
CRC Series in
COMPUTATIONAL MECHANICS and APPLIED ANALYSIS

EXACT
SOLUTIONS FOR
BUCKLING OF
STRUCTURAL
MEMBERS



Published Titles

APPLIED FUNCTIONAL ANALYSIS
J. Tinsley Oden and Leszek F. Demkowicz

THE FINITE ELEMENT METHOD IN HEAT TRANSFER
AND FLUID DYNAMICS, Second Edition

J.N. Reddy and D.K. Gartling

MECHANICS OF LAMINATED COMPOSITE PLATES AND
SHELLS: THEORY AND ANALYSIS, Second Edition

J.N. Reddy

PRACTICAL ANALYSIS OF COMPOSITE LAMINATES
J.N. Reddy and Antonio Miravete

SOLVING ORDINARY and PARTIAL BOUNDARY
VALUE PROBLEMS in SCIENCE and ENGINEERING

Karel Rektorys

ADVANCED THERMODYNAMICS ENGINEERING
Kalyan Annamalai and Ishwar K. Puri

CRC Series in
COMPUTATIONAL MECHANICS

 and APPLIED ANALYSIS
Series Editor: J.N. Reddy

Texas A&M University



CRC Series in
COMPUTATIONAL MECHANICS and APPLIED ANALYSIS

CRC PR ESS

C. M. Wang
C. Y. Wang
J. N. Reddy

EXACT
SOLUTIONS FOR
BUCKLING OF
STRUCTURAL
MEMBERS



This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. 

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2005 by CRC Press LLC 

No claim to original U.S. Government works
International Standard Book Number 0-8493-2222-7

Library of Congress Card Number 2004049666
Printed in the United States of America  1  2  3  4  5  6  7  8  9  0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Wang, C. M.
Exact solutions for buckling of structural members / C.M. Wang, C.Y. Wang, J.N. Reddy.
   p. cm. — (Computational mechanics and applied analysis ; 6)

Includes bibliographical references and index.
ISBN 0-8493-2222-7 
1. Buckling (Mechanics)—Mathematical models. I. Wang, C. M. II. Wang, C. Y.

    (Chang Yi), 1939- III. Reddy, J. N. (Januthula Narasimha), 1945- IV. Title. V. Series.

    TA656.2.W36 2004
    624.1'76—dc22 2004049666



Dedication

Our wives

Sherene Wang

Dora Wang

Aruna Reddy

© 2005 by CRC Press LLC



About the Authors

C. M. Wang is a Professor of Civil Engineering at the National
University of Singapore (NUS). He obtained his B.Eng., M.Eng.Sc., and
Ph.D. from Monash University, Australia. He has published over 280
scientific publications in structural stability, vibration and optimization.
He is an Editor-in-Chief of the International Journal of Structural
Stability and Dynamics and an editorial board member of the Journal of
Computational Structural Engineering. He has co-authored two books
Vibration of Mindlin Plates (with K. M. Liew et al.) and Shear
Deformable Beams and Plates: Relationships with Classical Solutions
(with J.N. Reddy and K.H. Lee), both published by Elsevier. Dr. Wang
is the recipient of the NUS Innovative Teaching Awards 1997/1998 and
the University Teaching Excellence Awards 1998/1999.

C. Y. Wang is Professor of Mathematics, with joint appointments
in the Departments of Physiology and Mechanical Engineering, at
Michigan State University, East Lansing, Michigan. He obtained
B.S. from Taiwan University and Ph.D. from Massachusetts Institute
of Technology. Dr. Wang has published over 320 papers in fluid
mechanics (unsteady viscous flow, exact solutions, Stokes flow), solid
mechanics (elastica, torsion, stability, vibrations) and heat transfer and
biomechanics. Dr. Wang published a monograph on Perturbation
Methods (printed by Taiwan University). He is currently serving as a
Technical Editor for Applied Mechanics Reviews.

J. N. Reddy is a Distinguished Professor and the holder of the
Oscar S. Wyatt Endowed Chair in the Department of Mechanical
Engineering at Texas A&M University, College Station, Texas. He is
the author of over 300 journal papers and 13 other books, including
An Introduction to the Finite Element Method (3rd ed.), McGraw-
Hill; Mechanics of Laminated Composite Plates and Shells: Theory
and Analysis (2nd ed.), CRC Press; Theory and Analysis of Elastic
Plates, Taylor & Francis; Energy Principles and Variational Methods in
Applied Mechanics (2nd ed.), John Wiley & Sons; and An Introduction to
Nonlinear Finite Element Analysis, Oxford University Press. Professor
Reddy is the main editor of the journal Mechanics of Advanced
Materials and Structures, an Editor-in-Chief of International Journal
of Computational Methods in Engineering Science and Mechanics and
International Journal of Structural Stability and Dynamics, and serves
on the editorial boards of over two dozen other journals.

© 2005 by CRC Press LLC



Preface

In his book “Structural Design via Optimality Criteria”, George
Rozvany articulates William Prager’s personal preferences in research
on structural mechanics which may be summarized as:
• Research should reveal some fundamental and unexpected features

of the structural problem studied.
• Closed form analytical solutions are preferable to numerical ones

because the latter often obscure intrinsic features of the solution.
• Proofs should be based, whenever possible, on principles of

mechanics rather than advanced mathematical concepts in order to
make them comprehensible to the majority of engineers.

• The most challenging and intellectually stimulating problems should
be selected in preference to routine exercises.
A large number of papers published in the high impact factored

journals bear testimony to the fact that many researchers do subscribe
to Professor Prager’s research values. The authors, in particular, found
it challenging to obtain closed form analytical solutions which elucidate
the intrinsic, fundamental and unexpected features of the solution. It is
this interest for analytical solutions that drove the authors to collate the
closed form buckling solutions of columns, beams, arches, rings, plates
and shells that are dispersed in the vast literature into a single volume.
Here, we define a closed form solution as one that can be expressed
in terms of a finite number of terms and it may contain elementary or
common functions such as harmonic or Bessel functions (special functions
such as hypergeometric functions will be excluded). In elastic buckling,
the solution (critical buckling load) may indeed sometimes be of closed
form, but these solutions are few. We have therefore expanded the
contents of this book to include closed form characteristic equations that
furnish the critical buckling load. We admit that these characteristic
equations could be transcendental and do not yield a closed form buckling
solution. However, nowadays a simple root search (such as the bisection
technique) would yield the buckling load to any desired accuracy. What
is not included in this book are buckling loads that require solution of
partial or ordinary differential equations by numerical methods.
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Chapter 1 gives the introduction to buckling and the importance of
the critical buckling load in design. Chapter 2 presents the flexural
buckling solutions for columns under various loading, restraints and
boundary conditions. The effect of transverse shear deformation on the
buckling load of columns, a brief discussion on the flexural–torsional
buckling of columns for thin-walled members with open-profile, and
inelastic buckling of columns are presented in Chapter 2. Chapter 3
contains the exact flexural–torsional buckling solutions of beams and the
buckling solutions of circular arches and rings. Chapter 4 deals with the
buckling of thin and thick plates under inplane loads for various shapes
and boundary conditions. Results for inelastic buckling of circular,
rectangular and polygonal plates are also presented. Finally, Chapter
5 presents buckling solutions for cylindrical shells, spherical shells and
truncated conical shells.

It is hoped that this book will be a useful reference source for
benchmark solutions that is so needed in checking the validity, accuracy
and convergence of numerical results.

This book contains so many mathematical equations and numbers
that it is impossible not to have typographical and other kinds of
errors. We wish to thank in advance those readers who are willing
to draw attention to typos and errors, using the e-mail addresses:
cvewcm@nus.edu.sg, cywang@math.msu.edu, or jnreddy@tamu.edu.

C. M. Wang
Singapore

C. Y. Wang
East Lansing, Michigan

J. N. Reddy
College Station, Texas

© 2005 by CRC Press LLC



Contents

Preface

1 INTRODUCTION

1.1 What Is Buckling?
1.2 Importance of Buckling Load
1.3 Historical Review
1.4 Scope of the Book
REFERENCES

2 BUCKLING OF COLUMNS
2.1 Euler Columns under End Axial Load

2.1.1 Governing Equations and Boundary Conditions
2.1.2 Columns with Classical Boundary Conditions
2.1.3 Columns with Elastic End Restraints

2.2 Euler Columns under End Load Dependent on Direction
2.3 Euler Columns with an Intermediate Axial Load
2.4 Euler Columns with an Intermediate Restraint
2.5 Euler Columns with an Internal Hinge

2.5.1 Columns with an Internal Hinge
2.5.2 Columns with a Rotational Restrained Junction

2.6 Euler Columns with a Continuous Elastic Restraint
2.7 Euler Columns with Distributed Load

2.7.1 Infinite Hanging Heavy Column with Bottom Load
2.7.2 Heavy Column with Top Load
2.7.3 Two-Segment Heavy Column – General Formulation
2.7.4 Heavy Column Partially Submerged in Liquid
2.7.5 Standing Two-Segment Heavy Column

2.8 Euler Columns with Variable Cross Section
2.8.1 Introduction
2.8.2 Columns under End Concentrated Load
2.8.3 Columns under Distributed Axial Load

© 2005 by CRC Press LLC



2.9 Timoshenko Columns
2.9.1 Columns under End Axial Load
2.9.2 Columns under Intermediate and End Axial Loads

2.10 Flexural–Torsional Buckling of Columns
2.11 Inelastic Buckling of Columns
REFERENCES

3 BUCKLING OF BEAMS, ARCHES AND RINGS
3.1 Flexural–Torsional Buckling of Beams

3.1.1 Introduction
3.1.2 Beams of Rectangular Cross-Section
3.1.3 I-Beams

3.2 Inplane Buckling of Rings and Arches
3.2.1 Governing Equations
3.2.2 Circular Rings under Uniform Pressure
3.2.3 Circular Rings with Hinges
3.2.4 Circular Rings with Distributed Resistance
3.2.5 General Circular Arch
3.2.6 Symmetrical Circular Arch
3.2.7 Symmetrical Arches with a Central Torsional Hinge

3.3 Flexural–Torsional Buckling of Arches under Equal End
Moments

REFERENCES

4 BUCKLING OF PLATES
4.1 Preliminary Comments
4.2 Governing Equations in Rectangular Coordinates
4.3 Governing Equations in Polar Coordinates
4.4 Circular Plates

4.4.1 General Solution for Axisymmetric Buckling
4.4.2 Axisymmetric Buckling of Clamped Plates
4.4.3 Axisymmetric Buckling of Simply Supported Plates
4.4.4 Axisymmetric Buckling of Simply Supported Plates

with Rotational Restraint
4.4.5 General Solution for Nonaxisymmetric Buckling
4.4.6 Buckling of Plates with Internal Ring Support
4.4.7 Axisymmetric Buckling of Plates under Intermediate

and Edge Radial Loads
4.4.8 Buckling of Annular Plates under Uniform

Compression

© 2005 by CRC Press LLC



4.5 Buckling of Rectangular Plates
4.5.1 Preliminary Comments
4.5.2 Simply Supported Biaxially Loaded Plates
4.5.3 Plates Simply Supported along Two Opposite Sides

and Compressed in the Direction Perpendicular
to These Sides

4.5.4 Plates with Abrupt Changes in Geometry or
Material Properties

4.6 Simply Supported Isosceles Triangular Plates
4.7 First-Order Shear Deformation Theory of Plates

4.7.1 Governing Equations of Rectangular Plates
4.7.2 Buckling Loads of Rectangular Plates
4.7.3 Buckling Loads of Circular Plates

4.8 Inelastic Buckling of Plates
4.8.1 Introduction
4.8.2 Governing Equations of Circular Plates
4.8.3 Buckling Solutions of Circular Plates
4.8.4 Governing Equations of Rectangular Plates
4.8.5 Buckling Solutions of Rectangular Plates
4.8.6 Buckling of Simply Supported Polygonal Plates

REFERENCES

5 BUCKLING OF SHELLS
5.1 Preliminary Comments
5.2 Axisymmetric Buckling of Circular Cylindrical Shells

under Uniform Axial Compression
5.3 Nonaxisymmetric Buckling of Circular Cylindrical Shells

under Uniform Axial Compression
5.4 Buckling of Circular Cylindrical Panels under Uniform

Axial Compression
5.5 Buckling of Circular Cylindrical Shells under

Lateral Pressure
5.6 Buckling of Spherical Shells under Hydrostatic Pressure
5.7 Buckling of Truncated Conical Shells under

Axial Vertex Load

REFERENCES

© 2005 by CRC Press LLC



CHAPTER 1

INTRODUCTION

1.1 What Is Buckling?

When a slender structure is loaded in compression, for small loads
it deforms with hardly any noticeable change in geometry and load-
carrying ability. On reaching a critical load value, the structure suddenly
experiences a large deformation and it may lose its ability to carry the
load. At this stage, the structure is considered to have buckled. For
example, when a rod is subjected to an axial compressive force, it first
shortens slightly but at a critical load the rod bows out, and we say
that the rod has buckled. In the case of a thin circular ring under
radial pressure, the ring decreases in size slightly before buckling into a
number of circumferential waves. For a cruciform column under axial
compression, it shortens and then buckles in torsion.

Buckling, also known as structural instability, may be classified
into two categories [Galambos (1988) and Chen and Lui (1987)]: (1)
bifurcation buckling and (2) limit load buckling. In bifurcation buckling,
the deflection under compressive load changes from one direction to a
different direction (e.g., from axial shortening to lateral deflection). The
load at which the bifurcation occurs in the load-deflection space is called
the critical buckling load or simply critical load. The deflection path
that exists prior to bifurcation is known as the primary path, and the
deflection path after bifurcation is called the secondary or postbuckling
path. Depending on the structure and loading, the secondary path may
be symmetric or asymmetric, and it may rise or fall below the critical
buckling load (see Fig. 1.1). In limit load buckling, the structure attains
a maximum load without any previous bifurcation, i.e., with only a single
mode of deflection (see Fig. 1.2). The snap-through (observed in shallow
arches and spherical caps) and finite-disturbance buckling (only unique
to shells) are examples of limit load buckling. Other classifications of
buckling are made according to the displacement magnitude (i.e., small
or large), or static versus dynamic buckling, or material behavior such
as elastic buckling or inelastic buckling (see El Naschie, 1990).
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Figure 1.1: Bifurcation buckling: (a) symmetric bifurcation and
stable postbuckling curve; (b) symmetric bifurcation and
unstable postbuckling curve; (c) asymmetric bifurcation.
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Figure 1.2: Limit load buckling: (a) snap-through buckling; and (b)
finite-disturbance buckling.

1.2 Importance of Buckling Load

Design of structures is often based on strength and stiffness
considerations. Strength is defined to be the ability of the structure
to withstand the applied load, while stiffness is the resistance to
deformation (i.e., the structure is sufficiently stiff not to deform beyond
permissible limits). However, a structure may become unstable (in the
sense described above) long before the strength and stiffness criteria
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are violated. For example, one can show that a spherical shell made
of concrete and with a thickness-to-radius ratio of h/R = 1/500 and
modulus of E = 20 GPa buckles at a critical stress [σcr = k(Eh/R)
and k ≈ 0.25] of 10MPa. However, the ultimate strength of the
concrete is 21MPa. Thus, buckling load governs the design before
the strength criterion does. Therefore, buckling is an important
consideration in structural design, especially when the structure is
slender and lightweight.

Linear elastic bifurcation buckling of structural members is the most
elementary form of buckling, and its study is an essential step towards
understanding the buckling behavior of complex structures, including
structures incorporating inelastic behavior, initial imperfections, residual
stresses, etc. [see Bažant (2000) and Bažant and Cedolin (1991)]. The
load at which linear elastic buckling occurs is important, because it
provides the basis for commonly used buckling formulas used in design
codes. For example, the American Institute of Steel Construction (AISC)
Load and Resistance Factor Design (LRFD, 1994) specification applies
a moment-gradient factor, Cb, to the exact lateral buckling solution
of beams under uniform moment in order to account for the variable
moment along an unbraced steel girder length.

In the open literature and standard text books, buckling loads
for different kinds of structures under various loading and boundary
conditions are often expressed using approximate simple formulae and
design charts to aid designers in estimating the buckling strength of
structural members. It is still necessary, however, for designers to
perform the buckling analysis if more accurate results are required or
if there are no standard solutions available. Apart from a few problems
(such as the elastic buckling of perfect and prismatic struts under an
axial force or the lateral buckling of simply supported beams under
uniform moment and axial force), it is generally rather laborious and
in some cases impossible to obtain exact analytical solutions. Thus, it
becomes necessary to resort to numerical techniques. In determining
the elastic buckling load, there are many techniques. These techniques
may be grouped under two general approaches: (a) the vector approach
and (b) the energy approach (Reddy, 2002). In the vector approach,
Newton’s second law is used to obtain the governing equations, whereas
in the energy approach the total energy (which is the sum of internal
energy and potential energy due to the loads) is minimized to obtain
the governing equations. They correspond to the different strategies
used in satisfying the state of equilibrium for the deformed member.
The governing equations are in the form of an eigenvalue problem in
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which the eigenvalue represents the buckling load and eigenvector the
buckling mode. The smallest buckling load is termed the critical buckling
load. Note that the critical buckling load is associated with the state of
neutral equilibrium, i.e., characterized by the stationarity condition of
the load with respect to the displacement. In order to ascertain whether
the equilibrium position is stable or unstable, we use the perturbation
technique for the vector approach or by examining the second derivative
of the total potential energy.

1.3 Historical Review

The first study on elastic stability is attributed to Leonhard Euler
[1707–1783], who used the theory of calculus of variations to obtain the
equilibrium equation and buckling load of a compressed elastic column.
This work was published in the appendix “De curvis elasticis” of his book
titled Methodus inveniendi lineas curvas maximi minimive proprietate
gaudentes, Lausanne and Geneva, 1744. Joseph-Louis Lagrange [1736–
1813] developed the energy approach that is more general than Newton’s
vector approach for the study of mechanics problems. This led naturally
to the fundamental energy theorem of minimum total potential energy
being sufficient for stability.

Jules Henry Poincaré [1854–1912] is known as the founder of
bifurcation theory and the classification of the singularities. On the
other hand, Aleksandr Mikhailovich Liapunov [1857–1918] gave the basic
definitions of stability and introduced the generalized energy functions
that bear his name, Liapunov functions. Furthermore, Lev Semenovich
Pontryagin [1908–1988] introduced, with A. A. Andronov, the important
topological concept of structural stability. This work has led to the well
known classification theory presented in a treatise, Stabilite structurelle
et morphogenese: Essai d’une theorie generale des modeles (Structural
Stability and Morphogenesis: An Outline of General Theory of Models)
by R. Thom.

Theodore von Kármán [1881–1963] began his work on inelastic
buckling of columns. He devised a model to explain hysteresis loops and
conducted research on plastic deformation of beams. Warner Tjardus
Koiter [1914–1997] initiated the classical nonlinear bifurcation theory
in his dissertation, “Over de Stabiliteit van het Elastisch Evenwicht”,
at Delft. Budiansky and his colleagues (1946, 1948) gave a modern
account of the nonlinear branching of continuous elastic structures
under conservative loads. Furthermore, Hutchinson (1973a, b) made an
important contribution to the nonlinear branching theory of structures
loaded in the plastic range.
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Pioneering research by a number of other individuals is also
significant and some of them are: F. Engesser and S. P. Timoshenko on
buckling of shear–flexural buckling of columns; A. Considere, F. Engesser
and F. R. Shanley on inelastic buckling of columns; G. R. Kirchhoff on
buckling of elastica; J. A. Haringx on buckling of springs; V. Vlasov
on torsional buckling; L. Prandtl, A. G. M. Michell, S. P. Timoshenko,
H. Wagner and N. S. Trahair on flexural–torsional buckling of beams
(see Trahair and Bradford, 1991); B. W. James, R. K. Livesly and D.
B. Chandler, R. von Mises and J. Ratzersdorfer, and E. Chwalla on
buckling of frames; H. Lamb, J. Boussinesq, C. B. Biezeno and J. J.
Koch on buckling of rings and arches; E. Hurlbrink, E. Chwalla, E. L.
Nicolai, I. J. Steuermann, A. N. Dinnik and K. Federhofer on arches; G.
H. Bryan, S. P. Timoshenko, T. von Karman, E. Trefftz, A. Kromm, K.
Marguerre and G. Herrmann on buckling (and postbuckling) of plates;
G. H. Handelmann, W. Prager, E. I. Stowell, S. B. Batdorf, F. Bleich
and P. P. Bijlaard on plastic buckling of plates; R. Lorentz, R. von
Mises, S. P. Timoshenko, R. V. Southwell, T. von Kármán and H. S.
Tsien on cylindrical shells under combined axial and lateral pressure; L.
H. Donnell, K. M. Marguerre and K. M. Mushtari on the postbuckling
of shells; A. Pflüger on buckling of conical shells; and R. Zoelly and
E. Schwerin on buckling of spherical shells. Additional references can
be found in the book by Timoshenko and Gere (1961) and the survey
article by Bažant (2000).

1.4 Scope of the Book

In this book, we focus our attention on buckling characterized
by bifurcation and static buckling. There is a fundamental difference
between the formulations of static and buckling equilibrium problems
of linear elasticity. In formulating the static equilibrium (differential)
equations, the undeformed geometry is used to sum the forces and
moments. In contrast, in deriving the buckling equilibrium equations
one must use forces and moments acting on the deformed configuration
under applied loads. The latter leads to eigenvalue problems in which
the buckling load is the eigenvalue and buckling mode is the eigenvector.

Analytical solution of the eigenvalue problem is not possible for
complicated geometries, boundary conditions and loads. In such cases,
numerical methods are required. However, for some cases of structural
geometries, loads and boundary conditions, it is possible to solve the
differential equations exactly in closed form. In this book the authors
present as many exact buckling solutions as possible in one single volume
for ready use by engineers, academicians and researchers.
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CHAPTER 2
BUCKLING OF COLUMNS

2.1 Euler Columns under End Axial Load

2.1.1 Governing Equations and Boundary Conditions

Consider a perfectly straight, uniform, homogeneous column of
flexural rigidity EI, length L which is subjected to an end axial
compressive load P . The moment-displacement relation according to
the Euler–Bernoulli beam theory is given by

M = −EI
d2w̄

dx̄2
(2.1.1)

in which x̄ is the longitudinal coordinate measured from the column base,
w̄ the transverse displacement and M the bending moment. The Euler–
Bernoulli beam theory is based on the assumption that plane normal
cross-sections of the beam remain plane and normal to the deflected
centroidal axis of the beam, and the transverse normal stresses are
negligible (Reddy, 2002).

It can be readily shown that the equilibrium equations are (Bažant
and Cedolin, 1991)

dM

dx̄
= Q (2.1.2)

dQ

dx̄
= P

d2w̄

dx̄2
(2.1.3)

where Q is the shear force normal to the deflected column axis. The
substitution of Eqs. (2.1.1) and (2.1.2) into Eq. (2.1.3) yields the
following governing Euler column buckling equation

d4w

dx4
+ α

d2w

dx2
= 0, α =

PL2

EI
(2.1.4)

where w = w̄/L and x = x̄/L.
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The general solution of (2.1.4) is

w = C1 sin
√
αx + C2 cos

√
αx + C3x + C4 (2.1.5)

The four constants Ci (i = 1, 2, 3, 4) can be evaluated by the two
boundary conditions at each end of the column, which may be written
in the following general forms

s̄1w + s̄2
dw

dx
+ s̄3

d2w

dx2
+ s̄4

d3w

dx3
= 0 (2.1.6)

and

ŝ1w + ŝ2
dw

dx
+ ŝ3

d2w

dx2
+ ŝ4

d3w

dx3
= 0 (2.1.7)

where s̄i and ŝi are parameters whose values will be apparent in the
sequel.

By substituting Eq. (2.1.5) into the boundary conditions given by
Eqs. (2.1.6) and (2.1.7) at x = 0 and x = 1, we obtain four homogeneous
equations which may be expressed as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
α(s̄0

2 − s̄0
4α) s̄0

1 − s̄0
3α s̄0

2 s̄0
1

√
α(ŝ0

2 − ŝ0
4α) ŝ0

1 − ŝ0
3α ŝ0

2 ŝ0
1

s̄1
1 sin

√
α+ s̄1

2

√
α cos

√
α s̄1

1 cos
√
α− s̄1

2

√
α sin

√
α

−s̄1
3α sin

√
α− s̄1

4α
√
α cos

√
α −s̄1

3α cos
√
α+ s̄1

4α
√
α sin

√
α s̄1

1 + s̄1
2 s̄1

1

ŝ1
1 sin

√
α+ ŝ1

2

√
α cos

√
α ŝ1

1 cos
√
α− ŝ1

2

√
α sin

√
α

−ŝ1
3α sin

√
α− ŝ1

4α
√
α cos

√
α −ŝ1

3α cos
√
α+ ŝ1

4α
√
α sin

√
α ŝ1

1 + ŝ1
2 ŝ1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎨
⎪⎩

C1

C2

C3

C4

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
0
0
0

⎫⎪⎬
⎪⎭ (2.1.8)

where the superscript ‘0’ (‘1’) of s identifies the value of s at x = 0
(x = 1). For example, the boundary conditions for a clamped end at
x = 0 would be defined by s̄0

1 = ŝ0
2 = 1, s̄0

2 = s̄0
3 = s̄0

4 = ŝ0
1 = ŝ0

3 = ŝ0
4 = 0.

The stability criterion is furnished by the vanishing of the
determinant of the above matrix. This general stability criterion applies
to all kinds of boundary conditions which are embedded in the general
boundary conditions given in Eqs. (2.1.6) and (2.1.7). Below we present
the stability criteria and critical loads for columns with various forms of
boundary equations.
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2.1.2 Columns with Classical Boundary Conditions

The classical boundary conditions are given below.

• Fixed end: w = 0 and dw
dx = 0

• Pinned end: w = 0 and d2w
dx2 = 0

• Free end: d2w
dx2 = 0 and d3w

dx3 + αdw
dx = 0

• Sliding restraint: dw
dx = 0 and d3w

dx3 + αdw
dx = 0

where α denotes the stability parameter defined in Eq. (2.1.4).
The stability criteria and the critical buckling load (smallest

eigenvalue) for columns with classical end restraints are summarized in
Table 2.1.

Table 2.1: Classical Euler column restraints and critical loads.
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2.1.3 Columns with Elastic End Restraints

In the general case of a column with elastic restraints as shown in
Fig. 2.1, one of the boundary conditions has the form

w(0) = 0 (2.1.9)

whereas the other three conditions can be written in the form

ξ0

[
dw

dx

]
x=0

−
[
d2w

dx2

]
x=0

= 0 (2.1.10)

ξ1

[
dw

dx

]
x=1

+

[
d2w

dx2

]
x=1

= 0 (2.1.11)

ζw(1) +

[
d3w

dx3
+ α

dw

dx

]
x=1

= 0 (2.1.12)

Here, ξ0 and ξ1 represent the rotational spring constants. Zero values
of ξ0 and ξ1 imply free rotation of the column end and infinite values
imply no rotation at the column end; ζ denotes the translational
spring constant against sidesway, with a zero value implying free lateral
translation and an infinite value implying no lateral translation at that
column end. The foregoing boundary conditions imply the nonzero
values of s̄ and ŝ listed in Eq. (2.1.13) on the next page.

