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PREFACE

A quarter of the century has elapsed since I gave my first course in structural reliability
to graduate students at the University of Waterloo in Canada. Since that time on I have
given many courses and seminars to students, researchers, designers, and site engineers
interested in reliability. I also participated in and was responsible for numerous projects
where reliability solutions were required.

During that period, the scope of structural reliability gradually enlarged to become
a substantial part of the general reliability theory. First, it is apparent that bearing structures
should not be isolated objectives of interest, and, consequently, that constructed facilities
should be studied. Second, a new engineering branch has emerged - reliability engineering.
These two facts have highlighted new aspects and asked for new approaches to the theory
and applications.

I always state in my lectures that the reliability theory is nothing more than
mathematized engineering judgment. In fact, thanks mainly to probability and statistics,
and also to computers, the empirical knowledge gained by Humankind’s construction
experience could have been transposed into a pattern of logic thinking, able to produce
conclusions and to forecast the behavior of engineering entities. This manner of thinking
has developed into an intricate network linked by certain rules, which, in a way, can be
considered a type of reliability grammar. We can discern many grammatical concepts in
the general structure of the reliability theory.

It has been my intention to outfit the reader with a system of principal concepts,
rules, and techniques that can be used to understand many practical issues and unravel
problems encountered in an engineer’s life. I have tried to avoid repeating facts described
elsewhere, and refer the reader to appropriate sources. This, of course, has been possible
only to a certain degree; obviously, the basic techniques have to be mentioned in any
monograph to provide a useful source book on reliability engineering. On the other hand,
many important issues of the structural reliability theory could not be covered, as, for
example, those of stochastic dynamics and stochastic finite elements.

I did not want to overburden the reader by a long list of references. Moreover,
it has been difficult to choose papers and books that are the best for further reading. I
have aimed at indicating publications where further information can be obtained and which
can guide the reader and help as sources for more detailed studies. For this reason, the
majority of references relates to publications that appeared in the last decade and that are
currently accessible to western reader. There are many important publications in Polish,
Russian and other languages that could not be included in the list. Fortunately, the
information retrieval systems are now so well developed that they can comfortably supply
any information needed. One only has to know what one needs.
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I could not possibly have written this book without contact with reliability-minded
colleagues in many countries; they have participated by discussions and criticisms in
formulating my concepts. I am rather unhappy that I am not able to enumerate all of them
here. However, I should definitely mention the creative atmosphere which I had enjoyed
in the Civil Engineering Departments of the University of Waterloo, Canada, Chalmers
Tekniska Hogskola in Gothenburg, Sweden, and Politecnico di Milano, Italy; there I had
passed short but fruitful periods of teaching and research. Of course, I cannot fail to
remember my Alma Mater, the Czech Technical University in Prague, and particularly
its Klokner Institute, where I have spent the main part of my career.

My special thanks have to be extended to my friend and long-time close collaborator,
Prof. Milo§ Vorli¢ek, who has affected my statistically untrained mind and who participated
in creating the background to the book. In solving numerous theoretical and practical
problems jointly with Milo$ I have leamed to be both cautious and audacious in introducing
probability and statistics into the thinking system.

Thanks to Dr. Nigel Hollingworth and Ms. Mirjam van Eijsden from Kluwer
Academic Press for editorial advice and for trying to debug my Central European English.
Thanks also to Prof. E.G. Frankel from the Department of Ocean Engineering, MIT, for
some language editing and encouragements.

Thanks to Ms. Katetina Konifovd for her meticulous drawings and also for her
technical help.

Finally, I would like to give my warm thanks to my wife, Libue, who was so
patient when I passed most of my time working on the compuscript. She was reading and
re-reading the text several times, trying to find out my fundamental blunders in English;
she also helped in solving many linguistic problems. I am afraid we have not been so
successful as we have wished.

MILIiK TICHY

Prague, Czechia
February 1993
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PRINCIPAL CONCEPTS

Key concepts in this chapter: reliability system; constructed facility, CF; S-L-E system;
structure; load; environment, life; uncertainty; indefiniteness, reliability parameters, design
parameters, flaw, aberration, deterioration, defect; damage, deficiency; failure; fault;
current use; ageing; state profile; limit state; serviceability limit state, SLS; ultimate limit
state, ULS; string of limit states, progressive deterioration, progressive collapse; stages;
design situations, design criterion, reliability requirement; design parameter, design format;
codified design format.

1.1 RELIABILITY SYSTEMS S-L-E
AND CF

For the ensuing study of reliability requirements and probability-based design methods
it is necessary to define properly the space which the respective requirements and methods
refer to. Entire systems, not only their isolated components, have to be subjected to
reliability analysis. The basic system usually investigated, for which the reliability require-
ments are formulated, is the STRUCTURE-LOAD-ENVIRONMENT system (S-L-E, Figure
1.1). It is assumed that the basic design parameters (for example, characteristic strengths,
representative values of loads, reliability factors, cf. Section 1.4) are specified in the codes
for the structural design, in the load codes, and in other documents.

However, if the determination of design parameters constitutes a part or even the
main goal of the reliability analysis, a basic examination of an S-L-E system does not
suffice, and a higher order system has to be examined - the CONSTRUCTED FACILITY
(CF, Figure 1.1). In such a case the system S-L-E becomes a subsystem Sm, of the system
CF, which obviously contains also further subsystems (Sm,, Sm,, .., Sm PR | T
such systems are, for example, wiring, water supply, draining, HVAC). The subsystems Sm,
through Sm, , though they should always be considered, will not be discussed in this book.
It should be mentioned, for completeness’ sake, that only some of the subsystems are
mutually disjunctive - cf., for example, in Figure 1.1 the pairs (Sm,, Sm,) and (Sm,,
Sm, ). The system reliability of vertical transport in a building can depend on horizontal
displacements of the building under the action of wind. Two conjunctive systems are dealt
with in this case. Three conjunctive systems are, for example, heating, water supply, and
wiring.
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Fig. 1.1 - System "CONSTRUCTED FACILITY" (CF) and subsystem "STRUCTURE-

LOAD-ENVIRONMENT" (S-L-E). Subsystems $, L, E, and subsystems Sm, are

disjunctive (for example, Sm, and S-L-E) or conjunctive (for example, Sm, and Sm,).
Undulations indicate uncertainties and indefiniteness.

A CF system is fixed to a certain site where it fulfills its function for a specified
period called life, T,. When, at a given point in time ¢ , the system has reached a certain
age T, < T, the quantity

Tres = TO - Ta
is called the residual life. The time location of the CF system is defined by the point in
time £, after which the system is ready to be used. This does not mean that the use really
starts at this particular moment; it frequently happens that constructed facilities are not
employed for long periods after their completion. As all subsystems of the CF system
change during its life, the CF system itself constantly changes (Figure 1.2). - Note that
the fixation in space and time is a typical feature of civil engineering systems. Systems
encountered in mechanical engineering are expected to move in space and time.

The description of CF can never be perfect. As a rule, it is never free of larger
or smaller uncertainty and indefiniteness. The distinction between these two concepts is
important when reliability parameters and design parameters are to be established; this
will be shown in Section 14.7.

Uncertainty refers to imprecise and incomplete information about the phenomenon
investigated. For example, it is known that a structure will be subjected to wind load but
the exact magnitudes of this load at specific moments of the life of the facility are unknown.
Similarly, it can be expected that the grade of concrete will be, for example, C20, but
it is not known what the values of the compression strength in particular cross-sections
will be. The nature of uncertainties is mainly random. In a way, uncertainties can be
considered statistical regularities (Ellingwood 1992).

Indefiniteness refers to the lack of unambiguous information whether the investigated
phenomenon will occur or not. It is, for example, never known whether a designed building
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will be constructed; in many cases this indefiniteness is anticipated in the bidding designs.
Further, it is never certain that the building will be used to conform with the assumptions
made during the design. It is not even sure that the constructed building will be used at
all! - Here, obviously, limit cases are introduced as examples but they are not unrealistic
and we have to take them into account.

—e

Fig. 1.2 - Time-dependent behavior of a "CONSTRUCTED FACILITY" system
(t, = moment of erection of the facility, T, = age of the facility at ¢ , T, = life,
T, = residual life.

The uncertainty and indefiniteness can be identified not only in partial phenomena
but also in subsystems of the S-L-E system and their components, or also in the linkage
of subsystems and components. In Figure 1.1 this is indicating by undulated lines.

The uncertainties can either be random or non-random. This depends on the
properties of the respective phenomenon. For example, the oscillation of wind velocity
is mainly random, though in certain situations the wind velocity can be influenced by non-
random phenomena (for example, by buildings in the neighborhood of the facility). In
the main, indefiniteness are non-random, despite some randomness caused, for example,
by random variations of socio-economic phenomena. It is generally true that uncertainties
are predictable, and can be preconceived and expressed in unbiased terms, especially in
terms of mathematical statistics, whereas indefiniteness is unpredictable, and can be ex-
pressed, in the best case, in terms of engineering judgment.
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1.2 DEFECTOLOGIC CONCEPTS

In a reliability analysis we have to make clear what is the nature of the adverse effects
of time, overloading, insufficient quality of material, poor workmanship, as well as of
other effects of human imperfections. Any of these adverse phenomena can be experienced
with construction projects of all kind and the task of the designer, contractor, client, etc.,
is to make the facility as reliable as possible against consequences of such effects. To
classify the adverse effects, it is essential to define some basic defectologic concepts.

1.2.1 Flaw

From the onset of its existence, a constructed facility is endowed with inherent flaws.
Additional flaws appear during the life of the CF system. Any component of CF and S-L-E
reliability systems is subjected to potential flaws of both types. In general, we can define
as flaw a deviation from the expected properties of the system or any of the subsystems.
This deviation may be random or non-random.

We can say, though we are not used to doing so, that flaws occur in load if, for
example, the structure is erroneously or willfully subjected to loads or other actions that
were not assumed in design. Or, the structure’s environment can become flawed, for
example, due to corrosive media produced by some uncontrolled technology that virtually
could not be envisaged at the time of design or construction. Obviously, load flaws as
well as environmental flaws can be avoided by sufficient supervision of the respective
facility. Similarly, the structural flaws can be eliminated by relevant quality control and
inspection.

Nevertheless, for a thorough reliability analysis the problem of flaws is not so
simple. First, we have to state that a flaw in the S-L-E system is only that deviation of
subsystem properties that can damage the structure. There are many deviations that are
favorable from the viewpoint of reliability of a CF system. Let us give a few simple exam-
ples of flaws with reference to the S-L-E system:

Structural flaws: imperfect weld in a steel frame, honeycomb concrete, incorrect
positioning of rebars, undersizing of a critical cross-section, excessive amount of knots
in wood, weakening of brickwork by an incision; favorable deviations: oversizing of a
cross-section, higher grade of concrete than required by the designer, etc.

Load flaws: overloading of precast members during construction procedures,
erroneous design loading pattern, neglecting loads due to temperature effects, misuse of
a pedestrian bridge for a driveway; favorable deviations: smaller (or sometimes greater!)
dead load due to pavements on floors, erroneous classifying of the site to a snow zone
with higher nominal load, etc.

Environmental flaws: corrosive effects of anti-freeze chemicals, high air humidity;
Sfavorable deviations: wind shading of the facility by adjacent buildings, improvements
of the atmosphere by ecological actions, etc.

Obviously, the origin of flaws can be diverse; we can distinguish:

# flaws in design specifications, consisting of incorrect assumptions on
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the use of the facility, life expectancy, location, geological situation, etc.;

¢ flaws in codes and other regulatory documents, consisting of imperfect
or incomplete formulation of individual clauses, errors in data, misprints in docu-
ments, etc.;

@ flaws in design and execution documents, that is, in calculations, software,
structural drawings, shop drawings, etc.;

¢ flaws in execution and workmanship, including the material supply,
waterproofing, insulation, fire protection, draining, etc.;

& flaws in quality control and quality assurance, including also flaws of
load testing, acceptance procedures, etc.;

® flaws in use, caused by the user of the facility and other people; they
consist in deviations from the expected load, erroneous adjustments of the structure,
etc.;

¢ flaws in maintenance resulting from insufficient care or lack of care of
the facility.

According to their physical nature, flaws can be classified as

4 hidden and manifest;
4 removable and irremovable;
4 significant and insignificant.

Theoretically, we also have to differentiate between flaws that have been discovered
and flaws that have not been discovered. A manifest flaw can remain undiscovered whereas
a flaw hidden for a certain period can suddenly become apparent.

A flaw can be permanent or transient. A transient flaw disappears when the
circumstances that have caused the flaw vanish. For example, an excessive deflection of
a bridge structure can be caused by a temporary overload (a transient flaw in the LOAD
subsystem). When the overload is withdrawn, the deflection will disappear or diminish.
Obviously, this overload is a reversible flaw. 1f, however, the excessive deflection occurs
under current load, it is due to insufficient stiffness of the structure (permanent flaw in
the STRUCTURE subsystem) then the excessive deflection is permanent, and the stiffness
flaw is irreversible.

It is impossible to find CF that remains flawless during its entire life, and thus
it may be argued that flaws are unavoidable phenomena. Nevertheless, appropriate measures
can always be taken to limit incidence of flaws, the possibilities and extent of such measures
depending mainly upon the economical climate. If sufficient funds for inspection are
available, structural flaws can be substantially reduced or even eliminated, or if they still
occur they can be detected and removed. Similarly, load and environmental flaws can be
limited by regular supervision of the constructed facility, by careful maintenance, etc.
In general, it can be concluded, that flaws are preventable phenomena that result from
human activity or, on the contrary, non-activity. Groups and individuals liable for flaws
do not only originate from participants involved in a building project, but also from a wider
range of people who are closely or remotely connected with CF.

Unfortunately, no official classification of structural flaws has been elaborated in
any country, not to mention the international level. In this domain civil engineers get into
dispute with lawyers who, as it is well known, have their own, at times rather surprising
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viewpoints. We should not forget to mention that beyond the factual flaws, which we are
concerned with in this discussion, the concept of legal flaws (flaws in ownership, flaws
in contracts, and others) exists. As a rule, legal flaws do not directly affect the structural
reliability.

1.2.2 Aberration

During construction and use of a facility, phenomena can occur that could not be foreseen
by the designer, contractor, client, and other involved people. As an example, assume
that an earthquake occurs in a territory that has not been classified as a seismic zone in
the respective code. No provisions for seismic load have been adopted in the design.
Therefore, such a load, and also other unforeseen phenomena must be treated as aberration
from the expected, supposedly current conditions, assumed in design, execution, use, and
maintenance of the facility. Nobody can be made liable for aberrations. However, the
unpredictability feature of a supposed aberration is often very difficult to prove, particularly
in court.

Aberrations can be classified according to the same criteria as flaws, as far as the
relationship to the S-L-E system (aberration in structure, load, and environment), or their
physical nature (hidden or manifest, removable or irremovable, significant or insignificant,
discovered or undiscovered) are concerned. In addition, we have to distinguish between
harmful and harmless aberrations, as, contrary to flaws, some aberrations can have a favor-
able influence on reliability. In this text, however, the term "aberration" will always be
understood as "harmful aberration."

The origin of aberrations cannot be identified so unambiguously as it is with flaws.
Obviously, we cannot talk about an "aberration of the design," etc. The origin of aberrations
is in phenomena that were not expected during the period of design. Let us give some
simple examples of aberrations:

4 At the time of the design of a highway bridge, heavy trucks had not
existed. Therefore, at a later period the occurrence of such loads is an aberration.

¢ As aresult of buildings erected in the neighborhood of the facility the
air flow in the respective area has been changed. The resulting increase of wind
load is an aberration.

4 The time-dependent decrease in strength of concrete made with high-
alumina cement is an aberration if the structure had been constructed before knowl-
edge on this phenomenon had been collected.

4 The corrosion of reinforcement and other signs of premature deterioration
of a concrete structure, generated by carbonation of the surface layers of concrete,
is an aberration, since until recently, the carbonation process had not been fully
understood.

Observe, that the common feature of all these aberrations is their unpredictability
and unavoidability. If the unpredictability is of random nature, a randomness is dealt with
that is more significant than the current randomness covered by initial assumptions.

The difference between the two concepts, flaw and aberration, becomes obvious
when legal aspects enter the considerations: a discovered flaw can be subjected to court
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or arbitration trial, even in cases when the flaw is insignificant. Conversely, in the case
of an aberration no one can be made liable for its occurrence and consequences. Therefore,
aberrations are only rarely subjected to trials (if this happens, this is due to the fact that
the respective aberration is taken for a flaw before the situation has been clarified). Possible
damages are carried by insurance and re-insurance companies, or by government, or simpl
by the owner of the facility. )

In legalese, aberrations are usually classified as phenomena caused by "force
majeure” or "inevitable circumstances." For engineers such terms sound rather rhetorical
because they do not express the actual nature of aberrations.

1.2.3 Current use and ageing

While flaws and aberrations are phenomena that are not considered by designers
(nevertheless, they are often considered and, in a way, examined by code makers), every
design has to take into account the deterioration of the STRUCTURE system during current
use of the facility, caused by wear and natural ageing of materials, members, and of bearing
or non-bearing structural systems as a whole. These two phenomena have to be respected
by the user, and an adequate maintenance and other means planned to avoid or limit
consequences of the deterioration.

Until recently, no universal and generally valid criteria on deterioration during
current use or ageing were available. It is important to observe that the rate of deterioration
is approximately smooth, with an obvious acceleration towards the end of life of the
structure.

1.2.4 Deterioration and damage

During the life of a constructed facility various time-dependent processes take place, which
are caused either by accepted regular phenomena like use and natural ageing, or by
phenomena that are always rejected from the beginning - flaws and aberrations. Some
of these processes are favorable (for example, the time increase in strength of certain materi-
als). Usually, however, they are adverse, because they degrade the system’s reliability.
The latter processes are manifest by a physical deterioration of the structure, load, and
environment. The causes of adverse processes in structures are various, for example: current
loading and overloading (stationary and repeated), corrosion of different nature, development
of inherent flaws and occurrence of additional flaws, ageing of materials, rheological fac-
tors. Load does often not deteriorate but some examples can be given: ponding load, load
due to accumulating industrial fall-out. The environment - this deteriorates without any
discussion.

The consequence of the deterioration of the system’s components is the physical
damage to the structure. The difference between these two concepts, which are frequently
interchanged, is simple: deterioration is a time-dependent process whereas damage is a
momentary attribute of the reliability system, resulting from the deterioration.

In most cases, physical damage can be objectively measured and described, and
in this way the deterioration can be assessed. Minor structural damage may be insignificant,
and may even remain unobserved.
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lim
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Fig. 1.3 - Development of the deterioration, D, of a reinforced concrete structure in
dependence on time, ¢, up to the serviceability limit state (a - actual development of
deterioration, b - observed development, first deterioration was identified at a flaw in use;
1 - initial deterioration caused by a flaw in design, 2 - reversible development of deteriora-
tion resulting from time-dependent increase of the concrete strength and modulus of
elasticity, 3 - flaw in use, 4 - load aberration, 5 - first upset of users, 6 - serviceability
failure, 7 - serviceability fault; ¢, = moment of the discovery of deterioration,

!;, = moment of first upset, ¢, = moment of failure).

1.2.5 Defect

The deterioration of the S-L-E reliability system, which usually manifest by the deterioration
of the structure, is an unbiased phenomenon, which may not be detected, and may not
produce any concern to the public, users, owners, and other people having interest in the
facility. At a particular point in time, ¢,,, due to the accumulated deterioration, D,
(Figure 1.3), an unacceptable state of the system is created, and, as a result, a defect is
registered. Note that a flaw is the inpur deficiency while a defect is the output deficiency
of the system. Unlike flaws, defects, similarly as deterioration, are non-stationary - they
can diminish (reversible defects) or expand.

In general, the concept of defect is fuzzy since the level of damage at which a defect
is observed depends, first, on the nature of the defect and, second, very much upon the
attitudes of people who are either evaluating the state of the structure or who have some
emotional, economical, and other kind of interest in CF.

The concept of defect is further complicated because the boundary between flaw
and defect depends very much on the attitude of people involved. For example, an excessive
deflection of a floor beam is considered a flaw by the owner of the building since he or
she does not know the background to this deflection. The same deflection is considered
a defect by an engineer who considers it as the result of some flaw, ageing, or aberration.

Defects are fixed phenomena related to structures, not to load or environment. The
structural adversity levels of various defects are different. It can easily happen that a defect
arousing great attention of laymen will not affect the overall system’s reliability at all.
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1.2.6 Failure

In the reliability analysis of an S-L-E system, only defects of significant magnitude are
considered serious. This occurs when the following three criteria are fulfilled:

4 the defect has been observed,

¢ the defect has significantly changed the functional properties of the S-L-E
system,

4 considering the future use of the CF system, the defect is harmful.

The occurrence of a serious defect is termed failure. Accepting the foregoing mode
of thinking, we can say that failure is a momentary phenomenon, or in other words, an
event.

When the above mentioned criteria are not satisfied we cannot talk about failure.
Therefore, the moment of failure, ¢,, depends on human perception and on the needs of
the owners, users, and other people. Failure is always treated as an adverse event.

In general, failure is a complex concept. Various aspects of this concept can be
demonstrated from the example of a highway bridge that is mostly used by people who
have no civil engineering education:

Assume that the deflection of the bridge slowly increases due to bad workmanship.
The individuals using the bridge become more and more disquieted, dependently on their
psychological attitude to deflections and also on the way the bridge is used. At a certain
deflection, the level of disquiet will not be equal amongst pedestrians, drivers, and persons
observing the bridge from distance. Obviously, the demarcation of failure is fuzzy in this
case. - Now, if the workmanship has been so bad that large cracks appear, the group of
people noticing the cracks will clearly declare them as a serious defect, that is, a failure. -

Finally, when the bridge has collapsed, this fact is accepted as failure not only by users
but also by further individuals and groups.

The collapse of a highway bridge that is in everyday use is definitely considered
a failure because this kind of defect is detrimental to transport. The collapse of a bridge
that is no longer used and where no material damage and injuries are involved, is not a
serious defect, and is not considered a failure. Nevertheless, this can change, as soon as
the bridge is declared a heritage structure.

Following the development of the failure concept in this example, it can be seen
that its nature changes from high subjectivity for deflections to high objectivity for collapse.

1.2.7 Fault

In civil engineering, no particular term for the "state after failure" has been used. In
electrical engineering the term fault is used (IEV 191-1985), and it seems feasible to accept
it in this specific meaning for our vocabulary, too.

Again, faults can either be reversible (if the system is able, without any change
in the load-bearing structure, to return to the faultless, pre-failure state), or irreversible
(if the structural consequences of the failure cannot disappear without substantial measures
to be taken).
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It has to be mentioned here that the term distress is often used for damage, or defect,
or fault. We are reserving this term for other purposes, see Chapter 11.

1.3 STATES, STAGES, AND SITUATIONS
1.3.1 Limit states

In order to describe the level of deterioration of a constructed facility, some means must
be defined for such purpose. For example, the deflection of a structure gives only limited
information since the values of interest lie in only a narrow range of the loading process.
A more general gage is required, which characterizes the deterioration process widely
as possible.

One such gage is damage expressed in terms of costs resulting from a deterioration
of CF. However, not only effective costs have to be considered but also all potential costs
must be taken into account. Consequently, for any magnitude of load, costs C;, expressing
damage occurring when that particular magnitude is reached are related. For example,
when the structure collapses, damage is given by the value of the destroyed facility
(including, of course, the value of the structure itself) and by all losses due to the fact
that the facility is no longer of service. More concisely, it is better to express the costs G,
in terms of their ratio to the costs of realization of the respective CF. The relative costs Cp/C g
can gain values in a very wide range. The potential damage can be often many times greater
than the initial costs of the constructed facility, Cg. For example, collapse of an electric
tower can produce damage that is by several orders greater than the initial costs.
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Fig. 1.4 - State profile of a CF system, referred to a given structure subjected to a given
type of load, and placed in a given environment (SLS - serviceability limit states, ULS -
ultimate limit states; 1 - maintenance, 2 - repairs, 3 - rehabilitation, 4 - evacuation, 5 -
new facility; F Gt = deformation limit, F, = first-crack load, F, = collapse load).

For a well defined facility with well defined properties, subjected to a well defined
load, a relationship of the C/C ratio to the load magnitude, F, can be plotted (Figure
1.4). Segments can be identified on this relationship that are characteristic from the
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viewpoint of the potential damage and also from the viewpoint of the consequences of
defects. This relationship is called a state profile (it was proposed by H.A. Sawyer in
1964, and termed "failure-stage profile"). Economically it would be most effective to demgn
each structure so that the sum of initial costs and all potential costs of maintenance, repairs,
rehabilitation, and realization of new facility would be minimum. This is theoretically
plausible, but reasonable solutions are not available - the calculation models would be too
complex and unpractical, and the results achieved would not be worthwhile. Therefore,
a simplified approach is used:

During loading, the load bearing structures pass continuously through states of stress
and deformation, which we can mathematically describe using structural mechanics, strength
of materials, etc. From these continuous states some are sclected that are typical for certain
levels of deterioration and that we are able to describe by relatively simple means: the
state of collapse, the state of first signals of collapse, the state of crack occurrence, etc.
Since these states define certain limits on the state profile, they are called the limit states.

Groups of limit states

The bearing structure of CF has to fulfil two principal requirements during its entire life
(including the periods of execution, transport, erection, etc.)

() it must not collapse, or fail in a similar manner, so that it should be
demolished - this requirement does not refer only to the whole structure but also
to its members and cross-sections; obviously, the ulfimate capacity should not be
achieved by the structure;

(b) it should not halt, even temporarily, in fulfilling its functions for which
it has been designed and constructed, that is, it should not behave in a manner
demanding limitations or eliminations of the use of CF; so, the structure must always
be serviceable.

The requirements of ultimate capacity and of serviceability are not conflicting, but
they are not mutually interchangeable. A structure meeting the requirement of ultimate
capacity need not meet the serviceability requirement and vice versa. In a general case,
both requirements must be checked in the design, inspection, and maintenance. In many
instances this is not necessary.

In the state profile, the first requirement is represented by the segment of ultimate
limit states, ULSs, adjacent to the end point of the state profile. Several ultimate limit
states can be identified in this segment, dependently on the definition of ultimate capacity.
Therefore, we talk about the group of ULSs. Similarly, the serviceability requirement is
represented by a segment of serviceability limit states, SLSs.

The principal differences between the two groups of limit states can be characterized,
first, by the nature of defects that appear afier a limit state has been reached and exceeded.
When a certain ULS has been exceeded, the subsequent use of the structure is not possible,
or only after a large repair or reconstruction. The faults that occur at an ultimate failure
are, as a rule, irreversible and irremovable. On the other hand, if SLS has been exceeded,
the structure can continue operating after de-loading without substantial measures taken.
The defects related to a serviceability failure are, as a rule, reversible and removable.
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Fig. 1.5 - Two joint structural parts with strung limit states (I'; , ', - initial state profiles,
I‘; - state profile of part 2 after the state A had been reached in part 1; a - behavior
of part 1, b, ¢ - behavior of part 2, b - early collapse of part 2, ¢ -sudden collapse of part

2 as soon as F, has been reached).

A wide range of faults can be defined within both groups. In the SLS group, high
subjectivity of fault observation prevails, and the definitions of corresponding failures or
faults, respectively, are fuzzy. On the other hand, in the ULS group the subjectivity
gradually disappears as the economical or moral damage resulting of a particular type of
fault increase. Failure leading, for example, to a complete collapse of the structure does
not arouse any doubts on its happening and the corresponding after-failure state is
unanimously classified as a terminal fault by all individuals concerned.

The second principal difference is in the definitions of the individual limit states.
While the ULSs are characterized by properties of the structure or by properties of the
STRUCTURE-LOAD system, the SLSs are related to properties of the users of the facility,
to properties of the technological equipment, properties of the environment, etc. These
properties determine the values of governing variables (for example, deflections) in terms
of which respective limit states are specified. The difference between the two groups of
limit states affects the choice of the reliability parameters (see Chapter 10).

Limit states strings

Although in the past ultimate failures of structures were not rare, their consequences had
not been so spectacular to encourage a detailed investigation and generalization of the
deterioration processes, dependence of defects and developments of failures and faults.
But several extensive catastrophes occurred during past decades attracted particular attention
to the problems of behavior of structures as complex reliability systems. The most important
conclusion is that the attainment of ultimate capacity is not a single phenomenon but a
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result of a complex process. This process can be continuous but it can be resolved in
separate phases, analogously as we had specified groups of limit states on the state profile.

Let us examine two simple structures that are part of a larger system, and let us
assume that their individual state profiles (Figure 1.5) when each of the structures is loaded
separately are known. After joining the two parts, the state profile I', of the part 1 (Figure
1.5a) is obviously affecting the profile T, of part 2 and vice versa.

Suppose, to simplify the consideration, thak T, changes only then whenin T, a
state A is reached. The new profile of part 2, T', , is theoretically valid starting from
zero value of the load F. Clearly, the relative damage in part 2 will suddenly increase
by A - Figure 1.5b.

In an extreme case the state profile I, can, after the state A has been reached,
change so much that the collapse load Fcﬁ,,z can be less than the original F_,, and,
consequently, the structure will instantly collapse (Figure 1.5¢). This example is very
simplified but it is realistic, as can be seen from the following:

Under specific circumstances a string of different limit states can form; they can
even belong to different groups. As a result, processes may develop that can be termed

¢ progressive deterioration, composed mainly of serviceability limit states;
® progressive collapse, composed mainly of ultimate limit states.

No general rule on the order of limit states in the string can be given. For example,
the defect of a bridge support caused by vehicle impact can result in an excessive deflection
of a main beam of the bridge. The word "mainly” implies that limit states can be mixed;
in the first case some ULSs can be reached, and similarly, SLSs can participate in and
even start progressive collapse.

1.3.2 Stages

During the life of CF the structure forming part of the S-L-E reliability system passes
through a series of various stages. The stages differ by:

& the arrangement and properties of the bearing system (the system of
supports, spans, critical lengths, etc., changes);

¢ loads (loading pattern, load combinations);

® the age of the structure (properties of materials change);
¢ duration.

For practical reasons, two groups of stages are distinguished, as a rule:
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¢ execution stages (including production, erection, loading test, current
repairs, restoration, dismantling); these stages usually take only a part of CF’s life
(about 1/50 to 1/20), in specific cases they can be even longer;

¢ utilization stages; they cover the major part of life; in the main, only
one utilization stage is relevant.

The differences in stages affect the analysis and design on various levels: they have
to be considered in the variables describing material properties (strength, elastic modulus,
etc.) and also in the reliability parameters.

1.3.3 Design situations

Additionally to the different stages, different situations that the S-L-E system can experience
during its life must be considered in the design. The individual situations are distinguished
by structural patterns, types and arrangement of loads, environmental parameters, and
also by reliability requirements and reliability levels. The principal criterion of difference
between the individual situations is the probability of their occurrence (contrary to stages,
which always must occur):

Permanent design situation. This has the period of duration T, , of the same order
as the life of the facility, T;. For example, it is the period between the realization to the
change in use of the facility, or the period between two changes in use. The probability
of occurrence of the permanent situation is P, = 1, because this situation must always
arise.

Transient design situation. Its period of duration T, is considerably shorter than
T,. For example, it is the period of execution, period of restoration, period of
reconstruction, period of crossing a bridge by extra-heavy vehicles, etc. The probability
of occurrence of the transient situation depends on the respective purpose. The execution
must always take place, that is, P, = 1, whereas a future restoration of the facility is

never a sure occurrence, P, <1

Accidental design situation. In specific conditions the structural system can suddenly
change due to external, structure-independent phenomena, and, consequently, new loading
patterns can arise. As a rule, this type of events occurs as a result of some accident. This
is the reason why the ensuing situation is termed accidental. A significant feature of this
situation is a very short period of duration, T, < T;, and less severe performance
requirements (for example, in an accidental situation nobody is really interested in
deflections, crack width, etc.). The principal requirement is the possibility of performing
rescue operations, evacuation, temporary supporting, and other related activities. The
probability of occurrence of an accidental situation during the life of the facility is very
small, say P, = 0 to 1.0E-6.

The concept of the accidental situation is often misunderstood. It is related
erroneously to "accidental load." Structures are designed for accidental load in permanent
as well as transient situations. Only when the load exceeds a certain magnitude, without
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being necessarily classified as accidental, or when an entirely unexpected load appears,
then an accidental situation may or may not arise. Its occurrence can be induced also by
other phenomena (for example, fire and explosion).

1.4 REQUIREMENTS, CRITERIA,
AND PARAMETERS

Let us discuss a hypothetical case of a fully defined S-L-E reliability system, it does not
contain any uncertainties and indefiniteness (see Section 1.1) and the properties of the
three subsystems are perfectly known. When the reliability of this system is to be assessed,
the relations in the system have to be described in such a way that it is possible to decide
whether the system is reliable or not. These relations must be based on the physical
description of phenomena entering the particular components of the system, and, therefore,
they will be called physical reliability requirements. - The term "physical" is used here
to stress the objectivity of the requirements and their independence on human decisions.
Physical laws can of course describe phenomena that in their substance are of statistical
nature (for example, the Boyle-Mariotte law).

In physical reliability requirements scalar variables and vectors of distinctive kind
appear. The physical nature of these variables and vectors is denoted as "design criterion."
A design cniterion can be, for example, the axial force in a compressed member, deflection
at mid-span, vibration frequency. It can even be a quantity that is not a load-effect: we
can state a reliability requirement in terms of the cross-section area of a prestressing tendon,
depth and width of a beam with a rectangular cross-section, width of a foundation strip,
etc.

When properties of the system investigated are not exactly known, uncertainties
and indefiniteness must be taken into account. The physical reliability requirements must
either be adjusted by parameters covering the uncertainties and indefiniteness, or
supplemented by further requirements. When the adjustments are based on experience,
or also on theoretical considerations, but without regard to the randomness of phenomena,
the respective requirements are called deterministic. If, however, the uncertainties of the
S-L-E system are treated as random, they can be expressed in terms of the probability
of occurrence of adverse realizations of the respective phenomena. Then, probabilistic
reliability requirements can be formulated; this subject is elaborated in Sections 8.1 through
8.3.

The term "deterministic” is often used for physical and empirical formulas, for
decision-based values of input variables, or simply for fixed physical constants. We will
avoid it in this book at all; where necessary, the relevant quality of the formula, variable,
and constant will be designated by the appropriate term.

If the random behavior of phenomena is expressed in the reliability requirements
by purely mathematico-statistical procedures, without establishing the design parameters
by means of probability concepts (the Hasofer-Lind reliability index method belongs into
this family; see Sections 8.5 and 9.2) The respective requirements are called statistical;
they are discussed in Section 8.5.
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By synthesis of physical and probabilistic or statistical reliability requirements design
requirements are obtained. These are contained in the design codes or can be, in particular
cases, individually specified.

Quantities that, in design, govern the reliability level are called reliability
parameters. Two principal reliability parameters must be considered in the reliability re-
quirements of the present design methods: the target failure probability, P, , and the target
life, T, , see Chapter 10. These are primary parameters based always on some decision.
The older design methods were built-up on other primary parameters, such as the safety
Jactor or, more exactly, reliability factor. The target life had not been taken into account.

As a rule, reliability parameters do not directly apply in the codified design
requirements. They serve mainly code makers for the derivation of design parameters
(partial reliability factors, characteristic strengths of materials, representative values of
load, and others). Again, these parameters are subjected to decisions based on experience
and calibration of codes, because the exact reliabilistic methods cannot be applied in general.

The set of concepts formed by particular design criteria, design requirements, and
design parameters is usually termed the design format, which can be theoretical or codified.




TOOLS

Key concepts in this chapter: probability, statistics; random phenomena, random events,
prior and posterior probability; conditional probability; random variable; population;
random sample; population parameters,; sample characteristics; union of samples;
standardized random variable; probability distribution; CDF, PDF, IDF; fractile; truncated
distribution; joint probability distribution; estimation,; hypotheses testing, statistical depen-
dence; statistical dependence function, correlation coefficient; response function, random
Sunction; random sequence; random process; autocorrelation function, spectral density
function,; repeated events, mean return period, reliability systems, elements, and items,
reliability connections, reserve, reliability function, failure rate,; bath-tub curve; life; method
of moments; quasi-parameters; Monte Carlo simulation,; draw, trial, and realization; random
number generator, RNG, histogram, seed number, execution time, ordering algorithm.

2.1 PROBABILITY AND STATISTICS

Nearly all monographs on structural reliability contain one or more chapters on the theory
of probability and mathematical statistics. Probability and statistics are fundamental tools
of reliability theory; they are used extensively in a range of exercises, from solutions of
sophisticated theoretical problems to everyday rules of quality control and assurance.
Reliability theory relies on the theory of probability and statistics.

The amount of literature on probability and statistics is enormous. It is not intended
to repeat here information that is readily accessible. Instead, we will concentrate on only
some particularities that are either not simply available, or are a frequent source of
misunderstanding. This affects the order of presentation of various concepts.

It is assumed in this book that the reader has some basic knowledge in probability
and statistics; nonetheless, it is useful to give newcomers an indication on some of available
monographs:

¢ general: Beaumont 1983, 1986, Hines and Montgomery 1990,
Wahrscheinlichkeitsrechnung 1983;

¢ specialized, aimed at structural reliability problems: Ang and Tang I
1975, Augusti er al. 1984, Benjamin and Cornell 1970, Harr 1987, Madsen er al.
1986, Melchers 1987, Smith 1986.

17
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2.1.1 General concepts

Phenomenon, event

Statistics deals with random events, which are realizations of certain collective random
or non-random phenomena. Phenomena will be designated by H or by the operation
symbol Ph(.); events will be designated by E or, in operation notation, by Ev(.).

Mathematical description of random events is given by random variables, random
Sunctions, and random sequences.

B Example 2.1. The annual return of the winter period is a collective phenomenon, Ph(winter).
This phenomenon is obviously ron-random if the winter is defined astronomically. If, however, the occurrence
of snow, Ev(snow), is taken as the criterion of the winter, than, for example, in the last 10,000 years the
winter period definitely has been a non-random phenomenon in Lulea, Sweden, while it has been random
in Chengdu, China.

To continue: if Ev(snow) arises, than Ev(snow drift) is possible (it may or may not happen). Observe
that the latter event is possible only if Ev(snow) happened.

The weight of accumulated snow, s , producing snow load, is a random variable. The weight varies
in time; it is time-dependent. It also varies in space. The time and space variations of snow load are described
by random functions. |

Probability

It is not necessary to elaborate the concept of probability here. Let us only reiterate some
commonly known formulas which will be quoted later in the text.

Let the fact that the occurrence of an event Ev(X) is sure be expressed by P =
1; that it is impossible, by P = 0. The fact that under given conditions Ev( X ) may or
may not happen is expressed by P € [0; 1]. P is termed the probability. - The operation
symbol Pr(X) will be used for the probability of occurrence of Ev(X).

The value of probability can be defined in various ways. In simple cases we can
write

P-= Q2.1

>3

where m = number of cases when Ev(X) happens, n = number of all cases when it

can happen.

We will avoid the details and discussing the important concepts of the prior proba-
bility and the posterior probability, we will not need them in this book. Nevertheless, the
reliability engineer should distinguish between

4 prior probability (also called subjective) that is based on experience and
believe; decisions on its value are made by speculation reflecting the engineering
judgment; and
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@ posterior probability (also called frequentist) that is based on the analysis
of measurements and observations; its values are obtained by calculations, not by
judgment.

If, for example, Ph(winter) is defined astronomically, and at the given site Ev(snow)
happened five times in 23 years of observation, than the estimated posterior probability
of snow occurrence in the next winter period is P = 5/23 = 0.217. This, however, is
only an estimate based on 23 data; the actual probability can be considerably either less
or greater than 0.217.

When two or more random events are dealt with, it is necessary to know some
formulas giving information on various kinds of their simultaneous or sequential happenings
or non-happenings. Although the following formulas can be found in any monograph on
probability and statistics, we give them here since most of them will be referred to later.

¢ Probability that Ev(X) will happen:
0 <Pr(X) <1 2.2)

4 Probability that Ev(X) will never happen:
Pr(X) = 1 -Pr(X) 23)

4 Probability that at least one of mutually exclusive events Ev(X) and Ev(Y),
with respective Pr(X) and Pr(Y), will happen:

Pr(XUY) = Pr(X) + Pr(Y) 2.9

If in this case a calculation gives Pr(XUY) > 1, it is a sign that the two events are not
exclusive or that the event probabilities were wrongly assessed.

