sum of all the observation precisions for the random sample.

We have reduced the problem to updating given a single normal observa-
tion of ȳ, which we have already solved. Posterior precision equals the prior
precision plus the precision of ȳ.

1

(s′)2
=

1

s2
+

n

σ2
=
σ2 + ns2

σ2s2
. (11.5)
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The posterior variance equals the reciprocal of posterior precision. The pos-
terior mean equals the weighted average of the prior mean and ȳ where the
weights are the proportions of the posterior precision:

m′ =
1/s2

n/σ2 + 1/s2
×m+

n/σ2

n/σ2 + 1/s2
× ȳ . (11.6)

11.3 Choosing Your Normal Prior

The prior distribution you choose should match your prior belief. When the
observation is from a normal distribution with known variance, the conjugate
family of priors for µ is the normal(m, s2). If you can find a member of this
family that matches your prior belief, it will make finding the posterior using
Bayes’ theorem very easy. The posterior will also be a member of the same
family where the parameters have been updated by the simple rules given in
Equations 11.5 and 11.6. You will not need to do any numerical integration.

First, decide on your prior mean m. This is the value your prior belief is
centered on. Then decide on your prior standard deviation s. Think of the
points above and below that you consider to be the upper and lower bounds of
possible values of µ. Divide the distance between these two points by 6 to get
your prior standard deviation s. This way you will get reasonable probability
over all the region you believe possible.

A useful check on your prior is to consider the “equivalent sample size”.
Set your prior variance s2 = σ2/neq and solve for neq. This relates your prior
precision to the precision from a sample. Your belief is of equal importance
to a sample of size neq. If neq is large, it shows you have very strong prior
belief about µ. It will take a lot of sample data to move your posterior belief
far from your prior belief. If it is small, your prior belief is not strong, and
your posterior belief will be strongly influenced by a more modest amount of
sample data.

If you cannot find a prior distribution from the conjugate family that cor-
responds to your prior belief, then you should determine your prior belief for a
selection of points over the range you believe possible, and linearly interpolate
between them. Then you can determine your posterior distribution by

g(µ|y1, . . . , yn) =
f(y1, . . . , yn|µ)× g(µ)∫
f(y1, . . . , yn|µ)× g(µ)dµ

.

EXAMPLE 11.3

Arnie, Barb, and Chuck are going to estimate the mean length of one-
year-old rainbow trout in a stream. Previous studies in other streams have
shown the length of yearling rainbow trout to be normally distributed with
known standard deviation of 2 cm. Arnie decides his prior mean is 30 cm.
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Arnie's prior 
Barb's prior  
Chuck's prior 

5040302010

Figure 11.1 The shapes of Arnie’s, Barb’s, and Chuck’s priors.

He decides that he does not believe it is possible for a yearling rainbow
to be less than 18 cm or greater than 42 cm. Thus his prior standard
deviation is 4 cm. Thus he will use a normal(30, 42) prior. Barb does
not know anything about trout, so she decides to use the “flat” prior.
Chuck decides his prior belief is not normal. His prior has a trapezoidal
shape. His prior gives zero weight at 18 cm. It gives weight one at 24
cm, and is level up to 40 cm, and then goes down to zero at 46 cm. He
linearly interpolates between those values. The shapes of the three priors
are shown in Figure 11.1.

They take a random sample of 12 yearling trout from the stream and
find the sample mean ȳ = 32cm. Arnie and Barb find their posterior
distributions using the simple updating rules for the normal conjugate
family given by Equations 11.5 and 11.6. For Arnie

1

(s′)2
=

1

42
+

12

22
.

Solving for this gives his posterior variance (s′)2 = .3265. His posterior
standard deviation is s′ = .5714. His posterior mean is found by

m′ =
1
42

1
.57142

× 30 +
12
22

1
.57142

× 32 = 31.96 .

Barb is using the “flat” prior, so her posterior variance is

(s′)2 =
22

12
= .3333
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Arnie's posterior 
Barb's posterior  
Chuck's posterior 

343332313029

Figure 11.2 Arnie’s, Barb’s, and Chuck’s posteriors. (Barb and Chuck have nearly
identical posteriors.)

and her posterior standard deviation is s′ = .5774. Her posterior mean
m′ = 32, the sample mean. Both Arnie and Barb have normal posterior
distributions.

Chuck finds his posterior using Equation 11.3 which requires numerical
integration. The three posteriors are shown in Figure 11.2. Since Chuck
used a prior that was flat over the whole region where the likelihood was
appreciable, his posterior is virtually indistinguishable from Barb’s who
used the flat improper prior. Arnie who used an informative prior has a
posterior that is also close to Barb’s. This shows that given the data, the
posteriors are similar despite starting from quite different priors.

11.4 Bayesian Credible Interval for Normal Mean

The posterior distribution g(µ|y1, . . . , yn) is the inference we make for µ given
the observations. It summarizes our entire belief about the parameter given
the data. Sometimes we want to summarize our posterior belief into a range
of values that we believe cannot be ruled out at some probability level, given
the sample data. An interval like this is called a Bayesian credible interval. It
summarizes the range of possible values that are credible at that level. There
are many possible credible intervals for a given probability level. Generally,
the shortest one is preferred. However, in some cases it is easier to find the
credible interval with equal tail probabilities.
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Known Variance

When y1, . . . , yn is a random sample from a normal (µ, σ2) distribution, the
sampling distribution of ȳ, the sample mean, is normal(µ, σ2/n). Its mean
equals that for a single observation from the distribution, and its variance
equals the variance of single observation divided by sample size. Using either
a “flat” prior, or a normal (m, s2) prior, the posterior distribution of µ given
ȳ is normal [m′, (s′)2], where we update according to the rules:

1. Precision is the reciprocal of the variance.

2. Posterior precision equals prior precision plus the precision of sample mean.

3. Posterior mean is weighted sum of prior mean and sample mean, where the
weights are the proportions of the precisions to the posterior precision.

Our (1− α)× 100% Bayesian credible interval for µ is

m′ ± zα
2
× s′ , (11.7)

which is the posterior mean plus or minus the z-value times the posterior
standard deviation, where the z-value is found in the standard normal table.
Our posterior probability that the true mean µ lies outside the credible interval
is α. Since the posterior distribution is normal and thus symmetric, the
credible interval found using Equation 11.7 is the shortest, as well as having
equal tail probabilities.

Unknown Variance

If we do not know the variance, we do not know the precision, so we cannot
use the updating rules directly. The obvious thing to do is to calculate the
sample variance

σ̂2 =
1

n− 1

n∑
i=1

(yi − ȳ)2

from the data. Then we use Equations 11.5 and 11.6 to find (s′)2 and m′

where we use the sample variance σ̂2 in place of the unknown variance σ2.
There is extra uncertainty here, the uncertainty in estimating σ2. We

should widen the credible interval to account for this added uncertainty. We
do this by taking the values from the table for the Student’s t distribution
instead of the standard normal table. The correct Bayesian credible interval
is

m′ ± tα
2
× s′ . (11.8)
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The t value is taken from the row labeled df = n − 1 (degrees of freedom
equals number of observations minus 1).3

Nonnormal Prior

When we start with a nonnormal prior, we find the posterior distribution for
µ using Bayes’ theorem where we have to integrate numerically. The posterior
distribution will be nonnormal. We can find a (1−α)×100% credible interval
by finding a lower value µl and an upper value µu such that

∫ µu

µl

g(µ|y1, . . . , yn) dµ = 1− α .

There are many such values. The best choice µl and µu would give us the
shortest possible credible interval. These values also satisfy

g(µl|y1, . . . , yn) = g(µu|y1, . . . , yn) .

Sometimes it is easier to find the credible interval with lower and upper tail
areas that are equal.

EXAMPLE 11.3 (continued)

Arnie, and Barb each calculated their 95% credible interval from their
respective posterior distributions using Equation 11.7.

[Minitab:] Chuck had to calculate his credible interval numerically from
his numerical posterior using the Minitab macro normgcp.

[R:] Chuck had to calculate his credible numerically from his numerical
posterior using the quantile function on the results of the normgcp func-
tion in R.

The credible intervals are shown in Table 11.5. Arnie, Barb, and Chuck
end up with slightly different credible intervals because they started with
different prior beliefs. But the effect of the data was much greater than
the effect of their priors and their credible intervals are quite similar.

3The resulting Bayesian credible interval is exactly the same one that we would find if
we did the full Bayesian analysis with σ2 as a nuisance parameter, using the joint prior
distribution for µ and σ2 made up of the same prior for µ|σ2 that we used before [“flat” or
normal(m, s2) ]times the prior for σ2 given by g(σ2) ∝ (σ2)−1 . We would find the joint
posterior by Bayes’ theorem. We would find the marginal posterior distribution of µ by
marginalizing out σ2. We would get the same Bayesian credible interval using Student’s t
critical values.



PREDICTIVE DENSITY FOR NEXT OBSERVATION 227

Table 11.5 95% credible intervals

Person Posterior Credible Interval

Distribution Lower Upper

Arnie normal(31.96, .3265) 30.84 33.08

Barb normal(32.00, .3333) 30.87 33.13

Chuck numerical 30.82 33.07

11.5 Predictive Density for Next Observation

Bayesian statistics has a general method for developing the conditional dis-
tribution of the next random observation, given the previous random sample.
This is called the predictive distribution. This is a clear advantage over fre-
quentist statistics, which can only determine the predictive distribution for
some situations. The problem is how to combine the uncertainty from the
previous sample with the uncertainty in the observation distribution. The
Bayesian approach is called marginalization. It entails finding the joint pos-
terior for the next observation and the parameter, given the random sample.
The parameter is treated as a nuisance parameter , and the marginal distribu-
tion of the next observation given the random sample is found by integrating
the parameter out of the joint posterior distribution.

Let yn+1 be the next random variable drawn after the random sample
y1, . . . , yn. The predictive density of yn+1|y1, . . . , yn is the conditional density

f(yn+1|y1, . . . , yn) .

This can be found by Bayes’ theorem. y1, . . . , yn, yn+1 is a random sample
from f(y|µ), which is a normal distribution with mean µ and known variance
σ2 . The conditional distribution of the random sample y1, . . . , yn and the
next random observation yn+1 given the parameter µ is

f(y1, . . . , yn, yn+1|µ) = f(y1|µ)× · · · × f(yn|µ)× f(yn+1|µ) .

Let the prior distribution be g(µ) (either flat prior or normal(m, s2) prior).
The joint distribution of the observations and the parameter µ is

g(µ)× f(y1|µ)× . . .× f(yn|µ)× f(yn+1|µ) .

The conditional density of yn+1 and µ given y1, . . . , yn is

f(yn+1, µ|y1, . . . , yn) = f(yn+1|µ, y1, . . . , yn)× g(µ|y1, . . . , yn) .

We have already found that the posterior g(µ|y1, . . . , yn, ) is normal with
posterior precision equal to prior precision plus the precision of ȳ and mean
equal to the weighted average of the prior mean and ȳ where the weights are
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proportions of the precisions to the posterior precision. Say it is normal with
mean mn and variance s2

n. The distribution of yn+1 given µ and y1, . . . , yn
only depends on µ, because yn+1 is another random draw from the distribution
f(y|µ). Thus the joint posterior (to first n observations) distribution is

f(yn+1, µ|y1, . . . , yn) = f(yn+1|µ)× g(µ|y1, . . . , yn) .

The conditional distribution we want is found by integrating µ out of the
joint posterior distribution. This is the marginal posterior distribution

f(yn+1|y1, . . . , yn) =

∫
f(yn+1, µ|y1, . . . , yn) dµ

=

∫
f(yn+1|µ)× g(µ|y1, . . . , yn) dµ .

These are both normal under our assumed model, so

f(yn+1|y1, . . . , yn) ∝
∫
e−

1
2σ2 (yn+1−µ)2

e
− 1

2s2n
(µ−mn)2

dµ .

Adding the exponents and combining like terms.

f(yn+1|y1, . . . , yn) ∝
∫
e
− 1

2

[
(µ2−2µyn+1+y2

n+1)

σ2 +
(µ2−2µmn+m2

n)

s2n

]
dµ

∝
∫
e
− 1

2

[
( 1
σ2 + 1

s2n
)µ2−2(

yn+1

σ2 +mn
s2n

)µ+
y2
n+1

σ2 +
m2
n

s2n

]
dµ .

Factoring out ( 1
σ2 + 1

s2n
) of the exponent and completing the square

∝
∫
e
− 1

2(σ2s2n)/(σ2+s2n)

[
µ− (s2nyn+1+σ2mn)

σ2+s2n

]2

×e
− 1

2(σ2s2n)/(σ2+s2n)

[
−
(
s2nyn+1+σ2mn

σ2+s2n

)2

+
s2ny

2
n+1+σ2m2

n

s2n+σ2

]
dµ .

The first line is the only part that depends on µ, and we recognize that
it is proportional to a normal density, so integrating it over its whole range
gives a constant. Reorganizing the second part gives

∝ e
− 1

2(σ2s2n)/(σ2+s2n)

[
(s2ny

2
n+1+σ2m2

n)(σ2+s2n)−(s4ny
2
n+1+2s2nσ

2yn+1mn+σ4m2
n)

(σ2+s2n)2

]
,

which simplifies to

∝ e−
1

2(σ2+s2n)
(yn+1−mn)2

. (11.9)

We recognize this as a normal density with mean m′ = mn and variance
(s′)2 = σ2 +s2

n. The predictive mean for the observation yn+1 is the posterior
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mean of µ given the observations y1, . . . , yn. The predictive variance is the
observation variance σ2 plus the posterior variance of µ given the observations
y1, . . . , yn. (Part of the uncertainty in the prediction is due to the uncertainty
in estimating the posterior mean.)

This is one of the advantages of the Bayesian approach. It has a single clear
approach (marginalization) that is always used to construct the predictive
distribution. There is no single clear-cut way this can be done in frequentist
statistics, although in many problems such as the normal case we just did,
they can come up with similar results.

Main Points

Analyzing the observations sequentially one at a time, using the posterior
from the previous observation as the next prior, gives the same results as
analyzing all the observations at once using the initial prior.

The likelihood of a random sample of normal observations is proportional
to the likelihood of the sample mean.

The conjugate family of priors for normal observations with known vari-
ance is the normal(m, s2) family.

If we have a random sample of normal observations and use a normal(m, s2)
prior the posterior is normal(m′, (s′)2), where m′ and (s′)2 are found by
the simple updating rules:

◦ The precision is the reciprocal of the variance.

◦ Posterior precision is the sum of the prior precision and the precision
of the sample.

◦ The posterior mean is the weighted average of the prior mean and the
sample mean, where the weights are the proportions of their precisions
to the posterior precision.

The same updating rules work for the flat prior, remembering the flat
prior has precision equal to zero.

A Bayesian credible interval for µ can be found using the posterior dis-
tribution.

If the variance σ2 is not known, we use the estimate of the variance calcu-
lated from the sample, σ̂2, and use the critical values from the Student’s t
table where the degrees of freedom is n−1, the sample size minus 1. Using
the Student’s t critical values compensates for the extra uncertainty due
to not knowing σ2. (This actually gives the correct credible interval if we
used a prior g(σ2) ∝ 1

σ2 and marginalized σ2 out of the joint posterior.)
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The predictive distribution of the next observation is normal(m′, (s′)2)
where the mean m′ = mn, the posterior mean, and (s′)2 = σ2 + s2

n,
the observation variance plus the posterior variance. (The posterior
variance s2

n allows for the uncertainty in estimating µ.) The predic-
tive distribution is found by marginalizing µ out of the joint distribution
f(yn+1, µ|y1, . . . , yn).

Exercises

11.1. You are the statistician responsible for quality standards at a cheese
factory. You want the probability that a randomly chosen block of cheese
labelled “1 kg” is actually less than 1 kilogram (1,000 grams) to be 1% or
less. The weight (in grams) of blocks of cheese produced by the machine
is normal (µ, σ2) where σ2 = 32. The weights (in grams) of 20 blocks of
cheese are:

994 997 999 1003 994 998 1001 998 996 1002

1004 995 994 995 998 1001 995 1006 997 998

You decide to use a discrete prior distribution for µ with the following
probabilities:

g(µ) =

{
.05 for µ ∈ {991, 992, . . . , 1010},
0 otherwise.

(a) Calculate your posterior probability distribution.

(b) Calculate your posterior probability that µ < 1, 000.

(c) Should you adjust the machine?

11.2. The city health inspector wishes to determine the mean bacteria count
per liter of water at a popular city beach. Assume the number of bacteria
per liter of water is normal with mean µ and standard deviation known to
be σ = 15. She collects 10 water samples and found the bacteria counts
to be:

175 190 215 198 184

207 210 193 196 180

She decides that she will use a discrete prior distribution for µ with the
following probabilities:

g(µ) =

{
.125 for µ ∈ {160, 170, . . . , 230}
0 otherwise
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Calculate her posterior distribution.

11.3. The standard process for making a polymer has mean yield 35%. A
chemical engineer has developed a modified process. He runs the process
on 10 batches and measures the yield (in percent) for each batch. They
are:

38.7 40.4 37.2 36.6 35.9

34.7 37.6 35.1 37.5 35.6

Assume that yield is normal(µ, σ2) where the standard deviation σ = 3
is known.

(a) Use a normal(30, 102) prior for µ. Find the posterior distribution.

(b) The engineer wants to know if the modified process increases the
mean yield. Set this up as a hypothesis test stating clearly the null
and alternative hypotheses.

(c) Perform the test at the 5% level of significance.

11.4. An engineer takes a sample of 5 steel I beams from a batch, and measures
the amount they sag under a standard load. The amounts in mm are:

5.19 4.72 4.81 4.87 4.88
It

is known that the sag is normal(µ, σ2) where the standard deviation
σ = .25 is known.

(a) Use a normal(5, .52) prior for µ. Find the posterior distribution.

(b) For a batch of I beams to be acceptable, the mean sag under the
standard load must be less than 5.20. ( µ < 5.20). Set this up as a
hypothesis test stating clearly the null and alternative hypotheses.

(c) Perform the test at the 5% level of significance.

11.5. New Zealand was the last major land mass to be settled by human beings.
The Shag River Mouth in Otago (lower South Island), New Zealand, is
one of the sites of early human inhabitation that New Zealand arche-
ologists have investigated, in trying to determine when the Polynesian
migration to New Zealand occurred and documenting local adaptations
to New Zealand conditions. Petchey and Higham (2000) describe the ra-
diocarbon dating of well-preserved barracouta thyrsites atun bones found
at the Shag River Mouth site. They obtained four acceptable samples,
which were analyzed by the Waikato University Carbon Dating Unit. As-
sume that the conventional radiocarbon age (CRA) of a sample follows
the normal(µ, σ2) distribution, where the standard deviation σ = 40 is
known. The observations are:
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Observation 1 2 3 4

CRA 940 1040 910 990

(a) Use a normal(1000, 2002) prior for µ. Find the posterior distribution
g(µ|y1, . . . , y4).

(b) Find a 95% credible interval for µ.

(c) To find the θ, the calibrated date, the Stuiver, Reimer, and Braziunas
marine curve (Stuiver et al., 1998) was used. We will approximate
this curve with the linear function

θ = 2203− .835× µ .

Find the posterior distribution of θ given y1, . . . , y4.

(d) Find a 95% credible interval for θ, the calibrated date.

11.6. The Houhora site in Northland (top of North Island) New Zealand is one
of the sites of early human inhabitation that New Zealand archeologists
have investigated, in trying to determine when the Polynesian migration
to New Zealand occurred and documenting local adaptations to New
Zealand conditions. Petchey (2000) describe the Radiocarbon dating
of well-preserved snapper Pagrus auratus bones found at the Houhora
site. They obtained four acceptable samples which were analyzed by the
Waikato University Carbon Dating Unit. Assume that the conventional
radiocarbon age (CRA) of a sample follows the normal(µ, σ2) distribution
where the standard deviation σ = 40 is known. The observations are:

Observation 1 2 3 4

CRA 1010 1000 950 1050

(a) Use a normal(1000, 2002) prior for µ. Find the posterior distribution
g(µ|y1, . . . , y4).

(b) Find a 95% credible interval for µ.

(c) To find the θ, the calibrated date, the Stuiver, Reimer, Braziunas
marine curve (Stuiver et al., 1998) was used. We will approximate
this curve with the linear function

θ = 2203− .835× µ .

Find the posterior distribution of θ given y1, . . . , y4.

(d) Find a 95% credible interval for θ, the calibrated date.

Computer Exercises

11.1. [Minitab:] Use the Minitab macro NormDP to find the posterior dis-
tribution of the mean µ when we have a random sample of observations



COMPUTER EXERCISES 233

from a normal(µ, σ2), where σ2 is known, and we have a discrete prior
for µ.

[R:] Use the R function normdp to find the posterior distribution of
the mean µ when we have a random sample of observations from a nor-
mal(µ, σ2), where σ2 is known, and we have a discrete prior for µ.

Suppose we have a random sample of n = 10 observations from a nor-
mal(µ, σ2) distribution where it is known σ2 = 4. The random sample of
observations are:

3.07 7.51 5.95 6.83 8.80 4.19 7.44 7.06 9.67 6.89

We only allow that there are 12 possible values for µ, 4.0, 4.5, 5.0, 5.5,
6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, and 9.5. If we do not favor any possible
value over another, so we give all possible values of µ probability equal
to 1

12
. The prior distribution is:

g(µ) =

{
.083333 for µ ∈ {4.0, 4.5, . . . , 9.0, 9.5},
0 otherwise.

[Minitab:] Use NormDP to find the posterior distribution g(µ|y1, . . . , y10).
Details for invoking NormDP are in Appendix C.

[R:] Use normdp function to find the posterior distribution g(µ|y1, . . . , y10).
Details for using normdp are in Appendix D.

11.2. Suppose another 6 random observations come later. They are:

6.22 3.99 3.67 6.35 7.89 6.13

Use NormDP in Minitab, or normdp in R, to find the posterior distri-
bution, where we will use the posterior after the first ten observations
y1, . . . , y10, as the prior for the next six observations y11, . . . , y16.

11.3. Instead, combine all the observations together to give a random sample
of size n = 16, and use NormDP in Minitab, or normdp in R, to find
the posterior distribution where we go back the original prior that had
all the possible values equally likely. What do the results of the last two
problems show us?

11.4. Instead of thinking of a random sample of size n = 16, let’s think of the
sample mean as a single observation from its distribution.
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(a) What is the distribution of ȳ? Calculate the observed value of ȳ?

(b) Use NormDP in Minitab, or normdp in R, to find the posterior dis-
tribution g(µ|ȳ).

(c) What does this show us?

11.5. We will use the Minitab macro NormNP, or the R function normnp, to
find the posterior distribution of the normal mean µ when we have a
random sample of size n from a normal(µ, σ2) distribution with known
σ2, and we use a normal(m, s2) prior for µ. The normal family of priors
is the conjugate family for normal observations. That means that if we
start with one member of the family as the prior distribution, we will get
another member of the family as the posterior distribution. It is especially
easy; if we start with a normal(m, s2) prior, we get a normal(m′, (s′)2)
posterior where (s′)2 and m′ are given by

1

(s′)2
=

1

s2
+

n

σ2

and

m′ =
1/s2

1/(s′)2
×m+

n/σ2

1/(s′)2
× ȳ ,

respectively. Suppose the n = 15 observations from a normal(µ, σ2 = 42)
are:

26.8 26.3 28.3 28.5 26.3

31.9 28.5 27.2 20.9 27.5

28.0 18.6 22.3 25.0 31.5

[Minitab:] Use NormNP to find the posterior distribution g(µ|y1, . . . , y15),
where we choose a normal(m = 20, s2 = 52) prior for µ. The details for
invoking NormNP are in Appendix C. Store the likelihood and posterior
in c3 and c4, respectively.

[R:] Use normnp to find the posterior distribution g(µ|y1, . . . , y15), where
we choose a normal(m = 20, s2 = 52) prior for µ. The details for calling
normnp are in Appendix D. Store the results in a variable of your choice
for later use.

(a) What are the posterior mean and standard deviation?

(b) Find a 95% credible interval for µ.

11.6. Repeat part (a) with a normal(30, 42) prior, storing the likelihood and
posterior in c5 and c6.
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11.7. Graph both posteriors on the same graph. What do you notice? What
do you notice about the two posterior means and standard deviations?
What do you notice about the two credible intervals for π?

11.8. [Minitab:] We will use the Minitab macro NormGCP to find the pos-
terior distribution of the normal mean µ when we have a random samples
of size n of normal(µ, σ2) observations with known σ2 = 22, and we have
a general continuous prior for µ.

[R:] We will use the R function normgcp to find the posterior distribu-
tion of the normal mean µ when we have a random samples of size n of
normal(µ, σ2) observations with known σ2 = 22, and we have a general
continuous prior for µ.

Suppose the prior has the shape given by

g(µ) =


µ for 0 < µ ≤ 3 ,

3 for 3 < µ < 5 ,

8− µ for 5 < µ ≤ 8 ,

0 for 8 < µ .

[Minitab:] Store the values of µ and prior g(µ) in column c1 and c2,
respectively.

Suppose the random sample of size n = 16 is:

4.09 4.68 1.87 2.62 5.58 8.68 4.07 4.78

4.79 4.49 5.85 5.90 2.40 6.27 6.30 4.47

[Minitab:] Use NormGCP to determine the posterior distribution
g(µ|y1, . . . , y16), the posterior mean and standard deviation, and a 95%
credible interval. Details for invoking NormGCP are in Appendix C.

[R:] Use normgcp to determine the posterior distribution g(µ|y1, . . . , y16).
Use mean to determine the posterior mean and sd to determine the stan-
dard deviation. Use quantile to compute a 95% credible interval. De-
tails for calling normgcp, mean, sd and quantile are in Appendix D.





CHAPTER 12

COMPARING
BAYESIAN AND FREQUENTIST
INFERENCES FOR MEAN

Making inferences about the population mean when we have a random sample
from a normally distributed population is one of the most widely encountered
situations in statistics. From the Bayesian point of view, the posterior dis-
tribution sums up our entire belief about the parameter, given the sample
data. It really is the complete inference. However, from the frequentist per-
spective, there are several distinct types of inference that can be done: point
estimation, interval estimation, and hypothesis testing. Each of these types
of inference can be performed in a Bayesian manner, where they would be
considered summaries of the complete inference, the posterior. In Chapter
9 we compared the Bayesian and frequentist inferences about the population
proportion π. In this chapter we look at the frequentist methods for point
estimation, interval estimation, and hypothesis testing about µ, the mean of
a normal distribution, and compare them with their Bayesian counterparts
using frequentist criteria.

Introduction to Bayesian Statistics, 3rd ed.
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12.1 Comparing Frequentist and Bayesian Point Estimators

A frequentist point estimator for a parameter is a statistic that we use to
estimate the parameter. The simple rule we use to determine a frequentist
estimator for µ is to use the statistic that is the sample analog of the parameter
to be estimated. So we use the sample mean ȳ to estimate the population
mean µ.1

In Chapter 9 we learned that frequentist estimators for unknown parame-
ters are evaluated by considering their sampling distribution. In other words,
we look at the distribution of the estimator over all possible samples. A com-
monly used criterion is that the estimator be unbiased . That is, the mean of
its sampling distribution is the true unknown parameter value. The second
criterion is that the estimator have small variance in the class of all possible
unbiased estimators. The estimator that has the smallest variance in the class
of unbiased estimators is called the minimum variance unbiased estimator and
is generally preferred over other estimators from the frequentist point of view.

When we have a random sample from a normal distribution, we know that

the sampling distribution of ȳ is normal with mean µ and variance σ2

n . The
sample mean, ȳ, turns out to be the minimum variance unbiased estimator of
µ.

We take the mean of the posterior distribution to be the Bayesian estimator
for µ:

µ̂B = E[µ|y1, . . . , yn] =
1/s2

n/σ2 + 1/s2
×m+

n/σ2

n/σ2 + 1/s2
× ȳ .

We know that the posterior mean minimizes the posterior mean square. This
means that µ̂B is the optimum estimator in the post-data setting. In other
words, it is the optimum estimator for µ given our sample data and using our
prior.

We will compare its performance to that of µ̂f = ȳ under the frequentist
assumption that the true mean µ is a fixed but unknown constant. The
probabilities will be calculated from the sampling distribution of ȳ. In other
words, we are comparing the two estimators for µ in the pre-data setting.

The posterior mean is a linear function of the random variable ȳ, so its
expected value is

E[µ̂B ] =
1/s2

n/σ2 + 1/s2
×m+

n/σ2

n/σ2 + 1/s2
× µ .

1The maximum likelihood estimator is the value of the parameter that maximizes the
likelihood function. It turns out that ȳ is the maximum likelihood estimator of µ for a
normal random sample.
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The bias of the posterior mean is its expected value minus the true parameter
value, which simplifies to

σ2

ns2 + σ2
(m− µ) .

The posterior mean is a biased estimator of µ. The bias could only be 0 if our
prior mean coincides with the unknown true value. The probability of that
happening is 0. The bias increases linearly with the distance the prior mean
m is from the true unknown mean µ. The variance of the posterior mean is[

n/σ2

n/σ2 + 1/s2

]2

× σ2

n
=

(
ns2

ns2 + σ2

)2

× σ2

n

and is seen to be clearly smaller than σ2

n , which is the variance of the fre-
quentist estimator µ̂f = ȳ. The mean squared error of an estimator combines
both the bias and the variance into a single measure:

MSE[µ̂B ] = Bias2 + Var[µ̂] .

The frequentist estimator µ̂f = ȳ is an unbiased estimator of µ, so its mean
squared error equals its variance:

MSE(µ̂f ) =
σ2

n
.

When there is prior information, we will see that the Bayesian estimator has
smaller mean squared error over the range of µ values that are realistic.

EXAMPLE 12.1

Arnold, Beth, and Carol want to estimate the mean weight of “1 kg”
packages of milk powder produced at a dairy company. The weight in
individual packages is subject to random variation. They know that when
the machine is adjusted properly, the weights are normally distributed
with mean 1015 grams, and standard deviation 5 g. They are going to
base their estimate on a sample of size 10. Arnold decides to use a normal
prior with mean 1,000 g and standard deviation 10 g. Beth decides she
will use a normal prior with mean 1,015 g and standard deviation 7.5 g.
Carol decides she will use a “flat” prior. They calculate the bias, variance,
and mean squared error of their estimators for various values of µ to see
how well they perform.

Figure 12.1 shows that only Carol’s prior will give an unbiased Bayesian
estimator. Her posterior Bayesian estimator corresponds exactly to the
frequentist estimator µ̂f = ȳ, since she used the “flat” prior. In Figure
12.2 we see the ranges over which the Bayesian estimators have smaller
MS than the frequentist estimator. In that range they will be closer to
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Figure 12.1 Biases of Arnold’s, Beth’s, and Carol’s estimators.
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Figure 12.2 Mean-squared errors of Arnold’s, Beth’s, and Carol’s estimators.

the true value, on average, than the frequentist estimator. The realistic
range is the target mean (1,015) plus or minus 3 standard deviations (5)
which is from 1,000 to 1,030.

Although both Arnold and Beth’s estimators are biased since they are
using the Bayesian approach, they have smaller mean squared error over
most of the feasible range than Carol’s estimator (which equals the ordi-
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nary frequentist estimator). Since they have smaller mean squared error,
on average, they will be closer to the true value in most of the feasible
range. In particular, Beth’s estimator seems to offer substantially bet-
ter performance over most of the feasible range, while Arnold’s estimator
offers somewhat better performance over the entire feasible range.

12.2 Comparing Confidence and Credible Intervals for Mean

Frequentist statisticians compute confidence intervals for the parameter µ
to determine an interval that “has a high probability of containing the true
value.” Since they are done from the frequentist perspective, the parameter
µ is considered a fixed but unknown constant. The coverage probability is
found from the sampling distribution of an estimator, in this case ȳ, the
sample mean. The sampling distribution of ȳ is normal with mean µ and

variance σ2

n . We know before we take the sample that ȳ is a random variable,
so we can make the probability statement about ȳ:

P

(
µ− zα

2
× σ√

n
< ȳ < µ+ zα

2
× σ√

n

)
= 1− α ,

where zα
2

is the value from the standard normal table having tail area α
2 .

We rearrange this probability statement to have µ in the middle. The upper
inequality in the first statement becomes the lower inequality in the second
statement, and vice versa:

P

(
ȳ − zα

2
× σ√

n
< µ < ȳ + zα

2
× σ√

n

)
= 1− α .

The endpoints of the interval are random because they depend on ȳ, which is
the random variable in this interpretation. The parameter µ is considered a
fixed but unknown constant. So the correct interpretation is that (1 − α) ×
100% of the intervals calculated this way will contain the true value. When
we take our random sample and calculate ȳ, there is nothing random left to
attach a probability to. The actual interval we calculate either contains the
true value or it does not. Only we do not know which is true. So we say
that we are (1−α)×100% confident that the interval we calculated using the
observed value of ȳ,

ȳ ± zα
2
× σ√

n
, (12.1)

does contain the true value. Our confidence comes from the sampling distri-
bution of the statistic. It does not come from the actual sample values we
used to calculate the endpoints of the confidence interval. Sometimes we write
the confidence interval as(

ȳ − zα
2
× σ√

n
, ȳ + zα

2
× σ√

n

)
.
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This contrasts with the Bayesian credible interval for µ that we calculated
in the previous chapter. The probability statement we make is from the
posterior distribution of the parameter µ given the sample data y1, . . . , yn.
It is conditional on the actual sample data we obtained. The probability
given in the statement is our probability given the actual sample. It is a
legitimate probability statement, since µ is considered random. But it is
subjective because we constructed it using our subjective prior. Someone else
who started with a different prior would end up with a (slightly) different
credible interval.

Relationship between Frequentist Confidence Interval and Bayesian Cred-

ible Interval from “Flat” Prior

With a flat prior for µ, the posterior mean equals m′ = ȳ, and the posterior
variance equals (s′)2 = σ2/n. So for this case the Bayesian credible interval
and the frequentist confidence interval will both have the form(

ȳ − zα
2
× σ√

n
< µ < ȳ + zα

2
× σ√

n

)
.

However, they have different interpretations.
The frequentist interpretation is that µ is fixed. The endpoints of the ran-

dom interval are calculated using a probability statement on the sampling
distribution of the statistic ȳ. There is no randomness left after the actual
sample data have been used to calculate the endpoints. No probability state-
ments can be made about the actual calculated interval. The confidence level
(1−α)× 100% associated with the interval means that (1−α)× 100% of the
random intervals calculated this way will contain the true unknown parame-
ter, so we are (1− α)× 100% confident that the one we calculate does.

The Bayesian interpretation lets µ be a random variable, so probability
statements are allowed. The credible interval is calculated from the posterior
distribution given the actual sample data that occurred. The credible interval
has the stated conditional probability of containing µ, given the data.

Scientists are not interested in what would happen with hypothetical repe-
titions of the experiment giving all possible data sets. The only data set that
matters is the one that occurred. They find direct probability statements
about the parameter, conditional on their actual data set to be the most
useful. Scientists often take the confidence interval given by the frequentist
statistician and misinterpret it as a probability interval for the parameter
given the data. The statistician knows that this interpretation is not the
correct one but lets the scientist make the misinterpretation. The correct
interpretation is scientifically useless.

Fortunately for frequentist statisticians, when they allow their clients to
make the probability interpretation from the confidence interval for the mean
of a normal distribution, µ, they can get away with it. Their interval is
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equivalent to the Bayesian credible interval from a “flat” prior, which allows
the probability interpretation in this case

EXAMPLE 12.2 (continued from Example 11.3, p. 222)

Previous studies have determined that the length of yearling trout has
a normal (µ, σ2 = 22) distribution. Arnie, Barb, and Chuck obtained a
random sample of 12 yearling trout. The sample mean ȳ = 32 cm. The
95% confidence interval for µ is given by

ȳ ± z.025 ×
σ√
n

= 32± 1.96× 2√
12

= (30.87, 33.13) .

Compare this with the 95% credible intervals they found in Table 11.5.
We see that it is the same as the credible interval Barb found because she
used the “flat” prior.

12.3 Testing a One-Sided Hypothesis about a Normal Mean

Often we get data from a new population similar to a population we already
know about. For instance, the new population may be the set of all possible
outcomes of an experiment, where we have changed one of the experimental
factors from its standard value to a new value. We know that the mean value of
the standard population is µ0. We assume that each observation from the new
population is normal(µ, σ2), where σ2 is known, and that the observations are
independent of each other. The question we want to answer is, Is the mean µ
for the new population greater than the mean of the standard population? A
one-sided hypothesis test attempts to answer that question. We consider that
there are two possible explanations to any discrepancy between the observed
data and µ0.

1. The mean of the new population is less than or equal to the mean of the
standard population, and any discrepancy is due to chance alone.

2. The mean of the new population is greater than the mean of the standard
population and at least part of the discrepancy is due to this fact.

Hypothesis testing is a way to protect our credibility by making sure that
we do not reject the first explanation unless it has probability less than our
chosen level of significance α. Note that we set up the positive answer to the
question we are asking as the alternative hypothesis. The null hypothesis will
be the negative answer to the question. We will compare the frequentist and
Bayesian approaches.
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Frequentist One-Sided Hypothesis Test about µ

As we saw in Chapter 9, frequentist tests are based on the sampling distri-
bution of a statistic. This makes the probabilities pre-data in that they arise
from all possible random samples that could have occurred. The steps are:

1. Set up the null and alternative hypothesis

H0 : µ ≤ µ0 versus H1 : µ > µ0 .

Note the alternative hypothesis is the change in the direction we are inter-
ested in detecting. Any change in the other direction gets lumped into the
null hypothesis. (We are trying to detect µ > µ0. If µ < µ0, it is not of
any interest to us, so those values get included in the null hypothesis.)

2. The null distribution of ȳ is normal(µ0,
σ2

n ). This is the sampling distri-
bution of ȳ when the null hypothesis is true. Hence the null distribution
of the standardized variable

z =
ȳ − µ0

σ/
√
n

will be normal(0, 1).

3. Choose a level of significance α. Commonly this is .10, .05, or .01.

4. Determine the rejection region. This is a region that has probability α
when the null hypothesis is true (µ = µ0). When α = .05, the rejection
region is z > 1.645. This is shown in Figure 12.3.

5. Take the sample data and calculate ȳ. If the value falls in the rejection
region, we reject the hypothesis at level of significance α = .05; otherwise
we cannot reject the null hypothesis.

6. Another way to perform the test is to calculate the P-value which is the
probability of observing what we observed, or something even more ex-
treme, given the null hypothesis H0 : µ = µ0 is true:

P -value = P

(
Z ≥ ȳ − µ0

σ/
√
n

)
. (12.2)

If P -value ≤ α, then we reject the null hypothesis; otherwise we cannot
reject it.

Bayesian One-Sided Hypothesis Test about µ

The posterior distribution g(µ|y1, · · · , yn) summarizes our entire belief about
the parameter, after viewing the data. Sometimes we want to answer a specific
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Figure 12.3 Null distribution of z = ȳ−µ0
σ/
√
n

with rejection region for one-sided

frequentist hypothesis test at 5% level of significance.

question about the parameter. This could be, Given the data, can we conclude
the parameter µ is greater than µ0? The value µ0 ordinarily comes from
previous experience. If the parameter is still equal to that value, then the
experiment has not demonstrated anything new that requires explaining. We
would lose our scientific credibility if we go around concocting explanations
for effects that may not exist. The answer to the question can be resolved by
testing

H0 : µ ≤ µ0 versus H1 : µ > µ0 .

This is an example of a one-sided hypothesis test. We decide on a level of
significance α that we wish to use. It is the probability below which we will
reject the null hypothesis. Usually α is small, for instance, .10, .05, .01,
.005, or .001. Testing a one-sided hypothesis in Bayesian statistics is done by
calculating the posterior probability of the null hypothesis:

P (H0 : µ ≤ µ0|y1, . . . , yn) =

∫ µ0

−∞
g(µ|y1, . . . , yn) dµ . (12.3)

When the posterior distribution g(µ|y1, . . . , yn) is normal(m′, (s′)2), this can
easily be found from standard normal tables.

P (H0 : µ ≤ µ0|y1, . . . , yn) = P

(
µ−m′

s′
≤ µ0 −m′

s′

)
= P

(
Z ≤ µ0 −m′

s′

)
, (12.4)
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where Z is a standard normal random variable. If the probability is less than
our chosen α, we reject the null hypothesis and can conclude that µ > µ0.
Only then can we search for an explanation of why µ is now larger than µ0.

EXAMPLE 12.3 (continued from Example 11.3, p. 222)

Arne, Barb, and Chuck read in a journal that the mean length of yearling
rainbow trout in a typical stream habitat is 31 cm. They each decide to
determine if the mean length of trout in the stream they are researching
is greater than that by testing

H0 : µ ≤ 31 versus H1 : µ > 31

at the α = 5% level. For one-sided Bayesian hypothesis tests, they calcu-
late the posterior probability of the null hypothesis. Arnie and Barb have
normal posteriors, so they use Equation 12.4. Chuck has a nonnormal
posterior that he calculated numerically.

[Minitab:] He calculates the posterior probability of the null hypothesis
using Equation 12.3, and he evaluates it numerically using the Minitab
macro tintegral.

[R:] He calculates the posterior probability of the null hypothesis using
Equation 12.3, and he evaluates it numerically using the R function cdf.

The results of the Bayesian hypothesis tests are shown in Table 12.1.
They also decide that they will perform the corresponding frequentist

hypothesis test of

H0 : µ ≤ 31 versus H1 : µ > 31

and compare the results. The null distribution of z = ȳ−31
σ/
√
n

and the cor-

rect rejection region are given in Figure 12.3. For this data, z = 32−31
2/
√

12
=

1.732. This lies in the rejection region; hence the null hypothesis is re-
jected at the 5% level. The other way we could perform this frequentist
hypothesis test is to calculate the P-value. For these data,

P-value = P

(
Z >

32− 31

2/
√

12

)
= P (Z > 1.732) ,

which equals .0416 from the standard normal table in Appendix B (Table
B.2). This is less than the level of significance α, so the null hypothesis
is rejected, same as before.2

2We note that in this case the P-value equals Barb’s probability of the null hypothesis
because she used the “flat” prior. For the normal case, the P-value can be interpreted
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Table 12.1 Results of Bayesian one-sided hypothesis tests

Person Posterior P (µ ≤ 31|y1, . . . , yn)

Arnie normal(31.96, .57142) P (Z ≤ 31−31.96
.5714

) = .0465 reject

Barb normal(32.00, .57742) P (Z ≤ 31−32
.5774

) = .0416 reject

Chuck numerical
∫ 31

−∞ g(µ|y1, . . . , yn)dµ = .0489 reject

12.4 Testing a Two-Sided Hypothesis about a Normal Mean

Sometimes the question we want to have answered is, Is the mean for the new
population µ the same as the mean for the standard population which we know
equals µ0? A two-sided hypothesis test attempts to answer this question. We
are interested in detecting a change in the mean, in either direction. We set
this up as

H0 : µ = µ0 versus H1 : µ 6= µ0 . (12.5)

The null hypothesis is known as a point hypothesis. This means that it is
true only for the exact value µ0. This is only a single point along the number
line. At all the other values in the parameter space the null hypothesis is
false. When we think of the infinite number of possible parameter values
in an interval of the real line, we see that the it is impossible for the null
hypothesis to be literally true. There are an infinite number of values that
are extremely close to µ0 but eventually differ from µ0 when we look at enough
decimal places. So rather than testing whether we believe the null hypothesis
to actually be true, we are testing whether the null hypothesis is in the range
that could be true.

Frequentist Two-Sided Hypothesis Test About µ

1. The null and alternative hypothesis are set up as in Equation 12.5. Note
that we are trying to detect a change in either direction.

as the posterior probability of the null hypothesis when the noninformative “flat” prior
was used. However, it is not generally true that P-value has any meaning in the Bayesian
perspective.
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2. The null distribution of the standardized variable

z =
ȳ − µ0

σ/
√
n

will be normal(0, 1).

3. Choose α, the level of significance. This is usually a low value such as .10,
.05, .01, or .001.

4. Determine the rejection region. This is a region that has probability =
α when the null hypothesis is true. For a two-sided hypothesis test, we
have a two-sided rejection region. When α = .05, the rejection region is
|z| > 1.96. This is shown in Figure 12.4.

5. Take the sample and calculate z = ȳ−µ0

σ/
√
n

. If it falls in the rejection region,

reject the null hypothesis at level of significance α; otherwise we cannot
reject the null hypothesis.

6. Another way to do the test is to calculate the P -value which is the prob-
ability of observing what we observed, or something even more extreme
than what we observed, given the null hypothesis is true. Note that the
P -value includes probability of two tails:

P -value = P

(
Z < −

∣∣∣∣ ȳ − µ0

σ/
√
n

∣∣∣∣) + P

(
Z >

∣∣∣∣ ȳ − µ0

σ/
√
n

∣∣∣∣) .
If P-value ≤ α, then we can reject the null hypothesis; otherwise we cannot
reject it.

Relationship between two-sided hypothesis test and confidence interval. We note
that the rejection region for the two-sided test at level α is

z =

∣∣∣∣ ȳ − µ0

σ/
√
n

∣∣∣∣ > zα
2
,

and this can be manipulated to give either

µ0 < ȳ − zα
2
× σ√

n
or µ0 > ȳ + zα

2
× σ√

n
.

We see that if we reject H0 : µ = µ0 at the level α, then µ0 lies outside the
(1 − α) × 100% confidence interval for µ. Similarly, we can show that if we
accept H0 : µ = µ0 at level α, then µ0 lies inside (1− α) × 100% confidence
interval for µ. So the confidence interval contains all those values of µ0 that
would be accepted if tested for.
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Figure 12.4 Null distribution of z = ȳ−µ0
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n

with rejection region for two-sided

frequentist hypothesis test at 5% level of significance.

Bayesian Two-Sided Hypothesis Test about µ

If we wish to test the two-sided hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0

in a Bayesian manner, and we have a continuous prior, we cannot calculate
the posterior probability of the null hypothesis as we did for the one-sided
hypothesis. Since we have a continuous prior, we have a continuous posterior.
We know that the probability of any specific value of a continuous random
variable always equals 0. The posterior probability of the null hypothesis
H0 : µ = µ0 will equal zero. This means we cannot test this hypothesis by
calculating the posterior probability of the null hypothesis and comparing it
to α.

Instead, we calculate a (1 − α) × 100% credible interval for µ using our
posterior distribution. If µ0 lies inside the credible interval, we conclude that
µ0 still has credibility as a possible value. In that case we will not reject the
null hypothesis H0 : µ = µ0, so we consider that it is credible that there is no
effect. (However, we realize it has zero probability of being exactly true if we
look at enough decimal places.) There is no need to search for an explanation
of a nonexistent effect. However, if µ0 lies outside the credible interval, we
conclude that µ0 does not have credibility as a possible value, and we will
reject the null hypothesis. Then it is reasonable to attempt to explain why
the mean has shifted from µ0 for this experiment.
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Main Points

When we have prior information on the values of the parameter that are
realistic, we can find a prior distribution so that the mean of the posterior
distribution of µ (the Bayesian estimator) has a smaller mean squared
error than the sample mean (the frequentist estimator) over the range of
realistic values. This means that on the average, it will be closer to the
true value of the parameter.

A confidence interval for µ is found by inverting a probability statement
for ȳ, and then plugging in the sample value to compute the endpoints. It
is called a confidence interval because there is nothing left to be random,
so no probability statement can be made after the sample value is plugged
in.

The interpretation of a (1−α)× 100% frequentist confidence interval for
µ is that (1−α)×100% of the random intervals calculated this way would
cover the true parameter, so we are (1 − α) × 100% confident that the
interval we calculated does.

A (1− α)× 100% Bayesian credible interval is an interval such that the
posterior probability it contains the random parameter is (1−α)×100%.

This is more useful to the scientist because he/she is only interested in
his/her particular interval.

The (1 − α) × 100% frequentist confidence interval for µ corresponds to
the (1 − α) × 100% Bayesian credible interval for µ when we used the
“flat prior.” So, in this case, frequentist statisticians can get away with
misinterpreting their confidence interval for µ as a probability interval.

In the general, misinterpreting a frequentist confidence interval as a prob-
ability interval for the parameter will be wrong.

Hypothesis testing is how we protect our credibility, by not attributing
an effect to a cause if that effect could be due to chance alone.

If we are trying to detect an effect in one direction, say µ > µ0, we set
this up as the one-sided hypothesis test

H0 : µ ≤ µ0 versus H1 : µ > µ0 .

Note that the alternative hypothesis contains the effect we wish to detect.
The null hypothesis is that the mean is still at the old value (or is changed
in the direction we are not interested in detecting).

If we are trying to detect an effect in either direction, we set this up as
the two-sided hypothesis test

H0 : µ = µ0 versus H1 : µ 6= µ0 .
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The null hypothesis contains only a single value µ0 and is called a point
hypothesis.

Frequentist hypothesis tests are based on the sample space.

The level of significance α is the low probability we allow for rejecting
the null hypothesis when it is true. We choose α.

A frequentist hypothesis test divides the sample space into a rejection re-
gion, and an acceptance region such that the probability the test statistic
lies in the rejection region if the null hypothesis is true is less than the
level of significance α. If the test statistic falls into the rejection region
we reject the null hypothesis at level of significance α.

Or we could calculate the P-value. If the P -value< α, we reject the null
hypothesis at level α.

The P-value is not the probability the null hypothesis is true. Rather,
it is the probability of observing what we observed, or even something
more extreme, given that the null hypothesis is true.

We can test a one-sided hypothesis in a Bayesian manner by computing
the posterior probability of the null hypothesis by integrating the poste-
rior density over the null region. If this probability is less than the level
of significance α, then we reject the null hypothesis.

We cannot test a two-sided hypothesis by integrating the posterior prob-
ability over the null region because with a continuous prior, the prior
probability of a point null hypothesis is zero, so the posterior probability
will also be zero. Instead, we test the credibility of the null value by
observing whether or not it lies within the Bayesian credible interval. If
it does, the null value remains credible and we cannot reject it.

Exercises

12.1. A statistician buys a pack of 10 new golf balls, drops each golf ball from
a height of one meter, and measures the height in centimeters it returns
on the first bounce. The ten values are:

79.9 80.0 78.9 78.5 75.6 80.5 82.5 80.1 81.6 76.7

Assume that y, the height (in cm) a golf ball bounces when dropped
from a one-meter height, is normal(µ, σ2), where the standard deviation
σ = 2.

(a) Assume a normal(75, 102) prior for µ. Find the posterior distribution
of µ.

(b) Calculate a 95% Bayesian credible interval for µ.
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(c) Perform a Bayesian test of the hypothesis

H0 : µ ≥ 80 versus H1 : µ < 80

at the 5% level of significance.

12.2. The statistician buys ten used balls that have been recovered from a
water hazard. He drops each from a height of one meter and measures
the height in centimeters it returns on the first bounce. The values are:

73.1 71.2 69.8 76.7 75.3 68.0 69.2 73.4 74.0 78.2

Assume that y, the height (in cm) a golf ball bounces when dropped
from a one-meter height, is normal(µ, σ2), where the standard deviation
σ = 2.

(a) Assume a emphnormal(75, 102) prior for µ. Find the posterior distri-
bution of µ.

(b) Calculate a 95% Bayesian credible interval for µ.

(c) Perform a Bayesian test of the hypothesis

H0 : µ ≥ 80 versus H1 : µ < 80

at the 5% level of significance.

12.3. The local consumer watchdog group was concerned about the cost of
electricity to residential customers over the New Zealand winter months
(Southern Hemisphere). They took a random sample of 25 residential
electricity accounts and looked at the total cost of electricity used over
the three months of June, July, and August. The costs were:

514 536 345 440 427

443 386 418 364 483

506 385 410 561 275

306 294 402 350 343

480 334 324 414 296

Assume that the amount of electricity used over the three months by a
residential account is normal(µ, σ2), where the known standard deviation
σ = 80.

(a) Use a normal(325, 802) prior for µ. Find the posterior distribution
for µ.

(b) Find a 95% Bayesian credible interval for µ.

(c) Perform a Bayesian test of the hypothesis

H0 : µ = 350 versus H1 : µ 6= 350

at the 5% level.
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(d) Perform a Bayesian test of the hypothesis

H0 : µ ≤ 350 versus H1 : µ > 350

at the 5% level.

12.4. A medical researcher collected the systolic blood pressure reading for a
random sample of n = 30 female students under the age of 21 who visited
the Student’s Health Service. The blood pressures are:

120 122 121 108 133 119 136 108 106 105

122 139 133 115 104 94 118 93 102 114

123 125 124 108 111 134 107 112 109 125

Assume that systolic blood pressure comes from a normal (µ, σ2) distri-
bution where the standard deviation σ = 12 is known.

(a) Use a normal(120, 152) prior for µ. Calculate the posterior distribu-
tion of µ.

(b) Find a 95% Bayesian credible interval for µ.

(c) Suppose we had not actually known the standard deviation σ. In-
stead, the value σ̂ = 12 was calculated from the sample and used
in place of the unknown true value. Recalculate the 95% Bayesian
credible interval.





CHAPTER 13

BAYESIAN INFERENCE FOR
DIFFERENCE BETWEEN MEANS

Comparisons are the main tool of experimental science. When there is un-
certainty present due to observation errors or experimental unit variation,
comparing observed values cannot establish the existence of a difference be-
cause of the uncertainty within each of the observations. Instead, we must
compare the means of the two distributions the observations came from. In
many cases the distributions are normal, so we are comparing the means of
two normal distributions. There are two experimental situations that the data
could arise from.

The most common experimental situation is where there are independent
random samples from each distribution. The treatments have been applied
to different random samples of experimental units. The second experimental
situation is where the random samples are paired. It could be that the two
treatments have been applied to the same set of experimental units (at sep-
arate times). The two measurements on the same experimental unit cannot
be considered independent. Or it could be that the experimental units were
formed into pairs of similar units, with one of each pair randomly assigned to
each treatment group. Again, the two measurements in the same pair cannot
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be considered independent. We say the observations are paired. The random
samples from the two populations are dependent.

In Section 13.1 we look at how to analyze data from independent random
samples. If the treatment effect is an additive constant, we get equal variances
for the two distributions. If the treatment effect is random, not constant, we
get unequal variances for the two distributions. In Section 13.2 we investi-
gate the case where we have independent random samples from two normal
distributions with equal variances. In Section 13.3, we investigate the case
where we have independent random samples from two normal distributions
with unequal variances. In Section 13.4 we investigate how to find the dif-
ference between proportions using the normal approximation, when we have
independent random samples. In Section 13.5 we investigate the case where
we have paired samples.

13.1 Independent Random Samples from Two Normal Distribu-

tions

We may want to determine whether or not a treatment is effective in increas-
ing growth rate in lambs. We know that lambs vary in their growth rate.
Each lamb in a flock is randomly assigned to either the treatment group or
the control group that will not receive the treatment. The assignments are
done independently. This is called a completely randomized design, and we
discussed it in Chapter 2. The reason the assignments are done this way
is that any differences among lambs enters the treatment group and control
group randomly. There will be no bias in the experiment. On average, both
groups have been assigned similar groups of lambs over the whole range of
the flock. The distribution of underlying growth rates for lambs in each group
is assumed to be normal with the same means and variances σ2. The means
and variances for the two groups are equal because the assignment is done
randomly.

The mean growth rate for a lamb in the treatment group, µ1, equals the
mean underlying growth rate plus the treatment effect for that lamb. The
mean growth rate for a lamb in the control group, µ2, equals the mean un-
derlying growth rate plus zero, since the control group does not receive the
treatment. Adding a constant to a random variable does not change the vari-
ance, so if the treatment effect is constant for all lambs, the variances of the
two groups will be equal. We call that an additive model. If the treatment
effect is different for different lambs, the variances of the two groups will be
unequal. This is called a nonadditive model.

If the treatment is effective, µ1 will be greater than µ2. In this chapter
we will develop Bayesian methods for inference about the difference between
means µ1 − µ2 for both additive and nonadditive models.
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13.2 Case 1: Equal Variances

We often assume the treatment effect is the same for all units. The observed
value for a unit given the treatment is the mean for that unit plus the constant
treatment effect. Adding a constant does not change the variance, so the
variance of the treatment group is equal to the variance of the control group.
That sets up an additive model.

When the Variance Is Known

Suppose we know the variance σ2. Since we know the two samples are inde-
pendent of each other we will use independent priors for both means. They
can either be normal (m1, s

2
1) and normal(m2, s

2
2) priors, or we can use flat

priors for one or both of the means.
Because the priors are independent, and the samples are independent, the

posteriors are also independent. The posterior distributions are

µ1|y11, . . . , yn11
∼ Normal(m′1, (s′1)2)

and
µ2|y12, . . . , yn22

∼ Normal(m′2, (s′2)2) ,

where the m′1, (s
′
1)2,m′2, and (s′2)2 are found using the simple updating for-

mulas given by Equations 11.5 and 11.6.
Since µ1|y11, . . . , yn11

and µ2|y12, . . . , yn22
are independent of each other,

we can use the rules for mean and variance of a difference between independent
random variables. This gives the posterior distribution of µd = µ1 − µ2. It is

µd|y11, . . . , yn11
, y12, . . . , yn22

∼ Normal(m′d, (s′d)2) ,

where m′d = m′1 −m′2, and (s′d)
2 = (s′1)2 + (s′2)2. We can use this posterior

distribution to make further inferences about the difference between means
µ1 − µ2.

Credible interval for difference between means, known equal variance case. The
general rule for finding a (1 − α) × 100% Bayesian credible interval when
the posterior distribution is emphnormal(m′, (s′)2) is to take the posterior
mean ± critical value × posterior standard deviation. When the observation
variance (or standard deviation) is assumed known, the critical value comes
from the standard normal table. In that case the (1 − α) × 100% Bayesian
credible interval for µd = µ1 − µ2 is

m′d ± zα2 × s
′
d . (13.1)

This can be written as

m′1 −m′2 ± zα2 ×
√

(s′1)2 + (s′2)2 . (13.2)

Thus, given the data, the probability that µ1 − µ2 lies between the endpoints
of the credible interval equals (1− α)× 100%.
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Confidence interval for difference between means, known equal variance case.
The frequentist confidence interval for µd = µ1−µ2 when the two distributions
have equal known variance is given by

ȳ1 − ȳ2 ± zα2 × σ
√

1

n1
+

1

n2
. (13.3)

This is the same formula as the Bayesian credible interval would be if we
had used independent “flat” priors for µ1 and µ2, but the interpretations are
different. The endpoints of the confidence interval are what is random under
the frequentist viewpoint. (1 − α) × 100% of the intervals calculated using
this formula would contain the fixed, but unknown, value µ1 − µ2. We would
have that confidence that the particular interval we calculated using our data
contains the true value.

EXAMPLE 13.1

In Example 3.2 (Chapter 3, p. 40), we looked at two series of measure-
ments Michelson made on the speed of light in 1879 and 1882, respec-
tively. The data are shown in Table 3.3. (The measurements are figures
given plus 299,000.) Suppose we assume each speed of light measurement
is normally distributed with known standard deviation 100. Let us use
independent normal(m, s2) priors for the 1879 and 1882 measurements,
where m = 300, 000 and s2 = 5002.

The posterior distributions of µ1879 and µ1882 can be found using the
updating rules. For µ1879 they give

1

(s′1879)2
=

1

5002
+

20

1002
= .002004 ,

so (s′1879)2 = 499, and

m′1879 =
1

5002

.002004
× 300, 000 +

20
1002

.002004
× (299, 000 + 909) = 299, 909 .

Similarly, for µ1882 they give

1

(s′1882)2
=

1

5002
+

23

1002
= .002304 ,

so (s′1882)2 = 434, and

m′1882 =
1

5002

.002304
× 300, 000 +

23
1002

.002304
× (299, 000 + 756) = 299, 757 .

The posterior distribution of µd = µ1879−µ1882 will be normal(m′d, (s
′
d)

2)
where

m′d = 299, 909− 299, 757 = 152
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and

(s′d)
2 = 499 + 434 = 30.52 .

The 95% Bayesian credible interval for µd = µ1879 − µ1882 is

152± 1.96× 30.5 = (92.1, 211.9) .

One-sided Bayesian hypothesis test. If we wish to determine whether or not the
treatment mean µ1 is greater than the control mean µ2, we will use hypothesis
testing. We test the null hypothesis

H0 : µd ≤ 0 versus H1 : µd > 0 ,

where µd = µ1−µ2 is the difference between the two means. To do this test in
a Bayesian manner, we calculate the posterior probability of the null hypoth-
esis P (µd ≤ 0|data) where data includes the observations from both samples
y11, . . . , yn11

and y12, . . . , yn22
. Standardizing by subtracting the mean and

dividing by the standard deviation gives

P (µd ≤ 0|data) = P

(
µd −m′d

s′d
≤ 0−m′d

s′d

)
= P

(
Z ≤ 0−m′d

s′d

)
, (13.4)

where Z has the standard normal distribution. We find this probability in
Table B.2 in Appendix B. If it is less than α, we can reject the null hypothesis
at that level. Then we can conclude that µ1 is indeed greater than µ2 at that
level of significance.

Two-sided Bayesian hypothesis test. We cannot test the two-sided hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0

in a Bayesian manner by calculating the posterior probability of the null
hypothesis. It is a point null hypothesis since it is only true for a single value
µd = µ1 − µ2 = 0. When we used the continuous prior, we got a continuous
posterior, and the probability that any continuous random variable takes on
any particular value always equals 0.

Instead, we use the credible interval for µd. If 0 lies in the interval, we can-
not reject the null hypothesis and 0 remains a credible value for the difference
between the means. However, if 0 lies outside the interval, then 0 is no longer
a credible value at the significance level α.
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EXAMPLE 13.1 (continued)

The 95% Bayesian credible interval for µd = µ1879−µ1882 is (92.1, 211.9).
0 lies outside the interval; hence we reject the null hypothesis that the
means for the two measurement groups were equal and conclude that they
are different. This shows that there was a bias in Michelson’s first group
of measurements, which was very much reduced in the second group of
measurements.

When the Variance Is Unknown and Flat Priors Are Used

Suppose we use independent “flat” priors for µ1 and µ2. Then (s′1)2 = σ2

n1
,

(s′2)2 = σ2

n2
, m′1 = ȳ1 and m′2 = ȳ2.

Credible interval for difference between means, unknown equal variance case. If
we knew the variance σ2, the credible interval could be written as

ȳ1 − ȳ2 ± zα2 × σ
√

1

n1
+

1

n2
.

However, we do not know σ2. We will have to estimate it from the data. We
can get an estimate from each of the samples. The best thing to do is to
combine these estimates to get the pooled variance estimate

σ̂2
p =

∑n1

i=1(yi1 − ȳ1)2 +
∑n2

j=1(yj2 − ȳ2)2

n1 + n2 − 2
. (13.5)

Since we used the estimated σ̂2
p instead of the unknown true variance σ2, the

credible interval should be widened to allow for the additional uncertainty. We
will get the critical value from the Student’s t table with n1 + n2 − 2 degrees
of freedom. The approximate (1 − α) × 100% Bayesian credible interval for
µ1 − µ2 is

ȳ1 − ȳ2 ± tα2 × σ̂p
√

1

n1
+

1

n2
, (13.6)

where the critical value comes from the Student’s t table with n1 + n2 − 2
degrees of freedom.1

Confidence interval for difference between means, unknown equal variance case.
The frequentist confidence interval for µd = µ1−µ2 when the two distributions

1Actually, we are treating the unknown σ2 as a nuisance parameter and are using an
independent prior g(σ2) ∝ 1

σ2 for it. We find the marginal posterior distribution of µ1−µ2

from the joint posterior of µ1 − µ2 and σ2 by integrating out the nuisance parameter. The
marginal posterior will be Student’s t with n1 +n2−2 degrees of freedom instead of normal.
This gives us the credible interval with the z critical value replaced by the t critical value.
We see that our approximation gives us the correct credible interval for these assumptions.
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have equal unknown variance is

ȳ1 − ȳ2 ± tα2 × σ̂p
√

1

n1
+

1

n2
, (13.7)

where the critical value again comes from the Student’s t table with n1+n2−2
degrees of freedom. The confidence interval has exactly the same form as the
Bayesian credible interval when we use independent “flat” priors for µ1 and
µ2. Of course, the interpretations are different.

The frequentist has (1 − α) × 100% confidence that the interval contains
the true value of the difference because (1−α)×100% of the random intervals
calculated this way do contain the true value. The Bayesian interpretation
is that given the data from the two samples, the posterior probability the
random parameter µ1 − µ2 lies in the interval is (1− α).

In this case the scientist who misinterprets the confidence interval for a
probability statement about the parameter gets away with it, because it ac-
tually is a probability statement using independent flat priors. It is fortunate
for frequentist statisticians that their most commonly used techniques (confi-
dence intervals for means and proportions) are equivalent to Bayesian credible
intervals for some specific prior.2 Thus a scientist who misinterpret his/her
confidence interval as a probability statement, can do so in this case, but
he/she is implicitly assuming independent flat priors. The only loss that the
scientist will have incurred is he/she did not get to use any prior information
he/she may have had.3

One-sided Bayesian hypothesis test. If we want to test

H0 : µd ≤ 0 versus H1 : µd > 0

when we assume that the two random samples come from normal distributions
having the same unknown variance σ2, and we use the pooled estimate of
the variance σ̂2

p in place of the unknown σ2 and assume independent “flat”
priors for the means µ1 and µ2, we calculate the posterior probability of the
null hypothesis using Equation 13.5; but instead of finding the probability in
the standard normal table, we find it from the Student’s t distribution with
n1 + n2 − 2 degrees of freedom. We could calculate it using Minitab or R.
Alternatively, we could find values that bound this probability in the Student’s
t table.

2In the case of a single random sample from a normal distribution, frequentist confidence
intervals are equivalent to Bayesian credible intervals with flat prior for µ. In the case of
independent random samples from normal distributions having equal unknown variance σ2,
confidence intervals for the difference between means are equivalent to Bayesian credible
intervals using independent flat priors for µ1 and µ2, along with the improper prior g(σ) ∝
σ−1 for the nuisance parameter.
3Frequentist techniques such as the confidence intervals used in many other situations do
not have Bayesian interpretations. Interpreting the confidence interval as the basis for a
probability statement about the parameter would be completely wrong in those situations.
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Two-sided Bayesian hypothesis test. When we assume that both samples come
from normal distributions with equal unknown variance σ2 and we use the
pooled estimate of the variance σ̂2

p in place of the unknown variance σ2 and
assume independent “flat” priors, we can test the two-sided hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0

using the credible interval for µ1 − µ2 given in Equation 13.7. There are
n1 + n2 − 2 degrees of freedom. If 0 lies in the credible interval, we cannot
reject the null hypothesis, and 0 remains a credible value for the difference
between the means. However, if 0 lies outside the interval, then 0 is no longer
a credible value at the significance level α.

13.3 Case 2: Unequal Variances

When the Variances Are Known

In this section we will look at a nonadditive model, but with known variances.
Let y11, . . . , yn11

be a random sample from normal distribution having mean
µ1 and known variance σ2

1. Let y12, . . . , yn22
be a random sample from normal

distribution having mean µ2 and known variance σ2
2. The two random samples

are independent of each other.
We use independent priors for µ1 and µ2. They can be either normal

priors or “flat” priors. Since the samples are independent and the priors
are independent, we can find each posterior independently of the other. We
find these using the simple updating formulas given in Equations 11.5 and
11.6. The posterior of µ1|y11, . . . , yn11

is normal [m′1, (s
′
1)2]. The posterior

of µ2|y12, . . . , yn22
is normal [m′2, (s

′
2)2]. The posteriors are independent since

the priors are independent and the samples are independent. The posterior
distribution of µd = µ1 − µ2 is normal with mean equal to the difference of
the posterior means, and variance equal to the sum of the posterior variances.

(µd|y11, . . . , yn11
, y12, . . . , yn22

) ∼ normal(m′d, (s′d)2) ,

where m′d = m′1 −m′2 and (s′d)
2 = (s′1)2 + (s′2)2

Credible interval for difference between means, known unequal variance case. A
(1 − α) × 100% Bayesian credible interval for µd = µ1 − µ2, the difference
between means is

m′d ± zα2 × (s′d) , (13.8)

which can be written as

m′1 −m′2 ± zα2 ×
√

(s′1)2 + (s′2)2 . (13.9)

Note these are identical to Equations 13.1 and 13.2.
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Confidence interval for difference between means, known unequal variance case.
The frequentist confidence interval for µd = µ1 − µ2 in this case would be

ȳ1 − ȳ2 ± zα2 ×

√
σ2

1

n1
+
σ2

2

n2
. (13.10)

Note that this has the same formula as the Bayesian credible interval we would
get if we had used flat priors for both µ1 and µ2. However, the intervals have
very different interpretations.

When the Variances Are Unknown

When the variances are unequal and unknown, each of them will have to be
estimated from the sample data

σ̂2
1 =

1

n1 − 1

n1∑
i=1

(yi1 − ȳ1)2 and σ̂2
2 =

1

n2 − 1

n2∑
i=1

(yi2 − ȳ2)2 .

These estimates will be used in place of the unknown true values in the sim-
ple updating formulas. This adds extra uncertainty. To allow for this, we
should use the Student’s t table to find the critical values. However, it is no
longer straightforward what degrees of freedom should be used. Satterthwaite
suggested that the adjusted degrees of freedom be(

σ̂2
1

n1
+

σ̂2
2

n2

)2

(σ̂2
1/n1)2

n1−1 +
(σ̂2

2/n2)2

n2−1

rounded down to the nearest integer.

Credible interval for difference between means, unequal unknown variances. When
we use the sample estimates of the variances in place of the true unknown
variances in Equations 11.5 and 11.6, an approximate (1−α)×100% credible
interval for µd = µ1 − µ2 is given by

m′1 −m′2 ± tα2 ×
√

(s′1)2 + (s′2)2 ,

where we find the degrees of freedom using Satterthwaite’s adjustment. In
the case where we use independent “flat” priors for µ1 and µ2, this can be
written as

m′1 −m′2 ± tα2 ×

√
σ̂2

1

n1
+
σ̂2

2

n2
. (13.11)

Confidence interval for difference between means, unequal unknown variances.
An approximate (1− α)× 100% confidence interval for µd = µ1 − µ2 is given
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by

m′1 −m′2 ± tα2 ×

√
σ̂2

1

n1
+
σ̂2

2

n2
. (13.12)

We see this is the same form as the (1−α)×100% credible interval found when
we used independent flat priors.4 However, the interpretations are different.

Bayesian hypothesis test of H0 : µ1 −µ2 ≤ 0 versus H1 : µ1 −µ2 > 0. To
test

H0 : µ1 − µ2 ≤ 0 versus H1 : µ1 − µ2 > 0

at the level α in a Bayesian manner, we calculate the posterior probability of
the null hypothesis. We would use Equation 13.5. If the variances σ2

1 and σ2
2

are known, we get the critical value from the standard normal table. However,
when we use estimated variances instead of the true unknown variances, we
will find the probabilities using the Student’s t distribution with degrees of
freedom given by Satterthwaite’s approximation. If this probability is less
than α, then we reject the null hypothesis and conclude that µ1 > µ2. In
other words, that the treatment is effective. Otherwise, we cannot reject the
null hypothesis.

4Finding the posterior distribution of µ1−µ2− (ȳ1− ȳ2)|y11, . . . , yn11 , y12, . . . , yn22 in the
Bayesian paradigm, or equivalently finding the sampling distribution of ȳ1− ȳ2− (µ1−µ2)
in the frequentist paradigm when the variances are both unknown and not assumed equal
has a long and controversial history. In the one-sample case, the sampling distribution of
ȳ−µ is the same as the posterior distribution of µ− ȳ|y1, . . . , yn when we use the flat prior
for g(µ) = 1 and the noninformative prior g(σ2) ∝ 1

σ2 and marginalize σ2 out of the joint
posterior. This leads to the equivalence between the confidence interval and the credible
interval for that case. Similarly, in the two-sample case with equal variances, the sampling
distribution of ȳ1−ȳ2 equals the posterior distribution of µ1−µ2|y11, . . . , yn11 , y12, . . . , yn22

where we use flat priors for µ1 and µ2 and the noninformative prior g(σ2) ∝ 1
σ2 , and

marginalized σ2 out of the joint posterior. Again, that led to the equivalence between the
confidence interval and the credible interval for that case. One might be led to believe
this pattern would hold in general. However, it does not hold in the two sample case with
unknown unequal variances. The Bayesian posterior distribution in this case is known as
the Behrens–Fisher distribution. The frequentist distribution depends on the ratio of the
unknown variances. Both of the distributions can be approximated by Student’s t with
an adjustment made to the degrees of freedom. Satterthwaite suggested that the adjusted
degrees of freedom be (

σ̂2
1
n1

+
σ̂2

2
n2

)2

(σ̂2
1/n1)2

n1−1
+

(σ̂2
2/n2)2

n2−1

rounded down to the nearest integer.
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13.4 Bayesian Inference for Difference Between Two Proportions

Using Normal Approximation

Often we want to compare the proportions of a certain attribute in two pop-
ulations. The true proportions in population 1 and population 2 are π1 and
π2, respectively. We take a random sample from each of the populations and
observe the number of each sample having the attribute. The distribution
of y1|π1 is binomial(n1, π1) and the distribution of y2|π2 is binomial( n2, π2),
and they are independent of each other

We know that if we use independent prior distributions for π1 and π2, we
will get independent posterior distributions. Let the prior for π1 be beta(a1, b1)
and for π2 be beta(a2, b2). The posteriors are independent beta distributions.
The posterior for π1 is beta(a′1, b

′
1), where a′1 = a1 + y1 and b′1 = b1 +n1− y1.