Figure 2.1: Buckling of column with elastic end restraints.
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s̄0
1 = 1, ŝ0

2 = ξ0, ŝ0
3 = −1, s̄1

2 = ξ1,

s̄1
3 = 1, ŝ1

1 = ζ, ŝ1
2 = α, ŝ1

4 = 1
(2.1.13)

Thus, the general stability criterion reduces to
∣∣∣∣∣∣∣∣

0 1 0 1√
αξ0 α ξ0 0√

αξ1 cos
√
α− α sin

√
α −√

αξ1 sin
√
α− α cos

√
α ξ1 0

ζ sin
√
α ζ cos

√
α ζ + α ζ

∣∣∣∣∣∣∣∣
= 0

(2.1.14)
or in the form of a transcendental equation given by

2 +
[
−1 +

(
1
ξ0

+
1
ξ1

)
+ α

(
1

ξ0ξ1
− 1

ζ
+

α

ξ0ξ1ζ

) ]√
α sin

√
α

−
[
2 + α

(
1
ξ0

+
1
ξ1

)(
1 +

α

ζ

)]
cos

√
α = 0

(2.1.15)

The above problem may be specialized to the various end conditions
given next.

• If the top end is elastically laterally supported with spring constant ζ
(and ξ1 = 0) while the lower end is fixed ξ0 = ∞, Eq. (2.1.15) reduces
to √

α

(
1 +

α

ζ

)
− tan

√
α = 0 (2.1.16)

• If the top end is elastically laterally supported with spring constant
ζ (and ξ1 = 0) while the lower end is elastically rotationally supported
with spring constant ξ0, Eq. (2.1.15) reduces to

[
1 +

α

ξ0

(
1 +

α

ζ

)]√
α tan

√
α−

[
1 + α

(
1 +

α

ζ

)]
= 0 (2.1.17)

• If the top end is prevented from lateral movement, ζ = ∞, Eq. (2.1.15)
reduces to

[2ξ0ξ1 + α(ξ0 + ξ1)] cos
√
α−√

α(α + ξ0 + ξ1 − ξ0ξ1) sin
√
α− 2ξ0ξ1 = 0

(2.1.18)
The results for some special cases are shown in the first part of Table
2.2. Owing to symmetry, the normalized spring constants ξ0 and ξ1 can
be interchanged. When the spring constants are both zero, the critical
load is π2, which is the same as that for a column with both ends pinned.
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When the spring constants are both infinite, the critical load is 4π2, the
same as that for the column with both ends fixed. The value of 20.191,
of course, is 2.0457π2 of the fixed–pinned column.

• If there is no lateral constraint, or the top end can freely slide laterally,
ζ = 0, Eq. (2.1.15) reduces to

√
α(ξ0 + ξ1) + (ξ0ξ1 − α) tan

√
α = 0 (2.1.19)

Sample critical load parameters are given in the second part of Table
2.2. In this case, the critical load is zero when the spring constants are
zero, since the column can have a rigid rotation. The critical value of π2

corresponds to the classical fixed–sliding restraint column in section 2.1.2
and the value of π2/4 corresponds to the classical fixed–free column.

Table 2.2: Critical load parameters α for columns with various elastic
end conditions.

ξ0ξ1
0 0.5 1 2 4 10 20 ∞

Columns with only end rotational restraints
ξ0 π2 11.772 13.492 16.463 20.957 28.168 30.355 4π2

0 π2 10.798 11.598 12.894 14.660 17.076 18.417 20.191
∞ 20.191 21.659 22.969 25.182 28.397 33.153 35.902 4π2

Columns with the top end free to slide laterally
ξ0 0 0.9220 1.7071 2.9607 4.6386 6.9047 8.1667 π2

0 0 0.4268 0.7402 1.1597 1.5992 2.0517 2.2384 π2/4
∞ π2/4 3.3731 4.1159 5.2392 6.6071 8.1955 8.9583 π2

2.2 Euler Columns under End Load Dependent
on Direction

Consider a fixed–free, uniform homogeneous column of flexural
rigidity EI, length L which is subjected to a load P that is dependent on
the deflection and slope of the free end of the buckled column as shown
by the various column problems in Fig. 2.2 (Zyczkowski, 1991).

For such columns, the governing buckling equation and the general
solutions are given by Eq. (2.1.4) and Eq. (2.1.5), respectively. The
boundary conditions may be canonically written as
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Figure 2.2: Buckling of various types of columns.
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w(0) = 0 (2.2.1)[
ξ
dw

dx
− d2w

dx2

]
x=0

= 0 (2.2.2)

[
d2w

dx2
+ αη1

dw

dx

]
x=1

= 0 (2.2.3)

[
d3w

dx3
+ α

dw

dx

]
x=1

+ αη2w(1) = 0 (2.2.4)

where η1 and η2 are nondimensional parameters defined in Fig. 2.2 and
α = PL2/(EI).

In view of the general solution given by Eq. (2.1.5) and the
aforementioned boundary conditions, the stability criteria take the
following transcendental form

2 +
[
−1 +

(
1
ξ

+
1

αη1

)
+
(

1
ξη1

− 1
η2

+
1

ξη1η2

)]√
α sin

√
α

−
[
2 + α

(
1
ξ

+
1

αη1

)(
1 +

1
η2

)]
cos

√
α = 0

(2.2.5)

As an example, the stability criterion for the fixed–free column
problem with load through the fixed point a vertical distance aL below
the fixed end is given by Eq. (1.20) with ξ = ∞, η1 = 0 and
η2 = −[1/(1 + a)]:

a
√
α + tan

√
α = 0 (2.2.6)

Table 2.3 presents some sample critical load parameters furnished by the
above stability criterion.

Table 2.3: Critical load parameters
√
α for fixed–free column with

load through a fixed point.

a 0.1 0.2 0.3 0.5 0.7 0.9 1.0
√
α 2.86277 2.65366 2.49840 2.28893 2.15598 2.06453 2.02876

2.3 Euler Columns with an Intermediate Axial Load

This section presents exact stability criteria for the elastic buckling
of columns with intermediate and end concentrated axial loads (Wang,
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Wang and Nazmul, 2003). An obvious practical example for the
application of the criteria is the determination of the buckling capabilities
of columns in structural buildings that have to support intermediate
floors.

Consider a uniform homogeneous column of flexural rigidity EI and
length L. It is subjected to a concentrated axial force P2 at its top
end and a concentrated axial force P1 at a distance of x̄ = aL from the
bottom end as shown in Fig. 2.3.

Figure 2.3: Column with intermediate and end axial loads.

To solve this column buckling problem, we divide the column into
two segments, viz. segment 1 (0 ≤ x̄ < aL) and segment 2 (aL ≤ x̄ ≤ L).
Also, we can identify a number of cases, depending on the nature
(compressive or tensile) or magnitude of the two applied forces. Noting
the positive direction of P as shown in Fig. 2.3, the nontrivial cases are:

• Case 1: P2 > 0 and (P1 + P2) > 0, implying that both segments 1
and 2 are in compression.

• Case 2a: P2 > 0 and (P1 + P2) < 0, implying that segment 2 is in
compression while segment 1 is in tension.

• Case 2b: P2 < 0 and (P1 + P2) > 0, implying that segment 2 is in
tension while segment 2 is in compression.

• Case 3a: P2 = 0 and P1 > 0, implying that segment 2 is subjected
to zero axial load while segment 1 is in compression.

• Case 3b: P2 > 0 and P1 + P2 = 0, implying that segment 2 is in
compression while segment 1 has zero axial load.
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It is clear that one can obtain Case 2b from Case 2a through suitable
parametric changes; the same applies for Case 3a and Case 3b. Therefore,
we shall also focus our attention on Cases 1, 2a and 3a to avoid routine
repetitive derivations. Table 2.4 summarizes the governing equations
and the general solutions for the two segments for Cases 1, 2a and 3a.

Table 2.4: Governing equations and general solutions for Cases 1, 2a
and 3a.

Cases (1) P2 > 0, P1 +P2 > 0 (2a) P2 > 0, P1 +P2 < 0 (3a) P2 = 0, P1 > 0

d4w2
dx4 +α2

d2w2
dx2 = 0 d4w2

dx4 +α2
d2w2
dx2 = 0 d4w2

dx4 = 0

α2 = P2L
2

EI α2 = P2L
2

EI α2 = 0

d4w1
dx4 +α1

d2w1
dx2 = 0 d4w1

dx4 +α1
d2w1
dx2 = 0 d4w1

dx4 +α1
d2w1
dx2 = 0

α1 = (P1+P2)L
2

EI α1 = |P1+P2|L2

EI α1 = P1L
2

EI

w2 = C1 sin√
α2x w2 = C1 sin√

α2x w2 = C1x3 +C2x2

+C2 cos√α2x +C2 cos√α2x +C3x+C4

+C3x+C4 +C3x+C4

w1 = B1 sin√
α1x w1 = B1 sinh√

α1x w1 = B1 sin√
α1x

+B2 cos√α1x +B2 cosh√
α1x +B2 cos√α1x

+B3x+B4 +B3x+B4 +B3x+B4

The solutions contain eight constants, viz. Bi and Ci (i = 1, 2, 3, 4),
as shown in Table 2.4. However, these constants are related to each other
through the following four continuity relations at x = a:

w1 = w2 (2.3.1)

dw1

dx
=

dw2

dx
(2.3.2)

d2w1

dx2
=

d2w2

dx2
(2.3.3)

and
d3w1

dx3
+ α1

dw1

dx
=

d3w2

dx3
+ α2

dw2

dx
for Case 1 (2.3.4a)

d3w1

dx3
− α1

dw1

dx
=

d3w2

dx3
+ α2

dw2

dx
for Case 2a (2.3.4b)
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d3w1

dx3
+ α1

dw1

dx
=

d3w2

dx3
for Case 3a (2.3.4c)

where α1 and α2 are defined in Table 2.4.

Case 1: The relationships between the constants are given by

B1 = C1

√
α2

α1
[
√
α1 cos (a

√
α1) cos (a

√
α2) +

√
α2 sin (a

√
α1) sin (a

√
α2)]

−C2

√
α2

α1
[
√
α1 cos (a

√
α1) sin (a

√
α2) −

√
α2 sin (a

√
α1) cos (a

√
α2)]

−C3
β√
α1

cos (a
√
α1) (2.3.5a)

B2 = C1

√
α2

α1
[−

√
α1 sin (a

√
α1) cos (a

√
α2) +

√
α2 cos (a

√
α1) sin (a

√
α2)]

+C2

√
α2

α1
[
√
α1 sin (a

√
α1) sin (a

√
α2) +

√
α2 cos (a

√
α1) cos (a

√
α2)]

+C3
β√
α1

sin (a
√
α1) (2.3.5b)

B3 = C3
α2

α1
(2.3.5c)

B4 = −β [C1 sin (a
√
α2) +C2 cos (a

√
α2) +C3a] +C4 (2.3.5d)

where
β = α2

α1
− 1 (2.3.5e)

Case 2a: For this case, we find that

B1 = C1

√
α2

α1
[
√
α1 cosh (a

√
α1) cos (a

√
α2) +

√
α2 sinh (a

√
α1) sin (a

√
α2)]

+C2

√
α2

α1
[−

√
α1 cosh (a

√
α1) sin (a

√
α2) +

√
α2 sinh (a

√
α1) cos (a

√
α2)]

+C3
γ√
α1

cosh (a
√
α1) (2.3.6a)

B2 = −C1

√
α2

α1
[
√
α1 sinh (a

√
α1) cos (a

√
α2) +

√
α2 cosh (a

√
α1) sin (a

√
α2)]

−C2

√
α2

α1
[−

√
α1 sinh (a

√
α1) sin (a

√
α2) +

√
α2 cosh (a

√
α1) cos (a

√
α2)]

−C3
γ√
α1

sinh (a
√
α1) (2.3.6b)

B3 = −C3
α2

α1
(2.3.6c)

B4 = γ [C1 sin (a
√
α2) +C2 cos (a

√
α2) +C3a] +C4 (2.3.6d)

where
γ = α2

α1
+ 1 (2.3.6e)
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Case 3a: For this case, we find that

B1 = C1
3

α
√
α

[
a2α cos (a

√
α) − 2a

√
α sin (a

√
α) − 2 cos (a

√
α)
]

+C2
2
α

[a
√
α cos (a

√
α) − sin (a

√
α)] +C3

1√
α

cos (a
√
α) (2.3.7a)

B2 = −C1
3

α
√
α

[
a2α sin (a

√
α) + 2a

√
α cos (a

√
α) − 2 sin (a

√
α)]

−C2
2
α

[a
√
α sin (a

√
α) + cos (a

√
α)] −C3

1√
α

sin (a
√
α) (2.3.7b)

B3 = C1
6
α
, B4 = C1a

3 +C2
a2α+ 2

α
+C3a+C4 (2.3.7c)

where α = P1L2/(EI).

The buckling problem thus involves only four constants Ci (i = 1,
2, 3, 4) with the expressions of constants Bi (i = 1,2,3,4) in terms of the
former constants. Using the two boundary conditions at each end, we
can develop an eigenvalue equation of the form

[A] {c} =

⎡
⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
C1

C2

C3

C4

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
0

⎫⎪⎪⎬
⎪⎪⎭ (2.3.8)

The vanishing of the determinant of matrix [A] yields the stability
criterion.

For example, consider a column that is pinned at both ends and
loaded at an intermediate distance x = a from the base. This problem
corresponds to the above Case 3a. The boundary conditions are

w(0) = 0,

[
d2w

dx2

]
x=0

= 0, w(1) = 0,

[
d2w

dx2

]
x=1

= 0 (2.3.9)

By substituting the general solutions given in Table 2.4 into Eq. (2.3.9)
and noting the expressions of constants B given by Eq. (2.3.7), we find
that

a11 = 1, a12 = 1, a13 = 1, a14 = 1, a21 = 6, a22 = 2, a23 = 0

a24 = 0, a31 = − 3
α
√
α

[(
a2α− 2

)
sin

(
a
√
α
)
+ 2a

√
α cos

(
a
√
α
)]

a32 =
2
α

[
a
√
α sin

(
a
√
α
)
+ cos

(
a
√
α
)]
, a33 = − 1√

α
sin

(
a
√
α
)

a34 = 0, a41 = a3, a42 =
a3α + 2

α
, a43 = a, a44 = 1 (2.3.10)
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and thus the stability criterion is given by

3(1−a)2
√
α cos

(
a
√
α
)
+
[
3 (2 − a) − (1 − a)3 α

]
sin

(
a
√
α
)

= 0 (2.3.11)

where α = P1L
2/(EI).

The stability criterion for other three cases, Case 1, Case 2a and
Case 3a, and various combinations of classical boundary conditions are
derived in the manner described above and are presented in Tables 2.5,
2.6 and 2.7.

2.4 Euler Columns with an Intermediate Restraint

Frame buildings are usually braced to resist lateral loads. In a loaded
cross-bracing system, one bracing member will be under compression
while the other under tension. In the design of the compression member,
the restraint provided by the tension member may be exploited. The
tension brace may be modeled as a discrete lateral elastic spring attached
to the compression member (see, for example, papers by Mutton and
Trahair, 1973; Kitipornchai and Finch, 1986); Stoman, 1988; and Mau,
1989). Therefore, the prediction of the elastic buckling loads of columns
with an intermediate elastic restraint is of practical interest.

There are stability criteria for some special cases dispersed in the
literature. For example, in the Handbook of Structural Stability and
papers such as Rozvany and Mröz (1977) and Wang and Liew (1991),
we find exact stability criteria for columns with an internal support
which is a special case of the elastic restraint with infinite stiffness. But
most papers on the subject offer numerical methods for determining the
buckling loads. For example, Wang and Ang (1988) and Olhoff and
Akesson (1991) used the Timoshenko energy approach for determining
the buckling loads of braced columns under distributed load and end
concentrated load while Thevendran and Wang (1993) used a variant of
the Ritz method to compute the buckling capacity of the compression
member in a nonsymmetric cross-bracing system.

This section presents a comprehensive set of exact stability criteria
for Euler columns with an intermediate elastic restraint. The special case
of the elastic restraint where its stiffness is infinite (or reaches a critical
value in special locations which will be discussed later), so as to make the
restraint behave like a rigid support, is treated as a byproduct of the more
general problem at hand. The exact stability criteria presented herein
can be readily used to calculate the buckling capacity of the compression
member in a cross-bracing system.

© 2005 by CRC Press LLC



Table 2.5: Stability criteria and critical load parameters √
α1 for columns with compressive intermediate and end axial loads.

B.C. Stability criteria Sample critical load parameters
√
α1 =

√
(P1 + P2)L2/EI

a 0.1 0.3 0.5 0.7 0.9

C–F* 1 −
√
λ tan (a

√
α1) tan [(1 − a)

√
α1

√
λ] = 0 λ = 0.25 3.13371 2.93360 2.4619 2.02223 1.69808

where λ = α2
α1

, α2 = P2L
2

EI
λ = 0.50 2.21961 2.17345 2.03334 1.83963 1.65327
λ = 0.75 1.81330 1.80088 1.76005 1.69161 1.61087

P–P*
{√

α2[a(1 − λ) − 1] + (1 − λ)2 tan [(1 − a)
√
α2]
}
× λ = 0.25 4.84596 4.00896 3.93202 3.78990 3.37633

tan (a
√
α1) +

√
α2[a(1 − λ) − 1] tan [(1 − a)

√
α2] = 0 λ = 0.50 4.04138 3.66322 3.61553 3.54775 3.29703

λ = 0.75 3.51290 3.37792 3.35643 3.33141 3.21855

C–P*
{√

α2[1 − a(1 − λ)] + [2λ(1 − λ) − 1] tan [
√
α2(1 − a)]

}
λ = 0.25 8.79815 6.75004 6.02299 5.88884 5.01596

−
{
λ3/2 +

√
α1λ[1 − a(1 − λ)] tan [

√
α2(1 − a)]

}
tan (a

√
α1) λ = 0.50 6.31460 5.74370 5.37750 5.32344 4.83825

−2λ(1 − λ) tan[
√
α2(1 − a)] sec (a

√
α1) = 0 λ = 0.75 5.17801 5.01892 4.88261 4.86368 4.66277

P–C*
{√

α2[1 − a(1 − λ)] tan [
√
α2(1 − a)] λ = 0.25 6.30114 5.33088 5.25365 4.81143 4.51283

+ [λ(λ− 2) + 2] − 2(1 − λ) sec [
√
α2(1 − a)]

}
tan (a

√
α1) λ = 0.50 5.53038 5.01442 4.97371 4.70922 4.50652

−√
α1λ[1 − a(1 − λ)] +

√
λ tan [

√
α2(1 − a)] = 0 λ = 0.75 4.94355 4.73715 4.72028 4.60266 4.50005

C–C*
{√

λ(1 + λ) tan [
√
α2(1 − a)] −√

α2[1 − a(1 − λ)]
}
×

tan (a
√
α1) −√

α2[1 − a(1 − λ)] tan [
√
α2(1 − a)] λ = 0.25 11.95146 8.33161 7.86204 7.08305 6.33641

+2[λ(1 − λ) − 1] − 2λ(1 − λ) sec (a
√
α1) λ = 0.50 8.76636 7.53174 7.23087 6.83035 6.31954

−2 [(1 − λ) + λ sec (a
√
α1)] sec [

√
α2(1 − a)] = 0 λ = 0.75 7.22480 6.84940 6.71286 6.55846 6.30182

*C–F: Clamped –Free; P –P: Pinned –Pinned; C –P: Clamped –Pinned; P –C: Pinned –Clamped; C –C: Clamped –Clamped.
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Table 2.6: Stability criteria and critical load parameters √
α1 for columns with tensile intermediate and compressive end

loads.

B.C. Stability criteria Sample critical load parameters
√
α1 =

√
(P1 + P2)L2/EI

a 0.1 0.3 0.5 0.7 0.9

C–F* 1 −
√
λ tanh (a

√
α1) tan {(1 − a)

√
α2} = 0 λ = 0.5 2.22678 2.35305 2.85282 4.51143 13.51022

where λ = α2
α1

, α1 = [P1+P2]L
2

EI
, α2 = P2L

2

EI
λ = 1.0 1.57333 1.63457 1.87510 2.69463 7.85400
λ = 2.0 1.11207 1.14497 1.27166 1.67127 4.35473

P–P*
{√

α2[a(1 + λ) − 1] + (1 + λ)2 tan [(1 − a)
√
α2]
}
× λ = 0.5 5.65149 7.54131 10.22487 13.64288 19.02687

tanh (a
√
α1) −√

α2λ[a(1 + λ) − 1] tan [(1 − a)
√
α2] = 0 λ = 1.0 3.75533 4.92863 6.28319 6.73827 10.78470

λ = 2.0 2.55315 3.22010 3.75903 3.86610 6.26468

C–P*
{√

α2[1 − a(1 + λ)] + [2λ(1 + λ) + 1] tan [
√
α2(1 − a)]

}
λ = 0.5 6.45307 7.68541 10.36932 14.46242 19.40444

+λ
{√

λ−√
α1[1 − a(1 + λ)] tan [

√
α2(1 − a)]

}
tanh (a

√
α1) λ = 1.0 4.54209 5.22325 6.69977 7.69329 11.12279

+2λ(1 + λ) tan [
√
α2(1 − a)] sech (a

√
α1) = 0 λ = 2.0 3.20378 3.59219 4.36614 4.64982 6.63457

P–C*
{
−√

α2[1 − a(1 + λ)] tan [
√
α2(1 − a)] λ = 0.5 8.62768 11.43014 15.99410 27.82300 42.88891

− [λ(λ+ 2) + 2] + 2(1 + λ) sec [
√
α2(1 − a)]

}
tanh (a

√
α1) λ = 1.0 5.76803 7.79621 10.83363 12.78612 26.56463

−√
α1λ[1 − a(1 + λ)] +

√
λ tan [

√
α2(1 − a)] = 0 λ = 2.0 3.89664 5.26079 6.62288 7.36685 16.90332

C–C*
{
−
√
λ(1 − λ) tan [

√
α2(1 − a)] +

√
α1λ[1 − a(1 + λ)]

}
×

tanh (a
√
α1) +

√
α2[1 − a(1 + λ)] tan [

√
α2(1 − a)] λ = 0.5 9.13062 11.43872 15.99721 26.31437 43.10975

+2[λ(λ+ 1) + 1] − 2λ(λ+ 1) sech (a
√
α1) λ = 1.0 6.40934 7.84573 10.88683 13.56540 26.70697

−2 [(1 + λ) − λ sech (a
√
α1)] sec [

√
α2(1 − a)] = 0 λ = 2.0 4.51296 5.39739 7.22622 7.94580 17.01189

*C–F: Clamped –Free; P –P: Pinned –Pinned; C –P: Clamped –Pinned; P –C: Pinned –Clamped; C –C: Clamped –Clamped.
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Table 2.7: Stability criteria and critical load parameters
√
α for columns subjected to intermediate axial load.

B.C. Stability criteria Sample critical load parameters
√
α =

√
PL2/(EI)

a = 0.1 0.3 0.5 0.7 0.9

C–F* cos (a
√
α) = 0

where α = PL2

EI
5π 5π/3 π 5π/7 5π/9

P–P* 3
√
α(1 − a)2 cos (

√
αa)

+
[
3(2 − a) − α(1 − a)3

]
sin(

√
αa) = 0 6.07805 4.42466 4.32040 4.05031 3.45564

C–P* 24
√
α(1 − a) + 12[1 + α(1 − a)2] sin (

√
αa)

+4
√
α[α(1 − a)3 − 3(2 − a)] cos (

√
αa) = 0 17.84181 7.99675 6.88014 6.52453 5.19080

P–C* 4
√
α[3a− α(1 − a)3] cos (

√
αa)

+[α2(1 − a)4 − 12α(1 − a) − 12] sin (
√
αa) = 0 7.26971 5.69265 5.55565 4.90790 4.51898

C–C* 12[2 + α(1 − a)2]
+4

√
α[3(1 − 2a) + α(1 − a)3] sin (

√
αa){

α2(1 − a)4 − 12[2 + α(1 − a)]
}

cos (
√
αa) = 0 18.62395 9.22950 8.62568 7.30338 6.35247

*C–F: Clamped –Free; P –P: Pinned –Pinned; C –P: Clamped –Pinned; P –C: Pinned –Clamped; C –C: Clamped –Clamped.
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Consider a column of flexural rigidity EI, length L and
intermediately restrained at x = aL by either an internal elastic restraint
that is modeled by a lateral spring of stiffness c [see Fig. 2.4(a)] or an
internal roller support [see Fig. 2.4(b)]. The ends of the columns may
have any combination of classical boundary conditions. The column is
loaded at the free end by a concentrated compressive force P , as shown
in Figs. 2.4(a) and 2.4(b).

To solve this column buckling problem, we divide the column into
two segments, viz. segment 1 (0 ≤ x̄ < aL) and segment 2 (aL ≤ x̄ ≤ L).
The governing buckling equation for both segments may be expressed as

d4wi

dx4
+ α

d2wi

dx2
= 0, i = 1, 2 (2.4.1)

where x = x̄/L, w = w̄/L and α = PL2/(EI) and the subscripts 1 and 2
denote the quantities belonging to segment 1 and segment 2, respectively.
The general solution is given by

w1 = B1 sin
√
αx + B2 cos

√
αx + B3x + B4 for 0 ≤ x < a (2.4.2)

w2 = C1 sin
√
αx + C2 cos

√
αx + C3x + C4 for a ≤ x ≤ 1 (2.4.3)

Figure 2.4: Column with (a) intermediate elastic restraint, and (b) an
intermediate rigid support.
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The continuity conditions (of deflection, slope, bending moment and
shear force) at x = a are:

w1(a) − w2(a) = 0 (2.4.4)[
dw1

dx

]
x=a

−
[
dw2

dx

]
x=a

= 0 (2.4.5)[
d2w1

dx2

]
x=a

−
[
d2w2

dx2

]
x=a

= 0 (2.4.6)

[
d3w1

dx3
+ α

dw1

dx

]
x=a

−
[
d3w2

dx3
+ α

dw2

dx

]
x=a

+ ξw1(a) = 0 (2.4.7)

where ξ = cL3/(EI). If the spring stiffness is infinite (i.e., the elastic
restraint corresponds to an internal rigid support), Eq. (2.4.7) is to be
replaced by

w1(a) = 0 (2.4.8)

By substituting Eqs. (2.4.2) and (2.4.3) into Eqs. (2.4.4) to (2.4.7),
we obtain a set of homogeneous equations which may be expressed in
the form of Bi in terms of Ci

B1 = − ξ

α
√
α

cos
(
a
√
α
) [
C1 sin

(
a
√
α
)
+ C2 cos

(
a
√
α
)
+ C3a + C4

]
(2.4.9)

B2 =
ξ

α
√
α

sin
(
a
√
α
) [
C1 sin

(
a
√
α
)
+ C2 cos

(
a
√
α
)
+ C3a + C4

]
(2.4.10)

B3 =
ξ

α

[
C1 sin

(
a
√
α
)
+ C2 cos

(
a
√
α
)
+ C3

(
a +

α

ξ

)
+ C4

]
(2.4.11)

B4 = −aξ

α

[
C1 sin

(
a
√
α
)
+ C2 cos

(
a
√
α
)
+ C3a + C4

(
1 − α

aξ

)]
(2.4.12)

The buckling problem thus involves only four constants Ci (i = 1, 2,
3, 4) with the expressions of constants Bi (i = 1, 2, 3, 4) in terms of the
former constants. Using the two boundary conditions at each end, we
can develop an eigenvalue equation of the form given in Eq. (2.3.9). The
vanishing of the determinant of matrix [A] yields the stability criterion.

Considering the various combinations of classical boundary
conditions for column ends, the stability criteria are derived and
presented in Table 2.8. In the special case of infinite spring support, the
stability criteria simplify to those given in Table 2.9 by simply setting
ξ = ∞.
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Table 2.8: Stability criteria and critical load parameters
√
α =

√
PL2/(EI) for columns with an intermediate elastic restraint

of stiffness ξ = cL3/(EI).