¢ Probability that two independent events, Ev(X) and Ev(Y), will happen
simultaneously or sequentially:

Pr(XNY) = Pr(X) - Pr(Y) (2.5)

4 Probability that at least one of the two mutually non-exclusive events, Ev(X)
and Ev(Y), will happen:

Pr(XUY) = Pr(X) + Pr(Y) - Pr(X)- Px(Y) (2.6)

¢ Probability of Ev(X) given Ev(Y), where the two events are mutually non-
exclusive (conditional probability):
n
Pr(x|p) = XD

2.7
Pr() 2.7
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When Ev(X) and Ev(Y) are independent, it results from Equations (2.7) and (2.5)

Pr(X|V) = 5"{’?(;& - Pr(® 2.8

The foregoing basic rules can be applied in the development of various formulas
required in the solution of many problems. The following formulas can be useful (bars

and overline indicate that the respective events will not happen; the events are considered
independent):

¢ Ev(X) will happen, Ev(Y) will not happen:

Pr(XNY) = Pr(X) -[1 - Pr(Y)] 2.9)

¢ neither Ev(X), nor Ev(Y) will happen:

Pr(X NY) = [1 - Pr(0)] - [1 - Pr(Y)] 2.10)
= 1-Pr(X) - Px(¥) - Pr(X) -Px(¥)

# just one of the events Ev(X), Ev(Y) will happen:

Pr{(X n)_’)U()ZﬂY)] = Pr(X)-[1 -Pr(Y)

+[1 -Pr(X)] - Pr(Y) 2.11)
= Pr(X) +Pr(Y) - 2Pr(X) - P(Y)

4 maximum one of the events Ev(X), Ev(Y) will happen:
Pr(XNY) = 1 - Pr(X) -Pr(Y) (2.12)
¢ minimum one of the events Ev(X), Ev(Y) will happen:

Pr(XNY) = 1 -[1-Pr(X) - Px(Y) +Pr(X) - Pr(y)] 2.13)
= Pr(X) + Pr(Y) - Pr(X) - Pr(¥) = Pr(XUY)

Population, random sample, and random variable

In the statistical analysis we deal with collections, that is, sets of events, or sets of data
on events. Two types of statistical collections must be distinguished:

4 Population is a set of all possible happenings of a random event. It can
be either finite or infinite. As a rule, a population cannot be physically compiled,
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and therefore, its properties must be assessed by estimation based on one or more
random samples.

¢ Random sample is a subset of happenings of the random event, which
has been randomly obtained by measuring and observing a finite number of
happenings of events that belong to a population. All happenings must have the
same possibility of being included into the subset.

The concepts of population and random sample are often being confused. As a result,
correct estimates of population parameters (see 2.1.7) are not established, and sample
characteristics are introduced into calculations as population parameters without any
adjustment. Serious errors can occur.

A random event is mathematically described by a random variable ¢ ; that is, a
number x is assigned to each happening expressing the happening’s magnitude. A set
of such numbers, x, through x,, gives information that can be statistically evaluated. -
Greek letters are often used for random variables. Unfortunately, we are not able to keep
to this convention throughout; symbols like £ (for the yield stress of steel) and others
are difficult or impossible to express in GreeK characters. Therefore, Greek letters will
be only used when necessary for clarity.

W Example 2.2. All axle loads of vehicles that will act on a bridge structure during its life constitute
a population. Values of axle loads observed by means of a scaling device at a measuring place during a
specified period form a random sample. Yet, we have to consider whether the place and the period have
been chosen in a random way. In other words, examining data obtained at a certain place during a certain

period, we must ask what is the corresponding population. n
2.1.2 Distributions, parameters, and characteristics
Functions

The behavior of random variables is described by probability distributions. Discrete
variables appear only in very special cases of structural reliability problems (see, for
example, Tichy and Vorli¢ek 1973 on variables in the evaluation of fatigue tests). Therefore,
continuous variables will be considered in this book, except for Section 5.5 where a mixed
continuous-discrete distribution of load magnitudes will be introduced.

Two typical functions are of practical importance in our considerations:

¢ Cumulative distribution function, CDF. We can consider it here basic
(however, in the mathematico-statistical theory, the moment-generating function
is usually considered primordial). For CDF it holds

0<dx <1 (2.14)

where

®(x) = Pr({<x)
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¢ Probability density function, PDF. This function, ¢(x), is defined by

X
B(x) = f o()dx 2.15)
*if
where x, . = lower limit of the probability distribution. If there is no lower limit,

then x, . ~ -. - PDF gives a more graphic idea on the behavior of the random
variable than CDF.

In many solutions, the inverse distribution function, IDF, is used. This function
is defined through ®(x) by

x = o (P (2.16)

where x = value of the random variable, £, P = given probability.

Parameters

In the mathematical description of probability distributions population parameters arise.
As a rule, not more than four parameters apply in reliability solutions; the most common
are:

¢ mean, p;

¢ variance, o*;

¢ coefficient of skewness, «;
¢ coefficient of excess, €.

In Section 2.3 the concept of quasi-parameters will be introduced, which is helpful
in some calculations.

Instead of @ and ¢ other parameters are frequently used; in this monograph we
will keep mainly to pu, o, and «. The coefficient of excess, €, is, as a rule, only an
auxiliary parameter.

Often, the population coefficient of variation, 6 = ofp , is given as a measure
of random variability. However, this derived parameter must be always considered with
caution (see Sample characteristics below).

The lower and upper limits of a population are termed the population infimum,
X, and supremum, X, respectively. These two parameters can sometimes be physically
specified. For example, supremum of the randomly fluctuating water level in an open tank
is defined simply by the brim.
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Standardized random variable

The description of a random variable ¢ is often simplified by introducing the standardized
random variable

" 2.17)
ag

Its mean is equal zero and the variance is one. The coefficients of skewness and excess
are the same as for the non-transformed variable. The coefficient of variation is of course
not defined.

Fractile

In many places in this monograph fractiles of random variables will be discussed and used
as dominant quantities. In fact, fractile has many possibilities of application; it governs,
first of all, the reliability requirement formulas at various levels. The concept of fractile
is well known; therefore, let us give here only principal information on the notation that
will be used throughout the following sections and chapters.

Consider a random variable ¢, whose first two parameters are the mean, u, and
the standard deviation, o. A value x,_ is to be established for which

Pr(¢ < xx) =K (2.18)

where x = given value of the probability. The value x, is called the x-fractile of the
random variable §.

We are often interested in a fractile, x, , defined by
Pr(§>x) =« (2.19)

In the main, ¥ < 0.5, and so the fractiles defined by Equations (2.18) or (2.19) are situated
at the left-hand or right-hand tail of PDF. We call them the lower and upper fractile, respec-
tively.

The widely used expression for the x-fractile of ¢ is obtained from Equation (2.17):

X, = ptuo (2.20)

where u, = k-fractile of the standardized random variable u .

For the normal distribution, tables of CDF giving u, are presented in the majority
of statistical monographs, and suitable programs can be found in any software library.
Yet, for other distributions tables do not exist or have not been published. Then, it is neces-
sary to calculate u, as the value of the inverse distribution function @ Y(P) for P =
k,or P = 1-x, whichever applies. As a rule, the problem has to be solved by approxi-
mation formulas or by iterations. For the three-parameter log-normal distribution values
of u, are given in Appendix A. There, also values referring to the normal distribution
can be found, taking simply « = 0.
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Selection of a probability distribution

The problem of selecting the appropriate probability distribution for a random variable
is often considered crucial. Great attention is paid to which distribution should be used
in probability modeling of a particular variable. In most cases such care is futile because
an absolutely true description of random behavior can never be accomplished. Engineering
judgment is necessary in finding the right distribution. The following steps are useful:

4 Consider the possible shape of PDF. Is it bell-shaped? Symmetric?
Asymmetric? Truncated?

¢ Consider physical bounds of the variable. Are there any?

¢ Estimate the population parameters (see 2.1.7).

¢ Plot the probability density; compare it visually with the histogram
obtained from sample (if there is any). In doing so, consider whether the size of
sample is sufficient enough to give a graphic histogram.

¢ Perform some statistical goodness-of-fit tests.

All books on structural reliability give basic information on several probability
distributions; therefore, it will not be repeated here. Let us only give a survey of the most
important distributions met in practice. Some are defined by two parameters (2P), others
by three or even four parameters (3P, 4P).

¢ Rectangular distribution, 2P; symmetric; lower and upper bound. It
can be used, for example, in modeling components of time processes when no better
information is available (for example, in modeling the random duration of certain
state).

¢ Exponential distribution, 2P; L-shaped; positively asymmetric; lower
bound. The use is similar as that of the rectangular distribution. A J-shaped version
can also be defined.

¢ Normal distribution, 2P; symmetric; bell-shaped; no bounds. The most
common distribution, used in many practical problems.

¢ Log-normal distribution, 3P; bell-shaped; positively or negatively
asymmetric, the symmetric form being identical with normal distribution; lower
or upper bound. A mo-parameter form of log-normal distribution with lower bound
equal zero is commonly used; it is positively asymmetric. Yet, the more general
three-parameter log-normal distribution is an effective tool for many problems where
asymmetric variables are encountered. It is easily programmable. A detailed, though
not exhaustive description of the three-parameter variant is given in Appendix A.

¢ Beta distribution, 4P; bell-shaped, J-shaped, L-shaped, U-shaped; lower
and upper bound; rectangular distribution is a special case of the beta distribution.
This is a very attractive distribution because of its lower and upper bounds and
various shapes. It can be efficiently used in diverse problems. However, similarly
as it is with other four-parameter distributions, its main drawback is that fitting
to data is usually difficult when all four parameters are taken from observations.
Some peculiar, unrealistic shapes of beta distribution (not displayed in available
publications) can be obtained. It seems that the Nature does not like more than
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three parameters. A graphical plot of PDF is always recommended. - A practical
probability paper can be based on a symmetric bell-shaped variant, see Appendix B.

¢ Distributions of extreme values, 3P in general; positively or negatively
asymmetric; bell-shaped; lower or upper bound, or no bounds. This is a widely
known family of distributions used whenever some extremes (minima or maxima)
of phenomena enter the reliability calculation models.

Special technical questions arise when direction-dependent data have to be analyzed;
these are encountered, for example, in the examination of wind load and sea waves load
(see Mardia 1972).

Truncated distributions
On many occasions we have to deal with phenomena that have been in some way artificially

confined so, that the lower or upper tail of the respective parent distribution or both have
been cut off, Figure 2.1. Such distributions are called truncated distributions.

a) b)

xtr X xtr,1 xtr,2 X

Fig. 2.1 - PDF of truncated probability distributions (a - left-hand-sided, b - two-sided).

Let us give here some useful formulas on the left-hand truncated distribution,
Figure 2.2, which is met, for example, in the investigation of load magnitudes (see Section
5.4). For a right-hand truncated distribution the formulas are analogous.

Assume that a parent distribution exists, whose ¢(x) and ®(x) are known. The
point of truncation, x,_, is, as a rule, well defined (for example, by a decision); let us
establish Pr(¢{ < x,) = P, = ®(x,). Since the area under the truncated PDF must
be equal to one (Figure 2.2b), the left-hand truncated PDF, whose definition domain is
x, < § < X, (We can, of course, have Xop = ) is given by

SO |
¢'(x) = 1_F @ (x) (2.21)

r
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- * _ * X
Xinf  Xint = Xtr Xsup=Xsup

Fig. 2.2 - PDF and CDF of a left-hand truncated distribution (a - PDF, b - CDF; dashed
line = parent distribution).

Analogously, the truncated CDF (Figure 2.2¢) is

®*(x) =

-P,] 2.22)

with0 < @°(x) < L.

It is apparent that the left-hand truncated distribution has, additionally to those of
the parent distribution, one supplemental parameter, P, , or x,, . Thus, for example, in
the case of a truncated three-parameter log-normal distribution, four parameters must be
known.

Parameters of a truncated distribution can be calculated analytically only in simple
cases (for example, for truncated normal distribution, where also tables exist). In most
cases numerical integration has to be used. However, when samples are analyzed, we are
usually not specifically interested in calculating the parameters, since we get their point
estimates from the respective sample (see 2.1.7). Fractiles are usually the aim objective.

From a sample, the characteristics m, s, and a are obtained; the truncation point,

, is defined. For the left-hand truncated dlstrlbutlon itis x, = x,,s, Given P, we
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look for
x =0 1"P

but the truncated IDF is, as a rule, not known. Therefore, setting in Equation (2.22)
®'(x) = P, we get after rearrangement

x = Q—I(P#) (223)
where
P* =P+(1-P)P, (2.24)

Obviously, some assumption on the parent distribution with a known &' (.) must
be accepted, and its parameters have to be settled. For the truncated three-parameter log-
normal distribution, TLN(u,,, @), the respective procedure is shown in Appendix A.

If the truncation of a phenomenon is not perfect, a certain part of realizations of ¢
can be found beyond the truncation points. Then, instead of a truncated distribution, a
censored distribution has to be considered.

Many other probability distributions could be mentioned here (for probability
distributions of repeated events see 2.1.6). The interested reader is referred to specialized
publications, particularly to Hahn and Shapiro 1967, Johnson and Kotz 1970a, 1970b,
and 1972, and further also to A Modern Course 1974 and Cornell 1972. Nevertheless,
advice from an experienced statistician or reliability engineer is useful. As a rule, the experts
will suggest to use surprisingly simple distributions.

Fortunately, the results of probability solutions are, in reasonable limits, little
sensitive upon the choice of probability model. Parameters and their proper handling are
more important.

The Author’s preference are the first four distributions mentioned above, with
emphasis on the three-parameter log-normal one. For certain reliability techniques special
criteria can affect the choice of probability distributions (see, for example, Lind and Chen
1987).

Multi-modal distributions

Any sample with a multi-modal histogram (or a multi-modal frequency curve) should be
carefully examined to consider whether it does not consist of two or more independent
samples, which have been merged into one. Several situations can lead to multi-modal
frequency curves; for example:

¢ measurements of axle loads on highways show distinct bi-modal
distributions that are caused by the two principal groups of vehicles: trucks and
cars;

¢ wind velocities observed in coastal areas are often bi-modal since two
types of wind are included into one sample: regular continental winds and cyclones;
the random behavior of these winds is very different.
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Multi-modal frequency curves are always suspicious. Whenever you obtain such
a curve, be cautious, and try to find out what is behind it. A natural explanation is plausible
in rare cases only.

Sample characteristics

Samples are described by sample characteristics which are quantities defined mainly by
ordinary and central moments of data obtained through observations, measurements, etc.,
and also in other ways (dependent on the type of the characteristic). In Table 2.1 sample
characteristics that can appear in current solutions are given; most of them are well known.
However, formulas for a and e are not common.

It should be noted that sample characteristics are random variables, and so the
relations between sample characteristics and population parameters are of random nature.
Therefore, population parameters can be established from sample characteristics only by
estimation with a certain amount of incertitude (see 2.1.7).

To obtain reliable information on sample characteristics that can be used in
calculations, decisions, etc., a sample must be sufficiently large. The higher the order
of the respective characteristic, the greater should be the sample size. According to
experience, we need for

¢ mean: n > 10;
4 standard deviation: n > 20;
¢ coefficient of skewness: n > 100.

To illustrate the problem, consider the normal distribution (that is, &« = 0). The
sample coefficient of skewness has a distribution with p, = 0 and

. - | 6(n-2)
¢ (n+1)(n+3)

with n = sample size. Analysis shows that even for n = 100 we can obtain -0.47 <
@ < +0.47 in 95 percent of cases!

Thus, when, for example, a sample of 30 data is available, the information on the
coefficient of skewness is very poor. In that case it is better, when the phenomenon is
for some reason considered "skew," to assess the skewness by speculation. And conversely,
when from a sample analysis a #0 results, it does not mean that the true probability
distribution is not symmetric.

Union of two samples

On many occasions you can obtain characteristics of two or more samples that have been
taken from the same population. 1t often happens that the data on observations are missing.
Then, when characteristics m, , s,, a,, m,, s,, and a, are given, characteristics of
the unified sample can be calculated from
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Table 2.1 - Sample characteristics; n = sample size; ¢ = corresponding population

parameter
Sample Description 1
characteristics
"
Mean, m m=1Xx u
P =1
Median, x value dividing the ordered data i
in two equal parts
Mode, £ value corresponding to the peak of the sample fre- I
quency curve
n
Variance, s2 st= sl sl iE(Jcl.—m)2 7
n- i=1
Standard deviation, s s = \/?, s>0 o
Coefficient of variation, | C, = s/m é
CV
Coefficient of skewness, | a = "("2' ) a; a
-
a n
1.1 3
a, = ——-X(x,-m)
¢ @
. a(n-1) _3.
CoefTicient of excess, e = m(eo +3)-3; e
n
11 4
€ =— -X(x-m'-3
© @ e
Minimum, x . X, = min(x,, x,, ..x,) Xing
Maximum, x,__ X, = max(x;, x,..,x,) X

Range, R
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nm, +n,m
17 M,
m = 1—.
n
nst+ns  nn
151 2 My
s? = 22+ L2 (m, - m,)?
n n2
3 3 2_ 2
- nS18) t 1,58, 3n,n,(m, -my)(s; - 5,)

-1
53 n n?
3
B n,n,(n, -n,)(m, - m,)

n3

These formulas are useful in some Monte Carlo simulation exercises (Section 2.4).

Coefficient of variation

Here we should remark on the coefficient of variation, C,, or also & . It is rather a tricky
characteristic, which can be either misused, or be a source of misinterpretation. We should
always keep in mind that, given a constant standard deviation, the coefficient of variation
increases hyperbolically with the decreasing mean. There are many phenomena whose
statistical description leads to about zero mean, though their spread is small. The coefficient
of variation tends to infinity in such cases, which can be misleading. Readers are advised
to assess carefully any information given in terms of coefficient of variation.

W Example 2.3. A ready-mixed concrete manufacturer, A, boasts that they are supplying concrete
with a coefficient of variation of the compression strength only 0.05, while a competitive manufacturer B
cannot achieve less than 0.08. Therefore, manufacturer B is considered worse.

Analysis of the data shows that the two numbers refer to concrete of different grade, with mean
strength equal 40 N.mm? and 20 N.mm?, respectively. Since o = &y, the standard deviation observed
at A is 2 N.mm? and at B is 1.6 N.mm?. Obviously, company B is able to supply concrete of higher quality,
as far as the spread of its compression strength is concerned. |

The coefficient of variation should be taken only as an auxiliary quantity. We will
try to avoid its use in this book, though on some occasions it is needed to simplify notation.
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2.13 Multivariate problems

Random variables often appear in pairs, triplets, or n-tuplets, (§,, &,, .., §,), forming
samples and populations, similarly as single random variables. When collecting a
multivariate random sample, the same rules must be observed as when collecting a random
sample of one variable only (see 2.1.1).

For example, examining a sample of females, their body height and body weight
can be measured and pairs (FBH,, FBW,) can be collected. The sample must be
homogeneous, that is, it must not involve any males and must be restricted to females
of a specified age. - Similarly, we can collect daily information on snow load and wind
load at a certain observation point and establish a sample of annual snow load and wind
load maxima, (S,,,;, Wy, ) - Observe that there are substantial differences between
these two samples:

¢ The two measured female body properties, FBH; and FBW_, have
obviously much in common: using statistical terms we can say that (FBH,, FBW,)
are pairs of realizations of two mutually dependent random variables. They are
dependent through the bodies on which measurements were taken. In general, the
taller a woman, the greater her weight. This, however, is not always true; at times,
our observations are quite opposite.

4 The pairs (Smaxi> Wmaxi) CONSist of observations that, as a rule, were
not obtained simultaneously at one point in time during the yearly observation
period. In the year i , maximum snow load might be observed on February 25,
and maximum wind load on August 21. Their common attribute is the place of
observation. As a rule, there is no dependence encountered between Spaxi AW,
measured at one observation point.

It is important to note that in both cases variables have been observed jointly. In
the first example, this joint observation is embedded in the nature of the phenomenon,
the female body, while in the other case the joint observation is the result of our decision
to make a sample of annual maxima.

Thus, when evaluating samples of random n -tuplets and before making conclusions
from such samples, we should always consider the background to observations, whether
there are some decisions involved, what kind of measurements was applied, etc.

Extending the idea of random sample of 7 -tuplets (cf. 2.1.1, Population, random sample,
and random variable) we can describe the random behavior of a multivariate population by
a multivariate probability distribution, termed, as a rule, the joint probability distribution.
CDFs and PDFs of joint probability distributions can be defined similarly as those of
probability distributions of single variables. Sufficient information on joint probability
distributions can be found in any textbook on statistics and probability (see the introductory
suggestions in this Section).

Nevertheless, two important concepts related to joint probability distributions and
used in further text must be mentioned here:

(1) Marginal probability distribution is a probability distribution obtained when
a multivariate population is investigated from the aspect of only one of the variables. This
variable, {*, need not be necessarily identical with any of the variables £, through £,
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entering the n-tuplet. It can be defined, for example, by an arbitrary X* -projection onto
a straight line along which all realizations of the population are plotted (Figure 2.3).
Evidently, the number of possible marginal distributions is not limited. Marginal distribu-
tions of £* are not subjected to any conditions containing statements on the variables
forming the n-tuplet.

(2) Conditional probability distribution is obtained when a variable is investigated
taking into account some condition related to the remaining 7 -1 variables of the » -tuplet.
For example, we can find the distribution of one of n variables, given particular values
of the other variables.

X2
Q.
pu ]
37}
x
@ (X4lx))
X | S
20 -
X4inf X1 1X5 =X5)
X4

Fig. 2.3 - Bivariate joint PDF over a trapezium-shaped definition range
(@ (x,|x,) -conditional PDF of £,|(§, = x,9), o(x *) - marginal PDF of ¢*).

B Example 2.4. Consider a hat-shaped bivariate joint probability distribution with ®(x,,x,) defined
over a trapezium (Figure 2.3). The figure shows:

@ a marginal PDF of §*, obtained as a projection of all pairs (x, , X, ) onto a straight
line perpendicular to the projection direction X* ;

4 a conditional PDF of £,|(£,=x,,) , obtained as an intersection of the probability density
hat with a plane at x, = x,, perpendicular to the coordinate system [x; , %, ].

Note that areas under both @(x*) and @(x,|x,) must be equal to 1. ]

Analytical solutions of problems containing joint probability distributions are always
difficult. In the main, they are not possible at all. The only exception is the normal joint
probability distribution, whose analysis is well elaborated. It should be remembered that
all marginal and all conditional distributions derived from a multivariate joint normal
distribution are normal again; this simplifies many calculations.

When a joint probability distribution is defined, we can always make some statement
on the statistical dependence of variables participating in the distribution. Two extreme
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cases can be met: perfect dependence and perfect independence.

A perfect dependence arises when a clear one-to-one physical dependence between
the variables exists, while perfect independence indicates that no physical dependence can
be expected. However, statistical dependence can be observed also where no apparent
physical dependence can be identified. Dependence always indicates some physical relations
between variables, though it can be concealed by factors that are not noticeable at first
glance.

When the random variables §; and ¢, are perfectly dependent, then, in fact, only
one variable is dealt with.

Correlation coefficient

The statistical dependence of random variables can be expressed by various means. The
most frequently used is the correlation relationship, in which for a given value of one
variable, { = x,, the conditional mean u,, of the other variable, 7, is established.
At times, the correlation relationship is linear and we are able to express it in terms of
the correlation coefficient, o . In general, for multivariate distributions with linear
dependence of variables multiple correlation coefficients can be defined. In current reliability
analysis we meet, in the main, the bivariate correlation coefficient, ¢ . When a normal
joint probability distribution is treated, the dependence is always linear; in the case of
a bivariate normal distribution, ¢ is simply the fifth parameter, along with (y4,, 0,) and
(Bpo,)-

! nSimilarly as in the case of other characteristics, the population correlation coefficient,
o, and the sample correlation coefficient, r , must be distinguished. For a random sample
of pairs (x;, y;), i = 1through n, r is obtained from

i (x;-m) -y, —m))
r=—=21 ; . (2.25)
T, —mx)2-‘/:(yi—my)2 :
i=1 i=1

In practice, we may be supplied by a grouped sample of k pairs (x;, y,), each
group consisting of n; elements, i = 1 through k. When the widths of groups are equal,
the sample correlation coefficient can be calculated from

Xmxy - Xnx Xy,
r= (2.26)
([nZnx - Enx)) [nEny; - Eny)1)

where n = En‘., and X stands for "sum from i =1toi = k."

The values of r are always in [-1, +1]. The degree of dependence can be classified
verbally. We can suggest:
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Interval of |r| Degree of dependence
0to 0.3 low
0.3 to 0.5 medium
0.5t0 0.7 important
0.7 to 0.9 strong
09to1 very strong

Similarly as with the coefficient of variation, the reader must be warned on
misinterpretations of the correlation coefficient that are often encountered in practice:

(1) We must keep in mind that the correlation coefficient describes only the degree
of linear dependence between two variables. When the dependence is non-linear, the picture
provided by the correlation coefficient can be confusing. For example, a perfect circular
dependence gives ¢ = 0. Thus, a value of r # 0 conveys that there is some dependence,
nothing more. This information can be improved if it is known that the partial dependence
is linear; then, the above grading can be applied. When the dependence is non-linear, we
can obtain that the degree of dependence is, say, medium, but in reality it can be strong.
A graphical plot of the random pairs is recommended.

(2) Even when the dependence is linear, the information on r must be considered
with caution when small samples are analyzed. The spread of sample correlation coefficient
for such samples is very large. We can easily obtain, for example, medium negative
dependence in a case where the actual dependence is positive and strong. Reliable informa-
tion on the degree of dependence of two variables can be obtained through samples with
about n > 50. The problem is similar to that of the coefficient of skewness.

(3) Statements on correlation coefficient can sometimes be completely wrong. This
happens when the correlation coefficient have been calculated for a sample of pairs, where
the values of one variable have been determined by decision. For example, observed values
have been plotted on time axis in fixed intervals, and a "correlation coefficient" has been
calculated using Equation (2.25). Here, no correlation coefficient is dealt with. Regression
analysis shall be used in such cases.

B Example 2.5. In an extensive research program 21,228 of pairs of cube strength of concrete,
fouse » and volume density, y,, were obtained. The collection consisted of a number of samples that could
be classified as random. The size of samples was different - from 10 to about 4000. Correlation coefficients,
1., » were calculated for each sample; in Figure 2.4 r;, are plotted against the size, n. Observe the wide
spread of r, for small samples and diminishing spread with increasing n . The final estimate of the population
correlation coefficient was ¢ = 0.39 (medium dependence). | ]
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Fig. 2.4 - Example 2.5. Correlation coefficient T of the cube strength, f, ,, , and volume
density, y,_, of concrete (n = sample size).
Union of two bivariate samples
Let the characteristics of two bivariate samples taken from the same population be given:
My Sio My Siy Ty

Mop Sop Myys Sy Ty

When data on individual observations are missing, the coefficient of correlation of the
unified sample can be calculated from

.o no+n, S
no+n -1 s,
nn,
Sy = Spyt Syt (my, —m,) (m2y - mly)
n +n
17
n -1 n,-1
Sy = TS ST Spy T 5,50

n n

1 2

where s, and s, = unified standard deviations of x and y, respectively (see 2.1.2, Union
of two samples).
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Statistical dependence function

When some statistical dependence between variables is expected, correlation coefficient
is habitually used by many researchers as an input parameter during investigation of
structural reliability, that is, mainly in the calculation of failure characteristics, P, and pr
(see Chapter 9). Assumptions on values of ¢ are made, and ¢ is included into calculation
models. This, however, substantially limits the generality of results. Moreover, values
of correlation coefficients are usually not known; they can be only estimated. On the other
hand, we can easily develop a statistical dependence formula in the following manner:

Consider a variable n that depends on other variable ¢ in such a way that for
individual pairs (x,y) the following physical function holds:

y = Cpx% +Cr (2.27)

where Cp, Cq, and Cr = assumed constants. Now, any one of these constants, or all,
can be declared a random variable with the mean

u,=Cp, p,=Cq, p =Cr

and with additional parameters like o,, @,, 0,,etc. In this manner the non-statistical
dependence has been changed to a statistical one, and the number of random variables
has been increased from one to two, three, or four. Other types of equation (2.27) can
be selected, of course.

According to the Author’s experience, this technique of describing dependence
is clearer and more flexible than techniques based on correlation coefficient. It facilitates
the assessment of dependence; as a rule, an a priori decision on correlation coefficient,
o, is more difficult and subjected to more incertitude than decisions on random variability
of "constants." Moreover, using Equation (2.27), we can easily treat non-linear
dependencies.

In some cases, the coefficient of correlation, @, of two variables, £ and 75,
described by their respective parameters (4, 0,) and (4, 0, ) is sufficiently known and
it would be doubtlessly immoderate to discard this information. Then, the statistical
dependence function can be expressed as

n=e2f+¢ (2.28)

where { = random variable with

a')
Be =B, - e—a—uf)

p (2.29)

o =aﬂl—g
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2.14 Derived random variable

In diverse reliability exercises situations are very frequently met when a random variable
is transformed into a variable n through

n = B (2.30)

where E () = response function, and n = derived random variable. Owing to the
transformation { - 7 the CDF @ (x) chang&sm ®.0). It is evident that the parameters
of the two distributions are different and also the sample characteristics cannot be identical.
Nevertheless, when the response function is monotonic, it holds

Q) = <I>”(yK)
where x_, = k-fractiles. Set y, = E(x); when x, areordexedbymagnitude X S XS

K

.SX, the corresponding y, will ‘also be ordered by magmtude This is not true when E(.)
is not monotomc

B Example 2.6. The wind pressure w (kN.m?) depends on the wind velocity v (m.s") according
to

w = 0.613E-3 -v? @

Table 2.2 shows sample characteristics of a sample of annual maximum wind velocities and of the
corresponding sample of maximum wind pressures that has been created through Equation (a).

Observe, that Equation (a) holds approximately only between means, but not between standard
deviations.

Table 2.2 - Example 2.6. Sample characteristics of v and w

Sample Wind velocity Wind pressure
characteristics
Size (number of years) 37 37
Mean 31.0 m.s" 0.59 kN.m?
Standard deviation 3.2 m.s" 0.13 kN.m?
CoefTicient of skewness 1.7 2.0

The probability distributions of derived variables can be strongly affected by the
non-linearity of the response function (Levi 1972). The distribution of the output random
variable can differ very much from that of the input random variable. Moreover, the
evaluation of derived distributions becomes difficult, since mathematically treatable models
are not at hand.
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In many structural reliability problems it is necessary to describe the random
behavior of n for which a physical relationship exists,

n=80,%-¢,) (2.31)

where £, through £, = random variables. Response functions E(.) are usually com-
plicated, often non-linear. Except for very simple cases, an analytic solution of this problem
is almost impossible. Two methods of obtaining parameters of n exist - the method of
moments and the Monte Carlo simulation. They are briefly outlined in Sections 2.3 and

2.4, respectively.

B Example 2.7. A reinforced concrete simple beam is subjected to a random load F at mid-span.
The distribution of F is rectangular, F € [0, pr ], Figure 2.5a,b.

a) d)
P(F) o) (w1) .
1

0 0 ws:p w

c) e)

F ¢ w)
Fsup - =
d 1 |

0 Weyup W 0 WeupW

Fig. 2.5 - Example 2.7. Transformation of a rectangular probability distribution through
a non-linear response function (F = random load, w = deflection due to random load).

Assume that the dependence between the load and the mid-span deflection, w, is non-linear (Figure
2.5¢). CDF and PDF of w are plotted in Figures 2.5d,e. Observe how the non-linear part of the load-
deflection relationship has influenced the probability distribution of w ! n

2.1.5 Random functions and sequences

If we manage to measure, discretely or continuously, the dependence of a random variable &

upon a non-random argument ¢ , we can describe this dependence by a function
x = @ (2.31a)
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or by a time-ordered n -tuplet

My Ixy 0 1x,) (2.31b)

When several independent observations are carried out, we can find that the
developments of f(t)

¢ are identical at each observation, or
4 change systematically, or
¢ change randomly.

In the first two cases we are able to predict x for any value of ¢ , while in the
latter case an exact prediction is impossible.

Obviously, a development of f(f) is an evenr. When the development is random,
and when all developments are considered as a set, such a set is described by a random
function

{ = £ (2.32)
or, when time-ordered n -tuplets are investigated, a random sequence
£ =seqx), i=12.,n (2.33)

A single development of ¢ is called the realization of a random function.

The variability of realizations of £ can be diverse. Figure 2.6 shows five typical
examples of random functions and one example of random sequence; many others are possi-
ble.

The treatment of random sequence is analogous to that of random functions.
Therefore, we will not pay a special attention to random sequences. For random functions
and random sequences a summary term is used: random processes.

Parameters of a random function

If for any value of the argument ¢ , values of ¢ are collected, a set is obtained that can
be described by a probability distribution. Establishing the mean, standard deviation and
also possibly other parameters for each value of the argument, argument-dependent functions
are obtained again.

In Figure 2.6, PDFs for a given ¢ are plotted. It is apparent that they do not provide
sufficient information on the behavior of the respective processes. Random functions (a)
through (d), and the random sequence (f) have, say, identical PDF in the considered point;
nevertheless, they differ considerably. Observe, further, that for function () not only the
mean of the function but also the probability density changes. Therefore, also other parame-
ters of the function will change along ¢ . Two conclusions can be made:

¢ population parameters of a random function are functions of the argument,
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a)
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Fig. 2.6 - Some typical random functions (1 - mean; a, b, ¢ - stationary, d, e - non-
stationary functions, f - stationary random sequence).

4 the description of a random function, compared to that of a random
variable, must be expanded by further argument-dependent parameters.

The mean of a random function can be expressed by

fx @ = f{E[{O] (2.34)

For illustration, means are plotted in Figure 2.6. Observe, that for cases (a) through (c)
they are same, though the random functions are evidently different. Similarly, the variance
of the random function can be established:

(0 = £f{D[{ON 2.35)

In conformity with the prevailing practice, symbols E[.] and D[.] are used for the mean
(expectation) and variance (dispersion) of £(f), respectively; some authors use D? for
D . We could also write p[.] and o°[].

The nature of the mean and variance of a random function is analogous to those
of a random variable. If these parameters are independent of the argument, then a stationary
random function is dealt with. For example, the monthly maxima of wind velocity can
be taken as stationary, while the daily maxima are non-stationary (it is well known that
a "strong" wind today will be, with a certain probability, followed by a "strong" wind
tomorrow).
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A parameter specific for random functions is the autocorrelation function
K(t,t,) = E({ @) -EL[EE)IH{ () - E[E@)1))

which describes the linear random dependence of the values of § at ¢, on the values of §
at t;. The value of K is, in fact, the covariance of ¢(t) and £(¢,) . Hence, the
standardized autocorrelation function (Figure 2.7a),

K1)
1) = (2.36)
*& = SrEeT DlEw)]

equals the correlation coefficient of £(¢) and £(t,) .

a) b)
xlt) S(w)

Fig. 2.7 - Standardized autocorrelation function x(7) and spectral density s(w) .

You may try to sketch the standardized autocorrelation functions for cases in Figure
2.6. Note that for t; = ¢,

K(t,t,) = D[£()]
or

x(t,t) =1

When a random function is stationary, x(¢,,¢,) depends only on the distance between ¢,
and t,, thatis, on t = ¢, -t,. The distance r for which x(7) = «x,, where x, is a
defined value, close to or equal zero, is termed the correlation distance.

For completeness’ sake, let us mention here also the spectral density function,
defined, in standardized form, by

s(w) = 3flc(r)coswrdf (2.37)
T

where @ = frequency (Figure 2.7b). The spectral density function applies mainly in the
investigation of reliability of structures subjected to dynamic load.
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For random functions, we could introduce, similarly as in the case of random
variables, the concepts of sampling, sample, sample characteristics, etc. Though a full
theoretical basis connecting random functions samples and random function populations
has not yet been elaborated, we can make much benefit of the random function philosophy
in many structural reliability exercises. Its applications focus particularly on structural
loads where, in practical solutions, it is necessary to describe the time or space-dependent
behavior of load or both. The reader is referred to Wen 1990 where several typical random
functions (random processes) are presented.

When conclusions and decisions based on a continuous or densely discrete record
of observations are to be made, it is necessary to derive some parameters describing the
phenomenon. This is usually performed by a suitable discretization of records. In this way
random sequences are obtained, the statistical treatment of which is, as a rule, reasonably
simple. Three methods of discretization will be shown in Section 5.4,

General information on random functions can be obtained from, for example, Hines
and Montgomery 1990. Advanced information can be found in Cramér and Leadbetter
1967, Cinlar 1975, Vanmarcke 1983, Wong and Hajek 1985.

Random variables can of course depend on more arguments then one. Then, random
fields are dealt with (see Vanmarcke 1983).

2.1.6 Repeated events

Let a random variable, &, be described by
®,(x) = Pr(¢<x)

where x = specified value of ¢; the subscript 1 stands for single occurrence of ¢£.
Let n independent occurrences of x be expected. The probability P, that Ev({ s x) takes
place in all n repetitions of x is, according to Equation (2.5)

P, =Pr({<x|n) = [Pr({<x)]"
Thus, obviously, CDF of a repeated event (Figure 2.8) is given by
P, =o@( = [0 (2.38)
and, taking into account Equation (2.15), PDF of a repeated event is
do,(x)

9,(x) = =n[®,@I"! - ¢, (2.39)

Equations (2.38) and (2.39) are valid only when ¢ is stationary, that is, when Pr(¢ < x)
does not change during the repetitions.

An analytical treatment of ®,(x) and ¢,(x) is only possible in particular cases
(for example, for normal distribution and exponential distribution). The repetitions affect
the shape of the probability distribution considerably. For example, when Ev(£ <x) is
distributed normally with p® =0, o® =1, and «V =0, the eventEv({ <
x|1000) has a distribution with p1%® = 324 1% = 035 and 1% = 0.9,
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¢ (x)|

Fig. 2.8 - Development of CDF for a repeated event Ev({< x).

As far as fractiles are concemed, no difficulties arise. Suppose, for example, that @ (x)
is given and that a x-fractile of @ (x), x() is required. Considering Equation (2 38)
we can calculate

. (2.40)

and establish the x’-fractile of ®,(x). Itis x,((l) = x".

Mean return period

When dealing with time-dependent phenomena it is important to know the probability that
an event will happen in a specified period, or to know how frequently will it happen, etc.

Let a random variable be observed over consecutive observation periods, T, .
In each period one appropriately defined value x (for example, the maximum of all values
observed over T, ) was found. This value is also a random variable; let its random
behavior be described by @ (x) .

Cmsxderanférmcepench ThenumberofobsewanmpenodsdmngTef
is n = T,JT,, . Using Equation Z’Z 38), we now can calculate the probability P, that
a specified x will not be exceeded in n observation periods; conversely, given P, X can
be found.

Next, we want to know what the expected frequency of occurrence of Ev(§ >
x) during T, . will be. In other words, we want to find the mean remm period of Bv({ >
x).

The probability of Ev(¢ > x) during T, is

Pr({>x) =1-9,(x) (2.41)
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The probability P* that Ev(x, > x) happens at least once in n successive intervals T,
is given by the sum of probabilities Pr(§ > x) [see Equation (2.4)], that is,

P* = n-Pr(é>x)

Then, the number of intervals n* during which Ev( ¢ > x) is expected to happen at
least once results from

P =1
that is

n*Pr(é>x) =1
Using Equation (2.41) yields

.1
ey (2.42)

which, in other words, is the expected number of independent repetitions of ¢ until
Ev(¢ > x) happens.

The period during which Ev(£ > x) is expected to happen is the required mean
return period T, of Ev({ > x); it is given by

Tots (2.43)

" 1-0,®

Note the terms “"expected frequency of occurrence," "expected number of
repetitions,” and "is expected to happen.” These imply that the respective events may or
may not happen, that is, the effective return period can be less or greater than the mean
return period, T,, . - The term "mean recurrence interval” is also used for 7,

et ret*

M Example 2.8. Let the probability of Ev(the annual maximum of wind velocity, v__. , is greater
then 30 m.s™) be equal 0.01. The observation period is T,,, = 1 year. The number of intervals during
which the event is expected to happen once is n* = 1/0.01 = 100. Consequently, the mean return period
of Ev(v,,, > 30m.s")is T, = 100 x 1 = 100 years. [ |

ret

Equation (2.43) gives

T bs
=1-22 2.44
o () =1 (2.44)

ret

Equations (2.38), (2.42), and (2.44) yield
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T . \I
P =(1—-"_’*‘]’°~ (2.45)
T

ret

Because

N
e
N

we can write after arrangement

P xn - exp(—Tre/ Tret) (246)
Introducing this approximation into Equation (2.45), we obtain the mean return period
of Ev(§ > x)

Tret = _i_ 2.47)
In(1/P,,)

Observe that ®,(x) does not appear in Equations (2.45) nor (2.47). Hence, T,,,

is independent of the probability distribution of the random variable x , or, in other words,
it is distribution-free.

When establishing, for example, design parameters of load, we are usually interested
in the probability that a certain value x will be exceeded during a reference period T,,,
(for example, during the life of the constructed facility). It is given by

Px = P[(E>x|Trq') = I_Px.n (248)

When T, . and T,, are known, P, is established from Equation (2.46). Note that P,

should not be confused with Pr( £ > x), which, in fact, is only an auxiliary quantity,
expressing the mean return period of Ev(¢ > x); it is

Pr(E>x) = TL (2.49)

B Example 2.9. The design value of snow load, s, is established by means of a sample of annual
maxima of snow load, s, , as a value that occurs or is exceeded once in 100 years on the average. Thus,
T, = 100 years, Pr(s,,, > s;) = 0.01. Using Equations (2.46) and (2.48), the probability P, = P,
of Ev[(s,,, > s,)|T], in dependence on the life, T, (=T,,), is
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T, years P,
10 0.10
50 0.39
100 0.63
150 0.78

B Example 2.10. Find, for a structure with target life expectancy T, (= T,;), the design value
of annual maximum wind velocity, v,, which will not be exceeded with a probability P,, = 0.4. Further,
find also the mean return period, T,,,, between two consecutive exceedances of v,. From the analysis of
the annual wind velocity maxima, v, , the population mean g, = 31.0 m.s" and standard deviation o, =
3.2 m.s" were obtained. - From Equation (2.47) T, JT,, = n/Tnf = 1.09, and so the mean return period

1S

T, =109x80 = 872 years

ret

Since the observation interval is Tm = 1 year,
n*=T, =872

From Equation (2.42) we get

o) = 21 - 0988532

The velocity v, is defined as the x-fractile of the annual maxima v, , ¥ = 0.988532. Assuming that
the distribution of v, is three-parameter log-normal (see Appendix A), we get u, = 2.816, and so, using
Equation (2.20),

v, = u,+28160, = 400m.s™’

Probability that v, will be exceeded during any current year is

Pr(v,,,>v,) = 1-®(v) = 0011468 n

2.1.7 Estimation and hypotheses testing

As it has been mentioned in 2.1.2, any quantities gained by sample analysis (for example,
sample mean, standard deviation, median) are random variables. Thus, we can assign
to them appropriate probability distributions. Parameters of these distributions can be
established, and some important information can be drawn from them, helping to answer
the following families of questions:
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¢ What are, in terms of population parameters and other relevant quantities,
properties of the population from which the particular sample has been taken?