Similarly the posterior for π2 is beta(a′2, b
′
2), where a′2 = a2 + y2 and b′2 =

b2 + n2 − y2

Approximate each posterior distribution with the normal distribution hav-
ing same mean and variance as the beta. The posterior distribution of πd =
π1−π2 is approximately normal(m′d, (s

′
d)

2) where the posterior mean is given
by

m′d =
a′1

a′1 + b′1
− a′2
a′2 + b′2

and the posterior variance is given by

(s′d)
2 =

a′1b
′
1

(a′1 + b′1)2(a′1 + b′1 + 1)
+

a′2b
′
2

(a′2 + b′2)2(a′2 + b′2 + 1)
.

Credible interval for difference between proportions. We find the (1−α)×100%
Bayesian credible interval for πd = π1 − π2 using the general rule for the
(approximately) normal posterior distribution. It is

m′d ± zα2 × s
′
d . (13.13)

One-sided Bayesian hypothesis test for difference between proportions. Suppose
we are trying to detect whether πd = π1 − π2 > 0. We set this up as a test of

H0 : πd ≤ 0 versus H1 : πd > 0 .

Note, the alternative hypothesis is what we are trying to detect. We calculate
the approximate posterior probability of the null distribution by

P (πd ≤ 0) = P

(
πd −m′d

s′d
≤ 0−m′d

s′d

)
= P

(
Z ≤ 0−m′d

s′d

)
. (13.14)

If this probability is less than the level of significance α that we chose, we
would reject the null hypothesis at that level and conclude π1 > π2. Other-
wise, we cannot reject the null hypothesis.
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Two-sided Bayesian hypothesis test for difference between proportions. To test
the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 6= 0

in a Bayesian manner, check whether the null hypothesis value (0) lies inside
the credible interval for πd given in Equation 13.13. If it lies inside the interval,
we cannot reject the null hypothesis H0 : π1 − π2 = 0 at the level α. If it
lies outside the interval, we can reject the null hypothesis at the level α and
accept the alternative H1 : π1 − π2 6= 0.

EXAMPLE 13.2

The student newspaper wanted to write an article on the smoking habits
of students. A random sample of 200 students (100 males and 100 fe-
males) between ages of 16 and 21 were asked about whether they smoked
cigarettes. Out of the 100 males, 22 said they were regular smokers, and
out of the 100 females, 31 said they were regular smokers. The editor of
the paper asked Donna, a statistics student, to analyze the data.

Donna considered the male and female samples would be independent.
Her prior knowledge was that a minority of students smoked cigarettes, so
she decided to use independent beta(1,2) priors for πm and πf , the male
and female proportions respectively. Her posterior distribution of πm will
be beta(23,80), and her posterior distribution of πf will be beta(32,71).
Hence, her posterior distribution of the difference between proportions,
πd = πm − πf , will be approximately normal(m′d, (s

′
d)

2) where

m′d =
23

23 + 80
− 32

32 + 71

= −.087

and

(s′d)
2 =

23 ∗ 80

(23 + 80)2 ∗ (23 + 80 + 1)
+

32 ∗ 71

(32 + 71)2 ∗ (32 + 71 + 1)

= .0612 .

Her 95% credible interval for πd will be (-.207, .032) which contains 0.
She cannot reject the null hypothesis H0 : πm−πf = 0 at the 5% level, so
she tells the editor that the data does not conclusively show that there is
any difference between the proportions of male and female students who
smoke.

13.5 Normal Random Samples from Paired Experiments

Variation between experimental units often is a major contributor to the vari-
ation in the data. When the two treatments are administered to two inde-
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pendent random samples of the experimental units, this variation makes it
harder to detect any difference between the treatment effects, if one exists.

Often designing a paired experiment makes it much easier to detect the dif-
ference between treatment effects. For a paired experiment, the experimental
units are matched into pairs of similar units. Then one of the units from each
pair is assigned to the first treatment, and the other in that pair is assigned
the second treatment. This is a randomized block experimental design, where
the pairs are blocks. We discussed this design in Chapter 2. For example, in
the dairy industry, identical twin calves are often used for experiments. They
are exact genetic copies. One of each pair is randomly assigned to the first
treatment, and the other is assigned to the second treatment.

Paired data can arise other ways. For instance, if the two treatments are
applied to the same experimental units (at different times) giving the first
treatment effect time to dissipate before the second treatment is applied. Or,
we can be looking at “before treatment” and “after treatment” measurements
on the same experimental units.

Because of the variation between experimental units, the two observations
from units in the same pair will be more similar than two observations from
units in different pairs. In the same pair, the only difference between the
observation given treatment A and the observation given treatment B is the
treatment effect plus the measurement error. In different pairs, the differ-
ence between the observation given treatment A and the observation given
treatment B is the treatment effect plus the experimental unit effect plus
the measurement error. Because of this we cannot treat the paired random
samples as independent of each other. The two random samples come from
normal populations with means µA and µB , respectively. The populations
will have equal variances σ2 when we have an additive model. We consider
that the variance comes from two sources: measurement error plus random
variation between experimental units.

Take Differences within Each Pair

Let yi1 be the observation from pair i given treatment A, and let yi2 be the
observation from pair i given treatment B. If we take the difference between
the observations within each pair, di = yi1 − yi2, then these di will be a
random sample from a normal population with mean µd = µA − µB , and
variance σ2

d. We can treat this (differenced) data as a sample from a single
normal distribution and do inference using techniques found in Chapters 11
and 12.

EXAMPLE 13.3

An experiment was designed to determine whether a mineral supplement
was effective in increasing annual yield in milk. Fifteen pairs of identi-
cal twin dairy cows were used as the experimental units. One cow from
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Table 13.1 Milk annual yield

Twin Set Milk Yield: Control (liters) Milk Yield: Treatment (liters)

1 3525 3340

2 4321 4279

3 4763 4910

4 4899 4866

5 3234 3125

6 3469 3680

7 3439 3965

8 3658 3849

9 3385 3297

10 3226 3124

11 3671 3218

12 3501 3246

13 3842 4245

14 3998 4186

15 4004 3711

each pair was randomly assigned to the treatment group that received
the supplement. The other cow from the pair was assigned to the control
group that did not receive the supplement. The annual yields are given in
Table 13.1. Assume that the annual yields from cows receiving the treat-
ment are normal(µt, σ

2
t ), and that the annual yields from the cows in the

control group are normal(µc, σ
2
c ). Aleece, Brad, and Curtis decided that

since the two cows in the same pair share identical genetic background,
their responses will be more similar than two cows that were from differ-
ent pairs. There is natural pairing. As the samples drawn from the two
populations cannot be considered independent of each other, they decided
to take differences di = yi1 − yi2. The differences will be normal(µd, σ

2
d),

where µd = µt − µc and we will assume that σ2
d = 2702 is known.

Aleece decided she would use a “flat” prior for µd. Brad decided he
would use a normal(m, s2) prior for µd where he let m = 0 and s = 200.
Curtis decided that his prior for µd matched a triangular shape. He set
up a numerical prior that interpolated between the heights given in Table
13.2 The shapes of the priors are shown in Figure 13.1. Aleece used a
“flat” prior, so her posterior will be normal [m′, (s′)2] where m′ = ȳ =
7.067 and (s′)2 = 2702/15 = 4860. Her posterior standard deviation
s′ =

√
4860 = 69.71. Brad used a normal(0, 2002) prior, so his posterior

will be normal [m′, (s′)2] where m′ and s′ are found by using Equations
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Table 13.2 Curtis’ prior weights. The shape of his continuous prior is found by
linearly interpolating between them.

Value Weight

-300 0

0 3

300 0

Aleece's prior 
Brad's prior   
Curtis' prior  

5002500-250-500

Figure 13.1 The shapes of Aleece’s, Brad’s, and Curtis’ prior distributions.

11.5 and 11.6.

1

(s′)2
=

1

2002
+

15

2702
= 0.000230761 ,

so his s′ = 65.83, and

m′ =
1

2002

.000230761
× 0 +

15
2702

.000230761
× 7.067 = 6.30 .

Curtis has to find his posterior numerically using Equation 11.3.

[Minitab:] He uses the Minitab macro NormGCP to do the numerical
integration.
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Aleece's posterior 
Brad's posterior   
Curtis' posterior  

5004003002001000-100-200-300-400-500

Figure 13.2 Aleece’s, Brad’s, and Curtis’s posterior distributions.

[R:] He uses the R function normgcp calculate the posterior, and cdf to
do the numerical integration.

The three posteriors are shown in Figure 13.2. They decided that to
determine whether or not the treatment was effective in increasing the
yield of milk protein, they would perform the one-sided hypothesis test

H0 : µd ≤ 0 vs H1 : µd > 0

at the 95% level of significance. Aleece and Brad had normal posteriors,
so they used Equation 13.5 to calculate the posterior probability of the
null hypothesis.

[Minitab:] Curtis had a numerical posterior, so he used Equation 12.3
and performed the integration using the Minitab macro tintegral.

[R:] [Minitab:] Curtis had a numerical posterior, so he used Equation
12.3 and performed the integration using the cdf function in R.

The results are shown in Table 13.3.

Main Points

The difference between normal means are used to make inferences about
the size of a treatment effect.
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Table 13.3 Results of Bayesian one-sided hypothesis tests

Person Posterior P (µd ≤ 0|d1, . . . , dn)

Aleece normal(7.07, 69.712) P (Z ≤ 0−7.07
69.71

) =.4596 do not reject

Brad normal(6.30, 65.832) P (Z ≤ 0−6.30
65.83

) =.4619 do not reject

Curtis numerical
∫ 0

−∞ g(µd|d1, . . . , dn)dµ =.4684 do not reject

Each experimental unit is randomly assigned to the treatment group or
control group. The unbiased random assignment method ensures that
both groups have similar experimental units assigned to them. On aver-
age, the means are equal.

The treatment group mean is the mean of the experimental units assigned
to the treatment group, plus the treatment effect.

If the treatment effect is constant, we call it an additive model, and both
sets of observations have the same underlying variance, assumed to be
known.

If the data in the two samples are independent of each other, we use inde-
pendent priors for the two means. The posterior distributions µ1|y11, . . . , yn11

and µ2|y12, . . . , yn22 are also independent of each other and can be found
using methods from Chapter 11.

Let µd = µ1−µ2. The posterior distribution of µd|y11, . . . , yn11
, y12, . . . , yn22

is normal with mean m′d = m′1 −m′2 and variance (s′d)
2 = (s′1)2 + (s′2)2

The (1− α)× 100% credible interval for µd = µ1 − µ2 is given by

m′d ± zα/2 × s′d .

If the variance is unknown, use the pooled estimate from the two samples.
The credible interval will have to be widened to account for the extra
uncertainty. This is accomplished by taking the critical values from the
Student’s t table (with n1 + n2 − 2 degrees of freedom) instead of the
standard normal table.

The confidence interval for µd|y11, . . . , yn11
, y12, . . . , yn22

is the same as
the Bayesian credible interval where flat priors are used.

If the variances are unknown, and not equal, use the sample estimates
as if they were the correct values. Use the Student’s t for critical values,
with the degrees given by Satterthwaite’s approximation. This is true for
both credible intervals and confidence intervals.

The posterior distribution for a difference between proportions can be
found using the normal approximation. The posterior variances are



272 BAYESIAN INFERENCE FOR DIFFERENCE BETWEEN MEANS

known, so the critical values for credible interval come from standard
normal table.

When the observations are paired, the samples are dependent. Calculate
the differences di = yi1 − yi2 and treat them as a single sample from a
normal(µd, σ

2
d), where µd = µ1−µ2. Inferences about µd are made using

the single sample methods found in Chapters 11 and 12.

Exercises

13.1. The Human Resources Department of a large company wishes to compare
two methods of training industrial workers to perform a skilled task.
Twenty workers are selected: 10 of them are randomly assigned to be
trained using method A, and the other 10 are assigned to be trained
using method B. After the training is complete, all the workers are tested
on the speed of performance at the task. The times taken to complete
the task are:

Method A Method B

115 123

120 131

111 113

123 119

116 123

121 113

118 128

116 126

127 125

129 128

(a) We will assume that the observations come from normal(µA, σ
2) and

normal(µB , σ
2), where σ2 = 62. Use independent normal (m, s2)

prior distributions for µA and µB , respectively, where m = 100 and
s2 = 202. Find the posterior distributions of µA and µB, respectively.

(b) Find the posterior distribution of µA − µB.

(c) Find a 95% Bayesian credible interval for µA − µB .

(d) Perform a Bayesian test of the hypothesis

H0 : µA − µB = 0 versus H1 : µA − µB 6= 0

at the 5% level of significance. What conclusion can we draw?
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13.2. A consumer testing organization obtained samples of size 12 from two
brands of emergency flares and measured the burning times. They are:

Brand A Brand B

17.5 13.4

21.2 9.9

20.3 13.5

14.4 11.3

15.2 22.5

19.3 14.3

21.2 13.6

19.1 15.2

18.1 13.7

14.6 8.0

17.2 13.6

18.8 11.8

(a) We will assume that the observations come from normal(µA, σ
2) and

normal(µB , σ
2), where σ2 = 32. Use independent normal (m, s2)

prior distributions for µA and µB, respectively, where m = 20 and
s2 = 82. Find the posterior distributions of µA and µB , respectively.

(b) Find the posterior distribution of µA − µB.

(c) Find a 95% Bayesian credible interval for µA − µB .

(d) Perform a Bayesian test of the hypothesis

H0 : µA − µB = 0 versus H1 : µA − µB 6= 0

at the 5% level of significance. What conclusion can we draw?

13.3. The quality manager of a dairy company is concerned whether the levels
of butterfat in a product are equal at two dairy factories which produce
the product. He obtains random samples of size 10 from each of the
factories’ output and measures the butterfat. The results are:
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Factory 1 Factory 2

16.2 16.1

12.7 16.3

14.8 14.0

15.6 16.2

14.7 15.2

13.8 16.5

16.7 14.4

13.7 16.3

16.8 16.9

14.7 13.7

(a) We will assume that the observations come from normal(µ1, σ
2) and

normal(µ2, σ
2), where σ2 = 1.22. Use independent normal(m, s2)

prior distributions for µ1 and µ2, respectively, where m = 15 and
s2 = 42. Find the posterior distributions of µ1 and µ2, respectively.

(b) Find the posterior distribution of µ1 − µ2.

(c) Find a 95% Bayesian credible interval for µ1 − µ2.

(d) Perform a Bayesian test of the hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0

at the 5% level of significance. What conclusion can we draw?

13.4. Independent random samples of ceramic produced by two different pro-
cesses were tested for hardness. The results were:

Process 1 Process 2

8.8 9.2

9.6 9.5

8.9 10.2

9.2 9.5

9.9 9.8

9.4 9.5

9.2 9.3

10.1 9.2

(a) We will assume that the observations come from normal(µ1, σ
2) and

normal(µ2, σ
2), where σ2 = .42. Use independent normal(m, s2) prior
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distributions for µ1 and µ2, respectively, where m = 10 and s2 = 12.
Find the posterior distributions of µ1 and µ2, respectively.

(b) Find the posterior distribution of µ1 − µ2.

(c) Find a 95% Bayesian credible interval for µ1 − µ2.

(d) Perform a Bayesian test of the hypothesis

H0 : µ1 − µ2 ≥ 0 versus H1 : µ1 − µ2 < 0

at the 5% level of significance. What conclusion can we draw?

13.5. A thermal power station discharges its cooling water into a river. An
environmental scientist wants to determine if this has adversely affected
the dissolved oxygen level. She takes samples of water one kilometer
upstream from the power station, and one kilometer downstream from
the power station, and measures the dissolved oxygen level. The data
are:

Upstream Downstream

10.1 9.7

10.2 10.3

13.4 6.4

8.2 7.3

9.8 11.7

8.9

(a) We will assume that the observations come from normal(µ1, σ
2) and

normal(µ2, σ
2), where σ2 = 22. Use independent normal (m, s2) prior

distributions for µ1 and µ2, respectively, where m = 10 and s2 = 22.
Find the posterior distributions of µ1 and µ2, respectively.

(b) Find the posterior distribution of µ1 − µ2.

(c) Find a 95% Bayesian credible interval for µ1 − µ2.

(d) Perform a Bayesian test of the hypothesis

H0 : µ1 − µ2 ≤ 0 versus H1 : µ1 − µ2 > 0

at the 5% level of significance. What conclusion can we draw?

13.6. Cattle, being ruminants, have multiple chambers in their stomachs. Stim-
ulating specific receptors causes reflex contraction of the reticular groove
and swallowed fluid then bypasses the reticulo-rumen and moves directly
to the abomasum. Scientists wanted to develop a simple nonradioactive,
noninvasive test to determine when this occurs. In a study to determine
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the fate of swallowed fluids in cattle, McLeay et al. (1997) investigate
a carbon-13 (13C) octanoic acid breath test as a means of detecting a
reticular groove contraction in cattle. Twelve adult cows were randomly
assigned to two groups of 6 cows. The first group had 200 mg of 13C
octanoic acid administered into the reticulum, and the second group had
the same dose of 13C octanoic acid administered into the reticulo-osmasal
orifice. Change in the enrichment of 13C in breath was measured for each
cow 10 minutes later. The results are:

13C Administered into 13C Administered into

Reticulum Reticulo-omasal Orifice

Cow ID x Cow ID y

8 1.5 14 3.5

9 1.9 15 4.7

10 0.4 16 4.8

11 -1.2 17 4.1

12 1.7 18 4.1

13 0.7 19 5.3

(a) Explain why the observations of variables x and y can be considered
independent in this experiment.

(b) Suppose the change in the enrichment of 13C for cows administered in
the reticulum is normal (µ1, σ

2
1), where σ2

1 = 1.002. Use a emphnormal(2, 22)
prior for µ1. Calculate the posterior distribution of µ1|x8, . . . , x13.

(c) Suppose the change in the enrichment of 13C for cows administered in
the reticulo-omasal orifice is normal(µ2, σ

2
2), where σ2

2 = 1.402. Use
a normal(2, 22) prior for µ2. Calculate the posterior distribution of
µ1|y14, . . . , y19.

(d) Calculate the posterior distribution of µd = µ1 − µ2, the difference
between the means.

(e) Calculate a 95% Bayesian credible interval for µd.

(f) Test the hypothesis

H0 : µ1 − µ2 = 0 versus H1 : µ1 − µ2 6= 0

at the 5% level of significance. What conclusion can be drawn.

13.7. Glass fragments found on a suspect’s shoes or clothes are often used to
connect the suspect to a crime scene. The index of refraction of the frag-
ments are compared to the refractive index of the glass from the crime
scene. To make this comparison rigorous, we need to know the variabil-
ity the index of refraction is over a pane of glass. Bennett et al. (2003)
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analyzed the refractive index in a pane of float glass, searching for any
spatial pattern. Here are samples of the refractive index from the edge
and from the middle of the pane.

Edge of Pane Middle of Pane

1.51996 1.51997 1.52001 1.51999

1.51998 1.52000 1.52004 1.51997

1.51998 1.52004 1.52005 1.52000

1.52000 1.52001 1.52004 1.52002

1.52000 1.51997 1.52004 1.51996

For these data, ȳ1 = 1.51999, ȳ2 = 1.52001, sd1 = .00002257, and
sd2 = .00003075.

(a) Suppose glass at the edge of the pane is normal(µ1, σ
2
1), where σ1 =

.00003. Calculate the posterior distribution of µ1 when you use a
normal(1.52000, .00012) prior for µ1.

(b) Suppose glass in the middle of the pane is normal(µ2, σ
2
2), where

σ2 = .00003. Calculate the posterior distribution of µ2 when you use
a normal(1.52000, .00012) prior for µ2.

(c) Find the posterior distribution of µd = µ1 − µ2.

(d) Find a 95% credible interval for µd.

(e) Perform a Bayesian test of the hypothesis

H0 : µd = 0 versus H1 : µd 6= 0

at the 5% level of significance.

13.8. The last half of the twentieth century saw great change in the role of
women in New Zealand society. These changes included education, em-
ployment, family formation, and fertility, where women took control of
these aspects of their lives. During those years, phrases such as “women’s
liberation movement” and “the sexual revolution” were used to describe
the changing role of women in society. In 1995 the Population Stud-
ies Centre at the University of Waikato sponsored the New Zealand
Women Family, Employment, and Education Survey (NZFEE) to investi-
gate these changes. A random sample of New Zealand women of all ages
between 20 and 59 was taken, and the women were interviewed about
their educational, employment, and personal history. The details of this
survey are summarized in Marsault et al. (1997). Detailed analysis of the
data from this survey is in Johnstone et al. (2001).

Have the educational qualifications of younger New Zealand women changed
from those of previous generations of New Zealand women? To shed light
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on this question, we will compare the educational qualifications of two
generations of New Zealand women 25 years apart. The women in the
age group 25–29 at the time of the survey were born between 1966 and
1970. The women in the age group 50–54 at the time of the survey were
born between 1941 and 1945.

(a) Out of 314 women in the age group 25–29, 234 had completed a
secondary school qualification. Find the posterior distribution of π1,
the proportion of New Zealand women in that age group who have a
completed a secondary school qualification. (Use a uniform prior for
π1.)

(b) Out of 219 women in the age group 50–54, 120 had completed a
secondary school qualification. Find the posterior distribution of π2,
the proportion of New Zealand women in that age group who have a
completed a secondary school qualification. (Use a uniform prior for
π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Find a 99% Bayesian credible interval for π1 − π2.

(e) What would be the conclusion if you tested the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 6= 0

at the 1% level of significance?

13.9. Are younger New Zealand women more likely to be in paid employment
than previous generations of New Zealand women? To shed light on this
question, we will look at the current employment status of two generations
of New Zealand women 25 years apart.

(a) Out of 314 women in the age group 25–29, 171 were currently in paid
employment. Find the posterior distribution of π1, the proportion
of New Zealand women in that age group who are currently in paid
employment. (Use a uniform prior for π1.)

(b) Out of 219 women in the age group 50–54, 137 were currently in paid
employment. Find the posterior distribution of π2, the proportion
of New Zealand women in that age group who are currently in paid
employment. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Find a 99% Bayesian credible interval for π1 − π2.

(e) What would be the conclusion if you tested the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 6= 0

at the 1% level of significance?



EXERCISES 279

13.10. Are younger New Zealand women becoming sexually active at an earlier
age than previous generations of New Zealand women? To shed light on
this question, we look at the proportions of New Zealand women who
report having experienced sexual intercourse before age 18 for the two
generations of New Zealand women.

(a) Out of the 298 women in the age group 25–29 who responded to
this question, 180 report having experienced sexual intercourse be-
fore reaching the age of 18. Find the posterior distribution of π1, the
proportion of New Zealand women in that age group who had expe-
rienced sexual intercourse before age 18. (Use a uniform prior for
π1.)

(b) Out of the 218 women in the age group 50–54 who responded to
this question, 52 report having experienced sexual intercourse before
reaching the age of 18. Find the posterior distribution of π2, the pro-
portion of New Zealand women in that age group who had experienced
sexual intercourse before age 18. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Test the hypothesis

H0 : π1 − π2 ≤ 0 versus H1 : π1 − π2 > 0

in a Bayesian manner at the 1% level of significance. Can we conclude
that New Zealand women in the generation aged 25–29 have experi-
enced sexual intercourse at an earlier age than New Zealand women
in the generation aged 50–54?

13.11. Are younger New Zealand women marrying at a later age than previous
generations of New Zealand women? To shed light on this question, we
look at the proportions of New Zealand women who report having been
married before age 22 for the two generations of New Zealand women.

(a) Out of the 314 women in the age group 25–29, 69 report having been
married before the age 22. Find the posterior distribution of π1, the
proportion of New Zealand women in that age group who have married
before age 22. (Use a uniform prior for π1.)

(b) Out of the 219 women in the age group 50–54, 114 report having
been married before age 22. Find the posterior distribution of π2, the
proportion of New Zealand women in that age group who have been
married before age 22. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Test the hypothesis

H0 : π1 − π2 ≥ 0 versus H1 : π1 − π2 < 0
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in a Bayesian manner at the 1% level of significance. Can we conclude
that New Zealand women in the generation aged 25–29 have married
at an later age than New Zealand women in the generation aged 50–
54?

13.12. Family formation patterns in New Zealand have changed over the time
frame covered by the survey. New Zealand society has become more ac-
cepting of couples co-habiting (living together before or instead of legally
marrying). When we take this into account, are younger New Zealand
women forming family-like units at a similar age to previous generations?

(a) Out of the 314 women in the age group 25–29, 199 report having
formed a domestic partnership (either co-habiting or legal marriage)
before age 22. Find the posterior distribution of π1, the proportion of
New Zealand women in that age group who have formed a domestic
partnership before age 22. (Use a uniform prior for π1.)

(b) Out of the 219 women in the age group 50–54, 116 report having
formed a domestic partnership before age 22. Find the posterior dis-
tribution of π2, the proportion of New Zealand women in that age
group who have formed a domestic partnership before age 22. (Use a
uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Find a 99% Bayesian credible interval for π1 − π2.

(e) What would be the conclusion if you tested the hypothesis

H0 : π1 − π2 = 0 versus H1 : π1 − π2 6= 0

at the 1% level of significance.

13.13. Are young New Zealand women having their children at a later age than
previous generations?

(a) Out of the 314 women in the age group 25–29, 136 report having
given birth to their first child before the age of 25. Find the posterior
distribution of π1, the proportion of New Zealand women in that age
group who have given birth before age 25. (Use a uniform prior for
π1.)

(b) Out of the 219 women in the age group 50–54, 135 report having given
birth to their first child before age 25. Find the posterior distribution
of π2, the proportion of New Zealand women in that age group who
have given birth before age 25. (Use a uniform prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Test the hypothesis

H0 : π1 − π2 ≥ 0 versus H1 : π1 − π2 < 0
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in a Bayesian manner at the 1% level of significance. Can we conclude
that New Zealand women in the generation aged 25–29 have had their
first child at a later age than New Zealand women in the generation
aged 50–54?

13.14. Previous research has suggested that the childhood circumcision of males
may be a protective factor against the acquisition of sexually transmitted
infections (STI). Fergusson et al. (2006) relate the circumcision status and
self reported STI history using data from 25-year longitudinal study of a
cohort of New Zealand children, known as the Christchurch Health and
Development Study.

(a) Out of 356 non-circumcised males, 37 reported having had at least one
STI by age 25. Find the posterior distribution of π1, the probability
a non-circumcised male reports at least one STI by age 25. (Use a
beta(1, 10) prior for π1.)

(b) Out of the 154 circumcised males, 7 reported having at least one STI
by age 25. Find the posterior distribution of π2, the probability a
circumcised male reports at least one STI by age 25. (Use a beta(1, 10)
prior for π2.)

(c) Find the approximate posterior distribution of π1 − π2.

(d) Test the hypothesis

H0 : π1 − π2 ≤ 0 versus H1 : π1 − π2 > 0

in a Bayesian manner at the 5% level of significance. What does the
result say about the research hypothesis?

13.15. The experiment described in Exercise 13.6 was repeated on another set of
7 cows (McLeay et al., 1997). However, in this case, the second treatment
was given to the same set of 7 cows that were given the first treatment,
at a later time when the first dose of 13C had been eliminated from the
cow. The data are given below:

13C Administered into 13C Administered into

Reticulum Reticulo-omasal Orifice

Cow ID x y

1 1.1 3.5

2 0.8 3.6

3 1.7 5.1

4 1.1 5.6

5 2.0 6.2

6 1.6 6.5

7 3.1 8.3
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(a) Explain why the variables x and y cannot be considered independent
in this experiment.

(b) Calculate the differences di = xi − yi for i = 1, . . . , 7.

(c) Assume that the differences come from a normal(µd, σ
2
d) distribution,

where σ2
d = 1. Use a normal(0, 32) prior for µd. Calculate the poste-

rior for µd|d1, . . . , d7.

(d) Calculate a 95% Bayesian credible interval for µd.

(e) Test the hypothesis

H0 : µd = 0 versus H1 : µd 6= 0

at the 5% level of significance. What conclusion can be drawn?

13.16. One of the advantages of Bayesian statistics is that evidence from dif-
ferent sources can be combined. In Exercise 13.6 and Exercise 13.15,
we found posterior distributions of µd using data sets from two different
experiments. In the first experiment, the two treatments were given to
two sets of cows, and the measurements were independent. In the second
experiment, the two treatments were given to a third set of cows at differ-
ent times and the measurements were paired. When we want to find the
posterior distribution given data sets from two independent experiments,
we should use the posterior distribution after the first experiment as the
prior distribution for the second.

(a) Explain why the two data sets can be considered independent.

(b) Find the posterior distribution of µd|data where the data include all
of the measurements x8, . . . , x13, y14, . . . , y19, d1, . . . , d7.

(c) Find a 95% credible interval for µd based on all the data.

(d) Test the hypothesis

H0 : µd = 0 versus H1 : µd 6= 0

at the 5% level of significance. Can we conclude that 13C octanoic
acid breath test is effective in detecting reticular groove contraction
in cattle?



CHAPTER 14

BAYESIAN INFERENCE FOR SIMPLE
LINEAR REGRESSION

Sometimes we want to model a relationship between two variables, x and y.
We might want to find an equation that describes the relationship. Often we
plan to use the value of x to help predict y using that relationship.

The data consist of n ordered pairs of points (xi, yi) for i = 1, . . . , n. We
think of x as the predictor variable (independent variable) and consider that
we know it without error. We think y is a response variable that depends
on x in some unknown way, but that each observed y contains an error term
as well. We plot the points on a two-dimensional scatterplot ; the predictor
variable is measured along the horizontal axis, and the response variable is
measured along the vertical axis.

We examine the scatterplot for clues about the nature of the relationship.
To construct a regression model, we first decide on the type of equation that
appears to fit the data. A linear relationship is the simplest equation relating
two variables. This would give a straight line relationship between the pre-
dictor x and the response y. We leave the parameters of the line, the slope β,
and the y-intercept α0 unknown, so all lines are possible.

Then we determine the best estimates of the unknown parameters by some
criterion. The criterion that is most frequently used is least squares. This
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Figure 14.1 Scatterplot with three possible lines, and the residuals from each of
the lines. The third line is the least squares line. It minimizes the sum of squares of
the residuals.

is where we find the parameter values that minimize the sum of squares of
the residuals, which are the vertical distances of the observed points to the
fitted equation. We do this for the simple linear regression in Section 14.1. In
Section 14.2 we look at how an exponential growth model can be fitted using
least squares regression on the logarithm of the response variable.

At this stage no inferences are possible because there is no probability
model for the data. In Section 14.3 we construct a regression model that
makes assumptions on how the response variable depends on the predictor
variable and how randomness enters the data. Inferences can be done on the
parameters of this model. In Section 14.4 we fit a linear relationship between
the two variables using Bayesian methods, and perform Bayesian inferences
on the parameters of the model. In Section 14.5 we determine the predictive
distribution of yn+1, the next observation, given the data and xn+1, the value
of the predictor variable for the next observation.

14.1 Least Squares Regression

We could draw any number of lines on the scatterplot. Some of them would fit
the data points fairly well, others would be extremely far from the points. A
residual is the vertical distance from an observed point on the scatterplot to
the line. We can put in any line that we like and then calculate the residuals
from that line. Least squares is a method for finding the line that best fits
the points in terms of minimizing sum of squares of the residuals. Figure 14.1
shows a scatterplot, three possible lines, and the residuals from each line.

The equation of a line is determined by two things: its slope β and its
y-intercept α0. Actually its slope and any other point on the line will do,
for instance, αx̄, the intercept of the vertical line at x̄. Finding the least
squares line is equivalent to finding its slope and the y-intercept (or another
intercept).
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The Normal Equations and the Least Squares Line

The sum of squares of the residuals from line y = α0 + βx is

SSres =
n∑
i=1

[yi − (α0 + βxi)]
2 .

To find values of α0 and β that minimize SSres using calculus, take derivatives
with respect to each α0 and β and set equal to 0, and solve the resulting set
of simultaneous equations. First, take the derivative with respect to intercept
α0. This gives the equation,

∂SS

∂α0
=

n∑
i=1

2× [yi − (α0 + βxi)]
1 × (−1) = 0

which simplifies to
n∑
i=1

yi −
n∑
i=1

α0 −
n∑
i=1

βxi = 0

and further to
ȳ − α0 − βx̄ = 0 . (14.1)

Second, taking the derivative with respect to the slope β gives the equation

∂SS

∂β
=

n∑
i=1

2× [yi − (α0 + βxi)]
1 × (−xi) = 0 ,

which simplifies to
n∑
i=1

xiyi −
n∑
i=1

α0xi −
n∑
i=1

βx2
i = 0

and further to
xy − α0x̄− βx2 = 0 . (14.2)

Equation 14.1 and Equation 14.2 are known as the normal equations. Here
normal refers to right angles1 and has nothing to do with the normal distri-
bution. Solve Equation 14.1 for α0 in terms of β and substitute into Equation
14.2 and solve for β

xy − (ȳ − βx̄)x̄− βx2 = 0 .

The solution is the least squares slope2

B =
xy − x̄ȳ
x2 − x̄2

. (14.3)

1Least squares finds the projection of the (n-dimensional) observation vector onto the plane
containing all possible values of (α0, β).
2There are many different formulas for the least squares slope. This can be a source of
confusion because many books give formulas that look quite dissimilar. However, all can
be shown to be equivalent. I use this one because it is easy to remember: the average of
x× y minus the average of x × the average of y all divided by the average of x2 minus the
square of the average of x.
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Note that it is very important that you do not round off when calculating the
least squares slope using Equation 14.3. Both the numerator and denominator
are differences, and rounding off will lead to substantial error in the slope
estimate! Substitute B back into Equation 14.1 and solve for the least squares
y-intercept,

A0 = ȳ −Bx̄ . (14.4)

Again, it is important that you do not round off when calculating the least
squares intercept using Equation 14.4. The equation of the least squares line
is

y = A0 +Bx . (14.5)

Alternative form for the least squares line. The slope and any other point
besides y-intercept also determines the line. Say the point is Ax̄, where the
least squares line intercepts the vertical line at x̄:

Ax̄ = A0 +Bx̄ = ȳ .

Thus the least squares line goes through the point (x̄, ȳ). An alternative
equation for the least squares line is

y = Ax̄ +B(x− x̄) = ȳ +B(x− x̄) , (14.6)

which is particularly useful.

Estimating the Variance around the Least Squares Line

The estimate of the variance around the least squares line is

σ̂2 =

∑n
i=1[yi − (Ax̄ +B(xi − x̄))]2

n− 2
,

which is the sum of squares of the residuals divided by n− 2. The reason we
use n − 2 is that we have used two estimates, Ax̄ and B in calculating the
sum of squares.3

EXAMPLE 14.1

A company is manufacturing a food product, and must control the mois-
ture level in the final product. It is cheaper (and hence preferable) to
measure the level at an in-process stage rather than in the final product.
Michael, the company statistician, recommends to the engineers running
the process that a measurement of the moisture level at an in-process stage

3The general rule for finding an unbiased estimate of the variance is that the sum of squares
is divided by the degrees of freedom, and we lose a degree of freedom for every estimated
parameter in the sum of squares formula.
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Table 14.1 In-process and final moisture levels

Batch In-Process Final LS Fits Residual Residual2

Level Level

x y ŷ = A0 +Bx y − ŷ (y − ŷ)2

1 14.36 13.84 14.1833 -0.343256 0.117825

2 14.48 14.41 14.3392 0.070792 0.005012

3 14.53 14.22 14.4042 -0.184188 0.033925

4 14.52 14.63 14.3912 0.238808 0.057029

5 14.35 13.95 14.1703 -0.220260 0.048514

6 14.31 14.37 14.1183 0.251724 0.063365

7 14.44 14.41 14.2872 0.122776 0.015074

8 14.23 13.99 14.0143 -0.024308 0.000591

9 14.32 13.89 14.1313 -0.241272 0.058212

10 14.57 14.59 14.4562 0.133828 0.017910

11 14.28 14.32 14.0793 0.240712 0.057942

12 14.36 14.31 14.1833 0.126744 0.016064

13 14.50 14.43 14.3652 0.064800 0.004199

14 14.52 14.44 14.3912 0.048808 0.002382

15 14.28 14.14 14.0793 0.060712 0.003686

16 14.13 13.90 13.8843 0.015652 0.000245

17 14.54 14.37 14.4172 -0.047184 0.002226

18 14.60 14.34 14.4952 -0.155160 0.024075

19 14.86 14.78 14.8331 -0.053056 0.002815

20 14.28 13.76 14.0793 -0.319288 0.101945

21 14.09 13.85 13.8324 0.017636 0.000311

22 14.20 13.89 13.9753 -0.085320 0.007280

23 14.50 14.22 14.3652 -0.145200 0.021083

24 14.02 13.80 13.7414 0.058608 0.003435

25 14.45 14.67 14.3002 0.369780 0.136737

Mean 14.3888 14.2208

may give a good prediction of what the final moisture level will be. He
organizes the collection of data from 25 batches, giving the moisture level
at the in-process stage and the final moisture level for each batch. These
are shown in the first three columns of Table 14.1. Summary statistics for



288 BAYESIAN INFERENCE FOR SIMPLE LINEAR REGRESSION

these data are: x̄ = 14.3888, ȳ = 14.2208, x2 = 207.0703, y2 = 202.3186,
and xy = 204.6628. Note that he needs to keep all the significant fig-
ures in the squared terms. The formula for B uses subtraction, and if he
rounds off too early, the differences will have too few significant figures
and accuracy will be lost.

He then calculates the least squares line relating the final moisture level
to the in-process moisture level. The slope is given by

B =
xy − x̄ȳ
x2 − (x̄)2

=
204.6628− 14.3888× 14.2208

207.0703− (14.3888)2
=
.0425690

.0327546
= 1.29963 .

The equation of the least squares line is

y = 14.2208 + 1.29963× (x− 14.3888).

The scatterplot of final moisture level and in-process moisture level to-
gether with the least squares line is given in Figure 14.2.

He calculates the least squares fitted values ŷi = ȳ + B(xi − x̄), the
residuals, and the squared residuals. They are in the last three columns
of Table 14.1. The estimated variance about the least squares line is

σ̂2 =

∑n
i=1(yi − ŷi)2

n− 2
=
.801882

23
= .0348644 .

To find the estimated standard deviation about the least squares line, he
takes the square root:

σ̂ =
√

(.0348644) = 0.18672 .

14.2 Exponential Growth Model

When we look at economic time series, the predictor variable is time t, and
we want to see how some response variable u depends on t. Often, when we
graph the response variable versus time on a scatterplot, we notice two things.
First, the plotted points seem to go up not at a linear rate but at a rate that
increases with time. Second, the variability of the plotted points seems to
be increasing at about the same rate as the response variable. This will be
shown more clearly if we graph the residuals versus time. In this case the
exponential growth model will usually give a better fit:

u = eα0+β×t .

We note that if we let y = loge(u), then

y = α0 + β × t
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Figure 14.2 Scatterplot and least squares line for the moisture data.

is a linear relationship. We can estimate the parameters of the relationship
using least squares using response variable y. The fitted exponential growth
model is

u = eA0+B×t ,

where B and A0 are the least squares slope and intercept for the logged data.

EXAMPLE 14.2

The annual New Zealand poultry production (in tonnes) for the years
1987–2001 is given in Table 14.2.

The scatterplot showing the residuals and least squares line is shown
in Figure 14.3.

We see that the residuals are mostly positive at the ends of the data,
and mostly negative in the center. This indicates that an exponential
growth model would give a better fit. The scatterplot, along with the
exponential growth model found by exponentiating the least squares line
to the logged data, is shown in Figure 14.4.
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Table 14.2 Annual poultry production in New Zealand

Year Poultry Production Linear Exponential

t u Fitted Value loge(u) Fitted loge u Fitted Value

1987 44,085 47,757 10.7739 10.7776 47,934

1988 51,646 48,725 10.8522 10.8393 50,986

1989 57,241 53,364 10.9550 10.9010 54,232

1990 56,261 58,004 10.9378 10.9628 57,686

1991 58,257 62,643 10.9726 11.0245 61,359

1992 60,944 67,283 11.0177 11.0862 65,266

1993 68,214 71,922 11.1304 11.1479 69,421

1994 74,037 76,562 11.2123 11.2097 73,842

1995 88,646 81,201 11.3924 11.2714 78,543

1996 86,869 85,841 11.3722 11.3331 83,545

1997 86,534 90,480 11.3683 11.3949 88,864

1998 95,682 95,120 11.4688 11.4566 94,522

1999 97,400 99,759 11.4866 11.5183 100,541

2000 104,927 104,398 11.5610 11.5801 106,943

2001 114,010 109,038 11.6440 11.6418 113,752

14.3 Simple Linear Regression Assumptions

The method of least squares is nonparametric or distribution free, since it
makes no use of the probability distribution of the data. It is really a data
analysis tool and can be applied to any bivariate data. We cannot make any
inferences about the slope and intercept nor about any predictions from the
least squares model, unless we make some assumptions about the probability
model underlying the data. The simple linear regression assumptions are:

1. Mean assumption. The conditional mean of y given x is an unknown linear
function of x.

µy|x = α0 + βx ,

where β is the unknown slope and α0 is the unknown y intercept, the
intercept of the vertical line x = 0. In the alternate parameterization we
have

µy|x = αx̄ + β(x− x̄) ,

where αx̄ is the unknown intercept of the vertical line x = x̄. In this param-
eterization the least squares estimates Ax̄ = ȳ and B will be independent
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Figure 14.3 Scatterplot and least squares line for the poultry production data.

under our assumptions, so the likelihood will factor into a part depending
on αx̄ and a part depending on β. This greatly simplifies things, so we
will use this parameterization. The mean assumption is shown in the first
graph of Figure 14.5.

2. Error assumption. Observation equals mean plus error, which is normally
distributed with mean 0 and known variance σ2. All errors have equal
variance. The equal variance assumption is shown in the second graph of
Figure 14.5.

3. Independence assumption. The errors for all of the observations are inde-
pendent of each other. The independent draw assumption is shown in the
third graph of Figure 14.5.

Using the alternate parameterization we obtain

yi = αx̄ + β × (xi − x̄) + ei ,

where αx̄ is the mean value for y given x = x̄, and β is the slope. Each ei
is normally distributed with mean 0 and known variance σ2. The ei are all
independent of each other. Therefore yi|xi is normally distributed with mean
ax̄ + β(xi − x̄) and variance σ2 and all the yi|xi are all independent of each
other.
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Figure 14.4 Scatterplot and fitted exponential growth model for the poultry
production data.

Figure 14.5 Assumptions of linear regression model. The mean of Y given X is
a linear function. The observation errors are normally distributed with mean 0 and
equal variances. The observations are independent of each other.

14.4 Bayes’ Theorem for the Regression Model

Bayes’ theorem is always summarized by

posterior ∝ prior × likelihood ,

so we need to determine the likelihood and decide on our prior for this model.

The Joint Likelihood for β and αx̄

The joint likelihood of the ith observation is its probability density function
as a function of the two parameters αx̄ and β, where (xi, yi) are fixed at
the observed values. It gives relative weights to all possible values of both
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parameters ax̄ and β from the observation. The likelihood of observation i is

likelihoodi(αx̄, β) ∝ e−
1

2σ2 [yi−(αx̄+β(xi−x̄))]2 ,

since we can ignore the part not containing the parameters. The observa-
tions are all independent, so the likelihood of the whole sample of all the
observations is the product of the individual likelihoods:

likelihoodsample(αx̄, β) ∝
n∏
i=1

e−
1

2σ2 [yi−(αx̄+β(xi−x̄))]2 .

The product of exponentials is found by summing the exponents, so

likelihoodsample(αx̄, β) ∝ e−
1

2σ2 [
∑n
i=1[yi−(ax̄+β(xi−x̄))]2] .

The term in brackets in the exponent equals[
n∑
i=1

[yi − ȳ + ȳ − (αx̄ + β(xi − x̄))]2

]
.

Breaking this into three sums and multiplying it out gives us

n∑
i=1

(yi − ȳ)2 + 2

n∑
i=1

(yi − ȳ)(ȳ − (αx̄ + β(xi − x̄)))

+

n∑
i=1

(ȳ − (αx̄ + β(xi − x̄)))2 .

This simplifies into

SSy − 2βSSxy + β2SSx + n(αx̄ − ȳ)2 ,

where SSy =
∑n
i=1(yi − ȳ)2, SSxy =

∑n
i=1(yi − ȳ)(xi − x̄)), and SSx =∑n

i=1(xi − x̄)2. Thus the joint likelihood can be written as

likelihoodsample(αx̄, β) ∝ e−
1

2σ2 [SSy−2βSSxy+β2SSx+n(αx̄−ȳ)2] .

Writing this as a product of two exponentials gives

∝ e−
1

2σ2 [SSy−2βSSxy+β2SSx] × e−
1

2σ2 [n(αx̄−ȳ)2] .

We factor out SSx in the first exponential, complete the square, and absorb
the part that does not depend on any parameter into the proportionality
constant. This gives us

likelihoodsample(αx̄, β) ∝ e−
1

2σ2/SSx
[β−SSxySSx

]2 × e−
1

2σ2/n
[(αx̄−ȳ)2]

.
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Note that
SSxy
SSx

= B, the least squares slope, and ȳ = Ax̄, the least squares
estimate of the intercept of the vertical line x = x̄. We have factored the joint
likelihood into the product of two individual likelihoods

likelihoodsample(αx̄, β) ∝ likelihoodsample(αx̄)× likelihoodsample(β) ,

where

likelihoodsample(β) ∝ e−
1

2σ2/SSx
(β−B)2

and

likelihoodsample(αx̄) ∝ e−
1

σ2/n
(αx̄−Ax̄)2

.

Since the joint likelihood has been factored into the product of the individual
likelihoods we know the individual likelihoods are independent. We recognize
that the likelihood of the slope β has the normal shape with mean B, the

least squares slope, and variance σ2

SSx
. Similarly the likelihood of αx̄ has the

normal shape with mean Ax̄ and variance σ2

n .

The Joint Prior for β and αx̄

If we multiply the joint likelihood by a joint prior, it is proportional to the
joint posterior. We will use independent priors for each parameter. The joint
prior of the two parameters is the product of the two individual priors:

g(αx̄, β) = g(αx̄)× g(β) .

We can either use normal priors, or flat priors.

Choosing normal priors for β and αx̄. Another advantage of using this param-
eterization is that a person has a more intuitive prior knowledge about the
αx̄, the intercept of x = x̄, than about α0, the intercept of the y axis. Decide
on what you believe the mean value of the y values to be. That will be mαx̄ ,
your prior mean for αx̄. Then think of the points above and below that you
consider to be upper and lower bounds of the possible values of y. Divide the
difference by 6 to get sαx̄ , your prior standard deviation of αx̄. This will give
you reasonable probability over the whole range you believe possible.

Usually we are more interested in the slope β. Sometimes we want to
determine if it could be 0. Therefore we may choose mβ = 0 as the prior
mean for β. Then we think of the upper and lower bounds of the effect of an
increase in x of one unit on y. Divide the difference by 6 to get sβ, your prior
standard deviation of β. In other cases, we have prior belief about the slope
from previous data. We would use the normal(mβ, (sβ)2) that matches that
prior belief.
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The Joint Posterior for β and αx̄

The joint posterior then is proportional to the joint prior times the joint
likelihood.

g(αx̄, β|data) ∝ g(αx̄, β)× likelihoodsample(αx̄, β) ,

where the data is the set of ordered pair (x1, y1), . . . , (xn, yn). The joint prior
and the joint likelihood both factor into a part depending on αx̄ and a part
depending on β. Rearranging them gives the joint posterior factored into the
marginal posteriors

g(αx̄, β|data) ∝ g(αx̄|data)× g(β|data) .

Since the joint posterior is the product of the marginal posteriors, they are
independent. Each of these marginal posteriors can be found by using the
simple updating rules for normal distributions, which works for normal and
flat priors. For instance, if we use a normal(mβ , s

2
β) prior for β, we get a

normal(m′β , (s
′
β)2), where

1

(s′β)2
=

1

s2
β

+
SSx
σ2

(14.7)

and

m′β =

1
s2β
1

(s′β)2

×mβ +
SSx
σ2

1
(s′β)2

×B . (14.8)

The posterior precision equals the prior precision plus the precision of the
likelihood. The posterior mean equals the weighted average of the prior mean
and the likelihood mean where the weights are the proportions of the precisions
to the posterior precision. And the posterior distribution is normal.

Similarly, if we use a normal(mαx̄ , s
2
αx̄

) prior for αx̄, we get a normal(m′αx̄ , (s
′
αx̄

)2)
where

1

(s′αx̄)2
=

1

s2
αx̄

+
n

σ2

and

m′αx̄ =

1
s2αx̄

1
(s′αx̄ )2

×mαx̄ +
n
σ2

1
(s′αx̄ )2

× Ax̄ .

EXAMPLE 14.2 (continued)

Michael, the company statistician, decides that he will use a normal(1, (.3)2)
prior for β and a normal(15, 12) prior for αx̄. Since he does not know
the true variance, he will use the estimated variance about the least
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Figure 14.6 The prior and posterior distribution of the slope.

squares regression line σ̂2 = .0348644. Note that SSx =
∑n
i=1(xi− x̄)2 =

n(x2 − x̄2) = 25× (207.0703− 14.38882) = .81886.
The posterior precision of β is

1

(s′β)2
=

1

.32
+

.81886

.0348644
= 34.5981 ,

so the posterior standard deviation of β is

s′β = 34.5981−
1
2 = .17001 .

The posterior mean of β is

m′β =
1
.32

34.5981
× 1 +

.81886
.0348644

34.5981
× 1.29963 = 1.2034 .

Similarly, the posterior precision of αx̄ is

1

(s′αx̄)2
=

1

12
+

25

.0348644
= 718.064 ,

so the posterior standard deviation is

s′αx̄ = 718.064−
1
2 = .037318 .

The posterior mean of αx̄ is

m′αx̄ =
1
12

718.064
× 15 +

25
.0348644

718.064
× 14.2208 = 14.2219 .

The prior and posterior distribution of the slope are shown in Figure 14.6.
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Bayesian Credible Interval for Slope

The posterior distribution of β summarizes our entire belief about it after
examining the data. We may want to summarize it by a (1 − α) × 100%
Bayesian credible interval for slope β. This will be

m′β ± zα2 ×
√

(s′β)2 . (14.9)

More realistically, we do not know σ2. A sensible approach in that instance
is to use the estimate calculated from the residuals

σ̂2 =

∑n
i=1(yi − (Ax̄ +B(xi − x̄)))2

n− 2
.

We have to widen the confidence interval to account for the increased uncer-
tainty due to not knowing σ2. We do this by using a Student’s t critical value
with n− 2 degrees of freedom4 instead of standard normal critical value. The
credible interval becomes

m′β ± tα2 ×
√

(s′β)2 . (14.10)

Frequentist Confidence Interval for Slope

When the variance σ2 is unknown, the (1−α)× 100% confidence interval for
the slope β is

B ± tα
2
× σ̂√

SSx
,

where σ̂2 is the estimate of the variance calculated from the residuals from the
least squares line. The confidence interval is the same form as the Bayesian
credible interval when we used flat priors for β and αx̄. Of course the interpre-
tation is different. Under the frequentist assumptions we are (1− α) × 100%
confident that the interval contains the true, unknown parameter value. Once
again, the frequentist confidence interval is equivalent to a Bayesian credible
interval, so if the scientist misinterprets it as a probability interval, he/she
will get away with it. The only loss experienced will be that the scientist did
not get to put in any of his/her prior knowledge.

Testing One-Sided Hypothesis about Slope

Often we want to determine whether or not the amount of increase in y
associated with one unit increase in x is greater than some value, β0. We
can do this by testing

H0 : β ≤ β0 versus H1 : β > β0

4Actually we are treating the unknown parameter σ2 as a nuisance parameter and using
the prior g(σ2) ∝ (σ2)−1. The marginal posterior of β is found by integrating σ2 out of
the joint posterior.
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at the α level of significance in a Bayesian manner. To do the test in a Bayesian
manner, we calculate the posterior probability of the null hypothesis. This is

P (β ≤ β0|data) =

∫ β0

−∞
g(β|data) dβ

= P

(
Z ≤

β0 −m′β
s′β

)
. (14.11)

If this probability is less than α, then we reject H0 and conclude that indeed
the slope β is greater than β0. (If we used the estimate of the variance, then we
would use a Student’s t with n− 2 degrees of freedom instead of the standard
normal Z.)

Testing Two-Sided Hypothesis about Slope

If β = 0, then the mean of y does not depend on x at all. We really would
like to test H0 : β = 0 versus H1 : β 6= 0 at the α level of significance in a
Bayesian manner, before we use the regression model to make predictions. To
do the test in a Bayesian manner, look where 0 lies in relation to the credible
interval. If it lies outside the interval, we reject H0. Otherwise, we cannot
reject the null hypothesis, and we should not use the regression model to help
with predictions.

EXAMPLE 14.2 (continued)

Since Michael used the estimated variance in place of the unknown true
variance, he used Equation 14.10 to find a 95% Bayesian credible interval
where there are 23 degrees of freedom. The interval is (.852,1.555). This
credible interval does not contain 0, so clearly he can reject the hypothesis
that the slope equals 0 and conclude that the final moisture level can be
estimated using the measured in-process moisture level.

14.5 Predictive Distribution for Future Observation

Making predictions of future observations for specified x values is one of the
main purposes of linear regression modelling. Often, after we have established
from the data that there is a linear relationship between the explanatory vari-
able x and the response variable y, we want to use that relationship to make
predictions of the next value yn+1, given the next value of the explanatory
variable xn+1. We can make better predictions using the value of the explana-
tory variable than without it. The best prediction for yn+1 given xn+1 will
be

ỹn+1 = α̂x̄ + β̂ × (xn+1 − x̄) ,
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where β̂ is the slope estimate and α̂x̄ is the estimate of the intercept of the
line x = x̄.

How good is the prediction? There are two sources of uncertainty. First, we
are using the estimated values of the parameters in the prediction, not the true
values, which are unknown. We are considering the parameters to be random
variables and have found their posterior distribution in the previous section.
Second, the new observation yn+1 contains its own observation error en+1,
which will be independent of all previous observation errors. The predictive
distribution of the next observation yn+1 given the value xn+1 and the data
accounts for both sources of uncertainty. It is denoted f(yn+1|xn+1, data) and
is found by Bayes’ theorem.

Finding the Predictive Distribution

The predictive distribution is found by integrating the parameters αx̄ and β
out of the joint posterior distribution of the next observation yn+1 and the
parameters given the next value xn+1 and the previous observations from the
model, (x1, y1), . . . , (xn, yn), the data. It is

f(yn+1|xn+1, data) =

∫ ∫
f(yn+1, αx̄, β|xn+1, data) dαx̄ dβ .

Integrating out nuisance parameters from the joint posterior like this is known
as marginalization. This is one of the clear advantages of Bayesian statistics.
It has a single method of dealing with nuisance parameters that always works.
When we find the predictive distribution, we consider all the parameters to
be nuisance parameters.

First, we need to determine the joint posterior distribution of the parame-
ters and next observation, given the value xn+1 and the data:

f(yn+1, αx̄, β|xn+1, data) = f(yn+1|αx̄, β, xn+1, data)

× g(αx̄, β|xn+1, data) .

The next observation yn+1, given the parameters αx̄ and β and the known
value xn+1, is just another random observation from the regression model.
Given the parameters αx̄ and β, the observations are all independent of each
other. This means that given the parameters, the new observation yn+1 does
not depend on the data, which are the previous observations from the regres-
sion. The posterior for αx̄, β, was calculated from the data alone and does
not depend on the next value of the predictor xn+1. So the joint distribution
of new observation and parameters simplifies to

f(yn+1, αx̄, β|xn+1, data) = f(yn+1|αx̄, β, xn+1)× g(αx̄, β|data)

which is the distribution of the next observation given the parameters, times
the posterior distribution of the parameters given the previous data. The next
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observation, given the parameters yn+1|αx̄, β, xn+1, is a random observation
from the regression model given the value xn+1. By our assumptions it is
normally distributed with mean given by the linear function of the parameters
µn+1 = αx̄ + β(xn+1 − x̄) and known variance σ2.

The posterior distributions of the parameters given the previous data which
we found using the updating rules in the previous section are independently
normal(m′αx̄ , (s

′
αx̄)2) and normal(m′β, (s

′
β)2), respectively. Since the next ob-

servation only depends on the parameters through the linear function

µn+1 = αx̄ + β(xn+1 − x̄) ,

we will simplify the problem by letting µn+1 be the single parameter. The
two components αx̄ and β are independent, so the posterior distribution of
µn+1 will be normal with mean m′µ = m′αx̄ + (xn+1 − x̄) ×m′β and variance

(s′µ)2 = (s′αx̄)2 + (xn+1 − x̄)2 × (s′β)2) given by Equation 5.11 and Equation
5.12 respectively.

We will find the predictive distribution by marginalizing the µn+1 out of
the joint posterior of yn+1 and µn+1.

f(yn+1|xn+1, data) =

∫
f(yn+1, µn+1|xn+1, data) dµn+1

=

∫
f(yn+1|µn+1, xn+1, data)

× g(µn+1|xn+1, data) dµn+1

=

∫
f(yn+1|µn+1)× g(µn+1|xn+1, data) dµn+1

∝
∫
e−

1
2σ2 (yn+1−µn+1)2

× e
− 1

2(s′µ)2
(µn+1−m′µ)2

dµn+1

∝
∫
e
− 1

2σ2(s′µ)2/(σ2+(s′µ)2)

(
µn+1−

yn+1(s′µ)2+m′µσ
2

(s′µ)2+σ2

)2

× e
− 1

2((s′µ)2+σ2)
(yn+1−m′µ)

2

dµn+1 .

The second factor does not depend on µn+1, so it can be brought in front of
the integral. We recognize that the first term integrates out, so we are left
with

f(yn+1|xn+1, data) ∝ e
− 1

2((s′µ)2+σ2)
(yn+1−m′µ)

2

. (14.12)

We recognize that this is a normal(m′y, (s
′
y)2), where m′y = m′µ, and (s′y)2 =

(s′µ)2 + σ2. Thus the predictive mean of the next observation yn+1 taken at
xn+1 is the posterior mean of µn+1 = αx̄ + β(xn+1 − x̄), and the predictive
variance of yn+1 is the posterior variance of µn+1 = αx̄+β(xn+1− x̄) plus the
observation variance σ2. Thus both sources of uncertainty have been allowed
for in the predictive distribution.
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Credible interval for the prediction. Often we wish to find an interval that has
posterior probability equal to 1− α of containing the next value yn+1 which
will be observed at the value xn+1. This will be a (1 − α) × 100% credible
interval for the prediction. We know that the mean and the variance of the
prediction distribution are m′y and (s′y)2, respectively. The credible interval
for the prediction is given by

m′y ± zα2 × s
′
y = m′µ ± zα2 ×

√
(s′µ)2 + σ2

= m′αx̄ +m′β(xn+1 − x̄)

± zα
2
×
√

(s′αx̄)2 + (s′β)2(xn+1 − x̄)2 + σ2 , (14.13)

when we know the observation variance σ2. When we do not know the ob-
servation variance and instead use the variance estimate calculated from the
residuals, the credible interval is given by

m′y ± tα2 × s
′
y = m′µ ± tα2 ×

√
(s′µ)2 + σ̂2

= m′αx̄ +m′β(xn+1 − x̄)

± tα
2
×
√

(s′αx̄)2 + (s′β)2(xn+1 − x̄)2 + σ̂2 , (14.14)

where we get the critical value from the Student’s t distribution with n − 2
degrees of freedom. These credible intervals for the prediction are the Bayesian
analogs of the frequentist prediction intervals, since they allow for both the
estimation error and the observation error. The Bayesian credible intervals
for the prediction generally will be shorter than the corresponding frequentist
prediction intervals since the Bayesian intervals use information from the prior
as well as information from the data. They give exactly the same results as
the frequentist prediction interval when flat priors are used for both the slope
and intercept.

EXAMPLE 14.2 (continued)

Michael calculated the predictive distribution for the final moisture level
(y) as a function of the in-process moisture level (x), and he put 95%
bounds on the prediction. The mean of the predictive distribution is
given by

m′y = 14.2219 + 1.2034× (x− 14.3888)

and the variance of the predictive distribution is given by

(s′y)2 = .0348644 + .0373182 + .170012(x− 14.3888)2 .

He calculated 95% prediction intervals as

(m′y − t.025 × s′y,m′y + t.025 × s′y).

A graph of the predictive mean is shown in Figure 14.7, together with the
95% prediction bounds.
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95% lower bound 
95% upper bound 
mean            

15.014.514.0

15

14

13

Figure 14.7 The predictive mean with 95% prediction bounds.

Main Points

Our goal is to use one variable x, called the predictor variable, to help us
predict another variable y, called the response variable.

We think the two variables are related by a linear relationship, y =
a0+b×x. b is the slope and a0 is the y-intercept (where the line intersects
the y-axis.)

The scatterplot of the points (x, y) would indicate a perfect linear rela-
tionship if the points lie along a straight line.

However, the points usually do not lie perfectly along a line but are
scattered around, yet still show a linear pattern.

We could draw any line on the scatterplot. The residuals from that line
would be the vertical distance from the plotted points to the line.

Least squares is a method for finding a line that best fits a plotted points
by minimizing the sum of squares of residuals from a fitted line.

The slope and intercept of the least squares line are found by solving the
normal equations.

The linear regression model has three assumptions:

1. The mean of y is an unknown linear function of x. Each observation
yi is made at a known value xi.

2. Each observation yi is subject to a random error that is normally
distributed with mean 0 and variance σ2. We will assume that σ2 is
known.

3. The observation errors are independent of each other.
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Bayesian regression is much easier if we reparameterize the model to be
y = αx̄ + β × (x− x̄).

The joint likelihood of the sample factors into a part dependent on the
slope β and a part dependent on αx̄.

We use independent priors for the slope β and intercept αx̄. They can
be either normal priors or “flat” priors. The joint prior is the product of
the two priors.

The joint posterior is proportional to the joint prior times the joint like-
lihood. Since both the joint prior and joint likelihood factor into a part
dependent on the slope β and a part dependent on αx̄, the joint posterior
is the product of the two individual posteriors. Each of them is normal
where the constants can be found from the simple updating rules.

Ordinarily we are more interested in the posterior distribution of the
slope β, which is normal(m′, (s′)2). In particular, we are interested in
knowing whether the belief β = 0 is credible, given the data. If so, we
should not be using x to help predict y.

The Bayesian credible interval for β is the posterior mean ± the critical
value × the posterior standard deviation.

The critical value is taken from the normal table if we assume the variance
σ2 is known. If we do not know it and use the sample estimate calculated
from the residuals then we take the critical value from the Student’s t
table.

The credible interval can be used to test the two-sided hypothesis H0 :
β = 0 versus H1 : β 6= 0.

We can test a one-sided hypothesis H0 : β ≤ 0 versus H1 : β > 0 by
calculating the probability of the null hypothesis and comparing it to the
level of significance.

We can compute the predictive probability distribution for the next ob-
servation yn+1 taken when xn+1. It is the normal distribution with
mean equal to the mean of the linear function µn+1 = αx̄ + (xn+1 − x̄),
and its variance is equal to the variance of the linear function plus the
observation variance.

Exercises

14.1. A researcher measured heart rate (x) and oxygen uptake (y) for one
person under varying exercise conditions. He wishes to determine if heart
rate, which is easier to measure, can be used to predict oxygen uptake. If
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so, then the estimated oxygen uptake based on the measured heart rate
can be used in place of the measured oxygen uptake for later experiments
on the individual:

Heart Rate Oxygen Uptake

x y

94 .47

96 .75

94 .83

95 .98

104 1.18

106 1.29

108 1.40

113 1.60

115 1.75

121 1.90

131 2.23

(a) Plot a scatterplot of oxygen uptake y versus heart rate x.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose that we know that oxygen uptake given the heart rate is
emphnormal(α0 + β × x, σ2), where σ2 = .132 is known. Use a nor-
mal(0, 12) prior for β. What is the posterior distribution of β?

(f) Find a 95% credible interval for β.

(g) Perform a Bayesian test of

H0 : β = 0 versus H1 : β 6= 0

at the 5% level of significance.
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14.2. A researcher is investigating the relationship between yield of potatoes
(y) and level of fertilizer (x.) She divides a field into eight plots of equal
size and applied fertilizer at a different level to each plot. The level of
fertilizer and yield for each plot is recorded below:

Fertilizer Level Yield

x y

1 25

1.5 31

2 27

2.5 28

3 36

3.5 35

4 32

4.5 34

(a) Plot a scatterplot of yield versus fertilizer level.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose that we know that yield given the fertilizer level is emphnormal(α0+
β × x, σ2), where σ2 = 3.02 is known. Use a normal(2, 22) prior for
β. What is the posterior distribution of β?

(f) Find a 95% credible interval for β.

(g) Perform a Bayesian test of

H0 : β ≤ 0 versus H1 : β > 0

at the 5% level of significance.
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14.3. A researcher is investigating the relationship between fuel economy and
driving speed. He makes six runs on a test track, each at a different speed,
and measures the kilometers traveled on one liter of fuel. The speeds (in
kilometers per hour) and distances (in kilometers) are recorded below:

Speed Distance

x y

80 55.7

90 55.4

100 52.5

110 52.1

120 50.5

130 49.2

(a) Plot a scatterplot of distance travelled versus speed.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose that we know distance travelled, given that the speed is
emphnormal(α0 + β × x, σ2) where σ2 = .572 is known. Use a nor-
mal(0, 12) prior for β. What is the posterior distribution of β?

(f) Perform a Bayesian test of

H0 : β ≥ 0 versus H1 : β < 0

at the 5% level of significance.

14.4. The Police Department is interested in determining the effect of alco-
hol consumption on driving performance. Twelve male drivers of simi-
lar weight, age, and driving experience were randomly assigned to three
groups of four. The first group consumed two cans of beer within 30
minutes, the second group consumed four cans of beer within 30 min-
utes, and the third group was the control and did not consume any beer.
Twenty minutes later, each of the twelve took a driving test under the
same conditions, and their individual scores were recorded. (The higher
the score, the better the driving performance.) The results were:
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Cans Score

x y

0 78

0 82

0 75

0 58

2 75

2 42

2 50

2 55

4 27

4 48

4 49

4 39

(a) Plot a scatterplot of score versus cans.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose we know that the driving score given the number of cans of
beer drunk is normal(α0 + β × x, σ2), where σ2 = 122 is known. Use
a normal(0, 102) prior for β. What is the posterior distribution of β?

(f) Find a 95% credible interval for β.

(g) Perform a Bayesian test of

H0 : β ≥ 0 versus H1 : β < 0

at the 5% level of significance.

(h) Find the predictive distribution for the y13 the driving score of the
next male who will be tested after drinking x13 = 3 cans of beer.

(i) Find a 95% credible interval for the prediction.

14.5. A textile manufacturer is concerned about the strength of cotton yarn.
In order to find out whether fiber length is an important factor in de-
termining the strength of yarn, the quality control manager checked the
fiber length (x) and strength (y) for a sample of 10 segments of yarn.
The results are:
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Fiber Length Strength

x y

85 99

82 93

75 103

73 97

76 91

73 94

96 135

92 120

70 88

74 92

(a) Plot a scatterplot of strength versus fiber length.

(b) Calculate the parameters of the least squares line.

(c) Graph the least squares line on your scatterplot.

(d) Calculate the estimated variance about the least squares line.

(e) Suppose we know that the strength given the fiber length is emphnormal(α0+
β × x, σ2), where σ2 = 7.72 is known. Use a normal(0, 102) prior for
β. What is the posterior distribution of β.

(f) Find a 95% credible interval for β.

(g) Perform a Bayesian test of

H0 : β ≤ 0 versus H1 : β > 0

at the 5% level of significance.

(h) Find the predictive distribution for y11, the strength of the next piece
of yarn which has fiber length x11 = 90.

(i) Find a 95% credible interval for the prediction.

14.6. In Chapter 3, Exercise 3.7, we were looking at the relationship between
log(mass) and log(length) for a sample of 100 New Zealand slugs of the
species Limax maximus from a study conducted by Barker and McGhie
(1984). These data are in the Minitab worksheet slug.mtw. We identi-
fied observation 90, which did not appear to fit the pattern. It is likely
that this observation is an outlier that was recorded incorrectly, so re-
move it from the data set. The summary statistics for the 99 remaining
observations are. Note: x is log(length), and y is log(weight)∑

x = 352.399
∑

y = −33.6547
∑

x2 = 1292.94



EXERCISES 309

∑
xy = −18.0147

∑
y2 = 289.598.

(a) Calculate the least squares line for the regression of y on x from the
formulas.

(b) Using Minitab, calculate the least squares line. Plot a scatterplot
of log weight on log length. Include the least squares line on your
scatterplot.

(c) Using Minitab, calculate the residuals from the least squares line, and
plot the residuals versus x. From this plot, does it appear the linear
regression assumptions are satisfied?

(d) Using Minitab, calculate the estimate of the standard deviation of the
residuals.

(e) Suppose we use a normal(3, .52) prior for β, the regression slope co-
efficient. Calculate the posterior distribution of β|data. (Use the
standard deviation you calculated from the residuals as if it is the
true observation standard deviation.)

(f) Find a 95% credible interval for the true regression slope β.

(g) If the slugs stay the same shape as they grow (allotropic growth), the
height and width would both be proportional to the length, so the
weight would be proportional to the cube of the length. In that case
the coefficient of log(weight) on log(length) would equal 3. Test the
hypothesis

H0 : β = 3 versus H1 : β 6= 3

at the 5% level of significance. Can you conclude this slug species
shows allotropic growth?

14.7. Endophyte is a fungus Neotyphodium lolli, which lives inside ryegrass
plants. It does not spread between plants, but plants grown from endophyte-
infected seed will be infected. One of its effects is that it produces a range
of compounds that are toxic to Argentine stem weevil Listronotus bonar-
iensis, which feeds on ryegrass. AgResearch New Zealand did a study
on the persistence of perennial ryegrass at four rates of Argentine stem
weevil infestation. For ryegrass that was infected with endophyte the
following data were observed:
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Infestation Rate Number of Ryegrass Plants (n) loge(n+ 1)

x y

0 19 2.99573

0 23 3.17805

0 2 1.09861

0 0 0.00000

0 24 3.21888

5 20 3.04452

5 18 2.94444

5 10 2.39790

5 6 1.94591

5 6 1.94591

10 12 2.56495

10 2 1.09861

10 11 2.48491

10 7 2.07944

10 6 1.94591

20 3 1.38629

20 16 2.83321

20 14 2.70805

20 9 2.30259

20 12 2.56495

(a) Plot a scatterplot of number of ryegrass plants versus the infestation
rate.

(b) The relationship between infestation rate and number of ryegrass
plants is clearly nonlinear. Look at the transformed variable y =
loge(n+ 1). Plot y versus x on a scatterplot. Does this appear to be
more linear?

(c) Find the least squares line relating y to x. Include the least squares
line on your scatterplot.

(d) Find the estimated variance about the least squares line.

(e) Assume that the observed yi are normally distributed with mean αx̄+
β × (xi − x̄) and known variance σ2 equal to that calculated in part
(d.) Find the posterior distribution of β|(x1, y1), . . . , (x20, y20). Use
a emphnormal(0, 12) prior for β.

14.8. For ryegrass that was not infected with endophyte the following data were
observed:
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Infestation Rate Number of Ryegrass Plants (n) loge(n+ 1)

x y

0 16 2.83321

0 23 3.17805

0 2 1.09861

0 16 2.83321

0 6 1.94591

5 8 2.19722

5 6 1.94591

5 1 0.69315

5 2 1.09861

5 5 1.79176

10 5 1.79176

10 0 0.00000

10 6 1.94591

10 2 1.09861

10 2 1.09861

20 1 0.69315

20 0 0.00000

20 0 0.00000

20 1 0.69315

20 0 0.00000

(a) Plot a scatterplot of number of ryegrass plants versus the infestation
rate.