B.C. Stability criteria Sample critical load parameters
√
α

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C–F* [2 − cos (a
√
α)] sin [(1 − a)

√
α] +

(
a− α

ξ

)√
α cos

√
α ξ = 10 1.5712 1.5768 1.5996 1.6538 1.7520 1.9033 2.1151 2.3947 2.7461

− sin
√
α = 0 ξ = 40 1.5723 1.5935 1.6680 1.8154 2.0373 2.3335 2.7134 3.1922 3.7616

ξ = 100 1.5746 1.6214 1.7557 1.9691 2.2437 2.5805 2.9925 3.4870 4.0182

P–P* cos (a
√
α) cos [(1 − a)

√
α] − cos

√
α ξ = 10 3.1720 3.2491 3.3427 3.4187 3.4481 3.4187 3.3427 3.2491 3.1720

−
[
a(1 − a) − α

ξ

]√
α sin

√
α = 0 ξ = 40 3.2582 3.5300 3.8455 4.1136 4.2258 4.1136 3.8455 3.5300 3.2582

ξ = 100 3.4111 3.9478 4.5231 5.0781 5.4126 5.0781 4.5231 3.9478 3.4111

C–P*
√
α[2(1 − a) − cos (a

√
α)] sin [(1 − a)

√
α] ξ = 10 4.4944 4.5068 4.5452 4.6087 4.6735 4.7034 4.6752 4.6018 4.5258

+cos (a
√
α) cos [(1 − a)

√
α] −

{
1 − aα(1 − a) + α2

ξ

}
cos

√
α ξ = 40 4.4974 4.5448 4.6835 4.9075 5.1490 5.2774 5.1765 4.9030 4.6196

−
[
(1 − a) − α

ξ

]√
α sin

√
α = 0 ξ = 100 4.5033 4.6117 4.8980 5.3375 5.8544 6.2352 6.0225 5.4105 4.7924

P–C*
√
α[2(1 − a) − cos (a

√
α)] cos [(1 − a)

√
α] − 2 sin [(1 − a)

√
α] ξ = 10 6.2846 6.3022 6.3508 6.4128 6.4423 6.4128 6.3508 6.3022 6.2846

−2[a
√
α cos (a

√
α) − sin (a

√
α)] −

[
a− 2α

ξ

]√
α cos

√
α ξ = 40 6.2890 6.3562 6.5371 6.7746 6.8961 6.7746 6.5371 6.3562 6.2890

+
{

[2 − aα(1 − a)] − α2

ξ

}
sin

√
α− 2α

√
α

ξ
= 0 ξ = 100 6.2975 6.4523 6.8423 7.3788 7.7178 7.3788 6.8423 6.4523 6.2975

C–C* ξ = 10 0.3120 0.6063 0.8813 1.1449 1.4086 1.6853 1.9893 2.3341 2.7281
sin (a

√
α) sin [(1 − a)

√
α] −

(
a− α

ξ

)√
α sin

√
α = 0 ξ = 40 0.6000 1.0765 1.4409 1.7452 2.0312 2.3233 2.6256 2.9055 3.0889

ξ = 100 0.8812 1.4016 1.7172 1.9690 2.2127 2.4669 2.7261 2.9549 3.0994

*C–F: Clamped –Free; P –P: Pinned –Pinned; C –P: Clamped –Pinned; P –C: Pinned –Clamped; C –C: Clamped –Clamped.
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Table 2.9: Stability criteria and critical load parameters for columns with an intermediate roller support.

B.C. Stability criteria Sample critical load parameters
√
α =

√
PL2/EI

a = 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C–F* [2 − cos (a
√
α)] sin [(1 − a)

√
α] + a

√
α cos

√
α− sin

√
α = 0 1.6981 1.8478 2.0259 2.2407 2.5031 2.8266 3.2231 3.6862 4.1515

P–P* cos (a
√
α) cos [(1 − a)

√
α] − cos

√
α 4.8192 5.2013 5.6352 6.0663 6.2832 6.0663 5.6352 5.2013 4.8192

−a√α(1 − a) sin
√
α = 0

C–P*
√
α[2(1 − a) − cos (a

√
α)] sin [(1 − a)

√
α]

+ cos (a
√
α) cos [(1 − a)

√
α] 4.8608 5.2997 5.8273 6.4558 7.1497 7.6704 7.6262 7.2087 6.7286

− [1 − aα(1 − a)] cos
√
α−√

α(1 − a) sin
√
α = 0

P–C*
√
α[2(1 − a) − cos (a

√
α)] cos [(1 − a)

√
α] − 2 sin [(1 − a)

√
α]

+2[a
√
α cos (a

√
α) − sin (a

√
α)] −√

α cos
√
α 6.7915 7.3787 8.0348 8.6732 8.9868 8.6732 8.0348 7.3787 6.7915

+[2 − aα(1 − a)] sin
√
α = 0

C–C* sin ( a
√
α) sin [(1 − a)

√
α] − a

√
α sin

√
α = 0 1.6829 1.8119 1.9609 2.1333 2.3311 2.5516 2.7796 2.9789 3.1043

*C–F: Clamped –Free; P –P: Pinned –Pinned; C –P: Clamped –Pinned; P –C: Pinned –Clamped; C –C: Clamped –Clamped.
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An interesting feature of this column buckling problem at hand is
that there exists a critical elastic restraint stiffness when the restraint is
positioned exactly at a node of a higher buckled mode of an equivalent
column without any intermediate restraint. At this special restraint
location, if one provides adequate intermediate restraint stiffness, the
buckled mode switches to the higher buckling mode of the column
without any intermediate restraint (see Timoshenko and Gere, 1961;
Olhoff and Akesson, 1991; Kitipornchai and Finch, 1986). For example,
the nodal point of the second buckled mode for a fixed–pinned column
is at a = 0.6405207 from the fixed end. When the elastic restraint is
placed at this location, the critical elastic restraint stiffness is ξc = 216.6
as given by the stability criterion in Table 2.10 by setting a = 0.6405207
and

√
α = 7.72525. There is no critical elastic restraint stiffness apart

from the critical location for the intermediate restraint.
The critical stiffness values and the corresponding locations of the

elastic restraints are presented in Table 2.10. The critical load associated
with the critical elastic stiffness and the corresponding restraint location
is the highest possible critical load value that one may obtain for a
column with an elastic intermediate restraint.

Table 2.10: Critical elastic restraint stiffnesses and the associated
conditions.

Boundary Buckling Critical Location Critical
conditions mode buckling of node elastic

without load
√
α of higher restraint

intermediate buckled mode stiffness
restraint or the ξcr∗

intermediate
support (a)

Fixed–Free Mode 3 7.8540 0.8 77.106
Pinned–Pinned Mode 2 6.2832 0.5 157.914
Fixed–Pinned Mode 2 7.7252 0.6405 216.630
Fixed–Fixed Mode 2 8.9868 0.5 207.75
Pinned–Free Mode 3 6.2832 0.5 78.957

*ξcr = cL3/(EI)
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2.5 Euler Columns with an Internal Hinge

2.5.1 Columns with an Internal Hinge

Consider a column of flexural rigidity EI, length L, and fixed at the
base (x̄ = 0) and either fixed or pinned at the top end x̄ = L (note that
x̄ is the distance from the bottom end of the column). The column has
an internal frictionless free hinge at x̄ = aL and is loaded at the top end
by a concentrated compressive force P as shown in Fig. 2.5.

The boundary conditions and continuity conditions are:

w1(0) = 0 (2.5.1)[
dw1

dx

]
x=0

= 0 (2.5.2)

w2(1) = 0 (2.5.3)

If the top end is pinned:

[
d2w2

dx2

]
x=1

= 0 or fixed:
[
dw2

dx

]
x=1

= 0

(2.5.4)
w1(a) = w2(a) (2.5.5)[

d2w1

dx2

]
x=a

=

[
d2w2

dx2

]
x=a

= 0 (2.5.6)

[
d3w1

dx3

]
x=a

+ α

[
dw1

dx

]
x=a

=

[
d3w2

dx3

]
x=a

+ α

[
dw2

dx

]
x=a

(2.5.7)

Figure 2.5: Column with an internal hinge.
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where x = x̄/L. The substitution of Eqs. (2.4.2) and (2.4.3) into Eqs.
(2.5.1) to (2.5.7) yields an eigenvalue equation. For nontrivial solutions,
this equation yields the following stability criteria (Wang, 1987a):

The fixed–fixed column with an internal hinge:

tan
(
a
√
α
)
+ tan

{
(1 − a)

√
α
}−√

α = 0 (2.5.8)

The fixed–pinned column with an internal hinge:

tan
(
a
√
α
)− tan

√
α = 0, for 0 ≤ a ≤ 0.30084 (2.5.9a)

√
α− tan(a

√
α) = 0, for 0.30084 < a ≤ 1 (2.5.9b)

The first stability criterion given by Eq. (2.5.9a) corresponds to a
buckled mode in which the bottom segment of the column is straight
(i.e., remains vertical). The second stability criterion given by Eq.
(2.5.9b) corresponds to a buckled mode in which the top segment of the
column undergoes a rigid body rotation. The variation of the critical
load parameter with respect to the hinge location is shown in Figure 2.6.

Figure 2.6: Variation of critical load parameter with respect to hinge
location. (a) Fixed–fixed column. (b) Fixed–pinned
column.
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2.5.2 Columns with a Rotational Restrained Junction

Columns weakened at an interior location, due to the presence of a
notch or a crack, may be modeled by columns with a rotational restraint
(or spring) at the weakened junction (see, for example, Krawczuk and
Ostachowitz, 1995). Such a junction also describes a stiffened human
limb joint or a robotic arm joint. The junction effectively separates the
column into two segments. At the junction, we require continuity of
displacement and shear. The restraining moment of the spring is to be
proportional to the difference of the junction slopes of the two segments.
Thus, when the spring constant is infinite, the column is completely
continuous. When the spring constant is zero, the two sections are
connected by a frictionless free hinge as treated in Section 2.5.1.

Let ξ be the internal torsional spring constant normalized by EI/L
and a be the fractional distance of the hinge from the bottom. The
conditions to be satisfied at the hinge are

w1(a) = w2(a) (2.5.10)

[
d2w1

dx2

]
x=a

=

[
d2w2

dx2

]
x=a

(2.5.11)

[
d3w1

dx3
+ α

dw1

dx

]
x=a

=

[
d3w2

dx3
+ α

dw2

dx

]
x=a

(2.5.12)

[
d2w1

dx2

]
x=a

= ξ

[
dw2

dx
− dw1

dx

]
x=a

(2.5.13)

Here the last equation signifies that (at the hinge) the moment is
proportional to the angle difference between the two segments. If the
column is pinned at both ends, the characteristic equation, after some
work, is found to be

tan
[√

α (a− 1)
] [√

α tan
(√

αa
)− ξ

]
+ ξ tan

(√
αa
)

= 0 (2.5.14)

Some values for the critical load are shown in Table 2.11. Owing to
symmetry, only the range 0 ≤ a ≤ 0.5 needs to be considered. Notice
π2 is the buckling load for the pinned–pinned column. When ξ = 0 and
a �= 0 the hinge has no torsional resistance, and the column can rotate
freely with zero load. When ξ = 0 and a = 0, this rotation is absent,
and the buckling load jumps to π2.
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The characteristic equation for the column with top end free and
bottom end fixed is

tan
[√

α (a− 1)
] [√

α + ξ tan
(√

αa
)]

+ ξ = 0 (2.5.15)

Some values are given in Table 2.11. The value of π2/4 is the buckling
load of the fixed–free column. Similar to the previous case, there is a
sudden jump of buckling load as a → 1.

The governing equation for the buckling of an internally weakened
column with the bottom end fixed and the top end free to slide
transversely is

√
α + ξ tan

(√
αa
)− ξ tan

[√
α (a− 1)

]
= 0 (2.5.16)

Table 2.11 shows some critical load values. When the torsional spring
constant is infinity, the critical load is π2, the same as the classical
hingeless free sliding case given in Section 2.1.2. It is also π2 when
a = 0.5, regardless of the spring constant, or when the hinge is at the
inflection point at the midpoint.

The characteristic equation for the column with one end fixed and
one end pinned is

ξ
[√

α− tan
(√

αa
)]

+tan
[√

α(a− 1)
] [
α + ξ +

√
α (ξ − 1) tan

(√
αa
)]

= 0
(2.5.17)

When ξ = ∞, the critical load parameter α = 20.191, which is the
first root of the transcendental tan(

√
α) =

√
α. This value corresponds

to that of the classical fixed–pinned Euler column. When ξ = 0, the
results reduce to those of an internal frictionless hinge. As a approaches
unity, the critical load α = 0 for the case where ξ = 0 due to the swivel
motion of two closely spaced hinges. But if ξ > 0 , the critical load
α rises to the maximum value as a → 1. The optimum location of a
can be obtained by substituting α = 20.1908 [or tan(

√
α) =

√
α] into

Eq. (2.5.17), wherein the stability criterion becomes independent of ξ
and the optimum location a = 0.3008, which also corresponds to the
inflection point of a fixed–pinned Euler column without any weakness.
At this optimum location, the junction (with any value of ξ) does not
diminish the critical load.

Lastly, we present the fixed–fixed column with an internal resisting
hinge. The characteristic equation is found to be

4ξ − (α + 4ξ) cos
(√

α
)− α cos

[√
α (1 − 2a)

]
+ 2 (1 − ξ)

√
α sin

(√
α
)

= 0
(2.5.18)
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Table 2.11: Critical load parameters α for columns with various end
conditions.

a ξ = 0 0.1 0.5 1 2 4 10 ∞

Pinned–ended columns with an internal hinge and elastic rotational restraint

0 π2 π2 π2 π2 π2 π2 π2 π2

0.1 0 1.0733 4.5392 6.9928 8.6259 9.3239 9.6696 π2

0.3 0 0.4607 2.0250 3.4829 5.3433 7.1102 8.6417 π2

0.5 0 0.3870 1.7071 2.9607 4.6386 6.3968 8.1667 π2

Fixed–free columns with an internal hinge and elastic rotational restraint

0 0 0.0968 0.4268 0.7402 1.1597 1.5992 2.0417 π2/4

0.1 0 0.1068 0.4614 0.7859 1.2052 1.6320 2.0563 π2/4

0.3 0 0.1356 0.5618 0.9221 1.3514 1.7534 2.1257 π2/4

0.5 0 0.1874 0.7402 1.1597 1.5592 1.9539 2.2384 π2/4

0.7 0 0.3076 1.1240 1.6100 1.9897 2.2190 2.3664 π2/4

0.9 0 0.8899 2.1418 2.3261 2.4021 2.4360 2.4551 π2/4

1 π2/4 π2/4 π2/4 π2/4 π2/4 π2/4 π2/4 π2/4

Fixed–sliding restrained columns with an internal hinge and elastic rotational
restraint

0 π2/4 2.6634 3.3731 4.1159 5.2392 6.6071 8.1955 π2

0.1 3.0462 3.2623 4.0174 4.7662 5.8314 7.0486 8.4086 π2

0.3 5.0355 5.3076 6.1713 6.9046 7.7696 8.5578 9.2582 π2

0.5 π2 π2 π2 π2 π2 π2 π2 π2

Fixed–pinned columns with an internal hinge and elastic rotational restraint

0 9.870 10.067 10.798 11.598 12.894 14.660 17.076 20.191

0.1 12.185 12.401 13.170 13.951 15.104 16.497 18.180 20.191

0.3 20.142 20.185 20.190 20.190 20.190 20.191 20.191 20.191

0.5 5.434 5.998 7.960 9.870 12.474 15.201 17.844 20.191

0.7 1.730 2.315 4.391 6.491 9.518 12.961 16.637 20.191

0.9 0.363 1.539 5.712 9.743 14.472 17.636 19.300 20.191

1 20.191 20.191 20.191 20.191 20.191 20.191 20.191 20.191

Fixed–ended columns with an internal hinge and elastic rotational restraint

0 20.191 20.498 21.659 22.969 25.182 28.397 33.153 4π2

0.1 24.901 25.257 26.537 27.865 29.878 32.395 35.558 4π2

0.3 20.305 21.320 24.967 28.627 33.331 36.817 38.603 4π2

0.5 9.870 10.654 13.492 16.463 20.957 26.428 32.782 4π2
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The critical loads are shown in Table 2.11. For constant a, the critical
load increases with the spring constant ξ, reaching the value of 4π2 for
fixed–fixed columns. For a given spring constant, the location of the
hinge for maximum critical load is at a = 0.25 (the inflection point) if
ξ ≥ 1, but is less than 0.25 if ξ < 1. Variations of the critical load
parameter with respect to the junction location for various values of
spring parameter ξ and column end conditions are shown in Figs. 2.7–
2.11.

Figure 2.7: Critical load parameter α for pinned–pinned column
versus weakened junction location a with various
constant junction stiffness ξ.

2.6 Euler Columns with a Continuous Elastic Restraint

Consider a uniform homogeneous column of flexural rigidity EI,
length L, and continuously restrained along its length. The restraint
consists of lateral springs of stiffness c per unit length. It may model
an elastic foundation or a wall cladding restraint. The column is loaded
at the top end by a concentrated compressive force P as shown in Fig.
2.12.
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Figure 2.8: Critical load parameter α for fixed–free column versus
weakened junction location a with various constant
junction stiffness ξ.

Figure 2.9: Critical load parameter α for fixed–sliding restrained
column versus weakened junction location a with various
constant junction stiffness ξ.
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Figure 2.10: Critical load parameter α for fixed–pinned column versus
weakened junction location a with various constant
junction stiffness ξ.

Figure 2.11: Critical load parameter α for fixed–fixed column versus
weakened junction location a with various constant
junction stiffness ξ.
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Figure 2.12: Column with elastic restraint.

The governing buckling equation is given by

d4w

dx4
+ α

d2w

dx2
+ ξw = 0 (2.6.1)

where x = x̄/L, w = w̄/L, α = PL2/(EI) and ξ = cL4/(EI). The
general solution to (2.6.1) is

w = C1 cos (Sx) + C2 sin (Sx) + C3 cos (Tx) + C4 sin (Tx) (2.6.2)

where

S =

√√√√α

2
−
√(

α

2

)2

− ξ, T =

√√√√α

2
+

√(
α

2

)2

− ξ (2.6.3)

It is worth noting from Eq. (2.6.3) that the smallest critical load for a
periodic solution is (Pcr)min = 2

√
cEI.

For the usual combinations of boundary conditions, the stability
criteria are given below:

Fixed–free column:[
α
(
S2 + T 2

)
− 2S2T 2

]
cosT cosS − α

(
S2 + T 2

)
+
(
S4 + T 4

)

+ ST
[
2α−

(
S2 + T 2

)]
sinT sinS = 0 (2.6.4)
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Pinned–pinned column:
sinT = 0 (2.6.5)

Fixed–pinned column:

T cosT sinS − S sinT cosS = 0 (2.6.6)

Fixed–fixed column:

2ST [cosT cosS − 1] +
(
T 2 + S2

)
sinT sinS = 0 (2.6.7)

Pinned–fixed column with top sway:

cosT = 0 (2.6.8)

Fixed–fixed column with top sway:

T sinT cosS − S cosT sinS = 0 (2.6.9)

Free–free column:

2ST (S2 − α)(T 2 − α) cosS cosT − 2S3T 3

+ α(α2 − 2S2T 2) sinS sinT = 0 (2.6.10)

The free–free case is of interest to foundation engineers/researchers
(Hetenyi 1948).

The critical load is obtained by solving the transcendental stability
criteria for the smallest value of α. Table 2.12 contains critical loads for
a pinned–pinned column and a fixed–pinned column. Note that buckled
mode shape is dependent on the spring constant c. The number of half-
waves for the critical buckling mode increases with increasing values of
c as it uses lesser energy than a buckled mode shape characterized by
a single half wave. It is worth noting that the buckling problem of a
column with continuous elastic restraint along its length is analogous
to (a) the buckling problem of an end loaded column rotating with a
constant angular velocity and (b) the free vibration problem of an axially
loaded column (see paper by Wang et al., 1991).
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Table 2.12: Critical load of continuously–restrained columns.

Restraint Critical load parameter, α = PL2/EI
stiffness
parameter Pinned–pinned Fixed–pinned

column column

0 9.8696 20.1903
50 14.9357 24.2852

100 20.0017 28.3066

2.7 Euler Columns with Distributed Load

Axially distributed loads acting on columns include selfweight of
the column, gravitational forces in an highly accelerated environment
and weight of wet concrete during the construction of steel-tube–filled
concrete columns.

2.7.1 Infinite Hanging Heavy Column with Bottom Load

Figure 2.13(a) shows a long column with density ρ (weight per unit
length), flexural rigidity EI, and subjected to a bottom compressive load
of F .

A moment balance [Fig. 2.13(b)] yields the linearized equation

dM + (F − ρx) θdx = 0 (2.7.1)

where M is the local moment, related to the inclination angle θ by the
Euler–Bernoulli relation

M = EI
dθ

dx
(2.7.2)

By letting

r =
ρx− F

(EI)1/3ρ2/3
(2.7.3)

Eq. (2.7.1) becomes the Airy equation

d2θ

dr2
− rθ = 0 (2.7.4)

with the general solution

θ = C1Ai(r) + C2Bi(r) (2.7.5)
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where Ai and Bi are Airy functions (Abramowitz and Stegun, 1965).
The boundary conditions are zero slope at infinity and zero moment at
the bottom end at x = 0. Thus C2 = 0 and

Ai′
[
−F (EI)−1/3ρ−2/3

]
= 0 (2.7.6)

The critical load (Wang, 1983) is the lowest root of Eq. (2.7.6) or

F

(EI)1/3ρ2/3
= 1.018793 (2.7.7)

In the case where the bottom end is constrained to be vertical, but can
slide freely horizontally, the condition is

Ai
[
−F (EI)−1/3ρ−2/3

]
= 0 (2.7.8)

Then the critical load is

F

(EI)1/3ρ2/3
= 2.338107 (2.7.9)

Figure 2.13: Infinite hanging column under its own weight.
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2.7.2 Heavy Column with Top Load

Figure 2.14(a) shows a column of length L and density ρ subjected
to a top load P . Both ρ and P are positive in the directions shown; ρ
can be negative if the column is hanging down from the base or when
buoyancy is larger than the material weight.

A moment balance [Fig. 2.14(b)] yields the linearized equation

dM + [ρ (L− x) + P ] θdx = 0 (2.7.10)

This gives, in view of Eq. (2.7.2), the governing equation

EI
d2θ

dx2
+ [ρ (L− x) + P ] θ = 0 (2.7.11)

The displacement w is related to the slope θ by

θ =
dw

dx
(2.7.12)

Let

α =
PL2

EI
, β =

ρL3

EI
, s =

x

L
(2.7.13)

Figure 2.14: Heavy column with top load.
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Then Eq. (2.7.11) becomes

d2θ

ds2
+ [α + β (1 − s)] θ = 0 (2.7.14)

where s is in [0,1]. If we define (Wang and Drachman, 1981)

r =
(

1 − s +
α

β

)
|β|1/3 (2.7.15)

Eq. (2.7.15) then further simplifies to

d2θ

dr2
+ sgn (β) rθ = 0 (2.7.16)

The general solution is

θ = C1Ai [− sgn (β) r] + C2Bi [− sgn (β) r] (2.7.17)

The Airy functions Ai and Bi are related to the Bessel functions by the
following relations. If z and ζ are positive, and

ζ =
2
3
z3/2 (2.7.18)

then

Ai (z) =
1
3
√
z
[
I−1/3 (ζ) − I1/3 (ζ)

]
, Ai′ (z) =

z

3

[
I2/3 (ζ) − I−2/3 (ζ)

]

Ai (−z) =
1
3
√
z
[
J1/3 (ζ) + J−1/3 (ζ)

]
, Ai′ (−z) =

z

3

[
J2/3 (ζ) − J−2/3 (ζ)

]

Bi(z) =
√

z

3

[
I−1/3 (ζ) + I1/3 (ζ)

]
, Bi′(z) =

z√
3

[
I−2/3 (ζ) + I2/3 (ζ)

]

Bi(−z) =
√

z

3

[
J−1/3 (ζ) − J1/3 (ζ)

]
, Bi′(−z) =

z√
3

[
J−2/3 (ζ) + J2/3 (ζ)

]
(2.7.19)

Since w cannot be integrated exactly from Eq. (2.7.12), only two types
of boundary conditions are admissible for exact solutions. One is the
fixed end or sliding restraint

θ = 0 (2.7.20)

The other is the pinned end or free end constraint

dθ

dr
= 0 (2.7.21)
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Upon a close examination of the problem, there are only six independent
cases which yield an exact characteristic equation. Let

r1 =
(

1 +
α

β

)
|β|1/3, r2 =

α

β
|β|1/3 (2.7.22)

ζ1 =
2
3
|1 +

α

β
|3/2|β|1/2 > 0, ζ2 =

2
3
|α|3/2|β|−1 > 0 (2.7.23)

The stability criteria are shown in Table 2.13.
The buckling of a uniform free-standing column due to its own

weight has been solved by Greenhill (1881). Greenhill’s solution can
be obtained by setting α = 0 and β > 0 in Eq. (2.7.14) (i.e., Case 1 in
Table 2.13); the solutions are Bessel functions of the first kind. Applying
the boundary conditions at the top and bottom ends, one obtains the
buckling condition

J−1/3

(
2
3
β1/2

)
= 0 (2.7.24)

The lowest root is

β =
ρL3

EI
= 7.83735 (2.7.25)

2.7.3 Two-Segment Heavy Column – General Formulation

Figure 2.15 shows a column composed of two segments of different
properties. The total length of the column is L and the top load is P .
Let the subscript 1 denote the bottom segment which is of length aL
and the subscript 2 denote the top segment which is of length (1 − a)L.
A moment balance similar to that of the previous section yields, for the
top segment,

d2θ2

ds2
+ [α2 + β2 (1 − s)] θ2 = 0, a ≤ s ≤ 1 (2.7.26)

where θ is the angle of inclination, s is the vertical coordinate normalized
by the total length L and

α2 =
PL2

(EI)2
, β2 =

ρ2L
3

(EI)2
(2.7.27)
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Table 2.13: Stability criteria for heavy columns with various end conditions.

1 α > 0, β > 0 J−1/3(ζ1)J−2/3(ζ2) + J1/3(ζ1)J2/3(ζ2) = 0
r1 > 0, r2 > 0 Wang and Drachman (1981)

2 −α > β > 0 J−1/3(ζ1)I−2/3(ζ2) + J1/3(ζ1)I2/3(ζ2) = 0
r1 > 0, r2 < 0 Wang (1987b)

3 α > 0, β > 0 J1/3(ζ1)J−1/3(ζ2) − J−1/3(ζ1)J1/3(ζ2) = 0
r1 > 0, r2 > 0 Wang (1987c)

4 β > −α > 0 J1/3(ζ1)I−1/3(ζ2) + J−1/3(ζ1)I1/3(ζ2) = 0
r1 > 0, r2 < 0

5 −β > α > 0 I−1/3(ζ1)J−2/3(ζ2) − I1/3(ζ1)J2/3(ζ2) = 0
r1 > 0, r2 < 0 Wang and Drachman (1981)

α > −β > 0 J−1/3(ζ1)J−2/3(ζ2) + J1/3(ζ1)J2/3(ζ2) = 0
r1 < 0, r2 < 0

6 −β > α > 0 I2/3(ζ1)J−2/3(ζ2) − I−2/3(ζ1)J2/3(ζ2) = 0
r1 > 0, r2 < 0
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Figure 2.15: A heavy composite column.

