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Dedication

This book is dedicated all students that have struggled to 
learn data analysis, statistics, or continuous improvement.
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Preface: Learning data, 
statistics, and continuous 
improvement another way
I remember it well. During a grad-level course in statistics, the professor 
whose name will remain anonymous, described the hypothesis test-
ing method and told everyone to memorize the following for the exam: 
“Failure to reject the null hypothesis when the null hypothesis is false is 
a beta error and rejection of the null hypothesis when the null hypothesis 
is true is an alpha error.” After class, several of us were exchanging notes 
when one student said to think of a courtroom trial as a better exam-
ple as to what the hypothesis testing method is really saying. Intrigued, 
one person said, “Can you expand on that?” “For an alpha error, think of 
Nelson Mandela, and for a beta error, think of Al Capone.” This opened 
up an entire discussion on how this almost 90-year-old theory can be used 
for experimentation and continuous improvement—not just memorized 
for the exam. How understanding that alpha error is falsely determining 
there was a change in a process when there was none, and beta error was 
the failure to recognize the change in the process when it really happened. 
How proper understanding of this method alone can begin to ignite the 
passion for continuous improvement in every machine operator, adminis-
trative clerk, plant manager, and leader.

After years of consulting by traditional methods, in 2011, I dedicated 
my life to a teaching method that would change the way the world sees 
data and probably more importantly taught data analysis and probability 
theory. What if instead of traditional lecture and test, probability could be 
learned by card and coin magic? What if the art of juggling could be used 
as a training technique in data analysis and statistics? What if the experi-
mental helicopter could be used for teaching such concepts as the t-test, 
ANOVA, and design of experiments? What if 3D imaging could be used 
to visualize cube plots critical to understanding design of experiments?



xvi Preface

This book is dedicated to all those who have struggled with the con-
cept of statistics, have a genuine fear of data, and think the world of con-
tinuous improvement and experimentation is designed for a minor few 
and not for the masses. This book begins to answer the question; why 
can’t every operator, technician, student, manager, and leader understand 
the fundamentals of data and the science of data analysis for incremental 
and many times breakthrough in continuous improvement?

I thank all my students from the continuous improvement courses 
over the past 10 years for their inspiration of this book and the hope that 
these methods will launch a new method of teaching and instructing in 
the science of continuous improvement.

William Hooper
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3

chapter one

The science of learning 
Make it interesting or shocking*

We all remember the first time we learned how to drive a car: It took maxi-
mum concentration to drive around the neighborhood as mom or dad sat in 
the passenger seat while the brain kept updating: “not too fast; adjust left; 
woops too far, adjust the other way; Ok give it gas; not that much; oh no, 
another car is coming at me; concentrate; the intersection is up ahead, slow 
down; I think I am getting it…” According to Robert Bjork, a psychologist 
at the University of California, Los Angeles, there are three concepts that 
are important for remembering events such as the first significant time at 
anything. These will be covered later in more detail, but for now think of 
them as useful, relevant, and interesting/shocking. Do we remember that 
incident? Most likely it is—highly useful, relevant, and interesting or some-
times called shocking. Bjork’s findings state the greater the total of the three, 
the deeper the learning, such as having deep grooves in an album or more 
hard drive utilized. This leads to the statement of “it’s just like driving a car” 
or “just like riding a bike.” The findings are that we maximize the grooves 
in the album by the sum total of useful, relevant, and interesting/shocking.

Why we still remember where we were and what 
we were doing on 9/11
So why do we still remember where we were during 9/11, or, for those old 
enough to remember, when President John Kennedy was shot?

This does not mean we actively remember everything we learn. 
It depends again on whether the information is useful, relevant, and 
interesting/shocking. According to Robert Bjork, most of what we learn 
is there forever (this is hard to believe). My first phone number—still 
there. My first home address—still there. My first girlfriend’s first and 
last name—still there. The first date with my wife—still there. The brain 
has the ability to hold a million gigabytes or three million TV shows. 
Unbelievable—but for most of us we really never run out of storage space. 
The problem is getting it into the grooves. Once it is there, under nor-
mal circumstances, it never leaves. Once it is in the grooves, according to 

*	 A major portion of the chapter was obtained with permission from Carey (2014).
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Bjork, there are several methods to enhance recall, but if it does not get in 
the hard drive, recall is difficult, if not impossible.

I’ll offer an example from my own life. I used to work at an exclusive 
country club in high school. I was a huge fan of golfers at the time, as I played 
often. During one weekday, as I was working in the restaurant, I looked up 
at one of the tables and there was the legendary golfer Jack Nicklaus. I did 
nothing more than stare at him while I cleaned the tables—a childhood 
idol, sitting meters away. There was no meeting, no autograph, not even a 
glance back from him toward me. How could I still remember it years later?

I remember this incident because it was a combination of useful, relevant, 
and interesting/shocking. The greater the usefulness, relevancy, and inter-
est, the greater the burn and deeper the grooves. But wait a minute, what 
about my seventh-grade science teacher who I had for an entire 8 months? 
Wasn’t that class useful, relevant, and interesting/shocking? Why can’t 
I remember a thing from that class? Here’s why: Useful?—Ok, Relevant?—
Ok, but interesting/shocking?—Not really. Probably the poorest class with 
a teacher who had little interest in being there. Again, the three concepts:

Useful—Ability to be used for a practical purpose or in several ways
Relevant—Closely connected or appropriate to the matter at hand
Interesting/shocking—Arousing curiosity; holding or catching the 

attention

Why do we all remember where we were on 9/11, or when John Kennedy 
was shot? Go back to the three combinations, and it may be explained 
why. All of those incidences likely scored high on useful, relevant, and 
interesting/shocking.

So, what was the difference between my Jack Nicklaus experience and 
an encounter with Bobby Nichols (another pro golfer from back then who 
was the pro at the club house and I saw daily for a year)? It was interesting/
shocking. Go back to the original concept—it is the combination of useful, 
relevant, and interesting/shocking. The more interesting/shocking the 
encounter, the more it is burned into memory and the deeper the grooves. 
I challenge the reader to go back in time and recall an incident from years 
ago. Rank the three categories on a scale of 1–10 with 10 being the highest. 
Multiply the three numbers together and come up with an index num-
ber from 1 to 1000. This method is used in the concept of Failure Mode 
and Effects Analysis (FMEA), and it works here as well. Even with equal 
weights between the three categories, what happens to the three catego-
ries when multiplied together? Quite significant on the impact of learning.

But how does this relate to statistics, data, and continuous improve-
ment? Here is my own personal story on this area. Recall the Pythagorean 
Theorem from high school math class—very useful in many settings. 
But let me explain how it was explained to me, and why I can remember it 
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40 years later. Again, remember Bjork’s concept: the greater the combina-
tion of useful, relevant, and interesting/shocking, the greater the storage 
and likely the greater the retrieval.

In 1972 when I was taking the class in this subject, one of the smarter 
math instructors had us work through the derivation of the Pythagorean 
Theorem, following how the theorem was probably developed for the first 
time. Some of us may remember the formula A B C .2 2 2+ =

How relevant was this equation at the time? Let’s put the three catego-
ries on a rank scale from 1 to 10, with 1 being totally useless (I would think 
that some of the calculus classes on integration turned out to be a 1) and 
10 being used in everyday life (although some would argue differently, 
addition of two single digit numbers on a scale of 1–10 is probably a 10 as 
I may not be able to get change at the grocery store if I did not know that). 
So for the Pythagorean Theorem, maybe a 6 for relevancy (I needed it to 
pass the midterm but not much more), a 2 at best for useful, and maybe a 
2 for interesting/shocking. The URI index (useful × relevant × interesting 
or shocking) number of 24 is not going to penetrate the grooves on the 
storage memory much at all—at least not past the midterm in 2 weeks. 
Say hello to Ben Weinstein, ninth-grade algebra teacher. Take a look at 
Figure 1.1 and work through the derivation of the formula.

	 a.	The area of the entire square = sum of all interior parts.
	 b.	C2 = the area of the inside square + the sum total of the four triangles.

	
= − + × ×C A B A B( )

1
2

42 2

	

Work through the math and arrive at C B A .2 2 2= +

C
A

B

Figure 1.1  Diagram to assist in deriving the Pythagorean Theorem. (From Carey, 
Benedict, How We Learn: The Surprising Truth about When, Where, and Why It 
Happens. 2014, Random House, London. With permission.)



6 Continuous Improvement, Probability, and Statistics

All those who enjoy challenges, come back to this picture the next day 
and work through the derivation. How hard is it to derive the formula? Now, 
come back 6 months later. Remember the picture and derive the formula. 
Now come back 1 year later and repeat the same process. It worked for that 
ninth grader working at the country club, and it works on students today.

So what changed? Why is it now grooved in memory when we would 
usually expect it to be lost 4 h after the midterm? Again, the combina-
tion of useful, relevant, and interesting/shocking. If the usefulness did not 
change (still a 6), and the relevance did not change (still a 2), what changed? 
For me, the concept of interesting/shocking increased from a 2 to probably 
a 9, and so the URI Index increasing from a 24 to 108—about a 4.5 times 
increase. Why the increase in interest? It changes memorization of a not-
so-interesting formula to following a derivation process. I  remembered 
the derivation process but did not remember the memorization (Table 1.1).

Try out the concept in other areas:
Learning to ride a bike for the first time (Useful—10, Relevant—10, 

Interesting/shocking—8, URI 800).

Table 1.1  Applying useful–relevant–interesting/shocking index to learning 
the Pythagorean Theorem

Definition

Straight 
memorization of 

Pythagorean 
Theorem

Weinstein 
method: Deriving 

theorem

Useful 1: Great concept but 
has no useful 
application

6—Will use to get 
through homework 
this term

6—This did not 
change

10: Used in everyday 
life

Relevant 1: No relevance to 
anything I do

2: Highly relevant to 
my daily life

2—Not relevant to any 
part of my life

2—This did not 
change

Interesting/
shocking

1: Read in textbook or 
standard lecture

2—Presented in 
standard lecture. 
Not interesting/
shocking

9—Worked 
through very 
unusual and 
unique 
derivation

10: Fascinating how it 
was derived. Shocked 
when it was taught. 
Hands-on method 
when learned

Index Useful × relevant × 
interesting or 
shocking (URI)

6 × 2 × 2 = 24. Not 
very sticky

6 × 2 × 9 = 108. 
Much stickier 
than before
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Learning calculus for the first time (Useful—3, Relevant—2, Interesting/
shocking—2, URI 12). Okay, that may change depending on how 
you use it. But I would think most high school students are in that 
ballpark.

Learning how to compute a baseball player’s batting average (Useful—8, 
Relevant—8, Interesting/shocking—10, URI 640). Okay, this might 
not be for a 10-year-old in the Congo, where they probably have lim-
ited knowledge of baseball, but it is high for a 10-year-old in Japan 
or the United States.

Learning how to compute average and standard deviation for a machine 
operator (Useful—6, Relevant—6, Interesting/shocking—2, URI 72). 
Wonder why it is so hard to get industrial personnel interested in 
statistical process control (SPC)!

Learning how to find an interaction effect in a process through a 
Designed Experiment (Useful—8, Relevant—8, Interesting/shock-
ing—2, URI 128). Okay, that is until you understand how to visualize 
the interaction term, and at that point the interest likely increases 
from a 2 to a 7. [That will be the topic of a future book dedicated to 
how to teach Design of Experiments (DOEs) for everyone from ninth 
grade to college.]

Learning that the infant mortality range of the bathtub curve for 
product failure has a decreasing breakdown frequency (Useful—8, 
Relevant—8, Interesting/shocking—3, URI 192). Until of course, the 
process of learning arouses the curiosity of the student by creating 
interest through alternative means.

Overview of the chapters
The student cannot apply data analysis and statistics to industrial or 
transactional processes and everyday life without having the confi-
dence to do so. Critical to building confidence is increasing recall of 
the concepts themselves. The goal of this book is to introduce a pro-
cess to learning basic statistical, data, and continuous improvement 
concepts that make the learning useful, relevant, and interesting/
shocking. In the author’s experience, the weakest of these three using 
traditional teaching methods is interesting/shocking. This book focuses 
on strengthening the interesting/shocking value of learning data analy-
sis and statistics.

The book is set in three parts.

Part one: Chapters two through four. Card tricks and probability

Part one explains how to apply the concept of card magic to learning prob-
ability theory. Developed with the assistance of a professional magician, 
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Ben Whiting, several card tricks are used as demonstration tools. This 
will only be the start of the opportunity for an interested instructor, as 
there are thousands of card and coin tricks dating back to 2000 BC.

Chapter two covers multiplication theory of probability using two card 
tricks to communicate and demonstrate the basic concept of statistical depen-
dence and independence. Chapter three discusses a subcategory of proba-
bility and uses a third card trick to demonstrate an event with probability 
of occurring less than winning almost any state lottery system. This one 
will demonstrate the math behind the theory. A fourth card trick called the 
“phone number” will be used to demonstrate the probability of randomly 
identifying a person’s phone number. Chapter four describes Bayesian statis-
tics. This relatively confusing and little-used technique in most industrial 
or process applications will be demonstrated by a coin trick and by other 
simplified examples. Hopefully, this chapter, helping with increased under-
standing of Bayesian statistics, will inspire increased use of this process.

At the end of Part one, some of the concepts of teaching probability 
theory by card magic will be available for teachers of mathematics, statis-
tics, probability, Six Sigma, or continuous improvement.

Part two: Chapters five through ten. Juggling and statistics

Part two covers basic statistical and continuous improvement concepts 
illustrated by the use of juggling. The concept of combining statistics and 
juggling is new to the math and science world, but some of the most cre-
ative educators and scholars are jugglers, including the inventor of the 
computer and a very famous US President.

Chapter five explains the basics of juggling—how to juggle—from my 
own workshop on the use of creativity and teamwork for juggling. This 
chapter will have limited math and science but is high on learning of a 
new skill or hobby. Chapter six covers the development of the normal dis-
tribution and standard deviation for the number of tosses to failure. This 
concept is the start of the mathematical modeling of the process of jug-
gling. Chapter seven discusses the basics of SPC as taught by juggling. This 
interesting/shocking method of measuring the process development of 
juggling will increase understanding of how to properly utilize SPC for 
continuous improvement. SPC will be developed for the number of tosses 
to drop as a simulation of process improvement. Chapter eight describes 
juggling and equipment reliability, specifically the use of the bathtub 
curve to explain the break-in period and the wear-out period using num-
ber of tosses to failure. Chapter nine explains a very basic DOE for the 
juggling process followed up with a very simple regression model based 
on the DOE. Chapter ten focuses on a card illusion using a 5-factor, 32-run, 
full-factorial DOE as the model. This card illusion will demonstrate the 
concept of full factorial DOEs for a large number of factors.



9Chapter one:  Learning: Make it interesting/shocking

Part three: Chapters eleven through thirteen. Experimental 
helicopter for continuous improvement

Part three will be on the use of the experimental helicopter for continuous 
improvement. The use of an experimental helicopter is not new, but its use 
to explain basic statistical concepts and advanced DOE with adjustable 
racks to modify the process during the experimental runs is new.

Chapter eleven will be on the use of the experimental helicopter to 
explain hypothesis testing and the ramification of excess variation on 
the traditionally difficult-to-understand Beta and Alpha errors. Chapter 
twelve utilizes the experimental helicopter to demonstrate one of the most 
powerful and underutilized Designed Experiments ever developed—the 
5-factor, 2-level, 16-run half-factorial DOE. Chapter thirteen focuses on 
the optimization process for an experimental helicopter after running 
the DOE in Chapter twelve.

Part four: Chapters fourteen and fifteen. Making 
data and statistics fun and interesting

Chapter fourteen puts it all together and starts the process of determining 
how best to utilize this method in a new education method—one that 
now has a concept of interesting/shocking added in, leading to a major 
increase in the URI Index.

The aim of this book is to not only cover all areas of statistics, data, 
and probability theory but to assist a new generation of instructors in uti-
lizing a set of effective techniques for data analysis, statistics, probability, 
and more recent areas such as Six Sigma or Lean Manufacturing.

It is my hope that using instructional methods such as juggling and 
card magic will lead to an increase in understanding of data and statistics, 
inspiring a generation of continuous improvement experts who otherwise 
would never have been found. Being inspired, this next generation will 
lead breakthroughs in advanced manufacturing, medical research, ser-
vice industry, information technology, or other areas.
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chapter two

The use of two very basic 
card tricks to explain 
probability theory

Objectives
•	 At the completion of this section, instructors should be able to utilize 

two very basic card illusions to explain the multiplication rule of 
probability theory.

The basics of the multiplication principle 
for probability theory
Let’s start with the basics:

	 × ×P(A B) = P(A) P(B|A) 	

Or standard written form: Given two events, what is the probability of 
both occurring in succession? Notice the verbiage: The first event precedes 
the second, or there is lack of independence between events. If both events 
are independent, the formula changes to the following:

	 × = ×P(A B) P(A) P(B)	

The second term changes to an independent event, such that it does not 
depend on the first occurrence (i.e., independent events).

The concept is used throughout equipment reliability, predicting pro-
cess efficiency, determining quality products output, etc. But, how hard 
is it to understand the difference between the two concepts? Let’s first 
utilize two simple card tricks to explain the concept. This will be followed 
by practical applications of the probability theory.
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Classroom activity 1: Teaching the multiplication 
principle by card trick—The aces and kings card trick
Before starting, procure a deck of normal playing cards and practice some 
very basic concepts with the students:

How many cards are in the deck? (52)
How many kings are in the deck? (4)
How many aces are in the deck? (4)

What is the probability of shuffling the deck and randomly pulling a king? 
This should be relatively easy as there are exactly 4 kings and exactly 
52 cards. It is 4/52 or roughly 7.7% or let’s call it 8%. Seems like a simple 
concept built on the concept of shuffling the deck and randomization. But 
what if this method could demonstrate the probability of two kings, three 
kings, or the extremely rare four kings followed by four aces?

The step-by-step mechanics of how a simple card 
trick can greatly enhance the learning process
Step 1: Preload the deck

Take the deck of 52 cards and prestack the deck with the four aces on 
top and the 4 kings at the bottom, prior to the in-class demonstration 
(Figures 2.1 and 2.2). For best effect, return the deck to the pack, although 
this step is optional.

Step 2: Bring up to the front a member of the class or audience

Bring up a member of the class or audience to perform the trick with you. 
This person can be randomly chosen, but make sure the candidate is able 
to shuffle a deck and has some familiarity with card playing and basic 
poker hands.

Step 3: Optional fake shuffle #1

Remove the deck from the pack and perform a fake shuffle. What is meant 
by a fake shuffle? Shuffle only the middle section of the deck, leaving the 
top four preloaded aces and bottom four kings in the same spot. This can 
be done as shown below in Figures 2.3 and 2.4. Split the deck in half and 
start by riffle shuffling the deck except the top 4–10 cards, leaving the 
top 4 aces in place. Drop the bottom 4–10 without shuffling, leaving the 
4 kings in place. This will give the impression that the deck was shuffled, 
which it was except the first and last 4–10 cards—the 4 aces and 4 kings 
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positions are not moved. This technique is almost impossible to detect 
by the students or the audience. Nonetheless, the trick can be done very 
effectively without this step.

Step 4: Strategically have the student cut the deck

After the optional fake shuffle, have the student cut the deck nearly in the 
middle of the deck. This step is critical to the execution of the trick. Best to 
state, “Because I am going to go through how to shuffle cards, it is best to 
cut the cards near the middle of the deck.” They must not cut the deck at 
the top four aces or the bottom four kings. This is rarely done, but it will 

Figures 2.1 and 2.2  Prestack turned over and as they appear to students.
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ruin the effect. At the end of this cut, the four aces will be on top of the 
student’s partial deck and the instructor will have the kings at the bottom 
of the deck, as shown in Figure 2.5.

Steps 5A–5D: The fake shuffle. Moving the four aces and 
the four kings to the bottom four on the table in what is 
believed are fully shuffled cards

Shuffling cards has a long history. The standard riffle shuffle was started 
only around the start of the century. During this next step, the instructor 
moves the four aces and four kings strategically to the bottom four cards 
on the table under the disguise of elaborating on the history of shuffling 
cards. Here is how it is done.

Figures 2.3 and 2.4  Standard shuffle and shuffle holding kings at the bottom and 
aces on top.
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Step 5A: Move your four kings from the bottom of the 
deck to the bottom of a new stack on the table

Explain the history of different methods used over the years of shuffling 
cards. The dialogue typically used is as follows: “We are familiar with 
the standard shuffling methods such as the riffle method or overhand 
method. I will get to those methods in a moment.” Early shuffling tech-
niques included such methods as just reversing the deck [this is when 
you and only you pull the bottom four cards from your stack to the table, 
creating a new stack (see Figure 2.6)]. This step is critical as the student 
cannot move her/his cards to mirror you, because their aces are at the top 
of their pile. The purpose behind this step is to move the four kings from 
your bottom deck to the new stack on the table while the student’s deck 
remains unchanged.

Figure 2.5  Cards cut with instructor’s kings at the bottom and student’s aces on top.

Figure 2.6  Moving kings from bottom of instructor’s half to new stack.
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Step 5C: Move the student’s stack with the four aces on 
top to her/his new stack

Your four kings have been moved to the bottom of the new stack. This posi-
tion is critical for the next step. But the student has not moved or created 
their stack. The next dialogue is critical to the student shifting their aces to 
their newly created bottom stack. The typical dialogue: “Another method 
of card shuffling utilized years ago was the reverse order technique. Very 
simply, reverse order the top cards—why don’t you do this with me.” At 
this time, you both move the top four cards from the top to the table—you 
with the cards on top of the four kings, while the student has started a new 
pile on the table with the four aces at the bottom (see Figure 2.7).

Step 5D: Shuffle all cards except the cards that have been 
placed on the table

This step is the easiest to follow but probably the most critical. We are 
going to waste some time and perform some steps that have no bearing on 
the trick. There is a concept used in product investigations that is a close 
analogy to this step: the longer the time that elapses after an event and 
the more events that happen between the investigation and the event, the 
less likely the event details are to be recalled. This next stage is designed 
to make the student forget that the entire deck was not shuffled (the four 
aces are at the bottom of the pile, while the four kings are at the bottom of 
the instructor’s pile). Both the student and the instructor will shuffle the 
cards remaining in their hands, leaving the cards on the table untouched 
and hopefully forgotten. Have the student take her/his remaining cards 

Figure 2.7  Moving the top four cards to the student’s new stack and the instruc-
tor’s existing stack of a minimum of four cards on the table.
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and perform conventional riffle and/or overhand shuffle on the cards. The 
student and instructor begin this activity starting independently. After a 
shuffle or two, give the student your instructor stack of cards and have 
him/her shuffle the two together. While the student is shuffling the deck, 
talk about the history of randomization, other card shuffling techniques, 
or any appropriate topic. The ideas once again are to make sure the stu-
dent forgets that the entire deck was not shuffled (i.e., the fake shuffle) as 
they will be shuffling all cards except those on the table, which have the 
four kings and four aces at the bottom (see Figures 2.8 and 2.9).

Figures 2.8 and 2.9  Shuffling the entire deck with the four cards on the table.
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Step 6: The fake shuffle continued

Once the cards are shuffled multiple times, have the student give you 
approximately half the cards back and both of you place the shuffled cards 
on top of the cards on the table. This step is one more full randomization 
exercise to seal the deal that the deck was fully shuffled when actually 
they never realized that the first four cards were never included in the 
shuffle. This step essentially creates an approximate half of deck for you 
with the kings at the bottom and the student with their half and the aces 
at the bottom (see Figure 2.10).

Step 7: Form four piles of cards on each side of the table 
from the two halves

In this step, create four piles from the single instructor pile, each with a 
king on top, and four piles from the student pile, each with an ace on top. 
Take the deck that they think was shuffled and begin dealing the cards as 
if this was a four-person poker game. Have the student join you, following 
your motions to deal out their own pile of cards into four piles. The four 
aces and four kings are now still at the bottom of the half decks. Have the 
student or someone in the audience shout out the number—one, two, or 
three. Place one, two, or three cards on each of the four stacks depending on 
the number shouted out. Do this for about one round making sure the bot-
tom four cards (the aces and kings) are not touched. At that point, stop the 
counting for time reasons and proceed to deal out the remaining cards, one 
at a time on top of the four stacks. This step moves the bottom four cards 
to the positions of the top card on the four stacks—the four kings for the 
instructor and the four aces for the student (refer to Figures 2.11 and 2.12).

Figure 2.10  Two piles complete on the table.
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At this point, the cards are set with the four kings on the top of your 
four stacks and the four aces on top of the student’s four stacks turned 
over facing down. The stage is set for the use of the probability theory and 
shocking finale.

Card trick finale: Using multiplication 
principle of probability theory
Start with the four kings. The dialogue for this section can be custom-
ized for each specific circumstance. Ask, “What is the probability of the 
instructor randomly turning over a king?” That was computed earlier—it 
is roughly 8%. The dialogue can be customized to the technical ability of 
the students or audience. After having the class agree on the probability 
of turning over a king, reveal one of the top cards, which will be one of 

Figures 2.11 and 2.12  Dealing the four stacks on the table.
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the four kings. Next ask the audience, “But what about a pair of kings after 
turning over the first king?” This follows the multiplication principle as 
this event has a conditional probability after turning over the first king.

	 P(A and B) P(A) P(B|A)= × 	

	
×P(A and B) = P(first king) P(second king given that the

first was exposed) 	

	
P(A and B) = 4

52
3
51

×
	

	 P(A and B) = .0045 or .54% 	

Not very large but possibly could happen. This is an excellent time to 
review other statistical probabilities. This probably is actually not outside 
a standard control chart upper or lower control limit. Great exercise com-
monly missed even by many experts in the field.

Typical examples of events that fall into this category might be as 
follows:

•	 Close but not there yet of a point outside the control limit on a statis-
tical process control (SPC) chart.

•	 The probability of hitting a specific color and number on a roulette 
table—wonder why so many towns now have gambling casinos?

•	 The probability of a typical hole in one on a putt-putt course—this is 
why they entice you with free follow-up rounds of golf if you get it 
in. Great payback for not much advertisement.

•	 The probability of being injured in a car accident this year.

Next, return to your card piles and turn over another king—it does not 
matter which one as they are all kings. This is where it starts to get shock-
ing. Turning over three kings is possible, but is it probable? Three kings? 
A rare event by the following multiplication principle. All these follow 
conditional probability as we are asking the probability of each event after 
new information becomes available.

	 = × ×P(A and B and C) P(A) P(B|A) P(C|A and B)	

	
P(A and B and C) 4

52
3
51

2
50

= .0002 or .02% or 2 out 10,000!= × ×
	

Finally, reveal the fourth and last king. What is the probability of four 
kings being pulled from a shuffled deck? Same logical path.
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P(A B C D) P(A) P(B given A) P(C|(A and B)

P(D|(A and B and C)

× × × = × ×

× 	

	

× × × = × × × =P(King King King King)
4

52
3
51

2
50

1
49

.0000037 or 3.7 per

every million opportunities 	

However, it is close to the probability of a defect occurring at a Six Sigma 
level with a one and a half standard deviation process shift.

The odds of getting beat
So far, this example has been on the kings or the instructor’s side of the 
four stacks. What about the other side? Remember now, the other side has 
the four aces on top. The student assistant and the audience do not know 
this. To solidify the deal for the multiplication principle, ask your stu-
dent, “What are the odds that you will beat me? 10,000 to one, 1,000,000 
to one?”

The multiplication principle is applied here for the audience to cal-
culate these odds. There are now only 48 cards unturned, but no aces 
have been exposed. So under the assumption that the deck has been 
shuffled, each card will be turned over independently, and the only 
hand that will beat the instructor is four aces. They just happen to be 
the top four cards of the student’s four piles. The odds of this happen-
ing are:

	

4
48

3
47

2
46

1
45

.0000051 or 5.1 out of a million× × × =
	

It is interesting to note that the odds of hitting four aces increase if your 
opponent also has four of a kind. That rule applies not just to four of a 
kind, but also to many other probabilities in card playing. Your hand is 
not an independent event but is determined by the other hands showing, 
and the odds of a pair, three of a kind, etc., can increase significantly if 
you are in a high stakes poker game and another pair shows up on the 
board. Odds of getting three of a kind increase even more when three of a 
kind are on the board. Those who understand the game of Texas Hold-em 
understand that your odds of three of a kind go up significantly, when 
other pairs show up on the flop.

At this point, have the student turn over their top four cards. If all 
steps have been followed, the top four cards are the aces. In a standard 
game of five card straight—no draw, they just beat your hand of the four 
kings.
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This will be the ultimate shock value and will significantly increase 
the “interesting/shocking” value in Robert Bjork’s method of adding to 
the memory storage.

This concept will work for lack of independence, but what about inde-
pendent events?

A card trick for teaching probabilities 
of independent events
What happens to the multiplication principle when the probability of the 
second event has nothing to do with the probability of the first event? This 
is called independence and changes the formula.

A review of the formula for dependence:

	 P(A and B) P(A) P(B|A)= × 	

or the probability of A times the probability of B given that event A already 
happened.

But if the probability of B has nothing to do with A occurring, the 
formula changes to:

	 P(A and B) = P(A) P(B)× 	

How to show the difference by card illusion
This is a classic trick first developed by Magician Dai Vernon and can be 
used for developing the concept of independence.

