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PREFACE

This book aims to provide an overview of time series analysis to a wide au-
dience of students, practitioners, and scientists from different fields. It is
intended as an introductory text on the vast time series subject. Conse-
quently, it focuses on methodologies and techniques rather than theoretical
results. This book strives to provide a working knowledge of the practical
applications of time series methods. However, it does not attempt to cover
all of the relevant topics in this field.

Consistent with this objective, the first chapter reviews the main features
of a number of real-life time series arising in different fields, including finance,
hydrology, meteorology, sociology, and politics, among others. At the same
time, this chapter refreshes some basic knowledge on statistical distributions.
Furthermore, Chapter 1 provides an overview of the time series modeling
fundamentals by taking a first look to concepts such as stationarity, non-
stationarity, parametric and nonparametric approaches, and whiteness tests.
Further readings are suggested in a bibliographical notes section. This chapter
ends with a number of proposed exercises.

Chapter 2 addresses linear processes, one of the fundamental concepts of
time series analysis. It reviews the different representations of linear time se-
ries and discusses essential topics such as stationarity, invertibility, and causal-

XV



xvi PREFACE

ity. One interesting feature of this chapter is that it covers both short and
long-memory linear processes.

State space models are discussed in Chapter 3. Apart from being another
representation of linear processes, state space systems provide several practical
tools for estimating, smoothing, and predicting time series models. Moreover,
they are useful for handling nonstationarity and missing data problems. In
particular, we discuss applications of state space techniques to parameter
estimation in Chapter 4, to nonstationary processes in Chapter 8, to seasonal
models in Chapter 9, and to missing values in Chapter 11.

As discussed in Chapter 4, time series analysis can be carried out from
a time-domain or from a spectral domain. However, in practice one usually
combine both approaches. For example, spectral analysis is fundamental for
modeling time series exhibiting seasonal patterns. On the other hand, Chap-
ter 5 provides an overview of the realm of methodologies for estimating time
series models. It begins with some essential notions about specifying appro-
priate statistical models, including the concepts of parsimony and information
criteria. Afterwards, it proceeds to discuss several estimation techniques such
as maximum likelihood, Whittle approach, Bayesian estimation, along with
an extensive list of specific methods developed for long-memory models. This
chapter also reviews techniques for carrying out statistical inferences about
the fitted models. A number of simulations and practical applications com-
plete this chapter.

Nonlinear time series are addressed in Chapter 6. This is an important
subject that provides tools for modeling time series data which do not fit into
the linear processes category discussed in Chapter 2. For example, most of
financial time series are better described by heteroskedastic nonlinear models.
This chapter also discusses techniques for assessing financial risk and modeling
time series with complex structure. For instance, these data can be modeled
via threshold processes that allow for the treatment of time series undergoing
regime changes.

The fundamental topic of forecasting time series is discussed in Chapter 7.
Optimal prediction with finite and infinite past is reviewed in the context of
linear and nonlinear processes. Calculating one-step and multistep predictors
and procedures for establishing prediction bands are described.

Chapter 8 examines the subject of nonstationary time series models. Since
many real-life time series do not exhibit stationary behavior, this chapter
discusses methods for handling nonstationarity, including autoregressive in-
tegrated moving-average models and locally stationary processes. While the
former assume that the series results from the integration of an stationary
process, the later assume that the parameters of the model change smoothly
over time. In order to account for abrupt changes, this chapter also discusses
methods for treating structural breaks.

Seasonal patterns are present in time series data as diverse as Internet
traffic, sales revenues, and transportation. Methods for analyzing these time



PREFACE xvii

series are described in Chapter 10, including models based on seasonal dif-
ferentiation. This chapter illustrates the finite sample performance of these
techniques via Monte Carlo simulations and a real-life data application.

Time series regression methods are reviewed in Chapter 9. These tech-
niques allow for the modeling of time series data affected by some underlying
trend or exogenous variables. For example, these trends can be described by a
polynomial structure. Additionally, harmonic regression can be a useful tool
for handling seasonality.

Data gaps and outliers are frequent problems in time series analysis. These
topics are reviewed in Chapter 11. The effects of incomplete data on parameter
estimates and predictors is studied in this chapter. The problem of defining an
appropriate likelihood function in the context of incomplete data is discussed
along with state space techniques for obtaining estimates. On the other hand,
methods to account for outliers are also addressed in this chapter.

Most time series models assume that the observations are normally dis-
tributed. In practice, however, many real-life time series do not fit this as-
sumption. For example, the time series may correspond to count data or
positive observations. Consequently, Chapter 12 provides an overview of sev-
eral methods for estimating and predicting non-normal time series.

Some basic knowledge of calculus is required for understanding most meth-
ods discussed in this book. Apart from this, the text intends to be self-
contained in terms of other more advanced concepts. In particular, Ap-
pendix A provides some specific technical details about fundamental concepts
in time series analysis. On the other hand, Appendix B contains solutions
to some of the proposed problems. Finally, Appendix C provides informa-
tion about the data and the computing codes used in this book. It is worth
noting that similarly to Chapter 1, every chapter of this book ends with a
bibliographical notes section and a list of proposed problems. Supplementary
material for this book can be also found on the Book Companion Site through
the books page on wiley.com.

W. PALMA

Santiago, Chile
January, 2015
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CHAPTER 1

INTRODUCTION

A time series is a collection of observations taken sequentially in time. The
nature of these observations can be as diverse as numbers, labels, colors,
and many others. On the other hand, the times at which the observations
were taken can be regularly or irregularly spaced. Moreover, time can be
continuous or discrete. In this text, we focus primarily on describing methods
for handling numeric time series observed at regular intervals of time. Note,
however, that many nonnumeric data can be readily transformed to numeric.
For instance, data concerning an election between candidate A and candidate
B can be described by a numeric variable taking the value 0 for candidate A
and 1 for candidate B. However, data observed at irregular time intervals are
more difficult to handle. In this case, one may approximate the actual time to
the closest integer value and still use the methodologies for handling regularly
spaced series. If this approach does not provide adequate results, there are a
number of more advanced techniques to treat those types of data. Another
common problem in time series analysis is missing observations. In this case,
the collected data display irregularly spaced observation times. There are
special techniques for handling this problem and some of them are discussed
in Chapter 11.

Time Series Analysis. First Edition. Wilfredo Palma. 1
(© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



2 INTRODUCTION

This introductory chapter presents a number of real-life time series data
examples as well as provides a general overview of some essential concepts
of the statistical analysis of time series, such as random variable, stochastic
process, probability distribution and autocorrelation, among others. These
notions are fundamental for the statistical modeling of serially dependent
data.

Since this text attempts to reach a large audience interested in time series
analysis, many of the more technical concepts are explained in a rigorous
but simple manner. Readers interested in extending their knowledge of some
particular concept in time series analysis will find an extensive list of references
and a selected bibliographical discussion at the end of each chapter.

1.1 TIME SERIES DATA

Let us denote by {y:} a time series where t denotes the time at which the
observation was taken. Usually, t € Z, where Z = {...,—2,—-1,0,1,2,...} is
the set of positive and negative integer values. In practice, however, only a
finite stretch of data is available. In such situations, we can write the time
series as {y1, Y2, ..., Ynt A time series {y;} corresponds to a stochastic process
which in turn is composed of random variables observed across time. Both
concepts are explained in detail later in this chapter.

Several examples of real-life time series data are presented in the follow-
ing subsections. These data illustrations come from fields as diverse as,
finance, economic, sociology, energy, medicine, climatology, and transport,
among many others. Apart from exhibiting the time series, we describe their
main features and some basic data transformations that help uncovering these
characteristics.

1.1.1 Financial Data

Finance is a field where time series arises naturally from the evolution of
indexes and prices. In what follows, we present two basic examples, the
evolution of a well-known stock index and its volume of stock transactions.

Standard € Poor’s Stock Index. Figure 1.1 shows the logarithm of the S&P500
daily stock index for the period from January 1950 to January 2014. Note
that this index seems to increase with time, but there are some downward
periods commonly denoted as bear markets. In order to study these indices,
it is customary in finance to consider the logarithm return, which is defined
as
=lo Fi
Tt g P,

=log P, — log P;_1,

where P, denotes the price or the index value at time t. These returns are
displayed in Figure 1.2. Observe the great drop in returns experienced on
October 1987 and the abrupt changes or great wvolatility during 2009.
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Figure 1.1  S&P500 daily stock log index, January 1950 to January 2014.

0.10
L

0.05
L

0.00
L

Log returns
-0.10 -0.05

-0.15

-0.20

1950 1960 1970 1980 1990 2000 2010

Time

Figure 1.2 S&P500 daily log returns, January 1950 to January 2014.



4 INTRODUCTION
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Figure 1.3  S&P500 daily square log returns, January 1950 to January 2014.

Another look at the volatility is shown in Figure 1.3 where the squared
returns, r7, are plotted. From this graph, the high volatility of this stock
index is evident during these periods.

Financial time series possess specific features, such as those indicated above.
Consequently, Chapter 6 describes methodologies for handling this type of
data. These time series can be analyzed by means of the so-called condition-

ally heteroskedastic processes or stochastic volatility models, among others.

Volume of Transactions. As another example of financial data, the daily vol-
ume of transactions of the S&P500 stocks is displayed in Figure 1.4. Observe
that this series exhibits an upward trend up to 2009.

On the other hand, Figure 1.5 depicts a logarithm transformation of the
above time series. Note that the variance of the data across time is now more
stabilized, emerging a seemingly overall upward trend, excepting the values
after 2009 and some other periods.

These transaction volume data can be considered as an example of a non-
Gaussian time series. In particular, these observations are positive counts.
Specific methods for modeling and predicting non-Gaussian data are described
in Chapter 12.
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Figure 1.4  S&P500 daily volume of transactions, January 1950 to January 2014.
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2014.
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1.1.2 Economic Data

Figure 1.6(a) exhibits the monthly US employment in the arts, entertainment
and recreation section for the January 1990 to December 2012, measured in
thousands of persons. On the other hand, Figure 1.6(b) shows the logarithm
transformation of these data. Notice that this data transformation seems to
stabilize the variance of the series across time. On both panels, however, a
seasonal pattern and an upper trend are evident.
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Figure 1.6  US employment arts, entertainment, and recreation, January 1990 to
December 2012.

1.1.3 Hydrological Data

In hydrology, time series data is usually related to the collection of river flows
observations though the years. For example, the yearly minimum water levels
of the Nile river measured at the Roda gauge is a well-known time series
exhibiting high levels of serial dependency. These measurements, available
from Statlib, www.stat.cmu.edu, are displayed in Figure 1.7 spanning a time
period from 622 A.D. to 1921 A.D.

Notice that there are several blocks of seemingly repeated values. That
is, consecutive years having exactly the same minimum water level. Since
the observations are specified by four digits, these repetitions are probably
the result of a lack of new information. The analysis of this time series data
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Figure 1.7  Nile river yearly minimum level at the Roda gauge, from 622 A.D. to
1921 A.D.

also indicates that the first 100 observations seem to have a different serial
dependence structure, suffering a structural break phenomenon.

A detailed analysis of this historically important hydrological time series is
proved in Chapter 8, where the changes in the serial dependence structure of
these observations are modeled. The analysis of these hydrological data was
crucial in the formal study of the so-called long-memory processes reviewed
in Chapter 2.

1.1.4 Air Pollution

Figure 1.8 exhibits a daily index that measures the particulate matter of di-
ameter less than 2.5 p in Santiago, Chile, for the period 1989-1999, commonly
referred to as PM2.5. A log-transformed data is shown in Figure 1.9.

These measurements indicate the level of air pollution in certain city or
region. Note the seasonal behavior of this series, due to the effects of climate
conditions across the year. In winter, the PM2.5 level increases dramatically.
On the other hand, it appears that there is downward trend in the series,
indicating an improvement of the air quality during that period. In order
to stabilize the variance exhibited by this data, a logarithmic transformation
has been made and the resulting series is shown in Figure 1.9. A possible
downward trend is now more clear in the transformed data.
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Figure 1.8  Air pollution data: daily PM2.5 measurements at Santiago, Chile,
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Figure 1.9  Air pollution data: log daily PM2.5 measurements at Santiago, Chile,

1989 - 1999.
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1.1.5 Transportation Data

Figure 1.10 shows the number of monthly passenger enplanements for the
period from January 2004 to December 2013. These observations correspond
to the number of passenger boarding an airplane in the United States in a
given month. Note the seasonal behavior of this series derived from the annual
cycle of winter and summer seasons. Besides, it seems that there was a drop
on passenger enplanements around 2009, revealing a plausible effect of the
financial crisis of that year. In this situation, it is possible that the process
was affected by a structural break or structural change. Methodologies for
handling these situations will be discussed in Chapter 8.
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| | |
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50000
L
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Figure 1.10  Passenger enplanements from January 2004 to January 2018.

1.1.6 Biomedical Time Series

The annual global number of dengue cases during the period 1955 - 2008 is
depicted in Figure 1.11. In order to emphasize that these data correspond
to counts, the values are shown as bars. Note the increase of cases by the
end of this period, reaching very high values around the year 2000 and then
a sharp decay by the end of that decade. Apart from the analysis of the evo-
lution of diseases, there are several others applications of time series methods
to biomedical studies. Techniques for modeling count data is described in
Chapter 12.
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Figure 1.11  Annual global number of dengue cases during the period 1955 - 2008.

1.1.7 Sociological Data

The results from a series of monthly United Kingdom voting intention sur-
veys for the period June 1984 to March 2012 are shown in Figure 1.12. For
simplicity, we have only plotted the vote intentions for the Conservative Party
and the Labor Party.

The heavy line indicates the Labor Party voting intention, while the dotted
line corresponds to the voting intention of the Conservative Party. Observe
the seemingly mirror effect in the behavior of these two series given that
these two political parties historically concentrate a large percentage of vote
intentions.

Furthermore, for the period from 1993 to 2005, there is large distance
between the voting intentions of the two parties. During this period, the
Labor Party shows a higher level of voting intention than the Conservative
Party. The opposite is true for the following period, from 2006 to 2010.

These time series are additional examples of cases where the data is not
necessarily Gaussian and specific methods must be developed for handling
them. Some of these technique are reviewed in Chapter 12, including, for
instance, the conditional distribution models.
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Figure 1.12 Monthly United Kingdom woting intentions, June 1984 to March
2012. Heavy line, Labor Party; dotted line: Conservative Party.

1.1.8 Energy Data

A time series consisting of monthly heating degree day (HDD) measurements
is shown in Figure 1.13. HDD values are indicative of the amount of energy
required to heat a building, and they result from from measurements of out-
side air temperature. The heating requirements for a particular structure at
a specific location are usually considered to be directly proportional to the
number of HDD at that location.

These series are important in the analysis of energy demand, and they can
be measured at different specific locations such as cities or at a county level.

In this case, the data correspond to the global measurements for 27 Eu-
ropean Union countries from January 1980 to May 2010. As in other series
previously presented, this time series displays a clear seasonal behavior, ex-
pected from the different heating requirements within a year.

This series displays a clear seasonal behavior and no upper or downward
trends are evident, as compared to the previous example of employment data.
In Chapter 9, we discuss methodologies for modeling this type of seasonal
time series and apply the techniques to the monthly HDD measurements.
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Figure 1.13  Monthly heating degree days (HDDs) measurements for 27 countries
of the European Union, for the the period January 1980 to May 2010.

1.1.9 Climatic Data

Time series play an important role in the study of climate, allowing to model
actually observed values in the historical records or reconstructing unobserved
data. For example, paleoclimatic studies usually rely on the reconstruction
of climatic conditions by means of tree rings, mineral sediments, and other
related data.

Temperature Reconstruction. Figure 1.14 exhibits a reconstruction of an-
nual temperatures in north-central China from 1470 A.D. to 2002 A.D., based
on drought/flood index and tree-ring records. Observe the apparent nonsta-
tionary behavior of the data, exhibiting heteroskedasticity and periods with
upward and downward trends. However, detailed studies must be conducted
on these data to distinguish whether there are deterministic trends or they
are just random or stochastic. On the other hand, reconstructions of pre-
cipitation conditions for the same region and period of time are displayed in
Figure 1.15. Note the increasing variability of the series.

Mineral Deposits. Figure 1.16 displays a 2,650-year centered time series
of speleothem cave deposit data. This series is composed by stalagmite layer
thickness observations taken at Shihua Cave, Beijing, China, from 665 B.C.
to 1985 A.D., see Appendix C for details about these data. A logarithm
transformation of these data is exhibited in Figure 1.17.
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Figure 1.15  North-Central China precipitation, 1470 A.D. to 2002 A.D.
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Figure 1.17 Log speleothem cave deposit data.
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Figure 1.18 Glacial varves time series data.

Glacial Varves Data. A wvarve is an annual layer of sediment or sedimen-
tary rock. This word derives from the Swedish word varv which means layers
or circles. Figure 1.18 exhibits the thicknesses of the yearly varves at one
location in Massachusetts for the period 11,833 B.C. to 11,200 B.C., see Ap-
pendix C for further details about these data.

Tree Ring Data. Figure 1.19 displays a time series consisting of annual
Pinus longaeva tree ring width measurements at Mammoth Creek, Utah, from
0 A.D. to 1989 A.D. An analysis of these data is described in Section 8.4.6.

As discussed above, real-life time series may exhibit several features such
as trends, seasonality, and heteroskedasticity, among others. These aspects
can be considered as nonstationary behavior, where stationarity is associated
to, for example, constant mean and variance across time.

Given that most time series methodologies are mainly focussed on station-
ary data, a number of techniques have been developed to transform a real-life
time series into a stationary one. However, before reviewing some of these
procedures, it is necessary to introduce some fundamental probabilistic and
statistical concepts such as random variable, probability distribution, and au-
tocorrelation, among others.
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gure 1.19  Tree ring data. Mammoth Creek, Utah, from 0 A.D. to 1989 A.D.

1.2 RANDOM VARIABLES AND STATISTICAL MODELING

Time series are stochastic processes which, in turn, correspond to a sequence of
random variables. Loosely speaking, a random variable is a function between
a sample space §) containing all possible outcomes and the set of real numbers
denoted by R. A number of examples of real-valued random variables are
presented next. In some cases, the random variables take values on a discrete
set such as {0, 1}, and in other cases, the random variable is continuous, taking
values on R or R, the set of positive real numbers.

EXAMPLE 1.1

A very simple illustration of random variable is the tossing of a coin.
In this case, the two possible outputs are wy; = Heads and wy = Tails.
Thus, the sample space is composed of the events w; and wo, that is,
0 = {w1,w2}. We can write the random variable z : Q@ — {0,1}, where
z(w1) = 1 and z(we) = 0. Now, under the assumption of a fair coin,
we can establish the probability distribution of the random variable x
as P(z = 1) = 1 and P(z = 0) = 3. More generally, the situation
described may represent the choice between two options A and B, where
the probability assigned to each case can be specified as P(x = A) = pa
and P(z = B) = pp. This is called the Bernoulli distribution.
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B EXAMPLE 1.2

A useful extension of the previous example is the repetition of the coin
tossing or considering multiple selection of options A and B. If n denotes
the number of coin tosses or the number of selections between options
A and B, then the sample space to describe this situation is the product
space 0, = Q x --- x Q= Q" The random variable now can be denoted
as x, : O, — {0,1}", which is called Binomial distribution. Consider
n = 3, a particular case could be, for instance, x3(wy,ws,ws) = (1,0, 1).
The probability of this event is P[zz = (1,0, 1)] = p%pp. More generally,
the probability distribution of this random variable is given by

P(z = k) = (Z)pk(l —p)" ",

for k=0,1,2,...,n.

B EXAMPLE 1.3

In many situations, the observations that we are interested in are con-
tinuous. For example, consider the returns from a financial instrument.
A basic question that one may be interested is: What is the probability
that my investment returns at least 8.5% annually. In this situation,
if the random variable x represents the annual percentage return, the
event of interest is w = {x > 8.5}. The probability of this event can be
expressed as P(z > 8.5) = 1 -P(z < 8.5) = 1— F(8.5), where F is called
the distribution function of x.

P = [ fwda

where, f is the density of the distribution function F. For instance, if

we assume that the returns are normally distributed, then the density

is given by

1
Varo

with p = E(x) and 02 = Var(z).

Given that financial returns commonly do not follow a Gaussian dis-
tribution, see, for example, Figures 1.20 and 1.21, some extensions of the
normal random variables have been considered in the literature. One of
these generalizations is the so-called exponential power family of random
variables, which has density

1 2 2
—s(x—p)°/o
e~ @-m?/o®,

/()

B el
f(J?) - 204F(1/5)6 . i
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where the mean of z is p and the variance is now

_2T6/9)
/5

with I' denoting the gamma function. In Figure 1.20, observe that the re-
turns of the S&P500 index are more concentrated around zero and more
dispersed towards the tails than a Gaussian random variable. This be-
havior is further evidenced by Figure 1.21, which shows that the quantile
of the returns are far from those corresponding to a normal distribution,
cf. 1.21(a).

Var(z)

B EXAMPLE 1.4

An important distribution in time series analysis is the multivariate nor-
mal distribution. Given the series {y1,y2,...,yn}, we can write the ran-
dom vector X = (y1,¥y2,-.-,yn). It is said that X is a multivariate
Gaussian random variable, with mean p and variance-covariance matrix
Y, denoted as N(u,X), if the density function is

F(X) = (2m) /2 |p| /23X X,

Density
0.2

0.1

Log Returns

Figure 1.20  Distribution of S&P500 daily log returns, January 1950 to January
2014. Dotted line, data distribution; heavy line, normal distribution.
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Figure 1.21 Quantiles of SEP500 daily log returns, January 1950 to January
2014. (a) Normal sample quantile-quantile plot. (b) Data quantile-quantile plot.

Observe that the elements of ¥ correspond to the covariances among
the components of the random vector X, that is, ¥; s = Cov(yt, ys)-
If the time series is stationary, there exists a function (-) such that
(|t = s|) = Cov(y,ys). In this case, the variance-covariance matrix can
be written as

7(0) (1) 7(2) y(n —1)
A1) 40 A y(n - 2)
x= : : : :
W —1) A(n—2) An-3) -  ~0)

Note that if y = AX, where A is an m xn matrix and X is a multivariate
normal random variable with mean p and variance-covariance matrix X3,
then y corresponds to a multivariate normal random variable with mean
Ap and variance-covariance matrix AXA’.

B EXAMPLE 1.5

The Chi-squared or X2 distribution is quite commonly found in statistics.
Here the parameter v indicates the degree of freedom of the distribution.
If = follows a standard normal distribution, then its square corresponds
to a x? random variable. Besides, if 71, 2,...,x, is a sequence of inde-
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Figure 1.22  Density functions of x> distributions, where v are the degrees of
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pendent standard Gaussian random variables, then Y} z7 follows a x2
distribution. The expected value of a x? is equal to v.

—-v/2
f(x _ 2 / l,l//2—le—a;/2

- T(v/2) 7

Figure 1.22 exhibits the density functions of two x2 distributions with
v =4 and v = 20 degrees of freedom, respectively.

B EXAMPLE 1.6

Consider a time series of counts such as the number of calls received
by a telephone call center within a given interval of time. In this case,
a random variable that could describe the data observed at time ¢ can
be specified as x : x — N. An example of such random variable is the
so-called Poisson distribution given by

)\k
1) — oA
Plx=k)=e R
for kK = 0,1,2,..., where the parameter A is the expected value of x,

E(z) = A. In addition, Var(z) = A. A simulated series of 365 Pois-
son counts is shown in Figure 1.23 with A = 4. On the other hand,
Figure 1.24 exhibits an histogram of these data.
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Figure 1.23 Time series of Poisson counts.
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Figure 1.24  Histogram of the time series of Poisson counts.
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Poisson distribution is widely used for modeling data from different
fields, including number of people in a queue, number of patients having
a particular disease and number of shoppers arriving at a store, among
many other examples.

1.3 DISCRETE-TIME MODELS

This book focuses primarily on stochastic processes that are observed at
discrete-times ..., tg,t1,12,..., as opposed to continuous time, meaning that
the process has been observed at all times in a given interval, for example
t € (0,7). Note that most of the models developed in the time series litera-
ture are concerned with equally spaced times. In this case, the observations
can be written as {y;: t € Z} fort € {...,—2,-1,0,1,2,...}. There are mod-
els for treating unequally spaced times, but they are usually more complex
to specify and study. In this context, we can also mention the missing data
problem, where the series is not observed for some values of . Methods for
dealing with this situation are discussed in Chapter 11.

1.4 SERIAL DEPENDENCE

Consider the stochastic process {y;} and suppose that its mean is p; = E(y;).
If this process is Gaussian, then we can decompose additively it as y; = p;+n4,
where 1, is zero-mean stochastic process. In order to specify the process {y;},
one may give py some particular structure. For instance, for a stationary
process, the mean is assumed constant across time so that u; = u, for all ¢.
More generally, the mean can be specified by a linear model that depends
upon time p; = By + Bit + -+ + Bpt? or depends on other covariates p; =
BO + ﬁlxlt +F 5pxpt-

Stationarity, which is formally discussed in Chapter 2, means that the
statistical characteristics of the time series are preserved across time. In
particular, the mean and variance of the series are constant and that the
relative dependence of an observation with respect to past values remains the
same, regardless of the moment at which it is evaluated. That is, suppose
that there exists a function 7 such that

v(h) = Cov(ys, Ye+n)-

The existence of this function, denoted as the autocovariance function, means
that the covariance between observations y; and y;4p does not depend on t.
Stationarity is a key assumption in time series analysis for carrying statistical
inferences and prediction. The autocorrelation function, ACF hereafter, is
then defined as
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Empirical estimates of the ACF are given by the so-called moment estima-

tors
- k)
Pk = 3(0)’ (1.1)
with
1 n—k
) = =~ > (e = 5) (e — 9)-

Examples of the calculation of the sample ACF for some of the time series
reviewed earlier in this chapter are presented next. The sample ACF of the
returns from the S&P500 index is displayed in Figure 1.25(a) while the sample
ACF of the squared returns is exhibited in Figure 1.25(b). Note that the
returns show a very low level of autocorrelation, but the squared returns
display a large level of autocorrelation.

On the other hand, Figure 1.26 shows the sample ACF of the passenger
enplanements data. Observe the clear seasonal pattern that emerges from this
graph. In this case, the period is 12 months, showing the annual cycle of the
airplane traffic.

The sample ACF of the HDDs series is exhibited in Figure 1.27. As in the
case of the passenger enplanements, note the seasonal behavior of the auto-
correlation, reflecting the summer/winter effects on the heating requirements.
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Figure 1.25  S&P500 data. (a) Sample ACF of log returns. (b) Sample ACF of
squared log returns.
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Figure 1.28  Sample ACF of the Nile river yearly minimum level at the Roda
gauge, from 622 A.D. to 1921 A.D.

A typical sample ACF of a time series exhibiting long-range serial depen-
dence structure is provided in Figure 1.28. Notice that the ACF decays very
slowly. This behavior is usual for time series satisfying a long-memory model,
such as the autoregressive fractionally integrated moving-average (ARFIMA)
models described in Chapter 2.

1.5 NONSTATIONARITY

As seen in the examples discussed in Section 1.1, many real-life time series
display nonstationary features such as trends or seasonalities. Given that
most of the methodologies for analyzing time series rely on the stationar-
ity assumption, there are a number of techniques developed for transforming
nonstationary data into stationary. Among these approaches, variance stabi-
lization, trend estimation through linear regression and differentiation of the
series are often used.

Variance stabilization is usually achieved by a Boz-Coz transformation of
the data. If the original data is denoted as x;, the transformed series y; is
given by

[ oz —1) if a#0,
Yt = log x4 if a=0.
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Linear models are tools for removing a deterministic trend from the data.
This regression model typically includes a polynomial in ¢, an harmonic com-
ponent, or may contain other covariates. Thus, the model may be written
as

yt = Po+ Brzie+ -+ BpTpt + My
= XB+n,
where the matrix X = (1, z1,...,xp) are the covariates and the vector n =
(m1,m2, - .., M) represents non-systematic errors. The coefficients (o, 51, ..., Bp)

can be obtained, for instance, by least squares estimates (LSE), which are
studied in Chapter 10. The LSE in this case is given by

B=(X'X)"'X"y.

After estimating the regression parameters, the detrended series is obtained
by removing the regression part from the series {y;:}, e; = yr — Bo — f1x1t —
cee— B\pwpt. Afterwards, the time series methods can be applied to this re-
sulting sequence. In many applications, the regressors are either polynomials
or harmonic function, such as in the case of seasonal behavior,

v = Y laysin(wst) + Bj cos(w;t)] + m,
j=1

where the coefficients «; and ; are unknown but the frequencies w; are
usually considered known or obtained from the spectral analysis, as discussed
in Chapter 3.

B EXAMPLE 1.7

To illustrate the versatility of regression methods for modeling time se-
ries data, consider the following simple examples. Figure 1.29 exhibits
a simulated process

Yyt = Bo + Bit + 1y,

with Sp = 0, 1 = 0.01 and 7, is a Gaussian white noise with zero-mean
and unit variance, for t = 1,...,n and n = 300.

A more complex data structure is shown in Figure 1.30. This graph
exhibits a set of 300 simulated observations drawn from the trend break
regression model

e 52+ﬂ3t+nt; t>T7

where 8y = 0, 81 = 0.01, 8 = 0.5, B3 = 0.0067, and T" = 150. Observe
that in this example, there is a change in the slope of the linear trend,
but not a discontinuity of the trend.
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Figure 1.30  Structural break regression model with change in the slope of the
trend at time T = 150.
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Figure 1.31  Structural break regression model with change in the slope and the
level of the trend at the point T = 150.

Figure 1.31 shows another example of the structural break model
described by (1.2), with 8y = 0, 81 = 0.01, B2 = —0.0033, and 33 =
—0.0033. In this case, there are two changes involved since both the
slope of the linear trends and the intercepts vary at time 7" = 150.

Another common situation is described in Figure 1.32, which displays
300 observations from the instrumental variable model

Ye = Bo + Bit + BoDy + 1,
where

1, Th <t<Ty

Di = { 0, otherwise. (1.3)

In this illustration, 8y = 0, f; = 0.01, 8; = 10, 77 = 150, and
Ty = 160.

On the other hand, harmonic regressions allow us to model a great va-
riety of seasonal patterns. Figure 1.33 shows a series of 400 observations
from the harmonic model

yr = B cos(wt) + ny,

with =10 and w = 0.05.
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data. (b) Underlying harmonic trend.
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Harmonic regression time series with one frequency. (a) Simulated
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Figure 1.34  Harmonic regression time series with two frequencies. (a) Simulated
data. (b) Underlying harmonic trend.

An example of an harmonic time series with two frequencies is dis-
played in Figure 1.34, for the model

yr = B1 cos(wit) + Bo cos(wat) + n,

with g1 = 10, B2 = 5, w1 = 0.05 and wa = 0.025.
Figure 1.35 shows a series of 800 observations from the three-component

harmonic model
yr = By cos(wit) + Pa cos(wat) + B3 cos(wst) + 1,
with 81 = o = 83 = 10,, w1 = 0.075, wa = 0.0325 and w3 = 0.0125.

Differentiation. Another approach for removing a trend in the data is
differentiation. In this case, however, the underlying trend is assumed to be
nondeterministic or stochastic. Under this framework, the data is assumed to

be generated by some time aggregation process, for example,

t
e o= Y (1.4)
k=1

where 7, is a zero-mean, constant variance stationary process, which may be
sequentially correlated. Thus, by differencing {y;}, we obtain the series {z;}

Rt =Yt — Yt—1 = M
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Figure 1.35 Harmonic regression time series with three frequencies. (a)

Simulated data. (b) Underlying harmonic trend.

which shares the same stationary properties of {n;}. A common problem with
this technique is to decide when to stop differencing. Two basic aspects should
be taken into account. First, the differenced series should look stationary
and second, its variance should be no greater than the original series. A
disproportionate variance increase in the resulting series could indicate over-
differentiation.

Another usual dilemma is choosing between regression or differentiation.
Even though there is no general guidances about this, one can apply any of
these techniques and see whether they produce adequate results or not. It
can be shown that applying a regression method to an integrated model will
produce heteroskedastic errors. On the other hand, differencing a determin-
istic trend will generate artificially correlated errors. These two aspects can
be explained as follows.

Assume that the series corresponds to an integrated model, as in (1.4) with
white noise sequence 7;, and a linear model y; = 8y + 1t + €; is fitted. Thus,
Y =Y_1+P1+e—ep—1 and g = 22:1 1, — P1t. Clearly, this error variable
has a time-dependent mean E(g;) = 1t and heteroskedasticity E(e;) = to}.
Therefore, the regression model does not satisfy the basic assumptions about
the non-systematic error term.

Conversely, if the process y; satisfies the regression model y; = Bg+ S1t+&¢
with white noise €; and it is differenced, we obtain z; = y; — ys—1 = B1 +
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et — €¢—1. The variance of resulting series z; is twice the variance of the
original data, Var(z;) = 202, which is an indication of a wrong differentiation
procedure.

Apart from the two techniques discussed above, there are many other trans-
formation methods for achieving stationarity. On the other hand, there are
methodologies that allows for the direct treatment of nonstationary data,
without transformation. One example of these methods is the so-called lo-
cally stationary models, described in Chapter 5.

1.6 WHITENESS TESTING

A white noise process is a sequence of zero-mean uncorrelated random vari-
ables. If this sequence is Gaussian, then the process is also independent. A
fundamental procedure in time series analysis is testing for whiteness. That
is, testing whether the series is white noise or it processes some more com-
plex mean or dependence structure. Given the sequence yi,...,y,, the null
hypothesis is Hy : {y;} is white noise versus H; : {y:} is not white noise.
Observe that Hy may fail due to many causes. For example, the mean of
the process is not constant, its variance is not constant, its observations are
correlated, or combinations of these aspects.

Whiteness testing procedures usually do not involve checking for indepen-
dence, unless the series is assumed to be Gaussian. It is important to empha-
size at this point that the definition of white noise refers only to an uncor-
related sequence. In particular, this means that a sequence with correlated
squares is still white noise, according to this definition. This is usually the
case for financial time series: returns are often uncorrelated but volatilities or
squared returns are just often correlated. Typically, a white noise test takes
into consideration the estimated autocorrelations rq,...,r; with

Tk = Pks
where py, is given by (1.1). The Box-Ljung test, a well-known procedure for
checking whether a sequence is white noise or not, can be written as
L r2
QL —n(n+2)zn_h,

h=1

and it can be shown that the statistic @, follows, approximately, a x? distri-
bution with L degrees of freedom.

B EXAMPLE 1.8

Figure 1.36 shows 500 observations of a Gaussian white noise sequence
with zero-mean and unit variance, while Figure 1.37 exhibits the sample
ACF and the results from a Ljung-Box test with L = 10. Note that, as
expected, the series complies with the test at the 5% significance level.
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Figure 1.36 Simulated Gaussian white noise sequence with zero-mean, unit
variance, and 500 observations.
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Figure 1.37  Sample ACF (a) and Boz-Ljung test (b) for the white noise sequence.
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An application of the Box-Ljung test to the S&P500 log returns is
shown in Figure 1.38. Note that in this case, there is evidence that the
series is not white noise, given that the null hypothesis is rejected by the
Box-Ljung test at the 5% significance level for all values of L.

EXAMPLE 1.9

The ability of the Box-Ljung to detect deviations from the white noise
assumption can be illustrated as follows. Consider the moving-average
model defined in (1.5). Figure 1.39 exhibits the percentage of rejection
of the white noise hypothesis for different values of the parameter v in
the case of a time series composed of 1000 observations and considering
a Box-Ljung test with 10 lags. Notice that the percentage of rejection
gets close to the 100% for very low values of ||, in this case, for values
just above 0.2. On the other hand, as v get close to zero, as expected,
the rejection rate decays very sharply.

As a second illustration, consider the first-order auto-regressive model
(1.9). Figure 1.40 exhibits the percentage of rejection of the white noise
hypothesis for different values of the parameter ¢ in the case of a time
series composed of 1000 observations and considering a Box-Ljung test
with 10 lags. Similar to the AR(1) case, the percentage of rejection gets
close to the 100% for very low values of |¢|.

Sample ACF (a) and Boz-Ljung test (b) for the SEIP500 log returns.
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Rejection %

Figure 1.39  Percentage of rejection of the white noise hypothesis for different
values of the parameter v in the case of a time series composed of 1000 observations
and considering a Boz-Ljung test with 10 lags.

Rejection %

Figure 1.40  Percentage of rejection of the white noise hypothesis for different
values of the parameter ¢ in the case of a time series composed of 1000 observations
and considering a Box-Ljung test with 10 lags.
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1.7 PARAMETRIC AND NONPARAMETRIC MODELING

An important distinction among statistical procedures is related to parametric
versus non parametric modeling. Before entering in further technical details,
one can think of the data as coming from a model, usually unknown, which
is specified by a number of coefficients or parameters. This vision is referred
to as Fisher paradigm. In this context, the statistical analysis is essentially
guessing which are the parameters of the model generating the observed data.
In order to accomplish this goal, one must select the model and estimate the
corresponding parameters. Examples of this procedures are autoregressive
moving-average (ARMA) models, which are defined in Chapter 2. For speci-
fying a parametric model, one can provide a parameter vector § = (61, ...,0,)
and a parameter space ©, such that 8 € ©. Observe that the dimension of
this parameter is finite, p. As an illustration, consider the simple model

Yy = & + e, (1.5)

where {e;} is a white noise sequence and 7 is a one-dimensional parameter.
This is an example of the so-called moving-average models studied in Chapter
2. In this case, the model can be specified by the two-dimensional vector 6 =
(1, 0), where o is the white noise standard deviation. Besides, the parameter
space is given by © = (R, R, ), where R denotes the positive real numbers.

A generalization of the simple model (1.5) is considering several parameters

Yo = ¢ T P18i—1 + Pagi_2 + -+ YPgEi—g, (1.6)
which will be denoted as moving-average model MA(q) in Chapter 2. In this
case, the parameter vector is 8 = (11, %2, ...,%q,0). Another extension is al-

lowing the coefficients v; to depend on a specific finite-dimensional parameter
vector, 1;(0) and write

yr = et +1(0)er—1 +ha(O)ero + - (1.7)
= Ziﬂj(@)Et,J‘. (18)
j=0
In this case, even though there are infinite coefficients 1,(), model (1.7) is
still parametric since they depend on a finite-dimensional parameter 6.
B EXAMPLE 1.10

Consider the first-order autoregressive model

Yt = QYp—1 + 4. (1.9)
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If |¢| < 1, this model can be also written as

Yy = e+ gei_1+dPepot -
= Y i(0)ery,
j=0

where 1;(0) = ¢/~ with § = (¢, o).

The models previously discussed are called linear in the sense they are
linear combinations of the noise sequence {e;}. Other parametric models,
called nonlinear, contain multiplicative error terms. For example, consider
the model

Yt = € + Per_164—2.
This process in nonlinear since it includes the product of two lagged noise
values, €;_1 and e;_5. Note, however, that this model is still parametric,
since it is defined by the bivariate vector § = (¥, o). More general expressions
for the nonlinear parametric can be provided. For instance,

Yt = fo(ets€e—1,6t—2,...),

where fy is a measurable function defined by the finite-dimensional parameter
0.

On the other hand, one may not want to specify a finite parameter model
but rather consider the data as generated by an unspecified mechanism. In
this context, the statistical analysis focuses on finding a general function that
describes the data well. Examples of this approach are kernel smoothing
methods, neural networks and regression trees, among others.

Contrary to the parametric setup, one may consider a nonparametric model
as specified by an infinite-dimensional parameter space. For instance, the
observation y; can be specified by

Yt = f(ghgtflvgtf?a e )a

where {e;} is an input sequence and f(-) is a function. In this case, the model
is specified by f € F, where F is a space of functions.

Still, there is a third approach, the semiparametric modeling which com-
bines some of the parametric and nonparametric aspects. For example, one
may partially specify the behavior of the spectrum around a given frequency,
leaving unspecified the behavior of the spectrum at other frequencies, see its
definition in Chapter 3. For instance, if f,(\) denotes the spectral density
of the process {y;}, then one may specify the behavior of the spectrum in a
neighborhood of the origin as

fyN) ~ CIAL%,

for small A\, where C' is a positive constant and « is the parameter of interest,
that is, the rate at which the spectrum converges to zero in the case that o
is positive or diverges in the case that « is negative.
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1.8 FORECASTING

Regardless of the modeling approach that one may consider, parametric, semi-
parametric, or nonparametric, in time series analysis, one is usually interested
in predicting future values of the process. Given observations up to time ¢,
one may want to forecast h-steps ahead, the prediction horizon, Giip. As
shown later in this text, the best linear predictor is given by the conditional
expectation,

§t+h = E[yt+h|yt7yt71,ytfz, .- ]

The best predictor may not necessarily be linear, so that the optimal fore-
cast may have a different expression that will depend on the relationship
between y; and its past. For a Gaussian process, the best predictor is pre-
cisely the best linear predictor, independently of the model linking ;15 with
Y, Yt—1,Yt—2, - - . . Besides, note that in practice only a finite stretch of data is
available, {y1,¥2,...,yn}, say. In this case, the finite past predictor is given
by,
Unth = ElYntnlyn, Yn—1.Yn—2, - - -, y1)-

In some other situations, the interest is focused on estimating past values
of the process, the so-called backcasting procedure. In this case, one may want
to estimate, for instance, yo, given {y1,y2, ..., Yn},

Yo = Elyoly1, 2, -, Yn)-

Another procedure, called smoothingis concerned with estimating the value
of the process at a particular time ¢ € {1,2,...,n} given the remaining ob-
servations,

U= Elyyr, - Y1, Y41, -+ Yl

Let {e;} be the prediction error sequence, that is, e; = y; — ¥, for t =
1,2,...,n. One basic criterion for goodness of fit in time series analysis is
that ey, eq, ..., e, is a white noise sequence. This hypothesis can be formally
tested by the Box-Ljung procedure or another technique. If the resulting
sequence of prediction errors is not white noise, then the model may not be
appropriate for the data.

As in other areas of statistics, when fitting a time series model one set some
observations aside, so that we can assess the out-of-sample performance of the
model.

1.9 TIME SERIES MODELING

This section provides an overview of the process involved in time series para-
metric modeling and prediction. These procedures take into account the topics
discussed in the previous sections of this chapter. As real-life time series data
usually appear nonstationary, there are techniques that transform the data
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into a more stationary sequence. Next, the basic distributional features of
the data are analyzed, establishing constant mean, variance, and checking for
the presence of outliers or nonnormality. Once these properties have been
found consistent with stationarity, the focus is shifted toward empirically in-
vestigating the autocorrelation structure of the observations. Based on this
analysis, a model can be proposed, for example, an ARMA model as defined
in Chapter 2. The model is usually selected by considering an information
criterion such as Akaike’s information criterion (AIC) or Bayesian informa-
tion criterion (BIC), see Chapter 4 for definitions of these concepts. The main
idea behind this model selection process is that while adding more parameters
could improve the fitting ability of a particular model, it also diminishes its
degree of freedom to evaluate the fitting and out-of-sample prediction quality.
In this sense, criteria such as AIC or BIC help to strike a balance between
fitting ability and model complexity.

After selecting the model, a battery of tests can be applied to determine
the parameter significance as well as the goodness of fit. Moreover, a residual
analysis can be performed to test the whiteness of the model errors. If the
model is appropriate, the residuals should be white noise.

Finally, once the model is judged to be adequate for the data, it can be
used for producing forecasts of future values. In many situations, part of the
data is set aside from the fitting procedure, so that it can be used for an out-
of-sample assessment of the prediction quality. This step is important also
for the nonparametric approach. In this case, a methodology such as neural
network or regression tree can be applied to a portion of the time series, the so-
called training data, and the remaining part of the series is left for evaluating
the out-of-sample forecasting capacity of the nonparametric method.

1.10 BIBLIOGRAPHIC NOTES

There is a pleayade of books in time series analysis. The monograph by
Brockwell and Davis (2002) is good introductory text to the subject. The
book by Shumway and Stoffer (2011) provides another excellent treatment
of the fundamental time series techniques. Diggle (1990) offered an overview
of the subject from a biostatistics standpoint. Kedem and Fokianos (2002)
covered a number of regression time series methodologies, including models
for count data. The books by Tsay (2005) and Tsay (2013) provide excellent
discussions about financial time series and a number of techniques for fitting
and predicting heteroskedastic data. Hamilton (1994) is another interesting
text on financial time series covering several topics. More advanced texts in
the subject are, for example, Brockwell and Davis (1991) and Fuller (1996).
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Problems

1.1 Explain the following concepts: (a) Stationarity, (b) Seasonality, (c)
Deterministic trend, (d) Stochastic trend, (e¢) White noise, and (f) Structural
change.

1.2 What does it mean a sample realization of a time series?

1.3 Why tree rings and mineral sediments time series are important for
climatic and paleoclimatic studies?

1.4 Explain the concept and utility of the autocovariance function and the
autocorrelation function. Write down the corresponding equations that define
these concepts.

1.5 Suppose that you have a sample realization of n observations given by
{z1,...,z,}. Explain how you could estimate the autocovariance and sample
autocorrelation functions.

1.6 Explain the concept of strict stationarity of a time series.

1.7 What are sufficient conditions for weak stationarity of a time series? Is
a weakly stationary time series necessarily strictly stationary?

1.8 How is a white noise defined?

1.9 Suppose you have a series y; defined as y; = Y_7_ 8t/ +w;. Calculate
the expected value and the autocovariance function of ;.

1.10 Regarding the previous question, propose two weak stationarity-inducing
transformations of y;.

1.11 Let {y1,...,yn} be a sample from a stationary process. Suggest a
procedure to determine if the stochastic process is the sum of a constant and
a white noise?

1.12 Let {ey,...,&,} be Gaussian white noise with zero-mean and unit vari-
ance and suppose that we are interested in simulating a Gaussian stationary
process {y1,¥2,...,Yn} With autocovariance function v and mean p. Show
that this process can be simulated by generating a sample of the white noise
e ={e1,...,&,} and then obtaining y = p + Ae, where A is a square matrix
satisfying AA" =T with T; j = (i — j).

1.13 Let 21,29, ..., %, be asample of x7 independent random variables. By
taking into account that the fourth moment of a standard normal distribution

is E(z*) = 3, calculate the variance of the random variable y = x1 + z2 +
e + Tp-

1.14 Suppose that the model y; = By + Sit+e€; witht =1,...,n, E(e;) =0,
E(€?) = 0% and for t # s, E(eses) = 0. Define w;, = %2;271 Yty g
(a) Find the expected value of the time series w.
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(b) Calculate Cov(wiig,ws) and show that this covariance does not de-
pend on ¢. Is the sequence {w;} stationary?

1.15 Explain why it is sometimes necessary to apply a functional transfor-
mation of the data, such as a logarithmic or a Box-Cox transformation.

1.16 Suppose that the price of a stock at time ¢ is denoted as P; and that
the sequence of prices is described by the equation

P,=P_1(141),

where r; is the return at time ¢. By taking logarithms and using the approx-
imation log(1 4+ x) ~ z for small values of x, show that

re = Alog P; = log Py — log P;_1.

1.17 Explain the following concepts related to the analysis of financial time
series, (a) Return, (b) Volatility, (c) Heteroskedasticity, and (d) Risk.

1.18 Let Py(t) be a k order polynomial defined by
Py(t) = ap + a1t + ast? + -+ + apth.

Show that (1 — B)¥Py(t) = ¢, where c is a constant.






CHAPTER 2

LINEAR PROCESSES

The concept of linear process is fundamental in time series analysis. As in the
time series examples discussed in the previous chapter, many social, physical
and economic phenomena can be analyzed and described by this class of mod-
els. A scientist or a practitioner knows that a phenomenon under study may
be highly complex, but often a linear approach offers a first good description of
the data. On the basis of a linear process, more complex models can be built
afterwards. A linear process contains three basic components: an input noise,
a linear filter, and the output observed data. In practice, one only has a finite
set of observations, but one can still imagine or assume that the available time
series comes from a linearly filtered noise. Even though this approach seems
to oversimplify the data generating mechanism, it usually provides a powerful
tool for modeling a wide range of time series data. In this chapter, we review
the foundations of the linear processes and study some of their applications.
Three basic representations of a linear process are described, the Wold expan-
sion, the autoregressive expansion and the state space systems. Stationarity,
invertibility, and causality are also reviewed. Another important aspect to
consider in the analysis of a time series is whether the dependence structure
of its observations is weak or strong. This topic is discussed when describing
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autoregressive moving-average (ARMA) and autoregressive fractionally inte-
grated moving-average (ARFIMA) models. This chapter also analyzes the
autocovariance structure of these processes, providing methods for computing
autocorrelation (ACF) and partial autocorrelation (PACF).

2.1 DEFINITION

A linear process can be written as,
Yy = '(/)(B)Et, (21)

where y; are the observed values, 1(B) is a linear filter on the backshift
operator B, and ¢; are the input noise. Recall that the effect of B is lagging
an observation, that is, By; = y¢_1.

The filter can be written as

B = 3w B, 22)

) 2 3 . 3 . e
where ijiw ¥; < oo. Consequently, we can write the observed time series
as

)

Yt = Z VYjct—j- (2.3)

j=—o0

Note that this filter is said to be linear since it does not contain mixed input
noise terms such as €;_;e;—;. Furthermore, this expression tell us that the
observed value at time ¢, y;, depends on past, present, and future values of
the input noise, that is, {...,e_3,6_92,6_1,€0,€1,€2,€3,.-. }.

2.2 STATIONARITY

This is an essential concept in time series analysis. Generally speaking, we
can distinguish two definitions of stationarity. The first definition is focused
on the joint distribution of the process, while the second focuses on the second
order structure of the time series model.

Strict Stationarity. Let yp(w) = {ys, +n (W), ..., yt, +n(w)} be a trajectory
of the process {y:} with t; + h,...,t, + h € Z. The process is said to be
strictly stationary if and only if the distribution of yj is the same regardless
of h.

Weak Stationarity. A process y; is said to be weakly stationary or second-
order stationary if (a) it has a constant mean, (b) it has finite and constant sec-
ond moment, and (c) there is a function (-) such that (k) = Cov(ys, Ys+|k|)
for any ¢, k. For example, for the linear process (2.3), we have (a) E(y;) =
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> e oo ¥j E(et—j) = 0. On the other hand, given that {e;} are uncorrelated,

o0

E(y})= > YIE(E ;) =0 Y <o (2.4)

j=—c0 j=—o0

Furthermore, we can write the autocovariance function y(k) = E(y:yrin) as

yh) = YD i Elerigeinj)

1=—00 J=—00

= o > > dad(h+i—j) (2.5)

1=—00 j=—00

= o> > Pt

j=—o00

Stationarity is an important concept in time series analysis. Loosely speaking,
it means that the statistical properties of the process remain constant over
time. In practice, this implies that all values of the process are comparable,
no matter at what time they were observed. In turn, comparability of the
observations allows us to draw statistical conclusions about the whole process.

A process can be strictly stationary but not necessarily weakly station-
ary and vice versa. For instance, the process {y::t € Z} where, y; are in-
dependent and identically distributed Cauchy random variables, is strictly
stationary but not weakly stationary since the first and the second moments
do not exist. A more sophisticated example of this is the fractionally in-
tegrated generalized autoregressive conditionally heteroskedastic (FIGARCH)
model introduced in Chapter 6. Conversely, let {e;:} be a sequence of inde-
pendent and identically distributed normal random variables with zero-mean
and unit variance, and let {n;} be a sequence of independent and identically
distributed exponential random variables with rate 1. Then the process gen-
erated by y, = ,[t/2] + (n, — 1)[(t + 1)/2], where [-] denotes the integer part
function, is weakly stationary but not strictly stationary. Nevertheless, these
two concepts are equivalent for Gaussian processes.

A strict white noise process is a sequence of independent and identically
distributed random variables, while a weak white noise process is a sequence
of uncorrelated random variables with zero-mean and constant finite variance,
that is, with an autocovariance function satisfying v(0) < co and v(h) = 0 for
all h #£ 0.
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2.3 INVERTIBILITY

The linear process (2.3) is invertible if there exists a filter m(B) such that we
can write

m(B)y: = Z TjYt—j = Et.
Jj=—00
The filter 7(B) can be considered as the inverse of the filter ¢(B), that is,
7(B)y(B) = 1. Note that an invertible time series y; can be expressed as

-1 oo
Yt = Z TjYt—j + Zﬂjyt—j + et
j=1

j=—00

2.4 CAUSALITY

One way to describe a discrete-time stochastic process is writing it as the
result of the filtering of a white noise sequence {e;},

Yt = SD( --;5727671750581752a"')7

where ¢(-) is a measurable function, that is, the resulting sequence {y;} is
a well-defined random process. Assume now that the noise sequence is gen-
erated simultaneously as the observed process {y:}, so that at any instant ¢,
the generated noise sequence is ..., e_s,6_1,€0,€1,€2, ..., & and the observed
process is given by ...,y _2,y_1,¥Y0,Y1,Y2,---,Y:. In this context, the process
{y:} is causal and it can be written as

Yy = (p( .y €-2,€1,E04€1,E25. .- ,625).

Thus, a causal process depends only on past and present noise, and does not
depend on future values of the noise. This is an important feature of the
process {y;}, meaning that only past or present shocks can affect it. If the
process is not causal, for example, y; = €441 —0ey, then a future event €41 can
affect its present value. Even though this process is not causal, we can still
predict it. As we will see later, the best linear predictor of y; is given by y; =
Elyt|yt—1,Yi—2,...]. Note that for |0 < 1, we can write e, = > oo | 07 1y, 5,
so that the predictor can be expressed as 4y = Flyiler, e4—1,...] = —0e¢. In

this case, the prediction error e; = y; — g variance is Var(e;) = 03.

2.5 REPRESENTATIONS OF LINEAR PROCESSES

A linear process may be represented in many different forms, for instance, as
the Wold decomposition, an autoregressive expansion, or a state space system.
To a large extent, these representations are equivalent and a key issue is how
to pass from one representation to another. We have to keep in mind, however,
that in most cases, these representations are not unique.
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Figure 2.1  Several paths of the singular process singular with zero-mean and unit
variance Gaussian random variable Z. Real azis paths of 200 observations each,
with w = 0.1.

2.5.1 Wold Decomposition

A model described by (2.3) is usually referred to as regular process. Consider
now the process

Y = Zetwt = Z cos(wt) + Zi cos(wt), (2.6)

where Z is a zero-mean random variable with variance ¢? and w is a known

frequency. This time series satisfies E(y;) = 0, Var(y;) = 02, and there is a
function ~(-) such that Cov(y:,ys) = y(t — s) = 02" (=), Thus, according
to the definition discussed in the previous section, the process {y;} is weakly
stationary. Note that this process has a different representation as the one
described in (2.3). This sequence is an example of the so-called singular
processes. See Figure 2.1 and Appendix A for further details about these
definitions.

Even though both a regular process and a singular process may be sta-
tionary, the fundamental difference between them is that the former cannot
be totally predicted, while the latter can be perfectly predicted. Generally
speaking, as we accumulate more and more observations of a regular process,
we can improve our forecasting ability, reducing, for example, the mean square
prediction error. But there is always a certain level of prediction error. On
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the contrary, for the case of a singular process, it suffices to have only one
observation in order to obtain a perfect predictor of any future value. In our
example (2.6), any future value of the process can be written in terms of the
observation y; as

Yo = Zeiw(t+h) _ yte’zwh.
Thus, given that y; and w are assumed to be known, we know the exact value
of Yith.

In this context, an important result called the Wold decomposition estab-
lishes that any stationary process can be written as the sum of a regular and
a singular process and that decomposition is unique. Put it simply, any sta-
tionary process may contain a perfectly predictable or deterministic part and
another non deterministic component.

Given that in practice, we usually have to deal with processes that cannot
be fully predictable, in the remaining of this book we will only consider regular
processes. However, singular processes are of interest in some fields such as
electrical engineering where signal can be described by a particular frequency
and a random amplitude.

2.5.2 Autoregressive Representation

Assuming that the linear process {y;} is invertible and causal, it can be ex-
pressed as

oo
Ye = Zﬂ'jyt—j + &t
j=1

This is often called the autoregressive representation of the time series since
the present value y; is written in terms of its past values plus a noise.

2.5.3 State Space Systems

The linear processes introduced in (2.3) were described by the Wold decom-
position. However, these processes can also be expressed in terms of a state
space linear system.

A linear state space system may be described by the discrete-time equations

Ti4+1 — F.I?t + HEt, (27)
Yt = Gl’t + Et, (28)

where z; is the state vector for all time ¢, y; € IR is the observation sequence,
F : H — H is the state transition matriz or the state matriz, G is the ob-
servation matriz, H is a state noise vector, and {eg;} is the state white noise
sequence with variance o?; (2.7) is called the state equation while (2.8) is
called the observation equation.
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B EXAMPLE 2.1

As an illustration, consider the following ARMA(1,1) model described
by the equation

Yr — QY1 = € — O _1,

where |¢| < 1, |#| < 1 and &; is a white noise sequence. Thus, in order
to obtain the Wold expansion for this process, we can write

(1 — ¢B)y: = (1 —0B)e;

and then
v = (1 = ¢B)" (1 — 6B)e,.

Therefore, the Wold expansion is given by
Yo =er+ (¢ = 0)er1 + ¢(6 = O)er—2 + ¢° (6 — O)er—3 + - -

On the other hand, by inverting 6(B), we obtain the infinite AR expan-
sion. Therefore, the infinite AR expansion is given by

ye=ct+ (00— d)yr—1+0(0 — @)ys—o + 0%(0 — ¢)yp—3 + - -

A state space representation of this ARMA process is given by

Tip1 = ¢rp+ (¢ — 0)ey
Yt = T+ &t

Observe that according to the state equation, we can write

(1-¢B)"' (1~ 0B)z
= 2+ (9= 0)xi1 + (¢ — O)xro+ ¢* (¢ — O)s 5+

Li+1

Finally, by replacing this expression in the observation equation, we
obtain the Wold expansion for the model.

2.6  WEAK AND STRONG DEPENDENCE

Consider a stationary process {y;} with mean p. An important and funda-
mental problem in time series is finding estimates of y. Given a trajectory
Y1,Y2,--.,Yn of this process, a simple estimator of p is the sample mean
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Iin = §n. The variance of this estimator is
1 n
Var(pi,) = Var (n ZZUt)
t=1
1 n n
LY S ot

t=1 s=1
1 n n
= 2 Z Z’Y(t - )
t=1 s=1
1 n—1
= = S = .
h=1—n

Therefore, an upper bound for the variance of fi,, is given by

n—1
2
) < = h)|.
Var(in) < 232 hin)

Consequently, as the sample size gets larger, we conclude that

n—1

2
. Sy 2 .
lim Var(s,) < lim — > ()] =2 lim_|y(n)].

n—o0
h=0

From the above expression, if lim, o y(n) = 0, then the variance of the
estimator tends to zero, as the sample size tends to infinity. Thus, by an
application of the Chebyshev inequality, we can conclude that lim,,_, . y(n) =
0 implies that the sample mean is a consistent estimator of p.