(b) The relationship between infestation rate and number of ryegrass
plants is clearly nonlinear. Look at the transformed variable y =
loge(n+ 1). Plot y versus x on a scatterplot. Does this appear to be
more linear?

(c) Find the least squares line relating y to x.

(d) Find the estimated variance about the least squares line.

(e) Assume that the observed yi are normally distributed with mean αx̄+
(xi−x̄)×β and variance equal to that calculated in part (b.) Find the
posterior distribution of β|(x1, y1), . . . , (x20, y20). Use a normal(0, 12)
prior for β.

14.9. In the previous two problems we found the posterior distribution of the
slope of y on x, the rate of weevil infestation for endophyte infected and
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noninfected ryegrass. Let β1 be the slope for noninfected ryegrass, and
let β2 be the slope for infected ryegrass

(a) Find the posterior distribution of β1 − β2.

(b) Calculate a 95% credible interval for β1 − β2.

(c) Test the hypothesis

H0 : β1 − β2 ≤ 0 versus H1 : β1 − β2 > 0

at the 10% level of significance.

Computer Exercises

14.1. We will use the Minitab macro BayesLinReg, or the R function bayes.lin.reg,
to find the posterior distribution of the slope β given a random sample
(x1, y1), . . . , (xn, yn) from the simple linear regression model

yi = α0 + β × xi + ei ,

where the observation errors ei are independent normal(0, σ2) random
variables and σ2 is known. We will use independent normal(mβ , s

2
β) and

normal(mαx̄ , s
2
αx̄

) priors for the slope β and the intercept of the line
y = x̄ respectively. This parameterization will give independent normal
posteriors where the simple updating rules are “posterior precision equals
the prior precision plus the precision of the least squares estimate” and
“posterior mean equals the weighted sum of prior mean plus the least
squares estimate where the weights are the proportions of the precisions
to the posterior precision.” The following eight observations come from
a simple linear regression model where the variance σ2 = 12 is known.

x 11 9 9 9 9 12 11 9

y -21.6 -16.2 -19.5 -16.3 -18.3 -24.6 -22.6 -17.7

(a) [Minitab:] Use BayesLinReg to find the posterior distribution of
the slope β when we use a normal(0, 32) prior for the slope. Details
for invoking BayesLinReg are given in Appendix C.

[R:] Use bayes.lin.reg to find the posterior distribution of the
slope β when we use a normal(0, 32) prior for the slope. Details for
calling bayes.lin.reg are given in Appendix D. Note: There is a
shorthand alias for bayes.lin.reg called blr which removes the bur-
den of typing bayes.lin.reg correctly every time you wish to use it.

(b) Find a 95% Bayesian credible interval for the slope β.
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(c) Test the hypothesis H0 : β ≤ −3 vs. H1 : β > −3 at the 5% level of
significance.

(d) Find the predictive distribution of y9 which will be observed at x9 =
10.

(e) Find a 95% credible interval for the prediction.

14.2. The following 10 observations come from a simple linear regression model
where the variance σ2 = 32 is known.
x 30 30 29 21 37 28 26 38 32 21

y 22.4 16.3 16.2 30.6 12.1 17.9 25.5 9.8 20.5 29.8

(a) [Minitab:] Use BayesLinReg to find the posterior distribution of
the slope β when we use a normal(0, 32) prior for the slope.

[R:] Use bayes.lin.reg to find the posterior distribution of the
slope β when we use a normal(0, 32) prior for the slope.

(b) Find a 95% Bayesian credible interval for the slope β.

(c) Test the hypothesis H0 : β ≥ 1 vs. H1 : β < 1 at the 5% level of
significance.

(d) Find the predictive distribution of y11 which will be observed at x11 =
36.

(e) Find a 95% credible interval for the prediction.

14.3. The following 10 observations come from a simple linear regression model
where the variance σ2 = 32 is known.
x 22 31 21 23 19 26 27 16 28 21

y 24.2 25.4 23.9 22.8 22.6 29.7 24.8 22.3 28.2 30.7

(a) Use BayesLinReg in Minitab, bayes.lin.reg in R, to find the poste-
rior distribution of the slope β when we use a normal(0, 32) prior for
the slope and a normal(25, 32) prior for the intercept αx̄.

(b) Find a 95% Bayesian credible interval for the slope β.

(c) Test the hypothesis H0 : β ≥ 1 vs. H1 : β < 1 at the 5% level of
significance.

(d) Find the predictive distribution of y11 which will be observed at x11 =
25.

(e) Find a 95% credible interval for the prediction.

14.4. The following 8 observations come from a simple linear regression model
where the variance σ2 = 22 is known.
x 54 47 44 47 55 50 52 48

y 1.7 4.5 4.6 8.9 0.9 1.4 5.2 6.4
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(a) Use BayesLinReg in Minitab, or bayes.lin.reg in R, to find the
posterior distribution of the slope β when we use a normal(0, 32)
prior for the slope β and a normal(4, 22) prior for the intercept αx̄.

(b) Find a 95% Bayesian credible interval for the slope β.

(c) Test the hypothesis H0 : β ≥ 1 vs. H1 : β < 1 at the 5% level of
significance.

(d) Find the predictive distribution of y9 which will be observed at x9 =
51.

(e) Find a 95% credible interval for the prediction.



CHAPTER 15

BAYESIAN INFERENCE FOR STANDARD
DEVIATION

When dealing with any distribution, the parameter giving its location is the
most important, with the parameter giving the spread of secondary impor-
tance. For the normal distribution, these are the mean and the standard
deviation (or its square, the variance), respectively. Usually we will be do-
ing inference on the unknown mean, with the standard deviation and hence
the variance either assumed known, or treated as a nuisance parameter . In
Chapter 11, we looked at making Bayesian inferences on the mean, where
the observations came from a normal distribution with known variance. We
also saw that when the variance was unknown, inferences about the mean
could be adjusted by using the sample estimate of the variance in its place
and taking critical values from the Student’s t distribution. The resulting
inferences would be equivalent to the results we would have obtained if the
unknown variance was a nuisance parameter and was integrated out of the
joint posterior.

However, sometimes we want to do inferences on the standard deviation of
the normal distribution. In this case, we reverse the roles of the parameters.
We will assume that the mean is known, or else we treat it as the nuisance
parameter and make the necessary adjustments to the inference. We will use
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Bayes’ theorem on the variance. However, the variance is in squared units,
and it is hard to visualize our belief about it. So for graphical presentation, we
will make the transformation to the corresponding prior and posterior density
for the standard deviation.

15.1 Bayes’ Theorem for Normal Variance with a Continuous Prior

We have a random sample y1, . . . , yn from a normal(µ, σ2) distribution where
the mean µ is assumed known, but the variance σ2 is unknown. Bayes’ theo-
rem can be summarized by posterior proportional to prior times likelihood

g(σ2|y1, . . . , yn) ∝ g(σ2)× f(y1, . . . , yn|σ2) .

It is realistic to consider that the variance can have any positive value, so the
continuous prior we use should be defined on all positive values. Since the
prior is continuous, the actual posterior is evaluated by

g(σ2|y1, . . . , yn) =
g(σ2)× f(y1, . . . , yn|σ2)∫
g(σ2)× f(y1, . . . , yn|σ2) dσ2

, (15.1)

where the denominator is the integral of the prior × likelihood over its whole
range. This will hold true for any continuous prior density. However, the
integration would have to be done numerically, except for a few special prior
densities which we will investigate later.

The inverse chi-squared distribution. The distribution with shape given by

g(x) ∝ 1

x
κ
2 +1

e−
1
2x

for 0 < x < ∞ is called the inverse chi-squared distribution with κ degrees
of freedom. To make this a probability density function we multiply by the
constant c = 1

2
κ
2 Γ(κ/2)

. The exact density function of the inverse chi-squared

distribution with κ degrees of freedom is

g(x) =
1

2
κ
2 Γ(κ/2)x

κ
2 +1

e−
1
2x (15.2)

for 0 < x <∞. When the shape of the density is given by

g(x) ∝ 1

x
κ
2 +1

e−
S
2x .

for 0 < x <∞ then we say x has S times an inverse chi-squared distribution

with κ degrees of freedom. The constant c = S
κ
2

2
κ
2 Γ(κ/2)

is the scale factor that
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makes this a density. The exact probability density function of S times an
inverse chi-squared distribution with κ degrees of freedom1 is

g(x) =
S
κ
2

2
κ
2 Γ(κ/2)

× 1

x
κ
2 +1

e−
S
2x (15.3)

for 0 < x <∞. When U has S times an inverse chi-squared distribution with
κ degrees of freedom, then W = S/U has the chi-squared distribution with
κ degrees of freedom. This transformation allows us to find probabilities for
the inverse chi-squared random variables using Table B.6, the upper tail area
of the chi-squared distribution.

A random variable X having S times an inverse chi-squared distribution
with κ degrees of freedom has mean

E[X] =
S

κ− 2

provided κ > 2 and variance given by

Var[X] =
2S2

(κ− 2)2 × (κ− 4)

provided κ > 4.

1 df 
2 df 
3 df 
4 df 
5 df 

43210

Figure 15.1 Inverse chi-squared distribution with for 1, . . . , 5 degrees of freedom.
As the degrees of freedom increase, the probability gets more concentrated at smaller
values. Note: S = 1 for all these graphs.

Some inverse chi-squared distributions with S = 1 are shown in Figure
15.1.

1This is also known as the inverse Gamma(r, S) distribution where r = κ
2

.
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Likelihood of variance for normal random sample The likelihood of the variance
for a single random draw from a normal(µ, σ2) where µ is known is the density
of the observation at the observed value taken as a function of the variance
σ2.

f(y|σ2) =
1√

(2π)σ2
e−

1
2σ2 (y−µ)2

We can absorb any part not depending on the parameter σ2 into the constant.
This leaves

f(y|σ2) ∝ (σ2)−
1
2 e−

1
2σ2 (y−µ)2

.

as the part that determines the shape. The likelihood of the variance for the
random sample y1, . . . , yn from a normal(µ, σ2) where µ is known is product
of the likelihoods of the variance for each of the observations. The part that
gives the shape is

f(y1, . . . , yn|σ2) ∝
n∏
i=1

(σ2)−
1
2 e−

1
2σ2 (yi−µ)2

∝ (σ2)−
n
2 e−

1
2σ2

∑n
i=1(yi−µ)2

∝ 1

(σ2)
n
2
e−

SST
2σ2 , (15.4)

where SST =
∑n

i=1(yi − µ)2 is the total sum of squares about the mean. We
see that the likelihood of the variance has the same shape as SST times an
inverse chi-squared distribution with κ = n− 2 degrees of freedom.2

15.2 Some Specific Prior Distributions and the Resulting

Posteriors

Since we are using Bayes’ theorem on the normal variance σ2, we will need
its prior distribution. However, the variance is in squared units, not the same
units as the mean. This means that they are not directly comparable so that
it is much harder understand a prior density for σ2. The standard deviation σ
is in the same units as the mean, so it is much easier to understand. Generally,
we will do the calculations to find the posterior for the variance σ2, but we
will graph the corresponding posterior for the standard deviation σ since it is
more easily understood. For the rest of the chapter, we will use the subscript
on the prior and posterior densities to denote which parameter σ or σ2 we are
using. The variance is a function of the standard deviation, so we can use the
chain rule from Appendix 1 to get the prior density for σ2 that corresponds

2When the mean is not known but considered a nuisance parameter, use the marginal
likelihood for σ2 which has same shape as SSy times an inverse chi-squared distribution
with κ = n− 3 degrees of freedom where SSy =

∑
(y − ȳ)2.
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to the prior density for σ. This gives the change of variable formula3 which
in this case is given by

gσ2(σ2) = gσ(σ)× 1

2σ
. (15.5)

Similarly, if we have the prior density for the variance, we can use the change
of variable formula to find the corresponding prior density for the standard
deviation

gσ(σ) = gσ2(σ2)× 2σ . (15.6)

Positive Uniform Prior Density for Variance

Suppose we decide that we consider all positive values of the variance σ2 to
be equally likely and do not wish to favor any particular value over another.
We give all positive values of σ2 equal prior weight. This gives the positive
uniform prior density for the variance

gσ2(σ2) = 1 for σ2 > 0 .

This is an improper prior since its integral over the whole range would be ∞;
however that will not cause a problem here. The corresponding prior density
for the standard deviation would be gσ(σ) = 2σ is also clearly improper.
(Giving equal prior weight to all values of the variance gives more weight to
larger values of the standard deviation.) The shape of the posterior will be
given by

gσ2(σ2|y1, . . . , yn) ∝ 1× 1

(σ2)
n
2
e−

SST
2σ2

∝ 1

(σ2)
n
2
e−

SST
2σ2 .

which we recognize to be SST× an inverse chi-squared distribution with n−2
degrees of freedom.

Positive Uniform Prior Density for Standard Deviation

Suppose we decide that we consider all positive values of the standard devia-
tion σ to be equally likely and do not wish to favor any particular value over
another. We give all positive values all equal prior weight. This gives the
positive uniform prior density for the standard deviation

gσ(σ) = 1 for σ > 0 .

3In general, when gθ(θ) is the prior density for parameter θ and if ψ(θ) is a one-to-one
function of θ, then ψ is another possible parameter. The prior density of ψ is given by
gψ(ψ) = gθ(θ(ψ))× d θ

dψ
.
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This prior is clearly an improper prior since when we integrate it over the
whole range we get∞, however that will not cause trouble in this case. Using
Equation 15.6 we find the corresponding prior for the variance is

gσ2(σ2) = 1× 1

2σ
.

(We see that giving equal prior weight to all values of the standard deviation
gives more weight to smaller values of the variance.) The posterior will be
proportional to the prior times likelihood. We can absorb the part not con-
taining the parameter into the constant. The shape of the posterior will be
given by

gσ2(σ2|y1, . . . , yn) ∝ 1

σ
× 1

(σ2)
n
2
e−

SST
2σ2

∝ 1

(σ2)
n+1

2

e−
SST
2σ2 .

We recognize this to be SST× an inverse chi-squared distribution with n− 1
degrees of freedom.

Jeffreys’ Prior Density

If we think of a parameter as an index of all the possible densities we are
considering, any continuous function of the parameter will give an equally
valid index. Jeffreys’ wanted to find a prior that would be invariant for a
continuous transformation of the parameter.4 In the case of the normal(µ, σ2)
distribution where µ is known, Jeffreys’ rule gives

gσ2(σ2) ∝ 1

σ2
for σ2 > 0 .

This prior is also improper, but again in the single sample case this will
not cause any problem. (Note that the corresponding prior for the standard
deviation is gσ(σ) ∝ σ−1.) The shape of the posterior will be given by

gσ2(σ2|y1, . . . , yn) ∝ 1

σ2
× 1

(σ2)
n
2
e−

SST
2σ2

∝ 1

(σ2)
n
2 +1

e−
SST
2σ2 ,

which we recognize to be SST× an inverse chi-squared with n degrees of
freedom.

4Jeffreys’ invariant prior for parameter θ is given by g(θ) ∝
√
I(θ|y) where I(θ|y) is known

as Fisher’s information and is given by I(θ|y) = −E
[
∂2logf(y|θ)

∂θ2

]
.



SOME SPECIFIC PRIOR DISTRIBUTIONS AND THE RESULTINGPOSTERIORS 321

Inverse Chi-squared Prior

Suppose we decide to use S times an inverse chi-squared with κ degrees of
freedom as the prior for σ2. In this case the shape of the prior is given by

gσ2(σ2) ∝ 1

(σ2)
κ
2 +1

e−
S

2σ2

for 0 < σ2 < ∞. Note the shape of the corresponding prior density for σ
found using the change of variable formula would be

gσ(σ) ∝ 1

(σ2)
κ−1

2 +1
e−

S
2σ2

for 0 < σ2 <∞. The prior densities for σ corresponding to inverse chi-squared
prior with S = 1 for variance σ2 for κ = 1, 2, 3, 4, and 5 degrees of freedom
are shown in Figure 15.2. We see that as the degrees of freedom increase, the
probability gets more concentrated at smaller values of σ. This suggests that
to allow for the possibility of a large standard deviation, we should use low
degrees of freedom when using an inverse chi-squared prior for the variance.

1 df 
2 df 
3 df 
4 df 
5 df 

210

Figure 15.2 Prior for standard deviation σ corresponding to inverse chi square
prior for variance σ2 where S = 1.

The posterior density for σ2 will have shape given by

gσ2(σ2|y1, . . . , yn) ∝ 1

(σ2)
κ
2 +1

e−
S

2σ2 × 1

(σ2)
n
2
e−

SST
2σ2

∝ 1

(σ2)
n+κ

2 +1
e−

S+SST
2σ2 ,
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which we recognize as S′ times an inverse chi-squared distribution with κ′

degrees of freedom, where S′ = S+SST and κ′ = κ+n. So when observations
come from normal(µ, σ2) with known mean µ, the conjugate family is the S
times an inverse chi-squared distribution and the simple updating rule is “add
total sum of squares about known mean to constant S” and “add sample size
to degrees of freedom.”

The corresponding priors for the standard deviation and the variance are
shown in Table 15.1. All these priors will yield S′ times an inverse chi-squared
with κ′ posteriors.5

Table 15.1 Corresponding priors for standard deviation and variance, and S′ and
κ′ for the resulting inverse chi-squared posterior

Prior gσ(σ) ∝ gσ2(σ2) ∝ S′ κ′

Pos. unif. for var. σ 1 SST n− 2

Pos. unif. for st. dev. 1 1
σ

SST n− 1

Jeffreys’ 1
σ

1
σ2 SST n

S× inv. chi-sq κ df 1

(σ2)
κ−1

2
+1
e
− S

2σ2 1

(σ2)
κ
2

+1 e
− S

2σ2 S + SST κ+ n

Choosing an inverse chi-squared prior. Frequently, our prior belief about σ is
fairly vague. Before we look at the data, we believe that we decide on a value
c such that we believe σ < c and σ > c are equally likely. This means that c
is our prior median.

We want to choose S× an inverse chi-squared distribution with κ degrees of
freedom that fits our prior median. Since we have only vague prior knowledge
about σ, we would like the prior to have as much spread as possible, given
that it has the prior median. W = S

σ2 has a chi-squared distribution with κ
degrees of freedom.

.50 = P (σ > c)

= P

(
σ2

S
>
c2

S

)
= P

(
W <

S

c2

)
,

where W has the chi-squared distribution with κ degree of freedom. We look
in Table B.6 to find the 50% point for the chi-squared distribution with κ
degree of freedom and solve the resulting equation for S. Figure 15.3 shows

5The positive uniform prior for st. dev., the positive uniform prior for the variance, and
the Jeffreys’ prior have the form of an inverse chi-squared with S = 0 and κ = −1,−2, and
0, respectively. They can be considered limiting cases of the S times an inverse chi-squared
family as S → 0.
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the prior densities having the same median for κ = 1, . . . , 5 degrees of freedom.
We see that the prior with κ = 1 degree of freedom has more weight on the

1   
2   
3   
4   
5   

Figure 15.3 Inverse chi-squared prior densities having same prior medians, for
κ = 1, . . . , 5 degrees of freedom.

lower tail. The upper tail is hard to tell as all are squeezed towards 0. We
take logarithms of the densities to spread out the upper tail. These are shown
in Figure 15.4, and clearly the prior with κ = 1 degrees of freedom shows the
most weight in both tails. Thus, the inverse chi-squared prior with 1 degree

1   
2   
3   
4   
5   

Figure 15.4 Logarithms of Inverse chi-squared prior densities having same prior
medians, for κ = 1, . . . , 5 degrees of freedom.
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of freedom matching the prior median has maximum spread out of all other
inverse chi-squared priors that also match the prior median.

Inverse gamma priors

The inverse chi-squared distribution is in fact a special case of the inverse
gamma distribution. The inverse gamma distribution has pdf

g(σ2;α, β) =
βα

Γ(α)
(σ2)−α−1e−

β

σ2 .

We can see that if α = κ
2 , β = 1

2 , then this is the same density as a inverse

chi-squared distribution with κ degrees of freedom. If α = κ
2 , β = S

2 , then
this is the same as S times an inverse chi-squared distribution with κ degrees
of freedom. If we use this prior, then the posterior is

g(σ2|y1, y2, . . . , yn) ∝ 1

(σ2)α+1
e−

β

σ2 × 1

(σ2)
n
2
e−

SST
2σ2

∝ 1

(σ2)[
n
2 +α+1]

e
−(SST+2β)

2σ2 .

This is proportional to an inverse gamma density with parameters α′ = n
2

+α

and β′ = SST+2β
2

. Gelman et al. (2003) showed that we can reparameterize the
inverse gamma(α, β) distribution as a scaled inverse chi-squared distribution
with scale S = β

α and κ = 2α degrees of freedom. This parameterization is
helpful in understanding the ensuing arguments about choices of parameters.

It is common, especially amongst users of the BUGS modelling language,
to choose an inverse gamma(ε, ε) prior distribution for σ2 where ε is a small
value such as 1, or .1, or .001 (Gelman, 2006). The difficulty with this choice
of prior is that it can lead to an improper posterior distribution. This is
unlikely to occur in the examples discussed in this book, but it can occur
in hierarchical models where it may be reasonable to believe that very small
values of σ2 are possible. The advice we offer here is to choose α ≥ .5 so that
2α ≥ 1. That is, in the scaled inverse chi-squared parameterization, the prior
distribution will have at least κ = 1 degree of freedom, and hence will be a
proper prior.

EXAMPLE 15.1

Aroha, Bernardo, and Carlos are three statisticians employed at a dairy
factory who want to do inference on the standard deviation of the content
weights of “1 kg” packages of dried milk powder coming off the production
line. The three employees consider that the weights of the packages will
be normal(µ, σ2) where µ is known to be at the target which is 1015
grams. Aroha decides that she will use the positive uniform prior for the
standard deviation, g(σ) = 1 for σ > 0. Bernardo decides he will use
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Jeffreys’ prior g(σ) ∝ 1
σ

. Carlos decides that his prior belief about the
standard deviation distribution is that its median equals 5. He looks in
Table B.6 and finds that the 50% point for the chi-squared distribution
with 1 degree of freedom equals .4549, and he calculates S = .4549×52 =
11.37. Therefore his prior for σ2 will be 11.37 times an inverse chi-squared
distribution with 1 degree of freedom. He converts this to the equivalent
prior density for σ using the change of variable formula. The shapes of
the three prior densities for σ are shown in Figure 15.5. We see that

Aroha's prior    
Bernardo's prior 
Carlos' prior    

1050

Figure 15.5 The shapes of Aroha’s, Bernardo’s, and Carlos’ prior distributions for
the standard deviation σ.

Aroha’s prior does not go down as σ increases, and that both Bernardo’s
and Carlos’ prior only goes down very slowly as σ increase. This means
that all three priors will be satisfactory if the data shows much more
variation than was expected. We also see that Bernardo’s prior increases
towards infinity as σ goes to zero. This means his prior gives a great deal
of weight to very small values.6 Carlos’ prior does not give much weight
to small values, but this does not cause a problem, since overestimating
the variance is more conservative than underestimating it. They take
a random sample of size 10 and measure the content weights in grams.
They are:

6The prior g(θ) ∝ θ−1 is improper two ways. Its limit of its integral from a to 1 as
a approaches 0 is infinite. This can cause problems in more complicated models where
posterior may also be improper because the data cannot force the corresponding integral
for the posterior to be finite. However, it will not cause any problem in this particular case.
The limit of the integral from 1 to b of Bernardo’s prior as b increases without bounds is
also infinite. However, this will not cause any problems, as the data can always force the
corresponding integral for the posterior to be finite.
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1011 1009 1019 1012 1011 1016 1018 1021 1016 1012

The calculations for SST are

Value Subtract mean Squared

1011 -4 16

1009 -6 36

1019 4 16

1012 -3 9

1011 -4 16

1016 1 1

1018 3 9

1021 6 36

1016 1 1

1012 -3 9

SST 149

Each employee has S′× an inverse chi-squared with κ′ degrees of freedom
for the posterior distribution for the variance. Aroha’s posterior will be
149 × an inverse chi-squared with 9 degrees of freedom, Bernardo’s pos-
terior will be 149 × an inverse chi-squared with 10 degrees of freedom,
and Carlos’ posterior will be 11.37+149=160.37 × an inverse chi-squared
with 10+1=11 degrees of freedom. The corresponding posterior densities
for the variance σ2 and the standard deviation σ are shown in Figure 15.6
and Figure 15.7, respectively. We see that Aroha’s posterior has a some-
what longer upper tail than the others since her prior gave more weight
for large values of σ.

15.3 Bayesian Inference for Normal Standard Deviation

The posterior distribution summarizes our belief about the parameter taking
into account our prior belief and the observed data. We have seen in the pre-
vious section, that the posterior distribution of the variance g(σ2|y1, . . . , yn)
is S′× an inverse chi-squared with κ′ degrees of freedom.

Bayesian Estimators for σ

Sometimes we want an estimator about the parameter which summarizes the
posterior distribution into a single number. We will base our Bayesian esti-
mators for σ on measures of location from the posterior distribution of the
variance σ2. Calculate the measure of location from the posterior distribution
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[ht]

Aroha's posterior    
Bernardo's posterior 
Carlos' posterior    

50403020100

Figure 15.6 Aroha’s, Bernardo’s, and Carlos’ posterior distributions for variance
σ2.

Aroha's posterior    
Bernardo's posterior 
Carlos' posterior    

109876543210

Figure 15.7 Aroha’s, Bernardo’s, and Carlos’ posterior distributions for standard
deviation σ.

of the variance g(σ2|y1, . . . , yn) and then take the square root for our estima-
tor of the standard deviation σ. Three possible measures of location are the
posterior mean, posterior mode, and posterior median.

Posterior mean of variance σ2. The posterior mean is found by taking the
expectation E[σ2g(σ2|y1, . . . , yn)]. Lee (1989) showed that when κ′ > 2 the
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posterior mean is given by

m′ =
S′

κ′ − 2
.

The first possible Bayesian estimator for the standard deviation would be its
square root,

σ̂ =

√
S′

κ′ − 2
.

Posterior mode of variance σ2. The posterior distribution of the variance σ2

is given by S′×an inverse chi-squared distribution with κ′ degrees of freedom.
The posterior mode is found by setting the derivative of g(σ2|y1, . . . , yn) equal
to 0, and solving the resulting equation. It is given by

mode =
S′

κ′ + 2
.

The second possible Bayesian estimator for the standard deviation would be
its square root,

σ̂ =

√
S′

κ′ + 2
.

Posterior median of variance σ2. The posterior median is the value that has
50% of the posterior distribution below it, and 50% above it. It is the solution
of ∫ median

0

g(σ2|y1, . . . , yn)dσ2 = .5

which can be found numerically. The third possible Bayesian estimator for
the standard deviation would be its square root

σ̂ =
√
median .

EXAMPLE 15.1 (continued)

The three employees decide to find their estimates of the standard devi-
ation σ. They are shown in Table 15.2. Since the posterior density of
the standard deviation can seen to be positively skewed with a somewhat
heavy right tail, the estimates found using the posterior mean would be
the best, followed by the estimates found using the posterior median. The
estimates found using the posterior mode would tend to underestimate the
standard deviation.

Bayesian Credible Interval for σ

The posterior distribution of the variance σ2 given the sample data is S′×
an inverse chi-squared with κ′ degrees of freedom. Thus W = S′/σ2 has the
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Table 15.2 Posterior estimates of the standard deviation σ

Person Posterior Parameters Estimator Found using Posterior

S′ κ′ Mode Mean Median

Aroha 149 9 3.680 4.614 4.226

Bernardo 149 10 3.524 4.316 3.994

Carlos 160.37 11 3.512 4.221 3.938

chi-squared distribution with κ′ degrees of freedom. We set up a probability
statement about W , and invert it to find the credible interval for σ2. Let u be
the chi-squared value with κ′ degrees of freedom having upper tail area 1− α

2
and let l be the chi-squared value having upper tail area α

2 . These values are
found in Table B.6.

P

(
u <

S′

σ2
< l

)
= 1− α ,

P

(
S′

l
< σ2 <

S′

u

)
= 1− α .

We take the square roots of the terms inside the brackets to convert this to a
credible interval for the standard deviation σ

P

(√
S′

l
< σ <

√
S′

u

)
= 1− α . (15.7)

EXAMPLE 15.1 (continued)

Each of the three employees has S′× a inverse chi-squared distribution
with κ′ degrees of freedom. They calculate their 95% credible intervals
for σ and put them in Table 15.3. We see that Aroha’s credible interval is
shifted slightly upwards and has a somewhat larger upper value than the
others, which makes sense since her posterior distribution has a longer
upper tail as seen in Figure 15.7.

Testing a One-Sided Hypothesis about σ

Usually we want to determine whether or not the standard deviation is less
than or equal to some value. We can set this up as a one-sided hypothesis
test about σ,

H0 : σ ≤ σ0 versus H1 : σ > σ0 .
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Table 15.3 Credible intervals for the standard deviation σ

Person Posterior Parameters 95% Credible Interval

S′ κ′ Lower Limit Upper Limit

Aroha 149 9 2.80 7.43

Bernardo 149 10 2.70 6.77

Carlos 160.37 11 2.70 6.48

We will test this by calculating the posterior probability of the null hypothesis
and comparing this to the level of significance α that we chose. Let W = S′

σ2 .

P (H0 is true |y1, . . . , yn) = P (σ ≤ σ0|y1, . . . , yn)

= P
(
σ2 ≤ σ2

0|y1, . . . , yn
)

= P (W ≥W0) ,

where W0 = S′

σ2
0
. When the null hypothesis is true, W has the chi-squared

distribution with κ′ degrees of freedom. This probability can be bounded by
values from Table B.6, or alternatively it can be calculated using Minitab or
R.

EXAMPLE 15.1 (continued)

The three employees want to determine if the standard deviation is greater
than 5.00. They set this up as the one-sided hypothesis test

H0 : σ ≤ 5.00 versus H1 : σ > 5.00

and choose a level of significance α = .10. They each calculate their
posterior probability of the null hypothesis. The results are in the Table
15.4. None of their posterior probabilities of the null hypothesis are below
α = .10, so each employee accepts the null hypothesis at that level.

Table 15.4 Results of Bayesian one-sided hypothesis tests

Person Posterior P (σ ≤ 5|y1, . . . , yn)

Aroha 149× inv. chi-sq. 9 df P (W ≥ 149
52 ) = .7439 Accept

Bernardo 149× inv. chi-sq. 10 df P (W ≥ 149
52 ) = .8186 Accept

Carlos 160.37× inv. chi-sq. 11 df P (W ≥ 160.37
52 ) = .8443 Accept
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Main Points

The shape of the S times an inverse chi-squared distribution with κ
degrees of freedom is given by

g(x) ∝ 1

x
κ
2 +1

e
S
2x .

If U has S times an inverse chi-squared distribution with κ degrees of
freedom, then W = S

U has the chi-squared distribution with κ degrees of
freedom. Hence inverse chi-squared probabilities can be calculated using
the chi-squared distribution table.

When X is random variable having S times an inverse chi-squared dis-
tribution with κ degrees of freedom then its mean and variance are given
by

E[X] =
S

κ− 2
and Var[X] =

2S2

(κ− 2)2 × (κ− 4)
,

provided that κ > 2 and κ > 4, respectively.

The likelihood of the variance for a random sample from a normal(µ, σ2)
when µ is known has the shape of SST times an inverse chi-squared
distribution with n− 2 degrees of freedom.

We use Bayes’ theorem on the variance, so we need the prior distribution
of the variance σ2.

It is much easier to understand and visualize the prior distribution of the
standard deviation σ.

The prior for the standard deviation can be found from the prior for the
variance using the change of variable formula, and vice versa.

Possible priors include

1. Positive uniform prior for variance

2. Positive uniform prior for standard deviation

3. Jeffreys’ prior (same for standard deviation and variance)

4. S times an inverse chi-squared distribution with κ degrees of freedom.
(This is the conjugate family of priors for the variance.) Generally it
is better to choose a conjugate prior with low degrees of freedom.

Find Bayesian estimators for standard deviation σ by calculating a mea-
sure of location such as the mean, median, or mode from the posterior
distribution of the variance σ2, and taking the square root. Generally,
using the posterior mean as the measure of location works best because
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the posterior distribution has a heavy tail, and it is more conservative to
overestimate the variance.

Bayesian credible intervals for σ can be found by converting the poste-
rior distribution of σ2 (which is S′ times an inverse chi-squared with κ′

degrees of freedom) to the posterior distribution of W = S′

σ2 which is
chi-squared with κ′ degrees of freedom. We can find the upper and lower
values for W , and convert them back to find the lower and upper values
for the credible interval for σ.

One-sided hypothesis tests about he standard deviation σ can be per-
formed by calculating the posterior probability of the null hypothesis
and comparing it to the chosen level of significance α

Exercises

15.1. The strength of an item is known to be normally distributed with mean
200 and unknown variance σ2. A random sample of ten items is taken
and their strength measured. The strengths are:

215 186 216 203 221

188 202 192 208 195

(a) What is the equation for the shape of the likelihood function of the
variance σ2?

(b) Use a positive uniform prior distribution for the variance σ2. Change
the variable from the variance to the standard deviation to find the
prior distribution for the standard deviation σ.

(c) Find the posterior distribution of the variance σ2.

(d) Change the variable from the variance to the standard deviation to
find the posterior distribution of the standard deviation.

(e) Find a 95% Bayesian credible interval for the standard deviation σ.

(f) Test H0 : σ ≤ 8 vs. H1 : σ > 8 at the 5% level of significance.

15.2. The thickness of items produced by a machine is normally distributed
with mean µ = .001 cm and unknown variance σ2. A random sample of
ten items are taken and measured. They are:

.00110 .00146 .00102 .00066 .00139

.00121 .00053 .00144 .00146 .00075

(a) What is the equation for the shape of the likelihood function of the
variance σ2?
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(b) Use a positive uniform prior distribution for the variance σ2. Change
the variable from the variance to the standard deviation to find the
prior distribution for the standard deviation σ.

(c) Find the posterior distribution of the variance σ2.

(d) Change the variable from the variance to the standard deviation to
find the posterior distribution of the standard deviation.

(e) Find a 95% Bayesian credible interval for the standard deviation σ.

(f) Test H0 : σ ≤ .0003 vs. H1 : σ > .0003 at the 5% level of significance.

15.3. The moisture level of a dairy product is normally distributed with mean
15% and unknown variance σ2. A random sample of size 10 is taken and
the moisture level measured. They are:

15.01 14.95 14.99 14.09 16.63

13.98 15.78 15.07 15.64 16.98

(a) What is the equation for the shape of the likelihood function of the
variance σ2?

(b) Use Jeffreys’ prior distribution for the variance σ2. Change the vari-
able from the variance to the standard deviation to find the prior
distribution for the standard deviation σ.

(c) Find the posterior distribution of the variance σ2.

(d) Change the variable from the variance to the standard deviation to
find the posterior distribution of the standard deviation.

(e) Find a 95% Bayesian credible interval for the standard deviation σ.

(f) Test H0 : σ ≤ 1.0 vs. H1 : σ > 1.0 at the 5% level of significance.

15.4. The level of saturated fats in a brand of cooking oil is normally distributed
with mean µ = 15% and unknown variance σ2. The percentages of
saturated fat in a random sample of ten bottles of the cooking oil are:

13.65 14.31 14.73 13.88 14.66

15.53 15.36 15.16 15.76 18.55

(a) What is the equation for the shape of the likelihood function of the
variance σ2?

(b) Use Jeffreys’ prior distribution for the variance σ2. Change the vari-
able from the variance to the standard deviation to find the prior
distribution for the standard deviation σ.

(c) Find the posterior distribution of the variance σ2.
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(d) Change the variable from the variance to the standard deviation to
find the posterior distribution of the standard deviation.

(e) Find a 95% Bayesian credible interval for the standard deviation σ.

(f) Test H0 : σ ≤ .05 vs. H1 : σ > .05 at the 5% level of significance.

15.5. Let a random sample of 5 observations from a normal(µ, σ2) distribution
(where it is known that the mean µ = 25) be

26.05 29.39 23.58 23.95 23.38

(a) What is the equation for the shape of the likelihood function of the
variance σ2?

(b) We believe (before looking at the data) that the standard deviation
is as likely to be above 4 as it is to be below 4. (Our prior belief is
that the distribution of the standard deviation has median 4.) Find
the inverse chi-squared prior with 1 degree of freedom that fits our
prior belief about the median.

(c) Change the variable from the variance to the standard deviation to
find the prior distribution for the standard deviation σ.

(d) Find the posterior distribution of the variance σ2.

(e) Change the variable from the variance to the standard deviation to
find the posterior distribution of the standard deviation.

(f) Find a 95% Bayesian credible interval for the standard deviation σ.

(g) Test H0 : σ ≤ 5 vs. H1 : σ > 5 at the 5% level of significance.

15.6. The weight of milk powder in a “1 kg” package is normal(µ, σ2) distribu-
tion (where it is known that the mean µ = 1015 g). Let a random sample
of 10 packages be taken and weighed. The weights are

1019 1023 1014 1027 1017 1031 1004 1018 1004 1025

(a) What is the equation for the shape of the likelihood function of the
variance σ2?

(b) We believe (before looking at the data) that the standard deviation
is as likely to be above 5 as it is to be below 5. (Our prior belief is
that the distribution of the standard deviation has median 5.) Find
the inverse chi-squared prior with 1 degree of freedom that fits our
prior belief about the median.

(c) Change the variable from the variance to the standard deviation to
find the prior distribution for the standard deviation σ.

(d) Find the posterior distribution of the variance σ2.

(e) Change the variable from the variance to the standard deviation to
find the posterior distribution of the standard deviation.
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(f) Find a 95% Bayesian credible interval for the standard deviation σ.

(g) If there is evidence that the standard deviation is greater than 8, then
the machine will be stopped and adjusted. Test H0 : σ ≤ 8 vs. H1 :
σ > 8 at the 5% level of significance. Is there evidence that the
packaging machine needs to be adjusted?

Computer Exercises

15.1. We will use the Minitab macro NVarICP, or the function nvaricp in R,
to find the posterior distribution of the standard deviation σ when we
have a random sample of size n from a normal(µ, σ2) distribution and
the mean µ is known. We have S× an inverse chi-squared(κ) prior for
the variance σ2. This is the conjugate family for normal observations
with known mean. Starting with one member of the family as the prior
distribution, we will get another member of the family as the posterior
distribution. The simple updating rules are

S′ = S + SST and κ′ = κ+ n ,

where SST =
∑

(yi − µ)2. Suppose we have five observations from a
normal(µ, σ2) distribution where µ = 200 is known. They are:

206.4 197.4 212.7 208.5 203.4

(a) Suppose we start with a positive uniform prior for the standard devi-
ation σ. What value of S× an inverse chi-squared(κ) will we use?

(b) Find the posterior using the macro NVarICP in Minitab or the func-
tion nvaricp in R.

(c) Find the posterior mean and median.

(d) Find a 95% Bayesian credible interval for σ.

15.2. Suppose we start with a Jeffreys’ prior for the standard deviation σ.
What value of S× an inverse chi-squared(κ) will we use?

(a) Find the posterior using the macro NVarICP in Minitab or the func-
tion nvaricp in R.

(b) Find the posterior mean and median.

(c) Find a 95% Bayesian credible interval for σ.

15.3. Suppose our prior belief is σ is just as likely to be below 8 as it is to be
above 8. (Our prior distribution g(σ) has median 8.) Determine an S×
an inverse chi-squared(κ) that matches our prior median where we use
κ = 1 degree of freedom.
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(a) Find the posterior using the macro NVarICP in Minitab or the func-
tion nvaricp in R.

(b) Find the posterior mean and median.

(c) Find a 95% Bayesian credible interval for σ.

15.4. Suppose we take five additional observations from the normal(µ, σ2) dis-
tribution where µ = 200 is known. They are:

211.7 205.4 206.0 206.5 201.7

(a) Use the posterior from Exercise 15.3 as the prior for the new obser-
vations and find the posterior using the Minitab macro NVarICP, or
the nvaricp function in R.

(b) Find the posterior mean and median.

(c) Find a 95% Bayesian credible interval for σ.

15.5. Suppose we take the entire sample of ten normal(µ, σ2) observations as a
single sample. We will start with the original prior we found in Exercise
15.3.

(a) Find the posterior using the macro NVarICP in Minitab or the func-
tion nvaricp in R.

(b) What do you notice from Exercises 15.3–15.5?

(c) Test the hypothesis H0 : σ ≤ 5 vs. H1 : σ > 5 at the 5% level of
significance.



CHAPTER 16

ROBUST BAYESIAN METHODS

Many statisticians hesitate to use Bayesian methods because they are reluc-
tant to let their prior belief into their inferences. In almost all cases they have
some prior knowledge, but they may not wish to formalize it into a prior dis-
tribution. They know that some values are more likely than others, and some
are not realistically possible. Scientists are studying and measuring something
they have observed. They know the scale of possible measurements. We saw
in previous chapters that all priors that have reasonable probability over the
range of possible values will give similar, although not identical, posteriors.
And we saw that Bayes’ theorem using the prior information will give bet-
ter inferences than frequentist ones that ignore prior information, even when
judged by frequentist criteria. The scientist would be better off if he formed
a prior from his prior knowledge and used Bayesian methods.

However, it is possible that a scientist could have a strong prior belief, yet
that belief could be incorrect. When the data are taken, the likelihood is
found to be very different from that expected from the prior. The posterior
would be strongly influenced by the prior. Most scientists would be very
reluctant to use that posterior. If there is a strong disagreement between the
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prior and the likelihood, the scientist would want to go with the likelihood,
since it came from the data.

In this chapter we look at how we can make Bayesian inference more robust
against a poorly specified prior. We find that using a mixture of conjugate
priors enables us to do this. We allow a small prior probability that our prior
is misspecified. If the likelihood is very different from what would be expected
under the prior, the posterior probability of misspecification is large, and our
posterior distribution will depend mostly on the likelihood.

16.1 Effect of Misspecified Prior

One of the main advantages of Bayesian methods is that it uses your prior
knowledge, along with the information from the sample. Bayes’ theorem
combines both prior and sample information into the posterior. Frequen-
tist methods only use sample information. Thus Bayesian methods usually
perform better than frequentist ones because they are using more information.
The prior should have relatively high values over the whole range where the
likelihood is substantial.

However, sometimes this does not happen. A scientist could have a strong
prior belief, yet it could be wrong. Perhaps he (wrongly) bases his prior on
some past data that arose from different conditions than the present data
set. If a strongly specified prior is incorrect, it has a substantial effect on the
posterior. This is shown in the following two examples.

EXAMPLE 16.1

Archie is going to conduct a survey about how many Hamilton voters say
they will attend a casino if it is built in town. He decides to base his prior
on the opinions of his friends. Out of the 25 friends he asks, 15 say they
will attend the casino. So he decides on a beta(a, b) prior that matches
those opinions. The prior mean is .6, and the equivalent samples size is
25. Thus a+ b+ 1 = 25 and a

a+b = .6. Thus a = 14.4 and b = 9.6. Then
he takes a random sample of 100 Hamilton voters and finds that 25 say
they will attend the casino. His posterior distribution is beta(39.4, 84.60).
Archie’s prior, the likelihood, and his posterior are shown in Figure 16.1.
We see that the prior and the likelihood do not overlap very much. The
posterior is in between. It gives high posterior probability to values that
are not supported strongly by the data (likelihood) and are not strongly
supported by prior either. This is not satisfactory.
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Figure 16.1 Archie’s prior, likelihood, and posterior.

EXAMPLE 16.2

Andrea is going to take a sample of measurements of dissolved oxygen
level from a lake during the summer. Assume that the dissolved oxygen
level is approximately normal with mean µ and known variance σ2 = 1.
She had previously done a similar experiment from the river that flowed
into the lake. She considered that she had a pretty good idea of what
to expect. She decided to use a normal(8.5, .72) prior for µ, which was
similar to her river survey results. She takes a random sample of size 5
and the sample mean is 5.45. The parameters of the posterior distribution
are found using the simple updating rules for normal. The posterior is
normal(6.334, .37692). Andrea’s prior, likelihood, and posterior are shown
in Figure 16.2. The posterior density is between the prior and likelihood,
and gives high probability to values that are not supported strongly either
by the data or by the prior, which is a very unsatisfactory result.

These two examples show how an incorrect prior can arise. Both Archie and
Andrea based their priors on past data, each judged to arise from a situation
similar the one to be analyzed. They were both wrong. In Archie’s case he
considered his friends to be representative of the population. However, they
were all similar in age and outlook to him. They do not constitute a good
data set to base a prior on. Andrea considered that her previous data from
the river survey would be similar to data from the lake. She neglected the
effect of water movement on dissolved oxygen. She is basing her prior on data
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Figure 16.2 Andrea’s prior, likelihood, and posterior.

obtained from an experiment under different conditions than the one she is
now undertaking.

16.2 Bayes’ Theorem with Mixture Priors

Suppose our prior density is g0(θ) and it is quite precise, because we have
substantial prior knowledge. However, we want to protect ourselves from the
possibility that we misspecified the prior by using prior knowledge that is
incorrect. We do not consider it likely, but concede that it is possible that
we failed to see the reason why our prior knowledge will not applicable to
the new data. If our prior is misspecified, we do not really have much of an
idea what values θ should take. In that case the prior for θ is g1(θ), which is
either a very vague conjugate prior or a flat prior. Let g0(θ|y1, . . . , yn) be the
posterior distribution of θ given the observations when we start with g0(θ) as
the prior. Similarly, we let g1(θ|y1, . . . , yn) be the posterior distribution of θ,
given the observations when we start with g1(θ) as the prior:

gi(θ|y1, . . . , yn) ∝ gi(θ)f(y1, . . . , yn|θ) .

These are found using the simple updating rules, since we are using priors
that are either from the conjugate family or are flat.

The Mixture Prior

We introduce a new parameter, I, that takes two possible values. If i = 0,
then θ comes from g0(θ). However, if i = 1, then θ comes from g1(θ). The
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conditional prior probability of θ given i is

g(θ|i) =

{
g0(θ) if i = 0 ,

g1(θ) if i = 1 .

We let the prior probability distribution of I be P (I = 0) = p0, where p0 is
some high value like .9, .95, or .99, because we think our prior g0(θ) is correct.
The prior probability that our prior is misspecified is p1 = 1− p0. The joint
prior distribution of θ and I is

g(θ, i) = pi × (1− i)× g0(θ) + (1− pi)× (i)× g1(θ)

We note that this joint distribution is continuous in the parameter θ and
discrete in the parameter I. The marginal prior density of the random variable
θ is found by marginalizing (summing I over all possible values) the joint
density. It has a mixture prior distribution since its density

g(θ) = .95× (i− 1)× g0(µ) + .05× (i)× g1(µ) (16.1)

is a mixture of the two prior densities.

The Joint Posterior

The joint posterior distribution of θ, I given the observations y1, . . . , yn is
proportional to the joint prior times the joint likelihood. This gives

g(θ, i|y1, . . . , yn) = c× g(θ, i)× f(y1, . . . , yn|θ, i) for i = 0, 1

for some constant c. But the sample only depends on θ, not on i, so the joint
posterior

g(θ, i|y1, . . . , yn) = c× pigi(θ)f(y1, . . . , yn|θ) for i = 0, 1

= c× pihi(θ, y1, . . . , yn) for i = 0, 1,

where hi(θ, y1, . . . , yn) = gi(θ)f(y1, . . . , yn|θ) is the joint distribution of the
parameter and the data, when gi(θ) is the correct prior. The marginal poste-
rior probability P (I = i|y1, . . . , yn) is found by integrating θ out of the joint
posterior:

P (I = i|y1, . . . , yn) =

∫
g(θ, i|y1, . . . , yn) dθ

= c× pi
∫
hi(θ, y1, . . . , yn) dθ

= c× pifi(y1, . . . , yn)
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for i = 0, 1, where fi(y1, . . . , yn) is the marginal probability (or probability
density) of the data when gi(θ) is the correct prior. The posterior probabilities
sum to 1, and the constant c cancels, so

P (I = i|y1, . . . , yn) =
pifi(y1, . . . , yn)∑1
i=0 pifi(y1, . . . , yn)

.

These can be easily evaluated.

The Mixture Posterior

We find the marginal posterior of θ by summing all possible values of i out of
the joint posterior:

g(θ|y1, . . . , yn) =

1∑
i=0

g(θ, i|y1, . . . , yn) .

But there is another way the joint posterior can be rearranged from conditional
probabilities:

g(θ, i|y1, . . . , yn) = g(θ|i, y1, . . . , yn)× P (I = i|y1, . . . , yn) ,

where g(θ|i, y1, . . . , yn) = gi(θ|y1, . . . , yn) is the posterior distribution when
we started with gi(θ) as the prior. Thus the marginal posterior of θ is

g(θ|y1, . . . , yn) =
1∑
i=0

gi(θ|y1, . . . , yn)× P (I = i|y1, . . . , yn) . (16.2)

This is the mixture of the two posteriors, where the weights are the posterior
probabilities of the two values of i given the data.

EXAMPLE 16.2 (continued)

One of Archie’s friends, Ben, decided that he would reanalyze Archie’s
data with a mixture prior. He let g0 be the same beta(14.4, 9.6) prior that
Archie used. He let g1 be the (uniform) beta(1, 1) prior. He let the prior
probability p0 = .95. Ben’s mixture prior and its components are shown
in Figure 16.3. His mixture prior is quite similar to Archie’s. However, it
has heavier weight in the tails. This gives makes his prior robust against
prior misspecification. In this case, hi(π, y) is a product of a beta times
a binomial. Of course, we are only interested in y = 25, the value that



BAYES’ THEOREM WITH MIXTURE PRIORS 343

1.00.90.80.70.60.50.40.30.20.10.0

prior 0
prior 1
mixture prior

Figure 16.3 Ben’s mixture prior and components.

occurred:

h0(π, y = 25) =
Γ(24)

Γ(14.4)Γ(9.6)
π13.4(1− π)8.6 ×

(
100!

25!75!

)
π25(1− π)75

=
Γ(24)

Γ(14.4)Γ(9.6)
×
(

100!

25!75!

)
× π38.4(1− π)83.6

and

h1(π, y = 25) = π0(1− π)0 ×
(

100!

25!75!

)
π25(1− π)75

=

(
100!

25!75!

)
π25(1− π)75 .

We recognize each of these as a constant times a beta distribution. So
integrating them with respect to π gives∫ 1

0

h0(π, y = 25) dπ =
Γ(24)

Γ(14.4)Γ(9.6)
×
(

100!

25!75!

)
×
∫ 1

0

π38.4(1− π)83.6 dπ

=
Γ(24)

Γ(14.4)Γ(9.6)
×
(

100!

25!75!

)
× Γ(39.4)Γ(84.6)

Γ(124)

and ∫ 1

0

h1(π, y = 25) dπ =

(
100!

25!75!

)
×
∫ 1

0

π25(1− π)75 dπ

=

(
100!

25!75!

)
× Γ(26)Γ(76)

Γ(102)
.
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Remember that Γ(a) = (a − 1) × Γ(a − 1) and if a is an integer, Γ(a) =
(a− 1)! . The second integral is easily evaluated and gives

f1(y = 25) =

∫ 1

0

h1(π, y = 25) dπ =
1

101
= 9.90099× 10−3 .

We can evaluate the first integral numerically:

f0(y = 25) =

∫ 1

0

h0(π, y = 25) dπ = 2.484× 10−4 .

So the posterior probabilities are P (I = 0|25) = 0.323 and P (I = 1|25) =
0.677. The posterior distribution is the mixture g(π|25) = .323×g0(π|25)+
.677×g1(π|25), where g0(π|y) and g1(π|y) are the conjugate posterior dis-
tributions found using g0 and g1 as the respective priors. Ben’s mixture
posterior distribution and its two components is shown in Figure 16.4.
Ben’s prior and posterior, together with the likelihood, is shown in Fig-

1.00.90.80.70.60.50.40.30.20.10.0

posterior 0
posterior 1
mixture posterior

Figure 16.4 Ben’s mixture posterior and its two components.

ure 16.5. When the prior and likelihood disagree, we should go with the
likelihood because it is from the data. Superficially, Ben’s prior looks very
similar to Archie’s prior. However, it has a heavier tail allowed by the
mixture, and this has allowed his posterior to be very close to the likeli-
hood. We see that this is much more satisfactory than Archie’s analysis
shown in Figure 16.1.
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Figure 16.5 Ben’s mixture prior, likelihood, and mixture posterior.

EXAMPLE 16.2 (continued)

Andrea’s friend Caitlin looked at Figure 16.2 and told her it was not sat-
isfactory. The values given high posterior probability were not supported
strongly either by the data or by the prior. She considered it likely that
the prior was misspecified. She said to protect against that, she would do
the analysis using a mixture of normal priors. g0(θ) was the same as An-
drea’s, normal(8.5, .72), and g1(θ) would be normal(8.5, (4× .7)2), which
has the same mean as Andrea’s prior, but with the standard deviation 4
times as large. She allows prior probability .05 that Andrea’s prior was
misspecified. Caitlin’s mixture prior and its components are shown in Fig-
ure 16.6. We see that her mixture prior appears very similar to Andrea’s
except there is more weight in the tail regions. Caitlin’s posterior g0(θ|ȳ)
is normal(6.334, .37692), the same as for Andrea. Caitlin’s posterior when
the original prior was misspecified g1(θ|ȳ) is normal(5.526, .44162), where
the parameters are found by the simple updating rules for the normal. In
the normal case

hi(µ, y1, . . . , yn) ∝ gi(µ)× f(ȳ|µ)

∝ e
− 1

2s2
i

(µ−mi)2

× e−
1

2σ2/n
(ȳ−µ)2

,

where mi and s2
i are the mean and variance of the prior distribution gi(µ).

The integral
∫
hi(µ, y1, . . . , yn) dµ gives the unconditional probability of
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Figure 16.6 Caitlin’s mixture prior and its components.

the sample, when gi is the correct prior. We multiply out the two terms
and then rearrange all the terms containing µ, which is normal and inte-
grates. The terms that are left simplify to

fi(ȳ) =

∫
hi(µ, ȳ) dµ

∝ 1√
s2
i + σ2/n

× e
− 1

2(s2
i
+σ2/n)

(ȳ−mi)2

,

which we recognize as a normal density with meanmi and variance σ2

n +s2
i .

In this example, m0 = 8.5, s2
0 = .72,m1 = 8.5, s2

1 = (4× .7)2), σ2 = 1, and
n = 5. The data are summarized by the value ȳ = 5.45 that occurred in
the sample. Plugging in these values, we get P (I = 0|ȳ = 5.45) = .12
and P (I = 1|ȳ = 5.45) = .88. Thus Caitlin’s posterior is the mixture
.12×g0(µ|ȳ)+.88×g1(µ|ȳ). Caitlin’s mixture posterior and its components
are given in Figure 16.7. Caitlin’s prior, likelihood, and posterior are
shown in Figure 16.8. Comparing this with Andrea’s analysis shown in
Figure 16.2, we see that using mixtures has given her a posterior that
is much closer to the likelihood than the one obtained with the original
misspecified prior. This is a much more satisfactory result.
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Figure 16.7 Caitlin’s mixture posterior and its two components.
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Figure 16.8 Caitlin’s mixture prior, the likelihood, and her mixture posterior.

Summary

Our prior represents our prior belief about the parameter before looking at
the data from this experiment. We should be getting our prior from past
data from similar experiments. However, if we think an experiment is similar,
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but it is not, our prior can be quite misspecified. We may think we know a
lot about the parameter, but what we think is wrong. That makes the prior
quite precise, but wrong. It will be quite a distance from the likelihood. The
posterior will be in between, and will give high probability to values neither
supported by the data or the prior. That is not satisfactory. If there is a
conflict between the prior and the data, we should go with the data.

We introduce a indicator random variable that we give a small prior prob-
ability of indicating our original prior is misspecified. The mixture prior we
use is P (I = 0) × g0(θ) + P (I = 1) × g1(θ), where g0 and g1 are the original
prior and a more widely spread prior, respectively. We find the joint posterior
of distribution of I and θ given the data. The marginal posterior distribution
of θ, given the data, is found by marginalizing the indicator variable out. It
will be the mixture distribution

gmixture(θ|y1, . . . , yn) = P (I = 0|y1, . . . , yn)g0(θ|y1, . . . , yn)

+ P (I = 1|y1, . . . , yn)g1(θ|y1, . . . , yn) .

This posterior is very robust against a misspecified prior. If the original prior
is correct, the mixture posterior will be very similar to the original posterior.
However, if the original prior is very far from the likelihood, the posterior
probability p(i = 0|y1, . . . , yn) will be very small, and the mixture posterior
will be close to the likelihood. This has resolved the conflict between the
original prior and the likelihood by giving much more weight to the likelihood.

Main Points

If the prior places high probability on values that have low likelihood,
and low probability on values that have high likelihood, the posterior
will place high probability on values that are not supported either by the
prior or by the likelihood. This is not satisfactory.

This could have been caused by a misspecified prior that arose when the
scientist based his/her prior on past data, which had been generated by
a process that differs from the process that will generate the new data in
some important way that the scientist failed to take into consideration.

Using mixture priors protects against this possible misspecification of the
prior. We use mixtures of conjugate priors. We do this by introducing
a mixture index random variable that takes on the values 0 or 1. The
mixture prior is

g(θ) = p0 × g0(θ) + p1 × g1(θ) ,

where g0(θ) is the original prior we believe in, and g1 is another prior that
has heavier tails and thus allows for our original prior being wrong. The
respective posteriors that arise using each of the priors are g0(θ|y1, . . . , yn)
and g1(θ|y1, . . . , yn).
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We give the original prior g0 high prior probability by letting the prior
probability p0 = P (I = 0) be high and the prior probability p1 = (1 −
p0) = P (I = 1) is low. We think the original prior is correct, but have
allowed a small probability that we have it wrong.

Bayes’ theorem is used on the mixture prior to determine a mixture
posterior. The mixture index variable is a nuisance parameter and is
marginalized out.

If the likelihood has most of its value far from the original prior, the
mixture posterior will be close to the likelihood. This is a much more
satisfactory result. When the prior and likelihood are conflicting, we
should base our posterior belief mostly on the likelihood, because it is
based on the data. Our prior was based on faulty reasoning from past
data that failed to note some important change in the process we are
drawing the data from.

The mixture posterior is a mixture of the two posteriors, where the mixing
proportions P (I = i) for i = 0, 1, are proportional to the prior probability
times the the marginal probability (or probability density) evaluated at
the data that occurred.

P (I = i) ∝ pi × fi(y1, . . . yn) for i = 0, 1 .

They sum to 1, so

P (I = i) =
pi × fi(y1, . . . yn)∑1
i=0 pi × fi(y1, . . . yn)

for i = 0, 1 .

Exercises

16.1. You are going to conduct a survey of the voters in the city you live
in. They are being asked whether or not the city should build a new
convention facility. You believe that most of the voters will disapprove
the proposal because it may lead to increased property taxes for residents.
As a resident of the city, you have been hearing discussion about this
proposal, and most people have voiced disapproval. You think that only
about 35% of the voters will support this proposal, so you decide that
a beta(7, 13) summarizes your prior belief. However, you have a nagging
doubt that the group of people you have heard voicing their opinions is
representative of the city voters. Because of this, you decide to use a
mixture prior:

g(π|i) =

{
g0(π) if i = 0 ,

g1(π) if i = 1 .
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where g0(π) is the beta(7, 13) density, and g1(π) is the beta(1, 1) (uniform)
density. The prior probability P (I = 0) = .95. You take a random sample
of n = 200 registered voters who live in the city. Of these, y = 10 support
the proposal.

(a) Calculate the posterior distribution of π when g0(π) is the prior.

(b) Calculate the posterior distribution of π when g1(π) is the prior.

(c) Calculate the posterior probability P (I = 0|Y ).

(d) Calculate the marginal posterior g(π|Y ).

16.2. You are going to conduct a survey of the students in your university to
find out whether they read the student newspaper regularly. Based on
your friends opinions, you think that a strong majority of the students
do read the paper regularly. However, you are not sure your friends are
representative sample of students. Because of this, you decide to use a
mixture prior.

g(π|i) =

{
g0(π) if i = 0 ,

g1(π) if i = 1 .

where g0(π) is the beta(20, 5) density, and g1(π) is the beta(1, 1) (uniform)
density. The prior probability P (I = 0) = .95. You take a random
sample of n = 100 students. Of these, y = 41 say they read the student
newspaper regularly.

(a) Calculate the posterior distribution of π when g0(π) is the prior.

(b) Calculate the posterior distribution of π when g1(π) is the prior.

(c) Calculate the posterior probability P (I = 0|Y ).

(d) Calculate the marginal posterior g(π|Y ).

16.3. You are going to take a sample of measurements of specific gravity of a
chemical product being produced. You know the specific gravity mea-
surements are approximately normal(µ, σ2) where σ2 = .0052. You have
precise normal(1.10, .0012) prior for µ because the manufacturing process
is quite stable. However, you have a nagging doubt about whether the
process is correctly adjusted, so you decide to use a mixture prior. You
let g0(µ) be your precise normal(1.10, .0012) prior, you let g1(µ) be a
normal(1.10, .012), and you let p0 = .95. You take a random sample of
product and measure the specific gravity. The measurements are

1.10352 1.10247 1.10305 1.10415 1.10382 1.10187

(a) Calculate the posterior distribution of µ when g0(µ) is the prior.

(b) Calculate the posterior distribution of µ when g1(µ) is the prior.

(c) Calculate the posterior probability P (I = 0|y1, . . . , y6).
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(d) Calculate the marginal posterior g(µ|y1, . . . , y6).

16.4. You are going to take a sample of 500 g blocks of cheese. You know they
are approximately normal(µ, σ2), where σ2 = 22. You have a precise
normal(502, 12) prior for µ because this is what the the process is set
for. However, you have a nagging doubt that maybe the machine needs
adjustment, so you decide to use a mixture prior. You let g0(µ) be your
precise normal(502, 12) prior, you let g1(µ) be a normal(502, 22), and you
let p0 = .95. You take a random sample of ten blocks of cheese and weigh
them. The measurements are

501.5 499.1 498.5 499.9 500.4

498.9 498.4 497.9 498.8 498.6

(a) Calculate the posterior distribution of µ when g0(µ) is the prior.

(b) Calculate the posterior distribution of µ when g1(µ) is the prior.

(c) Calculate the posterior probability P (I = 0|y1, . . . , y10).

(d) Calculate the marginal posterior g(µ|y1, . . . , y10).

Computer Exercises

16.1. We will use the Minitab macro BinoMixP, or function binomixp in R,
to find the posterior distribution of π given an observation y from the
binomial(n, π) distribution when we use a mixture prior for π. Suppose
our prior experience leads us to believe a beta(7, 13) prior would be ap-
propriate. However we have a nagging suspicion that our experience was
under different circumstances, so our prior belief may be quite incorrect
and we need a fallback position. We decide to use a mixture prior where
g0(π) is the beta(7, 13) and g1(π) is the beta(1, 1) distribution, and the
prior probability P (I = 0) = .95. Suppose we take a random sample of
n = 100 and observe y = 76 successes.

(a) [Minitab:] Use BinoMixp to find the posterior distribution g(π|y).

[R:] Use the function binomixp to find the posterior distribution
g(π|y).

(b) Find a 95% Bayesian credible interval for π.

(c) Test the hypothesis H0 : π ≤ .5 vs. H1 : π > .5 at the 5% level of
significance.

16.2. We are going to observe the number of “successes” in n = 100 inde-
pendent trials. We have prior experience and believe that a beta(6, 14)
summarizes our prior experience. However, we consider that our prior
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experience may have occurred under different conditions, so our prior
may be bad. We decide to use a mixture prior where g0(π) is the
beta(6, 14) and g1(π) is the beta(1, 1) distribution, and the prior prob-
ability P (I = 0) = .95. Suppose we take a random sample of n = 100
and observe y = 36 successes.

(a) Use BinoMixp in Minitab, or binomixp in R, to find the posterior
distribution g(π|y).

(b) Find a 95% Bayesian credible interval for π.

(c) Test the hypothesis H0 : π ≤ .5 vs. H1 : π > .5 at the 5% level of
significance.

16.3. We will use the Minitab macro NormMixP, or normmixp in R, to find
the posterior distribution of µ given a random sample y1, . . . , yn from
the normal(µ, σ2) distribution where we know the standard deviation
σ = 5. when we use a mixture prior for µ. Suppose that our prior expe-
rience in similar situations leads us to believe that the prior distribution
should be normal(1000, 52). However, we consider that the prior experi-
ence may have been under different circumstances, so we decide to use a
mixture prior where g0(µ) is the normal(1000, 52) and g1(µ) is the nor-
mal(1000, 152) distribution, and the prior probability P (I = 0) = .95.
We take a random sample of n = 10 observations. They are

1030 1023 1027 1022 1023

1023 1030 1018 1015 1011

(a) [Minitab:] Use NormMixp to find the posterior distribution g(µ|y).

[R:] Use normmixp to find the posterior distribution g(µ|y).

(b) Find a 95% Bayesian credible interval for µ.

(c) Test the hypothesis H0 : µ ≤ 1, 000 vs. H1 : µ > 1, 000 at the 5%
level of significance.

16.4. We are taking a random sample from the normal(µ, σ2) distribution
where we know the standard deviation σ = 4. Suppose that our prior
experience in similar situations leads us to believe that the prior distri-
bution should be normal(255, 42). However, we consider that the prior
experience may have been under different circumstances, so we decide to
use a mixture prior where g0(µ) is the normal(255, 42) and g1(µ) is the
normal(255, 122) distribution, and the prior probability P (I = 0) = .95.
We take a random sample of n = 10 observations. They are

249 258 255 261 259

254 261 256 253 254
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(a) Use NormMixp in Minitab, or normmixp in R, to find the posterior
distribution g(µ|y).

(b) Find a 95% Bayesian credible interval for µ.

(c) Test the hypothesis H0 : µ ≤ 1, 000 vs. H1 : µ > 1, 000 at the 5%
level of significance.





CHAPTER 17

BAYESIAN INFERENCE FOR NORMAL
WITH UNKNOWN MEAN AND
VARIANCE

The normal(µ, σ2) distribution has two parameters, the mean µ and the vari-
ance σ2. Usually we are more interested in making our inferences about the
mean µ, and regard the variance σ2 as a nuisance parameter.

In Chapter 11 we looked at the case where we had a random sample of
observations from a normal(µ, σ2) distribution where the mean µ was the
only unknown parameter. That is, we assumed that the variance σ2 was
a known constant. This observation distribution is a member of the one-
dimensional exponential family1 of distributions. We saw that when we used
a normal(m, s2) conjugate prior for µ, we could find the normal(m′, (s′)2)
conjugate posterior easily using the simple updating rules2 that are appropri-
ate for this case. We also saw that, as a rule of thumb, when the variance is

1A random variable Y with parameter θ is a member of the one-dimensional exponential
family of distributions means that its probability or probability density function can be
written as f(y|θ) = a(θ) × b(y) × ec(θ×t(y)) for some functions a(θ), b(y), c(θ), and t(y).

For this case, a(µ) = e
− µ2

2σ2 , b(y) = 1
σ
e
− y2

2σ2 , c(µ) = µ
σ2 , and t(y) = y

2Distributions in the one-dimensional exponential family always have a family of conjugate
priors, and simple updating rules to find the posterior.

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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not known, we can use the estimated variance σ̂2 calculated from the sample.
This introduces a certain amount of uncertainty because we do not know the
actual value of σ2. We allow for this extra uncertainty by using Student’s t
distribution instead of the standard normal distribution to find critical values
for our credible intervals and to do probability calculations.

In Chapter 15 we looked at the case where we had a random sample of
observations from the normal(µ, σ2) distribution where the only unknown
parameter is the variance σ2. The mean µ was assumed to be a known con-
stant. This observation distribution is also a member of the one-dimensional
exponential family.3 We saw that when we used S times an inverse chi-squared
with κ degrees of freedom conjugate prior for σ2, we could find the S′ times
an inverse chi-squared with κ′ degrees of freedom conjugate posterior by us-
ing the simple updating rules appropriate for this case. We used the sample
mean µ̂ = ȳ when µ was not known. This costs us one degree of freedom,
which in turn means that there is more uncertainty in our calculations. We
calculate the sum of squares around µ̂ and find the critical values from the
inverse chi-squared distribution with one less degree of freedom.

In each of these earlier chapters, we suggested the following procedure as
an approximation to be used when we do not know the value of the nuisance
parameter. We estimate the nuisance parameter from the sample, and plug
that estimated value into the model. We then perform our inference on the
parameter of interest as if the nuisance parameter has that value, and we
change how we find the critical values for credible intervals and probability
calculations, Student’s t instead of standard normal for µ, and inverse chi-
squared with one less degree of freedom for σ2.

The assumption that we know one of the two parameters and not the other
is a little artificial. Realistically, if we do not know the mean µ, then how
can we know the variance, and vice versa. In this chapter we look at the
more realistic case where we have a random sample of observations from the
normal(µ, σ2) distribution where both parameters are unknown. We will use
a joint prior for the two parameters and find the joint posterior distribution
using Bayes’ theorem. We find the marginal posterior distribution of the
parameter of interest (usually µ) by integrating the nuisance parameter out
of the joint posterior. Then we do the inference on the parameter of interest
using its marginal posterior.

In Section 17.1 we look at the joint likelihood function of the normal(µ, σ2)
distribution where both the mean µ and the variance σ2 are unknown param-
eters. It factors into the product of a conditional normal shape likelihood for
µ given σ2 times an inverse chi-squared shaped likelihood for σ2.

In Section 17.2 we look at inference in the case where we use independent
Jeffrey’s priors for µ and σ2. We find the marginal posterior distribution for
µ by integrating the nuisance parameter σ2 out of the joint posterior. We will

3In this case, a(σ2) = (σ2)−
1
2 e
−µ

2

σ2 , c(σ2) = µ
σ2 , and t(y) = y.
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find that for this case, the Bayesian results will be the same as the results
using frequentist assumptions.

In Section 17.3 we find that the joint conjugate prior for the two parameters
is not the product of independent conjugate priors for the two parameters since
it must have the same form as the joint likelihood: a conditional normal prior
for µ given σ2 times an inverse chi-squared prior for σ2. We find the joint
posterior when we use the joint conjugate prior for the two parameters. We
integrate the nuisance parameter σ2 out of the joint posterior to get a Student’s
t shaped marginal posterior of µ. Misspecification of the prior mean leads to
inflation of the posterior variance. This may mask the real problem which is
the misspecified prior mean. As an alternative, we present an approximate
Bayesian approach that does not have this variance inflation. It uses the fact
that the joint prior and the joint likelihood factor into a conditional normal
part for µ given σ2 times a multiple of an inverse chi-squared part for σ2.
We find an approximation to the joint posterior that has that same form.
However, this method does not use all the information about the variance in
the prior and likelihood, specifically the distance between the prior mean and
the sample mean. We find a Student’s t shaped posterior distribution for µ
using an estimate of the variance that incorporates the prior for the variance
and the sample variance estimate. This shows why the approximation we
suggested in Chapter 11 holds. We should, when using either the exact or
approximate approach, examine graphs similar to those shown in Chapter 16
to decide if we have made a poor choice of prior distribution for the mean.

In Section 17.4 we find the posterior distribution of the difference between
means µd = µ1−µ2 for two independent random samples from normal distri-
butions having the same unknown variance σ2. We look at two cases. In the
first case we use independent Jeffreys’ priors for all three parameters µ1, µ2,
and σ2. We simplify to the joint posterior of µd and σ2, and then we integrate
σ2 out to find the Student’s t shaped marginal posterior distribution of µd.
In the second case we use the joint conjugate prior for all three parameters.
Again, we find the joint posterior of µ1, µ2, and σ2. Then we simplify it to
the joint posterior of µd and σ2. We integrate the nuisance parameter σ2

out of the joint posterior to find the marginal posterior of µd which has a
Student’s t-shape. We also give an approximate method based on factoring
the joint posterior. We find the joint posterior distribution of µd and σ2 also
factors. A theorem gives us a Student’s t-shaped posterior for µd. Again, this
approximation does not use all information about the variance from the prior
and likelihood.

In Section 17.5, we find the posterior distribution for the difference between
the means µd = µ1 − µ2, when we have independent random samples from
normal(µ1, σ

2
1) and normal(µ2, σ

2
2), respectively, where both variances are

unknown.
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17.1 The Joint Likelihood Function

The joint likelihood for a single observation from the normal(µ, σ2) distribu-
tion has shape given by

f(y|µ, σ2) ∝ 1√
σ2
e−

1
2σ2

∑
(y−µ)2

.