Step 1: Student selects and memorizes a card

No preload is required. This one is best done after the aces and kings trick 
(described earlier). Shuffle the deck and have the student remove a ran-
dom card and memorize it. Let’s call it the 6 of hearts for the remainder of 
this exercise (Figure 2.13).

Step 2: Deck split

Pull down the deck from the front, telling the student to stop at any point. 
When the student says stop, split the deck between your two hands at a 
stopping point (see Figure 2.14).
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Figure 2.13  Student removing random card from the deck.

Figure 2.14  The deck being split at approximate half way point.
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Figures 2.15–2.17  Returning the card to the top of the deck in left hand and cre-
ating what is called a pinky break.
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Step 3: Card insertion and pinky break

Have the student insert the card on top of the deck in your left hand. 
Hold a break with the left hand little finger above the position of the card 
inserted and replace the stack from the right hand on top of the break (see 
Figures 2.15 through 2.17).

Step 4: Moving the target card to top of the pile

Pull off cards multiple times (3–5 groups of 5–7 cards) onto a separate pile 
(Figures 2.18 and 2.19) until the finger break is reached, and drop the rest 

Figures 2.18 and 2.19  Off shuffling the cards down to the pinky break held card.
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of the pile on the new pile (Figure 2.20). This has the effect of moving the 
card just below the break—which was the card chosen by the student—to 
the top of the deck. 

Step 5: False showing of card to student

Perform a double lift on the top two cards. This is best accomplished as 
shown in the following pictures, and has the effect of showing the second 
card down. The student will think you are showing the top card. For this 
example, the top card is the 6 of hearts (see Figures 2.21 and 2.22 for how 
to perform a double lift). The card chosen and shown will be a random 
card from the deck—the second card down from the top.

Step 6: Reveal

Have the student take the top card, which is the 6 of hearts. When called, 
have them turn over their card just handed to them (Figure 2.23). This 
will add to the shock value of the process, as they should be convinced the 
card in their hands is not the 6 of hearts.

Step 7: Returning the target card to the deck

Have the student return the 6 of hearts to the deck while you hold a pinky 
break at the location they return it to (Figure 2.24).

Figure 2.20  Dropping the rest of the deck below the pinky break from the bottom 
half to the top of the deck on the table.



27Chapter two:  Probability theory—Two basic card tricks

Figures 2.21 and 2.22  The double lift with the 6 of hearts exposed.

Figure 2.23  The student holding what he/she believe is a random card but is the 
6 of hearts.
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Repeat Step 7 four times as a method of explaining the concept of 
independence. Each time, return the card to the deck in a random posi-
tion. Each time, pull the 6 of hearts. This is best done with four differ-
ent students, thus preventing a specific student from possibly seeing the 
pinky break or double lift.

Comparing dependent and independent events
The probability of revealing the first king is always 4/52 or 8%. What if we 
had shuffled in between draws, like we did in Activity 3? The probabil-
ity of drawing a second king is no longer .0045. It changes after the first 
card since the first draw was replaced and the deck reshuffled—therefore 
independent.

The probability of two kings when shuffling the deck in between 
draws (Table 2.1):

	
P(King and King) P(King) P(King) = 4

52
4
52

= .006 or .6%= × ×
	

	P(King and King and King) P(King) P(King) P(King) .00046 or .046%= × × = 	

	

= × × ×

= × × × =

P(King and King and King and King) P(King) P(King) P(King) P(King) 

4
52

4
52

4
52

4
52

.000035 or .0035%

Figure 2.24  The deck cut at the 6 of hearts with a pinky break.
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Reality check: How it works in operations
Two machines are running in series with uptime of 90%. What is the prob-
ability of making shipments today?

This follows the multiplication principle with total independence 
with the formula as follows:

	 P(A and B) P(A) P(B) .9 .9 .81 or 81% probability of running= × = × × 	

Two machines are running in series and they share power. The power 
is not clean and therefore is determined by how many units are run-
ning. The more the running units, the greater the probability of a shut-
down. Machine A has an uptime of .9, but machine B has an uptime of .8 
if machine A is running. What is the probability of making shipments 
today?

This is the multiplication principle with dependent events.

	 P(A and B) P(A) P(B|A) .9 .8 72%= × = × = 	

Summary and potential next steps 
for instructors and students
The multiplication principle is critical to understanding probability the-
ory. But, it is confusing and difficult for many first-time students to learn. 
Memorization will not help. Understanding of the process will aid in the 
students’ development.

Author’s note
In my experience, most attempts at teaching first-time students are an 
admonition to memorize the formula but not apply in their own work-
place. Remember this concept from the first chapter: The more “useful, 
relevant, and interesting/shocking” the concept, the greater it is burned 

Table 2.1  Comparison between the two methods

Not independent (card 
not replaced, the deck 
remains the same) (%)

Independent 
(replaced the card 
and reshuffled) (%)

One king 8 8
A pair of kings .45 .6
Three kings .02 .046
Four kings .00037 .0035
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into the brain storage. The greater the storage, the easier the retrieval. 
Critical in the applications for continuous improvement in the workplace 
either in manufacturing or in transaction, the stronger the storage, the 
greater the likelihood of use in a real-life application. The card manipula-
tion method not only aids in the learning of the concept, but also helps 
most students relate to the application in their own workplace. This has 
application for an entire manufacturing plant to a bank teller operation 
(compute the probability of a customer making it through the banking 
process when the transaction process involves waiting in line, bank teller 
computer wait time, printing receipt, etc.) to a single machine line opera-
tor. The computation can be used to compute uptime, project failure rates, 
rework operations, and for on-time shipments.

Chapter three will deal with a similar concept in probability and a card 
trick called the Phone Number developed by my colleague, Magician Ben 
Whiting. Before proceeding on, the foregoing concept is best covered in detail 
and trialed with family members or friends before a performance. By the 
third successful trial, the concept will be grooved in storage. As reviewed in 
Chapter one, the retrieval is strengthened by time delay between attempts 
and increased number of failures. Whichever way, the concept of recall and 
application will be strengthened for years by this method.

Bonus section: The process map
This section is done after the foregoing card trick. It is designed to 
strengthen the team-building process and investigation skills critical for 
product investigations.

What happened? This is a rare event. The odds of it happening are 
greater than 1 in 10 million (see Chapter three). What should we do next? 
Why did the rare event occur?

Students need to start the investigation process immediately, as time 
is the enemy of any process investigation. As a first step, create a flow 
chart of the process from beginning to end (Figure 2.25).

A process developed from the author’s courses on how to perform a 
deep dive investigation after the flowchart begins with the question: What 
are the likely suspects at each step in the process? This is the first of two 
steps in the failure mode and affects analysis development. How likely 
did the step cause the rare event, and if it did, what are the odds that it 
caused the outcome?

Step 2—develop table and assign likelihoods to the events with the 
class (Table 2.2).

Recreate the highest probability of events. This should simulate 
the investigation process resulting in the recreation of the event. At the 
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�e aces and kings flow chart

Remove deck from
box. No issuses here.

Instructor shuffles
deck. Or did she?

Student told to cut
the deck but in

half? Why?

Student and instructor both
reverse shuffle from

bottom or deck? Or did
we?

Student and instructor
both reverse deal from

top. Why?

Student and instructor both
riffle shufffle the entire deck.
Wait a minute, no we didn’t!

Student and
instructor both make

four piles of cards.

Student and instructor both
deal cards in two to three at a

time. But not all of them?

Student and instructor
both deal out the last 4–10 

cards in succession.
Why?

�e instructor turns
her cards over one at

a time.

Student then turn
their cards over at

once.

Figure 2.25  The flowchart of the aces and kings card trick.

Table 2.2  Typical ranking of each step in the process

Event Likely to happen

Likely that it 
caused the 

kings and aces 
on top

Probability that 
it was culprit

Never shuffled the cards 
at the start

.1 .1 .01

The instructor somehow 
switched the cards 
around

.001 .1 .0001

The instructor did not 
shuffle all the cards—
just some

.9 (we know now 
after the flow chart)

.9 .81

The student did not 
shuffle all cards—just 
some

.9 (we know now 
after the flow chart)

.9 .81

The cards were at the 
bottom of the 
instructor’s deck all 
along

.5 .9 .45

It was a fake deck. There 
were only aces and 
kings in the deck

.1 .1 (even if it was, 
how did she 
keep the cards 
separated)

.001
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completion of this step, this should simulate a typical five why’s investiga-
tion process and provide an interesting and informative process to teach 
most investigation methodologies.

Summary and next steps
Used properly, this concept will solidify the area of multiplication theory 
of probability. But more important, by shock value of the card trick, prob-
ability will be grooved into the memory much deeper. This will lead to an 
increase in long-term recall.

Bibliography
Chen, Bill; Ankenman, Jerrod, The Mathematics of Poker, 14–16. 2006, ConJelCo 

LLC, Pittsburgh, PA.
Hays, William L., Statistics, 5th Edition, 130–135. 1986, Holt Rinehart and Winston, 

Inc., New York.
Menenhall, William; Reinmuth, James E.; Beaver, Robert; Duhan, Dale, Statistics 

for Management and Economics, 5th Edition. 1986, PWS Press, Boston, MA.



33

chapter three

Combinations and 
permutations by card magic

Objectives
•	 Review the concept of combinations in probability theory.
•	 Utilize the “phone number” card trick to demonstrate the concept of 

combinations.
•	 Understand how to apply combinations in the mathematics of poker 

and other games.

Overview
This chapter will expand on a specific area of probability—combinations. 
Many times utilized in introductory statistics courses, this section will 
utilize two additional card tricks to explain combinations. Once properly 
demonstrated, this concept will likely be remembered for a lifetime.

The concept of combinations and the phone 
number card trick
The following is a very simple and traditional computation example. 
There are three offices to be elected at large. Five people are on the ballot 
for the positions. In how many different ways can three positions be filled 
from the five candidates? Notice order does not matter, meaning there is 
no “first” or “second” position.

The solution follows the combinations formula.
Number of combinations irrespective of order is

	

N
r N r

!
! !( )( )− 	

So in this very basic example, the number of combinations, or ways to fill 
three positions from five candidates, is

	

5!
3!(5 3)!

(5 4 3 2 1)
(3 2 1)(2 1)

10
−

= × × × ×
× × ×

=
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This example, or others very close to it, is the base example used in most 
introductory textbooks. Is it useful—does it have the ability to be used for 
a practical purpose? Probably. Is it relevant—is it closely connected to the 
matter at hand? Depends on the application, but likely. Is it interesting/
shocking—does it arouse curiosity? Not really.

Go back to Chapter one, and recall the concepts of memory storage: 
Useful, relevant, and interesting/shocking. The higher the index value of 
the three, the higher the memory storage and the better the long-term 
retrieval. Useful and relevant. Maybe a 6 for useful and 4 for relevant, but 
for interesting/shocking? Maybe a 1 at best, unless the students are all 
running for office. Let’s use a card trick, introduced for teaching by magi-
cian Ben Whiting, to demonstrate the concept and make this area more 
interesting and more memorable, thus improving the retrieval process. 
This trick will be called the “phone number” card trick. The concept of the 
phone number will be explained in the second half. The first exercise will 
be for poker play—specifically the odds of a flush hand in five-card poker.

The mathematics behind a flush in poker
What is the probability of a flush in a five-card no-draw poker game? For 
those unfamiliar, in a standard deck of 52 cards, a flush is being dealt 
5 cards all the same suit. Example: 5-2-3-7-king of spades. Notice that 
order does not matter, and unlike Chapter two, since we are asking before 
the cards are turned over one at a time, the concept of conditional prob-
ability does not apply.

In a legal and fully shuffled deck of 52 cards, how many unique com-
binations of 5 cards are there? This follows the combinations formula:

	
Number of 5 card combinations = 52!

5! 52 5 !
2,598,960( )−

=
	

If all hands are random, a specific hand probability is approximately 1 out 
of 2,598,960 or about 4 in 10 million. Any specific hand is a very rare event.

As previously stated, a flush is a hand with all cards the same suit. 
There are exactly 4 suits, and so a flush contains 5 of the 13 cards in a suit. 
The number of different flushes follows closely the combination formula:

	

N
r N r

Combinations within a given suit !
( !)( )!

13!
5!(13 5)!

1287=
−

=
−

=
	

But there are four suits. Consequently, there are 1287 × 4 possible ways to 
get four cards all the same suit.

	 1287 4 5148× = 	
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The probability of being dealt a flush in a game of five-card straight is

	 5,184/2, 598, 960 or .002 or 2 chances out of a thousand 	

It is interesting to note that this is very close to the break point on a typical 
statistical control chart for an out-of-control condition. This will be cov-
ered further in Chapter seven, but there are many parallels between sta-
tistical process control, Six Sigma, the probability of rare events, and odds 
that show up in the often more familiar world of poker playing. When 
trying to explain the concepts of statistics to a sales manager or CEO (typi-
cally not familiar with the concepts of statistics), try explaining in terms 
of card playing or something more typical that they are used to in the 
real world. I have found poker hands to be more interesting and useful 
to illustrate the probability of an event than using examples such as the 
number of combinations of three candidates from five running for office.

Classroom activity 3.1: The poker hand flush by 
the “phone number” card trick
When fully practiced and utilized, the two card tricks that follow (which 
require minimum technical skill) are effective techniques to illustrate the 
concepts of probability. Since they are more interesting than typical class-
room examples, they will also be easier for students to remember.

Step 1: Start by stacking a standard deck similar 
to examples in Chapter two

Start by stacking a standard 52-card deck in the following manner.
Take any flush combination and turn them facedown and then turn 

the rest of the deck face up. In a game of standard poker, a five-card flush 
is all cards dealt that are the same suit. Refer to Figures 3.1 and 3.2.

Place the stacked deck in the box. The next step is a trick designed to 
convince the students that they shuffled and cut the cards when actually 
they are only shuffling down to the last five cards in the deck.

Step 2: Placebo shuffle by students

Have three or four students randomly chosen for this exercise. It would 
be best if they are in front of you as if being dealt cards at a poker game.

Pull the cards from the case with the five flush cards facedown and 
the rest face up on top of the deck.

Deal out 6–10 cards to each person to shuffle. Make sure the bottom 
five cards (the flush) and, at a minimum, the one to five cards on top of the 
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five cards at the bottom are not passed out (Figure 3.3). Have the students 
shuffle the 6–10 cards handed to them.

After the first student to your left fully shuffles the first group, take 
those cards, turn them facedown, and place them at the bottom of the 
deck. It is critical that they are placed facedown, facing the same way as 
the hidden flush cards and opposite to the rest of the cards in your hand. 
Immediately, take the remaining cards in the deck down to the five flush 
cards (which will be the next cards facing down) and have the first stu-
dent finish shuffling the last of the cards (Figures 3.4 and 3.5). Typical text 

Figure 3.2  The deck reversed for viewing purposes.

Figure 3.1  The preload setup: the flush turned over at the bottom of the deck.
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Figure 3.3  Dealing the first section.

Figures 3.4 and 3.5  The shuffled cards from the first person turned over and 
placed at the bottom and dealing out the remaining cards down to the flush to 
the first person.
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at this point might be: “oh here first student, please take and shuffle the 
rest of the deck.” This step is critical as it provides the image of the entire 
deck being shuffled when in fact the last five cards are not shuffled. This 
step only involves the first student. At this point, the flush is on top of the 
facedown cards, which gives the image the entire deck was shuffled, but 
it was not.

Take the remaining cards that have been shuffled by the other two to 
three students and place their cards at the bottom of the deck facedown 
(Figures 3.6 and 3.7). Now all cards in your hand are facing the same way. 
Take the last 6–10 cards from the student who has them and place them 
at the bottom as well—this student shuffled two sets of cards. This has 
the effect of taking all the cards except the prestacked flush, which is now 
on the top of the deck (Figure 3.8) and can be dealt out to the student 
(Figure 3.9).

Figures 3.6 and 3.7  Returning student-shuffled cards to the bottom of the deck.
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Step 3: Determining probability of flush and revealing the flush

The rest of the trick is all demonstration skills. Typical dialogue used for 
this section is: “What are the odds of being dealt a flush? What are the 
odds of not getting a flush?”

Compare the odds to comparable real-life events. What are the odds 
of a typical highway accident? What are the odds of an out-of-control 
point on a control chart?

Some other comparable tricks in computations that can be used by 
this method include the following:

	 1.	Stack the deck with a straight flush (a straight flush is all the same 
suit and the cards in order, such as 4-5-6-7-8-9 of clubs). What 
are the odds of a straight flush, and how would it be computed? 
The probability? .00001539. This one is relatively easy to compute 

Figures 3.8 and 3.9  The flush is now on top of the deck and in the student’s hand 
when dealt.
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as there are only 10 possible straight flushes per suit and four suits 
for a total of 40 possible combinations. Utilizing the same five-card 
combinations for a deck of 52 as used earlier (2,598,960) provides the 
probability.

	 2.	For a relatively easy but interesting demonstration, prestack the deck 
with 10 cards, alternating two five-card straight flushes (Figures 3.10 
and 3.11). Follow the same procedure, but at the end take two stu-
dents and deal out every other card to those two students. Each will 
have a straight flush. Walk through the odds of two straight flushes, 
and then have the two students turn over the cards to reveal the 
odds. The odds of this happening are less than most national lottery 
systems. This can be computed using the multiplication principle 
from Chapter two and from the odds of a single flush. Approximate 
odds: .000004 or very close to the odds of a defect at Six Sigma levels.

Figures 3.10 and 3.11  Stacking the double flush and final deal of the double 
straight flush.
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Classroom activity 3.2: Phone number card trick to 
elaborate on the concept of combinations–permutations
Let’s take a typical long number combination in which order is critical 
and use this to demonstrate how rare events are possibly computed.

Take a fully shuffled deck of 52 cards. Take a student’s phone 
number—for this next section, I will use 564-203-1789. If each number 
is represented by a card number (the queen will represent the number 
“0.” Look closely at the queen’s letter q on all queens in the deck, and it 
looks just like a “0”), what are the odds that in a fully shuffled deck, the 
dealer will deal out your phone number? Interesting question—seems 
very remote.

Unlike the previous example with dealing a flush, the distinct order 
of the cards being revealed does matter. Consequently, the formula for 
combinations is modified and becomes what is called permutations:

	
Number of 10 card combinations 52!

(52 10)!
5.7 1016=

−
= ×

	

So, are the odds 1 out of 570 quadrillion? Close, but there are four suits for 
each card.

The number of 10-number phone number combinations in a deck of 
52 cards by the combinations formula and modified for four cards per 
each suit is:

	 −
= × × = ×52!

(52 10)!
5.7 10 4 suits 2.2 10  or 1 out of 2.2 quadrillion!16 15

	

A rare event by any account!
Notice the difference between this and the first example with the 

flush. Being dealt a hand of 2 of hearts, 4 of hearts, 8 of hearts, 9 of 
hearts, and 5 of hearts is the same as 2 of hearts, 5 of hearts, 8 of hearts, 
4 of hearts, and 9 of hearts. The phone number requires a distinct order 
to the cards. Being dealt a 10-card combination that could be rearranged 
into the correct phone number is a much different odds—but still very 
rare.

Step 1: The phone number card trick: Stacking the deck

Stack the deck with a student’s or your phone number—this method will 
work with any unique set of numbers that does not have a repeated digit 
more than four times. Once again, for this example, we will use the phone 
number 564-203-1789 (Figure 3.12). For added effect, take the phone with 
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the number and place it in a closed bag in the middle of the classroom or 
some unique location. The reason will be shown at the end.

Step 2: Fake shuffle the phone number from the bottom of 
the deck to the top

Repeat Steps 1 and 2 of Activity 3.1 (the flush trick) through Figure 3.8 
stopping with the phone number on top of the facedown deck. The cards 
should appear as shown in Figures 3.13 and 3.14.

Add in the additional steps to give the image of not only shuffling the 
deck, but also cutting the deck.

Step 3: False cut of the deck

At the end of Step 2, the phone number should be the top 10 cards of the 
deck. Notice that if you want, just like the flush in the prior example, the top 
10 cards can be dealt out in order. But to solidify the illusion that the cards 
are truly randomized, add the following steps. For these next steps, it is best 
to procure a deck of cards and perform each step.

Step 4: The first random cut

Have a student cut the deck removing approximately the top half, using 
the statement “it works best if you cut near the middle” (Figure 3.15). That 
statement is added to ensure the deck is not cut at the top 10 cards, which 
is the phone number.

Figure 3.12  The bottom stack of the phone number.
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Step 5

Take approximately half the deck from the student; return it to the deck 
flipped over on top, that is, now facing up (Figure 3.16). This is a critical 
step easily missed—the cut portion must be returned to the top of the 
deck facing up. The phone number will be facing up at the bottom of the 
half deck but just placed on the deck out of clear view of the student.

Step 6

Have the student cut the deck a second time. This time, use the statement, 
“take a really deep cut.” The next cut must be below the top half of the deck 
between the top half and the bottom of the deck. That statement almost 

Figures 3.13 and 3.14  Image of the deck shuffled when the top is the set up phone 
number.
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guarantees the cut will be below the top half. If in the extremely rare incident 
the student takes a cut on the top half in the section cut in Steps 4 and 5, have 
a second deck available hidden, and restart the complete trick over. Again, 
this is an extremely unlikelihood if told to “take a deep cut.”

Take the cards from the student, turn the cards over, and replace on 
top of the deck (Figures 3.17 and 3.18). This has the effect of two halves of 
the deck facing in opposite directions. The bottom three-fourths of the 
deck is facing down, and the top 10 cards in the bottom three-fourths of 
the deck are the phone number cards.

Step 7

At this point, the top 5–20 cards will all be facing up and the rest facing 
down. The top of the facedown cards is the phone number. Throw off the 
top cards facing up, and discard them away from you (Figure 3.19). They 
are not needed for the remainder of this illusion.

Figures 3.15 and 3.16  Cut the deck, flip the top half over, and return it to the top 
of the deck.
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Figures 3.17 and 3.18  Cut the deck at the three-fourths point, flipped over, and 
returned to the top of the bottom.

Figure 3.19  Remove top cards down to the first face card (arrow) and discard.
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Count the top 10 cards from the top of the cards facing up (see arrow 
in Figure 3.19). After you have thrown off the cards facing up, these will 
be the top 10 cards and the phone number in order (Figures 3.20 and 3.21).

Step 8: Reveal the phone number

The rest is dialogue and can be customized to the specific situation.
Have one student read off the card numbers to you and transpose 

to a white board. The only issue with the dialogue might be to convince 
the students that ace is the number one and a queen is the number zero. 
Typical dialogue:

What number does the ace best represent? This should prompt the num-
ber 1. As an alternative: how many spades, diamonds, clubs, or hearts 
(depending on the card chosen) appear on the card? That will be one.

Figures 3.20 and 3.21  The phone number.
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For the queen. What number looks most like the queen? It will almost 
always be the number zero—look closely at the letter Q, and notice 
the resemblance. If there is any difficulty in this step, change the 
question to a leading question—does this card look like a zero more 
so than any other card?

Have someone dial the phone number. If it is in the room in the concealed 
location, the shock value will be significant. Answer the phone with “the 
odds of this happening are 1 in 100 trillion.” Then work through the for-
mulation on the board. The shock value will be heard throughout the 
building.

Special notes concerning this trick: The example phone number had 
10 unique numbers. This illusion works up to four repeats, which is most 
phone numbers. If there are four nines in the phone number, use the four 
nines of the four different suits.

If for some reason this does not work or a card is returned to the 
wrong spot, have a backup deck hidden ready to start the trick over again. 
For those familiar with the concept behind Failure Mode and Effects 
Analysis (FMEA), a card returned to the wrong spot would be a very high 
level on the Risk Priority Number scale.

The phone number trick and “useful, 
relevant, and interesting/shocking?”
The previous two card tricks are designed primarily for one reason—
to increase how interesting it was to learn about probability. Recall the 
theory of useful–relevant–interesting/shocking; the more the combined 
value of the three, the more it will be stored in memory. Using a shocking 
trick likely moves the combined index up significantly. Why? It is in the 
last of the three—interesting/shocking. Try this test—have the students 
compute the odds of a rare event using either combinations or multipli-
cations 1 week later. Notice the recall. Try it again, 1 month later. The 
results will be surprising.

Other card tricks to be used with 
probability theory

•	 A random student’s driver’s license number
•	 The number π to seven significant digits (3.1415926)
•	 The phone number for the University Chancellor
•	 Three standard deviations to seven digits
•	 The address of the US White House.
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A follow-up team exercise for students or 
in a continuous improvement class
This is a rare event that should not have happened. It did not happen by 
chance. In a real-life situation, this was a special cause of variation. In a 
manufacturing operation, this is a once-in-a-lifetime opportunity to sig-
nificantly improve a process.

In work teams of 2–5, take the process from start to finish and draw 
a flowchart on a white board. For examples of how to make a flowchart, 
see the reference in the bibliography. Assign probability of failures at each 
step of the process. What are difficulties in recall? What are the difficulties 
in determining probabilities?

When the failure analysis is completed, reenact the card trick. Who 
can determine how it was done?

Author’s notes
Properly executed, the phone number or poker hand combination works 
for memory retention as most of all my past students still remember this 
exercise. Several students have come back later and computed on their 
own other rare events in game theory, gambling, and so on. Replacing a 
standard academic exercise with this method will likely break the resis-
tance to learning a new and different area.

Some cautions and recommendations from past classes:

•	 This exercise takes practice as it is easy to forget steps. Best to prac-
tice 50 times and a minimum of 10 without failure.

•	 This is an excellent time to get creative. If the phone number is uti-
lized, it does not have to be your own. A concept used by magicians 
caused “forced randomization” that can be utilized to convince the 
audience that a certain student was picked by luck when in fact they 
were chosen out prior to class. Prearrange to have a relative or friend 
available at that time. Use that person’s phone number for the exer-
cise and have the student call that number. This is shocking as the 
student and participants in class do not believe they were part of it.

•	 This can and should open up an entire discussion on how to com-
pute probabilities in other areas of interest. Probability in the sport of 
baseball is an excellent use of the multiplication principle and com-
binations. The students should be able to compute the odds of many 
other poker hands such as a full house, three of a kind, etc., as they 
are a natural continuation on the abovementioned methodology. 
Moreover, they are also generally more interesting than computing 
how many positions can be held by 3 candidates from 10 people.
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chapter four

Bayesian statistics 
When accurate past information 
shortens the distance to the aha moment

Objectives
•	 Review of the basics of Bayesian statistics.
•	 How to utilize Bayesian statistics in many practical applications.
•	 A simple coin trick to utilize in the explanation and teaching of 

Bayesian statistics.

At the start of the 2016 baseball season, the Kansas City Royals were the 
odds-on favorites to win the World Series. Just coming off of winning the 
World Series in 2015, they were the team to beat. But, something happened 
as the team went through the season. Their star player hit a batting slump. 
Injuries to key players mounted. A less than 0.500 winning percentage by 
mid-May began to lower the odds of them making the playoffs, let alone 
wining the World Series. As the season went along, the odds of them win-
ning the World Series dropped significantly based on the new updated 
model.

A manager of a sporting goods store in Kansas City orders Kansas City 
Royals jerseys by the thousands based on his projection of them reaching 
the playoffs and winning the World Series. As the season slumps, his pro-
jection is updated, thus lowering the Kansas City Royals jersey orders.

The local civic theater manager orders concession food and programs 
for an upcoming show based on the preview of audiences from other cit-
ies. After the first night, the local critics give a not-so-glamorous review. 
The expected sales are reduced by 20% for concession sales and programs.

Welcome to the work of Bayesian statistics. In all three of these sce-
narios, probabilities are altered based on new information. The updated 
probabilities are referred to as prior probabilities, which will be altered by 
new information. Knowing how reliable the new information is improves 
the new projection, because many times, an estimate of reliability has to 
be made of the new information.

Bayesian statistics was primarily attributed to Reverend Thomas 
Bayes (1702–1761). By all accounts, he was a successful mathematician who 
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used mathematics and the evidence around him to study the existence 
of God. Reportedly, he felt his work was too controversial for publication 
and therefore he never published. He died never really knowing how 
popular his theory would become. It was eventually used to change the 
outcome of WWII, is used in hundreds of court cases, and started a fire-
storm of controversy in a Parade Magazine article written by Marilyn Vos 
Savant on the now famous Monty Hall door problem. Users of the theory 
started the International Society of Bayesian Analysis that is still growing 
200 years later.

What is Bayes’ formula?
This will be shown by a very basic example from an article published in 
the New England Journal of Medicine in 1978. Suppose you are tested for a 
rare disease that occurs in the population at 1%. Also, the test result is 95% 
accurate. This means that if you have the disease, the probability of receiv-
ing a positive test result is 95%. If you do not have the disease, the prob-
ability of receiving a positive result is 5% (100%−95%, in this example). If 
you get a positive test result, how likely is it that you have the disease?

•	 95%
•	 85%
•	 16%

Sixty doctors at four Harvard Medical School teaching colleges were 
asked the question. Only 11 answered it correctly. So what is the answer?

16%

When teaching a Six Sigma course and showing the example, a student 
asked me “why it was not 95%?”

We will walk through two ways of computing the correct answer of 
16%, but first let’s do it with Bayes’ formula.