At this point, one may ask about other important properties of fi,, such as
rate of convergence of Var(ii,,) to zero, asymptotic normality, and efficiency.
In order to study these properties, it is necessary to incorporate to the analysis
the rate at which y(n) tends to zero as n — oo. If this rate is sufficiently fast
so that Y7 |7(h)| < oo, then it can be shown that

~ 2 o
Var(in) = o~ =3 (b,
h=0

and that [, satisfies a central limit theorem and is efficient,
fin ~ N (Na O—Z) .

Time series satisfying the condition Y ;- [y(h)| < oo, are usually referred to
as short-memory or weakly dependent processes.

On the other hand, if the rate of decaying of v(n) is slow enough so that
> reo |7(h)| = oo, the analysis of the properties of fi,, is more complex. Con-
sider, for example, that the ACF of a process satisfies the condition v(h) ~
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C|h|?¢=1 for large h. Naturally, in order to satisfy that lim, .. v(n) = 0,
the parameter d must satisfy d < % Furthermore, note that for d € (0, %),
> oneo |v(h)] = co. In this case, we can calculate the variance of the sample

mean for large n as follows:

n—1 n—1 n—1
N 1 1 1 _
Varin) = 5 3 (i)~ s 3 A~ ST Gl
h=1—n h=1—n h=1—n
n—1 2d—1 n—1 2d—1
_ g Z C ﬁ 2d—1 _ 2n2d71 C ﬁ l
n n n n
h=1 h=1
~ 20n%1 |:L'|2d71 dx ~ Cyn?d1

Observe that in this case, the variance of the sample mean converges to zero
at a slower rate, as compared to the short-memory case. Therefore, stationary
time series satisfying Z};.O:o |v(h)| = oo, are usually referred to as long-memory
or strongly dependent processes.

2.7 ARMA MODELS

ARMA models are fundamental tools for analyzing short-memory time series.
It can be shown that this class of models approximate arbitrarily well any lin-
ear stationary process with continuous spectral density defined in Chapter 3.
Besides, there is a large number of numerical and computational tools for fit-
ting, diagnosing, and forecasting ARMA models. They have been very useful
for modeling a large number of time series exhibiting weak dependence. On the
other hand, autoregressive fractionally integrated moving-average (ARFIMA)
processes have been widely used for fitting time series data exhibiting long-
range dependence. These two classes of models are discussed next.

An ARMA(p, q) process {y;} can be specified by the discrete-time equation,

d(B)y: = 0(B)e, (2.9)

where ¢(B) =1 — ¢ B —--- — ¢, BP is an autoregressive polynomial on the
backshift operator B, §(B) = 14+61B+- - -+60,B9 is a moving-average polyno-
mial, with roots different from those of ¢(B) and {e;} is a white noise sequence
with zero-mean and variance o2. Before studying the properties of this class
of models, consider the following three examples. Note that an autoregressive
AR(p) process corresponds to an ARMA(p,0) model. On the other hand, a
moving-average MA(q) is the special case ARMA(0, q).

B EXAMPLE 2.2

According to (2.9) an AR(1) model can be expressed as y: = ¢y—1 +€t,
where e, is a white noise sequence with variance o2. Note that the
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mean of y; must satisfy E(y;) = ¢ E(y:—1) since E(g;) = 0. For ¢ # 0,
the stationarity condition implies that E(y;) = 0. On the other hand,
the variance of this process must satisfy Var(y;) = ¢? Var(y;_1) + o2.
Under stationarity, we must have (1 — ¢?) Var(y;) = o2. Consequently,
given that variances must be positive, we conclude that |¢| < 1 and that
Var(y;) = 02/(1—¢?). With the above condition on the parameter ¢, the
process y; may be expressed as the Wold expansion y; = Y7 ¢/e;— ;.
The autocovariance function of this process can be obtained as follows.
Consider h > 1, so that

Yeon = 0"y + " e + 8" e+ e

v(h) = E(Yytyi+n)
= Ely(o"y + " ter + " 2eri1 + o+ rpnot)]
= ¢hEytz+¢h_1Eyt€t+“'+Eyt€t+h—1
2 1h
_ h 2 _ O o
= ¢"Ey; = 1—¢2

2.7.1 Invertibility of ARMA Processes

An ARMA(p, q) process is said to be invertible if all the roots z of the poly-
nomial ©(z) = 1+ 612+ --- + 0427 satisty |z| > 1. This means that we can
write the following expression for the noise sequence

&t = Q(B)_l¢(3)yt = H(B)yt = Zﬁjyt—j-
j=0

2.7.2 Simulated ARMA Processes

In order to gain an insight about how a trajectory of an ARMA time series
looks like in what follows, we present several simulated processes.

B EXAMPLE 2.3

As a first example, Figure 2.2 shows a simulated trajectory of 1000
observations from an AR(1) process with parameter ¢ = 0.5. Note that
due to the dependence of the observations, the series seems to have some
trends. An even stronger effect of the dependence can be observed in
Figure 2.3, which shows an AR(1) process with autoregressive parameter
¢ = 0.9. In this case, the trends seem much more relevant. Nevertheless,
since these two processes are stationary, there are no true trends in these
series.
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Figure 2.2  Simulated AR(1) time series of length 1000 with ¢ = 0.5.
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Figure 2.3  Simulated AR(1) time series of length 1000 with ¢ = 0.9.
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B EXAMPLE 2.4

The behavior of moving-average models is explored in Figures 2.4 and
2.5. Both series are of length 1000 observations. Figure 2.4 displays the
trajectory of an MA(2) process with parameters § = (0.7, —0.6), while
Figure 2.5 shows an MA(4) process with moving-average parameters
6 = (0.3,—0.4,0.7,0.5). Similar to the previous AR examples, in this
case, we can also observe the effect of the dependence in the trajectory

of the series.

Series

T
800 1000

T T
0 200 400 600

of length 1000 with 6 = (0.7, —0.6).

ime

Figure 2.4  Simulated MA(2) time series

0 200 400 600 800 1000

Time.

Figure 2.5 Simulated MA(4) time series of length 1000 with 60 =
(0.3,-0.4,0.7,0.5).
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B EXAMPLE 2.5

Finally, Figures 2.6 and 2.7 exhibit two simulated ARMA(1, 1) processes,
with parameters ¢ = 0.5 and § = 0.7, and ¢ = 0.5 and § = —0.7, respec-
tively. Notice the variety of trajectories generated by these models. In
particular, observe that by just changing the sign of the moving-average
parameter, we obtain a much different time series.

Series

0 200 400 600 800 1000

Time.

Figure 2.6  Simulated ARMA(1,1) time series of length 1000 with ¢ = 0.5 and
0=0.7.

0 200 400 600 800 1000

ime

Figure 2.7  Simulated ARMA(1,1) time series of length 1000 with ¢ = 0.5 and
0 =—0.7.
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2.8 AUTOCOVARIANCE FUNCTION

As defined in Chapter 1, a second-order stationary time series possesses an
autocovariance function +(-), which measures the level of dependence of the
value at a certain time ¢ and another value at time ¢t + h. For a stationary
process, this statistical dependence indicated by the covariance between both
values does not depend on ¢ but only on the lag h. Several examples of
calculations of the ACF for ARMA processes are presented next.

Consider the moving-average model MA(q) given by

Yt = &t + 9151&—1 —+ -+ 9q£t—q~ (210)
In this case, the ACF is

0?07 +---+02) for h=0
y(h) =3 I 0,0, for B[ =1,....q (2.11)
0 for |h| > gq.

Based on this expression, a moving-average process can be identified from its
empirical ACF. If the sample ACF is not significant after a lag ¢, this is an
indication that a MA(q) process may model the data adequately.

B EXAMPLE 2.6

Consider the ARMA(1, 1) satisfying the discrete-time equation
Yt — Qyr—1 = €¢ + 1. (2.12)

There are at least two ways to calculate its autocovariance function.
First Method: From expression (2.5), it suffices to calculate the coef-
ficients 1; and then calculate the sum. To this end, we can write
y = (1—¢B) '(1+06B)e
= [1+(¢+0)B+op(¢+0)B>+¢*(¢p+0)B°+--]ey  (2.13)
e+ (@4 0)er—1 + ¢(d + O)er—2 + ¢*(p + O)er—z + -+ - .

Thus, ¥ =1, 1; = ¢' (¢ + 6) for j > 1. Consequently,
(¢ +0)°¢!"

1— ¢?

Second Method: Another way to compute the autocovariance function
is as follows. Multiplying both sides of (2.12) by y;—_p, we get

v(h) = o® | + (2.14)

YtYt—h — QYt—1Yt—h = EtYi—n + Oct_1Ys—n.

Now, taking expected values, we obtain

E(yi—n) — ¢ E(yi—1ys—n) = E((etys—n) + 0 E(es—1Yt—n)-
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From (2.13), we have that Ee;y; = 02 and E(e;_1ys_n) = no?. That
is,
Y(h) —¢y(h —1) = E(etye—n) + 0 E(er—1yt—n)-
For h = 0, we have that
7(0) = ¢y(1) = 0*(1 + 64n), (2.15)

and for h = 1, we get

7(1) = 6(0) = 020. (2.16)
Given that e; and €, are uncorrelated with y,_;, for h > 2, we get
v(h) = ¢y(h —1). (2.17)

Note that from (2.15) and (2.16), we conclude that

:021+2¢>9+02

7(0) T
(6 +0)(1 + 00
(1) =0 (¢+1)_(¢;r¢ ),

and from (2.17),
1) = 715(0),
for |n| > 1.

2.9 ACF AND PARTIAL ACF FUNCTIONS

As discussed previously, the ACF is a standardized measure of the dependence
of two observations y; and y¢4p, corresponding to the autocovariance function
divided by the variance of the process.

_)
o) = 255 (2.18)

From the previous section, we can write the ACF of a moving-average process
MA(q) as follows:

1 for h=0
92" 0,6,4n
p(h) = w for |h|=1,...,q
0 for |h| > q.

In what follows, we present a number of examples of the behavior of the
ACF for different ARMA models. Figure 2.8 exhibits the exact ACF for two
AR(1) processes. Figure 2.8(a) shows the ACF for a model with ¢ = 0.5
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Figure 2.8  Ezact autocorrelation function (ACF) of an AR(1) model. (a) ¢ =
0.5, (b) ¢ = 0.9.

while Figure 2.8(b) depicts the ACF for ¢ = 0.9. Note the different decaying
rates of these ACFs. As ¢ increases, the ACF decays more slowly. Recall,
however, that a necessary condition for ensuring the stationarity of these
AR(1) models is that |¢| < 1. In this situation, as ¢ approaches the upper
limit 1, the convergence rate to zero is extremely slow, as shown in Figure 2.9
(a) and (b) which depicts the ACF for ¢ = 0.95 and ¢ = 0.99, respectively.

The theoretical ACF of MA(q) time series models is exhibited in Figure
2.10. The ACF on Figure 2.10(a) corresponds to an MA(2) model with § =
(0.7,—0.6) while the ACF on Figure 2.10(b) is for an MA(4) process with
6 =(0.3,-0.4,0.7,0.5). As expected, the ACF vanishes for lags greater than
the order ¢ of the model.

Figure 2.11 shows the exact ACF for two ARMA(1,1) models. The ACF
on Figure 2.11(a) corresponds to a model with parameters ¢ = 0.5 and § = 0.7
while the ACF on Figure 2.11(b) corresponds to an ARMA(1,1) time series
model with parameters ¢ = 0.5 and # = —0.7. Note that the decaying rate
of the ACF is governed by ¢!/"l. Thus, it is expected that in both cases,
the ACF converges rapidly to zero as the lag increases. But the sign of the
ACF is governed in this case for the moving-average parameter 6, which is
clearly reflected on Figure 2.11(b) which corresponds to a negative value of
this parameter.



ACF AND PARTIAL ACF FUNCTIONS 59

@ ()
<o o4
o | o |
c °
Q ©
° o
w w
3] [3)
< <
| pg|
° o
o o
c °
|0 I N N N PN AN AN D RGN RN AN SN S S (U U U DU DU |- [ N K S EON IUY PN UG RN A AV AV AN AN N (N U DU DU DU P
c o
T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20
Lag Lag

Figure 2.9  Fzact autocorrelation function (ACF) of an AR(1) model. (a) ¢ =
0.95, (b) ¢ = 0.99.
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Figure 2.10  Ezact autocorrelation function (ACF) of a MA(q) model, for g =2
and ¢ = 4. (a) § = (0.7,—0.6), (b) 6 = (0.3, —0.4,0.7,0.5).
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Figure 2.11  Ezact autocorrelation function (ACF) of an ARMA(1,1) model. (a)
¢=0.5and 0 =0.7, (b) » =0.5 and 6 = —0.7.

2.9.1 Sample ACF

The sample counterparts of the ACF are shown in the following figures. All
these illustrations are based on 1000 simulated observations of the respective
processes.

For instance, Figure 2.12 depicts the sample ACF of an AR(1) time series
model with autoregressive parameter ¢ = 0.5. Note that the sample ACF
decays as expected from Figure 2.8(a).

Similarly, Figure 2.13 exhibits the sample version of the ACF for an AR(1)
model with autoregressive parameter ¢ = 0.9. This empirical ACF can be
compared to its theoretical counterpart depicted on Figure 2.8(b).

The behavior of the sample ACF for two ARMA(1,1) models is exhibited in
Figures 2.14 and 2.15. The model in Figure 2.14 has parameters ¢ = 0.5 and
0 = 0.7, while the model in Figure 2.15 has parameters ¢ = 0.5 and § = —0.7.
Observe that these two plots are close to their theoretical versions shown in
Figure 2.11.
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Figure 2.12  Sample autocorrelation function (SACF) of an AR(1) model with
¢ = 0.5, based on 1000 simulated observations from the process.
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Figure 2.13  Sample autocorrelation function (SACF) of an AR(1) model with
¢ = 0.9, based on 1000 simulated observations from the process.
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Figure 2.14  Sample autocorrelation function (SACF) of an ARMA(1,1) model
with ¢ = 0.5 and 0 = 0.7.
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Figure 2.15  Sample autocorrelation function (SACF) of an ARMA(1,1) model
with ¢ = 0.5 and 0 = —0.7.
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2.9.2 Partial ACF

Consider the series y1,ys, - - ., y, and the predictors
/y\l = E<y1‘y2>"'7yn)7
@\nJrl = E(yn+l‘y2w~~7yn)v

for n > 2 and y1 = 2 = 0. The PACF is the correlation between the errors
e1 =y1 — Y1 and €41 = Ynt1 — Yn+1, that is,

Cov(ent1,e1)

aln) = \/Var(enH) Var(eq) .

Observe that, based on the definition of the predictors 7; and 7y, we have
that the prediction errors are e; = y; and es = yo and then a(1) = p(1).

Even though this correlation may appear as difficult to interpret, for an
AR(p) a(h) = 0 for h > p. Thus, it allows for the easy identification of
an autoregressive process. Figure 2.16 depicts the PACF of an AR(2) model
with parameters ¢; = 0.4 and ¢ = 0.2. Figure 2.16(a) shows the exact
PACF, while Figure 2.16(b) exhibits the ample PACF based on a series of 1000
observations. Notice that the theoretical PACF vanishes after the second lag.
Furthermore, its sample version shows a similar behavior when the confidence
bands are taken into account.
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Figure 2.16  Partial autocorrelation function (PACF) of an AR(2) model with
¢1 = 0.4 and ¢2 = 0.2. (a) Exact PACF, (b) Sample PACF based on a series of
1000 observations.
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2.10 ARFIMA PROCESSES

In this section, we focus our attention on a particular class of linear time series
called long-memory or long-range-dependent processes. There are several def-
initions of this type of time series in the literature. One fundamentals aspect
is related to the estimation of the mean of a process.

If the autocovariance function of a stationary process is summable, then the
sample mean is root-n consistent, where n is the sample size. This is the case,
for instance, for sequences of independent and identically distributed random
variables or Markovian processes. Generally speaking, these processes are
said to have short memory. On the contrary, a process has long memory if its
autocovariances are not absolutely summable.

In what follows, we provide a brief overview of these class of time series
models.

2.10.1 Long-Memory Processes

Let v(h) = (yt, yt+n) be the autocovariance function at lag h of the stationary
process {y;: t € Z}. A usual definition of long memory is that
o0
S )l = oo. (2.19)
h=—o00
However, there are alternative definitions. In particular, long memory can be
defined by specifying a hyperbolic decay of the autocovariances

A(h) ~ b1y (), (2.20)

as h — oo, where d is the so-called long-memory parameter and ¢1(-) is a
slowly varying function. Recall that a positive measurable function defined
on some neighborhood [a,00) of infinity is said to be slowly varying if for
any ¢ > 0, ¢(cx)/l(x) converges to 1 as = tends to infinity. Examples of
slowly varying functions are ¢(x) = log(z) and ¢(z) = b, where b is a positive
constant. Hereafter, the notation x,, ~ y,, means that z, /y, — 1 as n — oo,
unless specified otherwise.

A well-known class of long-memory models is the autoregressive fractionally
integrated moving-average (ARFIMA) processes. An ARFIMA process {y:}
may be defined by

¢(B)ys = 0(B)(1 - B) ‘e, (2.21)
where ¢(B) =1+ ¢1B+ -+ ¢,BP and §(B) =1+ 6B+ -+ 0,B? are
the autoregressive and moving-average operators, respectively; ¢(B) and 6(B)

have no common roots, (1 — B)~¢ is a fractional differencing operator defined
by the binomial expansion

(1-B) =3 nB =n(B),
j=0



ARFIMA PROCESSES 65

where
I'(j+4d)
= WY 2.22
BTG+ 10T(d) (2.22)
for d < %, d#0,-1,-2,..., and {e;} is a white noise sequence with finite
variance.

Consider the ARFIMA process defined by (2.21). Assume that the poly-
nomials ¢(-) and 6(-) have no common zeros and that d € (—1, 3). Then, the
stationarity, causality, and invertibility of an ARFIMA model can be estab-
lished as follows.

(a) If the zeros of ¢(-) lie outside the unit circle {z: |z| = 1}, then there is
a unique stationary solution of (2.21) given by

(o)
Ye = Z Vjgt—j,

j=—o00

where 1(2) = (1 — 2)7%0(2)/¢(2).

(b) If the zeros of ¢(-) lie outside the closed unit disk {z: |z| < 1}, then the
solution {y;} is causal.

(c) If the zeros of 6(-) lie outside the closed unit disk {z: 2| < 1}, then the
solution {y;} is invertible.

2.10.2 Linear Representations

Infinite AR and MA expansions for an ARFIMA process can be described
as follows. Under the assumption that the roots of the polynomials ¢(B)
and 0(B) are outside the closed unit disk {z: |z| < 1} and d € (-1, 1), the
ARFIMA(p,d, q) process is stationary, causal, and invertible. In this case we
can write

yr = (1= B)¢(B)"'0(B)es = Y(B)es,
and
g =(1- B)d¢(3)9(3)_1yt = m(B)ys-

The MA(00) coefficients, 1, and AR(o0) coefficients, 7;, satisfy the following
asymptotic relationships,

(1) 54
vy~ #(1) T()’ (2.23)
o~ DI (2.24)
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as j — oo.
For a fractional noise process with long-memory parameter d, these coeffi-
cients are given by

o t—1+d  T(j+d)

vi = 11 @G+’
o frt-1-d  TG-d)

L t[[l t  T(drG+1)

for j > 1 and ¥g = 1o = 1.

2.10.3 Autocovariance Function
The autocovariance function of the ARFIMA(O0, d,0) process is given by

, T(1—2d) T(h+d)
T(1—dI(d)T(I+h—d)’

Yo(h) =0 (2.25)

where I'(+) is the gamma function and the ACF is

I'(1—d) T(h+d)

P = T Ta A=)

For the general ARFIMA(p,d, q) process, observe that the polynomial ¢(B)
in (2.21) may be written as

P

¢(B) = [[(1 - p:B).

i=1
Assuming that all the roots of ¢(B) have multiplicity one, it can be deduced
that

q p
y(h) = 0% > > (i) C(d,p+i — h, p;), (2.26)
i=—q j=1
with

min(g,q+4%)

P(i) = Z 00k —i,

k=max(0,i)

P

&= |pj H(1 — pipy) H (pj —pm)|

i=1 m#j
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and

C(d7 h?ﬂ) = [pzpﬁ(h> + ﬂ(_h) - 1]7 (2'27)

where S(h) = F(d+ h,1,1 —d+ h,p) and F(a,b,c,x) is the Gaussian hyper-
geometric function

70(h)
o2

m _|_...

-b . 1)-b- b 1
F(a,b,c,x)zl—kjllx—!-a lat1). y- (b+1)

y-(y+1)-1-

It can be shown that

y(Rh) ~ ey pPP, (2.28)
as |h| — oo, where
o® 10(1)]?
Cy = — I'(1 — 2d)sin(nd).
8 T |¢(1)|2 ( ) ( )

2.10.4 Sample Mean

Let y1,ya,...,yn be a sample from an ARFIMA (p, d, q) process, and let § be
the sample mean. The variance of § is given by

Var(g) = — zz (1 - ) +7(0)

By formula (2.28), v(j) ~ ¢,j2?~1 for large j. Hence, for large n, we have

i = e - ()

1
~ 2c,n?it / (1 —t)t*tdt
0

Cy 2d—1
o (2.29)

2.10.5 Partial Autocorrelations

Explicit expressions for the PACF for the general ARFIMA model are diffi-
cult to find. In the particular case of a fractional noise process FN(d), the
coeflicients of the best linear predictor

gn«kl = (bnlyn +---+ ¢nny1

are given by

%:_(n) I'(j zaz)r(n—d—j+1)

j dT(n—d+1)
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for j = 1,...,n. Thus, the partial autocorrelations are simply

d

¢nn:m

(2.30)

and then ¢y, ~ d/n for large n.

2.10.6 lllustrations

In the following two simulation examples, we illustrate some of the concepts
discussed in the previous sections about ARFIMA processes. For simplicity,
consider the family of ARFIMA(1,d, 1) models

(1+ ¢B)y: = (14 6B)(1 — B) e,

where the white noise sequence satisfies {e;} ~ N(0,1). In these examples,
the sample autocorrelation function has been calculated by first estimating
the autocovariance function by means of the expression

h

(e — 9)Wern — 9),

n

S|

t

for h = 0,...,n — 1, where g is the sample mean and then defining the
autocorrelation function estimate as:

(h

=X
=
I
|2
\O/v

The theoretical values of the ACF were calculated as follows. According to
formula (2.26), the autocovariance function for the process {y;} is given by

_0C(d, ~h,~¢) + (1 +6°)C(d, 1 — h,—¢) + 6C(d,2 — h, —¢)
B $(¢? = 1) ’

where the function C(:,-,-) is defined in (2.27). Hence, we have p(h) =
~v(h)/v(0). On the other hand, the theoretical PACF of a fractional noise
process is given by (2.30) while the theoretical PACF of the ARFIMA(1,d, 1)
model can be computed by means of the Durbin-Levinson algorithm; see
Chapter 5 for further details.

v(h)

B EXAMPLE 2.7

Figure 2.17 shows 1000 simulated values from an ARFIMA(0, d,0) pro-
cess with d = 0.4. The theoretical and the empirical ACF are shown in
Figure 2.18.

From Figure 2.17, note that this time series exhibits a persistence
in its values, they tend to stay at a certain level for a while and then
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Series

0 200 400 600 800 1000
Time
Figure 2.17  Simulated ARFIMA(0,d,0) time series with 1000 observations with
d=04.
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Figure 2.18 ACF of an ARFIMA(0,d,0) time series d = 0.4. (a) Theoretical
ACF, (b) Sample ACF
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jump to another level. The first behavior is known as the Joseph effect
while the second is known as the Noah effect, that is, abrupt events that
change dramatically the level of the observations.

On the other hand, notice from Figure 2.18 that the sample autocor-
relations are significant, even after a large number of lags. This behavior
is expected from Figure 2.18(a), which shows its theoretical counterpart.

B EXAMPLE 2.8

Figure 2.19 exhibits 1000 observations from an ARFIMA(1,d, 1) process
with d = 0.3, ¢ = 0.6, and § = —0.2. Notice the persistence of the values
and the apparent long-term trend.

On the other hand, Figure 2.20 displays both the theoretical and a
sample ACF of this model. Observe the slowly decaying of both ACF
and the similarity between the exact and the empirical values. It is
clear that this time series displays significant empirical ACF levels even
beyond lag 20.

Series

o

200 400 600 800 1000

Time

Figure 2.19  Simulated ARFIMA(1,d,1) time series of 1000 observations with
d=0.3, » =0.6, and 6 = —0.2.
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Figure 2.20 ACF of an ARFIMA(1,d,1) time series with d = 0.3, ¢ = 0.6, and
0 = —0.2. (a) Theoretical ACF, (b) Sample ACF.

2.11 FRACTIONAL GAUSSIAN NOISE

Another well-known long-range-dependent process is the so-called fractional
Gaussian noise (fGn). This process may be defined as follows. Consider
the fractional Brownian motion Bg4(t) defined in the Section A.2.8, and let
{y1: t € Z} be defined by the increments of By(¢):

Y = Ba(t + 1) — Bq(1). (2.31)

The discrete-time process {y;: t € Z} is called fractional Gaussian noise (fGn).
Let {y:: t € Z} be the process defined by (2.31). Then

(a) {y::t € Z} is stationary for d € (—3, 3).

(b) E(y:) =

(c) E(y?) = E[B(1)%].

(d) The autocovariance function of {y;: ¢t € Z} is
o2

y(h) = = (|h+ 120 = 2T 4 [h =12

2
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where 02 = Var(y;).
(e) For d # 0, the asymptotic behavior of the ACF is given by
A(h) ~ o?d(2d + 1) [n,

as |h| = oo.

2.11.1 Sample Mean

Let g, be the sample mean of an fGn described by (2.31). Then, by telescopic
sum, we have

o =+ Baln+1) = Ba(1)

Thus, an application of formula (A.11) yields

Var(7,) = o?n?371,

Consequently, since the process {B4(t)} is Gaussian, we conclude that
U ~ N(0,0‘and_l),

for all n € N.

2.12 BIBLIOGRAPHIC NOTES

Several textbooks address the concept of linear processes and ARMA models;
see, for example, Box, Jenkins, and Reinsel (1994) and Brockwell and Davis
(2002). The book by Shumway and Stoffer (2011) provides another excellent
treatment of the fundamental time series techniques. ARFIMA models are
discussed, for instance, in Doukhan, Oppenheim, and Tagqu (2003), Rangara-
jan and Ding (2003), Teyssiere and Kirman (2007), and Palma (2007), among
others. Definitions of long-memory processes have been extensively discussed
in the literature; see, for instance, Chapter 3 of Palma (2007). The articles by
Cox (1984) and Hall (1997) give overviews about different definitions of long-
range dependence. On the other hand, the paper by Hosking (1981) discusses
several properties of ARFIMA models, including results about stationarity,
invertibility, autocorrelations, and the like. Formulas for the exact autoco-
variance function of an ARFIMA process were established by Sowell (1992).
A nice review of fractional Gaussian noise processes and their properties is
given in Taqqu (2003).

Problems

2.1 Lety; = e+ X €;_1 be a sequence of independent identically distributed
(ii.d.) random variables, where X is a random variable with mean p and



PROBLEMS 73

variance 0%, {&;} is a sequence of i.i.d. random variables with zero-mean and

variance 2. Furthermore, X and {¢;} are independent. Is {y;} a weakly

stationary process? If this is true, calculate the autocovariance function of

{we}-

2.2 Let {&;} be a sequence of independent identically distributed random
variables with zero-mean and variance o2. Is the sequence {y;: t € Z} defined
by y: = es+€¢_1+€1_2 €3 alinear process? Is the process y; = e;+e;_14+€¢_3
causal?

2.3 Can a stationary process be non-causal? Discuss.

2.4 Let the process {y;: t € Z} be defined by y: = ¢ yr_1 + & where {e;} is
a sequence of identically distributed Student t random variables with v = 2
degrees of freedom. Is this process second order stationary?

2.5 Consider the ARMA(1,1) model
Yt — QYt—1 = &t + Oe¢1,

where g, ~ WN(0, 0?) with |¢| < 1, 0] < 1
(a) Let ¥(z) = (1 —¢2) (1 +6z2) = Z;io ;2. Verify that 1y = 1,

by =¢""o+0)j =1
(b) Starting from the fact that for & > 0

v(k) = o” Z Yijtks
§=0
_ (k)
find p(k) = % for k > 1.
2.6 Consider the ARMA(2,2) model,
Yr — 0.2y 1 + 0.5Yys—0 = €t + 264_1 — €¢—2.

Verify if this process is stationary and invertible.
2.7 Consider the ARMA(2,1) process

ye=13y1 — 04y o+ 2 + 211

(a) Specify if the process is stationary and invertible.
(b) Calculate the autocovariance function of y;.

2.8 Let y; be a process satisfying

Yy =a+ Bt+n
N = PNs—1 + €,

where ¢; is white noise (0, 02).
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(a) Assume that the parameter ¢ is known and equal to 1. What would
you do for modeling y,?

(b) Assume now that you only know that |¢| < 1. What would you do
for modeling ;7

2.9 Consider the following ARMA(2,1) model
Ye — Yi—1 + 0.1y 2 = € — 0.3¢,

where ¢, is white noise (0,02).
(a) Show that this process is causal and invertible.
(b) Calculate the coefficients of the Wold expansion.
(¢) Calculate the ACF of y;.

2.10 Consider the process {z;} given
Ty = QTi—s + 21,

with {z:} ~ WN(0,0?), |¢| < 1 and s € N. Determine the partial autocorre-
lation function of x;.

2.11 The autocorrelation and partial autocorrelation functions are key tools
for identifying ARMA processes. To assess their ability to recognize ARMA
we simulated six processes and plotted their autocorrelations, see Figure 2.21
to Figure 2.26. Identify the following processes justifying your decision:

(a) 1—-05B)y:=(140.5B) 2.

(b) (1-0.6B)yr = 2.

(d) (1-0.6B+0.05B?)y; = (1+0.7B) 2.

(@) (b)

ACF
Partial ACF
02

00 }

Figure 2.21 Time series I, (a) Sample ACF, (b) Sample PACF.

2.12 Explain the following concepts:
(a) Strict stationarity.
(b) Second order stationarity.
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Figure 2.22 Time series II, (a) Sample ACF, (b) Sample PACF.
(@) (b)
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Figure 2.23 Time series 111, (a) Sample ACF, (b) Sample PACF.
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Figure 2.24

Time series IV, (a) Sample ACF, (b) Sample PACF.

(c) How is the decaying of the ACF of an ARMA or an ARFIMA pro-

cess?
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(@) (b)

10

ACF
Partial ACF

04 02 00 02 04 06 08

(@) (b)
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|
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|

Figure 2.26 Time series VI, (a) Sample ACF, (b) Sample PACF.

2.13  Show that if {y;} is stationary and |0| < 1, then for each t, 3>7" | 07y 415
converges in mean square error as m — oo.

2.14 Consider the process ARMA(2,1)
Yt = 1-3Z/t—1 — O.4yt—2 + 2zt + ze—1.

(a) Analyze if this model is stationary and invertible.
(b) Calculate the ACF of this process.

2.15 Consider the following ARMA(2,1) model,
Yo — Yi—1 + 0.1y 2 = ¢ — 0.3¢,

where ¢; is a white noise sequence with (0, 02).
(a) Show that this time series is causal and invertible.
(b) Calculate the coefficients of its Wold expansion.
(¢) Calculate the ACF of y;.
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2.16 Consider the ARMA(1,1) time series y; defined by
Yt — QYt—1 =€t + 01,

with 02 = Var(e;) = 1 and let n = (¢, ).
(a) Show that a state space representation of y; is given by

Tip1 = Qxy + P&y
Yt = Ty + &,

and find .
(b) For which values of 1 the observed process is stationary?
(c) Plot a trajectory of y; for different values of 7.

2.17 Verify if the time series
yr = 0.20y,—1 + 0.63ys—2 + € + 2.3¢,—1 — 0.50€;,_2

where ¢; ~ WN(0,0?) is invertible and stationary.

2.18 Consider the following processes and verify if they are causal, station-
ary and invertible,
(a) y¢—0.4y;—1 + 0.03y;_2 = &, where &; are independent random vari-
ables with Student ¢ distribution of 6 degree of freedom.
(b) y: = e141+0.45¢, where €, is a white noise sequence with distribution
N(0,1).
() wp=c+ (=527, a?~le;_;, where £ is a white noise sequence
with variance o2, |a| < 1 and |8] < 1.

2.19 Let y; be an ARMA(1,2) time series where Vare; = o2 and
yr — 0.5y 1 =€ —er—1 + 0.24e4_5.

(a) Verify if this model is causal, stationary and invertible.
(b) Find the first five terms of the Wold expansion of this process,

,(/)17 (R 71/15-
(c) Find the ACF.

2.20 Show that an ARFIMA model satisfies the definition of a long-memory
process described in this chapter and discuss alternative definitions of strongly
dependent time series models.

2.21 Let y; = et yt—1 + €1—1 where &; is a white noise with zero-mean and
unit variance. Is {y;: t € Z} a lineal process? Is it causal? Calculate E(y;).

2.22 The ACF of an ARFIMA(0,d,0) process is given by

_ , T(1—-2d) T(h+d)
v(h) = J2F(1 —AT(d)T1+h—d)’
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where I'(+) is the gamma function. Besides, the PACF is

T'(n—d)T(1—d)
T(-d)(n—d+1)

¢nn:: -

(a) Show that as h — oo, we have

o D=20) 00y

V)~ S T @

(b) Verify that as n tends to infinity, the PACF behaves as

brn
Hint: T'(x + 1) = 2 T'(z).
2.23 Prove that
o? |9(L)I?

A7,

T~ S o

for [A\| = 0. Hint: sin(x) ~ z for |z| — 0.

2.24  Calculate explicitly the autocovariance function of an ARFIMA(1,d, 0)
and ARFIMA(0,d, 1).

2.25 Use Stirling’s approximation
D(z) ~ V2me! =% (z — 1)"1/2,
as x — 0o, to show that

I'(n+ «) o po—B
Tt B , (2.32)

as n — o0o.
2.26 Applying Stirling’s approximation, show directly that for an ARFIMA(0, d, 0)
process the following asymptotic expressions hold

kdfl

T(d)
kfdfl

I(=d)

as k — oo.
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2.27 Show that the AR(o0) and MA(co) coefficients of an ARFIMA(p, d, q)
process satisfy

OO i
Y S T@
e

5 M) T(—d)

as j — oo.

2.28 Using the following formula involving the gamma function

™

ri —drd) = ——=
( )r(d) sin(wd)’
show that the constant ¢, appearing in expression (2.28) may be written as

_ al6P T(1-2q)
T P T - AT @)

2.29 Show that the autocovariance function of a fractional Gaussian noise
is positive for d € (0, 3) and negative for d € (—3,0).

2.30 Let n; be the MA(00) coefficients of an ARFIMA(O, d,0) process with
d e (0, ) and define o9 =1 and ¢; =n; —nj—1 for j=1,2,....
(a) Verify that ¢; = —n] 1.

(b) Show that ¢; ~ F(Z 21) as j — oo.
(c) Prove that

oo

3 2d)
Z - )2

=0

2.31 Consider the linear process {y;} with Wold expansion

Y =

where {£;} is a white noise sequence with unit variance.
(a) Show that the autocovariance function of this process is

1

)= G i 2 7

for |h| > 0 and
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(b) Show that

log h
’Y(h) ~ 0

as h — oo.
(¢) Verify that for any m > n > 0,

Do) >
h=n h=n

(d) TIs {y:} a long-memory process?
Hint: The following formulas may be useful,

[eS) 1 h
Z+h EZ:

Jj=1

S| =

1
J
for h > 0,

h

1 1

Y —=C+logh+0 () ,

— ) h
Jj=1
where C' is the Euler’ constant, C' = 0.5772- - -

2

=1 s

2.32 Let y; be the autocovariance function of a fractional noise FN(d) with

d< % and white noise variance o2.

(a) Show that

r 1—4d)
4
Z %_ Zd)'

j=—00

(b) Prove that

S = o d T(1 — 4d)
‘ ViVi+1 =0 (1—2d)T2(1 —2d)
2.33 Show that for d € (—%, %),

= v,
j=0
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where

L'(j+d)

¢72r0+1wmy

2.34  Prove that for d € (-1, 3),

0

> , d
§ il = (1 — @) 4=

(]_ _ ¢)1+d'

2.35 Show that the two following MA(1) processes
Ty = 2¢ + Gzt_l, {Zt} ~ WN(0,0’z)
1. .
Y = Zt + 5Zt,1, {Zt} ~ WN(O,UQGQ)

where 0 < |0| < 1, have the same autocovariance function.

2.36  Show that

T iema gy _ J 2w, i k=h,
.[f dA {O,ifk#h

2.37 Consider the autoregressive process of order 1 defined by
Ty —p= (w1 — p) + &
where {£;} is white noise and —1 < a < 1.

(a) Show that given n observations x1,...,z, the least squares estimator
that minimizes

S = Z[.’Et e O[(l'tfl - 1u’)]2

is given by
. Tz —aZq)
F=7174
and

S (@ — ) (s — 1)

-1 N
;1:1 (zt — 1)?

é{:

where (1), T(2) are the averages of the first and last n — 1 observations,
respectively.

(b) Show that if we can make the approximation

1%
1%

T =T =T
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then

nw=x
and N1
Do (@ —T)(T441 — T)

&= n—1 —\2
=1 (Tt — T)

(c) Find the autocorrelation function for an AR(1) process. In view of this,
why & given in part (b) is a reasonable estimate of a?

(d) Show that the spectral density of this process is given by

o2(1—a?)

(1 —2acos(w) + a?)’

fw) = -

2.38 Suppose that the y; series follows the model y; = y;—1 + €; with
g1 ~ WN(o2). Is y; stationary? If this sequence is not stationary, propose a
transformation to induce stationarity.

2.39 Suppose that the series {y;} is modeled by y; = us + x¢, where pu; =
fi—1 + €¢ is not observable and x; = w; — Ow;_1. Assume that &, ~ WN(02),
wi ~ WN(o2), and Cov (e, ws) = 0 for all (¢,s). Please answer the following
questions:

(a) What is the mean and the variance of y;?
(b) Is y; stationary?
(c) If part (b) is true, what is the autocovariance function of y,?

(d) If part (b) is false, suggest an appropriate transformation to induce sta-
tionarity in y;. Then, calculate the mean and autocovariance function
of the transformed stationary series.

2.40 Let {x:} a sequence of independent random variables distributed as

N exp(1l), teven,
o N(0,1), todd.

(a) Is {z:} stationary?
(b) TIs {x:} strictly stationary?
2.41 Let {z:} be a sequence of i.i.d. Bernoulli random variables with pa-
rameter % Decide on the stationarity of the following series:
(a) {z;te{0,£1,£2,...}} where if ¢ is odd, x is the value of a normal
observation with mean % and variance %7 while for ¢t even, z; = z;.
(b) x9 = co; ¢ = 0.6x4_1 + €; where €; is a sequence of independent
identically distributed random variables with zero-mean.
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2.42  Which of the following processes is weakly stationary for T'= {0,1,2,...}
where ¢€; is a sequence of random errors with zero-mean and variance 1 and
a1 and ao are real constants

(a) €1 + excos(t)

(b) €1 + egcos(t) + €3 cos(t)

(c) ay + € cos(t)

(d) a1 + 61(15 + €2

2.43 Using a normal random number generator, generate 100 observations
of the following series, plot and discuss the differences.

(a) AR(1), ¢ =06

(b) MA(1), 8 =-0.6

(c¢) ARMA(1,1) con ¢ = 0.6 and 0 = —0.6

2.44 Consider a series modeled by the following process:
(1 —0.82B +0.22B* + 0.28B*)[log(z) — ] = &,

where ¢; is white noise sequence.

(a) Factorize the autoregressive operator, and explain the aspects that
the factorization reveals regarding the autocorrelation function and
the periodic components of this series.

(b) What is the formula which allows the forecasting of this series?

2.45 Let {€:}4>1 be an i.i.d. sequence of random variables N(u,c?) and 6
real parameter. Consider the sequence {x;};>1 defined by:

1 =€1, Tp=0x_1+¢€ (t>2).

In what follows, consider p = 0.
(a) Calculate V(zy)
(b) Calculate Cov(zy, xi—k), 0 <k <t
(c) What is the distribution of z,?
(d) For what values of 8, (z;) converges in distribution?
(e) What is the distribution of (z1, 2, ...,2,)? Calculate its probability

density.
(f) Is this process stationary?
2.46 Let z1,29 two random variables such that E[z1] = u1; Flz] = po;
Var[z1] = o11; Var[zs] = o092; Cov[z1, 23] = 012, let the process z(t,w) be

defined by z(t,w) = 21 (w)Ir-yo(t) + zo(w)Ig+(t).
(a) Describe the trajectories of x.
(b) What should be necessary to make the process stationary?
(c) Calculate pg(t) and v, (t1,t2).
(d) Find necessary and sufficient conditions on w1, pe2, o1, o2 and o019
so that the process z is second order stationary. In this case, find
autocovariance and autocorrelation functions.
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2.47 The sequence W (¢),t € R is called a Wiener process if it satisfies
1. W(0)=0.
2. W(tQ)_W(tl) NN(O,U2(t2_t1))7 to > 7.

3. If to S tl S S tn, then W(tl) — W(to), W(tz) — W(tl), ey W(tn) —
W(t,—1) are independent.

(a) Calculate the mean pw (t) and Cov(Wy,, W,).
(b) Is W(¢) a second-order stationary process?

2.48 Find the autocorrelation function of the MA(2) process given by

Te = € + 0.4 €t—1 — 0.2 €t_92.

2.49 Calculate the autocorrelation function of the MA(n) process given by

n

Ty = Z ;t_;kl .

k=0

2.50 Find the ACF of the AR(1) process defined by x; = 0.7x;—1 + ¢; and
plot p. (k) for lags k = +£6, £5, +4, +3, +2, +1.

2.51 Let x; be a process given by z; = u + € + B€;—1, where p € R is a
constant. Show that the ACF does not depend on p.

2.52 Find the values of A\;, Ay € R such that the AR(2) process z; =
A1Zi_1 + Ao xy_o + € is stationary.

2.53 Assume that v, (k) is the ACF of the stationary process {x¢,t € Z}.
Calculate the ACF of the process Va; = x4 — 241 in terms of 7, (k). Find

Yva (k) if 2 (k) = A7F.
2.54 Find the MA(c0) representation of the process z; = 0.3 x;_1 + €.

2.55 Suppose that the process {x;,t € Z} can be represented as ¢ =
Z;io cjwy—j as well as z; = Z;io bj€r—j.
(@) Tfeg=0bo=1, A(s) = Y72 ¢;8’, and B(s) = Y 72 bjs’, show that
A(s) - B(s) = 1.
(b) If R(s) = > po_ rx(k)s”, show that

R(s) = 0?B(s)B(L/s) = 02[A(s) A(1/s)] "

2.56 Consider the MA(2) process given by x; = —1.7+€¢;—0.6€;—1+0.3¢,_2.
(a) Is this a stationary process?

(b) Find pig, 72(0), v2(1), 72(2), 72(3), 72(23), p(1), p=(2), p=(3), and
Pz (23).
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2.57 Consider the ARMA(1,1) process given by: x; = 0.4x;_1+¢—0.8¢,—1.
(a) Is this a linear process?
(b) Is this a stationary process?
(c) Is this an invertible process?
(d) Find px, vx(0), vx(1), 7x(2), 7x(3), px(0), px(1), px(2), and
px(3).
(e) If x7; = —5, what is the expected value of x79?
(f) Write the process in an AR form.
(g) Write the process in an MA expansion.

2.58 Let {x¢,t € Z} be an MA(1) process given by x; = €; + aa;—1. Show
that |p,(1)] < 1.

2.59 Let z; = Z;io €;—; be a linear process.
(a) Is this process stationary?
(b) Is Vx; a stationary process?
(c) Show that the best linear predictor of z;4) based on {z, : u <t} is
Tt.

2.60 Consider the AR(2) process z; = ¢12¢+-1 + d2x1—2 + €. Calculate
px (k) based on the roots of the model, under the following conditions:

(a) pw(O) = I,Pa:(l) = lf;ﬁg

(b) p2(0) =1,p.(1) = pz(-1).
Compare and discuss the two results.

2.61 Consider the following stochastic processes
1.- Ty = 0.5"Et,1 + €.
2.- Ty = 1.5.I‘t_1 - 0.533,5_2 + €.

(a) In both cases express x; as an MA(co) and an AR(00).
(b) Calculate p, (k) and ¢p.

2.62 Let x; be an ARMA(p2, g2) process and let y; be an ARMA (po, ¢2)
process, such that x;, y; are independent. Define z; = x; + y;. Verify that z
is an ARMA(p, q) process such that p < p; +p2 and ¢ < max{p1+q¢2,q1 +Dp2}.

2.63 If {x4,t € Z} and {y;,t € Z} are stationary, is {az; + by, t € Z} also
stationary?

2.64 If an ARMA(p,q) model with p > 0 and ¢ > 0 is stationary, then
provide conditions such that

(a) It is also invertible.

(b) It can be written as an infinite-order MA model.

(c) It can be written as a finite-order MA model.

(d) Tt can be written as a finite-order AR model.
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2.65 IfWy;, = (1—061B)e1; and Wy, = (1 — 03 B)eay, where €14 and €9,
are two independent white noise sequences, show that W3, = Wy .+ W can
be written as W3, = (1 — 03 B)es ;. Find expressions for 63 and O'g’t in terms
of the corresponding parameters of the other two processes.

2.66 Consider ARMA(1,1) process
ye = 10+ 0.8y 1 + ¢ — 0.561 1

(a) Is this a stationary and an invertible process?

(b) Calculate the mean of y;.

(c) Calculate the autocovariance and autocorrelation functions.
(d) If possible, find the AR(c0) and MA(c0) representation.

2.67 Let {y;} be an ARMA time series plus a noise defined by
Yr = ¢ + Wi,

where {W;} ~ WN(0,02), {x;} is the ARMA(p,q) process satisfying ®(B)z; =
O(B)ey, {1} ~ WN(0,02) and E(W,z) = 0 for all s and ¢.
(a) Show that {x;} is stationary and find its autocovariance function in
terms of o2 and the autocovariance function of {x;}.
(b) Show that U; := ®(B)y;, is r-correlated where r = max(p, ¢). Con-
clude that {y;} is an ARMA(p,r) process.

2.68 Suppose that {z,} is a non-invertible MA(1) process
Ty =g+ 01

{2} ~ WN(0,07)
where |0] > 1. Define a new process {W,} as

oo

Wt = Z(_G)_jxt—j

Jj=0

and show that {W;} ~ WN(0,02). Express o2, in terms of § and ¢ and show
that {z;} has representation invertible (in terms of {W,})

1
=W, + 5Wt71~

2.69 If {x;} denotes the unique stationary solution of the autoregressive
equations
xt:¢$t—1 + &¢, tZO,il,

where {g;} ~ WN(0,0?) and |¢| > 1. Define the new sequence

1
Wi =my — —x41

¢
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show that {W;} ~ WN(0,0%,) and express o3, in terms of 02 and ¢. Show
that {x;} is the (stationary only) solution of the equations

1
ZCt:gl‘t,l-i-Wu t:O,il,

2.70 Let {By(t)} be a fractional Brownian motion with d = 0. Verify that

Cov[By(t), Bo(s)] = min{|t|, |s|}.

2.71 Let {By4(t)} be a fractional Brownian motion with d € (—%,
that this process has stationary increments, that is,

3). Show

Ba(t + h) — By(t) ~ Ba(h) — Ba(0),

for all t,h € R.

2.72  Let {By(t)} be a fractional Brownian motion with d € (—1,1). Prove
that for any p > 0,

E[Ba(t + h) = Ba(t)]’ = [n["“*1/?) E[B(1)"],

and

E [Bd(t + h})l - Bd(t)r B2,

2.73 Let 6 € (1,2), n > 1. Show that

(G +n)° =0n"°).
j:1

2.74 Show that for a < 1,

m—1
. 23 i _ =28 _ @
Tr}gr(l)om Ela(m 1) =
i

2.75 Assume that ¢ ~ t, with v > 4. Given that for even n

()

| Ve (3)

)

prove the following results:
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(a) The kurtosis of ¢ is

_3 v—2
m=3{"—1)

and 7, > 3 for any fixed v.
(b) The kurtosis of the process y; defined by the Wold expansion (6.24)
is

-2

6 o0 o0
2 4
= | DY DU +3,
=0 j=0

and kK, — 3 as ¥ — oo.
Hint: Recall that 2I'(z) =T'(z + 1) and I'() = /7.



CHAPTER 3

STATE SPACE MODELS

The linear processes introduced in the previous chapter were described in
terms of the Wold expansion or an infinite moving-average representation.
However, these processes can also be expressed in terms of a state space linear
system. This chapter is devoted to describe these systems and investigate some
of the relationships between Wold expansions and state space representations.
State space models are very useful for calculating estimators, predictors, and
interpolators. Consequently, Wold expansions and state space representations
of linear time series will be extensively used throughout this book.

This chapter begins with a motivating example of state spaces models in
the context of air pollution. Section 3.2 introduces the state space linear
systems and discusses a number of fundamental concepts such as stability,
observability, controllability, and minimality. Additionally, three equivalent
representations of a linear process including the Wold decomposition, state
space systems, and the Hankel matrix are analyzed in Section 3.3. Section 3.4
describes the Kalman filter equations to calculate recursively state estimates,
forecasts, and smoothers along with their variances. This section also discusses
techniques for handling missing values and predicting future observations.
Some extensions of these procedures to incorporate exogenous variables are
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described in Section 3.5, and further readings on theoretical and practical
issues of state space modeling are suggested in Section 3.6. A list of problems
is given at the end of the chapter.

3.1 INTRODUCTION

State space models are useful representations of linear processes. However,
these systems can also be helpful to model practical situations. Suppose
that the air pollution is generated by two sources, x;1 and z;2. But, these
components are not directly observed. The instruments measure a combi-
nation of these two components plus an instrumental error, that is, y; =
Q1T4,1 + a2 + €, Where g, is a white noise sequence with zero-mean and
variance . An important problem is estimating the parameters ay, as, o
and the magnitude of these sources from the observed data. For simplicity,
suppose that we know from the physical dynamic of the air pollution that the
state variables satisfy the equation

. 0.6 0.1 _— o 0 v
1 =
s 0.2 0.7 | 0 o "
(a)
N
o
o |
>‘<Z o
o
3 A
<
s
' T T T T T T
0 200 400 600 800 1000
Time
(b)
o
o
2 o
8
w—,
g
T T T T T T
0 200 400 600 800 1000
Time

Figure 3.1  State space model example. State values zy, t = 1,...,1000. (a) first
component 1, (b) second component ..
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where v; is a state noise two-dimensional vector with zero-mean and variance
I5. On the other hand, suppose that the instrumental measurements satisfy

ye = [ o |z towy,

where w; is a normal white noise with zero-mean and unit variance, indepen-
dent of the state noise v;. Figure 3.1 shows the two components of the state
vector for a simulated process with a; = 0.7, as = 0.3, ¢ = 0.1 and 1000
observations. The variance of the state vector is given by

Var(z) 0.0172  0.0064
=\ 0.0064 0.0237 )’

and the variance of the observation sequence is Var(y;) = 0.0243 and standard
deviation sd(y;) = 0.1560. On the other hand, Figure 3.2 displays the values
of the observed process y;. The sample ACF and sample PACF of this series
is exhibited in Figure 3.3. Notice the level of dependence of the observation y;
on its past values. Later in this chapter we will come back to this illustrative
example to show the states and parameter estimates.

0.4

0.2

0.0

-0.2
|

0.4

0 200 400 600 800 1000

Time

Figure 3.2  State space model example. Observations y:, t = 1,...,1000.
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0.8

ACF
0.4
1

0.4
|

Partial ACF
0.2
I

0.0

Lag
Figure 3.3  State space model example. (a) Sample ACF, and (b) sample PACF
of y¢, t=1,...,1000.

3.2 LINEAR DYNAMICAL SYSTEMS

A more general expression for the linear state space system described in the
previous section is may be described by the discrete-time equations

rp1 = Fxy+o,
Yt G zy + wy,

AA
w
[N

where x; is the state vector for all time ¢, y; is the observation sequence, F is
the state matriz, G is the observation matriz, {v:} is the state white noise se-
quence with zero-mean variance o2 and {w;} is the observation error sequence
with zero-mean variance o2. Equation (3.1) is called the state equation while
(3.2) is the observation equation.

3.2.1 Stability

A state space system (3.1)—(3.2) is said to be stable if F™ converges to zero
as n tends to co. The system is said to be exponentially stable if there exist
positive constants ¢ and « such that |[F"| < ce™". The stability of
a state space model means that the state vector does not explode as time
increases and that the effect of the initial value of the state vanishes as time
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progresses. In what follows we will assume that the system is stable unless
stated otherwise.

B EXAMPLE 3.1

Consider the state space of Section 3.1. In this case,

0.6 0.1
F= [ 0.2 0.7 } ‘

Note that if X is an eigenvalue of F' associated to the eigenvector x, then
F"x = A"z. Thus, if the eigenvalues of F satisfy |A\| < 1 then A" — 0 as
n increases. Consequently, F"x also converges to zero as n — oo. In this
case the eigenvalues of F' are 0.8 and 0.5 so they satisfy the convergence
condition.

3.2.2 Hankel Matrix

Suppose that 1o = 1 and 1); = GF/~! € IR for all j > 0 such that Z;io 1/)? <
oo. Then from (3.1)-(3.2), the process {y:} may be written as the Wold
expansion

ye=Y et ;. (3.3)
j=0
This linear process can be characterized by the Hankel matriz given by
Y1 Y2 s
Y2 Y3 Y

H=1 93 oy s

Note that this Hankel matrix specifies the Wold expansion (3.3) and vice
versa. Furthermore, the dimensionality of the state space system (3.1)-(3.2)
is closely related to the dimensionality of the matrix H and to the rationality
of the spectral density of the process (3.3). Specifically, the rank of H is finite
if and only if the spectral density of (3.3) is rational.

The class of autoregressive moving-average (ARMA) processes have rational
spectrum, hence the rank of # is finite for these models. In turn, as we will see
later, this means that any state space system representing an ARMA process is
finite-dimensional. On the contrary, the class of long-memory processes [e.g.,
autoregressive fractionally integrated moving-average (ARFIMA) models] does
not have rational spectrum. Consequently, all state space systems representing
such models are infinite-dimensional.

Since the state space representation of a linear regular process is not neces-
sarily unique, one may ask which is the minimal dimension of the state vector.
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In order to answer this question it is necessary to introduce the concepts of
observability and controllability.

3.2.3 Observability

Let O = (G', F'G',F"?G’,...) be the observability matriz. The system (3.1)—
(3.2) is said to be observable if and only if O is full rank or, equivalently, O'O
is invertible.

The definition of observability is related to the problem of determining
the value of the unobserved initial state xg from a trajectory of the observed
process {yo,y1, ...} in the absence of state or observational noise. Consider,
for example, the deterministic state space system

Tt41 = Fxy,

Y = GII‘J

and let Y = (yo,y1,...) be a trajectory of the process. Since

Yo = G.’Eo,
Y1 = GFIO;
Yys = GFQ'rOa

we may write Y = Oxg. Now, if O’O is full rank, we can determine the value
of the initial state explicitly as zo = (0'O)~"1O'Y.

3.2.4 Controllability

Consider the case where the state error is written in terms of the observation
so that vt = H w; and the state space model can be expressed as

Ty = Fap+ Huwy, (3.4)
Yt = G.l?t -+ we. (35)

Let C = (H,FH,F?H,...) be the controllability matriz. The system (3.4)-
(3.5) is controllable if C is full rank or C'C is invertible.

The key idea behind the concept of controllability of a system is as follows.
Let &1 = (..., wi—2,ws—1)" be the history of the state noise process at time
t and suppose that we want the state to reach a particular value x;. The
question now is whether we can choose an adequate sequence &;_; to achieve
that goal. In order to answer this question, we may write the state at time ¢
as

Ty = Hwt_l —|—FHU)t—2 +F2H’LUt_3 + = Cgt_l.
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Thus, if the system is controllable, C’'C is full rank and we may write
gt—l = (C’C)ilc/.ft.

For a finite-dimensional state space system the observability and the con-
trollability matrices may be written as

@] (G F'Q,...,F"1q’y,
C = (H,FH,...,F"'H),

where n = rank(O) = rank(C).
B EXAMPLE 3.2

For the state space of Section 3.1 we have

0.70  0.45
0= [ 0.30 0.35 } '

Since the rank of this matrox is 2, the system is observable. On the
other hand, suppose that we can write

1
vt:|:2:|wt7

where w; is a white noise sequence with zero-mean and unit variance.
Thus, the controllability matrix is given by

1 0.8
e=[3 15
Therefore, the system is not controllable. However, if

1
Ut = 1 Wt,

1 0.7
6[1 0.9}'

So, that this model is controllable.

then

3.2.5 Minimality

A state space system is minimal if F' is of minimal dimension among all
representations of the linear process (3.3). The problem of finding minimal
representations for finite-dimensional systems minimality is highly relevant
since a state space representation with the smallest dimension may be easier
to interpret or easier to handle numerically. A state space system is minimal
if and only if it is observable and controllable.
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3.3 STATE SPACE MODELING OF LINEAR PROCESSES

A linear process may be represented in many different forms, for instance, as
a state space system, a Wold decomposition, or by its Hankel matrix. To a
large extent, these representations are equivalent and a key issue is how to
pass from one representation to another. We have to keep in mind, however,
that in most cases these representations are not unique.

3.3.1 State Space Form to Wold Decomposition

Given a state space system (3.4)-(3.5) with the condition that the sequence
{GFIH} is square summable, we may find the Wold representation (3.3) by
defining the coefficients 1; = GF/~!H. Observe that the stability of F' is not
sufficient for assuring the above condition. However, square summability is
guaranteed if F' is exponentially stable.

3.3.2 Wold Decomposition to State Space Form

A state space representation of the process (3.3) can be specified by the state
ze o= [yt -1) yt+1t-1) yt+2t-1) -7,  (36)

where y(t + j|t — 1) = E[ys4j|yt—1,Ys—2,...] and

01 0 0 O

0O 0 1 0 O
F = 10001 0 ; (3.7)
H = [¢1 ¢ 3 -], (3.8)
G = [100 -], .
T G.’,Et + &¢. (310)

3.3.3 Hankel Matrix to State Space Form

Let A be a linear operator that selects rows of H such that Hy = AH consists
of the basis rows of H. Thus, Ho is full rank and consequently HoH] is
invertible. Given the Hankel representation, a state space system can be
specified by the state vector

Ty = ’Ho(ﬁt—hat—% .. )/a
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and the system matrices

Yo Y3 s
Y3 Py Py e , ry—1
F=A vy s g - 7‘[0(7'[07'[0) )
H:A(¢1,w27~")/a

and
G = (wlud)?a v )H6(H0H6)_1

Let ¢; = (0,...,0,1,0,0,...) where the 1 is located at the jth position.
Observe that by induction we can prove that F/='Hpe; = Hope;. For j =1
is trivial. Suppose that the assertion is valid for j, we will prove that the
formula holds for j + 1:

a3 Yy
. Y3 s s
F'Hoer = FHoe;=A R
Yt
(ER
= Pis | =AM = Hoejp.