Notice that both the load P and/or the density ρ may be negative. The
general solution is

θ2 = C1Ai [− sgn (β2) q] + C2Bi [− sgn (β2) q] (2.7.28)

where
q =

(
1 − s +

α2

β2

)
|β2|1/3 (2.7.29)

Depending on the sign of the arguments, the Airy functions in (2.7.19)
would then transform the solution to the proper Bessel functions.
Similarly for the bottom segment, we have

d2θ1

ds2
+ [α1 + β1 (1 − s)] θ1 = 0, 0 ≤ s ≤ a (2.7.30)

where

α1 =
P1L

2

(EI)1
, β1 =

ρ1L
3

(EI)1
(2.7.31)

P1 = P + L (1 − a) (ρ2 − ρ1) (2.7.32)

The general solution is

θ1 = C3Ai [− sgn (β1) r] + C4Bi [− sgn (β1) r] (2.7.33)

where
r =

(
1 − s +

α1

β1

)
|β1|1/3 (2.7.34)
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The solution of the top segment satisfies the boundary condition at s = 1,
either zero inclination or zero moment, and that of the bottom satisfies
the boundary condition at s = 0. The matching conditions at the joint
at s = a are given by the equality in the inclinations

θ1(a) = θ2(a) (2.7.35)

and the equality of bending moments

[
(EI)1

dθ1

ds

]
s=a

=
[
(EI)2

dθ2

ds

]
s=a

(2.7.36)

Particular attention must be paid in choosing the right branch for the
Airy functions, especially when the argument changes sign at an interior
point of the column. In what follows, we shall give the details for some
interesting special cases.

2.7.4 Heavy Column Partially Submerged in Liquid

For a uniform column that is partially submerged, the wetted portion
has a lower effective density due to buoyancy. The flexural rigidity
remains the same for the whole column [i.e., (EI)1 = (EI)2 = EI].
Let ρc be the density of the column, ρf be the density of the fluid, and
λρ = ρf/ρc. For a column with load P at the top (see Fig. 2.14), we
find

α2 =
PL2

EI
, β2 =

ρcL
3

EI
> 0 (2.7.37)

α1 = α2 + (1 − a)λβ2, β1 = (1 − λ)β2 (2.7.38)

The solutions are

θ2 = C1Ai (−q) + C2Bi (−q) , q =
(

1 − s +
α2

β2

)
β

1/3
2 (2.7.39)

θ1 = C3Ai(−gr)+C4Bi(−gr), g = sgn (β1), r =
(

1 − s +
α1

β1

)
|β1|1/3

(2.7.40)
Let

q2 = α2β
−2/3
2 , qa =

(
1 − a +

α2

β2

)
β

1/3
2 (2.7.41)
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and

r1 =
(

1 +
α1

β1

)
|β1|1/3, ra =

(
1 − a +

α1

β1

)
|β1|1/3 (2.7.42)

The matching conditions at s = a are

C1Ai (−qa) + C2Bi (−qa) − C3Ai (−gra) − C4Bi (−gra) = 0 (2.7.43)

C1Ai
′ (−qa) +C2Bi′ (−qa)−C3Ai

′ (−gra)−C4Bi′ (−gra) = 0 (2.7.44)

If the top is free,

C1Ai′ (−q2) + C2Bi′ (−q2) = 0 (2.7.45)

If the top has a sliding constraint,

C1Ai (−q2) + C2Bi (−q2) = 0 (2.7.46)

If the bottom is fixed,

C3Ai (−gr1) + C4Bi (−gr1) = 0 (2.7.47)

If the bottom is pinned,

C3Ai′ (−gr1) + C4Bi′ (−gr1) = 0 (2.7.48)

Table 2.14 shows the characteristic equations of a heavy column with
a free top end and no external load. The functions used are defined by

µ (s) =
2
3

√
β2

[
sgn (λρ − 1) |λρ − 1|1/3

(
1 − aλρ

λρ − 1
+ s

)]3/2

(2.7.49)

µ0 = µ(0), µ1 = µ(1) (2.7.50)

v1 =
2
3

√
β2(1 − a)3/2, φ1 =

2
3µ1

J1/3 (µ1) − J4/3 (µ1) (2.7.51)

ξ0 = β
1/3
2 (aλρ − 1) (λρ − 1)−2/3 (2.7.52)

© 2005 by CRC Press LLC



Table 2.14: Stability criteria for columns partially submerged in liquid.

aλρ < 1 J2/3(v1)
[
J−1/3(µ1)J1/3(µ0) + J1/3(µ1)J−1/3(µ0)

]
+sgn (λρ − 1)J−1/3(v1)

[
J2/3(µ1)J1/3(µ0)

+J−1/3(µ0)φ1

]
= 0

aλρ > 1
[
Bi(ξ0) −

√
3Ai(ξ0)

] [
J2/3(v1)J−1/3(µ1)+

J−1/3(v1)J2/3(µ1)
]
+
[
Bi(ξ0) +

√
3Ai(ξ0)

]
×
[
J2/3(v1)J1/3(µ1) − J−1/3(v1)φ1

]
= 0

a2λρ > 1 v1/3
1 J2/3(v1)

{[
Bi′(ξ0) +

√
3Ai′(ξ0)

]
J1/3(µ1) +[

Bi′(ξ0) −
√

3Ai′(ξ0)
]
J−1/3(µ1)

}
− (λρ − 1)1/3

×µ1/3
1 J−1/3(v1)

{[
Bi′(ξ0) +

√
3Ai′(ξ0)

]
J−2/3(µ1)−[

Bi′(ξ0) −
√

3Ai′(ξ0)
]
J2/3(µ1)

}
= 0

2.7.5 Standing Two-Segment Heavy Column

Here, we treat the two-segment column shown in Fig. 2.16. Assume
there is no top load P , each section is uniform, of similar cross section,
and made of the same material. If the cross section is similar, whether
circular or square, the flexural rigidity and the density have the following
relation

EI2
EI1

=
(
ρ2

ρ1

)2

= λ2
ρ (2.7.53)

Thus,

β2 =
ρ2L

3

EI2
> 0, β1 = λρβ2 > 0 (2.7.54)

For the top section, the solution to Eq. (2.7.16) satisfying the zero
moment condition at the top is

θ2 = C1ζ
1/3J−1/3 (ζ) (2.7.55)
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Figure 2.16: A heavy composite column under its own weight.

where
ζ =

2
3
q3/2, q = (1 − s)β1/3

2 (2.7.56)

For the bottom section, the solution satisfying zero slope at the bottom
is

θ1 = C2η
1/3

[
J−1/3 (η1)J1/3 (η) − J1/3(η1)J−1/3(η)

]
(2.7.57)

where

η(a) =
2
3
r3/2, r = [λρ (1 − a) + a− s]β1/3

1 (2.7.58)

and
η1 = η(0) (2.7.59)

In view of the matching conditions (2.7.35) and (2.7.36), the stability
condition is found to be

λ3
ρ

[
J1/3 (ηa) J−1/3 (η1) − J1/3 (η1) J−1/3 (ηa)

]{
2J−1/3 (ζa)

+ 3ξa
[
J−4/3 (ζa) − J2/3 (ζa)

]}

= J−1/3 (ζa)
{[

2J1/3 (ηa) + 3ηa
〈
J−2/3 (ηa) − J4/3 (ηa)

〉]
J−1/3 (η1)

− J1/3 (η1)
[
2J−1/3 (ηa) + 3ηa

〈
J−4/3 (ηa) − J2/3 (ηa)

〉]}
(2.7.60)

where the subscript a denotes the variable evaluated at the joint at s = a.
Table 2.15 shows some typical results.
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The value of λρ also represents the ratio of the area of the top
segment to the area of the bottom segment. For the uniform column
λρ = 1, the buckling value β2 is 7.83735, the same as Eq. (2.7.29), and
similarly for a = 0. When a = 1 the size of the column is uniformly
that of the bottom segment, and the buckling value is 7.83735/λρ. For
λρ > 1 the column is top-heavy and thus has a lower critical value.

Table 2.15: Critical values of β2.

λρ a = 0.10 0.25 0.50 0.75 1.00

0.50 9.8980 14.430 24.428 22.184 15.675

0.75 8.9520 10.830 12.934 12.258 10.450

1.50 5.6620 4.281 3.720 4.026 5.225

2.00 4.0117 2.601 2.156 2.454 3.919

2.8 Euler Columns with Variable Cross Section

2.8.1 Introduction

In this section, we consider columns where their cross-sections vary
along the length but still maintain the same principal bending axis. The
most common type would be columns with similar cross sections, while
the area of the cross section varies. In what follows, we present two
cases. In the first case, the column has no distributed axial load and
buckles by end compressive forces only. It can be shown that the lateral
deflection, for certain forms of the flexural rigidity, can be integrated
exactly. Thus, the classical boundary conditions of section 2.1.2 can
be applied. In the second case there exists an additional distributed
axial load, such as selfweight, and the solution, again for some restricted
forms of distribution, can only be expressed in terms of the slope θ.
Since the deflection w cannot be exactly integrated, similar to those of
section 2.7, only columns with zero lateral shear give exact characteristic
equations. The solutions to each case can be joined together to form a
compound column. These compound columns will not be discussed,
not because they are unimportant, but because the matching method
has been well described in the previous section. Earlier references for
columns of variable cross section are found in Bleich (1952), Timoshenko
and Gere (1961), and a recent selective review by Elishakoff (2000).
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2.8.2 Columns under End Concentrated Load

For columns with variable cross-section, the moment of inertia I
is a function of position along the column of length L. If there is no
distributed axial load, similar to section 2.1, one can show the equation
governing the lateral displacement is

d2

dx2

(
EI (x)

d2w

dx2

)
+ P

d2w

dx2
= 0 (2.8.1)

where P �= 0 is the end load. Integrating twice, we obtain

EI (x)
d2w

dx2
+ Pw = C1 + C2x (2.8.2)

where the value of C2 can be identified with the shear. Thus, the general
solution is

w =
C1

P
+

C2

P
x + wh (2.8.3)

where wh is the homogeneous solution satisfying

EI (x)
d2wh

dx2
+ Pwh = 0 (2.8.4)

Depending on the form of EI(x), there exist a number of exact
solutions of Eq. (2.8.4). For example, one can specify EI(x) such that
the ordinary differential equation conforms to those with closed form
solutions as listed in Kamke (1948) or Murphy (1960). However, most
of the exact solutions do not have any physical relevance. Suppose the
two independent solutions to Eq. (2.8.4) are found to be U(z) and V (z)
where z = z(x). Then the general solution is

w =
C1

P
+

C2

P
x + C3U (z) + C4V (z) , z = z (x) (2.8.5)

Let
z0 = z(0), z1 = z(L), z′0 = Lz′(0), z′1 = Lz′(L) (2.8.6)

U0 = U(z0), V0 = V (z0), U ′
0 = U ′(z0), V ′

0 = V ′(z0) (2.8.7)

U1 = U(z1), V1 = V (z1), U ′
1 = U ′(z1), V ′

1 = V ′(z1) (2.8.8)

The stability criteria for the five cases of classical boundary conditions
are listed in Table 2.16.
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Table 2.16: Stability criteria for five cases of classical boundary
conditions.

Figure Cases Stability Criteria

1. Bottom end fixed, U1V ′
0 − V1U ′

0 = 0
top end free

2. Both ends pinned U1V0 − V1U0 = 0

3. Bottom end fixed, U1(V0 + z′
0V

′
0) − V1(U0 + z′

0U
′
0)

top end pinned

4. Both ends fixed (U1 −U0 − z′
1U

′
1)(z

′
1V

′
1 − z′

0V
′
0)−

(V1 − V0 − z′
1V

′
1)(z′

1U
′
1 − z′

0U
′
0) = 0

5. Bottom end fixed, U ′
1V

′
0 − V ′

1U
′
0 = 0

top end sliding
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Gere and Carter (1962) listed the relation between a varying cross-
sectional area dimension h(x) and the second moment of inertia I(x) for
some meaningful cross-sections where

I(x) = Ch(x)n (2.8.9)

Here C and n are positive constants. The value of n ranges from 1 to 4
and the corresponding physical cross-sectional shapes are shown in Table
2.17.

Table 2.17: Various cross-sectional shapes.

Shape Description n

Flat rectangular section n = 2
Thickness constant, width varies

Open web section or tower section n = 2
Area constant, depth varies

I-section or box section n = 2.1 to 2.6
Width constant, depth varies

Solid rectangular section n = 3
Width constant, depth varies

Solid similar section n = 4
Both width and depth vary
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Given any EI(x) and cross-sectional characteristics, one can always
find the depth variation h(x) by taking the nth root, but there are only
a few relevant forms of practical interest. Here we shall consider the
two more important classes of EI(x) which can be applied to columns
of exponential taper and linear taper.

Dinnik (1929) first considered the class of columns whose flexural
rigidity is exponential, given by

EI(x) = αe−ax (2.8.10)

The solution to Eq. (2.8.4) (Murphy, 1960) consists of Bessel functions
of order zero. The general solution is

w =
C1

P
+

C2

P
x + C3J0(z) + C4Y0(z) (2.8.11)

where

z =
2
a

√
P

α
eax/2 (2.8.12)

Thus
U(z) = J0(z), V (z) = Y0(z) (2.8.13)

and

z0 =
2
a

√
P

α
, z1 =

2
a

√
P

α
eaL/2 (2.8.14)

The stability criteria for the five classical boundary conditions are
then obtained from Table 2.16. Given aL, some typical values for the
normalized buckling load PL2/α are given in Table 2.18. When aL = 0,
the buckling loads correspond to those of the uniform column.

Table 2.18: Normalized buckling load PL2/α for exponential columns.

aL Case 1 Case 2 Case 3 Case 4 Case 5

0.0 2.467 9.870 9.870 20.19 39.48
0.1 2.394 9.380 9.390 19.20 37.55
0.5 2.110 7.634 7.683 15.64 30.60
1.0 1.782 5.827 5.973 11.99 23.49
1.5 1.480 4.389 4.633 9.098 17.86
2.0 1.209 3.264 3.580 6.839 13.46
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Next, consider the class of flexural rigidity given by the power
function (Dinnik, 1932; Gere and Carter, 1962)

EI(x) = α(1 − bx)a (2.8.15)

where α and a are positive constants and bL ≤ 1. For a �= 2, let

c =

∣∣∣∣∣ 1
2 − a

∣∣∣∣∣, k =
P

αb2
(2.8.16)

and
z = 1 − bx (2.8.17)

Then the homogeneous solution to Eq.(2.8.4) (Murphy, 1960), is

U(z) =
√
zJc

(
2
√
kcz1/2c

)
, V (z) =

⎧⎨
⎩
√
zJ−c

(
2
√
kcz1/2c

)
√
zYc

(
2
√
kcz1/2c

) (2.8.18)

where the top form of V is used when c is not an integer, and the bottom
form is used otherwise. Note that if c is an integer multiple of 1/2, the
Bessel functions can be expressed as harmonic functions. If a = 2 the
solution form changes completely. Let

r =

√∣∣∣∣k − 1
4

∣∣∣∣ (2.8.19)

The solution is

U(z) = zr+1/2, V (z) = z−r+1/2 when k < 1/4 (2.8.20)
U(z) =

√
z, V (z) =

√
z ln z when k = 1/4 (2.8.21)

If k > 1/4 the solution is

U(z) =
√
z cos(r ln z), V (z) =

√
z sin(r ln z) (2.8.22)

The stability criteria are then obtained from Table 2.16. For the special
case of a pinned–pinned column and k > 1/4, Freudenthal (1966) used
the V solution in Eq. (2.8.22) to obtain the closed form critical load
equivalent to

P

αb2
=

1
4

+
(

π

ln(1 − bL)

)2

(2.8.23)
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Some typical values for various boundary conditions are listed in Table
2.19. When a = 0, the column is uniform. The critical loads for the five
cases are 2.4674, 9.8696, 20.1907, 39.4784, 9.8696, respectively.

Table 2.19: The critical load PL2/α for the power function rigidity
variation. The five cases correspond to the boundary
conditions in Table 2.16.

Case a bL = 0.1 0.3 0.5 0.7 0.9

1 2.393 2.235 2.062 1.865 1.621
2 2.319 2.012 1.683 1.318 0.862

Case 1 3 2.246 1.798 1.336 0.853 0.321
4 2.175 1.595 1.029 0.498 0.080
1 9.372 8.343 7.256 6.069 4.667
2 8.893 7.005 5.198 3.459 1.710

Case 2 3 8.436 5.840 3.628 1.821 0.467
4 7.994 4.836 2.467 0.888 0.099
1 19.17 17.03 14.74 12.18 9.029
2 18.19 14.29 10.53 6.868 3.164

Case 3 3 17.25 11.92 7.362 3.634 0.875
4 16.35 9.893 5.048 1.817 0.202
1 37.48 33.27 28.70 23.48 16.70
2 35.56 27.91 20.48 13.23 5.864

Case 4 3 33.73 23.29 14.35 7.045 1.670
4 31.98 19.34 9.869 3.553 0.395
1 9.369 8.317 7.169 5.858 4.143
2 8.893 7.005 5.198 3.459 1.710

Case 5 3 8.442 5.897 3.758 2.011 0.620
4 8.012 4.960 2.700 1.121 0.166

2.8.3 Columns under Distributed Axial Load

The only important work was due to Dinnik (1955). He assumed a
flexural rigidity and a distributed load (force per length) of the form

EI(x) = α

(
1 − x

L

)a

, ρ(x) = β

(
1 − x

L

)b

(2.8.24)

where α, β, a, and b are positive constants. Notice these shapes
terminate into a point at the top at x = L, and no top load is allowed.
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A moment balance as in Fig. 2.13 yields

d

dx

(
EI (x)

dθ

dx

)
+
∫ L

x
ρ (x) dx = 0 (2.8.25)

Eqs. (2.8.24) and (2.8.25) become

d

dz

(
za

dθ

dz

)
+ µzb+1θ = 0 (2.8.26)

where

z = 1 − x

L
, µ =

βL3

α(b + 1)
(2.8.27)

The solution is

θ = C1z
(1−a)/2Jν(u) + C2

{
z(1−a)/2Jν(u)√
z
(1−a)/2

Yν(u)
(2.8.28)

where

u =
√
µ

|κ| z
κ, ν =

∣∣∣∣ a− 1
b + 3 − a

∣∣∣∣, κ =
b + 3 − a

2
(2.8.29)

As discussed before, since the displacement cannot be integrated in a
closed form, the boundary conditions that yield exact characteristic
equations are either zero inclination (fixed or sliding) or zero moment
(free).

Lastly, we comment on some exact solutions of very specific forms
in the literature which are not included here. The first type is the
inverse solution, obtained from assuming a deflection form and adjusting
the rigidity and/or axial load distribution to satisfy the differential
equation (Elishakoff, 2000). The second type concerns an end load
which is completely dependent on the given axial load distribution (e.g.,
dependent on self weight) (Li et al., 1995).

2.9 Timoshenko Columns

2.9.1 Columns under End Axial Load

When the column is stocky, or built up (latticed or battened) or
of a composite-type construction, the application of Euler (classical)
beam theory will overestimate the buckling loads. This is due to the
neglect of transverse shear deformation in the Euler beam theory. A more
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refined beam theory, known as the first-order shear deformation theory
or Timoshenko beam theory, that incorporates the shear deformation
effect was proposed by Engesser (1891) and Timoshenko (1921). This
first-order shear deformation theory relaxes the normality assumption of
the Euler beam theory by allowing the normal to rotate at an angle to the
deformed centerline. This assumption amounts to a constant transverse
shear strain (and thus constant stress) through the beam thickness.
In order to compensate for the actual parabolic distribution of the
transverse shear stress through the thickness, a shear correction factor is
introduced to calculate the effective shear force. The usual approaches
of estimating the shear correction factor are either by matching high-
frequency spectra of vibrating beams (e.g., Mindlin and Deresiewicz,
1954; Goodman and Sutherland, 1951) or by using approximation
procedures and simplifying assumptions within the linear theory of
elasticity (e.g., Cowper, 1966; Stephen and Levinson, 1979).

According to the Engesser–Timoshenko beam theory, the stress–
resultant–displacement relations are given by

M = EI
dφ

dx̄
(2.9.1)

Q = KsGA

(
φ +

dw̄

dx̄

)
(2.9.2)

in which x̄ is the longitudinal coordinate measured from the column base,
M the bending moment, Q the transverse shear force, φ the rotation
in the Engesser–Timoshenko column and w̄ the transverse deflection.
The shear correction coefficient Ks in Eq. (2.9.2) is introduced to
account for the difference in the constant state of shear stress in the
Engesser–Timoshenko column theory and the parabolic variation of the
actual shear stress through the depth of the cross-section. The values of
Ks for various cross-sectional shapes are given in Table 2.20 (Cowper,
1966). The effective shear stiffnesses, GAKs, for various types of built
up columns are given in Timoshenko and Gere (1961).

As in the Euler columns, the equilibrium equations are

dM

dx̄
= Q (2.9.3)

dQ

dx̄
= P

d2w̄

dx̄2
(2.9.4)
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Table 2.20: Shear correction factors Ks for various cross-sectional shapes.

Section Description Ks

Circle

6(1+ν)
(7+6ν)

Hollow cylinder

6(1+ν)(1+ b
a )2

(7+6ν)(1+ b
a )2+4(5+3ν)( b

a )2

Rectangle

10(1+ν)
12+11ν

Semicircle

(1+ν)
1.305+1.273ν

Thin-walled circular tube

2(1+ν)
4+ν

Thin-walled square tube

20(1+ν)
48+39ν

I-beam
10(1+ν)(1+3β)2

∆

∆ = 12 + 72β + 150β2 + 90β3

+ν(11 + 66β + 135β2 + 90β3)
+30η2β(1 + β) + 5νη2β(8 + 9β)

β = (2btf )/(htw), η = b/h
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where P is the axial compressive load. By substituting Eqs. (2.9.1) and
(2.9.2) into Eqs. (2.9.3) and (2.9.4), the governing equations may be
expressed as

EI
d2φ

dx̄2
= KsGA

(
φ +

dw̄

dx̄

)
(2.9.5)

KsGA

(
dφ

dx̄
+

d2w̄

dx̄2

)
= P

d2w̄

dx̄2
(2.9.6)

By differentiating Eq. (2.9.5) and then using Eq. (2.9.6), we obtain

EI
d3φ

dx̄3
= P

d2w̄

dx̄2
(2.9.7)

and from Eq. (2.9.6),

dφ

dx̄
= −

(
1 − P

KsGA

)
d2w̄

dx̄2
(2.9.8)

The substitution of Eq. (2.9.8) into Eq. (2.9.7) yields

d4w

dx4
+ k̄

d2w

dx2
= 0 (2.9.9)

where x = x̄/L, w = w̄/L and

k̄ =
PL2

EI

1 − P
KsGA

(2.9.10)

By differentiating Eq. (2.9.5) and using Eq. (2.9.7), we can also
obtain

d3φ

dx3
+ k̄

dφ

dx
= 0 (2.9.11)

The general solutions of Eqs. (2.9.9) and (2.9.11) take the form of

w = C1 sin
√
k̄x + C2 cos

√
k̄x + C3x + C4 (2.9.12a)

φ = −C1
P

EI
√
k̄

cos
√
k̄x + C2

P

EI
√
k̄

sin
√
k̄x− C3 (2.9.12b)
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The boundary conditions for a Timoshenko column are

• Fixed end: w̄ = 0 and φ = 0 (2.9.13a)

• Pinned end: w̄ = 0 and dφ
dx̄ = 0 (2.9.13b)

• Free end: dφ
dx̄ = 0 and EI d2φ

dx̄2 + P dw̄
dx̄ = 0 (2.9.13c)

• Sliding restraint: φ = 0 and EI d2φ
dx̄2 + P dw̄

dx̄ = 0 (2.9.13d)

By substituting Eqs. (2.9.12a, b) into these boundary conditions at
the column ends, one obtains the following eigenvalue equation:

[A]{C} =

⎡
⎢⎢⎣
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩
C1

C2

C3

C4

⎫⎪⎪⎬
⎪⎪⎭ = 0 (2.9.14)

The vanishing of the determinant of matrix [A] yields the characteristic
equation (or stability criterion). The lowest root of the characteristic
equation is the critical buckling load. Table 2.21 presents the stability
criteria and solutions.

Table 2.21: Stability criteria and critical loads of Timoshenko columns
under end axial load.

Boundary Conditions Stability Criterion Critical Load

Fixed–free column cos
√
k̄ = 0

P=π2EI
4L2

1+ π2EI
4KsGAL2

Pinned–pinned column sin
√
k̄ = 0

P=π2EI
L2

1+ π2EI
KsGAL2

Fixed–pinned column
(
1 − P

KsGA

)√
k̄ = tan

√
k̄

Fixed–fixed column sin
√
k̄

2 = 0
P= 4π2EI

L2

1+ 4π2EI
KsGAL2

Fixed–sliding restraint cos
√
k̄

2 = 0
P=π2EI

L2

1+ π2EI
KsGAL2

column
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By comparing the stability criteria of the Timoshenko columns with
their Euler counterparts in Table 2.1, it is clear that the Timoshenko
critical load P T and the Euler critical load PE are related by

P T =
PE

1 + PE

KSGA

(2.9.15)

for all the column end conditions except for the fixed–pinned columns.
Note that Ziegler (1982) established that the foregoing relationship
(Eq. 2.9.15) and gave the following modified form for the fixed–pinned
columns

P T ≈ PE

1 + 1.1 PE

KSGA

(2.9.16)

Banerjee and Williams (1994) showed that the buckling relationship in
Eq. (2.9.15) applies as well to hinged–hinged columns with rotational
springs of equal stiffness added to their ends.

It is clear from Eq. (2.9.15) that the effect of transverse shear
deformation leads to a reduction in the Euler buckling load by the
factor found at the denominator of the buckling load relationship. This
reduction of the Euler load thus increases with respect to a higher value of
Euler load (especially for columns with highly restrained ends or internal
restraints) and also with a lower value of shear rigidity.

The critical buckling load formula obtained by Haringx (1942) for
helical springs and rubber bearings is given by

PH =
KsĜA

2

[√
1 +

4PE

KSĜA
− 1

]
(2.9.17)

The correctness of Eqs. (2.9.15) and (2.9.17) for column buckling
with allowance for shear deformation has been discussed by a number
of researchers (e.g., see Timoshenko and Gere, 1961; Ziegler, 1982). It
was pointed out by Bažant (2003) that the two equations are in fact the
same after noting that Ĝ in (2.9.17) is different from G in (2.9.16).

In the Timoshenko beam theory, it is necessary to introduce the
shear correction factor Ks to compensate for the error due to the
assumption of constant shear strain (or stress) through the beam
thickness. The higher-order shear deformation beam theory, proposed by
Bickford (1982) and Heyliger and Reddy (1988), does away with the need
of the shear correction factor by assuming that the transverse normal to
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the centroidal axis deforms into a cubic curve. Using this Bickford–
Reddy beam theory, Wang et al. (2000) showed that for pinned ended
columns, fixed ended columns and elastic rotationally restrained ended
columns, the Bickford–Reddy critical load PR is related to the Euler
critical load PE by

PR = PE

⎛
⎝1 + PEα2D̄xx

GADxx

1 + PED̄xx
GADxx

⎞
⎠ (2.9.18)

where
α =

4
3h2

, D̄xx = Dxx − 2αFxx + α2Hxx

(Dxx, Fxx, Hxx) =
∫
A
(z2, z4, z6)E dA

(2.9.19)

are the higher-order rigidities and h is the height of the column cross-
section. For example, for a square cross-section column, Eq. (2.9.18)
simplifies to

PR = PE

(
1 + PE

70GA

1 + 17PE

14GA

)
(2.9.20)

For a circular cross-section, the relationship is given by

PR = PE

(
1 + PE

90GA

1 + 101PE

90GA

)
(2.9.21)

2.9.2 Columns under Intermediate and End Axial Loads

Stability criteria for Timoshenko columns with intermediate and end
concentrated axial loads (see Fig. 2.3) are presented in Tables 2.22–2.24
(from Wang et al., 2002). Using the stability criteria presented in Tables
2.22–2.24, one can easily generate numerical results to determine the
effect of shear deformation, boundary conditions and the influence of
different intermediate load magnitudes and positions on critical loads.
The following notation is used in Tables 2.22–2.24.

s =
EI

KsGAL2
, γi =

NiL
2

EI

where Ni is the axial compressive force in segment i.
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Table 2.22: Stability criteria for Timoshenko columns subjected to
compressive intermediate and end loads.