Note: We include the factor 1√
σ2

in the likelihood because σ2 is no longer a

constant and is now considered to be one of the parameters in this model. The
likelihood for a random sample y1, . . . , yn from the normal(µ, σ2) distribution
is the product of the individual likelihoods. Its shape is given by

f(y1, . . . , yn|µ, σ2) ∝
n∏
i=1

f(yi|µ, σ2)

∝
n∏
i=1

1√
σ2
e−

1
2σ2 (yi−µ)2

∝ 1

(σ2)
n
2
e−

1
2σ2

∑
(yi−µ)2

We subtract and add the sample mean ȳ in the exponent

f(y1, . . . , yn|µ, σ2) ∝ 1

(σ2)
n
2
e−

1
2σ2

∑
[(yi−ȳ)+(ȳ−µ)]2

We expand the exponent, break it into three sums, and simplify. The middle
term sums to zero and drops out. We get

f(y1, . . . , yn|µ, σ2) ∝ 1

(σ2)
n
2
e−

1
2σ2 [n(ȳ−µ)2+SSy]

where SSy =
∑

(yi − ȳ)2 is the sum of squares away from the sample mean.
Note that the joint likelihood factors into two parts:

f(y1, . . . , yn|µ, σ2) ∝ 1

(σ2)
1
2

e−
n

2σ2 (ȳ−µ)2

× 1

(σ2)
n−1

2

e−
SSy

2σ2 . (17.1)

The first part shows µ|σ2 has a normal (ȳ, σ
2

n ) distribution. The second part
shows σ2 has SSy times an inverse chi-squared distribution. Since the joint
posterior factors, the conditional random variable µ|σ2 is independent of the
random variable σ2.
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17.2 Finding the Posterior when Independent Jeffreys’ Priors for

µ and σ2 Are Used

In Chapter 11 we saw that Jeffreys’ prior for the normal mean µ is the im-
proper flat prior

gµ(µ) = 1 for −∞ < µ <∞
In Chapter 15 we observed that the Jeffreys’ prior for σ2 is

gσ2(σ2) =
1

σ2
for 0 < σ2 <∞

which also is improper. The joint prior for the two parameters when we are
using independent Jeffreys’ priors is their product which is given by

gµ,σ2(µ, σ2) =
1

σ2
for

{
−∞ < µ <∞,
0 < σ2 <∞.

(17.2)

The joint posterior will be proportional to the joint prior times the joint
likelihood given by

gµ,σ2(µ, σ2|y1, . . . , yn) ∝ gµ,σ2(µ, σ2)× f(y1, . . . , yn|µ, σ2)

∝ 1

σ2
× 1

(σ2)
1
2

e−
n

2σ2 (ȳ−µ)2

× 1

(σ2)
n−1

2

e−
SSy

2σ2

∝ 1

(σ2)
n
2 +1

e−
1

2σ2 [n(µ−ȳ)2+SSy]. (17.3)

We see when we look at the joint posterior as a function of σ2 as the only
parameter that it is in the form of a constant (n(µ − ȳ)2 + SSy) times an
inverse chi-squared distribution with n degrees of freedom.

Finding the Marginal Posterior for µ

Usually we are interested in doing inference about the parameter µ and con-
sider the variance σ2 to be a nuisance parameter. The general way to eliminate
a nuisance parameter is to marginalize it out of the joint posterior to find the
marginal posterior of the parameter of interest. In this case, the marginal
posterior for µ has shape given by

gµ(µ|y1, . . . , yn) ∝
∫ ∞

0

gµ,σ2(µ, σ2|y1, . . . , yn) dσ2

∝
∫ ∞

0

1

(σ2)
n
2 +1

e−
1

2σ2 [n(µ−ȳ)2+SSy]dσ2

∝ [n(µ− ȳ)2 + SSy]−
n
2 (17.4)
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since we are integrating an inverse chi-squared density over its whole range.
The details of evaluating the integral are found in the appendix at the end of
the chapter. We change variables to

t =
µ− ȳ√
SSy

n(n−1)

.

Let the updated constants be κ′ = n − 1, n′ = n, m′ = ȳ, and S′ = SSy.
Then

t =
µ−m′
σ̂B√
n′

,

where σ̂2
B =

SSy
κ′

is the unbiased estimator of the variance calculated from
the sample. By the change of variable formula, the the density of t has shape
given by

g(t) ∝ gµ(µ(t))× dµ(t)

dt

∝
[
1 +

t2

n− 1

]−n2
,

where we absorb the term dµ(t)
dt into the constant of proportionality. Thus

we say that the marginal posterior distribution of µ given in Equation 17.4

has the STκ′(m
′,
σ̂2
B

n′ ) distribution. It has the shape of a Student’s t with κ′

degrees of freedom and is centered at m′ with spread parameter σ̂2

n′
.

Another Way to Find the Marginal Posterior

In this case, there is an easier way to find the marginal posterior of µ that
does not require us to integrate σ2 out of the joint posterior. We make use of
the following theorem:

Theorem 17.1 If z and w are independent random variables having the
normal(0, 12) distribution and the chi-squared distribution with κ degrees of
freedom respectively, then

u =
z√(
w
κ

)
will have the Student’s t distribution with κ degrees of freedom. In words, a
normal random variable with mean 0 and variance 1 divided by the square root
of an independent chi-squared random variable over its degrees of freedom will
have the Student’s t distribution.
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A proof of the theorem is given in Mood, Graybill, and Boes (1974). We note
that we can factor the joint posterior

gµ,σ2(µ, σ2|y1, . . . , yn) ∝ 1

(σ2)
1
2

e−
n

2σ2 [µ−ȳ]2 × 1

(σ2)
n−1

2 +1
e−

SSy

2σ2

The conditional random variable µ|σ2 has the normal (ȳ, σ
2

n
) distribution and

the random variable σ2 has the SSy times an inverse chi-squared distribution
with n− 1 degrees of freedom, and the two components are independent. We
know that given σ2,

µ− ȳ√
σ2

n

is normal(0, 12)

and
SSy
σ2

is chi-squared with n− 1 df,

so

t =

µ−ȳ√
σ2

n√
SSy

σ2(n−1)

=
µ−m′
σ̂B√
n′

(17.5)

will have the Student’s t distribution with κ′ degrees of freedom, where σ̂2
B =

SSy
κ′

is the sample estimator of the variance. This means that the posterior

density of µ = m′ + σ̂B√
n′
× t has the STκ′(m

′,
σ̂2
B

n′ ) distribution. This is the

same result we found previously by integrating out the nuisance parameter,
σ2.

This means we can do the inferences for µ treating the unknown variance σ2

as if it had the value σ̂2
B but using the Student’s t table instead of the standard

normal table. We see that the same rule we suggested as an approximation
in Chapter 11 holds exactly.

17.3 Finding the Posterior when a Joint Conjugate Prior for µ
and σ2 Is Used

In Chapter 11 we found that the conjugate prior for µ, the mean of a normal
observation with known variance σ2, is the normal(m, s2) prior distribution.
In Chapter 15 we found that the conjugate prior for σ2, the variance of a
normal observation with known mean µ, is S times an inverse chi-squared
with κ degrees of freedom. We might think that the joint conjugate prior for
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both parameters µ and σ2 of a normal observation would be the product of
the independent conjugate priors for each parameter. However, this is not the
case. The product of independent conjugate priors is a perfectly acceptable
prior, but it is not jointly conjugate. If we used that prior4, then there is no
exact formula for the posterior that can be found by simple updating rules.
Instead, the posterior would have to be found numerically. Later, in Chapter
20, we will see how we can draw random samples from this posterior using
the computational Bayesian approach to inference. In this section, we will
see what form the actual joint conjugate prior takes, and how to do inference
when we use it.

The Joint Conjugate Prior

The joint conjugate prior must have the same form as the joint likelihood
function found in Equation 17.1. We saw it is the product of a part that only
depends on σ2 which we recognize has the shape of SSy times an inverse chi-
squared distribution and a part for µ given σ2 which we recognize as having

the shape of a normal(ȳ, σ
2

n ). The joint prior will have this same form. It is
the product of S times an inverse chi-squared distribution with κ df for σ2

times a normal(m, σ
2

n0
) distribution for µ given σ2. We can think of n0 as the

prior sample size for our prior for µ. It represents the sample size of normal
observations that would have the same precision as our prior belief about µ.
The joint conjugate prior is given by

gµ,σ2(µ, σ2) ∝ 1

(σ2)
1
2

e−
n0
2σ2 (µ−m)2

× 1

(σ2)
κ
2 +1

e−
S

2σ2 (17.6)

for −∞ < µ < ∞ and 0 < σ2 < ∞. The joint posterior will be proportional
to the joint prior times the joint likelihood. Its shape is given by

gµ,σ2(µ, σ2|y1, . . . , yn) ∝ gµ,σ2(µ, σ2)× f(y1, . . . , yn|µ, σ2)

∝ 1

(σ2)
1
2

e−
n0
2σ2 (µ−m)2 1

(σ2)
κ
2 +1

e−
S

2σ2

× 1

(σ2)
1
2

e−
n

2σ2 (ȳ−µ)2 1

(σ2)
n−1

2

e−
SSy

2σ2

∝ 1

(σ2)
κ′+1

2 +1
e
− 1

2σ2 [n′(µ−m′)2+S′+
(
n0n
n0+n

)
(ȳ−m)2]

,

(17.7)

4It has the shape of a mixture of Student’s t distributions with different degrees of freedom.
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where S′ = S + SSy and κ′ = κ + n and m′ = nȳ+n0m
n+n0

and n′ = n0 + n are
the updated constants.

Finding the Marginal Posterior for µ

We find the marginal posterior of µ by marginalizing σ2 out of the joint
posterior.

gµ(µ|y1, . . . , yn) ∝
∫ ∞

0

gµ,σ2(µ, σ2|y1, . . . , yn) dσ2

∝
∫ ∞

0

1

(σ2)
κ′+1

2 +1
e
− 1

2σ2 [n′(µ−m′)2+S′+
(
n0n
n0+n

)
(ȳ−m)2]

dσ2 .

We are integrating a constant times an inverse chi-squared density over its
whole range. Thus the conditional posterior of µ given σ2 has shape given by

gµ(µ|y1, . . . , yn) ∝ [n′(µ−m′)2 + S′ +

(
n0n

n0 + n

)
(ȳ −m)2]−

κ′+1
2 .

Suppose we change the variables to

t =
µ−m′√

S′+
(
n0n
n0+n

)
(ȳ−m)2

n′κ′

=
µ−m′

σ̂B/
√
n′
,

where

σ̂2
B =

S′ +
(
n0n
n0+n

)
(ȳ −m)2

κ′

=
S + SSy +

(
n0n
n0+n

)
(ȳ −m)2

κ′

=
( κ
κ′

) (S
κ

)
+

(
n− 1

κ′

) (
SSy
n− 1

)

+

(
1

κ′

)(
n0n

n0 + n

)
(ȳ −m)2

is a weighted average of three estimates of the variance. The first incorporates
the prior distribution of σ2, the second is the unbiased estimator of the vari-
ance from the sample data, and the third measures the distance the sample
mean, ȳ, is from its prior mean, m.
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We apply the change of variable formula. The posterior density of t will be

g(t|y1, . . . , yn) ∝
(
t2

κ′
+ 1

)−κ′+1
2

.

This is the density of the Student’s t distribution with κ′ degrees of freedom.

This means the marginal posterior density of µ is STκ′(m
′,
σ̂2
B

n′
) . It has the

shape of a Student’s t with κ′ df and is centered at m′ with spread parameter
σ̂B
n′

. Again, we can do the inference treating the unknown variance σ2 as if
it had the value σ̂2

B but using the Student’s t table to find the critical values
instead of the standard normal table. The third term in the formula for
σ̂2
B shows that a misspecified prior mean inflates the spread of the posterior

distribution. This may disguise the real problem which is the misspecified
prior mean.

An Approximation to the Marginal Posterior for µ

We saw in Equation 17.1 that the joint likelihood factors into a normal part for
µ conditional on σ2 times a scaled inverse chi-squared part for σ2. In Equation
17.5 we see the joint prior factors similarly. We can combine the conditional
normal prior and conditional normal likelihood to get a conditional normal
posterior for µ given σ2. Similarly, we combine the scaled inverse chi-squared
prior and the scaled inverse chi-squared likelihood for σ2 to give a scaled
inverse chi-squared posterior for σ2. Thus the joint posterior factors into a

product of a conditional normal(m′, (σ2)2)
n′

posterior for µ|σ2 times S′ times
an inverse chi-squared with κ′ degrees of freedom posterior of σ2 where this
time the degree of freedom constant is updated by κ′ = κ + n − 1 while the
others are updated as before.

gµ,σ2(µ, σ2|y1, . . . , yn) ∝ 1

(σ2)
1
2

e−
n′

2σ2 (µ−m′)2 1

(σ2)
κ′
2 +1

e−
S′

2σ2 .

Because the joint posterior factors the two components are independent, so
from Theorem 1

t =
µ−m′√

S′

n′κ′

=
µ−m′
σ̂B√
n′

(17.8)
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will have the Student’s t distribution with κ′ degrees of freedom where

σ̂2
B =

S′

κ′

=
S + SSy

κ′

=
( κ
κ′

) (S
κ

)
+

(
n− 1

κ′

)
SSy
n− 1

is the weighted average of two estimates of the variance. The first incorporates
the estimate from the prior, and the second is the maximum likelihood esti-

mator of the variance. This means the posterior density of µ is STκ′(m
′,
σ̂2
B

n′ ).
Again, this shows that if we do the inference treating the unknown variance
σ2 as if it had the value σ̂2

B but using the Student’s t table to find the critical
values instead of the standard normal table the results are correct. It is an
exact result, but it is not the full Bayesian posterior since it doesn’t use all
the information in the prior. That is why we refer to it as an approximation
to the posterior.

When we compare the approximation with the exact result, we see the
variance estimate σ2

B leaves out the term(
n0n

n0 + n

)
(ȳ −m)2

so it will be smaller. However, it is based on one less degree of freedom, so the
credible intervals usually will be quite similar. All three cases (independent
Jeffreys’ prior, joint conjugate prior exact posterior, and joint conjugate prior
approximate posterior) that we have looked at have similar Student’s t formula

t =
µ−m′
σ̂B√
n′

where the conjugate prior constants are updated according to Table 17.1.
O’Hagan and Forster (2004) suggest the joint conjugate prior is too restric-

tive. If the sample mean is far from the prior mean, then this is interpreted as
evidence the variance should be larger than suggested by its prior rather than
giving evidence that the mean model is wrongly specified. We should graph
the prior, likelihood, and posterior for µ conditional on σ2 = σ̂2

B to help us
decide if the prior mean model is satisfactory. If these graphs look similar to
Figure 16.2, then it indicates the (conditional) mean model is misspecified. If
so, then a mixture model similar to those we discussed in Chapter 16 would
be better.
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Table 17.1 Updating joint conjugate prior constants for normal(µ, σ2) when both
parameters are unknown

Prior S′ κ′ n′ m′ σ̂2
B

Jeffreys’ SSy n− 1 n ȳ S′

κ′

Exact S + SSy κ+ n n0 + n n0m+nȳ
n0+n

n
κ′
S
κ

+ n−1
κ′

SSy
n−1

+ 1
κ′

n0n
n0+n

(ȳ −m)2

approx. S + SSy κ+ n− 1 n0 + n n0m+nȳ
n0+n

n
κ′
S
κ

+ n−1
κ′

SSy
n−1

EXAMPLE 17.1

Amber, Brett, and Chandra want to determine a 95% credible interval
for the mean moisture content in a cheese product. They take a sample
of 25 and measure the moisture content. The measurements are:

45.6 41.1 44.5 44.0 40.6 44.1 39.0 39.5 39.5 41.7

42.5 42.7 42.1 42.4 44.8 41.0 39.9 43.9 41.3 45.1

42.0 38.5 42.6 43.8 43.0

For these measurements ȳ = 42.208 and SSy = 95.618. They decide that
the moisture level is normally distributed where both the mean µ and
the variance σ2 are not known. Amber decides she will use independent
Jeffreys’ priors for µ and σ2. Brett believes the standard deviation is
equally likely to be above or below 3 so its prior median is 3. He decides
to use one degree of freedom. He finds S = .4549 × 32 so his prior for
σ2 is S = 4.094 times an inverse chi-squared with 1 degree of freedom,
He decides his prior for µ given σ2 is normal with prior mean m = 40
and prior sample size n0 = 1. He will use the exact solution. Chandra
decides she will use the same prior as Brett, but will find the approximate
solution.

Person Prior parameters Posterior parameters

S κ m n0 S′ κ′ n′ m′

Amber na na na na SSy n− 1 n ȳ

95.618 = 24 = 25 = 42.208

Brett 4.094 1 40 1 S + SSy κ+ n n0 + n nȳ+n0m
n+n0

(exact) 99.712 = 26 = 26 = 42.12

Chandra 4.094 1 40 4 S + SSy κ+ n− 1 n0 + n nȳ+n0m
n+n0

(approx) 99.712 = 25 = 26 = 42.12
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Amber’s marginal posterior distribution for µ will be ST (42.208, .39922)
with 24 degrees of freedom. Brett’s marginal posterior distribution for µ
will be ST(42.12, .39202) with 26 degrees of freedom. Chandra’s marginal
posterior for µ will be ST (42.12, .39942) with 25 degrees of freedom. Am-
ber’s, Brett’s and Chandra’s priors, likelihoods, and posteriors for µ given
their respective values of σ̂2

B are shown in Figure 17.1, Figure 17.2, and
Figure 17.3 respectively.

43.042.542.041.5

prior
likelihood
posterior

Figure 17.1 Amber’s prior, likelihood and posterior distributions conditional on
σ̂B .

17.4 Difference Between Normal Means with Equal Unknown

Variance

Suppose we have independent random samples from two normal distributions
having the same unknown variance σ2, but the two distributions have different
means. Let y1 = (y11, . . . , y1n1

) be the first sample which comes from a
Normal(µ1, σ

2) and let y2 = (y21 . . . , y2n2
) be the second sample which comes

from a normal(µ2, σ
2). Since the two random samples are independent of each

other, the joint likelihood is the product of the likelihoods of each sample.
Using Equation 17.1 for the likelihood of each sample, the joint likelihood is
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45.042.540.037.535.0

prior
likelihood
posterior

Figure 17.2 Brett’s prior, likelihood and posterior distributions conditional on σ̂B .

given by

f(y1,y2|µ1, µ2, σ
2) ∝ f(y1|µ1, σ

2)× f(y2|µ2, σ
2)

∝ 1

(σ2)
1
2

e−
n1
2σ2 (ȳ1−µ1)2

× 1

(σ2)
n1−1

2

e−
SS1
2σ2

× 1

(σ2)
1
2

e−
n2
2σ2 (ȳ2−µ2)2

× 1

(σ2)
n2−1

2

e−
SS2
2σ2

∝ 1

(σ2)
1
2

e−
n1
2σ2 (ȳ1−µ1)2

× 1

(σ2)
1
2

e−
n2
2σ2 (ȳ2−µ2)2

× 1

(σ2)
n1+n2

2 −1
e−

SSp

2σ2 , (17.9)

where

SSp = SS1 + SS2 =

n1∑
i=1

(y1i − ȳ1)2 +

n2∑
j=1

(y2j − ȳ2)2

is the pooled sum of squares.
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45.042.540.037.535.0

prior
likelihood
posterior

Figure 17.3 Chandra’s prior, likelihood and posterior distributions conditional on
σ̂B .

Finding the Posterior when Independent Jeffreys’ Priors are Used for all

Parameters

In this case, the joint prior is

gµ1,µ2,σ2(µ1, µ2, σ
2) =

1

σ2
for


−∞ < µ1 <∞,
−∞ < µ2 <∞,

0 < σ2 <∞.
(17.10)

The joint posterior is proportional to the joint prior times the joint likelihood
given by

gµ1,µ2,σ2(µ1, µ2, σ
2|y1y2) ∝ gµ1,µ2,σ2(µ1, µ2, σ

2)× f(y1,y2|µ1, µ2, σ
2)

∝ 1

σ2
× 1

(σ2)
1
2

e−
n1
2σ2 (ȳ1−µ1)2

× 1

(σ2)
1
2

e−
n2
2σ2 (ȳ2−µ2)2

× 1

(σ2)
n1+n2

2 −1
e−

SSp

2σ2

∝ 1

(σ2)
1
2

e−
n1(ȳ1−µ1)2

2σ2 × 1

(σ2)
1
2

e−
n2(ȳ2−µ2)2

2σ2

× 1

(σ2)
n1+n2

2

e−
SSp

2σ2 . (17.11)

We recognize this as a product of two normal distributions for µ1 and µ2

respectively, given σ2, times an SSp times an inverse chi-squared with n1 +
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n2 − 2 degrees of freedom for σ2. Since the joint posterior factors, the parts
are all independent of each other. Let µd = µ1−µ2 be the difference between
the means and let m′d = ȳ1 − ȳ2 be the difference between sample means.
Given σ2, the posterior distributions of the two means are independent normal
random variables. Therefore given σ2, the posterior distribution of µd is

normal
[
m′d, σ

2
(

1
n1

+ 1
n2

)]
, so the shape of the joint posterior of µd|σ2 and

σ2 is given by

gµd,σ2(µd, σ
2|y1,y2) ∝ 1

(σ2( n1n2

n1+n2
))

1
2

e
−n1n2(µd−(m′d))2

2σ2(n1+n2)

× 1

(σ2)
n1+n2

2

e
−SSp
2σ2

∝ 1

(σ2)
n1+n2+1

2

e−
n1n2(µd−m

′
d)2/(n1+n2)+SSp

2σ2 , (17.12)

where we absorb ( n1n2

n1+n2
) into the proportionality constant. We recognize this

as a function of σ2 to be the shape of
(
n1n2

n1+n2

)
(µd − m′d)2 + SSp times an

inverse chi-squared density with n1 + n2 − 1 degrees of freedom.
The marginal posterior density for µd is found by integrating the nuisance

parameter σ2 out of the joint posterior. We are integrating a constant times
an inverse chi-squared density over its whole range, so its shape will be given
by

gµd(µd) ∝
∫ ∞

0

1

(σ2)
n1+n2−1

2 +1
e
− 1

2σ2

[(
n1n2
n1+n2

)
(µd−m′d)2+SSp

]
dσ2

∝
[(

n1n2

n1 + n2

)
(µd −m′d)2 + SSp

]−n1+n2−1
2

∝
[(

n1n2

n1 + n2

)
(µd −m′d)2 + S′

]−κ′+1
2

,
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where the updated conjugate constants are κ′ = n1 + n2 − 2 and S′ = SSp.
We change variables to

t =
µd −m′d√
S′(n1+n2)
n1n2(κ′)

=
µd −m′d√

σ̂2
B

(
1
n1

+ 1
n2

) ,
where

σ̂2
B =

S′

κ′

=
S

κ

κ

κ′ + 1
+

SSp
n1 + n2 − 2

n1 + n2 − 2

κ+ 1
.

The shape of the density of t is

g(t) ∝
(

1 +
t2

κ′

)−κ′+1
2

,

which is the Student’s t density with κ′ degrees of freedom. Hence, the

marginal posterior of µd is ST (m′d,
σ̂2
B

κ′ ) with κ′ degrees of freedom.
On the other hand, we could show this using Theorem 1. We see µd|σ2

is normal [m′d, σ
2
(
n1+n2

n1n2

)
] and σ2 has SSp times an inverse chi-squared dis-

tribution with n1 + n2 − 2 degrees of freedom, and the two components are
independent. Hence

t =
µd − (m′d)[

SSp
n1+n2−2

(
n1+n2

n1n2

)] 1
2

=
µd − (m′d)[
S′

κ′

(
n1+n2

n1n2

)] 1
2

=
µd − (m′d)[

σ̂2
B

(
n1+n2

n1n2

)] 1
2

(17.13)

has a Student’s t distribution with κ′ degrees of freedom. Again, this shows

the difference between the means, µd, has the STκ′
[
m′d, σ̂

2
B

(
1
n1

+ 1
n2

)]
dis-

tribution. This shows that the rule we suggested in Chapter 13 as an approx-
imation (estimate the unknown variance by the pooled variance from the two
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samples, then get critical values from Student’s t table instead of the normal
table) holds true exactly.

Finding the Exact Posterior when the Joint Conjugate Prior Is Used for

All Parameters

The product of independent conjugate priors for each parameter will not be
jointly conjugate for all the parameters together just as in the single sample
case. In this case, we saw that the form of the joint likelihood is a product
of two normal densities for µ1 and µ2 respectively, each conditional on σ2,
multiplied by SSp times an inverse chi-squared density with κ degrees of
freedom for σ2. The joint conjugate prior will have the same form as the joint
likelihood and is given by

gµ1,µ2,σ2(µ1, µ2, σ
2) ∝ 1

(σ2)
1
2

e−
n10
2σ2 (µ1−m1)2

× 1

(σ2)
1
2

e−
n20
2σ2 (µ2−m2)2

× 1

(σ2)
κ
2 +1

e−
S

2σ2 , (17.14)

where m1 and m2 are the prior means, n10 and n20 are the equivalent sample
sizes for the respective normalµ1 and µ2 priors conditional on σ2, S is the
prior multiplicative constant and κ is the prior degrees of freedom for σ2. The
joint posterior is proportional to the product of the joint prior times the joint
likelihood. It is given by

gµ1,µ2,σ2(µ1, µ2, σ
2|y1,y2) ∝ 1

(σ2)
1
2

e−
n10
2σ2 (µ1−m1)2

× 1

(σ2)
1
2

e−
n20
2σ2 (µ2−m2)2

× 1

(σ2)
κ
2 +1

e−
S

2σ2 × 1

(σ2)
1
2

e−
n1
2σ2 (ȳ1−µ1)2

× 1

(σ2)
1
2

e−
n2
2σ2 (ȳ2−µ2)2

× 1

(σ2)
n1+n2

2 −1
e−

SSp

2σ2

∝ 1

(σ2)
1
2

e−
n′1
2σ2 (µ1−m′1)2

× 1

(σ2)
1
2

e−
n′2
2σ2 (µ2−m′2)2

× 1

(σ2)
κ′
2 +1

e
1

2σ2 (S′+
n10n1(ȳ1−m1)2

n10+n1
+
n20n2(ȳ2−m2)2)

n20+n2

(17.15)
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where

κ′ = κ+ n1 + n2, n′1 = n1 + n10, n′2 = n2 + n20, S′ = S + SSp,

m′1 =
n1ȳ1 + n10m1

n1 + n10
, and m′2 =

n2ȳ2 + n20m2

n2 + n20
.

Since the joint posterior factors, we see that the posterior distributions of µ1

and µ2, each conditional on σ2, are normal distributions and that the posterior
distribution of σ2 is S′ + c1 + c2 times an inverse chi-squared with κ′ degrees
of freedom, where

ci =
ni0ni
ni0 + ni

(ȳi −mi)
2, i = 1, 2.

Therefore given σ2, the distribution of µd = µ1 − µ2 is normal with mean
m′d = m′1 −m′2 and variance equal to σ2( 1

n′1
+ 1

n′2
)). The joint posterior of µd

and σ2 is given by

gµd,σ2(µd, σ
2|y1,y2) ∝ 1

(σ2)
1
2

e
− 1

2σ2

(
n′1n
′
2

n′
1
+n′

2

)
(µd−m′d)2

× 1

(σ2)
κ′
2 +1

e
1

2σ2 (S′+c1+c2). (17.16)

The marginal posterior of µd is found by integrating σ2 out of the joint pos-
terior and is

gµd(µd|y1,y2) ∝
∫ ∞

0

1

(σ2)
κ′+1

2 +1

× e
1

2σ2

(
n′1n
′
2

n′
1
n′

2
(µd−m′d)2+S′+c1+c2

)
dσ2

∝
[
n′1n

′
2

n′1 + n′2
(µd −m′d)2 + S′ + c1 + c2

]−κ′+1
2

.

Let

t =
µd −m′d√

n′1+n′2
n′1n

′
2κ
′ (S′ + c1 + c2)

∝ µd −m′d
σ̂B
√

1
n′1

+ 1
n′2

,
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where

σ̂2
B =

S′ + n10n1

n10+n1
(ȳ1 −m1)2 + n20n2

n20+n2
(ȳ2 −m2)2

κ′

=
κ

κ′
S

κ
+
n1 + n2 − 2

κ′
SSp

n1 + n2 − 2
+

1

κ′
n10n1

n10 + n1
(ȳ1 −m1)2

+
1

κ′
n20n2

n20 + n2
(ȳ2 −m2)2

is the weighted average of four estimates of the variance. The terms come from
the prior for σ2, the pooled estimate from the likelihood, and the distance the
prior means are from their respective sample means. The last two terms
increase the posterior variance due to misspecification of the prior means.
This can increase the width of credible intervals for µd when the real problem
may be the prior misspecification.

Finding the Approximate Posterior when the Joint Conjugate Prior Is Used

for All Parameters

The joint posterior is proportional to the product of the joint prior times the
joint likelihood and is given by

gµ1,µ2,σ2(µ1, µ2, σ
2|y1,y2) ∝ 1

(σ2)
1
2

e−
n10
2σ2 (µ1−m1)2

× 1

(σ2)
1
2

e−
n20
2σ2 (µ2−m2)2

× 1

(σ2)
κ
2 +1

e−
S

2σ2 × 1

(σ2)
1
2

e−
n1
2σ2 (ȳ1−µ1)2

× 1

(σ2)
1
2

e−
n2
2σ2 (ȳ2−µ2)2

× 1

(σ2)
n1+n2

2 −1
e−

SSp

2σ2 .

(17.17)

We combine each pair of conditional normal prior times likelihood and the
inverse chi-squared prior times likelihood separately to get the approximate
posterior

gµ1,µ2,σ2(µ1, µ2, σ
2|y1,y2) ∝ 1

(σ2)
1
2

e−
n′1
2σ2 (µ1−m′1)2

× 1

(σ2)
1
2

e−
n′2
2σ2 (µ2−m′2)2

× 1

(σ2)
κ′
2 +1

e
S′

2σ2 ,
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where the updated constants are

κ′ = κ+ n1 + n2 − 2, n′1 = n1 + n10, n′2 = n2 + n20, S′ = S + SSp,

m′1 =
n1ȳ1 + n10m1

n1 + n10
, and m′2 =

n2ȳ2 + n20m2

n2 + n20
.

Since the joint posterior factors, we see that the conditional normal posterior
distributions of µ1 and µ2 given σ2 are independent of each other and are
independent of the posterior distribution of σ2, which is S′ times an inverse
chi-squared with κ′ degrees of freedom. Therefore, the distribution of µd =
µ1 − µ2 given σ2 is normal with mean m′d = m′1 −m′2 and variance equal to

σ2
(

1
n′1

+ 1
n′2

)
. The joint posterior of µd and σ2 is given by

gµd,σ2(µd, σ
2|y1,y2) ∝ 1

(σ2)
1
2

e
− 1

2σ2

(
n′1n
′
2

n′1+n′2

)
(µd−m′d)2

× 1

(σ2)
κ′
2 +1

e
1

2σ2 S
′
, (17.18)

The marginal posterior of µd is found by integrating σ2 out of the joint pos-
terior and is

gµd(µd|y1,y2) ∝
∫ ∞

0

1

(σ2)
κ′+1

2 +1
e

1
2σ2

(
n′1n
′
2

n′
1
n′

2
(µd−m′d)2+S′

)
dσ2

∝
[
n′1n

′
2

n′1 + n′2
(µd −m′d)2 + S′

]−κ′+1
2

Let

t =
µd −m′d√
n′1+n′2
n′1n

′
2κ
′ (S′)

∝ µd −m′d
σ̂B
√

1
n′1

+ 1
n′2

,

where this time

σ̂2
B =

S′

κ′

=
κ

κ′
S

κ
+
n1 + n2 − 2

κ′
SSp

n1 + n2 − 2
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is the weighted average of only two estimates of the variance. The terms
come from the prior for σ2 and the pooled estimate of the variance from the
likelihood, respectively. Thus there is no inflation of the variance estimate
due to misspecification of the mean.

EXAMPLE 17.2

In Example 3.2 (Chapter 3, p. 40) we looked at two series of measurements
Michelson made on the speed of light in 1879 and 1882 respectively. In
Example 13.1 (Chapter 13, p. 258) we found a 95% Bayesian credible
interval for µd = µ1879 − µ1882 under the assumptions that the known
underlying variance σ2 = 1002 and we used a normal(300000, 5002) prior
for each of the means. David, Esther, and Fiona decided to each fine
a 95% Bayesian credible interval for µd where we assume the variance
is unknown. David decides to use independent Jeffreys’ priors for all the
parameters. Esther and Fiona decide to use priors that are comparable to
that used in Example 13.1 so comparisons can be made with that result.
In Example 13.1 the standard deviation was assumed to be 100. Taking
that as the median for the inverse chi-squared prior distribution with
κ = 1 degree of freedom for the variance gives S = 4549 (See choosing an
inverse chi-squared prior on page 322). The prior distributions for µ1879

and µ1882 were normal(300000, 5002). This gives σ
n0

= 500, so n0 = .04.
Note that the equivalent sample size does not have to be an integer.
Esther decides to find the exact posterior, and Fiona decides to find the
approximate one. Their results are given below.

Person Posterior constants 95% credible interval

(Method) md σd lower upper

David 152.783 32.441 ( 87.27, 218.30)

(Jeffreys)

Esther 152.541 31.531 ( 88.99, 216.09)

(Exact)

Fiona 152.541 32.180 ( 87.60, 217.48)

(Approx.)

Comparing the credible intervals to the approximate one we found in
Example 13.1 we see that these credible intervals are slightly wider. This
is because in Example 13.1 we used the standard normal table to get the
critical value because we assumed the standard deviation was known. In
this example we used the more reasonable assumption that the standard
deviation is not known.
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17.5 Difference Between Normal Means with Unequal Unknown

Variances

In the case of a single sample from a normal distribution with unknown vari-
ance σ2, and the case of two independent samples from normal distributions
with equal unknown variances σ2, we found that frequentist confidence in-
tervals have the same form (although different interpretations) as Bayesian
credible intervals when independent Jeffreys’ priors are used for the mean(s)
and the variance. One might think that this is true in general. However, the
case of two independent samples from normal distributions with unknown
unequal variances σ2

1 and σ2
2 , respectively, will show that this supposition is

not true in general. Let y1 = (y11, . . . , y1n1
) be a random sample from nor-

mal(µ1, σ
2
1) where both parameters are unknown, let y2 = (y21, . . . , y2n2

) be
a random sample from normal(µ2, σ

2
2) where both parameters are unknown,

and let the two samples be independent. We want to do inferences on the
difference between the means, µ1 − µ2, and treat the unknown variances σ2

2

and σ2
2 as nuisance parameters. This is known as the Behrens Fisher problem.

Fisher (1935) developed an approach known as fiducial inference which derived
a probability distribution for the parameter from the sampling distribution
of the statistic. Its success requires using a pivotal quantity.5 These do not
always exist which limits the application of fiducial inference. When it works,
the fiducial approach gives similar results to the Bayesian approach using non-
informative priors, which are widely applicable. However, Fisher denied that
fiducial inference was in principal a Bayesian approach. The fiducial intervals
found for this problem do not have the same form as the confidence interval
should have and do not have the frequency interpretation of confidence inter-
vals.6 We will look at the Bayesian approach to the Behrens Fisher problem
first proposed by Jeffreys (1961).

Since the two random samples are independent of each other, the joint
likelihood is the product of the two likelihoods given by

f(y1,y2|µ1, µ2, σ
2
1, σ

2
2) ∝ f(y1|µ1, σ

2
1)× f(y2|µ2, σ

2
2).

We are using independent Jeffreys’ priors so the joint prior is

gµ1,µ2,σ2
1 ,σ

2
2
(µ1, µ2, σ

2
1, σ

2
2) ∝ 1

σ2
1

× 1

σ2
2

.

Since both the likelihood and the prior factor, the joint posterior

gµ1,µ2,σ2
1 ,σ

2
2
(µ1, µ2, σ

2
1 , σ

2
2|y1,y2) ∝ gµ1,σ2

1
(µ1, σ

2
1|y1)× gµ2,σ2

2
(µ2, σ

2
2 |,y2)

5A function of the parameter and the statistic that does not depend on any unknown
parameters.
6The fiducial intervals would have the (post-data) probability interpretation for this case
similar to the Bayesian interpretation instead of the (pre-data) long-run frequency inter-
pretation of confidence intervals.
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also factors. It simplifies to

gµ1,µ2,σ2
1 ,σ

2
2
(µ1, µ2, σ

2
1, σ

2
2 |y1,y2) ∝ 1

(σ2
1)

1
2

e
− n1

2σ2
1

(ȳ1−µ1)2 1

(σ2
1)

n1−1
2 +1

e
SSy1
2σ2

1

× 1

(σ2
2)

1
2

e
− n2

2σ2
2

(ȳ2−µ2)2 1

(σ2
2)

n2−1
2 +1

e
SSy2
2σ2

2 .

This is the product of a normal(ȳ1,
σ2

1

n1
) conditional distribution for µ1 given

σ2
1 , a normal(ȳ2,

σ2
2

n2
) conditional distribution for µ2 given σ2

2, an SSy1
times

an inverse chi-squared distribution with n1 − 1 for σ2
1 , and an SSy2

times
an inverse chi-squared distribution with n2 − 1 for σ2

2, respectively, and the
components are all independent. By Theorem 1,

t1 =
µ1 − ȳ1√

σ̂2
1

n1

and t2 =
µ2 − ȳ2√

σ̂2
2

n2

,

where σ̂2
1 =

SSy1
n1−1 and σ̂2

2 =
SSy2
n2−1 will be independent Student’s t random

variables having n1 − 1 and n2 − 1 degrees of freedom respectively. Given σ2
1

and σ2
2 , the distribution of µ1 − µ2 will be normal (ȳ1 − ȳ2,

σ2
1

n1
+

σ2
2

n2
) . We

want to find the marginal posterior distribution of µ1 − µ2. Note

τ1 =
µ1 − µ2 − (ȳ1 − ȳ2)√

σ̂2
1

n1
+

σ̂2
2

n2

=
µ1 − ȳ1√

σ̂2
1

n1

×

√
σ̂2

1

n1√
σ̂2

1

n1
+

σ̂2
2

n2

+
µ2 − ȳ2√

σ̂2
2

n2

×

√
σ̂2

2

n2√
σ̂2

1

n1
+

σ̂2
2

n2

= t1 cos φ̂− t2 sin φ̂

where φ̂ is the angle such that

tan φ̂ =

√
σ̂2

1

n1√
σ̂2

2

n2

Thus the marginal posterior distribution of µ1 − µ2 is a linear function of t1
and t2. Let

τ2 = t1 sin φ̂+ t2 cos φ̂
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Then (
τ1

τ2

)
=

(
cos φ̂ sin φ̂

− sin φ̂ cos φ̂

)(
t1

t2

)

The vector τ =

(
τ1

τ2

)
is a linear transformation7 of the vector t =

(
t1

t2

)
. The

joint posterior of τ is

g(τ1, τ2|y1,y2) = g(t1(τ1, τ2), t2(τ1, τ2)|φ̂,y1,y2)× |J |,

where the Jacobian is

|J | =

∣∣∣∣∣∣∣∣
∂t1
∂τ1

∂t1
∂τ2

∂t2
∂τ1

∂t2
∂τ2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
cos φ̂ sin φ̂

− sin φ̂ cos φ̂

∣∣∣∣∣∣∣ = 1.

The marginal posterior density of τ1 can be found by integrating τ2 out of
their joint posterior. It has shape given by

g(τ1|y1,y2) ∝
∫ ∞
−∞

g(τ1, τ2|y1,y2) dτ2

∝
∫ ∞
−∞

(
1 +

(τ1 cos φ̂+ τ2 sinφ)2

n1 − 1

)−n1
2

×
(

1 +
(−τ1 sin φ̂+ τ2 cos φ̂)2

n2 − 1

)−n2
2

dτ2.

This distribution, known as the Behrens Fisher distribution, depends on the
three constants n1, n2, and φ̂. The critical values for the Behrens Fisher
distribution can be calculated numerically, but no closed form exists. It is
symmetric about 0 like a Student’s t and it has tail weight similar to a Stu-
dent’s t, but it is not exactly a Student’s t. Fisher (1935) used φ̂, the ratio
calculated from the sample variances as if it was the true value φ. Welch
(1938) used Satterthwaite’s approximation to find the degrees of freedom for
a Student’s t distribution that gives the closest match to the Behrens Fisher
distribution.

7This transformation is a rotation.
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Main Points

Normal Distribution with Both Parameters Unknown

For a normal(µ, σ2) with both parameters unknown, the joint likelihood
factors into a part that only depends on σ2 times a part that depends on
µ given σ2. The likelihood has shape given by

f(y1, . . . , yn|µ, σ2) ∝ 1

(σ2)
1
2

− n
2σ2 (ȳ−µ)2

× 1

(σ2)
n−1

2

e−
SSy

2σ2 .

When we use independent Jeffreys’ priors for both parameters, the joint
posterior is

gµ,σ2(µ, σ2|y1, . . . , yn) ∝ 1

(σ2)
1
2

e−
n

2σ2 (µ−ȳ)2

× 1

(σ2)
n−1

2 +1
e−

SSy

2σ2 .

We find the marginal posterior distribution of µ by integrating the vari-

ance σ2 out of the joint posterior. The marginal posterior of µ is STκ′(m
′,
σ̂2
B

n′
),

where κ′ = n− 1, n′ = n, m′ = ȳ, and σ̂2
B =

SSy
κ′ is the sample variance.

It has the shape of a Student’s t with κ′ degrees of freedom and is entered

about m′ and has spread
σ2
B

n′ . This means we can do the inferences for µ
treating the unknown variance σ2 as if it had the value σ̂2 but using the
Student’s t table instead of the standard normal table. In this case the
rule we suggested as an approximation in Chapter 11 holds exactly.

The joint conjugate prior is not a product of independent joint priors.
It has the same form as the joint likelihood. It is the product of an S
times an inverse chi-squared prior with κ degrees of freedom for σ2 and

a conditional normal(m, σ
2

n0
) prior for µ given σ2.

The joint posterior is given by

gµ,σ2(µ, σ2|y1, . . . , yn) ∝ 1

(σ2)
κ′+1

2 +1
e
− n′

2σ2 (µ−m′)2+S′+
(
n0n
n0+n

)
(ȳ−m)2

,

where S′ = S + SSy and κ′ = κ + n and m′ = nȳ+n0m
n+n0

and n′ =
n0 + n. The joint posterior factors into a product of a conditional
normal(m′, (s′)2) posterior of µ given σ2 times S′ times an inverse chi-
squared with κ′ degrees of freedom posterior of σ2 and the two com-
ponents are independent. We find the exact marginal posterior for µ
by integrating the variance σ2 out of the joint posterior. The marginal
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posterior of µ is STκ′(m
′,
σ̂2
B

n′ ), where κ′ = n− 1, n′ = n, m′ = ȳ, and

σ̂2
B =

S′ +
(
n0n
n0+n

)
(ȳ −m)2

κ′

=
( κ
κ′

) (S
κ

)
+

(
n− 1

κ′

)
SSy
n− 1

+

(
1

κ′

)(
n0n

n0 + n

)
(ȳ −m)2

is the weighted average of three estimates of the variance. The first
incorporates the estimate from the prior, the second is the maximum
likelihood estimator of the variance, and the third is the variance inflation
term due to misspecification of the prior mean. Its effect is to widen the
credible interval whenever the prior mean is misspecified.

Both the joint likelihood and the joint conjugate prior factor into a con-
ditional normal distribution for µ given σ2 times a scaled inverse chi-
squared distribution for σ2. We can use Bayes’ theorem to find a con-
ditional normal posterior distribution for µ given σ2 using the simple
updating rules for the normal distribution. Similarly we can use Bayes’
theorem to find a inverse chi-squared posterior for sigma2 also using sim-
ple updating rules for the inverse chi-squared distribution. Multiplying
these together gives an approximation to the joint posterior for the two
parameters

gµ,σ(µ, σ2|y1, . . . , yn) ∝ 1

(σ2)
1
2

e−
n′

2σ2 (µ−m′)2 1

(σ2)
κ′
2 +1

e−
S′

2σ2 ,

where this time κ′ = κ + n − 1 and the other constants are updated as

before. The marginal posterior for µ is STκ′(m
′,
σ2
B

n′ ), where

σ2
B =

( κ
κ′

)(S
κ

)
+

(
n− 1

κ′

)(
SSy
n− 1

)
is the weighted average of two estimates of the variance. The first is from
the prior, and the second is the maximum likelihood estimator of variance.
Note: This variance does not include a term due to the misspecification
of the prior mean as the in the exact case. It also has one less degree of
freedom. This shows that the approximation we introduced in Chapter 11
where we use the sample variance in place of the unknown true variance
and get the critical values from the Student’s t table holds exactly.

Two Normal Samples with Same Unknown Variance
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Two Normal Samples with Same Unknown Variance

We have independent random samples from normal(µ1, σ
2) and nor-

mal(µ2, σ
2) distributions respectively where the two distributions have

equal unknown variance.

When we use independent Jeffreys’ prior for all parameters, the marginal
posterior of the difference between means, µ1 − µ2 is

ST (ȳ1 − ȳ2, σ̂
2
p

(
1
n1

+ 1
n2

)
) with n1 + n2 − 2 degrees of freedom, where

σ2
p =

SSp
n1+n2−2 is the pooled estimate of the variance. The approximation

we gave in Chapter 12 holds exactly.

When we use the joint conjugate prior for all parameters, the exact
marginal posterior of the difference between means, µ1 − µ2, is

ST (m′d, σ̂
2
B

(
1
n′1

+ 1
n′2

)
) with κ′ = κ + n1 + n2 degrees of freedom where

m′d = m′1 −m′2 and

σ̂2
B =

S′

κ′

=
( κ
κ′

)(S
κ

)
+

(
n1 + n2 − 2

κ′

)(
SSp

n1 + n2 − 2

)

+

(
1

κ′

)(
n10n1

n10 + n1(ȳ1 −m1)2

)
+

(
1

κ′

)(
n20n2

n20 + n2(ȳ2 −m2)2

)

is an estimate of the variance incorporating the prior and the data. Note
the last two terms inflate the posterior variance if the prior mean is
misspecified.

The approximate marginal posterior of µd can be found by first using
Bayes’ theorem on the conditional normal parts of the respective likeli-
hoods and priors for µ1 and µ2 given σ2 and then using Bayes’ theorem
on the inverse chi-square prior and likelihood for σ2. Then we find the
conditional posterior for µd = µ1 − µ2 given σ2. Multiplying this by
the posterior for σ2 gives an approximation to the joint posterior of µd
and σ2. The approximate marginal posterior for µd is found by inte-

grating σ2 out of the joint posterior, and is ST (m′d, σ̂
2
B

(
1
n′1

+ 1
n′2

)
) with
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κ′ = κ+ n1 + n2 − 2 degrees of freedom where m′d = m′1 −m′2 and

σ̂2
B =

S′

κ′

=
( κ
κ′

)(S
κ

)
+

(
n1 + n2 − 2

κ′

)(
SSp

n1 + n2 − 2

)

+

(
1

κ′

)(
n10n1

n10 + n1(ȳ1 −m1)2

)
+

(
1

κ′

)(
n20n2

n20 + n2(ȳ2 −m2)2

)
When we have two independent random samples from normal distributions

with unknown means µ1 and µ2 and unknown unequal variances σ2
1 and σ2

2

respectively, then

When we use independent Jeffreys’ prior for all parameters the posterior
distribution of

τ1 =
µ1 − µ2 − (ȳ1 − ȳ2)√

σ̂2
1

n1
+

σ̂2
2

n2

depends on φ, which is related to the ratio of the standard deviations.
It is called the Behrens Fisher distribution and is somewhat similar to a
Student’s t distribution. It can be approximated by a Student’s t distri-
bution by using Satterthwaite’s approximation for the degrees of freedom.

Computer Exercises

17.1. The strength of an item is known to be normally distributed with an
unknown mean and unknown variance σ2. A random sample of ten items
is taken and their strength measured. The strengths are:

215 186 216 203 221

188 202 192 208 195

Use the Minitab macro Bayesttest.mac, or the R function bayes.t.test,
to answer the following questions.

(a) Test H0 : µ ≤ 200 vs. H1 : µ > 200 at the 5% level of significance
using independent Jeffreys’ priors for µ and σ.

(b) Test the hypothesis again, this time using the joint conjugate prior,
with a prior mean of m = 200, and a prior median value of σ = 5. Set
the prior sample size to n0 = 1 initially. How do your results change
when you increase the value of n0? How do they change when you
decrease the value of n0 (i.e. set 0 < n0 < 1)?



384 BAYESIAN INFERENCE FOR NORMALWITH UNKNOWN MEAN AND VARIANCE

17.2. Wild and Seber (1999) describe a data set collected by the New Zealand
Air Force. After purchasing a batch of flight helmets that did not fit the
heads of many pilots, the NZ Air Force decided to measure the head sizes
of all recruits. Before this was carried out, information was collected to
determine the feasibility of using cheap cardboard calipers to make the
measurements, instead of metal ones which were expensive and uncom-
fortable. The data lists the head diameters of 18 recruits measured once
using cardboard calipers and again using metal calipers.

Cardboard 146 151 163 152 151 151 149 166 149

(mm) 155 155 156 162 150 156 158 149 163

Metal 145 153 161 151 145 150 150 163 147

(mm) 154 150 156 161 152 154 154 147 160

The measurements are paired so that 146 mm and 145 mm belong to re-
cruit 1, 151 mm and 153 mm belong to recruit 2 and so on. This places us
in a (potentially) special situation which in Frequentist statistics usually
calls for the paired t-test . In this situation we believe that measurements
made on the same individual, or object, are more likely to be similar
to each other than those made on different subjects. If we ignore this
relationship then our estimate of the variance, σ2 could be inflated by
the inherent differences between individuals. We did not cover this sit-
uation explicitly in the theory because it really is a special case of the
single unknown mean and variance case. We believe that the two mea-
surements made on each individual are related to each other; therefore it
makes sense to look at the differences between each pair of measurements
rather than the measurements themselves. The differences are:

Difference 1 -2 2 1 6 1 -1 3 2

(mm) 1 5 0 1 -2 2 4 2 3

Use the Minitab macro Bayesttest.mac, or the R function bayes.t.test,
to answer the following questions.

(a) Test H0 : µdifference ≤ 0 vs. H1 : µdifference > 0 at the 5% level of
significance using independent Jeffreys’ priors for µ and σ.

(b) Test the hypothesis again, this time using the joint conjugate prior,
with a prior mean of m = 0, and a prior median value of σ = 1. Set
the prior sample size to n0 = 1 initially. How do your results change
when you increase the value of n0? How do they change when you
decrease the value of n0 (i.e., set 0 < n0 < 1)?
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(c) Repeat the analysis, but this time treat the cardboard and metal
caliper measurements as two independent samples. Do you come to
the same conclusion?

(d) A histogram or dotplot of the differences might make us question
the assumption of normality for the differences. An alternative to
making this parametric assumption is simply to examine the signs of
the differences rather than the magnitudes of the differences. If the
differences between the pairs of measurements are truly random but
centered around zero, then we would expect to see an equal number
of positive and negative differences. The measurements are indepen-
dent of each other, and we have a fixed sample size, so we can model
this situation with a binomial distribution. If the differences are truly
random then we would expect the probability of a “success” to be
around about 0.5. There are 14 positive differences, 3 negative dif-
ferences, and 1 case where there is no difference. If we ignore the
case where there is no difference, then we say 14 in 17 trials. Use
the BinoBP.mac in Minitab, or the binobp function in R, to test
H0 : π ≤ 0.5 vs. H1 : π > 0 at the 5% level of significance using
a beta(1, 1) prior for π. Does this confirm your previous conclusion?
This procedure is the Bayesian equivalent of the sign test .

17.3. Bennett et al. (2003) measured the refractive index (RI) of a pane of
glass at 49 different locations. She took a sample of 10 fragments at
each location and determined the RI for each. The data from locations 1
and 3, shown below, have been rescaled by substracting 1.519 from each
measurement and multiplying by 105 to make them easier to enter:

Location

1 100 100 104 100 101 100 100 102 100 102

3 101 100 101 102 102 98 100 101 103 100

(a) Test H0 : µ1 − µ3 ≤ 0 vs. H1 : µ1 − µ3 > 0 at the 5% level of
significance using independent Jeffreys’ priors for µ1, µ3 and σ.

(b) Test the hypothesis again, this time using the joint conjugate prior,
with prior means of m1 = m3 = 0 and a prior median value of σ = 1.
Set the prior sample size to n10 = n20 = 0.1.

Appendix: Proof that the Exact Marginal Posterior Distribution of

µ Is Student’s t

Using Independent Jeffreys’ Priors

When we have the normal(µ, σ2) distribution with both parameters unknown
and use either independent Jeffreys’ priors, or the joint conjugate prior, we
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find that the joint posterior has the normal inverse-chi-squared form. For the
independent Jeffreys’ prior case the shape of the joint posterior is given by

∝ 1

(σ2)
n
2 +1

e−
1

2σ2 [n(µ−ȳ)2+SSy].

When we look at this as a function of σ2 as the only parameter, we see that
it is of the form of a constant (n(µ− ȳ)2 + SSy) times an inverse chi-squared
distribution with n degrees of freedom.

Evaluating the Integral of an Inverse Chi-Squared Density Suppose x has an
A times an inverse chi-squared distribution with k degrees of freedom. Then
the density is

g(x) =
c

x
k
2 +1

e−
A
2x ,

where c = A
k
2

2
k
2 Γ( k2 )

is the constant needed to make this integrate to 1. Hence

the rule for finding the integral is∫ ∞
0

1

x
k
2 +1

e−
A
2x dx ∝ A− k2 ,

where we absorb 2
k
2 and Γ(k2 ) into the constant of proportionality.

Thus in the case where we are using independent Jeffreys’ priors for µ and
σ2, the marginal posterior for µ will have shape given by

gµ(µ|y1, . . . , yn) ∝
∫ ∞

0

gµ,σ2(µ, σ2|y1, . . . , yn) dσ2

∝
∫ ∞

0

1

(σ2)
n
2 +1

e−
1

2σ2 [n(µ−ȳ)2+SSy]dσ2

∝ [n(µ− ȳ)2 + SSy]−
n
2

We divide both terms by SSy and we get

gµ(µ|y1, . . . , yn) ∝
[
1 +

n(µ− ȳ)2

SSy

]−n2
.

We change variables to

t =
µ− ȳ√
SSy

n(n−1)

=
µ− ȳ
σ̂√
n

,
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where σ̂2 =
SSy
n−1

is the unbiased estimator of the variance calculated from the
sample. By the change of variable formula, the density of t has shape given
by

gt(t) ∝ gµ(µ(t))× dµ(t)

dt

∝
[
1 +

t2

n− 1

]−n2
,

where we absorb the term dµ(t)
dt since it is a constant. This is the shape of the

Student’s t density with n− 1 degrees of freedom. Thus µ = ȳ + σ̂√
n
× t has

the ST (ȳ, σ̂
2

n ) distribution with n − 1 degrees of freedom. It has Student’s t
with n− 1 degrees of freedom shape, and it is centered at ȳ with scale factor√

σ̂2

n .

Using the Joint Conjugate Prior

The other case for the normal(µ, σ2) with both parameters unknown where
we use the joint conjugate prior for µ and σ2 follows the same pattern with a
few changes. The marginal posterior of µ is given by

gµ(µ|y1, . . . , yn) ∝
∫ ∞

0

gµ,σ2(µ, σ2|y1, . . . , yn) dσ2

∝
∫ ∞

0

1

(σ2)
κ′+1

2 +1
e
− 1

2σ2 [n′(µ−m′)2+S′+
(
n0n
n0+n

)
(ȳ−m)2]

dσ2 .

Again, when we look at this as only a function of the parameter σ2 it is the
shape of an S′ times an inverse chi-squared with κ′ degrees of freedom and
we are integrating it over its whole range. So the integral can be evaluated
by the same rule. Thus

gµ(µ|y1, . . . , yn) ∝ [(n′)(µ−m′)2 + S′ +

(
n0n

n0 + n

)
(ȳ −m)2]−

κ′+1
2 ,

where S′ = S + SSy and κ′ = κ+ n and m′ = nȳ+n0m
n+n0

and n′ = n0 + n. We
change the variables to

t =
µ−m′√

S′+
(
n0n
n0+n

)
(ȳ−m)2

n′κ′
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and apply the change of variable formula. We find the posterior density of t
has shape given by

g(t|y1, . . . , yn) ∝
(
t2

κ′
+ 1

)−κ′+1
2

.

This is the density of the Student’s t distribution with κ′ degrees of freedom.
Note that

S′ +
(
n0n
n0+n

)
(ȳ −m)2

n′
=
S + SSy +

(
n0n
n0+n

)
(ȳ −m)2

n′

=
( κ
n′

) (S
κ

)
+

(
n− 1

n′

) (
SSy
n− 1

)

+

(
n0n

n0 + n

)(
(ȳ −m)2

n′

)

= σ̂2
B,

which is the weighted average of three estimates of the variance. The first
incorporates the prior distribution of σ2, the second is the unbiased estimator
of the variance from the sample data, and the third measures the distance
the sample mean, ȳ, is from its prior mean, m. This means the posterior

density of µ = m′ + σ̂B√
κ′
t will have the ST (m′,

σ̂2
B

n′
). Again, we can do the

inference treating the unknown variance σ2 as if it had the value σ̂2
B but using

the Student’s t table to find the critical values instead of the standard normal
table.

Difference Between Means with Independent Jeffreys’ Priors

We can find the exact marginal posterior for the difference between means µ1−
µ2 for independent random samples from normal(µ1, σ

2) and normal(µ2, σ
2)

distributions with equal unknown variance the same way. The joint posterior
of µ1 − µ2 and σ2 has shape given by

gµ1−µ2,σ2(µ1 − µ2, σ
2|y1,y2) ∝ 1

(σ2)
n1+n2

2 +1
e
−n1n2(µ1−µ2−(ȳ1−ȳ2))2+SSp

2(n1+n2)σ2 .
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The marginal posterior density for µ1−µ2 is found by integrating the nuisance
parameter σ2 out of the joint posterior. Its shape will be given by

gµ1−µ2
(µ1 − µ2) ∝

∫ ∞
0

1

(σ2)
n1+n2

2
+1

e
−n1n2(µ1−µ2−(ȳ1−ȳ2))2+SSp

2(n1+n2)σ2 dσ2

∝
[
n1n2

n1 + n2
(µ1 − µ2 − (ȳ1 − ȳ2))2 + SSp

]−n1+n2
2

.

We change variables to

t =
µ1 − µ2 − (ȳ1 − ȳ2)√

SSp(n1+n2)
n1n2(n1+n2−2)

=
µ1 − µ2 − (ȳ1 − ȳ2)

σ̂p

(
1√
n1

+ 1√
n2

) ,

where σ̂2
p =

SSp
n1+n2−2

is the unbiased estimate of the variance from the pooled
sample. The shape of the density of t is

g(t) ∝
(

1 +
t2

n1 + n2 − 2

)−n1+n2
2

,

which is the Student’s t density with n1 + n2 − 2 degrees of freedom. Hence,

the marginal posterior of µ1 − µ2 is ST (ȳ1 − ȳ2,
σ̂2
p

n1+n2−2) with n1 + n2 − 2
degrees of freedom.

Difference Between Means with Joint Conjugate Prior

We can find the exact marginal posterior for the difference between means,
µ1−µ2, for independent random samples from normal(µ1, σ

2) and normal(µ2, σ
2)

distributions with equal unknown variance the same way. When we use a joint
conjugate prior for µ, σ2, the joint posterior of µ1−µ2 and σ2 has shape given
by

gµ1−µ2,σ2(µ1 − µ2, σ
2|y1,y2) ∝ 1

(σ2)
κ′+1

2 +1
e
− 1

2σ2

[(
n′1n
′
2

n′
1
+n′

2

)
(µ1−µ2−m′d)2+S′

]
.
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The marginal posterior density for µ1−µ2 is found by integrating the nuisance
parameter σ2 out of the joint posterior. Its shape will be given by

gµ1−µ2
(µ1 − µ2) ∝

∫ ∞
0

1

(σ2)
κ′+1

2 +1
e
− 1

2σ2

[(
n′1n
′
2

n′1+n′2

)
(µ1−µ2−m′d)2+S′

]
dσ2

∝
[(

n′1n
′
2

n′1 + n′2

)
(µ1 − µ2 −m′d)2 + S′

]−κ′+1
2

.

We change variables to

t =
µ1 − µ2 −m′d√

S′(n′1+n′2)
n′1n

′
2(κ′+1)

=
µ1 − µ2 −m′d√
σ̂2
B

(
1
n1

+ 1
n2

) ,
where

σ̂2
B =

S′

κ′ + 1

=
S

κ

κ

κ′ + 1
+

SSp
n1 + n2 − 2

n1 + n2 − 2

κ+ 1
.

The shape of the density of t is

g(t) ∝
(

1 +
t2

n1 + n2 − 2

)−n1+n2
2

,

which is the Student’s t density with κ′ + 1 degrees of freedom. Hence, the

marginal posterior of µ1−µ2 is ST (m′d,
σ̂2
B

κ′+1) with κ′+ 1 degrees of freedom.
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Table 17.2 Summary of inference on µ when both µ and σ2 are unknown

Type Posterior parameters σ2
B t

S′ κ′ n′ m′

Jeffreys SSy n−1 n ȳ
SSy
n−1

µ−m′√
σ̂2
B
n′

Exact S+SSy κ+n n0+n n0m+nȳ
n0+n

κ
n′
S
κ

+ n−1
n′

SSy
n−1

µ−m′√
σ̂2
B
n′

+n0n
n′

(ȳ−m)2

n′

Appr. S+SSy κ+n−1 n0+n n0m+nȳ
n0+n

κ
n′
S
κ

+ n−1
n′

SSy
n−1

µ−m′√
σ̂2
B
n′





CHAPTER 18

BAYESIAN INFERENCE FOR
MULTIVARIATE NORMAL MEAN
VECTOR

In this chapter we will introduce the multivariate normal distribution with
known covariance matrix. Instead of each observation being a random draw
of a single variable from a univariate normal distribution, it will be a sin-
gle simultaneous draw of k component variables, each of which has its own
univariate normal distribution. Also, the different components for a simul-
taneous draw are related by the covariance matrix. We call this drawing a
random vector from the multivariate normal distribution. In Section 18.1, we
will start with the bivariate normal density where the number of components
k = 2 and show how we can write this in matrix notation. In Section 18.2
we show how the matrix form for the multivariate normal density generalizes
when the number of components k ≥ 2. In Section 18.3 we use Bayes’ theorem
to find the posterior for the multivariate normal mean vector when the co-
variance matrix Σ is known. In the general case, this will require evaluating a
k-dimensional integral numerically to find the scale factor needed for the pos-
terior. We will show that we can find the exact posterior without needing to
evaluate the integral for two special types of priors: a multivariate flat prior,
or a multivariate normal prior of the correct dimension. In Section 18.4, we
cover Bayesian inference for the multivariate normal mean parameters. We

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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show how to find a Bayesian credible region for the mean vector. We can use
the credible region for testing any point hypothesis about the mean vector.
These methods can also be applied to find a credible region for any subvector
of means, and hence for testing any point hypothesis about that subvector.
In Section 18.5, we find the joint posterior for the mean vector and the co-
variance matrix when both are unknown. We find the marginal posterior for
µ which we use for inference.

18.1 Bivariate Normal Density

Let the two-dimensional random variable Y1, Y2 have the joint density function
given by

f(y1, y2|µ1, µ2, σ
2
1 , σ

2
2, ρ) =

1

2πσ1σ2

√
1− ρ2

× e
− 1

2(1−ρ2)

[(
y1−µ1
σ2
1

)2

−2ρ
(
y1−µ1
σ1

)(
y2−µ2
σ2

)
+
(
y2−µ2
σ2

)2
]

(18.1)

for −∞ < y1 <∞ and −∞ < y2 <∞. The parameters µ1 and µ2 can take on
any value, σ2

1 and σ2
2 can take on any positive value, and ρ must be between

-1 and 1. To see that this is a density function, we must make sure that its
multiple integral over the whole range equals 1. We make the substitutions

v1 =
y1 − µ1

σ1
and v2 =

y2 − µ2

σ2
.

Then the integral is given by∫ ∞
−∞

∫ ∞
−∞

f(y1, y2|µ1, µ2, σ
2
1, σ

2
2 , ρ)dy1 dy2

=

∫ ∞
−∞

∫ ∞
−∞

f(y1(v1, v2), y2(v1, v2)|µ1, µ2, σ
2
1 , σ

2
2, ρ)×

∣∣∣∣∂u∂v
∣∣∣∣ dv1 dv2

=

∫ ∞
−∞

∫ ∞
−∞

1

2π
√

1− ρ2
e
−
(

1
2(1−ρ2)

(v2
1−2ρv1v2+v2

2)
)
dv1 dv2.

We complete the square in the exponent. The integral becomes∫ ∞
−∞

∫ ∞
−∞

1

2π
√

1− ρ2
e
−
(

1
2(1−ρ2)

((v1−ρv2)2+(1−ρ2)v2
2)
)
dv1 dv2

We substitute

w1 =
v1 − ρv2√

1− ρ2
and w2 = v2

and the integral simplifies into the product of two integrals∫ ∞
−∞

1√
2π
e−

1
2w

2
1dw1

∫ ∞
−∞

1√
2π
e−

1
2w

2
2dw2 = 1 ,
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since each of these is the integral of a univariate normal(0, 1) density over its
whole range. Thus the bivariate normal density given above is a joint density.

By setting the bivariate normal density equal to a constant and taking
logarithms of both sides of the equation we find a second-degree polynomial
in y1 and y2. This means the level curves will be concentric ellipses.1

The Marginal Densities Of Y1 And Y2 We find the marginal density of y1 by
integrating y2 out of the joint density.

fy1
(y1) =

∫ ∞
−∞

f(y1, y2) dy2

=

∫ ∞
−∞

e
− 1

2(1−ρ2)

[(
y1−µ1
σ2

1

)2

−2ρ
(
y1−µ1
σ1

)(
y2−µ2
σ2

)
+
(
y2−µ2
σ2

)2
]

2πσ1σ2

√
1− ρ2

dy2.

If we make the substitution

v2 =
y2 − µ2

σ2

and complete the square, then we find that

fy1
(y1) =

∫ ∞
−∞

1

2πσ1

√
1− ρ2

e
− 1

2

(
y1−µ1
σ1

)2
− 1

2
√

1−ρ2

(
v2−ρ y1−µ1

σ1

)2

dv2.

If we make the additional substitution

w2 =
v2 − ρ(y1 − µ1)

σ1

√
1− ρ2

,

then the marginal density becomes

fy1
(y1) =

∫ ∞
−∞

1√
2πσ1

e
− 1

2

(
y1−µ1
σ1

)2

× 1

2π
e−

1
2w

2
2dw2

=
1√

2πσ1

e
− 1

2

(
y1−µ1
σ1

)2

.

We recognize this as the univariate normal(µ1, σ
2
1) density. Similarly, the

marginal density of y2 will be a univariate normal(µ2, σ
2
2) density. Thus the

parameters µ1 and σ2
1 and µ2 and σ2

2 of the bivariate normal distribution
are the means and variances of the components y1 and y2, respectively, and
the components are each normally distributed. Next we will show that the
parameter ρ is the correlation coefficient between the two components.

1The ellipses will be entered at the point (µ1, µ2). The directions of the principal axes are
given by the eigenvectors of the covariance matrix. The lengths of the axes will be the
square roots of the eigenvalues of the covariance matrix. In the bivariate normal case, the

major axis will be rotated by the angle φ = .5× tan−1

(
2ρσ1σ2

σ2
1−σ

2
2

)
.
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The Covariance of Y1 and Y2 The covariance is found by evaluating

Cov[y1, y2] =

∫ ∞
−∞

∫ ∞
−∞

(y1 − µ1)(y2 − µ2)f(y1, y2)dy1 dy2

=

∫ ∞
−∞

∫ ∞
−∞

(y1 − µ1)(y2 − µ2)

2πσ1σ2

√
1− ρ2

× e
− 1

2(1−ρ2)

[(
y1−µ1
σ2

1

)2

−2ρ
(
y1−µ1
σ1

)(
y2−µ2
σ2

)
+
(
y2−µ2
σ2

)2
]
dy1 dy2.

We make the substitutions

v1 =
y1 − µ1

σ1
and v2 =

y2 − µ2

σ2
.

Then the covariance is given by

Cov[y1, y2] =

∫ ∞
−∞

∫ ∞
−∞

σ1σ2v1v2

2π
√

1− ρ2
e
− 1

2(1−ρ2)
(v2

1−2ρv1v2+v2
2)
dv1 dv2.

We complete the square for v2, reverse the order of integration, and we get

Cov[y1, y2] = σ1σ2

∫ ∞
−∞

v1√
2π
e−

v2
1
2

[∫ ∞
−∞

v2√
2π
√

1− ρ2
e
− (v2−ρv1)2

2(1−ρ2) dv2

]
dv1.

If we make the substitution

w2 =
v2 − ρv1√

1− ρ2
,

then the covariance becomes

Cov[y1, y2] = σ1σ2

∫ ∞
−∞

v1√
2π
e−

v2
1
2

[∫ ∞
−∞

w2

√
1− ρ2 + ρv1√

2π
e−

w2
2

2 dw2

]
dv1

=

∫ ∞
−∞

v1√
2π
e−

v2
1
2 [0 + ρv1] dv1

= σ1σ2ρ.

Thus, the parameter ρ of the bivariate normal distribution is the correlation
coefficient of the two variables y1 and y2.

Bivariate Normal Density in Matrix Notation

Suppose we stack the two random variables and their respective mean param-
eters into the vectors

y =

(
y1

y2

)
and µ =

(
µ1

µ2

)
,



MULTIVARIATE NORMAL DISTRIBUTION 397

respectively, and put the covariances in the matrix

Σ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
.

The inverse of the covariance matrix in the bivariate normal case is

Σ−1 =
1

σ2
1σ

2
2(1− ρ2)

[
σ2

2 −ρσ1σ2

−ρσ1σ2 σ2
1

]
.

The determinant of the bivariate normal covariance matrix is given by

|Σ| = σ2
1 σ

2
2 × (1− ρ2) .

Thus we see that the bivariate normal joint density given in equation 18.1 can
be written as

f(y1, y2) =
1

2π|Σ| 12
e−

1
2 (y−µ)′Σ−1(y−µ) (18.2)

in matrix notation.

18.2 Multivariate Normal Distribution

The dimension of the observation y and the mean vector µ can be k ≥ 2.
Then we can generalize the distribution from Equation 18.2 to give

f(y1, y2) =
1

(2π)
k
2 |Σ| 12

e−
1
2 (u−µ)′Σ−1(u−µ), (18.3)

is called the multivariate normal distribution (MVN ). Its parameters are the
mean vector µ and the covariance matrix Σ given by

µ =


µ1

...

µk

 and Σ =


σ2

1 . . . ρ1kσ1σk
...

. . .
...

ρk1σkσ1 . . . σ2
k

 ,
respectively. Generalizing the results from the bivariate normal, we find that
the level surfaces of the multivariate normal distribution will be concentric el-
lipsoids, centered about the mean vector and orientation determined from the
covariance matrix. The marginal distribution of each component is univariate
normal. Also, the marginal distribution of every subset of components is the
multivariate normal. For instance, if we make the corresponding partitions in
the random vector, mean vector, and covariance matrix

y =

(
y1

y2

)
, µ =

(
µ1

µ2

)
, and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

then the marginal distribution of y1 is MVN(µ1,Σ11). Similarly, the marginal
distribution of y2 is MVN (µ2,Σ22).
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18.3 The Posterior Distribution of the Multivariate Normal Mean

Vector when Covariance Matrix Is Known

The joint posterior distribution of µ will be proportional to prior times like-
lihood. If we have a general jointly continuous prior for µ1, . . . , µk, then it is
given by

g(µ1, . . . , µk|y) ∝ g(µ1, . . . , µk)× f(y|µ1, . . . , µk).

The exact posterior will be

g(µ1, . . . , µk|y) =
g(µ1, . . . , µk)× f(y|µ1, . . . , µk)∫

. . .
∫
g(µ1, . . . , µk)× f(y|µ1, . . . , µk)dµ1 . . . dµk

.

To find the exact posterior we have to evaluate the denominator integral
numerically, which can be complicated. We will look at two special cases
where we can find the posterior without having to do the integration. These
cases occur when we have a multivariate normal prior and when we have a
multivariate flat prior. In both of these cases we have to be able to recognize
when the density is multivariate normal from the shape given in Equation
18.2

A Single Multivariate Normal Observation

Suppose we have a single random observation from the MVN (µ,Σ). The
likelihood function of a single draw from the multivariate normal mean vector
has the same functional form as the multivariate normal joint density function,

f(µ|y) =
1√

2π|Σ| 12
e−

1
2 (y−µ)′Σ−1(y−µ); (18.4)

however, the observation vector y is held at the value that occurred and the
parameter vector µ is allowed to vary. We can see this by reversing the
positions of y and µ in the expression above and noting that

(x− y)′A(x− y) = (−1)(x− y)′A(−1)(x− y)

= (y − x)′A(y − x)

for any symmetric matrix A.