Therefore,
GFITVH = (1,0, .. YH(HoHY) " I Hoe
= (w17w27"~)H6(HOH6)71H06J\

On the other hand, since (11,12, ... ) belongs to span of H, it may be written
as (Y1,v2,...) = bHo. Thus,

GF'~'H = bHo(—;’j = (1/)1,’(/)2,...)6j = wj.

3.4 STATE ESTIMATION

The state space model described by (3.1)-(3.2) can be readily extended to
handle time-varying state and observation matrices. This makes the system
versatile enough to model, for instance, nonstationary processes. This more
general state space model can be written as,

T41 — Ft Ty + V¢, (311)
g = Grag+wy (3.12)
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where Var(v;) = ¥, Var(w;) = o4 and Cov (v, wy) = I'y. As discussed previ-
ously, in many practical situations the state vector of the model is not directly
observed. We have indirect information of the state z; from the observed se-
quence ;. Based on what information is available for estimating the state,
we may consider the following three cases. If only the past of the process
(-.,Yt—2,yt—1) is available the we proceed to the prediction of the state x;.
If the past and the present of the process (...,y;—1,¥:) is available, then we
proceed to filtering the state x;. Finally, if the full trajectory of the process is
available (..., ¥%¢—1,Yt, Yt+1,- - . ), then we consider smoothing of the state x;.
In what follows we summarize the Kalman recursive equations to find state
predictors, filters, and smoothers. The main purpose of these equations is
to simplify the numerical calculation of the estimators. Since in practice we
usually have only a finite stretch of data, we focus our attention on projections
onto subspaces generated by a finite trajectories of the process {y;: t € Z}.

3.4.1 State Predictor

Let Z; be the predictor of the state x; based on {ys : 1 < s < t— 1} and
let Q = E[(z: — Z¢)(z: — T4)'] be the state error variance, with Z; = 0 and
Oy = E[z12}]. Then, the state predictor Z; is given by the following recursive
equations for ¢ > 1:

Ay = G QG+ o7, (3.13)
K, = (F,uG,+T)A (3.14)
Q1 = FUF+% - AK K], (3.15)
v = yi— Gy, (3.16)
T = FiZ+Kiu. (3.17)

The sequence K; is the Kalman gain and {14} is the innovation sequence that
represents the part of the observation y; which cannot be predicted from its
past.

3.4.2 State Filter

Define Z;; as the conditional expectation of z; based on {ys : 1 < s <t} and
let Q¢ = E[(2t — Zyp) (01 — Ty¢)'] be its error variance, with #y); = 0. Then
the state filter z';; is given by the following recursive equations for ¢ > 1:

Qe = U— UG AT G,
§t|t = a,'\t + Qt Gi At_l Vyg.
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3.4.3 State Smoother

Let @y, be conditional expectation of z; based on {y; : 1 < j < s}. The state
smoother Zy,, is given by the following recursive equations for s > t:

'/r\t\s = Et\sfl +At,s G; As_l Vg,
Arst1 = A (F— K As_l Gy)'.
The state smoother error variance is obtained from the equation

Qps = Qyjs—1 — Ay Gy ATTG A,

t,s9

with initial conditions A;; = Qyy—1 = @ and Ty, = ¢ from (3.15) and
(3.17), respectively.

3.4.4 Missing Values

When the series has missing observations , the Kalman prediction equations
(3.15)—(3.17) must be modified as follows. If the observation y; is missing,
then

Qt+1 == Ft Qt F{—}—Zt,
vy = 07
§t+1 == Ft/x\t-

As a consequence, the missing value y; affects the estimation of the state at
time ¢+ 1 making the innovation term zero and increasing the state prediction
error variance with respect to the observed y; case since the subtracting term
A; Ky K| appearing in (3.15) is absent in the modified equations.

Furthermore, when y; is missing, the modified Kalman filtering equations
are

Qyp =

Tyt = T,

Tils =  Tt|s—1»

/
At,s+1 = At,s Ft7
Qt|s = Qt\sfk

Additional details about this modifications can be found in Subsection 11.2.4.
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B EXAMPLE 3.3

In order to illustrate the application of the Kalman recursions consider
the air pollution state space model discussed in Section 3.1.

Let 8 = c(a1,2,0) the parameter describing this model. The R
package FKF provides a fast implementation of the Kalman recursions.
With the help of this package we obtain the following output:

> fit
$par

arl ar2 sigma
0.68476597 0.33517491 0.09911715

$value
[1] -577.6894

$counts
function gradient
178 NA

$convergence
[11 o

$message
NULL

$hessian

arl ar2 sigma
arl 444.0878 337.6504  8584.973
ar2 337.6504 322.5501  5345.319
sigma 8584.9733 5345.3187 203590.721

The approximated variance-covariance matrix of the parameter esti-
mate 6 is given by

Var(a)* 0.1396 —0.0307 0.0838
S\ 1.2299  0.7011 0.1144 /-

From this matrix we obtain 95% confidence intervals for the parameters,
(0.1396, 1.2299) for aq, (—0.0307,0.7011) for as and (0.0838,0.1144) for
.

Figure 3.4 and Figure 3.5 show the first and second components of
the state predictors, respectively. Note that the predictors follows the
trajectory of the state vectors closely.

The standard deviations of these state predictors are exhibited in
Figure 3.6. The first standard deviations were no plotted since they
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0 200 400 600 800 1000

Time
Figure 3.4  State space model example. State predictors, t = 1,...,1000. Heavy
line, first component predictors. Dotted line, first component state values.

represent an initial guess, which is usually a very high value, 100 in this
case. Note that the standard deviations decay quite rapidly after a few
steps and converge to 0.1143 and 0.1298, respectively.

On the other hand, Figure 3.7 and Figure 3.8 exhibit the filtered
state vectors. Observe that the estimated states are closer to their true
counterparts than the predicted states.

The standard deviations of the filtered states is depicted in Figure 3.9.
Notice that for both components these standard deviations converge very
quickly to 0.093 and 0.1200, respectively.

Figure 3.10 display the innovation sequence of this fitted state space
model along with the sample ACF and their standard deviations. Note
that the innovations seem to be uncorrelated.

Finally, the Kalman gain vectors are shown in Figure 3.11. Notice
that both components converge fast to 0.4891 and 0.3669, respectively.
Summarizing, this simple example illustrate the versatility of a state
space system to model complex practical situations where the variables
of interest are not directly observed. In this case, the model can identify
the relative contribution of each pollution source and can estimate them
from the observed data.
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Figure 3.5
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State space model example. State predictors, t = 1,...,1000. Heavy

line, second component predictors. Dotted line, second component state values.
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State space model example. Standard deviations of state predictors,

t=2,...,20. (a) first state component, (b) second state component ..
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0 200 400 600 800 1000
Time
Figure 3.7  State space model example. States filters, t = 1,...,1000. Heavy line,
filtered first component. Dotted line, first component state values.

Xtz
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Time
Figure 3.8  State space model example. States filters, t = 1,...,1000. Heavy line,
filtered second component. Dotted line, second component state values.
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Figure 3.9  State space model example. Standard deviations of state filters, t =
1,...,20. (a) first state component. (b) second state component x; 2.
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Figure 3.11  State space model example. Kalman gain, t = 1,...,20. (a) first
component K1, (b) second component Ky .

3.4.5 Additive Noise

State space models allows the handling of ARMA or ARFIMA processes ob-
served with error. As an illustration consider the AR(1) model with additive
noise described by

Ti4+1 — gb;tt + Vt,

Yt = Tt wy,

where x; is an AR(1) underlying process and y; is the observed process, with
error w; which is a white noise sequence. Suppose that Var(v;) = o2 and
Var(w;) = o2, are the state and observational noise variances, respectively.
Assume also that the state and observational noises are uncorrelated. Notice
that the variance of the state and observed process are

0.2

v
1—¢2

2

Ty 2

Var(y;) = 1_¢2—|—0w.

Var(x)




106 STATE SPACE MODELS

Thus, that the variance ratio is

Var o2
A T i)
Var(zy) o2
showing that the increase in variance from x; to y; depend on both the noise
variance ratio and the value of the autoregressive parameter.
The Kalman equations in this case are give by

A = Q +ol,
Ky = oQ A,

Q1 = ¢Qt+03*Ath27
Vi = Y — Ty,

Tipr = 9T+ Kivy.

These equations can be simplified as follows,

Ay = 4ol
Q
Kt = Q¢ L 2
t T 0%
Q.. - @Wouto)toyoy
t+1 o Qt +0'2 ’
Ve = Y — 7y,
. ~ Q2
Tir1 = (]S.I‘t + ml/t.

Figure 3.12 displays 100 values of the state and observations for a simulated
AR(1) plus noise process with ¢ = 0.9, 62 = 1, 02 = 2. The sample ACF and
PACEF of the process y; is exhibited in Figure 3.13

The evolutions of A; and Q; for the simulated process is shown in Fig-
ure 3.14. Notice that both sequences converge rapidly to their asymptotic
values. On the other hand, Figure 3.15 displays the evolutions of the Kalman
gain K; as well as the innovation sequence v;. Similarly to the case of the
sequences A; and ), the Kalman gains converges fast to its limit. Moreover,
the sample ACF and PACF of the innovations vy, see Figure 3.16 suggest that
this residual sequence seems to be white noise. This hypothesis is formally
tested by means of the Box-Ljung test,

> Box.test(nu,lag=10,type="Ljung")
Box-Ljung test

data: nu
X-squared = 7.0116, df = 10, p-value = 0.7243
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Figure 3.12  Additive noise state space model. Simulated process with ¢ = 0.9,
o2 =1,02 =2,n=100. (a) state z:, (b) observation y;.

(@)

ACF
02 00 02 04 06 08 10
L L L L L

Lag
(b)
<
3
« ]
3
o
s ]
n
o
g .
s o ‘
1
<o 1 1 | | | | 1
3 T I T ‘
5
PO
3
' T T T T
5 10 15 20
Lag

Figure 3.13  Additive noise state space model. Sample ACF and PACF of the
simulated process with ¢ = 0.9, 62 = 1, 02 = 2, n = 100. (a) sample ACF of y:,
(b) sample PACF of y;.
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Figure 3.14  Additive noise state space model. FEvolution of A and 2 for the
simulated process with ¢ = 0.9, 02 = 1, 02 = 2, n = 100. (a) state z:, (b)
observation .
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Figure 3.15  Additive noise state space model. Evolution of K: and vy for the
simulated process with ¢ = 0.9, 02 = 1, 02 = 2, n = 100. (a) state z:, (b)
observation y;.
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Figure 3.16  Additive noise state space model. Sample ACF and sample PACF
of v¢ for the simulated process with ¢ = 0.9, 02 =1, 02, =2, n = 100. (a) state x4,
(b) observation ys.
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Figure 3.17  Additive noise state space model. Predictions of the simulated process
with ¢ = 0.9, 02 = 1, 02 = 2, n = 100. (a) state predictions Ty, (b) observation
predictions .
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This procedure indicates that the white noise hypothesis is not rejected at,
for instance, the 5% significance level.

Finally, the state and observation predictions are exhibited in Figure 3.17.
Notice that the predicted values follows closely theirs true counterparts.

3.4.6 Structural Models

A very useful class of processes in econometrics are the so-called structural
models, described by

Ti41 = Tyt U,

Yt Ty + Wy,

where the state z; is an unobservable variable that governs a economical
or financial phenomenon and y; is an observable process. Notice that this
state space model is a particular case of the process studied in the previous
subsection. In this situation, the state follows a random walk process with
noise standard deviation o,. In addition, the observed values correspond to
the underlying random walk plus an observational noise w; with standard
deviation oy,.

Xt
5 10 15 20 25 30
L

o
L

0 50 100 150 200 250 300

Time

Vi
5 10 15 20 25 30
L

o
L

0 50 100 150 200 250 300

Time

Figure 3.18  Structural model. Simulated process with o2 =1, o2, =1, n = 300.
(a) state xt, (b) observation y:.
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Figure 3.19 Structural Model. Predictions of the simulated process o2 = 1,

02 =1, n=300. (a) state predictions Ty, (b) observation predictions Ty .

Figure 3.18 shows a trajectory of this time series structural model with 300
values and parameters 02 = 1 and 02 = 1. Observe that the series y; is, as
expected, more noisy than the state sequence x;.

On the other hand, Figure 3.19 exhibits the predictions of the state and
observations obtained from de Kalman recursions. Notice that in both cases
the predicted values are close to their theoretical counterparts.

3.4.7 Estimation of Future States

Future values of the state vector can be estimated from the Kalman recursions.
Let h > 0 and define Fp, = F} Fi41 - -+ Fiyn, the h-step forward state predictor
is given by

Tt4+h = Fhn Ty,

with error variance

h—1
O =Fu U F+ > Fi % F,
=0
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Consequently, the h-step predictor of observation y,1p, for h > 0, given its
finite past y1,...,y;—1 is readily obtained from the state predictor Ty, as

Yt+h = Gt+h Ttth,

since the sequence €¢41,&¢12, ... is orthogonal to the past observations {y1,...,y:—1}-

Consequently, we conclude that

Yirn = Gryn Fil,
with h-step prediction error variance

Var(yepn — Uevn) = Drgn = Gran O Gy + 074,

B EXAMPLE 3.4

Figure 3.20 and Figure 3.21 exhibit the estimated state components
for ¢ = 1000 and h = 1,...,300, along with their estimated standard
deviations. Notice that both states estimates rapidly converge to zero as
the horizon h increases. Additionally, the standard deviations plots show
that they decrease after a few steps starting at time ¢ = 1, they remain
steady and then start to grow after ¢ = 1,000 reaching the state standard
deviations sd(z;1) = 0.1312 and sd(x; 2) = 0.1539, respectively.
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Figure 3.20  State space model example. Estimated future states, t = 1000, h =
1,...,300. (a) estimated first state component, (b) estimated standard deviations.
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Figure 3.21  State space model example. Estimated future states, t = 1000, h =
1,...,300. (a) estimated second state component., (b) estimated standard deviations.

3.5 EXOGENOUS VARIABLES

An additional versatility onstate space models is that they can be readily
extended to incorporate an exogenous process {z:}. This sequence is usually
a deterministic component such as a trend or cycle. An extended state space
system may be written as

it+1 = F%t + L 2t + Vt, (318)
gt = Git + wy. (319)

The extended model described by equations (3.18)—(3.19) can be modified to
fit into the simpler structure (3.1)—(3.2) as follows. Let us define the variable

t—1
Tt = E Fj_l LZt,j7
t=1

for t > 1 and rg = 0. With this definition we have that
Tt41 = FTt + L Zt- (320)

Let x; = x; —r¢ be the modified state vector and y; = y; — G r; be the modified
observation at time ¢t. Then, from (3.18)—(3.19) and (3.20) we conclude that
the state z; and the observations y; satisfy the system (3.1)—(3.2).
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3.6 BIBLIOGRAPHIC NOTES

The monographs by Anderson and Moore (1979), Harvey (1989), Aoki (1990),
and Durbin and Koopman (2001) offer an excellent overview of both method-
ological and applied aspects of state space modeling. Besides, Chapter 12
of Brockwell and Davis (1991) gives a very good introduction to state space
systems in a finite-dimensional context, including descriptions of Kalman re-
cursions and treatment of missing values.

The Kalman filter equations were introduced by Kalman (1961) and Kalman
and Bucy (1961). Applications of state space systems to the analysis of time
series data are reported in fields as diverse as aeronautics [e.g., Kobayashi and
Simon (2003)] and oceanography [e.g., Bennett (1992)].

In some texts, the term reachability is used instead of controllability. Several
definitions of stability of state space systems in a very general context of
infinite-dimensional systems is given in Curtain and Zwart (1995).

Fitting time series models with missing data has been extensively discussed
in the state space context. For ARMA and ARIMA models, see, for instance,
Jones (1980), Ansley and Kohn (1983), Kohn and Ansley (1986), and Bell and
Hillmer (1991). On the other hand, for ARFIMA models see, for example,
Palma and Chan (1997), and Ray and Tsay (2002).

Finally, the book by Hannan and Deistler (1988) gives an excellent theo-
retical treatment of the linear systems. In particular, the relationships among
the different representations of these processes are analyzed in full detail.

Problems

3.1 Consider the following structural model

ytz%-ﬂft

eyl = Ht + Ve + M
Vi1 = Vg + Wy,

where €;, n; and w; are uncorrelated white noise sequences.
(a) Write this model in terms of a state space representation, identifying
all its components.
(b) Is the state sequence stationary?
(c) Is the observed process y; stationary?
(d) Write down the recursive Kalman equations for this state space
model.

3.2  Consider ARMA(3,2) process ¥ = d19yt—1 + Paye—2 + d3yr—3 + &1 —
01641 — b2e4_o, where ¢; is white noise (0,02). Find a state space system
representation of ;.
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3.3 Consider the following state space model:

310 1
T4l = 2 00 Ty + 0 Et,
01 2 2
Yt = [ 1 1 0 :|£L't.

(a) Is this state space model stable?

(b) Verify whether this state space model is observable.
(c) Verify whether this state space model is controllable.
(d) What can you conclude about the model?

3.4 Find a minimal state space representation of the process y; = e;+6e;_1
where || < 1 and e; is white noise.

3.5 Cousider the linear process y; = ¢y;—1+&; where |¢| < 1 and &, is white
noise.

(a) Find a minimal state space representation of the process y;.

(b) Verify that the system is stable.

(c) Find the Hankel matrix representing this process.

(d) What is the rank of this Hankel matrix?

3.6 Consider the state space system

66 0 0 1
T4l = 0 02 0 e + 0 Et,
0 0 6; 0
vy = [1 1 1]z

(a) For which values of the parameter 8 = (61,62,603) is this system
stable?

(b) Assume that e; is an independent and identically distributed se-
quence N(0,1). Simulate several trajectories of the system for a
sample size n = 1000 and different parameters 6.

(c¢) Implement computationally the Kalman recursions for this state space
system.

3.7 Provide another state space representation based on the infinite au-
toregressive expansion of an ARFIMA process. Discuss the advantages or
disadvantages of this AR(co) with respect to the MA(oo) representation.
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3.8 Cousider following the state transition matrix associated to the AR(m)
state space approximation:

™ T2 Tm—1 Tm

1 0 0 0

0 1 0 0
F =

o o0 --- 0 0

0 O .. 1 0

(a) Show that the eigenvalues of this matrix are the roots of the polyno-
mial

A" — AT N — T = 0.
(b) Verify that space of eigenvectors is given by the {(A™~1 ... X\, 1)'}.

3.9 Consider the following state space model:

1 0 0 1
Ti4+1 — 1 0 0 Ty + 0 Et,
01 0 0
Y = [ 1 0 0 ].’L‘t.

(a) Is this state space model stable?

(b) Verify whether this state space model is observable.
(c) Verify whether this state space model is controllable.
(d) What can you conclude about the model?

3.10 Consider a finite-dimensional state space system where z; € IR".
Write a computer program implementing the Kalman recursion equations
(3.13)—(3.17).

3.11  Given a sample {y1,...,yn}, verify that Qy,, < Qyy < Q; for allt <n,
where the matrix inequality A < B means that /(B — A)z > 0 for all z.

3.12 Consider the following state space system:

T4l = OTy+ ey,
Yy = Ox¢+ey,

where ¢; is white noise with unit variance.
(a) For which values of the parameter 8 = (¢, ) is this system stable?
(b) For which values of @ is the system observable or controllable?
(c¢) For which values of 8 are the Kalman recursions stable?
(d) Assume that e; is an independent and identically distributed se-
quence N(0,1). Simulate several trajectories of the system for a
sample size n = 1000 and different parameters 6.
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3.13 Consider the following state space system for z; € R"™ with n > 2:

Tip1 = Fap+ Hey,
v = Gay+ey,
where
[0 1 0 0 0]
001 o0 0
0 00 1 0
F = ,
000 --- 0 1
L0 00 - 0 0]
G = [wn wn—l ¢n—2 o ] ;
H = [100 - 0,

and the coefficients 1); are given by the expansion (3.3).
(a) Verify that this system is stable.
(b) Verify that ||F[| = sup, |[Fz|//|z] = 1.
(c) Does |F||™ converges to zero at an exponential rate?

(d) Find the observability matrix for this system O and verify that it is
of full rank if and only if ¢,, # 0.

3.14 Consider the AR(p) process given by the equation
Yt — P1Ye—1" " — GplYr—p = Et.

(a) Show that by defining the state vector x; = (Yi+1-p,--.,yt)’, the
AR(p) process may be written in terms of the following state space

representation:
Ti41 = F:Tt + H€t+la
Yt = Gl’t?
where
[0 1 0 0 0 ]
0 0 1 0 0
0 0 0 1 0
F = ,
0 0 0 - 0 1
| P Pp-1 Pp2 o P2 P1 ]
G [0 00O --- 0 1],

H =000 --- 0 1].
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(b) Write down the observation matrix O for this state space model. Is
this system observable?

(c¢) Find the controllability matrix C for this state space representation
and check whether this system is controllable.

(d) Verify whether this system converges to its steady state or not. If
yes, write down the steady state system equations.

3.15 Given the state space system
Tgr1 = Faxp+ Hey,
yr = Guxp+ey,

where {e;} is a white noise sequence, show that the product of the observation
matrix and the controllability matrix yields

GH GFH GF’H GF3H
GFH GF?H GF3H GF‘H
OC=| GF?’H GF3H GF*H GF°H

Is this a Hankel matrix?

3.16 Suppose that the state transition matrix F' satisfies |[F7|| < ce™% so
that the corresponding state space system is stable.
(a) Verify that in this case,

n
E FI27
=0

converges for all |z| < 1.
(b) Show that

(1 - 2F) Zw

for all |z| < 1.
3.17 Consider the following state space model:
i1 = Fay+ Hey,
vy = Grp+ey,

and let ¢(z) be the operator 1 (z) = 14112412224+, where ¢p; = GFV~'H
and |z| < 1.
(a) Prove that 1)(z) may be written as

P(z)=1+G(I —2F)"'Hz.
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(b) Assume that F = 0. Show that if |GH| < 1, then v¥(2) is invertible
for |z| <1.
(c) If F=0and |GH| <1, verify that the state x; may be expressed as

T = Hyt—l + HZ(_GH)jytflij

j=1

3.18 Consider the linear state space model where the transition matrix
depends on time

CL’t+1 = FtCL't + Hﬁt,
yr = Gxptey,

for t > 1, ¢; is a white noise sequence and g is the initial state.
(a) Show that the state at time ¢ + 1 may be written as

t t
Tip1 = HFj xO"’Z(PjHEtfjﬁ
=1 =0

and find the coefficients ;.
b) Let z, = > . log||F;|| and assume that the limit
j=1 J
7= fim w/n

exists. Prove that if v < 0, then
t
Jim Hle zo =0, (3.21)
j:

in probability.

(c) Suppose that ||F;|| < e~ where « is a positive constant. Show that
(3.21) holds in this situation.

(d) Assume that | F;|| < t~# where 3 is a positive constant. Prove that
the limit (3.21) holds under these circumstances.






CHAPTER 4

SPECTRAL ANALYSIS

Some fundamental concepts about spectral analysis are introduced in this
chapter. A time series can be analyzed by studying its time domain related
characteristics such as mean, variance and autocovariances. However, it can
be also described by its frequency domain related properties such as spec-
tral density or Cramer representation. In what follows we describe briefly
these two ways of describing and modeling time series data. As described in
this chapter, the frequency domain is particularly appropriate for analyzing
time series exhibiting periodic or seasonal patterns. These patterns can be
deterministic as in a an harmonic regression or stochastic as in seasonal au-
toregressive model. However, the application of the spectral analysis is also
important for estimating and forecasting time series. As an example of such
application we can mention the Whittle likelihood function which allows for
the efficient calculation of quasi maximum likelihood estimators. A detailed
account of these spectral based parameter estimation methods is provided in
Chapter 5.

Time Series Analysis. First Edition. Wilfredo Palma. 121
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4.1 TIME AND FREQUENCY DOMAINS

In the previous chapters we have discussed some basic concepts in time se-
ries analysis such as moments, autocovariances and autocorrelations. Time
lags have played and essential role in these definitions. Starting from these
concepts, more elaborated techniques can be implemented such as maximum
likelihood estimation which in the Gaussian case is based on the mean and
covariance structure of the observations. Generally speaking, these methods
belong to the so-called time domain. On the other hand, a time series can be
analyzed by taking into account it spectral features, including its spectral dis-
tribution, its spectral density or its Cramer representation. These techniques
are intimately related to the study of data exhibiting seasonal o cyclical be-
havior and they are usually denoted as belonging to the so-called frequency
domain. For example, in many engineering contexts, it is natural to study the
frequency at which a signal is propagated. Nevertheless, as we will see later,
there is a deep relationship between time and frequency domains.

4.2 LINEAR FILTERS

In linear filtering theory, one usually assumes that a signal is the result of the
application of a linear filter to a white noise input sequence. This simple idea
has proven to be quite powerful and useful in practice. As in the previous
chapters, the data can be written as

yr = Y(Ber = Z Yiet—j. (4.1)

j=—00

where Z;ifoo w]z < o0. Observe that this condition guarantees that the
process {y:: t € Z} possesses finite variance since
o0 o0
Var(y:) = Var( Z Yier_j) =0 Z Y7 < 0.
j=—o0 j=—o0

In some cases, processes with infinite variance are also of interest. However
the analysis of these processes are beyond the scope of this book.

When the filter 4 is invertible, the process {y;: ¢ € Z} satisfies the discrete-
time equation

O(B) 'y = m(B)yr = Z TjYt—j = Et. (4.2)

j=—c0

For simplicity, in this chapter we will consider linear processes satisfying
the summability condition >°,° ___ |hy(h)| < co. Most the results discussed
next can be extended to more general autocovariance structures such as, for
instance, long-memory processes. Nevertheless, the above condition greatly
simplify the exposition.
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B EXAMPLE 4.1

The autoregressive process introduced in the previous chapter can be
readily represented as the result of a linear filtering. For example, an
AR(p) process

Yt = P1Ye—1 + Payi—2 + -+ + GpYi_p + &4,

can be readily expressed in terms of (4.2) by setting m; = 0 for j < 0
and j > p,and 7; = —¢; for j=1,...,p

B EXAMPLE 4.2

Consider the periodic process y; = A cos(wt + ¢) where A is a zero-mean
random variable with finite variance. Then, this process satisfies the
equation

Yt — 2cos(w)yp—1 + yi—2 = 0.

Thus, this periodic process could fit equation (4.2) with 7; = 0 for j < 0,
g =1 m = —2cos(w), ma = 1 and &, a sequence of zeroes. The ACF of
this process is given by

v(h) = 0% cos(wh),

where 02 is the variance of the random variable A.

4.3 SPECTRAL DENSITY

The spectral density of the process defined by the linear filter (4.1) is given
by

Fw) = o lw(e™).

It can be readily shown that an alternative definition of the spectral density
of the process is provided by

2i _f: Jeish, (4.3)
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This expression is obtained as follows,

J@) = o= 30 3 dthene”

h=—00 j=—00

2 o0

- %T STOY ey et

h=—00 j=—0o0

o > = vy
SED SR SR

j=—00 h=—o00

Now by changing the index from j + h to k in the second sum above we have

2 o0 o0
f(w) _ ;77_(_ Z wjefiwj Z wkeiwk

Jj=—00 k=—oc0
2
0'2 >
_ wji
T 9 Z bje
j=—o0

Note that we can also obtain an expression for v(h) based on the spectral
density of the process. Multiplying (4.3) by ¢®~" on both sides we get
iw—h 1 o~ iw(j—h)
fw)e ™ = — 3" y(h)e ",

2r
j=—o00

and by integrating both sides with respect to w

m ) ™1 & o
f(w)e*“"hdw:/ o Z y(h)e U= dy.
- 227

Jj=—00
Recalling that the sequence {v(h)} is absolutely summable, we obtain

m ) 1 0 ) )
fwye“ hdw = > Z w(h)/ ewlU=Mdy,
m .
j=—o0

—T — —T

But, since

T 2 ifj=h
i(j—h)A — J )
/_f dA_{O if j # b,
see Problem 4.8, we conclude that

vy = [ fw)e .

—T
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B EXAMPLE 4.3
Consider the ARMA(p, ¢) model
m(B)y, = 0(B)e, (4.4)

where 7(B) =1-mB—---—m,B?,§(B)=1-6,B—---—§,B? and
{e:} is a white noise sequence with variance 0. In this case, the spectral
density is given by

o2 10(e™)> o2 |1 —61e™ — - —fpe|?

fw) =5

27TW o %H —ﬂleiw — .. _ﬂ-peiwp|2'

B EXAMPLE 4.4
Consider the fractional noise model ARFIMA(0, d, 0) model
ye = (1—B) %, (4.5)

where (1 — B)~¢ fractional difference operator and {¢;} is a white noise
sequence with variance o2. In this case, the spectral density is given by

flw) = |1 e 721,

4.4 PERIODOGRAM

The periodogram is an estimator of the spectral density. Given the sample
{y1,Y2, .-, Yn}, its periodogram is defined as

n 2

Z(yt _ g)eiwt

t=1

I(w) = % (4.6)

This expression can be rewritten as

1 ~\ m —\ Liw(t—s
Iw) = 5—=> > (=9 (ys — e
2mn t=1 s=1
1 n—1 n—|h|
= . S W — D) Wragn — 9"
h=1-n t=1
1 n—1
— = iwh
= o Z Y (h)e

h=1—n
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Thus, we conclude that the spectral density of the process can be written as

1 ZUJ
_? Z h

Notice that the periodogram is an asymptotically unbiased estimator of the
spectral density, as shown next,

BlIw)] = ;ﬁE< > a<h>ef“h>
h

— 1 = iwh
= & Y ERM)e
h=1—-n
However,
1 n—|h|
ER()] = o B Z (e — 9) Wit n) — )]
t=1
1 "I
= = > Elw — 9 Werin) — D))
t=1
1 n—|h|
= =D Bl — w)@rin — )]~ Ep - 9)°
t=1
1 n—|h|
= LS ) - va(y)
t=1
n—|h
= 2y - var)
_ 1l
= (k) — 2Ly (h) ~ Vax(g)
and then,
N _1nl 9
ER(h)]=~(h) = —=y(h) = on, (4.7)
where 02 = Var(j). Notice from this expression that as the sample size in-

creases, for a fixed lag h we have

lim E [J(h)] = v(h) — lim mv(h) — lim o2 = ~(h).

n— 00 n—oo M n— 00
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Thus, 7(h) is asymptotically unbiased. Now, by virtue of (4.7) we have

n—1
1 S w
Elw) = 5 E (k)] ™"
h=1—-n
1 = ‘h’| 2 iwh
- 5= 2 po-Lho - e
h=1—n
1 n—1 1 n—1 0_2 n—1
- h iwh & h h iwh _ “n iwh.
2m h:l—n,y( )e 2mn h:lz;n| h/( )e 2m h:z:l—ne

Observe that the last two terms of the expression above vanish as the sample
size tends to infinity. In the case of the second term, since the ACF are
summable,

n—1 n—1

; 1
. iwh : —
lim —| h:%_n |h|y(h)e™"| < nlgléo 5 h:%_n |hy(h)| = 0.

For the third term, we have the identity

wn 1 e—iwn 1

n—1 e
E e = — + — -1
ew —1 e~w —1
h=1—n

Therefore,
n—1 :
iwn _ 1 —iwn _ 1
lim — el = lim — ¢ € - —-1)=0
n—oo 2N n—oo 2N \ e — 1 e~w —1
h=1—-n
Consequently,
1 oo
_ iwh __
Jim BlI(w)] = o h; y(h)e™" = f(w)

B EXAMPLE 4.5

As an illustration consider the white noise concept introduced in Chap-
ter 1. From a time-domain point of view, this process consists of un-
correlated random variables with zero-mean and constant variance. On
the other hand, from a frequency-domain, a white noise sequence can
be characterized by a flat spectrum. Figure 4.1(a) shows the raw peri-
odogram and theoretical spectral density of a Gaussian white noise se-
quence with zero-mean and unit variance. By comparison, Figure 4.1(b)
exhibits the raw periodogram and theoretical spectral density of a Gaus-
sian colored noise sequence. In this case, this colored noise corresponds
to an MA(1) model with 8 = 0.5.
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@ ()

15

1.0

0.5

0.0

Frequency Frequency

Figure 4.1  (a) White and (b) colored noise estimated (gray line) and theoretical
spectral densities (black line).

It is interesting to mention that the name white noise comes from
the white light of the sun. From a physical standpoint, this light is
a composition of light of different colors, but this composition is such
that every frequency is equally represented. Thus, the spectrum of white
light is flat, that is, every frequency makes the same contribution. On the
contrary, in the case of colored noise, some frequencies have a stronger
presence in the spectrum.

4.5 SMOOTHED PERIODOGRAM

The raw periodogram discussed in the previous section can be smoothed via
different techniques. One of these methods is weighting the raw periodogram
around a Fourier frequency w; as follows

m

> W(h)I(wjtn).

h=—m

~ 1
Flws) = o

The weighting function W (-) usually is symmetric, such that W (h) = W(—h)
and > ;- W(h) = 1. One of the most well-known weighting functions is
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the so-called Daniell window defined by

LT y< T
w — 27, r — — r?
@) { 0 otherwise
It is straightforward to verify that
W(w)dw = 1.

As an illustration consider the following MA(1) process
yr =¢et + 01,

where ¢; is a normal white noise with zero-mean and unit variance. Given
that o = 1, the spectral density of this model is

Flw) = (14 6% +26 cosw).
2

Figure 4.2 displays the theoretical spectral density (heavy line), the raw pe-
riodogram (gray line) and the Daniell smoothed periodogram (dotted line).
Notice that the raw periodogram exhibits high variability while the smoothed
periodogram follows closely the theoretical spectral density of the model.

—— Raw Periodogram
—— Spectral Density
""" Smoothed Periodogram

Frequency

Figure 4.2  Estimation of the spectral density of a MA(1) process with = 0.8
and o = 1.
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4.6 EXAMPLES

As a first illustrative example consider the following deterministic harmonic
series, with two frequencies wy and ws,

yr = aq sin(wit) + ag sin(wat). (4.8)

A sample of this time series is depicted in Figure 4.3 with 512 observations,
w1 =7/16, we = 7/32, ay = 2, and ay = 1. The periodogram of this series is
displayed in Figure 4.4. Observe that the two frequencies are clearly detected
by the peaks in the estimated spectral density displayed in Figure 4.4.

Consider now the harmonic time series of the previous example, but with
added white noise, as described by equation (4.9). A sample of 512 observa-
tions from this series is exhibited in Figure 4.5.

Yyt = aq sin(wyt) + ag sin(wat) + &, (4.9)

The periodogram of this time series is plotted in Figure 4.6. Notice that it is
very similar to the periodogram shown in Figure 4.4. Thus, it seems that the
periodogram is not greatly affected by the presence of noise in the harmonic
series.

The third example illustrates the estimation of the spectral density in the
case of an AR(1) time series with parameter ¢ = 0.5. Figure 4.7 shows a

Series

Time
Figure 4.3  Simulated harmonic time series model (4.8) with 512 observations
with wy = 7/16 and w2 = 7/32.
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Spectrum
300 400 500
! ! !

200
L

100
L

Frequency
Figure 4.4  Periodogram of simulated (4.8) with 512 observations with wy = 7/16
and we = 7/32.

sample of this process, with length n = 512. The periodogram is plotted in
Figure 4.8 along with the theoretical spectral density.

As shown in Figure 4.8, the periodogram is usually ragged and it is some-
time difficult to pinpoint which are the key features of the spectrum. One
way to smooth the periodogram is applying a kernel function to the raw pe-
riodogram as described in Section 4.5. For instance, Figure 4.9 show the
periodogram of the AR(1), along with the theoretical and the smoothed peri-
odogram. Observe that the smoother version of the periodogram is very close
to its theoretical counterpart.

The following example discusses the estimation of the spectral density in
the context of a long-memory process. It considers an ARFIMA(O0, d,0) time
series with long-memory parameter d = 0.4. Figure 4.10 shows one realization
of this process, with n = 512 observations. The periodogram of this series is
displayed in Figure 4.11 along with its theoretical counterpart. Observe that
both lines indicate the presence of a peak near the origin, which is expected
in the case of a strongly dependent process.

Finally, Figure 4.12 shows the heating degree days data introduced in Chap-
ter 1 along with its periodogram. Note that this time series exhibits a annual
seasonal component due to the different winter and summer heating require-
ments in Europe. Consequently, in the periodogram we can observe a seasonal
frequency of w = 27 /12 = 7 /6.
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Series
o
L

0 100 200 300 400 500
Time
Figure 4.5  Simulated harmonic time series model (4.9) with 512 observations
with wy = 7/16 and w2 = 7/32.
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Figure 4.6  Periodogram of simulated (4.9).
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Series

0 100 200 300 400 500
Time

Figure 4.7  Simulated AR(1) time series with 512 observations with ¢ = 0.5.

10
L

Spectrum

T T T T T T T
0.0 05 1.0 15 20 25 3.0

Frequency
Figure 4.8  Periodogram of simulated AR(1) time series with 512 observations
with ¢ = 0.5.
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— Raw Periodogram
—— Spectral Density
- Smoothed Periodogram

10

Spectrum

Frequency
Figure 4.9  Raw periodogram of simulated AR(1) time series with 512 observations
with ¢ = 0.5, along with its smoothed version (broken line) and the theoretical
spectral density (heavy line).

Series

T T T T T T
0 100 200 300 400 500

Time

Figure 4.10  Simulated ARFIMA(0,d,0) time series with 512 observations with
d=0.4.
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Spectrum
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Frequency
Figure 4.11 Periodogram of simulated ARFIMA(0,d,0) time series with 512
observations with d = 0.4.

Heating degree days
400 500 600 700
| | | |
Spectrum
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1980 1985 1990 1995 2000 2005 2010 0.0 05 1.0 15 20 25 30

Time Frequency
Figure 4.12  Spectral analysis of the Heating Degree Day data. (a) Time Series.
(b) Periodogram.
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4.7 WAVELETS

The spectral analysis described in the previous sections correspond to decom-
pose the time series in terms of a sequence of harmonic functions. Neverthe-
less, there are other decompositions that may be very useful for analyzing a
time series. One important example of these decomposition are the so-called
wavelets which we briefly describe next.

A wavelet is a real-valued integrable function v (t) satisfying

/Q/J(t) dt = 0. (4.10)

A wavelet has n vanishing moments if

/tpw(t) dt =0,
forp=0,1,...,n—1.
Consider the following family of dilations and translations of the wavelet
function 1 defined by
Yin(t) = 27729277t — k),

for j,k € Z. In this context, the terms j and 27 are usually called the octave
and the scale, respectively. It can be shown that (see Problem 4.12)

/ P2 (t) dt = / 2 (t) dt.

The discrete wavelet transform (DWT) of a process {y(t)} is then defined
by

djr = /y(t)wjk(t) dt,

for j,k € Z.
Provided that the family {¢;x(¢)} forms an orthogonal basis, that is,

/wij(t)%/z(t) dt =0,

for all 4, j, k, ¢, excepting ¢ = j = k = ¢, we obtain the following representation
of the process {y(t)}:

y(t) = Z > disti(h).

j=—0o0 k=—o0
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B EXAMPLE 4.6

The Haar wavelet system

1 iftefo,d)

Yty =< -1 ifteli 1)
0 otherwise,

is a simple example of a function satisfying (4.10). Observe that

/tpqp(t)dtpil{;pl}.

Therefore, this wavelet has a vanishing moment only for p = 0.

B EXAMPLE 4.7

The so-called Daubechies wavelets are a family of wavelets that extends

the previous example achieving a greater number of vanishing moments.

This family forms an orthogonal wavelet basis and it is built in terms of

the multiresolution analysis. Only a hint of this procedure is given here

and further references are provided in the bibliographic section.
Starting from a scaling function ¢ that satisfies

6 (3) = V2 uolt - j),
J
we obtain the mother wavelet ¢ by defining

(1) = V23 vt - j).

Thus, the Haar wavelet described in the previous example is obtained
by setting ¢(t) = Ljo1j(t), uo =u1 =vo = —v1 = 1/v2 and u; =v; =0
for j # 0,1, where 14 denotes the indicator function of the set A, that
is,

1 if te A,
1“”_{0 it te A

B EXAMPLE 4.8

In order to illustrate the application of the wavelet analysis to real-life
data, consider the heating degree day data introduced in Chapter 1.
The R package wavelets allows for the calculation of the discrete wavelet
transform for univariate and multivariate time series. The lower panel
of Figure 4.13 shows the heating degree data while the upper panel
exhibits the coefficients of the wavelet transform up to 3 levels. Observe
the cyclical regularity of the components.
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Figure 4.13 Discrete wavelet transform for the HDD data.

4.8 SPECTRAL REPRESENTATION

A linear stationary process y; can be also written in terms of the so-called
spectral representation or Cramer representation,

e / ' A(N) e dB()N), (4.11)

—Tr

where A(\) is a transfer function and B(\) is a orthogonal increments process
on [—m, 7] such that

2

Cov[B()\), B(w)] = ;La(x — w)dAdw.

™

According to these equations, we have that

Cov(yt,ys) = Cov [ [ 7; AN €M dB(N), [ : Alw) "™ dB(w)

/_ ' _ﬂ AN A@) M3 Coy[dB(\), dB(w)]
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Thus,
Cov(ys,ys) = / A(N) A(w) M98 §(\ — w)ddw

_ 2 ‘ ( )‘2 iA(t—s) d\
™

Therefore, we can write the spectral density of the process as

oA

="

B EXAMPLE 4.9

Define the sequence of random variables

Et:/ e dB()N).

-7

Thus, we have that
Cov(ercs) = Cov { / M gB(N), / =% 4B (w )]
= / / Aiws Cov[dB(N), dB(w))

_ z)\(t s) _ _
277/ d\ = o?6(t — s).

Consequently, ¢; is a white noise sequence. Therefore, we can write the
MA(1) model

Yo =€ —Oei1.

Replacing e; by its definition we get

i / eMdB\) -6 [ e?tY aB())

—T —T

— / ei)\t o gei/\(tfl) dB()\)

—T

- / "= e dB ().

Thus, by defining the transfer function
AN =1—0e ™

we obtain a spectral representation of the process y;.
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4.9 TIME-VARYING SPECTRUM

As discussed in the context of locally stationary processes, the spectral density
can be defined in terms of both frequency and time. In the case of non
stationary processes, in some cases it is possible to extend the definition of the
spectral density to the so-called time-varying spectral density. To illustrate
this extension, consider the a class of LSARMA(1,1) processes defined by

t t
Y — @ (T> Y1 =€+ 0 (T) €¢—1,

fort =1,...,T where ¢; is a white noise sequence with zero-mean and variance
o?. Rescaling the time to the unit interval we can write with ¢ = [u T

Yo — p(w)yi—1 = ¢ + 0(u) g1

The limiting time-varying spectral density of this non stationary process is

2

o2 [1+0(u) et
f(/\7u) - 277‘1—¢(U)6i)‘
% 1+46(u)* +26(u) cos A

21 1+ ¢(u)2 — 2 ¢(u) cos A’

B EXAMPLE 4.10

As a first illustration of the analysis of time-varying spectrum, consider
the LS-MA(1) model with a first-order moving-average parameter evolv-
ing according to the linear equation,

O(u) =0.140.7u.

The spectral density of this process is displayed in Figure 4.14. On
the other hand, a simulated time series from this model is exhibited in
Figure 4.15.

Observe that the variance of the series seems to increase. This is
expected from the fact that the variance of this time series evolves in an
increasing manner

Vary, = o2[1+60(u)?
= 0%(1.01 +0.14u + 0.49 u?).
The time-varying periodogram of these data is displayed in Figure 4.16.

Notice that this periodogram looks similar to its theoretical counterpart
shown in Figure 4.14.
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0.0
0.8 u2. Figure 4.17 show the evolution
(u) decays at a quadratic rate from ¢(0)
u)?

¢
0.19 + 1.44u? — 0.62u*’
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0.6

o
= IS

periodogram

0.0

Time-varying periodogram of a LS-MA (1) model with 0(u)

Figure 4.16

0.7u.

B EXAMPLE 4.11

A second illustration of the spectral analysis of non stationary time series

is provided by the LS-AR(1) process with a first-order autoregressive

of this parameter for scaled time values of u € [0, 1].

this case, the parameter

parameter defined by ¢(u)
0 6(1)

0.1.

A simulated trajectory of this model with 1000 observations is dis-

played in Figure 4.18.

Note that the variance of this series seems to decrease

from the a

symptotic formula for the variance of the proce

Var y;

The spectral density of this process is plotted in Figure 4.19 and its
periodogram is exhibited in Figure 4.20. Notice that both graphs have
similar shape in terms of both the frequency axis and the scaled time

axis.
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Figure 4.17  Ewvolution of the time-varying first-order autoregressive parameter of
a LS-AR(1) model with ¢(u) = 0.9 — 0.8 u?.
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Figure 4.18 Simulated LS-AR(1) model with ¢(u) = 0.9 — 0.8 u?.
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Figure 4.19  Time-varying spectral density of a LS-AR(1) model with ¢(u) =
0.9 —0.8u”.

weibopoued

Figure 4.20  Time-varying periodogram of a LS-AR(1) model with ¢(u) = 0.9 —
0.8u?.
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4.10 BIBLIOGRAPHIC NOTES

Frequency-domain time series analysis has a vast literature in statistics, signal
processing, engineering and many other fields. Three classical book on this
subject are Priestley (1981a,b) and Brillinger and Krishnaiah (1983). Ex-
tensions of spectral techniques to nonlinear time series can be found in the
monograph Subba Rao and Gabr (1984). Chapter 11 of Press, Teukolsky, Vet-
terling, and Flannery (2007) provides an excellent account of computational
aspects of the periodogram calculation by means of the fast Fourier transform.
Fourier analysis is reviewed by Koérner (1989, 1993) while some wavelets fun-
damental concepts are discussed by Flandrin (1999). Other useful references
in spectral analysis are Carmona, Hwang, and Torresani (1998), Koopmans
(1995) and Zurbenko (1986). Several parametric and nonparametric meth-
ods in the frequency domain are addressed by Castanié (2006, 2011) while
hypothesis testing in this context is reviewed by Dzhaparidze (1986) Haykin
(1979) Jenkins and Watts (1968). Applications of the spectral analysis tech-
niques to economics are discussed in Granger (1964). Wavelets have been
vastly discussed in the literature. A nice recent revision, especially related to
long-range dependence, is the article by Abry, Flandrin, Taqqu, and Veitch
(2003) while Chapter 9 of Percival and Walden (2006) offers a comprehensive
revision of wavelet methods for stationary processes. Additionally, Chapter 2
of Flandrin (1999) and Chapter 13 of Press, Teukolsky, Vetterling, and Flan-
nery (1992) provide overviews about this topic, including several details about
the Daubechies wavelets.

Problems

4.1 Let {z:} and {y:} be two stationary satisfying

Tt —QTt—1 = Wy,

Yt — QY1 = Tyt 2,

where {w;} and {z;} are two uncorrelated white noise sequences (0, c?). Find
the spectral density of {y;}.

4.2 If {z;} and {y.} are two uncorrelated stationary processes with auto-
covariance functions yx (-) and vy (-) and spectral densities fx(-) and fy (+),
respectively. Show that the process {z;} = {z; + y;} is stationary with auto-
covariance function vz = yx(-) + v (-) and spectral density fz = fx + fy.

4.3 Consider the periodogram defined as

2

1 | -
10 = 5o e

Jj=1



146 SPECTRAL ANALYSIS

(a) Show that the periodogram satisfies

T ik _ ) wlk,n), |kl <n,
/ e I(A)d)x—{ 0, k| > n,

—T

where

w(k,n) =

SRS

n—~k
Z(yt = Un) Ytk — Un)-
t=1

(b) Prove that if the process y; is stationary with mean p we have that

lim Ew(k,n)=(k),

n—oo
where v(k) is the autocovariance at lag k.
4.4 Consider the following inner product of two functions f and g given by
1 ™

(F.9) = 5= [ FO0IO) .

(a) Let e;(N) = ¢! for j € Z. Show that the functions {e;(\)} are
orthonormal, that is,

<et7€s> = 07
for all s,t € Z, t # s, and
<€t>et> =1,

for all t € Z.
4.5 Suppose that a function f is defined by

m

= e,

j=—m

where e; are the functions defined in Problem 4.4.
(a) Verify that the coefficients «; are given by

17 »
aj:%/_ F(N)e .

The coefficients o; are called the Fourier coefficients of the function
fE)-
(b) Prove that
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4.6 Show that if the spectral density of a stationary process satisfies fy(A) >
¢ for all A € (—m, 7] where ¢ is a positive constant, then z'T'px > 0 for all
zeR" z#0.

4.7 Suppose that {y1,...,y,} follows an ARFIMA model and I,,(}\) is its
periodogram. Prove that if f()) is the spectral density of the ARFIMA pro-
cess and g(\) is a continuous function on [—, 7] then

us us

Jim [ gnyax= [ g ax

4.8 Show that

T 2r ifk=nh
(k=) 7y _ ;
/ ¢ dA{ 0 ifk#h

—T

4.9 Assume that {z;:} is a non-causal and non-invertible ARMA(1, 1) pro-
cess that satisfies

— ¢$t—l =z + 92’25_1, Zt ~ RB(O,U2)
where |¢| > 1, |6 > 1. Define ¢(B) =1 — é yO(B) =1+ %, and let {W,}
be a process given by
=071 (B)d(B)z:.
(a) Verify that the process {W,} possesses constant spectral density.

(b) Deduce that {W,} ~ RB(0,02) and provide an explicit expression for
o2 in terms of ¢, 0 and o2.

(¢) Deduce that ¢(B)z; = §(B)W;, such that {z,} is a causal and invertible
ARMA(1, 1) process relative to the white noise sequence{W;}.

4.10 Prove that if {y;: ¢ € Z} is a stationary process such that > - |v(k)| <
oo, then its spectral density may be written as

1 _
27_2 Z)\h

and this function is symmetric and positive.

4.11 Let I'y = [y(¢ — j)}ij=1,...n be the variance-covariance matrix of a
linear process with

y(h) = [ F)e Pran,

—T
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Show that the variance of the sample mean of y1,...,y, is given by
n .
Z e—Z)JL
h=1

4.12  Verify that the £5 norm of ¢ and v, are identical for all j, k € Z, that
is

2
Var(g) = 5 [ 1OV an

/ P2 (t) dt = / 2 (t) dt.

4.13 Show that the Haar system generates an orthonormal basis, that is,
/wlj(t)wké(t) dt = 6ij5k€~

4.14 Consider the so-called Littlewood-Paley decomposition
1 if |t € [1/2,1),
o) :{ ] € [1/2,1)

0 otherwise.
Prove that the Littlewood-Paley decomposition generates an orthonormal ba-
sis.

4.15 Consider the following processes:
T = Qx5+ 2
Yy =Wy +0W;_
with |¢| < 1, 0] < 1, s € N, {2} ~ WN(0, 02), {W;} ~ WN(0, 02) and

Cov(zx, Wy) = 0 for all k and h. Calculate the spectral density of the process
Ut = Tt + Ye.

4.16  Consider the periodogram defined in (4.6).
(a) Show that the periodogram satisfies

T kA _ ’LU(]@’I’L), |k| <mn,
/ e I()\)d)\{ 0, k| > n,

—T

where

w(k,n) =

SRS

n—k
Z(yt - gn)(yt-i-k - gn)
t=1

(b) Prove that if the process y; is stationary and ergodic with mean p
we have that

lim w(k,n) = lim l Z(yt — 1) (Y — 1) = y(k),

n— 00 n—oco N
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where (k) is the autocovariance at lag k.

4.17 Suppose that {y1,...,yn} follows an ARFIMA model and I,,()) is its
periodogram. Based on the previous problem, prove that if f(\) is the spectral
density of the ARFIMA process and g()) is a continuous function on [—, ]
then

™ ™

lim [ g(\I.(\) dA = / g(N)F(N) dA.

n—oo — —






CHAPTER 5

ESTIMATION METHODS

This chapter reviews several methodologies for estimating time series models.
There are a number of well-known techniques such as the maximum likelihood
estimation and its different computational formulations such as Cholesky de-
composition or state space equations. On the other hand, there are approx-
imate maximum likelihood methods including for example the Whittle ap-
proach, moving-average and autoregressive approximations. However, before
reviewing these specific techniques this chapter begins with an overview of
model building and specification. This is a necessary step in the analysis
of time series before applying a specific estimation technique. In the model
building and specification stage, we investigate the dependence structure of
the data and decide which class of models may fit them more adequately. For
example, decide whether an ARMA or an ARFIMA model would be more
appropriate. In turn, in order to carry out this first stage of the time series
analysis it is necessary to find estimates of the mean and the autocorrelation
function of the series. Thus, after discussing general aspects of model build-
ing we focus our attention on estimating the mean and the ACF, which are
essential tools for specifying the model.

Time Series Analysis. First Edition. Wilfredo Palma. 151
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5.1 MODEL BUILDING

As discussed in previous chapters, real-life time series exhibit a number of
distinctive features. Among these, it is relevant to decide whether the series
will be treated as stationary or not. In the first case, we can proceed to
the modeling stage by looking at the autocorrelation structure shown by the
sample ACF and PACF. Based on these moment estimates, a stationary model
such an ARMA or ARFIMA model can be proposed and fitted. On the other
hand, if the series displays a number of nonstationary characteristics, we can
apply transformations procedures to obtain a stationary series. Among these
procedures we have previously revised the detrending of the data by means
of regression techniques and the differentiation of the time series data. If
a regression model is fitted, we can treat the residuals as the series to be
analyzed. If differentiation is taken place, we can apply an ARIMA model. If
the series displays seasonal behavior, then we can use harmonic regression or
SARIMA models.

The specification of a model usually is concerned with selecting a class of
processes such as ARIMA(p, d, ¢) or SARIMA(p, d, q) x (P, D, Q)s. The orders
of these models can be selected from the sample ACF o PACF. It is common
to consider a nested family of models and then estimate all the model in the
class. For example, ARMA (p, ¢) with orders p,q = 0,1,2,3. Since the models
are nested, we can use an information criterion such as AIC or BIC to select
appropriate values of p and q.

5.2 PARSIMONY

In theory, if a linear process has continuous spectrum, then we can always
find values of p and ¢ such that an ARMA(p,q) approximates it arbitrarily
well. In other words, in practice we can always rely on this class of processes
to model a linear time series. However, this general mathematical result does
not guarantee that the values of the p and ¢ are small. In fact, they eventually
could be quite large.

Having an ARMA model with large autoregressive and moving-average or-
ders could be cumbersome from both numerically and statistical perspectives.
Let us say that p = 45 and ¢ = 37. This model could fit well a data set but it
requires the numerical calculation of 83 parameters and checking if the fitted
model is stationary and invertible.

In this context, it is usually desirable that the fitted model be parsimonious,
that is, the orders are relatively small. In this sense, there is a trade off
between the approximation quality of the model, which usually requires larger
values of p and ¢, and the simplicity of the model or parsimony, which strive
for a small number of parameters.
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This balance is commonly stricken by means of a criterion information that
penalizes the model with the number of parameter estimated. These criteria
are described next.

5.3 AKAIKE AND SCHWARTZ INFORMATION CRITERIA

The Akaike information criterion or AIC for short is defined as Akaike’s in-
formation criterion (AIC)

AIC = —2log £(8) + 2r,

where £(0) is the likelihood of the data, 6 is the maximum likelihood estimate,
and r is the number of estimated parameters of the model. For example, for
and ARMA(p, ¢) model » = p + ¢ + 1 since we have to add the estimation of
noise standard deviation parameter o.

The Schwartz information criterion or Bayesian information criterion (BIC)
is defined by

~

BIC = —21log £(0) + rlogn,
Note that for a sample size n > 8, BIC penalizes more strongly the incre-

ment of the number of parameters in the model, as compared to the AIC.

5.4 ESTIMATION OF THE MEAN

Estimating the mean of a stationary process is a fundamental stage of the
time series analysis. Even though there are several estimators of the mean,
the sample mean and the BLUE are the most commonly considered.

Given the sample Y,, = (y1,¥2,...,Yn)" from a stationary process with
mean  and variance I', the sample mean is defined as

- 1
E Yt = 71/Y7la
n
t=1

where 1 = (1,1,...,1)" and the BLUE is

SRS

ﬁ:

=1ty y,.

The large sample behavior of these two well-known estimators depend crit-
ically on the memory of the process. For a short memory process such as an
ARMA model, the sample mean and the BLUE converge to the true mean
at rate O(n~1). Furthermore, their asymptotic variance are similar. In this
sense, the sample mean is an efficient estimator.

On the other hand, for a strongly dependent process with long memory
parameter d, the convergence rate of both estimators is O(n2?~1). Note that
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since d > 0, this convergence rate is slower than for the short memory case.

Besides, the asymptotic variances of the sample mean and the BLUE are

different, implying that the sample mean is not an efficient estimator.
Specifically, the following expressions can be established

\/ﬁ(gn _:u) - N(O,U),
where v =27 f(0) = > _ v(h). Analogously for the BLUE we have
\/ﬁ(ﬁn - /u') - N(Oav)'
2161

Notice that for an ARMA(p, q) process we have that v = ¢ EOLE

For long memory processes,
plt/2=d (Gn — ) = N(0,w),

. _ 6(1)]? ' (1-2d)
with w = o2 I‘d)gl)‘lQ TR I=d) and for the BLUE we have

n'2 (i — i) = N(0,w),

. . 6(1)|? T(1—2d)I'(2—2d
with w = o G H

5.5 ESTIMATION OF AUTOCOVARIANCES

For a stationary process, autocovariances are commonly estimated by means
of moment methods. That is, given the sample {y1,92,...,yn}, the usual
estimator of the autovariance at a lag h > 0, y(h) is given by

n—h
Vn(h) = Z(yt = 9)(Yen — Y-

S|

It can be shown that for a fixed h, this estimate of v(h) is asymptotically
unbiased, i.e.,

lim 7, (h) = v(h).

n—oo

Additionally, assuming that the input noise of the process satisfies Ee} =
no? < oo. if the autocovariances of the process are absolutely summable,

then
Vi [Fn(h) = v(h)] = N(0,v),

where v = (n —3)y(h)* + 2272 [v(7)? +( — h)v(j + ).
Similar expressions can be found for the asymptotic behavior of the sample
ACF. In this case, we have

V[ pn(h) = p(h)] = N(0,w),
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where w is giveb by the Barlett formula

w= Y {1 +2p(h)*p(3)* + p(4)p(j + 2h) — 4p(R)p()p(j + h)}.

j=—c0

B EXAMPLE 5.1

As an illustration, consider a white noise sequence with p(0) = 1 and
p(h) = 0 for all h # 0. In this situation, the Barlett formula indicates
that w = 1 and we obtain the usual Barlett confidence bands for the
sample ACF, (-2, 2).

n’n

5,6 MOMENT ESTIMATION

A simple estimation approach is based on comparing the sample ACF with
their theoretical counterparts. Given the sample {y1,yo, ..., y,} and the spec-
ification of a time series model with ACF ~4(h), we write the moment equa-
tions

0(h) =7(h),

for different values of h. The solution of this equation system, 0 is the moment
estimator of 6. Analogously, we can write these equations in terms of the
sample autocorrelations

pa(h) = B(h).