Boundary Stability criteria
conditions

C–F 1 −
√
β tan (k1a) tan

[
(1 − a)k1

√
β
]

= 0

P–P η [(1 − a)η + a] tan (k1a)
+
√
β
[
(1 − a)η2 + aη − k1

γ1
η(η − 1)2 tan (k1a)

]
tan

[
(1 − a)k1

√
β
]

= 0

C–P (1 − a)γ1η + aγ1 +
√
β

[
k1(η2 − 2η + 2) +

{
2k1(η − 1) sec (k1a)

+γ1 [(1 − a)η + a] tan (k1a)
}]

tan
[
(1 − a)k1

√
β
]
− k1 tan (k1a) = 0

P–C
{
−k1β [(1 − a) + aβ]

+
{

2 − 2β + β2 − 2(1 − β) sec
[
(1 − a)k1

√
β
]}

tan (k1a)
}

−
{
β + k1β [(1 − a) + aβ] tan (k1a)

}
tan

[
(1 − a)k1

√
β
]

= 0

C–C 2k1

√
β

{
η2 − η + 1 + (η − 1) sec (λ1a) − η [η − 1 + sec (k1a)]

× sec
[
(1 − a)k1

√
β
]}

+
√
βηγ1

[
(1 − a) + a

η

]
tan (k1a)

+ [(1 − a)γ1η + aγ1 − k1(βη2 + 1) tan (k1a)] tan
[
(1 − a)k1

√
β
]

= 0

Note that k2
1 = γ1/(1 − sγ1), k2

2 = γ2/(1 − sγ2), β = k2
2/k

2
1, η = γ1/γ2.

Table 2.23: Stability criteria for columns subjected to tensile
intermediate load and compressive end load.

Boundary Stability criteria
conditions

C–F 1 −
√
β tanh (k1a) tan

[
(1 − a)k1

√
β
]

= 0

P–P
√
βγ1 [a− (1 − a)η] tan

[
(1 − a)k1

√
β
]
+
{
γ1 [(1 − a)η − a]

−k1

√
β(1 + η)2 tan

[
(1 − a)k1

√
β
]}

tanh (k1a) = 0
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Table 2.23 is continued from the previous page.

Boundary Stability criteria
conditions

C–P a− (1 − a)η + k1
√

β
γ1

[η2 + 2η + 2 − 2(1 + η)sech(k1a)] tan
[
(1 − a)k1

√
β
]

+
{
−k1

γ1
+
√
β [(1 − a)η − a] tan

[
(1 − a)k1

√
β
]}

tanh (k1a) = 0

P–C
√
β
{
aγ1 − (1 − a)γ1η + k1

√
βη2 tan

[
k1

√
β(1 − a)

]}
−
{
k1

√
β
{

2η2 + 2η + 1 − 2η(1 + η) sec
[
k1

√
β(1 − a)

]}
+γ1 [(1 − a)η − a] tan

[
k1

√
β(1 − a)

]}
tanh (k1a) = 0

C–C −2(1 + η + η2) + 2
{

1 + η − η sec
[
k1

√
β(1 − a)

]}
sech(k1a)

+η
{

2(1 + η) sec
[
k1

√
β(1 − a)

]
+ γ1

k1
√

β

[
a
η − (1 − a)

]
tan

[
k1

√
β(1 − a)

]}
+
{
− (1−a)

k1
γ1η + aγ1

k1
+ (βη2−1)√

β
tan

[
k1

√
β(1 − a)

]}
tanh (k1a) = 0

Note that k2
1 = γ1/(1 + sγ1), k2

2 = γ2/(1 + sγ2), β = k2
2/k

2
1, η = γ1/γ2.

Table 2.24: Stability criteria for columns with only compressive
intermediate load.

Boundary Stability criteria
conditions

C–F cos (k1a) = 0

P–P 3(1 − a)2γ1 cos (k1a)+
k1

{
3(2 − a) − (1 − a)γ1[3s+ (1 − a)2]

}
sin (k1a) = 0

C–P k1γ1

{
−6(1 − a) +

{
3(2 − a) − (1 − a)γ1 [3s+ (1 − a)2]

}
cos (k1a)

}
−3 [k2

1 + (1 − a)2γ2
1 ] sin (k1a) = 0

P–C 4γ1

{
3a− (1 − a)γ1 [3s+ (1 − a)2]

}
cos (k1a)+

k1

{
−12 [1 + γ1(1 − a)] + (1 − a)2γ2

1 [12s+ (1 − a)2]
}

sin (k1a) = 0

C–C 12k1 [2 + γ1(1 − a)2] + k1

{
−24 − 12γ1(1 − a)+

+γ2
1(1 − a)2 [12s+ (1 − a)2]

}
cos (k1a)

+4
{
3k2

1(1 − a) − 3aγ1 + k2
1(1 − a) [3s+ (1 − a)2]

}
sin (k1a) = 0

Note that k2
1 = γ1/(1 − sγ1).
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2.10 Flexural–Torsional Buckling of Columns

Thin-walled open-section columns subjected to a compressive load may
be buckled by twisting, as shown in Fig. 2.17 for a cruciform section,
or by combined bending and twisting. When this type of buckling takes
place, the twisting of the column causes the axial compressive stresses
to exert a disturbing torque which is opposed by the torsional resistance
of the column section.

For members of doubly symmetric cross-section, a twisted
equilibrium position is possible when the disturbing torque T exactly
balances the internal resisting torque Mz (Trahair and Bradford, 1991)

Mz = GJ
dφ

dz̄
− EIw

d3φ

dz̄3
(2.10.1)

in which GJ is the torsional rigidity, EIw the warping rigidity, and φ the
angle of twist. For the column under an axial compressive force P , the
disturbing torque is given by

T =
P

A
r2
0

dφ

dz̄
(2.10.2)

where r2
0 = (Ix + Iy)/A.

Figure 2.17: Torsional buckling of a cruciform section.
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In view of Eqs. (2.10.1) and (2.10.2), the governing equation for the
torsional buckling of column, is given by

EIw
d3φ

dz̄3
+
(
P

A
r2
0 −GJ

)
dφ

dz̄
= 0 (2.10.3)

The solution of this equation which satisfies the boundary conditions
of end twisting prevented, φ|z̄=0,L = 0, and ends free to warp,
d2φ/dz̄2|z̄=0,L = 0, is

φ = φ|z̄=L/2 sin
πz̄

L
(2.10.4)

in which φ|z̄=L/2 is the undetermined magnitude of the angle of twist at
the midlength of the column. Thus, the critical torsional buckling load
is given by

Pcr =
GJ

r2
0

(
1 +

π2EIw
GJL2

)
(2.10.5)

The above solution may be generalized for columns with other end
conditions by expressing it as

Pcr =
GJ

r2
0

(
1 +

π2EIw
GJl2

)
(2.10.6)

where l is the distance between inflection points in the twisted shape.
Monosymmetric and asymmetric section members (such as angles

and tees) may buckle in a combined mode by twisting and deflecting.
This action takes place because the axis of twist through the shear center
does not coincide with the loading axis through the centroid, and any
twisting which occurs causes the centroidal axis to deflect. For pinned
ended members, it can be shown that the critical buckling load Pc is the
lowest root of the cubic equation

P 3
c

(
r2
1 − x2

0 − y2
0

)
− P 2

c

[
(Px + Py + Pz) r2

1 − Pyx
2
0 − Pxy

2
0

]
+ Pcr

2
1 (PxPy + PyPz + PxPz) − PxPyPzr

2
1 = 0

(2.10.7)

where

Px =
π2EIx
L2

, Py =
π2EIy
L2

, Pz =
GJ

r2
1

(
1 +

π2EIw
GJL2

)
(2.10.8)
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r2
1 = r2

0 + x2
0 + y2

0, r2
0 =

Ix + Iy
A

(2.10.9)

and x0, y0 are the shear center coordinates measured from the centroid.

2.11 Inelastic Buckling of Columns

In the previous sections of this chapter, the buckling loads were
determined using the linear material (i.e., stress-strain) response and
linear kinematic (i.e., strain-displacement) relations. The assumption
of linear elastic behavior is valid if the buckling stress falls below the
proportionality limit. This is generally valid for slender columns and
the Euler load represents the correct buckling load of such members.
On the other hand, the axial stress in a stocky column will exceed the
proportionality limit of the material before the applied load reaches the
Euler load. Consequently, the results of the linear elastic analysis are
not valid for stocky columns. The buckling load of stocky columns must
be determined by taking into consideration the inelastic behavior.

Here, we consider buckling of columns in an inelastic range.
According to Engesser’s tangent modulus theory (1889), the buckling
formulas derived for linear elastic range are applicable to the inelastic
range provided we replace the modulus E with an effective modulus Eeff :

Pcr =
π2EeffI

L2
eff

(2.11.1)

where Leff is the effective length whose value depends on the boundary
conditions of the column.

The value of Eeff is calculated in a number of alternative ways. These
are given in the next two equations.

1. Tangent modulus theory (Engesser, 1889)

Eeff = ET , ET =
dσ

dε
(2.11.2)

2. Reduced (or Double) modulus theory (Engesser, 1895)

Eeff = ER, ER =

⎧⎨
⎩

4EET

(
√
E+

√
ET )2 , for rectangular cross-section

2EET
E+ET

, for idealized I-section
(2.11.3)
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An idealized (bi-symmetric) I-section is one in which the web is neglected
(because of the negligible thickness of the web). The tangent modulus
theory does not allow for load (strain) reversal, while the reduced-
modulus theory allows for it.

Shanley (1947) showed that the tangent modulus load is a lower
bound and the reduced-modulus load is an unattainable upper bound.
The true buckling load lies somewhere between these two extremes.
Interested readers may consult Shanley (1947) or Timoshenko and Gere
(1961) for details. Exact inelastic stability criteria have also been derived
(Groper and Kenig, 1987) for stepped columns shown in Figs. 2.18(a)
and 2.18(b).

First, consider the column shown in Fig. 2.18(a). There are three
cases to consider: Case 1: both segments behave elastically; Case 2:
the top segment behaves inelastically while the bottom segment behaves
elastically; and Case 3: both segments behave inelastically. Case 1 has
been treated in Section 2.7.3. Here we consider Cases 2 and 3.

Case 2. The stability criterion is given by

tan

(√
Pc

ET I1
aL

)
tan

(√
Pc

EI2
(1 − a)L

)
=

√
EI2
ET I1

(2.11.4)

The critical load Pc may be obtained upon supplying E,ET , I1, I2, a and
L.

Figure 2.18: Stepped columns under end axial load.
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Case 3. The stability criterion for this case is

tan

(√
Pc

ET1I1
aL

)
tan

(√
Pc

ET2I2
(1 − a)L

)
=

√
ET2I2
ET1I1

(2.11.5)

Next, consider the column shown in Fig. 2.18(b).

Case 2. The stability criterion is

tan

(√
Pc

ET I1

(1 − a)L
2

)
tan

(√
Pc

EI2

aL

2

)
=

√
EI2
ET I1

(2.11.6)

Case 3. The stability criterion for this case is

tan

(√
Pc

ET1I1

(1 − a)L
2

)
tan

(√
Pc

ET2I2

aL

2

)
=

√
ET2I2
ET1I1

(2.11.7)

Note that Eqs. (2.11.4)–(2.11.7) are transcendental equations and their
solutions are obtained by iterative methods such as the Newton method
or bisection method.

This completes the discussion on inelastic buckling of columns as per
the Euler–Bernoulli beam theory.
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CHAPTER 3

BUCKLING OF BEAMS, ARCHES
AND RINGS

3.1 Flexural–Torsional Buckling of Beams

3.1.1 Introduction

Beams that have relatively small lateral and torsional stiffnesses
compared to their stiffness in the plane of loading or that have inadequate
lateral restraints may buckle out of plane of the transverse load. For a
perfectly straight, elastic beam, there are no out-of-plane deformations
until the applied load reaches a critical value, at which point the beam
buckles by deflecting laterally and twisting. The lateral deflection
and twisting are interdependent. When the beam deflects laterally,
the induced moment exerts a component torque about the deflected
longitudinal axis which causes the beam to twist. Such buckling behavior
has been referred to as flexural–torsional buckling or simply lateral
buckling.

For flexural–torsional buckling of beams, exact buckling solutions
can only be obtained for a simply supported beam under uniform
moment or simple loading condition such as a midspan concentrated
load. This section will focus on only these boundary and load conditions.

3.1.2 Beams of Rectangular Cross-Section

Consider a simply supported, narrow beam of uniform rectangular
cross-section with width b, depth h and span L as shown in Fig. 3.1a.
The differential equilibrium equations of minor axis bending and torsion
of the buckled beam are

EIy
d2u

dz2
= −Mxφ (3.1.1)

GJ
dφ

dz
= Mx

du

dz
+ Mz (3.1.2)

where u is the lateral displacement, φ the angle of twist, z the horizontal
distance along the length of the beam, EIy = Ehb3/12 the flexural
rigidity about the minor y-axis, GJ = Ghb3/3 the torsional rigidity,
and Mx and Mz the internal moments in the buckled beam acting about
the x- and z-axes, respectively.
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Figure 3.1: (a) Geometry of a rectangular section beam. (b) A simply
supported, monosymmetric I-beam.

For a beam that is subjected to only equal end moments M about the
x-axis, we have Mx = M and Mz = 0. Thus, Eqs. (3.1.1) and (3.1.2)
reduce to

EIy
d2u

dz2
= −Mφ (3.1.3)

and

GJ
dφ

dz
= M

du

dz
(3.1.4)

Eliminating u from Eqs. (3.1.3) and (3.1.4) we obtain the following
single differential equation:

d2φ

dz2
+

M2

EIyGJ
φ = 0 (3.1.5)

b

y

z

x

u

h

L

z

y

x

hP

M

y

z
•
•

y0

IyT

IyB

(a)

(b)

M

P

f

Shear center, S

Centroid, C

© 2005 by CRC Press LLC



For the case where the ends of the beam are restrained against rotation
φ about the longitudinal axis of the beam, φ = 0 at both ends of the
beam, i.e., at z = 0, L.

The smallest root of Eq. (3.1.5), other than the trivial zero, yields
the exact buckling moment Mc

Mc =
π
√
EIyGJ

L
(3.1.6)

and the corresponding buckled shape is given by

φ = C sin
πz

L
(3.1.7)

where C is an arbitrary amplitude of a small magnitude.
Consider next a rectangular beam of constant width b but linearly

tapered depth, defined by

h =
(

1 +
z

L
δ

)
h0 (3.1.8)

where h0 is the depth of the beam at z = 0 and (1 + δ) is the ratio of
the height of the tapered beam at z = L to the height at z = 0.

The governing equations for buckling of such a tapered beam are
still given by Eqs. (3.1.3) and (3.1.4) with

EIy =
Eh0b

3

12

(
1 +

z

L
δ

)
≡ EI0η (3.1.9a)

GJ = G
h0b

3

3

(
1 +

z

L
δ

)
≡ GJ0η (3.1.9b)

where
η = 1 +

z

L
δ (3.1.9c)

Note that

dφ

dz
=

dφ

dη

dη

dz
=

δ

L

dφ

dη
,

d2φ

dz2
=

(
δ

L

)2 d2φ

dη2
(3.1.9d)

Elimination of u from Eqs. (3.1.3) and (3.1.4) [making use of (3.1.9d)]
results in

η2d
2φ

dη2
+ η

dφ

dη
+ k2φ = 0 (3.1.10a)

where
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k2 =
M2L2

EI0GJ0δ2
(3.1.10b)

The general solution of Eq. (3.1.10) is (Lee, 1959)

φ = C1 sin(k ln η) + C2 cos(k ln η) (3.1.11)

For a restrained beam with ends restrained against twisting, φ = 0 at
z = 0 and z = L. By solving this eigenvalue problem, the critical
buckling moment is given by

Mc =
δ

ln(1 + δ)
π
√
EI0GJ0

L
(3.1.12)

and the corresponding buckled shape is given by

φ = C sin
[

ln η

ln(1 + δ)
π

]
(3.1.13)

For a simply supported beam subjected to a concentrated load P at
the midspan, i.e., z = L/2, we have (Timoshenko and Gere, 1961)

Mx =
Pz

2
(3.1.14a)

and

Mz =
P

2
(u∗ − u) (3.1.14b)

where u∗ represents the lateral deflection of the centroid of the middle
cross-section and u the lateral deflection at any cross-section.

By substituting Eqs. (3.1.14a) and (3.1.14b) into Eqs. (3.1.1)
and (3.1.2), eliminating the lateral displacement u, and noting that
du∗/dz = 0, one obtains

d2φ

dz2
+

P 2z2

4EIyGJ
φ = 0 (3.1.15)

By letting η = z/L and using the notation

ζ =

√
P 2L4

4EIyGJ

Eq. (3.1.15) may be expressed as
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d2φ

dη2
+ ζ2η2φ = 0 (3.1.16)

The general solution for Eq. (3.1.16) is

φ =
√
η

[
C1J1/4

(
ζη2

2

)
+ C2J−1/4

(
ζη2

2

)]
(3.1.17)

where J1/4 and J−1/4 are Bessel functions of the first kind of order 1/4
and −1/4, respectively. The boundary conditions are

φ = 0 at η = 0 and
dφ

dη
= 0 at η =

1
2

(3.1.18)

By solving Eq. (3.1.17) together with the boundary conditions in Eq.
(3.1.18), one obtains

J−3/4 (ζ/8) = 0 ⇒ ζ

8
= 1.0585 ⇒ Pc =

16.94
L2

√
EIyGJ (3.1.19)

For a cantilever beam of length L and carrying a concentrated load
P at its tip (z = L), the governing equation and solution take similar
forms as (3.1.16) and (3.1.17) by defining

η = 1 − z

L
, ζ =

√
P 2L4

EIyGJ

The boundary conditions for the cantilever beam are

φ = 0 at η = 1 and
dφ

dη
= 0 at η = 0 (3.1.20)

By solving Eq. (3.1.17) subject to the boundary conditions in (3.1.20),
we obtain

J−1/4(ζ/2) = 0 ⇒ ζ

2
= 2.0063 ⇒ Pc =

4.0126
L2

√
EIyGJ

(3.1.21)

3.1.3 I-Beams

Consider a simply supported, monosymmetric I-beam subjected
to equal end moments M about the x-axis and axial load P acting
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through the centroidal axis as shown in Fig. 3.1(b). Note that the
sign conventions for P and M are adopted as follows: P is positive when
compressive and negative when tensile; M is positive for sagging moment
and negative for hogging moment.

The governing differential equations of minor axis bending and
torsion are, respectively, given by (Wang and Kitipornchai, 1989)

EIy
d4u

dz4
= − (M + Py0)

d2φ

dz2
− P

d2u

dz2
(3.1.22)

and (
GJ − Pr2

1 + Mβx
) dφ

dz
− EIw

d3φ

dz3
= M

du

dz
(3.1.23)

where EIy is the flexural rigidity about the minor axis; GJ the torsional
rigidity; EIw = EIyρ(1−ρ)h2 the warping rigidity; ρ = IyT /(IyT+IyB) =
IyT /Iy the degree of beam monosymmetry; IyT and IyB are the second
moments of area about the y-axis of the top flange and bottom flange,
respectively; y0 is the coordinate of the shear center; and βx is the
monosymmetric parameter defined as (Kitipornchai et al., 1986)

βx =
1
Ix

(∫
A
x2ydA +

∫
A
y3dA

)
− 2y0 (3.1.24)

where x, y are coordinates with respect to the centroid (see Fig. 3.1(b))
and r1 is the polar radius of gyration about the shear center

r2
1 =

Ix + Iy
A

+ y2
0 (3.1.25)

For beams restrained at the ends such that twist is prevented but
the ends are free to warp (i.e., φ = 0 and d2φ/dz2 = 0 at both ends),
u and φ take on half-sine waves. Therefore, Eqs. (3.1.22) and (3.1.23)
yield a closed-form solution for the critical values of P and M (Cuk and
Trahair, 1981; Trahair and Nethercot, 1984)

(M + Py0)
2 = r2

1PzPE

(
1 − P

PE

) (
1 − P

Pz
+

Mβz
r2
1Pz

)
(3.1.26)

where PE is the flexural Euler buckling load

PE =
π2EIy
L2

(3.1.27)
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and

Pz =
GJ

r2
1

(
1 +

π2EIw
GJL2

)
(3.1.28)

Using the following nondimensional parameters proposed by Wang
and Kitipornchai (1989)

ρ =
IyT

IyT + IyB
, K̄ =

√
π2EIyh2

4GJL2
, η =

4
h2

(
Ix + Iy

A

)
, v =

2y0

h
,

Λ =
P

PE
, λ =

[
−vΛ +

βx
h

(1 − Λ)
]
K̄, γ =

ML√
EIyGJ

(3.1.29)

where h is the distance between the centroids of the flanges and K̄ the
beam parameter, Eq. (3.1.26) may be rewritten as

γ = π

[
λ±

√
λ2 − v2K̄2Λ + (1 − Λ)

{
1 + K̄2 [4ρ(1 − ρ) − ηΛ]

}]
(3.1.30)

The exact closed-form expression of the nondimensional elastic buckling
moment given by Eq. (3.1.30) is rather compact and may be applied to
any monosymmetric beam-columns/tie-beams. Note that Eq. (3.1.30)
has two roots, one with the positive sign in front of the square root term
and the other with the negative sign.

The above general solution can be shown to reduce to the following
special cases:

Case 1: Buckling of Monosymmetric I-Beams under Equal End Moments

When there is no axial force (P = Λ = 0), Eq. (3.1.30) reduces to

γ = π

⎡
⎣βx
h
K̄ +

√
1 + 4ρ(1 − ρ)K̄2 +

(
βx
h
K̄

)2
⎤
⎦ (3.1.31)

In the case where the flanges are of equal size, ρ = 1/2 and βx = 0.
Thus, the critical buckling moment for a doubly symmetric I-beam under
equal end moments is given by (Kitipornchai and Dux, 1987; Timoshenko
and Gere, 1961; Trahair, 1977)

γ = π
√

1 + K̄2 (3.1.32)
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Case 2: Buckling of Doubly Symmetric Beam-Columns/Tie-Beams

For doubly symmetric columns in which ρ = 1/2 and βx = 0, Eq.
(3.1.30) reduces to (Kitipornchai and Wang, 1988)

γ = π
√

(1 − Λ)
[
1 + (1 − ηΛ)K̄2

]
(3.1.33)

Case 3: Buckling of Monosymmetric I-Columns

For I-columns under axial compressive load acting through the
centroidal axis, i.e., γ = 0, Eq. (3.1.30) furnishes the flexural–torsional
buckling load ratio Λ0 (Chajes and Winter, 1965; Pekoz and Winter,
1969; Vlasov, 1961)

Λ0 = χ1 ±
√
χ2

1 − χ2 (3.1.34)

in which

χ1 =
1
2

(
1 + χ2 +

v2

η

)
(3.1.35)

χ2 =
1 + 4ρ(1 − ρ)K̄2

ηK̄2
(3.1.36)

The lower root gives the buckling load for the column.
In the case of axial compressive load P acting at a distance e0

(positive in the y-direction) away from the centroidal axis, the eccentric
load can be replaced by a concentric load and a moment (Pe0). The
nondimensional buckling moment γ may now be expressed as

γ = −πΛK̄ε (3.1.37)

in which ε = 2e0/h is the eccentricity parameter. Combining Eqs.
(3.1.30) and (3.1.37) leads to Eq. (3.1.34) with

χ1 =
1
2

⎡
⎣1 + χ2 +

v2 + ε(ε− 2v)

η + ε
(
2v + 2βx

h − ε
)

⎤
⎦ (3.1.38)

and

χ2 =
1 + 4ρ(1 − ρ)K̄2[

η + ε
(
2v + 2βx

h − ε
)]

K̄2
(3.1.39)
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3.2 In-plane Buckling of Rings and Arches

3.2.1 Governing Equations

Consider thin, elastic, inextensible curved structural members
in static equilibrium with applied distributive forces. Since most
undeformed funicular shapes cannot be described by exact expressions,
their stability equations are also not exact. Thus, the only equilibrium
shape that yields exact stability criteria is the circular ring or arch
loaded by evenly distributed radial stress. How this stress behaves after
deformation is also important. For a constant hydrostatic pressure,
the stress is constant and is always normal to the deformed surface.
For tethered or elastically supported rings, the stresses vary with
displacement. In the literature, there seems to be an overemphasis on the
constant radially directed stress. Since such a stress state is unrealistic
(springs with one end attached to the center of a ring have the right
direction, but their magnitude would not be constant in deformation),
we shall ignore this situation and consider the stability of circular rings
or arches due to constant pressure only. Rings and arches can also be
regarded as long (two-dimensional) shells.

Figure 3.2 shows the equilibrium of an elemental segment of the ring
or arch. By balancing the forces in the normal and tangential directions,
we find

Tdθ − dS − q̄nds̄ = 0 (3.2.1)
q̄tds̄ + Sdθ + dT = 0 (3.2.2)

Here T is the tension, S the shear, q̄n and q̄t are the normal and tangential
stresses on the surface, θ is the local inclination, and s̄ the arc length. A
local moment balance gives

dM − Sds̄ = 0 (3.2.3)

The Euler–Bernoulli law yields

M = D
dθ

ds̄
(3.2.4)

where D is the flexural rigidity. Eliminating T , S and M from Eqs.
(3.2.1)–(3.2.4), the following nonlinear equilibrium equation is obtained

dθ

ds

d4θ

ds4
− d2θ

ds2

d3θ

ds3
+

[(
dθ

ds

)3

− qn

]
d2θ

ds2
+ qt

(
dθ

ds

)2

+
dqn
ds

dθ

ds
= 0 (3.2.5)
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Figure 3.2: Equilibrium of an elemental segment of a ring/arch.

where s = s̄/R is the normalized arc length, q = q̄R3/D the normalized
stress, and R is some length scale, usually the undeformed radius of
curvature.

The normalized Cartesian coordinates (x, y) are related to θ by

dx

ds
= cos θ,

dy

ds
= sin θ (3.2.6)

In the unbuckled state for a circular ring or arch, qt = 0 and

θ = s +
π

2
, x = cos s, y = sin s (3.2.7)

Depending on the assumed variation of qn and qt, Eq. (3.2.5) can be
linearized to yield the stability criterion as shown in the next section.

3.2.2 Circular Rings under Uniform Pressure

For circular rings under uniform pressure, we set qt = 0 and qn = −p
where p is the constant pressure. Let

θ = s +
π

2
+ ψ (3.2.8)

where ψ is a small perturbation. Eq. (3.2.5) linearizes to

d4ψ

ds4
+ (1 + p)

d2ψ

ds2
= 0 (3.2.9)

M

S

T

M + dM
S + dS

T + dT

q + dq

q qn

ds

qt
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For full rings the perturbation ψ must be 2π periodic in s, or

1 + p = N2 (3.2.10)

where N is a positive integer that denotes the number of full waves
formed around the ring. We discard the case for N = 1, which represents
a rigid translation. Thus, the critical pressure is p = 3 (N = 2, twofold
collapse of ring); see Lévy (1884). For large numbers of waves that might
be formed if the ring was restrained by a very stiff elastic medium, p is
approximately proportional to N2.