Multivariate Normal Prior Density for µ Suppose we use a MVN (m0,V0) prior
for the mean vector µ. The posterior is given by

g(µ|y) ∝ g(µ)f(y|µ)

∝ e− 1
2 (µ−m0)′V−1

0 (µ−m0) e−
1
2 (y−µ)′Σ−1(y−µ)

∝ e− 1
2 (µ−m0)′V−1

0 (µ−m0)+(µ−y)′Σ−1(µ−y).
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We expand both terms, combine like terms, and absorb the part not containing
the parameter µ into the constant.

g(µ|y) ∝ e− 1
2 [µ′(V−1

1 )µ−µ′(Σ−1y+V−1
0 m0)−(y′Σ−1+m′0V−1

0 )µ],

where V−1
1 = V−1

0 + Σ−1. The posterior precision matrix equals the prior
precision matrix plus the precision matrix of the multivariate observation.
This is similar to the rule for an ordinary univariate normal observation but
adapted to the multivariate normal situation. V−1

1 is a symmetric positive
definite matrix of full rank, so V−1

1 = U′U where U is an triangular matrix.
Both U and U′ are of full rank so their inverses exist, and both (U′)−1U′ and
UU−1 equal the k-dimensional identity matrix. Simplifying the posterior, we
get

g(µ|y) ∝ e− 1
2 [µ′(U′U)µ−µ′(U′(U′)−1)(Σ−1y+V−1

0 m0)−(y′Σ−1+m′0V−1
0 )(U−1U)µ] .

Completing the square and absorbing the part that does not contain the
parameter into the constant the posterior simplifies to

g(µ|y) ∝ e− 1
2 [µ′U′−(y′Σ−1+m′0V−1

0 )U−1][Uµ−(U′−1)(Σ−1y+V−1
0 m0)] .

Hence

g(µ|y) ∝ e− 1
2 [µ′−(y′Σ−1+m′0V−1

0 )V1]V−1
1 [µ−V′1(Σ−1y+V−1

0 m0)]

∝ e− 1
2 (µ′−m′1)V−1

1 (µ−m1),

where m1 = V1V
−1
0 m0 + V1Σ

−1y is the posterior mean. It is given by the
rule “posterior mean vector equals the inverse of posterior precision matrix
times prior precision matrix times prior mean vector plus inverse of posterior
precision matrix times precision matrix of observation vector times the obser-
vation vector.” This is similar to the rule for single normal observation, but
adapted to vector observations. We recognize that the posterior distribution
of µ|y is MVN (m1,V1).

A Random Sample from the Multivariate Normal Distribution

Suppose we have a random sample y1, . . . ,yn from the MVN (µ,Σ) distri-
bution where the covariance matrix Σ is known. The likelihood function of
the random sample will be the product of the likelihood functions from each
individual observation.

f(y1, . . . ,yn|µ) =
n∏
i=1

f(yi|µ)

∝
n∏
i=1

e−
1
2 (yi−µ)′Σ−1(yi−µ)

∝ e−
1
2

∑n
i=1[(yi−µ)′Σ−1(yi−µ)]

∝ e−
n
2 [(ȳ−µ)′Σ−1(ȳ−µ)].
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We see that the likelihood of the random sample from the multivariate nor-
mal distribution is proportional to the likelihood of the sample mean vector,
ȳ. This has the multivariate normal distribution with mean vector µ and
covariance matrix Σ

n .

Simple Updating Formulas for Multivariate Normal We can condense the ran-
dom sample y1, . . . ,yn from the MVN (µ,Σ) into a single observation of the
sample mean vector ȳ from its MVN (µ, Σ

n ) distribution. Hence the posterior
precision matrix is the sum of the prior precision matrix plus the precision
matrix of the sample mean vector. It is given by

V−1
1 = V−1

0 + nΣ−1. (18.5)

The posterior mean vector is the weighted average of the prior mean vector
and the sample mean vector, where their weights are the proportions of their
precision matrices to the posterior precision matrix. It is given by

m1 = V1V
−1
0 m0 + V1nΣ−1ȳ. (18.6)

These updating rules also work in the case of multivariate flat prior. It will
have infinite variance in each of the dimensions, so its precision matrix is a
matrix of zeros. That is V−1

0 = 0, so

V−1
1 = 0 + nΣ−1 = nΣ−1

and

m1 = V10m0 + V1nΣ−1ȳ

= 0 +
Σ

n

n

Σ
ȳ

= ȳ.

Thus in the case of a multivariate flat prior, the posterior precision matrix
will equal the precision matrix of the sample mean vector, and the posterior
mean vector will be the sample mean vector.

18.4 Credible Region for Multivariate Normal Mean Vector when

Covariance Matrix Is Known

In the last section we found that the posterior distribution of the multivariate
normal mean vector µ is MVN (m1,V1) when we used a MVN (m0,V0) prior
or a multivariate flat prior. Component µi of the mean vector has a univariate
normal(mi, σ

2
i ) distribution where mi is the ith component of the posterior

mean vector m1 and σ2
i is the ith diagonal element of the posterior covariance

matrix V1. In Chapter 11 we found that a (1 − α) × 100% credible interval



CREDIBLE REGION FORMULTIVARIATE NORMALMEAN VECTORWHEN COVARIANCEMATRIX IS KNOWN 401

for µi is given by mi ± zα2 σi. We could find the individual (1 − α) × 100%
credible interval credible interval for every component, and their intersection
forms a k-dimensional credible region for the mean vector µ. The mean vector
µ being in the credible region means that all components of the mean vector
are simultaneously within their respective intervals.

However, when we combined the individual credible intervals like this we
will lose control of the overall level of credibility. The posterior probability
that all of the components are simultaneously contained in their respective
individual credible intervals would be much less than the desired (1−α)×100%
level. So, we need to find a simultaneous credible region for all components of
the mean vector. This credible region has the posterior probability (1− α)×
100% that all components are simultaneously in this region.

We are assuming that the matrix V1 is full rank k, the same as the dimen-
sion of µ. Generalizing the bivariate normal case to the multivariate normal
case, we find that the level surfaces of a multivariate normal distribution will
be concentric ellipsoids. The (1−α)×100% credible region will be the ellipsoid
that contains posterior probability equal to α. The posterior distribution of
the random variable U = (µ−m1)′V−1

1 (µ−m1) will be chi-squared with k de-
grees of freedom. If we find the upper α point on the chi-squared distribution
with k degrees of freedom, ck(α) in Table B.6, then

P (U ≤ ck(α)) = 1− α .

Hence

P [(µ−m1)′V−1
1 (µ−m1) ≤ ck(α)] = 1− α .

Hence the (1 − α) × 100% confidence ellipsoid is the set of values µ that lie
within the ellipsoid determined by the equation

(µ−m1)′V−1
1 (µ−m1) = ck(α).

Testing Point Hypothesis Using the Credible Region

We call the hypothesis H0 : µ = µ0 a point hypothesis because there is only
one single point in the k-dimensional parameter space where it is true. Each
component µi must equal its hypothesized value µi0 for i = 1, . . . , k. The
point hypothesis will be false if at least one of the components is not equal to
its hypothesized value regardless of whether or not the others are.

We can test the point hypothesis

H0 : µ = µ0 versus H1 : µ 6= µ0

at the level of significance α using the (1 − α) × 100% credible region in a
similar way that we tested a single parameter point hypothesis against a two-
sided alternative. Only in this case, we use the k-dimensional credible region
in place of the single credible interval. When the point µ0 lies outside the
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(1 − α) × 100% credible region for µ, we can reject the null hypothesis and
conclude that µ 6= µ0 at the level2. However, if the point µ0 lies in the
credible region, then we conclude µ0 still is a credible value, so we cannot
reject the null hypothesis.

18.5 Multivariate Normal Distribution with Unknown Covariance

Matrix

In this section we look at the MVN (µ,Σ) where both the mean vector and
covariance matrix are unknown. We will show how to do inference on the
mean vector µ where the covariance matrix Σ is considered to be a nuisance
parameter. First we have to look at a distribution for the variances and
covariances which we have arranged in matrix Σ.

Inverse Wishart Distribution

The symmetric positive definite k by k matrix Σ has the k by k-dimensional
Inverse Wishart (S−1) with ν degrees of freedom if its density has shape given
by

f(Σ|S) ∝ 1

|Σ| ν+k+1
2

× e−
tr(SΣ−1)

2 , (18.7)

where S is a symmetric positive definite k by k matrix, tr(SΣ−1) is the trace
(sum of the diagonal elements) of matrix SΣ−1, and the degrees of freedom,
ν, must be greater than k (O’Hagan and Forster, 2004). The inverse Wishart
distribution is the multivariate generalization of the S times an inverse chi-
squared distribution when the multivariate random variables are arranged in a
symmetric positive definite matrix. That makes it the appropriate distribution
for the covariance matrix of a multivariate normal distribution.

Likelihood for Multivariate Normal Distribution with Unknown Covariance

Matrix

Suppose y is a single random vector drawn from the MVN (µ,Σ) distribution
where both the mean vector µ and the covariance matrix Σ are unknown.
The likelihood of the single draw is given by

f(y|µ,Σ) ∝ 1

|Σ| 12
e−

1
2 (y−µ)′Σ−1(y−µ).

Now suppose we have a random sample of vectors, y1, . . . ,yn drawn from the
MVN (µ,Σ) distribution. The likelihood of the random sample will be the

2µ0 being outside the credible region is equivalent to (µ0 −m1)′V−1
1 (µ0 −m1) > ck(α).

We are comparing the distance the null hypothesis value µ0 is from the posterior mean m1

using a distance based on the posterior covariance matrix V1.
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product of the individual likelihoods and is given by

f(y1, . . . ,yn|µ,Σ) ∝
n∏
i=1

1

|Σ| 12
e−

1
2 (yi−µ)′Σ−1(yi−µ)

∝ 1

|Σ|n2
e−

1
2

∑n
i=1(yi−µ)′Σ−1(yi−µ).

We look at the exponent, subtract and add the vector of means ȳ, and break
it into four sums.

n∑
i=1

(yi − µ)′Σ−1(yi − µ) =
n∑
i=1

(yi − ȳ + ȳ − µ)′Σ−1(yi − ȳ + ȳ− µ)

=
n∑
i=1

(yi − ȳ)′Σ−1(yi − ȳ) +
n∑
i=1

(yi − ȳ)′Σ−1(ȳ− µ)

+
n∑
i=1

(ȳ − µ)′Σ−1(yi − ȳ) +
n∑
i=1

(ȳ − µ)′Σ−1(ȳ − µ).

The middle two sums each equal 0, so the likelihood equals

f(y1, . . . ,yn|µ,Σ) ∝ 1

|Σ| 12
e−

n
2 (ȳ−µ)′Σ−1(ȳ−µ)× 1

|Σ|n−1
2

e−
1
2

∑n
i=1(yi−ȳ)′Σ−1(yi−ȳ).

We note that
n∑
i=1

(yi − ȳ)′Σ−1(yi − ȳ)

is the trace (sum of diagonal elements) of the matrix Y′Σ−1Y, where

Y′ =


y′1
...

y′n


is the matrix where the row vector observations are all stacked up. The trace
will be the same for any cyclical permutation of the order of the matrix factors.
Thus, the likelihood

f(y1, . . . ,yn|µ,Σ) ∝ 1

|Σ| 12
e−

n
2 (ȳ−µ)′Σ−1(ȳ−µ)

× 1

|Σ|n−1
2

e−
1
2 tr(SSMΣ−1) (18.8)

is a product of a MVN (ȳ, Σ
n ) for µ conditional on Σ times a inverse Wishart(SSM )

distribution with n−k−2 degrees of freedom for Σ where SSM = (y− ȳ)(y−
ȳ)′.
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Finding the Exact Posterior when the Joint Conjugate Prior is Used for all

Parameters

The product of independent conjugate priors for each parameter will not be
jointly conjugate for all the parameters together just as in the single sample
case. In this case, we saw that the form of the joint likelihood is a product of
a MVN (ȳ, Σ

n ) for µ conditional on Σ times a inverse Wishart(SSM ) distri-
bution with n−k− 2 degrees of freedom for Σ where SSM = (y− ȳ)(y− ȳ)′.
The joint conjugate prior will have the same form as the joint likelihood. If
we let the conditional distribution of µ be MVN (m0,

Σ
n0

) and the marginal
distribution of Σ be Inverse Wishart(S, ν), where ν > k − 1, then the joint
conjugate prior is given by

g(µ,Σ) ∝ 1

|Σ| 12
e−

n0
2 (µ−m0)′Σ−1(µ−m0) × 1

|Σ| ν+k+1
2

e−
1
2 tr(SΣ−1).

Therefore, the joint posterior of µ and Σ is given by

g(µ,Σ|y1, . . . ,yn) ∝ 1

|Σ| 12
e−

n0
2 (µ−m0)′Σ−1(µ−m0) × 1

|Σ| ν+k+1
2

e−
1
2 tr(SΣ−1)

× 1

|Σ| 12
e−

n
2 (ȳ−µ)′Σ−1(ȳ−µ) × 1

|Σ|n−1
2

e−
1
2 tr(SSMΣ−1).

It can be shown that

n0(µ−m0)′Σ−1(µ−m0) + n(ȳ − µ)′Σ−1(ȳ− µ)

= (n0 + n)(µ−m1)′Σ−1(µ−m1) +
n0n

n0 + n
(m0 − ȳ)′Σ−1(m0 − ȳ),

where

m1 =
n0m0 + nȳ

n0 + n
.

See Abadir and Magnus (2005, p. 216–217) for a proof. It can also be shown
that

n0n

n0 + n
(m0 − ȳ)′Σ−1(m0 − ȳ) = tr

[
n0n

n0 + n
(m0 − ȳ)(m0 − ȳ)′Σ−1

]
.

This lets us write the joint posterior as

g(µ,Σ|y1, . . . ,yn) ∝ 1

|Σ| 12
e−

n0+n
2 (µ−m1)′Σ−1(µ−m1)

× 1

|Σ|n+ν+k+1
2

e−
1
2 tr[S1Σ−1],

where
S1 = S + SSM +

n0n

n0 + n
(m0 − ȳ)(m0 − ȳ)′.
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This expression has the shape of a MVN times an Inverse Wishart distribu-
tion as desired. It also tells us that conditional distribution of µ given the
data and Σ is MVN with posterior mean m1 and variance–covariance Σ

(n0+n) .

This is the exact same result we would get from our updating formulas if we
regard Σ as known and assume a MVN (m0,

Σ
n0

) prior for µ. It also tells
us that the marginal distribution of Σ given the data is an Inverse Wishart
distribution with a scale matrix of S1 and with n+ ν degrees of freedom.

Finding the Marginal Distribution of µ Generally we are interested in making
inferences about µ and not joint inference on both µ and Σ. In this case Σ is
a nuisance parameter which we need to integrate out. To do this we can use
the same trick to collapse the exponents. That is, we can write

−n0 + n

2
(µ−m1)′Σ−1(µ−m1) = −1

2
tr
(
(n0 + n)(µ−m1)(µ−m1)′Σ−1

)
.

Then we can rewrite the joint posterior as

g(µ,Σ|y1, . . . ,yn) ∝ 1

|Σ|1+n+ν+k
2

e−
1
2 tr([S1+(n0+n)(µ−m1)(µ−m1)′]Σ−1).

Following DeGroot (1970, p. 180), the integral of this expression with respect

to the k(k+1)
2

distinct terms of Σ is

g(µ|y1, . . . ,yn) ∝ |S1 + (n0 + n)(µ−m1)(µ−m1)′|−
(ν+n+1)

2 .

We need to use a result from the theory of determinants to get our final result.
Harville (1997, p. 419–420) showed that if R is an n× n nonsingular matrix,
S is an n×m matrix, T is an m×m nonsingular matrix, and U is an m× n
matrix, then

|R + STU| = |R||T||T−1 + UR−1S|.
A special case of this result occurs when T has the scalar (1×1 matrix) value
1, S = v is an n-dimensional column vector, and U = S′ = v′, and thus

|R + vv′| = |R|(1 + v′R−1v)

and is sometimes called the Matrix Determinant Lemma. Therefore,

g(µ|y1, . . . ,yn) ∝ (1 + (n0 + n)(µ−m1)′S−1
1 (µ−m1))−

(ν+n+1)
2 ,

which has the form of a multivariate t distribution with ν +n− k+ 1 degrees
of freedom, mean m1, and variance–covariance matrix S1

(n0+n)(n0+n−k+1)
.

Main Points

Let y and µ be vectors of length k and let Σ be a k by k matrix of
full rank. The multivariate observation y has the multivariate normal
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distribution with mean vector µ and known covariance matrix Σ when
its joint density function is given by

f(y1, y2) =
1

(2π)
k
2 |Σ| 12

e−
1
2 (u−µ)′Σ−1(u−µ), (18.9)

where |Σ| is the determinant of the covariance matrix and Σ−1 is the
inverse of the covariance matrix.

Each component yi has the Normal(µi, σ
2
i ) distribution where µi is the

ith component of the mean vector and σ2
i is the ith diagonal element of

the covariance matrix.

Furthermore, each subset of components has the appropriate multivariate
normal distribution where the mean vector is made up of the means of
that subset of components, and the covariance matrix is made up of the
covariances of that subset of components.

When we have y1 . . . ,yn, a random sample of draws from the MVN (µ,Σ)
distribution, and we use a MVN(m0,V0) prior distribution for µ, the
posterior distribution will be MVN (m1,V1), where

V−1
1 = V−1

0 + nΣ−1

and

m1 = V1V
−1
0 m0 + V1nΣ−1ȳ.

The simple updating rules are:

– The posterior precision matrix (inverse of posterior covariance matrix)
is the sum of the prior precision matrix (inverse of prior covariance
matrix) plus the precision matrix of the sample (inverse of the co-
variance matrix of the data (represented by the sample mean vector
ȳ).

– The posterior mean vector is the posterior covariance matrix (inverse
of the posterior precision matrix) times the prior precision matrix
times the prior mean vector plus the posterior covariance matrix (in-
verse of posterior precision matrix) times the precision matrix of the
data times the sample mean vector.

These are similar to the rules for the univariate normal, but adapted to
multivariate observations.
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Computer Exercises

18.1. Curran (2010) gives the elemental concentrations of five elements (man-
ganese, barium, strontium, zirconium, and titanium) measured in six
different beer bottles. Each bottle has measurements taken from four
different locations (shoulder, neck, body and base). The scientists who
collected this evidence expected that there would be no detectable dif-
ferent between measurements made on the same bottle, but there might
be differences between the bottles. The data is included in the R pack-
age dafs which can be downloaded from CRAN. It can also be down-
loaded as a comma separated value (CSV) file from the URL http:

//www.introbayes.ac.nz.

[Minitab:] After you have downloaded and saved the file on your com-
puter, select Open Worksheet. . . from the File menu. Change the Files
of type drop down box to Text (*.csv). Locate the file bottle.csv in
your directory and click on OK.

[R:] Type

bottle.df = read.csv("https://www.introbayes.ac.nz/bottle.csv")

18.2. A matrix of scatterplots is a good way to examine data like this.

[Minitab:] Select Matrix Plot. . . from the Graph menu. Click on Matrix
of Plots, With Groups which is the second option on the top row of the
dialog box. Click on OK. Enter Mn-Ti or c3-c7 into the Graph variables:
text box. Enter Part Number or c2 c1 into the Categorical variables for
grouping (0–3): text box, and click on OK.

[R:] Type

pairs(bottle.df[, -c(1:2)], col = bottle.df$Number,

pch = 15 + as.numeric(bottle.df$Part))

It should be very clear from this plot that one bottle seems quite different
from the others. We can see from the legend in Minitab that this is bottle
number 5. We can do this in R by changing the plotting symbol to the
bottle number. This is done by altering the second line of code

pairs(bottle.df[, -c(1:2)], col = bottle.df$Number,

pch = as.character(bottle.df$Number))

http://www.introbayes.ac.nz
http://www.introbayes.ac.nz
https://www.introbayes.ac.nz/bottle.csv
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pairs(bottle.df[, -c(1:2)], col = bottle.df$Number,

pch = as.character(bottle.df$Number))

18.3. In this exercise we will test the hypothesis that the mean vector for bottle
number 5 is not contained in a credible interval centered around the mean
of the remaining observations. We can think of this as a crude equivalent
of a hypothesis test for a single mean from a normal distribution. It
is crude because we will not take into account the uncertainty in the
measurements in bottle 5, nor will we account for the fact that we do not
know the true mean concentration. However, we can see from the plots
that bottle number 5 is quite distinct from the other bottles.

i. Firstly we need to separate the measurements from bottle number 5
out and calculate the mean concentration of each element

[R:]

no5 = subset(bottle.df, Number == 5)[,-c(1,2)]

no5.mean = colMeans(no5)

And we need to separate out the data for the remaining bottles.

rest = subset(bottle.df, Number != 5)[,-c(1,2)]

[Minitab:] We need to divide the data into two groups in Minitab.
The simplest way do this is to select the 20 rows of data where the
bottle number is equal to 5 and cut (Ctrl-X) and paste (Ctrl-V)
them into columns c9–c15. To calculate the column means we click
on the Session window and then select Command Line Editor from
the Edit menu. Type the following into Minitab:

statistics c11-15;

mean c17-c21.

stack c17-c21 c16

This will calculate the column means for bottle number 5, initially
store them in columns c17 to c21, and then transpose them and store
them in column c16.

ii. Next we use the Minitab macro MVNorm or R function mvnmvnp to
calculate the posterior mean. We assume a prior mean of (0, 0, 0, 0, 0)′,
and a prior variance of 106I5 where I5 is the 5 × 5 identify matrix
as our data is recorded on five elements. Note that to perform our
calculations in Minitab we need to use Minitab’s matrix commands.
These can be quite verbose and tedious to deal with as Minitab can-
not perform multiple matrix operations on the same line.
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[R:]

result = mvnmvnp(rest, m0 = 0, V0 = 1e6 * diag(5))

[Minitab:]

name m1 'SIGMA'

covariance 'Mn'-'Ti' 'SIGMA'.

name c17 'm0'

set c17

5(0)

end

set c18

5(10000)

end

name m2 'V0'

diag c18 'V0'

name m3 'Y'

name m4 'V1'

name c19 'm1'

copy 'Mn'-'Ti' 'Y'

%<path here>MVNorm 'Y' 5;

CovMat 'SIGMA';

prior 'm0' 'V0';

posterior 'm1' 'V1'.

iii. Finally we calculate the test statistic and the the P -value.

[R:]

m1 = result$mean

V1 = result$var

d = no5.mean - m1

X0 = t(d) %*% solve(V1) %*% d

p.value = 1 - pchisq(X0, 5)

p.value

[Minitab:] Note that the name commands are not necessary, but it
makes the commands slightly more understandable.

mult 'm1' -1 'm1'

add c16 'm1' c20

name c20 'd'

name m6 'V1Inv*d'

mult 'V1Inv' 'd' 'V1Inv*d'

name c21 'X0'

name m7 't(d)'
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transpose 'd' 't(d)'

mult 't(d)' 'V1Inv*d' 'X0'

name c22 'Pval'

cdf 'X0' 'Pval';

chisquare 5.

let 'Pval' = 1 - 'Pval'



CHAPTER 19

BAYESIAN INFERENCE FOR THE
MULTIPLE LINEAR REGRESSION MODEL

In Chapter 14 we looked at fitting a linear regression for the response variable
y on a single predictor variable x using data that consisted of ordered pairs
of points (x1, y1), . . . , (xn, yn). We assumed an unknown linear relationship
between the variables, and found how to estimate the intercept and slope
parameters from the data using the method of least squares. The goal of
regression modeling is to find a model that will use the predictor variable x
to improve our predictions of the response variable y. In order to do inference
on the parameters and predictions, we needed assumptions on the nature of
the data. These include the mean assumption, the normal error assumption
(including equal variance), and the independence assumption. These assump-
tions enable us to develop the likelihood for the data. Then, we used Bayes’
theorem to find the posterior distribution of the parameters given the data.
It combined the information in our prior belief summarized in the prior dis-
tribution and the information in the data as summarized by the likelihood.

In this chapter we develop the methods for fitting a linear regression model
for the response variable y on a set of predictor variables x1, . . . , xp from data
consisting of points (x11, . . . , x1p, y1), . . . , (xn1, . . . , xnp, yn). We assume that
the response is related to the p predictors by an unknown linear function.

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.
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In Section 19.1 we see how to estimate the intercept and the slopes using
the principle of least squares in matrix form. In Section 19.2 we look at the
assumptions for the multiple linear regression model. They are analogous to
those for the simple linear regression model: the mean assumption, the normal
error assumption, and the independence assumption. Again, we develop the
likelihood from these assumptions. In Section 19.3 we use Bayes’ theorem
to find the posterior distribution of the intercept and slope parameters. In
Section 19.4 we show how to do Bayesian inferences for the parameters of
the multiple linear regression model. We find credible intervals for individual
parameters, as well as credible regions for the vector of parameters. We use
these to test point hypothesis for both cases. In Section 19.5 we find the
predictive distribution for a future observation.

19.1 Least Squares Regression for Multiple Linear Regression Model

The linear function y = β0 +β1x1 + . . .+βpxp forms a hyperplane1 in (p+ 1)-
dimensional space. The ith residual is the vertical distance the observed value
of the response variable yi is from the hyperplane and is given by yi − (β0 +
β1xi1 + · · ·+βpxip). The sum of squares of the residuals from the hyperplane
is given by

SSres =
n∑
i=1

[yi − (β0 + xi1β1 + · · ·+ xipβp)]
2
.

According to the least squares principle, we should find the values of the pa-
rameters β0, β1, . . . , βp that minimize the sum of squares of the residuals. We
find them by setting the derivatives of the sum of squares of the residuals with
respect to each of the parameters equal to zero and finding the simultaneous

1A hyperplane is a generalization of a plane into higher dimensions. It is flat like a plane,
but since it is in a higher dimension, we cannot picture it.
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solution. These give the equations

∂SSres
∂β0

=

n∑
i=1

[yi − (β0 + xi1β1 + · · ·+ xipβp)]
2−1 × (−1) = 0

∂SSres
∂β1

=
n∑
i=1

[yi − (β0 + xi1β1 + · · ·+ xipβp)]
2−1 × (−xi1) = 0

...
...

...

∂SSres
∂β1

=

n∑
i=1

[yi − (β0 + xi1β1 + · · ·+ xipβp)]
2−1 × (−xip) = 0

We can write these as a single equation in matrix notation

X′[y −Xβ] = 0,

where the response vector, the matrix of predictors, and the parameter vector
are given by

y =


y1

...

yn

 , X =


1 x11 . . . x1p

1 x21 . . . x2p

...
...

. . .
...

1 xn1 . . . xnp

 , and β =


β0

...

βp

 ,

respectively. We can rearrange the equation to give the normal equation.2

X′Xβ = X′y . (19.1)

We will assume that X′X has full rank p+ 1 so that its inverse exists and is
unique. (If its rank is less than p + 1, the model is over parameterized and
the least squares estimates are not unique. In that case, we would reduce
the number of parameters in the model until we have a full rank model.)
We multiply both sides of the normal equation by the inverse X′X−1 and its
solution is the least squares vector

bLS = (X′X)−1X′y . (19.2)

2This is the equation the least squares estimates satisfy. The least squares estimates are
the projection of the n dimensional observation vector onto the (p + 1)-dimensional space
spanned by the columns of X. Normal refers to the right angles that the residuals make
with the columns of X, not to the normal distribution.
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19.2 Assumptions of Normal Multiple Linear Regression Model

The method of least squares is only a data analysis tool. It depends only
on the data, not the probability distribution of the data. We cannot make
any inferences about the slopes or the intercept unless we have a probability
model that underlies the data. Hence, we make the following assumptions for
the multiple linear regression model:

1. Mean assumption. The conditional mean of the response variable y given
the values of the predictor variables x1, . . . , xp is an unknown linear func-
tion

µy|x1,...,xp = β0 + β1x1 + · · ·+ βpxp,

where β0 is the intercept and βi is the slope in direction xi for i = 1, . . . , p.
βi is the direct effect of increasing x1 by one unit on the mean of the
response variable y.

2. Error assumption. Each observation yi equals its mean, plus a random
error ei for i = 1, . . . , n. The random errors all have the normal(0, σ2)
distribution. They all have the same variance σ2. We are assuming that
the variance is a known constant. Under this assumption, the covariance
matrix of the observation vector equals σ2I, where I is the n by n identity
matrix.

3. Independence assumption. The errors are all independent of each other.

We assume that the observed data comes from this model. Since the least
squares vector bLS is a linear function of the observation vector y, its covari-
ance matrix under these assumptions is

VLS = (X′X)−1X′(σ2I)X(X′X)−1

= σ2(X′X)−1.

If σ2 is unknown, then we can estimate it from the sum of squares of the
residuals away from the least squares hyperplane. The vector of fitted values
is given by

ŷ = XbLS

= X(X′X)−1X′y

= Hy,

where the matrix H = X(X′X)−1X′. We note H and I −H are symmetric
idempotent3 matrices. The residuals from the least squares hyperplane are

3An idempotent matrix multiplied by itself yields itself. Both HH = H and (I−H)(I−H) =
(I−H).
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given by

ê = y − ŷ

= (I−H)y

We estimate σ2 by the sum of squares of the residuals divided by their degrees
of freedom. This is given by

σ̂2 =
ê′ê

n− (p+ 1)

=
y′(I−H)y

n− p− 1

19.3 Bayes’ Theorem for Normal Multiple Linear Regression Model

We will use the assumptions of the multiple linear regression model to find the
joint likelihood of the parameter vector β. Then we will apply Bayes’ theorem
to find the joint posterior. In the general case, this requires the evaluation of
a (p+1)-dimensional integral which is usually done numerically. However, we
will look at two cases where we can find the exact posterior without having to
do any numerical integration. In the first case, we use independent flat priors
for all parameters. In the second case, we will use the conjugate prior for the
parameter vector.

Likelihood of Single Observation

Under the assumptions, the single observation yi given the values of the pre-
dictor variables xi1, . . . , xip is normal(µyi|xi1,...,xip , σ

2) where its mean

µyi|xi1,...,xip =

p∑
j=0

xijβj

= xiβ,

where xi equals (xi0, . . . , xip), the row vector of predictor variable values for
the ith observation. Note: xi0 = 1. Hence the likelihood equals

f(yi|β) ∝ e−
1

2σ2 (yi−xiβ)2

.

Likelihood of a Random Sample of Observations

All the observations are independent of each other. Hence the likelihood of the
random sample is the product of the likelihoods of the individual observations
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and is given by

f(y|β) ∝
n∏
i=1

f(yi|β)

∝ e−
1

2σ2

∑n
i=1(yi−xiβ)2

.

We can put the likelihood of the random sample in matrix notation as

f(y|β) ∝ e−
1

2σ2 (y−Xβ)′(y−Xβ).

We add and subtract XbLS from each term in the exponent and multiply it
out.

(y −Xβ)′(y −Xβ) = (y −XbLS + XbLS −Xβ)′(y −XbLS + XbLS −Xβ)

= (y −XbLS)′(y −XbLS) + (y −XbLS)′(XbLS −Xβ)

+ (XbLS −Xβ)′(y −XbLS) + (XbLS −Xβ)′(XbLS −Xβ).

Look at the first middle term. (The other middle term is its transpose.)

(y −XbLS)′(XbLS −Xβ) = (y −X(X′X)−1X′y)′(X(bLS − β))

= y′(I−X(X′X)−1X′)(X(bLS − β))

= 0.

Thus the two middle terms are 0 and the likelihood of the random sample

f(y|β) ∝ e−
1

2σ2 [(y−XbLS)′(y−XbLS)+(XbLS−Xβ)′(XbLS−Xβ)].

Since the first term does not contain the parameter, it can be absorbed into
the constant and the likelihood can be simplified to

f(y|β) ∝ e−
1

2σ2 (bLS−β)′(X′X)(bLS−β). (19.3)

Thus the likelihood has the form of a MVN (bLS ,VLS) where VLS = σ2

(X′X) .

Finding the Posterior when a Multivariate Continuous Prior is Used

Suppose we use a continuous multivariate prior g(β) = g(β0, . . . , βp) for the
parameter vector. In matrix form, the joint posterior will be proportional to
the joint prior times the joint likelihood

g(β|y) ∝ g(β)× f(y|β)

We can write this out component-wise as

g(β0, . . . , βp|y1, . . . , yn) ∝ g(β0, . . . , βp)× f(y1, . . . , yn|β0, . . . , βp).
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To find the exact posterior we divide the proportional posterior by its integral
over all parameter values. This gives

g(β|y) =
g(β0, . . . , βp)× f(y1, . . . , yn|β0, . . . , βp)∫

. . .
∫
g(β0, . . . , βp)× f(y1, . . . , yn|β0, . . . , βp)dβ0 . . . dβp

.

For most prior distributions, this integral will have to be evaluated numer-
ically, and this may be difficult. We will look at two cases where we can
evaluate the exact posterior without having to do the numerical integration.

Finding the Posterior when a Multivariate Flat Prior is Used

If we use a multivariate flat prior

g(β0, . . . , βp) = 1 for


−∞ < β0 <∞

...

−∞ < βp <∞

,

then the joint posterior will be proportional to the joint likelihood.

g(β|y) ∝ e−
1

2σ2 (bLS−β)′(X′X)(bLS−β).

We recognize this as a MVN (bLS ,VLS) distribution. Therefore the posterior
mean is equal the least squares vector

b1 = β̂ = bLS .

The posterior covariance matrix is

V1 = VLS = σ2 (X′X)
−1
.

Finding the Posterior when a Multivariate Normal Prior is Used

We observed that the likelihood has the form of a MVN (bLS ,VLS) distri-
bution. The conjugate prior will also be multivariate normal of the same
dimension. We will find that when we use a MVN (b0,V0) prior for β the
posterior can be found using a simple updating rule, without the need for
numerical integration. The joint posterior is proportional to the prior times
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the likelihood.

g(β|y) ∝ g(β)× f(y|β)

∝ e− 1
2 [(β−b0)′V−1

0 (β−b0)) × e− 1
2 [(β−bLS)′V−1

LS(β−bLS)]

∝ e− 1
2 [(β−b0)′V−1

0 (β−b0)+(β−bLS)′V−1
LS(β−bLS)]

∝ e−
1
2 [β′(V−1

0 +V−1
LS)β−β′(V−1

LSbLS+V−1
0 b0)−(b′LSV−1

LS+b′0V−1
0 )β

+ (b′LSV−1
LS+b′0V−1

0 )(V−1
LSbLS+V−1

0 b0)] .

The last term does not contain β so it will not affect the shape of the posterior.
It can be absorbed into the proportionality constant. We let V−1

1 = V−1
0 +

V−1
LS . The posterior becomes

∝ e−
1
2 [β′V−1

1 β−β′(V−1
LSbLS+V−1

0 b0)−(β̂′
LSV−1

LS+b′0V−1
0 )β] .

Let U′U = V−1
1 , where U an orthogonal matrix. We are assuming V−1

1 is
of full rank so both U and U′ are also full rank, and their inverses exist.
We complete the square by adding (b′LSV−1

LS + b′0V
−1
0 )U(U′)−1(V−1

LSbLS +
V−1

0 b0). We subtract it as well, but since that does not contain the parameter
β, that part gets absorbed into the constant. The posterior becomes

∝ e−
1
2 [β′U′Uβ−β′U′(U′)−1(V−1

LSbLS+V−1
0 b0)−(b′LSV−1

LS+b′0V−1
0 )U−1Uβ+

(b′0V−1
0 +bLSV−1

LS)U−1(U′)−1(V−1
0 b0+V−1

LSbLS)] .

When we factor the exponent the posterior becomes

∝ e−
1
2 (β′U′−(V−1

LSbLS+V−1
0 b0)U−1)(Uβ−(U′)−1(V−1

0 b0+V−1
LSbLS)) .

When we factor U′ out of the first factor and U out of the second factor in
the product, we get

e−
1
2 [β−(b′0V−1

0 +b′LSV−1
LS)U−1(U′)−1]

′
(U′U)[β−U−1(U′)−1(V−1

0 b0+V−1
LSbLS)] .

Since U′U = V−1
1 and they are all of full rank we have (U′)−1U−1 = V1.

When we substitute back into the posterior we get

g(β|y) ∝ e− 1
2 (β−b1)′V−1

1 (β−b1).

where b1 = V1V
−1
0 b0 + V1V

−1
LSbLS . The posterior distribution of β|y will

be MVN (b1,V1).
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The Updating Formulas. When we have the assumptions of the multivariate
linear regression model satisfied, and we use a MVN (b0,V0) prior density the
posterior will be MVN (b1,V1) where the constants are found by the updating
formulas “the posterior precision matrix equals the sum of the prior precision
matrix plus the precision matrix of the likelihood function

V−1
1 = V−1

0 + V−1
LS (19.4)

and “the posterior mean vector is the weighted average of the prior mean
vector and the least squares vector where their weights are the inverse of the
posterior precision matrix (which is the posterior covariance matrix) multi-
plied by their respective precision matrices”

b1 = V1V
−1
0 b0 + V1V

−1
LSbLS . (19.5)

19.4 Inference in the Multivariate Normal Linear Regression Model

In this section we look at making inferences about the parameters in the
multivariate normal linear regression model. First we will look at making
inferences about a single slope parameter. Here we are trying to determine
the effect of that single predictor on the response variable. Later on, we will
look at making inference on all the slope parameters at the same time. Here
we are trying to determine the effect of all the predictors simultaneously on
the the response variable.

Inference on a Single Slope Parameter

In this section we consider making inferences about a single slope parameter
in the multiple linear regression model. The other slopes and the intercept
are considered to be nuisance parameters. We make the inference on the
single parameter on the marginal posterior of that parameter. The poste-
rior distribution of the parameter vector is MVN (b1,V1). Suppose βk is
the parameter of interest. The marginal posterior distribution of βk is nor-
mal(m′βk , s

2
k(s′βk)2) where the mean m′βk is the kth component of posterior

mean vector b1 and the variance s2
k(s′βk)2 is the kth diagonal element of the

posterior covariance matrix V1.

Credible Interval for a Single Slope A (1 − α) × 100% credible interval for
the slope βk is any interval that has posterior probability equal to (1 − α).
The equal tail area (1 − α) × 100% credible interval is given by (m′βk −
zα2

sks
′
βk
, m′βk + zα2

sks
′
βk

). If the true standard deviation is unknown and
we are using the estimate from the sample, then we find the critical values
using the Student’s t with n− p− 1 degrees of freedom instead of the normal.
This will give an approximate credible interval for βk. This approximation
is exactly correct when we are using independent Jeffrey’s priors for all the
parameters.
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Testing a Two-Sided Hypothesis for a Single Slope Using the Credible Interval
We can test the credibility of the null hypothesis

H0 : βk = βk 0 versus H1 : βk 6= βk 0

using the credible interval. If the null value βk 0 lies outside the equal tail area
(1−α)× 100% credible interval for βk, then we can reject the null hypothesis
at the α level of significance. However, if the null value lies inside the interval,
the null value remains credible and we cannot reject the null hypothesis.

Testing a One-Sided Hypothesis for a Single Slope We test a one-sided hypoth-
esis

H0 : βk ≤ βk 0 versus H1 : βk > βk 0

about the slope βk by calculating the posterior probability of the null hypoth-
esis using its marginal posterior distribution. If this probability is less than
the level of significance α, then we reject the null hypothesis H0 : βk ≤ βk 0

and conclude the alternative hypothesis H1 : βk > βk 0 is true.

Inference for the Vector of all Slopes

Here we are wanting to make our inferences on the vector of all slopes. In
this case, the only nuisance parameter is the intercept β0. We will use the
marginal posterior of all the slope parameters to do our inferences. The vector
of slope parameters

β =


β1

...

βp


is MVN (bβ,Vβ), where the components of the mean vector and covariance
matrix come from b1 and V1, the mean vector and covariance matrix of the
posterior distribution of the whole parameter vector (including intercept). We
will assume that the covariance matrix Vβ is full rank. Otherwise, we will
reduce the number of slope parameters until it is.

Credible Region for all the Slopes

We want to find a region in the p-dimensional space that has (1− α)× 100%
posterior probability. We know

U = (β − bβ)V−1
β (β − bβ)

will have the chi-squared distribution with p degrees of freedom. This means
that the region made up of all the points β such that

(β − bβ)V−1
β (β − bβ) < Uα,



INFERENCE IN THE MULTIVARIATE NORMAL LINEAR REGRESSION MODEL 421

where Uα is the upper α point in the chi-squared distribution with p degrees
of freedom, will be a (1−α)×100% credible interval for the parameter vector.4

Testing a Point Hypothesis about all the Slopes

We want to test the null hypothesis

H0 : β = β0 versus H1 : β 6= β0.

Under the null hypothesis each slope βk equals its null value βk 0 for k =
1, . . . , p. If any of the slopes are not equal its null value the alternative is
true. Thus in the p-dimensional space, there is only a single point where the
null hypothesis is true. We can test the credibility of the null hypothesis using
the credible region. If β0 lies outside the credible region, then we can reject
the null hypothesis at the α level of significance. On the other hand, if the
null value β0 lies inside the credible interval, then we cannot reject the null
hypothesis as it remains credible at the level α.

Most often, we want to know whether or not all the slopes are equal to
zero. If they are, none of the predictor variables are of any use in modeling
the response. We will be testing the null value β0 = 0. Here we are testing
whether all the slopes equal 0 versus the alternative where at least one of the
slopes is not equal to 0.

Modeling Issues: Removing Unnecessary Variables

Often, the multiple linear regression model is run including all possible pre-
dictor variables that we have data for. Some of these variables may affect the
response very little if at all. The true coefficient of such a variable βj would
be very close to zero. Leaving these unnecessary predictor variables in the
model can complicate the determination of the effects of the remaining pre-
dictor variables if there is correlation among the predictors themselves in the
data set. Removal of these unnecessary predictors will lead to an improved
model for predictions. This is often referred to as the principal of parsimony.

We would like to remove all predictor variables xj where the true coefficient
βj equals 0. This is not as easy as it sounds as we do not know which
coefficients are truly equal to zero. We have a random sample from the joint
posterior distribution of β1, . . . , βJ . When the predictor variables x1, . . . , xJ
are correlated, some of the predictor variables can be either enhancing or
masking the effect of other predictors. This means that a coefficient value
estimated from the posterior sample may look very close to zero, but the effect
of its predictor variable actually may be larger. Other predictor variables
are masking its effect. Sometimes a whole set of predictor variables can be

4This credible region contains all the points that are “close” to the posterior mean vector
where the closeness is measured by the posterior distribution of the parameter vector.
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masking each others’ effect, making each individual predictor look unnecessary
(not significant), yet the set as a whole is very significant.

We should not test the hypothesis for each slope individually, in sequence.
The individual test for H0 : βj = 0 versus H1 : βj 6= 0 is based on the
additional effect of predictor xj given the other predictors are already in the
model. Thus for each predictor, its effect may be hidden by other predictors
already in the model.

Instead, we should examine the posterior distribution of all the slopes
and identify all those with mean close to 0 (in standard deviation units.)
Those give us the predictor variables that are candidates for removal. Let
xk1, . . . , xkq be the set of q predictor variables that are candidates for re-
moval. let

β =


βk1

...

βkq


be the vector of those slopes. It has the marginal posterior distribution
MVN (bβ,Vβ), where the component means and covariances are given by
the corresponding components of the mean vector and covariance matrix b1

and V1, the mean vector and covariance matrix of the posterior distribu-
tion of the whole parameter vector (including intercept). We compute the
(1−α)× 100% credible region for the vector of those slopes, β. It will be the
region made up of all the points β such that

(β − bβ)′V−1
β (β − bβ) < Uα,

where Uα is the upper α point in the chi-squared distribution with q degrees
of freedom. We test the null hypothesis

H0 : β = 0 versus H1 : β 6= 0

at the level of significance α using the credible region. If 0 lies inside the
credible region, then we cannot reject the null hypothesis, and it is credible
that the slopes of all those predictors are simultaneously 0.

If that is the case, we remove those predictors from the model and redo the
analysis with the remaining predictors.

EXAMPLE 19.1

The Bears data (which can be found in both the Minitab example folder
and the Bolstad package) contains a set of morphometric measurements
as well as sex on a number of bears of various ages — although the age
data is incomplete. Ilze decides that she would like to build a regression
model which uses these measurements to predict the weight (in pounds)
of the bears. Some of the bears in this data set have been measured
more than once, but not in any way that would let Ilze incorporate the
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Figure 19.1 Scatterplot matrix of the variables in the Bears data.

correlation between successive measurements into her model. Therefore,
Ilze discards all but the first measurement on each bear (Obs.No = 1),
leaving a data set with 97 observations with which to build the model.

Ilze starts with some exploratory data analysis. Figure 19.1 shows a
scatterplot matrix of each pair of variables she plans to use in the analysis.
The figures in the lower triangle of the matrix are the linear correlation
coefficients for the pairs of variables. Ilze can see that all of the contin-
uous predictor variables have a moderately high correlation with weight,
and she can also see that there is a moderate between the predictor vari-
ables themselves. The scatterplot matrices also reveal a slight increase in
variability as the predictors increase, and they show that the relationship
may be non-linear in some cases, and that the response variable Weight

is right-skewed. All of these features suggest to Ilze that it may be better
work to with the logarithm of Weight rather than Weight itself. This
is often true for measurements like volume, concentration, time and in-
come, that start at zero and (in theory) can increase indefinitely. The
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Figure 19.2 scatterplot matrix of the variables in the Bears data.

logarithmic transformation of the response is called a variance stabilizing
transformation because, as well addressing issues of non-linearity, it often
deals the issue of non-constant variance. The scatterplot matrix with a
log transformed response is shown in Figure 19.2. Ilze decides to fit the
model

log(Weighti) = β0 + β1Sexi + β2Head.Li + β3Head.Wi

+ β4Neck.Gi + β5Lengthi + β6Chest.Gi.

She chooses MVN prior with mean b0 = 0, and with prior variance of
V0 = 106 × I7. This is a very vague prior centered on zero. Ilze cen-
ters each of the covariates in the model by subtracting the mean from
each variable. Centering can aid interpretation of the intercept, provide
numerical stability, and in certain circumstances remove dependency be-
tween explanatory variables. The posterior estimates of the regression
coefficients are shown in Table 19.1. Inspection of the coefficients and
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Table 19.1 Regression coefficients

Estimate Std. Error t value

Intercept 5.042562 0.014806 340.581

Sex 0.020919 0.033770 0.619

Head.L 0.001407 0.018223 0.077

Head.W 0.008746 0.018764 0.466

Neck.G 0.019491 0.009630 2.024

Length 0.024722 0.004130 5.986

Chest.G 0.034235 0.005568 6.148

their estimated standard deviations (standard errors) suggests that the
variables Sex, Head.L and Head.W are not important, i.e. the coeffi-
cients are close to zero. Ilze decides to formally test this. If the point
0 is contained in the credible region, then it must satisfy the inequality
(β−bβ)′V−1

β (β−bβ) < Uα, where Uα in this case is the upper α = 0.05 of
the chi-squared distribution with three degrees of freedom. We have three
degrees of freedom because we are considering removing three variables
from the model. Therefore Ilze computes

(0− bβ)′V−1
β (0− bβ) = b′βV−1

β bβ

and shows that it is less than U3
0.05 = 7.815, where

bβ =

 0.02092

0.00141

0.00875

 and V−1
β =

 892.95 −113.26 −203.02

−113.26 3099.49 488.82

−203.02 488.82 2955.83

.
Using these numbers, Ilze shows that b′βV−1

β bβ = 0.554 which is defi-
nitely less that 7.815; therefore these variables can be removed from the
model.

19.5 The Predictive Distribution for a Future Observation

In this section we consider Bayesian prediction using our linear regression
model. As in the case of simple linear regression, we have a new observation,
and we wish to predict the response, yn+1. However, in this situation our new
observation, xn+1, is a (row) vector of length p + 1, with the first element
equal to 1, and the (i+ 1)th element corresponding to a new value of the ith

predictor. We will drop the subscripts from y and x in the following sections
for mathematical simplicity.
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If the coefficient vector β and the variance σ2 of the residuals was known,
and assuming the standard assumptions of independence, normality and equal-
ity of variance, then y would have a normal(xβ, σ2) distribution. However,
we do not know β and σ2. We only know their posterior distributions esti-
mated from the data. Therefore, like simple linear regression, we need to find
the joint density of the next observation and the model parameters and then
integrate β and the variance σ2 out of this expression. That is, the posterior
predictive distribution for y is

f(y|x, data) =

∫
f(y|x, data,β, σ2)g(β, σ2|x, data) dβdσ2.

We start initially with the situation where σ2 is known. The distribution does
not depend on the data, and the distribution of β does not depend on x. The
predictive density for y is then given by

f(y|x, data) =

∫
f(y|x,β)g(β|data) dβ.

We know that if β and σ2 are known then y has a normal(xβ, σ2) distribution,
and that the posterior distribution of β is MVN (b1,V1), so

f(y|x, data) ∝
∫
e−

1
2σ2 (y−xβ)2

× e− 1
2 (β−b1)′V−1

1 (β−b1)dβ

=

∫
e−

1
2σ2 [y2−2xβy+(xβ)2]− 1

2 [β′V−1
1 β−2β′V−1

1 b1+b′1V−1
1 b1]dβ.

The term b′1V
−1
1 b1 does not depend on β and hence can be absorbed into

the constant of integration. It is also convenient at this point to consider x
as a column vector write β′x instead of xβ. Dealing solely with the exponent
and letting τ = 1

σ2 , we have

− 1

2σ2

[
y2 − 2xβy + (xβ)2

]
− 1

2

[
β′V−1

1 β − 2β′V−1
1 b1

]
= − 1

2σ2

[
y2 − 2β′xy + (β′x)2

]
− 1

2

[
β′V−1

1 β − 2β′V−1
1 b1

]
= −1

2

(
τy2 − 2τβ′xy + τβ′xx′β + β′V−1

1 β − 2β′V−1
1 b1

)
= −1

2

(
β′(τxx′ + V−1

1 )β − 2β′(τyx + V−1
1 b1) + τy2

)
.

If we let V = τxx′ + V−1
1 and let m = V−1(τyx + V−1

1 b1) assuming V is
invertible, then we can complete the square so that the form of the exponent
is

(β −m)′V(β −m)−m′Vm + τy2.

Substituting this back into our predictive posterior density, we have

f(y|x, data) ∝
∫
e−

1
2 (β−m)′V(β−m) × e 1

2 (m′Vm−τy2)dβ.
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The second term does not depend on β and therefore can be moved outside
the integral

f(y|x, data) ∝ e 1
2 (m′Vm−τy2)

∫
e−

1
2 (β−m)′V(β−m)dβ.

The integral is proportional to a MVN density and hence integrates to a con-
stant which can be absorbed into the constant of proportionality. It remains
to rearrange e

1
2 (m′Vm−τy2) into a form we are familiar with. Working with

the exponent again, we have

τy2 −m′Vm.

This expression can be rewritten as a quadratic form, again by completing
the square, so that

f(y|x, data) ∝ e−
1

2[σ2+x′V1x]
(y−b′1x)2

.

This last calculation is not trivial and requires the use of the Sherman–
Morrison formula (Sherman and Morrison, 1949, 1950).

Theorem 19.1 Suppose A is an invertible square matrix, and u,v are col-
umn vectors. Furthermore, suppose that if 1 + v′A−1u 6= 0, then

(A + uv′)−1 = A−1 − A−1uv′A−1

1 + v′A−1u
.

This result is known as the Sherman–Morrison formula.

We know that the denominator condition holds because V1 is a variance–
covariance matrix, hence it is invertible and positive–semidefinite which guar-
antees that the quadratic form x′V−1

1 x is always greater than or equal to
zero.

This means that the posterior predictive distribution is proportional to a
normal distribution with mean b′1x and variance σ2 + x′V1x. The variance
has two components: σ2 represents sampling uncertainty, and x′V1x repre-
sents uncertainty about β. If we use flat priors for β, then the posterior
mean vector and covariance for matrix for β will be equal to the maximum
likelihood estimates, which in this case are the least squares solutions. That
is, if we use flat priors for β, then the posterior distribution of β is MVN
with parameters b1 = bLS and V1 = VLS . The variance of the posterior
predictive distribution then simplifies to σ2(1 + x′(X′X)−1x).

So far we have assumed σ2 that is known, which is unrealistic. In the
case where σ2 is unknown, it can be shown that the posterior predictive
density has the shape of a Student t distribution with mean b′1x, variance
s2 + x′(X′X)−1x, and n− p degrees of freedom where s2 is the residual mean
square, i.e.,

s2 =
1

n− p (y −XbLS)′(y −XbLS).
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Note that this result holds exactly for a flat prior on (β, σ2), and approx-
imately if the prior is very uninformative. This derivation requires some
lengthy algebraic manipulation and so is not shown here.

Main Points

Multiple regression describes the situation where we are interested in
relating a single vector of observed response values, y, to a set of two or
more possible explanatory (or predictor) variables, x1,x2, . . . ,xp.

Bayesian multiple regression involves finding the posterior mean, b1, and
covariance matrix V1 for the vector of regression coefficients β. We
are interested in making inferences about these parameters given our
observed data.

If we assume a multivariate flat prior for β, then the posterior distribution
of β is MVN with posterior mean and variance equal to the least squares
estimates, i.e., b1 = bLS and V1 = VLS .

If we assume a MVN (b0,V0) prior distribution for β, then the posterior
distribution is also MVN, and the parameters can be estimated by two
simple updating formulas

V−1
1 = V−1

0 + V−1
LS

and
b1 = V1V

−1
0 b0 + V1V

−1
LSbLS .

Computer Exercises

19.1. The data in this exercise and those that follow can be downloaded from
http://www.stat.berkeley.edu/~statlabs/data/babies.data. The
variables in the data set are:

Variable Description

bwt Birth weight in ounces (999 = unknown)

gestation Length of pregnancy in days (999 = unknown)

parity Order of birth (0 = first born, 9 = unknown)

age Mother’s age in years

height Mother’s height in inches (99 = unknown)

weight Mother’s pre-pregnancy weight in pounds (999 = unknown)

smoke Smoking status of mother (0 = not now, 1 = yes now, 9 = unknown)

http://www.stat.berkeley.edu/~statlabs/data/babies.data
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[Minitab:] The data on the webpage needs to be saved as as a text file
(*.txt) import the data into Minitab. It is important to click on the
Options... button and choose the Free format field definition before
importing file; otherwise the data will not import correctly.

[R:] R can read the data directly from the URL. Simply type

url = "http://www.stat.berkeley.edu/~statlabs/data/babies.data"

bw.df = read.table(url, head = TRUE)

It is not necessary to do this in two steps, but it clarifies what R is doing.

If the data has been correctly imported then you should have 1,236 ob-
servations on seven variables.

19.2. It is important to make sure that we are working with only the complete
data; otherwise we have to have a model for the missing values.

[Minitab:] Select Copy > Columns to Columns. . . from the Data menu.
Enter c1-c7 in the Copy from columns: text box. Click on the Subset the
data... button. Click on the Specify rows to include and Rows that match
radio buttons. Click on the Condition. . . button. Enter the following
condition into the Condition text box:

bwt <> 999 And gestation <> 999 And parity <> 9 And

height <> 99 And weight <> 999 And smoke <> 9

Finally click OK on each of the three dialogue boxes. This will produce
a new worksheet with the 1,175 complete cases.

[R:] Type

bw.df = subset(bw.df, bwt != 999 & gestation != 999

& parity != 9 & height != 99

& weight != 999 & smoke != 9)

nrow(bw.df)

The nrow function will tell you how many (complete) cases are left in the
data after the subsetting operation.

19.3. It is always useful to plot the data before we contemplate models. This
sometimes can reveal features which we may not have noticed in the data,
and can warn us of potential issues. A scatterplot matrix is a good first
choice for multiple regression.

http://www.stat.berkeley.edu/~statlabs/data/babies.data
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[Minitab:] Select Matrix Plot. . . from the Graph menu, and then select
Matrix of plots with the With Smoother option before clicking on OK.
Enter either c1-c7 or bwt-smoke into the Graph variables text box and
click on OK.

[R:] Type

pairs(bw.df, upper.panel = panel.smooth)

You should notice that there appears to be an unusual age value of 99,
which we think can reasonably considered a missing value even though
it is not mentioned in the data description. We should remove this point
from our analysis.

[Minitab:] Hover (move the pointer with the mouse but do not click)
over the the far right point in any of the plots in the age column. This
should pop up a label telling you that the observation is in Row 401.
Select Delete. . . from the Data menu. Enter 401 into the Rows to delete
text box and enter bwt-smoke or c1-c7 into the Columns from which to
delete these rows text box. Click on OK.

[R:] Type

bw.df = subset(bw.df, age != 99)

19.4. Use the Minitab macro BayesMultReg or the R function bayes.lm with
a multivariate normal prior to fit a multiple linear regression model to
this data set. An initial choice of prior might be b0 = 0 and V0 = 106I7,
where I7 is a 7× 7 identity matrix. This is a very diffuse prior centered
on zero.

19.5. Use the posterior mean and covariance of the regression coefficients to
test the hypothesis

H0 :

(
βage

βweight

)
=

(
0

0

)
.



CHAPTER 20

COMPUTATIONAL BAYESIAN
STATISTICS INCLUDING MARKOV
CHAIN
MONTE CARLO

The posterior distribution itself is the essence of Bayesian inference. It sum-
marizes all that we can believe about the parameter(s) after looking at the
data. All further Bayesian inferences such as finding a point estimate of a
parameter, finding a credible interval for a parameter, and testing a hypoth-
esis about a parameter can be performed by calculations from the posterior
distribution. However, finding the posterior itself by using Bayes’ theorem
is not always as easy as it seems. In earlier chapters we have shown that it
is sometimes possible to find a formula for the exact posterior density. In
other cases we have to calculate the posterior numerically. Even that may be
difficult when there is a multivariate parameter. We need to find another way
to do Bayesian inference.

In this chapter we show that there is another way we can make inferences
about the parameter. They can be based on a random sample drawn from the
posterior distribution. The histogram of the random sample from the poste-
rior will approach the posterior density as the sample size increases towards
infinity. Thus statistics calculated from the random sample will approach
the parameters of the posterior distribution. This is the most basic idea of
statistics; a random sample from a population becomes closer and closer to

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.

431



432 COMPUTATIONAL BAYESIAN STATISTICS INCLUDING MARKOV CHAINMONTE CARLO

the population as the sample size increases. This is the basis for computa-
tional Bayesian statistics. It is the driving force behind the great resurgence
of Bayesian statistics over the past quarter century. Consider the following
example.

EXAMPLE 20.1

Suppose Aisha, Blair, and Chiara observe 5 successes out of 20 Bernoulli
trials with success probability π. They decide to use a beta(1, 1) prior
for π. Aisha says the posterior will be beta(6, 16). She calculates the
posterior mean, median, and an equal tail area 95% credible interval for
π using Minitab or R. Blair notes that the proportional posterior will be
given by

g(π|y) ∝ g(π) f(y|π)

∝ π1−1(1− π)1−1 π5(1− π)20−5

∝ π5 (1− π)15.

He integrates this proportional posterior over the whole range 0 ≤ π ≤ 1
to find the scale factor needed to make this a probability density.∫ 1

0

π5(1− π)15 dπ = .000003071.

He finds the numerical posterior density is

g(π|y) =
1

.000003071
π5(1− π)15.

[Minitab:] He calculates the posterior mean using the macro tintegral
and the posterior median and the (equal tail area) 95% credible interval
using the macro CredIntNum.

[R:] He calculates the posterior density using binogcp and calculates
the posterior mean using the R mean function, and he also calculates the
posterior median and the (equal tail area) 95% credible interval using the
median and quantile function respectively.

Chiara decides to take random samples from the posterior. The his-
tograms of her samples are shown in Figure 20.1 together with the exact
posterior. We see that the histogram of the random sample from the pos-
terior is approaching the shape of the true posterior as the sample size is
increasing. She calculates the sample mean and the sample median from
her posterior sample, and she also calculates an equal tail area 95% credi-
ble interval from the posterior sample. Instead of calculating the tail area
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n = 1,000
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n = 1,000,000

Figure 20.1 Chiara’s samples from the posterior distribution for sample sizes
1,000,10,000,100,000, and 1,000,000 respectively.

based on probability, she calculates the tail area based on the proportion
of the posterior sample. The exact, numerical, and sample results are
shown in Table 20.1.

Table 20.1 The posterior mean, median, and equal tail area 95% credible interval

Person Posterior Mean Median 95% Credible Interval

lower upper

Aisha exact .27273 .26574 .11281 .47166

Blair numerical .27273 .26574 .11281 .47166

Chiara sample (1,000) .27314 .26730 .11110 .47316

Chiara sample (10,000) .27280 .26534 .11073 .47077

Chiara sample (100,000) .27303 .26605 .11312 .47290

Chiara sample (1,000,000) .27283 .26587 .11308 .47174

In the above example we see that the numerical posterior gives the same
results as the exact posterior, as it should. Also, the statistics calculated
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from the posterior sample are approximations to the correct values, and the
approximation improves as the sample size increases. This shows that we can
base inferences on random samples drawn from the posterior distribution,
provided the sample size is large enough. Of course, in this example we knew
the exact posterior density and it was easily sampled from. We will see that it
is not necessary to know the exact posterior density in order to draw samples
from it. All we need to know is a formula that gives us the shape of the
posterior. We do not need to know the scale factor needed to make it an
exact density.

Bayesian Statistics: Easy in Theory, Difficult in Practice

Bayesian statistics is easy in theory: The posterior is proportional to the prior
times the likelihood.

g(θ|y) ∝ g(θ) f(y|θ) .

Thus it is easy to find an equation that gives the shape of the posterior density.
However this equation does not give the exact density as it does not give the
scale factor needed to make it integrate to 1. Since it is not the exact density,
neither probabilities nor moments can be calculated from it. It cannot be
used for statistical inference. The exact posterior is found by dividing the
proportional posterior by its integral over all parameter values

g(θ|y) =
g(θ) f(y|θ)∫
g(θ) f(y|θ) dθ

.

A closed form for the integral and hence for the posterior can only be found
in a limited number of special cases. In other cases, it needs to be evaluated
numerically. This numerical process quickly loses efficiency as the dimension
of the parameter θ increases, since the number of points where the function
has to be evaluated increases exponentially with the dimension. Also, the
accuracy of the numerical integral depends on the placement of the evaluated
points in the high dimension space. Thus, Bayesian statistics is often difficult
in practice.

The difficulty of evaluating the posterior in the general case left Bayesian
statistics out of mainstream applied statistical practice. Statisticians were
aware from their studies in decision theory that Bayesian statistics offered
real advantages in theory,1 but in practice these advantages were not really
available. Almost all applied statistics was done using frequentist methods.

Then, in the last quarter of the twentieth century, statisticians became
aware of methods for drawing samples from the true posterior, even when we
only know the unscaled version. Some of these methods had been developed

1Wald showed that admissible estimators were classified as Bayesian estimators.
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much earlier, but until sufficient computing power became available to im-
plement them, they were mostly unused. Computational Bayesian statistics
is based on using these algorithms to draw samples from the posterior and
then using the random sample from the posterior as the basis for inference.
These methods work even when we do not know the exact posterior, only its
unscaled version. They work for general distributions, not just for the expo-
nential family with conjugate prior case. The statistician can focus on the
statistical aspects of the model without worrying about calculability. This
allows the applied statistician to use realistic models that are based on the
underlying situation instead of being restricted to models that are mathemat-
ically easy to work with. These methods are not approximations as we are
drawing a Monte Carlo random sample from the exact posterior. Estimates
calculated from the sample can achieve any required accuracy by setting the
sample size large enough. Existing exploratory data analysis (EDA) tech-
niques can be used to explore the posterior. This essentially is the overall
goal of Bayesian inference. Sensitivity analysis can be done on the model in
a simple fashion.

In Section 20.1 we introduce acceptance–rejection sampling where we draw
a random sample of candidates from an easily sampled density. Then we
reshape this sample into a random sample from the posterior by only accepting
some of the values into the final sample. This performs very satisfactorily as
long as the candidate density dominates the target. However, it becomes
inefficient as the number of parameters increases.

In Section 20.3, we introduce Markov chain Monte Carlo (MCMC) methods
for drawing a sample from the posterior. Here we set up a Markov chain that
has the posterior as its long-run distribution. We let the Markov chain run
long enough so a random draw from the chain can be considered a random
draw from the posterior. The Metropolis–Hastings algorithm and the Gibbs
sampling algorithm are the two main Markov chain Monte Carlo methods.
The Markov chain Monte Carlo samples will not be independent. There will
be serial dependence in the Markov chain output due to the Markov property.
Different chains have different mixing properties. That means they move
around the parameter space at different rates. We show how to determine
how much we must thin the sample to obtain a sample that well approximates
a random sample from the posterior to be used for inference.

In Section 20.2, we look at performing the inferences from the posterior
sample. The overall goal of Bayesian inference is knowing the posterior. The
fundamental idea behind nearly all statistical methods is that as the sam-
ple size increases, the distribution of a random sample from a population
approaches the distribution of the population. Thus, the histogram of the
random sample from the posterior will approach the true posterior density.
Other inferences such as point and interval estimates of the parameters can
be constructed from the posterior sample. For example, if we had a random
sample from the posterior, any parameter could be estimated by the corre-
sponding statistic calculated from that random sample. We could achieve
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any required level of accuracy for our estimates by making sure our random
sample from the posterior is large enough. Existing exploratory data analysis
(EDA) techniques can be used on the sample from the posterior to explore
the relationships between parameters in the posterior.

The computational approach to Bayesian statistics allows the posterior to
be approached from a completely different direction. Instead of using the
computer to calculate the posterior numerically, we use the computer to draw
a Monte Carlo sample from the posterior. These methods have revolutionized
Bayesian statistics. They have freed Bayesian statisticians from being re-
stricted to those models where the posterior can be found analytically. Now,
Bayesian statisticians can use observation models, choose prior distributions
that are more realistic, and calculate estimates of the parameters from the
Monte Carlo samples from the posterior. Computational Bayesian methods
can easily deal with complicated models that have many parameters. This
makes the advantages that the Bayesian approach offers accessible to a much
wider class of useful models. Bayesian statisticians are no longer constrained
by analytic or numerical tractability. Models that are based on the underlying
situation can be used instead of models based on mathematical convenience.
This allows the statistician to focus on the statistical aspects of the model
without worrying about calculability.

20.1 Direct Methods for Sampling from the Posterior

In these direct methods we obtain our random sample from the posterior
either by transforming a random sample drawn from another distribution,
or by reshaping a random sample drawn from an easily sampled candidate
distribution. We do this reshaping by only accepting some of the values into
the final sample. The first method we will look at is called inverse proabality
sampling. We will then look at acceptance–rejection sampling.

Inverse Probability Sampling

Inverse probability sampling relies on the probability integral transform.

Theorem 20.1 If X is a continuous random variable with cumulative distri-
bution function FX(x), then the random variable Y defined as

Y = FX(X)

has a uniform(0, 1) distribution.

The inverse of this theorem, sometimes called the inverse probability integral
transform, which comes from applying the inverse cumulative distribution
function to Y says that the random variable defined by

X = F−1
X (Y )
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has the same distribution as X (because it is X). What it says in practice is
that if we know the inverse cdf function for a continuous random variable X,
then we can generate random variates from the distribution ofX by generating
uniform(0, 1) random variates and transforming using the inverse cdf.

F
X
(x

)

0

1

x1

u1

x2

u2

x3

u3

x4

u4

x5

u5

Figure 20.2 The cumulative distribution function maps values of a random variate
X (which may take values in the interval (a, b)) to values in the interval [0, 1], and the
inverse cumulative distribution function maps values in the interval [0, 1] to values in
the interval (a, b).

This can be seen graphically in Figure 20.2. The cdf takes the values of
the random variable X and maps them to values between zero and one. This
means that if X is a random variable, then so is Y = FX(X) and that the
values of Y are uniformly distributed between zero and one. If we switch the
axes so that Y = FX(X) is on the x-axis and X is in the y-axis, then the
curve is an inverse cdf for Y and maps the values of Y to the values of X.

EXAMPLE 20.2

Leah wants to use the inverse probability integral transform to sample
from an exponential distribution with a rate parameter of λ = 2. We
have not encountered the exponential distribution before. It is a special
case of the gamma distribution with the shape parameter set to 1. That
is, exponential(λ) = gamma(r = 1, v = λ). As such, the pdf simplifies to

g(x; r = 1, v = λ) =
λ1x1−1e−λx

Γ(1)

= λe−λx.
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Therefore, the cdf is

G(x;λ) =

∫ x

0

λe−λtdt

=
[
−e−λt

]x
0

= 1− e−λx.

Leah can see that this function is easily invertible, so that

G−1(p;λ) = −λ log(1− p).

She generates 10,000 uniform(0, 1) random numbers and calculates xi =
−2 log(1− ui) for each uniform number ui. Leah’s sample can be seen in
Figure 20.3.
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Figure 20.3 Leah’s sample from an exponential(λ = 2) distribution

Acceptance–Rejection Sampling

Acceptance–rejection sampling sampling, or more commonly rejection sam-
pling, dates back to work by the famous mathematician John von Neumann
(1951), and even further back to the 18th century in the specialized case of
Buffon’s needle. The idea, and its implementation, is very simple. We wish
to sample from a distribution with probability density function (pdf) f(x),
which is difficult. However we can sample very easily from a distribution with
pdf g(x) which has the property that it envelopes f(x). We express this math-
ematically as f(x) ≤ Mg(x) for all x where M is a constant. This is just a
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mathematical way of saying that the height of g(x) or some scaled version of
it Mg(x) must be greater than f(x). f(x) is sometimes referred to as the tar-
get density , and g(x) as the candidate density or proposal density . The word
distribution is sometimes used instead of density. We can use our ability to
sample from g(x) to sample from f(x) using the following algorithm:

1. Sample x from g(x), and u ∼ U [0, 1].

2. If u < f(x)/Mg(x), then accept x.

3. Otherwise reject x.

4. Repeat steps 1–3 until the desired sample size is achieved.

The algorithm gets its name from steps 2 and 3. We actually do not even
need to require f(x) to be a proper probability density function, but simply
that f(x) ≥ 0. The reason is quite straightforward. If f(x) ≥ 0 for all x, and∫ ∞

−∞
f(x) dx = c

where c is some non-zero finite constant, then we can make f(x) into a pdf
by scaling it by k = 1/c. That is, if h(x) = kf(x), then∫ ∞

−∞
h(x) dx =

∫ ∞
−∞

kf(x) dx

= k

∫ ∞
−∞

f(x) dx

=
c

c
= 1

If we knew k, then we could scale f(x) appropriately. We would have to scale
g(x) by the same factor to ensure that f(x) ≤ Mg(x). Therefore the scaling
factors would cancel out. That is, when we compute

kf(x)

Mkg(x)
,

k appears in both the numerator and denominator and hence cancels. This
means we only have to be able to compute the pdf up to a constant which
turns out to be very useful.

EXAMPLE 20.3

Fiona wants to draw samples from a beta(2, 2) distribution. Her statistics
package does not have a beta random number generator, but it does have



440 COMPUTATIONAL BAYESIAN STATISTICS INCLUDING MARKOV CHAINMONTE CARLO

a uniform random number generator. Fiona knows that the beta(2, 2)
random variates have the same range as the uniform uniform(0, 1) ran-
dom variates, and that the beta(2, 2) density is proportional to π2−1(1−
π)2−1 = π(1− π). It is easy to show, either graphically or with calculus,
that this function has a maximum value .25 when π = .5. Therefore, if
Fiona chooses M = .25, then M × g(x) = M is greater than f(x) for
all 0 < x < 1. This is shown in Figure 20.4. She draws approximately
15,000 pairs of uniform random numbers to get a sample of size 10,000.
A histogram of Fiona’s sample is shown in Figure 20.5.
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f(π) = π(1 − π)
Mg(π) = 0.25 × 1

Figure 20.4 Fiona’s target density and proposal density.

This example highlights one of the drawbacks of simple rejection sampling;
namely, that it can be potentially quite inefficient. By inefficient we mean it re-
quires taking a far larger sample from the candidate distribution than we need
from the target distribution. The efficiency is governed, as you might have
deduced, by the ratio of the area under the (scaled) target density (scaled)
to the (scaled) candidate density. If the candidate density is very close to the
target density, then the sampling will be very efficient. If the candidate den-
sity is quite far from the target density then the sampling will be inefficient.
This problem is magnified when the target distribution is multivariate.