4 Do two or more samples gained by independent random sampling stem
from the same population?

4 Assuming that the population has a certain probability distribution, is
this distribution the best fit to the random sample?

These questions, which can be developed or split into further detailed ones according
to the intended purpose of analysis (confidence analysis, prediction analysis, statistical
tolerance analysis), are answered with more or less success by a branch of mathematical
statistics termed the statistical inference. Two specific areas of statistical inference can
be discerned:

¢ estimation of population parameters; the results of estimation are values
describing the investigated parameter;

& testing hypotheses on certain parameters, and also distributions; the result
of testing hypotheses are statements whether a hypothesis formulated is true or
false.

In the estimation, which refers to the first family of questions set above, two types
of answers can be given:

(a) The population parameter, ¢, is assumed to be just equal to a certain
value calculated from the sample - the point estimate of . No measure of un-
certainty is accompanying this answer. The only information on the quality of a
point estimate is whether it is biased or non-biased, which depends upon the theo-
retical background to the point estimate. Sample characteristics given in Table 2.1
are, by definition, point estimates of population parameters.

(b) The population parameter, @, is in a confidence interval, CIl=
[2,, 2,], defined by the confidence level, A . This number says that in 100 x 4
percent of cases @ will be in CI, and in (1- 4) x 100 percent of cases # will be
beyond CI. This procedure is called the inferval estimation. In reliability assurance
also the concepts of prediction intervals and rolerance intervals can be met, their
overall philosophy being similar to that of confidence intervals.

Again, answers in the hypotheses testing can be given in terms of biased or non-
biased TRUE-FALSE statements, or in terms of statements that accept or reject the hypoth-
esis with a specified confidence level, 4.

In the main, the choice of the confidence level, A , is a matter of engineer’s decision,
governed by economic and engineering considerations. Some quality control regulatory
documents specify confidence levels for particular procedures. In advanced reliability
methods, the estimation of population parameters can be affected by the objectives of the
general solution. For example, Lind and Chen 1987 introduced a consistency principle
approach to avoid arbitrariness in the selection of confidence levels.

We will not deal with the particularities of estimation and hypotheses testing here.
A statistically trained reader is well acquainted with both concepts. The newcomers can
find general information in specialized monographs on probability and statistics (for
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example, Benjamin and Cornell 1970, Hines and Montgomery 1990) as well as in many
university textbooks on mathematical statistics. Hahn and Meeker 1991 is an excellent
monograph on interval estimations, aimed at engineers.

Information on estimation of u, o, and fractiles of the three-parameter log-normal
distribution is given in Appendix A.

2.2 RELIABILITY THEORY

Similarly as in the foregoing section, only some principal concepts of the reliability theory,
bound to structural problems, will be given here. Sufficient reliabilistic literature is avail-
able; there the reader can find an elaborated presentation and detailed information on numer-
ous techniques applicable in structural reliability practice. A few tips for neophytes:

¢ general: Barlow and Proschan 1975, Gnédenko er al. 1972, Handbook
of Reliability Engineering 1988, Kececiouglu 1990;

¢ specialized, aimed at structural reliability problems: Ang and Tang
1975/1984, Bolotin 1982, Harr 1987, Melchers 1987.

2.2.1 Principal concepts

It should be stated here, that the reliability theory is nothing more, nothing less than a
mathematized engineering judgment, that is, long-term engineering experience collected
during the development of Humankind, transformed into calculation models. This
transformation would never be possible without

¢ mathematical statistics and theory of probability,
¢ thinking in terms of systems,
4 consistent introduction of time as an additional dimension.

These three fundamental features of the reliability theory and its applications should
be continually kept in mind by all who want to master the reliabilistic approach to the
problems of constructed facilities.

Reliability systems, elements, items, and connections

The concept of the reliability system S-L-E introduced in Chapter 1 showed the general
idea of interaction of components forming a constructed facility. Any of these components
can be mathematically investigated as a specific reliability system consisting of one or more
reliability elements. A reliability system need not be identical with the respective structural
system and a reliability element need not be identical with a structural member. In general,
we can say, that a structural system embodies several reliability systems (or, "subsystems")
that, subsequently, can be split into reliability elements.
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a)
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Fig. 2.10 - Combined reliability connection.

Systems and elements will be comprehensively termed ifems. It will be understood
that a system is composed of items, some of which can be lower level reliability systems,
the others just reliability elements. The effect of scale must be taken into account: an item
considered as element of a system, can be, by itself, a clearly defined reliability system.
Thus, to get a comprehensible picture of a problem, it is necessary, in any reliability-based
considerations, to identify various levels of systems and elements.

To describe correctly the behavior of a system on any level, connections between
items forming the investigated system must be identified. Two basic types of connections
have to be distinguished (Figure 2.9):

@ serial connection where the failure of any item brings failure of the higher
level system; a system where only serial connections are involved is called a serial
system,

9 parallel connection where the failure of a single item is not a sufficient
condition for the general failure of the system (parallel system); in systems with n
items connected in parallel, failure can be defined in various manner:

- by failure of minimum k£ items, with kK < n,
- by failure of only specified items, etc.

Further, we can consider that the capacity of an item participating in a parallel
connection will be completely lost after certain value of load has been achieved, or we
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can consider that the item will not resist any further increase in load. Other possibilities
exist. Here, the terms "capacity" and "load" must both be conceived in a wide sense. Not
only mechanical load and bearing capacity can govern a system analysis. On the other
hand, structural loads can be investigated as systems "loaded" in a specific manner.

Combined connections, consisting of items connected in series and in parallel (Figure
2.10), and conditional connections, that depend on the mode of failure of connected items,
are frequently encountered in many engineering problems.

In the general reliability theory, the concept of reserve is of importance. Two basic
modifications are met:

# active reserve that is simultaneously fulfilling the same function as the
item covered by the reserve; active reserve can be loaded or unloaded,
¢ stand-by reserve that gets loaded only after the respective item has failed.

Again, take the term "loaded" in a very general sense.

An important property of any reliability item is whether it is repairable or non-
repairable. A further property, that belongs to the same family of concepts, is the restor-
ability or non-restorability of an item.

The foregoing concepts, which are only a small sample of the general theory of
reliability vocabulary, are entering the structural reliability models. Unfortunately, the
implementation is slow. It is increasingly recognized that various types of connections
and reserves met in mechanical and electrical facilities exist also in constructed facilities.
And, in addition, that such concepts can be efficiently used in many design solutions. Some
examples of structural systems conceived as reliability systems are shown in Figure 2.11
(cf. Benjamin 1970). The reader is encouraged to elaborate, as an exercise, further
examples, and to reveal applications of the above referred concepts in constructed facilities.

Reliability function

It is difficult to state which of the various mathematical functions applied in the reliability
analysis is the most important one. Let us present here only the functions referred to in
the next chapters of this monograph.

Let us investigate a collection of items whose size at the beginning of its service
(t =0),is N,. At a moment ¢, N_ items have remained in service (survived), while Nf
items have failed. The time-dependent probability R(f) that any of N, items will survive
till ¢ is given by Equation (2.1), that is,

Ro) = (2.50)

Ny
NO

This probability is termed the reliability function. As a rule, R(t) is presented in a general
form

R(® = exp

—fl(t) dt} (2.51)
0

where A(t) = failure rate, defined as the relative number of items failed per unit of time.
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Fig. 2.11 - Structural reliability systems [a - serial systems, b - parallel systems, ¢ - mixed
systems, d - stand-by system, e - consequence system, f - multi-state system (deflection
of the floor leads to collapse of a partition wall)].

When the failure rate is constant,
A = 4,
the reliability function becomes

R@ =¢* (2.52)
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Failure rate

It appears that the time-dependence of the failure rate, A(f), Figure 2.12, is, to a certain
degree, the most instructive function in reliability thinking. - In a general case three distinct
ranges can be identified on the respective curve, which is often termed, because of its
shape, the bath-tub curve. In the majority of cases failures are more frequent in the
beginning of service of a collection of items than at later stages. The items weakened by
flaws drop out of service very early, and the failure rate decreases. This range of decreasing A()
is usually termed the early failure period or also burn-in period.

A
T

Tb | Tw
C | T/

0 t

Fig. 2.12 - Failure rate vs. time ("bath-tub curve").

Fig. 2.13 - Failure-rate curve for a structural system.

After the number of failures has stabilized, the failure rate becomes constant for
the constant failure period or period of current failures (also useful life period).

Finally, the items that have survived both foregoing periods, start ageing, and,
as a result, the failure rate increases; this range of the bath-tub curve is termed the wear-out
period.

The bath-tub curve features can be identified not only in the life of engineering
systems, but also in the life of humans, philosophic, economic, and political systems, etc.
You may even observe bath-tub curve properties in the behavior of structural reliability
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concepts and structural design codes!

As far as constructed facilities are concerned, the bath-tub curve is never smooth.
We know that buildings, bridges, and other constructed facilities, are exposed to short-time
and long-time fluctuation behavior of the S-L-E system. Let us mention here only the
seasonal changes in snow load and temperature load. Further, some building materials
improve their properties during a certain period before starting to age. Therefore, a true
failure-rate curve for an S-L-E system is undulated more or less (Figure 2.13).

Life

The concept of life of a CF system will be discussed in Section 10.2. Here, some remarks
are necessary to clarify this concept from the point of view of the reliability theory.

Assume again a collection of N, items. Some of them have failed over the early
failure period, others during the constant failure period, and finally, the remaining items
have failed during the wear-out period. The lives of individual items constitute a sample.
This sample cannot be statistically analyzed as a whole, since its elements come from three
different populations. Obviously, causes of failure in the first period substantially differ
from those of failures occurring in the second and third periods. Thus, samples of item
lives reached over respective periods have to be analyzed separately. This is often a difficult
exercise, as distinct boundaries between the three periods of the failure-rate curve exist
only in theory.

Obviously, the item life is a random variable. For practical reasons, we will not
deal with the life referred to the burn-in period; it has no practical meaning in structural
problems. - Let us first investigate the life referred to the constant failure period (Figure
2.14).

We can write

@) = 1- R@) 2.53)

where ®(f) = CDF of the time to failure. Obviously, the meaning of ¢ is the "random
life." The PDF of ¢ is

de@® _ _dR@
dt dt

¢@ =

Since ,, = Oand z,,~, the mean of t follows from
T _ ([ 4RO

After integration and rearrangement the mean time to failure, or the mean life,
H, , is obtained:
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Fig. 2.14 - PDF and CDF of the life, ¢ , and the respective reliability functions (a - constant
failure period, b - wear-out period).

u = [Ro)dt (2.54)
0
When the failure rate is constant, 4 = A_, Equations (2.54) and (2.52) yield
1
#tc Ac

Setting ¢ = p, = 1/, into Equation (2.52), we obtain
R(p,) =e' =037

which means that for any item from the initial collection the probability of reaching 4,
is equal 0.37, or, in other words, that at ¢ = u, only 37 percent of the collection will
be surviving.
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a) b)

Fig. 2.15 - Reliability function in the wear-out period (a - u . >u,, b - u,>p.).

Now, let us pay attention to the wear-out range of the bath-tub curve. Assume that
the lives of items that have failed because of ageing can be separated from the other item
lives (this, in fact, is in some cases really possible when suitable criteria of ageing are
set). Then, PDF, CDF, and the wear-out part of the reliability function, R (£), can be
estimated (Figure 2.14b).

The summary failure probability, taking into account failures that belong to both
periods, and assuming that the two types of failure are independent, is given by Equation
(2.6), that is,

Py =Py +Py =P, Py,
Setting

P,=1-R, P, =1-R,

where R , R, = reliability functions corresponding to the constant failure period and
to the wear-out period, respectively. After rearrangement it results

P, - 1-RR,

and further, using Equation (2.3), the reliability function in the domain of simultaneous
occurrence of current failures and wear-out failures is

R =RR,

Figure 2.15 shows R for two cases: p, > p, and p, < p,. Itis assumed here that
PDF of the wear-out life is symmetric, which definitely may not be so in practice.

On many occasions it is not important sow long the service periods of an item were
but how many times it was put in service. All formulas given in the foregoing paragraphs
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also remain valid for such situations. Obviously, they can be simply adjusted by substituting
the time by the number of service cycles.
So, for example, Equation (2.51) will be

R(n) = exp[— f /l(n)dn)
0

Similarly, Equation (2.53) can be written as
®(m) = 1 -R(n)

where ®(n) = CDF of the number of cycles to failure.

Also, instead of time and number of cycles, other arguments of the reliability
function can be used. For example, the number of items consecutively produced, number
of segments of a lifeline, and others.

2.2.2 Reliability function of a system

When a set of reliability items with independent item reliability functions R, through R,
is connected in a reliability system, we can establish the reliability function of this system,
R_. - For simplicity, the argument, (¢), is omitted in the following notation; it is
understood that all R are time-dependent.

Consider first a serial system. Taking into account again that the reliability function
is, in fact, identical with the probability of survival we can determine the reliability function
of the system as [see Equation (2.5)]

R = R ‘R, .. ‘R, (2.55)

Sy

When the item reliability functions are

R =e

i

with all 4 constant, Equation (2.55) yields

o o 2.56
Ry, = exp[—i);:1 A, t) (2.56)

Hence, comparing Equations (2.56) and (2.52), the failure rate of a serial system is given
by

n

ser

A - El Ay
i-
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An analogous solution can be applied to a parallel system composed of n items
with mdependent reliability functions R, through R, . The reliability function for such
system, R , can be derived from the fallure probablhty of the system

P, =P, P, .‘P,

that is
P, =(1-R)(1-R)-..-(1-R)
and so the system reliability function is
par n
Ry =1 —iI=I(1 -R)

In reliability systems with items connected in parallel, the failure rate is often equal for

all items, 4, = A,. Then, the failure rate of the system is given by
AP i
B,
1 1 1
B, = —F—— .
¢ A 24 ni

The reader should try to draw the reliability function and the failure rate for a system with
the combined connection according to Figure 2.9.

Analogous calculations can be performed for systems with reserves of any kind.
In specialized reliability monographs and handbooks numerous examples can be found.

2.3 METHOD OF MOMENTS

When computers were not available and, consequently, the Monte Carlo simulation
technique (Section 2.4) could not be efficiently used, the method of moments provided
a good tool to the analysis of derived random variables. At present, the method of moments
still remains a practical instrument, but its objectives have changed:

4 it supplies a quick overview on parameters of the derived random variable;
behavior of the parameters can be simply assessed without performing any simulation
calculations;

4 it is used in establishing the first-order and also second-order members
of probablhty distribution moments of the derived variable (reliability margin, as
a rule) in the reliability investigation based on the Hasofer-Lind reliability index, SH
(see Sections 8.5, 9.2, and 9.3).

We will not give mathematical developments of the moment method (they can be
found in Tichy and Vorlicek 1972); only results important for the above mentioned aims
will be introduced.



58 TOOLS
2.3.1 Parameters and quasi-parameters

First, let us define a derived random variable by
n=£(,6..¢,) (2.57)

where ¢, through ¢, = random variables, each described by three population parameters,
W;, o,, and «,, respectively. Basically, no other information on the probability
distributions of ¢, is needed. Nevertheless, a general type of the distribution (say, three-
parameter log-normal) must be assumed since in some formulas coefficients of excess,
€, , appear.

' Second, the following assumptions, valid in the respective definition domain, must
be accepted:

¢ the random variables ¢, through £, are continuous and independent;
when some dependence is observed or is obvious, it can be dealt with by compiling
an appropriate statistical dependence function as explained in 2.1.3;

¢ f,, (.) is continuous and differentiable up to the fourth derivative;

4 the expansion of f () in a Taylor series is convergent in the domain
of investigation; this assumption is very difficult to verify in advance.

To simplify, the subscript n at f, will be omitted.

Expanding f(.) in a Taylor series, neglecting expansion members containing
derivatives of order n > 5, and performing some analytical calculations, the approximation
formulas for the mean, standard deviation, and coefficient of skewness of the derived
variable, 1, can be written (see Tichy and Vorli¢ek 1972):

p, =1+ ):f g + ‘Efma e

(2.58)
1 Efiiiia (g +3) +; Efu.v
afl = }:f,zal2 + Zf,.fi,.a,-za,. + %fo,-af(e,- +2)
lEf,fma (e, + 3) (2.59)
+ E(f?}. + £, + f‘ful)a o
i<j
a, = LI o]a, + —Efzfua,(s +2) +
o i (2.60)

+6Xfff, 07 0]
i<j
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where
fl' = _a&’ fl} = i(')_’ fl’l’ = QZ_fQ’ etc.
a¢; d9¢,0¢ i . ff
the derivatives shall be taken about the point (4,, 4,, .., #,). Further, f; = value

of f(.) obtained by setting n, = p, forall i , and ¢, = coefficient of excess of the
respective probability distribution. Since knowledge of only three independent parameters
is assumed, ¢, has to be expressed in terms of these three parameters, the respective
formula being dependent on the type of distribution chosen. For the three-parameter log-
normal distribution, the coefficient of excess can be calculated from formulas given in
Appendix A.

Equations (2.58) through (2.60) are not expansions, but formulas derived by
expanding f(.) in Taylor series and, subsequently, performing necessary integrations to
obtain mean, variance, and coefficient of skewness. Obviously, when f(.) is linear, only
first members apply.

When f (.) is non-linear, the analytical solution of the above formulas becomes
complicated. Moreover, some numerical investigations show that good estimates of the
respective parameters are obtained only when simple, "well-behaved" functions are dealt
with. Unfortunately, such functions are rarely encountered in practice, and they can be
found, as a rule, in textbooks only. Further, some numerical solutions have shown that
from Equations (2.58) through (2.60) reliable results are obtained only when the coefficients
of variation, 6,=0,/p;, of the input variables are small, that is, not greater than about
0.15. The actual values of &, often exceed this limit (for example, when time-dependent
structural load is dealt with).

Now, first members of these formulas can be used efficiently for specific purposes.
To simplify the phrasing, let the first members be called quasi-parameters, that is quasi-
mean, quasi-variance (with quasi-standard deviation, or shortly: quasi-sigma), and quasi-
skewness (quasi-alpha). Thus we obtain:

Qw, = f, 2.61)

Qo) = Zfiq, (2.62)

Qz, = —- I ola, 2.63)
Qo, !

In Equation (2.63), the approximation ¢_= Qo has been used. Equation (2.62) can
be It%?rther ap(prox1)mated &p 2= Q7 Eq (2.62)

Qd, = Qu,Zé; (2.63)
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where 8, = o/u,. This is acceptable only for algebraic functions and with 4; small,
that is, less than 0.10. Otherwise the formula is useless.
Obviously, for linear f(.), it is

= 2 = 2 =
Q“n = #'l’ Qan - ay,’ Qan - a"

In terms of standardized variables, u,, with p;, =0, 0, =1,and o, = ¢,
Equation (2.57) can be transformed setting

§ = Bi*uo (2.64)
and so

n* = f“(u,u,,..,u,) (2.65)
Then, Equation (2.61) becomes

Quy = 1o
Since p,; = 0 forall i , we obtain, considering Equation (2.64) with u; = u,,

Quy, = Qu, = 1 (2.66)
Finally,
Q0|;2 - Ef:d (267)
u 1 3
Q %, a3 i Y (2 68)
g
n
2.3.2 Some simple functions

To create a rough picture on various typical functions formulas for parameters of a few
simple derived random variables are given, derived by M. Vorli¢ek in 1961. The input
variables are considered independent, their parameters being p, o, and @, with
appropriate subscripts where relevant. - To simplify the notation, coefficients of variation,
6 = o/u, are used in some formulas.
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n=af+bf+c 2.69)
o = (2ap +b) -2a(u + 92) + b] & + La? oA (4 + 3e?)
@, = 0;303(2ap+b)2.[(2ap +b)a+%a0(4+3a2)]
n=ad (2.70)

B, = ap'[1+ %n(n -1)8% + %n(n -1)(n-2)8a

+Ln(n-1)(n-2)(n-3)2 +a2)s']

af, = (anp"6"?-A

¢ =si a) B
n gnnA3/2
A = 1+(n—1)<5a+§(n—1)(3n—5)¢52
+§(n—1)(7n—11)¢52a2
B - a+%(n—1)(4+3a2)6
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n=%+b @2.71)
po=2(1+8-8Ba+364+25%%) +b
L 2
2
o =2 6A
2
7
= si al
@, = sign o
A=1-6a+86+28d
=65-a+§62a2
¢=atb @.72)
n
= ”51+62_53 +354+354 2)+b
“(_a#_( 1 n % 1 Enan
n
2
a(—a2ﬁ A
P’I
= si a__B_
& gn A2
_82,.82_ns3 4 252,9454.2
A = 65 +6n 26,, an+86" +36£ 6,’ +-2—6” a,

3., _s3 4 262,954, 2
65a5 dn an+66n +6655n+25n a,
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n = Tat+b @.73)
i=1

Q

1]
2%

Qn

n = anfi +b (274)
i=1
B, = alle,+b
i=1
af, =(@p)-A
i=1
a, = si al
n &n A3/2
n n-1 n
A=X+X X 6,.26]2
i=1 i=1 j=i+1
n n-1 n
B = 26i3a,.+62 h)) 6i26j2

"
—

i i=1 j=i+l
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24 MONTE CARLO SIMULATION

The Monte Carlo simulation technique is a well known and widely used tool in structural
reliability analysis. It will not be discussed in detail here. The following books are useful
on this technique:

¢ general: Forsythe et al. 1977, Rubinstein 1981, as well as many books
on numerical analysis;

¢ specialized, aimed at structural reliability problems: Ang and Tang II
1984, Augusti et al. 1984, Elishakoff 1983, Melchers 1987.

The present availability of computers and high processing speeds permit fast and
comfortable applications of Monte Carlo techniques to a diverse range of problems. It
can be expected that with further expansion of computing power, the Monte Carlo technique
will continue to develop in the future. We should keep in mind that without it many reliabili-
ty problems would be simply insolvable.

The principle of Monte Carlo technique is very simple. Consider Equation (2.57);
assume that the probability distributions, or in other words, the populations of £, through £,
are known and deﬁned Now, let us randomly draw from each population i a value of

;. An n-tuplet (x1 b , (1) s s x(l)) is obtained, and

y(1) - f( ) xz(l), . :l))
is calculated. The n -tuplet of draws is called a trial, and y® is a realization. The drawing
of trials is repeated N-times, and so a sample of realizations, y® through y®™, is
obtained. Obviously, n x N draws have to be performed. Then, the sample is subjected
to further statistical and probabilistic treatment. Several derlved &andom variables r;1 ,
n,, .., 7, can be investigated simultaneously; realizations yl(), y2), . y,f,k)
obtained with the trial k.

During recent years several adjustments of the Monte Carlo technique were proposed
(for a good survey, see Bjerager 1991), all aimed at shortening the processing time. Most
of these techniques introduce some bounds to the sampling procedure which results in
a number of trials less than required in a "plain" Monte Carlo simulation, where the chance
of input variables being included into the sample is governed solely by their respective
probability distributions (see, for example, Bucher 1988, Florian 1992, and Schuéller et
al. 1989).

In general, however, any limitations decrease the amount of information supplied,
though with certain techniques estimates of the population mean and variance can be
improved.

As a rule, sample reducing techniques provide good information about the population
mean, population variance, distribution fractiles that are close to the mean, etc. Yet, when
other parameters are needed (coefficient of skewness, fractiles in the domain of the
distribution tails, and others), the quality of information decreases rapidly with the
decreasing sample size whatever time-saving method is used. Since in many cases failure
probabilities (see Sections 8.1 and 9.1) or fractiles corresponding to given target failure
probabilities are required, large samples are necessary to attain a sufficiently reliable result
whenever the expected or the intended probability is small.
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In calculation of probabilities and fractiles a substantial reduction of processing
time can often be achieved by combining Monte Carlo simulation with estimation of the
probability distribution of the investigated variable (see the S-E technique in 9.1.1). Then,
for satisfactory results, the number of trials needed is only 5,000 to 10,000.

Most of the published monographs limit the information on the Monte Carlo
technique to its theoretical aspects, describing procedures, random number generators,
etc. Here, a few practical hints are given that can be useful during the solution of problems:

(1) Contact the programming adviser or system engineer to obtain basic information
on the sofiware concerning the Monte Carlo technique available in your computer facility.
You should be sure that the random number generator, RNG, has been proved and subjected
to statistical tests. Fortunately, no substantial problems have occurred to the present in
this area; since the beginning of the eighties software RNGs are sufficiently well tested.

(2) Study the problem you intend to solve from the simulation point of view. Con-
sider its mathematical formulation and try to visualize your problem as a complex natural
Pphenomenon. Remember that you are trying to imitate Nature. You may discover that the
calculation model you want to subject to a Monte Carlo treatment is biased in some way.
For example, constants appearing in the problem might be, in fact, random variables; their
randomness was underestimated, neglected, or entirely unknown to the authors of formulas.
The calculation model or a part of it can originate from times when no particular attention
had been paid to the random variability of engineering phenomena. Therefore, try to identify
its background whenever possible. Do not forget that "one" and "zero" are also constants
that may stand for random variables with mean equal to one or zero, respectively. - See
Example 2.11.

(3) It is important not to include illogical realizations into the sample generated,
the sample size has to be diminished by the number of such realizations, this number should
be recorded. If it is too high (more than about 20 percent of the intended sample size),
the calculation model should be checked for correctness.

(4) Select appropriate probability distributions to describe the input variables. For
example, when negative values of a variable are physically impossible, use a lower-bounded
distribution. Log-normal distribution (see Appendix A), is recommended for variables
with lower or upper bound. Yet, when both bounds are apparent, a single-bounded distri-
bution will still suffice in most cases. The more important bound should govern the choice.

(5) Identify all possible dependencies among input variables and try to model them
by appropriate statistical dependence functions (see 2.1.3). Again, do not forget that in
the past the dependencies were not fully recognized, and may not be expressed in the
functions investigated.

(6) In the beginning of the analysis, before performing a series of large sample
solutions, make some sensitivity tests to understand influences that are to be dealt with.
Perform some pilot tests and examine the behavior of the sample characteristics of the
parameter studied in relation to the sample size and to other parameters of the problem.

(7) Do not hesitate to plot histograms. A study of the histogram can reveal
irregularities and pitfalls of your calculation model. Multi-modality, humps and other aberra-
tions in the empirical frequency curve signalize that the calculation model might be biased.
Do not try to explain the aberrations by some sophisticated pondering until you have checked
all simpler reasons. In the majority of cases, histograms converge to smooth curves.



66 TOOLS

Undulations, humps, local peaks of frequency curves are not typical for phenomena dealt
with. However, possibility of "regular irregularities” cannot be utterly excluded.

(8) Always record the seed number and also the sample size used at each run. This
is important for a possible repetition of the simulation with different input parameters.
You or your colleague may for some reason return to the problem after a certain period
and may like to compare new results with the previous solution. Yet, do not forget, that
for different sample size, or even a different number of input variables, the same seed
yields incomparable results. Do not forget that RNGs are often computer-dependent.

(9) It is often better and less time-consuming to repeat m -times a simulation with
sample size n and to take, from these m runs, the mean value of the parameter investigated
(see 2.1.2, Union of two samples), than to perform a single solution with sample size nxm .

(10) 1t is practical to monitor the development of one or more simulated quantities
(statistical characteristics, probability, and others) on the computer screen. You can stop
the calculation as soon as the simulated values of the respective quantity become sufficiently
stable.

(11) Some parameters require a higher computing precision. For example, when
calculating the coefficient of skewness with a Fortran program, the DOUBLE PRECISION
arithmetic must be used.

(12) Fluctuations of the coefficient of skewness, a , and of the coefficient of excess,
¢, depend upon the coefficient of variation, & ; the smaller &, the greater fluctuations.
However, we are, as a rule, not interested in €.

(13) Pay attention to the processing time. Make some time-sensitivity study whenever
a program with expected repeated use is prepared. Always record the execution time.

(14) The ordering algorithms, needed chiefly in the analysis of fractiles, can have
diverse properties as far as the execution time is concerned. Some algorithms are relatively
fast for small samples, while being lazy for large samples, and conversely.

B Example 2.11. The random variability of the active earth pressure factor, K_, is to be analyzed.
The input variables are shown in Figure 2.16. - To avoid confusion with notation used throughout this book,

boldface Greek characters will be used in this example for quantities referred to the earth pressure problem.
For g the well known Coulomb formula, verified by experiments, is valid

-2
(. _cosi(e-a) {1+[sin(o+a)-sin(o—o)%}

cos’a -cos(d + @) cos(3 + @) -cos(ax - B)

In a current design we simply set for angles @, B, 8, and ¢ values specified in regulations
or resulting from some report, without considering various relations among them. These values reflect the
logic of the case investigated.

Nevertheless, when simulating the random behavior of K, the dependence between some variables
must be considered:

4 First, the angle of internal friction, @, and the angle of friction of the earth against the wall,
8, are obviously dependent. It is often suggested to take

3 =§q, of 8=05¢
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4 s

Fig. 2.16 - Example 2.11. Active earth pressure; notation of input variables.

which, however, represents only an "average" dependence. Considering the statistical viewpoint the dependence
is more complicated. For example, we can write

2 /
d==¢+d
31‘

where 8 = random variable with the mean My = 0 and variance o, > 0.

5’
Or, we can assume
3 =xp+d

where x = random variable with y_ = % and ai # 0.

Even when @ and 8 were independent, we should always include into the respective algorithm
the condition that for

d>¢ (@
the respective realization of K, is not considered in the sample.

(b) Further, it is clear that the angle of the earth slope, B, must be less than the angle of internal
friction, ¢@ . Obviously, B and @ are independent; however, P can never be greater than &, otherwise
the slope could not be carried out. Thus, we must again include the condition that for

B>e

the respective value of K, is ignored. Even when u g S Mg, some random pairs (B, @) could satisty
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the above inequality, and the equation for K, would not have any solution.
(c) The last limitation necessary in the given problem is that for

3<0

the realization of K, is again ignored. Actually, when 8 < 0, the passive earth pressure is dealt with,
for which the K, formula does not hold any more.

When, for example, Equation (a) is fulfilled, we cannot set 8 = @ and include the calculated X,
into the sample. This would result in a hump or peak in the histogram. |

Many applications of the M.C. simulation method can be found in various
publications (for example: Floris and Mazzucchelli 1991, Fogli 1982, Strating and Vos
1973, Mirza and Skrabek 1992, and Van Breugel 1992). The reader is suggested to study
one or two papers carefully to get acquainted with all the finesse of the technique.

2.5 FUZZY LOGIC

An important instrument of the structural reliability theory is the fuzzy logic, which is
a particular branch of the multi-valued logic family. Its value system is either continuous
or discrete, dependently on the type of the problem given and the calculation model used.
The fuzzy logic is a formal basis for the fuzzy set theory, which can be used in diverse
reliability problems to describe a particular type of indefiniteness (see Section 1.1) not
covered by probabilistic models.

In general, a fuzzy set, F, consists of two groups of elements, e; one group
unambiguously belongs to F, wh11e the other group is composed of elements that are
partially members of F and pamally members of the complementary set F' o Itis

FUE' =

where U = universal set. Obviously, F’ and the boundary between F and B’ are also
fuzzy.

The association of e with either F or F’ is expressed by the membership function,
p (e) , whose values are in the interval [0, 1]. If p(e) =1, then e € F,if ple) =0,
then e ¢ F. Various forms of the membership fUﬂCthﬂ are possible.

The methodology of fuzzy sets was introduced in the structural reliability outfit
by Blockley 1980, where the reader is primarily referred to. Since that time the fuzzy
set concepts have been gradually implemented in advanced calculation models. In general,
opinions on the benefits of the use of fuzzy set techniques has not yet stabilized. It is true
that exercises where fuzzy logic is applied can also be solved by traditional procedures.
However, on many occasions, the fuzzy set approach can highlight aspects of the problem
that could not be recognized in other way. Fuzzy sets can be applied in various specific
areas of reliability investigation, as, for example, in risk analysis, evaluation of tests, and
serviceability limit states.
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We will not use any fuzzy set solutions in this book; to readers interested, a few
take-off publications can be recommended: Applications 1989, Bardossy and Bogardi 1989,
Blockley 1987, Chou and Yuan 1992, Der Kiureghian 1989, Hadipriono 1986, Holicky
1991, Munro 1987.




PHENOMENA, EVENTS,
AND RELATIONS

Key concepts in this chapter: phenomenon, event; absolutely adverse phenomenon, relati-
vely adverse event; existential relation; sequential relation; relation formula, physical
relation; statistical relation; combination; defined combination; arbitrary combination.

3.1 PHENOMENA AND EVENTS

When investigating the reliability of constructed facilities, certain and possible phenomena,
as well as certain and possible events have to be dealt with. Although each of these terms
has its particular meaning, they are frequently confused. Let us discuss them in this chapter
more closely.

A phenomenon consists of facts that can be perceived and that describe the staze
of things as they are or as they appear to be. A phenomenon is related either to matter
(for example, strength of material in a general sense, gravity, temperature, explosion)
or to consciousness (for example, human sensitivity to vibrations of the building, relation
of the man to CF), or it can imply both (for example, reliability margin with respect to
deflections defined by aesthetic criteria). - Each phenomenon has its substance expressing
the entirety of its properties. For example, the substance of the phenomenon "strength
of concrete” are properties of the aggregate, properties of cement, size of the specimen,
and age. The substance of the phenomenon "reliability margin with respect to ultimate
resistance” are material properties, geometry of a structure, properties of load, and others. -
Again, phenomena will be designated by H and by the operation symbol Ph(.).

When a phenomenon can be repeated or when it can assume several different forms,
then any of the occurrences ard any of the forms is called a realization. A realization can
be expressed by a value of a continuous or discrete variable, or by a value of a function.
An occurrence of the realization of the respective phenomenon, or an occurrence of separate
realizations of several phenomena, accompanied by a change in state of CF that can be
observed by user, owner, or by other persons, or not observed at all, is called an event.
Events will be designated by E and, in operation notation, by Ev(.).

A simple fact must be realized: a certain event E can happen only when the respec-
tive parent phenomenon H exists. Here is the source of confusion that we often encounter
when talking about these two concepts. It frequently happens that no distinction is being
made between them.

70
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To clarify, Table 3.1 introduces two examples of phenomena, realizations, and
events,

Table 3.1 - Examples of phenomena, realizations, and events

Example 1 2

Phenomenon, H yield stress of the steel used in  wind load
the structure

Realization of H yield stress of steel in the wind pressure in the given
cross-section location

Event, E insufficient yield stress of steel ~ excessive wind pressure in the
in the cross-section given location

Relations among phenomena and among events
Among phenomena of a certain group, four categories of relations can be identified:

4 existential relations;
4 sequential relations;
4 physical relations;

¢ statistical relations.

Some of these categories may not be interesting for structural reliability solutions,
or their influence on reliability is negligible.

When a certain type of relation is found between several phenomena, an analogous
relation must exist between the corresponding events. An analysis of relations that takes
phenomena into account results in qualitative information necessary for the formulation
of physical reliability requirements (see Chapter 7).

Considering events, the analysis of relations provides quantitative information needed
for probabilistic reliability requirements (see Chapter 8) and for the derivation of design
parameters. They are particularly important in solutions of diverse combination problems
and in drawing event trees (also: fault trees, failure trees). Such trees are helpful in many
reliability-based exercises where knowledge of behavior history of a system is needed (see,
for example, Bruneau 1992, Hadipriono et al. 1986, Karamchandani et al. 1992,
Karamchandani and Cornell 1992, Reed and Brown 1992, Schall et al. 1988, Whitman
1984).



72 PHENOMENA, EVENTS, AND RELATIONS
3.2 EXISTENTIAL RELATIONS

3.2.1 Four fundamental relations

When a set H of phenomena H; (i =1, 2, .., n), created by Nature and by Human-
kind, is analyzed from the viewpoint of simultaneous occurrence of these phenomena in
a certain place and at a certain point in time, the following four types of existential relations
can be found between individual members of the set:

(a) existentially simultaneous phenomena; these are phenomena that cannot
exist alone, and their simultaneous occurrence is a necessity;

(b) existentially independent phenomena; they may or may not occur sepa-
rately, or they may or may not occur simultaneously;

(c) existentially positively dependent phenomena; these are formed by a
group of primary phenomena, H*, and by a group of secondary phenomena, H** ;
phenomena H* and H** may or may not occur, but phenomena H** can only
occur when simultaneously phenomena H* take place;

(d) existentially negatively dependent phenomena; they exclude each other,
and so they can only occur individually, never simultaneously.

The phrase "may or may not occur” does not refer to the randomness of the occur-
rence of the phenomena. We are still in the non-random domain, and so the phenomena
are discussed here without any reference to their random nature.

The principal importance of the existential relations consists in the determination
in what existential combinations the phenomena subjected to analysis can occur. As an
existential combination a simultaneous occurrence of several phenomena that belong to
aset H of n phenomena is considered. For completeness’ sake, also the occurrence of
a single phenomenon is regarded as a combination, supposing of course that this
phenomenon belongs to H . Existential combinations will be denoted by

(H;, H,, .., H),

where i , k, .., I = subscripts of some of the phenomena H, through H, of the given
set.

For "existential combination" the simpler term "combination" is often used (for
example, combination of snow load and wind load).

3.2.2 Relation formulas

To describe various relations, simple and clear symbols are needed. The following notation
will be used:

1) necessity, simultaneity

() independence
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LD superiority, primarity (brackets indicate
primary phenomena)

N(.) impossibility
Periods in parentheses and brackets can denote sets of phenomena, that is, either single
phenomena or groups of phenomena, or also a relation formula.
The significance of the relations between phenomena can be simply demonstrated
by an example of o phenomena and three phenomena. 1t is of course possible to extend
the discussion to larger phenomena sets but that would involve us into unnecessarily

complicated elaborations. We only want to show the reader the general approach needed
when the simultaneity of several phenomena is studied.

Two phenomena
Let us investigate existential relations between phenomena H, and H, .

(1) Two existentially simultaneous phenomena have only one possibility of
occurrence, that is, they can only appear in only a single existential combination:

¢ H, and H, simultaneously: (H,, H,),

Individual occurrence of any of these phenomena is excluded. The respective relation
formula is:

'(H,, H),

(2) Three existential combinations are possible when H, and H, are existentially
independent:

¢ H, alone: (H),
¢ H, alone: (Hy),
¢ H, and H, simultaneously: (H,, H)),

The relation formula is:

(H,,H,)

(3) Let H, be the primary phenomenon (H*) and H, the secondary phenomenon
(H"**), the latter being independent of H, . Then, only two existential combinations are
possible:
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¢ H, alone: (H),
¢ H, and H, simultaneously: (H,, H,),

Clearly, an isolated occurrence of the secondary phenomenon is impossible. The relation
formula is:

(H, [H,])

(4) Similarly, for two existentially negatively dependent phenomena only two
combinations are possible:

¢ H, alone: (H),
¢ H, alone: (H,),

A simultaneous occurrence of the two phenomena is impossible. The relation formula is:
N(H,, H,)

The possible existential combinations of two phenomena, H, and H,, are
summarized in Table 3.2.

Table 3.2 - Existential combinations of two phenomena (X -occurrence, 0 - non-occurrence
of the respective combination)

Case 6} ) 3) )
Relation 'H,H) H,H) H,[H,)) N@#H,,H,)
1: H), 0 X 0 X

2: (H), 0 X X X

3: (H,H,)), X X X 0
Number of exis-

tential combina- 1 3 2 2
tions

Three phenomena

Whereas only four possible relations can be found for two phenomena [these relations
are identical with the existential relations (a) through (d)], a much larger set of combination
possibilities is offered by three phenomena, H,, H,, and H, . Let us introduce here only
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some of them:

(5) All three phenomena are existentially simultaneous, and so the relation formula
is:

!(H,, H,, Hy)

Again, only one existential combination can occur:

(H,, H,, Hy),

Table 3.3a - Possible existential combinations of three phenomena with some arrangement
of the existential relations (X - occurrence, 0 - non-occurrence of the respective

combination)

Case %) (6) ) t.)]