As an example, consider the AR(1) model y; = ¢y;—1 + ;. The ACF
is given by p(h) = ¢/"|. Thus, we can find an estimate for ¢ based on the
equation

2

obtaining Zs = p(1). Furthermore, an estimate of the variance noise 0 can be

obtained as follows. Given that

0.2

0) = ——>,
we can write
o =7(0) (1 - ¢%).
Therefore, a moment estimate of the noise variance is given by

5% =7(0) (1 — ¢?).
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On the other hand, for and AR(2) model, the Yule Walker estimate of the
process

Yo = O1Yi—1 + P2Yi—2 + €, (5.1)

~ ~ ~ -1, ~
o1\ _ [ 7(0) (1) } ( (1) )
o 7(1) ~(0) 7(2)
The idea of comparing theoretical and sample moments can be extended
to ARMA or more complex models. For example, consider the MA(1) model

are given by

Yo = €+ 0.

In this case the moment estimate 0 is given by

~ 1 1 \?
20 -\
Note that are two possible solutions for 0. However, the adequate value cor-
responds to the one that satisfies the invertibility condition || < 1.

5.7 MAXIMUM-LIKELIHOOD ESTIMATION

Assume that {y;} is a zero-mean stationary Gaussian process. Then, the
log-likelihood function of this process is given by

L(0) = —LlogdetTy — 3Y'T,'Y, (5.2)

where Y = (y1,...,yn), T'9 = Var(Y), and 6 is the parameter vector. Conse-
quently, the mazimum-likelihood (ML) estimate 9 is obtained by maximizing
L(0). The log-likelihood function (5.2) requires the calculation of the de-
terminant and the inverse of the variance-covariance matrix I'y. However,
these calculations can be conducted by means of the Cholesky decomposition
method. In the following subsections, we review this and other procedures
for computing the function (5.2) such as the Durbin-Levinson algorithm and
state space techniques.

5.7.1 Cholesky Decomposition Method

Given that the matrix I'y is symmetric positive definite, it can be written as
Iy =U'U,

where U is an upper triangular matrix. According to this Cholesky decompo-
sition, the determinant of I'y is given by det T'y = (det U)? = H?Zl ufj, where
u;; denotes the jth diagonal element of the matrix U. Besides, the inverse
of 'y can be obtained as I’;l = U=HU~1), where the inverse of U can be

computed by means of a very simple procedure.
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5.7.2 Durbin-Levinson Algorithm

The Cholesky decomposition could be inefficient for long time series. Thus,
faster methods for calculating the log-likelihood function (5.2) have been de-
veloped. One of these algorithms designed to exploit the Toeplitz structure
of the variance-covariance matrix I'y, is known as the Durbin-Levinson algo-
rithm.

Suppose that 73 = 0 and G411 = dpye + - + duyr, t = 1,...,n — 1,
are the one-step ahead forecasts of the process {y:} based on the finite past
{y1,...,yt—1}, where the regression coefficients ¢,; are given by the equations

t—1
e = [n-1]! ’Y(t)*z(ﬁt—l,ﬂ(t*i) )
i1

(btj = ¢t71,j _¢tt¢t71,t7j7 .] = 17"'>t_ 17
Vo = 7(0)7
v = vl —¢%), j=1,...,t—1
Furthermore, if e; = y; — 4 is the prediction error and e = (e, ..., e,)’, then
e = LY where L is the lower triangular matrix:
1
—¢11 1
— P22 — P21 1
L= — P33 — P32 — P31
: I 1
7¢n—1,n—1 7¢n—1,n—2 7¢n—1,n—3 e 7¢n—1,1 1

Hence, 'y may be decomposed as I'g = LDL’, where D = diag(vg, ..., Vp_1).
Therefore, detTy = [[;_, »j—1 and Y'T,'V = eD7'e. As a result, the
log-likelihood function (5.2) may be expressed as

n

ﬁ(@)——lilo v —EZ i
= 2t21 gV—1 5 vt

t=1

The numerical complexity of this algorithm is O(n?) for a linear stationary
process. Nevertheless, for some Markovian processes such as the family of
ARMA models, the Durbin-Levinson algorithm can be implemented in only
O(n) operations. Unfortunately, this reduction in operations count does not
apply to ARFIMA models since they are not Markovian.

5.8 WHITTLE ESTIMATION

A well-known methodology to obtain approximate maximum-likelihood esti-
mates is based on the calculation of the periodogram—see equation (4.6)—by
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Table 5.1  Maximum Likelihood Estimation of ARMA models

P q ¢ b2 01 02 u AIC ty, Ly, to, to, LB
1 0 0.65 0.25 1051.45 15.75 1.36
2 0 037 043 0.24 984.56 7.5 8.77 0.83 0.47
0 1 0.37 0.25 1150.14 10.3 2.47
1 1 0.88 -0.4 0.24 1010.48 27.36 -7.59 0.85
2 1 0.14 0.58 0.28 0.24 981.02 1.53 9.06 2.54 0.91 0.95
0 2 0.44 0.51 0.25 1040.55 8.43 2.03
1 2 077 -0.33  0.26 0.24 992.9 12.6 -3.95 1.02 0.05
2 2 015 0.57 0.28 0.01 0.24 983 1.32 5.21 2.17 0.92 0.95

means of the fast Fourier transform (FFT) and the use of the so-called Whittle
approzimation of the Gaussian log-likelihood function. Since the calculation
of the FFT has a numerical complexity of order O[nlog,(n)], this approach
produces very fast algorithms for computing parameter estimates.

Suppose that the sample vector Y = (y1,...,y,)" is normally distributed
with zero-mean and variance I'g. Then, the log-likelihood function divided by
the sample size is given by

1 1
=1 Ty— —Y'T; Y. )
L(9) 5 og det Ty 5 0 (5.3)

Notice that the variance-covariance matrix I'y may be expressed in terms of
the spectral density of the process fy(-) as follows:

(To)ij = v0(i — 4),

where
Yo (k) = ’ fo(\) exp(iAk) dA.

In order to obtain the Whittle method, two approximations are made. Since

U

1 1
—logdetT'y — —/ log[27 fo(A)] dA,
n 21

—T

as n — oo, the first term in (5.3) is approximated by

1 1 [
o logdet Ty = ym log[27 fo(A)] dA.

—T
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On the other hand, the second term in (5.3) is approximated by

1 _
%YTQ ly = ZZW{&TZ / f@ A) expliA(€ — j)] d)\}y]
=1 j=1
o [ POV v esslia )]
- (=1 j=1
2
1 (™ ., = N
= A ; A d\
o /4 fat™ ;yy oxp (i)
B T f9<)‘)
where

1 |« ;
— A2
) 2mn ;y] €

is the periodogram of the series {y;} defined in equation (4.6).
Thus, the log-likelihood function is approximated, up to a constant, by

53(9):—% [/j log fa(\) dA + _ﬂ er(a)) d)\} (5.4)

The evaluation of the log-likelihood function (5.4) requires the calculation of
integrals. To simplify this computation, the integrals can be substituted by
Riemann sums as follows:

[ log fo(A Z log fo(A

and

-7 f9 Z f@
where A\; = 2mj/n are the Fourier frequencies. Thus, a discrete version of the
log-likelihood function (5.4) is

£40) =~ | Y log foO0) + Jgaﬁ))

Other versions of the Whittle likelihood function are obtained by making
additional assumptions. For instance, if the spectral density is normalized as

/_7T log fo(A) dA =0, (5.5)
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then the Whittle log-likelihood function is reduced to
1 (™ I\
L5(0)=—— d\
S B TR

with the corresponding discrete version

5.9 STATE SPACE ESTIMATION

The state space methodology may be also used for handling autoregressive
approximations. For instance, starting from the AR(m) truncation (5.6) and
dropping 6 from the coeflicients 7; and the tilde from &;, we have

Yt = T1Yt—1+ -+ TmYt—m + €.

Thus, we may write the following state space system:

Tgr1 = Fxp+ Hegpq,
Yyt = th

where the state is given by ; = [y¢ Yi—1 ... Yi—m+2 Yi—m+1) , the state
transition matrix is

T T2 e Tm—1 Tm

1 0 0 0

0 1 0 0

F = ,

o o -- 0 0

o o -- 1 0
the observation matrix is

G=1[100--- 0],

and the state noise matrix is given by
H=[100---0].

The variance of the observation noise is R = 0, the covariance between the
state noise and the observation noise is S = 0 and the state noise variance-
covariance matrix is given by

1 0 0

0 0 0
Q=0

0 0 0

o
o
o
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The Kalman recursions for this system are
At = wt(l, 1),

lmet(i,l) wi(1,1) --- wt(m—l,l)] ,

¥

wir1(1,1) = o+ Z miwy (i, ) lmet 1 1] Jwe(1,1),

7,7=1

. i wy (1, .
wir1(l,) = met ,7) [met ] tEl i; for 7 > 2,

wt+1(i7j) = wt( 1 j - 1) _wt(z 1 1)wt(j - 1,1)/(4),5(1,1) for Za] > 23

Zep1(1) = met + metlll (195751()1)7

)

yr — T4(1)

Te1(f) = Z(j—1)+w(j—1,1) (1, 1) for j > 2,
Yer1 = Tera (D).
The initial conditions for these iteration may be
i'\O = 07
and
7(0) 7(1) y(m —1)
(1) 7(0) v(m —2)
Qo = :
Yy(m—2) y(m—3) (1)
Y(m—1) ~(m—2) 7(0)

The calculation of the log-likelihood proceeds analogously to the previous full
dimension case. This representation is particularly useful for interpolation of
missing values since the state noise is uncorrelated with the observation noise.

5.10 ESTIMATION OF LONG-MEMORY PROCESSES

This section discusses some specific estimation methods developed to deal with
the estimation of long-range dependent time series. Among these techniques
we consider maximum-likelihood procedures based on AR and MA approx-
imations,a log-periodogram regression, the so-called rescaled range statistic
(R/S), the variance plots, the detrended fluctuation analysis, and a wavelet-
based approach.
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5.10.1 Autoregressive Approximations

Given that the computation of exact ML estimates is computationally de-
manding, many authors have considered the use of autoregressive approxima-
tions to speed up the calculation of parameter estimates. Let {y;: ¢t € Z} be
a long-memory process defined by the autoregressive expansion

Yy =t +m(0)yi—1 + m2(0)ys—2 + m3(O)yr—3 4+ -+,

where ;(6) are the coefficients of ¢(B)6~*(B)(1 — B)?. Since in practice
only a finite number of observations is available, {y1,...,yn}, the following
truncated model is considered

Y = g+ m (H)yt_l + ﬂg(@)yt_Q + -+ wm(ﬁ)yt_m, (56)

for m < t < n. Then, the approximate maximum-likelihood estimate §n is
obtained by minimizing the function

n

L£1(0) = Z lye =M (O)ye—1 — m2(O)ys2 — - — T (O)ye—m]®  (5.7)

t=m+1

Many improvements can be made on this basic framework to obtain bet-
ter estimates. In the following subsections, we describe some of these re-
finements. For simplicity, an estimator produced by the maximization of
an approximation of the Gaussian likelihood function will be called quasi-
mazimum-likelihood estimate (QMLE).

5.10.2 Haslett-Raftery Method

Consider an ARFIMA process. An approximate one-step forecast of y; is
given by

t—1
Gi = 6(B)OB) Y buyis. (5.8)
j=1
with prediction error variance
t—1
v = Var(y = §i) = ogr [ [0 - 67)),
j=1

where 05 = Var(y;), & is the ratio of the innovations variance to the variance
of the ARMA (p,q) process

(TG —drt—d—j+1)
o (]) T—dl(t—d+1) (5.9)
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forj=1,...,t.
To avoid the computation of a large number of coefficients ¢;;, the last
term of the predictor (5.8) is approximated by

t—1 M t—1
S by =D bye-i— Y. Tl (5.10)
j=1 j=1 j=M+1
since ¢y; ~ —m; for large j, where for simplicity 7; denotes 7;(6).
An additional approximation is made to the second term on the right-hand
side of (5.10):

t—1 e
> miye—j~ Mmyd ™! |} - (t) ] YM+1,e-1-M,

j=M+1

_ t—1—-M -~ . .
where Yprq1t—1-m = ﬁ Zj:MH y;. Hence, a QMLE 6, is obtained by
maximizing

L5(0) = constant — 3nlog[a?(6)],
with

~2 1 (g —0)?
a(9) - ; m .

The Haslett-Raftery algorithm has numeric complexity of order O(nM).
Therefore, if the truncation parameter M is fixed, then this method is order
O(n). Thus, it is usually faster than the Cholesky Decomposition and the
Durbin-Levinson method. It has been suggested that M = 100 works fine in
most applications. Besides, by setting M = n we get the exact ML estimator
for the fractional noise process. But, the numerical complexity in situation is
order O(n?).

Another autoregressive approximation method is described next. Consider
the following Gaussian innovation sequence:

o
€ =Yt — Zﬂ'j(o)yt—j-
j=1

Since the values {y;,t < 0} are not observed, an approximate innovation
sequence {u;} may be obtained by assuming that y; = 0 for ¢ < 0,

t—1
Uy =Yt — Zﬂj(‘g)yt—y
j=1

for j = 2,...,n. Let r(8) = w(0)/c and 0 = (0,¢1,...,¢p,61,...,04,d).
Then, a QMLE for 6 is provided by the minimization of

n

Lo(0) = 2nlog(o) + Z r2(0).

t=2
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Now, by taking partial derivatives with respect to 8, the minimization problem
is equivalent to solving the nonlinear equations

n

D {ri(0)ie(60) — Elr(0)i4(0)]} = 0, (5.11)

t=2
!/

5.10.3 A State Space Method

The state space methodology may be also used for handling autoregressive
approximations. For instance, starting from the AR(m) truncation (5.6) and
dropping 6 from the coefficients 7; and the tilde from &;, we have

Yt = M1Yt—1+ -+ T Yt—m + E¢.

Thus, we may write the following state space system:

T41 = Fxp+ Hegqq,
Yyt = G'Th

where the state is given by ; = [yr Yi—1 .. Yt—m+2 Yt—m+1)’, the state
transition matrix is

™ T2 Tm—1 Tm

1 0 0 0

0 1 0 0

F= ,
o 0 .- 0 0
0 O 1 0

the observation matrix is
G=1[100--- 0],
and the state noise matrix is given by
H=[100---0].

The variance of the observation noise is R = 0, the covariance between the
state noise and the observation noise is S = 0 and the state noise variance-
covariance matrix is given by

10 0
0 0 0
Q=0 :
0 0 0
0 0 0
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The Kalman recursions for this system are

Ay = wi(1,1),

[met(zpl) wi(1,1) - wt(m—l,l)] 7
i=1

Oy

weyr(1,1) = o2+ Z mwe (i, J)m [met 1, 1] Jwe(1,1),

1,j=1
wer1(l,5) = met ,7) imwt wi(1,7) for j7>2
’ wt(l,l) =7
w1, J) = wt(l -1,j-1)— Wt(Z =1L Dwi(j — 1,1)/we(1,1) for 4,5 > 2,

Ec\t—‘,-l(]-) = met —+

ye — Ze(1)
Z”M ‘ 1] Tw(1,1)

ye — (1)

Ye 2\ g >0
w1 =

Ter1(j) = Te(f—1)+w(f—1,1)
Ur1 = Zppa(1).

The initial conditions for these iteration may be

7o =0,
and
7(0) (1) y(m —1)
v(1) 7(0) y(m —2)
Qo = :
y(m—2) ~y(m—3) v(1)
y(m—1) ~y(m—2) 7(0)

5.10.4 Moving-Average Approximations

An alternative methodology to autoregressive approximations is the trunca-
tion of the Wold expansion of a long-memory process. Two advantages of
this approach are the easy implementation of the Kalman filter recursions
and the simplicity of the analysis of the theoretical properties of the ML
estimates. Besides, if the long-memory time series is differenced, then the
resulting moving-average truncation has smaller error variance than the au-
toregressive approximation.
A causal representation of an ARFIMA(p, d, q) process {y;} is given by

Yr = Z¢j€t—j7 (5.12)
=0
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and we may consider an approximate model for (5.12) given by
(T Z%‘Etﬂ‘, (5.13)
3=0

which corresponds to a MA(m) process in contrast to the MA(co) process
(5.12). A canonical state space representation of the MA(m) model (5.13) is
given by

Tip1 = Faxy+ Hey,
ye = Gxp+ey,

with
we=[y(tlt = 1) yt + 1t =1) - y(t+m -1t - 1)),

where y(t + j|t — 1) = E[ye45|yt—1, Yt—2, - - -] and system matrices

F[g L"Ol], G=[10 - 0], H=[vn].

The approximate representation of a causal ARFIMA(p, d, ¢) has compu-
tational advantages over the exact one. In particular, the order of the MLE
algorithm is reduced from O(n?) to O(n).

The log-likelihood function, excepting a constant, is given by

n n R )
L) = —% {ZlogAt(e) + Z W} ,

where 6 = (¢1,...,¢p,01,...,04,d,0?) is the parameter vector associated to
the ARFIMA representation (5.2).

In order to evaluate the log-likelihood function £(6) we may choose the
initial conditions 1 = E[z1] = 0 and @y = Efz 12| = [w(4,7)]i j=1,2,.. where
w(i, ) = 3 op—o Vit k V-

The evolution of the state estimation and its variance, ), is given by the
following recursive equations. Let §; = 1if i € {0,1,...,m — 1} and 6; = 0
otherwise. Furthermore, let d;; = 6;6;. Then, the elements of €0, and x¢11
are as follows:

At = wt(l, 1) + 1, (514)
wer1(4,7) = we(i+ 1,5+ 1) + inh;
- wt(l,l) +1 ! ! ) (515)

the state estimation is

[we (@ +1,1)di + il[ye — Ze(1)]
we(1,1) + 1 ’

Fe1(i) = Te(i + 1)0; + (5.16)



ESTIMATION OF LONG-MEMORY PROCESSES 167

and the observation predictor is given by
U = Gy = T (1).

A faster version of the previous algorithm can be obtained by differencing
the series {y;} since the infinite MA representation of the differenced series
converges more rapidly than the MA expansion of the original process. To
illustrate this approach, consider the differenced process

z=(1— By = Z ©jEt—js (5.17)
j=0

where w; = ¢j — ’L/)j,1.

Remark 5.1. It is worth noting that the process {z:} is stationary and in-
vertible for any d € (0, %), provided that the AR(p) and MA(q) polynomials
do not have common roots and all their roots are outside the closed unit disk.

By truncating the MA(co) expansion (5.17) after m components, we get
the approximate model

2 = Z Vi€t (5.18)
j=0

An advantage of this approach is that, as shown in Problem 2.30, the coef-
ficients ¢; converge faster to zero than the coefficients ;. Consequently, a
smaller truncation parameter m is necessary to achieve a good approximation
level.

The truncated model (5.18) can be represented in terms of a state space
system as

¥1

Ti41 = {8 I%l}thr Et,
Pm
Zy = [1 o --- O]xt+€t.

Under normality, the log-likelihood function of the truncated model (5.18)
may be written as

1 _
Ln(0) = = log det Ty m (6) — 52T m (6) 'z, (5.19)

where [T m(0)]r,s=1,..n. = ffﬁ fm’g()\)eix(r_s)d)\, is the covariance matrix of
z = (21y., 2n) With fi,0(X) = (27r)’102|g0m(ei>‘)|2 and the polynomial ¢, (+)
is given by

@m(ew\) =1+ 90161)\ +oF @memw\-
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The matrices involved in the truncated Kalman equations are of size m xm.
Thus, only O(m?) evaluations are required for each iteration and the algorithm
has an order O(nxm?). For a fixed truncation parameter m, the calculation of
the likelihood function is only of order O(n) for the approximate ML method.
Therefore, for very large samples, it may be desirable to consider truncating
the Kalman recursive equations after m components. With this truncation,
the number of operations required for a single evaluation of the log-likelihood
function is reduced to O(n).

It is worth noting that the autoregressive, AR(m), and the moving-average,
MA(m), approximations produce algorithms with numerical complexity of
order O(n), where n is the sample size. Nevertheless, the quality of these
approximations is governed by the truncation parameter m. The variance of
the truncation error for an AR(m) approximation is of order O(1/m) while
this variance is of order O(m??~1) in the MA(m) case. On the other hand, the
truncation error variance is of order O(m?2?=3) for the differenced approach.

The methods reviewed so far apply to Gaussian processes. However, if this
assumption is dropped, we still can find well-behaved Whittle estimates. For
example, let {y;} be a stationary process with Wold decomposition:

ye =Y _ ¥;(0)eij,
=0

where €; is an independent and identically distributed sequence with finite
four cumulant and Z;io zb?(@) < oo. The following result establishes the
consistency and the asymptotic normality of the Whittle estimate under these
circumstances. Let 6, be the value that maximizes the log-likelihood function
L5(0). Then, under some regularity conditions, 6, is consistent and v/n(6,, —
0p) — N[0,T'(0)~ ] as n — oo, where I'(6) is the matrix defined in (5.27).
It is important to emphasize that this result does not assume the normality
of the process.

5.10.5 Semiparametric Approach

In this subsection we analyze a generalization of the Whittle approach called
the Gaussian semiparametric estimation method. This technique does not
require the specification of a parametric model for the data. It only relies on
the specification of the shape of the spectral density of the time series.
Assume that {y;} is a stationary process with spectral density satisfying

f()\) ~ GAl_ZH,

as A — 04, with G € (0,00) and H € (0,1). Observe that for an ARFIMA
model, the terms G and H correspond to 026(1)?/[2r¢(1)?] and 3 + d, re-
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spectively. Let us define Q(G, H) as the objective function

1 S 1-2H /\?H_l
Q(G, H) = %Z log GAJ ™ + = =—1()) | ,
j=1

where m is an integer satisfying m < n/2. If (é JH ) is the value that minimizes
Q(G, H), then under some regularity conditions such as

1 m

— 4+ — =0,

m n

as n — 0o, the estimator H is consistent and /m(H — Hy) — N (0,%) as
n — oo.

5.10.6 Periodogram Regression

Under the assumption that the spectral density of a stationary process may
be written as

FO) = fo(N)[2sin(A/2)] 7%, (5.20)

we may consider the following regression method for parameter estimation.
Taking logarithms on both sides of (5.20) and evaluating the spectral den-
sity at the Fourier frequencies \; = 27j/n, we have that

log f(\;) = log fo(0) — dlog [2 sin )\;] + log [‘]})O(()\OJ))} . (5.21)

On the other hand, the logarithm of the periodogram I(\;) may be written
as

I()\))
fA)

Now, combining (5.21) and (5.22) we have

log I(\;) =log [ ] +log f(A)). (5.22)

1’ ) [2sin 2d
log I();) = log fo(0) — dlog [2 sin )\27] +log { I()))[2sin(\/2)] } .

fo(0)
By defining y; = log I();), a = log fo(0), B = —d, z; = log[2sin(\;/2)]?, and

o I()\j)[Qsin()\/2)]2d
& =1 g{ fo(0) }7

we obtain the regression equation

ijOé—i-ﬁl‘j—l-&j.
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In theory, one could expect that for frequencies near zero (that is, for j =
1,...,m with m < n)

F) ~ fo(0)[2sin(X;/2)] %,

so that

s f]

The least squares estimate of the long-memory parameter d is given by

i _ 72?:1(%’ —z)(y; — 9)
" Z;'n=1(xj -2

where T = Z;nzl rj/m and y = Z;n:1 y;/m.

5.10.7 Rescaled Range Method

Consider the sample {y1,...,y,} from a stationary long-memory process and
let z; be the partial sums of {y;}, that is, x; = Z;Zl y;j for t =1,...,n and
let s2 =>"1" (y: — ¥)?/(n — 1) be the sample variance where § = ,, /n.

The rescaled range statistic (R/S) is defined by

R,=—|max (2 — -2, | — min (z; — —xz,]]|.
Sy |1<t<n n 1<t<n n

This statistic satisfies the following asymptotic property. Let {y;:t € Z} be
a zero-mean stationary process such that 32 is ergodic and

—%—d

n Lltn] — Bd(t),

in distribution, as n — oo, where By(t) is the fractional Brownian motion
defined in Subsection A.2.8. Define Q,, = n~/?>~%R,,, then

Qn — Q,

in distribution, as n — oo, where

Q= sup [Ba(t) — tBa(1)] — inf [Ba(t) — tBa(1)].
0<t<1 0<t<1

Note that logR,, = EQ, + (d + 3)logn + (log @, — EQ,), so that we
can obtain an estimator of the long-memory parameter d by a least squares
technique similar to the one studied in Subsection 5.10.6. For instance, if
Ry 1 is the R/S statistic based on the sample of size k, {yt,...,yq4r—1} for
1 <t <n—k+1, then an estimator of d can be obtained by regressing log R; j,
onlogkfor1 <t<n-—k+1.
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5.10.8 Variance Plots

According to (2.29), the variance of the sample mean of a long-memory process
based on m observations behaves like

Var(g,) ~ ¢ m?371,

for large m, where c is a positive constant. Consequently, by dividing a sample
of size n, {y1,...,Yn}, into k blocks of size m each with n = k x m, we have

log Var(y;) ~ ¢+ (2d — 1)log j, (5.23)
for j =1,...,k, where y; is the average of the jth block, that is,
1 jxm
Yj = m t_(j§m+1yt~
From (5.23), a heuristic least squares estimator of d is

S5 (log j — a)[log Var(g;) — b]

d= - :
2 Zj=1(10g] —a)?

)

N =

where a = (1/k) Z?Zl logj and b = (1/k) Z?:l log Var(y;).

Thus, for a short-memory process, d = 0, and then the slope of the line
described by equation (5.23) should be —1. On the other hand, for a long-
memory process with parameter d, the slope is 2d — 1.

B EXAMPLE 5.2

In order to illustrate the use of the variance plot technique, Figure 5.1
displays a variance plot for the Nile river data, from the period 622 A.D.
to 1221 A.D. Notice that heavily line and the dotted line appears to have
a very different slope. This is an indication of long-memory behavior of
the data. On the contrary, in the variance plot of a Gaussian white noise
sequence shown in Figure 5.2, the slopes of both lines are similar. This
is expected from a serially uncorrelated time series.

5.10.9 Detrended Fluctuation Analysis

Let {y1,...,yn} be a sample from a stationary long-memory process and
let {x;} be the sequence of partial sums of {y;}, that is, x; = Z;Zl y; for
t =1,...,n. The so-called detrended fluctuation analysis (DFA) method for
estimating the long-memory parameter d of the process {y;: t € Z} proceeds
as follows. The sample {y1,...,y,} is divided into k nonoverlapping blocks,
each containing m = n/k observations. Within each block, we fit a linear
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Figure 5.1 Variance Plot for the Nile river Data.

Log Var (k)

2.5

-35

Log k
Figure 5.2 Variance Plot for a white noise sequence.
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regression model to z; versus t = 1,...,m. Let o} be the estimated residual
variance from the regression within block k,

1 & 5
72 (= ar, — Brt)?,

m
where @y, and Bk are the least squares estimators of the intercept and the

slope of the regression line.
Let F2(k) be the average of these variances

k
For a random walk this term behaves like

F(k) ~ ¢ k'/?,

?v\»—*

while for a long-range sequence,
F(k) ~ ¢ k412,
Thus, by taking logarithms, we have
log F'(k) ~ logc+ (d+ 3)logk.
Therefore, by fitting a least squares regression model to
log F(k) = a+ plogk + e, (5.24)
for k € K, we may obtain an estimate of d as

(;l\: B - %7
where B is the least squares estimator of the parameter [.

There are several ways to select the set of indexes K. If kg = min{K}
and k1 = max{K}, then, for example, some authors choose ky = 4 and k;
a fraction of the sample size n. Of course, for ky = 2 the regression error
variance is zero since only two observations are fitted by the straight line. On
the other hand, for k; = n, there is only one block and therefore the average
of error variances is taken over only one sample.

This methodology derives from the following theoretical result about the
behavior of the residual variances {o7}. Let {y:} be a fractional Gaussian
noise process—see definition (2.31)—and let o7 be the residual variance from
the least squares fitting in block k. Then,

Elo}] ~ c(d) m***,
as m — oo where the constant ¢(d) is given by the formula

1—-2d

)= GIDedr i)
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5.10.10 A Wavelet-Based Method

Consider the discrete wavelet transform coefficients d;, and define the statis-
tics

where n; is the number of coefficients at octave j available to be calculated.
As shown by Veitch and Abry (1999),

2.

~ g

:u’] ~ an7
T

where z; = 22%¢, ¢ > 0, and Xy, is a chi-squared random variable with n;
degrees of freedom. Thus, by taking logarithms we may write
logy i ~ 2dj + log, ¢ + log Ay, /log 2 — logy 1.

Recall that the expected value and the variance of the random variable log X,
are given by

E(ogX,) = ¢(n/2)+log2,
Var(log &) = ((2,n/2),

where 1(z) is the psi function, ¥ (z) = d/dzlogT'(z), and ((z,n/2) is the
Riemann zeta function.

By defining ¢; = logy X, — logyn; — g;, where g; = ¥(n;/2)/log2 —
log,(n;/2), we conclude that th1s sequence satisfies

E(ej) = 0,
¢(2,n;/2)
(log 2)?

Therefore, we could write the following heteroskedastic regression equation:

Var(e;) =

yj = a+ Brj +ej,

where y; = logy i; — g5, @ = logzc B = 2d, and z; = j. Thus, once the
weighted linear regression estimate B is obtained, an estimate for the long-
memory parameter d is given by d= B / 2. Furthermore, an estimate of the

variance of d is provided by the estimate of the variance of ﬁ by means of the
expression Var(d) Var (s ) /4.
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B EXAMPLE 5.3

The R package fArma allows for the estimation of long-range dependent
processes by several methods. The following are the results of the appli-
cation of some of these fractional estimation techniques to the Nile river
data. Notlice that in these outputs, the Hurst parameter correspond to

> perFit(nile)

Title:
Hurst Exponent from Periodgram Method

Call:
perFit(x = nile)

Method:
Periodogram Method

Hurst Exponent:
H beta
0.9926786 -0.9853571

Hurst Exponent Diagnostic:
Estimate Std.Err t-value Pr(>ltl)
X 0.9926786 0.115791 8.573023 3.56693e-12

Parameter Settings:
n cut.off
663 10

> rsFit(nile)

Title:
Hurst Exponent from R/S Method

Call:
rsFit(x = nile)

Method:
R/S Method

Hurst Exponent:
H beta
0.8394554 0.8394554

Hurst Exponent Diagnostic:
Estimate Std.Err t-value Pr(>ltl)
X 0.8394554 0.04625034 18.15025 1.711254e-21
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Parameter Settings:

n levels minnpts cut.offl cut.off2

663 50 3
> pengFit(nile)

Title:

Hurst Exponent from Peng Method

Call:
pengFit(x = nile)

Method:
Peng Method

Hurst Exponent:
H beta
0.8962124 1.7924248

Hurst Exponent Diagnostic:

Estimate Std.Err t-value

5

316

Pr(>1tl)

X 0.8962124 0.01609048 55.6983 4.843263e-38

Parameter Settings:

n levels minnpts cut.offl cut.off2

663 50 3

> waveletFit(nile)

Title:

5

316

Hurst Exponent from Wavelet Estimator

Call:
waveletFit(x = nile)

Method:
Wavelet Method

Hurst Exponent:
H beta
0.9031508 0.8063017

Hurst Exponent Diagnostic:

Estimate Std.Err t-value

Pr(>ltl)

X 0.9031508 0.08329106 10.84331 0.001678205

Parameter Settings:

length  order octavel octave2

512 2 2
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5.10.11 Computation of Autocovariances

Precise and efficient calculation of the ACF of an ARFIMA process is a cru-
cial aspect in the implementation of the Cholesky and the Durbin-Levinson
algorithms. Recall that a closed form expression for the ACF of an ARFIMA
model was discussed in previous sections.

Another approach for calculating the ACF is the so-called splitting method.
This method is based on the decomposition of the ARFIMA model into its
ARMA and its fractionally integrated (FI) parts. Let 1(-) be the ACF of
the ARMA component and v2(-) be the ACF of the fractional noise given by
(2.25). Then, the ACF of the corresponding ARFIMA process is given by the
convolution of these two functions:

oo
v(h) = Z Y1()r2(d — h).

j=—00
If this infinite sum is truncated to m summands, then we obtain the approx-
imation

m

v(h) = > ()l —h).

j=—m
From this expression, the ACF ~(-) can be efficiently calculated with a great

level of precision.

B EXAMPLE 5.4

To illustrate the calculation of the ACF of a long-memory process con-
sider the ARFIMA(1,d, 1) model

(1+¢B)y: = (1+6B)(1 - B) ‘e,
with Var(g;) = 02 = 1.
An exact formula for the ACF of this model is given by

~(h) = 0C(d, —h,—¢) + (1 +0?)C(d,1 — h,—¢) + 0C(d,2 — h, —¢)
P(¢* — 1) ‘
On the other hand, an approximated ACF is obtained by the splitting
algorithm

m

Y(k) & D 0(h)Yanmalk = B),

h=—m
where

, T(1—2d) T(h+d)
T1—dT(d)T(1+h—d)’

Yo(h) =0



178

Table

5.2

ESTIMATION METHODS

ARFIMA(1,d, 1) Models

Calculation of the Autocorrelation Function of

Lag

Method

d=04,6=050=0.2

d=0.499,6 = —0.9,0 = —0.3

Exact

Approx.

1.6230971100284379
1.6230971200957560

7764.0440304632230
7764.0441353477199

Exact

Approx.

0.67605709850269124
0.67605707826745276

7763.5195069108622
7763.5196117952073

Exact

Approx.

0.86835879142153161
0.86835880133411103

7762.8534907771409
7762.8535956613778

Exact

Approx.

0.66265875439861421
0.66265877143805063

7762.0404144912191
7762.0405193753304

998

Exact

Approx.

0.22351300800718499
0.22351301379700828

7682.7366067938428
7682.7367003641175

999

Exact

Approx.

0.22346824274316196
0.22346824853234257

7682.7212154918925
7682.7213090555442

and

YarRMA (h) =

1— 260 + 62
1— 2
(1—00)(0 —¢)
1—¢2

h =0,

h#0.

We consider two sets of parameters d = 0.4, ¢ = 0.5, 6 = 0.2 and

d=0.499, ¢ = —0.9, § = —0.3, and several lags between 0 and 999. The
results are shown in Table 5.2.

Note that for the set of parameters d = 0.4,¢ = 0.5,6 = 0.2, the

accuracy of the splitting method is about six significant decimals while
for the second set of parameters, d = 0.499,¢ = —0.9,0 = —0.3, the
accuracy drops to about three significant decimals for the range of lags
studied.

5.11 NUMERICAL EXPERIMENTS

Table 5.3 displays the results from several simulations comparing five ML es-
timation methods for Gaussian processes: Exact MLE, Haslett and Raftery’s
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Table 5.3 Finite Sample Behavior of Maximum Likelihood
Estimates

d Exact HR AR MA Whittle
n = 200
0.40 Mean 0.3652 0.3665 0.3719 0.3670 0.3874
SD 0.0531 0.0537 0.0654 0.0560 0.0672
0.25 Mean 0.2212 0.2219 0.2224 0.2220 0.2156
SD 0.0612 0.0613 0.0692 0.0610 0.0706
0.10 Mean 0.0780 0.0784 0.0808 0.0798 0.0585
SD 0.0527 0.0529 0.0561 0.0525 0.0522
n = 400
0.40 Mean 0.3799 0.3808 0.3837 0.3768 0.3993
SD 0.0393 0.0396 0.0444 0.0402 0.0466
0.25 Mean 0.2336 0.2343 0.2330 0.2330 0.2350
SD 0.0397 0.0397 0.0421 0.0394 0.0440
0.10 Mean 0.0862 0.0865 0.0875 0.0874 0.0753
SD 0.0394 0.0395 0.0410 0.0390 0.0413

approach, AR(40) approximation, MA(40) approximation, and the Whittle
method.

The process considered is a fractional noise ARFIMA(0,d,0) with three
values of the long-memory parameter: d = 0.1,0.25, 0.4, Gaussian innovations
with zero-mean and unit variance, and sample sizes n = 200 and n = 400. The
mean and standard deviations of the estimates are based on 1000 repetitions.
All the simulations reported in Table 5.3 were carried out by means of R
programs.

From Table 5.3, it seems that all estimates are somewhat downward bi-
ased for the three values of d and the two sample sizes considered. All the
estimators, excepting the Whittle; seem to behave similarly in terms of bias
and standard deviation. The sample standard deviations of all the methods
considered are relatively close to its theoretical value 0.05513 for n = 200 and
0.03898 for n = 400. Observe that the Whittle method exhibits less bias for
d = 0.4 but greater bias for d = 0.1. Besides, this procedure seems to have
greater standard deviations than the other estimators, for the three values of
d and the two sample sizes under study.
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5.12 BAYESIAN ESTIMATION

This section discusses some applications of the Bayesian methodology to the
analysis of time series data. It describes a general Bayesian framework for
the analysis of ARMA and ARFIMA processes by means of the Markov chain
Monte Carlo (MCMC) methodology, an important computational tool for
obtaining samples from a posterior distribution. In particular, we describe
applications of the Metropolis-Hastings algorithm and the Gibbs sampler in
the context of long-memory processes.

The implementation of these computational procedures are illustrated with
an example of Bayesian estimation of a stationary Gaussian process. Specific
issues such as selection of initial values and proposal distributions are also
discussed.

Consider the time series data Y = (y1,...,y,)" and a statistical model
described by the parameter 0. Let f(y|@) be the likelihood function of the
model and 7 (@) a prior distribution for the parameter. According to the Bayes
theorem, the posterior distribution of @ given the data Y is proportional to

T(0]Y) x f(Y|0)7(6).

More specifically, suppose that the time series follows an ARFIMA(p, d, q)
model described by

¢(B)(ye — 1) = 0(B)(1 — B) ey,

where the polynomials ¢(B) =1+ ¢1B+---+ ¢,BP and §(B) =1+ 6:B +

-+-+6,B? do not have common roots and {e;} is a white noise sequence with

zero-mean and variance o2. Define Cy = {d : y, is stationary and invertible},

Co ={¢1,-..,Pp : y; is stationary}, and Cop = {61,...,0, : y; is invertible}.
For this model, the parameter vector may be written as

0: (d7¢17"'a¢p7917"’79q7M7U2)7

and the parameter space can be expressed as
® =Cy xCy xCyp xR x(0,00).

Sometimes, in order to simplify the specification of a prior distribution
over the parameter space ®, one may consider assigning prior distributions
individually to subsets of parameters. For instance, we may assume uniform
priors for d, ¢1,...,¢p, and 61 ...,0,, that is, 7(d) = U(Cy), 7(¢1,...,¢p) =
U(Cy), and w(01,...,0,) = U(Cy). Besides, we may assume an improper prior
u, m(u) o< 1 and a prior w(0?) for o2. With this specification, the prior

distribution of @ is simply

7(0) o w(o?),
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and the posterior distribution of 0 is given by
7(0]Y) < f(Y]0)r(c?). (5.25)

Apart from the calculation of this posterior distribution, we are usually
interested in finding Bayes estimators for 8. For example, we may consider
finding the value of @ such that the posterior loss be minimal. That is, if
L(08,Y) is the loss function, then

~

6 = argmin /L(H, Y)m(0|Y)dY.

As a particular case, under the quadratic loss L(8,Y) = ||@ — Y||? we have
that the estimate of @ is the posterior mean

0 = E0|Y].

Obtaining any of these quantities requires integration. However, in many
practical situations the calculation of these integrals may be extremely diffi-
cult. To circumvent this problem, several methodologies have been proposed
in the Bayesian literature, including conjugate prior distributions, numerical
integration, Monte Carlo simulations, Laplace analytical approximation, and
Markov chain Monte Carlo (MCMC) procedures. The analysis of all these
methods is beyond the scope of this text; here we will focus on MCMC tech-
niques.

5.12.1 Markov Chain Monte Carlo Methods

A MCMC algorithm produces a sample of a distribution of interest by a
method that combines Monte Carlo techniques and Markov chains. Consider,
for example, that we want to obtain a sample of the posterior distribution
m(0]Y). Two well-known procedures for this purpose are the Metropolis-
Hastings algorithm and the Gibbs sampler.

5.12.2 Metropolis-Hastings Algorithm

Following the Metropolis-Hastings algorithm, we start with an initial value
for 6, 0(0), say. Suppose that at the stage m we have obtained the value o™,
We update this value to gl Y according to the following procedure:

1. Generate the random variable £ from the proposal distribution ¢(& |9(m)),
€~ q(&ot™).

2. Define

S { m(€]Y)a(0"]€) ,1}.
(6" ]Y)q(&]6"™)
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3. Generate w ~ Ber(a).

4. Obtain

The convergence of this procedure is guaranteed by the following result: As-
sume that the support of the proposal distribution ¢ contains the support of
the posterior distribution 7. Then 7(0™|Y") converges to the unique station-
ary distribution of the Markov chain 7(8]Y") as m — oc.

5.12.3 Gibbs Sampler

Another well-known iterative method is the Gibbs sampler. Suppose that the
random variable 8 can be decomposed as 8 = (61, ...,0,) and we are able to
simulate from the conditional densities

ej‘elw",0j7170j+17"'79’r ~ fj(9j|917"'79j7179j+1a"'797‘)5

for j = 1,...,r. In order to sample from the joint density of (01,...,0,) we
proceed according to the following algorithm:

0. Given the sample (0§m), ... ,Hﬁm)), generate
L 6 i 0y108™ 05 i),

2. o™ £a (0,105 65™ ol

v 0D p 0,108 0l et

»Vr—1

The acceptance rate in this algorithm is always one, that is, all simulated
values are accepted. A nice property of the Gibbs sampler is that all the
simulations may be univariate. On the other hand, this algorithm requires
that we can actually simulate samples from every conditional density f; for
7 =1,...,r. By choosing adequately these densities, it can be shown that the
Gibbs sampler is a particular case of the Metropolis-Hastings algorithm.

B EXAMPLE 5.5

If the process {y:} is Gaussian, then the likelihood function is given by
fY18) = (2r0®)"2|0(0)| /2
Y -1 T0) " (v -1
y exp{( w'TO) " ( u)}’ (5.26)

202
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where I'(0) = Var(Y). Hence, the posterior distribution of € given by
(5.25) is

w(OlY) o (2m) 2 nO)
S exp{—(y‘l“) r©) (Y_lu)}ﬁ(o*Q).

202

In this case, the MCMC method can be implemented as follows. To
simplify the notation, we write the parameter 8 as (d, ¢, 0, 02, u) where

¢=(¢1,...,0p) and 0 = (01,...,0,).

Consider an initial sample for (d, ¢, ), for example,

(d<0)’¢<o>79<o>) ~ N, Kg, Iy 5) ,2} ,

where N, is a multivariate Gaussian distribution with r = p+ ¢+ 3 and
(d, 2, 9) is the MLE of (d, ¢,8) and ¥ may be obtained from the Fisher
information matrix, that is,

3= (aad)]

where H is the Hessian matrix of the log-likelihood function of the data
derived from (5.26).

Given the value (d(m), qs(m),e(m)), we generate £ from the proposal
distribution ¢ (§|d(m), o), Q(m)) according to

£~ N, {(d(m>,¢<m>79<m>) 72} :

and restricting the random variable £ to the space Cq x Cg X Cy to ensure
the stationarity and the invertibility of the ARFIMA process.
Now, we calculate «a as

o = min ml¢lY] 1
n[d(fﬂ), p(m) g(m) Y] ’ ’

since in this case ¢(0|¢) = ¢(£6).

Then we proceed to steps 3 and 4 of the MCMC method described
above. Once (d, ¢, 6) has been updated, we update p and o2.

For updating i, one may start with an initial drawing from a normal
distribution

w~ N(ii,55),

where [ is an estimate of the location (e.g., the sample mean) and

=Y
—_
~—
S
=
DO
QU
_|_
—_
~—
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cf., equation (2.28), where the values of d, ¢(B), 6(B), and o2 are re-
placed by their respective MLEs. Notice, however, that we may use an
overdispersed distribution (e.g., Student distribution), see for example
Problem 12.5.

Given the sample ;™) this term may be updated to x(™+1) by gen-
erating a random variable

E~ N(p™,520),
and then calculating

: W[d(m),d)(m)’g(m),g’b\.ﬂy]
= 1in
ﬂ[d(nl)’ qi)(”L)7 9(7"'), ‘u(m), 82|Y] ’

Finally, for updating o one may draw samples from an inverse gamma
distribution IG(c, 8) where the coefficients a and 8 can be chosen in
many different ways. A simple approach is to consider that for an
ARFIMA model with r parameters the MLE of o2, 52, satisfies ap-
proximately

2
~2 g

2
Xn—
n— o

for large n. Therefore, F[6?] = 0% and Var[6?] = 20*/(n — r). Hence,
by matching these moments with the coefficients o and § we have

n—r+4 o2(n—r+2)
o=t 10 p=TrtY

Naturally, there are many other choices for drawing samples for o2,
including Gamma distributions.

5.13 STATISTICAL INFERENCE

The maximum likelihood estimates of ARMA, ARIMA, ARFIMA and their
seasonal counterparts are asymptotically unbiased, normally distributed and
efficient. This is formally stated as follows. Let 6,, be the value that maximizes
the exact log-likelihood where

0= (¢1,.... bp, 01, ..., 0, d)

is a p+ g + 1 dimensional parameter vector and let 6y be the true parameter.
Under some regularity conditions we have

(a) Consistency: 8, — 0 in probability as n — co.
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(b) Normality: /n(0, — 0o) — N(0,T=1(6)), as n — oo, where I'(0) =

n—j(e):i/ﬂ [810255()\)} [abigf“)}dx (5.27)

—T

where fy is the spectral density of the process.

(c) Efficiency: 0, is an efficient estimator of 6.

In what follows we discuss the application of the previous results to the
analysis of the large sample properties of MLE for some well-known time

series models.

B EXAMPLE 5.6

As an example, consider an ARMA(1, 1) model described by
Yt — QYt—1 = &t — Oer—1.

In this case, the parameter vector is @ = (¢, 6) and the maximum likeli-
hood estimator 8,, = (¢, 0, ) satisfies the following large sample distri-
bution

Vi (8, —6) = N (0.T(8) "),

where

140 | 1=6)0+00) —(1-6%)(1-¢%

re" = ,
DTG [ aema-e a-mnen

B EXAMPLE 5.7

For a fractional noise process with long-memory parameter d, FN(d),
the maximum-likelihood estimate d,, satisfies the following limiting dis-
tribution:

i(dy —d) = N (0, fz) ,

as n — o0o. Observe that the asymptotic variance of this estimate does
not depend on the value of d.
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B EXAMPLE 5.8
Consider the ARFIMA(1,d, 1) model
(1+¢B)y: = (1+6B)(1 - B) e,

where {e;} is independent and identically distributed N(0,02). The
parameter variance-covariance matrix I'(d, ¢,0) may be calculated as
follows. The spectral density of this process is given by

2 2
_ o _ _q1+0°+20cos
F) = 21 [2(1 = cos )] 1+ ¢2+2¢pcos A’
Hence,
o2
log f(A\) = log (2> — dlog[2(1 — cos \)]
i

+log[1 + 62 4 26 cos \] — log[1 + ¢* + 2¢ cos A],

and the gradient is
[ —log[2(1 — cos \)]

2[¢ + cos A
Vieg f(A) = | 1+ ¢2+ 2¢cos A

2[0 + cos A]
L 1+62+20cosh

Thus, by dropping the parameters d, ¢, and 6 from the 3 x 3 matrix
T'(d, ¢,0) we have

2

I = yym /,77 {log[2(1 — cos A)]} " dA = 5

1 [7 2[¢ + cos A]

Iy, = o {log[2(1 — cos A\)]} 1+ ¢2 + 2¢ cos A

1 [¢* =1 [T log[2(1 — cos )]
= { /0 dX

2m 1) 14+ @2 + 2¢pcos A
+ E /7r log[2(1 — cos )\)]d)\} .
¢ Jo

Thus, we have
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Analogously,

log(1+0)
0

In addition, for the two ARMA parameters we have

INEES

1
T = T
1
T2z = 1o o0
1
I3z = T
Finally,

r 2 _ log(1+¢) log(146) T
6 ) 7
log(1+ 1 1

log(1+6) 1 1
i 9 =30 — |

Observe that similarly to the fractional noise case, the asymptotic vari-
ance of the MLE of an ARFIMA(1,d, 1) model does not depend on the
value of the long-memory parameter.

B EXAMPLE 5.9

The asymptotic variance of the MLE of ARFIMA(1,d,0) and ARFIMA(0, d, 1)
may be derived analogously to Example 5.8.
For the ARFIMA(1, d, 0) model we have that

2 _ log(1+¢)
6 ¢
F(d, ¢> - ’
_ log(1+¢) 1
¢ 1—¢?
and for the ARFIMA(0, d, 1) model
72 log(14-0)
6 0
I'(d,0) =
log(1+6) 1
0 1-62

From these expressions, we conclude that the asymptotic correlation be-
tween the maximum-likelihood estimates d,, and ¢,, of the ARFIMA(1, d, 0)
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1.0

08

06

04

02

0.0

model is

~ o~ 6 log(1
lim corr (dy,, ) = £\/ 1—¢2 M7 (5.29)
n—oo T ¢

which is always positive for ¢ € (—1,1). On the other hand, the asymp-
totic correlation of the maximum-likelihood estimates d,, and 6,, of an
ARFIMA(0,d, 1) model is given by

nl;rr;o corr (dy, 0,) = \/ 1-62—=———= Log 1 i 9 (5.30)
which is always negative for 6 € ( 1,
correlation formulas (5.29) and (5.30) d
long-memory parameter d.
The_asymptotic correlation between the maximum-likelihood esti-
mates d,, and ¢,, of an ARFIMA(1, d, 0) model provided by formula (5.29)
is displayed in Figure 5.3 for ¢ € (—1,1). Additionally, Figure 5.4
exhibits the theoretical asymptotic correlation between the maximum-
likelihood estimates d,, and 6,, of an ARFIMA(0,d, 1) model given by
formula (5.30) for § € (—1,1). Notice from these figures that the cor-
relation between the estimators tends to 0 as ¢ — +1 or § — +1. The
maximum (minimum) value of the correlation is reached near ¢ = —0.68
(6 = —0.68).

1). Observe that the asymptotic
o not depend on the value of the

Figure 5.3 ARFIMA(1,d,0) example: Asymptotic correlation between the
maximum-likelihood estimates d,, and ¢,.
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Figure 5.4 ARFIMA(0,d,1) example: Asymptotic correlation between the
maximum-likelihood estimates d,, and 6,,.

5.14 ILLUSTRATIONS

To illustrate how the finite sample performance of the maximum-likelihood
estimates of ARFIMA models compare to the theoretical results revised in
this chapter consider the following Monte Carlo experiments.

Table 5.4 exhibits the maximum-likelihood parameter estimations from
simulated ARFIMA(1,d, 1) processes with sample size n = 1000 and pa-
rameters d = 0.3, ¢ = —0.5, and 6 = 0.2. The results are based on 1000
replications.

Table 5.4 MLE Simulations for an ARFIMA(1,d, 1) Model with d =
0.3, ¢ = —0.5, and 6 = 0.2

d ¢ 0
Sample mean 0.2775 -0.5054 0.1733
Sample SD 0.0514 0.0469 0.0843

Theoretical SD 0.0487 0.0472 0.0834
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Notice that the sample mean and standard deviations are close to their
theoretical counterparts. The theoretical standard deviations are calculated
from formula (5.28).

Figure 5.5 shows 1,164 observations from a tree ring time series dataset,
see Appendix C for details. The sample ACF and sample PACF of this series
is exhibited in Figure 5.6

Based on the previous plots, a family of ARMA models is proposed with
orders p, g < 2 to be selected according to the AIC and the significance of the
parameters. Table 5.5 reports the estimated models for all the combinations
of orders. Note that the ARMA(1,1) presents the lowest AIC and botgh
parameters appears to be significant at the 5% level. Consequently, this model
is selected for further analysis. Figure 5.7 displays both the theoretical ACF
based on the estimated parameters and the sample ACF. Observe that both
plots are similar. Furthermore, a comparison of the theoretical PACF and its
sample version is shown in Figure 5.8. According to these plots, the ACF and
PACF of fitted model seems to be close to their theoretical counterparts.

In order to analysis the residuals of this model, Figure 5.9 exhibit its sample
ACF and the corresponding Box-Ljung tests up to lag 15. Observe that the

150
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Figure 5.5 Tree ring time series data.
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Figure 5.7 Tree ring time series data: Theoretical and Sample ACF.
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Figure 5.9 Tree ring data: Theoretical and Sample PACF.
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Table 5.5 Maximum Likelihood Estimation of ARMA models

P q b1 b2 01 02 AIC te, too to, to, LB
1 0.24 11522.74  8.38 77.46  0.07
2 0.22 0.08 11516.32  7.48 2.91 71.15 0.69

1 0.2 11534.74 7.7 84.42  0.00
1 1 0.61 -0.4 11514.73  6.16 -3.46  66.50 0.81
2 1 089 -0.09 -0.68 11515.44 523 -1.41 -4.07 61.98 0.92

2 0.22 0.12 11519.69 7.45 76.46 0.34
1 2 073 -0.52 -0.05 11515.75 6.15 -4.15  63.41 0.90
2 2 014 0.29 0.07 -0.19 11518.73 - - - 66.53 0.81

null hypothesis of white noise is not rejected at the 5% level for all the lags
considered.

5.15 BIBLIOGRAPHIC NOTES

Methods for estimating time series models have been extensively reviewed
in the literature. A classical reference on ARMA model estimation is the
book by Box, Jenkins, and Reinsel (1994). On the other hand, estimation of
long-memory models have been considered by a large number of authors. An
overview of the technique discussed in this chapter can be found in Palma
(2007). Autoregressive approximations have been studied by Granger and
Joyeux (1980), Li and McLeod (1986), Hasslett and Raftery (1989), Beran
(1994), Shumway and Stoffer (2011), and Bhansali and Kokoszka (2003),
among others. The Haslett-Raftery method discussed in Subsection 5.10.2
was introduced by Hasslett and Raftery (1989). State space estimation of
ARFIMA and related models have been investigated by Chan and Palma
(1998), Grassi and de Magistris (2014) and Dissanayake, Peiris, and Proietti
(2014), among others.

The Durbin-Levinson algorithm is based on the seminal works by Levinson
(1947) and Durbin (1960). The arithmetic complexity of this algorithm for a
linear stationary process have been discussed, for instance, by Ammar (1998).
The Durbin-Levinson algorithm can be implemented for an ARMA process
in only O(n) operations; see, for example, Section 5.3 of Brockwell and Davis
(1991). The splitting algorithm has been applied to the calculation of the
ACF of long-memory processes; see, for example, the numerical experiments
reported by Bertelli and Caporin (2002). Besides, several computational as-
pects of parameter estimation are discussed by Doornik and Ooms (2003).

The asymptotic properties of the MLE have been established by Yajima
(1985) for the fractional noise process and by Dahlhaus (1989); Dahlhaus and
Polonik (2006) for a general class of long-memory processes including the
ARFIMA model. The so-called Whittle method was proposed by Whittle
(1951). A study comparing the properties of the R/S with other estimators
can be found in Giraitis, Kokoszka, Leipus, and Teyssiére (2003). The large
sample behavior of the periodogram of long-range-dependent processes has
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been extensively studied; see, for example, Fox and Taqqu (1987) and Yajima
(1989), among others. Various estimators of the long-range dependence pa-
rameter including the R/S, DFA, and the Whittle methods are studied in the
article by Taqqu, Teverovsky, and Willinger (1995). The books by Robert
(2001) and Robert and Casella (2004) are excellent references on Bayesian
methodologies. In particular, Robert (2001, Chapter 9) and Robert and
Casella (2004, Chapters 6 and 7) describe several computational techniques
including MCMC algorithms and the Gibbs sampler. Other good general ref-
erences on Bayesian methods are the books by Box and Tiao (1992) and Press
(2003). There are several versions of the MCMC algorithm. For example, the
one discussed here is based on the works by Metropolis, Rosenbluth, Teller,
and Teller (1953) and Hastings (1970). A comprehensive revision of Markov
chain methods is provided by Tierney (1994).

Problems

5.1 Consider the AR(2) process given by: x; = 1.5x4_1 —0.752;_2+4.1+¢;.
(a) Is this a stationary process?
(b) Find p, and p,.
(c) Write down and solve the Yule-Walker equations. Calculate p,(3),
pz(4), -, pz(8).

5.2 A key tool for identifying time series processes are the ACF and the
partial ACF. Figures 5.10 to 5.15 show simulated time series corresponding
to the processes described below, along with their sample ACF and partial
ACF. Identify which plots correspond to the models (a) to (d).

(a) Yt = 0.6 Yi—1 + &+ 0.8e¢_1.

(b) v+ =0.70y;—1 —0.12y;_o + &;.

(¢) ye=-04dy,_1+e—e—1+0.21es 0.

(d) yr=¢e1+0.8¢e4_0.

5.3 Consider the following MA(1) model where {&;} es WN(0, 1):
yr=¢er+0ei1.

(a) Calculate the autocovariance function of the process.

(b) Find the moment estimator of 6.

(c) Show that the bias of this estimator is —6/n.

(d) Assume that y; = &1 and define € = (g1,...,¢€n), ¥y = (Y1,---,Yn)-
Show that we can write Ly = € where L is a lower triangular matrix
and find it.

(e) Find the inverse L~! and verify that the variance-covariance matrix
of y can be written as ¥ = L~1(L71)".

(f) Show that X~! = L'L.

5.4 Figure 5.16 shows a time series of 332 observations, its sample ACF
and PACF. We propose to fit an ARMA(p, ¢) model to these data. Based on
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the R outputs from the fitted models presented below, information criteria,
parameter significance, diagnostic plots, etc., indicate if one of these models
adequately fits the time series under study. In that case, select which model
seems more appropriate. Justify your answers.