The confusing formula

	

×
× ×

P(A given B)=
P(B given A) P(A)

P(B given A) P(A)+P(B given not A) P(not A)	

Seems messy until you plug in the numbers.
Plug the numbers into the formula and work through it.

•	 P(A given B) =  the heart of Bayes’ formulation. What is the probabil-
ity that I have the disease given the positive result?
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•	 P(B given A) = the more typical posterior statement. Given you have 
the disease, what is the probability it will be found? In this case, it 
will be 95% or the accuracy of the test. Notice the difference in word-
ing between P(A given B) and P(B given A). The first is the prob-
ability that I have the disease given the test results; this one is given 
that I have the disease, how likely will it be found. Two different 
statements.

•	 P(A) = the probability that I have the disease. That is only 1%. Notice, 
how critical this number is in Bayes’ formula? The rarer the event, 
the more it affects the outcome.

•	 P(B given not A). This is the probability of being diagnosed with the 
disease, given you do not have it. For this example, we will use 5%, 
although this does not have to be the compliment of P(B given A).

•	 P(not A). This is the probability that you do not have the disease, or 
in this case, 100%–1%, or 99%.

Plugging in the numbers, it works out like this:

	 = ×
× + ×

=

P(that you have the rare disease given that you

tested positive) .95
.01

(.95 .01 .05 .99)
16%	

Interesting? If you get diagnosed for a rare disease by a testing method 
that is not perfect, don’t panic—you probably do not have it. So why is it 
not 95%? Notice Bayes’ formula consists of two error components: How 
accurate the test is and how rare the disease is. Take the extreme case. 
A biologically born woman has a full lab bloodwork, and comes back with 
a positive prostate-specific antigen test for prostate cancer. Ready to go in 
for prostate surgery? Probably not as the P(A) is now zero and working 
through Bayes’ formula it works out to zero.

So, the top line of Bayes’ formula P(B|A) × P(A) is really just the com-
bination of the accuracy of the test and the historical data of the prob-
lem or the reason I was being tested. The first part of the denominator is 
the repeat of the above P(B given A) × P(A) plus the second component 
P(B given not A) × P(not A). The second part of that denominator is the 
probability of being tested positive if I do not have the disease multi-
plied by the probability that I do not have the disease. Notice the greater 
the difference between the numbers, the lower the Bayes’ formula or the 
probability that I have the disease. By formula, what lowers the outcome? 
The more inaccurate the testing, the rarer the disease. If both are poor 
(as in the earlier case), the likelihood is low, even if given a positive test. 
If it is a common disease with a very accurate test, the better probability 
that you have it (e.g., the common head cold). Also, notice P(A) or the 
probability that you have the disease, in this case 1%, changes with new 
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information. If P(A) is 1% on the first test, it changes to 16% on the second 
test, when you take your positive test to a new doctor for a second opin-
ion. New information changes Bayes’ formula. This one can be changed 
based on subjectivity—but be careful. If the second test is positive and 
the test is for prostate cancer in a biologically born female, it still can’t 
happen and zero is still zero. But if the lab calls up with a positive test for 
a biologically born male with breast cancer, the prior probability is that it 
is not zero. In an industrial setting, imagine a customer calls up and says 
the part spec is 10 mm ± 1 mm, but they just checked a part and it was 
8 mm. You say that we have never had it happen that low, the probability 
is zero, and that it must have been someone else’s part. Correct or not? 
Probably not true, unless there was perfect evidence that the part could 
not physically have been produced at that level—i.e., beyond the means 
of the die dimensions. Notice how this one can be subjective and many 
times be wrong. Gut feel never trumps evidence as we will see in a fol-
lowing coin trick example.

How does it work? Back to the prior problem. The first outcome is 
a 16% chance that I have the disease. What if a second test is taken to 
the same lab (notice that does not change the 95% test accuracy) and the 
results come out the same? Seems like a sure shot now that I have the 
disease—using the multiplication formula from Chapter two and assum-
ing the lab accuracy did not change; should it be 1 – (.05 .05) or 99.75%?×

Returning to Bayes’ formula for the second test and the four critical 
calculations making up Bayes’ formula:

•	 P(B|A) =  .95. Unless the lab changed or they changed their instru-
ments, this one is constant at 95%.

•	 P(A) =  .16. Notice this was 1% based on historical information, but 
changes with new information. After the first test was positive, we 
now utilize the prior outcome from the first Bayes’ formula. In other 
words, we now expect going into the second test that the patient has 
a 16% chance of having the disease.

•	 P(B given not A). This one does not change. This is still related to the 
accuracy of the test and in this case is still 5%.

•	 P(not A). This part changes with new information. For the second 
test, it is 84% (complement of 16%).

Working through Bayes’ formula on the earlier information:

	

P(A given B) P(B given A)
P(A)

P(B given A) P(A)

P(B given not A) P(not A)

= ×
×

+ × 	
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	 P(A given B)
(.95 .16)

(.95 .16 .05 .84)
78%= ×

× + ×
= 	

Wait a minute. Even after the second positive test result, there is an almost 
one in four chance that I still do not have the disease. Still correct, as it was 
a rare disease and the test was not very accurate. One more test to prove 
beyond reasonable doubt. The third test by Bayes’ formula, now using 
78% as our prior probability:

	
P(A given B)

(.95 .78)
(.95 .78 .05 .22)

98%= ×
× + ×

=
	

Still there is a 2% chance of being totally wrong even after the third test. 
Only after the fourth positive result, does it start to approach reasonable 
odds that I have the disease (Table 4.1).

We discussed that having a low accuracy test, as well as testing for a 
rare disease, contributed to a relatively low chance of actually having the 
disease, given a positive test. How will those numbers chance with a more 
accurate test, or a more prevalent disease?

First, what happens if the instrument was recognized poor at best 
and was replaced? What changes in Bayes’ formula if the instrument (and 
accuracy) was changed? (Table 4.2)

Table 4.1  Summary of test results with gauge accuracy of 95%

Test result with 
accuracy of 95%

Probability that 
I have it (%)

First test Positive 18
Second test Positive 78
Third test Positive 98
Fourth test Positive 99.9

Table 4.2  Summary of test results with gauge accuracy of 98%

Test result with 
gauge at 98%

Probability that 
I have it (%)

First test Positive 33
Second test Positive 96
Third test Positive 99.9
Fourth test Positive 99.9999
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Second, what happens if the prior disease was not so rare? Let’s take 
the same poor instrument and change the prior information. Say our best 
guess is that the disease happens not at 1% but at 5% or 20%. How does 
that change the outcome of the first test? (Table 4.3)

Classroom activity 4.1: Coin trick to explain 
Bayes’ theorem and illustrate the problem 
with subjectivity in prior knowledge
This is an excellent example of the use of an easy coin trick to explain 
Bayesian statistics and the problem with subjectivity or opinions entering 
into prior knowledge.

Procure a two-headed quarter for this exercise.*

Step 1: Setup and identifying the two-headed quarter

First is the setup by the instructor. The weight of the two-headed quar-
ter is different from a normal quarter. With about 2 min of practice, the 
weight of the quarter can be detected in the instructor’s hand. Being able 
to detect the difference is critical to this next step but very easy to learn 
(Figure 4.1).

Step 2: Pass out quarters and flip three times

Take three quarters out, one of which is the fake two-headed quarter. Mix 
up the coins in a jar or any item giving the impression that the coins are 
totally mixed up. Pull out each quarter individually from the jar pass-
ing them to three students—one of which will be the fake quarter, and 
you and only you will know which one has the fake quarter. Inform the 
three students that one of the coins is fake and that the other two are real. 
Make sure they do not inspect the coin! They do not know which one is 

*	 To purchase two-headed coins, visit: http://www.twoheadedquarter.net/.

Table 4.3  Summary of test results with gauge 
accuracy 95% and prior history of disease

History of 
disease (%)

Probability that 
I have it (%)

First test   1 16
First test   5 50
First test 20 82

http://www.twoheadedquarter.net/
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fake just that one of them is two-headed. Only you know who has it by the 
weight. Ask the one with the fake coin to flip the coin three times—which 
will come up all heads. The question to ask the students is this: Given 
your knowledge of the instructor, what is the probability that the coin just 
tossed, which came up heads three times, is the fake two-headed coin? 
This is a classic Bayesian statistics problem as the outcome to the ques-
tion depends on the strength of our prior belief that the instructor knows 
which coin is the fake coin and which coin the instructor chooses.

It all depends on your prior belief that the instructor chose the coin 
randomly, chose the fake coin, or chose the real coin. Let’s work through 
each scenario separately.

Scenario 1. I don’t think the instructor had prior knowledge; 
the coin was randomly chosen

Working through the formula:

	

=

×
× + ×

P(A given B) P(B given A)

P(A)
(P(B given A) P(A) P(B given not A) P(not A))

	

•	 P(B given A) = probability that I will get three heads given it is the 
fake coin. That is equal to 100% or 1 as it has to come up with three 
heads.

•	 P(coin was fake) = this one changes with your belief that the instruc-
tor knows which coin is fake. In this scenario, we do not think the 
instructor had prior knowledge—in this case, it is 1/3, as the coin 
was randomly chosen from three possibilities.

•	 P(B given not A) = this is the odds by the multiplication formula that 
if the coin was not fake but real, then we could get three heads. This 
is × × =1/2 1/2 1/2 1/8.

Figure 4.1  Two-headed coin.
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•	 P(not A) = this is the probability that it is a real coin and not the fake 
coin, or 2/3.

	

P(fake coin given three heads)

P(three heads given fake coin) P(fake coin)
P(three heads given fake coin) P(fake coin)

P(three head given not the fake coin) P(not the fake coin)

=

×
×

+ × 	

	
P(fake coin given three heads)

(1 1/3)
(1 1/3) 1/8 2/3

4/ 5 or 80%( )= ×
× + ×

=

Scenario 2. I think the instructor had prior knowledge 
and chose the person with the fake coin

	 ( )= ×
× + ×

P(A given B)
P(B given A) P(A)

P(B given A) P(A) P(B given not A) P(not A) 	

•	 P(B given A) = probability that I will get three heads given it is the 
fake coin. This one does not change based on my prior knowledge.

•	 P(coin was fake) = this one changes with your belief that the instruc-
tor knows which coin is fake. In this scenario, we believe very 
strongly that the instructor knows which coin and chose the person 
with the fake coin. This is the extreme case and is 100%, but based on 
the posterior knowledge of getting three heads.

•	 P(B given not A) = this is the odds by the multiplication formula that 
if the coin was not fake but real, then we could get three heads. This 
is 1/2 1/2 1/2 1/8× × =  and did not change.

•	 P(not A) = this is the probability that it is a real coin and not the fake 
coin. In the extreme case, this is zero based on our opinion that the 
instructor knows which coin is fake.

	 P(fake coin given three heads)
(1 1)

(1 1) 1/8 0
1 or 100%( )= ×

× + ×
= 	

Scenario 3. I think the instructor had prior knowledge 
and chose one of the real coins

	
( )= ×

× + ×
P(A given B)

P(B given A) P(A)
P(B given A) P(A) P(B given not A) P(not A)

	

•	 P(B given A)  =  probability that I will get three heads given it 
is the fake coin. This one does not change based on my prior 
knowledge.
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•	 P(coin was fake) = this one changes with your belief that the instruc-
tor knows which coin is fake. In this scenario, we believe very 
strongly that the instructor knows which coin and chose the person 
with the real coin. This is the extreme case and is 0%.

•	 P(B given not A) = this is the odds by the multiplication formula that 
if the coin was not fake but real, then we could get three heads. This 
is × × =1/2 1/2 1/2 1/8  and did not change.

•	 P(not A) = this is the probability that it is a real coin and not the fake 
coin. In the extreme case, this is 100% based on our opinion that the 
instructor knows which coin is fake.

	

=

×
×

+ ×

P(fake coin given three heads)

P(three heads given fake coin) P(fake coin)

P(three heads given fake coin) P(fake coin)
P(three heads/not the fake coin) P(not the fake coin) 	

	
P(fake coin given three heads)

(1 0)
(1 0) 1/8 1

0%( )= ×
× + ×

=
	

Notice scenarios 2 and 3, the outcome will depend on how strong the sub-
jective belief that the student has in that the choice was completely ran-
dom or their belief that the instructor can tell from the jar that the coin 
was fake or not.

This exercise works excellently at understanding Bayesian statistics as 
it puts the formula into a real exercise—and that is not common.

The medical problem by tree diagram
It is somewhat difficult to understand Bayesian statistics by Reverend 
Bayes’ formula. Let’s prove that it works, by another method—a tree 
diagram. See the example in Figure 4.2. In this example, we take 10,000 
patients and work through the probabilities.

Utilize the Bayes’ formula and follow through on the tree diagram.

	
P(B given A)

P(A given B) P(A)
P(A given B) P(A) P(A given not B) P(not B)( )= ×

× + × 	

What is that term in the numerator that is duplicated in the first half of the 
denominator? That is the probability that I do have the disease and I am 
correctly diagnosed with it. Or in our 10,000 patients, that only happens 
95 times. So what is the other term in the formula (the second half of 
the denominator)? That would be the probability of being diagnosed with 
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the disease when I do not have it. In that case, there are only 495 inci-
dences out of our 10,000 patients. Go through the math, and the results 
look like this:

	

95
(95 495)

approximately 16%
+

=
	

It will likely help in the application of Bayes’ formula to work through an 
actual application using tree diagrams.

Your honor, gut instinct does not 
counter Reverend Bayes
Bayes’ formula is used often in court cases to counter a jury’s intuition. 
Take the very famous case of Sally Clark in 1999. She was brought to trial 
and convicted for double homicide of her two infant sons. Her defense 
was not murder but rather sudden infant death syndrome (SIDS). Two 
competing theories. Murder or SIDS death. Prosecutors said it was mur-
der. Bayes to the defense.

The suggested cause of death by the defense was for SIDS, which was 
incorrectly originally determined to be 1 in 73 million and later revised to 
1 in 130,000 based on the multiplication principle, from Chapter three. It 
was incorrectly calculated by assuming SIDS deaths were totally indepen-
dent events, which was later proved not true. The probability of a second 
sibling dying from SIDS increases significantly if the first child died from 
SIDS. The concept of double SIDS death seems very rare unless put into 
the concept of the likelihood of a mother killing both her children. But 
how do you compute this? Reverend Bayes to the rescue.

Is there a way to compute the odds of a mother killing her two young 
children? Of course, there is. Court records showed 650,000 births and 

10,000 Patients

100 with the Disease

5 tested incorrectly
negative  

95 tested correctly
positive  

495 tested
incorrectly positive 

9405 tested
correctly negative 

9,900 without the Disease

Figure 4.2  Tree diagram of disease at 1% of population and gauge at 95% accurate.
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30 known and undisputed murders by mothers per year over a course of 
5 years. Notice the language—accuracy in Bayes’ formula is critical—it 
cannot be gut feel I think they were murders. These were 30 known infant 
murders per year in England and Wales over the 5-year time span. But 
that is for a single murder and must be modified for double murder. This 
is modified by a very conservative approximation of 1/10 as it is difficult 
to estimate this exactly. But if the single murders is .000046, we will esti-
mate it to .0000046, which is likely an overestimate of the probability of a 
double murder—i.e., way in favor of the prosecution.

Inserting the numbers into Bayes’ formula:

	
P(SIDS given the data)

1 .00000077
1 .0000077 .999992 .0000046

.6= ×
× + ×

=
	

There was a bigger chance of dying of SIDS than of a double murder by 
the data and definitely not enough to convict beyond reasonable doubt. 
Of course, other evidence may influence the probability of double murder 
such as murder weapons, past history of the mother, etc., but without fur-
ther evidence, there is more evidence to support SIDS than murder based 
on the historical data, which, in this case, comes into play.

Sally Clark spent 4 years in prison for the aforementioned crime before 
her conviction was overturned. The original evidence was presented as 
two independent events resulting incorrectly as the probability of 1 out of 
73 million for the probability of two. Sally tragically died in 2007 of acute 
alcoholism never getting over being wrongly convicted. Likely as a result 
of her case, Bayesian statistics is becoming more acceptable in a court of 
law and was used in two follow-up cases in England to reverse convic-
tions for SIDS deaths.

How it should work in industry (but rarely does)
Let’s say an established machining process is running excellently with a 
fully mistake-proofed operation, and a control chart on the operation at a 
5 sigma level (CPk of 1.67). Think of mistake proofing as any mechanism 
designed such that the defect cannot be physically produced or has a very 
low probability of being produced. The probability of failure is about .03% 
with the 1.5% controversial process shift. The process instrumentation is 
95% accurate. The customer of the process randomly takes a part, measures 
it, and calls it out of specification. They call the supplier and demand an 
immediate sort of their facility.

What is the probability of the process producing a part out of spec 
given the part was measured out of specification? Note the language—
the common answer is only 5%, but that is not taken into consideration 
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that the part was being produced at .03 defect rate and the instrument 
was not accurate. Once again, Reverend Bayes to the rescue.

	
=

×
× + ×

P(A given B)
P(B given A) P(A)

P(B given A) P(A) P(B given not A) P(not A) 	

•	 P(A given B) =  this is the heart of Bayes’ formulation. What is the 
probability the part is bad given the bad result.

•	 P(B given A) = the more typical posterior statement. Given the part 
is bad, what is the probability that the part will be measured wrong. 
In this case, it is 95%.

•	 P(A) =  the probability the part was made out of specification or in 
this case if the process is at 5 sigma levels is only .03%.

•	 P(B given not A) = given the part was good, what was the probability 
of being found bad. In this case, it was 100%−95%, or 5%.

•	 P(not A) =  this is the probability the part was made incorrectly or 
99.97%.

Working through Bayes’ formula:

	
P(A given B)

.0003 .95
(.0003 .95 .9997 .05)

approximately 6%= ×
× + ×

=
	

Hold off the sort service. It very well may be another supplier’s part or 
other highly unlikely events. But the chances of this part being out of spec 
are not 95% as many would argue, and resources spent chasing correc-
tive action on this part can and should be used in other areas. Following 
the same path as earlier, there should be a second or third sample taken 
immediately, and then and only then can it be called out of specification. 
Arguably difficult to sell but normally the correct action.

Bayesian statistics is a fascinating area but defies common sense—as 
was found by the prosecutors of Sally Clark and found by the instruc-
tors at Harvard medical teaching college. But, it is a much underutilized 
tool outside of universities and statistics professionals. The technique was 
arguably used to shorten the length of WWII (as told by the 2014 movie 
about Alan Turing, The Imitation Game), helped start the insurance indus-
try in the US, and demonstrated smoking causes lung cancer (believe it or 
not, at one time experts did not believe there was a connection).

Bayes’ theorem is a very powerful but underutilized tool in industry, 
but is it that way because the theory is kept to the universities and PhD 
students? What would happen if this method was understood by all engi-
neers, managers, nurses, and even manufacturing line personnel? Could 
a concept critical to understanding human life expectancy be used in the 
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development of operator-less cars or by a line operator to find the solution 
to a perceived color difference in a cabinet-making operation? Reverend 
Bayes tried to use it to prove the existence of God. Although it may or may 
not have proved this successfully, it opened the doors for the prevention 
of millions of lost lives in WWII and saved Sally Clark from a lifetime jail 
sentence.

Follow-up additional classroom exercises:

•	 It can also be even expanded to the opening card trick in Chapter 
two of the aces and kings. Change the question to “what is the prob-
ability the deck was fully shuffled based on the new evidence?” 
Notice this is now a Bayesian statistics problem with prior and pos-
terior distributions that change with every card that is turned over 
and the belief in the dealer.

•	 For the coin trick, change the number of coins passed out from three 
to four, but still only leave one as the fake coin. What changes take 
place in the analysis? Cover the same three scenarios of the three 
tosses. Change the number of coins to 10. What changes?

•	 Define a real-world scenario that applies to Bayesian statistics. 
Example: I have lost my keys in the house. Where do I look? Would 
Bayesian statistics suggest a random start to the search or a narrowed 
search based on common areas that they would have been placed?
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chapter five

Learning the sport of juggling 
step by step*

Objectives
After completion of this section:

•	 All instructors and students should, within 1 h, master juggling two 
balls or juggling scarves for an average of 10 tosses and begin to 
juggle 3 balls or 3 scarves.

•	 Understand the health benefits to the brain of juggling.
•	 Begin to understand the parallels between statistics and juggling.

The history of juggling and famous 
jugglers over the years
Juggling has a very long history. The picture in Figure 5.1 was taken of the 
Tombs of Beni Hasan estimated to have been constructed in 1994 BC. It 
was believed that this image is of a traveling group of entertainers. Three 
things are very prevalent in this picture—the subjects are all women; the 
third one from the left is believed to be performing a routine called “Mills’ 
Mess,” which is a very difficult maneuver that current jugglers give credit 
to juggler Steve Mills for starting in 1975. And finally, it appears that the 
second and fourth may have been passing balls. All three observations 
suggest the advanced state of juggling as an art and entertainment. All 
three suggest an advanced level of teamwork.

Let’s move ahead to modern times to athletes and celebrities who 
have taken up juggling.

Many athletes have given credit for their hand–eye coordination to 
the sport of juggling. Following is a partial list of celebrities who are or 
were earlier active jugglers (list courtesy of Juggler Historian, David Cain):

Penn Jillette
Ronald Reagan

*	 To purchase juggling equipment utilized in this chapter, go to www.toddsmith.com, 
www. dube.com, www.higginsbrothers.com.

http://www.toddsmith.com
http://www.higginsbrothers.com
http://www.dube.com
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Kristen Stewart
Mel Gibson
Sarah Michelle Geller
Alan Alda
Dave Grohl
Paul Simon
Art Garfunkel
David Letterman
Christopher Reeve
John Denver
Brendon Fraser
Ben Stiller
Jackie Chan
Three Stooges
Charlie Chaplin
Buster Keaton
Marx Brothers
Harry Houdini
Will Wheaton
Jimmy Buffett
Richard Gere
Pamela Reed

Many politicians and actors are jugglers. Figure 5.2 shows the 40th 
President of the United States, Ronald Reagan.

And finally, generally regarded as the inventor of binary code and 
according to Bill Gates, “the father of the modern computer,” is  Claude 

Figure 5.1  Image taken from the Tomb of Beni Hasan. (Courtesy of International 
Jugglers’ Association.)
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Shannon. Claude Shannon was probably more interested in juggling at 
MIT than noteworthy areas such as the development of binary code and 
the first computers. In his later years, Claude actually built a juggling 
robot and developed the juggling formula, which can be used to predict 
the number of balls a human can juggle based on input factors such as the 
height of the throw, the time in each hand, and the time each ball spends 
in the air. An interesting reference on Claude’s formula development, the 
juggling robot, and his contribution to the modern computer can be found 
in the Bibliography. Claude was likely the first to develop the statistics 
behind juggling with the juggling formula:

	
= × +

+
( )

( )
N H F D

V D 	

where N is the number of balls a person or robot can keep in the air 
and H is the number of hands (this is would be two unless two people 
are juggling, which would double this number and double the number 
of balls), D is the time in the hand, V is the time the hand is empty, 
and F is the time the ball is in flight. This model he used to develop 

Figure 5.2  Ronald Reagan entertaining in 1939. (Courtesy of International 
Jugglers’ Association.)
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the juggling robot was likely used to spark the creativity for his other 
world-changing invention.

Juggling as brain food
The use of juggling for entertainment has been well documented over the 
years, but recently, several studies have found a connection between the 
brain development, disease, and juggling.

A 2004 study for connection between the brain and juggling found 
a significant increase in the brain’s gray matter in a group of 12 nonjug-
glers who were taught juggling and then juggled for a set amount of 
time every day. At the end of 15 days, the resulting MRI showed sig-
nificant increases in the average frontal gray matter in comparison to a 
controlled group of nonjugglers. Details of this study are given in the 
Bibliography.

At the end of the study period, those 12 subjects quit juggling. After 15 
more days, their gray matter actually decreased, approaching the starting 
level. The study concluded the daily practice of juggling could potentially 
reverse or delay the negative impact from Alzheimer’s disease or even 
Lou Gehrig’s disease.

With juggling, you never can reach a limit. Once better, you just add 
on another ball to the equation. That is not unlike most process devel-
opment endeavors—once a problem is solved, it is on to more difficult 
problems. Juggling has been called the ultimate challenge of controlling 
patterns in space. In the forthcoming chapters, we will show how to use 
statistics and data to control those patterns.

The first step: The one-ball cascade
Let’s start with one ball. For the remainder of this chapter, we will assume 
the person learning is right-handed. For those who are left-handed, 
reverse the hand notation as it is being described.

For this exercise, procure three round objects. As a guideline, tennis 
balls are too lightweight but the right size in diameter. Soccer balls are 
too big and golf balls are too small. A standard size orange works great, 
but be forewarned, after numerous drops (and there will be drops!), they 
have a tendency to crack open. Practice in a place where drops will not 
result in a long-term mess! Beanbags are excellent for learning to juggle 
as they do not bounce. Baseballs are also a good size, but they do roll 
around when dropped—but that may add to the exercise portion of the 
practice session!

Visualize a picture frame that you hold in front of you in your hands, 
and the top corners of the frame are about 15–25 cm above your head. Those 
will be critical targets for two-ball and three-ball juggling (Figure 5.3).
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Start with one ball, or for those who prefer to start with a slower pat-
tern, use approximately 30 cm by 30 cm silk scarves. Silk scarves are an 
effective tool for learning juggling up to and including three and four 
objects, as the pattern is much slower.

Take the one ball, starting with arms bent and hands at waist level. 
Toss the one ball starting with your dominant hand (right hand for this 
analysis), tossing across the frame diagonally to the top left corner of the 
picture frame. Catch the toss with the left hand. Repeat the steps for the 
toss from the left side to the top right corner of the picture frame catching 
with the right hand at waist level. Do this exercise until 10 tosses can be 
made without dropping (number of tosses to drop will be critical mea-
surement in the next four chapters). Critical items necessary to prevent 
dropping in this phase are as follows:

•	 Keep the eyes at the top corner of the picture frame. Practice not 
looking at your hands. This will be difficult at first but becomes 
more natural after about 5 min of tosses. This technique is critical 
to minimize the movement of the head, which results in the move-
ment of the body. Movement of the body adds excessive variation 
to the entire process, causing the body to “overcompensate” for the 
movement.

Critical points

Figure 5.3  Visualize holding a picture frame shoulder wide with corners at 
15–25 cm above head level.
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•	 Keep the toss in a vertical plane in front of you at the natural length 
of the arms from the elbow to the hand. There will be a natural ten-
dency for the body to want the balls tossed away from the body. This 
is a natural body protection mechanism to prevent being hit by one 
of the balls. If this problem persists, practice about 60 cm away from 
a wall.

•	 This will be a slow pattern. Count to yourself as you do this to 
establish the beat. The beat will be used when more balls are added.

•	 Record the hand that drops. Normally one hand is stronger than 
the other. This will change over time as your nonnatural hands for 
tossing and catching become accustomed to the process. One of the 
strongest benefits of juggling is the development of your left body 
side if you are right-handed or right side if you are left-handed, 
Cincinnati Bengals All Pro wide receiver, A.J. Green reportedly does 
not have a dominant hand—he is equally coordinated in both. He 
attributes this to his skill in juggling.

•	 Practice not moving your feet. The feet stay in one spot for this 
pattern and all other patterns except for a few advanced maneuvers.

•	 Alternate starting from the left and right hand. This will work to 
strengthen the weakest side.

Keep this pattern going until a consistent pattern is reached for an average 
of 10 tosses. This should last only about 5–10 min until the 10 tosses are 
reached (Figures 5.4 through 5.6).

Two-ball cascade juggling: The most 
critical pattern to learn
The two-ball cascade is done only after mastering the one-ball cascade, 
as learning this step is the hardest part of learning the three-ball cascade. 
For most people, if they master the two-ball cascade, the three-ball cas-
cade can be learned relatively quickly. There are commonalities of the 
two-ball cascade with the three-ball cascade. It is the same pattern from 
left side to right side and reversed—left side to right side as the one-ball 
cascade. The arms and hands are held at the same positions—bent and 
parallel to the ground. The toss is still to the same corners of the imagi-
nary picture frame. The eyes never look at the hands—look at the cor-
ners. This reduces the head movement, which in turn reduces the body 
movement, which in turn reduces the variation requiring the body to 
adjust the process.

Start the two-ball cascade with one ball in each hand. Toss from the 
right hand to the upper left corner of the picture frame. As soon as the ball 
reaches the peak, which should be the imaginary target, throw the left 
hand to the right upper corner of the frame. As soon as the toss is made 
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with the left, the left hand catches the throw from the right side. As soon 
as the toss from the left side reaches the right side of the frame, the next 
toss is made by the right hand, and the right hand catches the toss from 
the left hand. This pattern is repeated until a ball is dropped (Figures 5.7 
through 5.9).

Count the number of tosses until drop. This will be used as a gauge 
for continuous improvement in the following four sessions. Keep the 
pattern going until drop—do not stop with both balls in each hand 

 

Figures 5.4–5.6  One-ball cascade.
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until mastering this pattern. Mastering this pattern is when 10–15 tosses 
without a drop are achieved.