Relation G HHE)  HEH) H, [, (],
[H,]D NH H))

1: M), 0 X X X

2: (1), 0 X 0 X

3: (Hy, 0 X 0 0

4: (H,H), 0 X X 0

5: (H,H,), 0 X 0 X

6: (HH,), 0 X 0 0

7: M, X X X 0

H,H),

Number of exis-

tential combina- 1 7 3 3

tions

(6) All three phenomena are existentially independent; thus, seven combinations
are possible (see Table 3.3a):

(H),, H, H),, (H;, Hy, Hy),

(H),, (H;, Hy),

The relation formula for this set of phenomena is:
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(Hy),, (H,, Hy,
(H,, Hy, Hy)

(7) Let H, be positively dependent on H, , and H; positively dependent on H,
The existential combinations possible in this case are shown in Table 3.3a; the relation
formula is:

(H, [H, [H,]1])

(8) Let phenomena H, and H, be negatively dependent, and let H, depend positive-
ly on H, . Possible existential combinations are given in Table 3.3a, and the relation
formula is now:

(H,;[H,], N(H,, H,))

Table 3.3b - Possible existential combinations of three phenomena with some arrangement
of existential relations (X - occurrence, 0 - non-occurrence of the respective

combination)
Case ()] (10) (11)
Relation (H,,!\(H,, N(H,H,, H,,
H,) H) ['H,H)D
1: (H), 0 X X
2: (M), 0 X X
3: (Hy, X X 0
4: HH,), X X 0
5: (H,Hy, 0 X X
6: (H,H,), 0 X X
7: H,, X 0 0
H,H),

Numl‘)er (.)f existential 3 6 4
combinations

©) Let H; and H, be existentially simultaneous, with H, existentially independent
of H and H, (see Table 3.3b). The relation formula is:
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(H;, '(H,, Hy))

(10) The three phenomena cannot occur simultaneously (see Table 3.3b); the relation
formula is:

N(H,, H,, H,)

(11) Let H, be existentially dependent on either H,, or on H,, but H, andH,
be mutually exclusive (see Table 3.3b). The relation formula is:

(H, [N(H,, H,)])

Observe some facts:

(a) the number of existential combinations depends on the nature of relations
among phenomena,

(b) the nature of existential combinations differs according to the type of
the relation formula; when considering combinations of two or more phenomena,
three types of existential combinations can be distinguished (see Tables 3.3):

@ closed combinations, where all phenomena are existentially simultaneous
[for example, combination No. 3 in case (1), and combination No. 7 in case (3),
combination No. 4 in case (9)];

¢ fixed combinations, where at least one phenomenon is existentially
independent of the others and at least one phenomenon is primary [for example,
combination No. 3 in case (3), combinations Nos. 4 and 7 in case (7), combination
No. 5 in case (8), combination No. 7 in case (9)];

& free combinations, where none of the phenomena is bound to other
phenomena [for example, combination No. 3 in case (2), combinations Nos. 4
through 7 in case (6)].

3.23 Number of existential combinations

The foregoing paragraphs show that the number of existential combinations, in which the
phenomena can occur, depends on the type of the respective existential relations.
When existentially simultaneous phenomena are dealt with, only one existential
combination is possible, that is, m, = 1.
For a basic set H of existentially independent phenomena, (H,, H,, .., H)), the
number m, of possible existential combinations of n phenomena is expressed by

- () ,
m,_z(k} G.D

k=1

where k = number of phenomena in a combination.
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The number of existential combinations referred to a set H of n phenomena that
are either positively or negatively existentially dependent is given by

m, - E(:)ﬁ 62

k=1

where m, = number of existential combinations that cannot occur. A general formula
for m, cannot be presented, since the diversity of relations is unlimited. Moreover, such
a formula is without practical significance. It suffices to find m, by simple judgment.

When in a set of n phenomena a group of r simultaneous phenomena appears,
and the remaining n - r phenomena are existentially independent, the group of simultaneous
phenomena should be considered as a single phenomenon. The number of existential com-
binations becomes

n-r+l1
mo= Y (”‘;+1) (3.3)

The number L, of independent phenomena participating in a combination is called
the order of the existential combination. For a combination of existentially independent
phenomena, L, equals k. However, for combinations that contain ¢ sets of existentially
simultaneous phenomena we get

q
L =k-Xr+q
i=1

where 7, = number of simultaneous phenomena in the set i .

3.24 Examples of existential relations

W Example 3.1. A reinforced concrete member cannot exist without a simultaneous occurrence
of the following phenomena [for simplicity, the symbol Ph(.) is omitted]:

# strength of concrete, f,,
4 yield stress of steel, f,,
4 member geometry, G*.

Here, Ph(strength) and Ph(yield stress) shall be understood as properties, not as quantities. - If any of these
three phenomena are missing, the reinforced concrete member does not exist. Therefore, the relation formula
in this case is

'(f,0 £, G*) n
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B Example 3.2. Consider the phenomenon Ph(load acting on a railway bridge), Figure 3.1.
The following partial phenomena can get involved:

4 permanent load due to seif-weight, G;

4 imposed load created by cars, V|, and by the locomotive, ¥, , or by some auxiliary
vehicles, V;;

4 wind load, acting separately on the bridge, w, , and on vehicles, w, ;

4 load due to temperature changes, F, .

V3
W,
4
w
B3
G

Fig. 3.1 - Example 3.2. Loads on a railway bridge.

Among these phenomena the following existential relations can be found:

(a) The imposed loads V,, V,, and V, cannot be simultaneously applied to a certain
point of the bridge (they can, of course, appear simultaneously in different places along the bridge).
Thus, the relation formula shall be:

N(V,,V,,V,)
(b) Wind load w, can only affect vehicles if also the bridge is subjected to wind load w, :
(w,[w 1)
(c) Wind load affecting vehicles, w,, can only take place if vehicles are present:
(w, IN(V,, V,, V)
that is, including the case according to (b):
(w, [N (w ,N(V,, ¥, V)

(d) Load produced by temperature changes may or may not occur simultaneously with
the other imposed loads:
(Froms Wo[1 (W N(V,, V,, V))])

tem’
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(e) All the foregoing loads can only occur if the bridge exists, that is, if the permanent
load, G, is present:

((Fps W[ (W, NV, V,, V))DIG]D) u
33 SEQUENTIAL RELATIONS
3.3.1 Seven fundamental relations

Let us now study a set H of time-dependent phenomena, H,, H,, .., H,, taking into
consideration possibilities of their successive occurrence. The possibility of repeated
occurrence of H; will not be considered. Among the individual phenomena the following
types of sequential relations can be distinguished:

(@) sequentially necessary non-ordered phenomena that all must follow one
after the other in an arbitrary order;

(b) sequentially free non-ordered phenomena that may follow in an arbitrary
order, and some of them may not occur;

(c) sequentially necessary ordered phenomena that all must follow in a
specified order;

(d) sequentially freé¢ ordered phenomena that must follow in a certain order,
but some may not appear;

(e) sequentially excluding phenomena that cannot follow one after the other;

() sequentially a posteriori dependent phenomena that are formed by a group
of primary phenomena, H*, and by a group of secondary phenomena, H**;
phenomena H** can only appear when they are preceded by phenomena H*; any
group can have one or more members;

(g) sequentially a priori dependent phenomena that are analogous to the
foregoing type: H** can only appear if they are followed by H* .

Similarly as in the case of existential relations, sequential relations determine what
sequential combinations are possible in a particular case. A sequential combination is
defined by successive occurrence of several phenomena belonging to the basic set H ofn
phenomena. Notation

(H,, H,, ., H)),

will be used for sequential combinations, where i , k, I = subscripts referring to the
phenomena that appertain to the basic set, H.
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3.3.2 Relation formulas

Again, relation formulas can be written to describe sequential combinations. The following
notation will be used:

1) necessity

() possibility
N() impossibility

A orderliness

S non-orderliness

= dependence a posteriori
S dependence a priori

Three phenomena

The individual sequential relations and the way of their presentation can be exemplified
by some cases of three phenomena.

(a) Three sequentially necessary non-ordered phenomena are denoted by
'(H; ~ H, ~ Hy)
Six sequential combinations exist:
(H,, Hy, Hy),, (H,, Hy, H)),
(H,, H;, Hy),,  (Hy, Hy, By,
(H,, H;, Hy),, (H;, Hy, H)),

(b) For three sequentially possible non-ordered phenomena the following
formula holds:

(H, ~H, ~ Hy)

and 15 possibilities of successive occurrence can be found:

(H),, (H, H),, (H}, H,, H),
(Hy),, (H;, Hy),, (H, H;, H)),
(Hy),, (H,, H),, (H,, H, H,),
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(H,, Hy),, (H,, Hy, Hy),
(H;, Hy),, (Hy, Hy, Hy),
(Hy, Hy),, (Hy, Hy, Hy),
(c) For sequentially necessary ordered phenomena, that is, for
'(H, | H, | Hy)
one sequential combination is only possible:
(H,, H,, Hy),
(d) With sequentially free ordered phenomena
(H, | H, | Hy)
the following sequential combinations can be identified:

(Hy),, (H, H), (H,, H, Hy,
(H),,  (Hy, Hy),
(Hy),, (H;, Hy);

(e) For sequentially exclusive phenomena with the relation formula
N(H, - H, ~ Hy)

single phenomenon combinations can only take place
(H),, (H),, (Hy),

(f) When, for example, phenomena are sequentially a posteriori dependent
according to

((H)) - (H, ~ Hy))
five possible combinations exist:

(Hp,, (Hy, By, (H;, Hy, Hy),
(H;, Hy),, (H,, H;, H,),

Observe that H, is the primary phenomenon, and (H, ~ H,) the secondary group.
Plainly, three phenomena can stand also in other a posteriori relations, as
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for example

(N(H, ~ H,) ~ H;)
(H, ~ I(H, | Hy))

The possible sequential combinations can be easily determined.

(g) Similar conclusion is valid for an a priori dependence. For example,
if .

(H, -!'(H, - Hy)

the following sequential combinations are possible:

(Hy, Hy),  (H;, Hy, Hy),

3.33 Number of sequential combinations
Previous paragraphs suggest that the number of sequential combinations depends again

on the type of the relation. However, this number is, in general, greater than for existential
combinations. For n sequentially free non-ordered phenomena, that is, for

(H, ~H, ~ .. ~H,)

the number of sequential combinations, m,_, is mathematically given by

" n!
= (3.4)
"= X o h

The number m,_ can be easily determined for the following sequential relations:
'(H, ~H, ~..~H): m, =n!
'(H | H, | .. | H): m, =1
NH, ~H,~..~H): m =n

[

When phenomena are a posteriori or a priori dependent, the determination of m,
gets complicated, because also the order of phenomena must be respected.
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3.34 Examples of sequential relations

B Example 3.3. The phenomenon H, = Ph(collapse of a structure damaged by fire) may or
may not follow H;, = Ph(fire in the building). Here we deal with an a posteriori dependence,

(H, ~ Hy) .

B Example 3.4. In a building vulnerability study, the possibility of a progressive collapse of floors,
assuming that H, = Ph(collapse of floor 1) will take place, is considered (Figure 3.2). The arrangement
of sequential relations is determined by reliability margins related to the respective floors. When the margins
are low, the following arrangement can take place:

(H, - '(H, | H; | H))

that is, collapse of floor 1 suffices to cause collapse of floors 2, 3 and 4. When, however, reliability margins
are higher, the floor 2 may prevent spread of the collapse situation. The relation formula is

(Y(H, | H,) -~ !(H; | H)) u

Fig. 3.2 - Example 3.4. Floor structures in a building.

B Example 3.5. Seismic foreshocks, H, , shocks, H,, and aftershocks, H,, are in the following
sequential relation:

((H; - Hy) -~ Hy)

You can observe two levels of primary and secondary phenomena. The phenomenon H, is doubly primary -
when no shock happens, there is no sense in talking about foreshocks and aftershocks. |

3.3.5 Importance of sequential relations

Let us give some examples where, in reliability considerations, sequential relations can
be of significance:

4 in the analysis of geometrically and physically non-linear S-L-E systems
(for example, when the load-bearing capacity of the structure depends on the loading
history);
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¢ in the reliability analysis of CFs where successive failures are possible
(for example, in the case of string limit states);

¢ in the analysis of S-L-E systems with time-dependent non-random behav-
ior;

4 in the analysis considering design situations (for example, in the analysis
of facilities in seismic areas);

@ in the vulnerability analysis of buildings and structures exposed to
detrimental phenomena (collisions, explosions, and others);

@ in the fire-risk analysis, design of sprinklers, etc.;

4 in the design and analysis of smart structures.

Sequential relations are not yet currently treated, neither in theoretical investigations
nor in the design practice. We should, nevertheless, keep them in mind.

34 PHYSICAL RELATIONS

Whenever a set of phenomena governing the reliability of constructed facilities has one
or more common sources, physical relations can be identified between individual
phenomena. For example, wind velocity and snow, from which wind load and snow load
are derived, have doubtlessly several common sources: changes in atmospheric pressure,
temperature changes, and perhaps others. Their physical relations are very feeble, however,
and as far as reliability requirements are concerned, they are without any significance.

%
)

R,Zv

N2,
//

Fig. 3.3 - Loading pattern of an L-shaped retaining wall.

Another example of a physical relation is that between self-weight and ultimate
resistance of a reinforced concrete beam. Here we can observe the relation between strength
and volume density of concrete, or also dependence of the member’s self-weight and
ultimate resistance upon its dimensions. Nonetheless, these physical relations are being
not respected in the reliability analysis of concrete structures.

When a physical relation between two or more phenomena is strong, such a set
of phenomena can be substituted in reliability solutions by a single phenomenon. For
example, the stabilizing and destabilizing effect of the earth pressure acting on a retaining
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wall (Figure 3.3) can be expressed in terms of only a moment about the rotation axis of
the wall.

3.5 STATISTICAL RELATIONS

In the overwhelming majority of cases, phenomena that govern the reliability of CF are
of random nature, and, consequently, must be described by random variables (for example,
yield stress of steel) or random functions (for example, wind load). This is a well established
fact, which is not necessary to elaborate on detail. Of course, reliability is also affected
by non-random phenomena (for example, annual cycles of scasons) and also by phenomena
the random variability of which is of minor significance, so that we can consider such
phenomena non-random (for example, elastic modulus of steel).

Phenomena can be statistically dependent to a different degree (see 2.1.3). A statisti-
cal dependence is always present when a physical dependence between random phenomena
exists. Nevertheless, we can meet statistical dependence also in cases where no physical
dependence is known. Thus, the robustness of a statistical dependence corresponds to the
robustness of the respective physical relation only partially. Whenever a strong physical
relation between two phenomena is encountered, then also the statistical dependence is
strong. When, however, the physical relation is weak, the statistical dependence can be
either weak or strong. As an example, the relation between the wind velocity and the snow
intensity can be mentioned.

l Tj ,TM |t

Fig. 3.4 - Example 3.6. Record of wind velocity measurement.

M Example 3.6. Let us study two phenomena: Ph(maximum wind velocity, v_, , during an
out-crossing of a specified level, v ) and Ph(duration of the out-crossing, 7 ); see Figure 3.4. Obviously,
two existentially simultaneous phenomena are dealt with, because none of them cannot exist alone. Their
physical dependence is non-existent or rather unknown; nevertheless, a significant statistical dependence
is apparent. For example, from the analysis of the random sequence of daily maxima of wind velocity observed
at a certain point, values of the correlation coefficient r(vm, 7) were found for different crossing levels
v, » Table 3.4. Observe that with increasing v, the correlation coefficient r(v,.» ©) diminishes. [ |
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Table 3.4 - Example 3.6. Correlation coefficient between daily maximum wind velocity, v, , and the
duration, 7, of crossing a level v, (based on 47 years of observations in Prague, Czechia)

vy (m.s™) TV ¥
9.1 0.62
13.3 0.46
15.4 0.36
23.1 0.04
3.6 FAVORABLE AND ADVERSE
PHENOMENA

Consider a phenomenon H = Ph(x) expressed in terms of a non-random variable x.
When with the increasing value of x the reliability of CF is deteriorating, H is considered
absolutely adverse. On the contrary, if the reliability is improving with growth of x, the
phenomenon H is absolutely favorable. For example, Ph(wind load) is absolutely adverse,
while Ph(material strength) and Ph(size of the cross-section) are absolutely favorable
in most cases.

As soon as H is assumed to be random, also the corresponding variable, ¢, must
be taken as random. Consequently, "favorableness" and "adverseness" become relative
concepts. The boundary between the two concepts is, in general, fuzzy, since some
realizations of H can be clearly adverse, some rather neutral, and some favorable. At
certain phenomena, the favorable realizations may be completely missing. Analogously,
adverse realizations can be absent at other phenomena.

B Example 3.7. The Ph(air movement) is described, aside from other variables, by wind velocity.
From the reliability viewpoint, a velocity of 35 m.s' and greater is plainly adverse; the velocity of, say,
3 m.s" and less can be considered neutral. The velocity of about 10 m.s" can excite vibrations of some
structural members and must be considered adverse for such members. Observe that wind velocity can be
both favorable and adverse when snow-load on roofs is considered. Wind transports snow off the roofs but,
on the other hand, it creates snow drifts. [ ]

M Example 3.8. The weight of material is absolutely adverse in regard to many members, as it
consumes a certain amount of their bearing capacity. Therefore, its high values are adverse in such a case;
low values, less then, say, the mean value, are neutral. There are no favorable realizations of self-weight
at such members. In other situations self-weight can have a stabilizing effect. We can thus distinguish both
favorable and adverse realizations of the self-weight. |



88 PHENOMENA, EVENTS, AND RELATIONS

The problems of fuzzy boundaries between favorable, neutral, and adverse
realizations of phenomena are studied by the fizzy set theory (see Section 2. 5) For further
discussions we only need to define mathematically the boundary from which on realizations
of a particular phenomenon are supposed to be adverse. Let us show the procedure on
a simple case.

B Example 3.9. Consider the random phenomenon Phiself-weight load) described by the magnitude,
G . Clearly, the magnitude G is a random variable, the behavior of which can be expressed in terms of
the probability density ¢ (G) (cf. Figure 3.5). It is well known that magnitudes of G greater than an in
the extreme acceptable magnitude, G, , are not annoying. Therefore, the event Ev(G > G,,,) is considered
relatively adverse, E . On the other hand, no attitude is usually taken to Ev(G < G,,,) , which can be
designated as relatively neutral, E

The self-weight load has been purposefully used in this example, since an inversion of adversity
can take place Obviously, when Ph(self-weight load) has a favorable effect on rehablllty, the event
Ev(G < G/ m) becomes relatively adverse, and Ev(G > G/ .m) relatively neutral. Here G = another
extremely acceptable value of load, different from G, |

Analogous considerations hold also for other random phenomena participating in
the structure’s reliability. We can try to generalize:

(a) In a set H containing all possible realizations of a phenomenon H,
described by a random variable ¢, a subset E a2y Of relatively adverse realizations E
can be identified. The difference between the set H and the subset E 1sasetE
of relatively neutral realizations, E_, . We can write

E,cH
E, =H\E_,
¢
X 1-x
0 o Xexm o X
Entr 1 Eudv
$ -

Fig. 3.5 - PDF of a random variable ¢ ; definition of x,_,
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(b) The boundary between E_, and E_ is defined by the extremely
acceptable value (shortly: extreme value) x, . of the variable ¢, see Figure 3.5.
(c) When H is absolutely adverse, the event

E, =Ev(£>x,)

is considered relatively adverse.
(d) When H is absolutely favorable, the relatively adverse event is

E, =Ev({<x,)

A "relatively favorable event," E. , can be defined in a similar way as E_,,
Such a concept is without significance for irther elaborations, though it cannot be excluded
that E,, might get important on some other occasion.

Let us now show the nature of the relationship between the probability of occurrence
of a relatively adverse event, P = Pr(E_, ), and the extremely acceptable value, x,,
of the random variable ¢. The boundary x,,,, between the set E_, of relatively adverse
events and the set E_, of relatively neutral events shall be defined by the «x-fractile of
the random variable ¢ (see 2.1.2 and Figure 3.5). The probability x is given by

¢ when H is absolutely favorable:

k=1-P

3.5)

¢ when H is absolutely adverse:

k=P (3.6)

Discussing the probabilities x and Py we must not forget that some phenomena
may or may not happen in the space investigated and during the period considered. Among
such phenomena belongs, for example, H, = Ph(snow load in Venice, Italy, in March).
On the contrary, some phenomena must happen, for example, H, = Ph(self-weight load).
While for H, the probability of occurrence P, HI = Pr(occurrence of Hl) is less than
one, for H, the respective probability is L S 1 The probability Py = Pr(E_;,)
of occurrence of the adverse event, E_, , is given, for phenomena havmg P.u <1
by the conditional probability [cf. Equation (2.8)]

Pr(x,,, NH)

Pr(H)
where, for simplicity, ¢, denotes an adverse realization of ¢, thatis, x,,, > x,
or x,, < x,. . Because the magnitude of £ on condition that H has taken place does

not depend on the phenomenon itself, the event Ev(x_,,) and event Ev(occurrence of H)
are statistically independent. Therefore:

P = Pr(x,, |H) =
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Py = Pr(x,) ‘Pr(H) 3.7

In general, Equations (3.5) through (3.7) hold for any phenomena H, certain or
uncertain. However, calculating the x -fractile, we must employ such a probability distribu-
tion that can express the nature of H (see 2.1.2) as close as possible.

Particular cases

In some particular cases the concept "absolutely adverse phenomenon" merges with
"relatively adverse event. " This happens when any realization of a phenomenon is adverse.-
A typical case is Ph(fire in the building); it can be described by one or more variables
(for example, extent, duration, maximum temperatures reached), but it is always, from
the point of view of reliability, an adverse phenomenon. Talking about fractiles of fire
is meaningless.

3.7 COMBINATIONS OF EVENTS
Let us study now a set E of statistically independent events E,, E,, .., E_, that can
take place with probabilities P,, P,, .., P,, respectively; to simplify the notation,

subscript E is omitted. Existential relations are not considered for the time being. Then,
the probability that E, through E, will all occur simultaneously (or will all follow without
regard to the order of appearance) is given by Equation (2.5), that is,

"Pian = HP:' 3-8)
i-1

In a general case, events E, through E_ can take place in various combinations
of L-thorder, L < n. For example, when n > 7 we can have

(E, E), (E, E), (E, E,;, Eg, E;), etc.

The probability of simultaneous and sequential occurrence of a combination of L events

with subscripts 4,, 4,, .., 4, is given by
L
P = LPM,A‘),...,/IL = iI__IlPu 3.9

Frequently, combinations of L specified events taken from a larger set of n events
are studied. For example, only combination (E,, E,, E,) is of interest. In such a case
a defined combination is dealt with. Should the probability of the defined combination
of order L (and no other) be calculated, Equation (3.9) must be supplemented by probabil-
ities that the events belonging to E but not contained in the defined combination will not
happen. We get:
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1
_ELU n=3
- 3p -3
0:'3 Ei)ef- P('er
0,5
1'grb zFérb
2
Ret Ret
0 0 0,5 P 1

Fig. 3.6 - Relations among combination probabilities.

n-L

L
=P, - Il (1-P) (3.10
i=1 j=1

where o1, @2, .., g[rn-L] = subscripts of events not included in the respective combi-
nation,
Equation (3.10) can be rearranged to

L
= 1I

l=1 ll

H(l P) 3.11)

A simple analysis of Equation (3.11) shows:

4 the probability of occurrence of a defined combination of L -th order,
tp def > is always less than the smallest of probabilities referring to events that form
the combination;

¢ if the probabllmes of occurrence of all separate events equal P, then
for P < 0.5:

1
P> Pdef > .. > Py,
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for P = 0.5:
Pu=Pu=.. ="P,,
and for P > 0.5:

1 2
Pup< "Ppp<..<"Py;

To illustrate the problem, the dependence of P, s On P for the case of three events
is shown in Figure 3.6. Observe the range P € [0.5; 1]: with increasing P, values of 'P,,,
diminish because the 1solated occurrence of a phenomenon alone becomes less and less
likely. At the same time, P » markedly increases to one. Finally, it is apparent that for
P =1 all three events must occur simultaneously.

Equation (3.11) is true for any particular combination of events, if, however, such
a combination is possible. The possibility of combination can be established by analysis
of existential and sequential relations between separate events.

We are sometimes interested in the probability of occurrence of an arbitrary
combination taken from a set of possible combinations of L -th order; let us denote it by
Lp_,. According to the probability theory, P, shall be established as the sum of
probabilities of occurrence of all possible defined combinations of L -th order, that is

m(L)
‘P, = X 'P,., (3.12)

arb
k

where m(L) = number of possible defined combinations of L -th order, LPM ¢ = proba-
bility of occurrence of the k-th combination of L-th order according to Equation
(3.11).Using Equation (3.11) we obtain

L n ml) L P,
P, = 11(1 -P)- Y (II B (3.13)
j=1 k=1 i-1 1-P,

For three phenomena it results
'P,, = P, +P, + P, -2(P\P, + PP, + P,P;) + 3PP, P,

p

arb

= PP, + PP, + P,P, - 3P P,P,

3p

arb

3 -
Pdef_PlP2P3

The development of * P, , for P, = P, = P, = P is shown in Figure (3.6).
Consider the difference between a combmatzon of events and a combination of
phenomena. Equations (3.8) through (3.13) are, without any adjustments, qualitatively
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valid also for combinations of phenomena; now, the probability P, expresses the probability
of occurrence of the respective phenomenon, P, ;. Quantitatively, however, great dif-
ferences are obtained. When, for example, n certain phenomena are combined, the
probability of occurrence of H, through H, [that is, probability of events Ev(occurrence
of H;), i =1 through n] equals one, whereas the probability of the combination of
corresponding adverse events can be considerably less.




STRUCTURE

Key concepts in this chapter: material properties, grade of the material; members, cross-
sections, geometry of the structure; nominal dimension,; dimensional deviations, boundary
conditions,; model uncertainty, structural resistance; multi-component, resistance; failure
modes, structural stiffness; axial stiffness,; bending stiffness.

Though all components of S-L-E systems are equally important, STRUCTURE is doubtlessly
always the parent subsystem. In the following, we will consider as structure the entire
bearing system including soil, or a member of such a system, or only a cross-section of
a member. Nevertheless, these three grades of bearing systems will be distinguished only
when necessary.

The ability of a structure to carry diverse loads, to resist environmental effects,
or to fulfil user’s special requirements is described by two principal sets of quantities:

& Structural resistance, specifying the structure’s capacity to resist static
and dynamic stress load-effects (forces, moments, stresses) caused by short-time,
long-time, and repeated load. The term "resistance" includes ultimate load-bearing
capacities of cross-sections, members, soils, and of the structure as a whole, than
also first-crack load (chiefly in case of masonry and concrete structures).

& Structural stiffness, describing the structure’s deformation abilities and
the magnitude of static and dynamic strain load-effects. In the analysis, stiffness
of cross-sections, members, soils, as well as entire bearing systems applies,
according to what kind of strain load-effects is investigated. As a rule, stiffness
is expressed in terms of force, moment, and stress producing unit values of deforma-
tion and displacement. However, in current design and testing, stiffness is verified
indirectly by checking the relevant deformation or slenderness of members.

4.1 ELEMENTARY PROPERTIES

To describe the resistance and stiffness we need to know:

& geometry of the structure: shape and dimensions of cross-sections,
members, and systems (see 4.1.1);

& boundary conditions: arrangement of the bearing system, supports,
considering static as well as dynamic functions of the system (see 4.1.2);

& material properties: strength, elastic modulus, stress-strain diagram,
etc. (see 4.1.3);
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¢ life expectancy (see Section 10.2);
® age of the constructed facility at the point in time investigated.

Except for the age, all the foregoing properties are random and time-dependent.
Nevertheless, the time-dependence can be also identified in case of the life expectancy:
during the service of CF, deterioration can bring changes in the expected life.

4.1.1 Geometry
Cross-section

The actual dimensions of structural members differ from those assumed in design
documents. The reasons for these differences are mainly fechnological, but the significant
deviations are caused by human error, for example by incorrect reading of drawings. The
latter group is, as a rule, not directly considered in reliability analyses. Nevertheless, great
attention is paid to them in the quality control and quality assurance process.

The magnitude of technological deviations is limited by regulations giving folerance
limits. These limitations are never perfectly effective, and therefore, deviations larger than
prescribed must be also expected.

Geometry is a typically human-controlled phenomenon, and no randomness should
be expected in it. However, when large collections of dimensional deviations are investigat-
ed, the random behavior of deviations is emergent and can be described by suitable
probability distributions. When small samples are examined, we can observe that, for the
greater part, geometry deviations are systematic. The background to this phenomenon is
very simple: the deviation caused by a certain technological equipment is constant or
increases in time up to the next periodical checking and adjustment of the equipment. Thus,
the shape of all products coming from a certain period is biased in a similar manner. In
very large samples (we can call them "national samples") these systematic deviations get
covered by other systematic deviations and so the samples can be examined as random.

We should also note that dimensions can be time-dependent. For example, the
highway concrete pavement is exposed to abrasive effects of vehicles. Thus, the thickness
diminishes with time, and so the life of the pavement is limited. This fact is respected
in design of pavements, as a rule. We should also mention the loss of dimension due to
corrosion effects. This is observed, for example, in marine structures exposed to sea level
fluctuations; we can encounter a catastrophic size reduction of rebars in reinforced concrete
structures in chemical plants, etc.

The cross-sectional deviations of dimensions affect structural properties (resistance,
stiffness) and the self-weight load. Both influences can be important. As a rule, absolute
deviations do not substantially depend upon the nominal size of the respective dimension,
and so when the size decreases, relative deviations increase and attain considerable values.
The influence on the self-weight load is of secondary importance. For example, when the
thickness d = 100 mm of a reinforced concrete slab is reduced by 20 mm, the self-weight
load will decrease by 20 percent, while the moment of inertia will be reduced by 49 percent,
and so the deflection due to self-weight of the slab will increase by 57 percent and the
deflection due to variable load by 96 percent.
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In practice, the adverse effects of deviations from nominal dimensions on structural
properties are considered in different ways specified in diverse regulatory documents:

¢ deviation is included into the random behavior of material strength, this
technique is the less suitable, since the true nature of the phenomenon is hidden;

¢ material strength is adjusted by a partial reliability factor including the
effect of deviations, see Section 14.7;

¢ deviation is expressed directly by an appropriate reduction of the nominal
size;

¢ deviation is covered by partial reliability factors for load (which definitely
is not the best solution);

¢ deviations are covered by special adjustment factors reducing values
of the relevant comprehensive structural property (for example, bending stiffness);

4 random behavior of deviations is included into a general calculation model
when higher level design methods are used.

M Example 4.1. From an extensive research program in former Czechoslovakia and Hungary,
in which about 60,000 dimensions of various concrete members, precast and in-situ, were checked, the
following population parameters of the deviation from nominal dimensions, given by drawings,

Y = Xy~ X

have been found:
u, = 0.25 +0.003x, By, < 3mm
o, =4+0006x,,, o, < 10mm
@, = 0.23 +0.007x,,,, a, < 1

The probability distribution of y can be assumed as three-parameter log-normal (see Appendix
A). Of course, the above formulas are subjected to residual variance. Yet, they can be used as guidance
in reliability solutions. |

Structural systems

Inherent longitudinal deviations have no particular influence upon the structural behavior.
Their absolute values are approximately equal to those observed at cross-sections, and
consequently, they are of no concemn in the majority of situations. Nevertheless, longitudinal
deviations can cause angular deviations of frame system members, with adverse effect
on columns.

Time-dependent longitudinal deviations, caused by temperature fluctuations or by
shrinkage and creep of materials can affect the structural behavior substantially. This
phenomenon is usually treated in the overall determination of load-effects, and is not
included into the family of geometry issues.

Transverse deviations are of greater importance than longitudinal ones. They are
caused by shape imperfections (random or non-random curvature of members, angular
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deviations) and also by cross-sectional non-homogeneity (non-homogeneity of the elastic
modulus, influence of cable ducts, openings, etc.). Transverse deviations affect the load-
effects significantly; they are particularly important when instability problems, physical
as well as geometrical, are dealt with.

The influence of transverse deviations is respected, for example,

¢ by an additional eccentricity of axial forces, this eccentricity is often
conceived of as random,;
¢ by 2nd order analysis of structural systems.

The random behavior of the system geometry deviations is essentially analogous
to that of cross-sectional deviations. However, little statistical information is available.
More detailed information on geometry deviations can be found in Casciati et al. 1991
and Tichy 1979.

The variability of dimensions is an important issue in the analysis of dimensional
accuracy of structures, establishment of tolerance intervals, and in other exercises related
to assembly of structural members on site. See Vorli¢ek and Holicky 1989.

4.1.2 Boundary conditions

In concrete situations, it is only rarely possible to ensure the boundary conditions as they
were assumed in design. Not too much effort is given to imitate exactly the design
assumptions during the execution of the structure. In design, boundary conditions are very
simplified, and so the real distribution of load-effects over the structure can substantially
deviate from that which has been assumed (cf. 4.3.2, Example 4.2). This phenomenon
is ranged under a common set of problems designated as the model uncertainties problem.
However, the latter problem is more general, since it includes also other differences between
design assumptions and reality.

Considering the effect of boundary conditions, it is often stated that they are not,
except for very special structures, a significant reliability element. This statement is,
however, a virtue of necessity. Though the existence of deviations is admitted, their
statistical treatment is, at present, beyond technical achievement. Therefore, the variability
of boundary conditions is usually covered by model uncertainty factors, included in the
prevailing system of design parameters. When evaluating an existing facility, the designer
and the reliability engineer should always pay attention to boundary conditions, particularly
to those that were not considered in the design at all. Do not forget that boundary conditions
are time-dependent; for example, an effective support can occur at a place where no support
has been envisaged. Or, owing to construction activities unforeseen at the time when the
respective structure was designed, unexpected soil settlement can take place. Many examples
of catastrophic structural as well as non-structural damage caused by unforeseen change
in boundary conditions can be found in literature. Using the computer makes a sensitivity
study of various arrangement of boundary conditions very easy. For minimum cost, large
loss due to decisions based on a simplified approach can be avoided.
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4.1.3 Materials

Materials are, without any doubt, the most explored reliability item. Attention has been
paid to strength of materials since the beginning of Humankind’s construction activities,
and in the later periods also to other properties: elastic modulus, stress-strain diagram,
rheological behavior. Abundant data are available, particularly on strength and on modulus
of elasticity, where also statistical investigation of dependencies was performed.

In general, materials are heterogeneous, being composed of many components;
components are assembled systematically (masonry, laminated glass) or randomly (concrete,
wood). No building material is known that can be denoted as perfectly homogeneous, since
even materials that are apparently such are in their very nature heterogenous again. The
heterogeneity is the main cause of the random behavior of material properties. In the
description of random behavior of a material we deal, in the majority of cases, with only
a single random variable. In special cases time-dependent behavior of a material should
be expressed in terms of a non-stationary random function, but sufficient data and techniques
are lacking for such description. Therefore, description of materials is simplified as much
as possible. The diverse side-effects, which are beyond our theoretical possibilities, are
covered by partial reliability factors again (see Section 14.7, Examples 14.3 and 14.4).

The grade of the material is defined in various ways, depending on traditions related
to each material. However, common today is the definition of the material grade in term
of the characteristic strength, f,. As arule, f, is specified by

Pr(f<f,) = 0.05 .1

where f = random variable strength.

The random behavior of material properties observed on material specimens subjected
to testing cannot be considered as a random behavior of the material proper. In testing
the specimens many influences are involved that affect the randomness of results.

Random variability of material properties can be expressed by a bell-shaped
probability distribution. The variance usually does not substantially change in dependence
upon the mean; therefore, the coefficient of variation increases with diminishing mean.
Two facts are important in the selection of the probability distribution for material strength:

¢ strength can never be less then zero;
¢ strength cannot be higher than a certain physical limit; while "zero" is
always fixed, the upper limit can be only estimated.

These two limits affect the shape of the probability distributions. When dealing with a
lower grade material, the distribution of strength is dominated more by the lower limit
and the respective coefficient of skewness is positive. For a high grade material, the upper
limits becomes important and the coefficient of skewness is negative. Thus, the coefficient
of skewness is usually @ € (-1, +1). The three-parameter log-normal distribution can
be recommended again (Appendix A); distributions with both bounds are difficult to get
adjusted to the observation results.

A survey of the existing knowledge on random behavior of materials can be obtained
from Schuéller 1987.
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4.14 Prestress

The stress and deformation state of various structures can be favorably adjusted by
artificially introduced forces. These forces create an additional stress state, the prestress,
that is superimposed on the stress state due to load (including loads from support settlement,
temperature changes, and others). The conceptual treatment of prestressing forces is not
unified. Two approaches exist:

¢ prestressing forces are considered as external load;
® prestress is a property of the structure.

These conceptions are not contradictory; nevertheless, they have to be discriminated
when reliability requirements are formulated. Further, prestress can affect variability of
resistance and stiffness.

Some information on the variability of prestress can be found in Tichy and Vorlitek
1972; a detailed reliabilistic analysis of prestress has been presented by Mathieu 1991.

4.2 RESISTANCE
The description of resistance is governed by

¢ physical and geometrical properties of the structure, including time-
dependence aspects,

4 properties of the stress load-effect; multi-component load-effects, such
as combined bending and axial force, require multi-component description space
of the resistance; the dimension of the description must be always equal or greater
to that of the load-effect;

4 possible modes of failure of the structure (that is, structure as a whole,
member, or cross-section).

Thus, in a general case, a resistance vector has to be dealt with,
R = (R,R,.,R) 4.2)
where R, through R = partial resistances, given by

fri(0)€p s 0,0 XXy, X)) =0, i=12,.,n “.3)

where g, through g, = random variables describing the physical properties of the
structure, and X, through X = coordinates of the m -dimensional space defined by the
load-effect. Obviously, fp(.) is a non-stationary random function in the respective space,
related to R,. In general, no explicit formula can be given for R . The value of resistance
is usually expressed in terms of one of the coordinates, X, , setting the other coordinates
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equal to fixed values, ¢ . Then

X, = min(R,R,,.,R |X, =¢,X, =c,,..X, =c,,~X,)

Similarly as f, the resistance vector is random again. During the evaluation of X, we
have to keep in mind that some of elementary variables, g, , can appear in the physwal
description of several partial resistances, R,. Therefore, partial resistances must be treated
as seatistically dependent.

The problem of resistance has been investigated since the beginning of probability-
based design. We will not repeat the existing solutions. For basic information the reader
is referred to Tichy and Vorli¢ek 1972. At present, the resistance problem can be easily
treated by Monte Carlo simulation (see Section 2.4). When handling resistance in advanced
reliability investigations, various techniques can be applied, depending on what principal
approach to the reliability investigation has been selected in the particular case (see, for
example, Bjerager 1991, see also Section 13.3).

4.3 STIFFNESS
4.3.1 Cross-sections

There are two basic types of cross-section stiffness to be distinguished: axial stiffness,
B, and bending stiffness, B, .
The axial stiffness is defined by

B -N
N7

where N = axial force, ! = length of the member, and Al = elongation of the member
(positive or negative). Thus, B, represents a notional axial force, N*, that elongates
the member to 2!, or compresses it to zero.

Similarly, the bending stiffness is defined by

.M
B wm

where M = bending moment, 1/r = curvature of the bending line, r = radius of
curvature. Again, B, is a notional bending moment, M* , that would produce a radius
of curvature equal to 1in terms of the length unit applied in the expression for the bending
moment.

We could define also orher types of stiffness: shear stiffness, torsional stiffness,
bending stiffness of two-way slabs, and others. These usually do not appear in current
problems, and moreover, the general approach to the solution would be the same as for B,
and B,.

Obviously, the character of B, =N* and B, =M* must be analogous to that of
the resistance. Therefore, considerations made in Section 4.2 can be applied for stiffness
too. In theory, multi-component stiffness (for example, combined axial and bending) could
be also considered.
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Cross-section stiffness is not explicitly used as design criterion, and it does not
enter any reliability requirements. On the other hand, in the determination of stress and
strain load-effects a description of the random behavior of stiffness is often necessary.
As a rule, parameters pg, 0, and @ and also possibly information on the probability
distribution of B are required. Since no statistical data on stiffness are available, Monte
Carlo simulation has to be used.

It should be mentioned that the probability distribution of stiffness is basically
asymmetric. For example, when the bending stiffness formula for an elastic and
homogeneous cross-section is analyzed,

B, - EI 4.9)

where E = elastic modulus, and I = moment of inertia, the non-linear dependence of
upon the cross-section depth leads to positive skewness of the probability distribution of
B, . Three-parameter log-normal distribution can be used for stiffness again.

4.3.2 Members and systems

Similarly as in the case of cross-section stiffness, the member stiffness can be expressed
in terms of the load that produces a unit deformation of the member. Since many defor-
mation variables are involved and also load affecting members is diverse, no general
member stiffness formula, analogous to, say, Equation (4.4), can be defined.

B Example 4.2. Examine the mid-span deflection, f=w,,, of a simple beam with nominally
constant cross-section, subjected to concentrated load at mid-span, F. The deflection of the beam at any
point x; is given by

L @.5)

w, =
! B,(x)

M) mx) -

O ~

where M(x) = bending moment due to F, m(x) = bending moment due to unit force acting at i , and
B,(x) = bending stiffness at x (Figure 4.1a).

Assuming that the bending stiffness is nominally constant along the beam, B,(x) = B,, , and setting
for the bending moment, Equation (4.5) gives after arrangement the well known formula for mid-span
deflection

3
_LFP @)

w_.
id 48 B,

We are interested in the statistical parameters of w,_,,. We naturally could, knowing or estimating
the random behavior of the elementary variables F, !, and B,,, subject Equation (4.6) to a Monte Carlo
simulation or to the moment method analysis. However, using simply Equation (4.6) for this purpose would
be a mistake. We know that
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4 except for laboratory conditions, the hinge and gliding supports of simple beams are
never perfect; some partial fixed-end effect always exists and friction hinders free longitudinal
movement; thus, supplemental moments and axial forces act in the beam;

4 the position of load is never exactly fixed;

4 the bending stiffness is never constant along the member.