MODEL 1

arima(x = y, order = c(2, 0, 2))

Coefficients:
arl ar2 mal ma2 intercept
0.2257 0.5803 0.2448 0.1128 0.0523
s.e. 0.1011 0.0975 0.1135 0.0793 0.3648

sigma”2 estimated as 0.9398: 1log likelihood = -461.54, aic = 935.08
> fit$coef
arl ar2 mal ma2 intercept
0.22574773 0.58031755 0.24476783 0.11277715 0.05225935
> # Significance tests
> fit$coef/sqrt(diag(fit$var.coef))
arl ar2 mal ma2 intercept
2.2331375 5.9546637 2.1559896 1.4219900 0.1432622

MODEL 2

arima(x = y, order = c(1, 0, 2))

Coefficients:
arl mal ma2 intercept
0.8337 -0.3546 0.3427 0.0266
s.e. 0.0398 0.0640 0.0500 0.3185

sigma”2 estimated as 0.9828: 1log likelihood = -468.9, aic = 947.8
> fit$coef
arl mal ma2 intercept
0.83374714 -0.35456348 0.34270842 0.02662152
> # Significance tests
> fit$coef/sqrt(diag(fit$var.coef))
arl mal ma2 intercept
20.9293222 -5.5394974 6.8490803 0.0835905



MODEL 3

arima(x = y, order = c(2, 0, 1))

Coefficients:
arl ar2 mal intercept
0.1546 0.6712 0.3052 0.0653
s.e. 0.0683 0.0551 0.0863 0.3901

sigma”2 estimated as 0.9456: 1log likelihood = -462.55,

> fit$coef

arl ar2 mal intercept
0.15456221 0.67120405 0.30521334 0.06531289
> # Significance tests
> fit$coef/sqrt(diag(fit$var.coef))

arl ar2 mal intercept
2.2645952 12.1798059 3.5359801 0.1674072

MODEL 4

arima(x = y, order = c(1, 0, 1))

Coefficients:
arl mal intercept
0.9157 -0.3841 0.0703
s.e. 0.0250 0.0468 0.4104

PROBLEMS

sigma”2 estimated as 1.106: log likelihood = -488.39, aic

> fit$coef
arl mal intercept
0.91573812 -0.38408343 0.07028509
> # Significance tests
> fit$coef/sqrt(diag(fit$var.coef))
arl mal intercept
36.6959008 -8.2008448 0.1712706

5.5 Find an expression for the maximum-likelihood estimator of o2.

aic

199

= 935.1

984.79

5.6 Implement computationally the convolution algorithm for estimating
the ACF of an ARFIMA process. What numerical difficulties display this

approach?

5.7 Using (5.9) show that ¢;; ~ —7; for large j.
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5.8 Explain why the Haslett-Raftery method yields exact maximum-likelihood
estimates in the fractional noise case when M = n, where n is the sample size.

5.9 Consider the sample yi, ..., y200 from the ARMA(1,1) model

Y — dyi—1 = € — e,

where ¢; is white noise (0,02) and assume that the MLE of (¢, 0) is (0.4,0.7).
(a) Are these coefficients significative at the 5% level?
(b) Build confidence intervals for ¢ and 6 at the 95% level.
(c¢) Find the spectral density of this process.

5.10 Consider the AR(1) process y; — ¢ y;—1 = €; with Var(e;) = o2, Let
16,0%) = = log(o?) = 3 ¢2/0?
i=1 =1

the log-likelihood function where e; = y; — ¢; is the prediction error and
02 = E(y; — 9;)? its mean square error. Let y;, y2 be two observations such
that |y1| # |y2|. Find the MLE of ¢ and o2.

5.11 Let y; be a seasonal process such that y; = (1+ 0.2 B)(1 — 0.8 B'?)¢,,
where o, = 1.

(a) Find the coefficients 7; of the AR(c0) expansion of the process.

(b) Plot the theoretical ACF of y;.
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(c) Plot the theoretical PACF of this process.
(d) Find the spectral density of this process and plotted it.

5.12 Let {x;} be the seasonal process
(1-0.7B*z; = (14 —.3 Bz,

where {z:} is WN (0, 1).
(a) Find the coefficients {¢;} of the representation a; = Y27 12— ;.
(b) Find and plot the first five components of the ACF of the process
{wt}.

(c) Simulate 400 observations from this model. Plot the series and cal-
culate the ACF and PACF.

(d) Based on the previous question, estimate the parameters of the sim-
ulated series via maximum likelihood estimation.

5.13 Explain how to select an appropriate time series model based on the
following aspects:

(a) Information criteria such as AIC, BIC and others.

(b) Parsimony the model.

(c) Statistical significance of the parameters.

(d) Goodness of fit tests.

(e) Residuals whiteness testing procedures.

(f) Verification of the model assumptions, e.g. normality.

5.14 Let Y, = (y1,...,yn) be a sequence of an ARFIMA(p, d, q) process
with innovations n(0,02) and let @ be a vector containing the ARFIMA pa-
rameters.

(a) Show that

FWns1,Ynl0) = f(yn41[Y 5, 0)f (Y n|6).
(b) Verify that

Yn+1 |Y7l’ 0 ~ n(:un-‘rh V3L+10.2)7

with
n
Hnt1l = Z¢njyn+lfj7
j=1
2 _ 7(0)
n+1 o2 H;L:1(]- — ¢?]) )

where ¢;; are the partial linear regression coefficients.

5.15 Assume that the process y; is Gaussian such that

Y:(ylaayn)/NN(eaE)
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(a) Suppose that the prior distributions of 8 and ¥ are
w(0) x 1,
and
(%) o B~ HD/2,

Calculate the posterior distribution 7(8, X|Y).
(b) Verify that the likelihood function may be written as

L(0,3]Y) o ||~ (/D e=(1/2) =t s

where S(Y) = [(yi — 0:)(y; — 0;)]ij=1,...n-
(c) Suppose that ¥~! ~ Wishart,, (B!, n), that is,

ﬂ_(z—l) I |Z|—(n—2)/2e—(1/2) tr[E’lB]'

(d) Prove that the posterior distribution of @ and ¥ given Y may be
written as

1(0,3|Y) o |2+~ (/D u(BLSY)]
and therefore

0,3]Y ~ Wishart, (B + S(Y), 2n).

(e) Given that

/|Z|(1/2)q’1e’(1/2)trZCdZ — |C|*(1/2)(q+m*1)2(1/2)M(q+m*1)

x Ty, (q—i—m—l)’
2

where T',(b) is the generalized gamma function

r,b) = [p (5)}(1/2)19(17—1) ﬁ I (b+ a;p> |

a=1

with b > (p — 1)/2, show that 7(0]Y) o |S(Y)|~"/2.
5.16 Let Q = (¢;;) be a transition matrix of an arbitrary Markov chain on
the states 0,1,...,5 and let a;; be given by
Sij
14 i
45

Qi =
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where m; > 0,7i=0,...,5, > m =1 and s;; is a symmetric function of ¢ and
J chosen such that 0 < a;; <1 for all 7, 5.

Consider the Markov chain on the states 0,1,...,.5 with transition matrix
P given by

Pij = Qij Qg
for i # j and
pi =1— Zpij-
i
(a) Show that the matrix P is in fact a transition matrix.
(b) Prove that P satisfies the reversibility condition that

TiPij = T;Pjis
for all ¢ and j.

(c) Verity that m = (mg,...,ns) is the unique stationary distribution of
P, that is,

T =mnP.

5.17 Consider the following two choices of the function s;; on the method
discussed in Problem 5.16:

14 Tiqi5 if Tiqi5 <1,
u Tj4ji Tj4ji
Sij = S .
14 M9 g T g
Tidij Tjdji
and the alternative choice
sB=1.

)

(a) Show that both choices satisfy the condition 1 < a;; < 1.

(b) Suppose that the matrix @ is symmetric and consider the sampling
scheme

gt — Jj  with probability oy;,
17 @ with probability 1 — a;;.

Verify that if m; = m;, then P(xy11 = j) = 1 for the Metropolis
algorithm and P(z:41 = j) = 1 for Barker’s method.

(c) According to part (b), which method is preferable?

(d) Consider the choice

Tils sl
i = i { T2 T ),
Tiq5i Tidij
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where the function g(z) is symmetric and satisfies 0 < g(x) < 1+ z.
Verify that for this choice, the condition 0 < a;; < 1 holds.

(e) Consider the particular choice g(z) = 1 + 2(z/2)” for a constant
v > 1. Prove that s%f is obtained with v = 1 and sfj is obtained
with v = oo.

5.18 Consider the following Poisson sampling with

A

T, =€ -
7!

fort=0,1,..., and
doo = qo1 = %7
and
qij =%, for j=i—1,i+1,i#0.
(a) Show that in this case
A

i+1 with probability { 41 2 =¢FD
1 if A >i+1,

Tty1 =

i—1 with probability { N
1

~

it \ <4,
if A > i

(b) What is the disadvantage of this method when A is large?
5.19 Show that for an ARFIMA(1,d,0) model,

corr(@ ) Y5,

0
as ¢ — 0.

5.20 Show that for an ARFIMA(0, d, 1) model,
RV

COI‘I‘(J, ) — ——,
T

as 6 — 0.

5.21 Let {y:: t € Z} be a stationary process with spectral density f(A) and
let Y = (y1,92,...,yn) ~ N(0,Tp,) where the elements of the n x n variance-
covariance matrix Ty, = (T;;) are given by

Ti= | FO)P=Dgn,
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Consider the function
1 1
L,(0) = —logdet Ty + —Y'T, Y.
n n

(a) Prove that
E[L,(00)] = 1+ logdet Tp,.

(b) Show that

Jim E[Ln(60)] = log(2m) + % /Tr log f(X) dA.

(c) Verify that

lim E[L£,(00)] =1+ logo?.

n—roo
(d) Verity that

Var[L,,(6p)] = %,

and prove that £, () converges to 1 + logo? in probability as n
tends to infinity.






CHAPTER 6

NONLINEAR TIME SERIES

As discussed in previous chapters, linear processes are excellent tools for ana-
lyzing a great number of time series. However, they usually fail to adequately
model more complicated dependence structures. For example, many real-life
time series display almost no autocorrelations but exhibit strong dependence
in their squares. To deal with these situations, several classes of nonlinear pro-
cesses are available. Additionally, a number of testing procedures for linearity
have been developed to help making a decision whether to employ a linear or
a nonlinear approach. If linearity is not rejected through these procedures,
then we could use some of the linear processes discussed in the previous chap-
ters to fit the data. On the contrary, if linearity is rejected, then we could
try out some of the nonlinear models discussed in this chapter. Even though
nonlinear time series appear in many fields, they are commonly found in the
analysis of financial instruments. Financial time series such as returns from
stocks indexes exhibit almost null autocorrelation but they display an impor-
tant level of dependence in their squared returns. This chapter begins defining
a large class of nonlinear processes and the proceed to review some linearity
testing procedures. It also discusses financial time series, an important area
of applications for these models.

Time Series Analysis. First Edition. Wilfredo Palma. 209
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6.1 INTRODUCTION

A stationary process with mean g can be written in terms of a Volterra ex-
pansion

(oo} oo oo
ye=pt Y st Y, YiaiEi g+ Y, VukEi€i Skt

j=—o00 ij=—o00 i,j,k=—00

where 1;, V5, ijk, . .. are unknown coefficients and {e,} is a sequence of i.i.d.
random variables with zero-mean and variance ¢2. The values v;, Vij, Yijk
are commonly referred to as linear, quadratic, cubic coefficients, respectively.

Note that when the terms 1);;, i and so on are all equal to zero, y:
reduces to a linear process. On the other hand, if the coefficients ;5 and
higher are all zero, but v;; are non zero, the resulting process can be written
as,

o oo
Yt = 1+ Z Vi €p—i + Z Vij Et—i€t—j-
Jj=—00 1,j=—00

A simple example of a quadratic process is y; = &; + 0ge4_1 where g; is
a sequence of i.i.d. random variables with zero-mean and variance o2. Note

Series

0 50 100 150 200 250 300

Time

ACF

02 00 02 04 06 08 1.0
L L L L L L

Lag

Figure 6.1 Simulated quadratic process with 6 = 0.7. (a) Series of 300
observations. (b) Sample ACF .
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that in this case, F y; = 0 and the autocovariance function is

[ o*(1+0%0?) if h=0
7(0)_{ 0 if h#0.

Thus, this quadratic process actually corresponds to a white noise sequence.
A simulated sample of 300 observations from this process with § = 0.7 and
02 =1 is exhibited in Figure 6.1 along with its empirical ACF.

6.2 TESTING FOR LINEARITY

There are several procedures for testing linearity of a stationary time series.
For simplicity, in this section we consider a methodology based on regressing
the observations on their previous values and then computing the resulting
residuals.

Consider regressing the observation y; on 1,91, yt—2,...,Yt—p for t =p+
1,...,n where p is a previously specified autoregression order and obtain the
residuals epi1,...,e,. Let Se = Z;;p-i-l e? be the sum of squared residuals.
Next, regress the squared process y7 on 1,y;:—1,Yt—2,...,Yt—p for t = p +
1,...,n obtaining the residuals ,41,...,&n-

Finally, regress ep11,...,en o0 &ppn, ..., &n

er = B& +m,
obtaining the regression coefficient E and the residual sum of squares S¢ =
Z?:p 41 ¢2. Thus, one can test for linearity by means of the statistic

po PScn—2p-2)
Se — B25¢

(6.1)

The distribution of this statistic is approximately Fisher with 1 and n—2p—2
degrees of freedom. As an illustration of the application of the this nonlinear-
ity test consider the quadratic time series presented in the previous section.
The R library nlts provides an implementation of this testing procedure gen-
erating the following output:

order F df1 df2 P
1.0000 4.9697 1.0000 297.0000 0.0265

order F df1 df2 P
2.000 20.333 3.0000 294.0000 0.0000

order F df1 df2 P
3.0000 12.1295 6.0000 290.0000  0.0000
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order F df1 df2 P
4.0000 8.1241 10.0000 285.0000  0.0000

order F df1 df2 P
5.0000 5.9962 15.0000 279.0000  0.0000

Based on these results, the linearity hypothesis is rejected at the 5% sig-
nificance level for all the orders considered. Furthermore, this R library also
offers a procedure for estimating the appropriate order. As indicated in the
following output, the program suggests that p = 3 is an adequate order for
the testing procedure.

The estimated order is 3 with a cross-validation error of 0.81
and Gaussian bandwidth 3 (using local polynomial with 2 degrees).

order cv.min bw.opt df GCV.min GCV.bw.opt GCV.df
1 1 1.0395 10 3.6213 0.96016 1.2 8.9953
2 2 0.8823 5 11.3163 0.79636 2.0 20.8732
3 3 0.8101 3 37.8311 0.75289 3.0 30.7917
4 4 0.8721 4 49.6511 0.77349 4.0 38.8586
5 5 0.9175 10 35.2700 0.81368 5.0 46.5358

6.3 HETEROSKEDASTIC DATA

Time series of returns from financial instruments usually exhibit nonlinear-
ities. There is strong empirical evidence that a large number of time series
from finance and economics show some stylized facts such as clusters of highly
variable observations followed by clusters of observations with low variability
and strong autocorrelations either in the series or its squares. In this chapter
we examine some of the models proposed to account for these features. In par-
ticular, we consider heteroskedastic time series models where the conditional
variance given the past is no longer constant.

As an illustration of the stylized facts frequently found in economic time
series, consider the daily log-returns of the SP500 stock index discussed in
Chapter 1. This dataset spans from January 1, 1950 to May 1, 2014. As
shown in Figure 6.2 displays periods of low levels of volatility followed by
periods of higher volatility. Additionally, it can be observed the presence of
specific dates with exceptionally high variability. On the other hand, Figure
6.3 shows that the returns exhibit a lower level of autocorrelation as compared
to the squared returns.

Another illustration of the stylized facts is provided by the daily log-returns
of the copper prices from January 4, 2005 to December 31, 2014. These prices
are expressed in terms of USD cents per pound at the London Metal Exchange.
The series {r;} is displayed in panel (a) of Figure 6.4 while its squares are
shown in panel (b).
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From Figure 6.4(a) we note a period of high volatility during 2008-2009.
Besides, Figure 6.4(b) suggests that the squared series suffers from bursts
of high volatility followed by periods of low volatility. On the other hand,
the sample autocorrelation function, Figure 6.5(a), shows some significant
autocorrelations in the returns while the sample autocorrelation of the squares
exhibits a strong level of dependence; see Figure 6.5(b).

Several models have been proposed to account for these features. Most of
these models specify an ARMA or an ARFIMA process for the returns and
specify some parametric model for the conditional variance of the series given
its infinite past. In some cases this model resembles an ARMA in the form of
a generalized autoregressive conditionally heteroskedastic (GARCH) process
or it resembles an AR (oc0) process in the form of an ARCH(co) model.

6.4 ARCH MODELS

An ARCH(1) process is defined by the discrete-time equation

Y¢ = Oy, (6.2)

‘7? = 0‘0+0é1yt271» (6.3)

where 02 = E[y?|y;—1] is the conditional variance of the process {y;}, the
ARCH coefficients g,y are positive, a; < 1 and {¢} is sequence of in-
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Figure 6.2  SP500 Index data (1950-2014). (a) Daily log-returns. (b) Squared
daily log-returns.
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Figure 6.3  SP500 Index data (1950-2014). (a) Sample ACF of daily log-returns.
(b) Sample ACF of squared daily log-returns.

dependent and identically distributed zero-mean and unit variance random
variables. Although &; is often assumed to be Gaussian, in some cases it may
be specified by a t-distribution or a double exponential distribution, among
others. These distributions have a greater flexibility to accommodate a pos-
sible heavy tail behavior of some financial time series.

Observe that Ey? = Eo?e?. Given that o, only depend on past values of
the sequence {e;}, o and ¢; are independent. Consequently,

Ey} =FEo}Ee} = Ea}.

Thus,
Eyf =g+ o Eyf_l.

In order to be stationary, Fy? = Ey? ,, so that by replacing this condition

in the equation above and considering that a; < 1 we get
2 o

By =1

As an illustration, Figure 6.6 shows 400 observations of an ARCH(1) model

with parameter a; = 0.9 Additionally, Figure 6.7 exhibits the sample ACF of

this series along with the sample ACF of its squares. Note that the series shows

almost no autocorrelation but its squares display a high level of dependence.
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This situation is due to the dependence structure of the squares of an ARCH
process. In what follows we show that y? corresponds to an AR(1) process.
Let us define the sequence vy = y? — 02. Thus, we can write y? = ag +
2 2 2 _ 2
oy;_q + vi. If o denotes the mean of y7, then y; — p = a1 (y;_y — @) + 14
But v, is a white noise sequence. To see this, Ev, = Ey? — Eo? = 0.

Besides, this process is uncorrelated since for h > 0 we have
2 2y 2 2
Evyin = Eop(1—e;)op, (1 —eppp).

Given that both Uf and 0.4y depend only values €441, €t4n—2,..., We cOn-
clude that
Eviwiyy = Eo?(1 — Ef)af+h EQ1- E?Jrh) =0.

Based on the previous results, the process y? satisfies an AR(1) model with
autoregressive parameter o;.

The ARCH(1) model can be readily extended to encompass a dependence
of the conditional variance o7 on higher lags. The ARCH(r) process is defined
by the discrete-time equation

Yt = Ot&, (6-4)

Ut2 = oo+ alytz—l +eee aryir- (6.5

In this case, the stationarity condition becomes

o+ ap <1,

(@
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Figure 6.4  Copper price data (2005-2014): (a) Daily log-returns and (b) squared
log-returns.
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Figure 6.5 Sample autocorrelation function of the copper price data: (a) ACF of
daily log-returns and (b) ACF of squared log-returns.

so that the variance of y; is now given by

&)

Ey? =
Yt 1—a?—

e 2
Qg

Analogously to the ARCH(1) model, it can be readily shown that the squares
of an ARCH(r) process y? satisfies the AR(r) model

2

vi—pn=ai(ypg — )+ ar(yi, — 1)+

6.5 GARCH MODELS

A further extension of the ARCH models is the generalized autoregressive
conditionally heteroskedastic GARCH(r, s) process is given by

Yt
0} = aptoyig o tayi, +Bot e+ Boiy,

OtEt,

where 02 = E[y?|y:—1,V:_2,...] is the conditional variance of the process
{yt}, the GARCH coefficients ag,a1,...,a, and f31,..., ;s are positive and
{€+} is sequence of independent and identically distributed zero-mean and unit
variance random variables. In order to be stationary, the coefficients of the
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Figure 6.6  Simulated ARCH(1) process with a1 = 0.9. (a) Series of 400
observations. (b) Squared series.
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GARCH process must satisfy a3 + -+ + o, + 81 + -+ + s < 1. Under this
condition, the variance of the process can be written as

Qo

Vary? = .
b l—al - a2 B - 32

It has been observed in practice that the returns of a financial instrument
may display a low level of autocorrelation and that the squared returns exhibit
strong dependence. This empirical finding is usually reflected in the fact that
the estimated parameters satisfy

O R /AL ISR L END B

indicating a near nonstationary behavior of the process due to a high level of
autocorrelation of the squared returns.

In order to account for these phenomena, the GARCH models can be ex-
tended in two directions: introducing an ARMA or ARFIMA structure to
model the autocorrelation of the returns and allowing a strong level of de-
pendence in the squared returns by incorporating, for example, integrated
GARCH processes. We begin the revision of these extension by defining the
ARFIMA-GARCH models in the next section.

6.6 ARFIMA-GARCH MODELS

An ARFIMA(p,d, q)-GARCH(r, s) process is defined by the discrete-time
equation

¢(B)ye = 0(B)(1—B) %, (6.6)
Et = €0y, 6.7
T S
ol = ap+ Z ozjsf_j + Z Bjof_j, (6.8)
j=1 j=1
where o} = t—1,Yt—2, - . .| 1s the conditional variance of the process {v; ;,
here 07 = E[y7|yi-1,y is the conditional vari f the p y

the GARCH coefficients «aq,...,a, and f1,...,3s are positive, 22:1 o +
Z§=1 B; <1, and {e;} is sequence of independent and identically distributed
zero-mean and unit variance random variables. Note that ¢; is assumed to
be Gaussian, but in some cases it may be specified by a t-distribution or
a double exponential distribution, among others. These distributions have
a greater flexibility to accommodate a possible heavy tail behavior of some
financial time series.
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B EXAMPLE 6.1

In order to explore the structure of the model described by (6.6)—(6.8),
consider the ARFIMA (p, d, q¢)-GARCH(1, 1) process:

oo
Yyt = E %‘Et—j,
j=0

€t = €Oy,

of = ag+anei_y +fioj_y,

where 1(B) = ¢(B)~'0(B)(1 — B)~¢ and ¢ follows a standard normal
distribution. Thus, we may write

op = ao+ (a6 + Bi)o}y,
n n—1k+1
= [H(alef_k—&—ﬁl) or .+ 1—|—Z H(Oé16t2_j + f1)
k=1 k=0 j=1

Define the random variable z, = > ,_, log(ai€?_, + (1) and let 7, =
2n/n. By the strong law of the large numbers, v,, — E[log(a;€3 + (1]
almost surely as n — oo. This limit is called the top Lyapunov exponent
of the process, 7.

If v < 0, then we may write

oo k+1
o = ap 1+ZH(0¢1€§_J»+51) . (6.9)

k=0 j=1

Consequently, the process y; may be expressed as

0o oo k+1 1/2
ye=vaoy e [1+ D [[(eaed ;5 +51)
§=0 k=0 i=1

Thus, since {y; } corresponds to a transformation of the independent and
identically distributed sequence {e;} the process {y;} is stationary. This
result can be readily extended to the general model ARFIMA(p,d, q)-
GARCH(r, s).

Observe that the conditional variance o2 specified by a GARCH(r, s) pro-
cess may be expressed as an ARMA(p,r) model with p = max{r, s} as fol-
lows. Let u; = o2(¢? — 1). This sequence is white noise, since Efus] = 0,

E?] = Elo}(e2 —1)?] = E[o}] E[(¢2 — 1)?], and for k > 0 we have

Elusueqr] = E[E(uussr| Fran—1)] = Elugof,y E(efy, — 1)] =0.
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Thus, o7 may be written as

(1 - )\18 — )\1,,Bp)0't2 =g + Zajut_j,
J=1

where \; = o144, 1 (5) + Bilg,.. 1 (5)-
An approximate MLE 6 for the ARFIMA-GARCH model is obtained by
maximizing the conditional log-likelihood

1 e
=—— E logo? + t} . (6.10)
2n [ t 2

Let § = (01, 062)', where 01 = (¢1,...,¢p,61,...,04,d) is the parameter vector
involving the ARFIMA components and 0y = (ag, ..., B1,...,0s)" is the
parameter vector containing the GARCH component The following result
establishes some asymptotic properties of this estimate: Let 0 be the value
that maximizes the conditional log-likelihood function (6.10). Then, under
some regularity conditions, 8, is a consistent estimate and \/ﬁ(gn —6p) —
N(0,Q71), as n — oo, where Q = diag(Q,Q2) with

|: 1 85t 8€t 1 60'? 80',52:|
Ql = 9

o2 06, 00, " 207 06, 90,

and

2
QQZE|: 1 80’t80't:|.

20F 90 00,

At this point, it is necessary to introduce the concept of intermediate mem-
ory which will be used in the next section. We say that a second-order sta-
tionary process has intermediate memory if for a large lag h its ACF behaves
like (k) ~ £(h)|h|?¢~1 with d < 0, where £(-) is a slowly varying function.
Thus, the ACF decays to zero at an hyperbolic rate but it is summable, that
is,

Zlv )| < 0.

6.7 ARCH(co) MODELS

Given that the squares of many financial series have similar or greater level
of autocorrelation than their returns, the memory reduction that affects the
squares of an ARFIMA-GARCH process may not be adequate in practice.
This circumstance leads us to explore other classes of processes to model the



ARCH(00) MODELS 221

strong dependence of the squared returns directly. As an important example
of this approach, consider the following ARCH(co) model:

Yt = Ot€y, (6.11)

o? g + Z ozjyf,j7 (6.12)
j=1

where {€;:} is a sequence of independent and identically distributed random
variables with zero-mean and unit variance, g is a positive constant, and
aj > 0 for j > 1. This model can be formally written as

oo
Y2 =+ v + Z ozjy?,j7 (6.13)
j=1
where 02 = E[y?|ys—1,Vt_2,-..], vt = y? — o2 is a white noise sequence.
If E[e3 Z;io a;] < 1, then the conditional variance may be written in terms

of a Volterra expansion
o0 oo
2 P . . DY . 2 2 PR 2
o; = g E E Qjy Uy QU € €5 s (6.14)
k=07j1,...Jk=1
and the process {y;} may be expressed as

1/2

oo o0
j— . . “ e . 2 2 ... 2
Yt =€ | Qo Qg Qg * Qg € €y """ €

k=0 j1,...5k=1

In particular, when the coefficients {a;} in (6.13) are specified by an
ARFIMA (p, d, q) model, the resulting expression defines the FIGARCH(p, d, q)
model. If 7(B) = ¢(B)(1 — B)40(B)~!, then from (6.13) we get

m(B)y? = ag + vt
Therefore, by multiplying both sides by 8(B) we conclude that
¢(B)(1 - B)%y} = w+0(B)w,

where w = 0(B)ag. This process is strictly stationary and ergodic but not
second-order stationary. On the other hand, writing this model in terms of
the conditional variance as in (6.12) we have

o = ag+ [1 —7m(B)]yi. (6.15)

From (6.11) we may write log(y?) = log(c?) + 2log(|e|). Thus, by con-
sidering log(y?) as the observed returns, it may seem natural to attempt to
specify a long-memory model directly to the term log(c?) instead of o7. An
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advantage of this formulation is that log(c?) is allowed to be negative. There-
fore, unlike the FIGARCH model, no additional conditions on the parameters
are needed to ensure the positivity of 2.

An example of this type of processes is the fractionally integrated exponen-
tial GARCH (FIEGARCH) model specified by

¢(B)(1 — B)"log(07) = a + 0(B)er—1| + A(B)er—1, (6.16)

where ¢(B) =1+ ¢1 B+ -+ ¢,BP, a € R, §(B) =61 + -+ 0,B771, and

the polynomial A(B) = Ay +---+\,B7! accounts for the leverage effect, that

is, conditional variances may react distinctly to negative or positive shocks.
Consider the quasi-log-likelihood function

n

1 1 5 €2
L(0) = 5 log(27) 5 ; {logat + af] , (6.17)

where 8 = (w,d,¢1,...,¢Pp,,01,...,04). A QMLE 0, can be obtained by

maximizing (6.17).

6.8 APARCH MODELS

Another model that incorporates asymmetry in the conditional variance is
the so-called asymmetric power autoregressive conditionally heteroskedastic
APARCH(r, s) process defined by

Y = O&g,
r S

o) = ag+ Z i (|Ye—i| — Yive—s)® + Zﬂjaffj'
i=1 j=1

Notice that this model corresponds to an ARCH(r) process if 6 = 2, ~; for
t=1,...,rand §; =0for j =1,...,s. On the other hand, it isa GARCH(r, s)
process if 6 =2 and «; fori =1,...,7.

6.9 STOCHASTIC VOLATILITY

A stochastic volatility (SV) process is defined by the equations

Tt = Ot (6.18)
o = oexp(v/2), (6.19)

where {¢;} is an independent and identically distributed sequence with zero-
mean and unit variance, and {v;} is a stationary process independent of {e;}.
In particular, {v;} may be specified as a long-memory ARFIMA(p, d, q) pro-
cess. The resulting process is called long-memory stochastic volatility (LMSV)
model.
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From (6.18), we may write

log(r?) = log(o?) + log(e?),
log(02) = log(0?) +vi.

Let y; = log(r?), p = log(0?) + Elog(¢?)] and &; = log(e?) — E[log(¢?)].
Then,

Yo = p+ v + e (6.20)

Consequently, the transformed process {y;} corresponds to a stationary long-
memory process plus an additive noise. The ACF of (6.20) is given by

Yy (h) = (k) + 0280(h),

where 6g(h) = 1 for h = 0 and dg(h) = 0 otherwise. Furthermore, the spectral
density of {y;}, fy, is given by

2
O¢

f:ll(>‘) = fv()‘) + %7

where f, is the spectral density of the long-memory process {v;}.
In particular, if the process {v;} is an ARFIMA(p, d, q) model

#(B)vy = 6(B)(1 — B) ", (6.21)

and 0 = (d,02,02,41,...,¢p,01,...,0,)" is the parameter vector that specifies

model (6.21), then the spectral density is given by

o2 0 ei>\ 2 o2
e
w1 PR 2

The parameter 6 can be estimated by minimizing the spectral likelihood

2r A 1(%))
(o) = ;; [mg o) + 3 (6.22)

Let 6 be the value that minimizes L(0) over the parameter space ®. This
estimator satisfies the following result: Assume that the parameter vector 6
is an element of the compact parameter space @ and assume that fg, = fo,
implies that 6; = 65. Let 6y be the true parameter value. Then, é\n — 6y in
probability as n — oo.

6.10 NUMERICAL EXPERIMENTS

The finite sample performance of the quasi maximum likelihood estimates
based on the spectral-likelihood (6.22) is studied in this section by means of
several Monte Carlo simulations.
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Table 6.1  Estimation of Long-Memory Stochastic Volatility Models

~ o~

d d G, SD(d) SD(5,)
0.15 0.1453300 4.9880340 0.03209314 0.14602178
0.30 0.3058552 5.0067196 0.02877496 0.13827396
0.45 0.4606728 5.0364215 0.02695866 0.12792891

Table 6.2 Estimation of AR Stochastic Volatility Models

o~ ~

¢ ¢ Ty SD(¢) SD(ay)
0.30 0.2965264 4.8788172 0.03762665 0.13678478
0.50 0.4892303 4.6579548 0.03076769 0.14218190
0.70 0.6808834 4.2779151 0.02269855 0.17127041

Table 6.3 Estimation of MA Stochastic Volatility Models

~ ~

0 0 G, SD(6) SD(5,)

-0.30 -0.2966484 5.0985024 0.03354726 0.14166745
0.30 0.2883408 5.0785268 0.03571493 0.14252039
0.60 0.5396505 5.4969348 0.03396586 0.16060363

The models investigated are the LMSV with an ARFIMA(0,d,0) serial
dependence structure, an AR(1) process and a MA(1) model. These processes
have noise standard deviation o, = 7/ V2 where ¢; follows a standard normal
distribution, o, = 5, and the sample size is n = 400. Observe that ¢; =
log e? — E[log €7]. Thus, given that ¢, ~ N(0,1) we have that Var(e;) = 72 /2.

The results displayed in Table 6.1 for the LMSV model, Table 6.2 for the
AR(1) process and Table 6.3 for the MA(1) model correspond to the quasi
maximum likelihood estimates for different values of the parameters. All the
reported results are based on 1000 replications.

From these three tables, observe that the estimates of the long-memory
parameter d, ¢, 6 and the scale parameter o, are close to their true values.
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6.11 DATA APPLICATIONS

6.11.1 SP500 Data

The R library fGarch allows the fitting of GARCH models. As an illustration,
the following output corresponds to the modeling of the SP500 data. The
model was selected by taking into account the AIC, the significance of the
parameters and the residuals diagnostics. The selected model corresponds to
an AR(2) + GARCH(1, 1) process. From the output, note that the sum of the
estimates a; and B is 0.9937, that is, very close to the stationarity boundary,
anticipated in Section 3 about the stylized facts in financial time series.

Title:
GARCH Modeling

Call:
garchFit (formula = “arma(2, 0) + garch(l, 1), data = z,
include.mean = FALSE, trace = FALSE)

Mean and Variance Equation:
data ~ arma(2, 0) + garch(1l, 1)

Conditional Distribution:
norm

Coefficient(s):
arl ar2 omega alphail betal
1.0405e-01 -2.3687e-02 7.7258e-07 8.1200e-02 9.1282e-01

Std. Errors:
based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|tl)
aril 1.040e-01 8.510e-03  12.226 < 2e-16 *x**
ar2 -2.369e-02 8.371e-03 -2.829 0.00466 **
omega 7.726e-07 9.577e-08 8.067 6.66e-16 **x
alphal 8.120e-02 4.225e-03 19.219 < 2e-16 *xx*
betal 9.128e-01  4.448e-03 205.207 < 2e-16 **x

Signif. codes: O ’xxx’ 0.001 ’xx’ 0.01 ’x> 0.05 ’.” 0.1’ ’ 1

Log Likelihood:
54827 .28 normalized: 3.404787
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Standardised Residuals Tests:

Jarque-Bera Test
Shapiro-Wilk Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
LM Arch Test

DWW DD DD

N NN

Chi~2
W
Q(10)
Q(15)
Q(20)
Q(10)
Q(15)
Q(20)
TR"2

Statistic p-Value
13289.56

NA

13.
.61137
.62202
.54757
.55958
.53524
.63158

17
22
16
19
23
17

Information Criterion Statistics:

AIC BIC

SIC

16941

HQIC

-6.808952 -6.806566 -6.808952 -6.808163

6.11.2 Gold Data

0

NA
.2143535
.2836476
.3077331
.08499406
.1894863
.2632833
.1273434

O O O O O O o

This section study the monthly gold prices for the period starting on January
1978 through September 2014. These prices correspond to US dollars per troy
Oz. are exhibited in Figure 6.8. From this plot, notice the sharp rise of the
prices around 2000. The log returns are displayed in Figure 6.9 while the
squared returns are exhibited in Figure 6.10. In order to account for serial
dependence of returns and squared returns, a class of ARMA-GARCH model
is proposed for these monthly data.

The R package fGarch allows to fit these models. The selected model has
ARMA(1, 1) dependence structure for the returns and a GARCH(1, 1) depen-
dence structure for the conditional variances. Notice that all the parameters
are statistically significant at the 5% level.

Title:
GARCH Modeling

Call:

garchFit(formula = “arma(l, 1) + garch(l, 1), data = z, trace = FALSE)

Mean and Variance Equation:

data ~ arma(l, 1) + garch(l, 1)

[data = z]

Conditional Distribution:

norm

Coefficient(s):

mu arl
2.1486e-03 -4.8625e-01

mal
7.0064e-01

omega alphal betal

7.6059e-05 1.8437e-01 7.8914e-01
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Figure 6.8  Gold monthly prices, January 1978 to September 2014, US Dollars
per Troy Oz.
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Figure 6.9  Gold monthly log returns, January 1978 to September 2014.
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Figure 6.10  Gold squared log returns, January 1978 to September 201.
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Figure 6.11  Gold monthly log returns. (a) Sample ACF of y:. (b) Sample ACF

of yi
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Std. Errors:
based on Hessian

Error Analysis:
Estimate Std. Error t value Pr(>ltl)

mu 2.149e-03  2.849e-03 0.754 0.45081

arl -4.863e-01 1.718e-01  -2.830 0.00466 *x*

mal 7.006e-01  1.399e-01 5.008 5.5e-07 *xx

omega 7.606e-05 3.556e-05 2.139 0.03245 =*

alphal 1.844e-01 4.817e-02 3.827 0.00013 *x*x

betal 7.891e-01 4.787e-02 16.486 < 2e-16 **x

Signif. codes: O ’*xx’ 0.001 ’**’ 0.01 ’%’ 0.05 ’.” 0.1’ ’ 1

Log Likelihood:
797.8381 normalized: 1.813269

Description:
Mon Feb 9 00:17:39 2015 by user:

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi~2 104.7054 O
Shapiro-Wilk Test R W 0.9744005 5.552453e-07
Ljung-Box Test R Q(10) 13.33065 0.2057678
Ljung-Box Test R Q(15) 23.08554 0.08234047
Ljung-Box Test R Q(20) 25.57881 0.1801772
Ljung-Box Test R"2 Q(10) 15.77544 0.1062436
Ljung-Box Test R"2 Q(15) 18.89253 0.2186455
Ljung-Box Test R™2 Q(20) 20.06762 0.4537067
LM Arch Test R TR"2 18.7434 0.09491198

Information Criterion Statistics:
AIC BIC SIC HQIC
-3.599264 -3.543536 -3.599630 -3.577279

On the other hand, Figure 6.12 displays the sample ACF of the stan-
dardized residuals as well as the squared standardized residuals. Notice that
the serial dependence is not statistical significant at the 5% level, cf. with
the Ljung -Box test for the standardized residual with p-value of 0.082 and
the corresponding test for the squared standardized residuals with p-value of
0.1062 both considering 10 lags. Similar results are found when considering
20 lags.

Figure 6.13 reports two year ahead monthly forecasts and 95% predictions
bands while a zoom to the last 40 predictions and prediction bands are dis-
played in Figure 6.14.
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Figure 6.12  Gold monthly log returns fitted ARMA-GARCH model. (a) Sample
ACF of standardized residuals. (b) Sample ACF of squared standardized residuals.
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Figure 6.13  Gold monthly log returns ARMA-GARCH model: Data and two year
ahead monthly forecasts and 95% prediction bands.
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0.05 0.10
I 1

Prediction Bands
0.00
Il

-0.05

-0.10

T T T T
5 10 15 20

Time
Figure 6.14  Gold monthly log returns fitted ARMA-GARCH model: Two year
ahead monthly forecasts and 95% prediction bands.

6.11.3 Copper Data

The following example examines the daily evolution of copper prices for the
ten year period from January 4, 2005 to December 31, 2014. These prices,
expressed in terms of USD cents per pound, are plotted in Figure 6.15 while
the corresponding log returns are exhibited in Figure 6.16. Furthermore,
the evolution of the squared returns are displayed fin Figure 6.17. From
these plots, notice the big drop in copper prices by the end of 2008 and
their recovery starting in 2009. These big fluctuations are well represented
in Figure 6.17 showing the high volatility around that period. On the other
hand, the autocorrelation structure of the returns and the squared returns are
exhibited in Figure 6.18.

As in the previous case of the gold data, here we use the R package fGarch to
fit a family of ARMA-GARCH or ARMA-APARCH models to these daily cop-
per prices data. We have fitted both types of models to the data to see whether
a asymmetry is detected in this case. The selected models have ARMA(1,0)
dependence structure for the returns and a GARCH(1,1) or APARCH(1,1)
dependence structure for the conditional variances.

From the outputs shown below, notice that leverage of the ARMA(1,0)-
APARCH(1,1) model is statically significant at the 5% level.



232 NONLINEAR TIME SERIES
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Figure 6.15  Daily copper price, January 4, 2005 to December 31, 2014. Nominal
USD cents per pound.
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Figure 6.16  Daily copper log returns, January 4, 2005 to December 31, 2014.
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Figure 6.17  Daily copper squared log returns, January 4, 2005 to December 31,
2014.
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Figure 6.18 Sample ACF. (a) Daily log returns, (b) Squared returns.
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Model without Leverage

Title:
GARCH Modeling

Call:
garchFit (formula
trace = FALSE)

~arma(l, 0) + garch(l, 1), data = z,

Mean and Variance Equation:
data ~ arma(l, 0) + garch(1l, 1)

[data = z]

Conditional Distribution:

norm

Coefficient(s):
mu

Std. Errors:

based on Hessian

Error Analysis:

Estimate
mu 2.587e-04
arl -6.776e-02

omega  1.998e-06
alphal 7.397e-02
betal 9.214e-01

Signif. codes: O ’*%%’ 0.001 ’x*x*’

Log Likelihood:

6857.303 normalized:

arl
2.5867e-04 -6.7762e-02

1.9980e-06

Std. Error
2.727e-04
2.065e-02
6.868e-07
9.505e-03
9.717e-03

omega

alphal betal

7.3973e-02  9.2140e-01

t value Pr(>lt|)
0.948 0.34288
-3.282 0.00103 *x*
2.909 0.00362 *x*
7.782 7.11e-15 **x
94.823 < 2e-16 *x*

2.71684

Standardised Residuals Tests:

Jarque-Bera Test
Shapiro-Wilk Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test
Ljung-Box Test

LM Arch Test

R
R
R
R
R

R"2
R72
R"2
R

Chi~2
W
Q(10)
Q(15)
Q(20)
Q(10)
Q(15)
Q(20)
TR"2

0.01 ’x> 0.05 >.” 0.1 ’ 1
Statistic p-Value
89.50048 0
0.994573 5.239038e-08
19.83763 0.03082641
22.152 0.1038799
28.05984 0.1079903
7.296483 0.69719
9.462268 0.8521343
15.32643 0.7574342
8.271934 0.763535

Information Criterion Statistics:
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AIC BIC SIC HQIC
-5.429717 -5.418161 -5.429725 -5.425524

Model with Leverage

Title:
GARCH Modeling

Call:
garchFit(formula = “arma(l, 0) + aparch(l, 1), data = z,
trace = FALSE)

Mean and Variance Equation:
data ~ arma(l, 0) + aparch(l, 1)
[data = z]

Conditional Distribution:
norm

Coefficient(s):
mu arl omega alphal
7.3223e-05 -6.6990e-02 1.5967e-06 6.7513e-02

gammal betal delta
1.3569e-01  9.2796e-01  2.0000e+00

Std. Errors:
based on Hessian

Error Analysis:
Estimate Std. Error t value Pr(>lt])
mu 7.322e-05 2.767e-04 0.265 0.79131

arl -6.699e-02  2.072e-02 -3.234 0.00122 *x

omega 1.597e-06  7.891e-07 2.023 0.04302 *

alphal 6.751e-02  1.234e-02 5.471 4.47e-08 *x**

gammal 1.357e-01  5.034e-02 2.696 0.00702 *x*

betal 9.280e-01  9.239e-03 100.435 < 2e-16 ***

delta  2.000e+00 4.080e-01 4.902 9.47e-07 *xx

Signif. codes: O ’x%%’ 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > ’ 1

Log Likelihood:
6862.59 normalized: 2.718934

Standardised Residuals Tests:
Statistic p-Value
Jarque-Bera Test R Chi~2 69.49289 7.771561e-16
Shapiro-Wilk Test R W 0.9954016 4.959389e-07
Ljung-Box Test R Q(10) 19.53039 0.03402065
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Ljung-Box Test R Q(15) 21.81076 0.1128628
Ljung-Box Test R Q(20) 27.66829 0.1174872
Ljung-Box Test R"2 Q(10) 7.915388 0.6371015
Ljung-Box Test R"2 Q(15) 10.32527 0.7987958
Ljung-Box Test R"2 Q(20) 17.38353 0.6279475
LM Arch Test R TR™2  9.140525 0.6908832

Information Criterion Statistics:
AIC BIC SIC HQIC
-5.432322 -5.416143 -5.432337 -5.426451

6.12 VALUE AT RISK

A usual criticism of variance or conditional variance as measures of financial
risk is that they do not discriminate whether the return is positive or negative.
Of course, for the investor the sign of the return makes a big difference. As a
consequence, other methods for assessing investment risk have been developed.
One of these techniques is the Value at Risk, denoted as VaR hereafter. This
concept tries to measure the amount of capital that one investor can loose
when exposed to a financial instrument. Let z, be the value satisfying the
equation

P(yt < ZOé) = Q,

where « is the probability of the left tail of the return distribution. Based on
this expression, the Value at Risk of a financial instrument is given by

VaR = C z, 0y,

where C is the invested capital and o; is the conditional standard deviation
at time t.

When we are interested in evaluating the Value at Risk at a h-step horizon,
the return of the financial instrument is given by

yelhl = ye1 + Yea2 + -+ Yo
Consequently,
Var(y,[h]|Fy) = Var(yer1 + yet2 + -+ + gl ).
Now, given that the sequence y; is white noise, we conclude that
Var(y.[h]|F:) = Var(yg1|Fi) + Var(yepe|Fy) + - - - + Var(yeen|Fe)-

Consequently,

Var (y:[h]|Fz) Z Oppj
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Figure 6.19 Value at risk.

Observe that for the IGARCH model 57, ; = 7, so that
Var(yi[H]|Fy) = ho?y,.
Therefore, the Value at Risk at horizon h is given by

VaR[h] = CZ(X \/EO't_A,_l.

B EXAMPLE 6.2

Consider the daily IPSA stock index, from September 1, 2002 to October
14, 2014, see Appendix C for details. In this case, the fitted model is

given by the following output

Title:
GARCH Modeling

Mean and Variance Equation:
data ~ arma(0, 1) + garch(l, 1)

Conditional Distribution:
norm
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Coefficient(s):

mu mal omega alphal betal
7.1960e-04 1.8009e-01 2.8536e-06 1.4620e-01 8.2756e-01

Std. Errors:
based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>[tl)
mu 7.196e-04  1.587e-04 4.533 5.80e-06 **¥x*
mal 1.801e-01  1.848e-02 9.743 < 2e-16 **x
omega 2.854e-06 5.451e-07 5.235 1.65e-07 ***
alphal 1.462e-01  1.443e-02 10.130 < 2e-16 **x*
betal 8.276e-01  1.589e-02 52.071 < 2e-16 *x*x

Signif. codes: O ’*¥x’ 0.001 ’*x’ 0.01 ’*’ 0.05 .’ 0.1’ > 1

Log Likelihood:
10634.15 normalized: 3.3315

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi®2 89.30602 0
Shapiro-Wilk Test R W 0.9948589 3.945871e-09
Ljung-Box Test R Q(10) 12.21397 0.2709916
Ljung-Box Test R Q(15) 14.74627 0.4698436
Ljung-Box Test R Q(20) 23.24122 0.2771061
Ljung-Box Test R"2 Q(10) 12.52548 0.2514255
Ljung-Box Test R"2 Q(15) 15.00001 0.4514162
Ljung-Box Test R"2 Q(20) 18.51519 0.5535096

0

LM Arch Test R TR™2 13.70263 .3200994

Information Criterion Statistics:
AIC BIC SIC HQIC
-6.659867 -6.650362 -6.659872 -6.656459

The estimated conditional standard deviation at the end of the period
is oy = 0.01030473. For an investment of $1,000,000, the Value at Risk
for horizons h =1, ...,40 is shown in Figure 6.20.

Figure 6.21 shows GARCH parameters estimates based on windows
of size 400 observations and 20 values shifts. The dotted line indicates
B:, the broken line corresponds to «; while the heavy lines is the sum
oy + B;. Note that these values strongly decay around the year 2010.

As a consequence of the possible changes in the parameters of the
GARCH model, the estimates of the volatility also change. Figure 6.22
exhibits this phenomenon. This plot shows the estimates of o; arising
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Figure 6.20 IPSA Stock Index: Value at Risk (VaR) for horizons h = 1,...,40.

from the sequence of windows (gray lines) and their estimates based on
a single GARCH model (black line).

Furthermore, Figure 6.23 displays the associated Value at Risk esti-
mates for both, the time-varying models indicated by the gray line as
well as the fixed model denotes by the black line.

Table 6.4 IPSA Stock Index Value at Risk.

Horizon VaR Horizon VaR
1 20,197.26 21 92,555.48
2 28,563.24 22 94,733.56
3 34,982.68 23 96,862.67
4 40,394.52 24 98,945.97
5 45,162.45 25 100,986.31
6 49,472.99 26 102,986.23
7 53,436.93 27 104,948.05
8 57,126.48 28 106,873.86
9 60,591.79 29 108,765.58
10 63,869.35 30 110,624.96
11 66,986.74 31 112,453.60
12 69,965.37 32 114,252.97
13 72,822.26 33 116,024.44
14 75,571.23 34 117,769.26
15 78,223.66 35 119,488.61
16 80,789.05 36 121,183.57
17 83,275.44 37 122,855.15
18 85,689.73 38 124,504.28
19 88,037.82 39 126,131.86

20 90,324.90 40 127,738.70
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Figure 6.23 IPSA Stock Index: Value at Risk (VaR) estimates.

6.13 AUTOCORRELATION OF SQUARES

In this section we examine the autocorrelation of square transformation of a
stationary process with a Wold expansion. The analysis of such transforma-
tions may give valuable clues about crucial aspects such as linearity, normality,
or memory of the process. For instance, these issues are particularly impor-
tant when studying the behavior of heteroskedastic processes since in this
context the series usually represents the return of a financial instrument and
the squared series is a rough empirical measure of its volatility. In this case,
since we are interested in predicting both the returns and the volatility, we
must analyze the dependence structure of a time series and its squares.

6.13.1 Squares of Gaussian Processes

Let {y:: t € Z} be a Gaussian process with E[y;] = 0 and Var[y;) = 1. For
the transformation f(y;) = y2, the coefficients of the Hermite expansion are
ap =1, ap =1, and a;; = 0 for all j # 0,2. Thus, we have (f(y:), f(ys)) =
1+ p2(h)/2. But, E(yf) = 1 so that

Cov[f(ye), f(ys)] = (f(we)s fys)) — 1 = pi(h)/2,



242 NONLINEAR TIME SERIES

and then the autocorrelation function of f(y;) = y7 is

oy (h) = A (h). (6.23)

From this expression we observe that since |p,| < 1, p,2(h) is smaller or equal
than p,(h). Consequently, the autocorrelation of the squares is smaller than
the autocorrelation of the original series. Actually, for a Gaussian process this
reduction of the dependence is true for any transformation, as stated in the
following result: Let {y:: t € Z} be a Gaussian process and let F be the class
of all measurable transformations such that E[f(y;)] = 0 and E[f(y:)?] = 1.
Then,

sup E[f (y:) f(ys)] = |py(t = s)l,
fer

where p,(t — s) is the correlation between y; and ys.

As a consequence of our previous discussion, in order to account for situ-
ations where the squares exhibit more dependence than the series itself, we
must abandon Gaussianity. In the next section we examine this issue in detail.

6.13.2 Autocorrelation of Squares

Consider the regular linear process {y;} with Wold expansion

yr = (B)e, (6.24)

where (B) = Y2 iBY, ¢y = 1, and Y ;o 7 < oco. The input noise
sequence {e;} is assumed to be white noise.

(Linear Process) Assume that {e;} are independent identically distributed
random variables with zero-mean and finite kurtosis . Then,

pip () = (k) + " a(n), (6.25)

where £ is the kurtosis of y; given by

00 -2
r=(n—3) (Zw$> D w3 (6.26)

=0 1=0

Furthermore, if y; is Gaussian, then n = 3 and s = 3. Therefore, p,» = pg,
which coincides with formula (6.23).

B EXAMPLE 6.3
Consider the following AR(1)-ARCH(1) process described by the equa-
tions

Yo = Y1+ ey,

&t = €0y,

2 2
op = o+ Beq,
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where €; is sequence of independent and identically distributed random
variables with distribution N (0, 1). The autocorrelation function of {y?}
is given by

pur () = M |14 T2 A8 ~ 1)

In this case, p,2(h) = O(¢?"!) and therefore the squared process {y?}
has short memory.

6.13.3 lllustrations

Figure 6.24 shows the sample ACF of a series of 1000 observations from a
Gaussian ARFIMA(0,d,0) process with d = 0.4 and the sample ACF of the
squares. Since this is a Gaussian process, from formula (6.23) we expect that
Dy2 ~ ﬁg Additionally, given that p,(h) ~ Ch?¢=1 the ACF of the squared
series should behave like p,2(h) ~ C?h??~1  where d=2d— 1. In this case,

d=0.3. Thus, the sample ACF of y? should decay a bit more rapidly than
the ACF of y; as it seems to be the case when comparing panels (a) and (b).

A similar behavior occurs when d = 0.2; see Figure 6.25, where d = —0.1.
@ ©)
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Figure 6.24  Simulated fractional noise process FN(d), 1000 observations with
d =0.4. (a) ACF of the series and (b) ACF of the squared series.
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Figure 6.25 Simulated fractional noise process FN(d), 1000 observations with
d = 0.2. (a) ACF of the series and (b) ACF of the squared series.

Figure 6.26 displays the sample ACF from 1000 simulated observations of
the ARCH(1) process:

Yt = €0,
o? = 01+08y’,,

where ¢; is assumed to be a sequence of independent and identically distributed
N(0,1) random variables. Note that in panel (a), as expected, the sample ACF
of the series y; shows no significant correlations. On the contrary, the sample
ACF of the squared series shown in panel (b) exhibits a substantial level of
autocorrelation, which decays at an exponential rate. A similar behavior of
the autocorrelation is displayed by Figure 6.27, which depicts the sample ACF
of 1000 observations from the following GARCH(1, 1) model:

Yo = €0,
o2 0.1+0.7y7 , +0.207 4,

where {e;} is a sequence of independent and identically distributed N(0,1)
random variables.
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Figure 6.26  Simulated ARCH(1) process: 1000 observations with ap = 0.1 and
a1 = 0.8. (a) ACF of the series and (b) ACF of the squared series.

Figure 6.28 exhibits a trajectory of 1000 observations from the ARFIMA(0, d, 0)-
GARCH(1,1) process:

o0
Y = E WV Et—j,
i=o

€t = €0y,
o} = 01407, +0207 4,
where d = 0.4,
I'04+j
¥ = ( )

T(1+4)1(0.4)

and ¢; is an independent and identically distributed Gaussian sequence with
zero-mean and unit variance. Panel (a) shows the series while panel (b) shows
the squares. On the other hand, Figure 6.29 shows the sample ACF of this
series; see panel (a) and the sample ACF of the squares; see panel (b). Note
that in this case both panels seem to exhibit long-memory behavior because
de ().
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Figure 6.27

Simulated GARCH(1,1) process: 1000 observations with ag = 0.1,
a1 = 0.7, and B1 = 0.2. (a) ACF of the series and (b) ACF of the squared series.
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Simulated ARFIMA(0, d,0)-GARCH(1, 1) process: 1000 observations
with d = 0.4, ap = 0.1, a1 = 0.7, and 31 = 0.2. (a) Series and (b) squared series.
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Figure 6.29  Simulated ARFIMA(0, d, 0)-GARCH(1, 1) process: 1000 observations
with d = 0.4, ap = 0.1, @1 = 0.7, and B1 = 0.2. (a) ACF of the series and (b) ACF
of the squared series.

6.14 THRESHOLD AUTOREGRESSIVE MODELS

Nonlinearity is an extended phenomenon in different fields. In the previous
sections we have examined heteroskedastic processes as tools for modeling fi-
nancial time series. Nevertheless, there is a pleyade of other nonlinear models.
One important example is the so-called threshold time series models. In this
context, the process is assumed to have different regimes which are determined
by, for instance, a function of the level of lagged values of the process.

In this section we briefly review two simple examples of threshold autore-
gressive process (TAR) and self-exciting threshold autoregressive process (SE-
TAR).

A simple version of a threshold autoregressive process TAR(p) can be writ-
ten as

p
e ="+ ¢y T e,
=1

where J; € {1,...,J} is a regime switching mechanism indicator and &; is an
i.i.d. sequence with zero-mean and variance o2.
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Figure 6.30 SETAR simulated time series.

A particular case of the above model is the self-exciting threshold autore-
gressive model (SETAR). Consider p = 1, J = 2 and this model can be written
in terms of a thresholding variable z; as follows

=4 M + o1y e i zg<r
! M2+ Qayi—1 ey i z_g >

where r is a threshold parameter and d is a delay parameter. The variable
z; can be defined in terms of values of the process as, for example, z; =
Boye + Bryi—1-

As an illustration of the features of a SETAR process, Figure 6.30 depicts
the trajectory of a SETAR model with u; = —1, ¢1 = 0.2, uo =1, ¢ = 0.7,
© =1 and Var(e;) = 1. Notice that the first half of the trajectory seems to
be in one regime with mean -1 and the second half of the series seems to be
in second regime which has mean 1. The sample ACF and sample PACF of
this series are shown in Figure 6.31.

The R package tsDyn allows for the estimation of TAR and SETAR models.

The output in this case is

> st=setar(Yt, m=1)
> summary(st)

Non linear autoregressive model
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Figure 6.31 SETAR simulated time series. (b) Sample ACF, (b) Sample PACF.

SETAR model ( 2 regimes)
Coefficients:
Low regime:

const.L philL.1
-1.0779184 0.2183248

High regime:

const.H phiH.1
1.1472667 0.6479871

Threshold:

-Variable: Z(t) = + (1) X(t)
-Value: 0.9398

Proportion of points in low regime: 71.72} High regime: 28.28%
Residuals:

Min 1Q Median 3Q Max
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-3.654675 -0.685460 0.019659 0.744333 2.938611
Fit:

residuals variance = 1.099, AIC = 19, MAPE = 531.6Y%
Coefficient(s):

Estimate Std. Error t value Pr(>ltl)
const.L. -1.07792 .21597 -4.9910 2.678e-06 x**x
phiL.1 0.21832 .12389 1.7623 0.08121 .
const.H 1.14727 .49396 2.3226 0.02231 *
phiH.1 0.64799 .14221 4.5566 1.530e-05 *x**

O O O O

Signif. codes: 0 #%* 0.001 ** 0.01 * 0.05 . 0.1 1
Threshold
Variable: Z(t) = + (1) X(t)

Value: 0.9398

Notice that the estimates produced by this package are close to the true
parameter values.

T T T T T T
0 20 40 60 80 100

Time

Figure 6.32 SETAR fitted model residuals.
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Figure 6.33 SETAR Residuals. (a) Sample ACF, (b) Sample PACF.
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Figure 6.34 SETAR Fitting. Threshold and regimen classification.
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Figure 6.35 SETAR Fitting. Scatterplot of 4; and y.—1 along with empirical slope
estimates for the two regimes.

6.15 BIBLIOGRAPHIC NOTES

Engle (1982) proposed the ARCH models to account for the stylized facts
exhibited by many economic and financial time series. Based on this semi-
nal work, a plethora of related models have been introduced. Among these
methodologies we find the GARCH models [see, for example, Bollerslev (1986)
and Taylor (1986)], the EGARCH models [see, for instance, Nelson (1991)],
the stochastic volatility processes (SV) [see, for example, Harvey, Ruiz, and
Shephard (1994)], the FIGARCH and FIEGARCH models [see, for instance,
Baillie, Bollerslev, and Mikkelsen (1996) and Bollerslev and Mikkelsen (1996)],
and the long-memory generalized autoregressive conditionally heteroskedastic
(LMGARCH) models [see, for example, Robinson (1991), Robinson and Henry
(1999) and Henry (2001)].

Most econometric models dealing with long-memory and heteroskedastic
behaviors are nonlinear in the sense that the noise sequence is not necessarily
independent. In particular, in the context of ARFIMA-GARCH models, the
returns have long-memory and the noise has a conditional heteroskedastic-
ity structure. These processes have received considerable attention; see, for
example, Ling and Li (1997) and references therein.