3.2.3 Circular Rings with Hinges

Figure 3.3 shows a circular ring with one weakened spot represented
by a hinge with a torsional restraint. The figure also represents a
weakened longitudinal seam on a long cylindrical shell.

The governing equation for the perturbed angle is given by Eq.
(3.2.9), which has the general solution

ψ = C1 + C2s + C3 cos (rs) + C4 sin (rs) (3.2.11)

with
r =

√
1 + p (3.2.12)

Let (ξ, η) denote the displacements

x = cos s + ξ(s), y = sin s + η(s) (3.2.13)

Figure 3.3: Circular ring with a hinge.

Hinge

p

Torsional
spring
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Equations (3.2.6) and (3.2.8) yield the linearized equations

dξ

ds
= −ψ cos s,

dη

ds
= −ψ sin s (3.2.14)

For symmetric buckling about the hinge, we retain only the odd terms
in Eq. (3.2.11). The other condition is that there are no vertical
displacements η at s = 0 and s = π, or

∫ π

0
ψ sin s ds = 0 (3.2.15)

This gives

C2π + C4
sin(rπ)
1 − r2

= 0 (3.2.16)

Now at the hinge, the total angle change is resisted by an additional
moment with a torsional spring constant k̄, i.e.,

D

(
dθ

ds̄
− 1

R

)
= k̄∆θ (3.2.17)

or in nondimensional terms as

dψ

ds
(π) + kψ(π) = 0 (3.2.18)

where k = k̄R/D is the nondimensional spring constant. Using the odd
form of ψ, Eq. (3.2.18) yields

C2(1 + 2kπ) + C4 [r cos(rπ) + 2 sin(rπ)] = 0 (3.2.19)

The characteristic equation for Eqs. (3.2.16) and (3.2.19) is

(1 + 2kπ) sin(rπ) + π(r2 − 1)[r cos(rπ) + 2k sin(rπ)] = 0 (3.2.20)

For a given k, the lowest r > 1 solution to Eq. (3.2.20) is sought. Then
the critical pressure p is obtained from Eq. (3.2.12). Numerical results
for p as a function of k are presented in Table 3.1.

When k = 0 the hinge has no torsional resistance, and the buckling
pressure agrees with that of Wang (1985). When k = ∞, the hinge is
absent, and the buckling pressure is that for the complete ring described
in Sec 3.2.2.
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Table 3.1: Critical pressure for the ring with a torsionally resistant
hinge.

k 0 0.5 1 2 4 10 20 ∞

p 1.3923 1.7770 2.0322 2.3331 2.5989 2.8210 2.9075 3

For the ring with N evenly placed hinges without torsional
resistance, Wang (1985) showed the characteristic equation is

πp
r

N
+ tan

(
π
r

N

)
= 0 (3.2.21)

For N = 1, 2, 3, Eq. (3.2.21) shows the critical pressure is 1.39232,
0.79897, and 2.05564, respectively. For two arbitrarily placed hinges on
a ring, Wang (1993) showed the characteristic equation is complicated
but is still exact. As the two hinges are separated, the critical pressure
increases from the one-hinge value of 1.39232, reaches a maximum at 3
(where the hinges are at the adjacent inflection points of the buckled
hingeless ring), and then decreases to the two-opposite-hinge value of
0.79897.

3.2.4 Circular Rings with Distributed Resistance

Consider a pressurized circular ring on an elastic (Winkler)
foundation. Using the perturbation displacements defined in Eq.
(3.2.13), the normal displacement is (ξ cos s + η sin s). Thus, the
linearized normal stress is

qn = −p− k (ξ cos s + η sin s) (3.2.22)

where k is the normalized spring constant (force per arc length). Eq.
(3.2.5) then linearizes to

d4ψ

ds4
+ (p + 1)

d2ψ

ds2
− k

d

ds
(ξ cos s + η sin s) = 0 (3.2.23)

We assume the buckled shape has N > 1 complete waves with the leading
harmonic being

ψ = C sin(Ns) (3.2.24)

Since due to periodicity
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η(0) = 0, ξ(0) = (ξ cos s + η sin s)|s=2π/N (3.2.25)

Eqs. (3.2.14) and (3.2.25) integrate out to be

ξ =
C

2

{
cos[(N − 1)s]

N − 1
+

cos[(N + 1)s]
N + 1

}
(3.2.26)

η = −C

2

{
sin[(N − 1)s]

N − 1
− sin[(N + 1)s]

N + 1

}
(3.2.27)

The substitution of Eqs. (3.2.24), (3.2.26) and (3.2.27) into Eq. (3.2.23)
gives

C sin(Ns)
(
−N2 + p + 1 − k

N2 − 1

)
= 0 (3.2.28)

or the critical pressure is

p = N2 − 1 +
k

N2 − 1
(3.2.29)

When k is zero, the critical pressure is 3 with N = 2 fold collapse.
For a larger spring constant k, the buckling pressure increases and may
correspond to a higher fold collapse. We find N -fold collapse occurs
when

N(N2 − 1)(N − 2) < k < N(N2 − 1)(N + 2) (3.2.30)

For a given k, we first determine N from Eq. (3.2.30) and then p from
Eq. (3.2.29). It is to be noted that this criterion is also valid for the
buckling of tethered rings under external pressure (Wang et al., 1983).

3.2.5 General Circular Arch

Arches differ from complete rings in the sense that the arch base is
restricted. A pressurized circular arch with opening angle 2α and general
rotational restraints at the base is shown in Fig. 3.4. The general solution
is given by Eq. (3.2.11) subjected to restraint conditions similar to Eq.
(3.2.18)

dψ

ds
(α) + k1ψ(α) = 0 (3.2.31)

dψ

ds
(−α) − k2ψ(−α) = 0 (3.2.32)
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Figure 3.4: A pressurized circular arch.

where k1 and k2 are normalized torsional spring constants. The
immovability of the base requires η(α) = η(−α) = 0 and ξ(α) = ξ(−α) =
0 or ∫ α

−α
ψ sin s ds = 0 (3.2.33)∫ α

−α
ψ cos s ds = 0 (3.2.34)

These integrals also assure the inextensibility condition. These four
conditions determine the following general characteristic equation for
the buckling pressure:∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 k1α + 1 k1 cos(rα) − r sin(rα) k1 sin(rα) + r cos(rα)
−k2 k2α + 1 −k2 cos(rα) + r sin(rα) k2 sin(rα) + r cos(rα)

2 sinα 0 1
r−1 sin[α(r − 1)] 0

+ 1
r+1 sin[α(r + 1)]

0 2 sinα 0 1
r−1 sin[α(r − 1)

−2α cosα − 1
r+1 sin[α(r + 1)]

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(3.2.35)
In the special case of one base fixed and one base hinged, we set k1 = ∞
and k2 = 0. The characteristic equation reduces to

[−2r cos(rα) sinα + 2 cosα sin(rα)]

×
{
−r cos(rα) sinα +

[
cosα + α(r2 − 1) sinα

]
sin(rα)

}
− (r2 − 1)(α cosα− sinα){

[
1 + (2r2 − 1) cos(2rα)

]
× sinα− r cosα sin(2rα)} = 0 (3.2.36)

2a

p

Torsional
springs

k2

k1
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The results are presented in Table 3.2. We note that the critical pressure
for an opening angle of 2π has the same value as the symmetric buckling
of a ring with a free hinge.

Table 3.2: Critical pressure for arch with one base fixed and
one base hinged.

2α 30◦ 60◦ 90◦ 120◦ 150◦

p 205.00 50.701 22.135 12.145 7.5322

2α 180◦ 225◦ 270◦ 315◦ 360◦

p 5.0401 3.0343 2.0064 1.5056 1.3923

3.2.6 Symmetrical Circular Arch

Circular arches with symmetrical boundary conditions were
considered by previous authors (e.g., Timoshenko and Gere, 1961; Oran
and Reagan, 1969). Due to symmetry of the prebuckling geometry,
the arch buckles either symmetrically or antisymmetrically. This fact
simplifies greatly the stability analysis. Of course one should always
check the buckling pressures for both forms in order to determine the
lowest critical pressure.

For symmetrical buckling, the perturbation angle ψ is odd in the arc
length s and thus we can set

ψ = C2s + C4 sin(rs) (3.2.37)

From Eq. (3.2.14) the vertical displacement η is also odd in s. Thus
η(0) = η(α) = 0 or ∫ α

0
ψ sin s ds = 0 (3.2.38)

By integrating Eq. (3.2.38), we obtain

C2(sinα− α cosα) + C4[cosα sin(rα) − r sinα cos(rα)]/(r2 − 1) = 0
(3.2.39)

On the other hand, if the buckling is antisymmetrical, we set

ψ = C1 + C3 cos(rs) (3.2.40)
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By noting that ξ is odd and ξ(0) = ξ(α) = 0, we have

∫ α

0
ψ cos s ds = 0 (3.2.41)

or

C1 sinα + C3[r cosα sin(rα) − sinα cos(rα)]/(r2 − 1) = 0 (3.2.42)

Now consider the arch with symmetrical torsional springs at the base.
The boundary condition is

dψ

ds
(α) + kψ(α) = 0 (3.2.43)

If the buckling is symmetric, Eq. (3.2.43) gives

C2(1 + kα) + C4[r cos(rα) + k sin(rα)] = 0 (3.2.44)

Together with Eq. (3.2.39), the characteristic equation is

(r2 − 1)[r cos(rα) + k sin(rα)](sinα− α cosα)−
(1 + kα)[cosα sin(rα) − r sinα cos(rα)] = 0

(3.2.45)

Similarly, if the buckling is antisymmetric, Eq. (3.2.43) gives

C1k + C3[k cos(rα) − r sin(rα)] = 0 (3.2.46)

This, with Eq. (3.2.42), yields

(r2 − 1) sinα[r sin(rα)/k − cos(rα)] + r cosα sin(rα) − sinα cos(rα) = 0
(3.2.47)

For an arch with torsional springs at the base, we find the antisymmetric
buckling mode prevails, except for an arch with a very large opening
angle for which the symmetric mode yields the lowest critical pressure.
Critical pressures for the antisymmetric mode are presented in Table 3.3.
The results in Table 3.3 are an extension of those given by Timoshenko
and Gere (1961) for the case where the base is hinged (k = 0) and the
case where the base is fixed (k = ∞).

For k = 0 Eq. (3.2.47) reduces to

sin(rα) = 0 (3.2.48)
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giving the exact value

p =
π2

α2
− 1 (3.2.49)

The critical pressure tends to zero as the opening angle approaches 360◦.
But we cannot accept zero buckling pressure, since it only represents a
rigid rotation. When k = ∞ the characteristic equation reduces to

cosα sin(rα) − r sinα cos(rα) = 0 (3.2.50)

For general k, Oran and Reagan (1969) gave some graphical results.
In Table 3.3 the critical pressure for the 2α = 360◦ column should be
replaced by the lower symmetric buckling value given in Table 3.1, which
is for a ring with a single torsional hinge. A closer study shows the switch
from antisymmetric mode to symmetric mode occurs when the opening
angle is between 325◦ and 360◦. A typical comparison is shown in Table
3.4 for k = 1, where the switch occurs at slightly larger than 330◦.

Table 3.3: Critical pressure for arch with torsional springs
at the base, antisymmetric mode.

k 2α = 30◦ 60◦ 90◦ 120◦ 150◦

0.0 143.00 35.000 15.000 8.0000 4.7600
0.5 146.77 36.888 16.280 8.9924 5.5967
1.0 150.40 38.633 17.417 9.8394 6.2822
2.0 157.23 41.742 19.333 11.191 7.3172
4.0 169.42 46.725 22.118 12.983 8.5744
10 196.86 55.692 26.319 15.325 10.028
20 224.24 62.282 28.863 16.564 10.722
∞ 294.26 73.327 32.431 18.138 11.548

k 2α = 180◦ 225◦ 270◦ 315◦ 360◦

0.0 3.0000 1.5600 0.7778 0.3061 0 or 3*
0.5 3.7523 2.2761 1.5767 1.5059 3*
1.0 4.3425 2.7986 2.1054 2.1362 3*
2.0 5.1842 3.4746 2.7002 2.6283 3*
4.0 6.1211 4.1274 3.1731 2.8986 3*
10 7.0910 4.7028 3.5182 3.0360 3*
20 7.5174 4.9294 3.6399 3.0818 3*
∞ 8.0000 5.1709 3.7627 3.1260 3*

* Buckling occurs with a symmetric mode.
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Table 3.4: Comparison of antisymmetric and symmetric buckling
pressures for the case k = 1.

2α 315◦ 320◦ 330◦ 340◦ 350◦ 360◦

pantisym 2.1362 2.2105 2.4231 2.7014 2.9289 3.0000
psym 2.6864 2.5965 2.4307 2.2823 2.1498 2.0322

3.2.7 Symmetrical Arches with a Central Torsional Hinge

Figure 3.5 shows a symmetrical arch with torsionally resistant base
and a central torsional hinge. This situation models closed curved doors
under external pressure.

Since the prebuckling geometry is symmetric, the buckling analysis
can be simplified to the study of antisymmetric and symmetric modes.
The condition at the center is similar to Eq. (3.2.17)

D

(
dθ

ds
− 1

R

)
= k̄1∆θ (3.2.51)

We note the antisymmetric solution of the previous section, Eq. (3.2.40),
is even. Thus, the moment (derivative of ψ) is automatically zero at the
center, and due to continuity, the difference in the local angles is also
zero there. Thus, Eq.(3.2.51) is automatically satisfied and we can use
Table 3.3 as the buckling pressure for the antisymmetric mode for the
present problem.

Figure 3.5: A symmetrical arch with torsionally resistant base and a
central torsional hinge.
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For the symmetric mode, we cannot assume ψ is odd since it has a
discontinuity at the center. The full form of Eq. (3.2.11) must be used.
The boundary conditions are: the perturbed Eq. (3.2.51)

dψ

ds
(0) − k1ψ(0) = 0, k1 = 2k̄1R/D (3.2.52)

the vertical displacement condition Eq. (3.2.38), the base torsional
spring condition Eq. (3.2.43), and the zero horizontal force condition
at the center

(S sin θ + T cos θ)|s=0 = 0 (3.2.53)

Using Eqs. (3.2.1), (3.2.3), (3.2.4) and (3.2.8), the perturbed Eq. (3.2.53)
can be expressed as

d2ψ

ds2
(0) + pψ(0) = 0 (3.2.54)

The four boundary conditions give the following characteristic equation

∣∣∣∣∣∣∣∣
−k1 1 −k1 r

1 − cosα sinα− α cosα β1 β2

k kα + 1 k cos(rα) − r sin(rα) k sin(rα) + r cos(rα)
r2 − 1 0 −1 0

∣∣∣∣∣∣∣∣
= 0 (3.2.55a)

where
β1 =

cosα cos(rα) + r sinα sin(rα) − 1
r2 − 1

β2 =
cosα sin(rα) − r sinα cos(rα)

r2 − 1

(3.2.55b)

The results for a free hinge at the center (k1 = 0) and various base spring
constants k are shown in Table 3.5.

The values for the case when k is zero (the three-hinged arch)
and when k is infinity (the one-hinged arch) extend those given by
Timoshenko and Gere (1961). Comparison of Table 3.5 and Table
3.3 shows the symmetric mode prevails, except the cases which have
asterisked values. This change in mode for the three-hinged arch is also
noted in Farshad (1994). Actually, there is a range of high opening
angles and small spring constants where the antisymmetric mode gives
the critical pressure.
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3.3 Flexural–Torsional Buckling of Arches under
Equal End Moments

Consider the flexural–torsional buckling problem of a simply
supported, circular arch of radius R and arc length L subjected to two
equal and opposite end moments M , as shown in Fig. 3.6. For an I-
section arch, Papangelis and Trahair (1987) derived a solution using half
waves for the lateral displacement u and the angle of twist φ

u = C1 sin
πs

L
, φ = C2 sin

πs

L
(3.3.1)

where s is the distance along the center line of the arch. The critical
flexural–torsional buckling moment Mc of the arch may be expressed as

Mc

M0
=

ba3

2
− a

2b
− ab +

√(
ba3

2
− a

2b
− ab

)2

+ (1 − a2)2 (3.3.2)

Table 3.5: Buckling pressure for an arch with a free hinge at the center
and torsional springs at the base (symmetric mode).

k 2α = 30◦ 60◦ 90◦ 120◦ 150◦

0.0 108.36 27.077 12.025 6.7578 4.3216
0.5 109.37 27.584 12.366 7.0195 4.5381
1.0 110.36 28.056 12.673 7.2459 4.7185
2.0 112.21 28.905 13.198 7.6165 5.0005
4.0 115.56 30.304 13.996 8.1385 5.3711
10 123.37 33.017 15.336 8.9181 5.8719
20 131.80 35.294 16.287 9.4083 6.1585
∞ 160.43 40.212 17.952 10.165 6.5647

k 2α = 180◦ 225◦ 270◦ 315◦ 360◦

0.0 3.0000 1.9227* 1.3438* 1.0040* 0.7990
0.5 3.1891 2.0894 1.5027 1.1673 0.9807
1.0 3.3405 2.2147 1.6137 1.2713 1.0826
2.0 3.5666 2.3887 1.7561 1.3930 1.1882
4.0 3.8446 2.5828 1.9001 1.5034 1.2724
10 4.1887 2.7967 2.0425 1.6015 1.3392
20 4.3711 2.8998 2.1058 1.6420 1.3648
∞ 4.6138 3.0275 2.1800 1.6874 1.3923

* The antisymmetric mode has lower buckling pressure.
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Figure 3.6: Circular arch under equal end moments.

in which

a =
L

πR
, b =

πM0

PyL
, M0 =

√
Py

(
GJ +

π2EIw
L2

)
, Py =

π2EIy
L2

(3.3.3)
and Py is the flexural buckling load of a straight column, EIw = EIyh

2/4
the warping rigidity, and h the height of the I-beam section. For a
straight beam (R = ∞), Eq. (3.3.2) reduces to Eq. (3.1.32). For a
narrow rectangular beam, the critical buckling moment is given by Eq.
(3.3.2) with the warping section constant Iw = 0.

Note that the resulting exact solution differs from the one presented
in Eq. (7.33) of Timoshenko and Gere (1961). The reason for this
difference is due to the fact that Timoshenko and Gere (1961) neglected
the internal torsional component in the principal yz-plane and the
internal bending component in the direction of the arch centerline in
deriving the equilibrium equations. According to Y. L. Pi (University
of New South Wales, Australia), the improved equilibrium equations
corresponding to Eq. (g) of Timoshenko and Gere (1961) should be

φM0 = EIx

(
φ

R
− d2v

ds2

)
+ C

(
dφ

ds
+

1
R

dv

ds

)
1
R

(3.3.4)

M0
dv

ds
= −EIx

(
φ

R
− d2v

ds2

)
1
R

+ C

(
dφ

ds
+

1
R

dv

ds

)
(3.3.5)

where C is the torsional rigidity and v the lateral displacement.

R

L

M M°° °°
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CHAPTER 4

BUCKLING OF PLATES

4.1 Preliminary Comments
The objective of this chapter is to summarize the equations governing

buckling of elastic plates and then present exact buckling loads for
plates of various geometries (e.g., circular, triangular and rectangular).
For the derivation of the governing equations, the reader may consult
Timoshenko and Woinowsky-Krieger (1970), Bulson (1970), McFarland
et al. (1972), Szilard (1974), Panc (1975), Ugural (1981) and Reddy
(1999, 2002, 2004). Much of the material included here is taken from the
textbook by Reddy (1999).

4.2 Governing Equations in Rectangular Coordinates
We consider the classical thin plate theory (CPT), which is based on

the Kirchhoff hypothesis:

(a) Straight lines perpendicular to the mid-surface (i.e., transverse
normals) before deformation remain straight after deformation.

(b) The transverse normals do not experience elongation (i.e., they are
inextensible).

(c) The transverse normals rotate such that they remain perpendicular
to the mid-surface after deformation.

The consequence of the Kirchhoff hypothesis is that the transverse
strains (γxz, γyz, εzz) are zero, and consequently, the transverse stresses
(σxz, σyz, σzz) do not enter the theory.

The equation governing buckling of plates under inplane compressive
and shear forces is

∂2Mxx

∂x2
+ 2

∂2Mxy

∂y∂x
+

∂2Myy

∂y2
=

∂

∂x

(
N̂xx

∂w

∂x
+ N̂xy

∂w

∂y

)

+
∂

∂y

(
N̂xy

∂w

∂x
+ N̂yy

∂w

∂y

)
(4.2.1)

where (Mxx,Myy) are the bending moments per unit length, Mxy is the
twisting moment per unit length, and (N̂xx, N̂yy, N̂xy) are the applied
inplane compressive and shear forces measured per unit length (see Fig.
4.1).
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Figure 4.1: Applied inplane forces and moments in a plate element.

Equation (4.2.1) must be solved in conjunction with boundary
conditions that may be classified as essential and natural:

Essential: w,
∂w

∂n
; Natural: Vn, Mnn

where

Vn ≡ Qn +
∂Mns

∂s
−
(
N̂xx

∂w

∂x
+ N̂xy

∂w

∂y

)
nx

−
(
N̂xy

∂w

∂x
+ N̂yy

∂w

∂y

)
ny (4.2.2)

Qn ≡ (Mxx,x + Mxy,y)nx + (Myy,y + Mxy,x)ny (4.2.3)
Mnn = n2

xMxx + n2
yMyy + 2nxnyMxy (4.2.4)

Mns = (Myy −Mxx)nxny + (n2
x − n2

y)Mxy (4.2.5)

and (nx, ny) are the direction cosines of the unit outward normal vector
n̂ that is oriented at an angle θ from the positive x-axis; hence, its
direction cosines are: nx = cos θ and ny = sin θ. Thus, at every boundary
point one must know one element in each of the two pairs: (w, Vn) and
(∂w/∂n,Mnn).

Next we discuss some common types of boundary conditions for a
rectangular plate with edges parallel to the x- and y-axes. Here we use
the edge at y = 0 (nx = 0 and ny = −1) to discuss the boundary
conditions. It should be noted that only one element of each of the
two pairs may be specified on an edge of a plate. The force boundary
conditions may be expressed in terms of the generalized displacements
using the plate constitutive equations discussed in the sequel.

z

y

x

Myy

Qx

Nxx

Nyy

Mxx

Mxy

Qy

Qn
Nnn

Nns
Mns

Mxy

Nxy

Nxy

Mnn

© 2005 by CRC Press LLC



Free edge, y = 0: A free edge is one which is geometrically not
restrained in any way. Hence, we have

Vy ≡ Qy +
∂Mxy

∂x
−
(
N̂xy

∂w

∂x
+ N̂yy

∂w

∂y

)
= 0, Myy = 0 (4.2.6)

Fixed (or clamped) edge, y = 0: A fixed edge is one that is
geometrically fully restrained, i.e.,

w = 0,
∂w

∂y
= 0 (4.2.7)

Simply supported edge, y = 0: A simply supported edge is defined
as one in which the transverse deflection and normal bending moment
are zero:

w = 0, Myy = 0 (4.2.8)

For an orthotropic material with principal materials axes (x1, x2, x3)
coinciding with the plate coordinates (x, y, z), the bending moments are
related to the deflection w(x, y) as follows:

⎧⎨
⎩
Mxx

Myy

Mxy

⎫⎬
⎭ = −

⎡
⎣D11 D12 0
D12 D22 0
0 0 D66

⎤
⎦
⎧⎪⎪⎨
⎪⎪⎩

∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y

⎫⎪⎪⎬
⎪⎪⎭ (4.2.9a)

D11 =
E1h

3

12(1 − ν12ν21)
, D12 = ν21D11

D22 =
E2

E1
D11 , D66 =

G12h
3

12

(4.2.9b)

The equation of equilibrium (4.2.1) can be expressed in terms of
displacement (w) by substituting for the moments from Eq. (4.2.9a).
For homogeneous plates (i.e., for plates with constant Ds), the equation
of equilibrium takes the form

D11
∂4w

∂x4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ D22

∂4w

∂y4

+
∂

∂x

(
N̂xx

∂w

∂x
+ N̂xy

∂w

∂y

)
+

∂

∂y

(
N̂xy

∂w

∂x
+ N̂yy

∂w

∂y

)
= 0 (4.2.10)
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4.3 Governing Equations in Polar Coordinates

The equations governing circular plates may be obtained using the
transformation relations (x = r cos θ, y = r sin θ) between the polar
coordinates (r, θ) and the rectangular Cartesian coordinates (x, y) (see
Fig. 4.2). With the help of the transformation relations, one can write
the equation of equilibrium (4.2.1) governing the buckling of a circular
plate as

1
r

[
∂

∂r
(rQr) +

∂Qθ

∂θ
− ∂

∂r

(
rN̂rr

∂w

∂r

)
− 1

r

∂

∂θ

(
N̂θθ

∂w

∂θ

)]
= 0 (4.3.1)

where (Qr, Qθ) are the shear forces, (Mr,Mθ,Mrθ) are the bending
moments, and (N̂rr, N̂θθ, N̂rθ) are the inplane compressive forces (see
Fig. 4.3)

Qr =
1
r

[
∂

∂r
(rMrr) +

∂Mrθ

∂θ
−Mθθ

]
(4.3.2)

Qθ =
1
r

[
∂

∂r
(rMrθ) +

∂Mθθ

∂θ
+ Mrθ

]
(4.3.3)

Mrr = −
[
D
∂2w

∂r2
+ ν

1
r

(
∂w

∂r
+

1
r

∂2w

∂θ2

)]
(4.3.4a)

Mθθ = −
[
ν
∂2w

∂r2
+ D

1
r

(
∂w

∂r
+

1
r

∂2w

∂θ2

)]
(4.3.4b)

Mrθ = − (1 − ν)D
1
r

[
∂2w

∂r∂θ
− 1

r

∂w

∂θ

]
(4.3.4c)

The natural (force) boundary conditions can be expressed as

V̄n ≡ Vn −
[
N̂rr

∂w

∂r
nr +

1
r
N̂θθ

∂w

∂θ
nθ + N̂rθ

(
1
r

∂w

∂θ
nr +

∂w

∂r
nθ

)]
(4.3.5)

where

Vn = Qn +
∂Mns

∂s
, Vr = Qr +

1
r

∂Mrθ

∂θ
, Vθ = Qθ +

∂Mrθ

∂r
(4.3.6)

© 2005 by CRC Press LLC



Figure 4.2: Transformation between rectangular and polar coordinate
systems.