When an a priori solution is dealt with, the deviations in support properties, load position, and
bending stiffness (Figure 4.1b) can be considered random. Thus, M(x), m(x), and B,(x) are random
Junctions, M(x) and m(x) being dependent on the development of B,(x) .

a) b)
lF - | [Fe” L
[ | (= =0
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Fig. 4.1 - Example 4.2. Simple beam subjected to concentrated load
at mid-span (a - theoretical state, b - possible effective state).

Owing to many uncertainties involved, a straight analysis of this problem, based on random functions
with ordinate x as argument, is difficult. The situation gets even more complex at statically indeterminate
systems, with non-linear materials, crack occurrence, etc., and particularly when time-dependencies enter
the calculation model. Of course, with a certain computational effort, all difficulties can be overcome, but
the economic importance of such solutions is questionable. |

In general, probability distributions of deflection and other strain load-effects are
not normal. Nevertheless, since no dependable data on deformation variability exist, the
probability distributions are considered normal and parameters are assessed on an a priori
basis. While the mean is taken as quasi-mean (which means, in the foregoing example,
that random function features of the bending stiffness are ignored), the standard deviation
of the deformation can be taken as proportional to the mean.




LOAD

Key concepts in this chapter: LOAD system, load/structure relations; load/load relations,
load occurrence,; load magnitude, load duration, load repetition; load presence and absence
periods; amplitude analysis of load,; comprehensive load analysis,; discretization of
observations; floating-level method, FLOLEV; fixed-interval method, FIXINT; fixed level
method, FIXLEV; one-variable model of load; loading history, load path; load combinations,
combination rules; combination formulas; combination sequence.

Prima facie, the studies of structural load appear to consist of a set of simple operations:
a set of data is collected, and, subsequently, load values needed for design are found.

However, the actual situation is substantially different: problems concerning
structural load are more sophisticated. They cannot be treated without sufficient knowledge
of the matter. Any overestimation of load can induce increased consumption of materials,
labor, and energy, or can demand special construction techniques to be used, and bring
extra outlays to the client. On the other hand, underestimating or neglecting load, and
also misunderstanding its nature, can lead to diverse types of structural failure, and cause
financial loss again. A simple "data approach” to problems of structural load does not
reflect the needs of the theory of reliability of constructed facilities. Delicate solutions
based, first, on theoretical analysis of the loading phenomena, and, second, on engineering
Jjudgment must not be refrained.

Though the problems of particular loads have been the subject of extensive theoretical
and experimental research, and a wealth of important research papers exists, the compre-
hensive information on loads is sparse. Aside from general publications on structural
reliability where often detailed chapters on load can be found (see particularly Madsen
et al. 1986, Melchers 1987, Schuéller 1981) only one specialized monograph can be quoted,
Wen 1990, that ueats the theoretical aspecis of ihe load problem with particular emphasis
on load combinations. A Handbook on Structural Load, aimed at designers, has been
published (Tichy et al. 1987) but, unfortunately, in Czech language only. The problems
of structural loads are currently studied by various international and national bodies (for
example, CIB Commission W81 Actions on Structures; BSI Report on a new approach
1990).
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5.1 LOAD/STRUCTURE RELATIONS
5.1.1 Sources of load

Structural load is produced by phenomena that can be basically divided into two main
groups:

¢ natural phenomena, produced by the Nature; for example: gravity field
and mass, changes in atmospheric pressure, climatic changes in temperature;

® technological and social phenomena, resulting from human activity;
for example: acceleration fields, technological changes in temperature.

Some load arises only from the first or the second group; nevertheless, very often
the two groups interact. For example: wind load is produced by air flow (natural phenome-
non), and its magnitude depends on the shape of the building (technological phenomenon);
live load in residential buildings (natural phenomenon) depends upon social situation in
the particular country (social phenomenon; see Andam 1990).

The amount of influence occurring in the generation of a load is usually large. For
example, the snow load is produced by solar activity, wind, gravity, etc., and is affected
by human decisions: selection of the roof shape, surface and insulation properties of the
roof covering, conditions of use of the building, and others. Several classifications of load
exist, which depend mainly on objectives followed. As a rule, structural codes classify
loads according to their duration (permanent, variable, accidental loads, etc.). A detailed
classification can be found in Mathieu 1980.

Most phenomena in both groups fluctuate randomly, and so load magnitudes have
to be expressed in terms of random variables and random functions. Essentiaily, all loads
should be studied as multi-argument random functions; at present this is almost impossible
due to lack of data and suitable mathematical models. Good results are achieved with some
simple one-argument random functions. For example, Poisson rectangular pulse process
can be comfortably treated. See Wen 1990.

It is sometimes necessary to distinguish between the load and the load magnitude.
In practical cases, "load" frequently stands for "load magnitude"; this simplification can
cause misunderstandings.

Note also that we have to distinguish between load and load-effect. The latter term
covers stress and strain phenomena produced by load in a structure (forces, moments,
stress, and others; deflections, curvatures, strain, displacements, and others). Thus, load-
effects, which can be divided into stress load-effects and strain load-effects, are obviously
properties of the LOAD-STRUCTURE system.

5.1.2 Basic features of load

Considering the S-L-E system approach, loads are components of the LOAD system. Some
basic facts on loads should be kept in mind:
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(1) The existence of a load is given by the existence of the structure. On the other
hand, a structure can exist without being subjected to any load. Thus the relation between
load and structure is one-way existential.

(2) Each component of the LOAD system has some existential relation to the
remaining components (if there are any).

(3) A fidl description of any load is necessarily multi-dimensional. A set of variables,
numerical or logical, must be established whenever a load is to be thoroughly examined
in the framework of an S-L-E system.

(4) Properties of load depend upon general properties of CF (building, bridge,
etc.). In Figure 5.1 a building is subjected to wind load. Obviously, the wind pressure,
as well as its distribution over the surface of the building, does not depend on the bracing
structure inside the building. It depends on the shape of the building and properties of
its surface.
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Fig. 5.1 - Dependence of wind load, W, on the shape of the building and its independence
from the bearing structure (1 - sheathing, 2 - bearing structure).

(5) Properties of the load do not depend on properties of the structure. This statement
is regularly exposed to objections: in engineer’s thinking, load is often substituted by load-
effects; this happens namely in the problems of structural dynamics. 1f ever a load is
seemingly changed by properties of the structure, load-effects themselves are, in fact, dealt
with. Consider, for example, a vehicle moving along a bridge: the primary kinematic and
dynamic properties of the vehicle are independent of the bridge structure. As the vehicle
enters the bridge, the movement of the "bridge-vehicle" system produces load-effects in
the bridge and also in the vehicle itself. Obviously, the effect of the same vehicle on an
adjacent highway pavement will be different from that on the bridge.
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5.2 LOAD/LOAD RELATIONS

When solving reliability problems where several types of load apply, it must be kept in
mind that certain relations exist between separate loads, and load magnitudes. Four types
of relations can be found:

(1) Physical relations can be identified between some loads. For example, wind
load and snow load come from common sources, the principal source being the solar activity
and geographic factors. The two loads are indubitably interdependent. However, as far
as the basic values of snow load are concerned, this dependence is of no practical impor-
tance. Of course, when load due to snow accumulation caused by wind on roofs behind
edge beams and edge walls, etc., is considered, the effect of wind cannot be ignored.

(2) Statistical relations arise when there is a physical dependence between loads.
However, this dependence is either very weak, and so no statistical relation can be observed,
or it is so strong that the loads are examined as a single case. Consider again snow and
wind (actually, the pair "snow load-wind load" has many typical features that can be
generalized to other cases, and therefore we will discuss it several times from different
aspects): so large is the number of influences affecting wind and snow on their way to
the structure, that any relation virtually vanishes.

On the other hand, considering wind load on a building, we know that, at a given
point in time, turbulence effects make the dependence between wind pressure and wind
suction highly random. Anyway, statistical aspects are neglected and full dependence is
assumed in design; in relevant loading patterns, pressure and suction are considered
simultaneous.

(3) Existential relations. All four types of existential relations outlined in Section
3.2 can be found among structural loads. These relations are extremely important when
solving load combination problems. '

(4) Sequential relations. Again, most of the relation patterns discussed in Section
3.3 can be encountered. They are significant, for example, in the reliability analysis of
non-linear systems and in vulnerability studies.

5.3 RANDOM BEHAVIOR OF LOAD

To obtain a mathematically treatable description of a load, four primary load properties
must be considered:

¢ OCCURRENCE; a load is either present or absent; the value of
OCCURRENCE is YES or NO. When OCCURRENCE = YES, we talk about
a physical component of load, when OCCURRENCE = NO, we talk about a zero
component of load.

¢ MAGNITUDE; when OCCURRENCE = YES, then the load is
physically present, and the magnitude of its physical component is expressed by
a variable, F, where F > Oor F < 0. Note that F = 0 does not mean the
same as OCCURRENCE = NO; in the latter case we should say that F identically
equals zero, F = 0.
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4 DURATION; when OCCURRENCE = YES, the duration of presence
of load is T;<T,,, where the subscript i stands for the i -th occurrence of load
and T, is the reference period, which can be equal to the life of the facility, T,
and to other defined period; it is

.): T,<T,
i=1

where m = number of load occurrences. _
When OCCURRENCE = NO, the duration of absence of load is T, < T,,,;
it is

m
E:l i < Tref
i=

¢ REPETITION; this property is characterized by the number of
occurrences, m, of the physical component of the load; separate occurrences can
either be contiguous, with no absence periods, or there can be occurrences of zero
component between the presence periods; the latter feature is denoted as pulse pro-
cess.

Further load properties could be introduced here, for example, direction (in case
of wind load, sea and earthquake wave loads, etc.), acceleration, velocity of movement
(in case of dynamic load).

The four properties are random functions of space and time. Since in the design
of structures simple rules and parameters are necessary, corresponding random functions
are simplified according to the character of the property considered.

The load occurrence can be represented through the probability of occurrence of
load at a point in time and space (for simplicity, we will be discussing the time-dependence
only; all considerations can be expanded to space also). The probability of load occurrence
is given by

m
£,
p = i

occ

(.1)

=~

ef

where the reference period, T, usually equals the total observation period, T,,, given
by the sum of all partial observation periods, T, (cf. 2.1.6, Mean return period).

When reduced to a random variable, the load magnitude, F , must be described
according to the nature of load investigated. A variety of probability distributions can be
applied; no general rules can be given on the selection of appropriate distributions.
Suggestions given in 2.1.2 are advised. We have to keep in mind not only the actual behav-
ior of load but also the way of establishing values subjected to probability modeling.

Similarly, no general rules on probability distributions of the presence or absence
periods can be given. These distributions can be estimated during analysis of load
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observations (see Section 5.4). Their importance is often underrated; we need them,
nevertheless, whenever a load process is modeled.

Though the number of load repetitions, m , is also a random variable, it is usually
considered fixed. For long reference periods, the number of repetitions is less important.
However, this is not true when fatigue and rheological behavior of structures is studied.
Then, attention has to be paid to m .

5.4 ANALYSIS OF LOAD DATA

A continuous observation of a random load is rather an exception. In most cases data on
actions are collected by means of discrete measurements (for example, live load in build-
ings); in other cases, continuous observations are intentionally discretized to simplify
analysis. Finally, some loads are discrete due to their inherent nature (traffic loads).

Al

Fig. 5.2 - Record of observed load magnitudes, F,, .

Methods of observing a particular load vary from country to country. It is regrettable
that virtually no unified approach has been achieved in this sphere yet. Nevertheless, the
general type of data sets is almost identical everywhere. For time-dependent load, random
sequences of successive magnitudes are, as a rule, extracted from continuous or discrete
observations. Unfortunately, the methods of analysis of such sequences also differ.

The main purpose of the magnitude analysis is to provide satisfactory statistical
information on the random behavior of the load examined in order to acquire a sufficient
basis for the derivation of design parameters. Sequences observed are usually autocorrelated,
which creates some difficulties in evaluation if a random function solution is not used.
The magnitude analysis must either respect the autocorrelation or it must eliminate it as
far as possible.

When a continuous measurement of load magnitudes has been performed and a
record is available (Figure 5.2), two basic types of analysis are possible.
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Amplitude analysis

The family of amplitude analysis is mainly concerned with peak magnitudes and sometimes
also with their duration. Three goals of the amplitude analysis can be distinguished:

& discretization of a continuous observation record (if there is any), or
adjustment of an observed sequence record; the discretization yields filtered random
sequence, which is then subjected to further treatment;

@ determination of random samples of defined maximum load magnitudes
and also, if possible, of random samples of defined durations of maxima, and of
other useful variables;

& cstimate of probability distributions to be used in further reliability
analysis.

The following techniques of amplitude analysis can be distinguished:

(1) Floating-level method, FLOLEV. This method takes into account successive
peaks, F,__, of the record (Figure 5.3a). Further, samples are formed of successive minima
(= floating levels), F, . , periods between minima, T, periods of load non-occurrence,
T, and exceedance areas, A, over secants connecting two successive minima (see the
pointed line in Figure 5.3a). Clearly, the sample size is equal to the number of peaks.
In this form, the analysis is purely statistical because no decision-based parameters are
involved.

However, the random sequence of peaks embeds a certain autocorrelation; looking
at a graphical record, we often feel that some of adjacent peaks are not independent. In
order to eliminate this local bias, a refinement of FLOLEV can be introduced. The screening
can be adjusted in such a way that likely local deviations of the process are discarded.
Two decision parameters affecting the filtration degree are involved: the filtration distance,
d,,, and the relative filtration deviation, @ . These parameters must be estimated by
the reliability engineer in order to obtain a sample corresponding to the nature of the
phenomenon studied. No explicit rules on filtration parameters can be given. For example,
peak No. 5 would not be included into the sample.

We can assume that the period between two minima represents the duration of the
corresponding maximum. There is always a statistical relation between the maximum and
the underlying duration.

(2) Fixed-interval method, FIXINT. This method is used very often, though it is
definitely not the best. The total observation period, T,,, is divided into intervals of
constant length, T,, , Figure 5.3b. Then the record over T, is screened, and maximum
load magnitude is identified. Unfortunately, information supplied by FIXINT is very poor.

First, there always exists some possibility of autocorrelation that cannot be screened
off. Evidently, maxima Nos. 1 and 2, and Nos. 6 and 7 belong to the same segment of
the record, yet, in FIXINT, they are treated as two independent outcomes. The pitfall
of autocorrelation practically disappears when T,  is large enough.
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Fig. 5.3 - Floating-level (a) and fixed-interval (b) evaluation of the F,,, record
in Figure 5.2.

Second, some important peaks may escape the count. Note the maximum load
magnitude in the interval with peak No. 7; it has not been included into the sample.

Third, no information on durations of maxima results from FIXINT.

Finally, the sample size is a decision-based value, given by T,,/T,,. .

Again, no universal rule can be given on the width of intervals. A general picture
of the time-dependence of the respective phenomenon must be taken and analyzed. For
example, when analyzing wind data, we can find that the wind situation changes with a

mean period of seven days. This, however, can be true only for a certain region; at other
site this period can be longer or shorter.

(3) Fixed level method, FIXLEV. It consists in choosing a certain screening level
of load, F;, and finding out maxima related to each outcrossing, Figure 5.4. Simulta-
neously, periods of exceedance of this level, T, periods between up-crossings, T, and
exceedance areas, A, are registered and evaluated, if necessary.
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Fig. 5.4 - Fixed-level evaluation of the record in Figure 5.2 (a, b, ¢ - evaluation for three
different levels).

The quality of information obtained through FIXLEV depends very much on the
selection of the level, F,, which is thus a decision-based parameter. The autocorrelation
of the obtained random sequence of maxima is usually low. The sample size depends upon

the chosen level.

Though the source of the amplitude analysis is the same for all three techniques,
samples obtained differ. This can be demonstrated by plotting PDF curves of probability
distributions related to variables defined through FLOLEV, FIXINT, and FIXLEV (Figure

5.5).
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P (F)

Fig. 5.5 - PDFs obtained by various methods of load process evaluation (1 - fixed-interval,
2 - floating-level, 3 - fixed-level evaluation).

B Example 5.1. The random sequence of daily maximum wind velocities measured in Prague,
Czechia, in 1925-1971, was subjected to analysis by FLOLEV, FIXINT, and FIXLEV, using several variants
of the decision-based screening parameters. The results of evaluation are summarized in Table 5.1, where
n = sample size, m,, s,, and a, = sample mean, standard deviation and coefficient of skewness,
respectively, k(1) = correlation coefficient of two successive magnitudes of the obtained random sequence
[that is, the value of standardized sample autocorrelation function for v = 1, cf. Equation (2.36)]. Other

variables are not given here. ]

Note the differences between the three techniques and note also the dependence
of sample characteristics on the decision-based parameters, that is, the filtration degree,
width of the interval, T, , and screening level. These differences make difficulties in
interpreting and comparing results obtained in different countries and by different
researchers. Therefore, the way how certain sample characteristics supplied to the reliability
engineer were determined, should be always ascertained in order to understand the meaning
of the sample correctly.

Comprehensive analysis

While the amplitude analysis deals with the peak values of load magnitudes, the
comprehensive analysis covers all values recorded. Two principal methods exist:

¢ suatistical summary,
¢ rain-flow analysis.

The method of statistical summary, proposed by Mathieu 1974, is very efficient
and offers very good information on the load properties that are not captured by the
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foregoing amplitude analysis techniques. The statistical summary analysis is important
for structures sensitive to fatigue and rheology phenomena as it gives information on
duration and repetition of load at various levels. Unfortunately, it is not widely used, mainly
because large sequences of observations are necessary to obtain a reliable picture of the
load magnitude behavior. We will not describe its details here; the reader is referred to
the paper by Mathieu.

The rain-flow method (see Fryba 1993) is mainly used in the dynamic analysis
of structures exposed to random loading processes and to fatigue analysis of structures
subjected to high-cyclic repeated loading.

Table 5.1 - Example 5.1. FLOLEV, FIXINT, and FIXLEV evaluation of the random sequence of daily
maxima of wind velocity, v (m.s"), in Prague, 1925-1971

Evaluation n m, s, a, k1)
criterion

Fi‘;::‘::“ FLOLEV

None 2498 12.0 4.6 0.79 0.28

Weak 1973 12.2 4.7 0.77 0.15

Strong 1359 12.4 4.9 0.72 -0.03

Tobu

(days) FIXINT

1 8729 9.1 4.2 0.97 0.46

2 4364 10.7 4.4 0.85 0.38

5 1745 13.2 4.5 0.73 0.24

10 872 15.3 4.5 0.63 0.18

20 436 17.6 4.3 0.46 0.19
(Il‘:?,') FIXLEV

9.1 1413 13.8 4.1 1.22 0.07

15.4 497 19.0 3.1 1.20 0.07

23.1 56 25.5 1.9 1.16 .07




114 LOAD

5.5 ONE-VARIABLE MODEL OF LOAD

For many loads their dependence on space and time is small and of little importance, and
can be, therefore, either neglected at all, or the time-dependent random behavior of load
can be reduced to single variables. Such simplification can be extended also to loads with
expressive time dependence. A one-variable probabilistic model for a load can be formulated
in such a way that it can reflect almost all properties of the load that are of interest in
the reliability analysis.

Let us assume that the random behavior of the physical component of the load,
F, is described by ®(F), and the zero component is defined by P, Equation (5.1).
Let ®(F) include also possible repetitions according to 2.1.6. We will try to find CDF
covering both the absence and presence of load, ®,,,

The probability of load absence is

-1-P_ (5.2)

where P, = probability of load occurrence defined by Equation (5.1).

Consider a value F of the random variable F, ,. Since the events Ev(load
magnitude F, , < F) and Ev(presence of load) are independent, the probability of their
simultaneous happening is

Pr{(F,, < F)N(ptes F)] = ®(F) - Pr(pres F)

Then, the distribution function taking into account the intermittence of load is given by
the probability that either Ev(absence of load) or EV[(F,,, < F) U (presence of load)]
will happen. Since both events are mutually exclusive, it is, according to Equation (2.4),

<I)gcn(F) = Pnan + Pocc ) (I)(I?)
or, setting for P,,, from Equation (5.2)
@, (F) = 1-P, -[1- 2] (5.3)

which is valid for F > 0.

When the distribution of F has an infimum F > 0 (thatis, for F < F
is ®(F) = 0), it holds for F €[0, F in ]

@, =1-P,. (5.4)
Observe, that for Pr(F, , < F)< P,
equals zero.

With some load also magnitudes F < 0 are possible, that is, F,. < 0; in such
acaseitisfor F < 0

@,..(F) = P, ®F) (5.5)

the corresponding fractile of F identically

while for F 2 ( Equation (5.3) holds again. At F = 0, ®__(F) is discontinuous.

gen



SECTION 5.5 115

a)
T g 1-R
A occ @
o occ
0 me Fsup F Finf 0 Fsup F
1 ' 1 ,
Q ; |
€ o -
¢ 4 s g
°|é SRS
0 =1 . :
0 Finf Fsup F Finf 0 Fsup F

Fig. 5.6 - General probability distribution of a scalar load magnitude, taking into account
the probability of occurrence, P, , of physical load magnitudes, F
(a- Fpe >0,b-F,, <0).

Figure 5.6 shows PDFs and CDFs for the two cases of F, .. Obviously, a mixed
probability distribution is dealt with, consisting of a discrete part for F = 0, and a
continuous part between F, . and F, . We can have, of course, Fop~ -oor F, 6~
or both,

5.6 LOADING HISTORY

The term "loading history" embodies

¢ rime development of a separate load, that is, the increase or decrease
of its magnitude, and also its absence during certain period;
¢ order in which several loads are applied to the structural system.

As a rule, the loading history can be expressed by a time-dependent function, which
is, to a certain degree, non-stationary random, but which also depends on decisions
connected with the use of CF. Load codes do not give any guidance on loading history;
designers are only advised not to forget its possible influence on the behavior of the
structure. Sometimes loading history is specified for particular structures but this is more
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an exception than a rule. Therefore, in the design of structures and also in the evaluation
of existing structures the loading history must be estimated a posteriori or a priori,
respectively. For example, in the re-design of structures subjected to rehabilitation the
loading history has to be established through a study of the past use of the facility. Also,
the time development of load should be known whenever the load path, that is, the stress
and strain state, can change after each loading and de-loading of a structure.

There is no need to consider the loading history when the following two conditions
are satisfied:

¢ the law of superposition is valid for both stress and strain load-effects
(structural mechanics aspect);
¢ all loads occur simultaneously (reliability aspect).

Although these two conditions are almost never fulfilled (particularly the second
one), the loading history does not significantly affect, in the majority of cases, the behavior
of the structure as far as the mechanical properties and design criteria are concerned.
Nevertheless, loading history should not be ignored whenever non-linear phenomena are
involved. The non-linearity can be of different nature (physical, or geometrical; time-depen-
dent, or not) and also its consequences can be diverse (reversible or irreversible
deformations, etc.). Therefore, sequential relations among interacting phenomena should
be carefully assessed in such cases (see Section 3.3).

The reliability aspect of the loading history becomes mainly important in the
assessment of existing structures. This problem will be briefly discussed in 15.5.4.

5.7 LOAD COMBINATIONS

The problem of load combinations is probably the most exciting chapter of the theory of
structural loads. It is steadily attracting attention of researchers, since it is offering broad
possibilities for various sophisticated exercises. Nevertheless, we can now say that the
load combination problem has been solved. At present, several solutions are known, each
of them being correct in a certain domain but exposed to criticisms coming from the other
domains. Although differences between particularities of load combination solutions are
significant, it is typical, that differences in terms of resulting load-effects are very small.
The load combination research has been oriented in two directions:

4 comprehensive evaluation of the reliability of a structure subjected to
combined loads;

4 search for appropriate combination rules, combination formulas and load
combination factors.

While the first group of research activities forms part of the general reliability
solutions (see, for example, Wen 1989), the second group deals with details of the general
problem.

Whenever approaching a load-combination problem, we must keep in mind that,
in principle, combination of two and more random load processes should be analyzed.
Computer programs that make such an analysis possible can be easily written or are
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available in soft-ware libraries. In the main, nevertheless, simplified approach is used,
taking into account only the magnitude of loads and disregarding the repetition and duration
of individual realizations.

In this book, load combination problem is dealt separately in the framework of
the three families of probability-based design methods discussed in Chapters 12 through
14, Therefore, we will introduce here only its main features.

Some basic concepts will be used:

¢ Load combination is a set of loads that act simultaneously on a structure.
When loads with a mixed probability distribution (see Section 5.5) are involved,
only their physical components can become members of a combination. For example,
a triplet of loads with magnitudes F;, > 0, F, > 0, and F; = 0 (that is, the
third load enters the set with its zero component), constitutes a combination of order
2, not of order 3. To include F, into the combination is senseless. See below,
Combination of load sequences.

¢ Combination formula defines the load-effect as a function of combined
loads.

@ Selection formula screens the load-effects resulting from the set of
combination formulas; the most adverse load-effect is to be considered in sizing
and checking,.

¢ Combination rule consists of a set of combination formulas and the
selection formula. Frequently, distinction between combination formula and
combination rule is not recognized, and combination formulas are often called
combination rules.

¢ Load combination factor is a design parameter whose role in combination
formulas is to express the lower probability of occurrence of adverse magnitudes
of combined loads in comparison with the probability of occurrence of adverse
magnitudes of loads considered separately. We will deal with it in Section 14.3.

Combination of load sequences

Consider for simplicity only two intermittent loads, F, and F,. An amplitude analysis
(for example, FIXLEV) has yielded two random sequences of refined maxima and presence
and absence periods. Assume that these loads produce a scalar load-effect, that is, S(F,)
and S(F,), and plot the two sequences of S(F,) and S(F,) along the time axis (Figure
5.7).

At any point in time, ¢ , a combined load-effect is
S, = S(F)) +S(F,)
which can be subjected to statistical treatment.

In the statistical evaluation of the S, sequence the above definition of load
combination must be respected, that is, only S values resulting from physical components
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of F, and F, can be introduced into the analysis. Thus

S, = S(F)) + S(F, =0)
S, = S(F, =0) + 5(F,)

should not be taken into the S, sample. Otherwise, a tri-modal histogram and frequency
curve of S, would be obtained, with one mode referring to F,, another to F, and the
third to the combination of both. Of course, when p., = p, and both distributions are
bell-shaped, only bi-modal curve might be expected (cf. 2.1.2, Multi-modal distributions).

L ﬂr——ﬁl_lnl_lt

— [ M S

N1 (e P[]

Fig. 5.7 - Combination of two idealized load-effect processes, linear structural response.

Given data on load maxima, and on the presence and absence periods, a random
sequence can be easily simulated and analyzed by Monte Carlo technique.




ENVIRONMENT

Key concepts in this chapter: elements of environment, environmental parameters; con-
straints, human factor.

ENVIRONMENT, the third component of any S-L-E system, has been very little studied
from the point of view of structural reliability. We can even say that it has been neglected.
Only little attention has been paid to the environmental aspects of constructed facilities.
The result is a poor level or entire absence of clauses concerning environmental concepts
in structural design codes and other documents. However, the economical importance of
the environmental factors entering design is often significant and determining the design
solutions.

Elements of environment

Let the concept of the ENVIRONMENT system include all that surrounds a constructed
Sacility or is a part of it, or is in some connection with it. Then, the elements of environment
are, for example,

4 solar radiation;

¢ atmosphere (outdoor, indoor; wind), and all particles carried by the air
movement;

¢ water (retained and moving water; surface and underground water; rain,
snow, ice, and icing) and all particles carried by water;,

4 soils and rocks;

¢ stored materials (materials in silos, gas and fluids in tanks);

¢ non-bearing structures (partition walls, window frames, roofing,
waterproofing, insulation);

¢ building equipment (HVAC, wiring, water supply, gas supply, draining);

4 technological equipment (machinery, electrical and electronic devices);

4 transport means of various kind (automobiles, railway cars, elevators);

4 animals;

4 humans.

The relations between environment elements and a constructed facility can be

¢ mechanical, biological, physical, and chemical, controlling the durability
and performance of the CF system; mechanical relations are represented by load;

119
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Table 6.1 - Environment-active and environment-passive relations between environmental
elements and a constructed facility, CF; only typical examples are given; loading
effects are not included

Environmental Relation of the environmental element to CF

element

active

passive

Solar radiation

Atmosphere

Water

Soils and rocks

Stored materials

Non-bearing structures

Building equipment

Technological equipment

Humans and animals

4 deterioration of material
due to temperature changes and
radiation effects

4 corrosive effects of gaseous
atmosphere elements;

4 damage by flying objects;
4 wind abrasion

4 corrosive effects;
4 deterioration of materials
due to humidity and freezing

4 corrosive effects

¢ corrosive effects;
4 abrasive effects

¢ abrasive effects due to
movement of vehicles;

4 corrosion by chemicals, oil,
etc.

4 corrosive effects;
4 general deterioration of CF

4 leakage of air containing
disinfection gas out of grain si-
los through cracks and other
tightness defects

4 leaks through cracks of
stored material and contami-
nation of underground water

4 leakage of stored materials

4 deterioration due to defor-
mations of the structure

4 restriction in use due to
static and dynamic deforma-
tions

¢ failures of normal function
due to deformations and vibra-
tions of bearing structures

4 alarm feelings due to defor-
mations, vibrations, and cracks

& physiological, psychological, and aesthetic, determining the attitudes
of people getting in contact with a completed CF. '

The non-mechanical relations can be environment-active (CF is affected by
environment), or environment-passive (environment is affected by CF). Table 6.1 shows
some typical relations, active and passive. Only adverse relations are shown in the table.
Frequently, nevertheless, the effects of environment can be positive. For example, cracks
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in water tanks get tightened and water leaks disappear because of bacteria and other microor-
ganisms settling in cracks, and because of physical and chemical effects of water acting
on the hardened cement paste.

At present, no theoretical description of environmental properties exists, and it
is doubtful whether such a description, sufficiently general, is possible at all. However,
in individual cases, specific solutions evaluating environmental aspects can be applied.
If human factor is involved, psychometric methods can be efficiently used to evaluate
attitudes towards environmental hazards. As a rule, environmental properties affect mainly
values of constraints that are included into the reliability requirements (see Section 10.5).

Human factor

Human factor is doubtlessly one of the governing components of the ENVIRONMENT
system. Its role is many-sided, and its discussion could take several pages. In fact, an
extensive monograph could be written on this issue. The reader is referred to Melchers
1987, where a good survey of the problem is given with several data on available research
studies. In a more general setting, important information on human factor can be found
in Blockley 1980, Brown and Yin 1988, Engineering Safety 1992, and Kuhlmann 1986.




PHYSICAL
RELIABILITY REQUIREMENTS

Key concepts in this chapter: attack; barrier; reliability requirement, RelReq, formative
RelReq; global RelReq, elementary RelReq; global variables; formative variables; elementary
variables; basic variables; physical RelReq; reliability margin, global reliability factor;

equivalent reliability margin.

¢ In this chapter, all phenomena and variables are considered non-random.
4 Since in the text the expression "reliability requirement" is frequently
used, the abbreviation RelReq is introduced to simplify the reading.

7.1 FORMATIVE REQUIREMENT

Let a physical demonstration of an S-L-E system be called the aftack, A . During a
reference time, T, the attack is subjected to non-random changes. At a particular point
in time, t , the attack is described by a set of phenomena, A, in an n -dimensional space,
where n is the number of components necessary for a full description of the attack.

The ability of an S-L-E system to resist an attack will be termed the barrier, B.
Similarly as the attack, also the barrier can change in systematic manner (for example,
the material of a structure can be exposed to corrosion). In many cases, these changes
depend on the respective attack (for instance, repeated loadings diminish the strength of
the material). Then, at a particular moment ¢ the barrier is described by a set of
phenomena, B, in the same 7 -dimensional space as A.

Finally, let aset B”, confined by B (Figure 7.1), be specified. Then, a physical
reliability requirement can be formulated:

vieT,: AcB (7.1

which can verbally be expressed as follows:

An S-L-E system is considered reliable if at any point in time, ¢ , during a reference
period, T, ., the artack set A, is a subset of the barrier set, B.-If RelReq (7.1) is not
fulfilled, tﬁe S-L-E system has reached its limit state, or, in other words, failure has
occurred.

The terms "attack" and "barrier" have been chosen to emphasize the generality
of the reliability requirement. The two sides of the requirement are sometimes called
"demand" and "capacity," "load-effect" and "resistance," etc.

122
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Fig. 7.1 - Graphical interpretation of the sets A, B, and B*, and of RelReq (7.1) (a -

attack is represented by a point, b - attack is represented by a curve, ¢ - the set B’ is

confined by B and by the sets Xand Y,d- one-component case with A represented
by a point; RelReq is fulfilled in all shown cases).

The sets A and B are called the formative sets, because they describe two
phenomena, Ph(attack) and Ph(barrier), forming RelReq. Simultaneous existence of both
these phenomena is necessary, otherwise RelReq cannot be written. Therefore, RelReqs
according to Equation (7.1) will be called formative physical reliability requirements. -
Figure 7.1 shows graphically the significance of A, B, and B" in one-dimensional and
two-dimensional cases.

RelReq (7.1) is valid for a fully defined S-L-E system situated at a defined point
or in an area of space during a defined T,,,. This is in conformity with the fact that, in
the main, constructed facilities are fixed, non-moveable artifacts (see Section 16.1). Nev-
ertheless, it must be taken into account that certain fully defined facilities, such as, for
example, standardized buildings, high voltage masts, can exist in different places of space,
which, actually, can change its properties in non-random way (exposure to wind, intensity
of snow fall, and others). For this type of cases the definition domain of RelReq (7.1)
must be specified to the particular space considered (for example, the territory of Southern
Italy). For simplicity, this generalization will not be considered in the following, though
it should be always kept in mind.

The mathematical description of the attack and the barrier depends on the nature
of the problem studied. In general, a barrier can be represented by a hypersurface in an n -
dimensional space (that is, for example, in the two-component case, by a curve); an attack
can be expressed by a point, or by a hypersurface as well.

The formative arrangement of RelReq (7.1) is the most frequent type of RelReq
used in structural design; we may call it "reliability axiom." It is, however, a source of
uncleamess in cases where a physical relationship between the attack, A, and the barrier,
B, exists. - In Table 7.1 some examples of attack and barrier are given.
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Table 7.1 - Examples of attacks and barriers

Attack

Barrier

bending moment and axial force in a
cross-section of an eccentrically load-
ed member

bending moment, M , in a prestress-
ed concrete beam due to external load

tensile stress in extreme fibers
of a steel member subjected
to bending, o

crack width, w , in an R.C. tank

eigenfrequency of a pedestrian
bridge, f

effective cross-section area of a steel
bar, A o

effective diameter, d,

row 6

moment M,, affecting a retaining
wall

effective width of a retaining

wall, b o

effective life of a CF system, T, off

resulting from physical properties of
CF (see Section 10.2)

g of the bar in

ultimate limit state function expressed, for
example, as an interaction diagram

first-crack limit, described by the first-
crack moment M,

yield stress of steel, fy

limit value of crack width, wj,

frequency bounds, f; and f, , defining
an acceptable frequency range

cross-section area, A, , necessary
to bear the load-effect

necessary diameter, d,,

resisting moment, M, , acting against a
possible rotation of the wall

width of the wall, b,,. , necessary for
the wall equilibrium

target life, T, , resulting from socio-
economic requirements
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7.2 GLOBAL REQUIREMENT

7.2.1 Reliability requirement

RelReq (7.1) does not offer any quantitative information on the reliability of the investigated
system. Let us try to find a suitable gage that might be used to compare various cases.
A geometric interpretation of RelReq (7.1) can be used for this purpose. Consider three
possible forms of attack, A, and barrier, B:

(1) Let the attack and barrier be described in terms of scalar variables A and B.
They can be illustrated as points on the X -axis (Figure 7.2a). In this case, RelR (7.1)
has a simple form: f

vteT, As<B (7.2)
Since on both sides scalars appear, the requirement will be called scalar RelReq, and A
and B denoted formative variables. 1t is apparent that a limit state is attained when the
points A and B merge. Therefore, for a reliability gage the distance Z between these
two points can be taken. The greater Z, the higher the reliability.

(2) Consider a two-component case: let the attack be expressed by a vector (that
is, an ordered pair of numbers), described by a point, (X,, Y,); let the barrier be expressed
by a function £(Xg, Yp) = 0, represented by a curve in the coordinate system [X, Y],
see Figure 7.2b. The limit state is reached when the point A and the curve B merge.
Again, for a reliability gage the minimum distance, Z, from A to B can be taken, defined
as the radius of circle K centered in A, having a common tangent with B at a point
of contact L. This obviously holds also for a case when a multi-component attack is dealt
with, and so the barrier is a function of more than two variables.

0 A B X 0

Fig. 7.2 - Graphical interpretation of RelReq (7.2) (a - one-component case,
b - two-component case, the attack is described by a vector, the barrier is a function,
¢ - two-component case, both the attack and barrier are functions).

(3) Finally, let A and B be expressed by functions, f(X,,Y,) =0 and
f(Xg, Yg) =0, described by curves A and B (Figure 7.2c). The limit state is reached
when A and B contact. Therefore again, the minimum distance between the two curves
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can be taken as the reliability gage. This distance is defined as the diameter of the smallest
of circles K, touching simultaneously A and B in the investigated domain. The smallest
circle, K, , touches A and B at points where the two curves have a common normal
line. Again, the foregoing is also valid, with appropriate generalization, for functions of
several variables.

In particular cases, the definition of minimum distance Z based on circles K ,
or K, is not possible. This happens when the definition domain, Q. , of the respective
RelReq is limited. Figure 7.3a shows a case when a circle drawn around A has no
common tangent with B | and similarly, Figure 7.3b shows a case when the curves A
and B have no common normal. Nevertheless, a minimum distance between A and B
can be defined again, as it appears from the figure.

On certain occasions we are not interested in the absolute value of the distance
between A and B, and only the relative information whether RelReq (7.1) is satisfied
is sufficient. In such cases the distance between A and B can be measured in an arbitrary
direction. However, when comparing two or more cases this direction must not be changed.
A simple drawing will usually help to understand the particular problem solved and to
identify its possible pitfalls.

We can oconclude that a RelReq common to all three cases (including cases where Q
is confined and cases where for some reason the shortest distance between A and lg
cannot be evaluated) is given by

VteT, Z20 (71.3)

Because of its general meaning, this RelReq can be considered the parent physical RelReq,
from which all other physical RelReqs descend.

al b)

A/\{“/ f;.z.{

0 - X 0 X

Fig. 7.3 - Determination of the reliability margin when Q, is confined
(a - attack is a vector, b - attack is a function, barrier being a function in both cases).
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7.2.2 Reliability margin

The minimum distance Z between an attack A and the corresponding barrier B is always
a scalar. It is called reliability margin and it is one of the principal quantities analyzed
in theoretical investigations of reliability of constructed facilities. It is a global variable
because it describes a global phenomenon Ph(properties of an S-L-E system). Consequent-
ly, RelReq (7.3) will be called global physical RelReq.

Since, during a period T,,., the attack and the barrier change, the reliability margin
is, in general, also a time-dependent variable. For instance, the magnitude of a load can
increase or decrease, or the resistance of a cross-section can diminish under repeated load-
ings. Moreover, a barrier can depend on the development of the corresponding attack (cf.,
for instance, the influence of loading history on the load-bearing capacity of structures
with non-linear behavior). Therefore, reliability margin must be defined, in general, for
any specified point in time, t . However, to simplify subsequent formulas, a definition
domain V¢ € T, . will be indicated only when necessary.

In a general case, units of a reliability margin cannot be unambiguously defined,
since the units of components X, Y, or others are usually of different kind (for example,
kN and kN.m).

As a rule, a reliability margin, Z, can be simply established by an analytical formula
only in one-component cases. For multi-component cases numerical solutions are often
necessary. Moreover, since Z is not a dimensionless quantity, it can be generalized only
with difficulties. For this reason, RelReq (7.3) is almost never considered an initial RelReq
in current design, but it can be used to demonstrate some theoretical procedures.
Nevertheless, when the coordinate system is normalized, a reliability margin can be
expressed non-dimensionally; see 8.5.3 and Section 9.2.

Case (1) is met, for example, in the design of a cross-section subjected to bending
moment. Case (2) is typical for a cross-section subjected to combined bending and axial
load. Case (3) can be encountered when a complex stress state is dealt with (Example 7.1).

B Example 7.1. At a point in time, ¢ , a reinforced concrete member with a constant cross-section
is subjected to bending moments M, and M, acting in two mutually perpendicular planes. The development
of moments along the member is shown in Figure 7.4. The ultimate capacity diagram of the cross-section,
and consequently, of the whole member, is given by a curve, II . From the development of M, and M,
a curve describing the attack, ¥, results. The location and shape of ¥ change in dependence on the changing
load. At a certain point in time f , the reliability margin of the member, Z, is given by the minimum distance
between ¥ and II. ]

Assume that A is time-dependent. In dependence on A and B. When A and B
are independent, then only Z changes with changing A . However, when A and B are
mutually dependent, then also the barrier changes, and diverse developments of A can
bring diverse developments of B, even if the final magnitude of A is identical in all
development (see Figure 7.5). Therefore, a reliability margin must always be investigated
for only a specified point in time and, in cases where the dependence between attack and
barrier is significant, also for a specified time-dependent development of the attack (in
many practical cases the problem of loading history, see Section 5.6, is met).
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M, .

JA

e
N

/

Fig. 7.4 - Reliability margin of a bar subjected to a two-way bending (II - ultimate
capacity curve, ¥ - stress load-effect curve).

Fig. 7.5 - Changes in the reliability margin when the attack varies (a - barrier depends on
the attack, b - barrier depends on the attack and on the attack history;
A, , A, -two successive attacks, B - independent barrier, B’ - dependent barrier,
B, Bé - attack-dependent barriers for two different developments, « and B , of the attack).