A related class of interesting models is the extension of the ARCH(p) pro-
cesses to the ARCH(oco) models to encompass the longer dependence observed
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in many squared financial series. The ARCH(o0) class was first introduced
by Robinson (1991).

On the other hand, extensions of the stochastic volatility processes to the
long-memory case have produced the LMSV models; see Harvey, Ruiz, and
Shephard (1994), Ghysels, Harvey, and Renault (1996), Breidt, Crato, and
de Lima (1998), and Deo and Hurvich (2003). Other estimation procedures
for LMSV using state space systems can be found in Chan and Petris (2000)
and Section 11 of Chan (2002). Furthermore, exact likelihood-based Bayesian
estimation of LMSV is discussed in Section 4 of Brockwell (2004).

Threshold autoregressive processes (TAR) as well as self-exciting threshold
autoregressive (SETAR) models are reviewed, for example, in Tsay (1989)
and Tong (1990, 2011).

Problems

6.1 Suppose that the series yi, ..., %150 corresponds to the ARCH(1) pro-
cess:

Yt = &0y,
2

op = ag+aiyig,

where ¢; is white noise (0, 1).
(a) Assume that the MLE of o es 0.32. Is this fitted process stationary?
(b) Build a 95% confidence interval for «;.

6.2 Consider the model y; = ;y;_1 where ¢; is white noise (0, 02)
(a) Show that the conditional variance of y; given y;_1 is o2y?_;
(b) Verify that under the assumption of second order stationarity if o2 #
1 then the variance of y; is zero or infinite.
(c) Write this model as a Volterra expansion. What assumption on yg
seems reasonable?

6.3 Explain briefly the following concepts.
(a) Return of a financial instrument.
(b) Conditional heteroskedasticity.
(c) Non linear process.
(d) Best lineal predictor.

6.4 Consider the following stationary process
e =0y—1+ Y,
ye = (a+ Byi1)"?z,

with [6] <1, @ >0,0< 3 <1 and {2} is an i.i.d. N(0, 1) sequence.
(a) Determine the autocovariance function of {y;}.
(b) Determine the autocovariance function of {x}.
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Hint: Recall that if X and Y are random variables, then E[g(X)] =
E{E[g(X)|Y]}.

6.5 Consider the ARCH(2) process that satisfies the equation

Yt = &40y,
2 2 2
oy = aptoryp gty o,

where {e;} isi.i.d. (0,1). Let o7 (h) = E[o7, ,|y¢, Yi—1, - - -] the h-step predictor
of the future volatility for h > 1.
(a) Verify that

03(2) =qap+ o 0?+1 + g yt2

(b) Show that

07(3) = ag (1 +aq) + (af + Oé2)0t2+1 + oy ag i

6.6 Consider two ARCH(1) processes {y:} and {z:}, independent, defined
by

Yt = Et0¢,

o} = ag + a1yi_y,

Ty = NV,

vi = Bo+ Brai_y,
where {&;:} and {n:} are i.i.d. N(0, 1) sequences.

Define the new process z; = y; - T¢.
(a) Show that E(z) =0.
(b) Show that E(z2|yi—1,Yi—2,...) = o212

k_4 k.4
(c) Verify that E(z7z7,,) = (Mi + 20’%) (ui + 215:6”? ), where

1—af
_ @ __bo
My 1—a Y Mz 1- 4
4 ag(l+ar) . Ba+s)

o* =

= [
C—an@—30]) * 7 7 (1= 51367
(d) Calculate Cov(z7, 27, ).

6.7 Consider the GARCH(1,1) process:

Yt = EtOt,

2 2 2
of = aptay;q+ oy
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where {e;} is 1id. (0,1) Let o7(h) = E(0f,,|yt,Yt—1,--.) be the h-step
volatility forecast.
(a) Show that for h > 2

ot (h) = ao + (a1 + Bi)o (h —1).
(b) Verify that the limit of oZ(h) as h increases satisfies

lim o2(h) = ———2
A ov(h) = T

6.8 Counsider the integrated GARCH model IGARCH(1,1) defined by

Yt = &0,
o7 = ao+pfior+ (1= By,

where ¢, is white noise (0,1) and B; € (0,1). Let n, = y? — o?.
(a) Show that n, is white noise.

(b) Verify that y? satisfies
i —Yio1 = ao+ (1= BiB)n.

(c) Based on the above, What mode satisfies y2?
(d) Show that the ¢-step variance predictor £ > 1 is given by

o2(0) = o2(1) + (£ — 1.

6.9 Consider the following exponential GARCH, EGARCH(1,0) model

Yt = Et0t,
(1-aB)n(o?) = (1—a)ag+gle),
g(et-1) Oct—1 —Yllet—1] — E(let—1])],

where €; is white noise N(0, 1).
(a) Show that

B o J o+ (O0+7)e—1 si 120
(1—aB)ln(o}) = { ax+ (0 =)y si g1 <0,

where a, = (1 — a)ag — (\/2/m)7.
(b) Verify that

exp[(f +7)Y5=] si y1>0

2 2« _
op = 0%y exp(ov) exp[(0 — v)L==] si w1 <O.
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(c) What advantages has this model over a standard GARCH process?
6.10 Consider the stochastic volatility process {r;} given by
Ty = &0y,
op = oexp(r/2),

where {£;} is an independent and identically distributed sequence with zero-
mean and unit variance and {1;} is a regular linear process satisfying

= tim,
=0

with 322, ¢? < oo and {n;} an independent and identically distributed se-
quence with zero-mean and unit variance, independent of the sequence {;}.
Show that the process r; is strictly stationary and ergodic.

6.11  Assume that 7(B) = (1 — B)?. Show that 7(B)ag = 0, where «y is
any real constant and d > 0.

6.12 Show that the FIGARCH process may be written as
0(B)o} = w+[0(B) — ¢(B)(1 — B)]y, (6.27)

where w = 0(B)ay. What conditions must satisfy the polynomial §(B) in
order to ensure that w is a positive constant?
6.13  Let A(d) = (1— B)~4 for |d| < 3.
(a) Verify that the ARFIMA(O, d,0)-GARCH model may be written as
Ad)er(d) = e,

where ¢ is a constant with respect to d. Note that the data {y;} do
not depend on d.
(b) Let ¢(B) = Z;io Yi(d)B7 = (1 — B)~% = X\(d)~!. Show that

_OO{ vild }6” +Z¢J [ €tj()]=o.

7=0

(c) Show that

o) = A3 [2n@] cns@

7=0

<.

= ) [;dM )| e

- [aad log )\(d)} A(d).
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(d) Verity that
a 1
and prove that this expansion is well-defined.

6.14 Assume that the sequence {e;} in (6.7) corresponds to independent
and identically distributed uniform random variables U(—+/3, \/3)
(a) Verify that {e;} is a sequence of zero-mean and unit variance random
variables.
(b) Show that for this specification of {e;}, the top Lyapunov exponent
of the model in Example 6.1 is given by

— E[log(aleQ +p1)] =2 [log 3aq + B + \/3671 arctan 4 / % — 1] .
1 1

Hint: The following formula could be useful:

/log(x2 + a?) dz = xlog(2? + a?) + 2a arctan T o
a

6.15 Consider the ARFIMA(p, d, ¢)-GARCH(1, 1) process:

oo
Yy = E Yigi—j,
i=o

€t = €0,

2 _ 2 2
op = a+oag g+ Poi g,

where €; is a random variable with density

2

f(f):m,

for —oco < € < o0.
(a) Verify that the random variable e satisfies
E(e) =0,
Var(e) = 1.

(b) Show that the top Lyapunov exponent in this case is given by

v =2 |log(va+ v/B) — \F\{f

(c) Verify whether the Lyapunov exponent - is negative for a > 0, 8 > 0,
and a+ 5 < 1.
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Hint: The following formula could be useful:

/ log(a® + b*z?) de

b
o m log(a+b) e

a+b

for a,b > 0; see Gradshteyn and Ryzhik (2000, p. 557).

6.16 Consider the ARFIMA-GARCH process defined in Problem 6.15 where
€; is a random variable with density

1

f(ﬁ):m/ﬁ>

for e € (—1,1).
(a) Verify that € is a zero-mean and unit variance random variable.
(b) Prove that the the top Lyapunov exponent in this case is

e VBV tB
v =2log 5 .

(c¢) Show that the Lyapunov exponent 7 is negative for « > 0, § > 0,
and a+ 6 < 1.
Hint: The following integrals could be useful:

x .
—_— arcsin x
/ V1—a? 7
*d 1
\/% = §(arcsinx —zV1—22?),

and

1
d 1 1
/ log(1 + az?)—T%_ — plog 1 VITA
0 1— 22 2

for a > —1; see Gradshteyn and Ryzhik (2000, p. 558).
6.17 A definition of the FIEGARCH model is

log(07) = w+ ¢(B)~ (1 — B)"")(B)g(e-1), (6.28)
where ¢(B) = 1+ ¢1B + -+ + ¢pBP, h(B) = 1 + ¢y B + - - - + 1, BY, and

gler) = Oer + yller] — E([ex])]-

Another definition of a FIEGARCH process is

#(B)(1 — B)?log(c?) Z (bjler—s] + vierj). (6.29)
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(a) Show that ¢(B)(1 — B)w = 0.
(b) Starting from definition (6.28), prove that

¢(B)(1 — B)*log(a7) = —t(B)yp+ 0y (B)er—1 + 1 (B)ler-1l,

where u = E(le1]).

(c) Show that by taking b; = 0v;, v; = ¢, and a = —uy >7_, ¥j, we
obtain definition (6.29). Observe, however, that in model (6.29) we
could release the parameters b; and v; from the restriction b;y = ;0.

(d) Verify that by taking 6; = b;, A\; = v;, and « = a, definition (6.16)
is obtained.

6.18 Consider the FIEGARCH model described by equation (6.16) and as-
sume that o = — 31, 0; E(|e1]).
(a) Verify that

Ela+0(B)|et—1] + AM(B)ei—1] = 0.
(b) Show that conditional variance o may be formally written as
ot = exp {¢(B) (1 — B)"0(B)(ler—1| — E let—1]) + A(B)er-1]} -
(c¢) Show that the FIEGARCH process y; may be formally written as
ye = erexp {30(B) (1 — B)"0(B)(|er—1| — Eles—1]) + A(B)er—1]} -

(d) Consider a FIEGARCH(0, d, 1) where ng( )=1,(1-B)"% =372 ;B
6(B) = 6, and A\(B) = \. Show that o7 may be formally expressed
as

oo

H ewj |€t 1|_E|€t 1|)+)\'¢j6t,1].

(e) Under what conditions is the above infinite product well-defined?

6.19 Consider the following tree ring data from a location at Malleco, Chile,
for the period from 1242 A.D. to 1975 A.D. This series is displayed in Figure
6.36.

A researcher proposes that the ring width during year ¢, say y;, depends
on the past as follows:

) v+, t=1242
Y= vt dyir + 2, t=1243,1244,...,1975

with {2} independent random variables with Normal(0, o) distribution. v, ¢
(l¢] < 1) and o are parameters.
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1.4

1.2

Malleco tree ring series

0.4

0.2

1400 1600 1800 2000

Year

Figure 6.36  Tree rings data at Malleco, Chile, for the period from 1242 A.D. to
1975 A.D.

(a) Show that

k
v (1 _ ¢k+1) i
Yi24z+k = — 7 3 + E @ 212424 k—j

j=0
(b) Show that

1 — 2 (t-1242+1)
=)
for t =1242,...,1975 and h =0,1,2,....

6.20 Suppose that the process {z;} follows a TGARCH(1, 1) process defined
as

Cov(ys, yesn) = 0> ¢" (

Ty = 2¢ - O¢

ol =w+ (a+y-6_1)zi 1 +Boi

5 = 1, <0
710, >0

withw > 0; 0 >0,7>0,8>0,0<a+v+8<1y{z}~ Normal(0,1).
Find E(z:) and Var(z;).
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6.21 Consider the following GARCH(3, 2) process

Tt = 2t * O¢, {Zt} ~ WN(O, 1)
3 2
of =g+ ZO@ z_i+ Zﬁj Uffj’
i=1 Jj=1

with
ap >0, a; >0, (;>0, 0< (a1 +ax+az+ 1+ p2) <1
Show that 2?2 corresponds to an ARMA(3,2) process and its noise is given by
_ 20,2
v, =o;(z —1).

6.22 Consider the {z;} process with mean p given by:

Tt —pr=¢1 (T4—1 — p) + -+ Gp (Tr—p — 1) + 2, (6.30)
with {2} ~ (0,0?). Show that (6.30) can be written as

Var=¢5+¢] -1+ ¢35V 1+ + ¢, Vo pi1 + 2,

p p
where ¢ = p(1=g1—- =), $1 = Y di—lyds =—> ¢itoj=2,....p.
i=1 i=j

6.23 Let {x1,...,2,} observed values of a time series and p(h) sample au-
tocorrelation function.
(a) Ifz; =a+bt, where a y b are constants and b # 0, show that h > 1,
p(h) — 1, when n — oo.
(b) If x4 = ¢ cos(wt), where ¢ y w are constants (¢ # 0y w € (—m, 7)),
show that for any h, p(h) — cos(w h), when n — co.

6.24 An ARMA model is fitted to a series of 500 observations collected
sequentially in time. The results of the first 10 empirical autocorrelations is
as follows:

k| 1 2 3 4 5

p(k) | —0.065 0.735 —0.061 0.386 —0.052
a(k) | —0.065 0.734 —0.002 —0.336 —0.005
k|

6 7 8 9 10

p(k) | 0238 —0.030  0.155 —0.033 0.071 -
a(k) | 0.258  0.028 —0.162 —0.068 0.035

where the sample variance of the data is 2.708. Suppose that the residuals of

model behave like a white noise of zero-mean and variance o2.
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(a) Plot the ACF and PACF together with their empirical confidence
bands. Based on these graphs, which model ARMA you find more
suitable for this series?

(b) Find moment estimators of the parameters of the proposed model,
including estimation of 02, and evaluate them according to the avail-
able information. If more than one possible value is available, choose
the coefficient involving a causal and invertible model.

(¢) Specify the asymptotic distribution of the autoregressive coefficients
and/or moving-average model. Are they significantly different from
zero at a 5% level?.

6.25 Consider a financial time series of 1500 observations. Two heteroskedas-
tic models have been fitted to this series, a GARCH(1,1) along with an
ARCH(2) process. The outputs from these fitted models are reported be-
low. Which of the two models seems to better fit the series? Justify your
answer.

Fitted Model 1

Title:
GARCH Modeling

Call:
garchFit (formula = ~“garch(l, 1), data = y, trace = FALSE)

Mean and Variance Equation:
data ~ garch(1, 1)
[data = xx]

Conditional Distribution:
norm

Coefficient(s):
mu omega alphal betal
3.2137e-05 9.1888e-07 1.8917e-01 7.1562e-01

Std. Errors:
based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t])
mu 3.214e-05 6.677e-05 0.481 0.63
omega 9.189%e-07 2.269e-07 4.050 5.11e-05 **x*
alphal 1.892e-01 3.047e-02 6.208 5.38e-10 **x
betal 7.156e-01 4.429e-02 16.157 < 2e-16 **x*



PROBLEMS

Signif. codes: O *%x 0.001 *x 0.01 = 0.05 . 0.1 1

Log Likelihood:
6659.775 normalized: 4.43985

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi~2 5.941889 0.0512548
Shapiro-Wilk Test R W 0.9983002 0.1345606
Ljung-Box Test R Q(10) 10.32037 0.4128496
Ljung-Box Test R Q(15) 14.34846 0.4992822
Ljung-Box Test R Q(20) 18.88156 0.5295365
Ljung-Box Test R"2 Q(10) 5.289371 0.8710286
Ljung-Box Test R"2 Q(15) 8.75091 0.8901772
Ljung-Box Test R"2 Q(20) 10.02904 0.9676424
LM Arch Test R TR™2 7.27484 0.8389293

Information Criterion Statistics:
AIC BIC SIC

HQIC

-8.874367 -8.860199 -8.874381 -8.869089

Fitted Model 2

Title:
GARCH Modeling

Call:

garchFit(formula = “garch(2, 0), data = y, trace = FALSE)

Mean and Variance Equation:
data ~ garch(2, 0)
[data = xx]

Conditional Distribution:
norm

Coefficient(s):
mu omega alphal

3.5973e-05 5.4612e-06 2.5347e-01

Std. Errors:
based on Hessian

Error Analysis:

alpha2
1.6910e-01

263
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Estimate Std. Error t value Pr(>|t])
mu 3.597e-05 6.977e-05 0.516 0.606
omega 5.461e-06 3.702e-07 14.752 < 2e-16 *x*x
alphal 2.535e-01 4.267e-02 5.941 2.83e-09 x*x*
alpha2 1.691e-01 3.975e-02 4.254 2.10e-05 **x

Signif. codes: O *** 0.001 ** 0.01 * 0.05 . 0.1 1
Log Likelihood:

6631.342 normalized: 4.420894

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi®2 32.41568 9.141626e-08
Shapiro-Wilk Test R W 0.9954953 0.0001870913
Ljung-Box Test R Q(10) 10.14591 0.427787
Ljung-Box Test R Q(15) 14.62402 0.478823
Ljung-Box Test R Q(20) 20.15955 0.4479896
Ljung-Box Test R"2 Q(10) 46.92196 9.756395e-07
Ljung-Box Test R"2 Q(15) 56.6825 9.289409e-07
Ljung-Box Test R"2 Q(20) 60.68203 5.582236e-06
LM Arch Test R TR"2 56.86594 8.357072e-08

Information Criterion Statistics:
AIC BIC SIC HQIC
-8.836455 -8.822287 -8.836470 -8.831177

6.26 Consider the following stochastic volatility model

Yt = E¢0¢,

2 v
oy =€,

where {g;} is a zero-mean and unit variance i.i.d. sequence and y{v;} corre-
sponds to a Gaussian MA(1) process, that is,

Vg = /.L+77t +977t—17

with 7, ~ N(0,07). Verify that:
(@) Eilyi—1,yi-2,...) = e".
(b) log[E(y?)] = p+02(1+6%)/2.
(c) E{loglE(yF|yi—1,Yt—2,-- -1} = p.
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6.27 Suppose that the sequence y; satisfies a GARCH(0, ¢) process defined

as follows.

Yt = €404,
2 _ 2 2
oy = 0o + Blgtfl + 4+ qu'tfw
where {e;} i.i.d. N(0,1). Show that:

(@) E(0?|Yi—k,Yi—t_1,...) =02, for all k € Z.
(b) For k> 1.

EWialye, ye1,Yi-2, ) = 0psy






CHAPTER 7

PREDICTION

One of the fundamental aspects of the time series analysis is forecasting.
Consequently, this chapter addresses the prediction of linear and nonlinear
processes. Section 7.2 and Section 7.3 examine the formulation of one-step and
multistep ahead predictors based on finite and infinite past. The innovations
algorithm and approximate predictors are also described.

Forecasting future volatility is a crucial aspect in the context of heteroskedas-
tic time series. Therefore, Section 7.4 discusses techniques for forecasting
volatility for some of the models described in Chapter 6. Several illustrative
applications are also discussed, including the prediction of ARMA, ARFIMA,
GARCH and combinations of these processes. Building prediction bands are
discussed in Section 7.5. Furthermore, these techniques are applied in Sec-
tion 7.6 to the prediction of the S&P500 returns data introduced in Chapter 1.

Bibliographic notes are given in Section 7.7 and a list of problems is pro-
posed at the end of this chapter. Additionally, some technical aspects such as
vector spaces and the projection theorem are reviewed in Appendix A.
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7.1 OPTIMAL PREDICTION

Given a process {y;: t € Z}, finding optimal predictors of y;yj given the ob-
served values vy, ys_1,Yi_2, ... depends crucially on the definition of optimal-
ity. Suppose that g4, denotes the h-step predictor of ysyp. Typically, opti-
mality here means that the variance of the prediction error e;p, = Ys+-n —Yith,
Var(e¢1r), is minimal. If we are looking for linear predictors, that is,

o0
@\tJrh = Zajyt—j,
j=1
then the predictor that minimizes Var(e;1y) is the conditional expectation

Yirh = EWirnye, vi—1,Ye—2, ... ).

In what follows, P, denotes the infinite past of the time series up to time ¢,
Yt Yt—1,---. On the other hand, F; denotes the finite past of the time series
up to time ¢, y;, yt—1,...,y1. Thus, the previous predictor can be written as

Yerh = E(Yern|Pr)-

7.2 ONE-STEP AHEAD PREDICTORS

Let {y:} be an invertible linear process with Wold representation

Y = Z%‘&t—j, (7.1)
j=0
and AR(oco) expansion
Yo =€ + Zﬁjyt—m (7.2)
j=1

where Var(e;) = 2. As described in the next subsections, one-step predictors
of these processes are different depending whether we consider infinite or finite
past.

7.2.1 Infinite Past

The best linear one-step predictor of y;y1 given its past y¢, y¢—1,... is given
by

oo
Uir1 = Elyes1|Pe) = E TiYt+1—j E Yi€tr1—j,

with prediction error variance Ely;11 — Gi+1]? = 02,
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7.2.2 Finite Past

Notice that in practice we seldom have the full past, instead we only have
a finite stretch of data {yi,...,v:}, say. Under this circumstance, the best
linear predictor of y; 1 based on its finite past is given by

Urr1 = Elyesr|ye, - 1] = daye + - + dutns

where ¢y = (d1t, ..., Pw)’ is the unique solution of the linear equation

Loy = v,

with I'y = [y(i—j)]ij=1,.... and 7 = [y(1),...,7(¢)]". The calculation of these
coefficients can be carried out using the Durbin-Levinson algorithm described
in Chapter 5. In particular, the prediction error variance of the one-step finite
sample predictor ysy1,

vi = Elye1 — Ge]’,
can be calculated by means of the recursive equations
vi=v (1 — (rb%t)a

for t > 1, where ¢ are called the partial autocorrelation coefficients and
vo = v(0). Thus, v; may be written as

Uy = ’Y(O) H(l - ¢?j)'

J=1

7.2.3 Innovations Algorithm

Another way to write the finite past predictors is based on expressing the
current forecast in terms of the innovations of the previous predictors,

Yep1 = O (ye — U) + Or2(Ye—1 — Ge—1) + -+ + Ou(y1 — U1).

Note that the terms {y: —¥:} correspond to the innovations of the forecasting
process, that is, Cov(y: — Ui, ys — Us) = 0 for all ¢.

The coefficients §; ; can be calculated recursively by following the equa-
tions,

B = 7(0)

1—1

1

Ori—i = B VE=1)+D i 0018
T ]:1

t—1
B = ’Y(O)*Z@it—jﬂr
j=1
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B EXAMPLE 7.1

Consider the MA(1) model

Yo = & + 041,
where Var(g;) = o2. In this case, by defining p = 1#% as the first-order
autocorrelation of the process we can write
1 p 0 0 0 0 O bi1 P
p 1 p 0 -~ 0 O bi2 0
0O p 1 p 0 --- 0 D3 0
00 - 0 »p 1 p Dt,t—1 0
o0 -~ 0 O p 1 forn 0
Solving this equation system successively yields
$11 = p;
2
__°r __F
¢21—1_p27 ¢22 l_an
_p(1—=p?) P .
P31 = 12,7 P32 = =2, ¢33771_2p2-

On the other hand, a much simpler expression for the one-step predic-
tor of this MA(1) process can be obtained by means of the Innovations
Algorithm. In this case, an application of the method yields,

no o= 0
Yy = 9t1(yt—§t)a

with 6,1 = % and 0;; = 0 for 4 > 1. Notice that
9151 — 07

as t — oo.

B EXAMPLE 7.2

For a fractional noise FN(d), the partial autocorrelation function is given
by

du= 2, (73)
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for ¢ > 1. Hence, the prediction error variance is given by

ot ()

j=1

[T 1T (G — 2d)
M- )]

= 1(0)

But, for any real o we have that

L L(t+1-a)
IIU—@%:—ﬁTj@*-

j=1

Hence,

C(t+ DI+ 1—2d)T(1 — d)?

V= O T P 20)

Therefore, since from (2.25) the autocovariance function at zero lag is

, T(1 = 2d)

“m:”[ﬁTfﬁﬁ

we obtain the formula

oDt + DD(t + 1 — 2d)
D@t +1—d)]?

Vi =0

for t > 1. Now, an application of expression (2.32) yields

lim v, = o2
t—oo
Figure 7.1 displays the evolution of the partial autocorrelation coef-
ficients ¢y for t = 1,...,20 for a fractional noise FN(d) process with
d = 0.4, an AR(1) model with ¢; = 0.2 and ¢2 = 0.4, and a MA(1)

process with #; = 0.4 and 6, = —0.2.
Notice that for the fractional noise processes, ¢ = O(1/t) for large t.

Despite the difficulty of finding explicit expressions for the partial autocorre-
lations for a general class of long-memory models, this rate of convergence to
zero can be extended to any ARFIMA (p, d, q) process, as stated in the follow-

ing result: Let {y;} be an ARFIMA(p,d,q) process with 0 < d < 1. Then,

the partial autocorrelations ¢y; satisfy

d
|Pee| ~ e (7.4)
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as t — oo.

Observe that the rate on t given by expression (7.4) does not depend on
the value of the long-memory parameter d.

Figure 7.2 displays the evolution of the mean-squared prediction error vy
for a fractional noise FN(d) with d = 0.10, d = 0.30, d = 0.49, 0® = 1, and
t=1,...,40.

As t increases, the effect of the remote past fades out and y;y1 becomes
similar to ¥s11. In turn, the prediction error variance of the finite sample
predictor v; becomes similar to the prediction error variance of the infinite
past predictor, o2: If {y;} is a stationary process, then ||J;+1 — %11 — 0 and
v, — o2 as t — oo.

Let 8; = ||Gt+1 — Ur+1]|? be the squared distance between the optimal pre-
dictor based on the full past and the best predictor based on the finite past.
Then, we may write

1Te41 = Gl = @1 — Yer1) + Wear — Gern) 1P

= |Ger1 — verr I + g1 — Gesa |
—2<yt+1 — Y1, Y1 — §t+1>
= o+ — 2(E4415 Ytt1 — Ytt1)-

0.4

0.2

P e e e

0.0

-0.2

T T T T
5 10 15 20

Lag
Figure 7.1  Evolution of the partial autocorrelation coefficients ¢4 fort = 1,...,20
for a fractional noise FN(d) process with d = 0.4 (heavy line), an AR(1) model with
¢1 = 0.2 and ¢2 = 0.4 (broken line), and a MA(1) process with §; = 0.4 and 6, = —0.2
(dotted line).
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Figure 7.2  Evolution of the mean-squared prediction error v, for t = 1, ..., 40 for
a fractional noise FN(d) process with d = 0.10, d = 0.30, d = 0.49, and o2 = 1.

Since (441, y¢+1) = 02 and {411, Yr4+1) = 0, we have
6t = V¢ — 0'2.
A precise rate at which v, converges to o2 as t increases is as follows: Let
{y} be an ARFIMA (p,d,q) process with unit variance noise and 0 < d < %
Then,

2
5, ~ d? (7.5)

as t — oo.

7.2.4 An Approximate Predictor

Since the Durbin-Levinson algorithm for calculating the coeflicients ¢; is
order O(n?), for very large sample sizes it could be desirable a faster algorithm
to obtain finite sample forecasts. One way to do this is approximating the
regression coefficients ¢,; by m;, based on the following fact: If {y} is a
stationary process, then ¢¢; — m; as t — oo.

With this approximation, we introduce the finite sample predictor

t

Y+1 = Zﬂjym—jv
=1
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with prediction error variance

Var(yiy1 — §iy1) = 02 + 1,
where 7, = Var(3°72, | mjyi+1-) or equivalently

re = Var(Yir1 — Je41)-

As expected, the prediction error variance of the approximate forecast is larger
than the prediction error variance of ;1. However, as t increases, these
two predictors become similar: If {y;} is a stationary process with AR(c0)
representation satisfying 72, |m;| < oo, then ry — 0 as t — oo.

For short-memory processes with autoregressive coefficients {r;} satisfying

;| ~ clel?,
for large j and positive constant ¢ we have that

re < el
where ¢; = Var(yo)[c|é|/(1 — |#])]2. Therefore, r; converges to zero at an
exponential rate.

However, for long-memory processes this rate is slower: If {y,} is a station-
ary and invertible process with AR(co0) and MA(co) satisfying

L j—d—l
TGN (=d;
JN)
1/’3‘ ~ Wa

as j — 0o, with 0 < d < § and £(-) is a slowly varying function, then

dtan(rd)

Ty ~
7t

: (7.6)

as t — oo.
Comparing expressions (7.5) and (7.6), we observe that for small values of
d both terms é; and r; behave similarly since

dtan(rd)  d?
t t’

as d — 0. On the contrary, when d approaches %, d; is bounded but r;
increases to infinity since tan(n/2) = oco.
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7.3 MULTISTEP AHEAD PREDICTORS

7.3.1 Infinite Past

Let g¢(h) be the best linear predictor of y;1p, based on the infinite past F; for
h > 1, which may be written as

Ye(h) = Elyiqn| Fi] = Z?TJ Vi = Y binci—j = Y bieein—y, (7.7)
i=0 j=h

where the coefficients 7;(h) for j > 1 are given by

h-1
h) = ¢imjsn—i
=0

The prediction error variance of 7;(h), 02(h) = Elyssn — y:(h))?, is
h—1
o?(h) = 0oy 47, (7.8)
=0

7.3.2 Finite Past
The best linear predictor of y;1} based on the finite past P, is
ye(h) = dur(Mye + - + du(h)yn,
where ¢y(h) = [¢u1(h), ..., du(h)] satisfies
Lydi(h) = v (h),

with v (h) = [y(h),...,y(t + h — 1)]’. Besides, the mean-squared prediction
error is defined by
at (h) = lyeen — Ge()*.

Analogously to the one-step prediction case, we can use the approximate
finite sample h-step ahead forecasts given by

e(h) = Z i (h)ye—j,
=0

with prediction error variance

Varly,n — §e(h)] = 0° +r(h),
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where r4(h) = Var[Z;.iHl 7;(h)yi—;]. For fixed h, this term behaves similarly
to r¢, excepting a constant: Let {y;} be a stationary and invertible process
with AR(0c0) and MA (00) satisfying

j—d—l
YT AGT(=d)y

J4L)
(r )

as j — 0o, with 0 < d < § and £(*) is a slowly varying function. If Z;:é v #
0, then

2
h—1

dtan(wd

rl) ~ [ Sy | ),

=0

™

as t — oo.

7.4 HETEROSKEDASTIC MODELS

Consider a general heteroskedastic process {y;: t € Z} specified by the equa-
tions

o0
v = Y Ui, (7.9)
=0
€t = €0, (7.10)
Ulfz = f(et—laet—27"'777ta77t—1a"')5 (711)

where f is function {e;} and {7}, which are sequences of independent and
identically distributed random variables with zero-mean and unit variance and
{€&:} is independent of {n;}.

Observe that this specification includes the ARFIMA-GARCH, the ARCH-
type and the LMSV processes, among others, as shown in the following ex-
amples.

B EXAMPLE 7.3

The conditional variance of the ARFIMA-GARCH(1,1) model may be
written as in (6.9),

oo k+1

fle—1,€—2y ooy e, Me—1, .- ) = Qg 1+ZH(alef_j+ﬁ1) ,

k=0 j=1

and n; = 0 for all ¢.
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B EXAMPLE 7.4

The ARCH-type process is also included in specification (7.9)—(7.11)
with the Volterra expansion

o0 oo
— § : . 2 2 2
fler—1,€—2,...) =g E Oy Qg w o O €4 € o "7 €y
k=0j1,....Jk=1

and 7 = 0 for all ¢, cf., expression (6.14).

B EXAMPLE 7.5

For the LMSV model introduced in Section 6.9, the conditional variance
is given by

feymi—1,...) = a2 exp{gb(B)_l(l — B)_dQ(B)nt} .

Notice that in this case, the conditional variance does not depend di-
rectly on the sequence {¢;} but it depends on random perturbations {n;}
such as those appearing in (6.21).

B EXAMPLE 7.6

The conditional variance for the FIEGARCH model may be written as

f(ét_l, €t—92, .- )
= exp {¢(B)_1(1 — B)_d[H(B)(|et,1| —F |€t71‘> + )\(B)thl]} ;

see Problem 6.18.

The following fact is fundamental for the formulation of prediction of the
volatility techniques for the heteroskedastic models described by (7.9)—(7.11).
For all t € Z we have

Elg2 ., |P] h>1,
pletalp) = { Fop Pl 2

This can be verified as follows. First, notice that for A < 1 the result is triv-
ial. For h > 1 observe that by the definition of £¢,, we may write E[}, , |P] =
E[€?+h‘7t2+h|7)t]- But, since Ut2+h = fl€tth—1,€4n—25- s Nethr Nith—1s-- ),
o? ", and €;1, are independent. Furthermore, €;1, is independent of y¢, Y1, . - -
for any h > 1. Thus,

(7.12)

Ele},1|Pd] = Ele}y 1) Elof 1| P.

Finally, by noting that E[e;,,] = 1, the result is obtained.
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7.4.1 Prediction of Returns

In the context of the heteroskedastic model (7.9), the forecasts of the returns
can be obtained similarly to the cases discussed in Section 6.1. On the other
hand, estimation the prediction error conditional variances is addressed in the
next subsection. Practical illustrations of these techniques are provided later
in this chapter.

7.4.2 Prediction of Volatility

Observe that from (7.7) the multistep ahead prediction error for A > 1 is given
by
ei(h) = Yirn — Ye(h) = €opn +V16e4n—1 + -+ Yp_16041.
Therefore, the mean-squared prediction error is
Blef(h)|Pi] = EBlefyn|Pe] + ¢F Elefon_1 [P +
Yy Elef [P
Thus, we may write
Blej(|P] = EBlo ulPe] + ¥ Blog, [P +
-+ iy Blog [P

Let o7 (h) = E[o},,|P:], then the h-step prediction error conditional variance
is

h)[P] = Zw

The calculation of the conditional variances o2(j) depends on the specification
of the heteroskedastic model. Some specific examples are discussed next.

B EXAMPLE 7.7

Consider an ARCH(1) process and assume that we know the returns
{Yn, Yn—1," "~ } and we have the equations 02 = ag + a3 y2_; and
02,1 = g+ aiyz. In order to forecast the conditional variance o2,
we can write:

A721+2 = [03+2|Pn]~
Thus,
oo = Blao + a1y 1|Pa] = a0 + a1 B(yp 41|Pa)
Since {y?} corresponds to an AR(1) process, we can write

2 2
Ynt1 = Q0 + Q1 Yy, + V.
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Now, by taking expectation we have

E(yni1Fn) = ao+ai E(y, | Fo) + E(Wat [F)
= oo+ o yi
On the other hand,
G2, = ao+arfag+aryi] =ag+arag+ oyl
Now, for predicting o2, 5 we can write,
82-1—3 = E[O‘O + o 3/121+2|~7:n] =ap+aq E(Z/121+2|}_n)
But,

Yryy = Qo+ o1yapy + Vnso
so that by taking expectation on both sides
E(yrio|Fa) = ao+arE(ys i |Fn) + E(ni2|Fn)
and then

E(yr 5|Fn) = aotai(ao+aiys)+0

= aptarapt+aly?
Thus,

~2 2 3 2
Opts = Qptaroag+ajoag+ajy,
2 2

= ag(l+ai+ai)+alyl.

More generally, the h-step predictor is given by
h—1

~2 _ i
Op+h = Q0 [E 551

i=0

+aly? (7.13)

Notice that the behavior of the predictor (7.13) as the forecasting horizon
increases h — oo is as follows

[eS)

~ P (67

0721_,'_;1 4):0 Q0 [ZO 0421‘| = 1 . :Var(yt).
i=



280 PREDICTION

B EXAMPLE 7.8

The previous results established for ARCH(1) processes can be readily

extended to the ARCH(p) model. In this case we have
&2(1) = ot Z/TQL + "'+apy721+17p

n

62(2) = aotoron(l)+aays+pYiia

and more generally,
P
Ga(l) =0+ Y o;Ga(l —i) (7.14)
i=1

where 72 (0 — i) =y2,,_, para £ —i < 0.

B EXAMPLE 7.9

For the ARFIMA-GARCH(1,1) we have
Ofn =0+ 1€l 1 + P10ty -

Therefore, an application of (7.12) yields ¢7(1) = o7,, and for h > 2,
of(h) = aog + (a1 + B1)of (h —1).

Solving this recursive equation we find the following solution for h > 1:

1— (o + By)" !

2 h—1_2
h) = + (o + :
o;(h) = o 1— (a1 + 1) (1 + B1) O¢41
Since 0 < ay + 1 < 1, we have that
. Qo
lim o?(h) = ———— |
h%ooat( ) 1—((11 —i—ﬁl)

where the term on the left hand of this equation corresponds to the

variance of {e;}.

B EXAMPLE 7.10

For the general ARFIMA-GARCH(r, s) it is not hard to check that for
h > max{r, s} we have

of(h) = a0+ Y ajof(h—j)+ > Biot(h—j),
Jj=1 j=1

and since 0 < 22:1 o+ 2221 By <1,
2 @0

lim oy (h) = 7 5 = Var(gy).
P S TR A R
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B EXAMPLE 7.11

For the ARCH(o00) model, we have
oo h—1 oo
Opin = a0+ Zajyt2+h—j =ao + Z Y T Zajyt%rhfj'
j=1 j=1 j=h
Thus,
h—1 oo
Elo}, 1| Fe] = a0 + Z Q; E[yt2+h7j|]:t] + Z ajy162+h—j7
j=1 j=h
and then,

h—1 (')
of(h) =ao+ Y a;of(h—j)+ Y uiin ;-

j=1 j=h

Now, if 0 < 250:1 a; <1, then

lim 02(h) = — 20

= Var(w).
oo -y a; ar(ye)

7.5 PREDICTION BANDS

Given the forecasts g4, and the estimated prediction error variances 67, ,,
we can build the approximate prediction bands

(Yt+h — 2a0t+h,  Yith + Za0t4h ]

where z,, corresponds to the 100 (1 — «) percentile. For example, under Gaus-
sianity, for the 90% prediction bands we can use z, = 1.65 while for 95%
prediction bands this value is z, = 1.96.

B EXAMPLE 7.12

Figure 7.3 displays a simulated Gaussian ARFIMA (0, d,0) process with
zero-mean and unit variance white noise, long-memory parameter d =
0.40 and sample size n = 1000. The last 100 observations (dotted line)
will be predicted using the estimated model. R

The MLE of d calculated from the first 900 observations is d = 0.4096
with standard deviation o4 = 0.0251. Besides, the estimated stan-
dard deviation of the white noise is ¢ = 0.9735. Figure 7.4 shows
the observations from ¢ = 800 to ¢ = 1000, along with Pggo(h) fore-
casts with h = 1,2,...,100 and 95% prediction bands. These multi-
step ahead predictors are based on the fitted model and on observations
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t=1,2,...,900. From Figure 7.4, notice that most of the future obser-
vations fall inside the prediction bands.

Figure 7.5 displays the theoretical and the empirical evolution of the
prediction error standard deviation, from ¢ = 901 to ¢ = 1000. The
theoretical prediction error standard deviation is based on the multistep
prediction error variance formula (7.8) which yields

(7.15)

for h = 1,2,...,100. Equation (7.15) provides only an approximation
of the theoretical prediction error standard deviation at step h since
we are dealing with a finite past of 900 observations. On the other
hand, the empirical prediction error standard deviations are based on
the Kalman filter output from a truncated state space representation
with m = 50. Notice from this graph that the sample prediction error
standard deviations are very close to their theoretical counterparts.

0 200 400 600 800 1000
Time
Figure 7.3 Simulated fractional noise process FN(d), with d = 0.40 and unit
variance white noise. The dotted line indicates the last 100 observations that will be
predicted using the estimated model.
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0 50 100 150 200
Time
Figure 7.4  Simulated fractional noise process FN(d): Multistep forecasts of the
last 100 values and 95% prediction bands.

o
8
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o
& 4
A
- — Theoretical
""" Empirical
o
w0
8
o
e 4
- "
T T T T T T
900 920 940 960 980 1000

Time
Figure 7.5  Simulated fractional noise process FN(d): Theoretical and empirical
prediction error standard deviations of the last 100 observations.
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B EXAMPLE 7.13

We now illustrate the prediction of a short-memory process. Figure 7.6
shows a simulated trajectory of 1000 observations from an ARMA(1,1)
process with parameters ¢ = 0.80 and 6 = —0.40.

In order to illustrate the application of the forecasting methods dis-
cussed in this chapter, the series has been divided into two parts, the first
900 observations to fit the model and the remaining 100 observations for
prediction.

The fitted model based on the 900 observations is reported below and
the diagnostic plots are exhibited Figure 7.7, including the residuals, the
ACF of residual and the Box-Ljung tests.

According to this set of graphs and tests, the fitting of this ARMA(1,1)
model seems adequate.

Coefficients:
arl mal intercept
0.8071 -0.3818 0.2215
s.e. 0.0329 0.0527 0.1085
0 200 400 600 800 1000

Time
Figure 7.6  Example of prediction of an ARMA process. Simulated ARMA(1,1)
time series with ¢ = 0.8 and § = —0.4.
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Standardized Residuals

3

1
T N R

-1

-3

0 200 400 600 800 1000

Time

ACF of Residuals

o
@
<
(=}
o bocb oo oo D
e e L L o B
0 2 4 6 8 10
Lag
p values for Ljung-Box statistic
1.0 . .
. . . .
2 ' Lo
04+
0.2 H
00 +— T T T T T
0 2 4 6 8 10

Lag

Figure 7.7  Example of prediction of an ARMA process. Fitted model diagnostics.

sigma”2 estimated as 1.04: log likelihood = -1294.96,

aic = 2597.93

Figure 7.8 displays the series along the out-of-sample predictions and
95% prediction bands for observations from ¢ = 901 to ¢ = 1000. The
predictions bands in this case are given by £2,/v;.

Note that in this case the predictors converge to the mean of the
process (¢ = 0) and that the prediction bands converge very fast to the
corresponding to +24/Var(y;).

On the other hand, Figure 7.9 shows the last 100 values of the series
along their corresponding forecasts and prediction bands. From this plot,
observe that, as expected, most of the values lie inside of the prediction
bands.
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T T T T T T T
] 200 400 600 800 1000 1200

Time
Figure 7.8  Example of prediction of an ARMA process. Time series, forecasts and
predictions bands.

900 920 940 960 980 1(;00
Time
Figure 7.9  Example of prediction of an ARMA process. Last 100 observations,
forecasts and predictions bands.
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7.6 DATA APPLICATION

This section illustrates the application of prediction methods discussed in
this chapter to a real-life time series. We consider the SP500 stock index
introduced in Chapter 1. Recall that an AR(2)-GARCH(1,1) model was
fitted to these data in Section 6.11.

Figure 7.10 shows the SP500 returns while Figure 7.11 displays the volatil-
ity estimates for these data. Observe that the volatility estimates behave sim-
ilarly to the variability of the returns. As expected, periods of high volatility
produce large estimates while periods of low volatility generate small esti-
mates. Figure 7.12 exhibits the corresponding estimates of the conditional
standard deviations oy.

On the other hand, Figure 7.13 shows 100 out-of-sample forecasts of the
SP500 returns along with 95% prediction bands.

In order to provide a comparison framework, we have also plotted 200
returns corresponding to the period ¢t = 15,905 to ¢t = 16,104. Notice that
the predictors converge rapidly to the mean of the series, zero, and that the
prediction bands increases as the forecasting horizon increases.

0.05 0.10
I 1

0.00
]

-0.15 -0.10 -0.05

-0.20

T T T T T T T
1950 1960 1970 1980 1990 2000 2010

Time

Figure 7.10 SP500 Returns data.
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Figure 7.11 SP500 Returns data. Volatility estimates.
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Figure 7.12 SP500 Returns data. Estimates of o.
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Time

Figure 7.13  SP500 Returns data. Out-of-sample forecasts and prediction 95%

bands.

7.7 BIBLIOGRAPHIC NOTES

The literature about prediction of stationary processes is extensive and spans
several decades since the pioneering works on linear predictors by Kolmogorov,
Wiener, and Wold, among others. The monographs by Rozanov (1967), Han-
nan (1970), and Pourahmadi (2001) offer excellent overviews of the theoretical
problems involved in the prediction of linear processes. For a review of pre-
diction methods in the context of long-memory processes; see, for example,
Bhansali and Kokoszka (2003).

Optimal adaptive prediction with long-range-dependent models has been
analyzed, for instance, by Ray (1993b), Tiao and Tsay (1994) and Basak,
Chan, and Palma (2001).

Problems
7.1 Let {y;: t € Z} be an AR(2) process defined by
Yt = 0.2y;—1 + 0.6y,—2 + &,

where {¢,} is a white noise sequence with zero-mean and variance o2 = 2.
(a) Find the best linear predictor of y,i2 based on the infinite past
yn’yn_17 M
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(b) Calculate the best linear predictor of y,t2 based on the finite past

YnsYn—15---,Y1-
(c) Calculate the squared prediction error of two the previous forecast.

7.2 Show for the fractional noise process FN(d) we have
(rbtj ~ 5,
for all finite j as t — oo, where

_ (n\T( —dT(t—d—j+1)
d’”“(’) L(-dT(t—d+1)

and
o rG-d)
TOT@4+1I(=d)

7.3  Consider the following process {y:} with expected value p for all time
t, defined by the equation

p=a+dy—1+z+0+n)z_1+0nz_o,

with a € R, |¢| <1, 10| < 1, |n| <1y {z} ~ WN(0,0?).
(a) Find an expression u in terms of the coefficients of the process.
(b) Show this process can be written as

(1—=¢B)[ye—pl=[1+(0+n) B+0nB? 2

(c) Since |#] <1 and |n| < 1, then the process {y; — p} is causal. Show
that the coefficients )y, of its MA(oo) representation are

Yo=1, Y1=0¢+(0+n), Ye=0¢"2[¢*+(0+n) ¢+0n] fork>2.

(d) Given that |¢| < 1, the the process {y; — p} is invertible. Show that
the coefficients 7, of its AR(oc0) representation are

mo=1, m=+(@+0+n), m=—(=0)"+(n+¢) Y (=0)' (=)' for k>2

S
Ju

Il
o

(e) Find the autocovariance function of the process {y: — p}.
(f) Determine the variance of prediction error h steps, o7 (h), under the
assumption that all the past information is available up to time t.

7.4 If yp = 2z — 02,1, where|d] < 1 and z; is a white noise sequence with
variance o2, verify that the best linear predictor of ;.1 based on Y, J < tis
given by

oo
Jer ==Y 0y,
=1
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and find its mean square error.

7.5 Consider the following formula for the coefficients of the best linear
predictor from the Durbin-Levinson algorithm:

Gty = Gt—1,5 — Pt Pt—1,t—j,
forj=1,...,n. Let ay =1 —Z;Zl@j.
(a) Show that «; satisfies the following recursive equation:
ar = (1= ¢u)ou—1.

(b) Verify that a solution to the above equation is

t
a; =[]0 - ¢3).
j=1
SO that Z;:l ¢tj =1- H;:l(l — ¢jj)~
7.6 Consider a stationary process {z;} given
T =2+ 0z,

with {z:} ~ (0,0%) y s € N. Determine the coefficients 6,, ; of the one-step
predictor of z,41 given by

n
i'nJrl = E en,j(anrlfj _‘%n+1fj)v n=123,...

j=1
assuming that X, =0.

7.7 Let x; be an ARMA(p, q) process. Show that o2 is the one-step predic-
tion error variance and that +(0) is the infinite steps ahead prediction error
variance. Furthermore, verify that v(0) > o2.

7.8 A quarterly economic time series was modeled by Vz; = 0.5+ (1 — B+
0.5B?)a; with o2 = 0.04.
(a) Given z4g =130, as7 = —0.3 , ass = 0.2, calculate and draw the
predictions Zyg(1) for I =1,2,...,12
(b) Include 80% prediction bands in the graph.

7.9  Consider the MA(1) process where {g;} is WN(0, ¢%) y |0] < 1,
yr =¢c¢ — Oy,

(a) Suppose that we want to find the best lineal predictor (BLP) of yg
based on the infinite past {y_1,y—2,y—3,...}. Verify that in this
case the BLP of yq is given by

o0
Yo=— ZWZ/—J‘,
j=1
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and that the prediction error variance is o2.
(b) Assume now that we only have the pst observations {y_1,y_2} and
we write the BLP of yg as

Yo = P1y-1 + P2y—2.
We know that in this case the vector ¢ = (¢1, o) satisfies
Lo =1,

where T is the variance covariance matrix of y = (y_1,y—2)" y v =
[v(1),7(2)]". Verify that

p

o=

(17 _p)a

where p = %

7.10 Consider fractional noise a fractional noise process FN(d) where the
coefficients of the best linear predictor are given by

_ (n\T( —dT(t—d—j+1)
d’”“(’) L(-dT(t—d+1)

and the coefficients of the infinite AR expansion are

o I'G—4d
T = =~
I'(j+ DI'(—d)
Show that
¢tj — g,
as t — oo.

7.11  Consider the AR(p) model

Yo+ O1Ys1 — 0 — OplYi—p = €,

where {¢,} is a white noise sequence with variance 2. Verify that v; converges
to o2 after p steps.

7.12 Find an expression for oZ(h), h > 1, for the ARFIMA-GARCH(r, s)
model.

7.13 Show that for the ARFIMA-GARCH(1, 1) model, the conditional vari-

ance at time ¢ + 1 may be written as

oo
2 Qo j 2
Ut+1:7+0¢1§ 5{5:&—3*
1-5-1 —
j:
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7.14 Verify the following result for the random variables x,y,z. If z is
independent of y and z, then

E(xylz) = E(x) E(y|2).

7.15 Show that for the fractional noise process, FN(d), we have
d2
5t ~ 77
as t — oo.

7.16  Consider the h-step forecast for an ARCH(1) given by

h—1

~2 _ %
On+n = &0 [E 231

=0

h,2
+al Yn>

cf. (7.13). Prove that 62, increases with h.

7.17  Verify that the following expressions for the predictors of an ARCH(p)
model hold:

62(1) = agtoaqgyp+--ee +Oépy121+1—p
622 = ag+toop(l)+aoys -+ apypig

Furthermore, show that for the general case we have,
P
aa(0) = ag + Z a; o5 (0 — i),
i=1

with 02 (¢) = y2,, for £ <0.

7.18 Consider the Hilbert space L5 and a subspace M C L5 . Show that
the orthogonal projection of y € L5 onto M is given by the conditional ex-
pectation

y=EyM).
7.19 Consider the Hilbert space H = §p{e; : t = 0,1,2,...} where {e;} is
an orthonormal basis, that is, (e;,es) = 0 for all ¢ # s and (et, e;) = 1 for all

t.
(a) Let x € H, verify that this element may be written as

xr =

WK

(x,ep)ey.
t

(b) Show that [|z||* = > 72 (z, er)?.

Il
=]
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(¢) Let M =3p{ey,...,en} and let T be the orthogonal projection of x
on M. Show that & = Zivz()(x, et)et.
(d) Verify that ||z — Z||* = Y22 vy (2, €)>.

7.20 Let {y: : t € N} be a sequence in a Hilbert space H such that
ey lyell < oo. Show that Y /2 v, converges in H.

7.21 Let H be a Hilbert space and suppose that x,y € H are orthogonal
vectors such that ||z|| = |ly|| = 1. Show that [|az + (1 — a)y|| < 1 for all
a € (0,1). From this, what can you say about the set {y € H : |ly|| < 1}?

7.22 (Parallelogram law) Show that if H is an inner product space then
Iz +ylI* + [l = yl* = 2ll=[* + 2[ly]1%,
for all z,y € H.
7.23  Consider the following stochastic volatility process {r;} defined by
Ty = &tOy,
op = oexp(r/2),

where {e;} is an independent and identically distributed sequence with zero-
mean and unit variance, and {14} is a linear process:

oo
vy = E Yine—j,
j=0

with Z;io wjz < oo and {n:} is an independent and identically distributed
sequence with zero-mean and unit variance, independent of the sequence {;}.
(a) Show that the process 7, is stationary.
(b) Find the best linear predictor of y;11 given the full past of the series.



CHAPTER 8

NONSTATIONARY PROCESSES

As discussed in Chapter 1, most real-life time series display a number of non-
stationary features, including trends, seasonal behavior, explosive variances,
trend breaks, among others. This chapter provides an overview of some of
these problems and the time series analysis techniques developed to deal with
them. In particular, we discuss the concepts of deterministic and stochastic
trends as well as unit root procedures to test for a nonstationary explosive
behavior. Autoregressive integrated moving-average processes are also briefly
reviewed. These are very well-known models for dealing with integrated time
series. On the other hand, techniques for modeling time-varying parameters
are also discussed, focusing on the so-called locally stationary processes. In
this case, the time series model is assumed to evolve very smoothly so that it
can be locally approximated by stationary processes. This chapter also cov-
ers methodologies for handling abrupt structural changes as well as several
examples and data applications.

Time Series Analysis. First Edition. Wilfredo Palma. 295
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8.1 INTRODUCTION

On of the most common features in time series data is the presence of in-
creasing or decreasing trends along with a number trends breaks. A basic
question that arises is whether these trends are the result of a deterministic
underlying pattern or it corresponds to the accumulation of random shocks
over time. Of course, the observed time series may be the result of combi-
nations of these two or other more complex data generation mechanisms. In
what follows, we discuss two well known approaches to understand and model
trends: deterministic and stochastic methodologies.

8.1.1 Deterministic Trends

Under the deterministic approach, the observed process is the result of a
usually unknown underlying pattern f(¢) plus a noise &,

Y = f(t) + e

In order to estimate the trend, the function f(¢) can be written in terms of
some parameter vector 5. For instance, we may write

f(t) = Bo + Brxpr + Poxa + - - + Bpap,

where 241,242, ..., %y are deterministic covariates. In particular, by setting
Tyj = tJ we can generate a polynomial trend or polynomial regression. On the
other hand, if 2;; = exp(ij) the resulting model corresponds to an harmonic
regression.

Another way of specifying the function f(¢) is through local polynomials, so
that the trend is flexible enough to capture short term movements in the data.
In this nonparametric approach, the trend of process y; is locally estimated
as

m
Yt = Z Wi Yt+j,

for t = m+1,...,N —m. The optimal weights w; are usually obtained by
fitting cubic polynomials to the series y;.

8.1.2 Stochastic Trends

If the underlying trend is assumed to be stochastic, the observed process
is usually understood as the result of a sequence of random shocks,

Yt =€1+e2+ -+ &y,

where £; is a white noise or a sequence of independent random variables. Note
that in this case, the differenced series satisfies

Yt — Yi—1 = (1 = B)ys = Aey.
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Thus, an stochastic trend process is more generally specified by
Adyt = &t

where d is a known differentiation order and ¢; is assumed to be a stationary
process. Typically, a process satisfying this equation is referred to as integrated
process of order d, 1(d).

Assume that €; is a sequence of i.i.d. random variables with zero-mean
and variance o2. The variance of an I(d) process is Var(y;) = t 02. Thus, an
integrated process possesses an explosive variability as ¢ tends to infinity.

In contrast, under the same conditions, the variance of a process with
deterministic trend is Var(y;) = o. Naturally, in this case the variability is
not explosive.

In this sense, it is relevant to test whether the process possess a unit root,
that is, it corresponds to an integrated process. This issue is discussed next.

8.2 UNIT ROOT TESTING

Consider the model
(1 - ¢B)yt = &,

where ¢ is an autoregressive parameter and €; is a zero-mean stationary se-
quence. As studied in previous chapters, if |¢| < 1 then the process y; can be
expanded as

Yt = (]. — ¢B)_15t.

Thus, the process y; is stationary. However, if ¢ = 1 then y; corresponds to a
I(d) process with explosive variance. Therefore, the unit root hypothesis can
be formally defined by Hy : ¢ = 1. A well known procedure for testing Hy
against the alternative hypothesis H; : ¢ < 1 is the Dickey-Fuller statistic
which is based on the least squares estimates

(g o 21;1 Yt Yt—1

D1 Vi
52 — i1 (e — dye—1)?
n—1

Naturally, evidence in favor of the unit root hypothesis comes from an esti-
mated value of ¢ close to one. Following this idea, the Dickey Fuller ¢-statistics
is given by

fg* 1 _ Z?:l EtYt—1

9 o \/ Z?:l yt271

DF =
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B EXAMPLE 8.1

Consider the logarithm transformation of the SP500 series introduced
in Chapter 1. An application of the Dickey-Fuller test to this series of
log returns we get,

Augmented Dickey-Fuller Test

data: =z
Dickey-Fuller = -2.1531, Lag order = 25, p-value = 0.5135
alternative hypothesis: statiomary.

Thus, according to this result, we cannot reject the unit root hypoth-
esis for this series of log returns of the SP500 stock index at the 5%
significance level.

B EXAMPLE 8.2

When the Dickey-Fuller test is applied to the log returns of the IPSA
stock index we obtain

Augmented Dickey-Fuller Test

data: y
Dickey-Fuller = -1.6347, Lag order = 14, p-value = 0.733
alternative hypothesis: statiomary,

so that based on this output, we cannot reject the unit root hypothesis
for this series of log returns of the IPSA stock index at the 5% significance
level.

8.3 ARIMA PROCESSES

An autoregressive integrated moving-average ARIMA((p, d, q) process y; is de-
fined by the equation
$(B)A%y; = 0(B)ey,

where ¢(B) is an autoregressive polynomial of order p, (B) is an moving-
average polynomial of order ¢, ¢(B) and §(B) have no common roots and &;
is a white noise sequence. Note that the differenced process Ay, satisfies an
ARMA(p, ¢) model.

Figure 8.1 to Figure 8.4 display 1000 simulated observations from ARIMA
model

(1—¢B)(1 — B)ly, =4 — g1,

for different differentiation levels d = 1 and d = 2 as well as for distinct values
of the autoregressive parameter ¢. Note that these time series plots show
apparent local trends. However, these are stochastic paths corresponding to
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Figure 8.1 Simulated ARIMA(1,1,0) model with ¢ = 0.6 and o = 1.

integrated processes. There is a clear difference in the paths of Figure 8.1
and Figure 8.2 due to the change of the parameter from positive to nega-
tive. Furthermore, these two cases are different from the series exhibited in
Figure 8.3 and Figure 8.4. The second order integration represented in these
plots reveals smooth but highly nonstationary paths.

After accounting for the differentiation level of the series, the estimation
of a ARIMA model proceeds analogously to the estimation of an ARMA
process. As an example, consider the ARIMA(1,2,1) exhibited in Figure 8.4.
An application of the R function arima.mle produces the following parameter
estimates

> fit

Call:
arima(x = y, order = c(1, 2, 1))

Coefficients:
arl mal
0.2733 0.5750
s.e. 0.0409 0.0342

sigma”2 estimated as 0.9552: log likelihood = -1396.4, aic = 2798.8
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Figure 8.2 Simulated ARIMA(1,1,0) model with ¢ = —0.6 and o> = 1.