EXAMPLE 20.3 (continued)

The area under Fiona’s scaled candidate density is

1× .25 = .25.
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Figure 20.5 Fiona’s sample of size 10,000

The area under Fiona’s unscaled target density is∫ 1

0

π(1− π).dπ =

[
π2

2
− π3

3

]1

0

=
1

2
− 1

3

=
1

6
.

The ratio between these two areas is

1

6
÷ 1

4
=

4

6
=

2

3
.

Therefore her sampling scheme is only approximately 66.7% efficient. This
means on average she needs to draw three pairs of random uniforms to
get two beta(2, 2) random variates. We can see that this theory closely
matches reality as Fiona generated 14,989 (≈ 15, 000) pairs of random
variates to take a sample of size 10,000.

Daniel decides he can do a better job by using a trapezoidal candidate
density. He proposes the function

g(π) =


π for 0 ≤ π < .25,

.25 for .25 ≤ π < .75,

1− π for .75 ≤ π ≤ 1.
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Figure 20.6 Daniel’s target density and proposal density

Daniel’s candidate density and the target density is shown in Figure
20.6. Daniel is going to exploit the inverse probability transform to sample
from his candidate density.

In order to sample from Daniel’s density he needs to find the asso-
ciated cumulative distribution function. This will require the piecewise
integration of g(π) and some scaling so that it has area 1 under the curve.
Daniel’s function is a symmetric trapezium, so he needs to only work out
the area the “box” and one of the triangles. In this case the area of the
box is

Area = width× height

= .5× .25

= .125.

and the area of each of the triangles is

Area =
1

2
×width× height

= .5× .25× .25

= .03125.

The total area is k = .125 + .03125 + .03125 = .1875. The cdf is

G(π) =
1

k
×


.5π2 for 0 ≤ π < .25,

.25π − .03125 for .25 ≤ π < .75,

π − .5π2 − .3125 for .75 ≤ π ≤ 1.
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With a bit work, Daniel finds the inverse cdf

G−1(p) =


√

2kp for 0 ≤ p < .25,

.125 + 4kp for .25 ≤ p < .75,

1− .25
√

6− 32kp , for .75 ≤ p ≤ 1.

The inverse cdf allows Daniel to sample directly from his candidate den-
sity, and then use those proposals in his rejection sampling scheme. The
candidate density is closer to the target density than the uniform distri-
bution that Fiona used, but how close? Again we need to look at the
ratio of the areas. The area under Fiona’s target density is 1/6. The area
under Daniel’s target density is .1875 or 6/32, therefore the ratio of the
two areas is

1

6
÷ 6

32
=

1

6
× 32

6

=
32

36

=
8

9
.

This means that for every 9 pairs of uniform random numbers Daniel
generates, he will get on average 8 beta(2, 2) random variates. Again, the
theory closely resembles the practice. Daniel generated 11,255 pairs of
uniform random numbers to get a sample of size 10,000 from the beta(2, 2)
distribution.

Clearly, Daniel’s sampling scheme is more efficient than Fiona’s but it
required a lot of work. Ideally, it would be good to have a way of doing
this automatically. Automation of this process is one of the ideas behind
adaptive–rejection sampling which is discussed in the next section.

Adaptive–Rejection Sampling

The essence of adaptive–rejection sampling is very easy to understand; we
automatically update our candidate density with information based on the
rejected proposals from a rejection sampling scheme. The implementation is
slightly more complicated. It is important to note that in its simplest form, the
adaptive–rejection sampling scheme only works for log-concave distribution
functions. Formally, a function f(x) is concave if

f ((1− t)x+ ty) ≥ (1− t)f(x) + tf(y)

for all t ∈ [0, 1]. A function is log-concave if h(x) = log(f(x)) obeys the same
inequality. Proving that this inequality holds can be quite difficult and messy.
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It is often simpler to show that f(x) is concave if its second derivative f ′′(x)
is less than zero for all values of x where the function and its derivatives are
defined. For example, the normal(µ, σ2) distribution is log-concave because

h(x;µ, σ) = log

[
1√
2πσ

e−
1
2 ( x−µσ )

2
]

= −1

2

(
x− µ
σ

)2

− log

(
1√
2πσ

)
.

Therefore

h′(x;µ, σ) =
∂h(x;µ, σ)

∂x

= − 1

2σ2
2(x− µ)

and

h′′(x;µ, σ) =
∂2h(x;µ, σ)

∂x2

= − 1

σ2
.

We can see that h′′(x;µ, σ) < 0 for σ > 0. Some other examples of log-concave
densities are

uniform(a, b)

gamma(r, v) for r ≥ 1

beta(a, b) for a, b ≥ 1

Student’s t distribution, on the other hand, is not log-concave. The method
can be altered to cope with log-convex (the opposition of log-concave) distri-
bution, but this is beyond the scope of this book.

Firstly we describe the adaptive–rejection sampling algorithm

1. Find h(x) = h(x;θ) = log f(x;θ), where θ is the vector of parameters that
describe the distribution.

2. Find the first derivative of the log-density h′(x), and solve h′(x) = 0 for x
to find the maximum, xmax of h(x). Note that it is not essential to do this
exactly, and numerical methods will usually provide enough accuracy.

3. Choose two arbitrary points x0 and x1 such that x0 < xmax and x1 > xmax.
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4. Compute the tangent lines t0(x) and t1(x). The tangent line ti(xi) is the
line which passes through the point (xi, h(xi)) and has slope h′(xi). As
such, the tangent line is defined by

ti(x) = h′(xi)x+ (h(xi)− h′(xi)x).

Each tangent line can be described by a column vector containing its in-
tercept and slope. That is

ti(x) = h′(xi)x+ (h(xi)− h′(xi)x)

= αi + βix

= [1, x]

[
αi

βi

]
.

5. Compute the envelope density g0(x) by exponentiating t0(x0) and t1(x1):

g0(x) =

{
et0(x) = eα0+β0x for −∞ < x < xmax,

et1(x) = eα1+β1x for xmax ≤ x < +∞.

6. Compute the integrated envelope density G0(x)

G0(x) =

∫ x

−∞
g0(t) dt

and the constant k0 = 1/G0(+∞) that is required to scale the area under
G0(x) to 1.

7. Compute the inverse cdf G−1
0 (p) such that

G−1
0 (k0G0(x)) = x.

8. Sample (u, v) ∼ uniform(0, 1).

9. Set x = G−1
0 (v).

10. If u ≤ f(x)/g0(x), then accept x as a random variate from your target
distribution. If you have achieved your target sample size, then stop; oth-
erwise repeat steps 8–10.

11. Otherwise, add x to your set of tangent points, and repeat steps 4–11.

There are some implementation details we have skipped over in this descrip-
tion of the algorithm, but we will address those in Example 20.4.
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EXAMPLE 20.4

Lucy is interested in sampling from a beta(2, 2) density using the adaptive-
rejection sampling method. Her unscaled target density is the same as
Fiona’s and Daniel’s, i.e.,

f(π) ∝ π(1− π), 0 < π < 1.

The logarithm of this (unscaled) density is

h(π) = log(π) + log(1− π).

Lucy knows that the beta distribution is log-concave for α, β ≥ 1, but she
will check anyway. She can show h(π) is log-concave by checking that its
second derivative is negative for all values of π. The second derivative of
h(π) is

∂2

∂π2
h(π) = − 1

π2
− 1

(1− π)2

= −
(

1

π2
+

1

(1− π)2

)
,

which is clearly negative for any value of π such that 0 < π < 1. There-
fore this density is log-concave. Note: In general it is sufficient to only
consider a candidate density up to a constant of proportionality. That is,
we do not need to include terms that are constant given the parameters
of the distribution as these do not effect the concavity of the function.

Lucy starts by finding the point that maximizes h(π). In this example,
she can do this by inspection since she knows that the function is sym-
metric around π = 0.5. In general, however, we can find the maximum
by solving h′(π) = ∂/∂π h(π) = 0. The first derivative is

h′(π) =
1

π
− 1

1− π
and so by setting this equal to zero and solving for π, Lucy finds

1

π
− 1

1− π
= 0

1− π − π
π(1− π)

= 0

1− 2π = 0

π =
1

2
= .5

as expected. She now chooses two arbitrary points, where one is below
the maximum and the other is above the maximum, from the range of
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feasible values for π. Lucy chooses π1 = 0.2, and π2 = 0.8. Lucy needs
to find the tangent line for each of these points. That is, she needs to
find the equations of the lines that pass through the points (πi, h(πi)) and
have slope h′(πi) for i ∈ {1, 2}. This simply involves solving

h(πi) = h′(πi)πi + b

for the intercept b, which is given by rearrangement as

b = h(πi)− h′(πi)πi.

Lucy’s first two tangent lines are

log genv(π) =

{
3.75π − 2.5825815 for 0 ≤ π < .5,

−3.75π + 1.1674185 for 0.5 ≤ π ≤ 1.

Lucy finds a piecewise exponential function that envelopes her target den-
sity by exponentiating log g0(π). That is, she finds

g0(π) =

{
e3.75π−2.5825815 for 0 ≤ π < .5,

e−3.75π+1.1674185 for 0.5 ≤ π ≤ 1

which describes a function that consists of two exponential curves that
envelope her unscaled target density. These curves can be seen in Figure
20.7.

0.2 0.4 0.6 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

π

Figure 20.7 Lucy’s first envelope function
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The integral of g0(π) is also exponential

∫ π

0

g0(t) dt =


1

3.75

[
e3.75π−2.5825815 − e−2.5825815

]
for 0 ≤ π < .5,

.1112683 + 1
−3.75

[
e−3.75π+1.1674185

−e−3.75×.5+1.1674185
]

for 0.5 ≤ π ≤ 1

=


1

3.75

[
e3.75π−2.5825815 − e−2.5825815

]
for 0 ≤ π < .5,

.1112683 + 1
−3.75

[
e−3.75π+1.1674185

−.4928347] , for 0.5 ≤ π ≤ 1.

We need to scale this function so that the area is one. We know that
g0(π) is symmetric around .5, and that the area under the curve to the
left of .5 is .1112683. Therefore the area under the whole function is twice
this amount, i.e. .2225366. We set k0 = 1/.2225366 = 4.4936437. The
cdf for the envelope density is therefore given by

G0(π) = k0

{
1
β0

[
eβ0π+α0 − eα0

]
for 0 ≤ π < .5,

κ0 + 1
β1

[
eβ1π+α1 − e.5β1+α1

]
for 0.5 ≤ π ≤ 1,

where α0 = −2.5825815, β0 = 3.75, α1 = 1.1674185, β1 = −3.75 and
κ0 = .1112683. We can easily invert this cdf to find the inverse cdf,

G−1
0 (p) =


1
β0

(
log(β0p

k0
+ eα0)− α0

)
for 0 ≤ π < .5,

1
β1

(
log(β1

k0
(p− κ0

k0
) + e.5β1+α1)− α1

)
for .5 ≤ π ≤ 1.

Lucy generates a pair of uniform(0, 1) random variates (u, v) = (.2875775,
.7883051). She then calculates

π = G−1
0 (u) = 0.3811180,

r = f(x)/g0(x) = 0.7474424.

Lucy rejects π = 0.3811180 because v > r. A candidate value that is
rejected can be thought of as being in an area where the envelope function
does not match the target density very closely. Therefore, Lucy uses this
information to adapt her envelope function. Firstly, she calculates a new
tangent line at π = 0.3811180. This gives

t2(π) = −1.8286698 + 1.0080420π.

The new envelope function g1(π) now includes et2(π). However, Lucy
needs to decide which tangent line is closest to the log density (and hence
which exponential function is closest to the original density) for any value
of π. There are several ways to do this, and all of them are tedious.
Lucy decides to exploit the fact that her new point lies between π0 = 0.2
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Figure 20.8 The new tangent line is closest to the log density over the range defined
by between where it intersects with the other tangent lines

and π1 = 0.8, therefore the new tangent line will be closest to the log
density over the range where each of these lines intersect. This can be
seen displayed graphically in Figure 20.8.

The lines intersect at the points π = .2749537 and π = .2749537.
Therefore Lucy’s new envelope function,g1(π) is

g1(π) =


e3.75π−2.5825815 for 0 ≤ π < .2749537,

e−1.8286698+1.0080420π for .2749537 ≤ π < .6296894,

e−3.75π+1.1674185 , for .6296894 ≤ π ≤ 1.

Lucy’s updated envelope function is shown in Figure 20.9. The inte-
gration at this point becomes extremely tedious and error prone. How-
ever, because the components of the envelope are very smooth functions,
they are can be numerically integrated extremely accurately using ei-
ther tintegral in Minitab or sintegral in R. Lucy uses these functions
to find that the area under the new envelope function is .1873906, so
the sampling efficiency has gone from 100 × 1

6 ÷ .2225366 ≈ 74.9% to
100× 1

6 ÷ .1873906 ≈ 88.9% in a single iteration. Equally, it is not neces-
sary to find the intersections of all the tangent lines. If the column vectors
describing each of the tangent lines are stored in a matrix β, then we can
define the envelope function after the nth update, gn(π), as

gn(π) = min
j=1,...,n

(1, π)β.
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Figure 20.9 The updated envelope function

This “trick” works because we know that all of the tangent lines are upper
bounds to the target density. That is, they lie above the target density.
This is why we need the target to be log-concave. Therefore, the closest
line is the one with the smallest value at a given value of π. This is a
little wasteful in terms of the amount of computation required, but the
time taken is trivial on a modern computer.

Using this algorithm, Lucy only had to generate 10,037 pairs of uni-
form(0, 1) random numbers to get a sample size of 10,000 from a beta(2, 2)
density. The final envelope function (after 36 updates in total) was ap-
proximately 99.82% efficient; in fact the sampler was over 99% efficient
after approximately 1,100 pairs of uniform(0, 1) random numbers had
been generated and after 14 updates.

20.2 Sampling–Importance–Resampling

The topic of importance sampling often arises in situations where people wish
to estimate the probability of a rare event. Importance sampling solves this
problem by sampling from an importance density and reweighting the sampled
observations accordingly.

If X is a random variable with probability density function p(x), and f(X)
is some function of X, then the expected value of f(X) is

E[f(X)] =

∫ +∞

−∞
f(x)p(x) dx.
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If h(x) is also a probability density whose support contains the support of p(x)
(i.e. h(x) > 0 ∀x such that p(x) > 0), then this integral can be rewritten as

E[f(X)] =

∫ +∞

−∞
f(x)

p(x)

h(x)
h(x) dx.

h(x) is the importance density, and the ratio p(x)/h(x) is called the likelihood
ratio. Therefore, if we take a large sample from h(x), then this integral can
be approximated by

E[f(X)] =
1

N

N∑
i=1

wif(xi)dx,

where wi = p(xi)/h(xi) are the importance weights. The efficiency of this
scheme is related to how closely the importance density follows the target
density in the region of interest. A good importance density will be easy to
sample from whilst still closely following the target density. It The process of
choosing a good importance density is known as tuning and can often be very
difficult.

EXAMPLE 20.5

Karin wants to use importance sampling to estimate the probability of
observing a normal random variate greater than 5 standard deviations
from the mean. That is, Karin wishes to estimate P such that

P = 1− Φ(5) =

∫ +∞

5

1√
2π
e−

x
2 dx.

Karin knows that she can approximate p by taking a sample of size N
from a standard normal distribution, and calculating

E[I(X > 5)] =
1

N

N∑
i=1

I(xi > 5).

However, this is incredibly inefficient as fewer than three random variates
in 10 million will exceed 5 which means the vast majority of estimates
will be zero unless N is extraordinarily large.

Karin knows, however, that the she can create a shifted exponential
distribution which has a probability density function which dominates the
standard normal density for all x greater than 5. The shifted exponential
distribution arises when we consider the random variable Y = X + δ,
where X has an exponential distribution with mean 1 and δ > 0. If
δ = 5, then the pdf of Y is

h(y) = e−(y−5) = e(5−y).
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If Karin uses h(y) as her importance density, then her importance sam-
pling scheme is as follows:

1. Take a random sample x1, x2, . . . , xN such that xi ∼ exp(1)

2. Let yi = xi + 5

3. Calculate

1

N

N∑
i=1

p(yi)

h(yi)
I(yi > 5).

where p is the standard normal probability density function. Given that
she knows all values of yi are greater than 5, this simplifies to

1

N

N∑
i=1

p(yi)

h(yi)
.

Karin chooses N = 100, 000 and repeats this procedure 100 times to
try and understand the variability in the importance sample estimates.
Karin can see that the importance sampling method yields much better

Sample

E
st

im
at

ed
 P

r(
Z

>
5)

1 20 40 60 80 100

2 × 10−7

2.5 × 10−7

3 × 10−7

3.5 × 10−7

4 × 10−7 Simple Monte Carlo
Importance

Figure 20.10 100 estimates of Pr(Z > 5), Z ∼ normal(0, 1) using samples size
100,000 and importance sampling compared to samples of size 108 and näıve Monte
Carlo methods.

estimates than simple Monte Carlo methods for far less effort. The true
value (calculated using numerical integration) is 2.8665157 × 10−7. The
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mean of Karin’s 100 importance sampling estimates is 2.8675162× 10−7,
and the mean of her 100 Monte Carlo estimates is 2.815×10−7. The stan-
dard deviations are 4.7×10−8 for the Monte Carlo estimates and 1.4×10−9

for the importance sampling. The importance sampling method clearly
gives much higher accuracy and precision in this example for considerably
less computational effort.

The importance sampling method is useful when we want to calculate a func-
tion of samples from an unscaled posterior density, such as a mean or a quan-
tile. However, it does not help us draw a sample from the posterior density.
We need to extend the importance sampling algorithm very slightly to do this.

1. Draw a large sample, θ = {θ1, θ2, . . . , θN}, from the importance density.

2. Calculate the importance weights for each value sampled

wi =
p(θi)

h(θi)
.

3. Calculate the normalized weights :

ri =
wi∑N
i=1wi

.

4. Draw a sample with replacement of size N ′ from θ with probabilities given
by ri

The resampling combined with the importance weights gives this method its
name — the Sampling Importance Resampling or SIR method. This method
is sometimes referred to as the Bayesian bootstrap. If N is small, then N ′

should be smaller, otherwise the sample will contain too many repeated values.
However, in general, if N is large (N ≥ 100, 000), the restrictions on N ′ can
be relaxed.

EXAMPLE 20.6

Livia wants to draw a random sample, θ, from a beta(2, 8) distribution.
She knows that this density has a mean of 2/(2 + 8) = .2 and a variance
of

2× 8

(2 + 8)2 × (2 + 8 + 1)
≈ .015;

therefore she decides to use a normal(.2, .015) density as her importance
density. The support of this density (−∞,+∞) contains the support of
the beta(2, 8) density [0, 1] which means it will function as an importance
density. This choice may be inefficient as values outside of [0, 1] will receive
weights of zero, but Livia uses the properties the normal distribution to
show that this will only happen just over 5% of the time on average –
that is, if X ∼ normal(.2, .015), then Pr(X < 0) + Pr(X > 1) ≈ 0.05.
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Livia draws a sample of size N = 100, 000, and calculates the impor-
tance weights

wi =


θ1
i (1−θi)7

e
− (θ−.2)2

2×.015

, 0 < θi < 1,

0, otherwise.

Livia does not bother calculating the constants for each of her densities
as they are the same for every θi, and hence only change the weights by a
constant scale factor which cancels out when she calculates the normalized
weights, ri.

Livia then draws a sample of sizeN ′ = 10, 000 from θ with replacement.
This can be seen in Figure 20.11.

θ
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0
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Figure 20.11 Sample of size 10,000 from a beta(2, 8) density using the SIR method
with a normal(.2, 0.015) importance density.

20.3 Markov Chain Monte Carlo Methods

The development of Markov chain Monte Carlo (MCMC) methods has been a
huge step forward for Bayesian statistics. These methods allow users to draw
a sample from the exact posterior g(θ|y), even though only the proportional
form of the posterior g(θ) f(y|θ) (prior times likelihood given by Bayes’ theo-
rem) is known. Inferences are based on this sample from the posterior rather
than the exact posterior. MCMC methods can be used for quite complicated
models having a large number of parameters. This has allowed applied statis-
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ticians to use Bayesian inference for many more models than was previously
possible. First we give a brief summary of Markov chains.

Markov Chains

Markov chains are a model of a process that moves around a set of possible
values called states where a random chance element is involved in the move-
ment through the states. The future state will be randomly chosen using
some probability of transitions. Markov chains have the “memoryless” prop-
erty that, given the past and present states of the process, the future state
only depends on the present state, not the past states. This is called the
Markov property. The transition probabilities of a Markov chain will only
depend on the current state, not the past states. Each state is only directly
connected to the previous state and not to states further back. This way it is
linked to the past like a chain, not like a rope. The set of states is called the
state-space and can be either discrete or continuous.

We only use Markov chains where the transition probabilities stay the same
at each step. This type of chain is called time-invariant.

Each state of a Markov chain can be classified as a transient state, a null
recurrent state, or a positive recurrent state. A Markov chain will return to a
transient state only a finite number of times. Eventually the chain will leave
the state and never return. The Markov chain will return to a null recurrent
state an infinite number of times. However, the mean time between returns
to the state will also be infinite. The Markov chain will return to a positive
recurrent state an infinite number of times, and the mean return time will be
finite.

Markov chains where it is possible to reach every state from every other
state are called irreducible Markov chains. All states in an irreducible Markov
chain are the same type. An irreducible chain with all positive recurrent states
will is called an ergodic Markov chain. We will only use ergodic Markov chains
since they will have a unique long-run probability distribution (or probability
density in the case of continuous state space). It can be found from the
transition probabilities as the unique solution of the steady-state equation.

In Markov chain Monte Carlo, we need to find a Markov chain with long-
run distribution that is the same as the posterior distribution g(θ|y). The set
of states is the parameter space, the set of all possible parameter values.

There are two main methods for doing this: the Metropolis–Hastings algo-
rithm and the Gibbs sampling algorithm. The Metropolis–Hastings algorithm
is based on the idea of balancing the flow of the steady-state probabilities from
every pair of states. The Metropolis–Hastings algorithm can either be applied
to (a) all the parameters at once or (b) blockwise for each block of parameters
given the values of the parameters in the other blocks. The Gibbs sampling
algorithm cycles through the parameters, sampling each parameter in turn
from the conditional distribution of that parameter, given the most recent
values of the other parameters and the data. These conditional distributions
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may be hard to find in general. However, when the parameter model has a
hierarchical structure, they can easily be found. Those are the cases where
the Gibbs sampler is most useful. The Metropolis–Hastings algorithm is the
most general and we shall see that the Gibbs sampler is a special case of the
blockwise Metropolis–Hastings algorithm.

Metropolis–Hastings Algorithm for a Single Parameter

The Metropolis–Hastings, like a number of the techniques we have discussed
previously, aims to sample from some target density by choosing values from
a candidate density. The choice of whether to accept a candidate value, some-
times called a proposal , depends (only) on the previously accepted value. This
means that the algorithm needs an initial value to start, and an acceptance,
or transition, probability. If the transition probability is symmetric, then the
sequence of values generated from this process form a Markov chain. By sym-
metric we mean that the probability of moving from state θ to state θ′ is
the same as the probability of moving from state θ′ to state θ. If g(θ|y) is
an unscaled posterior distribution, and q(θ, θ′) is a candidate density, then a
transition probability defined by

α(θ, θ′) = min

[
1,
g(θ′|y)q(θ′, θ)

g(θ|y)q(θ, θ′)

]
will satisfy the symmetric transition requirements. This acceptance probabil-
ity was proposed by Metropolis et al. (1953). The steps of the Metropolis–
Hastings algorithm are:

1. Start at an initial value θ(0).

2. Do the following for n = 1, . . . , n.

(a) Draw θ′ from q(θ(n−1), θ′).

(b) Calculate the probability α(θ(n−1), θ′).

(c) Draw u from U(0, 1).

(d) If u < α(θ(n−1), θ′), then let θ(n) = θ′, else let θ(n) = θ(n−1).

We should note that having the candidate density q(θ, θ′) close to the target
g(θ|y) leads to more candidates being accepted. In fact, when the candidate
density is exactly the same shape as the target

q(θ, θ′) = k × g(θ′|y)

the acceptance probability is given by

α(θ, θ′) = min

[
1,
g(θ′|y) q(θ′, θ)

g(θ|y) q(θ, θ′)

]
= min

[
1,
g(θ′|y)g(θ|y)

g(θ|y)g(θ′|y)

]
= 1 .
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Thus, in that case, all candidates will be accepted.
There are two common variants of this algorithm. The first arises when the

candidate density is a symmetric distribution centered on the current value.
That is,

q(θ, θ′) = q1(θ′ − θ),

where q1() is a function symmetric around zero. This is called a random-walk
candidate density. The symmetry means that q1(θ′ − θ) = q1(θ − θ′), and
therefore the acceptance probability simplifies to

α(θ, θ′) = min

[
1,
g(θ′|y) q(θ′, θ)

g(θ|y) q(θ, θ′)

]
= min

[
1,
g(θ′|y)

g(θ|y)

]
.

This acceptance probability means that any proposal, θ′, which has a higher
value of the target density than the current value, θ, will always be accepted.
That is, the chain will always move uphill. On the other hand, if the proposal is
less probable than the current value, then the proposal will only be accepted
with probability proportional to the ratio of the two target density values.
That is, there is a non-zero probability that the chain will move downhill.
This scheme allows the chain to explore the parameter over time, but in
general the moves will be small and so it might take a long time to explore
the whole parameter space.

EXAMPLE 20.7

Tamati has an unscaled target density given by

g(θ|y) = .7× e− θ
2

2 + 0.15× 1

.5
e−

1
2 ( θ−3

.5 )
2

+ 0.15× 1

.5
e−

1
2( θ+3

.5 )
2

.

This is a mixture of a normal(0, 1), a normal(3, .52), and a normal(−3, .52).
Tamati decides to use a random-walk candidate density. Its shape is given
by

q(θ, θ′) = e−
(θ−θ′)2

2 .

Let the starting value be θ = 2. Figure 20.12 shows the first six con-
secutive draws from the Metropolis–Hastings chain with a random-walk
candidate. Table 20.2 gives a summary of the first six draws from this
chain. Tamati can see that the proposals in draws 1, 3, and 5 were simply
more probably than the current state (and hence α = 1), so the chain au-
tomatically moved to these states. The candidate values in draws 2 and 5
were slightly less probable (0 < α < 1), but still had a fairly high chance
of being accepted. However, the proposal on the sixth draw was very
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Figure 20.12 Six consecutive draws from a Metropolis–Hastings chain with a
random walk candidate density. Note: the candidate density is centered around the
current value.

poor (α = 0.028) and consequently was not selected. Figure 20.13 shows
the trace plot and histogram of the first 1,000 values in the Metropolis–
Hastings chain with a random-walk candidate density. Tamati can see
that the sampler is moving through the space fairly satisfactorily because
the trace plot is changing start regularly. The trace plot would contain flat
spots if the sampler was not moving well. This can happen when there are
local maxima (or minima), or the likelihood surface is very flat. Tamati
can also see that the sampler occasionally chooses extreme values from
the tails but tends to jump back to the central region very quickly. The
values sampled from the chain are starting to take the shape of the target
density, but it is not quite there. Figure 20.14 shows the histograms for
5,000 and 20,000 draws from the Metropolis–Hastings chain. Tamati can
see that the chain is getting closer to the true posterior density as the
number of draws increases.
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Table 20.2 Summary of the first six draws from the chain using the random-walk
candidate density

Draw Current value Candidate α u Accept

1 2.000 1.440 1.000 0.409 Yes

2 1.440 2.630 0.998 0.046 Yes

3 2.630 2.700 1.000 0.551 Yes

4 2.700 2.591 0.889 0.453 Yes

5 2.591 3.052 1.000 0.103 Yes

6 3.052 4.333 0.028 0.042 No

−6
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4
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1 200 400 600 800 1000 −4 −2 0 2 4

Figure 20.13 Trace plot and histogram of 1,000 Metropolis–Hastings values using
the random-walk candidate density with a standard deviation of 1.

The second variant is called the independent candidate density. Hastings
(1970) introduced Markov chains with candidate densities that did not depend
on the current value of the chain. These are called independent candidate
densities, and

q(θ, θ′) = q2(θ′),

where q2(θ) is some function that dominates the target density in the tails.
This requirement is the same as that for the candidate density in acceptance–
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Figure 20.14 Histograms of 5,000 and 20,000 draws from the Metropolis–Hastings
chain using the random-walk candidate density with a standard deviation of 1.

rejection sampling. The acceptance probability simplifies to

α(θ, θ′) = min

[
1,
g(θ′|y) q(θ′, θ)

g(θ|y) q(θ, θ′)

]
= min

[
1,
g(θ′|y)q2(θ)

g(θ|y)q2(θ′)

]
.

for an independent candidate density.

EXAMPLE 20.7 (continued)

Tamati’s friend Aroha thinks that she might be able to do a better job
with an independent candidate density. Aroha chooses a normal(0, 32)
density as her independent candidate density because it covers the target
density well. Table 20.3 gives a summary of the first six draws from this
chain. Figure 20.15 shows the trace plot and a histogram for the first
1,000 draws from the Metropolis–Hastings chain using Aroha’s indepen-
dent candidate density with a mean of 0 and a standard deviation of 3.
The independent candidate density allows larger jumps, but it may accept
fewer proposals than the random-walk chain. However, the acceptances
will be larger and so the chain will potentially explore the parameter space
faster. Aroha can see that the chain is moving through the space very sat-
isfactorily. In this example, Aroha’s chain accepted approximately 2,400
fewer proposals than Tamati’s chain over 20,000 iterations. The histogram
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Table 20.3 Summary of the first six draws from the chain using the independent
candidate density

Draw Current value Candidate α u Accept

1 2.000 -4.031 0.526 0.733 No

2 2.000 3.137 1.000 0.332 Yes

3 3.137 -4.167 0.102 0.238 No

4 3.137 -0.875 0.980 0.218 Yes

5 -0.875 2.072 0.345 0.599 No

6 -0.875 1.164 0.770 0.453 Yes

shows that the chain has a little way to go before it is sampling from the
true posterior. Figure 20.16 shows histograms for 5,000 and 20,000 draws
from the chain. Aroha can see that the chain is getting closer to the true
posterior as the number of draws increases.
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Figure 20.15 Trace plot and histogram of 1,000 Metropolis–Hastings values using
the independent candidate density with a mean of 0 and a standard deviation of 3.

Gibbs Sampling

Gibbs sampling is more relevant in problems where we have multiple param-
eters in our problem. The Metropolis–Hastings algorithm is easily extended
to problems with multiple parameters. However, as the number of parame-
ters increases, the acceptance rate of the algorithm generally decreases. The
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Figure 20.16 Histograms of 5,000 and 20,000 draws from the Metropolis–Hastings
chain using the independent candidate density with a mean of 0 and a standard
deviation of 3.

acceptance rate can be improved in Metropolis–Hastings by only updating a
block of parameters at each iteration. This leads to the blockwise Metropolis–
Hastings algorithm. The Gibbs sampling algorithm is a special case of the
blockwise Metropolis–Hastings algorithm. It depends on being able to derive
the true conditional density of one (block) of parameters given every other
parameter value. The Gibbs sampling algorithm is particularly well suited
to what are known as hierarchical models , because the dependencies between
model parameters are well-defined.

Suppose we decide to use the true conditional density as the candidate
density at each step for every parameter given all of the others. In that case

q(θj , θ
′
j |θ−j) = g(θj |θ−j ,y) ,

where θ−j is the set of all the parameters excluding the jth parameters. There-
fore, the acceptance probability for θj at the nth step will be

α
(
θ

(n−1)
j , θ′j |θ

(n)
−j

)
= min

[
1,

g(θ′j |θ−j ,y) q(θ′j , θj |θ−j)
g(θj |θ−j ,y) q(θj , θ−j |θ−j)

]
= 1 .

so the candidate will be accepted at each step. The case where we draw each
candidate block from its true conditional density given all the other blocks at
their most recently drawn values is known as Gibbs sampling. This algorithm
was developed by Geman and Geman (1984) as a method for recreating images
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from a noisy signal. They named it after Josiah Willard Gibbs, who had
determined a similar algorithm could be used to determine the energy states
of gasses at equilibrium. He would cycle through the particles, drawing each
one conditional on the energy levels of all other particles. His algorithm
became the basis for the field of statistical mechanics.

EXAMPLE 20.8

Suppose there are two parameters, θ1 and θ2. It is useful to propose a
target density that we know and could approach analytically, so we know
what a random sample from the target should look like. We will use
a bivariate normal(µ,V) distribution with mean vector and covariance
matrix equal to

µ =

(
0

0

)
and V =

[
1 ρ

ρ 1

]
.

Suppose we let ρ = .9. Then the unscaled target (posterior) density has
formula

g(θ1, θ2) ∝ e−
1

2(1−.92)
(θ2

1−2×.9×θ1θ2+θ2
2)
.

g(θ1, θ2) ∝ e−
1

2(1−.92)
(θ2

1−2×.9×θ1θ2+θ2
2)
.

The conditional density of θ1 given θ2 is normal(m1, s
2
1), where

m1 = ρθ2 and s2
1 = (1− ρ2) .

Similarly, the conditional density of θ2 given θ1 is normal(m2, s
2
2) where

m2 = ρθ1 and s2
2 = (1− ρ2) .

We will alternate back and forth, first drawing θ1 from its density given
the most recently drawn value of θ2, then drawing θ2 from its density
given the most recently drawn value of θ1. We don’t have to calculate the
acceptance probability since we know it will always be 1. Table 20.4 shows
the first three steps of the algorithm. The initial value for θ1 is 2. We then
draw θ2 from a normal(.9×θ1 = .9×2, 1− .92) distribution. The value we
draw is θ2 = 1.5557. This value is accepted because the candidate density
is equal the target density, so the acceptance probability is 1. Next we
draw θ1 from a normal(.9×θ2 = .9×1.5556943, 1− .92) distribution. The
value we draw is θ1 = 1.2998, and so on.

Figure 20.17 shows traceplots for the first 1,000 steps of the Gibbs
sampling chain.

Figure 20.18 shows the scatterplot of θ2 versus θ1 for 1,000 draws from
the Gibbs sampling chain. Figure 20.19 shows histograms of θ1 and θ2
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Table 20.4 Summary of the first three steps using Gibbs sampling

Step Current value

1 (2.0000, 1.5557)

2 (1.2998, 1.8492)

3 (1.6950, 1.5819)
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Figure 20.17 Trace plots of θ1 and θ2 for 1,000 steps of the Gibbs sampling chain.

θ1

θ 2

Figure 20.18 Scatterplot of θ2 versus θ1 for 1,000 draws from the Gibbs sampling
chain with the contours from the exact posterior.

together with their exact marginal posteriors for 5,000 and 20,000 steps
of the Gibbs sampler.

There is no real challenge in sampling from the bivariate normal distribution,
and in fact we can do it directly without using Gibbs sampling at all. To see
the use of Gibbs sampling, we return to the problem of the difference in two
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Figure 20.19 Histograms of θ1 and θ2 for 5,000 and 20,000 draws of the Gibbs
sampling chain.

means when we do not make the assumption of equal variances. We discussed
this problem at the end of Chapter 17.

Recall we have two independent samples of observations, y1 = {y1,1, y1,2 . . . , y1,n1
}

and y2 = {y2,1, y2,2 . . . , y2,n2
} which come from normal distributions with un-

known parameters (µ1, σ1) and (µ2, σ2) respectively. We are interested, pri-
marily, in the posterior difference of the means δ = µ1 − µ2 given the data.
We will use independent conjugate priors for each of the parameters. We can
consider the parameter sets independently for each distribution because the
formulation of the problem specifies them as being independent. Therefore,
we let the prior distribution for µj be normal(m2

j , s
2
j) and let the prior distri-

bution for σ2
j be Sj times an inverse-chi-squared with κj degrees of freedom,

where j = 1, 2.
We will draw samples from the incompletely known posterior using the

Gibbs sampler. The conditional distributions for each parameter, given the
other is known, are:

1. When we consider µj is known, the full conditional for σ2
j is

gσ2
j
(σ2
j |µj , yj,1, . . . , yj,nj ) ∝ gσ2

j
(σ2
j )f(yj,1, . . . , yj,nj |µj , σ2

j ) .

Since we are using Sj times an inverse chi-squared prior with κj degrees
of freedom, this will be S′j times an inverse chi-squared with κ′j degrees of
freedom where

S′j = Sj +

nk∑
i=1

(yj,i − µj)2 and κ′j = κj + nj .
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2. When we consider σ2
j known, the full conditional for µj is

gµj (µj |σ2
j , yj,1, . . . , yj,nj ) ∝ gµ(µ)f(yj,1, . . . , yj,nj |µj) . (20.1)

Since we are using a normal(mj , s
2
j ) prior, We know this will be normal(m′j , (s

′
j)

2)
where

1

s2
j

+
nj
σ2
j

=
1

(s′j)
2

and m′j =

1
s2j
1

(s′j)
2

×mj +

nj
σ2
j

1
(s′j)

2

× ȳj . (20.2)

To find an initial value to start the Gibbs sampler, we draw σ2
j at t = 0

for each population from the Sj times an inverse chi-squared with κj degree
of freedom. Then we draw µj for each population from the normal(mj , s

2
j)

distribution. This gives us the values to start the Gibbs sampler. We draw
the Gibbs sample using the following steps:

For t = 1, . . . , N .

– Calculate S′j and κ′j using Equation 20.1, where µj = µ
(t−1)
j .

– Draw (σ
(t)
j )2 from S′j times an inverse chi-squared distribution with

κ′j degrees of freedom.

– Calculate (s′j)
2 and m′j using Equation 20.2, where σ2

j = (σ
(t)
j )2.

– Draw µ
(t)
j from normal(m′j , (s

′
j)

2).

– Calculate

i. δ(t) = µ
(t)
2 − µ

(t)
1 ,

ii. σ
(t)
δ =

√
(σ

(t)
1 )2

n1
+

(σ
(t)
2 )2

n2

iii. and T
(t)
0 = δ(t)

σ
(t)
δ

EXAMPLE 20.9

An ecological survey was determine the abundance of oysters recruiting
from two different estuaries in New South Wales. The number of oysters
observed in 10 cm by 10 cm panels (quadrats) was recorded at a number
of different random locations within each site over a two-year period. The
data are as follows:

Georges River 25 24 25 14 23 24 24 25 43 24

30 21 33 27 18 38 30 35 23 30

34 42 32 58 40 48 36 39 38 48

Port Stephens 72 118 48 103 81 107 80 91 94 104

132 137 88 96 86 108 73 91 111 126

74 67 65 103
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We can see from inspecting the data that there is clearly a difference in
the average count at each estuary. However, the variance of count data
often increases in proportion to the mean. This is a property of both
the Poisson distribution and the binomial distribution which are often
used to model counts. The sample standard deviations are 9.94 and 22.17
for Georges River and Port Stephens, respectively. Therefore, we have
good reason to suspect that the variances are unequal. We can make
inferences about the means using the normal distribution because both
sets of data have large means, and hence the Poisson (and the binomial)
can be approximated by the normal distribution.

We need to choose the parameters of the priors in order to carry out
a Gibbs sampling procedure. If we believe, as we did in Chapter 17, a
priori that there is no difference in the means of these two populations,
then the choice of m1 and m2 is irrelevant, as long as m1 = m2. We
say it is irrelevant, because we are interested in the difference in the
means, hence if they are equal then this is the same as saying there is
no difference. Therefore, we will choose m1 = m2 = 0. Given we do not
know much about anything, we will choose a vague prior for µ1 and µ2.
We can achieve this by setting s1 = s2 = 10. In previous problems, we
have chosen S to be a median value. That is we have said something like
“We are 50% sure that the true standard deviation is at least as large
as c” or “The standard deviation is equally likely to be above or below
c” where c is some arbitrarily chosen value. The reality it that in many
cases the posterior scale factor, S′, is heavily dominated by the total sums
of squares, SST . In this example the sums are squares are 2864.30 and
11306.96 for Georges River and Port Stephens respectively.

Figure 20.20 shows the effect of letting S vary from 1 to 100. The
scaling constants are so small compared to the total sum of squares for
each site that the choice of S has very little effect on the medians and
credible intervals for group the standard deviations. We will set S1 = S2 =
10 in this example; 95% of the prior probability is using this prior assigned
to variances less than approximately 2,500. This seems reasonable given
that the sample variances are 98.8 and 491.6 for Georges Rives and Port
Stephens respectively.

To find an initial value to start the Gibbs sampler we draw σ2
j at t = 0

for each population from the Sj = 10 times an inverse chi-squared distri-
bution with κj = 1 degree of freedom. We do this by first drawing two ran-
dom variates from a chi-squared distribution with one degree of freedom
and then dividing Sj = 10 by each of these numbers The values we draw
are (0.2318, 4.5614), so we calculate (σ2

1, σ
2
2) = (10/0.2318, 10/4.5614) =

(43.13, 2.19). Then we draw µj for each population from a normal(60, 102)
distribution. As previously noted, it does not really matter what values
we choose for the prior means, as we are interested in the difference. We
have chosen 60 as being approximately half way between the two sample
means. The values we draw are (µ1, µ2) = (47.3494, 53.1315). These steps
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Figure 20.20 The effect of changing the prior value of the scaling constant, S, on
the medians and credible intervals for the group standard deviations.

give us the values to start the Gibbs sampler. Table 20.5 shows the first

Table 20.5 First five draws and updated constants for a run of the Gibbs sampler
using independent conjugate priors

t S′ σ2 s′ m′ µ

0 (43.1, 2.2) (47.3, 53.1)

1 (10221.4, 51320.9) (383.6, 1147.8) (11.3, 32.4) (34.9, 83.0) (36.6, 86.1)

2 (3595.9, 12800.8) (112.8, 378.6) (3.6, 13.6) (32.7, 89.3) (30.7, 92.4)

3 (2902.6, 11376.9) (98.2, 662.5) (3.2, 21.6) (32.6, 86.6) (31.8, 85.1)

4 (2874.4, 13219.7) (129.6, 962.4) (4.1, 28.6) (32.9, 84.2) (31.6, 78.0)

5 (2874.6, 17426.5) (119.8, 644.3) (3.8, 21.2) (32.8, 86.8) (35.2, 85.4)

five steps from the Gibbs sampler. We can see that even in this small
number of steps the means and variances are starting to converge. We
take a sample of size N = 100, 000, which should be more than sufficient
for the inferences we wish to make. Recall that we are interested in the
difference in the mean abundance between the two estuaries. We know
that the Georges River counts are much lower than the Port Stephens
counts, so we will phrase our inferences in terms of the differences be-
tween Port Stephens and Georges River. The first quantity of interest is
the posterior probability that the difference is greater than zero. We can
estimate this simply by counting the number of times the difference in
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the sampled means was greater than zero. More formally we calculate

Pr(δ > 0) ≈ 1

N

N∑
i=1

I(δi > 0)

This happened zero times in our sample of 100,000, so our estimate of
Pr(δ) is 0, but it it is safer to say that it is simply less than 0.00001 = 10−5.
Needless to say, we take this as very strong support for the hypothesis that
there is a real difference in the mean abundance of oysters between the
two estuaries. Sampling also makes it very easy for us to make inferential
statements about functions of random variables which might be difficult
to derive analytically. For example, we chose a model which allowed the
variances for the two locations to be different. We might be interested
in the posterior ratio of the variances. If the different variance model is
well-justified, then we would expect to see the ratio of the two variances
exceed 1 more often than not. To explore this hypothesis, we simply
calculate and store σ2

2/σ
2
1. We can see from Figure 20.21 that the ratio of
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Figure 20.21 The posterior ratio of the variances for the two estuaries.

the variances is almost always greater than one. In fact more than 99% of
the ratios are greater than two, thus providing very strong support that
the different variance model was well justified.
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20.4 Slice Sampling

Neal (1997, 2003) developed a MCMC method that can be used to draw a
random point under a target density and called it slice sampling. First we
note that when we draw a random point under the unscaled target density and
then only look at the horizontal component θ, it will be a random draw from
the target density. Thus we are concerned about the horizontal component θ.
The vertical component g is an auxiliary variable.

EXAMPLE 20.10

For example, suppose the unscaled target has density g(θ) ∝ e−
θ2

2 . This
unscaled target is actually an unscaled normal(0, 1), so we know almost
all the probability is between −3.5 and 3.5. The unscaled target has
maximum value at θ = 0 and the maximum is 1. So we draw a random
sample of 10,000 horizontal values uniformly distributed between −3.5
and 3.5. We draw a random sample of 10,000 vertical values uniformly
distributed between 0 and 1. These are shown in Figure 20.22 along with
the unscaled target
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0.0
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Figure 20.22 Uniformly distributed points and the unscaled target

Then we discard all the points that are above the unscaled target.
The remaining points are shown in Figure 20.23 along with the unscaled
target. We form a histogram of the horizontal values of the remaining
points. This is shown in Figure 20.24 along with the target. This shows
that it is a random sample from the target density.
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Figure 20.23 Uniformly distributed points under the unscaled target
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Figure 20.24 Histogram of the remaining points and the target density

Slice sampling is an MCMC method that has as its long-run distribution
a random draw from under the target density. It is particularly effective
for a one-dimension parameter with a unimodal density. Each step of the
chain has two phases. At step i, we first draw the auxiliary variable gi given
the current value of the parameter θi−1 from the uniform(0, c) distribution
where c = g(θi−1). This is drawing uniformly from the vertical slice at the
current value θi−1. Next, we draw θi given the current value of the auxiliary
variable from the uniform(a, b), where g(a) = g(b) = gi, the current value
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of the auxiliary variable. The long-run distribution of this chain converges
to a random draw of a point under the density of the parameter. Thus the
horizontal component is a draw from the density of the parameter.

EXAMPLE 20.8 (continued)

We will start at time 0 with θ0 = 0 which is the mode of the unscaled
target. The first four steps of a slice sampling chain are given in Figure
20.25.

Step 1

Step 2

Step 3

Step 4

Figure 20.25 Four slice sampling steps. The left pane is sampling the auxiliary
variable in the vertical dimension. The right pane is sampling θ in the horizontal
dimension.
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20.5 Inference from a Posterior Random Sample

The reason we have spent so long discussing sampling methods is that ul-
timately we want to use random samples from the posterior distribution to
answer statistical questions. That is we want to use random samples from the
posterior distribution of the statistic interest to make inferential statements
about that statistic. The key idea to this process is that integration can be
performed by sampling. If we are interested in finding the area under the
curve defined by the function f(x) between the points a and b, then we can
approximate it by taking a sequence of (equally) spaced points between a and
b and summing the areas of the rectangles defined by each pair of points and
the (average) height of the curve at these points. That is, if

∆x =
b− a
N

,

then ∫ b

a

f(x)dx = lim
N→∞

N∑
i=1

f(xi)∆x,

where xi = a+(i−0.5)∆x. This is sometimes known as the midpoint rule and
is a special case of a Reimann sum which leads to the most common type of
integration (Reimann integration). In Monte Carlo integration we replace the
sampling at regular intervals with a random sample of points in the interval
[a, b]. The integral then becomes∫ b

a

f(x) dx = lim
N→∞

b− a
N

N∑
i=1

f(xi),

which is exactly the same as the previous formula. This idea can be, and is,
easily extended into multiple dimensions. This provides us with the basis for
performing inference from a sample. We know, for example, that the expected
value of a continuous random variable, X , is defined as

E[X] =

∫ +∞

−∞
xf(x) dx.

This is in the form of an integral, and if we are sampling with respect to
the probability density function f(x) (instead of uniformly), then we can
approximate the expected value by

E[X] ≈ 1

N

N∑
i=1

xi.

This tells us that we can estimate the posterior mean by taking a large sample
from the posterior distribution and calculating the sample mean. There are
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some caveats to this method if the sample is generated from a Markov chain
which we will discuss shortly. This method also works for any function of X.
That is

E[g(X)] =

∫ +∞

−∞
g(x)f(x)dx ≈ 1

N

N∑
i=1

g(xi).

This allows us to estimate the variance through sampling since

Var[X ] = E[(x− µ)2]

∫ +∞

−∞
(x− µ)2f(x) dx

≈ 1

N

N∑
i=1

(xi − µ)2

≈ 1

N

N∑
i=1

(xi − x̄)2.

We note that the denominator should be N − 1, but in practice this rarely
makes any difference, and at any rate the concept of unbiased estimators does
not exist in the Bayesian framework. If

g(x) = I(x < c) =

{
0, x < c,

1, otherwise

for some point c ∈ (−∞,+∞), then we can see that∫ +∞

−∞
g(x)f(x) dx =

∫ +∞

−∞
I(x < c)f(x) dx =

∫ c

−∞
f(x) dx.

It should be clear that defining g(x) in this way leads to the definition of the
cumulative distribution function

F (x) =

∫ x

−∞
f(t) dt

and that this can be approximated by the empirical distribution function

FN (x) =
1

N

N∑
i=1

I(xi < x).

The Glivenko–Cantelli theorem, which is way beyond the scope of this book,
tells us that FN (x) converges almost surely to F (x). This means we can use
a large sample from the posterior to estimate posterior probabilities, and we
can use the empirical quantiles to calculate credible intervals and posterior
medians for example.
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Posterior Inference from Samples Taken Using Markov Chains

One side effect of using a Markov chain-based sampling method is that the
resulting sample is correlated. The net impact of correlation is that it reduces
the amount of independent information available for estimation or inference,
and therefore it is effectively like working with a smaller sample of obser-
vations. Bayesians employ a number of strategies to reduce the amount of
correlation in their samples from the posterior. The two most common are a
burn-in period and then thinning of the chain. Giving a sampler a burn-in
period simply means we discard a certain number of the observations from
the start of the Markov chain. For example, we might run a Gibbs sampler
for 11,000 steps and discard the first 1,000 observations. This serves two re-
lated purposes. Firstly, it allows the sampler to move away from the initial
values which may have been set manually. Secondly, it allows the sampler
to move to a state where we might be more confident (but we will never
know for sure) that the sampler is sampling from the desired target density.
You might think about this in terms of the initial values being very unlikely.
Therefore, the sampler might have to go through quite a few changes in state
until it is sampling from more likely regions of the target density. Thinning
the chain attempts to minimize autocorrelation, that is, correlation between
successive samples, by only retaining every kth value, where k is chosen to
suit the problem. This can be a very useful strategy when the chain is not
mixing well. If the chain is said to be mixing poorly, then it means generally
that the proposals are not being accepted very often, or the proposals are not
moving through the state space very efficiently. Some authors recommend the
calculation of effective sample size (ESS) measures; however, the only advice
we offer here is that careful checking is important when using MCMC.

20.6 Where to Next?

We have reached our journey’s end in this text. You, the reader, might rea-
sonably ask “Where to next?” We do have another book which takes that
next step. Understanding Computational Bayesian Statistics (Bolstad, 2010)
follows in the spirit of this book, by providing a hands-on approach to un-
derstanding the methods that are used in modern applications of Bayesian
statistics. In particular, it covers in more detail the methods we discussed
in this chapter. It also provides an introduction to the Bayesian treatment
of count data through logistic and Poisson regression, and to survival with a
Bayesian version of the Cox proportional hazards model.
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INTRODUCTION TO CALCULUS

FUNCTIONS

A function f(x) defined on a set of real numbers, A, is a rule that associates
each real number x in the set A with one and only one other real number y.
The number x is associated with the number y by the rule y = f(x). The set
A is called the domain of the function, and the set of all y that are associated
with members of A is called the range of the function.

Often the rule is expressed as an equation. For example, the domain A
might be all positive real numbers, and the function f(x) = loge(x) associates
each element of A with its natural logarithm. The range of this function is
the set of all real numbers.

For a second example, the domain A might be the set of real numbers in
the interval [0, 1] and the function f(x) = x4 × (1 − x)6. The range of this
function is the set of real numbers in the interval [0, .44 × .66].

Note that the variable name is merely a cipher, or a place holder. f(x) = x2

and f(z) = z2 are the same function, where the rule of the function is associate
each number with its square. The function is the rule by which the association
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is made. We could refer to the function as f without the variable name,
but usually we will refer to it as f(x). The notation f(x) is used for two
things. First, it represents the specific value associated by the function f to
the point x. Second, it represents the function by giving the rule which it
uses. Generally, there is no confusion as it is clear from the context which
meaning we are using.

Combining Functions

We can combine two functions algebraically. Let f and g be functions having
the same domain A, and let k1 and k2 be constants. The function h = k1 × f
associates a number x with y = k1f(x). Similarly, the function s = k1f ± k2g
associates the number x with y = k1×f(x)±k2×g(x). The function u = f×g
associates a number x with y = f(x) × g(x). Similarly, the function v = f

g

associates the number x with y = f(x)
g(x) .

If function g has domain A and function f has domain that is a subset
of the range of the function g, then the composite function (function of a
function) w = f(g) associates a number x with y = f(g(x)).

Graph of a Function

The graph of the function f is the graph of the equation y = f(x). The graph
consists of all points (x, f(x)), where x ∈ A plotted in the coordinate plane.
The graph of the function f defined on the closed interval A = [0, 1], where
f(x) = x4 × (1− x)6, and is shown in Figure A.1. The graph of the function

g defined on the open interval A = (0, 1), where g(x) = x−
1
2 × (1 − x)−

1
2 , is

shown in Figure A.2.

Limit of a Function

The limit of a function at a point is one of the fundamental tools of calculus.
We write

lim
x→a

f(x) = b

to indicate that b is the limit of the function f when x approaches a. Intu-
itively, this means that as we take x values closer and closer to (but not equal
to) a, their corresponding values of f(x) are getting closer and closer to b. We
note that the function f(x) does not have to be defined at a to have a limit at
a. For example, 0 is not in the domain A of the function f(x) = sin x

x because
division by 0 is not allowed. Yet

lim
x→0

sin(x)

x
= 1

as seen in Figure A.3. We see that if we want to be within a specified closeness
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1.00.50.0

0.0010

0.0005

0.0000

Figure A.1 Graph of function f(x) = x4 × (1− x)6.

to y = 1, we can find a degree of closeness to x = 0 such that all points x
that are within that degree of closeness to x = 0 and are in the domain A will
have f(x) values within that specified closeness to y = 1.

We should note that a function may not have a limit at a point a. For
example, the function f(x) = cos(1/x) does not have a limit at x = 0. This
is shown in Figure A.4, which shows the function at three scales. No matter
how close we get to x = 0, the possible f(x) values always range from −1 to
1.

Theorem A.1 Limit Theorems:
Let f(x) and g(x) be functions that each have limit at a, and let k1 and k2 be
scalars.

1 Limit of a sum (difference) of functions

lim
x→a

[k1 × f(x)± k2 × g(x)] = k1 × lim
x→a

f(x)± k2 × lim
x→a

g(x) .

2 Limit of a product of functions

lim
x→a

[f(x)× g(x)] = lim
x→a

f(x)× lim
x→a

g(x) .

3 Limit of a quotient of functions

lim
x→a

[
f(x)

g(x)

]
=

[
limx→a f(x)

limx→a g(x)

]
.



480 INTRODUCTION TO CALCULUS

1.00.50.0
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Figure A.2 Graph of function f(x) = x−
1
2 × (1− x)−

1
2 .

4 Limit of a power of a function

lim
x→a

[fn(x)] = [ lim
x→a

f(x)]n .

Let g(x) be a function that has limit at a equal to b, and let f(x) be a function
that has a limit at b. Let w(x) = f(g(x)) be a composite function.

5. Limit of a composite function

lim
x→a

w(x) = lim
x→a

f(g(x) = f( lim
x→a

g(x) = f(g(b)) .

CONTINUOUS FUNCTIONS

A function f(x) is continuous at point a if and only if

lim
x→a

f(x) = f(a).

This says three things. First, the function has a limit at x = a. Second, a is in
the domain of the function, so f(a) is defined. Third, the limit of the function
at x = a is equal to the value of the function at x = a. If we want f(x) to be
some specified closeness to f(a), we can find a degree of closeness so that for
all x within that degree of closeness to a, f(x) is within the specified closeness
to f(a).

A function that is continuous at all values in an interval is said to be
continuous over the interval. Sometimes a continuous function is said to be
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10-1

1.0

0.5

0.0

Figure A.3 Graph of f(x) = sin(x)
x

on A = (−1, 0) ∪ (0, 1). Note that f is not
defined at x = 0.

10-1

1

0

-1

0.10.0-0.1

1

0

-1

0.010.00-0.01

1

0

-1

Figure A.4 Graph of f(x) = cos
(

1
x

)
at three scales. Note that f is defined at all

real numbers except for x = 0.

a function that “can be graphed over the interval without lifting the pencil.”
Strictly speaking, this is not true for all continuous functions. However, it
is true for all functions with formulas made from polynomial, exponential, or
logarithmic terms.

Theorem A.2 Let f(x) and g(x) be continuous functions, and let k1 and k2

be scalars. Then are all continuous functions on their range of definition:

1. A linear function of continuous functions

s(x) = k1 × f(x) + k2 × g(x)

2. A product of continuous functions

u(x) = f(x)× g(x)
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3. A quotient of continuous functions

v(x) =
f(x)

g(x)

4. A composite function of continuous functions

w(x) = f(g(x))

Minima and Maxima of Continuous Functions

One of the main achievements of calculus is that it gives us a method for
finding where a continuous function will achieve minimum and/or maximum
values.

Suppose f(x) is a continuous function defined on a continuous domain A.
The function achieves a local maximum at the point x = c if and only if
f(x) ≤ f(c) for all points x ∈ A that are sufficiently close to c. Then f(c)
is called a local maximum of the function. The largest local maximum of a
function in the domain A is called the global maximum of the function.

Similarly, the function achieves a local minimum at point x = c if and only
if f(x) ≥ f(c) for all points x ∈ A that are sufficiently close to c, and f(c)
is called a local minimum of the function. The smallest local minimum of a
function in the domain A is called the global minimum of the function.

A continuous function defined on a domain A that is a closed interval [a, b]
always achieves a global maximum (and minimum). It can occur either at
one of the endpoints x = a or x = b or at an interior point c ∈ (a, b). For
example, the function f(x) = x4 × (1 − x)6 defined on A = [0, 1] achieves a
global maximum at x = 4

6 and a global minimum at x = 0 and x = 1 as can
be seen in Figure A.1.

A continuous function defined on a domain A that is an open interval (a, b)
may or may not achieve either a global maximum or minimum. For example,
the function f(x) = 1

x1/2×(x−1)1/2 defined on the open interval (0, 1) achieves

a global minimum at x = .5, but it does not achieve a global maximum as
can be seen from Figure A.2.

DIFFERENTIATION

The first important use of the concept of a limit is finding the derivative
of a continuous function. The process of finding the derivative is known as
differentiation, and it is extremely useful in finding values of x where the
function takes a minimum or maximum.

We assume that f(x) is a continuous function whose domain is an interval
of the real line. The derivative of the function at x = c, a point in the interval
is

f ′(c) = lim
h→0

(
f(c+ h)− f(c)

h

)



INTRODUCTION TO CALCULUS 483

if this limit exists. When the derivative exists at x = c, we say the function
f(x) is differentiable at x = c. If this limit does not exist, the function f(x)
does not have a derivative at x = c. The limit is not easily evaluated, as
plugging in h = 0 leaves the quotient 0

0 which is undefined. We also use the
notation for the derivative at point c

f ′(c) =
d

dx
f(x)

∣∣∣∣
x=c

.

We note that the derivative at point x = c is the slope of the curve y = f(x)
evaluated at x = c. It gives the “instantaneous rate of change” in the curve
at x = c. This is shown in Figure A.5, where f(x), the line joining the point

Figure A.5 The derivative at a point is the slope of the tangent to the curve at
that point.

(c, f(c)) and point (c+ h, f(c+ h)) for decreasing values of h and its tangent
at c, is graphed.

The Derivative Function

When the function f(x) has a derivative at all points in an interval, the
function

f ′(x) = lim
h→0

(
f(x+ h)− f(x)

h

)
is called the derivative function. In this case we say that f(x) is a differentiable
function. The derivative function is sometimes denoted dy

dx . The derivatives
of some elementary functions are given in the following table:

f(x) f ′(x)

a× x a

xb b× xb−1

ex ex

loge(x) 1
x

sin(x) cos(x)

cos(x) − sin(x)

tan(x) − sec2(x)
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The derivatives of more complicated functions can be found from these using
the following theorems:

Theorem A.3 Let f(x) and g be differentiable functions on an interval, and
let k1 and k2 be constants.

1. The derivative of a constant times a function is the constant times the
derivative of the function. Let h(x) = k1 × f(x). Then h(x) is also a
differentiable function on the interval, and

h′(x) = k1 × f ′(x) .

2. The sum (difference) rule.
Let s(x) = k1×f(x)±k2×g(x). Then s(x) is also a differentiable function
on the interval, and

s′(x) = k1 × f ′(x)± k2 × g′(x) .

3. The product rule.
Let u(x) = f(x)× g(x). Then u(x) is a differentiable function, and

u′(x) = f(x)× g′(x) + f ′(x)× g(x) .

4. The quotient rule.

Let v(x) = f(x)
g(x)

. Then v(x) is also a differentiable function on the interval,

and

v′(x) =
g(x)× f ′(x)− f(x)× g′(x)

(g(x))2
.

Theorem A.4 The chain rule.
Let f(x) and g(x) be differentiable functions (defined over appropriate inter-
vals) and let w(x) = f(g(x)). Then w(x) is a differentiable function and

w′(x) = f ′(g(x))× g′(x) .

Higher Derivatives

The second derivative of a differentiable function f(x) at a point x = c is the
derivative of the derivative function f ′(x) at the point. The second derivative
is given by

f ′′(c) = lim
h→0

(
f ′(c+ h)− f ′(c)

h

)
if it exists. If the second derivative exists for all points x in an interval, then
f ′′(x) is the second derivative function over the interval. Other notation for
the second derivative at point c and for the second derivative function are

f ′′(c) = f (2)(c) =
d

dx
f ′(x)

∣∣∣∣
x=c

and f (2)(x) =
d2

dx2
f(x) .
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Similarly, the kth derivative is the derivative of the k−1th derivative function

f (k)(c) = lim
h→0

(
f (k−1)(c+ h)− f (k−1)(c)

h

)
if it exists.

Critical Points

For a function f(x) that is differentiable over an open interval (a, b), the
derivative function f ′(x) is the slope of the curve y = f(x) at each x-value in
the interval. This gives a method of finding where the minimum and maximum
values of the function occur. The function will achieve its minimum and
maximum at points where the derivative equals 0. When x = c is a solution
of the equation

f ′(x) = 0 ,

c is called a critical point of the function f(x). The critical points may lead
to local maximum or minimum, or to global maximum or minimum, or they
may be points of inflection. A point of inflection is where the function changes
from being concave to convex, or vice versa.

Theorem A.5 First derivative test: If f(x) is a continuous differentiable
function over an interval (a, b) having derivative function f ′(x), which is de-
fined on the same interval. Suppose c is a critical point of the function. By
definition, f ′(c) = 0.

1. The function achieves a unique local maximum at x = c if, for all points x
that are sufficiently close to c,

when x < c, then f ′(x) > 0 and

when x > c, then f ′(x) < 0.

2. Similarly, the function achieves a unique local minimum at x = c if, for
all points x that are sufficiently close to c,

when x < c, then f ′(x) < 0 and

when x > c, then f ′(x) > 0.

3. The function has a point of inflection at critical point x = c if, for all
points x that are sufficiently close to c, either

when x < c, then f ′(x) < 0 and

when x > c, then f ′(x) < 0
or

when x < c, then f ′(x) > 0 and

when x > c, then f ′(x) > 0.

At a point of inflection, either the function stops increasing and then re-
sumes increasing, or it stops decreasing and then resumes decreasing.
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For example, the function f(x) = x3 and its derivative f ′(x) = 3 × x2

are shown in Figure A.6. We see that the derivative function f ′(x) = 3x2 is
positive for x < 0, so the function f(x) = x3 is increasing for x < 0. The
derivative function is positive for x > 0 so the function is also increasing for
x > 0. However at x = 0, the derivative function equals 0, so the original
function is not increasing at x = 0. Thus the function f(x) = x3 has a point
of inflection at x = 0.

Theorem A.6 Second derivative test: If f(x) is a continuous differentiable
function over an interval (a, b) having first derivative function f ′(x) and sec-
ond derivative function f (2)(x) both defined on the same interval. Suppose c
is a critical point of the function. By definition, f ′(c) = 0.

1. The function achieves a maximum at x = c if f (2)(c) < 0.

2. The function achieves a minimum at x = c if f (2)(c) > 0.

INTEGRATION

The second main use of calculus is finding the area under a curve using inte-
gration. It turns out that integration is the inverse of differentiation. Suppose
f(x) is a function defined on an interval [a, b]. Let the function F (x) be an an-
tiderivative of f(x). That means the derivative function F ′(x) = f(x). Note
that the antiderivative of f(x) is not unique. The function F (x) + c will also
be an antiderivative of f(x). The antiderivative is also called the indefinite
integral.

The Definite Integral: Finding the Area under a Curve

Suppose we have a nonnegative1 continuous function f(x) defined on a closed
interval [a, b]. f(x) ≥ 0 for all x ∈ [a, b]. Suppose we partition the the
interval [a, b] using the partition x0, x1, . . . , xn, where x0 = a and xn = b
and xi < xi+1. Note that the partition does not have to have equal length
intervals. Let the minimum and maximum value of f(x) in each interval be

li = sup
x∈[xi−1,xi]

f(x) and mi = inf
x∈[xi−1,xi]

f(x) ,

where sup is the least upper bound, and inf is the greatest lower bound. Then
the area under the curve y = f(x) between x = a and x = b lies between the
lower sum

Lx0,...,xn =

n∑
i=1

li × (xi − xi−1)

1The requirement that f(x) be nonnegative is not strictly necessary. However, since we
are using the definite integral to find the area under probability density functions that are
nonnegative, we will impose the condition.
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Figure A.6 Graph of f(x) = x3 and its derivative. The derivative function is
negative where the original function is increasing, and it is positive where the original
function is increasing We see that the original function has a point of inflection at
x = 0.

and the upper sum

Mx0,...,xn =

n∑
i=1

mi × (xi − xi−1) .
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We can refine the partition by adding one more x value to it. Let x′1, . . . , x
′
n+1

be a refinement of the partition x1, . . . , xn. Then x′0 = x0, x′n+1 = xn, x′i = xi
for all i < k, and x′i+i = xi for all i > k. xk is the new value added to the
partition. In the lower and upper sum, all the bars except for the kth are
unchanged. The kth bar has been replaced by two bars in the refinement.
Clearly,

Mx′0,...,x
′
n+1
≤Mx0,...,xn

and
Lx′0,...,x′n+1

≥ Lx0,...,xn .

The lower and upper sums for a partition and its refinement are shown in
Figure A.7. We see that refining a partition must make tighter bounds on the

Figure A.7 Lower and upper sums over a partition and its refinement. The lower
sum has increased and the upper sum has decreased in the refinement. The area under
the curve is always between the lower and upper sums.

area under the curve.
Next we will show that for any continuous function defined on a closed

interval [a, b], we can find a partition x0, . . . , xn for some n that will make the
difference between the upper sum and the lower sum as close to zero as we
wish. Suppose ε > 0 is the number we want the difference to be less than.
We draw lines δ = ε

[b−a] apart parallel to the horizontal (x) axis. (Since the

function is defined on the closed interval, its maximum and minimum are
both finite.) Thus a finite number of the horizontal lines will intercept the
curve y = f(x) over the interval [a, b]. Where one of the lines intercepts the
curve, draw a vertical line down to the horizontal axis. The x values where
these vertical lines hit the horizontal axis are the points for our partition. For
example, the function f(x) = 1+

√
4− x2 is defined on the interval [0, 2]. The

difference between the upper sum and the lower sum for the partition for that
ε is given by

Mx0,...,xn − Lx0,...,xn = δ × [(x1 − x0) + (x2 − x1) + . . .+ (xn − xn−1)]

= δ × [b− a]

= ε.
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We can make this difference as small as we want to by choosing ε > 0 small
enough.

Let εk = 1
k for k = 1, . . . ,∞. This gives us a sequence of partitions such

that limk→∞ εk = 0. Hence

lim
k→∞

Mx0,...,xnk
− Lx0,...,xnk

= 0 .

The partitions for ε1 and ε2 are shown in Figure A.8. Note that δk = 1
2k .

210
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2

1

0

210

3

2

1

0

Figure A.8 The partition induced for the function f(x) = 1 +
√

4− x2 where
ε1 = 1 and its refinement where ε2 = 1

2
.

That means that the area under the curve is the least upper bound for the
lower sum, and the greatest lower bound for the upper sum. We call it the
definite integral and denote it ∫ b

a

f(x) dx .

Note that the variable x in the formula above is a dummy variable:∫ b

a

f(x) dx =

∫ b

a

f(y) dy .

Basic Properties of Definite Integrals

Theorem A.7 Let f(x) and g(x) be functions defined on the interval [a, b],
and let c be a constant. Then the following properties hold.

1. The definite integral of a constant times a function is the constant times
the definite integral of the function:∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx .
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2. The definite integral of a sum of two functions is a sum of the definite
integrals of the two functions:∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx .

Fundamental Theorem of Calculus

The methods of finding extreme values by differentiation and finding area
under a curve by integration were known before the time of Newton and Lieb-
niz. Newton and Liebniz independently discovered the fundamental theorem
of calculus that connects differentiation and integration. Because each was
unaware of the others work, they are both credited with the discovery of the
calculus.

Theorem A.8 Fundamental theorem of calculus. Let f(x) be a continuous
function defined on a closed interval. Then:

1. The function has antiderivative in the interval.

2. If a and b are two numbers in the closed interval such that a < b, and F (x)
is any antiderivative function of f(x), then∫ b

a

f(x) dx = F (b)− F (a) .

Proof:
For x ∈ (a, b), define the function

I(x) =

∫ x

a

f(x) dx .

This function shows the area under the curve y = f(x) between a and x. Note
that the area under the curve is additive over an extended region from a to
x+ h: ∫ x+h

a

f(x) dx =

∫ x

a

f(x) dx+

∫ x+h

x

f(x) dx .

By definition, the derivative of the function I(x) is

I ′(x) = lim
h→0

I(x+ h)− I(x)

h
= lim
h→0

∫ x+h

x
f(x) dx

h
.

In the limit as h approaches 0,

lim
h→0

f(x′) = f(x)
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for all values x′ ∈ [x, x+ h). Thus

I ′(x) = lim
h→0

h× f(x)

h
= f(x) .

In other words, I(x) is an antiderivative of f(x). Suppose F (x) is any other
antiderivative of f(x). Then

F (x) = I(x) + c

for some constant c. Thus F (b) − F (a) = I(b) − I(a) =
∫ b
a
f(x) dx, and the

theorem is proved.

For example, suppose f(x) = e−2x for x ≥ 0. Then F (x) = −1
2 × e

−2x is an
antiderivative of f(x). The area under the curve between 1 and 4 is given by∫ 4

1

f(x) dx = F (4)− F (1) = −1

2
× e−2×4 +

1

2
× e−2×1 .

Definite Integral of a Function f(x) Defined on an Open Interval

Let f(x) be a function defined on the open interval (a, b). In this case, the
antiderivative F (x) is not defined at a and b. We define

F (a) = lim
x→a

F (x) and F (b) = lim
x→b

F (x).

provided that those limits exist. Then we define the definite integral with the
same formula as before: ∫ b

a

f(x) = F (b)− F (a) .

For example, let f(x) = x−1/2. This function is defined over the half-open
interval (0, 1]. It is not defined over the closed interval [0, 1] because it is not
defined at the endpoint x = 0. This curve is shown in Figure A.9. We see
that the curve has a vertical asymptote at x = 0. We will define

F (0) = lim
x→0

F (x)

= lim
x→0

2x1/2

= 0 .

Then ∫ 1

0

x−1/2 = 2x1/2
∣∣∣1
0

= 2 .
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1.00.90.80.70.60.50.40.30.20.10.0

Figure A.9 The function f(x) = x−1/2.

Theorem A.9 Integration by parts. Let F (x) and G(x) be differentiable
functions defined on an interval [a, b]. Then∫ b

a

F ′(x)×G(x) dx = F (x)×G(x)|ba −
∫ b

a

F (x)×G′(x) dx .

Proof: Integration by parts is the inverse of finding the derivative of the prod-
uct F (x)×G(x):

d

dx
[F (x)×G(x)] = F (x)×G′(x) + F (x)×G′(x) .

Integrating both sides, we see that

F (b)×G(b)− F (a)×G(a) =

∫ b

a

F (x)×G′(x) dx+

∫ b

a

F ′(x)×G(x) dx .