There are common problems associated with this pattern. Most can be 
overcome with practice, but in some situations, breaking the cycle requires a 
change in the process (not unlike any manufacturing or nonmanufacturing 
process). Here are a few of the common problems and suggested solutions:

 

Figures 5.7–5.9  Two-ball cascade.
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•	 Instead of tossing a ball to the corner of the picture frame, the ball 
is handed from one hand to the other. This is a common prob-
lem with new jugglers, and the habit must be broken. To break 
the habit, it is sometimes helpful to learn why this happens. The 
brain is actually “panicking” and rushing the process. Like many 
processes, attempting to operate beyond the natural speed results 
in off quality and downtime. The key to breaking this pattern is 
to slow down and make sure you are looking at the corners of the 
frame and not the hands. Record which hand is handing off and 
not tossing. It normally is the off hand of the juggler—for a right-
handed juggler, it is the toss from the left side to the right side 
and for a left-handed juggler, the toss from the right side to the 
left. If slowing down and looking at the corners does not work, go 
back to the prior one-ball cascade and practice on the side that is 
the problem until the pattern is broken, or practice with scarves, 
which almost always breaks the pattern.

•	 The pattern moves outward away from you requiring you to “chase” 
after the pattern. Similar to the one-ball cascade, the body is tossing 
the balls away to prevent from getting hit by a ball. Like the one-ball 
cascade, move in front of a wall. This will prevent the body/mind 
from tossing the balls away from you.

•	 The pattern is stopped after a minimum number of throws with 
balls in both hands. This requires breaking down the process to 
microsteps. Which hand is stopping the process? Left or right hand? 
After determining the hand that is stopping, return to the one-ball 
cascade and repeat with that hand for a significant amount of time. 
When the pattern is broken, return to the practice exercise.

Continue the troubleshooting until obtaining 10 throws without dropping. 
As a qualitative measurement, add in the number of quality throws to 
drop. What constitutes a quality throw? Any throw in which the feet do 
not move and no ball is handed from one hand to another. The latter will 
likely result in a drop, however. The former will likely result in a drop 

Table 5.1  Example format

Successful 
tosses before 
drop

Quality tosses caught 
without moving feet 
or throw from hand 

to hand

Opportunities per 
throw (throw on 
target and catch)

Maximum quality 
opportunities 

between drops

5 4 2 4
20 15 2 10
50 48 2 30
80 65 2 65
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within the next one to three throws. Nonetheless, this technique will be 
a close analogy to the conventional Six Sigma metric, quality parts per 
opportunity, or quality parts between drops (Table 5.1).

Next step to three-ball juggling: 
The two-and-half-ball cascade
The pattern on this one is the same as the two-ball pattern with one 
exception: The right hand will hold the third ball in the palm of the hand 
(see below Figure 5.10 through 5.14).

(Continued)

 

Figures 5.10–5.14  Two-ball juggling with third held in right hand.
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For reasons that are not entirely clear to avid jugglers, for most 
students of the sport, this will naturally add a delay in the two-ball 
pattern—essentially slowing the two-ball cascade learned earlier and 
adding in a spot in the pattern for the third ball—i.e., the source of this 
step’s name, the two-and-half-ball cascade. Continue with this step until 
10 consecutive throws are completed and repeat for the opposite side, 
holding the third ball in the left hand. This will create the three-ball pat-
tern in two balls with the third ball being held in either hand, significantly 
reducing the learning curve for the three-ball cascade.

The three-ball cascade
Start with two balls in your dominant hand and one in your off hand. 
To start the pattern, the hand with the two balls throws the front ball 
to the targets practiced in the two-ball or two-and-half-ball pattern. The 
targets are exactly the same—the top corners of the imaginary picture 
frame. In the three-ball cascade, the pause that was likely built in under 
the two-and-half-ball pattern is now filled by the third ball. Although it 
may appear as though the pattern is faster, the pattern is exactly the same 
as the two-and-half-ball pattern or the two-ball pattern except the pause 
in those patterns is now filled with the third ball. See Figure 5.15 through 
5.17 for pictures of the three-ball cascade.

Just like the two-ball pattern, the issues associated with the three-ball 
pattern are common to most first-time jugglers and can be corrected as 
follows:

 

Figures 5.10–5.14 (Continued)  Two-ball juggling with third held in right hand.
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•	 The pattern keeps moving out from the imaginary plane in front of 
the body, requiring you to lunge for or walk to the next ball. This is 
the same as with the two-ball pattern and results from the body’s 
natural tendency to prevent it from being hit by one or more of the 
balls. Two methods can be utilized to break this habit. As with the 
two-ball pattern, practice close to a wall. This will not allow the ball 
to move away from you. The second method is to practice for a short 
time, with silk scarves. This will not only slow the pattern down, 
but also stop the natural reaction to avoiding the ball causing body 

 

Figures 5.15 through 5.17  A typical 3 ball cascade.
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damage. Unlike the juggling ball, the silk scarf will not cause body 
damage if landing on you or striking you in the head!

•	 Rushing the pattern resulting in two balls colliding. This is the mind 
panicking. Most pro athletes are very familiar with this one. It also 
can be found in manufacturing—excessive speed beyond line capac-
ity resulting in excessive scrap and rework. This one is easy to stop. Go 
back to the two-and-half-ball pattern. Count the pattern to yourself: 
1-2-space – 1-2-space – 1-2-space – 1-2-space. Now add in the number 3 
in the space spot: 1-2-3-1-2-3-1-2-3. Switch to the three-ball pattern, but 
saying out load the numbers 1-2-3-1-2-3. This will have the effect of 
slowing the pattern down and creating a natural three-ball pattern.

•	 Coming to a stop before dropping. This usually occurs between the 
second and third toss. This habit is best broken with another juggler 
as a partner. Have a more experienced juggler stand next to you, and 
the two of you juggle three balls back and forth using only one hand 
each. This will trick the brain to continue the pattern, since the more 
experienced juggler will not stop until the drop. This technique will 
likely carry over to the three-ball cascade from the individual juggler.

Continue with the three-ball cascade until 10 consecutive tosses are 
reached. The remaining chapters in this section will utilize various sta-
tistical techniques to evaluate and improve the three- or two-ball cascade.

Figure 5.18  Advanced juggling—four-ball cascade.
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Optional advanced next steps for the advanced jugglers
For a challenge and after the following chapters are completed, consider 
attempting the following advanced techniques (Figure 5.18):

•	 The four-ball cascade (see Figure 5.19). All even number patterns 
past two-ball are normally not crossed from hand to hand. That 
is generally the case for the four-ball cascade. This is a pattern of 
two-in-one-hand for both the left side and right side. This is best to 
accomplish, like most processes, by breaking it down into smaller 
pieces. Practice a pattern of two-in-one-hand until 10 or more throws 
are accomplished. The second phase is to determine the pattern in 
the two individual hands. This can be columns on time in each 
hand, alternating one time or two upon one hand followed by two 
upon the other hand. Only attempt this after mastering the three-
ball cascade.

•	 Three-ball cascade with juggling clubs. At the beginning of this 
chapter, links are provided to purchase juggling clubs. Three jug-
gling clubs are not difficult but only should be attempted after the 
three-ball cascade is mastered. The degree of difficulty is amplified 
with clubs, but mostly as a result of the increased risk of injury, and 

Figure 5.19  Advanced juggling—three pins.



81Chapter five:  Learning the sport of juggling step by step

so it is best to start learning this step with gloves and protective head 
gear until 10 tosses are realized. This path of learning should follow 
the same steps outlined earlier for the three-ball cascade.

The forthcoming chapters will all outline the statistical and continuous 
improvement techniques to improve the art of juggling. Continue on to 
those chapters after developing a minimum of 10 tosses with the two- 
or three-object cascade with balls or silk juggling scarves. The latter are 
excellent at slowing down the pattern but are physically much more stren-
uous. Using either method or object combination is excellent for hand–eye 
coordination, brain food, or burning calories!
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chapter six

The start of any process 
including learning to juggle
Mean, standard deviation, and 
the learning curve

Objectives
•	 Understand the creativity required to measure any process.
•	 Once measured, how to utilize base-level statistical concepts to start 

the modeling process.
•	 Determine what the data is telling you in terms of customer 

requirements.

The key to any process optimization: 
The right measurement
Let’s take the juggling exercise learned in Chapter five. What is the metric 
that determines success? How it looks—good or bad? How it feels—terrible 
or terrific? Good day today, felt just right? Notice the trouble with these 
types of metrics: They are subjective and opinionated and not necessarily 
metrics to begin the continuous improvement journey.

Creativity in choosing measurement systems: 
Convert it to something measureable
What is the best way to measure success or failure in the juggling 
process? Let’s try a system that is used frequently in equipment reli-
ability systems: Mean time to failure. What is the equivalent in jug-
gling? Number of successful tosses to drop (TTD). Very simply, count 
the number of tosses until the first drop regardless of the number of 
balls or objects utilized. This measurement system works for multiple 
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industrial processes, administration processes, and even sports. Here 
are typical sport examples:

•	 Baseball pitcher. Number of strikes between hits. Hits is the failure; 
strike is a success. But what is defined as a hit? This is where cre-
ativity comes into play. If a line drive is hit directly to the center 
fielder, is it a hit even though it went for an out? If the ball is a slow 
grounder between third and the shortstop for a hit, is it a hit from a 
pitcher’s perspective or a random bad luck hit normally an out? How 
the analysis changes depending on the argument!

•	 Baseball hitter. Number of line drives, balls, or deep fly balls between 
strikes. But perhaps not hits, as a broken bat hit by luck past the 
mound is likely not useful for statistical analysis but called a hit for 
official record keeping.

•	 Forward in soccer. Number of shots on goal, assists, or successful 
passes between any ball touches.

•	 Receiver in American football. Number of pass plays open to num-
ber of plays not open. This one may require creativity in determin-
ing what defines a success or “open.” Is open when no defender is 
within 1.5 m? What if the wide receiver is double-teamed? Is that a 
failure because the receiver is not open, or is that a success because 
it opens up another receiver on the team?

•	 Point guard in basketball. Number of trips down the court without a 
turnover up to the completion of the first pass. Number of successful 
passes without a turnover.

•	 Successful putts in golf. What is defined as a successful putt in golf? 
If it goes in? Hardly! Sinking a 9-m putt is a lot lower odds than sink-
ing a 0.5-m putt. How about success is defined as any putt that ends 
up within 3% of the starting distance from the center of the cup. For 
example, a 9-m putt ends up within 0.45 or a 3-m putt within 0.09 m.

Typical retail examples

•	 For a restaurant. Number of customers served within 10 min of 
order before failure. Failure is defined as any customer order outside 
a 10-min window.

•	 For a grocery store checkout line. Number of customers through 
checkout before failure. Failure is defined as more than 2 min from 
order ready to checkout but split between two subcategories—normal 
lines and express lines. Separating the two as separate processes with 
independent metrics would prevent what Dr. Donald Wheeler would 
classify in statistics as mixing apples and oranges together to create 
one metric. That one metric would likely misrepresent the process.
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Banking example

•	 Number of successful transactions until failure. A successful trans-
action means the customer’s entry into the bank and exit from the 
bank takes place within 3 min.

From nontypical processes

•	 Aircraft landings. What constitutes a failed landing? What defines 
a success? Is running off a runway a failure? Probably not the cor-
rect measurement as it may take years before a failure, and it may 
be more luck than any other reason. But in terms of the passengers, 
what constitutes a failure? What about the impact at landing as the 
measurement of success? Can it be measured? It can be, with some 
creativity. If it can be measured, is there a threshold at which that 
customer rating of the landing changes from rough to acceptable 
on a typical ranking scale? The measurement we look for to deter-
mine success of a pilot is then the number of acceptably soft landings 
between rough landings.

•	 For an industrial machining process. Number of cycles to machine 
breakdown. Maybe, but that may not cover the number of suc-
cesses to quality breakdown. So, change the measurement to be 
more representative of the success of the process—number of 
parts made within ±3 standard deviations of the target to failure 
and on time, in between failed parts not meeting those criteria. 
This will add a dimension to producing a quality part and equip-
ment breakdown.

Mean and standard deviation for tosses to drop as 
a training technique for process optimization
Start with a two-ball cascade for all students. Have students begin jug-
gling, recording number of TTD. Do this for anywhere between 7 and 15 
complete cycles. What is the mean? What is the standard deviation? What 
does the standard deviation tell each student about the process? What 
if your goal was to consistently hit a minimum of 10 cycles? What is the 
capability of the process? Is the process in control (Chapter seven)? What 
to do if it is not in control?

These are questions typical of a process optimization in a manufac-
turing process or transitional operation. All questions are best answered 
not just by engineers and technicians, but also by operators, clerks, nurses, 
and many other frontline personnel.
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Start with the basics. What is the mean and standard deviation of this 
process? Typical mean and standard deviation calculations are as follows:
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This calculation is simple to do on a standard calculator or spreadsheet 
program.

Typical tosses to failure of a juggling process during the learning 
phase was covered in Chapter five.

Is this juggling performance a success? To answer that specific ques-
tion, we need the most important information during process develop-
ment: Who is the customer, and what is the specification? In this situation, 
the customer is likely to be the student themselves. The student can 
develop a minimum target necessary for their own satisfaction, or they 
can develop what they would consider an expectation of minimum com-
petency. Determining the customer expectations for other processes is 
often difficult, because mostly it is not determined until after the product 
is in operation. In this case, let’s utilize five TTD as the critical minimum 
specification. For this example, there will not be a maximum specification 
as we would be perfectly happy if the juggling went on to 1,000 or 10,000 
tosses (Note: it is unclear who holds the record for the number of TTD for 
three ball, but the record for juggling five pins is 45 min, set by retired 
professional juggler Anthony Gatto. The number of tosses is estimated at 
3800 before that infamous drop).

Process capability calculation: Number of 
standard deviations
There are two typical calculations used for determining process capabil-
ity. The first is a straightforward number of standard deviations from the 
minimum or maximum specification. The other is a capability index, com-
monly shown as CPk, CPl, or CPu. For this exercise, the number of stan-
dard deviations from the maximum specification and the capability index 
of CPu is not defined, as there is no upper specification.

For the number of standard deviations from the lower specification 
based on the original distribution used in Figure 6.1:

	

− = − =(Mean Lower specification)
Standard deviation

(10 5)
3

1.66
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So our process capability measurement is 1.66; we are 1.66 standard devia-
tions above the lower specification (Figure 6.2).

The process is assumed to follow a normal distribution for this 
analysis.
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Figure 6.1  Tosses to failure for a mean of 10 and standard deviation of 3.
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Figure 6.2  Process with minimum customer specification.
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Process capability by capability analysis
A second and somewhat more typical analysis of process capability is by 
capability index or CPk, CPl, and CPu, which are just a few of the many 
calculations. The typical calculation is as follows for CPl:

	
= −

×
CPl

(Mean Lower specification)
3 Sigma 	

For the upper specification:

	
= −

×
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CPk = the lower of CPl or CPu
For this initial juggling exercise:
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Typical guidelines for CPk and number of standard deviations calcula-
tions are provided in Table 6.1.

So in our calculation of the juggling exercise, the process capability 
(CPl) to the lower specification of 5 is less than desirable. The goal now 
is to improve the capability of the process by continuing the Six Sigma 
process. We’ve been following the process already without discuss-
ing explicitly—the generally accepted process includes five steps. The 
steps are as follows: (1) Define, (2) Measure, (3) Analyze, (4) Improve, 
and (5)  Control. We have already defined our metrics/measurements 
as the number of TTD and then measured our current process. Steps 
3 and 4 are the Analyze and Improve steps of process improvement. 
There are several phases within Analysis and Improve. Here, three 

Table 6.1  Acceptable capability 
guidelines for many processes

Number of 
standard deviations CPk

Fair 3 1.0
Good 4 1.33
Excellent 5 1.67
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concepts will be covered in detail for this process: analysis of control or 
SPC, understanding of the equipment reliability function, and design 
of experiments.

Additional exercises
As additional starting exercises, the following has been found to be a use-
ful set of questions to start the continuous improvement process:

•	 What is the new process capability if our minimum specification is 
8 tosses to failure instead of 5? Should this be 10 tosses to failure or 
12 tosses to failure?

•	 Can CPk ever turn negative, and if so, under what circumstances?
•	 The earlier calculation was for tosses to failure. What changes for 

cycles to failure? Determine an equivalent process that is judged in 
cycles to failure and not parts to failure.

•	 Which hand is dropping more? Start the process over, and record 
the drop by hand. Is there a significant difference? (Note: The con-
cept of significant will be explored and shown by experimentation 
in Chapter eleven.)

•	 If the answer to the earlier questions is yes, there is a difference, but 
where is the opportunity for improvement? In the throw or catch? 
Develop a secondary experiment to answer that question.

What happens if the height of the throw is changed? Does that factor 
affect the tosses to failure? Design and initiate a controlled experiment for 
the height of the throw. What is the measurement system for the height 
of the throw, and how accurate is the system to the expected variation of 
the process? This will be a great introduction to the Chapter nine—the 
concept of design of experiments.

Author’s note
This section is a very basic section for understanding the continuous 
improvement process. But it moves it away from being a strictly academic 
memorization of formulas to something that students can appreciate, feel, 
and apply. Properly applied, this can also start the conversation on other 
topics such as confidence intervals, positional control, etc. The next sec-
tions will demonstrate what to do when the customer (the student) is not 
satisfied with the outcome. The experimental process will be introduced 
and expanded in a series of designed experiments and through analysis 
of positional control.
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This exercise has a side benefit, as the learning steps for juggling are 
the same for almost any process. It can follow the Plan-Do-Check-Act 
cycle or Six Sigma cycle. Most students’ confidence will increase in other 
areas after learning this new sport or process.
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chapter seven

The basics of using the control 
chart to improve the 
juggling process

Objectives
•	 Understand the basics of statistical process control (SPC).
•	 Understand how to apply a simple SPC control chart to the process 

of juggling.
•	 Describe three common out-of-control signals and what they may 

mean.
•	 Understand how adjusting an in-control process is likely to increase 

variation.

The basics of the Shewhart statistical 
process control chart
SPC was first developed by Walter Shewhart in a 1918 one-page paper 
written while he was working at Bell Laboratories. That one-page paper 
had in it what is now believed to be the very first control chart. That one-
page paper, years later, likely set the stage for the revolution in changing 
most processes from inspection based to improvement based. A good por-
tion of Six Sigma is based on Shewhart’s theory and expanded by other 
notable experts in this area such as Dr. Edwards Deming (who coauthored 
several papers with Shewhart) and Dr. Donald Wheeler. Dr. Shewhart 
went on to write the now very famous book on this topic, Economic Control 
of Quality of Manufactured Product. Published in 1931, this groundbreaking 
book likely addressed, for the first time, the theory of overadjustment or 
how haphazardly adding specifications to a controlled process for adjust-
ment purposes ultimately degrades most processes. That concept will be 
shown at the end of this chapter.

So from a high level, what is SPC trying to accomplish? There are 
multiple methods of defining it; however, basically what Dr. Shewhart 
says is that if a process is within approximately ±3 standard deviations of 
the mean with no unusual patterns (more on that later), the process is in 
statistical control. If the process needs improvement, another method will 
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be required to improve the process. These improvement methods will be 
shown later, but for now, address only those data points that show an 
unusual pattern—leave everything else alone. But what if the process is 
not meeting requirements and has no unusual points? Same statement—
leave it alone until more advanced sections in later chapters explain a bet-
ter methodology. But why is the use of SPC documented over the years as 
being an effective method of improving any process? Because most pro-
cesses, especially those that have never had a control chart on the process 
before, are not in control. There are multiple out-of-control points that, if 
utilized as feedback signals, are significant and sometimes huge opportu-
nities for long-term improvement. One of Dr. Deming’s quotes probably 
best summarizes this area:

a state of statistical Control is not a natural state… 
It is an achievement, arrived at by eliminating one 
by one, by determined effort, the special cause of 
excessive variation.

Dr. Edwards Deming 
Out of the Crisis

A process is rarely in control without work done to keep it under con-
trol. Investigating out-of-control signals and permanently correcting the 
conditions causing those signals is not a natural activity. It is also not a 
natural activity to leave a process alone if it does not give a clear, beyond 
reasonable doubt, signal that it is not performing. Messing with such a 
process is commonly referred to as overadjustment. SPC, if used properly, 
and as has been shown by Dr. Shewhart and thousands of companies that 
have put the effort into SPC, is effective and as will be demonstrated, also 
works for a simple process like juggling.

The basics of statistical process control
SPC is the time-oriented assessment of process performance. It answers 
the questions: Is the process predictable over a unit of time? Is there a 
significant, and beyond reasonable doubt, change in the process given the 
recent history? By itself, it does little if anything to answer the question as 
to why the process is not in control. It only points out to the responsible 
interested party; there is likely an opportunity for improvement. Does it 
signal a point for adjustment? With a very few exceptions, most times no. 
Although rare, most out-of-control conditions that may require adjustment 
are associated with environmental factors or tool wear (see Chapter eight).

The generation of the control chart typically would start with a 
Gauge R and R study. A Gauge R and R study is used for three primary 
purposes: to determine if the measurement system is acceptable for the 



93Chapter seven:  Control chart to improve the juggling process

process in question, to assess the stability of the gauge, and to determine 
an acceptable method of holding the gauge accuracy. For this process, the 
measurement system for the physical counts to drop will be considered 
acceptable to proceed. This can be verified by a typical Gauge R&R study. 
For this exercise, the measurement of system for this process, that is physi-
cal counts to drop, will be considered acceptable to proceed.

There are multiple variations of the SPC chart. The variation in type 
depends on two primary factors: the underlying distribution and what 
Shewhart called natural subgrouping. To explore further:

•	 What is the underlying distribution? Is it the normal distribution? 
Is the data skewed by a natural process such as a chemical phase 
change? Is there a lower bound in the data typical of data that cannot 
go negative in value? The underlying distribution typically deter-
mines the type of chart. But for our example, the distribution will be 
the normal or Gaussian distribution.

•	 Rational subgrouping depends on three factors: the context of the 
data, how the data will be used, and the question to be addressed 
by the chart. If the chart is designed to represent a small proportion 
of the population, the rational subgrouping will be significantly dif-
ferent from the samples representing a significant proportion of the 
population. Refer to Dr. Donald Wheeler’s book, Advanced Topics in 
Statistical Process Control, for more information on this topic. For this 
exercise, a rational subgroup of 1 will be used, as typically used in 
the individual and moving range control chart.

The typical three primary conditions 
for out-of-control
For this exercise, only three conditions will be used to identify an out-of-
control process. There are many (by last count, most statistical software 
packages had a minimum of eight test options). These three will normally 
not only signal a change, but also provide some evidence of where to 
look for the cause of the condition. This will be outlined with the jug-
gling example and followed up by what typically happens in industry or 
transactional area. Three conditions signal a significant, beyond reason-
able doubt, change in the process. They are as follows:

•	 A single point above or below the upper or lower control limits. 
This typically is the easiest to understand. Above or below the ±3 
standard deviations from the mean is a rare event and signals an 
opportunity for improvement. A point falling outside of the limits 
is an opportunity for analysis of the data point. Analysis of the data 
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point will lead to improvement if, after understanding the underly-
ing cause, long-term corrective measures are taken.

•	 Eight in a row above or below the mean. Why this condition? This 
normally identifies a complete shift in the process, pointing to a 
change in input parameters such as raw materials, suppliers, etc. 
This exercise will show how an induced condition can be used to 
change the process.

•	 Six ascending or six descending. Why this condition? As will be 
shown in a later chapter, this condition normally identifies a condi-
tion of wear out or learning curve. Both these conditions, commonly 
found in manufacturing and transactional processes, are typically 
covered in equipment reliability examples but will be demonstrated 
in this exercise.

The juggling demonstration of statistical 
process control
Once again, the metric used to measure the process, that is, number of suc-
cessful tosses between drops, will be deployed. It is easy to count and is an 
excellent demonstration for an elementary control chart. For this exercise, 
even with a lower bound of zero, we will utilize the normal distribution 
and the individual and moving range chart (I-MR chart). Why the I-MR 
chart and not the X-R chart or an attribute-based chart? We will be mea-
suring every attempt or cycle to failure and the out-of-control conditions 
identified. This follows very closely Dr. Donald Wheeler’s statement, “the 
question to be answered by the chart.” The question to be answered by 
the chart will be “analyzing as much of the data as possible in time order, 
what information can be obtained from the out-of-control conditions to 
improve the process?”

The first view of the process, an isolated out-of-control 
point, and what information can be obtained
After learning the process in Chapter five, two-ball pattern for tosses to 
failure in this example, with an example student, looks like that shown in 
Figure 7.1.

Basic terminology for the control chart are as follows:

•	 The upper and lower control limit is theoretically based on ±3 stan-
dard deviation from the mean X( ). In this exercise, they are repre-
sented by the upper control limit (UCL) of 17.5 and lower control limit.

•	 Although not shown in this exercise, the range chart represents the 
variation of the process. A change in variation for the range will 
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commonly appear as out of control on the range chart. For more 
information on the range chart, refer to Dr. Donald Wheeler’s book, 
Topics in Statistical Process Control.

Analysis of the control chart shows one out-of-control condition. That 
point was at toss number 10 and resulted in dropping the second ball 
(one successful toss). What caused the drop? What unusual condi-
tion was present? How do we use that point to improve the process? 
In this situation, the arm was caught on the pants pocket as the left 
hand attempted to catch the toss from the right hand. Easy to fix? Yes it 
was—change the clothing to athletic wear, thus eliminating the cause. 
Found otherwise? Maybe, maybe not. But notice how the control chart 
clearly identified the outlier. Simple and to the point. Stop, and iden-
tify the cause by investigation; permanently eliminate the cause of the 
condition, thereby permanently improving the process. Simple and easy 
to apply, but not likely an opportunity if the condition was ignored or 
the condition was not permanently eliminated by adjusting all future 
throws or, as so often occurs, adding a sign on the process to watch out 
for the pants pocket.

Is this typical of a manufacturing or transactional process? Likely, 
as most processes are subject to isolated conditions and spikes. Some 
examples of this are given here. A manufacturing process with the top 
board of the bulk process warped because it was sitting outside exposed 
to the elements for 2 days. A slip in the coupling after it was hit during a 
specific run caused by the top board in the bulk process being warped. 
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A spike in the time to process at a bank caused by a teller on break and 
the dismissal of a group of people at a convention that was meeting in the 
building. A spike in the attendance at the local theater company’s Sunday 
performance after a special 1-day online sale. A spike in the power supply 
at 2:00 pm in a Mexicali Mexico manufacturing operation when the power 
grid changes induced by the rate change at 2:00 pm.

How best to simulate this in a classroom setting? As the students are 
juggling, take a loud mechanism, and turn it on unexpectedly. The jarring 
noise will undoubtedly result in ball drops. Time it so that several are at 
the start of the run. This will likely show up as an out-of-control condition 
for one spike only.

Special cause of variation or nontypical behavior—
Eight in a row above or below the mean
This will generally represent a shift in the entire process associated 
with a change in supplier or supplier material. Why 8 in a row and not 3 
or 4 or 12? Following Chapter two on the multiplication principle, what 
is the probability of getting a single point above or below the process 
mean? Hopefully, students will understand it to be 50%. What is the 
probability of eight heads in a row all independent? .58 or .0039, which is 
very close to the same probability of a point outside the upper or lower 
control limit.

Developing the control chart based on the baseline analysis for the 
next 20 points results in what is shown in Figure 7.2.
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This is a clear signal of a process shift in the mean, with the last two 
points clearly signaling an out-of-control condition. Investigation of the 
process revealed it to be a change in environmental conditions—the room 
heater fan turned on. For example purposes, this process shift can be set 
up by multiple methods such as the following:

•	 Turn the set temperature in the room down or up when the first 10 
are completed. This will turn the fan on in the room, changing the 
airflow.

•	 Purchase an external fan, and turn it on at the appropriate point 
close to the 10th toss.

•	 Have all students change juggling balls to a lighter ball after the first 
10 tosses. This inadvertently results in a decrease in efficiency com-
monly associated with having to learn a new ball shape and weight. 
This is an excellent example of an undocumented change in incom-
ing product supply.

•	 Do the first 10 before lunch and the second 10 after lunch. This will 
likely result in a drop in efficiency after lunch. This is similar to 
a change in manufacturing lubrication such as specific gravity or 
viscosity or a change in the dimensional setup brought about by a 
change in running temperature.

How does this relate to a real-life process? In numerous ways, but here 
are a few that have been found to be prevalent forms of total process 
shifts:

•	 Two raw materials are utilized, with one of lesser quality. 
Unknown to the operations, the process shifts from one supplier 
to the other.

•	 Two operators run the line but with different skill levels. One reports 
off for the day.

•	 Preventative maintenance is performed at the break, but the press 
bearing is changed out. The new bearing has a different drag on it as 
the material passes through the side supports, resulting in the mate-
rial skipping as it goes through the heater tunnel. This results in an 
increase in exit temperature, which changes the line speed program 
requirements as it was designed on a certain heat input.

•	 A new clerk is added on to the register at a restaurant with lim-
ited experience. Training time was not sufficient. Time to process 
invoices suddenly increases.