RelReq (7.3) is often given in the following form:
g(x;, x5, ., x,) 20 (7.9)

without defining the physical meaning of g(.) , called the limit state function or failure
function. Frequently, the failure function is formulated in terms of a load-effect. Never-
theless, when a general definition of the attack and the barrier is considered, the failure
function can be of diverse physical meaning. In Table 7.2 reliability margins are given
for cases of A and B shown in Table 7.1. Obviously, in one-component cases, such
as those in rows 2 through 10, the reliability margin is expressed simply by
Z=B-A (7.42)
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Table 7.2 - Reliability margins, cf. Table 7.1

No. Reliability margin Unit
1 multi-component case -
2 ZIM =M -M N.m
3 Zlo =f,-0o N.m?
4 Zlw = wy, -w m
5 ZVf =~ fums st
Z|f = fims ~f
6 ZIA =4, -A, m?
7 Z|d =d, -d, m
8 ZIM =M, -M,, N.m
9 Zb=b, -b, m
10 Z|ITy = Ty p- Ty year

129

Margins Z |. in rows 2 through 5 refer each to a separate problem. However,
the margins given in rows 6 and 7, and similarly the margins in rows 8 and 9 of Table
7.2 are closely related. In fact, the same RelReqs are dealt with, but the respective design

criteria are different. We can ask whether the paired RelReqs

Z|A20, Z|d=0

or

Z|M=20, Z|b20

are equivalent. In other words, we can ask whether RelReq for Z | d is fulfilled when
RelReq for Z | A is fulfilled. And conversely, when RelReq for Z |d is fulfilled, is
also RelReq for Z | A satisfied? These practical questions lead to a theoretical problem:
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For a given design criterion, let RelReq (7.4) be fulfilled. Assume that n > 2
(otherwise the problem would be meaningless). Answers to the following three questions
are required:

(@) When considering RelReq (7.4), is it possible to find other RelRegs that
can be equivalently used in the assessment of reliability?

(b) If the answer to (a) is YES, what is the relation between the respective
reliability margins?

(¢) Can any one of the reliability margins defined for the equivalent RelReqgs
be used in the reliability assessment of the investigated system?

Equivalent reliability margin
Consider RelReq (7.4) and denote
Zy = g(x;, x5, .y X,) (7.5)

Let us call Z, the initial reliability margin. Variables x; describe partial phenomena
H, , which cannot be further decomposed, or which are assumed as such. These phenomena
and also the respective variables x; will be termed elementary. To simplify and to take
into account the actual development of phenomena, it will be assumed that all variables
are continuous.,

Assume now that Z, is monotonic in Q. with respect to any elementary variable.
When with growing x; the reliability of the system improves, the respective phenomenon H,
is assumed absolutely favorable, in the opposite case it is absolutely adverse (cf. Section
3.6).

For further derivations the influence function is introduced:

3z,
- sion 220 (1.6)
" sign axk

which assumes values +1 or -1 according to whether H; is absolutely favorable or
absolutely adverse, respectively. For non-linear g(.) the assumption on monotoneity cannot
be fulfilled in the entire definition domain, and so A, can change its value.

By an equivalent rearrangement of g(.) , RelReq (7.4) can be changed to

g.(xl, Xy, o x") >0 7.7
The quantity
Z" =g (x;, Xy, .y X,) (7.8)

is called the equivalent reliability margin. - A rearrangement g(.) -~ g*() is considered
equivalent if for any ordered n -tuplet (x, , x,, .., x, ) the following holds in Q &f
if g()>0, then g*() >0
if g() <0, then g*() <O
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Further, let an ordered n -tuplet of elementary variables, (x,, x,, .., x,) , be
given. For this n -tuplet margins Z, and Z* assume certain values, Z, # Z* . When,
however, g(.) =0 for a certain n -tuplet (x, x,, .., x,), , itisalso g*(.) =0 and,
consequently,

Z,=2"=0

Thus, as far as the information on reliability is concerned, the initial and derived reliability
margins are equivalent.

In general, we are able to define, for a given Z;, an infinite number of derived
reliability margins Z* . Considering the set Z, , of all equivalent reliability margins
referred to the particular system, any member of this set can be taken as initial and all
other members can be considered derived. Thus, the separate equivalent reliability margins
form a formal system with one axiom observing the rule “equivalent rearrangement."” Hence,
the answer to question (a) is obviously positive.

Since Z, and Z" are functions of the same set of elementary variables x, , they
are mutually perfectly dependent. The law of dependence is given by the expressions g(.)
and g*(.) . Details of this law are not interesting, but the following conclusion is impor-
tant:

When, for a given design criterion, an expression for reliability margin Z* is
derived from Z;, by means of an equivalent rearrangement of RelReq (7.4), then, for
any ordered n -tuplet of elementary variables, (x,, X,, .., x,) , the following relationship
between reliability margins holds :

signZ* = signZ, (7.9

In other words, when, for a given design criterion, a RelReq formulated for any
of the reliability margins Z € 1Z,  is satisfied, then also RelReqs written for other
equivalent reliability margins are ﬁzl}ivlled.

Thus, also the questions (b) and (c) have been answered.

In practical problems the reliability margin

Z|x, = Alx, - h(x;, x,, .., x; ~x,)] (7.10)

is important. Here Z |x, = reliability margin referred to the elementary variable X,
A, = value of the influence function defined by Equation (7.6), h(.) = function of
elementary variables; symbol ~x, denotes that x, is not contained in h(.) .

Reliability margins Z | x, are currently used in proportioning and checking of
structures. Assume, for example, that x, refers to a cross-section dimension or to a
material property. Since these are, as a rule, absolutely favorable, that is, 4, = +1,
Equation (7.10) with RelReq (7.3) leads to RelReq

X, 2 h(x, x,, ., x,;-~x,) (7.11)

In general, we can relate a reliability margin to any elementary variable x, through
x, . In practical cases, however, this is not always possible because some elementary
variables cannot be explicitly expressed, and consequently, the respective Equation (7.11)
cannot be written.
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B Example 7.2. Find ultimate limit states design formulas for a STRUCTURE-LOAD system
consisting of a steel bar of circular cross-section having a diameter d (STRUCTURE subsystem). The bar
is subjected to an axial load N > 0 (LOAD). Yield stress of steel is fy The definition domain, ..,
is given by extreme possible values of elementary variables. - This very simple system can help illustrate
individual rules of compiling a formal system of reliability margins. We will use it also in several other
examples.

-~
The initial RelReq can be written, for example, in terms of load
N < nd2fy/4

/
Obviously, a triplet of elementary variables, (d, N, fy ), is dealt with here, and so three design reliability
margins can be formulated:

Z|d =d - 2[N/(xf)]?

Z\|f, =f, - 4N/(nd*)
Z|N ==nd*fJ4-N

or also
Z|A=A4- N/fy

where A =wd?/4. Note that influence function values are 4, =1, Afy =1, 4, =-1, A, =1,
respectively.

Thus, the bar can be sized with respect to the diameter d (or cross-section area, A) and strength
f,, and it can be checked with respect to the force N. |

7.2.3 Reliability factor

The reliability requirements based on only a qualitative assessment of the relation between
the attack and the barrier do not provide any general information on how reliable a fully
defined S-L-E system with a specified pair (A, B) is. For this purpose, the marginZ
should be normalized in some way, otherwise various particular cases of S-L-E systems
could not be compared,neither qualitatively nor quantitatively.

A reliability margin can be directly normalized only then, when the attack and the
barrier are scalars. In such a case (cf. Figure 7.1a) we can write

Z=B-A

Setting for Z into Equation (7.3) we obtain
B-A:x0

Now, let us normalize this RelReq with respect to A, that is,
B
—-12>0
A
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Fig. 7.6 - Simplification of the global RelReq; the problem is reduced
to one-component cases.

and so the physical RelReq becomes:

o=2,1 (7.12)
A .

The ratio O is the global reliability factor, commonly known as the "safety factor." -
RelReq (7.12) is, of course, a physical requirement again. Note that we are still discussing
a non-random S-L-E system!

A generalization of the reliability factor for multi-component cases is impossible.
Let this fact be demonstrated on a two-component case, see Figure 7.6. Assume a barrier,
B, and two different, independent attacks, A, and A, . The nearest point on B with
respect to A, is denoted by B, ; an analogous point with respect to A2 is B, . Let the
margins Z, and Z, be equal, and so, for both attacks, RelReq (7.3) is complied with
to the "same degree

Let us now try to find reliability factors referred to both attacks, The two
components, X and Y, have the following values at A, A,, B, , and B,

( Al AI)’ (X A2 YAZ)’ (X;I’ Y;I)’ (XI;Z’ Y;Z)

For a reliability factor, ratios of mutually corresponding components could be taken. We
can obtain

X; 6. = Y;I 6.. = X;Z 6. = Y;Z
X_‘ ’ Yl Y_ ’ X2 'X'— ’ Y2 ~ Y_
Al Al A2 A2

~

6y, =
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Fig. 7.7 - Two-component case, polar form of the global reliability factor.

where

2]

i * 6

Yl 6

), * O

Y2
and further
6y < 6y, 6y > 6y,

although the reliability margin is the same for both cases!

Various manipulations with the global reliability factor are possible. Frequently,
a global reliability factor in polar form is used (Figure 7.7). A half line, 1 , is led through
the point A referred to the attack; the half line cuts the curve B at B°. Then, the global
reliability factor is defined by

B
OA

®)
=)

6:

r

where OA, OB® = distances according to Figure 7.7. It is obviously

6 = (7.13)

r

n

>>< I Gxo
::< | ;<o

Although this expression has certain advantage in some solutions, the principal drawback
of the reliability factor remains. For two attacks with equal reliability margins, Z = Z, =
Z, , two different values of the reliability factor, 6, # 8 ,, can be obtained again.
Unfortunately, the foregoing simple facts on the global reliability factor are still
not fully understood by many engineers.
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7.3 ELEMENTARY REQUIREMENTS

The two formative phenomena Ph(attack) and Ph(barrier) result from a series of elementary
phenomena: strength of materials, structure’s geometry, load, temperature, time and others.

B Example 7.3. When designing a simply reinforced concrete cross-section according to the ultimate
limit state, the following RelReq must be fulfilled:

S <R

where § = load-effect, R = respective structural resistance. Here, Ph(attack) and Ph(barrier) are specified
by § and R, respectively. - Clearly, the load-effect in the cross-section results from several loads acting
simultaneously on a structure with given dimensions. In this way phenomena Ph(load) and Ph(geometry
of the structure) apply in Ph(attack). Similarly, the cross-section resistance consists of Ph(concrete strength),
Ph(steel strength), Ph(cross-section geometry), Ph(time), or also other phenomena. |

The elementary phenomena can be investigated one by one, directly or indirectly.
For example, variable loads in residential buildings are directly measured by scaling fur-
niture and occupants, whereas the wind load is obtained indirectly through measurements
of wind velocity. - The elementary phenomena are expressed by elementary variables a, ,
a,, .., a,, [referred to Ph(attack)] and b, b,, .., b, [referred to Ph(barrier)].
Elementary variables are, for example: load magnitude, strength of material, acceptable
deflection.

The concept of elementary variables is almost identical with that of basic variables
used by many authors in formulations of RelReqs and calculation models.

When a one-component case is dealt with, we can write:

A =1,(a,aq, .., a,)
B = fy(b,, b,, .., b,,)

where f,(.), fz(.) = functions describing the attack and the barrier, respectively.
Consequently, a physical RelReq can be written with regard to the elementary
variables either in the formative form,

A(a, a,, ., a,) < B(b, b,, .., b,) (7.14)
or in the global form:

Z(a,, a,, ., a,; b, b, .,b,) >0 (7.15)

In particular cases, RelReq (7.14) can be transformed in such a way that the attack
and barrier become isomorphic, that is, that to each a; a certain bj corresponds. Thus,
the number of elementary variables is identical at both sides of the requirement, n, =
n, = n. As aresult, such RelReq can be substituted by a system of elementary RelReqs
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a, < b

a, <b,

2 (7.16)

which must be complied with simultaneously. The inequality symbol < will apply in
RelRegs (7.16) only when Z decreases with increasing a; (that is, when A, = -1 in
the domain investigated). If the opposite is true, symbol > has to be used.

An important drawback of the reliability assessment based on RelRegs (7.16) is
the loss of information on the reliability margin, Z. We could substitute RelReq (7.15)
by a system of requirements

20

>0
7’2 (7.17)

znzO

without any significant practical gain, however. The reliability margin could be, in such
a case, expressed in terms of a vector Z(z,,z,,..,2,) of elementary reliability margins z; .
The greater the number of inequalities in RelReqs (7.16), or (7.17), the more uncertain
the quantitative information on reliability that can be drawn from the vector. Nevertheless,
the qualitative information (in terms of YES or NO) obtained from RelRegs (7.16) or (7.17)
is the same as that resulting from RelReq (7.14).

Historically, isomorphic solutions precede higher level concepts. The method of
working stress has been based on assumed isomorphic relation between the stress state
of a cross-section under service load and the stress state under ultimate load, both stress
states being described by the elastic theory. Developments in structural mechanics have
made possible an elasto-plastic description of the stress state under ultimate load, which
obviously is not isomorphic with that under service load. This fact has resulted in RelReqs
based on the limit state approach.

Since, in general, the description of limit states does not allow any isomorphization
of the attack and barrier, an anisomorphic RelReq in the formative form is used (for a two-
component case):

A(al,exm’ a2,exm’ "y ana,axm)

< B (7.18)

1,exm? b2,exm’ e bnb,exm)

Here, a,

i,exm

and bj,e;\m are defined limits of elementary variables a; and bj (i =1,
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2, ., n,;j =12, ., n) while no association exists between, say, a, and b,, or
between a, .. and bk' om > N general, n #n, .

In other words, RelReq (7.18) requires that (n, +n,) elementary RelReqs must
be simultaneously safisfied:

a, = fav(al,m), b, = fav(bl’m)

a, = fav(a,,,), b, = fav(bz,tm)

(7.19)

a, =fav(a,,.), b, =fav(b,,.)

where fav(x,,) = value of x on the favorable side with respect to a defined x,_ . When,
for example, a, refers to an absolutely favorable phenomenon (see Section 3.6), it must
be

al < al,exm

and when it refers to an absolutely adverse phenomenon:

a >a

1 1,exm

Note that the global, formative, and elementary RelReqs differ by the number of
phenomena, or variables, which is 1, 2, and n,+n,, respectively.




PROBABILISTIC
AND STATISTICAL
RELIABILITY REQUIREMENTS

Key concepts in this chapter: reliability requirement, RelReq; probabilistic RelReq;
statistical RelReq,; physical RelReq, user's RelReq; owner's RelReq; target values, failure
characteristics; failure probability; rho-measure; global RelReq,; formative RelReqs;
elementary RelRegs; probabilistic design methods, direct method, DM, method of extreme
Sfunctions, MEF; method of extreme values, MEV; level 1 through 4 methods, time factor;
reliability index; invariance of P, and .

Since, in general, the elementary phenomena forming the attack and the barrier are random,
any investigation of the reliability of a CF system must consider this fact. This can be
done in two basic ways: either probabilities of occurrence of relatively unfavorable
phenomena, or population parameters of the attack and the barrier govern the solutions.

In the first case probabilistic reliability requirements are specified, on the basis
of which necessary design parameters are derived. The principal failure characteristic
involved is the failure probability, P,, that can have several forms, as it will be shown.
In the second case statistical rehabzlf ity requirements can be formulated.

Again, the abbreviation Re/Req will be used for the "reliability requirement," to
simplify the reading.

8.1 GLOBAL PROBABILISTIC
RELIABILITY REQUIREMENT
8.1.1 Two principal tybes of probabilistic requirements

As a global probabilistic RelReq, the relationship between the actual and an extremely
acceptable failure probability can be considered. Before assessing this relationship for
a given constructed facility (or for a class of facilities) we have to consider the respective
"quality of the reliability." According to the user’s attitude to CF, two basic types of
probabilistic RelReqs can be distinguished. - Assume again that the definition domain,
Q,,, of probabilistic requirements is given (for example, the territory of Greece, or the
territory of the snow zone No. 2), and therefore Q. will not be emphasized any more.

138
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The "extremely acceptable" values of failure probability and of other probabilistic
quantities, which will be discussed later, will be termed, in conformity with the current
practice, the "target values."

Subjective probabilistic RelReqs

A specific circle of users of CFs (let us call them internal users) is not interested in the
life expectancy of the particular facilities at all. As a rule, an internal user is implicitly
interested not to enjoy any failures and to have an approximately constant perception of
safety during the whole period when he or she is using the facility. In the main, this
perception is subconscious. Sometimes an individual is willing to accept a certain likelihood
of failure but he or she is usually not able to assign to it any specific number in terms
of probability. This interest refers to all facilities that will be utilized by the user during
his or her personal life, T,. Assume, for example, that a person has lived in an apartment
house whose life expectancy is T, = 70 years, and than has moved to another building
with a life expectancy of 120 years. Yet, this person’s attitude to the reliability of the two
buildings is not affected by the buildings’ life expectancy. Neither are such users interested
whether a certain part of the facility life has been already consumed, or what its residual
life is. Thus, for internal users, the governing quantity is the failure rate, A (see 2.2.1).
Their global RelReq can be mathematically expressed as

VieT,: (A<4) (8.1)

where A, = rarget failure rate. The requirement is valid in the specified domain. Since
this requirement refers to the subjective personal attitudes of an individual, or a group
of individuals, we will call it the subjective reliability requirement.

For many practical reasons it is better to take as a basic quantity the annual failure
probability Pf, which is defined by

t+1

P, = f,t(t)dz (8.2)

where ¢ is given in years. The value of P, depends on the period ¢ - t,, where ¢, is
the point in time when the facility is put into operation. As a rule, however, P, is related
to the constant failure period (see 2.2.1), where A(2) is supposed constant, so that P,
is also constant. Then, the subjective RelReq becomes

VieT,: (P, <P,) 8.3)

with Pﬂ = target value of the annual failure probability (see Section 10.3).

Typical facilities that are governed by subjective RelReqs are residential buildings,
school and kindergarten buildings, and similar works. The individuals and groups of
individuals concerned are persons using the facility during their everyday life, or people
emotionally attached to such persons, such as fathers and mothers.
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Facility reliability requirement

Another group of facility users takes the facility life, T, as the governing quantity. These
users are mainly institutions, various public bodies, or simply society as a whole; let us
call them external users. They are interested in avoiding any failure during 7, expressed,
as a rule, in years. In some cases, external users are willing to accept a certain value of
the failure probability referred to T,.

The life of a CF system can be considered a well defined period with respect to
which a global RelReq

Vt e T,: (P, < P,) (8.4

can b written. Here P, = comprehensive probability that the failure will happen during
T, Pﬁ = target value of P,. Since RelReq (8.4) relates to the facility, it will be termed
the fac:lzty reliability requzremem Facﬂlty RelRegs should be used for, for example, TV
towers, storehouses, water tanks, grain silos, some agricultural butldmgs and utility lines.

There are, nevertheless, many CFs where both types of requirements can apply:
bridges, public buildings, and other important facilities. Thus, the reliability engineer has
to decide which type of RelReq is appropriate in a specific case.

8.1.2 Relationship between the annual
and comprehensive probabilities

The following simple formulas are valid for the relationship between a constant annual
probability P of occurrence of a random event E and the respective comprehensive
probability P referred to the period of n years:

P=1-(-py 8.5)

Po1-(1-p 8.6)

These formulas can be derived from Equations (2.3) and (2.5).

Thus, the subjective RelReq (8.3) can be written for the comprehensive failure
probability referred either to the user’s life, T,, that is,

vt e T,: (I_’f < I-’-ﬁ) (8.7
or to the facility life, T
Vt e T,: (P, < Py (8.8)

where }_’f can be established from Equation (8.5) with n =_T, or n = T, . In general,
the respective P values in RelReq (8.7) are not equal to P values in RelReq (8.8).
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Analogously, the facility RelReq (8.4) can be expressed by
Vt e Ty: (P, < P,) (8.9)

where Pj follows from Equation (8.6) with n = T;.

Probabilistic RelReqs as axioms

Similarly as with RelReq (7.1), evident, though non-provable requirements are expressed
by RelReqs (8.1) or (8.3), and (8.4). Therefore, they are taken as axioms. All further
RelReqs discussed in Sections 8.2 and 8.3 are derived from them.

It will be shown later that the synthesis of physical and probabilistic RelReqs results
in design requirements, specified by structural design codes.

8.1.3 Effective failure probability and its estimate

The failure probability P, (probabilities Pf and Pf will not be distinguished in the
following text, and the t1me quantifier will be omitted) entering RelReqs can be defined

by
P, = Pr(Z < 0)

or, equivalently, by
P, =Pr(6<1)

where Z = reliability margin (see 7.2.2), @ = global reliability factor (see 7.2.3).
Therefore, only a single phenomenon has to be investigated in the analysis of RelReqs
(8.3) or (8.4), which can be written in a more general form

P, < P, (8.10)

The reliability margin is a global phenomenon including all factors that affect the reliability
of an S-L-E system. Therefore again, the probabilistic RelRegs (8.1), (8.3), (8.4), etc.
are denoted as global [cf. RelReq (7.3)].

Taking into account the discussion on equivalent reliability margins in 7.2.3, it
can be easily proved that, for a certain system, the failure probability is invariant with
respect to the reliability margin formula. This statement is obvious, since the failure
probability is an objective characteristic of an S-L-E system that cannot depend on the
calculation model used. However, in all probability-based 1nvest1gat10ns we must keep
in mind that rwo variants of the failure probability P, (that is, P, or P ¢) are dealt with:

¢ the ejfectwe Jailure probability, P that describes a certain existing
"probability state” of the reliability system S- ﬁ% its exact value cannot be estab-
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lished by available calculation means, and we may doubt whether it can be ever
established at all;

¢ the estimate failure probability, P st » Which is a value that we can find
by performing theoretical solutions (see Sections 9.1 and 9.3) if random properties
of elements and components of the S-L-E system are known or assumed, and if
appropriate calculation models are used; this probability is obviously subjectrve
when for a particular case solutions according to several authors are used, the values
of P, ., can differ by orders (see Grimmelt and Schuéller 1982).

The calculation model for P, ., should be always such that

P

sz

feff
so that with
P

fest

sPﬁ

also the requirement

Pf,eﬁ
would be fulfilled.

We will not investigate the difference between P, 5 and P, ., nor will we consider
it in the following discussions any more. We will also avoid using attributes like notional,
JSormal, operative, etc., met in papers and documents on_probability-based design. Only
the plain term "farlure probability P." (that is, P, or P,) will be used. Nevertheless,
the reader should keep in mind its double features and should not forget that P, obtamed
by analysis based on an accepted calculation model always is only an estrmate

sPﬁ

8.14 Logarithmic measure of reliability

The theoretical merits of P, as a governing quantity in the reliability studies surpass all
arguments. Unfortunately, however, P, does not convey clear information on the reliability
to an ordinary engineer.

In probability-based design procedures that is, in proportioning and checkmg, any
value of P, € [0, 1] can be met. An engineer with a four to five years’ education in civil
engmeermg, including, in a favorable case, a one-term course of mathematical statistics
and probability theory, has practically no feelmg for probability values ranging between,
say, 1.0E-8 and 0.6. We can, of course, try to explain to him or her that with P, = 1.0E-6
ten times less structures of that type designed by him or her might collapse than with P
= 1.0E-5, etc. Similarly, we can suggest that with P, = 0.1 every tenth floor beam might
show deﬂectron greater than is acceptable to deflection-sensitive people. But an engineer
does not wish nor expect any collapse and any unacceptable deflections of his or her
structures! Moreover, are we really able to claim that a structure with P, = 1.0E-6 is
“ten times more reliable" than another with P, = 1.0E-5 ? We know that in the domain
of low values (less, for example, than 1.0E-3) the failure probability P, is very sensitive
to quite small changes in basic variables, whereas the available experienceé does not confirm
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this theoretical observation. Under such circumstances (others might be introduced here),
the designer becomes rather reluctant to appreciate the finesse of probability-based design,
as well as all benefits coming from it. For most non-research engineers the failure proba-
bility remains a mystic quantity beyond understanding.

In 1966 V.V. Bolotin proposed for the reliability measure a simple logarithmic
transform of P,

o - -logP, (8.10a)

Since ¢ (let us call it simply the rho-measure) is perfectly dependent on P, it provides
all technical functions of a reliability measure. In addition, however, it possesses the above-
stated psychological qualities.

Using the logarithmic transform of P,, we can write RelReq (8.10) as

02 (8.10b)

where g, = target value of the rho-measure.

The logarithmic transform of the failure probability seems to be a natural move
towards better understanding the reliability concepts, as people think, due to psychological
phenomena, in logarithms when dealing with quantities having values expressed by numbers
differing by orders. This was shown for large numbers (> 1) by Hofstadter 1986 who
says: "Logarithmic thinking happens when you perceive only a linear increase even if the
thing itself doubles in size." Indeed, we use the logarithmic scale when measuring the
level of sound intensity (in decibels), the piano keyboard is logarithmic, etc. There is no
reason why we should not extend this way of thinking to very small numbers describing
reliability.

It has to be stressed that no failure characteristics, be it the failure probability,
rho-measure, or the reliability index (see Section 8.5), can solve the general problem of
measuring structural reliability. It is obvious that the structural reliability is a vectorial
property, the failure characteristics being just one of its components. It is very likely that
Sfurther components, analogous to those applied in the domain of mechanical and electrical
engineering (see also Section 16.1), will be added to the description of structural reliability
in the future.

8.2 FORMATIVE PROBABILISTIC
RELIABILITY REQUIREMENTS

The formal difficulties met in calculations of the failure probability and also uncertainties
caused by imperfect calculation models can be diminished when the assessment of the
reliability of a facility is based on two formative probabilistic RelReqs:

P, <P, 8.11)
Py < Py, (8.12)

which refer to the formative phenomena Ph(A ) and Ph(B ), respectively. Here
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P, =Pr(d_,), P, =Pr(B,)

are probabilities of occurrence of events Ev(A_;,) and Ev(B_,, ), that is, probabilities of
relatively adverse realizations of the attack, A, and of the barrier, B. Then, P,,, Py =
target values of P, and Pp, respectively. - Note that RelReqs (8.11) and (8.15) are the
corollary of the physical RelRegs (7.1), or (7.2).

The separation of RelReqs with respect to formative phenomena simplifies the
probability-based solution because values of P, or Py can be calculated with less effort
and with greater accuracy than the value of P,. On the other hand, two target values, P,
and Py, are needed (see 13.1.1).

8.3 ELEMENTARY PROBABILISTIC
RELIABILITY REQUIREMENTS

Further simplification is achieved by separating elementary phenomena in conformity to
RelReq (7.19), so that elementary probabilistic RelReqs

P,<P, (fori=1,2,.,n) (8.13)

P, <P, (fori=1,2,.,n) (8.14)

should be simultaneously satisfied. Here

P, = Pr(a P, = Pr(b, ;)

i ﬂdv)’
are the probabilities of occurrence of relatively adverse elementary phenomena Ph(a, ., ),
Ph(b, ,;,), and P, P, = respective target probabilities.

Boundaries between phenomena Ph(a, ,,, ) and phenomena Ph(a, ),
Ph(b, 4 ) and Ph(b, ), are mathematically defined by extreme values a,
Section 3.6).

Since only isolated input phenomena entering RelReqs (for example, material
strengths, load magnitudes, limit deflections) are subjected to analysis, the above system
of elementary requirements yields the most simple solution. It is necessary, however, to
make (n, + n,) decisions on target probabilities associated with Ph(a, ,,,) and Ph(b, i adv)-
This problem 1s discussed in Section 14.1.

and between
b, pom (cf.

i,exm

8.4 CLASSIFICATION
OF THE PROBABILISTIC
DESIGN METHODS

In the current design practice, it is almost impossible to calculate and assess probabilities
required for the evaluation of probabilistic RelReqs. The level of engineering education
has not yet so developed, courses on structural reliability theory and its applications being
regularly given only at few universities, and therefore a wider implementation of reliabilistic
knowledge cannot be expected in the nearest future. For this reason, sophisticated probabilis-
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tic RelReqs are being substituted by design RelRegs (see Chapters 12 through 14) in order
to obtain the relationships among the design input variables transparent as much as possible.

According to the way of implementation of probabilistic considerations into design
three principal probabilistic design methods can be distinguished (see Tichy and Vorli¢ek
1972):

(a) direct method, DM, based on the analysis of the reliability margin, see
Chapter 12;

(b) method of extreme functions, MEF, where the formative variables are
subjected to investigation, see Chapter 13;

(c) method of extreme values, MEV, analyzing the elementary variables,
see Chapter 14.

When we consider these three principal methods as a whole, it becomes apparent
that the simpler the formulation of the method (called design format, as a rule) the more
troublesome its practical application. It must be emphasized that each of the above
mentioned methods has its particular structure. Therefore, it would be a mistake to expect
that in a specific, well defined case of an S-L-E system the probabilistic design according
to these methods will lead to identical results. It also is erroneous to transplant results
obtained from the theoretical analysis based on one method into another method, which
is often being suggested. Of course, comparisons of solutions using different methods can
help in calibrating the design parameters.

We should mention here that the above classification, based on the depth of
probabilization of RelRegs, is close to the "level classification" (see, for example, PROBAN
1991). This classification is based on the extent of information about the structural reliability
problems:

Level 1: random variables are represented by characteristic values and a
system of partial reliability factors is used (see Section 14.6);

Level 2: random variables are represented by population means and
variances, correlation between variables is considered;

Level 3: joint probability distributions of random variables are introduced
in the analysis;

Level 4: economic analyses are supplemented to level 3.

8.5 STATISTICAL RELIABILITY
REQUIREMENTS
8.5.1 Reliability index

The global, formal, and elementary RelReqs could also be written in terms of population
parameters of the respective variables. For example, we could require

Bz s Bz

UZS Oy
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a, < @y, or a,> a,
where u,, o,, @, = population mean, standard deviation, and coefficient of skewness,
respectively, and p,,, 05, @, = corresponding target values. Analogous RelRegs might
be formulated for the formative and elementary levels as well. It is obvious that RelReqs
of this kind cannot be generalized, and are not good for practical use. As a rule, non-
dimensional failure characteristics, which can be codified, are required.

Such a characteristic is the reliability index defined, in general, by

L’

= (8.15)
B, -
Then, the statistical RelReq is
VteT,: (B2 By ' (8.16)

where f,, = target value of the reliability index, T, = reference period. Obviously, f,
is simply the inverse of the variation coefficient, ,.

RelReq (8.16) is designated as statistical because it does not involve any probability
and is governed only by two population parameters, p, and o,. We can also call it a
distribution free RelReq. The target value, f,,, is directly established by decisions (though
some authors derive it from the target failure probability, P, (see Section 10.3). Obviously,
RelReq (8.16) is a global requirement, analogous to RelReéqgs (8.1), (8.3), (8.4), and (8.7)
to (8.9).

In like manner we can write two formative requirements:

VeeT, (B,=258,)

8.17)
Vie T, (Bgz Bg)
where B,, By = partial reliability indices defined by
B, - B By = Lol (8.18)
o, oy

and B,,, Py = respective target values, u,, o,, py, 0, = population parameters
of the attack and the barrier, respectively.
Finally, the elementary RelReqs could be written:

VeeT,: (By2fu), i=12, .1, (8.19)
Vee T, (By2pB,), i=12,.,n, (8.20)

where the partial reliability indices and their respective target values refer to elementary
variables a;, b;. It is:
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By _ 1 . By _ 1
Vi ﬂm,z_afz-——-, V]: ﬂbj=—bjsa—
o; Oy Oy b

where p, o, 6 = mean, standard deviation, and variation coefficient of the respective
random variable.

Owing to the deceptive properties of the variation coefficient (see 2.1.2, Coefficient
of variation), the method of reliability indices cannot be used at the level of elementary
RelReqs. - Observe an important fact: while probabilistic RelReqs have a clear meaning
at all levels, the applicability of statistical RelReqgs, based on S, declines when descending
from the global to the elementary level.

Another fact is important: in the relationships for 8,, B,, Bz, B, and B,
only parameters p and o appear; no other population parameters (as, for example,
coefficient of skewness, «) are concerned. Thus a certain amount of information on the
random behavior of the variables is lost (when it is available, of course).

The reference period, T, is included in the statistical RelReqs through g and
o, which depend on T, when Z, A and B, or a, and b, are time-dependent. Similary
as 1t is with the probab1 ities we have to dlstlngu1sh ﬂ referred to T, = 1year, and p
referred to T, = n years. This distinction is often neglected, and consequently, it
becomes unclear which period the target values, B,, are referred to.

As we already know (see 7.2.2), equivalent rearrangements of any reliability margin
are possible. However, each of the equivalent Z will give a different value of g,. In
other words, the index P, is not invariant with respect to the form of the reliability margin,
whereas the failure probability P, is. This conclusion concerns also the partial reliability
indices 8, and B, related to the formative variables, A and B. For elementary variables
this discussion is, of course, meaningless. First, nobody would dare to base proportioning
of structures on variation coefficients of elementary variables, and, second, an equivalent
rearrangement of a single elementary variable is impossible.

In the following, let us introduce two important reliability indices that can be
considered as specific forms of B,; for simplicity, subscript Z will be omitted. All
conclusions on these reliability indices can be extended also to the partial indices B, or

Bs -

8.5.2 Cornell’s index

In 1969 a reliability index has been proposed by C.A. Cornell:

(8.21)

where Qp, = quasi-mean of the margin Z [see Equation (2.61)], o, V= = covariance of ¢,
and §;, n = number of elementary variables. For mutually 1ndependent elementary

vanables ¢, and f (when for i # j all o, are zero, and fori = j we have 0, =
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o.) the Comell’s index has the form
1]

fF=QuE8):, i=1,2,.,n (8.22)

where &, = coefficient of variation of ¢;.

Because Qp, depends on the expression for the reliability margin, Z, the Comnell’s
index is not invariant with respect to Z €Z__ . Under certain circumstances € can be
reasonably used in the practical design proqblems; this, however, is without practical
importance. We have introduced it here for its historical importance; it has been often

referred to in publications on structural reliability.

8.5.3 Hasofer-Lind index

An exceptional contribution to the general development of the probabilistic design was

brought by Hasofer and Lind 1974. They formulated a reliability index, now commonly

called the Hasqfer-Lind reliability index, or simply HL-index, -, in the following way.
Let

Z = g(fp 52; ey f,,) (8223.)
be the reliability margin of an S-L-E system. Then, the limit state function
g(fl’ Eza ey En) =0

describes a random limit state hypersurface I' in the coordinate system [X,, X,, .., X, ]
and in the definition domain def (Figure 8.1). Assume that the population means, u,,
and standard deviations, o, of the respective elementary random variables ¢, are known
and, further, that the variables are mutually fully independent (it will be shown in 9.2.6
that the ™ method can be employed also for dependent random variables).

Let us standardize the elementary variables ¢; by means of Equation (2.17):

u, = SR i1, n (8.23)
9;

Setting

& =p tuo, i=1,2,.,n (8.24)

the function g(.) = 0 is transformed to
gu(up Uys ooy un) =0 (825)

which in the coordinate system [u,, w,, .., u,] describes a transformed limit state
hypersurface G*, defined on Q. The hypersphere G* divides Qp,; into two domains:
the survival domain, Q_, where Z* > 0, and the failure domain, Q,, with Z “ <0
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et

l
=g (§1,§2) =0
7

K

Qdef

Fig. 8.1 - Random hypersurface I' (two-component case) and the definition domain Q
) 4 - boundary of the definition domain.

def >

u;

Qgef =Q;JA Q:

o
u
u u 6def
G =g (u.uy)=0

S

VU

(V]
~ Qe

Fig. 8.2 - Transformed function g*() (two-component case) and the definition
domain Q;‘f; 6:4 - boundary of the definition domain.

Let only two variables, &, and £, , be considered; the reliability margin is

Z=g(£, &) (8.26)
and the transformation yields

Z* = g“(uy, u,) 8.27)

with g*(.) = 0 being represented by the curve G* in [u,, u,], see Figure 8.2.

Let us now look for the reliability measure which could be used in the assessment
of the reliability of a particular system, whose properties are random, described by two
population parameters, p; and o;. The exact values of elementary variables are not known.
Nevertheless, we can estimate that all properties of the system are "average," or, in
mathematical terms, that each elementary variable is represented by its population mean,

S5k 6=
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so that

Thus, the "average system" belongs to the origin of [u,, u,], and the corresponding "aver-
age reliability margin," Z,, , is given by

Z, = g(py, 1)
that is

Z, = g, =0,u,=0) = g(p,, py)
Assume for the moment that the "average system" is in the survival domain, Q.

On the other hand, all notional "failure systems," which can happen in the case
investigated, are represented by Z* < 0. The most dangerous of these "failure systems" is
the one closest to the "average system." The closer these two systems, the greater the
danger. The level of danger can be expressed in terms of distance between the points in
[u,, u,] representing the two systems. In mathematical terms, the reliability measure
of the system investigated is the minimum distance between the origin O and the transformed
limit state curve G" . This particular distance is the Hasofer-Lind reliability index, pH
(Figure 8.3). The point on G“ that is nearest to the origin, O, is called design point, D .

The foregoing consideration can be extended also to the case when the "average
system" is in the failure domain, Q.. However, the danger grows with increasing distance
of the "average system" from the design point. Therefore, similarly as B, according to
Equation (8.15), also S can assume values < O or > 0. Assume that the phenomenon H;
is absolutely favorable [its influence function is A, = 1, see Equation (7.6)], andH,
absolutely adverse (A, = -1). The value of B™ becomes zero when G* passes through
the origin of coordinates (Figure 8.4), that is, when Z,, = 0. So, if the origin of
coordinates is in the survival region Qf, then B > 0, if the origin is in the failure
region, Q}‘ , then MU < 0, . Observe that when the sign of P changes, signs of all
coordinates, u,, of the design point, D, change, too. The design point, however, must
be in the definition domain Q,, otherwise the solution would be meaningless.

These conclusions can be evidently extended to a case where the limit state function
depends on n elementary variables. It holds:

[g(kys Bys s ) =01 - (BH=0)
(g(kys Hys o 4,) > 01 = (BT>0)
[y, by - p,) <01 -~ (B<0)

The latter two conditions can also be written as

[sign (u,) = -A] - (f™*>0), i-=
[sign(u,) = 4] ~ (fT<0), i

1} |
P
- -
NN
- -

M M
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)
o (2<0) fy
G"...(Z=0)
Dlung Uy
' QL..(Z>0)
AN 0 Uy

Fig. 8.3 - Definition of the Hasofer-Lind reliability index, ™, and
of the design point, D, in a two-component case.

Fig. 8.4 - Hypersurface G* for ™ greater, equal, or less than zero.

or, in general
sign ' = A, .sign(uy,), i=1,2,.,n (8.28)

Obviously, on basis of the foregomg considerations, it is necessary to generahze
the definition of A" stating that B is the minimum oriented distance from the origin
of coordinates to the transformed limit state hypersurface G".

Note that B is identical with B, = w;/ o, and with ﬂc if and only ifg(.)
is linear. In such a case the hypersurface G* becomes hypexplane G, np» and P is equal
to the distance from the origin to G,,p, with the appropriate sign.




CALCULATION
OF THE FAILURE
CHARACTERISTICS

Key concepts in this chapter: failure characteristics; time factor,; dependent variables,

invariancy of the failure characteristics; failure probability calculation; simulation-and-

estimation technique, S-E; moment-and-estimation technique, M-E; HL-index calculation;
hypersphere method, HSM, directional cosines method, DCM; successive approach method,
SAM; difficulties with HL-index; first-order second-moment method, FOSM; first-order

third-moment method, FOTM,; FORM/SORM methods.

9.1 CALCULATION

OF THE FAILURE PROBABILITY
9.1.1 Principal techniques
In the description of the equivalent reliability margins Z € zm, discussed in 7.2.2,
the ordered n -tuplet of non-random variables (x,, x,, .., x,) appeared. Let us now
assume that all elementary variables entering the expression for Z are independent random
variables, ¢, &,, .., §,, which occur in ordered random n-tuplets (x,, x,, .., X,)

where x, through x, are random outcomes of ¢, through ¢, . In the following, the
independence of the elementary variables will be automatically assumed and will not be
emphasized any more. For the dependence problems see 2.1.3.

We can write:

Z =g(£;6, - €, ©.1)

where again g(.) = limit state function; it is one of the functions that belong to the set
of equivalent reliability margins, Z,, .

Since ¢, through ¢, are random, the reliability margin Z is also random (strictly, Z
should be read as "uppercase zeta"). Let us suppose that the random behavior of each
elementary variable is sufficiently well described by a suitable probability distribution with
CDF ®,(¢£,) . For a realization of the elementary variables £, described by an ordered 7 -
tuplet (x;, x,, .., n), the reliability margin Z iseither Z < Oor Z > 0.

. As we have shown in 7.2.2, for any two reliability margins Z;, Z, that belong
o Z,,, Equation (7.9) is valid. From that equation, a simple conclusion results: whenever
a sample of m ordered random n-tuplets is analyzed, the number m,, of events

152
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Ev(Z < 0) is the same for all reliability margins Z € Zw. This is also true for the
number m, of events Ev(Z = 0) and for the number m__ of events Ev(Z > 0).