0 200 400 600 800 1000
Time

Figure 8.3 Simulated ARIMA(1,2,0) model with ¢ = 0.2 and o2 = 1.
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Figure 8.4  Simulated ARIMA(1,2,1) model with ¢ = 0.2, § = 0.6 and ¢* = 1.

8.4 LOCALLY STATIONARY PROCESSES

Another approach for modeling non stationary time series data is the class of
locally stationary processes. Recall from Section 4.8 that a stationary process
{y+} can be written in terms of a spectral representation as

e / AN €M dB(N), (8.1)
where A()) is a transfer function and B(\) is an orthogonal increments process
on [—m, 7] such that

Cov[B(A), B(w)] = ;5(/\ — w)dAdw.

The representation (8.1) can be extended allowing the transfer function to
evolve in time as follows,

™
war = [ () N dBO, (82)
—T
fort=1,...,T.
The transfer function A () of this class of nonstationary processes is as-
sumed to change smoothly over time so that they can be locally approximated
by stationary processes. Some examples are discussed below.
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B EXAMPLE 8.3

Consider the following time-varying version of the first-order moving-
average process, denoted for simplicity as LSMA(1),

Yo =0 (%) [1+0(%)e], (8.3)

t =1,...,T, where {&;} is a zero-mean and unit variance white noise
sequence. The covariance structure of this model is,

o (7)) [1+62(5)], s=t
Lo ()0 (%), =t-1,
| I
0 otherwise.

In this case, the transfer function of the process is given by
A (N) = A (R ) =0 (5) [14+0(£) ] (8.4)
Furthermore, the time-varying spectral density is

f(EN) =[A(E AN P=0% (%) [1+6% (%) +260(%)cosA]. (8.5)

B EXAMPLE 8.4

An extension of the previous model is the time-varying MA (co) moving-
average expansion

yir =0 (%) ng (%) er—js (8.6)

t=1,...,T, where {g;} is a zero-mean and unit variance Gaussian white
noise and {9;(u)} are coefficients satisfying

Yo (u) =1, > s (u)? < oo,
j=0

for all u € [0,1]. This model will be denoted LSMA (c0) hereafter. The
time-varying spectral density of (8.6) is

Folu, X) = o2 ()| Y (w)e 2,
=0

for u € [0,1] and A € [—7,7]. For simplicity, if |¢;(u)| < K exp(—aj)
for 5 > 1 and u € [0,1] with K and a positive constants, model (8.6)
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will be called a short-memory process. On the other hand, if |, (u)| <
Kj?=1 for u € [0,1] and some d € (0,1/2), model (8.6) will be called a
long-memory process. Another characterization is based on the spectral
density. It is said that a LS process has short memory if its spectral
density is bounded at A = 0 for u € [0,1]. On the other hand, the
process has long memory if its spectral density is unbounded near the
origin for u € [0, 1].

EXAMPLE 8.5

Consider the LS autoregressive process LSAR(1) defined as

Yo = O(E)y—1,m + €1, (8.7)

for T =1,...,T. Suppose that ¢(u) = ¢(0) for u < 0, and there exists
a positive constant K < 1 such that |¢(u)] < K for u < 1. Thus, an
expanded Wold expansion of this process is given by,

yer =Y b (6T) e, (8.8)
=0

where g (¢t,T) =1 for all t,T, and for j > 1,

qu) thy, (8.9)

From this, we conclude that the transfer function can be written as

oo j—1

AN =14 T o555 )e™. (8.10)

j=1k=0

The spectral density of the limiting process is fp(u,\) = o(u)?|1 —
#(u)e|~2. This process satisfies definition (8.2) and its spectral den-
sity is bounded at the origin for all w. Thus, this is a short-memory
process.

EXAMPLE 8.6

Consider the LS autoregressive process LSAR(p)
Y, = ZCLJ F)Yi—j T + et

forT =1,...,T. The spectral density of the limiting process is fo(u, A) =

o(u)?]1 — ?:1 aj(u)e“j|*2. This process satisfies definition (8.2). In
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this case, the spectral density is bounded at the origin under some regu-
larity conditions on the roots of the polynomial a(B) =1—3>"_, a;B7.
Thus, these LSAR(p) processes have short memory.

B EXAMPLE 8.7

Observe that a stationary fractional noise process (FN) with long-memory
parameter d is given by

Y = ozszt,j, (8.11)
§=0

where 1); = %, where T'() is the Gamma function. A nonsta-

tionary extension of this model is the LS fractional noise process (LSFN)
with coeflicients ¥; (u) = %, where d(+) is a smoothly time-
varying long-memory parameter. The covariances of a LSFN process
are

P[1-d(f)—d(g)]T[s—t+d(F)]
_ (s t T T T
w10 =2 ()7 (0) F () TG Tt L-d ()]

for s,t =1,...,T, s > t. From this expression, and for large s — ¢ we
have that

oy D=d(3) —d(4)]
kr(st) ~o (7)o (F) P[1—d()]T[d(%)]

(s— t)d(%)ﬂl(%)q

)

The spectral density of this process is given by

2 —2dg(u)
() [2 sin A}
2 2

fG(ua >‘) =

i

for A € [—m,w]. Thus, fop(u,A) ~ %W’zd(“), for |A\| — 0. Conse-
quently, fo(u,A) has a pole at the origin and then this is a long-memory
process.

B EXAMPLE 8.8
Figure 8.5 exhibits a simulated locally stationary MA(1) model

Yo =€t + Orep—1,

where ¢; is a Gaussian white noise sequence with zero-mean and unit
variance, and the time-varying parameter 6; evolves as

t
0, =09 18—,
n
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with n = 400. Observe that this parameter can be also written in terms
of the rescaled time

O(u) =0.9 — 1.8u,

for u € [0, 1].

The sample ACF of the generated process is provided in panel (a)
of Figure 8.6. It is interesting to notice that this is just an heuristic
exercise since this non stationary process does not have a well-defined
ACF.

From this panel, we may consider that this time series is white noise.
However, when we take a closer look at the sample ACF for the first half
of the series, see Figure 8.6(b), it seems that this process behaves like a
MA(1) model with positive first-order moving-average parameter 6.

A similar conclusion could be reached from panel (c) which shows the
sample ACF of the second half of the observations. From this panel, we
may think that the process is a MA(1) with negative parameter 6.

o(u)

0.0 02 0.4 06 0.8 1.0

y(u)

0.0 02 0.4 0.6 0.8 1.0

Figure 8.5  Locally stationary MA (1) model with 0[u] = 0.9 —1.8u. (a) Evolution
of O(u), (b) Observed series y; fort=1,...,400.
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Locally stationary MA(1) model with O[u] = 0.9 — 1.8u. (a) Sample
ACF, (b) sample ACF of y:, for t = 1,...,200, and (c) sample ACF of y., for
t=201,...,400.
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Figure 8.7  Spectral density of the locally stationary MA(1) model with 6(u) =
0.9 —-18u.



LOCALLY STATIONARY PROCESSES 307

B EXAMPLE 8.9

To illustrate the use of locally stationary models in the context of strongly
dependent time series, consider the following FN(d) process

Yt — Ot (1 — B)dti‘:t,

where ¢; is a Gaussian white noise with zero-mean and unit variance.
The evolution of the long-memory parameter d is in terms of the scaled
time u given by

d(u) = 0.05+ 0.4 u,
while the evolution of the standard deviation parameter o is
o(u)=1-0.5u.

The evolutions of these two parameters are plotted in Figure 8.8 while
the first 10 terms of the covariance matrix of this model is reported in Ta-
ble 8.1. Notice that since this is not an stationary process, the covariance
matrix is not longer Toeplitz. On the other hand, Figure 8.10 displays
a simulated trajectory of this process with 1000 observations. From this
figure, the variance of the series seems to decreases with time as expected
from the specification of the model. Furthermore, Figure 8.11 exhibits
the sample ACF for three blocks of observations of length 333 each. Note
that the strength of the serial correlation seems to increase with time.
This is due to the specification of the long-memory parameter d which
increases from 0.05 to 0.45.

Table 8.1  Covariance Matrix of the LS FN model with d(u) = 0.05 +
0.4v and o(u) =1—-0.5u.

1 2 3 4 ) 6 7 8 9 10

1 092 012 010 0.09 0.09 0.09 0.09 009 010 0.10
2 012 084 0.16 0.12 0.11 011 0.11 0.11 0.12 0.12
3 010 o016 077 019 015 013 013 0.14 0.14 0.15
4 009 012 019 o071 022 017 016 016 0.17 0.18
5 009 011 015 022 066 025 021 020 0.20 0.22
6 0.09 011 013 0.17 025 063 029 025 025 0.27
7 009 011 013 016 021 029 061 034 032 0.33
g§ 009 011 014 016 020 025 034 062 041 0.42
9 010 012 014 017 020 025 032 041 068 0.57
10 0.10 0.12 015 018 0.22 027 033 042 0.57 0091
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Figure 8.8  Locally stationary FN(d) model specification with d(u) = 0.05+ 0.4
and o(u) =1 —0.5u. (a) Fvolution of d(u). (b) Evolution of the noise variance
o(u)?.

8.4.1 State-Space Representations

Given that the state space models described in Chapter 3 provide a very
useful framework for the efficient calculation of estimates and forecasts, in
this section we review the application of this representations to the case of
locally stationary processes. Consider the following state space system,

vt = Fyrrer +Vir,

8.12
yer = Gerrxer +Wer, ( )

where z; 7 is a state vector, F} r is a state transition matrix, V; is a state
noise with variance Q¢ r, y:,r is the observation, G r is observation matrix
and W, is a observation noise with variance R; r.

The process (8.6) can be represented by the following infinite-dimensional
state space system

Tt41,T = [I :|.’17tT+[]. 0 0 "']IEtJrla
YT = % ( )¢2( )%( )"']xt,T7

for t = 1,...,T, Var(xyr) = I, where I, = diag{1,1,...}, Ryqx = 0,
Qi1r = (gi;) with ¢;; = 1if ¢ = j = 1 and ¢;; = 0 otherwise. In some

(8.13)
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Spectral Density of the locally stationary FN(d) model with d(u)
0.05+0.4u and o(u) =1 —0.5u.

cases, this state space representation may not be minimal. For instance, for
LSAR(2) processes, the state space is 2-dimensional:

t t
a1(%) ag(*&
Tip1,T = 1§)T) 2(1T) Ty 4 €41, Yor = [1 0]z 7.
It is ussually more practical to approximate the model by,

m
wr =0 () )b (F) e, (8.14)
§=0
fort =1,...,T and some positive integer m. A finite-dimensional state state
system for (8.14) is given by
0
Ti41, T =

oo |10 0] et
U(%) [1 7/’1(%) %(%) 7/’3(%)

(8.15)
Y, T ¢m(%)] T, T,
for t = 1,...,T, where I, denotes the r x r identity matrix hereafter. Let
T = Var[3272

1;(u)er—;] be the variance of the truncation error for ap-
proximating {y; r} by the finite moving-average expansion (8.14). Then, the

asymptotic magnitude of the truncation error when approximating (8.6) by

309
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.10  Simulated locally stationary FN(d) model with d(u) = 0.05 + 0.4
and o(u) =1 —0.5u and 1000 observations.

(8.14) is, 7, ~ O(e~™) for a short-memory process and r,, ~ O(m??~1) for

a long-memory process, for large m, where a > 0 and d = sup,d(u) < 1/2.

8.4.2 Whittle Estimation

Let 6§ € © be a parameter vector specifying model (8.2) where the parameter
space O is a subset of a finite-dimensional Euclidean space. Given a sample
{v1,1,...,yrr} of the process (8.2) we can estimate # by minimizing the
Whittle log-likelihood function

e 47TM/ Z}{logfe(uy)\)Jr fg(uj,/\)}d)" (8.16)

where fo(u, \) = |Ag(u, \)|? is the time-varying spectral density of the limit-

_ [Dyv@?

ing process specified by the parameter 0, In(u,\) = SrHs a0y is a tapered

periodogram with

N-1

N-—1
—1iAs _ S k —1iAs
h( )y[uT _Nj2+strr € Y, Hegn= ; h (N) e ',

s=0
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Figure 8.11  Sample ACF for the simulated locally stationary FN(d) model with
d(u) = 0.05 4+ 04w and o(u) =1 — 0.5u and 1000 observations. (a) sample ACF
of y¢+ fort =1,...,333, (b) sample ACF of y: fort = 334,...,666 and (c) sample
ACF of y: fort=667,...,1000.

T=SM-1)+N,u;j=¢t;/T, t;=S(F—-1)+N/2,j=1,...,M and h(-) is
a data taper. Here, N is a block size, M denotes the number of blocks, and
S is the shift between them.

The Whittle estimator of the parameter vector 6 is given by

O = argmin L1 (6), (8.17)

where the minimization is over a parameter space O.

8.4.3 State Space Estimation

Consider the state space representation (8.13) of y, 7. The Kalman filter
equations can be used for estimating model parameters, state vectors, future
observations and missing values. Let Ay r = Var(y;, 7—7%, 7) be the prediction
error variance and let Q; 7 = Var(zy, v — 2, 7) = (w; ;(t, T)) be the state
prediction error variance-covariance matrix. The Kalman recursive equations
are as follows for the initial conditions yo,r = (0,0, ...), T1 = E(z1) =
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(0,0,...)and Q¢ = E(z1,27) ={1, 1, ...}

Nor=0?(£) 32 it (&) wislts T) s 1 (£),

i,j=1
O 7(i) =0 (%) Zwi—l,j(ta T) i1 (1)
j=1

W1, 7(4,J) = we, (i + 1,5+ 1) +qij — 6(t) O 7(i) O, 7(J)/Ar, 7, (8.18)

o0

Jor =0 (%)Y i1 (%) T (),

j=1
Zoar,0()) =2 20— 1)+ O 0(D)(ye.7 — Ye.r)/Ar 1,

where 0(t) = 1 if observation y; 7 is available and §(¢) = 0 otherwise.

Let 6 be the model parameter vector, then the log-likelihood function (up
to a constant) can be obtained from (8.18),

2
ZIOgAtT+ ytT ytT
A

Hence, the exact MLE provided by the Kalman equations (8.18) is given by

~

0=
arg max L(6),

where O is a parameter space. Observe that the Kalman equations (8.18) can
be applied directly to the general state space representation (8.12) or to the
truncated representation (8.15), yielding in this case an approximate MLE.

B EXAMPLE 8.10
Consider the following LSMA(2) process
yr = ¢ +01(t) er—1 + 02(t) £4-2,
where the moving-average parameter evolve as

01(u) = ao+aiu,
Oa(u) = Bo+ Pru.

Figure 8.12 displays a simulated trajectory of this process with 1000
observations and parameters ag = 0.2, a3 = 0.5, oy = 0.8 and ; =
—0.6. Additionally, the sample ACF of this process is exhibited in Fig-
ure 8.13. Given that this is not a stationary process, we consider heuris-
tic estimates by blocks. Panel (a), first block of 333 observations, panel
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Figure 8.12  Simulated LSMA(2) model with 1000 observations and parameters
aog = 0.2, a1 = 0.5, ﬂo = 0.8 and ,31 = —0.6.
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Figure 8.13 Sample ACF of the simulated LSMA(2) model with 1000
observations and parameters oo = 0.2, a1 = 0.5, fo = 0.8 and 1 = —0.6. (a)
first block of 333 observations, (b) second block of 333 observations, and (c) third

block of 334 observations.
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Table 8.2  Whittle and Kalman Estimates for the LSMA(2) model

parameters
Parameter g oy Bo o)1
0.2 0.5 0.8 -0.6
Whittle 0.2340 0.4209 0.7675 -0.6083
Kalfman 0.2352 0.4028 0.7739 -0.6097

(b), second block of 333 observations, and panel (c), third block of 334
observations. On the other hand, Table 8.2 reports the average param-
eter estimates for this model, based on 1000 repetitions and using both
the Whittle and the Kalman methods.

Notice that both techniques produce estimates close to their theoret-
ical counterparts.

B EXAMPLE 8.11

Consider the following LSFN process
Yt = O¢ (1 — B)_dt Et,
where the parameters evolve as

olu) = ap+aru,

d(u) = fo+ pfiu.

Figure 8.14 displays a simulated trajectory of this LSFN process with
1000 observations a and time-varying parameters ag = 0.90, a; = 0.10,
Bo = 0.15 and B; = 0.30. Moreover, the sample ACF of this process is
exhibited in Figure 8.15.

Analogously to the previous example, since this is a nonstationary
process, we consider heuristic estimates by blocks. Panel (a), first block
of 333 observations, panel (b), second block of 333 observations, and
panel (c), third block of 334 observations.

On the other hand, Table 8.3 reports the average parameter estimates
for this model, based on 1000 repetitions and using both the Whittle and
the Kalman methods. From this table, we conclude that both approaches
provide good parameter estimates in the LSFN example.
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Sample ACF of the simulated LSFN model with 1000 observations

and time-varying parameters ap = 0.90, a1 = 0.10, Bo = 0.15 and 1 = 0.30. (a)
first block of 333 observations, (b) second block of 333 observations, and (c) third
block of 334 observations.
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Table 8.3 Whittle and Kalman Estimates for the LSFN model
parameters.

Parameter Qg a; Bo 51
0.90 0.10 0.15 0.30
Whittle 0.9383 0.1053 0.1576 0.2491
Kalfman 0.9010 0.1826 0.1675 0.2431

8.4.4 Asymptotic Variance
Let 6y be the true value of the parameter 6, the Whittle estimator 6,, satisfies
Vn(0, — 69) = N [0,T(60)"],

as n — 0o, where

r(g) = ﬁ /O /_ " [V 1o fo (1, V][V 10g fo(u, \)]'dAdu. (8.19)

B EXAMPLE 8.12

For an LSARFIMA(1, d, 1) with polynomial evolution of its time-varying
parameters ¢(u), O(u) and d(u) we have the following formula for the
asymptotic distribution of 0.

Ty Tagp Tap O
Tya Ty Tgo O
Toa Loy To 0 |’
0O 0 o0 T,

=

Py [ 1 ]
d=—|— ’
6 [t+5—1 sG=1,... Patl
1
1 L
Ly = B e e d
’ ‘/0 (1_ [¢(U)]2) [U ]1»]=1,...,P¢+1 U

Y S S e 5
o= /0 (1 - [0(u)]2) [ L,j:l,...Pg.H du;

1
B log[1 + ¢(u)] ;4 o
Pap = 7/0 oolu) [u'™ ]z':l,4-.7Pd+1:.7':17~~P¢+1 du
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1
log[1 +6(u)] [ ;1o
Lae :/0 [u'™d ]i:l,...,Pd+1;j:1,...Pg+1 du

1
1 o
_ i+j—2
Lyo = /0 1— ¢(u) 0(u) [u ]z‘=1,4..7P¢+1;j=17...P9+1 du

B EXAMPLE 8.13

Consider a LS-FN process where d(u) and o(u) are given by

d(u) = ag + aru+ -+ - + opu?,
o(u) = Bo+ Bru+ -+ Bud,

for w € [0, 1]. In this case the parameter vector is (v, . . ., @p, Bo, - - -

and the matrix I' given by (8.19) can be written as

r, o0
F_< 0 FB)’

SN
6 (Z + J + 1) 1,7=0,...,p

where

)

and

r [/1 utI du ]
o o (Bo+ Pru+---+ Bau)? m‘:o,...,q.

B EXAMPLE 8.14
Consider a LS-FN process where d(u) and o(u) are harmonic

d(u) = o + a1 cos(Aju) + - - - + ap cos(Apu),
o(u) = By + f1 cos(wiu) + - - - + B4 cos(wqu),

317

»Ba)’

for u € [0,1], where \g = 0, \? # )\? for i,7 = 0,...,p, i #* 7,
wo = 0, and w? # w]2» for i,j = 0,...,q, i # j. In this case § =

(oo, -y, Bos-..,0y) and T

(T4 0
F_<0 Fﬂ)’
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where
. — 71'2 sin()\z- — )\J) SiH(Ai + )\])
2 Ai = A Ai+ A ij:o...p7
Fﬁ _ 12 sin(wi — wj) 4 sin(wi + w]‘) )
12 Wi — Wy witwi 10,4

B EXAMPLE 8.15

Consider the LSARFIMA process defined by
®(t/T, B)Y;r = O(t/T, B)(1 — B)~ /D (t/T)e,,
fort =1,...,T, where for u € [0,1],

®(u,B) =1+ ¢1(u)B + - + ¢p(u)B”

O(u, B) =1+ 0, (u)B + -+ 0g(u) B

(8.20)

Assume that P = @ = 1 in model (8.20) where o(u) = 1 and d(u),

®(u, B), O(u, B) are specified by

d(u) = ayu,
®(u,B) =1+ ¢(u)B, d(u) = asu
O(u,B) =1+ 60(u)B, O(u) = asu

)
i

for u € [0,1]. In this case, 8§ = (a1, a2,a3)" and T from (8.19) can be

written as
Y11 Y12 713
F=1{ 71 72 73 |,
Y31 Y32 V33
where

1 1+a; 1

=—=1lo - — all <1,
T 203 S a?’ lou
1 ( ) 1
= ——¢glajaz) — ,
Y12 (a1a2)3/2g 1002 10
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with g(z) = (/) for z € (0,1) and g(x) = arctan(y/—z) for z € (—=1,0),

e {[3-2] -}

1 1+Otg 1 | ‘<1
5.3 10 - "9 @ )
203 51— a3 ?

1 1 1 1
b= 41— = |log(1 N
Y23 20@{[ a%} og(1+ az) {2 O@]},

2

Y33 = T8

Vo2 =

8.4.5 Monte Carlo Experiments

In order to gain some insight into the finite sample performance of the Whittle
estimator we report next a number of Monte Carlo experiments for the LSFN
model

yir =o(t/T) (1 — B)~ /Mg, (8.21)

fort =1,...,T with d(u) = ap + @1 u, o(u) = Bo + B1 v and Gaussian white
noise {e;} with unit variance. Denote the parameter vector by = (ag, aq) for
d(-) and = (Bo, 1) for the noise scale o(-).

The samples of the LSFN process are generated by means of the innovations
algorithm. The Whittle estimates in these Monte Carlo simulations have been
computed by using the cosine bell data taper

h(z) = %[1 —cos(2mx)].

Table 8.4 reports the results from Monte Carlo simulations for several pa-
rameter values, based on 1000 replications. These tables show the average of
the estimates as well as their theoretical and empirical standard deviations
(SD) given by

2 Loiti g
r= {W] ., I=2 [/ “2“} . (8.22)
6(i+j+1) i,j=0,1 o o*(u) i,j=0,1

Observe from this table that the estimated parameters are close to their
true values. Besides, the empirical SD are close to their theoretical coun-
terparts. These simulations suggest that the finite sample performance of
the proposed estimators seem to be very good in terms of bias and standard
deviations.
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Whittle maximum likelihood estimation for model (8.21): Sample size
T = 1024, block size N = 128 and shift .S = 64.

Parameters Estimates Theoretical SD SD Estimates

(7)) (5] &0 &1 U(ao) a(&l) 6((/){\0) 8(&1)
0.1000 0.2000  0.0896 0.2014  0.0490 0.0840 0.0534  0.1094
0.1500 0.2500 0.1261 0.2786  0.0490 0.0840 0.0515 0.1085
0.2000 0.2000  0.1853 0.2245  0.0490 0.0840 0.0743  0.1055
0.2000 0.2500  0.1877 0.2670  0.0490 0.0840 0.0573  0.0990
0.2500 0.2000  0.2627 0.2042 0.0490 0.0840 0.0772 0.1017
0.1000 0.2000  0.0755 0.2161  0.0490 0.0840 0.0533  0.1220
0.1500 0.2500  0.1428 0.2650  0.0490 0.0840 0.0689  0.0959
0.2000 0.2000 0.1812 0.2095 0.0490 0.0840 0.0476  0.1156
0.2000 0.2500  0.2030 0.2678  0.0490 0.0840 0.0475 0.0723
0.2500 0.2000  0.2546 0.1920 0.0490 0.0840 0.0510  0.1158

Bo b1 Bo B o(Bo) o)  T(Bo) T(B1)
0.5000 0.5000  0.4862 0.5142  0.0270 0.0560  0.0201 0.0734
0.5000 0.5000  0.5018 0.5286  0.0270  0.0560 0.0353  0.0564
0.5000 0.5000 0.4701 0.5030  0.0270  0.0560 0.0255  0.0605
0.5000 0.5000  0.4879 0.5339  0.0270  0.0560 0.0135 0.0677
0.5000 0.5000  0.5020 0.4965  0.0270  0.0560 0.0295  0.0739
1.0000 -0.5000 0.9781 -0.4879 0.0380 0.0560 0.0255 0.0704
1.0000 -0.5000 0.9969 -0.5100 0.0380 0.0560 0.0406 0.0736
1.0000 -0.5000 1.0191 -0.5093 0.0380 0.0560 0.0438  0.0668
1.0000 -0.5000 1.0178 -0.4753  0.0380 0.0560 0.0376  0.0635
1.0000 -0.5000 1.0327 -0.4857 0.0380 0.0560 0.0365 0.0504

8.4.6 Data Application

Tree rings count is a usual procedure in studies of forest mass to determine
growth and yield of both natural forests and forest plantations. These time
series are also useful in paleoclimatology, as discussed in Chapter 1. Forest
analysis can be implemented in species growing in temperate regions, where
it is easy to identify the ring growth. In tropical climates, where there is little
differentiation among seasons, growth rates are constant, making it difficult
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Figure 8.16 Mammoth Creek Tree Ring Data.

to clearly differentiate spring and winter wood. Consequently, this data set
can be used as climate proxies and to indicate the chances of temperature and
precipitation conditions in paleoclimatology.

Figure 8.16 displays annual tree-ring width of the Pinus Longaeva, mea-
sured at Mammoth Creek, Utah, from 0 AD to 1989 AD, cf. Chapter 1 and
Appendix C.

Figure 8.17(a) shows the sample ACF of z; r, and the corresponding vari-
ances of the sample mean, that is varplots, are shown in panel (b). The dashed
line corresponds to its expected behavior for a short-memory case with blocks
of k observations, whereas the continuous line represents the expected behav-
ior for a long-memory case. From both panels, this series seems to exhibit
long-range dependence.

Moreover, a closer look at the sample ACF of the data reveals that the
degree of persistence seems to vary over time. Indeed, Figure 8.18 shows the
sample autocorrelation of three segments of the sample: observations 1 to 500,
observations 750 to 1250 and observations 1490 to 1990. This figure provides
information for arguing possible changes in the degree of dependence. This
represents a clear evidence of a nonstationary process. Therefore, it seems that
the data has a time-varying long-memory structure. Additionally, Figure 8.19
and Figure 8.20 depict two views of the time-varying periodogram of the data.

In order to handle these features, a locally stationary ARFIMA process
is suggested. Figure 8.21 shows an heuristic estimator of the long-memory
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Figure 8.17  Mammoth Creek Tree Ring Data. (a) Sample ACF, (b) Varplot.
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Figure 8.18 Mammoth Creek Tree Ring Data. Sample ACF and Varplots: (a)
Observations 1 to 500, (b) Observations 750 to 1250, (c) Observations 1490 to 1990.
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Figure 8.19  Mammoth Creek tree ring data. Time-varying periodogram.
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Figure 8.20 Mammoth Creek tree ring data. Time-varying periodogram.
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Figure 8.21  Mammoth Creek tree ring data. Time-varying estimated parameters.

(a) d(u), (b) theta(u), (c) o(u).

parameter and the variance of the noise scale along with stationary fractional
noise and locally stationary fractional noise model estimates of these quan-
tities. From this figure we suggest a linear and quadratic function for d(w)
and o(u) respectively, that is, a LSARFIMA(1, d, 0) model with time-varying
parameters given by,

d(u) = d() + d1 u, 9(u) = 90 + 91 u, U(U) = ﬁ() + ﬁl u—+ 52 'LL2. (823)

Table 8.5 reports the parameter estimates using the Whittle method. The
standard deviations and the ¢-tests have been obtained using (8.22) for d(u),
O(u) and o(u), respectively. As we can observe in this table, the parameters
(do,dy1) and (B, 1, B2) are statistically significant at the 5% level.

The residuals of the model are plotted in Figure 8.22 along with the sample
ACF, the partial ACF and the Ljung-Box tests. From these panels, it seems
that there are no significant autocorrelations in the residuals. This conclusion
is formally supported by the Ljung-Box tests. Consequently, the white noise
hypothesis cannot be rejected at the 5% level.

As described in the previous data application, locally stationary processes
are useful tools for modeling complex nonstationary time dependence struc-
tures.
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Tree Ring Data at Mammoth Creek, Utah.

parameters estimated with the Whitle method.

LSARFIMA(1, d, 0)

Parameter Estimate SD t-value
do 0.1769622 0.08445276 2.095399
dq 0.8050242 0.39121972 2.057729
ds -0.9328672 0.37841028 -2.465227
0o 0.1593663 0.10967577 1.453067
01 -1.1863239 0.50051007 -2.370230
0 1.0963000 0.48266935 2.271327
Bo 0.3707303 0.01648537 22.488441
051 -0.3597924 0.07597368 -4.735751
B2 0.4371512 0.07541373 5.796706
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Mammoth Creek tree ring data. Residual diagnostic of the model.
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8.5 STRUCTURAL BREAKS

As discussed throughout this book, real-life time series usually display struc-
tural changes. In the previous section, we discussed locally stationary pro-
cesses where the model changes are gradual and continuous. On the other
hand, in some ocassions the structural changes are rather abrupt. In these
cases, there are other methodologies developed to deal with structural breaks.
In what follows, we discuss a methodology for handling these nonstationarities
by modeling the time series in terms of successive blocks of linear trends and
seasonal models. Let y; be a time series which can be described by

Yo = Ty + S + €4,

where T; and S; denote sequences of linear trends and seasonal components,
and ¢; is an error sequence. More specifically, the linear trends are described
by

T, = a; + Bj t, for t e (tj,htj]

where tg = 0 and tq,...,t,, denote the times at which the trend breaks occur.
On the other hand, the seasonal components are defined by

g — Vij if tisin seasoniandt € (s;_1,s;]
T - Zf;ll vi; if tisin seasonOandt € (s;_1, s;]

where sp = 0 and sy,...,s, denote the times at which the seasonal breaks
occur. The R package breaks for additive seasonal and trend bfast allows fot
the estimation of the number of trend breaks m, the times t¢1,...,%,,, the
number of seasonal breaks p, the times sq,..., s, along with the parameters

Oéj7 ﬁj and ")/U
B EXAMPLE 8.16

Consider the series of passenger enplanements introduced in Chapter 1.
An application of the bfast methodology produces the following trend
break decomposition shown in Figure 8.23.

TREND BREAKPOINTS
Confidence intervals for breakpoints
of optimal 2-segment partition:

Call:
confint.breakpointsfull(object = bp.Vt, het.err = FALSE)

Breakpoints at observation number:
2.5 % breakpoints 97.5 ¥
1 55 56 57
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Figure 8.23 Breaks for Additive Seasonal and Trend Analysis of Passenger
enplanements data.

Corresponding to breakdates:
2.5 %  breakpoints 97.5 ¥
1 2008(7) 2008(8) 2008(9)

SEASONAL BREAKPOINTS: None

The analysis reported by this figure suggests that there was a trend
change in the number of passenger enplanements around August 2008.

B EXAMPLE 8.17

As another illustration of the bfast methodology consider the logarithm
of the US employment in Arts, Entertainment and Recreation, for the
period January 1990 to December 2012. In this case, the bfast method
produces the following trend break decomposition.

TREND BREAKPOINTS
Confidence intervals for breakpoints
of optimal 3-segment partition:

Breakpoints at observation number:
2.5 % breakpoints 97.5

1 139 140 141

2 229 230 231
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Figure 8.24  Breaks for Additive Seasonal and Trend Analysis of the logarithm of
the US employment in Arts, Entertainment and Recreation, for the period January
1990 to December 2012.

Corresponding to breakdates:

2.5 % breakpoints 97.5 ¥
1 2001(7) 2001(8) 2001(9)
2 2009(1) 2009(2) 2009(3)

SEASONAL BREAKPOINTS
Confidence intervals for breakpoints
of optimal 3-segment partition:

Breakpoints at observation number:
2.5 % breakpoints 97.5 %
1 39 43 46
129 134 139

Corresponding to breakdates:
2.5 %  breakpoints 97.5 ¥

1 1993(3) 1993(7) 1993(10)

2 2000(9) 2001(2) 2001(7)

According to the results, the analysis suggests structural changes in
both, the linear trends and the seasonal components.
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B EXAMPLE 8.18

As an illustration of structural change in the serial dependence structure
of the data consider the Nile river series described in Chapter 1. It has
been noticed that the first 100 observations seems to have a different
level of dependence than the rest of the series. In this example, we
consider a fist block of 100 values, from 622 AD. to 721 AD., and a
second block of 563 observations, from 722 AD. to 1284 AD. We do not
consider the data after the year 1284 AD. in this study because in this
period the series suffer a large number of data repetitions or missing
data problems.

By means of the R package arfima, we compute the corresponding
ARFIMA models to each block and obtain the following results.

> fit
Number of modes: 1

Call:
arfima(z = x.nile[1:100], order = c(0, 0, 0))

Coefficients for fits:

Coef.1: SE.1:
d.f 0.014179 0.0883828
é o
R
T T T T T T T
620 640 660 680 700 720
Year
o | 1 1 | | |
3 ! L [ [T
. 5 10 15 »

Figure 8.25  Nile river levels from 622 A.D. to 721 A.D. and sample ACF.
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Figure 8.26  Nile river levels from 722 A.D. to 1284 A.D. and sample ACF.

Fitted mean 11.5133 0.0950155

logl 11.1362

sigma~2 0.808409

Starred fits are close to invertibility/stationarity boundaries

> fit
Number of modes: 1

Call:
arfima(z = x.nile[101:663], order = c(0, 0, 0))

Coefficients for fits:

Coef.1: SE.1:
d.f 0.44762 0.0302793
Fitted mean 11.4113 0.837629
logl 249.662
sigma”2 0.410754

Starred fits are close to invertibility/stationarity boundaries

As indicated by many studies, the first 100 observations displays al-
most null serial correlation which is reflected in the very low estimated
parameter d. In fact, the following Ljung-Box white noise tests for lags
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5, 10 and 20 indicate that this part of the Nile river series is compatible
with a white noise model.

> Box.test(x.nile[1:100],lag=5,type="Ljung")
Box-Ljung test

data: x.nile[1:100]
X-squared = 4.4495, df = 5, p-value = 0.4867

> Box.test(x.nile[1:100],lag=10,type="Ljung")
Box-Ljung test

data: x.nile[1:100]
X-squared = 6.7533, df = 10, p-value = 0.7485

> Box.test(x.nile[1:100],1lag=20,type="Ljung")
Box-Ljung test

data: x.nile[1:100]
X-squared = 12.1105, df = 20, p-value = 0.9122

8.6 BIBLIOGRAPHIC NOTES

Techniques for estimating and forecasting ARIMA models are found in Box,
Jenkins, and Reinsel (1994). Locally stationary processes have been play-
ing an important role in time series analysis. They have provided a sound
statistical methodology for modeling data exhibiting nonstationary features
without resorting to data transformations, trend removals and other related
techniques. The theory of LS processes is based on the principle that a non-
stationary process can be locally approximated by a stationary one if the time
variation of the model parameters is sufficiently smooth. The idea of devel-
oping techniques for handling directly nonstationary processes dates back to
the sixties. For example, Priestley (1965), Priestley and Tong (1973), Tong
(1973) and others developed the concept of evolutionary spectra. In the nini-
ties, Dahlhaus (1996, 1997) provided a formal definition of a family of LS pro-
cesses. There are several works on LS processes, including, Dahlhaus (2000),
Jensen and Witcher (2000), Dahlhaus and Polonik (2006, 2009), Chandler
and Polonik (2006), Palma and Olea (2010), Dette, Preu83, and Vetter (2011)
and Palma, Olea, and Ferreira (2013), among others. Other classes of LS
processes have been discussed for example by Wang, Cavanaugh, and Song
(2001), Cavanaugh, Wang, and Davis (2003) and Last and Shumway (2008).
The analysis of the asymptotic properties of the Whittle locally stationary
estimates (8.17) is discussed, for example, in Dahlhaus (1997) and Palma and
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Olea (2010). Furthermore, the R package LSTS allows for the estimation and
prediction of LS models.

Problems

8.1 From the definition of the backshift operator B, find expressions for Bz,
and B2z, if z is defined as:
(@) z = Po,
(b) z = po+ St
(¢) 2= Bo+ Bz + Pat,
(d) 2z = Prxs + B2y, where By, £1 and Bs are constants, while x; and y;
are time series.
Hint: The operator B is defined by the relationship Bz; = z;_1 for
all ¢.

8.2 Let {x,t € Z} a stationary stochastic process with autocorrelation
function p,(k). Show that {y; = (1 — B)x,t € Z} is a stationary stochastic
process and calculate p, (k) in terms of p, (k). If 2; is an ARMA(p,q) process,
what can you say about the process Va7

8.3 From the definition of the operator V (V = (1 — B)), find expressions
for Vz, and V2z, if 2, is defined as in the previous exercise what is your guess
about the general expression for Vez; if d > 27

8.4 Consider the following processes z; defined by
(i) 2t = Bo + Pie,

(i) 2t = Bo + it + e,

(iii) z; = Ble, Bop >0

(iv) 2zt = Bo + & + Prer—1,

where 8y and f; are constant and {e;} is a white noise process with zero-mean
and variance o2, define a new process y; (as a function of z;) that is stationary.
Provide E(y;), Var(y:) and Cov(ys,yrir) for k=1,2,....

8.5 Let {e;} be a stationary process and z; = a + bt + &; with a and b
constants.
(a) Show that Vu, is stationary.
(b) How would you obtain a stationary process stationary if the trend
were quadratic?

8.6 Let {¢;} be a sequence of independent random variables normally dis-
tributed, zero-mean and variance 2. Let a, b and ¢ be constants Which of
the following processes are stationary? For each statiuonary process calculate
its expected value and its autocovariance function.

(a) ¢ =a+be +ce—,
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(b) @ =a+beo,
(c) @t = €1 cos(ct) + ez sin(ct),
(d) z = epcos(ct),
() = et cos(ct) + €1 sin(ct),
(£) x = erer—a.
87 Letxz;=a+0btfort=1,2,... with a and b constants. Show that the

sample autocorrelations of this sequence p(k) satisfy p(k) — 1 as n — oo for
each fixed k.

8.8 Let S;, t=0,1,2,... a random walk with constant jump p defined as

So=0and Sy =p+S;_1+x¢, t =1,2,... where 1, o, ... are i.i.d. random

variables with zero-mean and variance o2.
(a) Is the process {S;} stationary?

(b) Is the sequence {VS,} stationary?

8.9 Consider a simple moving-average filter with weights a; = (2¢ + 1)1,
—4<j=q -
(a) If my = co + c1t, show that Z;;q_q a;me_j = Mmy.
(b) Ifey, t=0,£1,42,. .., are independent random variables with zero-
mean and variance o2, show that the moving-average 4, = 5 /=7

Jj=—q
2

Aj€t—j

is small for large ¢ in the sense that £ A; = 0 and Var(4;) = ToTT

8.10 Suppose that m; = co +ci1t +cot?, t =0,£1,...
(a) Show that

where as = a_o = f%, a1 = a_1 = %, ag = %, and b3 = b_3 =

—%» by =b_o= %, by =b_1= %, bo = 57

(b) Suppose that x; = m; + &, where {e;, ¢t = 0,%1,...} is a sequence of
independent random variables normal, with zero-mean and variance

o2. Counsider U, = 25272 a;xiy; and Vp = 2?273 biTyy;.
(i) Calculate the mean and variance of Uy and V;.
(ii) Find the correlation between U; and Uiy and between V; and Viyq.
(iii) Which of the two filtered series {U;} or {V;} would you expect to be

have a smoother path?

8.11 Consider a zero-mean series y; that satisfies an ARIMA (p, d, ¢) model.
Please answer the following questions:
(a) Write the representation of y; in terms of polynomials of the lag
operator B.
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(b) Consider the stationary part of y, is xy = (1 — B)y,? What model
is a7

(c) What are the required conditions for z; to follow a causal and in-
vertible ARMA (p, ¢). model?

(d) Derive the minimum means of predictors z; using (i) squared error,
the causal model representation, (ii) the invertible representation of
the model and (iii) the difference equation representation model.

8.12 Let {x+} be the ARIMA(2,1,0) process
(1—-0.8B+0.25B%)(1 — B)x; = z,

where {z;} is a WN(0, 1).
(a) Find the function g(h) = Pyxnyp for h > 0.
(b) Assuming that n is large, calculate o2 (h) for h =1,...,5.

8.13 Show that the seasonal component S; in the trend break model can
be expressed as

s—1
= Z%‘,j(dt,i —dt0),
i=1

where the seasonal dummy variable d; ; satisfies d; ; = 1 if ¢ is in season ¢ and
0 otherwise.
(a) Verify that if ¢ is in season 0, then d;; — dy o = 1.
(b) Show that for all other seasons, d¢; — d,o0 = 1 when ¢ is in season
i #£0.
8.14 Consider a LS-FN process where d(u) and o(u) are specified by

=Y agi(w),  Glo(w)] = Bihi(u)
Jj=0 j=0

(00, - -+, 0ps Bos - -, By)'- Show that the matrix I in (8.19) is given by
b ( FO@ FO/B )
:
F“ﬂé[/o & (g(gj>()})d] .
- [ [y,

8.15 Consider the locally stationary ARFIMA(0, d, 1) model given by

4,3=0,...,q

yr—o () [1-0(2) Bl (- B (T)e,
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where 6(+) is a smoothly varying moving-average coefficient satisfying [0(u)| <
1 for u € [0,1]. Verify that the covariances (s, t) of this process are given
by

ey T—d(2)—d(&)]T[s—t+d(2)]
rr(s,t) =0 (%) o (%) F[l_d(;)]F[d(%)]F[s—t—l——'_l—d(qt«)]
s—t—d(L) s—t+d(3)







CHAPTER 9

SEASONALITY

Seasonal patterns arise in a great number of real-life time series data. For
instance, this phenomenon occurs in revenue series, inflation rates, monetary
aggregates, gross national product series, shipping data, and monthly flows
of the Nile River; see Section 9.8 for specific references. Consequently, sev-
eral statistical methodologies have been proposed to model this type of data
including the Seasonal ARIMA (SARIMA) models, Gegenbauer autoregres-
sive moving-average processes (GARMA), seasonal autoregressive fractionally
integrated moving-average (SARFIMA) models, k-factor GARMA processes,
and flexible seasonal fractionally integrated processes (flexible ARFISMA),
among others.

In this chapter we review some of these statistical methodologies. A general
long-memory seasonal process is described in Section 9.2. This section also
discusses some large sample properties of the MLE and Whittle estimators
such as consistency, central limit theorem, and efficiency. Calculation of the
asymptotic variance of maximume-likelihood and quasi-maximum-likelihood
parameter estimates is addressed in Section 9.4. The finite sample perfor-
mance of these estimators is studied in Section 9.6 by means of Monte Carlo
simulations while Section 9.7 is devoted to the analysis of a real-life data il-
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lustration of these estimation methodologies. Further reading on this topic
are suggested in Section 9.8 and several problems are listed at the end of this
chapter.

9.1 SARIMA MODELS

A simple seasonally integrated process with period s can be written as
(1= Byt = e,

where €; is a white noise sequence, or equivalently,
Yt = Yt—s + €t

This basic model establishes that the observation at time ¢ is the same as the
observation at time t — s except by an additive noise.
More generally, a SARIMA(p,d, q) x (P, D,Q) model with one seasonal

component can be written as
¢(B)®(B*)(1 — B)*(1 — B°)Py, = 0(B)O(B°)=,

where ¢; is a white noise sequence with zero-mean and variance ¢ and the
respective polynomials are given by

¢(B) = 1—¢1 BB~ —¢, B,
O(BY) = 1-& B — BB — ... — &p BF*
Q(B) = 1—01B_92.B2_"'_0qu7
O(B*) = 1-61B° -~ ©,B% — ...~ 0y B,

B EXAMPLE 9.1

Figure 9.1 exhibits a simulated time series with 500 observations from
a SARIMA(1,0,1) x (1,1,1) model with ¢ = —0.7, & = 0.7, 6 = 0.4,
© = 0.2 and s = 12. Note that in this case, apart from the seasonal
behavior of the series, there is a random trend pattern generated by the
seasonal differentiation.

On the other hand, Figure 9.2 shows a trajectory of a SARIMA(1,1,1)x
(1,1,1) model with ¢ = —-0.3, ® =—-0.3, 0 = 0.4, © = 0.2 and s = 12.

Notice that the random trend is more extreme now as compared to
the previous example. This could be expected from the fact that we

have both standard differentiation (1 — B) and seasonal differentiation
(1 - B*2).
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Figure 9.1  Simulated 500 observations from a SARIMA model with ¢ = —0.7,
® =0.7,0=04, 0 =02, s =12, D = 1 and Gaussian white noise with unit
variance.
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Figure 9.2  Simulated 500 observations from a SARIMA model with ¢ = —0.3,
d=-03,0=04,0 =02, s=12, D =1, and Gaussian white noise with unit
variance.
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B EXAMPLE 9.2

Figure 9.3 displays a sample of a SARIMA(1,0,1) x (1,0, 1) model with
¢ =05 & =06,0 =02 0 =03 and s = 12. Unlike the erratic
pattern described by the two seasonal time series shown in the previous
example, in this case the trajectory is not explosive. Additionally, the
sample ACF of this series is plotted in Figure 9.4. Notice the cyclical
pattern of this sample ACF.

Series

T T T T T T
o 200 400 600 800 1000

Time

Figure 9.3  Simulated 1000 observations from a SARIMA model with ¢ = 0.5,
® =0.6,0=0.2, ©=0.3, s=12, and Gaussian white noise with unit variance.

Series y

o 10 20 30 40 50 60

Figure 9.4  Sample ACF of the simulated 1000 observations from a SARIMA
model with ¢ = 0.5, ® = 0.6, 0 = 0.2, © = 0.3 and Gaussian white noise with unit
variance.
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9.1.1 Spectral Density
The spectral density of the SARIMA(p, 0, q) x (P,0,Q) process is given by

B(ci™) O(ei?) 2

¢(€i)\) (I)(ei/\s)

B EXAMPLE 9.3

Figure 9.5 displays a sample of a SARIMA(1,0,1) x (1,0, 1) model with
¢ =07, & = 0.6, 0 = 04, © = 0.2, and seasonal period s = 20.
The spectral density of this series is exhibited in Figure 9.6 while its
periodogram is plotted in Figure 9.7.

Series

Figure 9.5 SARIMA model with ¢ = 0.7, ® = 0.6, 0 = 0.4, © = 0.2, s = 20, and
Gaussian white noise with unit variance. Sitmulated series with 1000 observations.

Spectral Density

T T T
0.0 os 1.0 15 2.0 25 3.0

Frequenc:

Figure 9.6 SARIMA model with ¢ = 0.7, @y: 0.6,0=04, ©=0.2, s =20, and
Gaussian white notse with unit variance. Spectral Density.
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Furthermore, Figure 9.8 shows an smoothed version of the periodogram
which uses a Daniell window.

50
1

40

Periodogram

20
1

10
1

o L»UM\_,AJ& A M A

T T T T T T T
0.0 05 1.0 1.5 2.0 25 3.0

Frequency
Figure 9.7 SARIMA model with ¢ = 0.7, ® =0.6, 6 = 0.4, © = 0.2, s = 20, and
Gaussian white noise with unit variance. Periodogram.

Smoothed Periodogram

.

T T T T T T T
0.0 05 1.0 1.5 2.0 25 3.0

Frequency
Figure 9.8 SARIMA model with ¢ = 0.7, ® = 0.6, § = 04, © = 0.2, s = 20,
and Gaussian white noise with unit variance. Smoothed periodogram using a Daniell
kernel.
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9.1.2 Several Seasonal Components

The SARIMA models can also be extended to handle more than one seasonal
period. For instance, we can write a SARIMA(p,d, q) x (P1,D1,Q1)s, -+ X
(Pms Dy Q) s,, model with m seasonal component can be written as
¢(B)®1(B*) -+ @ (B*" (1 = B)(1 = B*)P1-.. (1= B*™)Pmy,
= G(B)Gl(le) o @m(BSm)Et,

where ¢, is a white noise sequence with zero-mean and variance o and

¢(B) = 1—¢1B—¢3B>—--- — ¢, B,
®;(B%) = 1—®; B% —®;3,B* —... — &;p B®1,

0B) = 1-6,B—60,B>—---—0,BY,
0;(B*) 1 -0 B% —0;B* — ... — 0,0 B,

Moreover, the spectral density of this multiple seasonal components model is
given by

o2 9(@”)@1(6“\51)~ (ei,\sm) 2

<O,
f) = 21 | p(ei M) By (eiX51) - By, (e 5m)

9.1.3 Estimation

The estimation of SARIMA models are readily extended from the maximum
likelihood techniques discussed in Chapter 5. In particular some of these
methods are implemented in the statistical software R. Observe that the R
package gsarima allows for the simulation and estimation of SARIMA models.
In this case, the output is as follows,

ARIMA(1,0,1)(1,0,1)[12] with non-zero-mean

Coefficients:
arl mal sarl smal intercept
0.5925 0.0515 0.5520 0.3466 -0.2413
s.e. 0.0589 0.0739 0.0493 0.0546 0.3138

sigma”2 estimated as 0.8816: 1log likelihood=-683.25
AIC=1378.5 AICc=1378.67 BIC=1403.79
9.1.4 Estimator Performance

In this section we study the performance of maximum likelihood estimates of
SARIMA models. As an illustration, consider the SARIMA(1,0,1) x (1,0,1)s
defined by

(1-9¢B)(1—-®B%)y; = (1+0B)(1+ 0O B*)ey,
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Time

Figure 9.9  Simulated 500 observations from a SARIMA model with ¢ = —0.7,
$ =10.5, 0 =0.2, © = 0.3, and Gaussian white noise with unit variance.

where ¢; is a Gaussian white noise sequence with zero-mean and unit variance.
Figure 9.9 shows a trajectory of this seasonal model with with ¢ = —0.7,
d = 0.5, 0 = 0.2 and © = 0.3 while Figure 9.10 displays the sample ACF of
this time series.

Table 9.1 reports the results from several simulations for different combina-
tions of parameters ¢, ®, § and ©. The results are based on 1000 repetitions
and time series with 500 observations. Notice that the average of the esti-
mates are very close to their theoretical counterparts. Furthermore, Table 9.2
reports the estimates of the stander deviation of these maximum likelihood
estimates. The first four columns of this table correspond to the average of
estimates provided by the empirical Hessian matrix given by

H,(0) = V2L, (0)

where L, is the log-likelihood function, 6 the vector of parameters of the
seasonal model and 6 the maximum likelihood estimator. Columns 5 to 8 of
Table 9.2 report the empirical standard deviations of the ML estimators based
on the 1000 Monte Carlo repetitions.
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Figure 9.10  Sample ACF of the simulated 500 observations from a SARIMA
model with ¢ = —0.7, & = 0.5, 0 = 0.2, © = 0.3, and Gaussian white noise with
unit variance.

Table 9.1 SARIMA Simulations with Sample Size n = 500 and Seasonal Period
s = 12: Parameter Estimates.

b 0 i e o 0 > &)
0.5000 0.2000  0.6000 0.3000  0.4848 0.2021  0.5955  0.3008
0.3000 05000  0.3000 0.7000  0.2912  0.4797  0.3065 0.7010
0.3000 0.6000 -0.3000 0.5000  0.2914  0.6059 -0.2799  0.4833

0.7000 0.3000  0.5000 0.2000  0.6920  0.2981 0.4979  0.2024
-0.7000  0.2000  0.5000  0.3000 -0.6888 0.1939  0.4910 0.3059

9.1.5 Heating Degree Day Data Application

As an illustration of the versatility of SARIMA processes to model data ex-
hibiting seasonal patterns as well as serial dependence we revisit the heating
degree day data introduced in Chapter 1, see Figure 9.11. The periodogram
of this time series is displayed in Figure 9.12. As expected from the nature
of these data, the periodogram shows a peak at the frequency correspond-
ing to a period s = 12. Consequently, the class of SARIMA processes is
proposed for this time series. The selected model via AIC corresponds to a
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Table 9.2 SARIMA Simulations with Sample Size n = 500 and Seasonal Period
s = 12: Standard Deviation Estimates.

Hessian SD estimates Sample SD estimates
5) &0O) (@ 0 F0) §0O) (@)  (6)
0.0628 0.0704 0.0477 0.0579 0.0627 0.0701 0.0492 0.0570
0.0640 0.0592 0.0531 0.0420 0.0657 0.0637 0.0552 0.0415
0.0563 0.0470 0.1806 0.1658 0.0576 0.0479 0.2027 0.1915

0.0393 0.0524 0.0624 0.0712 0.0385  0.0528  0.0598  0.0704
0.0568  0.0769  0.0571  0.0634 0.0606  0.0775  0.0563  0.0638

SARIMA(1,0,0) x (3,0,0) and the fitted model from the R function arima is
as follows,

> fit
Call:
arima(x = y, order = c(1, 0, 0),
seasonal = list(order = c(3, 0, 0), period = 12))
Coefficients:

arl sarl sar2 sar3 intercept
0.3623 0.3168 0.3245 0.3401 275.6695
s.e. 0.0521 0.0518 0.0499 0.0501 58.3368

sigma”2 estimated as 1408:

log likelihood = -1859.91, aic = 3731.83

Observe that all these coefficients are significant at the 5% level.

The residuals from this model are plotted in Figure 9.13. The sample
ACF along with the Box-Ljung diagnostics test are reported in Figure 9.14.
From these plots, it seems that the residuals do not have serial correlation.
Figure 9.15 corresponds to a normal quantile-quantile plot. If the residuals
were normally distributed, then the dots should be close to the Gaussian
quantile line (heavy line). Notice that their distribution seems to depart from
normality at the tails.

Fitted values are plotted in Figure 9.16 along with the observations. These
in-sample one-step predictions are very close to their true values. On the other
hand, Figure 9.17 exhibits the out-of-sample forecasts up to 48 months ahead.
Finally, 95% prediction bands for these forecasts are plotted in Figure 9.18.
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Figure 9.11  SARIMA heating day degree application: Time series sata.
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Figure 9.12 SARIMA heating degree day data application: Periodogram.
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Figure 9.13 SARIMA heating degree day data application: Residuals.
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Figure 9.14 SARIMA heating Degree Day Data Application: Diagnostic plots.
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Figure 9.15 SARIMA heating degree day data application: QQ plots.
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Figure 9.16  SARIMA heating degree day data application: Fitted values.
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Figure 9.17 SARIMA heating degree day data application: Out-of-sample
predictions, 48 months ahead.
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Figure 9.18 SARIMA heating degree day data application: 95% Prediction bands
for the out-of-sample forecasts, 48 months ahead.
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9.2 SARFIMA MODELS

In order to account for both seasonal and storming serial dependence, a motre
general class ofseasonal long-memory processes may be specified by the spec-
tral density

room;

FO) =g TTTTIA =7, (9-1)

i=1j=1

where A € (—m,7], 0 < a,; < 1,¢=1,...,7, g(\) is a symmetric, strictly
positive, continuous, bounded function and \;; # 0 are poles for j =1, ...,m;,
i=1,...,r. To ensure the symmetry of f, we assume that for any i =1, ..., 7,
j =1,...,m;, there is one and only one 1 < j* < m; such that A\;; = —\;;.

As shown in the following examples, the spectral densities of many widely
used models such as the seasonal ARFIMA process and the k-factor GARMA
process satisfy (9.1).

Consider a seasonal ARFIMA model with multiple periods sq,..., s,

T

B) H ®;(B* )y = 0(B) [[ [©:(B*)(1 = B*)~*] (1= B) %, (9.2)

=1

where ¢(B), ®;,(B%), 0(B), ©,(B%) are autoregressive and moving-average
polynomials, for ¢ = 1,...,r.
The spectral density of the model described by (9.2) is given by

Z/\sl ‘ ‘1 7:A8i|—2dsi

|Q) el)\s )

f ()\) _ 0'72 |9(61/\)‘2 ZA| 2dH |6

2

Observe that this spectral density may be written as

ForronsrN) = HO)IA 72200 =20 TTTT 3 — A2

i=1j=1
which is a special case of (9.1) where

o2 |0(e i/\)|2 " 10i(e Z'As-)|2
27 |p(el)[2 i |@i(ere0) 2

|/\|2d+2d e T TG X — Mgy
11 GZA‘QdH | — elrsi|2ds, ’

H)\) =

and A\;; = 2mj/s; for i =1,...,r, j =1,..,[s:/2], \ij = 2m([s;/2] — j)/s; for

i=1,.,r, i=1[8/2]+1,...,8,a=2d+2ds, + -+ 2ds,, and o; = 2d;,.
From Figure 9.19 and Figure 9.20 we may visualize the shape of the spectral

density of a SARFIMA model for two sets of parameters. Figure 9.19 displays
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the spectral density of a SARFIMA(0,d,0) x (0,ds,0)s process with d = 0.1,
ds = 0.3, s = 10, and 02 = 1. On the other hand, Figure 9.20 shows the
spectral density of a SARFIMA(0,d,0) x (1,ds,1)s process with d = 0.1,
de =03, ®=-08,0=0.1, s =10, and 02 = 1. As expected, these plots
have poles at the frequencies A = 275 /s, j =0,1,...,5.

Spectral density

T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Frequency

Figure 9.19  Spectral density of a SARFIMA(0,d,0) x (0,ds,0)s process with
d=0.1,ds = 0.3, and s = 10.
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Figure 9.20  Spectral density of a SARFIMA(0,d,0) x (1,ds,1)s process with
d=01,d; =03, &=-08,0 =0.1and s = 10.
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9.3 GARMA MODELS

The spectral density of a k-factor GARMA process is given by

k
FO) = 02|72 H |cos A — uj| =%, (9.3)
j=1
where ¢ > 0 is a constant, u; are distinct values, d; € (0, %) when |u;| = 1,

and d; € (0,1) when |u;| # 1.
For |u;| < 1, we may write u; = cosA; and this spectral density may be
written in terms of (9.1) as follows:

k
FO) = HO) TT A= X172 A+ 27,
j=1

where

cos )\ COS A\

HO) = clo(e)Po(e)] 2H %

is a strictly positive, symmetric, continuous function with

i . —d k —d;
tim () = ¢ X |sinde | fos e —cosy |
A—EN, |¢(el /)| 2)\€ oy >‘e — /\j
for A¢ # 0 and for \p = 0
cos)\

i — 9d¢ —2
lim H(3) = 2%clf(1)o(1)| 1;[

Observe that all these limits are finite and H(\) is a bounded function.

Figure 9.21 depicts the spectral density of a k-factor GARMA process with
k=1, \y =x/4, and d; = 0.1. Notice that there is only one pole located at
frequency /4.