•	 A runway is closed at the local airport for maintenance. Only two 
runways remain open instead of the normal three. This results in 
a larger-than-normal wait time for takeoff and a spike in airlines’ 
deviation from scheduled departure.
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Nontypical process behavior—Six in a row 
trending up or down: The wear out
The final critical, nontypical, or special cause is the trend with six in a 
row up or down. What is this signaling? It is normally a wear-out condi-
tion. This can be a machine wear out or a human wear out. This condition 
can best be demonstrated in the juggling exercise after some proficiency 
has been established with the two-ball or three-ball cascades. This can 
be done with an existing process at the end of the shift or accelerated by 
switching to weighted balls. A typical control chart establishing this pat-
tern is shown in Figure 7.3.

How is this factor found in real situations? Here are several condi-
tions that might be classified as wear-out:

•	 A machine bearing reaches the end of the cycle resulting in an 
increase in vibration, which in turn results in an increase in part 
diameter.

•	 Physical unloading rates drop at 3:00 pm for a dayshift operation.
•	 Ability to take in new material during a lecture plummets after 1 h 

without a break.
•	 A spike in the accident rate at 4:00 am in many industrial operations 

owing to operator fatigue.
•	 A spike in the accident rate late in the day on the first business day 

after the clocks are turned back 1 h in the spring—a common event 
in many countries.
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•	 A decrease in the checkout rate at a typical retail store after employ-
ees are on the line for more than 8 h.

•	 The computer error entry rate at an online processing center during 
the seventh and eighth hour of a work shift.

The wear-out factor will be explored more in the next section on the bath-
tub curve.

How to not use a control chart—Adjustment 
and the negative consequence
Dr. Shewhart addressed this in his first paper and his book on the topic; 
Dr. Deming best learned how to demonstrate it. Shown below is the nega-
tive effect of adjusting an in control process or, as Dr. Deming used to call 
it, mixing up common cause variation with special cause variation. Two 
graphs explain the Deming funnel experiment (Figure 7.4). 

The first graph (Figure 7.5) is from Dr. Deming’s funnel experiment. In 
this exercise, Deming takes a funnel and drops marbles through it to a matrix 
with a target centered over the end of the tunnel. There is minimum varia-
tion in the first graph with the target not moved. The second (Figure 7.6) is 
the extreme case of moving the target after every drop in the opposite direc-
tion from where it landed—trying to keep it on target by adjusting every 
drop. Notice what happens to the process and the variation—it is worse and 
not by a small amount. This effect is a common industrial occurrence most 
notably brought about by management pressure applied to the operators or 
operators themselves in a fruitless attempt to improve the process.

Marble

Marble

Funnel

Target

Figure 7.4  Deming’s funnel experiment.
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So if there is an attempt to place customer or management specifica-
tions or desires on the control chart, it will not only result in any positive 
effect but will also most likely make the process worse. Dr. Wheeler had 
the best explanation of this in his classic book, Understanding Variation: A 
Manager’s Key to Understanding Chaos. Under pressure to perform (specifi-
cations on the control chart), people will distort the process or change the 
data. Typical control charts with specifications or goals will commonly 
look like the one shown in Figure 7.7. This is an example pattern of a pro-
cess likely in control but not meeting customer specifications. Notice the 
“cliff” in the process. For this application, the supervisor requested an 
explanation note from the technicians for any data point above 30. What 
is the reaction to forced compliance? Change the data, or distort the data. 
In this case, a second sample was taken and sent to the lab for analysis. If 
the second was under the specification of 30, it was accepted. If the second 
was not, the data was changed. The process was recorded as meeting cus-
tomer specification but was clearly altered as a result of the specification—
a clear case of not listening to the voice of the process as it was distorted 
by the specification.

Any attempt to adjust a controlled process is likely to result in degrad-
ing the performance. But this one is hard for most managers to under-
stand. But what if the process is in control but is not meeting customer 
specifications? See the previous analysis; adjusting the process is likely 
worse than a waste of time as it will only make it worse. In the conditions 
of in control but not meeting customer expectations, further understand-
ing of the causes of variation is required. That will be explained in further 
chapters.

Funnel drop position remains the same

 

Adjust the funnel back to target after every drop

Figures 7.5 and 7.6  Increase in variation by adjusting a process.
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Author’s notes
•	 Control charts work great in many applications if the intent is under-

stood—identification of nonnormal variation in a process and the 
permanent elimination of the cause of the nonnormal variation. This 
will ultimately reduce the variation in the process, leading to a much 
more robust process. Shortcuts in those steps, fabrication of the data, 
or haphazardly adjusting the process will only degrade the process. 
It is better not to start corrections than attempting to correct the 
process without full understanding and commitment.

•	 Control charts have also been called process behavior charts 
primarily by Dr. Donald Wheeler. I tend to agree with Dr. Wheeler, 
as this definition more accurately describes the chart as defining the 
process behavior rather than a control mechanism. But for the rest 
of this book, they will be referred to using the more conventional 
terminology.

•	 Although around for years, SPC has its limits. A poorly designed 
process remains a poorly designed process for which SPC will not 
likely be the magic cure. For a poorly designed process, a poorly 
implemented SPC will result in the process staying the same at 
best or will result in the process becoming significantly worse 
(worst-case scenario). For a poorly designed process, there are 
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much better systems to utilize than SPC alone. See the following 
chapters for more details on improving the process through 
experimentation.
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chapter eight

The reliability function 
or bathtub curve as 
demonstrated by juggling

Objectives
•	 Begin to understand the reliability function or bathtub curve.
•	 Understand how the sport of juggling can be used to teach the bath-

tub curve.
•	 Where and how the bathtub curve shows up in real operations.

Demystifying the bathtub curve for 
equipment and personnel
Let’s look at the typical graph for an equipment lifecycle (Figure 8.1). What 
does it tell us about most human or machine processes?

What is it really saying? There are three sections that will be reviewed, 
but the first and last are critical to equipment, personnel performance, and 
reliability.

There is a typical break-in period for most processes. That is the first 
section on the graph appropriately named and labeled as Infant Mortality. 
In this section, equipment will historically have a lower reliability than 
Section two. There are entire textbooks on Section one. Actual examples 
will be described at the end of this chapter, but for now, consider this the 
typical break-in period or warm-up time. This process is experienced in 
almost all sports, academic areas (American Society for Quality’s exam 
development process will typically include easier test questions at the 
start of the exam in recognition of this area of the curve), growth func-
tions (although decreasing, the human body mortality rate follows the 
infant mortality curve, especially for ages 0–4)—hence the name, and 
many natural functions (think of this the next time you rake leaves in 
the fall addressing the remains of the wear-out cycle and how fragile 
those leaves were 8 months ago). Notice the critical characteristic of this 
section—the decreasing failure rate with time. This section can be the 



104 Continuous Improvement, Probability, and Statistics

most frustrating as a manager or operator, and many times this is the 
easiest of the three to reduce or eliminate through a technological or pro-
cedural change.

The second section is the useful time or constant breakdown fre-
quency in equipment reliability or human performance. Characterized by 
the lowest frequency of failure, this section can be modeled by various 
functions such as the exponential or various Weibull distributions. The 
prior section SPC charts were developed based on the useful section or 
constant failure of the equipment reliability function.

The last section is the wear-out section. In terms of human growth 
functions, this is old age. In equipment functions, this is characterized 
by the beginning of the end of useful life. This is the automobile at 
500,000 km, the human knee with <1 mm of cartilage left, the instructor 
at the end of a 2-h lecture, the frequency of accidents during the last hour 
of a shift, etc.

How to explain by juggling
For recall 1 month to 10 years later, refer to Chapter one’s guideline: rele-
vant, useful, and interesting/shocking. Is the concept of the bathtub curve 
relevant? If explained in the context of real-world examples—probably 
a seven. Useful? Depends on the audience or students—if it is used for 
exams, work-related examples or something in their own lives—probably 
a seven. Interesting/shocking? Unless an exercise is developed for this 
concept, interesting/shocking is probably a two.

This is an example of an in-class juggling exercise that should show-
case the equipment reliability function or the bathtub curve over a com-
plete cycle.

Start with the two-ball cascade at the start of the day or classroom 
time. Utilize the established mean and standard deviation from the prior 
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Figure 8.1  Equipment reliability function graph.
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exercise. The typical control may look as shown in Figure 8.2, and the 
infant mortality section is in the circle.

The data gathered during the warm-up time is likely to be less than the 
mean from the last work session, but increasing in performance or time to 
drops. This period is historically analyzed differently from the constant or 
useful section of the graph, but can lead to long-term improvement oppor-
tunities. In manufacturing, innovations learned in this section can lead to 
developments that will commonly have a positive effect on the other two 
sections. Examples of this in manufacturing might be a different lubrica-
tion developed in a casting process for the period when the die is brought 
up to temperature and that new lubrication having a positive effect on the 
entire cycle of operation. A new mistake-proofing technique developed 
in a clerical process for the first hour of the day when data shows a high 
but decreasing frequency when implemented has a positive effect on the 
entire operations cycle. An improved alignment technique for a coupling 
that was prone to failure the first hour after installation had a positive 
effect on zone three, the wear-out zone, as the cycles to failure increased.

In the classroom juggling example, the drop in tosses to drop in the 
first hour can be brainstormed for potential cause. Opportunities for 
improvement found during the warm-up phase are usually amplified 
and thus easier to identify. Figure 8.3 is typical of what would be found 
in the juggling example or any other similar process; the opportunity for 
improvement is amplified in this section.
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The useful life to wear-out transition zone
The transition zone from useful life to wear-out is the second critical zone. 
This is the zone that historically can be predicted and usually follows the 
normal distribution. This section is the critical section in predictive main-
tenance, because it can significantly convert unscheduled downtime to 
more efficient, scheduled downtime. In nonmanufacturing operations, 
the transition zone is commonly associated with fatigue, either physi-
cal or mental. Once recognized, this area is commonly associated with 
techniques to reduce or eliminate failure: increased frequency of breaks, 
changes in the typical 8-to-5 scheduling, and other areas such as diet and 
exercise changes to reduce fatigue.

Juggling can be utilized as a technique to better understand and 
improve the performance associated with wear-out. To start, with 
no other changes identified, induce the wear-out point by having all 
students juggle for 10–20 min nonstop. Record the cycles to drop and 
add to the control chart. The typical control chart will be as shown in 
Figure 8.4.

A demonstration on how to extend 
the wear-out cycle
There are multiple ways to extend the wear-out cycle. In manufactur-
ing processes, a designed experiment (Chapters nine and twelve) will 
commonly locate an opportunity for major improvement. After an 

Boxplot of successful tosses to �rst drop

14

12

10

8

6

4

2

0

Left hand Right hand
Infant mortality

Left hand Right hand
Useful life

Su
cc

es
sf

ul
 to

ss
es

 to
 d

ro
p
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107Chapter eight:  The reliability function or bathtub curve

improvement in the cycle found during this method, the next step usually 
involves a change in design or product.

For the juggling exercise, consider the following as options to best 
extend the cycle:

•	 Add lighting to the room. This is a great analogy to an actual non-
manufacturing environment.

•	 Add a break during the useful life or constant breakdown section. 
This is in effect restarting the cycle and not changing the life cycle, 
but it will have a similar outcome.

•	 Fuel or food. Add fluid or carb intake before the downward cycle 
begins.

•	 Slow the cycle down by adding height. This is probably the least 
effective but has shown on occasions to extend the wear-out point 
as the frequency is slowed. This is analogous of purposely slowing 
the manufacturing process down in recognition of this sometimes 
unavoidable consequence.

The two graphs should look similar to that shown in Figures 8.5 and 8.6. 
Notice that the wear-out cycle is delayed but not eliminated in the sec-
ond graph. The inflection point is rarely eliminated, but it can be delayed 
significantly.

The equipment reliability function or bathtub curve is a natural func-
tion found in most of all processes—manufacturing, nonmanufacturing, 
and even in nature. Properly recognized, it can be one of the most effective 
ways to identify opportunities for improvement. Not recognized, it can 
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lead to an endless cycle of frustration. How best to improve on the cycle is 
one of the steps for continuous improvement. To recap the three phases:

•	 Infant mortality, warm-up, or break-in is the first phase. It is com-
monly associated with a higher frequency of failure or breakdown 
than the second section, but the rate is decreasing or getting better. 
Properly recognized, this area can be used to improve the entire pro-
cess in addition to this area.
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•	 Constant failure is the second phase. This is the area most associ-
ated with processes. This normally is the lowest and most consistent 
failure rate. For the juggling exercise, this will be characterized by 
consistent variation with relatively low mean in comparison to the 
other two areas.

•	 Wear-out is the final phase. For manufacturing, this is normally 
characterized by an unplanned breakdown. For nonmanufacturing, 
this is characterized by an increase in error rate, slowdown of effi-
ciency, and overall drop-off in effectiveness. For the juggling exer-
cise, this can be seen as a steady decrease in the tosses to failure. 
This can also be broken by changing the process as characterized by 
environmental or physical change.

Further classroom exercises

•	 Test out other areas of infant mortality. What other areas in the home, 
dorm, or classroom follow the bathtub curve or wear-out cycle? 
(Example: All automobiles have many areas of the infant mortality. 
This can be break pad/rotor wear-in until point contact is reduced to 
surface-to-surface contact. Clutch contact points. Years ago, all cars 
required a “1000 miles check-up,” which was used to address the 
infant mortality curve.)

•	 Analyze other sports such as baseball, soccer, or basketball. Do they 
follow the bathtub curve? At what cycle? Hourly during the game? 
(Hint: Look at the pitcher’s strikeouts by inning.) During the season? 
During a career? Look at the home run rate of Mickey Mantle and 
Roger Maris by year across their career and see the bathtub curve. 
Also, notice Sammy Sosa’s home run totals by season. Did they fol-
low the bathtub curve? If not, why?

•	 Develop the drop by left-hand and right-hand graph for wear-out for 
juggling. Does it follow the same pattern? What can be learned by 
the wear-out phase?

•	 Take what has been learned by the two phases and change the pro-
cess. What is the new process mean and standard deviation?
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chapter nine

Improving by challenging 
the process
The design of experiments process

Objectives
•	 Understand the mechanics of a designed experiment.
•	 Create a Box Plot to show results of a design of experiment (DOE) 

and choosing new settings for the juggling process.
•	 Perform a regression analysis to optimize a single variable as a 

follow-up to the DOE.

This will almost certainly happen—reaching a state on any process that 
is a state of statistical control—but is not good enough. We still have a 
process creating an outcome that is neither profitable nor acceptable to 
the customer. The endless cycle of a good day followed by a bad day of 
production/quality/downtime does not seem to break. The employees are 
working hard, but it just does not change. Accounting has now budgeted 
in for a rework rate of 10%, and inspectors are added to the end of the line 
in a fruitless attempt to inspect the product before it hits the customer. 
Management begins to look at a capital infusion to increase output or 
quality—the latter usually in an attempt at adding in automatic inspec-
tion equipment or reworking stations. The cycle does not end. What next 
to break the gridlock?

The first documented designed experiment was done in 1747 by phy-
sician James Lind on the HMS Salisbury. In the first study, Dr. Lind studied 
the effect of diet on sailors afflicted with scurvy. In this study, Dr. Lind 
adjusted 12 afflicted sailors’ diets with changes in the following: cider, 
sulfuric acid, seawater (yuk!), a mixture of garlic, mustard, horseradish 
and nutmeg, vinegar, and several fruits such as oranges and lemons. 
What is interesting is how he recognized the earliest form of controlling 
the variation in the experiment. His statement “were similar as I could 
have them” is commonly cited as evidence that he attempted to follow 
what is done today by controlling outside influences, thus increasing the 
power of experimentation by reducing the noise variables.
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DOE was probably dormant until the 1920s and early 1930s when 
Ronald Fisher laid out the groundwork for future development in this 
area with two books on the subject most notably used for agriculture: The 
Arrangements of Field Experiments (1926) and Design of Experiments (1935). 
The late Dr. George Box of the University of Wisconsin and Dr. George 
Montgomery of the University of Arizona are best known today for teach-
ing students this science and spreading the concepts from the agricultural 
area to the industry and eventually to Six Sigma.

How to improve any process including juggling— 
The juggling DOE
There are multiple methods of teaching DOE: paper helicopter and cata-
pult are two common methods. The former will be used extensively in the 
next section (Chapter eleven) to demonstrate the hypothesis experimental 
method, ANOVA, and an advanced DOE technique. But those techniques 
have a common limitation—the “Interest” factor, reviewed previously in 
Chapter one, has its limits. The advantage of juggling is that the positive 
effects of the DOE are likely to remain with the student for years—and 
the technique to learn the improvement will be easily recalled for years 
versus the other methods. Why? Juggling will stay with them possibly for 
a lifetime, whereas the paper helicopter and catapult will have limited use 
after the classroom exercise.

As with the Six Sigma, the improvement effort starts after control is 
demonstrated in the second stage of the bathtub curve and, as pointed out 
by Dr. Deming, there must be a control chart on the process. Signals of 
lack of control that include state 1 (infant mortality) and state 3 (wear out), 
as shown in Chapter eight, misrepresent the concept of control. So let’s 
take the juggling process in the middle section as an example of how to 
improve any process (Figure 9.1).

Is the process meeting customer specification? Let’s say the customer, 
who in this case is probably the individual learning to juggle, would like 
to showcase proficiency at a minimum of seven tosses to drop. The student 
would gladly take more than that, but less than that would be a problem. 
As was done in prior chapters, the CPl or capability to the lower specifica-
tion can be computed as follows from the graph given in Figure 9.1. We 
will not compute the CPu, or capability to the upper specification, as this, 
for all practical purposes, is not a factor since no upper specification exists 
for this process.

	
CPl

(Mean Lower specification)
3 Sigma

10 7
3 2.5

0.4= −
×

= −
×

=
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The rule of thumb for most processes for any CPl, CPu, or CPk is as follows:

Less than .7—major trouble
0.7–1—Trouble
1–1.33—fair to good
1.33–1.67—good to excellent
Greater than 1.67—approaching Six Sigma levels

With a CPl of 0.4, the process is clearly not acceptable to the lower specifi-
cation of 7. The next step is to change the process but only after the DOE 
points it in the direction of positive change by reduction in variation, 
increase in mean, or ideally both.

The juggling DOE design
Take the process and brainstorm for every potential cause of variation. 
This can be done by traditional fishbone diagram or other traditional 
methods. At the completion of the brainstorming session, break the cat-
egories into three groups: those to be tested, those to control (not moved) 
during the experiment, and those we are not able to control but should 
be monitored. For this very simple DOE, the typical breakdown might be 
similar to what is shown in Table 9.1.

This is only a partial list. But the concept is one that closely follows 
any manufacturing or other process development phase.
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The preliminary design
The following quote from Dr. George Box summarizes this area of the 
designed experiment:

To find out what happens when a process changes, 
sometimes you have to change it

Dr. George Box
Statistics for Experimenters

What will be performed is a three-factor, two-level designed experiment. 
This is likely the most common experiment in the DOE methodology that, 
if done properly, will either locate an optimum setting or induce most stu-
dents to pursue a higher-order DOE, which will be covered in a later sec-
tion. For this exercise, each factor to be tested will be tested at two levels. 
Those levels will be given the code of +1 and −1. The total number of runs 
is eight, which can be calculated by using the following formula for three 
factors restricted to two levels:

	 (#of levels) 2 8 runs(#of factors) 3= = 	

After the brainstorming session, the two levels are selected to move the 
process such that if the factor is significant, it will be found but not moved 
so far as to cause a system breakdown. The goal is to choose low and high 
values for the levels that are within the abilities of the juggler but have 
a large enough deviation to allow us to detect if they are a significant 
contribution to success. Examples for this process that might violate the 
abovementioned guideline are as follows:

•	 Failure of an excess weight such as a bowling ball would likely tell 
us nothing. Whereas a difference of 0.5 g between the low and high 
level would likely not find a significant difference.

Table 9.1  The brainstorming session for causes of variation

Tested Controlled Monitored

Ball weight Clothing Humidity
Height of throw Ball shape Ambient temperature
Wind speed Starting hand Warm-up and fatigue (wear out)

Sleep habits
Diet
Warm-up and fatigue 
conditions
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•	 Height of toss on the high end of 1 m will likely result in all drops. 
The information gained by this will be obvious and irrelevant.

•	 For the high end of wind speed, performing in a wind tunnel with 
speeds above 20 kmph will result in all drops. Again, the informa-
tion gained will be somewhat useless.

This is the most critical section of any DOE! A full understanding of the 
capability of the process is recommended before determining the levels 
to move the process. This is not an exact science and best developed with 
all operators and subject matter experts in the same room! For this exer-
cise, the levels to be tested that were agreed upon are shown in Tables 9.2 
and 9.3.

The changes in variables can be thought of as physical locations to 
create a visual representation of the experiment. Each factor is an axis 
(x = ball weight, y = toss height, z = air speed), and each level is a value 
along that axis. Using two levels (low and high) for each factor/axis, we 
can create a cube plot to represent the experiment as shown in Figure 9.2. 
Each of the eight corners of the cube represents a different test condition, 
and we will obtain data for each corner during the eight runs.

Table 9.2  Those factors to move and the test levels

Factor Low level (−1) High level (+1)

Ball weight (g) 7 14
Height of toss above head (cm) 15 25
Wind speed (by external fan) (kmph) 0 (off) 8 (on)

Table 9.3  The preliminary design for the variables (factors) to be tested in a 
typical 2-level, 3-factor design

Run Factor 1—ball weight Ball height Wind speed (fan on/fan off)

1 (−) 7 (−) 15 (−) 0
2 (+) 14 (−) 15 (−) 0
3 (−) 7 (+) 25 (−) 0
4 (+) 14 (+) 25 (−) 0
5 (−) 7 (−) 15 (+) 8
6 (+) 14 (−) 15 (+) 8
7 (−) 7 (+) 25 (+) 8
8 (+) 14 (+) 25 (+) 8
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Reducing the variation in those 
factors not to be tested
For those factors not to be tested but to be held constant, how best to 
accomplish this without resulting in a major delay in the DOE?

From the original brainstorming list:

Clothing: Comfortable but without areas that may interfere with the 
juggling. Comfortable shoes as the base is critical to the success of 
juggling.

Ball shape: This seems obvious, but there are options to go with odd-
shaped balls. This can be a follow-up test later, but for now keep 
them circular.

Starting hand: This can be a factor to be moved in the experiment, as 
this can affect the outcome. For this exercise, keep it constant at their 
dominant hand starting—left if left handed, right if right handed.

Sleep habits: Similar to other athletic processes, sleep habits can be a 
critical factor. Under no circumstances run this on a Monday morn-
ing or following a Holiday, as the outcome may not be representative 
of the entire process.

Diet: Critical to the entire process. For the test, hold the calorie input 
constant for the day. As with all athletic events, carb up 1 h before 
the test. If this test is run over 2 h, add a carbohydrate-based snack 
between each experimental run.

Warm-up and fatigue: Similar to other process developments, this is 
critical to prevent but hard to monitor. With this process, best to not 
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Figure 9.2  The cube plot representing the design.
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do this experiment at the start or end of the day as these are com-
monly associated with warm-up and fatigue. If a drop-off in tosses 
to drop occurs during the last one to two runs only, it is a signal of 
potential fatigue and can be confounded with a two-way interaction 
term. If there is a drop-off with the first two runs, it may be a sign of 
infant mortality or warm-up.

Environmental temperature and humidity: Best to monitor this during 
the testing process if it cannot be controlled. Similar to running a 
test on a manufacturing or nonmanufacturing process, minimize the 
movement in the factor if possible. This can best be accomplished by 
external control or minimum time for the entire DOE (such as com-
pleting within 1 day), thus minimizing the movement of such factors.

The concept of confounding variables
The concept of confounding variables is used throughout DOEs. Chapter 
thirteen will be an advanced DOE that will further explain this concept 
in more detail. But let’s explore this concept with an elementary view of a 
confounded variable.

Look at the design and factors in Table 9.3, specifically at the third 
experimental factor, wind speed. Notice that the first four are at a low 
level (zero) and the last four are at a high level (eight or the fan on). Let’s 
also add that the experiment is run in the same order as designed—not 
recommended—but without randomization of runs. What if, as a result 
of fatigue during the test, the diet was changed and an energy drink 
was taken after run 4? As a consequence, the number of tosses to failure 
jumped for runs 5–8. Was it the fan speed or the energy drink? That is the 
concept behind confounding variables, and it can happen without knowl-
edge in many designed experiments.

So, how to prevent it? There are two primary ways. The first is to rec-
ognize it and control the extra variable; in this case, the energy drink. As 
was mentioned earlier, take an energy drink at the start of every run or 
eliminate it completely. The second is to randomize the runs. A random-
ization methodology will be covered in Chapter thirteen.

Sample size and randomization
How many times should we attempt to juggle during each run of the 
experiment? The number of data points collected is the sample size. 
Sample size is a function of three factors:

•	 The effect the input variable will have on the output. The more 
likely the variable to be moved will likely move the output, the less 
the sample size. Let’s take a very basic example—the ball weight. 
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If changing the weight from 7 to 14 g results in the tosses to failure 
changing from an average of seven tosses to failure with a stan-
dard deviation of 2.5 to 50 with a standard deviation of 25, the 
sample size will be much smaller than a change of seven tosses 
to failure to eight tosses to failure. The greater the separation, the 
lesser the sample size. The lesser the separation, the greater the 
sample size.

•	 How much variable is the entire experiment? The greater the vari-
ability, the greater the sample size to find a difference. This is the 
reason behind blocking all nontested variables and a big reason why 
DOEs fail. The process had too much variation to “find” the differ-
ence beyond reasonable doubt.

•	 How much risk of an error the experimental designer is willing to 
take? There are two errors that must be controlled—false-positive 
and false-negative. False-positive is calling a process change when 
in fact there was none. False-negative is failing to find a difference 
when there was one. This risk level depends on whoever is running 
the experiment and the product under testing. Material for heart 
valves hopefully has a difference in risk level than removing mate-
rial from a paper clip.

Most of the aforementioned factors cannot be fully determined until the 
DOE has been completed. In addition to the three aforementioned process-
related factors, there are two other factors in determining the sample size: 
the cost of running the test and the length of time to run it. The higher 
the cost of each run, the fewer the runs probably going to be approved by 
management. The more factors to be tested, the longer the experiment and 
the higher the risk of adding in an unknown confounded factor (for this 
DOE, environmental temperature change or fatigue).

For the purposes of this experiment, we will perform seven attempts 
during each run.

To reduce the effect of confounding factors, we will perform the runs 
in a random order. Why is randomization critical, and what is the best 
way to randomize the runs? What happens if the DOE is run in the same 
order as designed and the wear-out cycle takes effect somewhat around 
run 5 and continues through the entire experiment? That fatigue factor is 
now confounded (or confused as many call it) with the third factor, the fan 
on and off. This confusion may result in wrongly identifying the fan or air 
flow as one of the critical factors.

So how to randomize? First, how not to randomize—randomize by 
manually choosing runs. Why not? This is a question to most instructors 
and students—where did you park at the university/work/home/shop-
ping mall during the last five trips? The usual answer is the same—in the 
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same spot. Another hands-on exercise to show how not to randomize—
take four students and, without any guidance, have them stand inside a 
defined 2-m diameter circle. Notice what happens. By nature, they will 
stand equidistant from each other—not in a random pattern.

Other methods of randomization of run order may be more effec-
tive—a method utilized might be as follows: From a standard deck of 
cards, remove the cards ace, 2, 3, 4, 5, 6, 7, and 8. Shuffle those cards five to 
seven times. The card number corresponds to the run number.

The how-tos for running the experiment, 
and the outcome
Probably the most critical factor in the success or failure of any DOE, aside 
from the initial design, is the organization of performing each run. Again, 
Dr. George Box probably said it best, “a well-designed and ran DOE will 
analyze itself.”

What is meant by that? Identify the critical three to eight factors and 
move those factors enough to see a difference without catastrophe, keep-
ing the results well organized and the data results obvious.

What can be learned from a typical 
designed experiment
There are multiple possible findings in a well-run designed experiment. 
Three of the most critical areas are as follows:

•	 The factors that are behaving by themselves are commonly 
called main effects. These factors are relatively easy to follow-up 
with as they can move independent of the other variables in the 
experiment.

•	 The interaction factors. These are factors that behave differently 
depending on the level of a second, third, or even in some rare 
occurrences, a fourth variable. These are typically only found 
through DOEs, as will be highlighted by this experiment. When 
thinking of an interaction, think of the internal combustion 
engine—a four-way interaction between heat, pressure, carbon 
(fuel), and oxygen.

•	 The factors that have no effect on the outcome. These factors may 
have been identified as potential factors but with no evidence to sup-
port the findings. These are common “gut feel” factors that are deter-
mined to be nonfactors in this process. (Note: usually translated into 
cost reduction opportunities.)
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The juggling DOE results
(Figures 9.3 through 9.5).  
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Figure 9.3  Time-ordered box plot of the outcome by run.
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Interpretation of the results
The results clearly show two distinct areas of high performance, high-
lighted in Figure 9.4. There is an interaction between the ball weight and 
toss height. This effect clearly shows that with the heavier ball and at the 
greater height, the performance is higher. However, the two levels must be 
used together to see this improvement. Simply increasing the ball weight 
without changing the toss height does not result in improvement. Imagine 
if we had not used the DOE and instead simply changed one variable at 
a time to improve this process. Would we have identified this improve-
ment? Likely not. The DOE allows us to determine when factors interact 
with one another and best identify the areas where the process can be 
improved. This also shows the other areas that have a negative effect on 
the performance.