Assuming Ev(Z < 0) to be identical with Ev(failure), the failure probability P,
can be defined by Equation (2.1), that is,

Pf =Pr(Z <0) = Mneg * ™o (9.2)
m

Evidently, the theoretical failure probability P, obtained from a mathematico-statistical
analysis of the reliability margin does not depend on which of the reliability margins
belonging to Z__ is subjected to investigation. In other words, the probability P, is
invariant to the form of the relzabtltty margin. This fully conforms with the fact that the
value of the failure probability P, is, for a specified system, an objective value existing
independently of our deczswns, that is, independently of the way it is established.

Consequently, all failure characteristics based on P, are invariant to Z. In other words,

if Z € Z , it is not important which formula for Z is used when calculating P,. Simi—
larly, when" usmg in the design of an S-L-E rehabihty system one of the equivalent reliability
margins referred to a specified random variable, it is not important which of ¢, _through ¢,

has been taken as the reference variable. Any of the reliability margins of Z,, can be
chosen and always the same probabilistic RelReq

VteT,: P <P, ©9.3)

ref
is to be verified. Here P, = the target value of the failure probability, t = point in
time, and T, = reference period during which RelReq has to be complied with. RelReq
(9.3) stands zf(or any of RelReqgs (8.3), (8.4), and (8.7) through (8.9).

That what holds for the theoretical failure probability does not refer to the population
parameters of the random variable Z, for example, to the mean u,, standard deviation
g, , coefficient of skewness a,, or others. Parameters p,, 0, , @, belong only to
Z, € Z,,; they are not identical with the respective parameters of Z,, that is,

Bz # By, Oy # Oy # Oy, O * Gz, efC.

Thus, since the margins differ by their population parameters, they have different
probability distributions.

Using Equation (9.2) we can calculated P, by Monte Carlo simulation. The number
of trials necessary to geta reasonably accurate result depends on the value of P,. Observe
that the simulated P, is, in fact, a pseudo-random function of the number off trials, N.
As N increases, P becomes stable; monitoring P, during the calculation is helpﬁd
Various methods reducing processing time are available (see Section 2.4).

With a good accuracy, P, can be established using an estimated probability
distribution in the following manner

Let us write the expression for the standardized reliability margin

Z-u,

9,

u = 6.4
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Setting for Z from Equation (9.4) into RelReq (7.3) yields

py +uo, 20

Since
Pr(Z<0) = Pr(u<0)

we can establish, supposing the probability distribution of Z is known or assumed, the
failure probability from (see Figure 9.1):

P, - o(-2) 9.4a)

9

where @ (.) = CDF of the respective probability distribution. The population parameters y,
and o,, as well as other possible parameters required for the description of @(.)
(coefficient of skewness a,, as a rule) can be estimated using either a Monte Carlo
simulation (see Section 2.4) or the moment method (see Section 2.3). These procedures
can be called S-E technique (that is, Simulation-and-Estimation) and M-E technique
(Moment-and-Estimation), respectively. The type of the distribution of the reliability margin
has always to be estimated. It is recommended to use the three-parameter log-normal
distribution, see Appendix A.

Monte Carlo simulation can be efficiently joint with the HL-index analysis described
in Section 9.2 (see, for example, Puppo and Bertero 1992, Sweeting and Finn 1992). A

combination of the two principal approaches can save processing time and improve
accuracy.

/|

if

‘|J.z/02 O u

Fig. 9.1 - Determination of the failure probability.
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The efficiency of various methods of P, estimation can be compared using the
efficiency index

= |2 (9.4b)
Osim

where g@,, = rho-measure (see Equation 8.10a) related to the estimated failure probability
P s @gn = rho-measure obtained by plain Monte-Carlo simulation. The closer 7 to
zero the better the estimate of the failure probability.

The failure probability P, can of course be found by anralytical or numerical
integration of expressions derived from the multivariate probability distribution of the
reliability margin (see, for example, Augusti et al. 1984, Ferry Borges and Castanheta
1985, Melchers 1987, Schuéller 1981, Spaethe 1987). However, in practical cases such
calculations are complicated and virtually inapplicable.

9.1.2 Time factor in Pf

Time-dependent phenomena must always be respected when the failure probability P,
is calculated. The ways of expressing time relationships depend on the number of
phenomena, on the simultaneity of their occurrence, and finally on the amount of statistical
information available on each of them.

Let us assume first that only a single time-dependent phenomenon, H(t), occurs
in the particular S-L-E system. Let this phenomenon be described by a random variable & (¢)
(for example, the maximum water depth in a reservoir). If, for example, the probability
distribution for the interval maxima, x__, of the variable £(t¢), obtained in defined

observation periods, T, , are known (sé"eaxSection 5.4), and if T, is not identical with
the reference period, T,,, (T, < Tref), it is necessary to derive the probability distribution
referred to T, from the probability distribution based on intervals T, .

During' T,,, n periods T, occur (obviously, n = T,/ T, ); therefore, to
calculate Pf, the CDF

(D,ef(-) = [(Dobs(-)]n

has to be used (see 2.1.6), whose parameters are u™ , o™ | etc. In short: a transformed
distribution of T,  -related maxima (or minima) instead of the distribution of T, -related
maxima (or minima) has to be applied in the solution. It suffices, in a simplified solution,
to choose for @, (.) some of three-parameter distributions with u™, o™, and a™.

W Example 9.1. Evaluate the failure probability of the system "steel bar & axial load" discussed
in Example 7.2. Assume the target life expectancy T, = 50 years. The parameters of the distributions
of elementary variables entering the problem are shown in Table 9.1. Assume further that the distributions
of N, d, and f, are log-normal, LN( «,), the distribution of N being referred to 50-year maxima. The
problem shall be solved by the S-E technique.

For the reliability margins Z |d, Z |N, and Z |f, values of sample characteristics mj, s,, anda,
were established by a Monte Carlo simulation with N = 10,000. Then, the S-E technique estimates of the
failure probability, P, . » were found supposing that the reliability margins are log-normally distributed
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with LN(a, ). The results are shown in Table 9.2. Also, the probability I-’f im according to Equation (9.2)
with 100,000 trials was calculated (its values are equal for all Z|.). ||

Table 9.1 - Example 9.1. Population parameters of elementary variables N, d, and f;'

Variable u o «
Axial load, N ) 90 kN 3 kN -1.5
Diameter, d 18 mm 0.4 mm 0.5
Yield stress, fy 0.400 kN.mm 0.02 kN.mm? 1.0

Table 9.2 - Example 9.1. Sample characteristics of the equivalent reliability margins, Z, and comprehensive
failure probabilities, P, obtained by the S-E technique (N = 10,000) and by plain Monte Carlo
simulation (N = 100,000)

m, - -
Z m, 5, a, - . Pf_m me
z x 10 x 10
Z|d 1.10 0.64 0.43 1.74 0.273
Z|N 12.30 7.45 0.61 1.65 0.270 0.271
Z[fy 0.048 0.03 0.50 1.71 0.264

When in the solution several time-dependent phenomena H,(t) with various
durations and various periods of non-occurrence apply, the problem becomes more complica-
ted. A correct solution cannot be performed without modeling the time-dependent
phenomena by random functions or random sequences. This, however, is numerically not
difficult.

Some simplification is achieved when probabilities of occurrence, Pocc,Hi , of the
individual phenomena H,() at an arbitrary point in time ¢ € T, are known. Then
again the distributions of T, ,-maxima are employed for H,(¢) . In addition, however,
the possibility of simultaneous occurrence of the phenomena involved must be taken into
account. For this purpose [cf. Equation (2.5)] the probability

P ©.5)

oce,12..n

= Pr(H,NH,N .. NH,) = TP
i=1

occ,Hi

is to be applied, with n = number of phenomena. It is assumed that H; are independent.
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The failure probability, P, is then established as the probability that the following
two events occur smultaneously

E, = Ev[failure of the facility assuming that all phenomena H,(¢) occur
simultaneously],
E; = Ev[simultaneous occurrence of all phenomena H, (¢)].

The probability of E, can be calculated in the same way like the failure probability
in a problem with time-independent phenomena. Appropriate distributions of maxima (or
minima) referred to Tnf must be considered. As for E, it is, in this case, identical with
Ph(H,, H,, .., H,), and thus its probability of occurrence is

Pr(Ey) =

occ 12.n
Since E; and Ey are independent, Equation (2.5) yields:

Pf =P occ,12.n° ( )

The meaping of P, depends on the reference period, T, .. For T, . = 1 year, we have
P, = P, for T, > 1, P, = P,. The probability Pm 2on does not depend on the
duration of the reference penod because it is a quantity referred to any point in time, that

is, also to the moment of failure. Thus the resulting P, means either P or P,.

9.1.3 Multi-modal failure in Pf

On many practical occasions, M simultaneous possibilities of failure have to be considered,
and so M partial reliability margins can be defined

Z® = g(xpx, %), k=12, .M

where x; through x, = elementary variables. Note that for certain (k) some of x; can
equal zero, that is, they may not appear in g, () . The investigation of such cases would
be easy and stxmghtforward if the elementary vanables involved were not random. Then,
we could write

Z = min(Z®,22,..,Z™)

where the superscripts refer to the particular types of failure.

However, this solution can be generalized also to random variable partial reliability
margins. When establishing P, from Equation (9.2) by a Monte Carlo simulation, values
of Z® through Z™ are repeatedly calculated. At each trial the least value is found and
assigned to Z. The governing failure modes can be different in successive trials. It is not
important which of the failure modes (1), (), .., (M) are contained in the number M, + M,
of Ev(Z < 0).

For computational difficulties the M-E technique cannot be used in multi-modal
exercises. The main problem with M-E is in the partial dependencies among the reliability



158 CALCULATION OF THE FAILURE CHARACTERISTICS

margins Z® through Z™; it can be overcome only with approximations. See Chou et
al. 1983.

Using the S-E ftechnique, we should always plot a histogram of Z when multi-modal
problems are solved. It is necessary to check the distribution of Z; the multi-modality
of failure can produce an unexpected shape of the frequency curve, and the use of a routine
probability distribution could lead to errors in the estimation of P,.

The identification of all possible failure modes can be a complicated task.
Engineering judgment supported by good knowledge of the structural material assumed
and loads expected is necessary; various failure modes must be considered to eliminate
unlikely ones. In particular, well defined cases, theoretical, probability-based identification
is feasible (see, for example, Garson 1980, Rashedi and Moses 1988, Reed and Brown
1992, Thoft-Christensen 1987, Zimmermann et al. 1992).

9.2 CALCULATION
OF THE HASOFER-LIND
RELIABILITY INDEX

We must keep in mind that the transformed limit state function is linear only in exceglt}onal
cases. Non- lmear problems are frequently dealt with, and the establishing of f3

"manual means" becomes a tedious and boring task, subJected to calculation errors. At
present, three methods are available, which give quick solutions, if programmed
appropriately; they will be discussed in the next paragraphs.

9.2.1 Hypersphere method, HSM

The transformed limit state hypersurface G* is expressed by
g“(u, uy, ., u) =0 9.6)

Then, a hypersphere S,, osculating G* in the design point, D, can be found, with its
center in the origin of coordinates. It is obvious that the point D whose coordmates are
(uyy, Uy, -, u,,), must be situated s1multaneously on G* and on S (Figure 9.2).
Then, the radius r, of Sy p defines the minimum distance of the hypersurface from the
origin of coordinates. According to the definition of B, it is

= | B

the sign of B being not yet known. A general hypersphere S* crossing the hypersurface G*
is defined by

uf + u22 +o+ul=r? 9.7

where r = radius of S*; itis obviously r 2 r4.
We are looking for the minimum of r and, simultaneously, for the point D where
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S* = S; osculates the hypersurface G*. The following requirements for the minimum
must be satisfied:

Or _0, i=1,2, ., n 9.8)
Ju,

Since the radius r is an absolute quantity, it is possible, for calculation convenience,
to search for the minimum of r?, instead of r

2
97 _o, i-=1,2, . n 9.9)
au,.

taking Equation (9.6) as the constraint condition.

V2R <l InENGERN
/ o
— 1 {
0 U4
\:\ [

Fig. 9.2 - Determination of 8™ by means of the hypersphere method
(two-component case); S* - general hypersphere,
S; - hypersphere osculating the hypersurface G* at D .

Let us assume that one of the variables, u,, can be explicitly expressed from
Equation (9.6). It has to be emphasized that this assumption is only auxiliary. The expres-
sion g*(.) is often such that no explicit formula can be written for any of the elementary
variables.

Differentiate Equation (9.7) with respect to u,; the following relationships are
obtained for d(r?)/du,:

=2u, +2uk—a—-, i=1,2, .,n 9.10)



160 CALCULATION OF THE FAILURE CHARACTERISTICS

so that the requirements for the minimum are:

utu—r =0, i=1,2,.,n ©.11)
u

When in the environment of the design point, D, the partial derivatives of g*(.)
are continuous and the function g*(.) is differentiable, it is, according to the rules valid
for derivatives of implicit functions,

ou,  0g“/ou,

, i=1,2,.,n 6.12)
du, dg“/du,

Now, substituting for du,/du; into Equations (9.10) we get

dg“/du,
ui_uk g/ ' :0: i=1’ 2, ey R (913)
dg"/du,

Obviously, for i = k the identity is obtained, and therefore only n-1 Equations (9.13)
for n unknowns are available. In order to establish | | = r a system of n equations,
comprising Equations (9.13) and Equation (9.6), must be solved for unknowns u, through
u,; as a rule, iteration solutions must be applied. Solving this system, we obtain the
coordinates of the design point, D , that is, u, through u ,. Then r; follows from Equa-
tion (9.7) with u; = u,,. Observe that it appears from Equation (95.13) that no variable
need be explicitly expressible. Theoretically, it is not important which of the elementary
variables u, is considered explicitly expressible. It can happen, nevertheless, that when
selecting different u, as governing variables, different results, referred to different local
extremes of r , are obtained.

It remains to establish the sign of B . As it was already explained in 8.5.3, the
sign is governed by the position of the origin O with respect to the transformed limit state
hypersurface G*. When the origin is situated in the survival domain, QY then sign L =
+1, when it is in the failure domain, Qy, sign g = -1. In order to find the position
of the origin, the value of the quasi-mean of the transformed reliability margin, Z*, has
to be calculated. It is [see Equation (2.66)]

Quz = Qu, ©.14)
where Qu, results from Equation (8.22a) after setting §; = p; for all i . It is then:

¢ for Qu, > 0: sign g™
¢ for Qu, < 0: sign g

+1
-1

Finally, the equation for - is:

J—
i=1
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When for some particular reason also the position of the design point, D, shall
be determined, it is necessary to verify the signs of the respective u,; coordinates. For
any of the coordinates, the following equation must be true:

signu,;, = A;signQu, (9.16)

where A; = influence function defined by Equation (7.6).
It suffices to verify Equation (9.16) for only one of the coordinates. When it is
satisfied, the signs of all coordinates are correct, otherwise they all have to be changed.

9.2.2 Directional cosines method, DCM

This method has been used for calculation of ™ from the very beginnings. It was
thoroughly described several times in numerous publications (see, for example, Ang and
Tang, vol. II 1984, Madsen et al. 1986, Rationalisation CIRIA 1977, Schuéller 1981, Thoft-
Christensen and Baker 1982, Smith 1986, Spaethe 1987) and it will not be discussed in
detail here. Let us only show its principal idea.

In DCM n values of directional cosines @, = cos; and simultaneously the value
of BHL are established from a system of n + 1 equations

og" og” -3
a = -2, =L 2 j=1,2,.,n
! du, ‘E(aui) }

g (u, uy, ., u,) =0

where u;, = -a; ™. Whereas in HSM " is calculated separately from Equation (9.15),
and thus the number of equations in the system is not increased to n + 1, in DCM the
index becomes an additional unknown of the equation system.

As in HSM, the sign of B is found from

sign T = signQpu, ©.17)

For the signs of coordinates of the design point Equation (9.16) is valid again.

9.2.3 Successive approach method, SAM

The method, defined by Fiessler 1979, consists in successive approaching to the design
point, D, starting from an arbitrary point p, described by an ordered n -tuplet (u,,,
Uy s s Wy). For a transformed two-component limit state function, g* (u,, u,) =0,
the idea of SAM is geometrically shown in Figure 9.3:

¢ Avae Z* = g“(u,, u,) refers to each point p in [%,, u,] WhenZ*
is plotted at every point p, a surface Z* is obtained (not shown in the figure).
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¢ An arbmary starting pomt P, is chosen, and a curve G, = g“'(u10 ,
Uy) = Z, passing through p, is found (Figure 9.3a); u,,, u,, = coordinates

of p,.
4 A normal line, N0 , is drawn to G, , and a planar section through the

surface Z*, passing N, is determined (Figure 9.3b).

& At the point where the ordinate of the Z* surface is equal Z; , a tangent,
Ty, is drawn. This tangent intersects N, at po at a distance Au from the starting
point, P
g Tum now/back to Figure 9.3/51. A straight line, t;, perpendicular toN,
is constructed in p,, and a point, Py, On t, that is nearest to the origin of
coordinates is found. Obviously, t, is, for the time being, an assumed linear
approximation of g/ (u;, u) =0at po .

¢ Using p, as a new starting point, p, ", the next po is found in the
same manner as above. The procedure is repeated unt11 Zy P 0 is achieved with

some acceptable error (or, in other words, until p, = p, = D).
Uz to Zu
a) . ! b)
ol G
/
Y% ¢
s I //U/
3> /7 G,
¢ /4
p“ //D - \/
° “nHL
new) / B
(=p7**) ,/ D y R
/‘\/ \ 0 / , U
/

Fig. 9.3 - Iteration procedure in the determination of B™ by means of SAM (a - iteration
steps, b - development of Z* along the normal, N).

No solution of a system of equations is necessary in SAM; we only have to solve
n + 1 separate equations.

?L".L(E"thm], i-1,2, . n

u, = -

' ou, Qoz | Qo



SECTION 9.2 163

po - SignQ#z(E u?);

i=1

where Qpu, = quasi-mean of the reliability margin, Z, and Qo = quasi-sigma given
by Equation (2.62). With o, = 0, = .. = ¢, = litis

dg" 2
Ju,

During the iteration, the distance Au is approaching ™ and Z*= g*(.) - 0.
Since p,; = 0, the partial derivatives have to be taken at successive starting points, p,.

1
n 2

)

i=1

9.2.4 Difficulties with calculation of g™

Computer solutions must be applied as soon as the expression for the reliability margin
is only a little complicated; this happens in the absolute majority of practical cases. Manual
calculations are unworkable and extremely demanding even in very simple, textbook cases.
Computer programs for B or for the design point coordinates are available, though
they can have diverse shortcomings. The most frequent source of problems is the rooted
idea that always B > 0, because the failure probabilities are expected to be very small.
Negative values of B are mentioned in the available publications only exceptionally
(Leira and Langen 1981, Casciati and Faravelli 1991). As a rule, values L > 1.5 are
expected. But, in design, we can currently encounter L <0

4 when trying to find a correct variant of the solution,

¢ in the assessment of an existing system, which can often be undersized,

4 in the design according to serviceability limit states, where the target
failure probabilities can be sometimes greater than 0.5.

Because for M =  the failure probability is P, = 0.5 (when g(.) is linear
and the distributions of the elementary variables are symmetrical, then P, = 0.5 exactly).
Therefore, it cannot be stated, in general, that for ™ = 0 the system is fully unreliable.

It can thus easily happen that an insufficiently tested computer program gives
BT > 0, though the effective value is negative. Therefore, it is always necessary to verify
whether the result complies with the logic of the particular case.

Further, programs based on HSM or DCM must contain subroutines for the solution
of a system of non-linear equations. Such subroutines are found in the software libraries
of any computer, but they can be based on various principles. The iteration procedures
are intricate, as a rule, and can lead to untrue results, even when the initial estimate of u,,
or B is very close to the exact solution. In general, the calculation of B can finish
in any of the following possible ways:

(@) B obtained appears to be logical and is correct;
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(b) Bl obtained appears logical, but it is incorrect, as the iteration leads
to a local extreme of the transformed limit state function;

(c) B™ obtained is clearly illogical;

(d) solution is singular,

(e) solution does not converge.

There is no need to stress that an outcome type (b) is extremely deceitful.
Unfortunately, no rules on what result is or is not logical cannot be suggested. The decision
on this issue must be founded only on the designer’s judgment.

B Example 9.2. Consider the reliability margin
Z=1-x-y
where the elementary variables have population parameters

u, =0, g =02
p,€[0, 14], g, =02

The definition domain Q;d is for any p, bounded by
u 2 -1, u, 2 -25

Transforming according to Equation (8.24), we obtain

2 2 2 L
oLu, +2yxaxux+ayuy+px+py-l =0

Geometrically, this represents a parabola whose position can be shifted by adjusting g, (Figure 9.4).

Performing some analysis, it can be shown that for g, < 0.5 the index B is described by a
skew radius vector, whereas for y, 2 0.5, B is given by the distance of the parabola vertex from the
origin of coordinates. When using HSM and DCM with a particular iteration algorithm for different initial
estimates of the variables, all five, that is, (a) through (e), outcomes mentioned above were obtained. An
unfavorable outcome, that is, (b) to (e), was reached only exceptionally, but with both methods. For example,
at g, < 0.5, solution using DCM supplied, as the result, the distance vertex-origin, because at vertex a
local extreme of the distance between the origin and the transformed limit state curve G* exists. For B, =
0.4 the correct value of B is 2.9 (skew radius vector), but we obtained ™ = 3.0; using HSM the correct
result was reached.

The same case solved by SAM ended in either (a) or (e), since, owing to the approach procedure,
the outcomes type (b) and (c) are less frequent, and the outcome (d) is not possible at all, no system of
equations being solved in SAM. ]

The following recommendations based on practical experience can be given for
the calculation of the B index:

(1) use all three methods simultaneously;
(2) repeat solution for different initial estimates of the input variables;
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7 / /
"Qdef

Fig. 9.4 - Example 9.2. Determination of B (1 - possible but incorrect results).

(3) verify the logic of the results:
¢ check whether the values of the influence functions, A,, related
to the design point correspond with the assumption on the influence of the
individual elementary variables,
. 4 check whether the design point, D, is in the definition domain
Qg

With a good iteration algorithm, the three methods demand only a small number
of iteration steps. Usually, the least number is needed for HSM, the greatest for SAM,
but this is not a common rule. It is quite easy to verify several variants of initial estimates.
However, the number of iterations is not important in most cases.

Writing a computer program for the calculation of S is a relatively simple
exercise. Nevertheless, you have to keep in mind all the above peculiarities (and perhaps
also others, not yet encountered) in order to avoid possible pit-falls. At present, good
software is commercially available [for example, COSSAN (see Bucher er al. 1989),
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PROBAN 1991], which supplies unambiguous and correct solutions. The users of any
software should, however, get always acquainted with its theoretical background and of
course with the principles of the HL-index method in general.

9.2.5 Time factor in g

Time-dependent phenomena can be treated during calculation of S in a quite
analogous way as in the calculation of P,.

Population parameters p™ and “o™ referred to the assumed number, n, of
occurrences of an event E; belonging to H;(¢) during the reference period T, shall
be introduced into Equations (8.24). Because in the calculation of S the coefficient
of skewness does not apply, a certain amount of existing information on the elementary
variables is not used, however.

The solution becomes practically unworkable for a large number of time-dependent
phenomena H,(¢) . When the value of the reliability index is needed for the evaluation
of a statistical RelReq, the failure probability P, must be first established, and then the
corresponding generalized reliability index (also Ditlevsen index, see Ditlevsen 1979)
defined, in principle, by

o= -0y (P

shall be calculated. It is then assumed that S = gC. Here, ®y = IDF of the normal
distribution.

Provided we are able to calculate the probability of simultaneous occurrence of
all phenomena H,(¢), that is, P, 15, [see Equation (9.5)], we can establish I ap-
proximately from

ﬂHL == q)_I[Poa:, 12..n .q)N(—'BHL‘)]

where B™* = index calculated from the assumption that all phenomena occur
simultaneously (that is, disregarding their intermittency and covering their time-dependent
behavior by respective population parameters). It is apparent that in time-dependent
problems probability-based concepts cannot be escaped.

9.2.6 Dependent variables in g

Any dependence of variables entering the reliability margin formula can be easily treated
by considering a corresponding statistical dependence function [see 2.1.3, Equation (2.27)].
Solutions using this approach are simple and more general than solutions based on known
or assumed covariances of multivariate distributions.

9.2.7 Multi-modal failure in g

While the multi-modality of failure does not bring substantial difficulties when the failure
probability, P, is calculated by Monte Carlo simulation, problems encountered in the
calculation of "B are serious.
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A straight solution would be possible only for perfectly independent failure modes.
In such a case the reliability index would be simply

M
p™ = min(p¥)
k=1
with B%» = HL-index calculated for mode (k), M = number of failure modes.
Unfortunately, such an ideal situation is virtually never met; the failure modes are
dependent (see 9.1.3). Therefore, when information on the reliability of an S-L-E system

is to be obtained in terms of reliability index, the generalized reliability index must be
used again (see 9.2.5; Madsen et al. 1986).

9.3 ESTIMATE OF P, BASED ON g™

9.3.1 First-order second-moment method

We are interested in the relationship between various beta indices and the failure probability
of the respective system. When the value of a B, index according to Equation (8.15) is
known, the failure probability is given by [cf. Equation (9.4a)]

P = @(-f,) (.19

where @ (.) = CDF of the standardized probability distribution referred to the considered
reliability margin Z . For individual equivalent reliability margins, which belong to Z
the probability distributions are different (and also f, are different) but P, does not change
(see 9.1.1). As a rule, however, functions ®(.) are approximations, and so for different
Z € Z, 6 weoften ‘obtain slightly differing values of P,.
Wﬂen
() the reliability margin is linear with respect to its elementary variables,
and
(b) the distributions of all elementary variables are jointly normal,

then
P, = @y (-B;) (9.20)
or, since in this case g, = pH-,

where @, (.) = CDF of the standardized normal distribution.
Owing to the lack of invariance of f,, Equation (9.20) cannot be applied if any
of the assumptions (a) or (b) is not satisfied. However, because ™ is invariant to Z €
, Equation (9.21) is considered "acceptably good"; thus, if (a) and (b) are "almost
ful? lled," it can be written

Pf ~ QN(_pHL) (9.22)
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In general, we can say that P, € [Pfl » Pyl where P, = lower bound, Pf2 =
upper bound of the failure probability. These bounds depend on properties of the limit
state function g*(.) and on the random behavior of the elementary variables. Let us show
here the range of P, and P, for the case when the distributions of all elementary variables
are normal:

(1) When for B > 0 the limit state hypersurface, G*, is convex with
respect to the origin of coordinates, it holds

P, =0, P, =0.(-F")

(2) when for B > 0 the hypersurface G* is concave with respect to
the origin, it is

Py = & (-fT), P, =1-0,, (BT

where @, = CDF of the chi-square distribution with n degrees of freedom.
It appears %rom P,, for the concave case that, in general, P, depends, among
others, on the number n of the elementary variables.

The method of estimation of P, based solely on Equation (9.22) is referred to as
"first-order second-moment method," FOSM, since the first-order members of the Taylor
series expansion, and the first and second moments of the probability distribution of Z*
apply in the calculation of the reliability index. FOSM is considered "distribution-free"
because probability distributions of elementary variables do not appear in the solution.

9.3.2 First-order third-moment method

In practical design, asymmetric variables are frequently encountered. For example, the
probability distribution of the yield stress of structural steel often has a coefficient of skew-
ness, «, greater than 0.5; distributions of load maxima referred to life expectancy often
have a much smaller than zero, etc. Considerable errors can be committed by neglecting
the asymmetry of the respective variables. The HL-index method can be easily adjusted
to such variables as well.

Let us assume that, additionally to u; and o;, the coefficients of skewness, «,,
of the respective probability distributions @, of variables ¢, are known. It is, nevertheless,
not necessary to know these distributions in all details. Then, using Equations (2.62) and
(2.63) with o,, = 1 and taking into account the fact that &, = a,, the quasi-alpha of
the transformed reliability margin,

Qe; = (Qd)°Tel’e, 9.23)

can be calculated. Here, Qo; = quasi-sigma of Z,, see Equation (9.18). The first partial
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derivatives of g“(.) shall be referred to the design point, D, that is to the point
(u,=u, ) forall i . This results from the substitution of the limit state function in D
by a tangent hyperplane.

Now, we can develop the P, -estimate according to Equation (9.22) writing

B, = 0,(- )

where @, = CDF of an asymmetric probability distribution, having the coefficient of
skewness, « , as the third parameter. In such a distribution Qa; from Equation
(9.23) is approximately taken for « .

Good results have been obtained when using the three-parameter log-normal dis-
tribution, LN( « ), see Appendix A. That is

P, = @w(-ﬁm‘) 9.24)

where @, = CDF of LN( Qa7 ). Of course, any other "reasonably shaped” three-
parameter probability distribution can be employed.

It can be proved that, similarly as B | also the quasi-alpha is invariant to
the reliability margin Z € Z,, .

Because the first, second, and third moments of the probability distribution of
Z" enter the solution, the procedure using the quasi-alpha is termed "first-order third-
moment," FOTM.

B Example 9.3. Evaluate the failure probability of the “steel bar & axial load" system discussed
in Example 7.2. Assume the target life expectancy T, = 50 years. The distributions of elementary
variables entering the problem have population parameters shown in Table 9.1. Assume further that the
distributions of N, d, and f are log-normal, LN( @, ), the distribution of N being referred to 50-year
maxima. The problem should be solved using the FOTM method.

Based on the foregoing procedures and formulas, calculations have yielded the following results:

B™ = 1623, Qab = 0542

and further, using the FOSM method:

P, = & (-p™) = 00523

and the FOTM method:

P = &, (-p™) = 0.0326

From a Monte Carlo simulation we obtained I_’f sm = 0.0271, see Table 9.2.
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In terms of the rho-measure [see Equation (8.10a)] we get

erosv = 1.282, ooy = 1486, o, = 1.567

and the efficiency indices according to Equation (9.4b) are
Trosm = 0182,  tpony = 0.052

Evidently, the FOTM estimate of I-’-f is closer to the result obtained by simulation than the FOSM estimate,
based solely on normal distribution. In an extensive testing of FOTM, no case of Tpymy > Tpogy Was
found.

Again, FOTM can be used for statistically dependent variables with a statistical
dependence function introduced into the calculation model (see 2.1.3).

9.3.3 FORM/SORM methods

While FOTM does not affect the principles of the calculation of the HL-index, there is
a large family of methods treating the non-normality of the input elementary variables
by specific transformations of the respective distributions. These methods are known as
FORM (first-order reliability methods) or SORM (second-order reliability methods), or
jointly FORM/SORM. Survey of these methods has been given, for example, by Ayyub
and Haldar 1984, Bjerager 1991, and Shinozuka 1983. Therefore, let us introduce here
only their main principles.

The common feature of FORM and SORM consists in transforming the probability
distributions of non-normal (symmetric or asymmetric) elementary variables into normal
ones by appropriate transformation patterns. Then, the means and standard deviations of
the transformed distributions are found and the calculation described in Section 9.2 is
performed.

This technique results, in fact, in mapping g“(.) onto a transformed system [, ,
u,, .., u,1*. The transformed [g“(.)]* can have a shape that substantially differs from
g“().

The most simple transformation is based on the following technique. Instead of
using Equation (8.23), g“(.) is established through

= 7@, (&)] ©.25)

where @ (£) = CDF of the non-normal elementary variable ¢;, @[] = IDF of the
standardized normal distribution.

This principle can be extended to dependent variables; in such a case the Rosenblatt
transformation (see Rosenblatt 1952) can be used when the joint probability distribution
of the set of random variables is known. Conditional probability distributions apply in
the solutions which means that the procedure depends on the order in which the
transformations are performed (see, for example, Casciati and Faravelli 1991). Many
particular techniques have been developed from this approach.
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Finally, let us mention here the Rackwitz-Fiessler algorithm (Rackwitz and F1essler
1976) It consists in the substitution of all non-normal variables ¢; by normal variables f
in such a way that at the design point, D, the following two requirements are satisfied:

0(xy) = oy(x), i=12,.,n 9.26)
Q(xy,) = @p(x,), i=12,.,n 9.27)

Here, xid = coordinates of D; ¢() and ®(.) = original PDF and CDF; () and
@, () = substitute normal PDF and CDF; n = number of variables. For those ¢{; that
are normally distributed, the distribution adjustment is irrelevant.
Then, in the calculation of B, uy and o] of the substitute normally distributed
variable, fN are repeatedly established in the successive iteration steps. These parameters
are used in the mapping according to Equation (8.24); it is set:

N N
f? =u; tuo, i=12,.,n

The distribution adjustment according to Equations (9.26) and (9.27) is based on
the assumption that @ (x,;) > O and ®(x,) € (O, 1). For large |B""|, when with some
probability distributions we can have ¢(x,;) =0, ®(x,) =0, or ®(x,) = 1, this
transformation may not yield results.
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RELIABILITY
PARAMETERS

Key concepts in this chapter: reference period; life of CF; life expectancy, target failure
probability; values of CF; tangible values; intangible values; losses; target reliability index;
cost function, reliability differentiation of CF; differentiation multiplier; importance factor,
constraint, deflection; crack width, vibrations, strain load-effect.

In the reliability requirements outlined in Section 8 two principal parameters determining
the reliability level of an S-L-E system appear:

¢ the target reference period, T, . , which is usually taken as the value
of the target life of the respective CF, T, ;
¢ the target failure probability, Pﬁ , in its annual form, P,, or

comprehensive form, P,.

The values of T, and P, cannot be derived from the physical properties of the
S-L-E system. They have to be determined by decisions based on opinions and on needs
of individuals, groups, or social entities, supported by economic analyses and, particularly,
backed by experience gained with similar facilities. Obviously, we deal here with
autonomous primary quantities, which have in the structural reliability theory the
significance comparable to that of the Prime Rate and Money Supply in free market
economies. By deciding on the target life and target failure probability, the society -
represented by qualified groups of experts - takes on responsibilities for the amount and
consequences of possible failures. Such decisions are not simple since many aspects have
to be pondered. The principal aspect is, without any doubt, the importance of the facility
for an individual or the society.

172
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10.1 VALUES OF CONSTRUCTED FACILITIES

10.1.1 Two systems of values
Values that determine the importance of CFs can be classified into two basic groups:

¢ rangible values,
¢ intangible values.

(1) The background to tangible values is economic. In the main, we are first
interested

¢ in the initial value, V, which is, as a rule, specified by initial costs,
C, , spent on the materialization of the facility, and further,

¢ in the wility value, V., which, as a rule, reflects a general economic,
not emotional, attitude of individuals or groups to the facility.

These tangible values are summarily expressed by the market price, which is based
on the initial and utility values. Price of CF can be easily termed in monetary units. 1t
deviates from the initial value, since the utility value can strongly affect the result according
to the actual state of demand and offer, including short-run or long-run regional influences,
and also according to the physical condition of the facility itself. Market prices of buildings
and structures are based mainly on open market values, depreciated replacement cost values,
and revenue-based values, taking into account general economic and political situation
(inflation, recession, etc.). Price includes also the influence of intangible values, which
creates the main difficulties in the importance assessment of CFs. Though on many cases
tangible values dominate, the principles of property valuation cannot be applied in the
importance assessment.

(2) On many occasions intangible values are the only governing criteria of
importance of CFs. A large set of various values and their modifications can be found
among intangible values . As a rule, the following basic values are considered:

¢ psycho-physical value, reflecting the biological attitude of an individual
to a facility; this value might be also called gratification value, as it expresses the
amount of contentment, pleasure, satisfaction, or other positive feeling of an
individual with regard to the facility (for example, feeling of family members toward
their house);

¢ emotional value, based on the relation of an individual or a group of
individuals to a facility (for example, relation to a national monument);

¢ moral value, originating in community feeling toward a facility (for
example, the relation of people to a nursery school building);

¢ cultural and political value, expressing the attitude of large social groups
(nations, humankind) to CFs of artistic, historic, or political importance (cf.
buildings in Venice, Italy); obviously, a particular class of moral values is dealt
with;

¢ strategic value, expressing the importance of a facility for national
economy and defense (cf. bridges, large dams, electricity plants);
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@ aesthetic value, which is a special form of the cultural and political value.

None of these values can be expressed in monetary units, but some psychometric evaluation
is possible.

The intangible values are invaluable; they do not stem from the inner structure
and utility features of a facility, but from the fact that the facility has become carrier of
certain social and economic bonds. So, the intangible values are very difficult to be
measured, more often they are simply not measurable at all. Except some special cases,
methods of evaluation are not available in the construction domain. Another problem,
specific for intangible values, is their non-uniform distribution - a certain facility may have
diverse levels of cultural, moral and other values for different individuals, social groups,
or even nations.

The factor that substantially influences all values, tangible or intangible, is the fime,
in two main aspects:

(@) Properties of a facility are changing - the facility is ageing, and, as a
result, particular values either increase or decrease. The change may not be propor-
tional at all intangible values; for some values it can be even contrary-going.

(b) Properties of the social subject are changing - the social situation
fluctuates (for example, economic conditions), and also attitudes of individuals
or groups are not constant. Under extreme conditions (natural catastrophe, war)
an extinction of values is possible, though the facility can survive such events.

Values often depend upon the type of possible fault; this becomes apparent when
consequences of the facility failure are considered. This also refers to intangible values -
a minor fault can leave emotional and moral values of a facility intact. Many intangible
values depend upon the appraisers. For example, a one-family house has emotional value
only for its owners or users. This follows from the fact that intangible values are usually
based on some relation between the facility and the appraiser. In a sample of "facility-
appraisers,” random deviations of values can be expected.

Until now, efforts to find a comprehensive value of CF have usually failed for two
reasons:

¢ sufficient data necessary for the appraisal have not been available (not
even for tangible values);
4 the ways of evaluating human life or its loss have not yet been established.

Two extreme views can be met:

4 human life has a certain, limited economic value, and
4 human life stands beyond any valuation and cannot be included in any
value analysis.

It is remarkable, though not surprising, that in discussions on this issue "young
engineers" (up to the age of about 50) support the first opinion, whereas the "elderly”
favor the second. The latter is based on general principles of humanity but, unfortunately,



SECTION 10.1 175

it does not correspond to the actual social facts. Human lives have been always subjected
to valuations at different levels and from diverse viewpoints.

The efforts in finding a value of an individual or group of individuals concentrate
on economic aspects of the problem. This happens in the area of various types of insurance,
in the assessment of training costs, etc. The principles of assessment are not uniform, they
depend on many factors and change from country to country. As far as the CF systems
are concerned, some basic investigations have been already started (see, for example, Lind
1991, Lind et al. 1991, Needleman 1982).

In the assessment of values we also have to take into account the losses, L, that
arise as an effect of a fault. Some losses are related to respective values. Some are, yet,
independent and their magnitude is a function of many complex factors (for example,
function of the legal system that prevails in the area where the facility is situated).

10.1.2 Cost function

Neglecting the intangible values or intangible losses a cost function can be written for any
CF:

C=¢,+C, +ZPPCy (10.1)
k

where C = comprehensive costs joined with the existence of the facility and referred
to its life T, C, 1n1t1al costs of the facility, C_ = costs of majntenance and repairs
expected during T C = oosts ensuing from a posmble failure k&, 0: = ocomprehensive
failure probablhty referred to the failure k during T,. The costs C, can be expressed
by

® _ (K k) ®
Cp =a,Cy + &, V, + Z.:Lf (10.2)
j
where ag‘) , L’? = coefficients describing material consequences of failure k, referred

to values V, = C, and V,, respectively; Lﬁ.k) = eoconomical losses caused by the failure k
that are independent of Vj = C, and V. No information is available on «, and «,,.
For serviceability failures we may, for example, have a, = 0, for ultimate failures e, 2
1, etc.

Observe that, except C,, all quantities appearing in Equations (10.1) and (10.2)
are time-dependent. Their development is practically impossible to forecast. Therefore,
efforts to derive target failure probabilities by means of cost functions bring no results,
though at the outset of probability-based design much was promised.

10.2 TARGET LIFE

The life of a constructed facility can be defined as a distance between two points in time:
the moment of erection of the facility, ¢ = 0, and the moment of its demolition, t = ¢, ,
Though this definition seems clear enough, it is not sufficient since ¢, depends upon
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various factors, and, therefore, must be specified in more detail.

The demolition of a facility can be caused by various circumstances. Basically,
two types of demolition can be distinguished: foreseeable and unforeseeable. A foreseeable
demolition is expected by both the designer and the owner, and it is, in some implicit way,
contained in the design, economic assessment, etc. On the other hand, unforeseeable
demolitions are, as a rule, not considered at all, although it is commonly known that such
demolitions can prevail over the foreseeable ones. Five principal reasons for demolition
can be identified, and accordingly, five variants of the effective life, T, ., can be defined,
Table 10.1. Although in general all factors governing the particular lf%e variants can be
considered random (even human decisions are subjected to randomness), only T, TO,ph ,
and T ,, can be treated as random variables.

"The efffective life of a facility is obviously given by the minimum of the life variants
shown in Table 10.1,

0,mt >

To,ep = min(Ty s T s T s To pasTo o)

In an effort to find the value of the rarget life, T,,, this formula is not too helpful since
each of the life variants is governed by substantially differing factors, as shown in Table
10.1.

It is well known that the actual failure rate of buildings and structures (see 2.2.1),
or in other words, the incidence of random demolitions, is very small. Therefore, T, ,,
does not appear in the designer’s or owner’s considerations (it is, however, not neglected
in the mechanical or electrical reliability engineering). Similarly, owners and designers
do not assume, in their decisions, any unforeseeable demolitions defining either T, ,,
or Ty . Thus only the physical 11fe T, 4 » and the utility life, remain as a basis
for determining T, .