Theorem A.10 Change of variable formula. Let x = g(y) be a differentiable
function on the interval [a, b]. Then∫ b

a

f(g(y))g′(y) dy =

∫ g(b)

g(a)

f(y) dy .

The change of variable formula is the inverse of the chain rule for differenti-
ation. The derivative of the function of a function F (g(y)) is

d

dx
[F (g(y)] = F ′(g(y))× g′(y) .
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Integrating both sides from y = a to y = b gives

F (g(b))− F (g(a)) =

∫ b

a

F ′(g(y))× g′(y) dy .

The left-hand side equals
∫ g(b)

ga)
F ′(y) dy. Let f(x) = F ′(x), and the theorem

is proved.

MULTIVARIATE CALCULUS

Partial Derivatives

In this section we consider the calculus of two or more variables. Suppose we
have a function of two variables f(x, y). The function is continuous at the
point (a, b) if and only if

lim
(x,y)→(a,b)

f(x, y) = f(a, b) .

The first partial derivatives at the point (a, b) are defined to be

∂f(x, y)

∂x

∣∣∣∣
(a,b)

= lim
h→0

f(a+ h, b)− f(a, b)

h

and
∂f(x, y)

∂y

∣∣∣∣
(a,b)

= lim
h→0

f(a, b+ h)− f(a, b)

h
,

provided that these limits exist. In practice, the first partial derivative in
the x-direction is found by treating y as a constant and differentiating the
function with respect to x, and vice versa, to find the first partial derivative
in the y-direction.

If the function f(x, y) has first partial derivatives for all points (x, y) in a
continuous two-dimensional region, then the first partial derivative function
with respect to x is the function that has value at point (x, y) equal to the
partial derivative of f(x, y) with respect to x at that point. It is denoted

fx(x, y) =
∂f(x, y)

∂x

∣∣∣∣
(x,y)

.

The first partial derivative function with respect to y is defined similarly. The
first derivative functions fx(x, y) and fy(x, y) give the instantaneous rate of
change of the function in the x-direction and y-direction, respectively.

The second partial derivatives at the point (a, b) are defined to be

∂2f(x, y)

∂x2

∣∣∣∣
(a,b)

= lim
h→0

fx(x+ h, y)− fx(x, y)

h
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and
∂2f(x, y)

∂y2

∣∣∣∣
(a,b)

= lim
h→0

fy(x, y + h)− fy(x, y)

h
.

The second cross partial derivatives at (a, b) are

∂2f(x, y)

∂x∂y

∣∣∣∣
(a,b)

= lim
h→0

fy(x+ h, y)− fy(x, y)

h

and
∂2f(x, y)

∂y∂x

∣∣∣∣
(a,b)

= lim
h→0

fx(x, y + h)− fx(x, y)

h
.

For all the functions that we consider, the cross partial derivatives are equal,
so it doesn’t matter which order we differentiate.

If the function f(x, y) has second partial derivatives (including cross partial
derivatives) for all points (x, y) in a continuous two-dimensional region, then
the second partial derivative function with respect to x is the function that
has value at point (x, y) equal to the second partial derivative of f(x, y) with
respect to x at that point. It is denoted

fxx(x, y) =
∂fx(x, y)

∂x

∣∣∣∣
(x,y)

.

The second partial derivative function with respect to y is defined similarly.
The second cross partial derivative functions are

fxy(x, y) =
∂fx(x, y)

∂y

∣∣∣∣
(x,y)

and

fyx(x, y) =
∂fy(x, y)

∂x

∣∣∣∣
(x,y)

.

The two cross partial derivative functions are equal.
Partial derivatives of functions having more than 2 variables are defined in

a similar manner.

Finding Minima and Maxima of a Multivariate Function

A univariate functions with a continuous derivative achieves minimum or max-
imum at an interior point x only at points where the derivative function
f ′(x) = 0. However, not all such points were minimum or maximum. We had
to check either the first derivative test, or the second derivative test to see
whether the critical point was minimum, maximum, or point of inflection.

The situation is more complicated in two dimensions. Suppose a continuous
differentiable function f(x, y) is defined on a two dimensional rectangle. It is
not enough that both fx(x, y) = 0 and fy(x, y) = 0.
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The directional derivative of the function f(x, y) in direction θ at a point
measures the rate of change of the function in the direction of the line through
the point that has angle θ with the positive x-axis. It is given by

Dθf(x, y) = fx(x, y) cos(θ) + fy(x, y) sin(θ) .

The function achieves a maximum or minimum value at points (x, y), where
Dθf(x, y) = 0 for all θ.

Multiple Integrals

Let f(x, y) > 0 be a nonnegative function defined over a closed a rectangle
a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2. Let x0, . . . , xn partition the interval [a1, b1],
and let y1, . . . , ym partition the interval a2, b2. Together these partition the
rectangle into j = m × n rectangles. The volume under the surface f(x, y)
over the rectangle A is between the upper sum

U =
mn∑
j=1

f(tj , uj)

and the lower sum

U =

mn∑
j=1

f(vj , wj) ,

where (tj , uj) is the point where the function is maximized in the jth rectangle,
and (vj , wj) is the point where the function is minimized in the jth rectangle.
Refining the partition always lowers the upper sum and raises the lower sum.
We can always find a partition that makes the upper sum arbitrarily close to
the lower sum. Hence the total volume under the surface denoted∫ b1

a1

∫ b2

a2

f(x, y) dx dy

is the least upper bound of the lower sum and the greatest lower bound of the
upper sum.





B

USE OF STATISTICAL TABLES

Tables or Computers?

In this appendix we will learn how to use statistical tables in order to answer
various probability questions. In many ways this skill is largely redundant
as computers and statistical software have replaced the tables, giving users
the ability to obtain lower and upper tail probabilities, or the quantiles for
an associated probability, for nearly any choice of distribution. Some of this
functionality is available in high-school students’ calculators, and is certainly
in any number of smartphone apps.

However, the associated skills that one learns along with learning how to use
the tables are important and therefore there is still value in this information.
In this appendix we retain much of the original information from the first and
second editions of this text. In this edition we have also added instructions on
how to obtain the same (or in some cases more accurate) results from Minitab
and R.

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.

497



498 USE OF STATISTICAL TABLES

Binomial Distribution

Table B.1 contains values of the binomial (n, π) probability distribution for
n = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, and 20 and for π = .05, .10, . . . , .95. Given
the parameter π, the binomial probability is obtained by the formula

P (Y = y|π) =

(
n

y

)
πy(1− π)n−y . (B.1)

When π ≤ .5, use the π value along the top row to find the correct column
of probabilities. Go down to the correct n. The probabilities correspond to
the y values found in the left-hand column. For example, to find P (Y = 6)
when Y has the binomial (n = 10, π = .3) distribution, go down the table to
n = 10 and find the row y = 6 on the left side. Look across the top to find
the column labeled .30. The value in the table at the intersection of that row
and column is P (Y = 6) = .0368 in this example. When π > .5 use the π
value along the bottom row to find the correct column of probabilities. Go
down to the correct n. The probabilities correspond to the y values found
in the right-hand column. For example, to find P (Y = 3) when y has the
binomial (n = 8, π = .65) distribution, go down the table to n = 8 and find
the row y = 3 on the right side. Look across the bottom to find the column
labeled .65. The value in the table at the intersection of that row and column
is P (Y = 3) = .0808 in this example.

[Minitab:]: Enter the value 6 into the first cell of column c1. Select Prob-
ability Distributions from the Calc menu, and then Binomial. . . . Click the
Probability radio button. Enter 10 into the Number of trials text box, .3

into the Event Probability text box, and c1 into the Input Column text box.
Finally, click on OK. Alternatively, if you have enabled command line input
by selecting Enable Commands from the Editor menu, or you are using the
Command Line Editor from the Edit menu, you can type

pdf c1;

binomial 10 .3.

This should return a value of 0.0367569. It is also useful to be able to answer
questions of the form Pr(Y ≤ y) — for example, what is the probability we
will see six or fewer successes in 10 trials where the probability of success is
.3? This is the value can be obtained from the table by adding all of the values
in the same column for a given value of n. Using Minitab, we can answer this
question in second by simply clicking the Cumulative probability radio button,
or by replacing the command pdf with cdf.

[R:]: All R distribution functions have the same basic naming structure dxxx,
pxxx, and qxxx. These three functions return the probability (density) func-
tion, the cumulative distribution function, and the inverse-cdf or quantile
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function, respectively, for distribution xxx. In this section we want the bino-
mial pdf and cdf, which are provided by the functions dbinom and pbinom.
To find the probability Pr(Y = 6) in the example, we type

dbinom(6, 10, 0.3)

[1] 0.03675691

To find the probability Pr(Y ≤ 6), we type

pbinom(6, 10, 0.3)

[1] 0.9894079

If we are interested in the upper tail probability — i.e. Pr(Y > 6) — then we
can obtain this by noting that

Pr(Y ≤ y) + Pr(Y > y) = 1, so Pr(Y > y) = 1− Pr(Y ≤ y)

or by setting the lower.tail argument of the R functions to FALSE, e.g.

1 - pbinom(6, 10, 0.3)

[1] 0.01059208

pbinom(6, 10, 0.3, FALSE)

[1] 0.01059208

Standard Normal Distribution

This section contains two tables. Table B.2 contains the area under the stan-
dard normal density. Table B.3 contains the ordinates (height) of the standard
normal density. The standard normal density has mean equal to 0 and vari-
ance equal to 1. Its density is given by the formula

f(z) =
1√
2π
e−

1
2 z

2

. (B.2)

We see that the standard normal density is symmetric about 0. The graph of
the standard normal density is shown in Figure B.1.

Area Under Standard Normal Density

Table B.2 tabulates the area under the standard normal density function
between 0 and z for nonnegative values of z from 0.0 to 3.99 in steps of .01.
We read down the z column until we come to the value that has the correct
units and tenths digits of z. This is the correct row. We look across the
top row to find the hundredth digit of z. This is the correct column. The
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0

Figure B.1 Standard normal density.

tabulated value at the intersection of the correct row and correct column is
P (0 ≤ Z ≤ z), where Z has the normal (0, 1) distribution. For example, to
find P (0 ≤ Z ≤ 1.23) we go down the z column to 1.2 for the correct row
and across top to 3 for correct column. We find the tabulated value at the
intersection of this row and column. For this example, P (0 ≤ Z ≤ 1.23) =
.3907. Because the standard normal density is symmetric about 0,

P (−z ≤ Z ≤ 0) = P (0 ≤ Z ≤ z) .

Also, since it is a density function, the total area underneath it equals 1.0000,
so the total area to the right of 0 must equal .5000. We can proceed to find

P (Z > z) = .5000− P (Z ≤ z) .

Finding Any Normal Probability

We can standardize any normal random variable to a standard normal random
variable having mean 0 and variance 1. For instance, if W is a normal random
variable having mean m and variance s2, we standardize by subtracting the
mean and dividing by the standard deviation.

Z =
W −m

s
.

This lets us find any normal probability by using the standard normal tables.

EXAMPLE B.1

Suppose W has the normal distribution with mean 120 and variance 225.
(The standard deviation of W is 15.) Suppose we wanted to find the
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probability

P (W ≤ 129) .

We can subtract the mean from both sides of an inequality without chang-
ing the inequality:

P (W − 120 ≤ 129− 120) .

We can divide both sides of an inequality by the standard deviation (which
is positive) without changing the inequality:

P

(
W − 120

15
≤ 9

15

)
.

On the left-hand side we have the standard normal Z, and on the right-
hand side we have the number .60. Therefore

P (W ≤ 129) = P (Z ≤ .60) = .5000 + .2258 = .7258 .

[Minitab:] We can answer this question in Minitab, as with the Binomial

z

Figure B.2 Shaded area under standard normal density. These values are shown
in Table B.2.

distribution, either using the menus or by entering Minitab commands. To
use the menus, we first enter the value of interest (129) in column c1. We
then select Probability Distributions from the Calc and then Normal. . . .
We select the Cumulative probability radio button, enter 120 into the
Mean text box, 15 into the Standard deviation text box, and c1 into
the Input column, and finally click on OK. Alternatively, we enter the
following commands into Minitab:
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cdf c1;

normal 120 15.

[R:] The R function pnorm returns values from the normal cumulative
distribution function. To answer the question we would type

pnorm(129, 120, 15)

Ordinates of the Standard Normal Density

Figure B.3 shows the ordinate of the standard normal table at z. We see the
ordinate is the height of the curve at z. Table B.3 contains the ordinates of the
standard normal density for nonnegative z values from 0.00 to 3.99 in steps of
.01. Since the standard normal density is symmetric about 0, f(−z) = f(z),
we can find ordinates of negative z values. This table is used to find values of
the likelihood when we have a discrete prior distribution for µ. We go down
the z column until we find the value that has the units and tenths digits. This
gives us the correct row. We go across the top until we find the hundredth
digit. This gives us the correct column. The value at the intersection of this
row and column is the ordinate of the standard normal density at the value
z. For instance, if we want to find the height of the standard normal density
at z = 1.23 we go down z column to 1.2 to find the correct row and go across
the top to 3 to find the correct column. The ordinate of the standard normal
at z = 1.23 is equal to .1872. (Note: You can verify this is correct by plugging
z = 1.23 into Equation B.2.)

EXAMPLE B.2

Suppose the distribution of Y given µ is normal(µ, σ2 = 1). Also suppose
there are four possible values of µ. They are 3, 4, 5, and 6. We observe
y = 5.6. We calculate

zi =

(
5.6− µi

1

)
.

The likelihood is found by looking up the ordinates of the normal distri-
bution for the zi values. We can put them in the following table:

3 2.60 .136

4 1.6 .1109

5 .6 .3332

6 -.4 .3683
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z

Figure B.3 Ordinates of standard normal density function. These values are shown
in Table B.3.

[Minitab:] In this example we are interested in finding the height of the
normal density at the point y = 5.6 for four possible values of the mean
µ ∈ {3, 4, 5, 6}. There are several approaches we might take. We might
calculate the standardized values of y for each value of µ, i.e.,

zi =
y − µi
σ

= y − µi,

and then compute the height of the standard normal at each of these
values. Alternatively, we might exploit the fact that because the normal
density computes the squared difference between the observation and the
mean, (y−µ)2, it does not matter if the order of these values is reversed.
That is f(y|µ, σ2) = f(µ|y, σ2) for the normal distribution. We will take
this second approach as it requires less calculation. Firstly we enter values
for µ into column c1. We then select Probability Distributions from the
Calc and then Normal. . . . We select the Probability density radio button,
enter 5.6 into the Mean text box, 1 into the Standard deviation text box,
and c1 into the Input column, and finally click on OK. Alternatively, we
enter the following commands into Minitab:

pdf c1;

normal 5.6 1.

[R:] The R function dnorm returns values from the normal probability
density function. To answer the question, we would type

dnorm(5.6, 3:6, 1)
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Student’s t Distribution

Figure B.4 shows the Student’s t distribution for several different degrees
of freedom, along with the standard normal(0, 1) distribution. We see the
Student’s t family of distributions are similar to the standard normal in that
they are symmetric bell shaped curves; however, they have more weight in
the tails. The heaviness of the tails of the Student’s t decreases as the degrees
of freedom increase.1 The Student’s t distribution is used when we use the
unbiased estimate of the standard deviation σ̂ instead of the true unknown
standard deviation σ in the standardizing formula

z =
y − µ
σy

and y is a normally distributed random variable. We know that z will have
the normal(0, 1) distribution. The similar formula

t =
y − µ
σ̂y

will have the Student’s t distribution with k degrees of freedom. The degrees

four        

normal      

one         

ten         

43210-1-2-3-4

Figure B.4 Student’s t densities for selected degrees of freedom, together with the
standard normal (0, 1) density which corresponds to Student’s t with ∞ degrees of
freedom.

of freedom k will equal the sample size minus the number of parameters esti-
mated in the equation for σ̂. For instance, if we are using ȳ the sample mean,
its estimated standard deviation is given by σ̂ȳ = σ̂

n , where

σ̂ =

n∑
i=1

(yi − ȳ)2

1The normal(0, 1) distribution corresponds to the Student’s t distribution with ∞ degrees
of freedom.
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and we observe that to use the above formula we have to first estimate ȳ.
Hence, in the single sample case we will have k = n − 1 degrees of freedom.
Table B.4 contains the tail areas for the Student’s t distribution family. The
degrees of freedom are down the left column, and the tabulated tail areas are
across the rows for the specified tail probabilities.

[Minitab:] We can use Minitab to find Pr(T ≤ t) for a given value of t and
a fixed number of degrees of freedom ν. As an illustration we will choose
t = 1.943 and with ν = 6 degrees of freedom. We can see from Table B.4
that the upper tail probability, Pr(T ≥ 1.943), is approximately 0.05. This
means the lower tail probability, which is what Minitab will calculate, is ap-
proximately 0.95. We say approximately because the values in Tables B.4 are
rounded. Firstly we enter value for t (1.943) into column c1. We then select
Probability Distributions from the Calc and then t. . . . We select the Cumu-
lative probability radio button, enter 6 into the Degrees of freedom text box,
c1 into the Input column, and finally click on OK. Alternatively, we enter the
following commands into Minitab:

pdf c1;

t 6.

[R:] The R function pt returns values from the Student’s t cumulative dis-
tribution function. To answer the same question we used to demonstrate
Minitab, we would type

pt(1.943, 5, lower.tail = FALSE)

pt allows the user to choose whether they want the upper or lower tail prob-
ability.

Poisson Distribution

Table B.5 contains values of the Poisson(µ) distribution for some selected
values of µ going from .1 to 4 in increments of .1, from 4.2 to 10 in increments
of .2, and from 10.5 to 15 in increments of .5. Given the parameter µ, the
Poisson probability is obtained from the formula

P (Y = y|µ) =
µye−µ

y!
(B.3)

for y = 0, 1, . . .. Theoretically y can take on all non-negative integer values.
In Table B.5 we include all possible values of y until the probability becomes
less than .0001.
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EXAMPLE B.3

Suppose the distribution of Y given µ is Poisson(µ) and there are 3 pos-
sible values of µ, namely, .5, .75, and 1.00. We observed y = 2. The
likelihood is found by looking up values in row y = 2 for the possible
values of µ. Note that the value for µ = .75 is not in the table. It is found
by linearly interpolating between the values for µ = .70 and µ = .80.

µi (Interpolation if necessary) Likelihood

.50 .0758

.75 (.5 × .1217+ .5 × .1438) .1327

1.00 .1839

[Minitab:] We cannot use the same trick we used for the normal dis-
tribution to repeat these calculations in Minitab this time, as f(y|µ) 6=
f(mu|y). This means we have to repeat the steps we are about to de-
scribe for each value of µ. That is a little laborious, but not too painful
as Minitab remembers your inputs to dialog boxes. Firstly we enter the
values for y into column c1. We then select Probability Distributions from
the Calc and then Poisson. . . . We select the Probability radio button,
enter 0.5 into the Mean text box, enter c1 into the Input column, and
finally click on OK. Alternatively we enter the following commands into
Minitab

pdf c1;

poisson 0.5.

These steps can be repeated using the subsequent values of µ = 0.75 and
µ = 1.

[R:] The R function dpois returns values from the Poisson probability
function. To answer the question, we would type

dpois(2, c(0.5, 0.75, 1))

Chi-Squared Distribution

Table B.6 contains P (U > α), the upper tail area when U has the chi-squared
distribution. The values in the table correspond to the shaded area in Figure
B.5. The posterior distribution of the variance σ2 is S′× an inverse chi-
squared distribution with κ′ degrees of freedom. This means that S′

σ2 has
the chi-squared distribution with κ′ degrees of freedom, so we can use the
chi-squared table to find credible intervals for σ and test hypotheses about σ.
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Figure B.5 Upper tail area of chi-squared distribution.

EXAMPLE B.4

Suppose that the posterior distribution of σ2 is 110× an inverse chi-
squared distribution with 12 degrees of freedom. Then 110

σ2 has the chi-
squared distribution with 12 degrees of freedom. So a 95% Bayesian
credible interval is found by

.95 = P (4.404 <
110

σ2
< 23.337)

= P

(
(

√
110

23.337
< σ <

√
110

4.404

)

= P (2.17107 < σ < 4.99773) .

We would test the two-sided hypothesis

H0 : σ = 2.5 versus H1 : σ 6= 2.5

at the 5% level of significance by observing that 2.5 lies within the credible
interval, so we must accept the null hypothesis that σ = 2.5 is still a
credible value. On the other hand, if we wanted to test the one-sided
hypothesis

H0 : σ ≤ 2.5 versus H1 : σ > 2.5
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at the 5% level, we would calculate the posterior probability of the null
hypothesis.

P (σ ≤ 2.5) = P

(
(
110

σ2
≥ 110

2.52

)

= P

(
(
110

σ2
≥ 17.600

)
.

The value 17.60 lies between 11.340 and 18.549, so the posterior proba-
bility of the null hypothesis is between .50 and .10. This is larger than
the level of significance of 5%, so we would not reject the null hypothesis.

[Minitab:] The example states that σ2 has a posterior density of 110
times in inverse chi-squared distribtion with 12 degrees of freedom. To
find a 95% posterior credible interval for σ, we need to carry out two steps

1. Find the points q0.025 and q0.975 of a chi-squared distribution with 12 de-
grees of freedom such that

Pr(X < q0.025) = 0.025, and Pr(X < q0.975) = 0.975

2. Calculate

l =

√
110

q0.975
and u =

√
110

q0.025

which are the lower and upper bounds, respectively, of our credible interval.
To do this, we use the inverse cdf facilities of Minitab. Firstly, we enter the
probabilities 0.025 and 0.975 into column c1. We then select Probability
Distributions from the Calc and then Chi-Square. . . . We select the Inverse
cumulative probability radio button, enter 12 into the Degrees of freedom
text box, c1 into the Input column, c2 into the Optional storage and finally
click on OK. We then select Calculator from the Calc. We enter c3 into
the Store result in variable text box, sqrt(110/c2) in the Expression text
box, and click on OK. Alternatively, we enter the following commands into
Minitab:

invcdf c1 c2;

chisquare 12.

let c3 = sqrt(110/c2)

To calculate the posterior probability of the null hypothesis, we follow
the same steps to calculate the critical value of 17.6 which we enter into
column c4. We then select Probability Distributions from the Calc and
then Chi-Square. . . . We select the Cumulative probability radio button,
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enter 12 into the Degrees of freedom text box, c4 into the Input column,
and c5 into the Optional storage, and finally click on OK. We then select
Calculator from the Calc. We enter c6 into the Store result in variable
text box, 1-c5 in the Expression text box, and click on OK. Alternatively,
we enter the following commands into Minitab:

cdf c4 c5;

chisquare 12.

let c6 = 1 - c5

Both of these methods return a value of Pr(H0|data) = 0.1284 which is
indeed between 0.1 and 0.5.

[R:] We can repeat the steps described in the Minitab section above using
the R functions qchisq and pchisq which return values of the chi-squared
inverse cdf and cdf respectively. To compute a 95% posterior credible
interval for σ, we type

sqrt(110 / qchisq(c(0.975, 0.025), 12))

The probabilities are provided to qchisq in reverse order so that the
credible interval bounds are in the correct order. To compute the one-
sided probability of the null hypothesis we type

pchisq(17.6, 12, lower.tail = FALSE)
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Table B.1: Binomial probability table

n y π

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

2 0 .9025 .81 .7225 .64 .5625 .49 .4225 .36 .3025 .25 2

1 .0950 .18 .2550 .32 .3750 .42 .4550 .48 .4950 .50 1

2 .0025 .01 .0225 .04 .0625 .09 .1225 .16 .2025 .25 0

3 0 .8574 .729 .6141 .512 .4219 .343 .2746 .216 .1664 .125 3

1 .1354 .243 .3251 .384 .4219 .441 .4436 .432 .4084 .375 2

2 .0071 .027 .0574 .096 .1406 .189 .2389 .288 .3341 .375 1

3 .0001 .001 .0034 .008 .0156 .027 .0429 .064 .0911 .125 0

4 0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625 4

1 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500 3

2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750 2

3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500 1

4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625 0

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313 5

1 .2036 .3281 .3915 .4096 .3955 .3601 .3124 .2592 .2059 .1563 4

2 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125 3

3 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125 2

4 .0000 .0005 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1563 1

5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0313 0

6 0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156 6

1 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0937 5

2 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344 4

3 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125 3

4 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344 2

5 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0937 1

6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156 0

7 0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078 7

1 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547 6

2 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641 5

3 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734 4

4 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734 3

5 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641 2

6 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547 1

7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078 0

8 0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039 8

1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313 7

2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094 6

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50

π y



USE OF STATISTICAL TABLES 511

Table B.1 – continued from previous page

n y π

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

8 3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188 5

4 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734 4

5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188 3

6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094 2

7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0313 1

8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039 0

9 0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020 9

1 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176 8

2 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703 7

3 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641 6

4 .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461 5

5 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461 4

6 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641 3

7 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703 2

8 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176 1

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020 0

10 0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010 10

1 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098 9

2 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439 8

3 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172 7

4 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051 6

5 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461 5

6 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051 4

7 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172 3

8 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0229 .0439 2

9 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016 .0042 .0098 1

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 0

11 1 .3293 .3835 .3248 .2362 .1549 .0932 .0518 .0266 .0125 .0054 10

2 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269 9

3 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806 8

4 .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611 7

5 .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256 6

6 .0000 .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256 5

7 .0000 .0000 .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611 4

8 .0000 .0000 .0000 .0002 .0011 .0037 .0102 .0234 .0462 .0806 3

9 .0000 .0000 .0000 .0000 .0001 .0005 .0018 .0052 .0126 .0269 2

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0021 .0054 1

11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50

π y
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Table B.1 – continued from previous page

n y π

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

12 0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002 12

1 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029 11

2 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161 10

3 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537 9

4 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208 8

5 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934 7

6 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256 6

7 .0000 .0000 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934 5

8 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208 4

9 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537 3

10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161 2

11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029 1

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 0

15 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000 15

1 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005 14

2 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032 13

3 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139 12

4 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417 11

5 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916 10

6 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527 9

7 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964 8

8 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964 7

9 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527 6

10 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916 5

11 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417 4

12 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139 3

13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032 2

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 1

15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0

20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000 20

1 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000 19

2 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002 18

3 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011 17

4 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046 16

5 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148 15

6 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370 14

7 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739 13

8 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201 12

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50

π y
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Table B.1 – continued from previous page

n y π

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

20 9 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602 11

10 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762 10

11 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602 9

12 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201 8

13 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739 7

14 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370 6

15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148 5

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046 4

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 3

18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 2

19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 1

20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 0

.95 .90 .85 .80 .75 .70 .65 .60 .55 .50

π y
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Table B.2: Area under standard normal density

z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

0.7 .2580 .2611 .2642 .2673 .2703 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993

3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995

3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997

3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

3.5 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998

3.6 .4998 .4998 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999
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Table B.3: Ordinates of standard normal density

z

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .3989 .3989 .3989 .3988 .3986 .3984 .3982 .3980 .3977 .3973

0.1 .3970 .3965 .3961 .3956 .3951 .3945 .3939 .3932 .3925 .3918

0.2 .3910 .3902 .3894 .3885 .3876 .3867 .3857 .3847 .3836 .3825

0.3 .3814 .3802 .3790 .3778 .3765 .3752 .3739 .3725 .3712 .3697

0.4 .3683 .3668 .3653 .3637 .3621 .3605 .3589 .3572 .3555 .3538

0.5 .3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 .3372 .3352

0.6 .3332 .3312 .3292 .3271 .3251 .3230 .3209 .3187 .3166 .3144

0.7 .3123 .3101 .3079 .3056 .3034 .3011 .2989 .2966 .2943 .2920

0.8 .2897 .2874 .2850 .2827 .2803 .2780 .2756 .2732 .2709 .2685

0.9 .2661 .2637 .2613 .2589 .2565 .2541 .2516 .2492 .2468 .2444

1.0 .2420 .2396 .2371 .2347 .2323 .2299 .2275 .2251 .2227 .2203

1.1 .2179 .2155 .2131 .2107 .2083 .2059 .2036 .2012 .1989 .1965

1.2 .1942 .1919 .1895 .1872 .1849 .1826 .1804 .1781 .1758 .1736

1.3 .1714 .1691 .1669 .1647 .1626 .1604 .1582 .1561 .1539 .1518

1.4 .1497 .1476 .1456 .1435 .1415 .1394 .1374 .1354 .1334 .1315

1.5 .1295 .1276 .1257 .1238 .1219 .1200 .1182 .1163 .1145 .1127

1.6 .1109 .1092 .1074 .1057 .1040 .1023 .1006 .0989 .0973 .0957

1.7 .0940 .0925 .0909 .0893 .0878 .0863 .0848 .0833 .0818 .0804

1.8 .0790 .0775 .0761 .0748 .0734 .0721 .0707 .0694 .0681 .0669

1.9 .0656 .0644 .0632 .0620 .0608 .0596 .0584 .0573 .0562 .0551

2.0 .0540 .0529 .0519 .0508 .0498 .0488 .0478 .0468 .0459 .0449

2.1 .0440 .0431 .0422 .0413 .0404 .0396 .0387 .0379 .0371 .0363

2.2 .0355 .0347 .0339 .0332 .0325 .0317 .0310 .0303 .0297 .0290

2.3 .0283 .0277 .0270 .0264 .0258 .0252 .0246 .0241 .0235 .0229

2.4 .0224 .0219 .0213 .0208 .0203 .0198 .0194 .0189 .0184 .0180

2.5 .0175 .0171 .0167 .0163 .0158 .0154 .0151 .0147 .0143 .0139

2.6 .0136 .0132 .0129 .0126 .0122 .0119 .0116 .0113 .0110 .0107

2.7 .0104 .0101 .0099 .0096 .0093 .0091 .0088 .0086 .0084 .0081

2.8 .0079 .0077 .0075 .0073 .0071 .0069 .0067 .0065 .0063 .0061

2.9 .0060 .0058 .0056 .0055 .0053 .0051 .0050 .0048 .0047 .0046

3.0 .0044 .0043 .0042 .0040 .0039 .0038 .0037 .0036 .0035 .0034

3.1 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 .0025 .0025

3.2 .0024 .0023 .0022 .0022 .0021 .0020 .0020 .0019 .0018 .0018

3.3 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 .0013 .0013

3.4 .0012 .0012 .0012 .0011 .0011 .0010 .0010 .0010 .0009 .0009

3.5 .0009 .0008 .0008 .0008 .0008 .0007 .0007 .0007 .0007 .0006

3.6 .0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 .0005 .0004

3.7 .0004 .0004 .0004 .0004 .0004 .0004 .0003 .0003 .0003 .0003

3.8 .0003 .0003 .0003 .0003 .0003 .0002 .0002 .0002 .0002 .0002

3.9 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001
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Table B.4: Critical values of the Student’s t distribution

Degrees of Upper Tail Area

freedom

(df) .20 .10 .05 .025 .01 .005 .001 .0005

1 1.376 3.078 6.314 12.71 31.82 63.66 318.3 636.6

2 1.061 1.886 2.920 4.303 6.965 9.925 22.33 31.60

3 .979 1.638 2.353 3.182 4.541 5.841 10.21 12.92

4 .941 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 .920 1.476 2.015 2.571 3.365 4.032 5.893 6.868

6 .906 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 .896 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 .889 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 .883 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 .879 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 .876 1.363 1.796 2.201 2.718 3.106 4.025 4.437

12 .873 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 .870 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 .868 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 .866 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 .865 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 .863 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 .862 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 .861 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 .860 1.325 1.725 2.086 2.528 2.845 3.552 3.850

21 .859 1.323 1.721 2.080 2.518 2.831 3.527 3.819

22 .858 1.321 1.717 2.074 2.508 2.819 3.505 3.792

23 .858 1.319 1.714 2.069 2.500 2.807 3.485 3.768

24 .857 1.318 1.711 2.064 2.492 2.797 3.467 3.745

25 .856 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 .856 1.315 1.706 2.056 2.479 2.779 3.435 3.707

27 .855 1.314 1.703 2.052 2.473 2.771 3.421 3.690

28 .855 1.313 1.701 2.048 2.467 2.763 3.408 3.674

29 .854 1.311 1.699 2.045 2.462 2.756 3.396 3.659

30 .854 1.310 1.697 2.042 2.457 2.750 3.385 3.646

40 .851 1.303 1.684 2.021 2.423 2.704 3.307 3.551

60 .848 1.296 1.671 2.000 2.390 2.660 3.232 3.460

80 .846 1.292 1.664 1.990 2.374 2.639 3.195 3.416

100 .845 1.290 1.660 1.984 2.364 2.626 3.174 3.390

∞ .842 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Table B.5: Poisson probability table

y µ

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679

1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679

2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839

3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613

4 .0000 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153

5 .0000 .0000 .0000 .0001 .0002 .0004 .0007 .0012 .0020 .0031

6 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0003 .0005

7 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

y µ

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353

1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707

2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707

3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804

4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902

5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361

6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120

7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034

8 .0000 .0000 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009

9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

y µ

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498

1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494

2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240

3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240

4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680

5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008

6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504

7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216

8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081

9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008

11 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002

12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

y µ

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183

1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733

2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465

3 .2237 .2226 .2209 .2186 .2158 .2125 .2087 .2046 .2001 .1954

4 .1733 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954

5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563
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Table B.5 – continued from previous page

y µ

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042

7 .0246 .0278 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595

8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298

9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053

11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019

12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006

13 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002

14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

y µ

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

0 .0150 .0123 .0101 .0082 .0067 .0055 .0045 .0037 .0030 .0025

1 .0630 .0540 .0462 .0395 .0337 .0287 .0244 .0207 .0176 .0149

2 .1323 .1188 .1063 .0948 .0842 .0746 .0659 .0580 .0509 .0446

3 .1852 .1743 .1631 .1517 .1404 .1293 .1185 .1082 .0985 .0892

4 .1944 .1917 .1875 .1820 .1755 .1681 .1600 .1515 .1428 .1339

5 .1633 .1687 .1725 .1747 .1755 .1748 .1728 .1697 .1656 .1606

6 .1143 .1237 .1323 .1398 .1462 .1515 .1555 .1584 .1601 .1606

7 .0686 .0778 .0869 .0959 .1044 .1125 .1200 .1267 .1326 .1377

8 .0360 .0428 .0500 .0575 .0653 .0731 .0810 .0887 .0962 .1033

9 .0168 .0209 .0255 .0307 .0363 .0423 .0486 .0552 .0620 .0688

10 .0071 .0092 .0118 .0147 .0181 .0220 .0262 .0309 .0359 .0413

11 .0027 .0037 .0049 .0064 .0082 .0104 .0129 .0157 .0190 .0225

12 .0009 .0013 .0019 .0026 .0034 .0045 .0058 .0073 .0092 .0113

13 .0003 .0005 .0007 .0009 .0013 .0018 .0024 .0032 .0041 .0052

14 .0001 .0001 .0002 .0003 .0005 .0007 .0009 .0013 .0017 .0022

15 .0000 .0000 .0001 .0001 .0002 .0002 .0003 .0005 .0007 .0009

16 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0002 .0003

17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001

y µ

6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0

0 .0020 .0017 .0014 .0011 .0009 .0007 .0006 .0005 .0004 .0003

1 .0126 .0106 .0090 .0076 .0064 .0054 .0045 .0038 .0032 .0027

2 .0390 .0340 .0296 .0258 .0223 .0194 .0167 .0145 .0125 .0107

3 .0806 .0726 .0652 .0584 .0521 .0464 .0413 .0366 .0324 .0286

4 .1249 .1162 .1076 .0992 .0912 .0836 .0764 .0696 .0632 .0573

5 .1549 .1487 .1420 .1349 .1277 .1204 .1130 .1057 .0986 .0916

6 .1601 .1586 .1562 .1529 .1490 .1445 .1394 .1339 .1282 .1221

7 .1418 .1450 .1472 .1486 .1490 .1486 .1474 .1454 .1428 .1396

8 .1099 .1160 .1215 .1263 .1304 .1337 .1363 .1381 .1392 .1396

9 .0757 .0825 .0891 .0954 .1014 .1070 .1121 .1167 .1207 .1241

10 .0469 .0528 .0588 .0649 .0710 .0770 .0829 .0887 .0941 .0993
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Table B.5 – continued from previous page

y µ

6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0

11 .0265 .0307 .0353 .0401 .0452 .0504 .0558 .0613 .0667 .0722

12 .0137 .0164 .0194 .0227 .0263 .0303 .0344 .0388 .0434 .0481

13 .0065 .0081 .0099 .0119 .0142 .0168 .0196 .0227 .0260 .0296

14 .0029 .0037 .0046 .0058 .0071 .0086 .0104 .0123 .0145 .0169

15 .0012 .0016 .0020 .0026 .0033 .0041 .0051 .0062 .0075 .0090

16 .0005 .0006 .0008 .0011 .0014 .0019 .0024 .0030 .0037 .0045

17 .0002 .0002 .0003 .0004 .0006 .0008 .0010 .0013 .0017 .0021

18 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0006 .0007 .0009

19 .0000 .0000 .0000 .0001 .0001 .0001 .0002 .0002 .0003 .0004

20 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0002

21 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

y µ

8.2 8.4 8.6 8.8 9.0 9.2 9.4 9.6 9.8 10.0

0 .0003 .0002 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0000

1 .0023 .0019 .0016 .0013 .0011 .0009 .0008 .0007 .0005 .0005

2 .0092 .0079 .0068 .0058 .0050 .0043 .0037 .0031 .0027 .0023

3 .0252 .0222 .0195 .0171 .0150 .0131 .0115 .0100 .0087 .0076

4 .0517 .0466 .0420 .0377 .0337 .0302 .0269 .0240 .0213 .0189

5 .0849 .0784 .0722 .0663 .0607 .0555 .0506 .0460 .0418 .0378

6 .1160 .1097 .1034 .0972 .0911 .0851 .0793 .0736 .0682 .0631

7 .1358 .1317 .1271 .1222 .1171 .1118 .1064 .1010 .0955 .0901

8 .1392 .1382 .1366 .1344 .1318 .1286 .1251 .1212 .1170 .1126

9 .1269 .1290 .1306 .1315 .1318 .1315 .1306 .1293 .1274 .1251

10 .1040 .1084 .1123 .1157 .1186 .1210 .1228 .1241 .1249 .1251

11 .0776 .0828 .0878 .0925 .0970 .1012 .1049 .1083 .1112 .1137

12 .0530 .0579 .0629 .0679 .0728 .0776 .0822 .0866 .0908 .0948

13 .0334 .0374 .0416 .0459 .0504 .0549 .0594 .0640 .0685 .0729

14 .0196 .0225 .0256 .0289 .0324 .0361 .0399 .0439 .0479 .0521

15 .0107 .0126 .0147 .0169 .0194 .0221 .0250 .0281 .0313 .0347

16 .0055 .0066 .0079 .0093 .0109 .0127 .0147 .0168 .0192 .0217

17 .0026 .0033 .0040 .0048 .0058 .0069 .0081 .0095 .0111 .0128

18 .0012 .0015 .0019 .0024 .0029 .0035 .0042 .0051 .0060 .0071

19 .0005 .0007 .0009 .0011 .0014 .0017 .0021 .0026 .0031 .0037

20 .0002 .0003 .0004 .0005 .0006 .0008 .0010 .0012 .0015 .0019

21 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0006 .0007 .0009

22 .0000 .0000 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0004

23 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 .0002

24 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001
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Table B.5 – continued from previous page

y µ

10.5 11.0 11.5 12 12.5 13.0 13.5 14.0 14.5 15.0

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

1 .0003 .0002 .0001 .0001 .0000 .0000 .0000 .0000 .0000 .0000

2 .0015 .0010 .0007 .0004 .0003 .0002 .0001 .0001 .0001 .0000

3 .0053 .0037 .0026 .0018 .0012 .0008 .0006 .0004 .0003 .0002

4 .0139 .0102 .0074 .0053 .0038 .0027 .0019 .0013 .0009 .0006

5 .0293 .0224 .0170 .0127 .0095 .0070 .0051 .0037 .0027 .0019

6 .0513 .0411 .0325 .0255 .0197 .0152 .0115 .0087 .0065 .0048

7 .0769 .0646 .0535 .0437 .0353 .0281 .0222 .0174 .0135 .0104

8 .1009 .0888 .0769 .0655 .0551 .0457 .0375 .0304 .0244 .0194

9 .1177 .1085 .0982 .0874 .0765 .0661 .0563 .0473 .0394 .0324

10 .1236 .1194 .1129 .1048 .0956 .0859 .0760 .0663 .0571 .0486

11 .1180 .1194 .1181 .1144 .1087 .1015 .0932 .0844 .0753 .0663

12 .1032 .1094 .1131 .1144 .1132 .1099 .1049 .0984 .0910 .0829

13 .0834 .0926 .1001 .1056 .1089 .1099 .1089 .1060 .1014 .0956

14 .0625 .0728 .0822 .0905 .0972 .1021 .1050 .1060 .1051 .1024

15 .0438 .0534 .0630 .0724 .0810 .0885 .0945 .0989 .1016 .1024

16 .0287 .0367 .0453 .0543 .0633 .0719 .0798 .0866 .0920 .0960

17 .0177 .0237 .0306 .0383 .0465 .0550 .0633 .0713 .0785 .0847

18 .0104 .0145 .0196 .0255 .0323 .0397 .0475 .0554 .0632 .0706

19 .0057 .0084 .0119 .0161 .0213 .0272 .0337 .0409 .0483 .0557

20 .0030 .0046 .0068 .0097 .0133 .0177 .0228 .0286 .0350 .0418

21 .0015 .0024 .0037 .0055 .0079 .0109 .0146 .0191 .0242 .0299

22 .0007 .0012 .0020 .0030 .0045 .0065 .0090 .0121 .0159 .0204

23 .0003 .0006 .0010 .0016 .0024 .0037 .0053 .0074 .0100 .0133

24 .0001 .0003 .0005 .0008 .0013 .0020 .0030 .0043 .0061 .0083

25 .0001 .0001 .0002 .0004 .0006 .0010 .0016 .0024 .0035 .0050

26 .0000 .0000 .0001 .0002 .0003 .0005 .0008 .0013 .0020 .0029

27 .0000 .0000 .0000 .0001 .0001 .0002 .0004 .0007 .0011 .0016

28 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0005 .0009

29 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002 .0003 .0004

30 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001 .0002

31 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0001

32 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
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Table B.6: Chi-squared distribution

df Upper Tail Area

.995 .99 .975 .95 .90 .50 .10 .05 .025 .01 .005

1 .0000 .0002 .0010 .0039 .0158 .4549 2.706 3.842 5.024 6.635 7.879

2 .0100 .0201 .0506 .1026 .2107 1.386 4.605 5.992 7.378 9.210 10.597

3 .0717 .1148 .2158 .3518 .5844 2.366 6.251 7.815 9.349 11.345 12.838

4 .2070 .2971 .4844 .7107 1.064 3.357 7.779 9.488 11.143 13.277 14.860

5 .4117 .5543 .8312 1.146 1.610 4.352 9.236 11.071 12.833 15.086 16.750

6 .6757 .8721 1.237 1.635 2.204 5.348 10.645 12.592 14.449 16.812 18.548

7 .9893 1.239 1.690 2.167 2.833 6.346 12.017 14.067 16.013 18.475 20.2

8 1.344 1.647 2.180 2.733 3.490 7.344 13.362 15.507 17.535 20.090 21.955

9 1.735 2.088 2.700 3.325 4.168 8.343 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 9.342 15.987 18.307 20.483 23.209 25.188

11 2.603 3.054 3.816 4.575 5.578 10.341 17.275 19.675 21.920 24.725 26.757

12 3.074 3.571 4.404 5.226 6.304 11.340 18.549 21.026 23.337 26.217 28.300

13 3.565 4.107 5.009 5.892 7.042 12.340 19.812 22.362 24.736 27.688 29.820

14 4.075 4.660 5.629 6.571 7.790 13.339 21.064 23.685 26.119 29.141 31.319

15 4.601 5.229 6.262 7.261 8.547 14.339 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 15.339 23.542 26.296 28.845 32.000 34.26

17 5.697 6.408 7.564 8.672 10.085 16.338 24.769 27.587 30.191 33.409 35.719

18 6.265 7.015 8.231 9.391 10.865 17.338 25.989 28.869 31.526 34.805 37.15

19 6.844 7.633 8.907 10.117 11.651 18.338 27.204 30.144 32.852 36.191 38.582

20 7.434 8.260 9.591 10.851 12.443 19.337 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 20.337 29.615 32.671 35.479 38.932 41.401

22 8.643 9.543 10.982 12.338 14.042 21.337 30.813 33.924 36.781 40.289 42.79

23 9.260 10.196 11.689 13.091 14.848 22.337 32.007 35.173 38.076 41.638 44.181

24 9.886 10.856 12.401 13.848 15.659 23.337 33.196 36.415 39.364 42.980 45.559

25 10.520 11.524 13.120 14.611 16.473 24.337 34.382 37.652 40.647 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 25.337 35.563 38.885 41.923 45.642 48.290

27 11.808 12.879 14.573 16.151 18.114 26.336 36.741 40.113 43.195 46.963 49.64

28 12.461 13.565 15.308 16.928 18.939 27.336 37.916 41.337 44.461 48.278 50.993

29 13.121 14.257 16.047 17.708 19.768 28.336 39.088 42.557 45.722 49.588 52.33

30 13.787 14.954 16.791 18.493 20.599 29.336 40.256 43.773 46.979 50.892 53.672

31 14.458 15.656 17.539 19.281 21.434 30.336 41.422 44.985 48.232 52.191 55.003

32 15.134 16.362 18.291 20.072 22.271 31.336 42.585 46.194 49.480 53.486 56.328

33 15.815 17.074 19.047 20.867 23.110 32.336 43.745 47.400 50.725 54.776 57.648

34 16.501 17.789 19.806 21.664 23.952 33.336 44.903 48.602 51.966 56.061 58.964

35 17.192 18.509 20.569 22.465 24.797 34.336 46.059 49.802 53.203 57.342 60.275

36 17.887 19.233 21.336 23.269 25.643 35.336 47.212 50.999 54.437 58.619 61.581

37 18.586 19.960 22.106 24.075 26.492 36.336 48.363 52.192 55.668 59.893 62.883

38 19.289 20.691 22.879 24.884 27.343 37.336 49.513 53.384 56.896 61.162 64.181

39 19.996 21.426 23.654 25.695 28.196 38.335 50.660 54.572 58.120 62.428 65.476

40 20.707 22.164 24.433 26.509 29.051 39.335 51.805 55.759 59.342 63.691 66.766
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USING THE INCLUDEDMINITABMACROS

Minitab macros for performing Bayesian analysis and for doing Monte Carlo
simulations are included. The macros may be downloaded from the web page
for this text on the site

http://www.introbayes.ac.nz.

The macros are in a compressed ZIP file called BayesMacros YYYYMMDD.zip,
where YYYYMMDD indicates the year, month and day the macros were up-
loaded. You should make sure you get the latest version. Some Minitab
worksheets are also included at that site.

In order to run the macros it is necessary to know the fully qualified file
name. That means we need to know the drive and the directory name as
the macro name. The simplest way to find the full directory name is to un-
zip the files to a commonly used location and then single click to select on
one of the macros. Once the macro file is highlighted, right click on it to
bring up the context menu and select Properties. This will bring up a di-
alog box with a whole lot of information about the file. The Location file

Introduction to Bayesian Statistics, 3rd ed.
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directory name. For example, on my computer I unzipped the macros in the
the My Documents folder. The location of the macros is

C:\Users\jcur002\Documents\BayesMacros

That is, every macro is stored on the C: drive in a directory called
Users\jcur002\Documents\BayesMacros. This means that every time I see
<insert path> in the set of Minitab commands below, I will type
C:\Users\jcur002\Documents\BayesMacros. For example, if I was using
the set of commands in Table C.1, I would type

%C:\Users\jcur002\Documents\BayesMacros\sscsample c1 100;

for the first line of commands.
Note: This chapter has been updated to work with Minitab 17 (version

17.3.10). Readers with earlier versions of Minitab should still be able to
use the macros; however, some of the menus or menu commands may be in
different locations. You may also find that you have to put the fully qualified
file names (including the .mac file extension) inside a set of single quotes, e.g.,

%'C:\Users\jcur002\Documents\BayesMacros\sscsample.mac' c1 100;

in order to make them work.

Chapter 2: Scientific Data Gathering

Sampling Methods

We use the Minitab macro sscsample to perform a small-scale Monte Carlo
study on the efficiency of simple, stratified, and cluster random sampling
on the population data contained in sscsample.mtw. In the File menu select
Open Worksheet. . . command. When the dialog box opens, find the directory
BAYESMTW and type in sscsample.mtw in the filename box and click on
“open”. In the Edit menu select Command Line Editor and type in the
commands from Table C.1 into the command line editor:

Experimental Design

We use the Minitab macro Xdesign to perform a small-scale Monte Carlo
study, comparing completely randomized design and randomized block design
in their effectiveness for assigning experimental units into treatment groups.
In the Edit menu select Command Line Editor and type in the commands
from Table C.2.
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Table C.1 Sampling Monte Carlo study

Minitab Commands Meaning

%<insert path>sscsample c1 100; data are in c1, N = 100

strata c2 3; there are 3 strata stored in c2

cluster c3 20; there are 20 clusters stored in c3

type 1; 1 = simple, 2 = stratified, 3 = cluster

size 20; sample size n = 20

mcarlo 200; Monte Carlo sample size 200

output c6 c7 c8 c9. c6 contains sample means, c7–c9

contain numbers in each strata

Table C.2 Experimental design Monte Carlo study

Minitab Commands Meaning

let k1=.8 correlation between other and response

variables

random 80 c1 c2; generate 80 other and response variables

normal 0 1. in c1 and c2, respectively

let c2=sqrt(1-k1**2)*c2+k1*c11 give them correlation k1

desc c1 c2 summary statistics

corr c1 c2

plot c2*c1 shows relationship

%<insert path>Xdesign c1 c2; other variable in c1, response in c2

size 20; treatment groups of 20 units

treatments 4; 4 treatment groups

mcarlo 500;; Monte Carlo sample size 500

output c3 c4 c5. c3 contains other means,

c4 contains response means,

— c5 contains treatment groups

1–4 from completely randomized design

5–8 from randomized block design

code (1:4) 1 (5:8) 2 c5 c6

desc c4; summary statistics

by c6.
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Table C.3 Discrete prior distribution for binomial proportion π

π g(π)

.3 .2

.4 .3

.5 .5

Table C.4 Finding the posterior distribution of binomial proportion with a discrete
prior for π

Minitab Commands Meaning

set c1 puts π in c1

.3 .4 .5

end

set c2 puts g(π) in c2

.2 .3 .5

end

%<insert path>BinoDP 6 5; n = 6 trials, y = 5 successes observed

prior c1 c2; π in c1, prior g(π) in c2

likelihood c3; store likelihood in c3

posterior c4. store posterior g(π|y = 5) in c4

Chapter 6: Bayesian Inference for Discrete Random Variables

Binomial Proportion with Discrete Prior

BinoDP is used to find the posterior when we have binomial (n, π) obser-
vation, and we have a discrete prior for π. For example, suppose π has the
discrete distribution with three possible values, .3, .4, and .5. Suppose the
prior distribution is given in Table C.3, and we want to find the posterior dis-
tribution after n = 6 trials and observing y = 5 successes. In the Edit menu
pull down Command Line Editor and type in the commands from Table C.4.

Poisson Parameter with Discrete Prior

PoisDP is used to find the posterior when we have a Poisson(µ) observation,
and a discrete prior for µ. For example, suppose µ has three possible values
µ = 1, 2, or 3 where the prior probabilities are given in Table C.5, and we want
to find the posterior distribution after observing y = 4. In the Edit menu go
down to Command Line Editor and type in the commands from Table C.6.
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Table C.5 Discrete prior distribution for Poisson parameter µ

µ g(µ)

1 .3

2 .4

3 .3

Table C.6 Finding the posterior distribution of Poisson parameter with a discrete
prior for µ

Minitab Commands Meaning

set c5 puts observation(s) y in c5

44

end

set c1 puts µ in c1

1 2 33

end

set c2 puts g(µ) in c2

.3 .4 .3

end

%<insert path>PoisDP c5; observations in c5

prior c1 c2; µ in c1, prior g(µ) in c2

likelihood c3; store likelihood in c3

posterior c4. store posterior g(π|y = 5) in c4

Chapter 8: Bayesian Inference for Binomial Proportion

Beta(a, b) Prior for π

BinoBP is used to find the posterior when we have binomial (n, π) observation,
and we have a beta(a, b) prior for π. The beta family of priors is conjugate
for binomial (n, π) observations, so the posterior will be another member of
the family, beta(a′, b′) where a′ = a + y and b′ = b + n − y. For example,
suppose we have n = 12 trials, and observe y = 4 successes, and we use a
beta(3, 3) prior for π. In the Edit menu select Command Line Editor and
type in the commands from Table C.7. We can find the posterior mean and
standard deviation from the output. We can determine a Bayesian credible
interval for π by looking at the values of π by pulling down the Calc menu to
Probability Distributions and over to “beta” and selecting “inverse cumulative
probability”. We can test H0 : π ≤ π0 vs. H1 : π > π0 by pulling down
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Table C.7 Finding the posterior distribution of binomial proportion with a beta
prior for π

Minitab Commands Meaning

%<insert path>BinoBP 12 4; n = 12 trials, y = 4 was observed

beta 3 3; the beta prior

prior c1 c2; stores π and the prior g(π)

likelihood c3; store likelihood in c3

posterior c4. store posterior g(π|y = 4) in c4

Table C.8 Finding the posterior distribution of binomial proportion with a
continuous prior for π

Minitab Commands Meaning

%<insert path>BinoGCP 12 4; n = 12 trials, y = 4 successes observed

prior c1 c2; inputs π in c1, prior g(π) in c2

likelihood c3; store likelihood in c3

posterior c4. store posterior g(π|y = 4) in c4

the Calc menu to Probability Distributions and over to “beta” and selecting
cumulative probability” and inputting the value of π0.

General Continuous Prior for π

BinoGCP is used to find the posterior when we have binomial (n, π) obser-
vation, and we have a general continuous prior for π. Note that π must go
from 0 to 1 in equal steps, and g(π) must be defined at each of the π values.
For example, suppose we have n = 12 trials, and observe y = 4 successes,
where π is stored in c1 and a general continuous prior g(π) is stored in c2. In
the Edit menu select Command Line Editor and type in the commands from
Table C.8. The output of BinoGCP does not print out the posterior mean
and standard deviation. Nor does it print out the values that give the tail
areas of the integrated density function that we need to determine credible
interval for π. Instead we use the macro tintegral which numerically integrates
a function over its range to determine these things. We can find the integral
of the posterior density g(π|y) using this macro. We can also use tintegral to
find the posterior mean and variance by numerically evaluating

m′ =

∫ 1

0

πg(π|y) dπ
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Table C.9 Bayesian inference using posterior density of binomial proportion π

Minitab Commands Meaning

%<insert path>tintegral c1 c4; integrates posterior density

output k1 c6. stores definite integral over range in k1

stores definite integral function in c6

let c7=c1*c4 π × g(π|y)

%<insert path>tintegral c1 c7; finds posterior mean

output k1 c8.

let c9=(c1-k1)**2 * c4

%<insert path>tintegral c1 c9; finds posterior variance

output k2 c10.

let k3=sqrt(k2) finds posterior st. deviation

print k1-k3

and

(s′)2 =

∫ 1

0

(π −m′)2g(π|y) dπ .

In the Edit menu select Command Line Editor and type in the commands
from Table C.9 . A 95% Bayesian credible interval for π is found by taking
the values in c1 that correspond to .025 and .975 in c6. To test the hypothesis
H0 : π ≤ π0 vs. H1 : π > π0, we find the value in c6 that corresponds to the
value π0 in c1. If it is less than the desired level of significance α, then we can
reject the null hypothesis.

Chapter 10: Bayesian Inference for Poisson

Gamma(r, v) Prior for µ

PoisGamP is used to find the posterior when we have a random sample from a
Poisson(µ) distribution, and we have a gamma(r, v) prior for µ. The gamma
family of priors is the conjugate family for Poisson observations, so the pos-
terior will be another member of the family, gamma(r′, v′) where r′ = r+

∑
y

and v′ = v+n. The simple rules are “add sum of observations to r” and “add
number of observations to v”. For example, suppose in column 5 there is a
sample five observations from a Poisson(µ) distribution. Suppose we want to
use a gamma(6, 3) prior for µ. select the Edit menu to the Command Line
Editor command and type in the commands from Table C.10. We can deter-
mine a Bayesian credible interval for µ by looking at the values of µ by pulling
down the Calc menu to Probability Distributions and over to Gamma. . . and
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Table C.10 Finding the posterior distribution of a Poisson parameter with a
gamma prior for µ

Minitab Commands Meaning

set c5 Put observations in c5

3 4 3 0 1

end

let k1=6 r

let k2=3 v

%<insert path>PoisGamP c5 ; observations in c5

gamma k1 k2; the gamma prior

prior c1 c2; stores µ and the prior g(µ)

likelihood c3; store likelihood in c3

posterior c4. store posterior g(µ|y) in c4

selecting Inverse cumulative probability. Note: Minitab uses the parameter
1/v instead of v. We can test H0 : µ ≤ µ0 vs. H1 : µ > µ0 by pulling down the
Calc menu to Probability Distributions and over to “gamma” and selecting
cumulative probability” and inputting the value of µ0.

General Continuous Prior for Poisson Parameter µ

PoisGCP is used to find the posterior when we have a random sample from
a Poisson(µ) distribution and we have a continuous prior for µ. Suppose we
have a random sample of five observations in column c5. The prior density
of µ is found by linearly interpolating the values in Table C.11. In the Edit

Table C.11 Continuous prior distribution for Poisson parameter µ has shape given
by interpolating between these values

µ g(µ)

0 0

2 2

4 2

8 0

menu select Command Line Editor and type in the commands in Table C.12.
The output of PoisGCP does not include the posterior mean and standard
deviation. Nor does it print out the cumulative distribution function that
allows us to find credible intervals. Instead we use the macro tintegral which
numerically integrates the posterior to do these things. In the Edit menu
select Command Line Editor and type in the commands from Table C.13. A
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Table C.12 Finding the posterior distribution of a Poisson parameter with a
continuous parameter for µ

Minitab Commands Meaning

set c5 Put observations in c5

3 4 3 0 1

end

set c1 set µ

0:8/ .001

end

set c2 set g(µ)

0:2 / .001 1999(2) 2:0 /-.0005

end

%<insert path>PoisGCP c5 ; observations in c5

prior c1 c2; µ and the prior g(µ) in c1 and c2

likelihood c3; store likelihood in c3

posterior c4. store posterior g(µ|y) in c4

Table C.13 Bayesian inference using posterior distribution of Poisson parameter µ

Minitab Commands Meaning

%<insert path>tintegral c1 c4; integrates posterior density

output k1 c6. stores definite integral over range in k1

stores definite integral function in c6

let c7=c1*c4 µ× g(µ|y1, . . . , yn)

%<insert path>tintegral c1 c7; finds posterior mean

output k1 c8.

let c9=(c1-k1)**2 * c4

%<insert path>tintegral c1 c9; finds posterior variance

output k2 c10.

let k3=sqrt(k2) finds posterior st. deviation

print k1-k3

95% Bayesian credible interval for µ is found by taking the values in c1 that
correspond to .025 and .975 in c6. To test the null hypothesis H0 : µ ≤ µ0

vs. H1 : µ > µ0, find the value in c6 that corresponds to µ0 in c1. If it is less
than the desired level of significance, then we can reject the null hypothesis
at that level.
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Table C.14 Discrete prior distribution for normal mean µ

µ f(µ)

2 .1

2.5 .2

3 .4

3.5 .2

4 .1

Chapter 11: Bayesian Inference for Normal Mean

Discrete Prior for µ

NormDP is used to find the posterior when we have a column of normal(µ, σ2)
observations and σ2 is known, and we have a discrete prior for µ. If the
standard deviation σ is not entered, then the estimate from the observations
is used, and the approximation to the posterior is found. For example, suppose
µ has the discrete distribution with 5 possible values, 2, 2.5, 3, 3.5, and ,4.
Suppose the prior distribution is given in Table C.14. and we want to find
the posterior distribution after a random sample of n = 5 observations from
a normal(µ, 12) that are 1.52, 0.02, 3.35, 3.49, 1.82. In the Edit menu select
Command Line Editor and type in the commands from Table C.15.

Normal(m, s2) Prior for µ

NormNP is used when we have a column c5 containing a random sample of n
observations from a normal(µ, σ2) distribution (with σ2 known) and we use
a normal(m, s2) prior distribution. If the observation standard deviation σ
is not input, the estimate calculated from the observations is used, and the
approximation to the posterior is found. If the normal prior is not input,
a flat prior is used. The normal family of priors is conjugate for normal
(µ, σ2) observations, so the posterior will be another member of the family,
normal [m′, (s′)2] where the new constants are given by

1

(s′)2
=

1

s2
+

n

σ2

and

m′ =
1
b2

1
(b′)2

×m+
n
σ2

1
(b′)2

× ȳ .

For example, suppose we have a normal random sample of 4 observations
from normal(µ, 12) which are 2.99, 5.56, 2.83, and 3.47. Suppose we use a
normal(3, 22) prior for µ. In the Edit menu select Command Line Editor and
type in the commands from Table C.16 . We can determine a Bayesian credible



USING THE INCLUDED MINITAB MACROS 533

Table C.15 Finding the posterior distribution of a normal mean with discrete prior
for µ

Minitab Commands Meaning

set c1 puts µ in c1

2:4/.5

end

set c2 puts g(µ) in c2

.1 .2 .4 .2 .11

end

set c5 puts data in c5

1.52, 0.02, 3.35, 3.49 1.82

end

%<insert path>NormDP c5 ; observed data in c5

sigma 1; known σ = 1 is used

prior c1 c2; µ in c1, prior g(µ) in c2

likelihood c3; store likelihood in c3

posterior c4. store posterior g(µ|data) in c4

Table C.16 Finding the posterior distribution of a normal mean with a normal
prior for µ

Minitab Commands Meaning

set c5 puts data in c5

2.99, 5.56, 2.83, 3.47

end

%<insert path>NormNP c5 ; observed data in c5

sigma 1; known σ = 1 is used

norm 3 2; prior mean 3, prior std 2

prior c1 c2; store µ in c1, prior g(µ) in c2

likelihood c3; store likelihood in c3

posterior c4. store posterior g(µ|data) in c4
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Table C.17 Finding the posterior distribution of a normal mean with a continuous
prior for µ

Minitab Commands Meaning

set c5 puts data in c5

2.99, 5.56, 2.83, 3.47

end

%<insert path>NormGCP c5 ; observed data in c5

sigma 1;; known σ = 1 is used

prior c1 c2; µ in c1, prior g(µ) in c2

likelihood c3; store likelihood in c3

posterior c4. store posterior g(µ|data) in c4

interval for µ by looking at the values of µ by pulling down the Calc menu
to Probability Distributions and over to Normal. . . and selecting “inverse
cumulative probability.” We can test H0 : µ ≤ µ0 vs. H1 : µ > µ0 by pulling
down the Calc menu to Probability Distributions and over to Normal. . . and
selecting cumulative probability” and inputting the value of µ0.

General Continuous Prior for µ

NormGCP is used when we have (a) a column c5 containing a random sample
of n observations from a normal (µ, σ2) distribution (with σ2 known), (b) a
column c1 containing values of µ, and (c) a column c2 containing values from
a continuous prior g(µ). If the standard deviation σ is not input, the estimate
calculated from the data is used, and the approximation to the posterior is
found.

For example, suppose we have a normal random sample of 4 observations
from normal (µ, σ2 = 1) which are 2.99, 5.56, 2.83, and 3.47. In the Edit
menu select Command Line Editor and type the following commands from
Table C.17. The output of NormGCP does not print out the posterior mean
and standard deviation. Nor does it print out the values that give the tail
areas of the integrated density function that we need to determine credible
interval for µ. Instead we use the macro tintegral which numerically integrates
a function over its range to determine these things. In the Edit menu select
Command Line Editor and type in the commands from Table C.18. To find
a 95% Bayesian credible interval we find the values in c1 that correspond to
.025 and .975 in c6. To test a hypothesis H0 : µ ≤ µ0 versus H1 : µ > µ0, we
find the value in c6 that corresponds to µ0 in c1. If this is less than the chosen
level of significance, then we can reject the null hypothesis at that level.
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Table C.18 Bayesian inference using posterior distribution of normal mean µ

Minitab Commands Meaning

%<insert path>tintegral c1 c4; integrates posterior density

output k1 c6. stores definite integral over range in k1

stores definite integral function in c6

print c1 c6

let c7=c1*c4 µ× g(µ|data)

%<insert path>tintegral c1 c7; finds posterior mean

output k1 c8.

let c8=(c1-k1)**2 * c4

%<insert path>tintegral c1 c8; finds posterior variance

output k2 c9.

let k3=sqrt(k2) finds posterior std. deviation

print k1-k3

Chapter 14: Bayesian Inference for Simple Linear Regression

BayesLinReg is used to find the posterior distribution of the simple linear
regression slope β when we have a random sample of ordered pairs (xi, yi)
from the simple linear regression model

yi = α0 + β × xi + ei ,

where the observation errors ei are independent normal(0, σ2) with known
variance. If the variance is not known, then the posterior is found using the
variance estimate calculated from the least squares residuals. We use inde-
pendent priors for the slope β and the intercept αx̄. These can be either flat
priors or normal priors. (The default is flat priors for both slope and intercept
of x = x̄.) This parameterization yields independent posterior distribution
for slope and intercept with simple updating rules “posterior precision equals
prior precision plus precision of least squares estimate” and “posterior mean is
weighted sum of prior mean and the least squares estimate where the weights
are the proportions of the precisions to the posterior precision. Suppose we
have y and x in columns c5 and c6, respectively, and we know the standard
deviation σ = 2. We wish to use a normal(0, 32) prior for β and a nor-
mal(30, 102) prior for αx̄. In the Edit menu select Command Line Editor and
type in the commands from Table C.19. If we want to find a credible interval
for the slope, use Equation 14.9 or Equation 14.10 depending on whether we
knew the standard deviation or used the value calculated from the residuals.
To find the credible interval for the predictions, use Equation 14.13 when we
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Table C.19 Bayesian inference for simple linear regression model

Minitab Commands Meaning

%<insert path>BayesLinReg c5 c6; y (response) in c5, x (predictor) in c6

Sigma 2; known standard deviation σ = 2

PriSlope 0 3;; normal(mβ = 0, sβ = 3) prior

PriIntcpt 30 10;; normal(mαx̄ = 30, sαx̄ = 10) prior

predict c7 c8 c9. predict for x-values in c7, prediction

in c8, standard deviations in c9

invcdf .975 k10; Find critical value. Use normal when

norm 0 1. variance is known, use student’s t

with n− 2 df when variance not known

let c10=c8-k10*c9 Lower credible bound for predictions

let c11=c8+k10*c9 Upper credible bound for predictions

know the variance or use Equation 14.14 when we use the estimate calculated
from the residuals.

Chapter 15: Bayesian Inference for Standard Deviation

S× an Inverse Chi-Squared(κ) Prior for σ2

NVarICP is used when we have a column c5 containing a random sample of
n observations from a normal(µ, σ2) distribution where the mean µ is known.
The S× an inverse chi-squared(κ) family of priors is the conjugate family for
normal observations with known mean. The posterior will be another member
of the family where the constants are given by the simple updating rules “add
the sum of squares around the mean to S” and “add the sample size to the
degrees of freedom.” For example, suppose we have five observations from
a normal(µ, σ2) where µ = 200 which are 206.4, 197.4, 212.7, 208.5, and
203.4. We want to use a prior that has prior median equal to 8. In the Edit
menu select Command Line Editor and type in the commands from Table
C.20. Note: The graphs that are printed out are the prior distributions of
the standard deviation σ even though we are doing the calculations on the
variance.

If we want to make inferences on the standard deviation σ using the pos-
terior distribution we found, pull down the Edit menu, select Command Line
Editor and type in the commands given in Table C.21. To find an equal
tail area 95% Bayesian credible interval for σ, we find the values in c1 that
correspond to .025 and .975 in c6.
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Table C.20 Finding posterior distribution of normal standard deviation σ using
S× an inverse chi-squared(κ) prior for σ2

Minitab Commands Meaning

set c5 puts data in c5

206.4, 197.4, 212.7, 208.5, 203.4

end

%<insert path>NVarICP c5 200; observed data in c5, known µ = 200

IChiSq 29.11 1; 29.11× inverse chi-squared(1) has

prior median 8

prior c1 c2; σ in c1, prior g(σ) in c2

likelihood c3; store likelihood in c3

posterior c4; store posterior g(σ|data) in c4

constants k1 k2. store S′ in k1, κ′ in k2

Table C.21 Bayesian inference using posterior distribution of normal standard
deviation σ

Minitab Commands Meaning

let k3=sqrt(k1/(k2-2)) The estimator for σ using posterior mean,

Print k3 Note: k2 must be greater than 2

InvCDF .5 k4; store median of chi-squared (k2)

ChiSquare k2. in k4

let k5=sqrt(k1/k4) The estimator for σ using posterior median

Print k5

%<insert path>tintegral c1 c4; integrates posterior density

output k6 c6. stores definite integral over range in k6,

stores definite integral function in c6
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Table C.22 Finding the posterior distribution of binomial proportion with a
mixture prior for π

Minitab Commands Meaning

%<insert path>BinoMixP 60 15 ; n = 60 trials, y = 15 successes observed

bet0 10 6; The precise beta prior

bet1 1 1; The fall-back beta prior

prob .95; prior probability of first component

Output c1-c4. store π, prior, likelihood, and posterior

in c1–c4

Chapter 16: Robust Bayesian Methods

BinoMixP is used to find the posterior when we have a binomial(n, π) ob-
servations and use a mixture of a beta(a0, b0) and a beta(a1, b1) for the prior
distribution for π. Generally, the first component summarizes our prior belief,
so that we give it a high prior probability. The second component has more
spread to allow for our prior belief being mistaken, and we give it a low prior
probability. For example, suppose our first component is beta(10, 6), and the
second component is beta(1, 1) and we give a prior probability of .95 to the
first component. We have taken 60 trials and observed y = 15 successes. In
the Edit menu select Command Line Editor and type in the commands from
Table C.22.

NormMixP is used to find the posterior when we have normal(µ, σ2) ob-
servations with known variance σ2 and our prior for µ is a mixture of two
normal distributions, a normal(m0, s

2
0) and a normal(m1, s

2
1). Generally, the

first component summarizes our prior belief, so we give it a high prior prob-
ability. The second component is a fall-back prior that has a much larger
standard deviation to allow for our prior belief being wrong and has a much
smaller prior probability. For example, suppose we have a random sample of
observations from a normal(µ, σ2) in column c5, where σ2 = .22. Suppose we
use a mixture of a normal(10, .12) and a normal(10, .42) prior where the prior
probability of the first component is .95. In the Edit menu select Command
Line Editor and type in the commands from Table C.23.
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Table C.23 Finding the posterior distribution of normal mean with the mixture
prior for µ

Minitab Commands Meaning

%<insert path>NormMixP c5 ; c5 contains observations of normal(µ, σ2)

sigma .2 ; known value σ = .2 is used

np0 10 .1; The precise normal(10, .12) prior

np1 10 .4; The fall-back normal(10, .42) prior

prob .95; prior probability of first component

Output c1-c4.. store µ, prior, likelihood, and posterior

in c1–c4

Chapter 18: Bayesian Inference for Multivariate Normal Mean Vec-

tor

MVNorm is used to find the posterior mean and variance–covariance matrix
for a set of multivariate normal data with known variance–covariance Σ as-
suming a multivariate normal prior. If the prior density is MVN with mean
vector m0 and variance–covariance matrix V0, and Y is a sample of size n
from a MVN (µ,Σ) matrix (where µ is unknown), then the posterior density
of µ is MVN (m1,V1) where

V1 = (V−1
0 + nΣ−1)−1

and
m1 = V1V

−1
0 m0 + nV1Σ

−1ȳ

If Σ is not specified, then the sample variance–covariance matrix can be used.
In this case the posterior distribution is multivariate t so using the results
with a MVN is only (approximately) valid for large samples.

In the Edit menu go down to Command Line Editor and type in the com-
mands from Table C.24.

Chapter 19: Bayesian Inference for the Multiple Linear Regression

Model

BayesMultReg is is used to find the posterior distribution of vector of regres-
sion coefficients β when we have a random sample of ordered pairs (xi, yi)
from the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ei = xiβ + ei ,
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where (usually) the observation errors ei are independent normal(0, σ2) with
known variance. If σ2 is not known, then we estimate it from the variance
of the residuals. Our prior for β is either a flat prior or a MVN (b0,V0)
prior. It is not necessary to use the macro if we assume a flat prior as the
posterior mean of β is equal to the least squares estimate βLS , which is also
the maximum likelihood estimate. This means that the Minitab regression
procedure found in the Stat menu gives us the posterior mean and variance
for a flat prior. The posterior mean of β when we use a MVN (b0,V0) prior
is found through the simple updating rules given Equations 19.5 and 19.4.