Figure 4.3: Moments and shear forces on an element of a circular plate.
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The boundary conditions for circular plates involve specifying one
quantity in each of the following pairs on positive r- and θ-planes:

At r = r̂, constant:

w = ŵ or r̂V̄r = r̂ ˆ̄V r (4.3.7a)
∂w

∂r
=

∂ŵ

∂r
or r̂Mrr = r̂M̂rr (4.3.7b)

At θ = θ̂, constant:

w = ŵ or V̄θ = ˆ̄V θ (4.3.8a)
1
r

∂w

∂θ
=

1
r

∂ŵ

∂θ
or Mθθ = M̂θθ (4.3.8b)

where

V̄r = Qr +
1
r

∂Mrθ

∂θ
− N̂rr

∂w

∂r
− 1

r
N̂rθ

∂w

∂θ
(4.3.9a)

V̄θ = Qθ +
∂Mrθ

∂r
− 1

r
N̂θθ

∂w

∂θ
− N̂rθ

∂w

∂r
(4.3.9b)

The moments are related to the deflection w by

Mrr = −
[
D11

∂2w

∂r2
+ D12

1
r

(
∂w

∂r
+

1
r

∂2w

∂θ2

)]
(4.3.10a)

Mθθ = −
[
D12

∂2w

∂r2
+ D22

1
r

(
∂w

∂r
+

1
r

∂2w

∂θ2

)]
(4.3.10b)

Mrθ = − 2D66
1
r

[
∂2w

∂r∂θ
− 1

r

∂w

∂θ

]
(4.3.10c)

For isotropic plates, we set D11 = D22 = D, D12 = νD and
2D66 = (1 − ν)D, and the bending moment–deflection relationships
(4.3.10a–c) reduce to

Mrr = −D

[
∂2w

∂r2
+

ν

r

(
∂w

∂r
+

1
r

∂2w

∂θ2

)]
(4.3.11a)

Mθθ = −D

[
ν
∂2w

∂r2
+

1
r

(
∂w

∂r
+

1
r

∂2w

∂θ2

)]
(4.3.11b)

Mrθ = − (1 − ν)D
1
r

(
∂2w

∂r∂θ
− 1

r

∂w

∂θ

)
(4.3.11c)
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Equation of equilibrium (4.3.4) for an isotropic plate can be written
in terms of the displacement with the aid of Eqs. (4.3.11a–c) as

D

[
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2

] [
1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2

∂2w

∂θ2

]

= −1
r

∂

∂r

(
rN̂rr

∂w

∂r

)
− 1

r2

∂

∂θ

(
N̂θθ

∂w

∂θ

)
(4.3.12)

Using the Laplace operator

∇2 =
1
r

∂

∂r

(
r
∂

∂r

)
+

1
r2

∂2

∂θ2
(4.3.13)

Equation (4.3.12) can be written simply as

D∇2∇2w +
1
r

∂

∂r

(
rN̂rr

∂w

∂r

)
+

1
r2

∂

∂θ

(
N̂θθ

∂w

∂θ

)
= 0 (4.3.14)

For axisymmetric buckling of circular plates, all variables are
independent of the angular coordinate θ, and they are only functions of
the radial coordinate r. Hence, in specializing the governing equations
to the axisymmetric case, we omit terms involving differentiation
with respect to θ. First, the moment–deflection relationships for the
axisymmetric case are

Mrr = −
(
D11

d2w

dr2
+ D12

1
r

dw

dr

)
(4.3.15a)

Mθθ = −
(
D12

d2w

dr2
+ D22

1
r

dw

dr

)
(4.3.15b)

Qr = −D11
1
r

d

dr

(
r
d2w

dr2

)
+ D22

1
r2

dw

dr
(4.3.16)

Next, the equation of equilibrium for the axisymmetric case can be
deduced from Eq. (4.3.4) as

−1
r

d

dr
(rQr) +

1
r

d

dr

(
rN̂rr

dw

dr

)
= 0 (4.3.17)
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Using Eq. (4.3.16) for rQr in Eq. (4.3.17), we find that

D11
1
r

d

dr

{
r
d

dr

[
1
r

d

dr

(
r
dw

dr

)]
+
(
D11 −D22

D11

)
1
r

dw

dr

}

+
1
r

d

dr

(
rN̂rr

dw

dr

)
= 0 (4.3.18)

For isotropic plates [D11 = D22 = D], Eqs. (4.3.15a, b) and (4.3.16)
become

Mrr = −D

(
d2w

dr2
+

ν

r

dw

dr

)
(4.3.19a)

Mθθ = −D

(
ν
d2w

dr2
+

1
r

dw

dr

)
(4.3.19b)

Qr = −D
d

dr

[
1
r

d

dr

(
r
dw

dr

)]
(4.3.19c)

and the equilibrium equation (4.3.18) simplifies to

D

r

d

dr

{
r
d

dr

[
1
r

d

dr

(
r
dw

dr

)]}
+

1
r

d

dr

(
rN̂rr

dw

dr

)
= 0 (4.3.20)

The boundary conditions involve specifying

w or r

(
Qr − N̂rr

dw

dr

)
(4.3.21a)

and
dw

dr
or rMrr (4.3.21b)

4.4 Circular Plates

4.4.1 General Solution for Axisymmetric Buckling

Here we consider exact buckling solutions of circular plates. Consider
the shear force–deflection relation (4.3.16):

Qr = −D11
1
r

d

dr

(
r
d2w

dr2

)
+ D22

1
r2

dw

dr
(4.4.1)

We write the equation in terms of φ = (dw/dr), which represents the
angle between the central axis of the plate and the normal to the deflected
surface at any point (see Fig. 4.4), as
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Figure 4.4: Buckling of a circular plate under a uniform radial
compressive load.

Qr = −D11
1
r

d

dr

(
r
dφ

dr

)
+ D22

φ

r2
(4.4.2)

For a circular plate under the action of uniform radial compressive
force N̂rr per unit length, the shear force at any point is given by [an
integration of Eq. (4.3.17) gives the result, because Qr = 0 at r = 0 for
an axisymmetric mode]

Qr = N̂rr
dw

dr
= N̂rrφ (4.4.3)

so that the equilibrium equation (4.3.17) can be written as

−D11
1
r

d

dr

(
r
dφ

dr

)
+

D22

r2
φ = N̂rrφ

or

r
d

dr

(
r
dφ

dr

)
+

(
N̂rr

D11
r2 − D22

D11

)
φ = 0 (4.4.4)

Equation (4.4.4) can be recast in an alternative form by invoking the
transformation

r

θ
O

ra

h

r a  a 

z ,w0 (r)

N0N0
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r̄ = r

√
N̂rr

D11
, n2 =

D22

D11
(4.4.5)

and the alternative form is

r̄
d

dr̄

(
r̄
dφ

dr̄

)
+
(
r̄2 − n2

)
φ = 0 (4.4.6)

which is recognized as Bessel’s differential equation.
The general solution of Eq. (4.4.6) is

φ(r̄) = C1Jn(r̄) + C2Yn(r̄) (4.4.7)

where Jn is the Bessel function of the first kind of order n, Yn is the Bessel
function of the second kind of order n, and C1 and C2 are constants to be
determined using the boundary conditions. In the case of buckling, we
do not actually find these constants but determine the stability criterion.
We consider different boundary conditions next.

4.4.2 Axisymmetric Buckling of Clamped Plates

For a clamped plate with radius a, the boundary conditions are
(dw/dr is zero at r = 0, a)

φ(0) = 0, φ(a) = 0 (4.4.8)

Using the general solution (4.4.7) for an isotropic (n = 1) plate, we
obtain

C1J1(0)+C2Y1(0) = 0, C1J1(αa)+C2Y1(αa) = 0, α2 =
N̂rr

D
(4.4.9)

Since Y1(0) is unbounded, we must have C2 = 0. The fact that J1(0) = 0
reduces the two equations in (4.4.9) to the single condition (since C1 �= 0
for a nontrivial solution)

J1(αa) = 0 (4.4.10)

which is the stability criterion. The smallest root of the condition in
(4.4.10) is αa = 3.8317. Thus, we have

N̂cr = 14.682
D

a2
(4.4.11)
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4.4.3 Axisymmetric Buckling of Simply Supported Plates

For a simply supported plate, the boundary conditions are (dw/dr
is zero at r = 0 and Mrr = 0 at r = a)

φ(0) = 0,
[
D11

dφ

dr
+ D12

1
r
φ

]
r=a

= 0 (4.4.12a)

The second boundary condition can be written in terms of r̄ as[
D11

dφ

dr̄
+ D12

1
r̄
φ

]
r̄=αa

= 0 (4.4.12b)

Using the general solution (4.4.7) for an isotropic plate, we obtain

C1J1(0) + C2Y1(0) = 0

C1J
′
1(αa) + C2Y

′
1(αa) +

ν

αa
[C1J1(αa) + C2Y1(αa)] = 0

(4.4.13)

The first equation gives C2 = 0, and the second equation, in view of
C2 = 0 and the identity

dJn
dr̄

= Jn−1(r̄) − 1
r̄
Jn(r̄) (4.4.14)

gives
αaJ0(αa) − (1 − ν)J1(αa) = 0 (4.4.15)

which defines the stability criterion. For ν = 0.3, the smallest root of
the transcendental equation (4.4.15) is αa = 2.05. Hence, the buckling
load becomes

N̂cr = 4.198
D

a2
(4.4.16)

4.4.4 Axisymmetric Buckling of Simply Supported Plates
with Rotational Restraint

For a simply supported plate with rotational restraint (see Fig. 4.5),
the boundary conditions are

φ(0) = 0,
[
rD11

dφ

dr
+ D12φ

]
r=a

+ KRaφ(a) = 0 (4.4.17)

where KR denotes the rotational spring constant. For an isotropic plate,
we obtain (Reismann, 1952; Kerr, 1962)
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Figure 4.5: Buckling of a rotationally restrained circular plate under
a uniform radial compressive load.

αaJ ′
0(αa) − (1 − ν − β)J1(αa) = 0, β =

aKR

D
(4.4.18)

which is the stability criterion. When β = 0 we obtain Eq. (4.4.15),
and when β = ∞, we obtain Eq. (4.4.10) as special cases. Table 4.1
contains exact values of the buckling load factor N̄ = N̂cr(a2/D) for
various values of the parameter β (for ν = 0.3). Additional results can
be found in the paper by Thevendran and Wang (1996).

Table 4.1: Critical buckling load factors N̄ = N̂cr(a2/D) for
rotationally restrained circular plates.

β 0 0.1 0.5 1 5 10 100 ∞

N̄ 4.198 4.449 5.369 6.353 10.462 12.173 14.392 14.682

4.4.5 General Solution for Nonaxisymmetric Buckling

Consider a circular plate of radius a subjected to a uniform radial
compressive load N̂ . The buckling equation is given by (4.3.12) with
N̂rr = N̂θθ = N̂ . The general solution is sought in the form

w(r, θ) = w(r) cosnθ (4.4.19)

r

θ
O

ra

h

r a  a 

z ,w0 (r)

N0N0
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where n is the number of nodal diameters. Using the nondimensional
quantities r̄ = (r/a) and w̄ = (w/a), the general solution can be written
as

w̄ = C1Jn(kr̄) + C2Yn(kr̄) + C3r̄
n + C4

{
log r̄
r̄−n

}
(4.4.20)

where k2 = N̂a2/D and Ci are constants to be determined subject to the
boundary conditions. In Eq. (4.4.20), the top part of the coefficient C4

is used for n = 0 (axisymmetric solution) and the bottom part is used
for n �= 0 (nonaxisymmetric).

4.4.6 Buckling of Plates with Internal Ring Support

Consider a solid circular plate of radius a with an internal concentric
ring support of radius b (Wang and Wang, 2001). Suppose that the edge
r = a (or r̄ = 1) is rotationally restrained, as shown in Fig. 4.6.

The general solution (4.4.20) is valid in both regions, 0 < r < b
and b < r < a, with the solutions w̄I and w̄II from the two regions
s < r̄ < 1 (outer region) and 0 < r̄ < s (inner region), respectively,
being continuous at r̄ = s, where s denotes the ratio s = b/a. Thus, we
have the following continuity conditions

w̄I(s) = w̄II(s), w̄
′
I(s) = w̄

′
II(s), w̄

′′
I (s) = w̄

′′
II(s) (4.4.21)

Figure 4.6: Buckling of a rotationally restrained circular plate with
internal concentric ring support.

r

θ
O
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h

r
2b
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z,w0(r)
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The boundary conditions of the plate are

w̄I(1) = 0, w̄I(s) = 0, w̄
′′
I (1) + (ν + β)w̄

′
I(1) = 0 (4.4.22)

where β = (KRa/D). The solution (4.4.20) is valid in region I:

w̄I = C1Jn(kr̄) + C2Yn(kr̄) + C3r̄
n + C4

{
log r̄
r̄−n

}
(4.4.23)

Use of the boundary conditions (4.4.22) (all of which apply to
the solution in region I) in the general solution (4.4.23) results in the
following set of equations:

C1Jn(k) + C2Yn(k) + C3 + C4

{
0
1

}
= 0 (4.4.24a)

C1

[
k2J

′′
n (k) + λkJ

′
n(k)

]
+ C2

[
k2Y

′′
n (k) + λkY

′
n(k)

]

+C3n(n− 1 + λ) + C4

{
λ− 1

n(n + 1 − λ)

}
= 0 (4.4.24b)

C1Jn(ks) + C2Yn(ks) + C3s
n + C4

{
log s
s−n

}
= 0 (4.4.24c)

where λ = ν + β.
The general solution (4.4.20) for region II can be simplified using

the symmetry conditions, namely, the vanishing of the slope and shear
force at r̄ = 0. These conditions require, to eliminate singularity in the
solution, C2 = C4 = 0 in Eq. (4.4.20) for region II:

w̄II = C5Jn(kr̄) + C6r̄
n (4.4.25)

Using Eqs. (4.4.23) and (4.4.25) in the continuity conditions (4.4.21),
we obtain

C5Jn(ks) + C6s
n = 0 (4.4.26a)

C1kJ
′
n(ks) + C2kY

′
n(ks) + C3ns

n−1 + C4

{
s−1

−ns−(n+1)

}

−
[
C5kJ

′
n(ks) + C6ns

n−1
]

= 0 (4.4.26b)

C1k
2J

′′
n (ks) + C2k

2Y
′′
n (ks) + C3n(n− 1)sn−2 + C4

{ −s−2

n(n + 1)s−(n+2)

}

−
[
C5k

2J
′′
n (ks) + C6n(n− 1)sn−2

]
= 0 (4.4.26c)
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Equations (4.4.24a–c) and (4.4.26a–c) provide six equations among Ci

(i = 1, 2, · · · , 6). For a nontrivial solution, the determinant of the 6 × 6
coefficient matrix of these equations is set to zero. This provides the
stability criterion for the problem at hand. The computation of the
determinant and roots of the transcendental equations may be carried
out by an symbolic manipulator, such as MATHEMATICA.

We have already noted that, at least for solid plates, the stiffness and
the Poisson ratio combine to yield the single parameter λ. Therefore
the effect of the rotational elastic constraint on the buckling load is
equivalent to a simply supported plate with a higher fictitious Poisson’s
ratio. Figure 4.7 shows the variation of k, the square root of the
normalized buckling load, with respect to the ring support radius s =
b/a, for various values of the combined parameter λ. For example, the
λ = 0.3 curve may represent either a simply supported plate with a
Poisson’s ratio ν = 0.3 or an elastically constrained plate with stiffness
γ = 0.1 and a Poisson’s ratio ν = 0.2.

Figure 4.7: Buckling load versus radius of the internal ring support.
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For a given λ value, the buckling load curve is composed of two
segments due to the switching of buckling modes. For a larger internal
ring support radius b, the plate buckles in an axisymmetric mode (i.e.,
n = 0) and the results agree with those of Laura et al. (2000). When
s = b/a → 0, all curves converge to k = 3.8317, which is the first
root of the stability condition J1(k) = 0 for the clamped plate. Note
that two closely spaced simple supports are equivalent to a clamped
support. However, for a small ring support of radius b, the plate buckles
in an asymmetric mode with n = 1 and the buckling load decreases
dramatically as b decreases in value. This crossover radius varies from
b/a = 0.081 for λ = 0 to b/a = 0.152 for λ → ∞. When s → 0, the ring
support corresponds to a central, clamped point support for which the
plate’s theoretical buckling load is given by the root of the equation (see
Yamaki, 1958)

kJ1(k) − (1 − λ)J2(k) = 0 (4.4.27)

Of interest in the design of supported circular plates is the optimal
location of the internal ring support for the maximum buckling load.
Table 4.2 and the locus denoted by the dashed line in Fig. 4.7 show
the optimal solutions. It is worth noting that the optimal location
of the internal ring support is found at the nodal circle of the second
axisymmetric buckling mode of a corresponding circular plate without
the internal ring support. Moreover, the buckling load value as well as
the eigenfunctions are the same for both these problems. This fact can
be proved in a similar manner as reported by Chou et al. (1999) on
vibrating circular plates.

Table 4.2: Optimal location sopt of ring support and the corresponding
buckling load parameter kopt for rotationally restrained
circular plates with concentric ring support.

λ 0 0.3 1 2 3 5 7 10 20 50 ∞
sopt 0.475 0.463 0.434 0.403 0.378 0.344 0.323 0.305 0.284 0.271 0.265
kopt 5.331 5.389 5.520 5.691 5.841 6.077 6.248 6.420 6.685 6.877 7.015

4.4.7 Axisymmetric Buckling of Plates under Intermediate and
Edge Radial Loads

Consider an isotropic, circular plate of radius R, uniform thickness
h, Young’s modulus E, and Poisson’s ratio ν. The plate boundary may
be either simply supported or clamped. In addition to carrying a uniform
edge radial load, it also is subjected to an intermediate radial load acting
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at a radius bR as shown in Fig. 4.8. The intermediate load may be
introduced using circular piezoelectric actuators.

Figure 4.8: Buckling of circular plates under intermediate and end
radial loads.

Table 4.3: Governing differential equations and general solutions for
buckling of circular plates under intermediate and edge
radial loads (w̄ = w/R and Ai and Bi are constants).

Cases Governing Differential Equations General Solutions

1 > r̄ > b b > r̄ > 0 1 > r̄ > 0 b > r̄ > 0

1. ∇2(∇2 + k2
1)w̄1 = 0 ∇2(∇2 + k2

2)w̄2 = 0 w̄1 = A1J0(k1r̄)
+A2Y0(k1r̄) w̄2 = B1J0(k2r̄)

k2
1 = N1R

2

D k2
2 = (N1+N2)R

2

D +A3 log r̄ +A4 +B2

2. ∇2(∇2 + k2
1)w̄1 = 0 ∇2(∇2 − k2

2)w̄2 = 0 w̄1 = A1J0(k1r̄)
+A2Y0(k1r̄) w̄2 = B1I0(k2r̄)

k2
1 = N1R

2

D k2
2 = (|N1+N2|)R2

D +A3 log r̄ +A4 +B2

3. ∇2(∇2 + k2
1)w̄1 = 0 w̄1 = A1J0(k1r̄)

∇4w̄2 = 0 +A2Y0(k1r̄) w̄2 = B1r̄2 +B2

k2
1 = N1R

2

D +A3 log r̄ +A4

4. ∇2(∇2 + k2
2)w̄2 = 0 w̄1 = A1r̄2

∇4w̄1 = 0 +A2r̄2 log r̄ w̄2 = B1J0(k2r̄)
k2
2 = (|N1+N2|)R2

D +A3 log r̄ +A4 +B2

5. ∇2(∇2 − k2
1)w̄1 = 0 ∇2(∇2 + k2

2)w̄2 = 0 w̄1 = A1I0(k1r̄)
+A2K0(k1r̄) w̄2 = B1J0(k2r̄)

k2
1 = |N1|R2

D k2
2 = (|N1+N2|)R2

D +A3 log r̄ +A4 +B2

bR

R
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This buckling problem may be solved by considering the plate as
one consisting of an outer annular segment 1 > r̄ > b and an inner
circular segment b > r̄ > 0 (r̄ = r/R). The interface of the two
segments is where the intermediate radial load is applied. The governing
differential equations and general solutions for five different load cases are
presented in Table 4.3. Using the general solution and edge conditions
and continuity conditions at the interface, we can derive the stability
criterion for each load case and boundary conditions. Here we treat
simply supported and clamped edge conditions. The stability criterion
for each load case is given next.

Case 1. N1 > 0 and (N1 + N2) > 0, implying that both outer segment
and inner circular segment are in a state of compression. The stability
criterion for the simply supported circular plate is

b2k3
1π

√
βJ0(b

√
βk1) [J1(bk1)Φ − Y1(bk1)Ψ] +

{J1(b
√
βk1)[4(ν − 1) + b2k2

1π{Y0(bk1)[k1Ψ − (ν − 1)J2(bk1)]
− J0(bk1)[k1Φ − (ν − 1)Y2(bk1)]}]} = 0 (4.4.28)

where Jn and Yn are the Bessel function of the first kind and the second
kind of order n, and

Φ = k1Y0(k1)+(ν−1)Y1(k1), Ψ = k1J0(k1)+(ν−1)J1(k1), β =
k2

1 + k2
2

k2
1

(4.4.29)
The stability criterion for the clamped circular plate is

b2k3
1π

√
βJ0(b

√
βk1)[J1(bk1)Y1(k1) − J1(k1)Y1(bk1)]

+ J1(b
√
βk1)[4 + b2k2

1π{Y0(bk1)[k1J1(k1) − J2(bk1)]
− J0(bk1)[k1Y1(k1) − Y2(bk1)]}] = 0 (4.4.30)

Case 2. N1 > 0 and (N1 + N2) < 0, implying that the outer annular
segment is in a state of compression while the inner segment is in tension.
The stability criterion for the simply supported circular plate is

I1(b
√
βk1) [J0(bk1)Φ − Y0(bk1)Ψ] +

√
βI0(b

√
βk1) [Y1(bk1)Ψ − J1(bk1)Φ]

= 0 (4.4.31)

where In is the modified Bessel function of the first kind of order n. For
the clamped circular plate, the stability criterion is

b2k3
1π

√
βI0(b

√
βk1)[J1(k1)Y1(bk1) − J1(bk1)Y1(k1)]

− I1(b
√
βk1)[4 + b2k2

1π{Y0(bk1)[k1J1(k1) − J2(bk1)]
− J0(bk1)[k1Y1(k1) − Y2(bk1)]}] = 0 (4.4.32)
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Case 3. N1 > 0 and (N1 + N2) = 0, implying that the outer annular
segment is in a state of compression while the inner circular segment is
in an unloaded state. The stability criterion for the simply supported
circular plate is

Y2(bk1)Ψ − J2(bk1)Φ = 0 (4.4.33)

For the clamped circular plate, the stability criterion is

J1(k1)Y2(bk1) − J2(bk1)Y1(k1) = 0 (4.4.34)

Case 4. N1 = 0 and (N1 + N2) > 0, implying that the outer annular
segment is in an unloaded state while the inner circular segment is in
compression. The stability criterion for the simply supported circular
plate is

k2J0(bk2)[b2(1 − ν) + (1 + ν)] + bJ1(bk2){(1 − ν)[k2
2(b

2 − 1) − 2]
+ 2(1 + ν)k2

2 log (b)} = 0 (4.4.35)

For the clamped circular plate, the stability criterion is

(b2 − 1)k2J0(bk2) − 2bJ1(bk2) = 0 (4.4.36)

Case 5. N1 < 0 and (N1 + N2) > 0, implying that the outer annular
segment is in tension while the inner circular segment is in a compressive
state. The stability criterion for the simply supported circular plate is

b2k3
1

√
β
{
I1(bk1)

[
J2(b

√
βk1) − J0(b

√
βk1)

]
Ω − 2ΛJ0(b

√
βk1)K1(bk1)

}
+ J1(b

√
βk1)[2(ν − 1) + b2k2

1{−2k1ΛK0(bk1)
+ I2(bk1) [k1Ω + (ν − 1)K0(bk1)]
+ I0(bk1) [k1Ω − (ν − 1)K2(bk1)]}]= 0 (4.4.37)

where Kn is the modified Bessel function of the second kind of order n.

Ω = k1K0(k1) − (ν − 1)K1(k1), Λ = k1I0(k1) + (ν − 1)I1(k1) (4.4.38)

The stability criterion for the clamped circular plate is

b2k
3
1

√
β
[
J0(b

√
βk1) − J2(b

√
βk1)

]
[I1(bk1)K1(k1) − I1(k1)K1(bk1)]

− J1(b
√
βk1)[ − 2 + b2k2

1{I2(bk1)[k1K1(k1) −K0(bk1)]
+ k1I1(k1)[K0(bk1) + K2(bk1)] + I0(bk1)[k1K1(k1) + K2(bk1)]}] = 0

(4.4.39)
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Plots of the stability criteria for various intermediate load location
b and support conditions are presented in Fig. 4.9.

Figure 4.9: Stability criteria for circular plates under intermediate
and edge radial loads.

4.4.8 Buckling of Annular Plates under Uniform Compression

Yamaki (1958) solved the elastic buckling problem of thin annular plates
under uniform compression. He presented stability criteria for twelve
combinations of standard boundary conditions for the inner and outer
edges of the annular plate, buckling results, and discussed the limiting
case of a small core.

Consider an annular plate that is compressed by forces uniformly
distributed along the inner edge r = b and along the outer edge r = a,
as shown in Fig. 4.10. By introducing the buckling load parameter
k2 = Na2/D, where N is the intensity of the force, D the flexural rigidity,
and by assuming the deflection w(r̄) cosnθ, where n (= 0, 1, 2, . . .) is the
number of nodal diameters and r̄ = r/a, the solution for the governing
buckling equation may be expressed as

w = A0J0(kr̄) + B0Y0(kr̄) + C0 + D0 ln r̄ (4.4.40a)

for axisymmetric buckling (n = 0) and

w = AnJn(kr̄) + BnYn(kr̄) + Cnr̄
n + Dnr̄

−n (4.4.40b)
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for nonaxisymmetric buckling (n �= 0). Here (An, Bn, Cn, Dn) are
constants and (Jn, Yn) are the Bessel functions of the first and second
kinds, respectively.

The common boundary conditions are given below.

Clamped edge

w = 0,
∂w

∂r̄
= 0 (4.4.41)

Simply supported edge

w = 0,
∂2w

∂r̄2
+

ν

r̄

(
∂w

∂r̄
+

1
r̄

∂2w

∂θ2

)
= 0 (4.4.42)

Free edge

∂2w

∂r̄2
+

ν

r̄

(
∂w

∂r̄
+

1
r̄

∂2w

∂θ2

)
= 0 (4.4.43a)

∂

∂r̄

(
∂2w

∂r̄2
+

1
r̄

∂w

∂r̄
+

1
r̄2

∂2w

∂θ2

)
+

1 − ν

r̄

∂

∂θ

[
∂

∂r̄

(
1
r̄

∂w

∂θ

)]
+ k2∂w

∂r̄
= 0

(4.4.43b)

Movable (or sliding) edge that cannot rotate

∂w

∂r̄
= 0,

∂

∂r̄

(
∂2w

∂r̄2
+

1
r̄

∂w

∂r̄
+

1
r̄2

∂2w

∂θ2

)
+

1 − ν

r̄

∂

∂θ

[
∂

∂r̄

(
1
r̄

∂w

∂θ

)]
= 0

(4.4.44)

Figure 4.10: Annular plate under uniform compression.
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By substituting the solution given in Eqs. (4.4.40a, b) into the
boundary conditions (4.4.41)–(4.4.44) for the inner and outer edges,
we obtain an eigenvalue problem. By solving the eigenvalue problem,
stability criteria are obtained for various combinations of boundary
conditions for the inner and outer edges of the annular plate. The
following quantities are used to write the stability criteria in concise
form:

Φn(k, s) = Jn(k)Yn(ks) − Jn(ks)Yn(k)
Ψn(k, s) = Jn(k)Y1+n(ks) − J1+n(ks)Yn(k) (4.4.45)
Θn(k, s) = J1+n(k)Yn(ks) − Jn(ks)Y1+n(k)

where s = b/a. The criteria are listed below.