There is a third finding that is commonly missed or ignored—the fan 
or wind effect was found to be benign or insignificant in the range of 
the experiment. That is a critical concept, because what was originally 
thought to be a factor was not—just likely gut feel. This is not unlike what 
is found in most industrial or nonmanufacturing operations—the data 
from the DOE will commonly find major opportunities for improvement 
and also counter the common misconceptions or historical bad judgments 
about what influences the process.

So what next? How best to proceed once the DOE is complete?
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The opportunity the next day and the follow-up testing

The improved state found with the interaction term is critical. What is 
the new capability if the improvement was stopped here? Is there oppor-
tunity for improvement beyond the increased weight, increased height?

Let’s answer those questions under the assumption that it is now a 
future day. Can the successful settings in the process be used to repeat 
our results? If not, how close is the process to what was found during 
the DOE?

The next-day results via a control chart replicating the process with 
the new height and heavier balls in control are typically as shown in 
Figure 9.6.

Notice the increase in the mean and reduction in standard deviation, 
which is quite common after a successful DOE is completed. New capabil-
ity calculations are as follows:

	

CPl
(Mean Lower specification)

3 Sigma
13 7
3 1.5

1.33

CPl 1.33

= −
×

= −
×

=

= 	

Typically, this would be considered good for customer performance.
We have achieved a significant improvement, but the settings may 

still not be optimized. To work on the next step, let’s explore the ball 
height factor further.

Successful tosses to drop

UCL=17.5

X=13
–

LCL=8.5

Su
cc

es
sf

ul
 to

ss
es

 to
 d

ro
p

18

16

14

12

10

8
1 3 5 7 9 11 13 15 17 19 21

Time orientated attempt number

Figure 9.6  Control chart of process with greater height and heavier balls.
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Next phase of improvement and the regression model

The new CPl looks impressive, but it may not be the best location of the 
variables in the experiment. Let’s do a very simple follow-up to the model. 
Although there are multiple weights and shapes to juggling balls, let’s 
lock it at the high end and see what happens when the height is changed. 
Is the height of 12 in. optimum? Maybe 9 or 14 in.?

With the ball weight held constant and the wind speed at the setting 
with minimum cost (fan off) since it was benign, let’s change the height 
according to the data given in Table 9.4.

We can now combine results from these runs with the prior two runs 
from the first DOE with the ball weight at 14 g and the fan speed held 
constant at 0. The grand total will be five runs to effectively draw the 
scatterplot and make an estimate of the slope, Y-intercept, and regression 
equation (Figure 9.7).

Table 9.4  Follow-up run designs

Run Height (cm)

9 17
10 19
11 22

Scatterplot of successful tosses to drop vs toss height
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Figure 9.7  Result with sample size of seven for runs 9, 10, 11, and prior runs from 
the DOE.
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A very simple regression model

The regression model can be estimated by two numbers, the Y-intercept and 
the slope, if just looking at the single factor of the ball height. From the graph, 
this can be estimated by hand or by using a conventional software package.

	 = + ×Y Y X( -intercept) (slope) 	

The resulting equation with just the ball height (keeping the ball weight as 
a constant) is from any traditional statistical software package (Figure 9.8):

	 = − +Y 8.27 0.932(ball  height) 	

From this, the model can be used to find the maximum point. For this 
model, the height is a straight line relationship within the range under 
study. Thus, the maximum point would be at the height of 25. Caution 
with interpolating >25 as the assumption of linearity will likely not hold 
(the line eventually drops as the weight begins to get too heavy to handle). 
Although this shows an estimate of the slope, it fails to take into account a 
potential change in variability in tosses to drop. This will be reserved for 
a future discussion, but each optimization point should also include a test 
of variation differences.

Summary on DOE and regression 
model method via juggling
This process can be a challenge, but it is also an excellent analogy to 
implementing continuous improvement for any manufacturing or 
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Figure 9.8  The simple mechanics of the regression model.



125Chapter nine:  Improving by challenging the process: DOEs

nonmanufacturing process. The improvement methodology can be 
applied to most any manufacturing or nonmanufacturing process. If 
applied in practice, the system is very similar to the steps followed. For all 
students learning this methodology, the interest via the juggling analogy 
will potentially allow them to keep this a permanent memory for years, 
because most will follow up with their own testing and trials outside the 
classroom.

Further exercises for students
•	 What happens to the number of runs in the DOE if the number of 

variables are expanded to 4? What about 5 or 6? What is gained?
•	 Sketch by hand the cube plot for 4–5 or 6 variables.
•	 What happens if, the following day, the process was lower than 

expected? What would you do as designer?
•	 Adding height and weight to the juggling process will likely add to 

the fatigue factor. How would you measure this effect on the new 
process? What would be the countermeasure?

•	 What about the shape of the balls? Is this potentially a factor?
•	 What is the optimum point for this process? Is it the maximum 

value? What happens to the CPk as the height is changed?
•	 The fan speed was tested over a limited range restricted by the fan 

itself. Test that theory for all students. What about 10 CFM? 20 CFM? 
Is it linear?

•	 Develop the regression model as a multiple regression with the ball 
weight included. What does it tell you about the interaction term?

•	 What if you decided that two levels were inadequate and wanted 
to change the design to three levels? How many runs would there 
be if there were three factors at three levels? What are the problems 
with this type of model? What method could be utilized to reduce 
the number of runs but still address this concern that it only looks 
at two levels?
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chapter ten

Design of experiments 
via a card trick

Objectives
•	 Review how design of experiments (DOEs) are designed.
•	 Perform a card trick that utilizes the base design of a DOE.
•	 Understand how this simple card trick can be utilized to solidify 

students’ learning of DOEs.

Introduction and the card trick 
“mysterious mind read”
This chapter is unique in that it ties in the concept of DOE with a very 
unusual card trick. The concept utilizes a 5-factor, 2-level, full-factorial 
design in conjunction with a de Bruijn sequence to perform a mind-
reading trick used with mid-to-large-size classrooms or audiences (>10 
and as many as 1000). It is relatively easy to perform but somewhat dif-
ficult to set up. For all students or instructors who work through this con-
cept, there is little doubt that the base level DOE concept will never be 
forgotten—especially if it is done with their own performance of the trick.

For those who believe this step may not be necessary, the author rec-
ommends proceeding to Chapter twelve, as this trick is difficult to master. 
Continuing in this chapter will have the added benefit of explaining the 
mathematics behind binary code and de Bruijn sequencing that is used 
in advanced mathematics and computer logic. This can also be used to 
strengthen the probability section reviewed in Chapters two and three.

The effect, or what the audience sees when 
performing for a large audience (+20)
The instructor or performer of the card trick removes what is believed to 
be a full deck of cards from the deck—in fact, it is a deck of 32 cards, not 
52. The reason will be explained in the next section. The pack of cards 
is tied together with a rubber band. The deck is thrown to any audience 
member, who in turn is asked to throw it to a second audience member. 
This step can be performed as many times as desired to ensure that the 
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audience member who receives the deck is not prearranged or known by 
the instructor or performer. At the completion of the fourth or fifth throw, 
have the audience member or student holding the cards remove the deck 
from the rubber band and perform a standard cut of the deck. Pass the 
deck to another person who cuts the deck a second time. Repeat the deck 
cut as many times as desired (as will be shown, the deck cut is not criti-
cal to the outcome). Pass the deck to the first person who cut the deck or 
any other random person, and have him or her take the top card without 
showing it to you. Pass the deck to a second person and have them take 
the next card on top. Repeat this step for five people—but only five people! 
At the end of the step, the deck should have been passed to multiple num-
bers of participants, the deck cut multiple times, and the top five cards 
removed of which you know the order in which the audience members 
removed cards from the top. Knowing the order is critical.

Inform the participants that you will be reading their minds. State, 
“Please look at me closely such that I can get a reading on your card.” 
Continue with, “I am getting mixed signals, could you please help me out—
all of you who have a black card please sit down.” At that time, you look at 
each participant individually and tell them the exact card they are holding.

How and why it works
The key to the trick is the statement, “I am getting mixed signals, could 
you please help me out—all of you who have a black card please sit down.” 
This tells the order of the black card/red card arrangement. For five cards, 
from Chapter two, there are exactly 25 possible combinations, or 32. Thus, 
the reason for only 32 cards and not 52. Every combination of the five 
cards has one and only one combination of the black/red card combina-
tion. Just as in Chapter nine, the 3-factor, 2-level DOE had eight unique 
combinations of each factor; this trick is an ideal methodology for teach-
ing how to develop the design for the 5-factor, 2-level, 32-run design. Let’s 
take a very simple example to show how this concept works.

The 5-factor, 2-level design as compared 
to the mysterious mind read
Let’s look at the comparison between the mysterious mind read and the 
5-factor, 2-level, full-factorial DOE as shown in Table 10.1. Similar to the 
3-factor, 2-level DOE from chapter nine, this five factor DOE design is 
shown in Table 10.1.

The design shown in Table 10.1 is a standard design, if in the rare 
instance, a 5-factor full-factorial DOE was implemented (more on that in 
Chapter twelve). It is unusual to have the resource and time available for 



129
C

hapter ten: 
D

esign of experim
ents via a card trick

Table 10.1  5-factor, 2-level, 32-run full-factorial design

Factor A Factor B Factor C Factor D Factor E Factor A Factor B Factor C Factor D Factor E

−1 −1 −1 −1 −1 −1 1 −1 −1 −1
−1 −1 −1 −1 1 −1 1 −1 −1 1
−1 −1 −1 1 −1 −1 1 −1 1 −1
−1 −1 −1 1 1 −1 1 −1 1 1
−1 −1 1 −1 −1 −1 1 1 −1 −1
−1 −1 1 −1 1 −1 1 1 −1 1
−1 −1 1 1 −1 −1 1 1 1 −1
−1 −1 1 1 1 −1 1 1 1 1

1 −1 −1 −1 −1 1 1 −1 −1 −1
1 −1 −1 −1 1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 1 1 1 −1 1 1
1 −1 1 −1 −1 1 1 1 −1 −1
1 −1 1 −1 1 1 1 1 −1 1
1 −1 1 1 −1 1 1 1 1 −1
1 −1 1 1 1 1 1 1 1 1
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the earlier design. A much more efficient design will be shown in Chapter 
twelve. But for now, the +1 and −1 represent the high and low levels of 
each factor. In this design, all combinations are covered. The cube plot for 
this design would look like that shown in Figure 10.1.

Now compare that design with the setup for the mysterious mind-
reading trick. The trick is set up exactly to the earlier design with a de 
Bruijn sequence, which will be covered later (Figure 10.2).

Notice the similarities with the original 32-run DOE. Every combi-
nation of red and black cards can be found in the earlier set design, and 
every combination is unique—they do not repeat. If we all agree that each 
row is unique, how does the order of the 32 cards relate to the earlier? 
Welcome to the world of the de Bruijn sequence.

There are two methods for setting up this trick. We will cover both in 
the following section as they both can be used for educational purposes. 
The first method is more for understanding the design, and the second is 
for understanding de Bruijn sequencing and binary code.

Method number one for setting up the card trick: 
The easy method

The easiest method is to assign the cards by the following sequence. Cut 
and paste the format as seen fit as it follows a de Bruijn sequence, which 
will be covered in detail later. The 32-card sequence is as follows:

8D, AD, 2D, 4D, AH, 2S, 5D, 3H, 6S, 4H, AC, 3S, 7D, 7H, 7C, 6C, 4C, 8C, 
AS, 3D, 6D, 5H, 3C, 7S, 6H, 5C, 2C, 5S, 2H, 4S, 8H, 8S

1

E

1

1
1

B

D
A

C1

–1

–1
–1

–1

–1

Figure 10.1  5-factor, 2-level, full-factorial cube plot.
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The cutting of the deck a multiple number of times changes only the start-
ing point of the sequence—it does not change the order. Thus, the magic 
of this trick. The first person who pulls the card from the top determines 
the starting point—the next four cards removed from the top of the deck 
follow in sequence. Each possible five-card sequence has one and only 
one starting point. Notice the cards are ace through 8. All cards from 9 
through king have been removed. As an option, to ensure the mystery 
of the trick, the king can be substituted for either the 6 or the 9, the jack 
for the ace, and the queen for the 8. The determination of which cards 
to switch is strictly independent. Rarely will the audience be suspicious, 
since they only see the top five cards.

Method number two: An advance method by 
binary code and de Bruijn sequence

The sequence developed earlier is a method used in computer science and 
commonly known as a de Bruijn sequence, named after Dutch mathemati-
cian Nicolaas Govert de Bruijn.

Let’s start with reviewing the binary sequence of mathematics. Our 
conventional method of mathematics is base 10. The number 12 is 10 × 1 
+ 2 × 1. The number 594 is 5 × 100 + 9 × 10 + 4 × 1. Binary works in pow-
ers of 2 rather than of 10. The sequence 111 represents 1 × 4 + 1 × 2 + 1 × 

8

A

A 2 4 A

2 2A4
2

3

4 A 2 5

6 735
4

5

A 2 5 3

3 A46
6

7

5 3 7 6

7 467

8

A

8 A 2 4

3 356
2

3

5 3 6 4

7 677
4

5

8 8 8 A

2 884
6

7

4 A 3 7

6 525

8

A

8 8 A 2

2 635
2

3

4 8 8 8

6 3A4
4

5

A 3 7 7

3 567
6

7

5 2 5 2

7 846

8

A

A 3 6 5

3 777
2

3

5 2 4 8

7 256
4

5

8 A 3 6

2 425
6

7

4 8 A 3

6 A84

Figure 10.2  Setup for the mysterious mind-reading card trick.
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1 = 7. Notice that the multipliers 1, 2, and 4 are now multipliers and not base 
numbers. Using this formulation, the card numbers of ace through 7 can be 
represented by the following:

For this card trick, only aces through 8s are utilized, which leaves 
only the card of 8 without a designation. For this trick, utilize 000 as the 
number 8.

For the suit designation, utilize a two-number code. The following is 
a standard code but can be modified as needed:

The five-digit code for all cards: Aces through 8—In binary code

The first two digits represent the suit code of the card, and the last three, 
the three-digit binary code for the number.

Using this method, the five-digit number 01001 is the ace of hearts. 
How was that derived? The first two digits, 01, is the heart code; the last 
three, 001, is the binary code for 1 (or ace). By that same method, 11010 is the 
two of clubs—11 represents the suit clubs; the 010 represents the number 2.

Another concept used during DOE is the table of contrast develop-
ment used in this next sequence. In computer science, this method is 
called adding by “modulo two.” The adding sequence is as follows:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0.

Start with the ace of diamonds, which will be only one of two cards 
to remember for the sequence and rethinking in binary code. Ace of 

Ace or 1 001 (0 × 4 + 0 × 2 + 1 × 1)

2 010 (0 × 4 + 1 × 2 + 0 × 1)

3 011

4 100

5 101

6 110

7 111

Diamond 00

Heart 01

Spade 10

Club 11
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diamonds: 00001. The other card is the 8 of spades (10000), which will be 
covered next. Start with the ace of diamonds and add by the modulo two 
sequence the first and third numbers in the card number sequence. Add 
that onto the chain and continue that pattern until 31 cards are completed.

The exercise is as follows:

00001    Ace of diamonds

By modulo two method described earlier, add the first (0) and third (0) 
digit and place the result (0) at the end. The code for the second card 
begins with the second digit in the sequence; the second card is 00010 or 
the 2 of diamonds.

000010  �  Ace of diamonds (00001) followed by the 2 of diamonds 
(00010)

Add first (0) and third (0) digit from the second card and place result (0) at 
the end. The third card is 00100, the 4 of diamonds.

0000100    Ace of diamonds, 2 diamonds, 4 diamonds

Add first (0) and third (1) digit from the latest card and place the result (1) 
at the end. The fourth card is 01001, ace of hearts.

00001001    Ace of diamonds, 2 diamonds, 4 diamonds, ace of hearts

Continuing on in that sequence results in the following 31-card sequence:

0000100101100111110001101110101

This 31-card sequence is missing the 8 of diamonds or 00000. Place an 
additional zero at the start of the sequence, and that will be matched up 
with the sequence of 8D, AD, 2D, 4D, AH, 2S, 5D, 3H, 6S, 4H, AC, 3S, 7D, 
7H, 7C, 6C, 4C, 8C, AS, 3D, 6D, 5H, 3C, 7S, 6H, 5C, 2C, 5S, 2H, 4S, 8H, 8S 
identified earlier.

For an advanced methodology, to be able to name the five cards with 
just the card’s black/red designated and not the exact card numbering, 
recall the patterns in the full set of card sequences in Figure 10.2. Next, 
recall the sequence of the first card in each group of 8. The first card is in 
the order of 8-ace-2-3-4-5-6-7 by the four suits (again, refer to Figure 10.2). 
Knowledge of the first card in the sequence will tell you the remaining four 
cards by applying the above de Bruijn sequence for the next four cards. 
This will have the effect of not needing to know the exact card order to 
perform this trick. This is very difficult to master but very effective.
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How it works—The effect
So very basically, if the five participants stand up or sit down according to 
the following sequence of the cards

Sequence row: 3 of spades, 7 of diamonds, 7 of hearts, 7 of clubs, 6 of 
clubs.

Summary and potential next steps
This card trick is best performed after learning the 2-level, 3-factor, 8-run 
DOE and the opening probability section. It will solidify the education 
process for how to design most of all DOEs. Following through with the 
concept of every option of black and red card combinations in 5 factors 
has been covered. The plan would be at that time to add in other full-
factorial DOEs to the mix, and if successful, the concept will significantly 
add to useful, relevant, and now interesting/shocking, at higher levels.

Suggested follow-up steps for classroom exercises:

•	 What does a 4-factor, full-factorial look like? What about a 6-factor?
•	 Discuss the risk associated with running a 5-factor full-factorial.
•	 What options are there to a 5-factor full-factorial if because of cost or 

time limits, it cannot be done?
•	 For the card trick only. What would happen if you use 52 cards 

instead of 32? How could you modify the trick to have the same out-
come? Hint on the method: There are 20 of the 52 cards that will have 
duplicate corners on the cube plot or about 45%. If one of those is 
chosen, ask one person who has a red card if it is heart or diamond. 
That will eliminate one of the two points at the corner. Same applies 
if it is a black card. Ask if it is a spade or club. The answer will elimi-
nate one of the points on the corners.

Author’s comments
DOE is a very powerful tool for industry and transactional areas, and if 
taught properly, it can be learned by everyone. Having ran first-hand over 
100 DOEs at multiple types of industries, the key to understanding DOE 
is the cube plot. This exercise transitions from an industrial experimental 
environment to a game-type activity. This chapter demonstrates one of 

Person 1 Person 2 Person 3 Person 4 Person 5

Sitting Standing Standing Sitting Sitting

Black Red Red Black Black
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the most difficult DOEs simplified for most. Most students will reach the 
Aha moment after this exercise, and their understanding and confidence 
will expand into other uses of this technique.

As an extra added effect, before the step when the students are asked 
what the color of the card they are holding is, ask them a series of trivial 
questions: Candidate number 2, what month were you born in? Candidate 
number 3, what is your height in centimeters? Candidate number 5, what 
is the first letter of your middle name? Why? They have nothing to do 
with the outcome? Correct, but how many product investigations are ham-
pered by useless and nonessential data and opinions? This is an excellent 
demonstration of the potentially damaging outcome to those types of 
questions and a way to prevent them from overcoming an investigation. 
Nothing but the relevant facts please!
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chapter eleven

Hypothesis testing 
method utilizing the 
experimental helicopter

Objectives
•	 Understand the mechanics of the hypothesis testing process.
•	 Understand why this process is critically important for any continu-

ous improvement process.
•	 Learn how to teach hypothesis testing using the experimental 

helicopter.

A brief history of hypothesis testing
Hypothesis testing can be traced back to the 1700s, with statements made 
by mathematician Pierre-Simon Laplace. Likely the first documented 
writing on the science was with Ronald Fisher in 1933. In his paper, the 
concepts of the null hypothesis, rejecting the null hypothesis, and criti-
cal value were first identified. In a later paper, Jerzy Neyman and Egon 
Pearson, who argued heavily with Ronald Fisher, added the concept of the 
beta error along with other concepts utilized today.

The model has been disputed over the years, but the intent should 
never be in doubt: With proper understanding and implementation, the 
concept can make major changes in any process, while at the same time 
preventing the making of any harmful changes brought about by follow-
ing false signals. The specific model utilized (Ronald Fisher or Neyman/
Pearson) is for the most part irrelevant. This book’s explanation will 
closely follow the Neyman/Pearson model. Understanding and applying 
the concept correctly at the front line of most operations, by middle man-
agement responsible for continuous improvement or even at the execu-
tive management level, is critical. The exercise utilizing the experimental 
helicopter will not only add to the understanding but will also help to add 
the third dimension to the recall function—the “Interesting/Shocking” 
factor.
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The hypothesis testing model
Let’s start with the traditional courtroom analogy for hypothesis testing 
and expand it with a different twist to help those not familiar with the 
model understand it better.

The four quadrants of the jury outcome for a trial are shown in 
Table 11.1. The column “what the jury found” represents the outcome of 
a jury trial while the column “what really happened” represents what 
the defendant really did. For the remainder of the explanation, we will 
utilize the gender-specific term for masculine. This not to say that the 
model analogy does not work with a female as the model works fine with 
Joan of Arc, but for reasons to be discussed later, we will utilize the male 
gender.

Before labeling the four boxes and analyzing terms, notice the lan-
guage, which is similar to the language used in the hypothesis testing 
model—guilty or not guilty. Notice the model never states innocent. This 
is one reason why the courtroom model works well: Typical courts of law 
must determine between two outcomes, guilt beyond reasonable doubt 
and that there is reasonable doubt of guilt, which is not the same as inno-
cent. That is the same for hypothesis testing—either there was sufficient 
evidence to support a change in the process beyond reasonable doubt or 
there was not sufficient evidence. At no time does the data support an 
argument that the processes are equal. That is not part of the courtroom 
model, nor is it part of the hypothesis testing model. Along with other 
areas to be described next, understanding that statement is critical to the 
continuous improvement process in any manufacturing or nonmanufac-
turing environment. Gut feel and emotions have no part in the hypothesis 
testing process—and likely helps explain why companies that stick to the 
model thrive in the long term.

Making the model less analytical
The next steps with the courtroom model usually solidify the concept of 
experimental power and the two error scenarios that will now be covered. 
The fourth box, which historically has little meaning, will be explained in 
more detail via the experimental helicopter.

Table 11.1  The courtroom model

What the jury found

What really happened Not guilty Guilty

He/she really did it
He/she really did not do it
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The two error boxes in the model are traditionally characterized by 
alpha and beta errors, which can be difficult to understand for those not 
familiar with applied statistics.

Alpha error or type I error

This is represented by the intersection of the “guilty” column and the “he/
she really did not do it” row (bottom right box of the four). This tradition-
ally has been labeled as rejection of the null hypothesis when the null 
hypothesis is true. More on this later in this chapter concerning the null 
hypothesis. This is better understood if changed to something a nonstat-
istician can connect to. If this is a courtroom trial, who best represents 
someone who was found guilty but in reality never did it? The example 
utilized is that of ex South African President Nelson Mandela. Open to 
argument, but most scholars are in agreement that he was falsely con-
victed for the crime of overthrowing the state in 1962 and imprisoned for 
27 years. This analogy will assist the recall of this area as Mandela is gen-
erally easier to understand than, “rejection of the null hypothesis when 
the null hypothesis is true.” What are we basically saying? This is making 
the claim that there was change in the process, but the evidence or data 
never supported it. This was followed by actually changing the process 
and not receiving the expected benefits of the change.

Beta or type II error

This is represented by the intersection of the “not guilty” column and 
the “he/she really did it” row. This traditionally has been labeled as fail-
ure to reject the null hypothesis when the null hypothesis is false. Again, 
change this section to something a nonstatistician can relate to utilizing 
a courtroom analogy. This box can be represented by either notorious 
Chicago gangster Al Capone, or a more modern iconic figure, OJ. Either 
will work as an understanding of the concept behind beta error or type II 
error. In has been reported that Al Capone was a master at the process 
of avoiding prosecution for crimes he committed. How does this relate 
to the hypothesis model? This is the change that would have improved 
the process but was not found because of insufficient data or evidence 
to support the change. Consequently, the process does not improve and 
stays stagnant.

The Power box

This and the other box are best understood after fully understanding the 
two error boxes and their associated negative outcomes. The Power box 
is the intersection of the Guilty column again under the “what the jury 
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found” column and the “he/she really did it” row under the “what really 
happened” row. This box can be represented by any criminal who really 
did it and was found guilty—I like to use investor-turned financial swin-
dler Bernie Madoff as an example in this box. Criminal? No doubt about 
that! Found guilty? Yes. Action taken? Yes—serving a lifetime prison 
term. Society better for this action? No doubt about that. This box is called 
power and is commonly associated with a major find in the testing pro-
cess. This box is also called “rejection of the null hypothesis when the 
null hypothesis is false.” That statement is confusing to most people who 
do not understand applied statistics. It is much better understood by the 
Madoff box.

The other box

The fourth and final box is the interception of the “not guilty” column 
under the “what the jury found” and “he/she really did not do it” under 
the “what really happened” rows. This typically has not been given a 
statistical name nor has it been given credit as a success, which is unfor-
tunate. As a close analogy from Chapter four, think of Sally Clark on 
her second trial when she was found not guilty (and really did not do it). 
This box has numerous huge benefits to manufacturing and nonmanu-
facturing operations. Findings with sound statistical fundamentals, this 
box can be used to disprove practices justified by instinct and/or “gut 
feels” which may have been alpha errors in the past. A finding that falls 
into this box is commonly discounted as a failure when in fact it can be 
used to reduce cost of operations, if the factor put under the model is 
truly not a factor, and a reduction in the quantity can be used to reduce 
cost of operation.

Transitioning from the courtroom 
to the production model
Once the concepts of alpha, beta, and power are understood, there are 
typically a few minor definition steps analogous to the courtroom before 
transitioning to the production and experimental helicopter model.

The null hypothesis (Ho)

The courtroom analogy to the null hypothesis is “presumed innocent 
until proven guilty.” This one is difficult to understand for most first-time 
students in this area: For any process change, there is an assumption of no 
difference unless proven guilty beyond reasonable doubt. Not the other 
way around, which happens often in manufacturing: There is a perceived 
difference, and it must be proved there is none. In a courtroom, he/she is 
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not assumed guilty and proven innocent. This may seem obvious, but in 
real manufacturing processes, this happens repeatedly. Here are a few 
typical examples:

•	 A production process had 10% scrap today and was characterized 
as disastrous. The operations manager wants an explanation on 
his desk by 5:00 pm. A further explanation of the process shows the 
scrap averages 7% and follows the binomial distribution. 10% scrap 
is an expected outcome of the process.

•	 An employee has an accident in the heat treat department. This 
was the second accident this year for the employee. The employee 
is given written notice and released. A further look at the data for 
the shop shows an average of four accidents per month with a total 
of 300 employees. This second accident models the Poisson distribu-
tion and shows no significant change from expected results.

Both of the above are examples of mixing special cause variation with 
common cause variation. Addressing the latter, common cause variation, 
requires changing the entire process. This might require asking what the 
reasons are for all the accidents over the past 2 years. Is there a common 
area such as location, time of day or shift, age of employee, years of experi-
ence, day of the month, etc.?

The alternative hypothesis (Ha) and significance level

The alternative hypothesis is similar to a guilty verdict in the courtroom. 
The significance level is very similar to “beyond reasonable doubt.” Notice 
how the two work together: Beyond reasonable doubt must precede a 
guilty verdict. In any process improvement that follows this strategy, 
before a change is implemented, there must be supporting evidence (the 
data) beyond reasonable doubt. The question is, at what level is it neces-
sary to prove guilt? Historically, this has been either 1% or 5% depending 
on the risk level of the prosecutor. With the advent of computer analysis, 
the exact level of risk is easy to calculate, and the risk level may depend 
on the critical nature of the product or process to be changed if the data 
supports guilt. The higher the risk of the process or product (such as the 
lining thickness in a heart valve), the higher the critical level.

The final courtroom analogy might look like that shown in Table 11.2.
Notice that the model is the basis for the statistical process control 

chart covered in a prior chapter. Reviewing the model, the null hypothesis 
is the control chart without out-of-control points. Any point outside the 
upper or lower control limits is analogous to “rejection of the null hypoth-
esis and acceptance of the alternative (Ha)”. In that case, before taking 
action, there must be evidence beyond reasonable doubt that there was 
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a change in the process (rejecting Ho). The concept of significance is the 
upper and lower control limits. They are set to guide an operator to take 
no action until rejecting the null hypothesis at the ±3 sigma level.

The production model
The same courtroom analogy applies to the production or operations 
model. In this model, there are basically four areas that must be deter-
mined before utilizing the hypothesis model (Figure 11.1):

•	 The underlying distribution
•	 The significance level
•	 The separation distance that means something
•	 The process variation
•	 The process means under the null and alternative hypothesis test.