When the singularities A;; are known, the exact maximum-likelihood es-
timators of Gaussian time series models with spectral density (9.1) have the
following large-sample properties. Let é\n be the exact MLE and 6, the true
parameter. Then, under some regularity conditions we have

(a) Consistency: 8,—0 in probability as n — occ.
(b) Normality: \/ﬁ(én —00) — N(0,T71(6y)), as n — oo, where I'() =

=g [ ) el e
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Figure 9.21  Spectral density of a k-factor GARMA process with k = 1, \y = 7/4,
and d1 =0.1.

and fp()) is the spectral density (9.1).

(¢) Efficiency: 0,, is an efficient estimator of .

When the location of the pole is unknown, we still can obtain similar large-
sample properties for quasi-maximum-likelihood parameter estimates. Con-
sider, for example, the class of long-memory seasonal models defined by the
spectral density

o? Adw . A—w|®

f()\):% 4sin 5 sl —

|h(\, )%, (9.5)

where § = («a,7) are the parameters related to the long-memory and the
short-memory components, and w denotes the unknown location of the pole.
Define the function

1 I()
S(0.0) =+ g M (9.6)

where n = [n/2], I()\;) is the periodogram given by (4.6) evaluated at the
Fourier frequency A; = 27j/n and

kO, 0, w) = ii;f(A).
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Consider the estimators 6, and &, which minimize S(6,w):

O .

b = S(6,7y),

( G, ) arginillgy g ( q)

where @ = {¢: ¢ =0,1,...,7}. Notice that w belongs to a discrete set of
frequencies Ag, ..., Ax.

9.4 CALCULATION OF THE ASYMPTOTIC VARIANCE

Analytic expressions for the integral in (9.4) are difficult to obtain for an
arbitrary period s. For a SARFIMA(0,d,0) x (0,ds,0)s model, the matrix
I'(f) may be written as

% c(s)
r(9) = : (9.7)
c(s) %

with ¢(s) = (1/7) [T {log|2sin(A/2)[}{log|2sin[s(A/2)]|}d\. An interesting
feature of the asymptotic variance-covariance matrix of the parameter esti-
mates (9.7) is that for a SARFIMA(0,d,0) x (0,ds,0)s process, the exact
maximum-likelihood estimators d and C/Z\S have the same variance.

An explicit expression for this integral can be given for s = 2. In this case,

o-5[2 1]

For other values of s, the integral may be evaluated numerically. For in-
stance, Figure 9.22 shows the evolution of Var(d) as a function of the period
s [see panel (a)] and the evolution of Cov(d,d,) as s increases [see panel (b)].
Both curves are based on the numerical evaluation of equation (9.7) and then
inverting this matrix to obtain the asymptotic variance-covariance matrix of
the parameters. R R

Observe that Var(ds), equivalently Var(d), starts at a value of 8/7% and
decreases to 6/72 as s — oo. That is, for a very large period s, the asymptotic
variance of dy is the same as the variance of d from an ARFIMA(0, d, 0) model.

9.5 AUTOCOVARIANCE FUNCTION

Finding explicit formulae for the ACF of a general seasonal model is rather
difficult. However, we can obtain an asymptotic expression as the lag in-
creases. Assume that oy > o > -+ > a,. Let co,c1,...,cm, be constants.
Then, for large lag h the autocovariance function ~(h) satisfies
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Figure 9.22  (a) Values of Var( c/l\s) as a function of the period s and (b) values
of Cov( d, ds) as a function of s.

(a) If o > oy,
v(h) ~ co [P]*.

(b)) If a < oy,

v(h) ~ [ Leoliamay) + ch cos(hA1;)

j=1

Notice that the large lag behavior of the ACF depends on the maximum
value of the exponents a, ay, ..., .

For the SARFIMA process with 0 < d,ds,,...,ds, < 3 and d+dg, +---+
ds, < % the maximum exponent is always reached at zero frequency since
o =d+ds, +---+ds,.. Therefore in that case for large lag h the ACF behaves
like

'y(h) ~ Co ‘h|2d+2d51+"'+2d5r_1.
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B EXAMPLE 9.4

As an illustration of the shape of the autocovariance function of a sea-
sonal long-memory process consider the SARFIMA (0, d,0) x (0,ds,0)s
process described by the discrete-time equation

ye=(1-B°)"%(1~B) ",

where {e;} is a zero-mean and unit variance white noise.

In what follows, we plot the theoretical autocovariance function for
three particular cases of this model from lag h = 1 to lag h = 500.
The values of the ACF were calculated following the splitting method
described in Subsection 5.10.11.

Figure 9.23 displays the theoretical ACF of a SARFIMA(0,d,0) x
(0,ds,0)s process with parameters d = 0.1, d; = 0.3, and s = 12.

Using the same method, Figure 9.24 shows the theoretical ACF of
a SARFIMA (0,d,0)x(0,ds,0)s process with parameters d = 0.3, ds =
0.15, and s = 12.

Finally, Figure 9.25 exhibits the theoretical ACF of a SARFIMA (0, d, 0) x
(0,ds,0)s process with parameters d = 0.05, d; = 0.44, and s = 24.

1.2 1.4

1.0

ACF
0.8

0.6

0.2
1

0.0
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Figure 9.23  Autocovariance function of a SARFIMA(0, d,0) x (0,ds,0)s process
with d = 0.1, ds = 0.3, and s = 12.
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Figure 9.24  Autocovariance function of a SARFIMA(0, d,0) x (0,ds,0)s process
with d = 0.3, ds = 0.15, and s = 12.
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Figure 9.25  Autocovariance function of a SARFIMA(0, d,0) x (0,ds,0)s process
with d = 0.05, ds = 0.44, and s = 24.
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9.6 MONTE CARLO STUDIES

In order to assess the finite sample performance of the ML estimates in the
context of long-memory seasonal series, we show a number of Monte Carlo
simulations for the class of SARFIMA models described by the difference
equation

ye—n=(1-B)""(1-B) ", (9-8)

where £ is the mean of the series, and {e;} are independent and identically
distributed normal random variables with zero-mean and unit variance.

Table 9.3 to Table 9.6 report the results from the Monte Carlo simulations
for the SARFIMA(0,d, 0) x (0, ds, 0)s process (9.8) with mean p = 0 assumed
to be either known or unknown depending on the experiment, for different
values of d, ds, sample size n, seasonal period s. The white noise variance is
02 =1 in all the simulations.

The finite sample performance of the MLE is compared to the Whittle
estimate and the Kalman filter approach with truncation m = 80.

The results are based on 1000 repetitions, with seasonal series generated
using the Durbin-Levinson algorithm with zero-mean and unit variance Gaus-
sian noise.

Table 9.3 SARFIMA Simulations: Sample Size n = 256 and Seasonal Period s = 6

Known Mean
Exact Whittle Kalman

d d, d d, d d, d d,

0.1 0.3 Mean 0.0945 0.2928 0.0590 0.2842 0.0974  0.3080
S.D 0.0020 0.0018 0.0024 0.0039  0.0024 0.0026
0.2 0.2 Mean 0.1924 0.1901 0.1574 0.1602 0.2098  0.1909
S.D 0.0023 0.0023 0.0034 0.0036 0.0022 0.0028
0.3 0.1 Mean 0.2924 0.0948 0.2591 0.0610 0.3046 0.1003
S.D 0.0022 0.0022 0.0035 0.0024 0.0024 0.0023
Unknown Mean

Exact Whittle Kalman

d dy d dy d d,
0.1 0.3 Mean 0.0806 0.2842 0.0590 0.2842 0.0749  0.2987
S.D 0.0020  0.0020 0.0024 0.0039  0.0020 0.0030
0.2 0.2 Mean 0.1768 0.1812 0.1574 0.1601 0.1851 0.1799
S.D 0.0027 0.0024 0.0034 0.0036 0.0018  0.0029
0.3 0.1 Mean 0.2755 0.0863 0.2591 0.0610 0.2800 0.0867
S.D 0.0025 0.0022 0.0035 0.0024 0.0027 0.0022




360

SEASONALITY

Table 9.4 SARFIMA Simulations: Sample Size n = 256 and Seasonal Period
s =10
Known Mean
Exact Whittle Kalman
d d, d dy d dy d dy
0.1 0.3 Mean 0.0955 0.2912 0.0599 0.2886  0.0991 0.3175
S.D 0.0022 0.0016  0.0025 0.0032 0.0032 0.0022
0.2 0.2 Mean 0.1975 0.1916 0.1583 0.1640 0.2005 0.1963
S.D 0.0022  0.0020 0.0034 0.0032 0.0027  0.0026
0.3 0.1 Mean 0.2947 0.0953 0.2601 0.0621 0.2978 0.1014
S.D 0.0022  0.0022 0.0037 0.0023 0.0026 0.0023
Unknown Mean
Exact Whittle Kalman
d d, d d, d d,
0.1 0.3 Mean 0.0806 0.2840 0.0599 0.2886 0.0725 0.3110
S.D 0.0023  0.0017 0.0025 0.0032 0.0025 0.0025
0.2 0.2 Mean 0.1814 0.1837 0.1583 0.1640 0.1811 0.1894
S.D 0.0025 0.0021 0.0034 0.0032 0.0030 0.0026
0.3 01 Mean 0.2781 0.0871 0.2601 0.0621  0.2698  0.0897
S.D 0.0027 0.0022 0.0037 0.0023 0.0028  0.0022
Table 9.5 SARFIMA Simulations: Sample Size n = 512 and Seasonal Period s = 6
Knouwn Mean
Exact Whittle Kalman
d d d d, d dy d d,
0.1 0.3 Mean 0.0995 0.2951 0.0803 0.2942 0.1057 0.3118
S.D 0.0012 0.0010 0.0014 0.0016 0.0012 0.0013
0.2 0.2 Mean 0.1966 0.1977 0.1795 0.1839 0.1952 0.2021
S.D 0.0013 0.0011 0.0017 0.0015 0.0014 0.0013
0.3 0.1 Mean 0.2962 0.0980 0.2811 0.0792 0.3060 0.0964
S.D 0.0011  0.0011 0.0014 0.0013 0.0014 0.0012
Unknown Mean
Exact Whittle Kalman
d ds d dy d d;
0.1 03 Mean 0.0919 0.2900 0.0803 0.2942 0.0870  0.3045
S.D 0.0012 0.0010 0.0014 0.0016 0.0011 0.0013
0.2 0.2 Mean 0.1880 0.1923 0.1795 0.1839 0.1765 0.1943
S.D 0.0014 0.0012 0.0017 0.0015 0.0011 0.0013
0.3 0.1 Mean 0.2878 0.0932 0.2811 0.0792 0.2849 0.0864
S.D 0.0012 0.0012 0.0014 0.0013 0.0014 0.0012
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Table 9.6 SARFIMA Simulations: Sample Size n = 512 and Seasonal Period
s =10

Known Mean
Exact Whittle Kalman

d d, d dy d dy d dy
0.1 0.3 Mean 0.0979 0.2959 0.0768 0.3006 0.0995 0.3134
S.D 0.0012  0.0009 0.0014 0.0016 0.0016 0.0014
0.2 0.2 Mean 0.1994 0.1957 0.1813 0.1832 0.2028  0.2007
S.D 0.0012 0.0011 0.0016 0.0016 0.0014 0.0014
0.3 0.1 Mean 0.2963 0.0968 0.2801 0.0783 0.3070  0.0948
S.D 0.0011  0.0012 0.0015 0.0014 0.0015 0.0013
Unknown Mean
Exact Whittle Kalman

~ ~ ~ ~ -~

d ds d ds d dy

0.1 0.3 Mean 0.0806 02913 0.0768 0.3006 0.0799 0.3074
SD  0.0012 0.0009 0.0014 0.0016 0.0014 0.0014

02 0.2 Mean 0.1908 0.1908 0.1813 0.1832 0.1809  0.1931
SD  0.0013 0.0012 0.0016 0.0016 0.0015 0.0014

0.3 0.1 Mean 02876 0.0921 0.2801 0.0783 0.2890  0.0862
SD 00012 0.0012 0.0015 0.0014 0.0013 0.0012

The autocovariance function was computed by the convolution method of
Subsection 5.10.11.

In order to explore the effect of the estimation of the mean we have con-
sidered two situations: known mean where the process is assumed to have
zero-mean and unknown mean where the expected value of the process is
estimated by the sample mean and then centered before the computations.

The exact MLE method has been implemented computationally by means
of the Durbin-Levinson algorithm discussed in Chapter 5 with autocovariance
calculated by the approach given in Subsection 5.10.11.

The Whittle method has been implemented by minimizing the following
expression; see Section 5.8 and equation (9.6):

n/2]

ey

where 6 = (d,ds) and A\, = 27k /n, with periodogram given by

n 2

Z Ui ezuk

1
~or

)
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Table 9.7  Asymptotic Standard Deviation of &\ and c/l\s

n s=26 s =10
256 0.0503 0.0503
512 0.0356 0.0356

see definition (4.6), and spectral density
1 in| 2 ins| 2
fg(/\)—2ﬂ_1 e ’ ‘1 e

The approximate Kalman filter ML estimates are based on a finite state
space representation of the truncated MA(oo) expansion described in Sec-
tion 5.10.4.

From Table 9.3 to Table 9.6, it seems that for the known mean case the
exact MLE and the Kalman methods display little bias for both sample sizes.
On the other hand, the Whittle method presents a noticeable downward bias
for both estimators d and d;.

The sample standard deviations of the estimates are close to their theo-
retical counterparts, reported in Table 9.7, for the three methods considered.
However, the exact MLE seems to have slightly lower sample standard devi-
ations than the other methods, for both long-memory parameters and both
sample sizes. The theoretical values of the standard deviations of the esti-
mated parameters given in Table 9.7 are based on formula (9.7).

In the unknown mean case, all the estimates seem to display a downward
bias, which is stronger for the Whittle method. However, the bias displayed
by this estimate is similar to the known mean case, since the Whittle algo-
rithm is not affected by the estimation of the mean. Similarly to the previous
case, the estimated standard deviations are comparable to the theoretical val-
ues, and the exact MLE displays slightly lower sample standard deviations
than the other methods for most long-memory parameters and sample size
combinations.

9.7 ILLUSTRATION

In this section we apply the maximum-likelihood estimation to the analysis
of a time series consisting of hyper text transfer protocol (HTTP) requests to
a World Wide Web server at the University of Saskatchewan. It has been
reported that communication network traffic may exhibit long-memory be-
havior. The data analyzed here consist of the logarithm of the number of
requests within one-hour periods.

The Internet traffic series is shown in Figure 9.26 while its sample autocor-
relation function is displayed in Figure 9.27. Observe that the sample ACF
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Figure 9.26 Logarithm of HTTP requests time series data.

decays slowly and exhibits a 24-hour periodicity. To account for these features
we fit a SARFIMA model to this time series.

Table 9.8 reports the maximum-likelihood parameter estimates and the
t-tests for the SARFIMA(1,0,1) x (0,ds,0)s with s = 24 process:

(1-¢B)(y —p) = (L= 6B)(1 — B*) %ey,
where ¢, is a white noise sequence with variance o2.

This model was selected by means of the Akaike’s information criterion.
From Table 9.8, notice that all the parameters included in the model are
significant at the 5% level. The Student-¢ values reported on Table 9.8 are
based on the numerical calculation of the inverse of the Hessian matrix, which
approximates the asymptotic variance-variance matrix of the parameters.

Table 9.8  Log Internet Traffic Data: Maximum-Likelihood Estimation of the
SARFIMA(1,0,1) x (0,ds,0)s Model

Parameter ds 10) 0

Estimate 0.4456 0.8534 0.3246
Student-t 2.2558 7.5566 2.8623
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Figure 9.27  Sample ACF of logarithm HTTP requests time series data.

The standard deviation of the Internet traffic series is 0.6522 while the
residual standard deviation is 0.2060. Thus, the fitted seasonal long-memory
model explains roughly two thirds of the total standard deviation of the data.

9.8 BIBLIOGRAPHIC NOTES

Methods for estimating and forecasting SARIMA models are described in the
book by Brockwell and Davis (1991) as well as in the monograph by Box,
Jenkins, and Reinsel (1994). Long-range-dependent data with seasonal be-
havior have been reported fields as diverse as economics, physics, and hydrol-
ogy. For example, inflation rates are studied by Hassler and Wolters (1995),
revenue series are analyzed by Ray (1993a), monetary aggregates are consid-
ered by Porter-Hudak (1990), quarterly gross national product and shipping
data are discussed by Ooms (1995), and monthly flows of the Nile River are
studied by Montanari, Rosso, and Tagqu (2000).

Many statistical methodologies have been proposed to model this seasonal
long-range-dependent data. For example, Abrahams and Dempster (1979)
extend the fractional Gaussian noise process [see Mandelbrot and Van Ness
(1968)] to include seasonal components.

On the other hand, Gray, Zhang, and Woodward (1989) propose the gen-
eralized fractional or Gegenbauer processes (GARMA), Porter-Hudak (1990)
discusses (SARFIMA) models, Hassler (1994) introduces the flexible seasonal



PROBLEMS 365

fractionally integrated processes (flexible ARFISMA), and Woodward, Cheng,
and Gray (1998) introduce the k-factor GARMA processes.

Furthermore, the statistical properties of these models have been investi-
gated by Giraitis and Leipus (1995), Chung (1996), Giraitis, Hidalgo, and
Robinson (2001), and Palma and Chan (2005), among others. Finite sam-
ple performances of a number of estimation techniques for fractional seasonal
models are studied in the papers by Reisen, Rodrigues, and Palma (2006a,b).

Problems

9.1 Let y: = e+ @yi—s be a SARIMA(0,0,0) x (1,0,0)s; model where the
integer s corresponds to the seasonal period. Suppose that || < 1 and that
Var(e;) = 0.

(a) Show that the autocovariance function of this process is given by

0'2 [h

h) = o
v(h) 2P

where [-] denotes the integer function.
(b) Find the spectral density of this seasonal process.

9.2 Letz =) 7 (Ajcos(A\;t)+Bjsin(At)), wheret = 0,%1,...y A1, Az, ... Ay
are positive constant and A;, B; are independent random variables, with zero-
mean and variance o7 = Var(4;) = Var(B;), j =1,...,n.

(a) Is this stationary process?

(b) Find the mean and autocovariance function of z;

9.3 Consider the time series{y; }:

ye = Asin(wt) + xy,
Ty = a0+a1t+a2t2+m,

where A is a random variable and {7} is an integrated process of order 2,
with E(n;) = 0 for all t. That is, (1 — B?)n; is a stationary process.
(a) Find the values of the frequency w satisfying

(1= By = (1 - B*)ae.
(b) Verify that for the values of w found in part (a) we have that
z = (1 — B (1 — B)?y,

is a stationary process.
(c) Calculate the expected value p = E(z).
(d) TIs the process {z; — u} a white noise sequence?
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9.4 Let {z:} be the time series defined by
x¢ = Acos(mt/3) + Bsin(nt/3) + y:

where y; = 2; + 2.52,_1, {21} ~ WN(0,0?%), A and B are uncorrelated with
zero-mean and variance 2, and z; is uncorrelated with A and B for each ¢.
Find the ACF of {z;}.

9.5 Design a symmetric moving-average filter which removes seasonal com-
ponents with period 3 and, simultaneously, it does not remove quadratic
trends.

9.6 For which values of a, aq,...,q, does the fractional seasonal model
exhibits long memory?

9.7 Let s be a positive integer and d € (0, %) Calculate the coefficients v
in the expansion

= v;B.
j=1

9.8 Let s be a positive integer and d < 0.
(a) Prove that the expansion

1—B‘s Zﬂ'j ,

is absolutely convergent.
(b) Let z be a random variable such that E(2?) < co. Show that

(1-B%)% =0.
(c) Consider the equation
(1= B)y; = e, (9.9)

where {;} is a white noise sequence with finite variance. Prove that
there is a stationary solution {y;} of equation (9.9).

(d) Show that the process {x:} defined as z; = y; + z is also a stationary
solution of equation (9.9).

9.9 Consider the SARFIMA(0,0,0) x (0,ds,0)s process
ye = (1— BS>_dSEt’

where ¢, is a white noise sequence with variance o = 1. Let v5(k) be the ACF
of the process y; and (k) be the ACF of a fractional noise FN(d) process
with unit noise variance. Verify that

To(k) = y(sh).
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9.10 Consider the SARFIMA(2,d,2) x (0,ds,0)s process
(1—¢1B— 2By, = (1 —61B — 0 B%)(1 — B*) "¢y,
where ¢; is a white noise sequence with variance o and
0 = (41, ¢2,d, 01,05,ds,0) = (0.2,0.5,0.3,—0.2,0.5,0.1, 1.3).
(a) Is this process stationary?
(b) Is this process invertible?

9.11 Calculate numerically the variance-covariance matrix I'(f) given in
(9.7) for a SARFIMA(0, d,0) x (0,ds,0)s process with 8 = (d,d,) = (0.1,0.2)
and s = 12.

9.12 Simulate a sample of 1000 observations from a Gaussian SARFIMA(1,d, 1) x

(0,ds,0)s process with parameters

0 = (¢1,01,d,ds,0) = (0.6,0.3,0.2,0.2,1).

9.13 Implement computationally the splitting method for calculating the
theoretical ACF of a SARFIMA(0,d, 0) x (0, ds,0)s process.

9.14 Write a state space system for the SARFIMA process described in the
previous problem.

9.15 Calculate the MLE for the SARFIMA process in Problem 9.12 by
means of the state space systems and the Whittle method.

9.16 Suppose that T is the variance-covariance matrix of a stationary Gaus-
sian process {y1,y2, ..., yn} with fractional seasonal spectral density.
(a) Let |T| be the Euclidean norm of T, that is,

|T| = [te(TT))' 2.

Show that
n n n—1 .
2 . . J .
ITI"=>"> A i-q)=n)_ <1 B n) 70
i=1 j=1 j=0
(b) Verify that yields
() < Kj
for j > 1, where @ = max{a, aq,...,q,}.
(c) Show that
n—1 n
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(d) Verity that
2 2
|T|” < Kn??,
and then

|T| < Kn.

9.17 Consider the GARMA process described by the spectral density
FO) = HN)A =M~ B A+ 0%,

where H(X) is a C*°([—m,7]) function. Verify that the ACF of this process
satisfies the asymptotic expression

v(h) ~ ¢ cos(h)\l)|h\2d1_1,

as |h| — oo.



CHAPTER 10

TIME SERIES REGRESSION

In the previous chapters we have studied methods for dealing with serially
dependent time series data but we have not discussed the problem of relating
those time series to other covariates or trends. However, in many practical
applications, the behavior of a time series may be related to the behavior of
other data. A widely used approach to model these relationships is the linear
regression analysis. Consequently, in this chapter we explore several aspects
of the statistical analysis of linear regression models with serially dependent
errors. A motivating example is discussed in Section 10.1. Some essential
definitions about the model under study are given in Section 10.2. We then
proceed to the analysis of some large sample properties of the least squares
estimators (LSE) and the best linear unbiased estimators (BLUE). Aspects
such as strong consistency, the asymptotic variance of the estimators, normal-
ity, and efficiency are discussed in Section 10.3 for the LSE and in Section 10.4
for the BLUE. Sections 10.5-10.7 present some important examples, including
the estimation of the mean, the polynomial, and the harmonic regression. A
real life data application to illustrate these regression techniques is presented
in Section 10.8 while some references and further readings are discussed in the
Section 10.9. This chapter concludes with a section of proposed problems.

Time Series Analysis. First Edition. Wilfredo Palma. 369
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10.1 MOTIVATION
Consider the time series regression model

Ye = o B+ €4,

where z; is a regressor and ¢; is a stationary error sequence. A very simple
example of this model is obtained under two essential assumptions: that the
regression variable x; is deterministic or known and that the error & is a
sequence of i.i.d. random variables with zero-mean and variance 2. Under
this assumptions, the best estimate of the parameter S in the sense of unbiased
and minimal variance corresponds to the least squares estimator (LSE) given
by

Z?:l Yt Tt
Z?:l 7

Furthermore, the variance of this estimator is

B =

~ 0'2

Var(ﬁ) = W
t=1

On the other hand, if the error sequence is correlated, the variance of the LSE
differs from the previous formula. For instance, assume that ¢; satisfies an
AR(1) process with autoregressive parameter ¢,

€ = @1 + ey,

where the noise e; is an i.i.d. sequence with zero-mean and variance (1—¢?)o?.
Notice that given this parametrization of the variance of £, we obtain that the
variance of g, is 02, making both cases comparable. For h=1—-n,...,n—1
define

n—|h|
Qp = E Lt Tit|h|s
t=1

so that we can write the variance of the LSE in this case as

Sr_tn ony(h)
Z?:l xf

Consequently, if r denotes the ratio between the two variances, we have that

Var(§) =

n—1

r:% Z apy(h).



MOTIVATION 371

Consider the simple case where z; = 1 for all h = 1,...,n. Then, after some
algebra, this quantity can be written as

1+ ¢ — 20"
(1+¢)(1—¢)*

Since |¢| < 1 we have that as the sample size increases to infinity

b
(1-¢)*

In turn, as ¢ approaches 1, r tends to infinity. Thus, as the level of serial
dependence of the error sequence increases, the relative imprecision of the
LSE increases as well. The lesson provided by this illustration is that serial
dependence affects the quality of the estimates.

As an illustration, Figure 10.1 exhibits two examples of time series re-
gressions for the linear trend with § = 2, ¢ = 1 with 200 observations.
Figure 10.1(a) shows then case of independent Gaussian noise while Fig-
ure 10.1(b) displays the regression with AR(1) dependent Gaussian errors
with autoregressive parameter ¢ = 0.95. Notice that the values on panel (b)
exhibit much more level of persistence, that is, the values tend to stay close
to their respective neighbors.

T =

(a) (b)

Yt

0 50 100 150 200 0 50 100 150 200
Time Time
Figure 10.1 Time series regressions. Linear trend with f = 2 and o =

1. (a) Independent Gaussian noise. (b) AR(1) dependent Gaussian errors with
autoregressive parameter ¢ = 0.95.
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Table 10.1  Time series regression with constant and first-order autoregressive
errors. Estimates of 3 for different values of ¢.

o) Independent  AR(1)  SD Independent SD AR(1) Ratior

0.1000 2.0014  2.0014 0.0706 0.0782 1.2247
0.3000 2.0029  2.0040 0.0694 0.0939 1.8309
0.5000 1.9987  1.9989 0.0623 0.1069 2.9508
0.8000 2.0089  2.0274 0.0721 0.2154 8.9155

A similar exercise can be carried out considering the best linear unbiased
estimator (BLUE) instead of the LSE.

To illustrate these issues, Table 10.1 and Table 10.2 report the results from
the simulations of two regressions, a constant mean model

Yo = B+ €,

with 8 =2, for t = 1,...,n, and the linear trend model

t
ytzﬁf—i_&—ta
n

with 8 = 2, n = 200 and ¢t = 1,...,n. For the dependent error case, we
consider the Gaussian AR(1) model with and o = 1 and four different values
for the autoregressive parameter ¢, from a low level of dependence ¢ = 0.1 to
a high level of autocorrelation ¢ = 0.8.

The results reported in both tables are based on 1000 repetitions. Notice
that the least squares estimates of the regression parameter § seem to be
unbiased in both tables and across the distinct values of ¢. The effects of the
error dependence can be observed in the levels of estimation error standard
deviations. In particular, notice that in both Monte Carlo simulation sets the
ratio r increases as the level of autocorrelation ¢ increases.

Table 10.2  Time series regression with linear trend and first-order autoregressive
errors. Estimates of 3 for different values of ¢.

@ Independent  AR(1)  SD Independent SD AR(1) Ratio r

0.1000 2.0021  2.0024 0.1253 0.1384 1.2195
0.3000 1.9868  1.9823 0.1185 0.1611 1.8482
0.5000 1.9943  1.9904 0.1250 0.2153 2.9667

0.8000 1.9993  1.9996 0.1195 0.3527 8.7111
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10.2 DEFINITIONS

Consider the linear regression model
Yt = 13 + €y, (10.1)

fort =1,2,..., where x; = (241, ..., Zyp) is a sequence of regressors, 8 € RP is
a vector of parameters, and {e;} is a long-range-dependent stationary process
with spectral density

FO) =1 — P72 fy (), (10.2)

where fo(A) is a symmetric, positive, piecewise continuous function for A\ €
(—m,mland 0 < d < 3.
The least squares estimator (LSE) of 8 is given by

B = (X, X)X, Y, (10.3)

where X, is the n x p matrix of regressors, [X,;; = x5, ¢ =1,...,n, j =
1,...,p,and Y,, = (y1,--.,Yn)’. The variance of the LSE is

Var(B,) = (X, X,) ' X! T X, (X" X)), (10.4)

where I' is the variance-covariance matrix of {y;} with elements
Tij= [ fA)ePDax (10.5)

On the other hand, the BLUE of 3 is
B, = (X, I1X,) X, 071y, (10.6)
which has variance equal to

Var(B,) = (X, T7'X,,)"". (10.7)

10.2.1 Grenander Conditions

In order to analyze the large sample properties of the LSE and the BLUE, we
introduce the following so-called Grenander conditions on the regressors. Let
X, (j) be the jth column of the design matrix, X .

(D) | Xn()|| 2 c0casn —oofor j=1,...,p.

)
(2) im0 [| X2 DI/ 1 Xn (G = 1 for j =1, p.
)

(3) Let Xy, n(J) = (®ht1,5, Tht2,5s - -+ Tnj,0...,0) for b > 0 and X, 5 (j) =
0,...,0,21,%2,,...,Zntn,;) for h < 0. Then, there exists a p x p
finite matrix R(h) such that

<Xn7h(i)7 Xn(])>
[ X, n (DX ()

— R”(h), (108)
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as n — oo with (z,y) = a7 for complex numbers z,y € C where 7 is the
complex conjugate of y.

(4) The matrix R(0) is nonsingular.

Notice first that under conditions (1)—(4), the matrix R(h) may be written
as

R(h) = / "y anr(), (10.9)

—T

where M () is a symmetric matrix function with positive semidefinite incre-
ments.

The asymptotic properties of the LSE estimates and the BLUE depend
upon the behavior of M;;()\) around frequency zero. Consequently, assume
that for j =1,...,s, Mj;;()) suffers a jump at the origin, that is,

M;;(0+) > M;;(0), j=1,...,s,
and for j =s+1,...,p, M;;(\) is continuous at A = 0, that is,
M;;(04) = M;;(0), j=s+1,...,p,

where ij (0+) = lim)\‘)(H, M]](A)

Before stating the asymptotic behavior of these estimators, the following
definitions and technical results are needed. Define the characteristic function
of the design matrix by

A
M (\) = mi(w) dw,

)

— T
where

n(>\) _ <Z?:1 xtie_zw\? Z?:l xtje_lt/\> )
Y 27| X (D[ X ()]

m

Also, we define the function §(-) such that §(z) =1 for x = 0 and J(z) =0
for x # 0.
Notice that by Problem 10.14

/ Ty () o [ g dM(),

—T —T

as n — oo for any continuous function g(A) with A € [—m,7].
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10.3 PROPERTIES OF THE LSE

The large sample behavior of the LSE is studied in this section.

In what follows, the regressors are assumed to be nonstochastic. Let
0n = Amin(X},X,) be the smallest eigenvalue of X/ X,, and let B be the
true parameter. Under some conditions on o, see Problem 10.17, the LSE
is consistent. Finding the eigenvalues of the matrix X/ X, may not be a
simple task in some situations. Fortunately, there is a set of conditions that
guarantees the strong consistency of the LSE which are simpler to verify, see
Problem 10.18.

10.3.1 Asymptotic Variance

The asymptotic variance of the LSE is analyzed in this section. Consider now
the following assumption. For any & > 0, there exists a positive constant ¢
such that

f(N) dML(N) <6, (10.10)
for every n and j = s+ 1,...,p. With this additional condition the following
result is obtained: If the Grenander conditions (1) to (4) are satisfied and
that (10.10) holds. Define the p x p diagonal matrix

Dy, = diag(||Xn(1)[In?,..., | Xn(s) [0 [|Xn(s + DL, [ Xn(@)])-
Then,
(a) For s=0,

D, Var(B,)D,, — 2w R(0) ™" i FON)AM(NR(0)™Y,  (10.11)

as n — oo if and only if condition (10.10) holds.
(b) For s >0,
DY (X[, X ) Var(B,,) (X, Xa)Dy ' — 274, (10.12)

A(lg g) (10.13)

and the elements of the s X s matrix B are given by

as n — 0o where

bij = fo(0) lim n=* / 11— &2 amr(n),
fori,5=1,...,s and the elements of the (p — s) X (p — s) matrix C are
given by

Cij = SO dMiy s js(N).
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10.3.2 Asymptotic Normality

Assume that the regression errors {e;} corresponds to a strictly stationary
process with spectral density satisfying (10.2) and Wold decomposition:

e=> v ;. (10.14)
§=0

Thus, under some technical conditions, we have that
Dgl(X{an)(ﬁn - ﬁ) - NI)(Ov A)7

as n — oo where A is the variance-covariance matrix defined by (10.13).

10.4 PROPERTIES OF THE BLUE

Under some conditions, the BLUE satisfies

D, Var(B3,))D,, — 27 { i f(/\)‘ldM()\)} _1, (10.15)

—T

as n — oQ.

10.4.1 Efficiency of the LSE Relative to the BLUE

When s > 0, that is, M (\) displays a jump at the origin for some regressors,
the LSE is not asymptotically efficient compared to the BLUE.

On the other hand, if s = 0 [that is, M (\) does not jump at zero frequency]
then, under some conditions on the regressors, it can be established that the
LSE is asymptotically efficient.

Assuming that s = 0 and conditions (1)—(5) and (10.10) hold, the LSE is
efficient compared to the BLUE if and only if M increases at no more than p
frequencies and the sum of the ranks of increases is p.

B EXAMPLE 10.1

As an illustration of these theorems, consider the following trigonometric
regression:

Yy = By + &4

where z; = Z?:l e“it, Aj #0for j =1,...,q are known frequencies
and the error sequence has spectral density (10.2).
In this case,




M(»)
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Frequency

Figure 10.2 An example of trigonometric regression, function M (\).

Consequently, by Problem 10.16 we conclude that

X -y
lim 72225(/\j—)\k):q.

n—00 n

Furthermore, dM(\) = (1/¢) >29_, dp(A — Aj) dA, or equivalently,

A 4a
M(A)zé[ ZéD(w—Aj)dw.

This function is displayed in Figure 10.2. Notice that M () exhibits ¢
jumps located at frequencies Ai,...,A,. But, it does not jump at the
origin. Therefore, s = 0 and R(0) = 1.

The asymptotic variance of the LSE satisfies

~ 2 [T 1
. 2 .
Jm X VarB) = 5[50 D000 ) i
=
2w

= T+ )
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On the other hand, the asymptotic variance of the BLUE is
-1

™ q
HXnHQVM(/@n) = 2mq f()\)_lz(sp()\—)\j)d)\
- =

lim
n—oo

_ _17—1
= 2mq [fO) T+ )T
The relative efficiency of the LSE compared to the BLUE is defined by

r(d) = lim SeVar(B) (10.16)
n—o0 det Var(3,,)
In this case we have

2

q
T T FO0) O T

Thus, for ¢ = 1, the LSE is asymptotically efficient and by Jensen’s
inequality, for ¢ > 2 the LSE is not efficient.

Recalling that in this example p = 1, and since for ¢ = 1, M(A) has
only one jump at frequency A; and consequently the LSE is efficient. On
the other hand, for ¢ > 2, M(\) has more than one jump and therefore
the LSE is not efficient.

Consider, for instance, the frequencies A; = wj/q for j =1,...,¢. In
this case we have

lim r(q) = i
go0 Jo SOV AN [T F) T ax
Figure 10.3 shows the behavior of r(¢) for a fractional noise model
for different values of the long-memory parameter d and q.
For this model, we have that

, _T(1 - d)*P(1 + d)?
Jm (9 = T gm0 1 2d)

As expected, for d = 0 the asymptotic relative efficiency is 1. On the
other hand, for d — %, the limiting relative efficiency is 0.

10.5 ESTIMATION OF THE MEAN

A simple but illustrative example of a linear regression model is

Y =+ €t

where g is the unknown mean of the process y;. In this case, the LSE is

u_nt_lyt_n ns
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o
\
\
)
o
=
- o
- o
----- d=0.100
< --- d=0.250
S — d=0.499
T T T T T T
0 2000 4000 6000 8000 10000

Figure 10.3  An example of trigonometric regression: Relative efficiency.

where 1 = (1,1,...,1)" and the BLUE is
p= (1T 1Ty,
In this case, 0, = n and then an application of Problem 10.18 establishes
that the LSE is consistent.

10.5.1 Asymptotic Variance

On the other hand, the Grenander conditions are also satisfied: (1) [| X | =
Vo= oo asn — o0; (2) | Xnsall/I[Xnll = 14+ 1/v/n — 1 as n — o
(3) Ri1(h) = lim,yo0[l — |R|/n] = 1 for all fixed h; and (4) R(0) = 1 is

nonsingular. Furthermore, in this case

el

which by Problem 10.15 tends to the Dirac functional operator dp(\) as n —
oo. Therefore,

\i"’\ 12 1 1—cosn\

27rn |e“‘ — 12 T 2mn 1—cos\’

A
MO = [ dp(w)dw =10\

—T
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Hence, M () has a jump at the origin as shown in Figure 10.4, and therefore
s = 1. In this case D,, = n?tY/2 and therefore

n'=24 Var(fi) — 2nb,

as n — oo where

b = ifO(O) lim n_l_gd/ |1 —eb‘|_2_2d|1 —ei">‘|2d)\
2 n—o00 o
I'(1 - 2d) ot 1
= = fo(0 / T—y dz dy
rara-a@ ) Jy o
B (1 — 2d)
T d(1+2d)T(d)T(1 - d) fo(0).
a® |0(1)
For an ARFIMA(p, d, q) model f,(0) = o S Consequently,
2d—1 1 2 T(1—-2
Var(ﬁ)’\‘ Cyn _ QIH( )| ( d) 2d—1. (10.17)

d(1+2d) ~ 7 Jo(V)|? [d(1 + 2)T(d)T(1 — d)

1.0

0.8

0.6
|

ML)

0.0
|

- 0 k4

Frequency

Figure 10.4 Estimation of the mean: M()).
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10.5.2 Relative Efficiency

Since in this case M () has a jump at zero frequency, the LSE (sample mean)
is not asymptotically efficient as compared to the BLUE. However, we can
analyze its relative efficiency with respect to the BLUE.

Following Adenstedt (1974), the BLUE of the mean of a fractional noise
process with long-memory parameter d is given by

n
m= E a;5Y;,
j=1
where the coefficients a; are

n=I\T(—d)T(n+1-j—d)T(2 - 2d)
4= (j—1> T(n+1—2d)0(1—d)>

The variance of this BLUE may be written as
Sy T(n)T'(1 —2d)T'(2 — 2d) 221 (1 —2d)T(2 — 2d)
F(n+1-2d)T(1—d)? I'(1—d)? ’

for large n. For an ARFIMA(p, d, q) process, the variance of the BLUE satis-
fies

Var(p) = o

2 2a-1 [0(D)]* T(A = 2d)T'(2 — 2d)

Var(i) ~ o“n , 10.18
2 G T(1—dF (10.18)
%
g mn
§ _
g i T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

d

Figure 10.5 Relative efficiency of the sample mean.
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for large n. Now, from (10.17) and (10.18) we conclude that

Var(fi) (14 2d)T(1 + d)T'(2 — 2d)

1
noo Var(fi) I'(l—ad)

Figure 10.5 shows the relative efficiency r(d) for d € (0,3). The minimal

relative efficiency is approximately 0.9813 reached at d = 0.318.

10.6 POLYNOMIAL TREND
Extending the previous example, consider the polynomial regression
Yo =By + Bit+ -+ Byt v,

where {g;} satisfies (10.2). In this case, p = ¢+ 1, X, (i) = (1,201, ..., ni71)
fori=1,...,p and hence

o itj—1
X, ()X, (j) = t1+j—2:ﬁ%1+0n 7
( ) (]) ; P 1[ ( )]
fori,j=1,...,p.
n2i—1+d
Thus, Dy = %7_1[1 + o(n)] and
noOS ] g1 i (s—t)A
mZ(A) — ZtZI Zs:l B e

27| X ()1 X ()

This term converges to
mij(A) =

Therefore,

and

V2i— 12— 1
i+j—1

)

Rﬂw%:/ e AN (N) =
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which actually does not depend on the lag h. For instance, for p = 5 we have
that the matrix R(h) is given by

V3o M5 V2L V2T

2 4 5 6
Riy=| 45 SE 1 4 <5

V7 V21 V35 /63

4 5 6 1 8

V9 V27 V45 /63

5 6 7 8 1

B EXAMPLE 10.2
Consider an ARMA model
&(B)y: = 0(B)ey,

where €, is a white noise sequence with zero-mean and variance o2. The
spectral density of this process is given by

In particular, at the origin we have

o? 2
f(0)=o0—

™

o(1)

(1)

Let C' a square matrix given by

o= " rnyam,

so that
Ciy = 3 FA)mg;(X) dX
N7 Wy e
itj—1
= f(0)
= f(O)R;;.

Hence, the variance of the LSE satisfies

fF(N)dp(A) dA

—T

V2i— 12— 1
i+j—1

D, Var(83,))D,, — 2 f(0) R(0)"",
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where D,, is a diagonal matrix with diagonal elements approximately
2i—1
dij = %;— - For simplicity, consider the case of a linear trend where the

parameter to estimate is (8, 3;). In this situation,

1 V3
R(O)_[ﬁ : ]
2

and then

ro =] s TV

On the other hand,
Dy ~ [ noq } .
0 %5

Therefore, the large sample variance of the LSE satisfies

~ 4 _L\{?
Var 3 ~ 27 f(0) 3 v .
T A né

or more precisely,

0(1

2 2
Var3 ~ o o)

nt nb

2 4 _6V3
n2 n4
_6v3 36 ’

10.6.1 Consistency

Notice that

lza()I? _ ¥ 10
Therefore, by taking § = 1 we have that
NP
tim ing 120D .

Furthermore, since R(0) is nonsingular, we conclude by Problem 10.18 that
the LSE is consistent.

10.6.2 Asymptotic Variance
Since M () has a jump at the origin, the asymptotic variance of ,@n satisfies

D;N(X! X,) Var(B,) (X, X,)D; ' — 2B,
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where

bij = fo(0) lim n*d/ 11— ZA| 2 (A) dA

n— oo

. |1_€ ‘ i(t—s)A
= fo(0) lim i lgi— 1/ 76( A A\

n—o0 [ X p( HHX ;Z:l 21

= fo(0) lim t eIy (t — s
L ) HHX |ZZ )

t=1 s=1

where 7(+) is the ACF of a fractional noise process FN(d) with 02 = 1. There-
fore,

bi; = fo(0)ey lim tlgd Lt — 5241
! Yoo || X (i HllX tzlszl
= fo(0)ey /(20 —1)(25 — 1)

n n n i—1 s\ i—1

. —2d - -

<m0 ()
=1 s=

1 1
= 1OV [ [ ey ey

B(i,2d) + B(j, 2d)
i+j+2d—1

2d—1
t

n n

1

n2

= fo(0)ey /(20 —1)(25 — 1)

9

see Problem 10.12 for finding the value of the double integral.

10.6.3 Relative Efficiency

Analogous to the estimation of the mean case, since M (\) has a jump at the
origin, the LSE of the polynomial regression is not asymptotically efficient.
The relative efficiency for ¢ = 1 is given by

(1+2d)(1+d)T(3 —2d)]>

r(d) = (9 — 4d?) TE=d

Figure 10.6 shows r(d) for d € (0,3). The minimal relative efficiency is §
reached at d = 0.5.

10.7 HARMONIC REGRESSION
Another important example is the harmonic regression

yr = Bre™M + Bye" - 4 /quuqt + &,
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1.00
|

Relative Efficiency r(d)

0.85
|

0.0 0.1 0.2 0.3 0.4 0.5
d

Figure 10.6 Relative efficiency of the polynomial regression with ¢ = 1.

where {¢;} is a stationary process with spectral density (10.2) and A; # 0 for
j =1,...,q are known frequencies. In this case, D;; = y/n fori = 1,...,q,
and by Problem10.15 we have that

(Xnn(i), Xn(4)) il P(i—\)t ixh
: = ethih = . S — Ao,
@K = 2T = 0y = )

t=1

as n — oo. Hence, R;;(h) = e™"§(\; — \;) and from equation (10.9) we
conclude that dM;;(A) = 6(A; —Xi)dp(A—A;) dX. Therefore, M;;(A) does not
have a jump at the origin for any A; # 0.

10.7.1 Consistency

Observe that R(0) = I,, where I,, is the n x n identity matrix. Consequently,
it satisfies the Grenander condition (4), that is, R(0) is nonsingular. Besides,

e —

nd N

Therefore, by taking § = 1 in Problem 10.18 we conclude that the LSE is
consistent.
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10.7.2 Asymptotic Variance
Since R;;(0) = (i — j) and D;; = v/n we have that

T AME ) = [ F)p(— Ay dA = FA)3G — g).

Consequently,
f(A) 0 0 0
0 f(A2) O 0
lim nVar(an) =27
n—00
0 0 f(Ag-1) O
0 00 fA)

10.7.3 Efficiency

As shown in Figure 10.7, M;;(\) displays one jump of size one at frequency
Aj. Thus, M(X) increases at ¢ frequencies each of rank one; so that the LSE
is asymptotically efficient.

0.4

M;(2)
0.2

Frequency

Figure 10.7 Harmonic regression: M;j;(\).



388 TIME SERIES REGRESSION

10.8 ILLUSTRATION: AIR POLLUTION DATA

As an illustration of the long-memory regression techniques discussed in this
chapter consider the following air pollution data exhibited in Figure 10.8.
This time series consists of 4014 daily observations of fine particulate matter
with diameter less than 2.5 ym (PM2.5) measured in Santiago, Chile, during
the period 1989-1999; see Section 10.9 for further details about these data.
In order to stabilize the variance of these data, a logarithmic transformation
has been made. The resulting series is shown in Figure 10.9. This series
displays a clear seasonal component and a possible downward linear trend.
Consequently, the following model for the log-PM25 is proposed,

k
yr = Bo + Pit + Z[aj sin(w;t) + ¢;j cos(w;t)] + &4, (10.19)
j=1

where g; ~ (0,02).

An analysis of the periodogram of the detrended data and the ACF reveals
the presence of three plausible seasonal frequencies, wy = 27/7, we = 27/183,
and ws = 2m/365.

The least squares fitting assuming uncorrelated errors is shown in Ta-
ble 10.3. Observe that according to this table all the regression coefficients

400

300
I

PM2.5 daily level
200
]

100
1

T T T T T T
1990 1992 1994 1996 1998 2000

Time
Figure 10.8  Air pollution data: Daily PM2.5 measurements at Santiago, Chile,
1989 - 1999.
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Log PM2.5 daily level
4
Il

19‘90 1 9‘92 1 9‘94 1 9‘96 1998 2000
Time
Figure 10.9  Air pollution data: Log daily PM2.5 measurements at Santiago,
Chile, 1989 - 1999.

in model (10.19) are significant at the 5% level, excepting ¢;. In particular,
even though the LS estimate of the linear trend coefficient 3; is very small,
B1 = —0.0002, it is significant at the 5% level. The sample autocorrelation
function of the residuals from the LSE fit is shown in Figure 10.10. As ob-
served in this plot, the components of the autocorrelation function are signif-
icant even after 30 lags. Additionally, the variance plot (see Subsection 4.5.3)
displayed in Figure 10.11 indicates the possible presence of long-range de-
pendence in the data. As a result from these two plots, it seems that the
disturbances &; in the linear regression model (10.19) may have long-memory
correlation structure and the LSE fitting may not be adequate.

To account for the possible long-memory behavior of the errors, the follow-
ing ARFIMA (p, d, q) model is proposed for the regression disturbances {&;}:

¢(B)er = 0(B)(1 — B)™"n,

where {n;} is a white noise sequence with variance o2. The model selected
according to the Akaike’s information criterion (AIC) is the ARFIMA(0, d, 0),
with d = 0.4252, t; = 34.37, and 877 = 0.3557. Table 10.4 shows the results
from the least squares fit with ARFIMA errors. From this table, observe
that the linear trend coefficient (3, is no longer significant at the 5% level.
Similarly, the coefficients ¢; and co are not significant at that level.
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Figure 10.10  Air pollution data: Sample autocorrelation function of the residuals
from the least squares fit.

Table 10.3  Air Pollution Data: Least Squares Fit

Coefficient Standard Deviation t-stat P-value
Bo 4.3148 0.0124 347.6882 0.0000
51 -0.0002 0.0000 -35.5443 0.0000
ay 0.0775 0.0088 8.8556 0.0000
c1 -0.0083 0.0088 -0.9446 0.3449
as 0.1007 0.0087 11.5086 0.0000
Ca -0.0338 0.0088 -3.8590 0.0001
as 0.4974 0.0088 56.6914 0.0000

c3 0.4479 0.0088 51.1620 0.0000
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Air pollution data: Variance plot of the residuals from the LSE fit.

Table 10.4  Air Pollution Data: Least Squares Fit with Long-Memory Errors
Coefficient Standard Deviation t-stat P-value
Bo 4.3148 0.5969 7.2282 0.0000
51 -0.0002 0.0003 -0.7405 0.4590
ay 0.0775 0.0084 9.1837 0.0000
c1 -0.0083 0.0084 -0.9803 0.3270
as 0.1007 0.0363 2.7713 0.0056
Co -0.0338 0.0335 -1.0094 0.3129
as 0.4974 0.0539 9.2203 0.0000
c3 0.4479 0.0447 10.0267 0.0000
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10.9 BIBLIOGRAPHIC NOTES

Chapter 7 of Grenander and Rosenblatt (1957), Section VII.4 of Ibragimov
and Rozanov (1978), and Chapter VIII of Hannan (1970) are excellent ref-
erences for the analysis of regression with correlated errors. However, most
of their results do not apply directly to strongly dependent processes. On
the other hand, there is an extensive literature about regression data with
long-memory disturbances; see, for example, Kiinsch (1986), Yajima (1988,
1991), Dahlhaus (1995), Sibbertsen (2001), and Choy and Taniguchi (2001),
among others. Yajima (1991) established many asymptotic results for least
squares error estimates and best linear unbiased estimates. As described in
this chapter and according to Yajima, the convergence rates for the variance
of these estimates as the sample size increases, depend on the structure of
the characteristic function of the design matrix. The Grenander conditions
were introduced by Grenander (1954). Many of the LSE and BLUE results
discussed in this chapter concerning regression with long-memory errors are
due to Yajima (1988, 1991). The air pollution data discussed in Section 10.8
are provided by the Ambient Air Quality Monitoring Network (MACAM in
Spanish, www.sesma.cl) in Santiago, Chile. Further details about the fine
particulate matter data and other ambient variables can be found in Iglesias,
Jorquera, and Palma (2006).

Problems

10.1 Consider the first-order autoregressive model: y;11 = ¢y +€,41 where

€; is white noise with zero-mean and variance o2.

(a) Verify that yi4 = Oy + Z?:o ¢7et+k,j
ased on part a) verify that the best linear predictor of ;s given
b) Based t ify that the best li dict f yror g
{yuytq..-} is Yiqr = ¢kyt
c) Show that the prediction error e;1p = ys1 1 — Ys+i can be written as
+ + +
€tk = Z?:o o
(d) Calculate Var(egqy).

10.2 Consider the following trend break time series model defined by

B Bo t=1,..k,
E(yt) - { /60+B1xt t:k+1,,’ﬂ

{ o2 t=1,..k,

Var(y) = vo? t=k+1,...n

where v is a positive constant.
(a) Write this model as y = x 8+¢, specifying the matrix 2 and Var(e) =
V.
(b) Verify that the estimator § = (2/x)~'z'y has greater variance than
the estimator 8 = (z'V~lz)~12'V~1ly.
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10.3 Suppose that you have a simple regression model of the form y; =
Bt + yxy + €, where ¢, is a Gaussian white noise, ¢ indicates time and x; is
a stationary time series. Show that the least squares estimator of + for this
model is exactly the same least squares estimator v for model y; = vz} + v,
where y; and x} are the regression residuals of regression of y; and z; at time
t.

10.4 Consider the process defined by the equation

Yo = € + 01641 + O2€p_g,

where ¢; is a white noise sequence with zero-mean and variance o2.

(a) Calculate the ACF of y;.

(b) Obtain the best linear predictors Py, 1192, Priy, 21193

(c) Calculate the best linear predictors Py,,31¥3 ¥ Piy,1y1 and then
obtain COI‘I‘(63, 61) where €3 = Y3 — P[{y2}]y3 yer =y — P[{Uz}]y1

10.5 Consider the process z; = 5 + €;, where ¢; is and i.i.d. sequence with

zero-mean and variance 02.

a) Find the least squares estimator (LSE) of f, 3.

b) Show that the k-step predictor, Z,+x = F(zntk|21, ..., 2 : 0), IS Zpqn =

8.

c¢) Given that S8 is an unknown parameter, you dicide to used the LSE to
predict the value z,t; by means of the formula 2,4, = 3. Show that
the mean squared error of this predictor is F (2, — znix)? = o2(1+ %)

10.6 Consider the time series y; defined as
Y =a + bt + wy,

with {w;} ~ (0, 02). Show that applying a moving-average filter, the variance
of the resulting process z; defined as

1 k
TP I

is 1/(2k + 1) parts of the variance of the series y;.

10.7 Assume that z; denotes the jth column of the n x p design matrix
X, that is, z;; = t7! and let D,, = diag(||z1||n, [|z2lln, -, [|Zp]ln) where
il = [0y @3]

(a) Show that

lim D;'X) X, D' = M,

n—oo
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2 — 125 — 1

where M = (mij)i’j:lva with mij = Z+] 1

(b) Verify that

lim n~2D X/ TX,D;' = 21 fo(0)H

n—oo
where

V2i—125 -1 F1—2d 1111 2d—1
A R / / o=y do dy.

10.8 Consider the harmonic regression
yr = aq sin(Aot) + a2 cos(Agt) + 4,

for t = 1,...,n where ¢; is a stationary long-memory process with spectral
density (10.2).
(a) Show that y; may be written as

iAot —iXot
Y = P17 + Boe” " + &y,

and find expressions for a; and ag in terms of 3; and 3,.
(b) Verify that the LSE of «; and ay are

~ 1 .~ =
oy = 5(252 + B4),
and
~ 1 .~ =
Qg = Z(ZBQ _ﬂl)v
where Bl and ,@2 are the LSE of 8, and 3,, respectively.
(c) Show that

lim nVar(a;) = lim nVar(az) = 7f(Ao)-

n—oo n—oo
10.9 Consider the linear regression model
Y = Bre ot 4 ey,

where p € {0,1,2,...} and &, is a stationary long-memory process with spec-
tral density (10.2).

(a) Is the LSE of 8 consistent?

(b) Are the Grenander conditions satisfied in this case?

(c) Is the LSE asymptotically normal?

(d) TIs the LSE asymptotically efficient in this case?
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10.10 Let A(A) > 0 and define the n x n matrix I" with elements

vij = [ R N,

—T

(a) Verify that I" is symmetric, that is, v;; = 75;.
(b) Show that I' is positive semidefinite, that is, for any 2 € C"

z*Tx > 0.
(c) Observe that since I' is symmetric, it may be written as
I'=UDU",

where U is a nonsingular n x n matrix and D = diag(d;) with d; > 0
for i =1,...,n. Using this fact and the Cauchy-Schwartz inequality

=%y < [lz[llyll,
show that for all u,v € C™
2|u* Tv| < u'Tu+ v T. (10.20)
(d) Verify that

l‘ zaxs *
/ 2rh(A)m;(A) dA = § j§ : T v 28y @ = uw T
— n

t=1 s=1 llllzn(

where u =z, () /[|l2n (1) || and v = 24.(5)/ [z (7))l
(e) Using (10.20) show that

‘/_7, dA‘ /F h(A)mi;(A) dA+/W h(A)m2;(A) dA.

—T —T

(f) Deduce that for any f(A\) >0

» dMim)] < [ sy anta+ [ 10 dngy )

cf., Yajima (1991, p. 162).
10.11 Consider the following trend break regression
Yt = Bo + Brae + &,
for t =1,...,n, where the covariate x; is defined by
n
0 if t<—,
=g

Ty = n
1 if §<t§n.
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and for simplicity we assume that n is even. Let X, = [X, (1), X,,(2)] the
design matrix.

(a) Show that || X, (1)]| = v/ and | X, (2)]| = /n/2.

(b) Following expression (10.8) verify that

(Xnn(1), Xn(2) 1
[ X, (DX 7(2) \f’
as n — oo and that
. L
V2
R(h) = .
ﬁ 1

(c) Are the Grenander conditions fulfilled in this case?
(d) Prove that the matrix M(\) may be written as

1
SV

M(X) = dp(N) .
ﬁ 1

(e) Let B3, be the LSE of 3 = (3, 3,). Is this estimator consistent?
(f) Find an expression for the asymptotic variance of 3,,.

10.12 Show that

1 1
B 1 1 B 1 1
/ /xay6|x_y‘7dxdy: (O[—i— 7’7—’_ )+ (BJF 7’7+ )
0 at+B+y+2

fora > —1, 8 > —1 and v > —1, where B(,-) is the beta function. Hint: Try
the change of variables z = wv and y = v.

10.13 Consider the liner regression model
= ﬁta + Et,

for t = 1,2,...,n, where « is known and {e;} is a long-memory stationary
process with spectral density satisfying

FO) ~ cp| A3,

as [\l = 0 with 0 < d < L. Let 3, be the LSE of 8 and let X, =
(1,2%,...,n%).

2a+1

T for a > f%.

(a) Veriy that [|X,[? ~ 2
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(b) Show that if @ > d — 3, then ,@n is strongly consistent.
(c) Prove that

<Xn,h; Xn>

—————"— — R(h),
X liXa]

as n — oo, where R(h) =1 for all h € Z.
(d) Are the Grenander conditions satisfied in this case?
(e) Show that the variance of 3,, satisfies

~ dmep(200+ 1) Bla+1,2d) 55 1 o,
Var(8,,) NdTr(1—-d) 2a+2d+1 " 7

as n — oo.
(f) Assume that the disturbances {e;} are independent and identically
distributed. Is the LSE 3, asymptotically normal?

10.14 Verify that under assumption (3), M™(\) converges to M (M), that
is,

[ svaro = [ gmamo,
as n — oo for any continuous function g(\) with A € [—m, 7].
10.15  Let the function f, () be defined for n > 1 as

n 2

E el)\t

t=1

fah) = =

- 2mn

Show that the sequence of functions {f,(\)} converges to the Dirac operator
0p(A) as n — oo. That is, for any continuous function g(A\), A € [—m, 7] we
have that

e

T RNga = [ g(Mp() dA = g(0),

-7 -7
as n — oQ.

10.16 Let the sequence of functions { f,,} be defined by

n

an‘) = n ;eut-

—_

Show that f,(A) = 0(X\) as n — oo.

10.17 Consider the linear model (10.1) where the sequence of disturbances
{e:} is a stationary process with spectral density satisfying (10.2) and fy is a
bounded function. If the following two conditions hold
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(a) n=%g, — 0o as n — oo,
(b) XLy i0 0 tyn®og®n < oo,

then [A']n — B almost surely as n — oo.

10.18 Consider the linear