In the Edit menu go down to Command Line Editor and type in the com-
mands from Table C.25.
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Table C.24 Finding the posterior distribution of multivariate normal mean with
the MVN prior for µ

Minitab Commands Meaning

set c1 Set the true mean µ = (0, 2)′

0 2 and store it in c1

end

set c2 Set the true variance–covariance

1 0.9 matrix to Σ =

(
1 0.9

0.9 1

)
end

set c3

0.9 1

end

copy c2-c3 m1 Store Σ in matrix m1

set c4 Set the prior mean to m0 = (0, 0)′

2(0) and store it in c4

end

set c5 Set the prior variance–covariance

2(10000) to V0 = 104I2 where I2 is the

end 2× 2 identity matrix and store

diag c5 m2 it in matrix m2

Random 50 c6-c7; Generate 50 observations from

Mnormal c1 m1. MVN (µ,Σ) and store them

copy c6-c7 m3 in columns c6–c7. Assign the

observations to matrix m3

%<insert path>MVNorm m3 2; 2 is the number of rows for µ

covmat m1; Σ is stored in m1

prior c4 m2; m0 and V0 are in c4 and m1

respectively

posterior c9 m4. Store the posterior mean m1

in column c9 and the posterior

variance in matrix m4
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Table C.25 Finding the posterior distribution of regression coefficient vector β

Minitab Commands Meaning

Random 100 c2-c5; Generate three random covariates and

Normal 0.0 1.0. some errors and store them in c2–c5

let c1 = 10 + 3*c2 + 1*c3 -5*c4 + c5 Let the response be

yi = 10 + 3x1i + x2i − 5x3i + εi

let c2 = c2 - mean(c2) Center the explanatory variables on

let c3 = c3 - mean(c3) on their means

let c4 = c4 - mean(c4)

copy c2-c4 m1 Copy the explanatory variables into

matrix m1

set c10 Set the prior for β to be (0, 0, 0, 0)′

4(0) and store it in c10. Note: The prior

end includes β0

set c11 Set the prior variance to be 104 × I4

4(10000) and store the diagonal in c11

end

diag c11 m10; Assign the diagonal to matrix m10

%<insert path>BayesMultReg 4 c1 m1; 4 is the number of coefficients

including the intercept β0

sigma 1; In this case we know σ = 1

prior c10 m10; The prior mean for β is in c10,

and the covariance is in m10

posterior c12 m12; Store the posterior mean for β in c12,

and store the posterior variance–covariance

in matrix m12
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R FUNCTIONS

A Note Regarding the Previous Edition

A considerable effort has been made to make the R functions easier to use
since the previous edition. In particular, calculation of the mean, median,
variance, standard deviation, interquartile range, quantiles, and the cumula-
tive distribution function for the posterior density can now be achieved by
using the natural choice of function you would expect to use for each of these
operations (mean, mean, var, sd, IQR, quantile, cdf). The numerical inte-
gration and interpolation often associated with these calculations is handled
seamlessly under the hood for you. It is also possible to plot the results for
any posterior density using the plot function.

Introduction to Bayesian Statistics, 3rd ed.
By Bolstad, W. M. and Curran, J. M. Copyright c© 2016 John Wiley & Sons, Inc.

543



544 USING THE INCLUDED R FUNCTIONS

Obtaining and using R

R is a free software environment for statistical computing and graphics. It
compiles and runs on a wide variety of UNIX platforms, Windows, and Mac
OS X. The latest version of R (currently 3.3.0) may always be found at
http://cran.r-project.org. There is also a large number of mirror sites
https://cran.r-project.org/mirrors.html which may be closer to you
and faster. Compiled versions of R for Linux, Mac OS X and Windows, and
the source code (for those who wish to compile R themselves) may also be
found at this address.

Installation of R for Windows and Mac OS X requires no more effort than
downloading the latest installer and running it. On Windows this will be an
executable file. On Mac OS X it will be a package.

R Studio

If you plan to use R with this text, then we highly recommend that you also
download and install R Studio (http://rstudio.com). R Studio is a free
integrated development environment (IDE) for R which offers many features
that make R easier and more pleasant to use. R Studio is developed by a
commercial company which also offers a paid version with support for those
who work in a commercial environment. If you choose to use R Studio, then
make sure that you install it after R has been installed.

Obtaining the R Functions

The R functions used in conjunction with this book have been collated into an
R package. R packages provide a simple mechanism to increase the function-
ality of R. The simplicity and attractiveness of this mechanism is extremely
obvious with the more than 5,000 R packages available from the Comprehen-
sive R Archive Network (CRAN). The name of the R package that contains
the functions for this book is Bolstad. The latest version can be downloaded
from CRAN using either the install.packages function or using the pull-
down menus in R or R Studio. We give instructions below for both of these
methods.

Installing the Bolstad Package

We assume, in the following instructions, that you have a functioning internet
connection. If you do not, then you will at least need some way to download
the package to your computer.

Installation from the Console

1. Start R or R Studio.

http://cran.r-project.org
https://cran.r-project.org/mirrors.html
http://rstudio.com
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2. Type the following into the console window and hit Enter.

install.packages("Bolstad")

The capitalization is important. It does not matter whether you use double
or single quotation marks.

Installation using R

1. Pull down the Packages menu on Windows, or the Packages and Data
menu on Mac OS X.

2. [Windows:] Select Install package(s). . . , and then select the CRAN mir-
ror that is closest to you and click on OK.

[Mac OS X:] Select Package Installer, click on the Get List button, and
select the CRAN mirror that is closest to you.

3. [Windows:] Scroll down until you find the Bolstad package, select it by
clicking on it, and click on OK.

[Mac OS X:] Type Bolstad into the search text box (opposite the Get List
button) and hit Enter. Select the Bolstad package and click on Install

Selected. Click the red Close Window icon at the top-left of the dialog
box.

Installation using R Studio

1. Select Install Packages. . . from the Tools menu. Type Bolstad into Pack-
ages text box and click on Install.

Installation from a Local File Both R and R Studio offer options to install
the Bolstad package from a local file. Again this can be achieved using the
install.package function, or by using the menus. To install the package
using the console, first either use Change dir. . . from the File menu on
Windows, or Change Working Directory. . . from the Misc menu on Mac OS
X, or use the settled function in the console, to set the working directory
to the location where you have stored the Bolstad package you downloaded.
Type

install.packages("Bolstad_X.X-XX.EXT")

where X.X-XX is the version number of the file you downloaded (e.g. 0.2-33)
and EXT is either zip on Windows or tar.gz on Mac OS X.
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Loading the R Package

R will now recognize the package Bolstad as a package it can load. To use
the functions in the package Bolstad, type

library(Bolstad)

into the console.
To see the list of functions contained within the package, type

library(help = Bolstad)

Help on each of the R functions is available once you have loaded the Bolstad
package. There are a number of ways to access help files under R. The tradi-
tional way is to use the help or ? function. For example, to see the help file
on the binodp function, type

help(binodp)

or

?binodp

All of the examples listed in the help file may be executed by using the example
command. For example, to run the examples listed in the binodp help file
type

example(binodp)

Each help file has a standard layout, which is as follows:

Title: a brief title that gives some idea of what the function is supposed to
do or show

Description: a fuller description of the what the function is supposed to do
or show

Usage: the formal calling syntax of the function

Arguments: a description of each of the arguments of the function

Values: a description of the values (if any) returned by the function

See also: a reference to related functions

Examples: some examples of how the function may be used. These examples
may be run either by using the example command (see above) or copied
and pasted into the R console window
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The R language has two special features that may make it confusing to
users of other programming and statistical languages: default or optional
arguments, and variable ordering of arguments. An R function may have
arguments for which the author has specified a default value. Let us take the
function binobp as an example. The syntax of binobp is

binobp(x, n, a = 1, b = 1, pi = seq(0.01, 0.999, by = 0.001),

plot = TRUE)

The function takes six arguments: x, n, a, b, pi, and plot. However, the
author has specified default values for a, b, pi, and plot namely a = 1, b =

1, pi = = seq(0.01, 0.999, by = 0.001), and plot = TRUE. This means
that the user only has to supply the arguments x and n. Therefore the argu-
ments a, b, pi, and plot are said to be optional or default. In this example, by
default, a beta(a = 1, b = 1) prior is used and a plot is drawn (plot = TRUE).
Hence the simplest example for binobp is given as binobp(6,8). If the
user wanted to change the prior used, say to beta(5,6), then they would
type binobp(6, 8, 5, 6). There is a slight catch here, which leads into
the next feature. Assume that the user wanted to use a beta(1,1) prior,
but did not want the plot to be produced. One might be tempted to type
binobp(6, 8, FALSE). This is incorrect. R will think that the value FALSE

is the value being assigned to the parameter a, and convert it from a logi-
cal value, FALSE, to the numerical equivalent, 0, which will of course give an
error because the parameters of the beta distribution must be greater than
zero. The correct way to make such a call is to use named arguments, such
as binobp(6, 8, plot = FALSE). This specifically tells R which argument
is to be assigned the value FALSE. This feature also makes the calling syntax
more flexible because it means that the order of the arguments does not need
to be adhered to. For example, binobp(n = 8, x = 6, plot = FALSE, a

= 1, b = 3) would be a perfectly legitimate function call.

Chapter 2: Scientific Data Gathering

In this chapter we use the function sscsample to perform a small-scale Monte
Carlo study on the efficiency of simple, stratified, and cluster random sampling
on the population data contained in sscsample.data. Make sure the Bolstad
package is loaded by typing

library(Bolstad)

first. Type the following commands into the R console:



548 USING THE INCLUDED R FUNCTIONS

sscsample(20, 200)

This calls the sscsample function and asks for 200 samples of size 20 to be
drawn from the data set sscsample.data. To return the means and the
samples themselves, type

results = sscsample(20, 200)

This will store all 200 samples and their means in an R list structure called
results. The means of the sample may be accessed by typing

results$means

The samples themselves are stored in the columns of a 20× 200 matrix called
results$samples. To access the ith sample, where i = 1, . . . , 200, type

results$samples[, i]

For example, to access the 50th sample, type

results$samples[, 50]

Experimental Design

We use the function xdesign to perform a small-scale Monte Carlo study
comparing completely randomized design and randomized block design in their
effectiveness for assigning experimental units into treatment groups. Suppose
we want to carry out our study with four treatment groups, each of size 20,
and with a correlation of 0.8 between the response and the blocking variable.
Type the following commands into the R console:

xdesign()

Suppose we want to carry out our study with five treatment groups, each of
size 25, and with a correlation of −0.6 between the response and the blocking
variable. We also want to store the results of the simulation in a variable
called results. Type the following commands into the R console:

results = xdesign(corr = -0.6, size = 25, n.treatments = 5)

results is a list containing three member vectors of length 2×n.treatments×n.rep.
Each block of n.rep elements contains the simulated means for each Monte
Carlo replicate with in a specific treatment group. The first n.treatments
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blocks correspond to the completely randomized design, and the second n.treatments

blocks correspond to randomized block design

block.means: a vector of the means of the blocking variable

treat.means: a vector of the means of the response variable

ind: a vector indicating which means belong to which treatment group

An example of using these results might be

boxplot(block.means ~ ind, data = results)

boxplot(treat.means ~ ind, data = results)

Chapter 6: Bayesian Inference for Discrete Random Variables

Binomial Proportion with Discrete Prior

The function binodp is used to find the posterior when we have a binomial
(n, π) observation, and we have a discrete prior for π. For example, suppose π
has the discrete distribution with three possible values, .3, .4, and .5. Suppose
the prior distribution is as given in Table D.1

Table D.1 An example discrete prior for a binomial proportion π

π f(π)

.3 .2

.4 .3

.5 .5

and we want to find the posterior distribution after n = 6 trials and observing
y = 5 successes. Type the following commands into the R console:

pi = c(0.3, 0.4, 0.5)

pi.prior = c(0.2, 0.3, 0.5)

results = binodp(5, 6, pi = pi, pi.prior = pi.prior)

Poisson Parameter with Discrete Prior

poisdp is used to find the posterior when we have a Poisson(µ) observation,
and a discrete prior for µ. For example, suppose µ has three possible values
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Table D.2 Discrete prior distribution for Poisson parameter µ

µ g(µ)

1 .3

2 .4

3 .3

µ = 1, 2, or 3 where the prior probabilities are given in Table D, and we want
to find the posterior distribution after observing y = 4.
Type the following commands into the R console:

mu = 1:3

mu.prior = c(0.3, 0.4, 0.3)

poisdp(4, mu, mu.prior)

Chapter 8: Bayesian Inference for Binomial Proportion

beta(a, b) Prior for π

binobp is used to find the posterior when we have a binomial(n, π) observa-
tion, and we have a beta(a, b) prior for π. The beta family of priors is conjugate
for binomial(n, π) observations, so the posterior will be another member of
the family, beta(a′, b′) where a′ = a+ y and b′ = b+n− y. For example, sup-
pose we have n = 12 trials, and observe y = 4 successes, and use a beta(3, 3)
prior for π. Type the following command into the R console:

binobp(4, 12, 3, 3)

We can find the posterior mean and standard deviation from the output. We
can determine an equal tail area credible interval for π by taking the appro-
priate quantiles that correspond to the desired tail area values of the interval.
For example, for 95% credible interval we take the quantiles with probability
0.025 and 0.975, respectively. These are 0.184 and 0.617. Alternatively, we
can store the results and use the mean, sd, and quantile functions to find the
posterior mean, standard deviation, and credible interval. Type the following
commands into the R console:

results = binobp(4, 12, 3, 3)

mean(results)

sd(results)

quantile(results, probs = c(0.025, 0.975))
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We can test H0 : π ≤ π0 versus H1 : π > π0 by using the qbeta function
in conjunction with the parameters of the posterior beta distribution. For
example, assume that π0 = 0.1, and that y = 4 successes were observed in
n = 12 trials. If we use a beta(3,3) prior, then the posterior distribution of π
is beta(3 + 4 = 7,3 + 12 − 4 = 11). Therefore we can test H0 : π ≤ π0 = 0.1
versus H1 : π > π0 = 0.1 by typing

pbeta(0.1, 7, 11)

## or alternatively use the cdf

results = binobp(4, 12, 3, 3)

Fpi = cdf(results)

Fpi(0.1)

General Continuous Prior for π

binogcp is used to find the posterior when we have a binomial (n, π) ob-
servation, and we have a general continuous prior for π. Note that π must
go from 0 to 1 in equal steps of at least 0.01, and g(π) must be defined
at each of the π values. For example, suppose we have n = 12 trials and
observe y = 4 successes. In this example our continuous prior for π is a nor-
mal(µ = 0.5, σ = 0.25). Type the following commands into the R console:

binogcp(4, 12, density = "normal", params = c(0.5, 0.25))

This example is perhaps not quite general as it uses some of the built in
functionality of binogcp. In this second example we use a “user-defined”
general continuous prior. Let the probability density function be a triangular
distribution defined by

g(π) =

{
4π for 0 ≤ π ≤ 0.5 ,

4− 4π for 0.5 < π ≤ 1 .

Type the following commands into the R console:

pi = seq(0, 1, by = 0.001)

prior = createPrior(c(0, 0.5, 1), c(0, 1, 0))

pi.prior = prior(pi)

results = binogcp(4, 12, "user", pi = pi, pi.prior = pi.prior)

The createPrior function is good for creating piecewise priors where the user
can give the weights each point. The result is a function which uses linear
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interpolation to provide the value of the prior. The output of binogcp does
not print out the posterior mean and standard deviation. Nor does it print
out the values that give the tail areas of the integrated density function that
we need to determine credible interval for π. Instead, we use the functions
mean, sd, and cdf which numerically integrate a function over its range to
determine these quantities. We can find the cumulative distribution function
for posterior density g(π|y) using the R function cdf. Type the following
commands into the R console:

Fpi = cdf(results)

curve(Fpi, from = pi[1], to = pi[length(pi)],

xlab=expression(pi[0]),

ylab=expression(Pr(pi<=pi[0])))

These commands created a new function Fpi, which returns Pr (Y ≤ x), for
a given value x. To find a 95% credible interval (with equal tail areas) we use
the quantile function.

ci = quantile(results, probs = c(0.025, 0.975))

ci = round(ci, 4)

cat(paste0("Approximate 95% credible interval : [", paste0(ci,

collapse = ", "), "]\n"))

To test the hypothesis H0 : π ≤ π0 versus H1 : π > π0, we calculate the
value of the cdf at π0. If the value is less than the desired level of significance
α, then we can reject the null hypothesis. For example, if α = 0.05 in our
previous example, and π0 = 0.1, then we would type

Fpi = cdf(results)

Fpi(0.1)

This should give the following output:

[1] 0.001593768

Given that 0.0016 is substantially less than our significance value of 0.05,
then we would reject H0. We can also find the posterior mean and variance
by numerically evaluating

m′ =

∫ 1

0

πg(π|y) dπ

and

(s′)2 =

∫ 1

0

(π −m′)2g(π|y) dπ

This integration is handled for us by the R functions mean and sd. Type the
following commands into the R console:
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post.mean = mean(results)

post.sd = sd(results)

Of course we can use these values to calculate an approximate 95% credible
interval using standard theory:

ci = post.mean + c(-1, 1) * qnorm(0.975) * post.sd

ci = round(ci, 4)

cat(paste0("Approximate 95% credible interval : [", paste0(ci,

collapse = ", "), "]\n"))

Chapter 10: Bayesian Inference for Poisson

gamma(R, v) Prior for µ

The function poisgamp is used to find the posterior when we have a random
sample from a Poisson(µ) distribution, and we have a gamma(r, v) prior for µ.
The gamma family of priors is the conjugate family for Poisson observations,
so the posterior will be another member of the family, gamma(r′, v′) where
r′ = r+

∑
y and v′ = v+n. The simple rules are ”add sum of observations to

r” and ”add number of observations to v”. For example, suppose we have a
sample five observations from a Poisson(µ) distribution, 3, 4, 3, 0, 1. Suppose
we want to use a gamma(6, 3) prior for µ. Type the following commands into
the R console:

y = c(3, 4, 3, 0, 1)

poisgamp(y, 6, 3)

By default poisgamp returns a 99% Bayesian credible interval for µ. If we
want a credible interval of different width, then we can use the R functions
relating to the posterior gamma distribution function. For example, if we
wanted a 95% credible interval using the data above, then we would type

y = c(3, 4, 3, 0, 1)

results = poisgamp(y, 6, 3)

ci = quantile(results, probs = c(0.025, 0.975))

We can test H0 : µ ≤ µ0 versus H1 : µ > µ0 using the pgamma function. For
example, if in the example above we hypothesize µ0 = 3 and α = 0.05, then
we type
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Fmu = cdf(results)

Fmu(3)

General Continuous Prior for Poisson Parameter µ

The function poisgcp is used to find the posterior when we have a random
sample from a Poisson(µ) distribution and we have a continuous prior for µ.
Suppose we have a sample five observations from a Poisson(µ) distribution,
3, 4, 3, 0, 1. The prior density of µ is found by linearly interpolating the
values in Table D.3. To find the posterior density for µ with this prior, type
the following commands into the R console:

y = c(3, 4, 3, 0, 1)

mu = seq(0, 8, by = 0.001)

prior = createPrior(c(0, 2, 4, 8), c(0, 2, 2, 0))

poisgcp(y, "user", mu = mu, mu.prior = prior(mu))

The output of poisgcp does not include the posterior mean and standard de-

Table D.3 Continuous prior distribution for Poisson parameter µ has shape given
by interpolating between these values.

µ g(µ)

0 0

2 2

4 2

8 0

viation by default. Nor does it print out the cumulative distribution function
that allows us to find credible intervals. Instead we use the functions mean,
sd. cdf and quantile which numerically integrate the posterior in order to
compute the desired quantities. Type the following commands into the R
console to obtain the posterior cumulative distribution function:

results = poisgcp(y, "user", mu = mu, mu.prior = prior(mu))

Fmu = cdf(results)

We can use the inverse cumulative distribution function to find 95% Bayesian
credible interval for µ. This is done by finding the values of µ that correspond
to the probabilities .025 and .975. Type the following into the R console:
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quantile(results, probs = c(0.025, 0.975))

We can use the cumulative distribution function to test the null hypothesis
H0 : µ ≤ µ0 versus H1 : µ > µ0. For example, if we hypothesis µ0 = 1.8 and
our significance level is α = 0.05, then

Fmu(1.8)

returns 0.1579979. Given that this is greater than the desired level of signifi-
cance, we fail to reject the null hypothesis at that level.

Chapter 11: Bayesian Inference for Normal Mean

Discrete Prior for µ

Table D.4 A discrete prior for the normal mean µ

µ f(π)

2 .1

2.5 .2

3 .4

3.5 .2

4 .1

The function normdp is used to find the posterior when we have a vector of
normal(µ, σ2) observations and σ2 is known, and we have a discrete prior for
µ. If sigma2 is not known, then is it is estimated from the observations. For
example, suppose µ has the discrete distribution with five possible values: 2,
2.5, 3, 3.5, and 4. Suppose the prior distribution is given in Table D.4 and we
want to find the posterior distribution after we’ve observed a random sample
of n = 5 observations from a normal (µ, σ2 = 1) that are 1.52, 0.02, 3.35,
3.49, and 1.82. Type the following commands into the R console:

mu = seq(2, 4, by = 0.5)

mu.prior = c(0.1, 0.2, 0.4, 0.2, 0.1)

y = c(1.52, 0.02, 3.35, 3.49, 1.82)

normdp(y, 1, mu, mu.prior)

normal(M, s2) Prior for µ

The function normnp is used when we have a vector containing a random
sample of n observations from a normal(µ, σ2) distribution (with σ2 known)
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and we use a normal(m, s2) prior distribution. If the observation standard
deviation σ is not entered, the estimate calculated from the observations is
used, and the approximation to the posterior is found. If the normal prior is
not entered, a flat prior is used. The normal family of priors is conjugate for
normal(µ, σ2) observations, so the posterior will be another member of the
family, normal [m′, (s′)2] where the new constants are given by

1

(s′)2
=

1

s2
+

n

σ2

and

m′ =
1
b2

1
(b′)2

×m+
n
σ2

1
(b′)2

× ȳ .

For example, suppose we have a normal random sample of four observations
from normal(µ, σ2 = 1) that are 2.99, 5.56, 2.83, and 3.47. Suppose we use a
normal (3, 22) prior for µ. Type the following commands into the R console:

y = c(2.99, 5.56, 2.83, 3.47)

normnp(y, 3, 2, 1)

This gives the following output:

Known standard deviation :1

Posterior mean : 3.6705882

Posterior std. deviation : 0.4850713

Prob. Quantile

----------------

0.005 2.4211275

0.010 2.5421438

0.025 2.7198661

0.050 2.8727170

0.500 3.6705882

0.950 4.4684594

0.975 4.6213104

0.990 4.7990327

0.995 4.9200490

We can find the posterior mean and standard deviation from the output. We
can determine an (equal tail area) credible interval for µ by taking the appro-
priate quantiles that correspond to the desired tail area values of the interval.
For example, for 99% credible interval we take the quantiles with probability
0.005 and 0.995, respectively. These are 2.42 and and 4.92. Alternatively, we
can determine a Bayesian credible interval for µ by using the posterior mean
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and standard deviation in the normal inverse cumulative distribution function
qnorm. Type the following commands into the R console:

y = c(2.99, 5.56, 2.83, 3.47)

results = normnp(y, 3, 2, 1)

ci = quantile(results, probs = c(0.025, 0.975))

We can test H0 : µ ≤ µ0 versus H1 : µ > µ0 by using the posterior mean and
standard deviation in the normal cumulative distribution function pnorm. For
example, if H0 : µ0 = 2 and our desired level of significance is α = 0.05, then

Fmu = cdf(results)

Fmu(2)

## Alternatively

pnorm(2, mean(results), sd(results))

returns 2.87× 10−4 which would lead us to reject H0.

General Continuous Prior for µ

The function normgcp is used when we have a vector containing a random
sample of n observations from a normal (µ, σ2) distribution (with σ2 known)
and we have a vector containing values of µ, and a vector containing values
from a continuous prior g(µ). If the standard deviation σ is not entered,
the estimate calculated from the data is used, and the approximation to the
posterior is found.

For example, suppose we have a random sample of four observations from
a normal (µ, σ2 = 1) distribution. The values are 2.99, 5.56, 2.83, and 3.47.
Suppose we have a triangular prior defined over the range −3 to 3 by

g(µ) =

{
1
3

+ µ
9

for − 3 ≤ µ ≤ 0 ,
1
3 −

µ
9 for 0 < µ ≤ 3 .

Type the following commands into the R console:

y = c(2.99, 5.56, 2.83, 3.47)

mu = seq(-3, 3, by = 0.1)

prior = createPrior(c(-3, 0, 3), c(0, 1, 0))

results = normgcp(y, 1,density = "user", mu = mu,

mu.prior = prior(mu))

The output of normgcp does not print out the posterior mean and standard
deviation. Nor does it print out the values that give the tail areas of the
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integrated density function that we need to determine credible interval for µ.
Instead we use the function cdf which numerically integrates a function over
its range to determine these things. We can find the integral of the posterior
density g(µ|data) using this function. Type the following commands into the
R console:

Fmu = cdf(results)

curve(Fmu,from = mu[1], to = mu[length(mu)],

xlab = expression(mu[0]),

ylab=expression(Pr(mu<=mu[0])))

These commands created a new function Fmu, which returns Pr (Y ≤ x) for
a given value of x, i.e. the cumulative distribution function (cdf). To find a
95% credible interval (with equal tail areas), we use the quantile function

ci = quantile(results, probs = c(0.025, 0.975))

ci = round(ci, 4)

cat(paste0("Approximate 95% credible interval : [", paste(ci,

collapse = ", "), "]\n"))

To test a hypothesis H0 : µ ≤ µ0 versus H1 : µ > µ0, we can use our cdf Fmu
at µ0. If this is less than the chosen level of significance, we can reject the
null hypothesis at that level.

We can also find the posterior mean and variance by numerically evaluating

m′ =

∫
µg(µ|data) dµ

and

(s′)2 =

∫
(µ−m′)2g(µ|data) dµ.

using the functions mean and var which handle the numerical integration for
us. Type the following commands into the R console:

post.mean = mean(results)

post.var = var(results)

post.sd = sd(results)

Of course, we can use these values to calculate an approximate 95% credible
interval using standard theory:

z = qnorm(0.975)

ci = post.mean + c(-1, 1) * z * post.sd

ci = round(ci, 4)



USING THE INCLUDED R FUNCTIONS 559

cat(paste0("Approximate 95% credible interval : [", paste0(ci,

collapse = ", "), "]\n"))

Chapter 14: Bayesian Inference for Simple Linear Regression

The function bayes.lin.reg is used to find the posterior distribution of the
simple linear regression slope β when we have a random sample of ordered
pairs (xi, yi) from the simple linear regression model

yi = α0 + β × xi + ei ,

where the observation errors ei are independent normal(0, σ2) with known
variance. If the variance is not known, then the posterior is found using the
variance estimate calculated from the least squares residuals. We use inde-
pendent priors for the slope β and the intercept αx̄. These can be either
flat priors, or normal priors. (The default is flat priors for both slope and
intercept of x = x̄.) This parameterization yields independent posterior distri-
bution for slope and intercept with simple updating rules “posterior precision
equals prior precision plus precision of least squares estimate” and “the pos-
terior mean is weighted sum of prior mean and the least squares estimate
where the weights are the proportions of the precisions to the posterior pre-
cision.” Suppose we have vectors y and x, respectively, and we know the
standard deviation σ = 2. We wish to use a normal(0, 32) prior for β and a
normal(30, 102) prior for αx̄. First we create some data for this example.

set.seed(100)

x = rnorm(100)

y = 3 * x + 22 + rnorm(100, 0, 2)

Now we can use bayes.lin.reg

bayes.lin.reg(y, x, "n", "n", 0, 3, 30, 10, 2)

If we want to find a credible interval for the slope, then we use Equation 14.9
or Equation 14.10 depending on whether we knew the standard deviation or
used the value calculated from the residuals. In the example above, we know
the standard deviation, therefore we would type the following into R to find
a 95% credible interval for the slope:

results = bayes.lin.reg(y, x, "n", "n", 0, 3, 30, 10, 2)

ci = quantile(results$slope, probs = c(0.025, 0.975))
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To find the credible interval for the predictions use Equation 14.13 when we
know the variance or Equation 14.14 when we use the estimate calculated
from the residuals. In the example above we can ask for predicted values for
x = 1, 2, 3 by typing:

results = bayes.lin.reg(y, x, "n", "n", 0, 3, 30, 10, 2,

pred.x = c(1, 2, 3))

The list results will contain three extra vectors pred.x, pred.y and pred.se.
We can use these to get a 95% credible interval on each of the predicted values.
To do this type the following into the R console:

z = qnorm(0.975)

ci = cbind(results$pred.y - z * results$pred.se,

results$pred.y + z * results$pred.se)

Chapter 15: Bayesian Inference for Standard Deviation

S× an Inverse Chi-Squared(κ) Prior for σ2

The function nvaricp is used when we have a vector containing a random
sample of n observations from a normal(µ, σ2) distribution where the mean
µ is known. The S× an inverse chi-squared(κ) family of priors is the conju-
gate family for normal observations with known mean. The posterior will be
another member of the family where the constants are given by the simple
updating rules “add the sum of squares around the mean to S” and “add the
sample size to the degrees of freedom.” For example, suppose we have five
observations from a normal(µ, σ2) where µ = 200, which are 206.4, 197.4,
212.7, 208.5, and 203.4. We want to use a prior that has prior median equal
to 8. It turns out that 29.11× inverse chi-squared(κ = 1) distribution has
prior median equal to 8. Type the following into the R console:

y = c(206.4, 197.4, 212.7, 208.5, 203.4)

results = nvaricp(y, 200, 29.11, 1)

Note: The graphs that are printed out are the prior distributions of the stan-
dard deviation σ even though we are doing the calculations on the variance.

If we want to make inferences on the standard deviation σ using the pos-
terior distribution we found, such as finding an equal tail area 95% Bayesian
credible interval for σ, type the following commands into the R console:
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quantile(results, probs = c(0.025, 0.975))

We can also estimate σ using the posterior mean of κ and S if κ′ > 2 or
posterior median.

post.mean = mean(results)

post.median = median(results)

Chapter 16: Robust Bayesian Methods

The function binomixp is used to find the posterior when we have a bino-
mial(n, π) observations and use a mixture of a beta(a0, b0) and a beta(a1, b1)
for the prior distribution for π. Generally, the first component summarizes
our prior belief so that we give it a high prior probability. The second compo-
nent has more spread to allow for our prior belief being mistaken so we give
the the second component a low prior probability. For example, suppose our
first component is beta(10, 6) and the second component is beta(1, 1) and we
give a prior probability of .95 to the first component. We have performed 60
trials and observed y = 15 successes. To find the posterior distribution of the
binomial proportion with a mixture prior for π, type the following commands
into the R console:

binomixp(15, 60, c(10, 6), p = 0.95)

The function normmixp is used to find the posterior when we have normal(µ, σ2)
observations with known variance σ2 and our prior for µ is a mixture of two
normal distributions, a normal(m0, s

2
0) and a normal(m1, s

2
1). Generally, the

first component summarizes our prior belief so we give it a high prior prob-
ability. The second component is a fall-back prior that has a much larger
standard deviation to allow for our prior belief being wrong and has a much
smaller prior probability. For example, suppose we have a random sample of
observations from a normal(µ, σ2) in a vector x where σ2 = .22. Suppose we
use a mixture of a normal(10, .12) and a normal(10, .42) prior where the prior
probability of the first component is .95. To find the posterior distribution of
normal mean with the mixture prior for µ, type the following commands into
the R console:

x = c(9.88, 9.78, 10.05, 10.29, 9.77)

normmixp(x, 0.2, c(10, 0.01), c(10, 1e-04), 0.95)
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Chapter 17 Bayesian Inference for Normal with Unknown Mean

and Variance

The function bayes.t.test is used for performing Bayesian inference with
data from a normal with unknown mean and variance. The function can also
be used in the two sample case. This function has been designed to work as
much like t.test as possible. In fact, large portions of the code are taken from
t.test. If the user is carrying out a two-sample test with the assumption of
unequal variances, then no exact solution is possible. However, a numerical
solution is provided through a Gibbs sampling routine. This should be fairly
fast and stable; however, because it involves a sampling scheme, it will take a
few seconds to finish computation.

Chapter 18: Bayesian Inference for Multivariate Normal Mean Vec-

tor

mvnmvnp is used to find the posterior mean and variance–covariance matrix for
a set of multivariate normal data with known variance–covariance Σ assuming
a multivariate normal prior. If the prior density is MVN with mean vector
m0 and variance–covariance matrix V0, and Y is a sample of size n from a
MVN (µ,Σ) matrix (where µ is unknown), then the posterior density of µ is
MVN (m1,V1) where

V1 = (V−1
0 + nΣ−1)−1

and
m1 = V1V

−1
0 m0 + nV1Σ

−1ȳ

If Σ is not specified, then the sample variance–covariance matrix is used. In
this case the posterior distribution is multivariate t so using the results with
a MVN is only (approximately) valid for large samples.

We demonstrate the use of the function with some simulated data. We will
sample 50 observations from a MVN with a true mean of µ = (0, 2)′ and a
variance–covariance matrix of

Σ =

(
1 0.9

0.9 2

)
.

This requires the use of the mvtnorm package which you should have been
asked to install when you installed the Bolstad package.

set.seed(100)

mu = c(0, 2)

Sigma = matrix(c(1, 0.9, 0.9, 1), nc = 2, byrow = TRUE)

library(mvtnorm)

Y = rmvnorm(50, mu, Sigma)
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Once we have our random data we can use the mvnmvnp function. We will
choose a MVN prior with a mean of m0 = (0, 0)′ and a variance–covariance
matrix V0 = 104 × I2. This is a very diffuse prior centred on 0.

m0 = c(0, 0)

V0 = 10000 * diag(c(1, 1))

results = mvnmvnp(Y, m0, V0, Sigma)

The posterior mean and variance–covariance matrix can be obtained with the
mean and var functions. The cdf and inverse-cdf can be obtained with the
cdf and quantile functions. These latter two functions make calls to the
pmvnorm and qmvnorm functions from the mvtnorm package.

Chapter 19: Bayesian Inference for the Multiple Linear Regression

Model

bayes.lm is is used to find the posterior distribution of vector of regression
coefficients β when we have a random sample of ordered pairs (xi, yi) from
the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ei = xiβ + ei ,

where (usually) the observation errors ei are independent normal(0, σ2) with
known variance. If σ2 is not known, then we estimate it from the variance
of the residuals. Our prior for β is either a flat prior or a MVN (b0,V0)
prior. It is not necessary to use the function if we assume a flat prior as
the posterior mean of β is equal to the least squares estimate βLS , which is
also the maximum likelihood estimate. This means that the R linear model
function lm gives us the posterior mean and variance for a flat prior. The
posterior mean of β when we use a MVN (b0,V0) prior is found through the
simple updating rules given Equations 19.5 and 19.4. We will generate some
random data from the model

yi = 10 + 3x1i + x2i − 5x3i + εi, εiiidN(0, σ2 = 1)

to demonstrate the use of the function.

set.seed(100)

example.df = data.frame(x1 = rnorm(100),

x2 = rnorm(100),

x3 = rnorm(100))

example.df = within(example.df,

{y = 10 + 3 * x1 + x2 - 5 * x3 + rnorm(100)})
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The bayes.lm function has been designed to work as much like lm as possible.
If a flat prior is used (default), then bayes.lm calls lm. However, if we specify
b0 and V0, then it uses the estimates from lm in conjunction with the simple
updating rules. Note: bayes.lm centers each of the covariates before fitting
the model. That is, Xi is replaced with Xi−X̄i. This will make the regression
more stable, and alter the estimate of β0. We will use a MVN prior with a
mean of b0 = (0, 0, 0, 0)′ and a variance–covariance matrix V0 = 104 × I4.

b0 = rep(0, 4)

V0 = 1e4 * diag(rep(1, 4))

fit = bayes.lm(y ~ x1 + x2 + x3, data = example.df,

prior = list(b0 = b0, V0 = V0))

A modified regression table can be obtained by using the summary function.

summary(fit)

The mean and var functions are not implemented for the fitted object in this
case because they are not implemented for lm. However, the posterior mean
and posterior variance–covariance matrix of the coefficients can be obtained
using the $ notation. That is,

b1 = fit$post.mean

V1 = fit$post.var

These quantities may then, in turn, be used to carry out inference on β.
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Chapter 3: Displaying and Summarizing Data

3.1. (a) Stem-and-leaf plot for sulfur dioxide (SO2) data

leaf unit 1

0 33

0 5799

1 1334

1 6789

2 33

2 56789

3

3 5

4 34

4 6
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(b) Median Q2 = X[13] = 18 ,

Lower quartile Q1 = X[ 26
4 ] = X6+X7

2 = 10 , and

Upper quartile Q3 = X[ 78
4 ] = X19+X20

2 = 27.5

(c) Boxplot of SO2 data

50403020100

SO2

3.3. (a) Stem-and-leaf plot for distance measurements data

leaf unit .01

299.4 0

299.5 0

299.6 0

299.7 00

299.8 000

299.9 000000

300.0 0000000

300.1 00000000

300.2 0000000

300.3 00

300.4 00000

300.5 000

300.6 00

300.7 00

(b) Median = 300.1 Q1 = 299.9 Q3 = 300.35
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(c) Boxplot of distance measurement data

300.5300.0299.5

(d) Histogram of distance measurement data

300.8300.4300.2300.0299.8299.6299.2

1.5

1.0

0.5

0.0

C4

D
en

si
ty

(e) Cumulative frequency polygon of distance measurement data

300.8300.4300.2300.0299.8299.6299.2

50

40

30

20
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0

3.5. (a) Histogram of liquid cash reserve

1000060004000200010005000

0.0007

0.0006

0.0005
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0.0002

0.0001

0.0000
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ty
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(b) Cumulative frequency polygon of liquid cash reserve

1000060004000200010000

50

40

30

20

10

0

(c) Grouped mean = 1600

3.7. (a) Plot of weight versus length (slug data)

1009080706050403020100

14

12

10

8

6

4

2

0

length

w
ei

gh
t

(b) Plot of log(weight) versus log(length)

2.01.91.81.71.61.51.41.31.21.11.0

1

0

-1

-2

log len

lo
g 

w
t

(c) The point (1.5,−1.5) does not seem to fit the pattern. This corre-
sponds to observation 90. Dr. Harold Henderson at AgResearch New
Zealand has told me that there are two possible explanations for this
point. Either the digits of length were transposed at recording or the
decimal place for weight was misplaced.

Chapter 4: Logic, Probability, and Uncertainty

4.1. (a) P (Ã) = .6

(b) P (A ∩B) = .2

(c) P (A ∪B) = .7
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4.3. (a) P (Ã∩B) = .24 and P (B) = .4, therefore P (A∩B) = .16. P (A∩B) =
P (A)× P (B), therefore they are independent.

(b) P (A ∪B) = .4 + .4− .16 = .64

4.5. (a) Ω = {1, 2, 3, 4, 5, 6}
(b) A = {2, 4, 6}, P (A) = 3

6

(c) B = {3, 6}, P (B) = 2
6

(d) A ∩B = {6}, P (A ∩B) = 1
6

(e) P (A ∩B) = P (A)× P (B), therefore they are independent.

4.7. (a)

A =



(1, 1) (1, 3) (1, 5)

(2, 2) (2, 4) (2, 6)

(3, 1) (3, 3) (3, 5)

(4, 2) (4, 4) (4, 6)

(5, 1) (5, 3) (5, 5)

(6, 2) (6, 4) (6, 6)


P (A) = 18

36

(b)

B =

{
(1, 2)(1, 5)(2, 1)(2, 4)(3, 3)(3, 6)

(4, 2)(4, 5)(5, 1)(5, 4)(6, 3)(6, 6)

}
P (B) = 12

36

(c) A ∩B = {(1, 5)(2, 4)(3, 3)(4, 2)(5, 1)(6, 6)}
P (A ∩B) = 6

36

(d) P (A ∩B) = P (A)× P (B), yes they are independent.

4.9. Let D be “the person has the disease” and let T be “The test result was
positive.”

P (D|T ) =
P (D ∩ T )

P (T )
= .0875 .

4.10. Let A be ace drawn, and let F be face card or ten drawn.

P (“Blackjack′′) = P (A)× P (F |A) + P (F )× P (A|F )

(they are disjoint ways of getting “Blackjack”)

P (“Blackjack′′) =
16

208
× 64

207
+

64

208
× 16

207
= 0.047566 .
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Chapter 5: Discrete Random Variables

5.1. (a) P (1 < Y ≤ 3) = .4

(b) E[Y ] = 1.6

(c) Var[Y ] = 1.44

(d) E[W ] = 6.2

(e) Var[W ] = 5.76

5.3. (a) The filled-in table:

yi f(yi) yi × f(yi) y2
i × f(yi)

0 .0102 .0000 .0000

1 .0768 .0768 .0768

2 .2304 .4608 .9216

3 .3456 1.0368 3.1104

4 .2592 1.0368 4.1472

5 .0778 .3890 1.9450

Sum 1.0000 3.0000 10.2000

i. E[Y ] = 3

ii. Var[Y ] = 10.2− 32 = 1.2

(b) Using formulas

i. E[Y ] = 5× .6 = 3

ii. Var[Y ] = 5× .6× .4 = 1.2

5.5. (a)

Outcome Probability Outcome Probability

RRRR 30
50
× 30

50
× 30

50
× 30

50
RRRG 30

50
× 30

50
× 30

50
× 20

50

RRGR 30
50
× 30

50
× 20

50
× 30

50
RGRR 30

50
× 20

50
× 30

50
× 30

50

GRRR 20
50
× 30

50
× 30

50
× 30

50
GRRG 20

50
× 30

50
× 30

50
× 20

50

GRGR 20
50
× 30

50
× 20

50
× 30

50
GGRR 20

50
× 20

50
× 30

50
× 30

50

RRGG 30
50
× 30

50
× 20

50
× 20

50
RGGR 30

50
× 20

50
× 20

50
× 30

50

RGRG 30
50
× 20

50
× 30

50
× 20

50
GGGR 20

50
× 20

50
× 20

50
× 30

50

GGRG 20
50
× 20

50
× 30

50
× 20

50
GRGG 20

50
× 30

50
× 20

50
× 20

50

RGGG 30
50
× 20

50
× 20

50
× 20

50
GGGG 20

50
× 20

50
× 20

50
× 20

50

The outcomes having same number of green balls have the same prob-
ability.
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(b)

Y = 0 Y = 1 Y = 2 Y = 3 Y = 4

RRRR RRRG RRGG RGGG GGGG

RRGR RGRG GRGG

RGRR RGGR GGRG

GRRR GRRG GGGR

GRGR

GGRR

(c) P (Y = y) equals the “number of sequences having Y = y” times “the
probability of any individual sequence having Y = y.”

(d) The number of sequences having Y = y is
(
n
y

)
and the probability of

any sequence having Y = y successes is πy(1 − π)n−y where in this
case n = 4 and π = 20

50 . This gives the binomial(n, π) probability
distribution.

5.7. (a) P (Y = 2) = 22e−2

2!
= .2707

(b) P (Y ≤ 2) = 20e−2

0! + 21e−2

1! + 22e−2

2! = .1353 + .2707 + .2707 = .6767

(c) P (1 ≤ Y < 4) = 21e−2

1! + 22e−2

2! + 23e−2

3! = .2707+ .2707+ .1804 = .7218

5.9. The filled-in table:

X Y f(x)

1 2 3 4 5

1 .02 .04 .06 .08 .05 .25

2 .08 .02 .10 .02 .03 .25

3 .05 .05 .03 .02 .10 .25

4 .10 .04 .05 .03 .03 .25

f(y) .25 .15 .24 .15 .21

(a) The marginal distribution of X is found by summing across rows.

(b) The marginal distribution of Y is found by summing down columns.

(c) No they are not. The entries in the joint probability table aren’t all
equal to the products of the marginal probabilities.

(d) P (X = 3|Y = 1) = .05
.25 = .2
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Chapter 6: Bayesian Inference for Discrete Random Variables

6.1. (a) Bayesian universe:



(0, 0) (0, 1)

(1, 0) (1, 1)

(2, 0) (2, 1)

(3, 0) (3, 1)

(4, 0) (4, 1)

(5, 0) (5, 1)

(6, 0) (6, 1)

(7, 0) (7, 1)

(8, 0) (8, 1)

(9, 0) (9, 1)



(b) The filled-in table:

X prior Y = 0 Y = 1

0 1
10

1
10
× 9

9
1
10
× 0

9

1 1
10

1
10
× 8

9
1
10
× 1

9

2 1
10

1
10
× 7

9
1
10
× 2

9

3 1
10

1
10
× 6

9
1
10
× 3

9

4 1
10

1
10
× 5

9
1
10
× 4

9

5 1
10

1
10
× 4

9
1
10
× 5

9

6 1
10

1
10
× 3

9
1
10
× 6

9

7 1
10

1
10
× 2

9
1
10
× 7

9

8 1
10

1
10
× 1

9
1
10
× 8

9

9 1
10

1
10
× 0

9
1
10
× 9

9

which simplifies to
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X prior Y = 0 Y = 1

0 1
10

9
90

0
90

1 1
10

8
90

1
90

2 1
10

7
90

2
90

3 1
10

6
90

3
90

4 1
10

5
90

4
90

5 1
10

4
90

5
90

6 1
10

3
90

6
90

7 1
10

2
90

7
90

8 1
10

1
90

8
90

9 1
10

0
90

9
90

45
90

45
90

(c) The marginal distribution was found by summing down the columns.

(d) The reduced Bayesian universe is



(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(5, 1)

(6, 1)

(7, 1)

(8, 1)

(9, 1)



.

(e) The posterior probability distribution is found by dividing the joint
probabilities on the reduced Bayesian universe, by the sum of the joint
probabilities over the reduced Bayesian universe.

(f) The simplified table is
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X prior likelihood prior × likelihood posterior

0 1
10

0
9

0
90

0
45

1 1
10

1
9

1
90

1
45

2 1
10

2
9

2
90

2
45

3 1
10

3
9

3
90

3
45

4 1
10

4
9

4
90

4
45

5 1
10

5
9

5
90

5
45

6 1
10

6
9

6
90

6
45

7 1
10

7
9

7
90

7
45

8 1
10

8
9

8
90

8
45

9 1
10

9
9

9
90

9
45

Sum 45
90

1

6.3. Looking at the two draws together, the simplified table is

X prior likelihood prior × likelihood posterior

0 1
10

0
9
× 1 0

90
0

120

1 1
10

1
9
× 8

8
8

720
8

120

2 1
10

2
9
× 7

8
14
720

14
120

3 1
10

3
9
× 6

8
18
720

18
120

4 1
10

4
9
× 5

8
20
720

20
120

5 1
10

5
9
× 4

8
20
720

20
120

6 1
10

6
9
× 3

8
18
720

18
120

7 1
10

7
9
× 2

8
14
720

14
120

8 1
10

8
9
× 1

8
8

720
8

120

9 1
10

9
9
× 0

8
0

720
0

120

Sum 120
720

1

6.4. The filled-in table
π prior likelihood prior × likelihood posterior

.2 .0017 .2048 .0004 .0022

.4 .0924 .3456 .0319 .1965

.6 .4678 .2304 .1078 .6633

.8 .4381 .0512 .0224 .1380

marginal P (Y2 = 2) .1625 1.000



ANSWERS TO SELECTED EXERCISES 575

6.5. The filled in table
µ prior likelihood prior × likelihood posterior

1 .2 .1839 .0368 .2023

2 .2 .2707 .0541 .2976

3 .2 .2240 .0448 .2464

4 .2 .1465 .0293 .1611

5 .2 .0842 .0168 .0926

marginal P (Y = 2) .1819 1.000

Chapter 7: Continuous Random Variables

7.1. (a) E[X] = 3
8 = .375

(b) Var[X] = 15
82×9 = 0.0260417

7.3. The uniform distribution is also the beta(1, 1) distribution.

(a) E[X] = 1
2

= .5

(b) Var[X] = 1
22×3

= .08333

(c) P (X ≤ .25) =
∫ .25

0
1 dx = .25

(d) P (.33 < X < .75) =
∫ .75

.33
1 dx = .42

7.5. (a) P (0 ≤ Z < .65) = .2422

(b) P (Z ≥ .54) = .2946

(c) P (−.35 ≤ Z ≤ 1.34) = .5467

7.7. (a) P (Y ≤ 130) = .8944

(b) P (Y ≥ 135) = .0304

(c) P (114 ≤ Y ≤ 127) = .5826

7.9. (a) E[Y ] = 10
10+12 = .4545

(b) Var[Y ] = 10×12
(22)2×(23) = .0107797

(c) P (Y > .5) = .3308

7.10. (a) E[Y ] = 12
4

= 3

(b) Var[Y ] = 12
42 = .75

(c) P (Y ≤ 4) = .873

Chapter 8: Bayesian Inference for Binomial Proportion

8.1. (a) binomial(n = 150, π) distribution

(b) beta(30, 122)
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8.3. (a) a and b are the simultaneous solutions of

a

a+ b
= .5 and

a× b
(a+ b)2 × (a+ b+ 1)

= .152

Solution is a = 5.05 and b = 5.05

(b) The equivalent sample size of her prior is 11.11

(c) beta(26.05, 52.05)

8.5. (a) binomial(n = 116, π)

(b) beta(18, 103)

(c)

E[π|y] =
18

18 + 103
and Var[π|y] =

18× 103

(121)2 × (122)

(d) normal(.149, .03222)

(e) (.086,.212)

8.7. (a) binomial(n = 174, π)

(b) beta(11, 168)

(c)

E[π|y] =
11

11 + 168
= .0614

and

Var[π|y] =
11× 168

(179)2 × (180)
= .0003204

(d) normal(.061, .01792)

(e) (.026,.097)

Chapter 9: Comparing Bayesian and Frequentist Inferences for

Proportion

9.1. (a) binomial(n = 30, π)

(b) π̂f = 8
30

= .267

(c) beta(9, 23)

(d) π̂B = 9
32 = .281

9.3. (a) π̂f = 11
116 = .095

(b) beta(12, 115)
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(c) E[π|y] = .094 and Var[π|y] = .0006684
The Bayesian estimator π̂B = .094.

(d) (.044,.145)

(e) The null value π = .10 lies in the credible interval, so it remains a
credible value at the 5% level

9.5. (a) π̂f = 24
176 = .136

(b) beta(25, 162)

(c) E[π|y] = .134 and Var[π|y] = .0006160
The Bayesian estimator π̂B = .134.

(d)
P (π ≥ .15) = .255 .

This is greater than level of significance .05, so we can’t reject the
null hypothesis H0 : π ≥ .15.

Chapter 10: Bayesian Inference for Poisson

10.1. (a) Using positive uniform prior g(µ) = 1 for µ > 0:

i. The posterior is gamma(13, 5).

ii. The posterior mean, median, and variance are

E[µ|y1, . . . , y5] =
13

5
, median = 2.534,

Var[µ|y1, . . . , y5] =
13

52
.

(b) Using Jeffreys prior g(µ) = µ−
1
2 :

i. The posterior is gamma(12.5, 5).

ii. The posterior mean, median , and variance are

E[µ|y1, . . . , y5] =
12.5

5
, median = 2.434,

Var[µ|y1, . . . , y5] =
12.5

52
.

10.2. (a) Using positive uniform prior g(µ) = 1 for µ > 0:

i. The posterior is gamma(123, 200).

ii. The posterior mean, median, and variance are

E[µ|y1, . . . , y200] =
123

200
, median = .6133,

Var[µ|y1, . . . , y200] =
123

2002
.
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(b) Using Jeffreys prior g(µ) = µ−
1
2 :

i. The posterior is gamma(122.5, 200)

ii. The posterior mean, median, and variance are

E[µ|y1, . . . , y200] =
122.5

200
, median = .6108,

Var[µ|y1, . . . , y200] =
122.5

2002
.

Chapter 11: Bayesian Inference for Normal Mean

11.1. (a) posterior distribution

Value Posterior Probability

991 .0000

992 .0000

993 .0000

994 .0000

995 .0000

996 .0021

997 .1048

998 .5548

999 .3183

1000 .0198

1001 .0001

1002 .0000

1003 .0000

1004 .0000

1005 .0000

1006 .0000

1007 .0000

1008 .0000

1009 .0000

1010 .0000

(b) P (µ < 1000) = .9801.

11.3. (a) The posterior precision equals

1

(s′)2
=

1

102
+

10

32
= 1.1211.

The posterior variance equals (s′)2 = 1
1.1211 = .89197. The posterior

standard deviation equals s′ =
√
.89197 = .9444. The posterior mean
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equals

m′ =
1

102

1.1211
× 30 +

10
32

1.1211
× 36.93 = 36.87.

The posterior distribution of µ is normal(36.87, .94442).

(b) Test

H0 : µ ≤ 35 versus H1 : µ > 35.

Note that the alternative hypothesis is what we are trying to deter-
mine. The null hypothesis is that mean yield is unchanged from that
of the standard process.

(c)

P (µ ≤ .35) = P

(
µ− 36.87

.944
≤ 35− 36.87

.944

)
= P (Z ≤ −1.9739) = .024

This is less than the level of significance α = .05%, so we reject the
null hypothesis and conclude the yield of the revised process is greater
than .35.

11.5. (a) The posterior precision equals

1

(s′)2
=

1

2002
+

4

402
= .002525.

The posterior variance equals (s′)2 = 1
002525

= 396.0 The posterior

standard deviation equals s′ =
√

396.0 = 19.9. The posterior mean
equals

m′ =
1

2002

.002525
× 1000 +

4
402

.002525
× 970 = 970.3 .

The posterior distribution of µ is normal(970.3, .19.92).

(b) The 95% credible interval for µ is is (931.3, 1009.3).

(c) The posterior distribution of θ is normal(1392.8, 16.62).

(d) The 95% credible interval for θ is (1360,1425).

Chapter 12: Comparing Bayesian and Frequentist Inferences for Mean

12.1. (a) Posterior precision is given by

1

(s′)2
=

1

102
+

10

22
= 2.51.
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The posterior variance is (s′)2 = 1
2.51

= .3984 and the posterior stan-

dard deviation is s′ =
√
.3984 = .63119. The posterior mean is given

by

m′ =
1

102

2.51
× 75 +

10
22

2.51
× 79.430 = 79.4124 .

The posterior distribution is normal(79.4124, .631192).

(b) The 95% Bayesian credible interval is (78.18,80.65).

(c) To test
H0 : µ ≥ 80 versus µ < 80,

calculate the posterior probability of the null hypothesis.

P (µ ≥ 80) = P

(
µ− 79.4124

.63119
≥ 80− 79.4124

.63119

)
= P (Z ≥ .931) = .176.

This is greater than the level of significance, so we cannot reject the
null hypothesis.

12.3. (a) Posterior precision

1

(s′)2
=

1

802
+

25

802
= .0040625.

The posterior variance is (s′)2 = 1
.0040625 = 246.154 and the posterior

standard deviation is s′ =
√

246.154 = 15.69. The posterior mean is

m′ =
1

802

.0040625
× 325 +

25
802

.0040625
× 401.44 = 398.5.

The posterior distribution is normal(398.5, 15.692).

(b) The 95% Bayesian credible interval is (368, 429).

(c) To test
H0 : µ = 350 versus µ 6= 350,

we observe that the null value (350) lies outside the credible interval,
so we reject the null hypothesis H0 : µ = 350 at the 5% level of
significance.

(d) To test
H0 : µ ≤ 350 versus µ > 350

we calculate the posterior probability of the null hypothesis.

P (µ ≤ 350) = P

(
µ− 399

15.69
≤ 350− 399

15.69

)
= P (Z ≤ −3.12) = .0009.

This is less than the level of significance, so we reject the null hypoth-
esis and conclude µ > 350.
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Chapter 13: Bayesian Inference for Difference Between Means

13.1. (a) The posterior distribution of µA is normal(119.4, 1.8882), the poste-
rior distribution of µB is normal(122.7, 1.8882), and they are inde-
pendent.

(b) The posterior distribution of µd = µA−µB is normal(−3.271, 2.6712).

(c) The 95% credible interval for µA − µB is (−8.506, 1.965).

(d) We note that the null value 0 lies inside the credible interval. Hence
we cannot reject the null hypothesis.

13.3. (a) The posterior distribution of µ1 is normal(14.96, .37782), the posterior
distribution of µ2 is normal(15.55, .37782), and they are independent.

(b) The posterior distribution of µd = µ1−µ1 is normal(−.5847, .53432).

(c) The 95% credible interval for µ1 − µ1 is (−1.632, .462).

(d) We note that the null value 0 lies inside the credible interval. Hence
we cannot reject the null hypothesis.

13.5. (a) The posterior distribution of µ1 is normal(10.283, .8162), the posterior
distribution of µ2 is normal(9.186, .7562), and they are independent.

(b) The posterior distribution of µd = µ1 − µ2 is normal(1.097, 1.1132).

(c) The 95% credible interval for µ1 − µ2 is (−1.08, 3.28).

(d) We calculate the posterior probability of the null hypothesis

P (µ1 − µ2 ≤ 0) = .162 .

This is greater than the level of significance, so we cannot reject the
null hypothesis.

13.7. (a) The posterior distribution of µ1 is normal(1.51999, .0000094442).

(b) The posterior distribution of µ2 is normal(1.52001, .0000094442).

(c) The posterior distribution of µd = µ1−µ2 is normal(−.00002, .0000132).

(d) A 95% credible interval for µd is (−.000046, .000006).

(e) We observe that the null value 0 lies inside the credible interval, so
we cannot reject the null hypothesis.

13.9. (a) The posterior distribution of π1 is beta(172, 144).

(b) The posterior distribution of π2 is beta(138, 83).

(c) The approximate posterior distribution of π1−π2 is normal(−.080, .04292).

(d) The 99% Bayesian credible interval for π1 − π2 is (−.190, .031).

(e) We observe that the null value 0 lies inside the credible interval, so we
cannot reject the null hypothesis that the proportions of New Zealand
women who are in paid employment are equal for the two age groups.
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13.11. (a) The posterior distribution of π1 is beta(70, 246).

(b) The posterior distribution of π2 is beta(115, 106).

(c) The approximate posterior distribution of π1−π2 is normal(−.299, .04082).

(d) We calculate the posterior probability of the null hypothesis:

P (π1 − π2 ≥ 0) = P (Z ≥ 7.31) = .0000.

We reject the null hypothesis and conclude that the proportion of New
Zealand women in the younger group who have been married before
age 22 is less than the proportion of New Zealand women in the older
group who have been married before age 22.

13.13. (a) The posterior distribution of π1 is beta(137, 179).

(b) The posterior distribution of π2 is beta(136, 85).

(c) The approximate posterior distribution of π1−π2 is normal(−.182, .04292).

(d) The 99% Bayesian credible interval for π1 − π2 is (−.292,−.071).

(e) We calculate the posterior probability of the null hypothesis:

P (π1 − π2 ≥ 0) = P (Z ≥ 4.238) = .0000.

We reject the null hypothesis and conclude that the proportion of New
Zealand women in the younger group who have given birth before age
25 is less than the proportion of New Zealand women in the older
group who have given birth before age 25.

13.15. (a) The measurements on the same cow form a pair.

(c) The posterior precision equals

1

32
+

7

12
= .703704.

The posterior variance equals 1
.703704 = .142105 and the posterior

mean equals

1
32

.703704
× 0 +

7

12
.703704×−3.9143 = −3.89368 .

The posterior distribution of µd is normal(−3.89, .3772).

(d) The 95% Bayesian credible interval is (−4.63,−3.15).

(e) To test the hypothesis

H0 : µd = 0 versus H1 : µd 6= 0 ,

we observe that the null value 0 lies outside the credible interval, so
we reject the null hypothesis.
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Chapter 14: Bayesian Inference for Simple Linear Regression

14.1. (a) and (c) The scatterplot of oxygen uptake on heart rate with least
squares line
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(b) The least squares slope

B =
145.610− 107× 1.30727

11584.1− 1072
= 0.0426514 .

The least squares y-intercept equals

A0 = 1.30727− .0426514× 107 = −3.25643 .

(d) The estimated variance about the least squares line is found by taking
the sum of squares of residuals and dividing by n − 2 and equals
σ̂2 = .13032.

(e) The likelihood of β is proportional to a normal(B, σ2

SSx
), where B is

the least squares slope and SSx = n×(x2− x̄2) = 1486 and σ2 = .132.
The prior for β is normal(0, 12). The posterior precision will be

1

(s′)2
=

1

12
+
SSx
.132

= 87930 ,

the posterior variance will be (s′)2 = 1
87930 = .000011373, and the

posterior mean is

m′ =
1
12

87930
× 0 +

SSx
.132

87930
× .0426514 = .0426509 .

The posterior distribution of β is normal(.0426, .003372)

(f) A 95% Bayesian credible interval for β is (.036, .049).

(g) We observe that the null value 0 lies outside the credible interval, so
we reject the null hypothesis.
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14.3. (a) and (c) The scatterplot of distance on speed with least squares line
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(b) The least squares slope

B =
5479.83− 105× 52.5667

11316.7− 1052
= −0.136000 .

The least squares y-intercept equals

A0 = 52.5667−−0.136000× 105 = 66.8467 .

(d) The estimated variance about the least squares line is found by taking
the sum of squares of residuals and dividing by n − 2 and equals
σ̂2 = .5712562.

(e) The likelihood of β is proportional to a normal(B, σ2

SSx
) where B is

the least squares slope and SSx = n×(x2− x̄2) = 1750 and σ2 = .572.
The prior for β is normal(0, 12). The posterior precision will be

1

(s′)2
=

1

12
+
SSx
.572

= 5387.27 ,

the posterior variance (s′)2 = 1
5387.27 = .000185623, and the posterior

mean is

m′ =
1
12

5387.27
× 0 +

SSx
.572

5387.27
× (−0.136000) = −.135975 .

The posterior distribution of β is normal(−.136, .01362).

(f) A 95% Bayesian credible interval for β is (−.163,−0.109).

(g) We calculate the posterior probability of the null hypothesis.

P (β ≥ 0) = P (Z ≥ 9.98) = .0000 .

This is less than the level of significance, so we reject the null hypoth-
esis and conclude that β < 0.
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14.5. (a) and (c) Scatterplot of strength on fiber length with least squares line

908070

135

125

115

105

 95

 85

fiber length

st
re

ng
th

(b) The least squares slope

B =
8159.3− 79.6× 101.2

6406.4− 79.62
= 1.47751 .

The least squares y-intercept equals

A0 = 101.2− 1.47751× 79.6 = −16.4095 .

(d) The estimated variance about the least squares line is found by taking
the sum of squares of residuals and dividing by n − 2 and equals
σ̂2 = 7.6672.

(e) The likelihood of β is proportional to a normal(B, σ2

SSx
), where B

is the least squares slope and SSx = n × (x2 − x̄2) = 702.400 and
σ2 = 7.72. The prior for β is normal(0, 102). The posterior precision
will be

1

102
+
SSx
7.72

= 11.8569 ,

the posterior variance = 1
11.8569 = .0843394, and the posterior mean

is
1

102

11.8569
× 0 +

SSx
7.72

11.8569
× 1.47751 = 1.47626 .

The posterior distribution of β is normal(1.48, .292).

(f) A 95% Bayesian credible interval for β is (.91, 2.05).

(g) To test the hypothesis

H0 : β ≤ 0 versus H1 : β > 0 ,

we calculate the posterior probability of the null hypothesis.

P (β ≤ 0) = P

(
β − 1.48

.29
≤ 0− 1.48

.29

)
= P (Z ≤ −5.08) = .0000 .

This is less than the level of significance, so we reject the null hypoth-
esis and conclude β > 0.
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(h) The predictive distribution for the next observation y11 taken for a
yarn with fiber length x11 = 90 is normal(116.553, 8.6222).

(i) A 95% credible interval for the prediction is

116.553± 1.96× 8.622 = (99.654, 133.452).

14.7. (a) The scatterplot of number of ryegrass plants on the weevil infestation
rate where the ryegrass was infected with endophyte. The does not
look linear. It has a dip at infestation rate of 10.
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(c) The least squares slope is given by

B =
19.9517− 8.75× 2.23694

131.250− 8.752
= .00691966 .

The least squares y-intercept equals

A0 = 2.23694− .00691966× 8.75 = 2.17640 .

2010 0

3

2

1

0

C23

(d) σ̂2 = .8501112.

(e) The likelihood of β is proportional to a normal(B, σ2

SSx
), where B is

the least squares slope and SSx = n× (x2 − x̄2) = 1093.75 and σ2 =
.8501112. The prior for β is normal(0, 12). The posterior precision is

1

(s′)2
=

1

12
+

SSx
.8501112

= 1514.45 .

the posterior variance is (s′)2 = 1
1514.45 = .000660307, and the poste-

rior mean is

m′ =
1
12

1514.45
× 0 +

SSx
.8501112

1514.45
× .00691966 = .00691509 .
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The posterior distribution of β is normal(.0069, .02572).

14.9. (a) To find the posterior distribution of β1 − β2, we take the difference
between the posterior means, and add the posterior variances since
they are independent. The posterior distribution of β1 − β2 is nor-
mal(1.012, .0322).

(b) The 95% credible interval for β1 − β2 is (.948, 1.075).

(c) We calculate the posterior probability of the null hypothesis:

P (β1 − β2 ≤ 0) = P (Z ≤ −31) = .0000 .

This is less than the level of significance, so we reject the null hy-
pothesis and conclude β1 − β2 > 0. This means that infection by
endophyte offers ryegrass some protection against weevils.

Chapter 15: Bayesian Inference for Standard Deviation

15.1. (a) The shape of the likelihood function for the variance σ2 is

f(y1, . . . , yn|σ2) ∝ (σ2)−
n
2 e−

∑
(yi−µ)2

2σ2

∝ (σ2)−
10
2 e−

1428
2σ2 .

(b) The prior distribution for the variance is positive uniform g(σ2) = 1
for σ2 > 1. (This improper prior can be represented as S× an inverse
chi-squared distribution with −2 degrees of freedom where S = 0.)
The shape of the prior distribution for the standard deviation σ is
found by applying the change of variable formula. It is

gσ(σ) ∝ gσ2(σ2)× σ
∝ σ.

(c) The posterior distribution of the variance is 1428 × an inverse chi-
squared with 8 degrees of freedom. Its formula is

gσ2(σ2|y1, . . . , y10) =
1428

8
2

2
8
2 Γ(8

2
)
× 1

(σ2)
8
2 +1

e−
1428
2σ2 .

(d) The posterior distribution of the standard deviation is found by using
the change of variable formula. It has shape given by

gσ2(σ2|y1, . . . , y10) =
1428

8
2

2
8
2 Γ( 8

2)
× 1

(σ)8+1
e−

1428
2σ2 .

(e) A 95% Bayesian credible interval for the standard deviation is(√
1428

17.5345
,

√
1428

2.17997

)
= (9.024, 25.596) .
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(f) To test H0 : σ ≤ 8 versus H1 : σ > 8, we calculate the posterior
probability of the null hypothesis.

P (σ ≤ 8) = P (W ≥ 1428

82
)

= P (W ≥ 22.3125),

where W has the chi-squared distribution with 8 degrees of freedom.
From Table B.5 we see that this lies between the upper tail values
for .005 and .001. The exact probability of the null hypothesis found
using Minitab is .0044. Hence we would reject the null hypothesis and
conclude σ > 8 at the 5% level of significance.

15.2. (a) The shape of the likelihood function for the variance σ2 is

f(y1, . . . , yn|σ2) ∝ (σ2)−
n
2 e−

∑
(yi−µ)2

2σ2

∝ (σ2)−
10
2 e−

9.4714
2σ2 .

(b) The prior distribution for the variance is Jeffreys’ prior g(σ2) = (σ2)−1

for σ2 > 1. (This improper prior can be represented as S× an inverse
chi-squared distribution with 0 degrees of freedom where S = 0.) The
shape of the prior distribution for the standard deviation σ is found
by applying the change of variable formula. It is

gσ(σ) ∝ gσ2(σ2)× σ
∝ σ−1 .

(c) The posterior distribution of the variance is 9.4714× an inverse chi-
squared with 10 degrees of freedom. Its formula is

gσ2(σ2|y1, . . . , y10) =
9.4714

10
2

2
10
2 Γ( 10

2 )
× 1

(σ2)
10
2 +1

e−
9.4714
2σ2 .

(d) The posterior distribution of the standard deviation is found by using
the change of variable formula. It has shape given by

gσ2(σ2|y1, . . . , y10) =
9.4714

10
2

2
10
2 Γ(10

2 )
× 1

(σ)10+1
e−

9.4714
2σ2 .

(e) A 95% Bayesian credible interval for the standard deviation is(√
9.4714

20.483
,

√
9.4714

3.247

)
= (.680, 1.708).
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(f) To test H0 : σ ≤ 1.0 versus H1 : σ > 1.0, we calculate the posterior
probability of the null hypothesis.

P (σ ≤ 1.0) = P (W ≥ 9.4714

12
)

= P (W ≥ 9.4714),

where W has the chi-squared distribution with 10 degrees of freedom.
From Table B.5 we see that this lies between the upper tail values for
.50 and .10. (The exact probability of the null hypothesis found using
Minitab is .4880.) Hence we can not reject the null hypothesis and
must conclude σ ≤ 1.0 at the 5% level of significance.

15.3. (a) The shape of the likelihood function for the variance σ2 is

f(y1, . . . , yn|σ2) ∝ (σ2)−
n
2 e−

∑
(yi−µ)2

2σ2

∝ (σ2)−
5
2 e−

26.119
2σ2 .

(b) The prior distribution is S× an inverse chi-squared distribution with
1 degree of freedom where S = .4549× 42 = 7.278. Its formula is

gσ2(σ2) =
7.278

1
2

2
1
2 Γ( 1

2
)
× 1

(σ2)
1
2 +1

e−
7.278
2σ2 .

(c) The shape of the prior distribution for the standard deviation is found
by applying the change of variable formula. It is

gσ(σ) ∝ gσ2(σ2)× σ

∝ 1

(σ)2
e−

7.278
2σ2 .

(d) The posterior distribution of the variance is 33.40× an inverse chi-
squared with 6 degrees of freedom. Its formula is

gσ2(σ2|y1, . . . , y5) =
33.40

6
2

2
6
2 Γ( 6

2 )
× 1

(σ2)
6
2 +1

e−
33.40
2σ2 .

(e) The posterior distribution of the standard deviation is found by using
the change of variable formula. It has shape given by

gσ(σ|y1, . . . , y5) ∝ gσ2(σ2|y1, . . . , y5)× σ

∝ 1

(σ2)
5
2 +1

e−
33.40
2σ2 .



590 ANSWERS TO SELECTED EXERCISES

(f) A 95% Bayesian credible interval for the standard deviation is(√
33.40

14.449
,

√
33.40

1.237

)
= (1.520, 5.195).

(g) To test H0 : σ ≤ 5 versus H1 : σ > 5 we calculate the posterior
probability of the null hypothesis.

P (σ ≤ 5) = P

(
W ≥ 33.40

52

)
= P (W ≥ 1.336) ,

where W has the chi-squared distribution with 6 degrees of freedom.
From Table B.5 we see that this lies between the upper tail values
for .975 and .95. (The exact probability of the null hypothesis found
using Minitab is .9696.) Hence we would accept the null hypothesis
and conclude σ ≤ 5 at the 5% level of significance.

Chapter 16: Robust Bayesian Methods

16.1. (a) The posterior g0(π|y = 10) is beta(7 + 10, 13 + 190).

(b) The posterior g1(π|y = 10) is beta(1 + 10, 1 + 190).

(c) The posterior probability P (I = 0|y = 10) = .163.

(d) The marginal posterior g(π|y = 10) = .163 × g0(π|y = 10) + .837 ×
g1(π|y = 10). This is a mixture of the two beta posteriors where the
proportions are the posterior probabilities of I.

16.3. (a) The posterior g0(µ|y1, . . . , y6) is normal(1.10061, .0008982).

(b) The posterior g1(µ|y1, . . . , y6) is normal(1.10302, .0022).

(c) The posterior probability P (I = 0|y1, . . . , y6) = .972.

(d) The marginal posterior

g(µ|y1, . . . , y6) = .972× g0(µ|y1, . . . , y6) + .028× g1(µ|y1, . . . , y6) .

This is a mixture of the two normal posteriors where the proportions
are the posterior probabilities of I.
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