Notice that the sections of the theoretical model include alpha, power, 
the null hypothesis, and the alternative hypothesis. But more impor-
tantly, the model highlights the multiple relationships between the 
power and the two errors, alpha and beta. For those responsible for 
implementing the model in manufacturing or nonmanufacturing, this 
relationship is at the heart of the success or failure of any continuous 
improvement system. Looking at the aforementioned model, some of 
the following critical points to the experimentation process should be 
relatively clear:

•	 A reduction in variation in either the null hypothesis or alternative 
hypothesis reduces beta error and increases power. That should be 
obvious from the graph, but often this is not understood in manufac-
turing, transactional services, and other areas. Reduction in experi-
mental variation can increase power sometimes by a factor of two 
or three. Examples of this will be provided later on in this chapter.

•	 Increasing alpha error will increase power but at a price. Alpha 
errors are the silent killers of the experimental process. A beta error 

Table 11.2  The hypothesis test part 2

What the jury found

What really happened Not guilty Guilty

He/she really did it OJ, Al Capone or Beta error Madoff or power
He/she really did not do it Mandela or Alpha error
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may result in the failure to find a significant result, but the alpha 
error can and will result in incorrectly stating a tested variable was 
successful when in fact it was not. This commonly leads to a cred-
ibility factor in future testing on top of the potential negative effects 
of changing a factor that should have been left constant.

•	 The further the distance is from the mean of the null hypothesis 
to the alternative hypothesis, the greater the power. This point is 
critical for experimental testing and Design of Experiments (DOEs). 
Unlike the first bullet point, increasing delta may or may not be pos-
sible (whereas a reduction in variation is almost always possible). But 
the concept in DOE of requiring movement beyond comfort zones is 
driven by this concept; all areas are equal, and the greater the split 
between the null and the alternative, the greater the power or likeli-
hood of a significant find.

Demonstrating the experimental process with the 
paper helicopter and rack system
The paper helicopter has been around for decades as a technique to 
demonstrate DOE. In this process, we will demonstrate how to use this 
for the experimental process and the negative effect of variation on the 
power value of experimentation. To demonstrate, we will utilize a rack 
system to facilitate changes in dropping height. See Figure 11.2 and 
Table 11.3 for descriptions of how to make the paper helicopter and how 
to utilize the support rack system to change the height (Figures 11.3 
and 11.4).   

Alpha errorBeta error

Power

Null
hypothesis

Alternative
hypothesis

Figure 11.1  The hypothesis model.
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Table 11.3  Typical dimensions for base line construction

Helicopter characteristic Extreme low end Extreme high end

Wing length (mm) 70 120
Body width (mm) 35 50
Paper clips or weights 
(number of)

1 3

Body length (mm) 70 120
Wing width (mm) 40 60

Weight

Wing

Bo
dy

Figure 11.2  The paper helicopter design.

Figure 11.3  Picture of rack with helicopter in flight.
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A test to demonstrate the hypothesis testing method 
and the negative effects from variation
Take a series of seven helicopters as if they were produced off a manu-
facturing line. The seven might have the dimensions shown in Table 11.4.

Set the rack up for a two-and-half-meter drop from the center of 
rack to the floor. Adjust the right side of the rack to 10 cm higher than the 
center (this is the advantage of utilizing the racks as the flight is typically 
dropped from the ceiling or other fixed height. This limits the ability to 
adjust the floor-to-height distance). Have all students either in pairs or 
in three- to four-person teams (the latter is better for logistics). Drop 21 
flights (the seven helicopters each replicated three times) from the center 
and the right side. Follow the technique in Chapter four to randomize all 
drops. For each flight, record the time from releasing the helicopter until 
it reaches the floor.

The purpose of this test is to determine if there is a significant level 
of difference between the center and the right side. The two distributions 
should look similar to that shown in Figure 11.5.

This is an exercise in training about the problems of excess variation. 
Based on the high variations from the seven helicopters flown, the follow-
ing conclusion can be drawn:

•	 With an alpha percentage of 5%, there is insufficient evidence to sup-
port that the right side is greater than the left side, even with the 
mean differences showing a >0.01 s difference in flight time. This 
can be determined visually or mathematically (shown at the end of 
the chapter).

Figure 11.4  Picture of rack with helicopter in flight.



148 Continuous Improvement, Probability, and Statistics

•	 There is a large beta error at ∼80%; consequently, the power is ∼20%. 
The factor likely hurting the positive test outcome is the high varia-
tion in product entry, gauge R and R, or variation in helicopter 
design.

This test clearly represents the problem with excessive variation. There 
may have been a difference in means, but because of the other factors not 
held constant, the opportunity for improvement will not be proven. Note 
that this outcome does not imply that there is no difference between the 
left and right side, but only that there was insufficient evidence to support 
that conclusion. Thus no statement could be made verifying the differ-
ence between left and right. Poorly designed and ran test—yes. But still 

Table 11.4  Helicopters as pulled from production line

Helicopter # Wing length Body width Wing width Body length Paper clips

1 70 35 50 70 1
2 120 45 50 120 3
3 120 50 50 120 2
4 120 35 50 120 1
5 120 45 45 70 1
6 70 50 45 70 3
7 70 35 45 70 2

Drop time (s)

Histogram of drop times—center and right side of rack
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Figure 11.5  Drop times from center and right side of rack.
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unable to draw a conclusion based on the data. There is no opportunity 
for improvement unless the test is redesigned with the variation reduced, 
difference between the null and alternative hypotheses is increased, or 
there is a very large increase in the alpha error.

A better test to determine if there is difference: 
Hold constant the helicopter design
Excessive variation is the evil of a successful experiment. It is also one of 
the keys to optimization in Six Sigma. For the next test, we will demon-
strate the evils of excessive variation by showing the benefit when varia-
tion is reduced. To demonstrate this, repeat the last test with the helicopter 
design held constant. In this design, take helicopter 3 from above: Wing 
length 120, body length 120, body width 50, wing width 50, weights 2. 
Drop and time the helicopter 21 times. The typical results are as shown 
in Figure 11.6.

From the graph, notice the difference in the power. Utilizing the same 
method as employed in Figure 11.3, with nearly the same means, the sig-
nificance level on the difference is beyond 5%. Also notice the beta error 
is approximately 20%, which makes the power at 80%. Compare this with 
the earlier example, which was a test to answer the same question but 
leading to a different conclusion. The different conclusion in this exam-
ple was only found after reducing the variation by holding the incoming 
parameters (the helicopter design) constant.

Drop time (s)

Histogram of drop times—center and right side of rack
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Figure 11.6  Drop times—Standard deviation reduced from 1.5 to 0.5.
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Summary of the hypothesis testing method and 
the use of experimental helicopter
The courtroom analogy and the experimental helicopter together are a tre-
mendous technique for increasing the “relevant, useful, and interesting/
shocking” factor, leading to a much better storage and option for retrieval 
once completed. This methodology will commonly lead to follow-up ques-
tions regarding different facts presented in a working environment, home 
life, or in the news. Such questions or comments might include the following:

•	 We had a horrible day yesterday for scrap as it climbed to 8%. What 
is the confidence interval around the average of 4%? How does this 
lead to dispel the notion of “are you telling me the scrap rate dou-
bled and we should not care?” What is the counterargument to that 
statement?

•	 A report came out today that showed the mean income in this coun-
try increased from 51,000 to 52,000 since 2004. What is the next ques-
tion? How does your answer change based on the risk level of a 
wrong answer?

•	 Good news, the average fuel economy of a model X increased from 
31.5 to 32.1. That finding will result in a 0.2% decrease in NOx emis-
sions over the next 20 years.

The use of hypothesis testing is an important tool to be used in any con-
tinuous improvement system. Once understood, the application will likely 
point to improvement opportunities in any operation. Properly utilized, 
the experimental methodology as shown by the hypothesis model can be 
the framework around a continuous improvement system.

Author’s notes
Having done this method in class and in actual operations more than 100 
times, the following points are critical:

•	 The key to understanding continuous improvement models for most 
operators, administrators, and leaders is this model. The alternative 
is the constant adjustment of any process and living with the nega-
tive side effects from adjusting processes that do not demonstrate a 
clear signal.

•	 As was stated, the paper helicopter model has been around for years 
but not commonly used for the hypothesis model. In conjunction 
with the racks, the helicopter is an effective tool for teaching this 
method.
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•	 Reduction in beta error is the output of the reduction in variation. 
This is directly tied to the experimental power. Graphically under-
standing the concept behind beta and power is critical to the applica-
tion. Once students plot the graph of the results from the helicopter 
experiment, the confidence and understanding will follow.

•	 The mysterious box in the model is the “no name” box or the inter-
ception between, “not guilty” and the “he/she really did not do it.” 
This box is underrated, powerful, and full of optimization opportu-
nities. When the author conducts experiments, variables in this box 
will consume more than 30% of the follow-up opportunities. These 
are gold mines ready to be found.
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chapter twelve

An intermediate use of the 
experimental helicopter
The 5-factor, 2-level, 16-run 
half-factorial designed experiment

Objectives
•	 Execute an intermediate design of experiment (DOE) using the 

experimental helicopter.
•	 Understand the power behind the 5-factor, 2-level, 16-run half-factorial 

DOE.

An overview of this model and why it is 
so successful at improving any process
This model (5-factor, 2-level, 16-run half-factorial DOE) has been published 
in other books and articles numerous times. From a practical perspective, 
the author has used this model over 20 times in manufacturing and non-
manufacturing operations. A mere 16 runs, if used properly, can improve 
almost any operation by 10%–40%. Why is it so effective? Because almost 
all existing processes have two to four critical input parameters. That 
was the insight behind Dr. Joseph Juran’s Pareto concept, and it is still 
alive today. The issue holding back most manufacturing operations is it is 
unknown which two to four parameters are critical or which interactions 
are associated with those two to four.

This chapter will describe the DOE from a practical standpoint 
through the use of the experimental helicopter. The data analysis will be 
kept to a minimum with the model results presented using a visual per-
spective. An optimum design method that can be done simply in a very 
fast and efficient method without the use of statistical software will be 
discussed. Although often a necessary asset, at times, especially for entry 
level students, the use of statistical software can be overwhelming and/
or intimidating having a potential detrimental effect on the learning pro-
cess. For those who are unfamiliar with the base DOE model, I suggest 
reviewing Chapter ten before proceeding. Also, this example is designed 
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more for efficiency and speed of execution over exactness. For example, 
we will assume linearity (that is, linear behavior between the inputs and 
outputs) in the interest of keeping the model simple, although linearity 
does not always hold true (Figure 12.1).

A review of the helicopter and the five variables
In this example, five process variables will be targeted for investigation. 
As previously mentioned, the experimental model chosen will be the 
5-factor, 2-level, 16-run half-factorial. Why not a full-factorial consisting of 
32 runs or some other designs? For most industrial optimization experi-
ments, three to five factors will be the norm for investigation. This model 
can also efficiently analyze six to as many as nine factors. But that will be 
reserved for advanced reading on that topic. So why a half-factorial? That 
will be covered next.

A brief background on partial factorial 
designs and confounding
Partial factorial designs allow for a more efficient design in terms of sig-
nificant findings in relationship to the number of runs. Table 12.1 repre-
sents the typical designs and the resolution of each. There are others, such 
as Plackett–Burman designs, but they will be saved for further studies in 
this area.

For an excellent review of the available models, I refer the readers to 
Statistics for Experimenters by Box, Hunter, and Hunter. The main point of 
Table 12.1 is the understanding of the resolution. Resolution is primarily 
the risk of a wrong analytical judgment in an experimental outcome with-
out knowledge of steps to mitigate that risk. As will be explained further, 
the generally accepted rule of thumb for resolutions in order of descend-
ing risk levels is as follows:

•	 Resolution III. Risky as main effects are confounded or confused 
with two-way interactions. Although commonly left with no choice 
but to run these designs, they are usually used only for identifica-
tion of main effects and may require numerous follow-up runs to 
confirm.

•	 Resolution IV. Designs are risky at confounding two-way inter-
actions with other two-way interactions, and main effects with 
three-way interactions. This can be risky, but usually the correct 
interaction can be determined by identification of a main effect that 
is associated with the interaction. It is rare that an interaction does 
not have at least one of the factors as a main effect. This has been 
found repeatedly by the author and by other experts in the field.
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•	 Resolution V. Main effects are confounded with four-way interac-
tions, and two-way interactions are confounded with three-way 
interactions. Confounding will be explained further later, but the 
analysis will return with identical values; thus, with straight analyt-
ics, differentiating between the respective outcomes is difficult. The 
example in the next section is a typical example of a Resolution V.

•	 Resolution VI and full factorials. These are typically very low risk of 
confounding significant factors or interactions. For a full-factorial, the 
risk is essentially zero of confounding unless an extra variable outside 
the factors to be analyzed is significant (such as ambient temperature). 
For Resolution VI, main effects are confounded with five-way interac-
tions (rare), three-way interactions with other three-way interactions, 
and two-way interactions confounded with four-way interactions. All 
of those occurrences are rare. But Resolution VI and full-factorial come 
with a price—a relatively high number of runs as shown in Table 12.1.

The 5-factor, 2-level, 16-run half-factorial, 
Resolution V experiment
For this experiment, there are three primary reasons not to go with the 
32-run full-factorial but to instead opt for the half-factorial. In order of 
importance they are as follows:

•	 The confounding effects in a Resolution V are low risk. As pointed 
out earlier, for a Resolution V factorial design, the three-factor 
interactions are confounded (or sometimes called confused) with 
two-factor interactions. Is this a legitimate risk for industrial opera-
tions? Probably low, as most industrial scientists would argue that 
three-way interactions are not common. In addition, in a three-way 
interaction, normally, at least one of the three factors involved in 
the  interaction  will be a main factor. If none are, look to the two-
way interaction. Bottom line: The additional 16 runs to make it a full-
factorial have marginal if any additional benefit.

Table 12.1  Available factorial designs with resolutions

No. of 
runs

Factors

2 3 4 5 6 7 8

4 Full III
8 Full IV III III III
16 Full V IV IV IV
32 Full VI IV IV
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•	 We would eliminate many runs that only serve to confirm that one 
or more factors are benign. After an elimination of one of the five 
factors, the remaining four represent a four-factor full-factorial. If 
two factors are benign, there is a three-factor full-factorial replicated 
(repeated) twice.

•	 The overall return on investment is higher than a full-factorial. 
Performing a 16-run rather than a 32-run is a significant reduction in 
cost and downtime owing to experimentation. Still, the half-factorial 
design will frequently result in a significant finding, in either main 
effect determination or a two- or three-way interaction. Understanding 
a previously unknown effect on the process is commonly a huge return 
on the experimental investment.

The base-level design for the helicopter design
Take five factors from the helicopter design for analysis: wing length, 
body width, body length, weight, and position on rack (see Figure 12.1). 
Hold constant the other factors: wing width, intermediate body width and 
length, wing shape, material type, wing taper, and any other extraneous 
factors. This will be a two-level factorial design as nonlinearity is not an 
issue in this opening design. The true skill of the DOE practitioner is not in 
the analysis but in the next step, developing the table of factors and high–
low levels for each factor. This is done as a discussion and typically will 

Weight

Rack height 
(see Figures 11.3 and 11.4) 

Body width

Wing length
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dy
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Figure 12.1  Base-level helicopter design.
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take between 1 and 4 h to determine with line operators and subject matter 
experts. A successful discussion identifies “the likely suspects” and the 
magnitude of the low and high levels to ensure that those factors or com-
binations of factors will have a measurable effect on the experimental out-
come without catastrophic effect. (In this experiment, it is known that if the 
wing length is taken down to zero, it will not fly. This will result in little of 
any new or useful information. This is what is referred to as a catastrophic 
effect.) After extensive discussions with the line operators, the decision is 
to test the following factors at the recommended levels (Table 12.2).

The base-level design will follow the pattern shown in Table 12.3 in 
coded format.

Table 12.2  The design factors and proposed 
experimental levels

Factor Low level (−1) High level (+1)

Wing length (mm) 70 120
Body width (mm) 35 50
Body length (mm) 70 120
Weight 1 clip 3 clips
Rack position (m) 2.1 2.3

Table 12.3  5-factor, 16-run, half-factorial design coded

Design run
A—wing 

length
B—body 

width
C—body 

length D—weight
E—rack 
position

1 −1 −1 −1 −1   1
2   1 −1 −1 −1 −1
3 −1   1 −1 −1 −1
4   1   1 −1 −1   1
5 −1 −1   1 −1 −1
6   1 −1   1 −1   1
7 −1   1   1 −1   1
8   1   1   1 −1 −1
9 −1 −1 −1   1 −1
10   1 −1 −1   1   1
11 −1   1 −1   1   1
12   1   1 −1   1 −1
13 −1 −1   1   1   1
14   1 −1   1   1 −1
15 −1   1   1   1 −1
16   1   1   1   1   1
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The first four variables are a standard format very similar to the DOE 
in Chapter eight. The last column is composed of multiplying the first four 
variables (A × B × C × D) together in coded format. This results in a design 
with cube plot of the design shown in Figure 12.2.

The design has several interesting and critical points as follows:

•	 The design is regarded as orthogonal. Take any factor combinations 
(A × B, A × C, A × D, A × E, A × B × C, A × B × C, A × B × D, A × B × 
E, etc.) and multiply each column; the sum is zero. That is critical 
for independence of variables or interactions. Also, all main effects 
columns add to zero.

•	 Notice from the earlier point that if one factor is eliminated, what 
remains is a full-factorial on the remaining four factors. This can 
best be seen visually by looking at one of the factors independently. 
Looking at Figure 12.2 factor E from the top two cube plots (the 
+’s) to the bottom two cube plots (the −’s), all corners of every cube 
are included. Thus, eliminating that factor would result in a full-
factorial of the remaining four factors. That is a huge bonus when 
running experiments as at least one factor is normally found benign.

•	 Factor E in the fifth column has as a special characteristic. This factor 
is more subject to confounding than the other factors. If engineering 
knowledge is available, this should be the least likely factor to inter-
act with the other variables. This may generate the next question: 

1

Height

Weight

–1

–1
–1

–1

–1
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Body ln

1

1

1

Body width

Figure 12.2  Cube plot of 5-factor, 2-level, half-factorial.
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If that is known, why would it be necessary to run the experiment? 
Valid point, but notice the language—least likely to interact. If it is 
a primary factor and acts on the process independently, this experi-
ment will find it. But numerous times, a certain variable will not 
likely physically interact with the other variables in the experi-
ment. (Example: most commercial wood sanding operations: from 
the author’s experience, running multiple DOEs in multiple similar 
operations, the paper grit is an independent variable.) If that is the 
case, placement of this variable in the last column will minimize 
confounding.

•	 Sixteen runs in many facilities are hard to organize and run. If there 
is any doubt about the integrity or about the mixing of runs, either 
rerun those runs or drop them all together. Normalization of one 
run is better than a major error in judgment based on sloppy record 
keeping.

The results and analysis
As with the prior experiment in Chapter ten, randomization is probably 
even more critical in this experiment. The opportunity for confounding one 
or more factors with an environmental factor such as the ambient tempera-
ture or with a raw material is greater than that with the eight-run experi-
ment. Here is an easy method of randomization for experimental runs.

From a deck of cards, take cards ace (1) through 10 plus the jack, queen, 
and king of the same suit. For this example, utilize hearts. Combine that 
with the 4, 5, and 6 of another suit. For this example, we will use diamonds. 
Let the ace through king of hearts represent runs 1 through 13, and the 4, 
5, and 6 of diamonds represent runs 14-15-16. Take the 16 cards and shuffle 
a minimum of four times. Place the cards in order of the shuffle from left 
to right on the table. Run the experiment via the card order on the table. 
Example: After the shuffle: 4H, 9H, 5D, AH, 8H, KH, QH, 4D, 3H, JH, TH, 
2H, 6D, 7H, 5H, 6H. Design run 4 first, followed by design run 9, followed 
by design run 12, etc.

The final design and typical results of the experimental runs are 
presented in Table 12.4.

A nonanalytic graphical view of the experiment

It is not unusual for a well-designed experiment to 
analyze itself

Dr. George Box
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As Chapter eleven highlighted, there are three primary keys to effectively 
implementing DOE. They are as follows:

	 1.	Reduction in variation of all variables throughout the test. This is 
critical and may consist of a few of the following extraneous factors 
held constant: raw material, operator, testing equipment, gauges, 
environmental conditions such as humidity or ambient temperature, 
line processes such as hydraulic pressure, etc.

	 2.	Maximizing data in the output parameter (flight time in this exam-
ple), as a result of a change in the input parameter. In other words, 
make sure the input parameters are moved sufficiently to see the 
change in the output. For this experiment, the wing length is moved 
from 70 mm to 120 mm, which is very likely to show up in the out-
come if it is a factor. Movement from 90 mm to 95 mm will likely 
result in little, if any, movement and the eventual incorrect conclu-
sion that wing length was benign (a major beta error).

	 3.	Organization. A change in the run order, mislabel of the data, and 
unplanned reduction in the number of tests for each run are just a 
few of the problems with poorly executed DOEs. A well-designed 
DOE with a poorly executed test can ruin the results and lead to beta 
error but probably more important, a disastrous and embarrassing 
alpha error.

Table 12.4  Results of the experiment—replication seven per run

Design 
run

Actual 
run 

A—wing 
length

B—body 
width

C—body 
length D—weight

E—rack 
position

Flight 
time (s)

1 4 −1 −1 −1 −1 1 1.4
2 9 1 −1 −1 −1 −1 2.1
3 15 −1 1 −1 −1 −1 1.3
4 1 1 1 −1 −1 1 2.2
5 8 −1 −1 1 −1 −1 1.3
6 13 1 −1 1 −1 1 2.0
7 12 −1 1 1 −1 1 1.1
8 14 1 1 1 −1 −1 2.3
9 3 −1 −1 −1 1 −1 1.1
10 11 1 −1 −1 1 1 1.5
11 10 −1 1 −1 1 1 1.3
12 2 1 1 −1 1 −1 1.4
13 16 −1 −1 1 1 1 1.4
14 7 1 −1 1 1 −1 1.3
15 5 −1 1 1 1 −1 1.3
16 6 1 1 1 1 1 1.4
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The typical results of the aforementioned DOE are as shown in Figure 12.3.
Before proceeding, suggest pausing and viewing the graph in 

Figure 12.3 in detail. From the earlier, there are several basic findings:

•	 There is a significant interaction between the wing length (A) and 
the weight (D). This section will be shown in more detail later.

•	 The height, body width, and body length are benign. That may not 
seem intuitively correct, but the data do not support intuition. Any 
change in the process centered on those three variables will likely 
result in no change in the process. In practice, any use of capital 
to change those processes with the expectation that it will change 
the results will likely result in frustration and disappointment 
with the entire program. This inadvertently leads to changes in the 
entire direction of the continuous improvement system or program 
initiated.

•	 The interaction term may have been missed without the use of 
a designed experiment, and at a minimum, it would have been 
suboptimized.

Eliminating the three benign variables results in the interaction as shown 
in Figures 12.4 and 12.5 in graphical form.

(For further discussion regarding the construction of interaction plots, 
see Box et al. 2005, pp. 173–193.)
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Figure 12.3  Cube plot of helicopter experiment.
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Typical next steps
The next steps will be completed in chapter thirteen. Is this the stopping 
point in any experiment? Hopefully not, as these results provide only a 
direction for potential major improvement and not an ending point or 
optimization. Nor does this represent the opportunity for potential reduc-
tion in cost of the benign variables. The initial DOE answers the question, 
“What factors are important to the outcome of this process?” The follow-up 
can then address what to do to optimize the outcomes and minimize costs.

Discussion areas and potential next steps  
for students

•	 What is a similar experiment that could be run for the juggling 
example in Chapter ten? What factors were potentially missed in 
that DOE? Take this next step and implement the DOE with two 
new variables—ball diameter and starting hand. The results may be 
surprising.

•	 What do you recommend as next steps for the benign variables, 
body width, and body length? What if these are high-cost variables? 
What might be the restriction on lowering the cost?

•	 Discuss the ramification of not finding the measured height differ-
ence as significant. How could that be possible if there was in fact a 
difference in measured height? What is the proper answer to man-
agement that states that there must be difference, and I can see the 
height difference!

•	 Brainstorm for other 5-factor, 2-level, 16-run DOEs on existing pro-
cesses not necessarily in manufacturing. Example 1: Automobile 
mileage as the outcome and experimental factors: tire pressure, 
driver, driving method—city or expressway, fuel octane, dirty or 
clean air filter. Example 2: Bicycle time from point A to point B: fac-
tors might be seat height, tire pressure, handlebar height, breakfast 
that day (yes/no), water intake during ride (yes/no).

•	 For manufacturing. Arrange a plant trip and analyze each manufac-
turing process. What is the scrap rate? What is the speed to design? 
What is the downtime? Describe a DOE to reduce any of those 
factors.

•	 For nonmanufacturing. Describe a designed experiment for a non-
manufacturing process such as customer service response. What are 
the similarities to the manufacturing DOE? Discuss how you would 
run the DOE and issues associated with it.
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•	 For historical data. What methods that follow the DOE process can 
be utilized for historical data analysis? Hint: The 2008 Presidential 
election may have been decided by the use of this method.

•	 How does this process work for a start-up operation? What differences 
might there be in the method variables identified for analysis in 
the DOE? What differences are there potentially in the number of 
variables?
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chapter thirteen

Process optimization after 
the design of experiments

Objectives
•	 Understand typical process optimization steps after running the 

design of experiments (DOEs).
•	 Walk through a hands-on example of the optimization process with 

the experimental helicopter.
•	 Review some of the common what-ifs when applied in an actual 

application.

Overview from the 5-factor, half-factorial, 
designed experiment
The last chapter left off with the finding of a major interaction between 
the wing length and weight. Interactions between two or more factors are 
common in most industrial processes. They are also the source of com-
mon frustration for operators. Statements from frontline operators such 
as “this process has a mind of its own—1 day it works fine, the next day 
it will not” are not unusual in processes not optimized. Why? Because it 
is very difficult for any operator to pick up on a process interaction with-
out using a systematic experimental approach such as DOE. In Chapter 
twelve, the DOE located the underlying cause of the frustration—this next 
step will optimize it further, potentially reducing the underlying causes 
or, in some cases, eliminating them completely. This optimization pro-
cess is unique to the operation and should not be utilized or interpreted 
as a standard to follow as there are multiple different excellent methods. 
Three typical follow-ups to any DOE are covered.

The optimization process with the 
experimental helicopter
There are typically three phases to the follow-up process. Follow-up test-
ing to determine optimal settings of the critical factors, followed by confir-
mation of the optimized process, and then actual implementation or what 
is commonly called “go live” or implementation in the actual operation. 
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Of the three, the most difficult but rewarding is the “go live” phase. This 
will be discussed in detail later.

The follow-up testing

What was found after the last DOE was a two-way interaction. Drawing 
only that interaction results in what is shown in Figure 13.1.

As shown in Chapter twelve, there is a large interaction between wing 
length and the weight (Figure 13.1 at wing length +1 and weight at −1). 
At this point, if the results have been reported to management, there is 
likely a drive to implement changes as soon as possible, especially if the 
process was chosen for the DOE because of poor quality and/or high cost. 
There are also likely limited resources remaining to experiment with the 
process. The typical rule of thumb is to allow 25% of the experimental 
budget on the first DOE. But scarce funds for experimentation and equip-
ment downtime are mostly difficult to procure. How best to optimize 
after the likely costly opening DOE and the drive to implement without 
optimization?

The problem with the abovementioned outcome is the factors tested 
may not be linear. Eight more runs will likely locate close to an optimum 
point when limited resources are available for an extensive follow-up 
optimization. Although there are multiple options, a typical pattern fol-
lows as shown in Figure 13.2.

Cube plot of �ight time (s) by coded weight and wing length

1.275
1

Weight

–1
–1

1.400

1Wing length

1.275 2.150

Figure 13.1  Flight time and weight interaction in coded format.
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This is a typical follow-up to the first experiment and only requires 
eight more runs with all other factors (wing width, body width, body 
length, paper type, etc.) held constant. Why this pattern? This will deter-
mine an optimization location with a minimum number of runs. Notice 
this pattern is a 3-level, 2-factor, full-factorial run in 9 runs without the 
center point, which was run in the base DOE in Chapter twelve. This can 
be computed as follows:

	 = = =No. of runs No. of levels 3 9No. of factors 3 	

The width of the pattern depends on the economics of the remaining runs. 
In most real manufacturing processes, this may consume the majority of 
the project budget. Finding micro options outside of the abovementioned 
points found in the prior experiments may not even be an option.

Before running this follow-up testing, run the center point first to 
reconfirm the results obtained during the initial DOE. If the mean and/or 
standard deviation are significantly different from that when that test 
point was run during the DOE, stop the process until determining the 
root cause or an unaccounted factor. In an actual manufacturing process, 
this step is easily missed and can result in a missed call on the process at 
the implementation phase.

An easy method to teach this confirmation step is with the experi-
mental helicopter and rack system. Have the continuous improvement 
candidates, or students, run the center point first. Between the original 
DOE and the confirmation run of the center point, change the height of 

Cube plot of flight time (s) by coded weight and wing length
1.275 1.400

1

Weight

–1
–1 Wing length 1

1.275 2.150

Figure 13.2  Experimental runs between wing length and weight.
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the rack used to drop the experimental helicopter. This is an advantage 
of utilizing the adjustable racks and not the typical method of the fixed 
point such as the ceiling. When dropping the two and comparing them 
with a 10- to 15-cm difference in height, there should be a significant dif-
ference in flight time. The typical output would be similar to that shown 
in Figure 13.3.