At the time of design, the value of T, , is unknown and it must be estimated from
various properties of CF and its environment ( terial properties, load properties, corrosive
ambience, etc.). The value of T;, , can often be specified more or less exactly but it is
frequently exceeded, because of several reasons. Then, two viewpoints can be held in es-
tablishing the value of the target life:

Out’

¢ the owner should specify the required life of the facility, T based

mainly on T ,;

¢ the designer should assume an expected life (or also life expectancy)
T, .., » based either on T, , or on T, if the designer relies on the owner’s
T, req » € OF she usually takes I T0 reg With a certain safety margin for the
magmtude of which, however, no gu1dance exists up to now.

0,req *

ut’

During the use of CF the circumstances considered by the owner or designer can
change, and so it finally becomes

T,

0,eff T,

<or> T 0,eff

0,req? < or > To’ap
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Table 10.1 - Lives of constructed facilities

Type of Reason for demolition Lives Definition of T, or ¢,
demolition
Foreseeable | Random irreversible foreseeable Mathemati- T, ,, = inverse of the failure
Jailure of CF cal life, rate, 4, cf. 2.2.1
Tom
Physical wear of CF Physical t,, = pointin time when
life, maintenance and rehabilitation
T, costs exceed an acceptable lev-
el

Economic wear of CF (its further Utility life, t,, is decision-based
existence is not necessary) T,

O,ut
Unfore- Random or non random irrever- Break-down  t,,, is given by the break-
seeable sible unforeseeable failure of CF life, Ty 4 down situation

caused by critical flaws or aberra-
tions in the structure, load, and en-
vironment, and resulting in break-

down of CF
Social wear of CF Social life, t,n is given by general eco-
T nomic situation, urban plan-

ning, political decisions, etc.

Of course, the influence of random phenomena can result in
T, <T T. <T

0,mr 0,req ? 0,me 0,exp

When establishing values of the target life, T, , expert opinion, as well as economic
considerations, must be used; such an approach was used by the Author. During an inves-
tigation of the problem, 46 outstanding civil engineers from different fields of construction
in former Czechoslovakia gave their estimates of T, , and T, ;. for various types of CFs.
Some results of the inquiry are shown in Table 10.3. No economy experts were involved
at this stage, and so it can be said that values of TO,ph are, in fact, close to the designer’s
T, ., - For simplicity, the table shows round-off sample means only. The sample range
of opinions, however, was surprisingly narrow for most types of facilities.

In the next step of the solution, economic criteria were taken into account,
considering the depreciation periods T,,, specified for buildings and structures in a Czech
legal document. Assuming that the owner’s Ty , Should be by 20 to 30 percent greater
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Table 10.2 - The values of life (years) obtained from the opinions of civil engineers

Constructed facility Material Life

Toon To

Residential buildings Masonry 110 60
Concrete 120 70

Single-story industrial buildings Concrete 90 45
Steel 60 35

Highway bridges Concrete 110 55
Steel 80 40

Gravity dams Concrete 260 300
Earth .220 200

Grain silos Concrete 100 80
Steel 50 70

Tanks Concrete 85 70
Chimney stacks Masonry 85 80
Concrete 90 70

Steel 30 45

Cooling towers Concrete 90 45
Steel 40 20

Weekend chalets - 55 30
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Table 10.3 - Guidance values of the target life, T;,, specified in the Czech code
CSN 73 0031-88 (years)

Constructed facilities T,
Buildings
residential 100
industrial 60
mining 50
power plants 30
agricultural 50
hydrotechnics 80
temporary 15
Structures

towers 40
tanks, bunkers 80
bridges 100
highways, general structure 100
rigid surface 25
non-rigid surface 15
railroads, general 120
bed 40
dams 120
tunnels, underground facilities 120
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than the respective depreciation period, and using also the expert inquiry results, values
of target life, T;,, were finally established, Table 10.3.

The lrfe expectancy is only slowly getting embedded in the regulatory documents.
At present, 50 years are often taken as a reference period in many calculations, though
the actual life expectancy can be shorter or longer. A detailed analysis of the life expectancy
problem is contained in the Draft British Standard Guide to Life Expectancy 1988. Important
information on life issue can be found in Bennett 1989, Bolotin 1984(1989), De Kraker
et al. 1982, Hognestad 1991, Sentler 1987, The Design Life 1991.

10.3 TARGET FAILURE PROBABILITY

The second principal reliability parameter, often considered basic, is the target failure
probability, P, . Much attention has been paid to values of P, but results have been rather
poor until now Tables of suggested values of P, are shown m various general codification
documents, but a common consensus on P, ﬁas not yet been reached. Evrdently, the
problem of the target failure probability is more intricate than it looks, and it is definitely
more complicated than that of the target life. Whereas T, is a meaningful, independent
quantity, which, in a way, is testable and can be verified by experience, P, is a value
that is difficult to conceive and check by common designers, contractors, or many other
participants of the construction process. Further, whenever a value of P, is given, the
calculation model, or rather a complex system of calculation models, suppé}mg the failure
probability P, must be defined simultaneously. Tt has been graphically shown (see Grimmelt
and Schuéller 1982) that even for very simple, textbook structures, with clearly defined
properties, subjected to clearly defined actions, a wide spectrum of P, values can be
obtained by using different calculation methods. The reason for the observed discrepancies
is obvious: any calculation model proposed at present is only a very rough approximation
of the actual behavior of the system. - On the other hand, since no connection between T,
and the calculation model exists, the T, is never model-dependent.

All considerations of thrs section can be extended also to the target rho-measure,
e,.

' Among code makers, there exists a natural psychological reluctance to give definite
values of P and to accept the idea that a certain number of CFs will fail. This reluctance
to fix P, strengthens with the growing potential damage consequence of a failure.

Igor these reasons, any recommended values of P, must be viewed with utmost
caution and always within the context of the complete set of factors affecting the reliability.
This fact, nevertheless, should not prevent us from discussing briefly several ways of
arriving at P, values.

It is recalled that two levels of target failure probabilities need to be specified: one
for serviceability failures, and the other for ultimate failures. The P, values for these
levels can differ by many orders of magnitude. This is obviously due'to the well known
attitudes of the public, regarding the two types of failure. As a guidance it can be said
that for serviceability limit states the summary value P, , referred, for example, to T,
= 70 years, is between 1.0E-1 to 1.0E-3, whereas for ultimate limit states it should be
considerably less, say, P, € (1.0E-5; 1.0E-8). However, it must be kept in mind that
very small probabilities, ﬁﬁt is, 1.0E-6 and less, are very, very vague, intestable numbers
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(cf. on this issue, though in a substantially different environment, Feynman 1989 on
investigating the space shuttle Challenger disaster).
Four fundamental methods of fixing P, can be distinguished.

Recalculation method

The recalculation method consists in the analysis of an existing system by means of an
established probability-based method. Then, the value of the failure probability, P,
resulting from this solution is considered just equal to P, for that partlcular system. If
a large set of systems is subjected to such analyses, a sef of P, values is obtained and,
after some considerations, the most acceptable value of P, is applied in the design of
future facilities, or in the derivation of design parameters for codes. Clearly, this method
is based on experience with CFs that have already been in current use, and, in this way, P,
depends upon these facilities themselves. The method can be applied for both the ultimate
and the serviceability limit states. Unfortunately, it is obviously model-dependent.

The principles of the recalculation approach have been widely used in the calibration
of design parameters (partial reliability factors for load and material, and others) when
new codified design formats have been introduced. Detailed information can be found in
Augusti er al. 1984, Ghosn and Moses 1986, Lind 1971, Madsen et al. 1986, Murzewski
1988, and Melchers 1987.

Analogy method

The analogy method is based on the evaluation of other phenomena of a catastrophic nature
(see, for example, Hooper 1978, Kinchin 1978). Therefore, the ultimate failure probability,
P_ , is studied by this method. It is suggested that the target value for ultimate limit states,
Pﬁ‘ , should be derived, for example, from the comprehensive probability (that is, referred
to the human life expectancy) that an individual would be accidentally killed on his or
her way home from the work place. The comprehensive probability that a person will die
because of a railway accident is about 1.0E-7, that he or she will be killed during a highway
accident is 1.0E-2, that he or she will be killed on his or her way home from work 1.0E-7,
the annual probability that a building will be damaged by fire is 2.1 x 1.0E-4. Then, it
is recommended, for example, to base the target ultimate failure probability on the accidental
death probability during a railway journey, which is accepted by the population without
any knowledge of its actual value. Using this or similar approach different authors arrive
at target values of the comprehensive ultimate failure probability, P, , of the order between
1.0E-2 and 1.0E-6, or even 1.0E-9. Now, when we want to genemﬁze this way of thinking,
we discover that there is no basis for an analogous analysis referred to the serviceability
failure probabilities. For example, a target failure probability related to the occurrence
of cracks in prestressed concrete members cannot be derived with such an approach.
A mutation of the analogy method is the establishment of P or also of the partial
probabilities referred to individual phenomena in such a way that the respective event -
collapse, crack occurrence - should never occur during the life of CF. This approach can
be used, for example, in connection with fatigue problems. The reciprocal value of the
failure probability at the end of life of the structure should be greater than the expected
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number of loading cycles. With a similar concept, target values P, P,. in the design
method based on extreme values are established. For example, it is required that a strength
of concrete less than the design strength shall "practically never" develop. According to
some opinions, it is sufficient to take P, = 1.0E-3.

Many other possibilities have been offered (see, for example, Bennett 1989,
Kuhlmann 1985). Several drawbacks of the analogy method can be shown, but, on the
other hand, the method gives enough space for engineering judgment.

Discomfort method

Any defect or fault in CF creates uneasy feelings amongst users and owners. An appropriate
analysis of the attitudes of individuals or groups in assumed or real failure situations can
lead to reasonably well-founded, model-independent target failure probabilities. Methods
of attitude evaluation are elaborated by applied psychology, but their use in establishing
the target failure probabilities is rather uncommon.

The discomfort method becomes particularly suitable when the definition of the
respective limit state is fuzzy (deflection limit state, crack-width limit state, and others).
It is not of too much help, however, in the domain of ultimate limit states.

W Example 10.1. Consider a hypothetical building with 1000 rooms. The building is used by 1000
persons, each person being allocated to one room at random. Assume that one of the persons is sensitive
to any crack in the ceiling, while no cracks are ever registered by any of the remaining persons. Obviously
the event Ev(sensitive person in a particular room) is considered. Assume further that also Ev(occurrence
of cracks in a particular ceiling) is a random event.

The floor slabs have been designed exactly so that the comprehensive value of probability of first
crack occurrence in a slab during the life of the building is P, = 1.0E-3. Obviously, P, is the target
probability of occurrence of an adverse attack, P,, = P, (though here the attack is not expressed in
numerical terms).

Now, the probability that a particular room will shelter the crack-sensitive person is

P=-L_ =10E-3

1
which, in fact, is the probability of occurrence of the adverse barrier (the random variable barrier is defined
by the sensitivity of persons), thatis, P, = P.

Since in this case A and B are independent discrete random variables that can only have either

YES or NO value, the serviceability failure probability is

P, =P, Py = 10E-6

Assume now that next to the building there is an entrance to the subway. The reinforced concrete
frame is visible and it has been designed for the same first-crack probability, 1.0E-3. All 1000 users of
the building, including the sensitive one, walk through tlle subway entrance. If a crack in the frame occurs,
it is surely registered by the sensitive person, and so P, = 1. Thus, the failure probability is

Fﬂ = 1.0B-3 x 1 = 1.0E-3
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The discomfort of the public is substantially different in both cases. In the building only a single
user will feel uneasy because of the crack, whereas all people passing through the entrance will get aroused
with a probability 1.0E-3 (the sensitive one will tell the colleagues about it) with a probability 1.0E-3.
Consequently, if for the two facilities the same level of reliability should be achieved, the concrete frame
should be designed for I-;n = 1.0E-6. |

At CFs used by public the discomfort is greater, and levels of reliability higher
than those for facilities used by individuals or small groups have to be applied.

Optimization methods

The optimization methods are the most exact of the methods aiming at the target failure
probabilities: they usually deal with economic analysis of a CF system in time. The costs
of design, execution, quality control, and maintenance of CF, and also damage caused
by possible failures of the facility, are combined into an appropriate objective function
where separate P, values for possible modes of failure must appear as variables. Then,
as objectives of tﬁe solution, the values of P, can be found by minimizing total costs,
under defined constraints. The objective function can also be written in terms of energy,
or material consumption, or in terms of losses due to failures only, but the optimization
principle remains economic (see Needleman in Technological Risk 1982).

The optimization idea is simple: a properly formulated cost function (see 10.1.2)
is taken as a basis of the analysis. The concept is clear from the theoretical viewpoint but
the practical solution is too complicated and it can be hardly accomplished with our present
possibilities. Besides, it is model-dependent. Therefore, the method can be used only for
particular facilities, its use for entire classes of structures being still in theoretical space.

The merits of the method are rather eclipsed by the simple fact that human lives,
in civilized societies, and under normal conditions, cannot be subjected to optimization
(see 10.1.1). Whenever ultimate failures that may involve loss of lives are captured by
the objective function, the whole solution becomes doubtful. This problem is dealt with
by proposals for minimizing the mortality rate due to structural failures and determining Pﬁ
under such an approach (Riisch and Rackwitz 1973). It is evident that this technique cannot
be used for the serviceability failures.

A generalization of the economic and mortality optimization approach is the
minimization of risk resulting from the use of the facility (Rosenblueth 1987). Also this
method can be applied in special situations only, as, for example, in design of nuclear
facilities, off-shore structures, and similar unique and well defined cases.

The use of optimization analyses for common structures can be considered difficult
and economically little efficient. Until now the respective methods have not escaped bounds
of textbooks. The main trouble is not in the optimization procedures, which are now at-
tainable with present software, but in calculation models.

- Considering all possible methods, we could reach to a wide spectrum of P, or
P, . Fortunately, the sensitivity of design parameters to P, values is small, and so large
imprecisions are not too harmful. For ULSs values of P, in the range 1.0E-5 to 1.0E-7
are given, for SLSs from 5 x 1.0E-3 to 2 x 1.0E-4 (see, for example, Grundlagen zur
Jestlegung 1981). Some authors give even larger ranges. It must be emphasized that those
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are guidance values for code makers who will use them for developing the respective design
parameters needed in current calculations.

We always must be cautious when using any suggested value of target failure
probability. The reader should be warned to rely on values where no time reference is
given and where the calculation model properties are not outlined.

10.4 RELIABILITY DIFFERENTIATION
10.4.1 Differentiation possibilities

In the design of constructed facilities, structures, or members it is often required to
differentiate reliability according to various criteria. In the main, the following
differentiation categories are suggested:

(a) differentiation between the two limit states groups (see 1.3.1). This dif-
ferengletion is already implicitly contained in the input reliability parameters, P,
or B,

(b) differentiation among limit states of one group. For example, we want
to distinguish the limit states of brittle and ductile fracture;

(c) differentiation of bearing members according to their significance for
the stability and robustness of the entire structure;

(d) differentiation according to the level of design elaboration, according
to the quality of calculation models, etc.;

(e) differentiation according to the level of workmanship and inspection
during the execution of the structure, and according to the expected level of
maintenance;

(f) differentiation according to accessibility and repairability of bearing
structures;

(g) differentiation according to the design situations (see 1.3.3), or also
according to the stages of construction or of use;

(h) differentiation according to social and economic importance of CFs.

Although these differentiation categories are evidently diverse, no particular
differences can be found among them as far as the technique of determining the design
parameters is concerned. Therefore, we will study only the category (g), which is often
subjected to discussion among experts and engineering public as well.

10.4.2 Differentiation of constructed facilities

Because CFs have different tangible and intangible values, and defects and faults of facilities
are a source of loss, different importance should be attributed to different facilities. This
idea has been well known for long time and nothing is basically new in it. Yet, the problem
of the importance quantification is relatively recent. Essentially, two possibilities exist:
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& verbal classification of facilities into several classes with assigned
reliability levels and design parameters,

¢ vector description of importance based on the analysis of losses, L,
mentioned in 10.1.1, with a functional assignment of reliability levels and design
parameters.

In current practice only the first technique is used because no methods have been
formulated for the vector description; until now no data are available. In the main, verbal
classifications are based on classification of governing factors into two groups: tangible
and intangible, in conformity with the pattern of values attributed to CF (see 10.1.1). In
each group subclasses, detailed more or less, are defined. Then, the importance of a facility
is expressed by a combination of two subclasses, and the facility is included into the
respective reliability class. - At present, verbal classification is specified in most basic
documents that treat the importance problem (General principles JCSS 1982, Grundlagen
zur Festlegung 1981, Otstavnov e al. 1981, and others). We can say that the situation
is, from the practical viewpoint, stabilized. The following classification prevails:

(a) Subclasses according to tangible values

(al) Limited economical loss; for example: single floor buildings, greenhouses,
farm silos, communication poles, fences, open or partially closed stores of raw materials.

(a2) Large economical loss; for example: individual apartment houses, industrial
buildings, stores of products and equipment, tall chimney stacks, buildings of railway sta-
tions, railway and highway bridges, large capacity silos.

(@3) Very large economical loss, for example: standardized apartment houses, main
buildings of industrial entities, TV towers, main utility networks and associated structures,
bridges on main communications, subway structures, facilities with particular equipment,
grand stands of large open stadia.

(b) Subclasses according to intangible values

(b1) Human life is only exceptionally in danger during a failure of the facility;
for example: greenhouses, underground silos, electrical towers, communication poles,
stores of shipping and delivering facilities, transport structures in industrial facilities, aerial
masts outside residential areas.

(b2) Human life is currently in danger; for example: apartment houses, industrial
buildings with permanent staff, TV towers in residential areas.

(b3) Many lives are in danger; for example: grand stands, theaters, dancing halls,
supermarkets, railway stations, subway facilities, schools, bridges, nuclear plants, dams.

Classification of facilities into subclasses is highly subjective and it is not possible
to avoid overlapping, indefiniteness, and ambiguities. In general, there are nine combinations
of subclasses (a) and (b). Taking into account the differentiation objectives, some of these
resulting classes are equivalent from the reliability quantification viewpoint, and, therefore,
the number of classes is usually confined to four according to the pattern in Table 10.4.
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Table 10.4 - Classification of constructed facilities based on differentiation according to
tangible and intangible values

Subclasses according to Subclasses according to intangible
tangible values values
bl b2 b3
al L M N
a2 M M N
a3 N N H

Requirements on facility’s reliability:

H - high, N - normal, M - medium, L - low

Considering Table 10.4 in more detail, we can find that the importance of CF
depends on the purpose which the facility is expected to serve. This can be shown on many
examples. The dependence of importance upon purpose is particularly distinct in situations
where CF was changing its use during past periods. We might give examples of many
heritage buildings and structures that went through several stages of importance, even
through the stage of negative importance, when the facility faced demolition.

To each class of CFs, classified according to impgrtance or purpose, target values
of annual or comprehensive failure probab111t1es P P, , can be assigned (dependent
on the type of RelReq considered, that is, subJectlve }{elReq or facility RelReq, see 8.1.1).
This is possible to base on failure probability P related to a reference class, R, for
example, the class of most frequent facilities, and to write

K R

where m* = differentiation multiplier. We will see later (in 13.4.2) how this multiplier
can be used in the denvann of demgn parameters. Clearly, the multiplier m* must have
different values for P, and P, that is, X and mX . If, for the description of reliability,
the rho-measure (see 8.1.4) were used, then of course the differentiation multiplier would
be transformed to differentiation supplement A ¢ = logm . From the theoretical viewpoint
the solution is of course identical.
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Table 10.5 - Differentiation multipliers m X, m* (example of values; reference class
R = N)
Class Combination mX ' mX 1
of
subclasses ULS SLS?) ULS SLS?)
H a3 & b3 0.1 0.5 0.1 0.5
N al & b3 1 1 1 1
a2 & b3
a3 & bl
a3 & b2
M al & b2 10 2 9.96 1.45
al & bl
a3 & b2
L al & bl 100 5 96.15 1.81

') Values of m K were obtained from m K assuming that
5 N 5 N
Pyus = 1.OES, Ppgg = 1.0E2

and the life expectancy T, = 80 years.
2) See the remark on differentiation problem in Section 10.5.

When using a verbal classification of facilities, a table of differentiation multipliers
can be developed. Of course, multiplier§( cannot be equal for both groups of limit states,
ULSs and SLSs, as it must always be P, < 1. A possible set of differentiation multipliers
is shown in Table 10.5.

At present, many differentiation solutions based on verbal classifications are avail-
able. Their nature is analogous, the individual solutions differ in formal aspects, especially
in the way of treating the differentiation in design. In the majority of present structural
design codes the importance factor, y,, is employed (Murzewski 1985a, 1985b, Tichy
1985). It is associated with either loads or resistances. To avoid unsafe or uneconomical
design, the technical use of y, must be always thoroughly described.

Let us present some typical regulatory documents covering the facility differentiation.
Obviously, it is not possible to introduce all codes; there are now many available, covering
the differentiation problem.

ANSI A58.1-1982: The importance of facilities is respected in the calculation of
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wind load, snow load, and seismic load; four classes are distinguished according to the
facility’s purpose. The importance factor, y,, is considered from 0.8 to 1.5; it is used
to multiply stress load-effects.

BS 5502:1980: Four importance classes of facilities are distinguished, the criterion
being life expectancy, number of people working in the buildings, and also danger to third
persons or properties. The distance of the facility from residential areas and public roads
governs the latter criterion. Values of y, from 0.85 to 1.0 are assigned to the four classes.

CSN 73 0031-88: Four purpose classes are distinguished, and a detailed classification
of facilities is given. Rules for introducing y, (values from 0.8 to 2 1, the upper limit
being not defined) into calculations are specified. Stress load-effects are factored.

Eurocodes: The possibility of differentiation is suggested, but no detailed rules
or values are given.

Grundlagen DIN 1981: Three classes of facilities with different values of target
failure probabilities, P, , or Hasofer-Lind reliability indices, B,HL , are giveni; y, values
are derived for these classes in the range of 0.9 to 1.2.

Guidelines of NKB 1987: Three importance classes and three inspection classes
are defined; y, ranges from 0.9 to 1.1.

SNiP II-50-44 1975: Four importance classes are specified. The y, factor (1.1
to 1.25) is used to divide a calculated ultimate capacity.

It has to be noted that a facility differentiation lacks sense when the importance
or the purpose of the facility is already covered by design parameters. For example, in
the verification of deflections of floors in residential buildings no differentiation should
be used because it is already embedded in the limit deflection £, .

The technique of the differentiation multiplier can be efficiently applied also in
the other differentiation problems [except the problem (a), where the differentiation has
already been included in current design procedures for a long time]. The differentiation
multiplier makes a clear comparison of diverse cases possible, taking one of the cases
as a reference case.

10.5 CONSTRAINTS

When the barrier, B, appearing in RelRegs (7.1), (7.2), or others, represents environmental
properties, or expresses, in some way, relation between the STRUCTURE and the ENVI-
RONMENT systems, it is usually defined in terms of a specific reliability parameter called
constraint, C. Consequently, RelReq (7.2) can be written as

VieT, . A<C (10.4)

As a rule, constraints relate to strain load-effects, that is, the attack, A, is given
in terms of strain, deflection, slope, rotation, width of cracks, etc. Vibration parameters
can also be included into this family; see below.
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Table 10.6 - Examples of static deformations evaluated in design

Deformations Aspects (examples)
Deflection aesthetic aspects; operation of technological equipment
Sway integrity of partition walls in frame structures subjected

to horizontal forces

Slope of the bending line movement of cranes on gantry beams; draining of water
from flat roofs; comfortable movement of vehicles
along highway bridges; lateral stability of partition walls

Axial deformations reliable function of building equipment (elevators, pip-
ing, wiring)

Rotation of adjacent cross-sections assembling of precast structures

Curvature of bending line or of bend- | integrity of ceilings

ing surface

Strain integrity of cladding and tiling

In the majority of cases, constraints are scalars, specified by fixed, decision-based
values. Constraint values that have been established in existing design codes have been
derived in various ways. At onset of codified design, most of C were based on traditions;
nobody could offer any scientific justification for the respective magnitudes. Now, the
situation has been slowly changing, since statistical and probability concepts, the system
of reliabilistic thinking, and last but not least, practical needs have brought new ideas into
the constraint issue. Therefore, as for constraints, modern codes become open-minded,
and allow or even encourage the designer to adjust values given in the respective code
clauses whenever it is advantageous. Thus, occasions when designers themselves are
compelled to specify a constraint value, are getting more and more recurrent. It then
happens that the designer, having reached the conclusion that a constraint RelReq should
be verified in the particular situation, founds the available design code unsatisfactory, as
for the information given. Then, the designer has to answer two questions:

¢ What should be the physical meaning of the constraint C, or in other
words, what design criterion should govern the RelReq?
¢ What should be the value of C?

Let us illustrate the main features of the general constraint problem on the case
of static deformations. Table 10.6 shows some types of deformation that are frequently
verified in design. It is well known that in a general case several RelReqs (10.4), written
for various deformation criteria, have to be checked. Only in simple cases, such as floor
beams, floor slabs, etc., a single deflection check is sufficient. Note that the list given
in Table 10.6 is far from complete!
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In an SLS design, we must not forget that deformations shall be checked for various
stages of the construction process, not only for the stage of current use. Further, we must
keep in mind the time-dependencies involved: first, those related to load, then those related
to material (including soil), and finally also the time-dependence of the constraints
themselves. The latter is usually underestimated; actually, some constraint can govern
the design RelReq in initial periods of the existence of the facility, and can be entirely
ignored later.

It is now acknowledged that constraints are, in general, random variables, or more
exactly, that they can be established by statistical analysis of aspects that determine their
values. This can be shown by Example 10.2.

=5
y
|
|

- ——

fiim.inf flim,sup fiim

Fig. 10.1 - Example 10.2. Number of alarmed visitors vs. deflection of floor
in a lecture hall.

I Example 10.2. A lecture hall is regularly visited by a group of N individuals. Owing to time-
dependent properties of the bearing structure, the deformation of the floor grows with time. Let us take
the mid-span deflection, f, as deformation criterion. At a certain value of f one of the regular visitors
becomes disturbed and begins to be suspicious about the safety of the structure. Obviously, the respective
value of f is the visitor’s personal constraint, f, . When the deformation continues to grow, the number
of alarmed visitors, n, increases (Figure 10.1). At each lecture, additional An visitors will observe the
dangerous deflection (let us assume that sensitive visitors’ worries are not transferrable). The alarm process
is discrete, though the deformation can increase continuously; however, the periods when lectures are given
are discrete. Probability that a randomly selected visitor will get annoyed by f < f, is

p=" (@
N
probability that a randomly selected visitor will get annoyed just when f, = has been achieved is
p= An )

N

Obviously, each individual has a personal barrier, whose exceedance arouses his or her discomfort.
As psychological and emotional properties of humans are random, the limit deflection, f,, is also a random
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variable. Considering a very large population of individuals, Equations (a) and (b) can be written as

P = q)(fh’m)
p = ‘P(fh,,)

See Figure 10.2. Consequently, if the probability distribution of f,,, were known, we could find for an
intended probability P, the value of admissible deflection, f, . , from

Pt (fym < foim) = Pim u

G
3 |
|
I
|
0 fde flim 0 fadm flim

Fig. 10.2 - Example 10.2. CDF and PDF of limit deflections related to different persons.

Unfortunately, experimental information on random behavior of constraints is still
very scarce or nil. This fact compels to establish values of constraints, called often
"admissible deflections," "admissible crack width," etc., on empirical considerations. When
no guidance on constraints can be found in codes or other documents, the designer should

ask qualified people acquainted with the problem area for advice. For example, we can
get

¢ from civil and structural engineers: admissible displacements or
deformations with regard to bearing or non-bearing structures that are adjacent
to the structure designed,;

¢ from mechanical engineers: admissible displacements of machines,
elevators, piping, etc., that will not impair safe function of the equipment;

¢ from electronics engineers: admissible displacements of a TV aerial
(larger displacements can cause transmission trouble);

¢ from chemical engineers: admissible vibrations that are not harmful to
certain chemical process;

¢ from agricultural engineers: admissible deflections and vibrations that
do not scare stalled animals. Etc.
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However, data supplied shall be always checked for consistency, and their
background should be known. It happens that we are offered by our engineering colleagues
either exaggerated, or, on the contrary, understated data on admissible deformations or
displacements.

In the assessment of obtained data we have to take into account also the variability
of the attack (for example, in case of the TV aerial the deflection of the TV tower due
to wind load fluctuations, then also the daily changes in deflection caused by thermal effects
of solar radiation, etc.) and the possibilities of rectifying the displacements (for example,
adjustment of the position of the aerial at the top of the TV tower). Attention has been
paid to the problem of admissible deformations and several practically oriented general
documents have been produced: ACI 435.3R-68, Déformations admissibles 1980, 1SO/
DIS 4356:1976.

As it has been already mentioned, no reliability differentiation problem arises with
constrainis. As a rule, values of constraints given in codes already include the importance
of the facility because they are closely connected to the purpose of the building or structure.
Nevertheless, the differentiation multiplier for SLSs does not loose its meaning; it can
apply, for example, in the design according to the first-crack limit of prestressed concrete
members.

Crack width

Cracks are a phenomenon encountered in all materials. However, only concrete and masonry
structures are subjected to serviceability RelReqs based on the occurrence or width of
cracks. Considering the crack width as a criterion, we have to take into account that cracks,
for example, can

¢ be a starting factor in material corrosion; :

¢ be the principal cause of unrightness of tanks for fluids, gases, or loose
materials;

¢ deteriorate the sound-proofing and also odor-proofing of partition walls;

¢ cause annoyance of the users of CF.

Similarly as in the case of deflections, a sensitivity threshold can be found both
for the structures and for people involved (see an interesting study by Diaz Padilla and
Robles 1971). This threshold can be expressed simply in terms of a limit crack width,
Wy » Which again is a random variable. Its admissible value, w_, , can be found in the
same manner as that of the admissible deflection, f, .

We should mention here that the crack width need not be the only governing
quantity. When, for example, gas-tight structures are concerned, the summary area of
cracks is of importance. Or, individuals never evaluate the crack width in terms of a
physical distance of two opposite faces of the cracked body; their attitude to a cracked
structure depends on many factors: length, shape, and density of cracks. It happens, that
a crack of considerable width, say 3 mm, escapes any attention of users, or even inspection
engineers.
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Vibrations

When vibration effects of dynamic load are evaluated in terms of vibration parameters,
range RelReqs can be of interest:

C,<A<C

where C,, C. = lower and upper constraints, respectively, related to the design criterion
entering the RelReq. The latter can be of diverse physical nature: eigenfrequency,
acceleration, velocity of vibrations. It depends on the particularities of the problem solved.

As for vibration parameters, not only engineers are source of decisions on con-
straints. In case of buildings, admissible vibration parameters are, as a rule, specified by
hygienic regulations. Many designers are unhappy with such regulations, which are often
based on concepts different from those built-up in the structural reliability area. Mutual
understanding of engineers and hygienists is often needed.
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PROBABILITY-BASED
OPTIMIZATION

Key concepts in this chapter: probability-based optimization; distress; maximum distress;
minimum distress requirement, maximum distress probability; decomposition of target proba-
bilities; transposition of target probabilities; ranking of target probabilities; determinate
problem,; overdeterminate problem.

11.1 PROBLEM STATEMENT

For design methods based on formative or elementary reliability requirements, the target
probabilities of occurrence of adverse events, that is, values P,, and Pp, (Section 8.2),
or values P, and Py, (Section 8.3), have to be found. Two approaches can be employed:

(a) the individual target probabilities can be derived from a given target
Jailure probability, P ; when this approach is used, the resulting lower level target
probabilities, either formative or elementary, are, at the respective level,
mathematically dependent,

(b) the lower level target probabilities can be established independently,
one by one, applying the same type of approaches as those used for the target failure
probability P, (see Section 10.3).

The larger the number of independent estimates entering the establishing of design
parameters, the less stable and comparable the results of design. To a certain degree, the
comprehensive uncertainty of the design expands with the number of independently
established parameters. Therefore, it is desirable to limit the number of independent input
target probabilities as much as possible. Preference should be given to the approach (a).

When looking for the formative or elementary target probabilities (P,,, Pg,; P,
Py, ) we must first keep in mind that there already exists a stabilized state of the codified
deszgn Jormat. 1t is not possible to change this state suddenly. Efforts to find target probabil-
ities for the lower level design methods from values of P, established by some of methods
shown in Section 10.3, are often fruitless. A simultaneous complete change in the existing,
deeply rooted codified design format is never possible. As a rule, the design parameters
found in this way are numerically inconsistent with the stabilized design routine. So, we
have to look for procedures that would avoid problems of this kind, that is, we must attempt
to find procedures that do not distort the present state of the codified design format abruptly.

194



SECTION 11.2 195

It has to be underlined here that the probability-based optimization method, outlined
in this chapter and developed in Chapters 13 and 14, is not supposed to be a substitute
Jor the established probability-based methods nor to be an everyday design tool. Its main
objective is to give guidance in determining values of design parameters needed either
Jor various regulatory documents, or in solving issues arising when rational design of
specific structures subjected to specific loads is contemplated.

11.2 MAXIMUM DISTRESS PROBABILITY

In Section 3.6 the concept of relatively adverse event was defined. Now we can say that
an occurrence of a relatively adverse event, that is, a non-compliance with any RelReq
specified in Sections 8.1, 8.2, and 8.3, causes a distress to the client, designer, contractor,
owner, and user of CF, or also to other persons not directly involved (for example, code
makers). The distress can be distinct, occurring simultaneously with the occurrence of
an adverse event, or dormant, materializing only under specific circumstances. No
distinction will be made between the receiver of distress (code maker, client, designer,
contractor; parents, teachers; planning board, law maker, government authorities, etc.)
and no distinction will be made among various kinds of distress as far as their importance
is concerned, either. Sometimes an event producing only a "feeble distress" can lead to
heavy material and other consequences and vice versa. Obviously, distress is distress. On
the other hand, we know that distress accumulates, increasing the "size" of discomfort
feeling.

The concept "distress" is identical with the concept "failure" (see 1.2.6) if and
only if the reliability is assessed by RelReq (7.3) joint with RelReq (8.10) or (8.16), that
is, when only one relatively adverse event, Ev(Z < 0), is considered. In other cases of
RelReqs, when several events enter the assessment, the incidence of a single relatively
adverse event may not (but can) result in failure. This refers to RelReqs (7.1) and (7.2)
joined with RelRegs (8.11) and (8.12) for with (8.17)], or to RelReqs (7.16) or (7.17)
joined with (8.13) and (8.14). The greater the number of relatively adverse events, the
greater also the size of distress to people involved, and also the likelier becomes failure
of the S-L-E system. It can be assumed that failure is inevitable when all relatively adverse
events happen simultaneously, that is, when the maximum of distress takes place (of course,
failure can occur at an even smaller number of adverse events). The probabilistic
relationship between maximum distress and failure will be discussed in 13.1.2 and 14.1.2
[see Equations (13.11) and (14.10)].

Let us assume that all phenomena entering RelReqs, H, through H,, are statistically
independent. Then, the probability of simultaneous occurrence of all adverse events, called
the probability of maximum distress, P, is given by

P, = 1, (11.1)

where

P, = Pr(E,,)

is the probability of occurrence of the i -th relatively adverse event.
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Similarly as it is with the failure probability (see 8.1.3) the effective and estimate
values of the maximum distress probability, P, . and P, ., tespectively, are distinguished.
However, in all following considerations the d{fference between these two values will be
ignored, and so only one quantity, P,, will be discussed. As far as the time factor is
concerned, the annual value, P, and the comprehensive value, P, will be distinguished
when necessary, similarly as it is with P,. For the relationship between P, and P,,
Equations (8.5) and (8.6) hold true again.

It is now possible to write a RelReq in terms of the maximum distress probability

P,<P, (11.2)

where P, (that is, Pdt or P,) = target maximum distress probability (see Section 11.4).

Again, RelReq (11.2) can be investigated as a subjective or facility RelReq (cf.
Section 8.1.1), in dependence on the attitudes of the respective user, who can be internal,
external, or mixed. - RelReq (11.2) can be used in both design problems: proportioning
and checking of an S-L-E system.

If only one phenomenon, the reliability margin, is considered, RelReq (11.2) is
identical with the global RelReq (8.10). According to the foregoing exposition, incidence
of the distress is, in this case, identical with failure, since only one possible distress

= failure) is dealt with. It therefore holds

P,=P (11.3)

In the early days of probability-based design, P, given by Equation (11.1) had
been erroneously regarded as failure probability, and so RelReq (11.2) had been considered
as the governing RelReq. This of course had proved to be wrong after some deeper
implementation of statistical and probabilistic thinking into reliability problems. We certainly
do not intend to return to that period. RelReq (11.2) has been used here as an instrument
of further development.

Let us first assume that the reliability of an existing facility is to be assessed. If
the random behavior of all » input phenomena is sufficiently described, and the probabilities
of occurrence of relatively adverse events, P, P,, .., P, are calculated, then P, is
obtained from Equation (11.1), and finally RelReq (11.2) is checked. The solution is
obviously simple, each phenomenon being examined separately; no sophisticated calculation
of the failure probability or the reliability index is necessary, etc.

However, in this checking problem, the following situation can arise: if any of
the input probabilities P, is equal to zero, then also P, becomes zero, and so RelReq
(11.2) is automatically fulfilled. Thus, to make a system apparently reliable, the designer
could declare one of the constants appearing in the calculation model for random variable,
“calculate” the respective zero probability of adverse realization of that variable, and in
this easy way arrive at zero probability of maximum distress! Without any doubt, this would
be a definitely wrong evaluation strategy. It has to be emphasized that a relatively adverse
event with zero probability of occurrence cannot be taken into consideration (just because
it cannot occur) and RelReq (11.2) should be evaluated for only those adverse events whose
occurrence probabilities are greater than zero.
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From the practical point of view, the checking problem is of no interest. The
checking problem can be treated by assessing separate probabilistic RelReqs (8.11) and
(8.12), or (8.13) and (8.14), or the design RelRegs derived from these.

What is important, is the proportioning problem, since it is the starting point for
the determination of design parameters required in design RelReqgs. Again, let the solution
of the proportioning problem be based on RelReq (11.2). We now have to handle the
following difficulty: setting P, = P, into Equation (11.1), the target probabilities P,,
through P_, can be arbitrarily chosen so as to obtain

P =P, (11.4)
1

n
i=

that is, for example, in this option:

np,=p, P,=1
i=1
or, for example,
P11=P2:= =Pn—l,tzl’ Pnt=Pdt

Such options, of course, would be absurd. The first one might lead to uneconomical design
and possible failure, while the second would almost surely result in failure. Obviously,
the same kind of difficulty as that met with zero probability of an adverse event in the
checking problem is encountered here.

It is then clear that, in order to remove arbitrariness, an additional condition is
needed to arrive at a definite solution, not at a dubious set of target probabilities that can
be lavishly adjusted without any conceptual framework.

113 MINIMUM DISTRESS REQUIREMENT

The supplemental condition for determining the target probabilities P,,, P,,, .., P,,
which enter Equation (11.4), can be formulated using the probability-based optimization
approach, founded on the following requirement:

& Internal and external users of CFs, and also code makers, designers,
contractors, and other participants in a construction project are interested in
minimizing any dormant or distinct distress that might occur during the respective
reference period.

We have intentionally avoided talking here about minimization of losses, this belongs
to another category of attitudes with corresponding optimization objectives.
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The minimization of distress is, in a way, compatible with feelings of people
involved. When a construction setback comes out, the perception of psychic tort usually
arrives first. The feeling of an economical loss develops only later. The minimum distress
requirement, which will be later analyzed in separate problems, is evidently closely bound
to psychological viewpoints applied in establishing the target probabilities P, or P, .

The detailed mathematical treatment of the minimum distress requirement depends
upon the type of the problem solved. We will see (Chapters 13 and 14) that in the deter-
mination of design parameters three types of problems are met; they differ by objectives:

(1) Decomposition of target probabilities is carried out when lower level target
probabilities are derived from a "superior" target probability. For example, values P,,
and Py, can be obtained from P, (see 13.1.1), values P, can be derived from P,,,
values ij: from Pp, (Section 14.1). Other features of the decomposition problem exist.

(2) Transposition of target probabilities is met in the differentiation of CFs, when
for a class of facilities target probabilities are established using the already known and
proven values valid for a class considered as reference class (see Sections 13.4 and 14.5).

(3) Ranking of target probabilities is applied in cases when a phenomenon can
occur in one or more combinations of different order with other phenomena (see 14.2.1).

In transposition and ranking two modifications of the problem are discerned:

() If only a single target probability (for example, P, ) enters the solution
as a starting quantity, then a determinate problem is dealt with.

(b) If it is necessary to base the solution on existing values of some target
probabilities (that is, on a certain existing "state of probabilities"), we talk about
an overdeterminate problem.

A more detailed discussion of the determinate and overdeterminate problems will
be found in Sections 13.4, 14.2, and 14.5.

In all problems mentioned, that is, (1), (2a), (2b), (3a), and (3b), the same solution
approach will be applied - the minimization of distress. Input and output quantities, and
the objective function appearing in the solutions are

¢ the known and sought target probabilities of occurrence of relatively
adverse events,

¢ the probability of at least one of possible adverse events, the particular
meaning of which depends on the type of problem.

This is the reason why the respective optimization method introduced here is called
probability-based.

The probability-based optimization has to be related to the reference period for
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