This should be a struggle for students but not uncommon to real-
life occurrences on an actual manufacturing or nonmanufacturing 
operation. What changed? Why was the process potentially optimized 
yesterday and not today? Was it the raw material? What batch number 
was used yesterday? Was it a different operator, and if so were the set-
tings changed? Was there a preventative maintenance performed on 
the machine overnight? Did the environment change significantly? If 
a hidden factor was the humidity, did a cold front come through over-
night? Was there a fan on yesterday during the test? Has the experi-
mental helicopter design changed because of batch-to-batch differences 
in design? What about the mold? Was it changed overnight? If this is 
now the weekend or a nontypical operating day, did the power factor 
change? If this is a nonmanufacturing process, was there an incoming 
product change such as a surge in customer demand in a bank or retail 
outlet or customer service facility? Was there a change in measurement 
systems? Was a new gauge operator started on the process?
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Figure 13.3  Optimization at the completion of the DOE and after the rack change.
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After struggling with the investigation, check the height and 
become aware of the difference. A height difference of 10 cm is unlikely 
to be seen visually, especially without a comparison from the prior test. 
At the completion of the investigation, have the students recalibrate 
the height and run another test to confirm. There should be no signifi-
cant difference between this run and the optimization point found in 
the DOE.

The frustration in that process will be a small example of what is 
required if this happens in a real operation—and most likely it will. Also 
notice the effect that the concepts outlined in prior chapters have on this 
investigation: The lower the variation, the more likely a difference will 
be found. The aforementioned difference may not have been found if all 
the other factors are not blocked during the follow-up phase and even-
tual implementation. Without knowledge of the hypothesis experimental 
method and the application of the base-level fundamental method of it, 
the difference would most likely not have been found.

After confirming the center point, obtain data for each of the remain-
ing eight runs in the follow-up testing. Enter the data into a graphical 
format or a statistical software package such as Minitab, JMP, or SPSS.

Interpretation and confirmation of the new 
optimization point
The optimization point is between tested points and can be seen from 
the results in the two graphs (Figures 13.4 and 13.5). Although the two 
graphs can be constructed by hand, for introductory DOE learning, 
these are best constructed in the statistical software packages identi-
fied earlier and typically used in tandem. The two graphs basically 
reach a similar conclusion: The optimum point can now be found based 
on capability levels and cost. In the hypothetical model, the optimum 
operating settings will depend primarily on two factors: The cost of the 
added wing length, the benefit, and other potential negative effects from 
the weight removal. In a real manufacturing operation, there will likely 
be additional factors—for example, in the plant making paper clips or 
pace makers; what is the risk level of a part manufactured outside the 
customer specifications? 

For this analysis, with only eight new points, the optimum point is 
located at a coded wing length of 1.1 and a coded weight of −1.1.

A brief explanation of coded units
It is best to utilize coded units in designed experiments. Why? As will 
be shown in the following paragraphs, interaction terms are difficult to 
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utilize in regression models if not in coded units. To understand the deri-
vation of coded units, think in terms of a sliding scale based on the origi-
nal two levels determined in Chapter twelve (Figure 13.6).

To derive a number (X) on the scale:
If above 95,

	

−
−

X 95
120 95 	

If below 95,

	

−
−

X 95
95 70 	

So as an example 130 mm in coded units would be,

	

−
−

=130 95
120 95

 1.4
	

For this example, compute the wing length and weight from the coded 
units as follows (Figure 13.7):

Wing length: 

	
= −

−
X

Coded unit (1.1)
95

120 95 	

	 =X 125.5 mm 	

0 +1–1

1209570

Figure 13.6  Coded units scale for wing length.

0 +1–1

1209570

+1.1

125.5

Figure 13.7  Coded units for wing length of 1.1.
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Weight: (note standard weight of the zero point is 2 g, −1 coded units is 
1 g, +1 coded unit is 3 g) (Figure 13.8). 

	
− = −

−
XCoded unit ( 1.1) 2
2 1 	

	 X = 0.9 g

Now that we have our optimized helicopter settings, what flight time 
can be expected? This can also be calculated, using the regression model. 
Regression models can be developed for this scenario from the DOE by 
hand, by formula, or from the statistical software packages referred to 
earlier.

Regression model with interaction term added in:

	

= + × − × −

× ×

Flight time 1.52 0.25 (Wing length) 0.19 Weight 0.19

Wing length Weight 	

Substituting in the coded units for Flight time (1.1) and weight (1.1)

	 =Flight time 2.2 s 	

Note that we have found the optimum values and expected flight time 
using experimentation and calculation, without actually needing to run 
a physical experiment at the optimum values! Using the DOE and coded 
values, we have gathered several points and then interpolated the best 
value. When possible, confirm the results by running the process with the 
selected factor values to see if the expected outcomes hold. How does the 
optimized setting compare to the previous settings before the DOE? It’s 
not uncommon to find a massive improvement.

Utilizing the existing standard deviation (0.15) and the minimum 
specification of 1.5, the new capability to the lower limit (CPl) is as 
follows:

	
= −

×
= −

×
=X

Capability to the lower limit (CPl)
Lower spec

3 Standard deviation
2.2 1.5
3 0.15

1.55

0 +1–1

3 g2 g1 g

–1.1

0.9 g

Figure 13.8  Coded units for weight (g) for –1.1.
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Putting it into action or “go live”
The previous section demonstrates the sometimes difficult steps of opti-
mizing a process. The process will not likely improve without experi-
mentation and will only get worse by adding inspectors or requesting 
the operator to adjust when it gets close to an out-of-specification condi-
tion. Optimizations will work, but it takes effort and time. Learning how 
to optimize by this methodology will improve almost any process.

For an actual operation, the next step is to implement in operations. 
That can be time consuming and frustrating, as issues undetected before 
will undoubtedly surface. Comments such as “we never had this happen 
before” are common but expected because the new process is running 
with different input parameters. Once in operation, expect the process 
to improve and then optimize with further microexperimentation com-
monly called evolutionary operations.

“Go live” phase usually is accompanied by a process of mistake-
proofing of the critical input parameters. Notice now, the parameters are 
optimized for the wing length and weight. Since these are critical to the 
performance of the helicopter meeting the 1.5-s customer requirements, 
these require the highest level of quality and assurance of meeting cus-
tomer specifications. Typical mistake-proofing techniques for this exam-
ple might include a device at the end of the line to prevent a condition 
of over or under size. For the weight, it might include the operation of 
an automatic weight scale and shutdown system if out of specification. 
These are systems to find mistakes after the fact, but the best assurance 
is to prevent an oversized wing or overweight condition from ever being 
produced. This might include assurance techniques during the molding 
process or other areas at the material supply process.

Just as important to the control phase is what is not required for the 
other factors found benign, such as body width. Expensive devices are not 
likely required for this parameter as the DOE and optimization process 
found are not critical to the characteristic of flight time. A check of the pro-
cess for manufacturing the body width may be necessary but only for a 
critical cost range. If so, a simple control chart checking every 10th part may 
be sufficient, but a major investment is likely not needed. Notice the param-
eters requiring control are determined from experimentation and not from 
“gut feel” or “past experience.” The data rules the process and determines 
what needs controls—not the other way around.

Follow-up exercises for students
•	 This experiment was designed to find factors that potentially have 

an effect on the mean of the process. Design another experiment to 
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optimize the standard deviation. What critical factors control the 
standard deviation?

•	 For a final flight test, drop another series around the factor or fac-
tors for the raw material. Add three different materials for experi-
mentation. What does the output determine? Why is it critical? What 
does that tell you about the requirements for production and supply 
management?

•	 After optimization, utilizing the rack and experimental flight, take 
the model and drop until material failure. If the abovementioned 
material tests results using a thinner or lighter material, what effect 
does that have on the cycle to failure?
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chapter fourteen

Making data, statistics, and 
continuous improvement fun 
and interesting
A typical week-long course

Objectives
•	 Develop a first-step hypothetical syllabus for a classroom Six Sigma 

course.

An overview
This book has described an environment of education that makes learning 
fun and interesting. Taking many courses that historically have been 
traditionally taught, this approach adds the interesting factor to the learning 
methodology. It is hoped that students learning by this approach for the first 
time will find data, statistics, and continuous improvement more interest-
ing, leading to more students engaged in these fields of study.

Typical introductory Six Sigma or continuous 
improvement education model with this approach
Day 1: AM

Introduction to mean, standard deviation, confidence interval, and basic 
statistics utilizing the normal distribution by juggling as outlined in 
Chapter six. By the end of this section, most students will start to under-
stand many areas including one critical concept—this is not a normal class. 
They should finish this day mentally excited and physically exhausted.

Day 1: PM

Introduction to hypothesis testing by experimental helicopter as outlined 
in Chapter eleven. This will be the introduction to this concept, critical 
for understanding beta error, alpha error, and power. This is an excel-
lent time to introduce Deming’s concept of overadjustment or the funnel 
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experiment. New to most students, managers, and executives, hypothesis 
testing can have a very powerful long-term impact on business, govern-
ment, or any micro/macro process as highlighted in Dr. Deming’s books 
on data and continuous improvement.

Day 2: AM and PM

Probability, including the multiplication principle by card manipulation, 
introduction to Bayesian statistics by coin magic, binomial probability 
function, and (not covered in this book) the data for rare events utilizing 
the Poisson distribution. Card manipulation and coin magic techniques 
are described in Chapters two through four.

Day 3: AM

Statistical process control (SPC) by juggling and experimental helicop-
ter. As reviewed in Chapter seven, students can develop an SPC chart for 
the tosses to drop, determining whether their own process is in a state of 
control from morning to evening. As a possible addition, develop an SPC 
chart for the helicopter drops at 2.5 m. As an added special effect, turn on 
a fan half way through the drops to introduce an environmental factor. 
This is an excellent way of introducing the power of SPC for identification 
of special causes of variation.

Day 3: PM

Gauge R&R by the experimental helicopter, not covered in this book. 
With the addition of the adjustable rack, construct a test ball to drop 
from the rack height to floor level, removing the environmental effects 
of the experimental helicopter. With students split into teams, a tradi-
tional Gauge R&R study will review shortcomings in the timing system 
(the stop watch) by means of the process-to-tolerance ratio and analysis 
of differences between operators. This will challenge students to develop 
different techniques to remove the noise in the gauge. This is typically 
very similar to an actual manufacturing or transitional process.

Day 3: PM

The process capability index and the meaning behind it by experimen-
tal helicopter and/or juggling. As covered in Chapter six, the process 
capability index will determine the required continuous improvement 
path—centering, improvement by control, variation reduction, or a combi-
nation of all three. This can be done by two methods. The first is utilizing 
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the experimental helicopter with the lower specification at 1.5 s for a 2.5-m 
drop. This will drive the improvement process as the capability, if in con-
trol, will be significantly <1. For the juggling process, the lower specifica-
tion will be determined by the student. The lower specification will be 
determined by their own desire. This may be a minimum of 5 to, in some 
cases, 10 tosses to failure as the desired minimum specification. Again, 
this is up to the client—in this case, the students themselves.

Day 4: AM and PM

Design of experiments (DOEs) by experimental helicopter, juggling, and 
card magic. Start with a very basic juggling DOE as described in Chapter 
eight. What factors are critical? Follow up with new analysis of control 
and capability index. Continue with the experimental helicopter, 3-factor, 
2-level, 8-run design. Easy to do, and a very obvious two-way interaction. 
Finish with the 5-factor, 2-level half-factorial as described in Chapter 
twelve. Along the way, the card trick of the 5-factor, 2-level, 32-run full-
factorial DOE from Chapter eleven is an excellent way to explain the con-
cept of orthogonality. By the end of this day, all students should have a 
midlevel knowledge of DOE and be able to apply it to a manufacturing or 
transactional process.

Day 5: AM

Regression and optimization. Chapter thirteen describes the optimization 
process after the 5-factor designed experiment with the experimental heli-
copter. This is an excellent way to find an optimization point and demon-
strate response surface methodology. At the completion of this exercise, 
the regression model as demonstrated in Chapter nine with the juggling 
process is a way to find an optimum CPl. At the completion, each helicop-
ter team can build their own custom-designed experimental helicopter 
with their settings for weight, wing length, body width, and body length 
showing evidence of SPC and a new optimum CPl.

Day 5: PM

Testing for long-term control and the bathtub curve as outlined in 
Chapter eight. This final exercise is to test out the bathtub curve for the 
experimental helicopter–optimized design. How many cycles does the 
curve transition from the constant failure zone to the wear-out zone? 
Attempt this with multiple helicopters. Is the point predictable? If so, and 
the maintenance practice is for a 1% downtime rate, at what point should 
the helicopter be taken out of service?
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A course developed on statistics and probability that is hands-on is 
going to be much more adaptable to the world of the future as the informa-
tion age expands. This concept will be explored more in the final chapter.

Extra hands-on exercises

•	 Take the experimental helicopter and change the material utilizing 
three different materials: thin gauge paper, heavy cardboard paper, 
and paper thin plastic. What changes with the characteristics? Is 
there a significant improvement or no changes? What happens to 
the overall weight and the cost of operations?

•	 Take the three raw materials and determine the transition point 
from constant breakdown to wear-out. Does this point change?

•	 Have all students take a process from outside the classroom and 
optimize it through the aforementioned process. Trouble coming up 
with a process? Here are a few:
•	 Baking bread
•	 Time to ride a bike from point A to B—this is a classic 7-factor DOE
•	 Their automobile gas mileage
•	 Flying a kite—what are they trying to optimize?
•	 Their household BTU consumption
•	 Their household water softener usage
•	 Their blood sugar level
•	 Their cholesterol level.
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chapter fifteen

Final thoughts
Properly utilized, this approach will make the learning process for data 
and statistics interesting and even fun. This could potentially create a 
complete generation of new data, statistics, and probability specialists.

In 2006, Salman Khan, creator of the Khan academy, gave a Ted Talk 
on the future of Mastery Learning. In that talk, Sal Khan described two 
triangles representing the population by skill level now and in the future. 
The present outcome of the system of learning can be characterized by 
the first triangle or pyramid—a large pool of human labor, largely unedu-
cated in the sciences of data, statistics, and advanced continuous improve-
ment techniques. The middle section is characterized by bureaucrats and 
information specialists. The third section is researchers, creators, and 
continuous improvement fanatics leading to entrepreneurship and own-
ership of capital. What a tragedy of lost potential! 

But what if the model was reversed, which is probably happening 
throughout the world? Human capital and bureaucrats are being replaced 
by computers and robotics. Creators, researchers, and entrepreneurs are 
now the top tier. Breakthroughs in new technology or medical research 
previously never allowed to happen are now commonplace. A person 
who was previously a laborer in a machine shop sweeping floors now 

Owner of capital
Entrepreneur
Researcher

Creators

Information specialist or beaurocrat

Human labor
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becomes a continuous improvement specialist, proving that a different 
speed and cutting angle in tangent can extend the life of machine tooling 
by a factor of 3 to 1. A grinding wheel operator can find a way to elimi-
nate the incoming defect instead of grinding the burr off the part. That 
end-of-line inspector now finds a way to completely eliminate the incom-
ing part defect.

Utopia? Maybe not. How many students, born into less than ideal 
education systems, failed to become excited by the concept of statistics, 
data, probability, and continuous improvement? How many became dis-
enchanted because of the way it was presented or taught? How many 
entrepreneurs, researchers, and creators are waiting to be found?

The author has used the approach described in this book throughout 
the world. This process has converted workers and frontline employees 
with limited formal education to engaged employees who understand 
basic concepts in statistics and data analysis, including many who now 
utilize design of experiments and regression analysis.

To explore this concept further, please visit my website at www.
williamhooperconsulting.com, research other concepts through the chapter 
bibliography, or pursue this approach at other forward-thinking educa-
tional institutions such as the Kahn Academy at www.kahnacedemy.org.

Owner of capital
Entrepreneur

Researcher
Creators

Bureaucrats

Human labor

http://www.kahnacedemy.org
http://www.williamhooperconsulting.com
http://www.williamhooperconsulting.com
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149–150
production model, 144–145
type I error, 139, 141, 144
type II error, 139, 141, 144–145

I

Imitation Game, The (Alan Turing), 62
Independent events, 22–28

compared with dependent events, 28–29
Individual and moving range chart (I-MR 

chart), 94
Industrial applications, of Bayesian 

statistics, 61–63
Instinct, and Bayesian statistics, 60–61

J

JMP, 169
Juggling, 67–81

advanced, 79–81
as brain food, 70
design of experiments, 112–125
formula, 69
history of, 67–70
one-ball cascade, 70–72
reliability function graph of, 

103–109
statistical process control, 

demonstration of, 94



185Index

three-ball cascade, 77–79
two-and-half-ball cascade, 76–77
two-ball cascade, 72–76

L

Laplace, Pierre-Simon, 139
Learning, science of, 3–9
Lind, James, 111
Lower control limit (LCL), 94

M

Mean, 85–86
Measurement

right, 83
systems, creativity in, 83–85

Medical problem by tree diagram
Bayesian statistics, 59–60

“Mills’ Mess,” 67
Mills, Steve, 67
Minitab, 169
Montgomery, George, 112
Multiplication rule of probability theory

basics of, 11
card trick using, 12–32

Mysterious mind-reading trick, 127
compared with 5-factor, 2-level, 

full-factorial design, 
128–133

N

Neyman, Jerzy, 139
Nichols, Bobby, 4
Nicklaus, Jack, 4
Normal (Gaussian) distribution, 

93, 94
Null hypothesis, 142–143

O

One-ball cascade juggling, 70–72
Out-of-control

isolated, 94–96
primary conditions for, 93–94

Overadjustment, 91, 92, 177

P

Paper helicopter design, 149–150
hold constant, 149

with rack system, 145–147
Partial factorial design, 154–155
Pearson, Egon, 139
Permutations, by phone number card trick, 

33–48
Phone number card trick

combinations and permutations by, 
33–48

continuous improvement class, 48
deck, cutting, 42
deck, stacking, 35, 41–42
probability, determination of, 39–40
revealing, 46–47
shuffling, 35–39, 42
useful, relevant, and interesting/

shocking, 47
Plan-Do-Check-Act cycle, 90
Poisson distribution, 178
Power box, 141–142
Preliminary design, of design of 

experiments, 114–116
Process capability

calculation of, 86–87
by capability analysis, 88–89
index, 178–179

Process optimization, after design of 
experiments, 165–174

coded units, 169, 171–172
follow-up testing, 166–169
“go live” phase of, 173
new optimization point, 

interpretation and 
confirmation of, 169, 170

Production model, 144–145
Pythagorean Theorem, 4–5

R

Randomization, 17, 118–119
Rational subgrouping, 93
Reagan, Ronald, 68, 69
Regression model, 123–125
Reliability function graph, 103–109

for equipment and personnel, 
demystifying, 103–104

of juggling, 104–106
useful life to wear-out transition 

zone, 106
wear-out cycle, extension of, 

106–109
Replication, 122, 147, 156
Right measurement, 83



186 Index

S

Sample size, 117–118
Science of learning, 3–9
Shannon, Claude, 68–69
Shewhart, Walter, 92, 99; see also 

Statistical process control 
(SPC)

Economic Control of Quality of 
Manufactured Product, 91

Six Sigma, 91, 112, 177–180
cycle, 90

Special cause of variation, 96–99
SPSS, 169
Standard deviation, 85–87
Statistical process control (SPC), 7, 20, 89, 

91–102, 178
adjustment and negative consequence, 

99–101
basics of, 92–93
chart

basics of, 91–92
terminology of, 94–95

juggling demonstration of, 94
out-of-control

isolated, 94–96
primary conditions for, 93–94

special cause of variation, 96–99
Statistics for Experimenters (George Box), 

154
Subjectivity in prior knowledge

Bayesian statistics, 56–59

T

Three-ball cascade juggling, 77–79
Turing, Alan

Imitation Game, The, 62
Two-and-half-ball cascade juggling, 

76–77
Two-ball cascade juggling, 

72–76
Type I error, 139, 141, 144
Type II error, 139, 141, 144–145

U

Understanding Variation: A Manager’s Key 
to Understanding Chaos (Donald 
Wheeler), 100

Upper control limit (UCL), 94
URI Index, 5–7
Useful, relevant, and interesting/shocking 

(URI), 4–7
by phone number card trick, 47

W

Wheeler, Donald, 84, 91, 94, 101
Advanced Topics in Statistical Process 

Control, 93, 95
Understanding Variation: 

A Manager’s Key to 
Understanding Chaos, 100

Whiting, Ben, 34


	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface: Learning data, statistics, and continuous improvement another way
	Acknowledgments
	Author
	Part I: Simple steps to making probability interesting
	Chapter 1 The science of learning: Make it interesting or shocking
	Why we still remember where we were and what we were doing on 9/11
	Overview of the chapters
	Part one: Chapters two through four. Card tricks and probability
	Part two: Chapters five through ten. Juggling and statistics
	Part three: Chapters eleven through thirteen. Experimental helicopter for continuous improvement
	Part four: Chapters fourteen and fifteen. Making data and statistics fun and interesting

	Bibliography

	Chapter 2 The use of two very basic card tricks to explain probability theory
	Objectives
	The basics of the multiplication principle for probability theory
	Classroom activity 1: Teaching the multiplication principle by card trick—The aces and kings card trick
	The step-by-step mechanics of how a simple card trick can greatly enhance the learning process
	Step 1: Preload the deck
	Step 2: Bring up to the front a member of the class or audience
	Step 3: Optional fake shuffle #1
	Step 4: Strategically have the student cut the deck
	Steps 5A–5D: The fake shuffle. Moving the four aces and the four kings to the bottom four on the table in what is believed are fully shuffled cards
	Step 5A: Move your four kings from the bottom of the deck to the bottom of a new stack on the table
	Step 5C: Move the student’s stack with the four aces on top to her/his new stack
	Step 5D: Shuffle all cards except the cards that have been placed on the table

	Step 6: The fake shuffle continued
	Step 7: Form four piles of cards on each side of the table from the two halves

	Card trick finale: Using multiplication principle of probability theory
	The odds of getting beat
	A card trick for teaching probabilities of independent events
	How to show the difference by card illusion
	Step 1: Student selects and memorizes a card
	Step 2: Deck split
	Step 3: Card insertion and pinky break
	Step 4: Moving the target card to top of the pile
	Step 5: False showing of card to student
	Step 6: Reveal
	Step 7: Returning the target card to the deck

	Comparing dependent and independent events
	Reality check: How it works in operations
	Summary and potential next steps for instructors and students
	Author’s note
	Bonus section: The process map
	Summary and next steps
	Bibliography

	Chapter 3 Combinations and permutations by card magic
	Objectives
	Overview
	The concept of combinations and the phone number card trick
	The mathematics behind a flush in poker
	Classroom activity 3.1: The poker hand flush by the “phone number” card trick
	Step 1: Start by stacking a standard deck similar to examples in Chapter two
	Step 2: Placebo shuffle by students
	Step 3: Determining probability of flush and revealing the flush

	Classroom activity 3.2: Phone number card trick to elaborate on the concept of combinations–permutations
	Step 1: The phone number card trick: Stacking the deck
	Step 2: Fake shuffle the phone number from the bottom of the deck to the top
	Step 3: False cut of the deck
	Step 4: The first random cut
	Step 5
	Step 6
	Step 7
	Step 8: Reveal the phone number

	The phone number trick and “useful, relevant, and interesting/shocking?”
	Other card tricks to be used with probability theory
	A follow-up team exercise for students or in a continuous improvement class
	Author’s notes
	Bibliography

	Chapter 4 Bayesian statistics: When accurate past information shortens the distance to the aha moment
	Objectives
	What is Bayes’ formula?
	The confusing formula
	Classroom activity 4.1: Coin trick to explain Bayes’ theorem and illustrate the problem with subjectivity in prior knowledge
	Step 1: Setup and identifying the two-headed quarter
	Step 2: Pass out quarters and flip three times
	Scenario 1. I don’t think the instructor had prior knowledge; the coin was randomly chosen
	Scenario 2. I think the instructor had prior knowledge and chose the person with the fake coin
	Scenario 3. I think the instructor had prior knowledge and chose one of the real coins


	The medical problem by tree diagram
	Your honor, gut instinct does not counter Reverend Bayes
	How it should work in industry (but rarely does)
	Bibliography


	Part II: Introduction: Data, statistics, and continuous improvement via the sport of juggling
	Chapter 5 Learning the sport of juggling step by step
	Objectives
	The history of juggling and famous jugglers over the years
	Juggling as brain food
	The first step: The one-ball cascade
	Two-ball cascade juggling: The most critical pattern to learn
	Next step to three-ball juggling: The two-and-half-ball cascade
	The three-ball cascade
	Optional advanced next steps for the advanced jugglers
	Bibliography

	Chapter 6 The start of any process including learning to juggle: Mean, standard deviation, and the learning curve
	Objectives
	The key to any process optimization: The right measurement
	Creativity in choosing measurement systems: Convert it to something measureable
	Mean and standard deviation for tosses to drop as a training technique for process optimization
	Process capability calculation: Number of standard deviations
	Process capability by capability analysis
	Additional exercises
	Author’s note
	Bibliography

	Chapter 7 The basics of using the control chart to improve the juggling process
	Objectives
	The basics of the Shewhart statistical process control chart
	The basics of statistical process control
	The typical three primary conditions for out-of-control
	The juggling demonstration of statistical process control
	The first view of the process, an isolated out-of-control point, and what information can be obtained
	Special cause of variation or nontypical behavior—Eight in a row above or below the mean
	Nontypical process behavior—Six in a row trending up or down: The wear out
	How to not use a control chart—Adjustment and the negative consequence
	Author’s notes
	Bibliography

	Chapter 8 The reliability function or bathtub curve as demonstrated by juggling
	Objectives
	Demystifying the bathtub curve for equipment and personnel
	How to explain by juggling
	The useful life to wear-out transition zone
	A demonstration on how to extend the wear-out cycle
	Bibliography

	Chapter 9 Improving by challenging the process: The design of experiments process
	Objectives
	How to improve any process including juggling—The juggling DOE
	The juggling DOE design
	The preliminary design
	Reducing the variation in those factors not to be tested
	The concept of confounding variables
	Sample size and randomization
	The how-tos for running the experiment, and the outcome
	What can be learned from a typical designed experiment
	The juggling DOE results
	Interpretation of the results
	The opportunity the next day and the follow-up testing
	Next phase of improvement and the regression model
	A very simple regression model

	Summary on DOE and regression model method via juggling
	Further exercises for students
	Bibliography

	Chapter 10 Design of experiments via a card trick
	Objectives
	Introduction and the card trick “mysterious mind read”
	The effect, or what the audience sees when performing for a large audience (+20)
	How and why it works
	The 5-factor, 2-level design as compared to the mysterious mind read
	Method number one for setting up the card trick: The easy method
	Method number two: An advance method by binary code and de Bruijn sequence
	The five-digit code for all cards: Aces through 8—In binary code

	How it works—The effect
	Summary and potential next steps
	Author’s comments
	Bibliography


	Part III: I ntroduction: Data, statistics, and continuous improvement via the experimental helicopter
	Chapter 11 Hypothesis testing method utilizing the experimental helicopter
	Objectives
	A brief history of hypothesis testing
	The hypothesis testing model
	Making the model less analytical
	Alpha error or type I error
	Beta or type II error
	The Power box
	The other box

	Transitioning from the courtroom to the production model
	The null hypothesis (Ho)
	The alternative hypothesis (Ha) and significance level

	The production model
	Demonstrating the experimental process with the paper helicopter and rack system
	A test to demonstrate the hypothesis testing method and the negative effects from variation
	A better test to determine if there is difference: Hold constant the helicopter design
	Summary of the hypothesis testing method and the use of experimental helicopter
	Author’s notes
	Bibliography

	Chapter 12 An intermediate use of the experimental helicopter: The 5-factor, 2-level, 16-run half-factorial designed experiment
	Objectives
	An overview of this model and why it is so successful at improving any process
	A review of the helicopter and the five variables
	A brief background on partial factorial designs and confounding
	The 5-factor, 2-level, 16-run half-factorial, Resolution V experiment
	The base-level design for the helicopter design
	The results and analysis
	A nonanalytic graphical view of the experiment
	Typical next steps
	Discussion areas and potential next steps for students
	Bibliography

	Chapter 13 Process optimization after the design of experiments
	Objectives
	Overview from the 5-factor, half-factorial, designed experiment
	The optimization process with the experimental helicopter
	The follow-up testing

	Interpretation and confirmation of the new optimization point
	A brief explanation of coded units
	Putting it into action or “go live”
	Follow-up exercises for students
	Bibliography


	Part IV: Data, statistics, and continuous improvement for everyone
	Chapter 14 Making data, statistics, and continuous improvement fun and interesting: A typical week-long course
	Objectives
	An overview
	Typical introductory Six Sigma or continuous improvement education model with this approach
	Day 1: AM
	Day 1: PM
	Day 2: AM and PM
	Day 3: AM
	Day 3: PM
	Day 3: PM
	Day 4: AM and PM
	Day 5: AM
	Day 5: PM
	Extra hands-on exercises


	Chapter 15 Final thoughts

	Index