Case 1: Both inner and outer edges clamped

(4/πk) − ks ln sΦ1 + sΨ0 − Θ0 = 0 (4.4.46a)

(8n/πk) − ks(sn − s−n)Φ1+n + 2ns1+nΨn − 2ns−nΘn = 0 (n �= 0)
(4.4.46b)

Case 2: Outer edge clamped while inner edge simply supported

[4(1 − ν)/πk] − ks2Φ0 − (1 − ν)s(k ln sΦ1 − Ψ0)
+ (k2s2 ln s− 1 + ν)Θ0 = 0 (4.4.47a)

(8n/πk) − 2n(1 − ν)−1ks2+nΦn − ks(sn − s−n)Φ1+n + 2ns1+nΨn

+
[
(1 − ν)−1k2s2(sn − s−n) − 2ns−n

]
Θn = 0 (n �= 0) (4.4.47b)

Case 3: Outer edge clamped while inner edge free

(1 − ν)Φ1 − ksΘ0 = 0 (n = 0) (4.4.48a)

(8/πk)(n2 − 1 − nζn) − 2(1 − ν)−1ks2+n(2n− 2 − ζn)Φn

− (ks/n)
[
(n2 − 1 − ζn)sn − (n2 − 1 + ζn)s−n

]
Φ1+n

+ 2s1+n(n2 − 1 − ζn)Ψn + {ζn(2n− 2 − ζn)sn

−
[
ζ2
n + 2(n2 − 1 − nζn)

]
s−n}Θn = 0 (n �= 0) (4.4.48b)
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where ζn = k2s2/[n(1 − ν)].

Case 4: Outer edge clamped while inner edge movable

Φ1 = 0 (n = 0) (4.4.49a)

(8/πk) − 2(1 − ν)−1ks2+nΦn − (ks/n)
[
(1 + ζn)sn − (1 − ζn)s−n]Φ1+n

+ 2(1 + ζn)s1+nΨn +
[
(sn − s−n)ζn − 2s−n]Θn = 0 (n �= 0) (4.4.49b)

Case 5: Outer edge simply supported while inner edge clamped

[4(1 − ν)/πk] + kΦ0 − (1− ν)(ks ln sΦ1 + Θ0) + s(k2 ln s+ 1− ν)Ψ0 = 0
(4.4.50a)

(8n/πk) + 2n(1 − ν)−1ks−nΦn − ks(sn − s−n)Φ1+n − 2ns−nΘn

+ s
[
(1 − ν)−1k2(sn − s−n) + 2nsn

]
Ψn = 0 (n �= 0) (4.4.50b)

Case 6: Both edges simply supported

[4(1 − ν)/πk] − k
[
(1 − ν)−1k2s2 ln s + s2 − 1

]
Φ0 − (1 − ν)ks ln sΦ1

+ s(k2 ln s + 1 − ν)Ψ0 + (k2s2 ln s− 1 + ν)Θ0 = 0 (4.4.51a)

(8n/πk) − (1 − ν)−1k
[
(2 + ξn)s2+n − (2 + ζn)s−n

]
Φn

− (ks/n)(sn − s−n)Φ1+n + s
[
ξn(sn − s−n) + 2sn

]
Ψn

+
[
ζn(sn − s−n) − 2s−n]Θn = 0 (n �= 0) (4.4.51b)

where ξn = k2/[n(1 − ν)].

Case 7: Outer edge simply supported while inner edge free

k2sΦ0 + (1 − ν)2Φ1 − k(1 − ν)(Ψ0 + sΘ0) = 0 (4.4.52a)

(8/πk)(n2 − 1 − nζn) − (ks/n)
[
(n2 − 1 − ζn)sn − (n2 − 1 + ζn)s−n

]
Φ1+n

− (1 − ν)−1k{(2 + ξn)(2n− 2 − ζn)s2+n − [ζ2
n + 2(n2 − 1 − nζn)]s−n}Φn

+ s
[
(2 + ξn)(n2 − 1 − ζn)sn − ξn(n2 − 1 + ζn)s−n

]
Ψn

+ {ζn(2n− 2 − ζn)sn − [ζ2
n + 2(n2 − 1 − nζn)]s−n}Θn = 0 (n �= 0)

(4.4.52b)
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Case 8: Outer edge simply supported while inner edge movable

(1 − ν)Φ1 − kΨ0 = 0 (4.4.53a)

(8/πk) − (1 − ν)−1k[(2 + ξn)s2+n − (2 − ζn)s−n]Φn

− (ks/n)
[
(1 + ζn)sn − (1 − ζn)s−n]Φ1+n

+ s
[
(2 + ξn)(1 + ζn)sn − ξn(1 − ζn)s−n]Ψn

+ {ζn(sn + s−n) − 2s−n}Θn = 0 (n �= 0) (4.4.53b)

Case 9: Outer edge free while inner edge clamped

(1 − ν)Φ1 − kΨ0 = 0 (4.4.54a)

(8/πk)(n2 − 1 − nξn) + 2(1 − ν)−1k(2n− 2 − ξn)s−nΦn

− (ks/n)
[
(n2 − 1 + ξn)sn − (n2 − 1 − ξn)s−n

]
Φ1+n

+ s
{
[ξ2
n + 2(n2 − 1 − nξn)]sn − ξn(2n− 2 − ξn)s−n

}
Ψn

− 2(n2 − 1 − ξn)s−nΘn = 0 (n �= 0) (4.4.54b)

Case 10: Outer edge free while inner edge simply supported

k2sΦ0 + (1 − ν)2Φ1 − k(1 − ν)(Ψ0 + sΘ0) = 0 (4.4.55a)

− (ks/n)
[
(n2 − 1 − ξn)sn − (n2 − 1 − ξn)s−n

]
Φ1+n − (1 − ν)−1k

×
{[

ξ2
n + 2(n2 − 1 − nξn)

]
s2+n − (2n− 2 − ξn)(2 + ζn)s−n

}
Φn

+ s
{[

ξ2
n + 2(n2 − 1 − nξn)

]
sn − ξn(2n− 2 − ξn)s−n

}
Ψn

+
[
ξn(n2 − 1 + ξn)s2+n − (n2 − 1 − ξn)(2 + ζn)s−n

]
Θn

+ (8/πk)(n2 − 1 − nξn) = 0 (n �= 0) (4.4.55b)

Case 11: Outer edge movable while inner edge clamped

Φ1 = 0 (n = 0) (4.4.56a)

(8/πk) + 2(1 − ν)−1ks−nΦn − (ks/n)
[
(1 − ξn)sn − (1 + ξn)s−n]Φ1+n

+ s[2sn − ξn(sn + s−n)]Ψn − 2(1 + ξn)s−nΘn = 0 (n �= 0) (4.4.56b)
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Case 12: Outer edge movable while inner edge simply supported

(1 − ν)Φ1 − ksΘ0 = 0 (4.4.57a)

(8/πk) − (1 − ν)−1k
{
(2 − ξn)s2+n − (2 + ζn)s−n

}
Φn

− (ks/n)
[
(1 − ξn)sn − (1 + ξn)s−n]Φn+1 + s

[
(2 − ξn)sn − ξns

−n]Ψn

+
{
ζn(1 − ξn)sn − 2(1 + ζn)(1 + ξn)s−n}Θn = 0 (n �= 0) (4.4.57b)

Critical buckling loads for the above twelve cases are presented in
Table 4.4 for various values of ratio s = b/a, and the bracketed integers
denote the values of n. In the calculations, a Poisson ratio of ν = 0.3
was used.

Table 4.4: Critical buckling load parameter k and corresponding
number of nodal diameters n (Yamaki, 1958).

Case s = 0 s = 0.1 s = 0.3 s = 0.5 s = 0.7 s = 0.9

1 5.135 (1) 6.68 (2) 8.63 (2) 12.15 (4) 20.27 (7) 60.89 (24)
2 5.135 (1) 6.02 (1) 7.06 (0) 9.42 (0) 15.31 (0) 45.20 (0)
3 3.832 (0) 3.62 (0) 3.19 (0) 3.65 (0) 5.52 (0) 15.89 (0)
4 3.832 (0) 3.94 (0) 4.71 (0) 6.39 (0) 10.49 (2) 30.45 (12)
5 3.625 (1) 4.71 (1) 6.16 (0) 8.73 (0) 14.73 (0) 44.69 (0)
6 3.625 (1) 4.20 (1) 4.75 (0) 6.40 (0) 10.52 (0) 31.43 (0)
7 2.049 (0) 1.98 (0) 1.61 (0) 1.32 (0) 1.14 (0) 1.01 (0)
8 2.049 (0) 2.09 (0) 2.40 (0) 3.18 (0) 5.19 (0) 15.61 (0)
9 0.0 (1) 1.49 (1) 2.18 (2) 3.14 (1) 5.19 (0) 15.61 (0)

10 0.0 (1) 1.12 (1) 1.34 (1) 1.32 (0) 1.14 (0) 1.01 (0)
11 1.675 (1) 2.94 (1) 3.84 (2) 5.69 (3) 9.79 (4) 30.45 (12)
12 1.675 (1) 2.42 (1) 2.87 (1) 3.64 (1) 5.52 (0) 15.89 (0)

This completes the discussion of buckling solutions of circular plates.
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4.5 Buckling of Rectangular Plates
4.5.1 Preliminary Comments

Consider a rectangular plate subjected to uniaxial, uniform
compressive load N̂xx along the x-axis, applied in the middle plane of
the plate. The linear load–deflection relationship holds until a certain
value of the load N̂xx is reached. At this load, called the critical buckling
load, the stable state of the plate is disturbed and the plate seeks an
alternative equilibrium configuration accompanied by a change in the
load–deflection behavior. The magnitude of the buckling load depends,
as will be shown shortly, on geometry (i.e., shape as well as boundary
conditions) and material properties.

Here we present exact expressions and in some cases numerical
results for critical buckling loads of rectangular plates under various
boundary conditions and loads. The equation governing buckling
deflection w of a biaxially loaded plate (see Fig. 4.11) is given by

D11
∂4w

∂x4
+ 2D̂12

∂4w

∂x2∂y2
+ D22

∂4w

∂y4
+ N̂xx

∂2w

∂x2
+ N̂yy

∂2w

∂y2
= 0 (4.5.1)

where D̂12 = D12 + 2D66, and

N̂xx = N0, N̂yy = γN0, γ =
N̂yy

N̂xx

(4.5.2)

Figure 4.11: Biaxial compression of a rectangular plate (N̂xx = N0 and
N0

yy = γN0).
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4.5.2 Simply Supported Biaxially Loaded Plates

For simply supported plates under biaxial compressive loads, the
Navier solution approach can be used to obtain the exact buckling load
and mode shape. The simply supported boundary conditions can be
expressed as

w(0, y) = 0, w(a, y) = 0, w(x, 0) = 0, w(x, b) = 0 (4.5.3a)

Mxx(0, y) = 0, Mxx(a, y) = 0, Myy(x, 0) = 0, Myy(x, b) = 0 (4.5.3b)

The Navier solution approach involves selecting an expansion for w in
the series form

w(x, y) =
∞∑

m=1

∞∑
n=1

Wmnφmn(x, y) (4.5.4)

where Wmn are parameters (amplitudes) to be determined and φmn are
functions (mode shapes) to be selected such that w satisfies the boundary
conditions. The choice

φmn(x, y) = sinαmx sinβny, αm =
mπ

a
, βn =

nπ

b
(4.5.5)

clearly satisfies the boundary conditions in Eqs. (4.5.3a, b) for any values
of Wmn. Then the parameters Wmn (and the buckling load N̂0) are
determined such that w(x, y) of Eq. (4.5.4) also satisfies the governing
equation (4.5.1).

By substituting Eq. (4.5.4), with φmn given by Eq. (4.5.5), into Eq.
(4.5.1), we obtain for any m and n the relation

0 =
[(

D11α
4
m + 2D̂12α

2
mβ2

n + D22β
4
n

)
− (α2

m + γβ2
n)N0

]
×Wmn sinαmx sinβny (4.5.6)

Since Eq. (4.5.6) must hold for every point (x, y) of the domain for
nonzero deflection w(x, y) (i.e., Wmn �= 0), the expression inside the
square brackets should be zero for every m and n. This yields

N0(m,n) =
π2

b2

(
D11s

4m4 + 2D̂12s
2m2n2 + D22n

4

s2m2 + γn2

)
(4.5.7)

where s = b/a is the plate aspect ratio. Thus, for each choice of m and
n there is a unique value of N0. The critical buckling load is the smallest
of N0(m,n). For a given rectangular plate, this value is dictated by
a particular combination of the values of m and n, value of γ, plate
dimensions, and material properties.
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Biaxially Compressed Plate

For a square orthotropic plate subjected to the same magnitude of
uniform compressive forces on both edges (i.e., biaxial compression with
γ = 1), Eq. (4.5.7) yields

N0(m,n) =
π2

a2

(
m4D11 + 2m2n2D̂12 + n4D22

m2 + n2

)
(4.5.8)

Now suppose that D11 > D22. Then D11m
2 increases more rapidly than

the decrease in D22/m
2 with an increase in m. Thus, the minimum of

N0 occurs when m = 1:

N0(1, n) =

(
π2

a2

)(
D11 + 2D̂12n

2 + D22n
4

1 + n2

)
. (4.5.9)

The buckling load is a minimum when n is the nearest positive integer
to the real number R

R2 = −1 +

(
1 +

D11 − 2D̂12

D22

) 1
2

(4.5.10)

For example, for modulus ratios of D11/D22 = 10 and D̂12/D22 = 1,
the minimum buckling load occurs at n = 1 (because R =

√
2) and it is

given by

Ncr ≡ N0(1, 1) = 6.5

(
π2D22

a2

)
(4.5.11)

For modulus ratios of D11/D22 = 12 and D̂12/D22 = 1, the value of R is
1.52. Hence, the minimum buckling load occurs for n = 2

Ncr = 7.2

(
π2D22

a2

)
(4.5.12a)

and the mode shape is given by

W12 = sin
πx

a
sin

2πy
a

(4.5.12b)

For an isotropic rectangular plate [D11 = D22 = D, D12 = νD,
2D66 = (1 − ν)D or D̂12 = D] under biaxial compression, the buckling
load can be calculated using Eq. (4.5.7):

N0(m,n) =
π2D

b2

(
m2s2 + n2

)
, s =

b

a
(4.5.13)
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Clearly, the critical buckling load for this case occurs at m = n = 1 and
it is equal to

Ncr = (1 + s2)
π2D

b2
, s =

b

a
(4.5.14)

and for a square plate it reduces to

Ncr =
2π2D

b2
(4.5.15)

Biaxially Loaded Plate

When the edges x = 0, a of a square plate are subjected to a
compressive load N̂xx = N0 and the edges y = 0, b are subjected to
a tensile load N̂yy = −γN0 (see Fig. 4.12), Eq. (4.5.7) becomes

N0(m,n) =
π2

a2

(
m4D11 + 2m2n2D̂12 + n4D22

m2 − γn2

)
(4.5.16)

when γn2 < m2. For example, when γ = 0.5, the minimum buckling
load occurs at m = 1 and n = 1:

N0(1, 1) =
2π2

a2

(
D11 + 2D̂12 + D22

)
(4.5.17)

For a rectangular isotropic plate, the buckling load under biaxial
loading (Nxx = N0 and Nyy = −γN0) becomes

N0(m,n) =

(
π2D

b2

)
(m2s2 + n2)2

m2s2 − γn2
(4.5.18)

and the minimum buckling load occurs for n = 1

N0(m, 1) =

(
π2D

b2

)
(m2s2 + 1)2

m2s2 − γ
(4.5.19)

In theory, the minimum of N0(m, 1) occurs when m2s2 = 1 + 2γ. For a
square isotropic plate with γ = 0.5, we find

N0(1, 1) =
8π2D

a2
, N0(2, 1) = 7.1429

π2D

a2
= Ncr (4.5.20)

© 2005 by CRC Press LLC



Figure 4.12: Plate subjected to uniform compression along x (N̂xx =
N0) and uniform tension along y (N̂yy = −γN0).

Uniaxially Compressed Plate

When a rectangular plate is subjected to a uniform compressive load
N0 on edges x = 0 and x = a (i.e., when γ = 0), the buckling load can
be calculated using Eq. (4.5.7)

N0(m,n) =
π2

m2s2b2

(
m4s4D11 + 2s2m2n2D̂12 + n4D22

)
(4.5.21)

The smallest value of N0 for any m occurs for n = 1:

N0(m, 1) =
π2D22

b2

(
m2s2D11

D22
+ 2

D̂12

D22
+

1
m2s2

)
(4.5.22)

Thus, the plate buckles in such a way that there can be several (m ≥ 1)
half-waves in the direction of compression but only one (n = 1) half-
wave in the perpendicular direction. The critical buckling load is then
determined by finding the minimum of N0 = N0(m) in Eq. (4.5.22) with
respect to m. We have

dN0

dm
= 0 gives m4

c =
1
s4

D22

D11
(4.5.23)

The second derivative of N0 with respect to m can be shown to be
positive. Since the value of m from Eq. (4.5.23) is not always an integer,

y
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the minimum buckling load cannot be predicted by substituting the value
of mc from Eq. (4.5.23) for m into Eq. (4.5.22). The minimum value of
N0 is given by Eq. (4.5.22) when mc is the nearest integer value given by
Eq. (4.5.23). Since the value of mc depends on the ratio of the principal
bending stiffnesses D11 and D22 as well as plate aspect ratio s = b/a,
one must investigate the variation of N0 with aspect ratio s for different
values of mc for a given rectangular plate.

For an isotropic plate, Eqs. (4.5.21) and (4.5.22) reduce to

N0(m,n) =
π2a2D

m2

(
m2

a2
+

n2

b2

)2

(4.5.24)

N0(m, 1) =
π2D

a2

(
m +

1
m

a2

b2

)2

(4.5.25)

For a given aspect ratio, two different modes, m1 and m2, will have the
same buckling load when

√
m1m2 = a/b. In particular, the point of

intersection of curves m and m + 1 occurs for aspect ratios

a

b
=

√
2,

√
6,

√
12,

√
20, · · · ,

√
m2 + m

Thus, there is a mode change at these aspect ratios from m half-waves
to m + 1 half-waves. Putting m = 1 in Eq. (4.5.25), we find

Ncr =
π2D

b2

(
a

b
+

b

a

)2

(4.5.26)

For a square plate, Eq. (4.5.26) yields

Ncr =
4π2D

b2
(4.5.27)

Table 4.5 contains exact values of the critical buckling load N̄ =
Ncrb

2/(π2D22) of rectangular plates for various load cases (γ = 0 and
γ = 1), aspect ratios and modulus ratios (orthotropic plates). In all
cases, the critical buckling mode is (m,n) = (1, 1), except as indicated.
The effect of aspect ratio and mode on critical buckling loads of simply
supported isotropic plates is shown in Fig. 4.13.
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Table 4.5: Effect of plate aspect ratio a/b and modulus ratio E1/E2

on buckling load N̄ = Ncrb
2/(π2D22) of simply supported

rectangular plates under uniform axial compression (γ = 0)
and biaxial compression (γ = 1).

γ a
b

E1
E2

= 1 E1
E2

= 3 E1
E2

= 10 E1
E2

= 25

0 0.5 6.250 14.708 42.737 102.750
1.0 4.000 6.458 13.488 28.495
1.5 4.340(2,1)† 6.042 9.182 15.856
2.0 4.000(2,1) 6.458(2,1) 8.987 12.745
2.5 4.134(3,1) 5.941(2,1) 10.338 12.745
3.0 4.000(3,1) 6.042(2,1) 9.182(2,1) 14.273

1 0.5 5.000 11.767 25.427(1,3) 40.784(1,4)

1.0 2.000 3.229 6.744 10.196(1,2)

1.5 1.444 1.859 2.825 4.879
2.0 1.250 1.442 1.798 2.549
2.5 1.160 1.267 1.426 1.758
3.0 1.111 1.179 1.260 1.427

† Denotes mode numbers (m,n) at which the critical buckling load occurred; (m,n) = (1, 1)

for all other cases.

Figure 4.13: Nondimensionalized buckling load, N̄ = N0b
2/(π2D),

versus plate aspect ratio a/b for isotropic SSSS plates.

a b

N

m=1 m=2 m=3 m=4
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4.5.3 Plates Simply Supported along Two Opposite Sides and
Compressed in the Direction Perpendicular to These
Sides

Analytical solutions for the buckling loads of uniformly compressed
rectangular plates, simply supported along two opposite edges
perpendicular to the direction of compression (see Fig. 4.14) and having
various edge conditions along the other two sides, may be obtained using
the Lévy method of solution. The Lévy method is similar to Navier’s
method in that we select φmn to satisfy the boundary conditions along
two of the simply supported edges, x = 0, a, thereby reducing the
governing partial differential equation (4.5.1) to an ordinary differential
equation in y. The differential equation in one dimension may then be
solved analytically or numerically.

Figure 4.14: Rectangular plates, uniformly compressed along x =
constant, simply supported along two opposite sides (x =
0, a) perpendicular to the direction of compression, and
having various boundary conditions along the other two
sides (y = 0, b).

Here we consider the analytical solution of the one-dimensional
problem for isotropic plates. For the case of uniform compression along
the x-axis, we have N̂xx = N0 and N̂yy = 0, and Eq. (4.5.1) reduces to

D

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)
+ N0

∂2w

∂x2
= 0 (4.5.28)

This equation must be solved for the buckling load N0 and mode shape
w for any given boundary conditions.

y

x

b

 a 

0N 0N
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supported
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Assuming solution of Eq. (4.5.28) in the form

w(x, y) =
∞∑

m=1

Wm(y) sin
mπx

a
(4.5.29)

That is, under the action of compressive forces, the plate buckles into m
sinusoidal half-waves. The function Wm(y), which is to be determined,
represents the buckling shape along the y-axis. The assumed solution
satisfies the boundary conditions along the simply supported edges
x = 0, a of the plate:

w = 0, Mxx ≡ −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
= 0 at x = 0, a (4.5.30)

By substituting Eq. (4.5.29) into Eq. (4.5.28), we obtain

(
α4
m − N0

D
α2
m

)
Wm − 2α2

m

d2Wm

dy2
+

d4Wm

dy4
= 0 (4.5.31)

The form of the solution to Eq. (4.5.31) depends on the nature of the
roots λ of the equation

λ4 − 2α2
mλ2 +

(
α4
m − α2

m

N0

D

)
= 0 (4.5.32)

Owing to the geometric constraints on the edges y = 0, b, the
buckling load N0 is such that

N0 > Dα2
m (4.5.33)

Hence, the solution to Eq. (4.5.32) is of the form

W (y) = C1 coshλ1y + C2 sinhλ1y + C3 cosλ2y + C4 sinλ2y (4.5.34)

where

(λ1)
2 =

√
α2
m

N0

D
+ α2

m, (λ2)
2 =

√
α2
m

N0

D
− α2

m (4.5.35)

We shall consider various cases of boundary conditions next.
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A four-letter notation is used to identify rectangular plates with
various edge conditions. Since in the present discussion edges x = 0, a
are always simply supported, the first two letters will always be SS. The
remaining two letters refer to the boundary conditions on edges y = 0
and y = b. The label SSSF, for example, denotes a rectangular plate
whose edges x = 0, a are simply supported (S), edge y = 0 is simply
supported, and edge y = b is free (F).

Buckling of SSSF Plates

Consider buckling of uniformly compressed rectangular plates with
side y = 0 simply supported (S) and side y = b free (F), as shown in Fig.
4.15. The boundary conditions on the simply supported and free edges
are

w = 0, Myy = −D

(
ν
∂2w

∂x2
+

∂2w

∂y2

)
= 0 at y = 0 (4.5.36)

Myy = 0, Vy = −D

[
∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y

]
= 0 at y = b (4.5.37)

Using the boundary conditions (4.5.36), we obtain C1 = C3 = 0.
Boundary conditions (4.5.37) yield the following two linear relations
among C2 and C4:

Figure 4.15: Uniformly compressed rectangular plate simply supported
along two opposite sides (x = 0, a) perpendicular to the
direction of compression, and simply supported on side
y = 0 and free on side y = b (SSSF).
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(
να2

m − λ2
1

)
C2 sinhλ1b +

(
να2

m + λ2
2

)
C4 sinλ2b = 0

λ1

[
(2 − ν)α2

m − λ2
1

]
C2 coshλ1b + λ2

[
(2 − ν)α2

m + λ2
2

]
C4 cosλ2b = 0

(4.5.38)

For the nontrivial solution (i.e., not both C2 �= 0 and C4 �= 0 are zero),
we require that the determinant of the two linear equations in (4.5.38)
be zero:

λ2Ω2
1 sinhλ1b cosλ2b− λ1Ω2

2 coshλ1b sinλ2b = 0 (4.5.39)

where Ω1 and Ω2 are defined by

Ω1 =
(
λ2

1 − να2
m

)
, Ω2 =

(
λ2

2 + να2
m

)
(4.5.40)

Since λ1 and λ2 contain N0 [see Eq. (4.5.35)], Eq. (4.5.39) can be solved,
using an iterative scheme, for the smallest N0, denoted Ncr, once the
geometric and material parameters of the plate are known. The critical
buckling load may be written as

Ncr = κ
π2D

b2
(4.5.41)

where κ is a numerical factor depending on the plate aspect ratio b/a
and material properties. The general mode shape is given by

w(x, y) = (Ω1 sinhλ1b sinλ2y + Ω2 sinhλ1y sinλ2b) sinαmx (4.5.42)

Table 4.6 contains buckling loads of isotropic (ν = 0.25) plates
(SSSF) for various values of a/b and modes m = 1, 2. The critical
buckling load occurs in mode m = 1 with aspect ratio 0 < a/b ≤ 6.
The mode shape associated with the critical buckling load is

w(x, y) = (Ω1 sinhλ1b sinλ2y + Ω2 sinhλ1y sinλ2b) sin
πx

a
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Table 4.6: Effect of plate aspect ratio on the nondimensionalized
buckling loads N̄ = N0b

2/(π2D) of rectangular plates
(SSSF) under uniform compression N̂xx = −N0.

a
b m = 1 m = 2 a

b m = 1 m = 2

0.4 6.6367 25.2899 3.0 0.5630 0.8879
0.6 3.1921 11.4675 3.5 0.5345 0.7726
0.8 1.9894 6.3667 4.0 0.5161 0.6979
1.0 1.4342 4.4036 4.5 0.5034 0.6469
1.5 0.8880 2.2022 5.0 0.4944 0.6104
2.0 0.6979 1.4342 5.5 0.4877 0.5835
2.5 0.6104 1.0798 6.0 0.4826 0.5630

Buckling of SSCF Plates

Here we consider buckling of uniformly compressed rectangular
plates with side y = 0 clamped and side y = b free (see Fig. 4.16).
The boundary conditions are

w = 0,
∂w

∂y
= 0 at y = 0 (4.5.43a)

Myy = 0, Vy = −D

[
∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y

]
= 0 at y = b (4.5.43b)

Figure 4.16: Uniformly compressed rectangular plate which is simply
supported along two opposite sides (x = 0, a), clamped
on side y = 0, and free on side y = b.

y

x
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 a 

0N 0N
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clamped
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which give C3 = −C1, C4 = −(λ1/λ2)C2, and

−Ω1 (C1 coshλ1b + C2 sinhλ1b) + Ω2 (C3 cosλ2b + C4 sinλ2b) = 0
−λ1Ω1 (C1 sinhλ1b + C2 coshλ1b) + λ2Ω2 (−C3 sinλ2b + C4 cosλ2b) = 0

(4.5.44)

Setting the determinant of these equations to zero, and after substituting
for C3 = −C1 and C4 = −(λ1/λ2)C2, we obtain

2Ω1Ω2 +
(
Ω2

1 + Ω2
2

)
coshλ1b cosλ2b

− 1
λ1λ2

(
λ2

1Ω
2
2 − λ2

2Ω
2
1

)
sinhλ1b sinλ2b = 0 (4.5.45)

where Ω1 and Ω2 are defined in Eq. (4.5.40).
Nondimensional critical buckling loads N̄ = N0b

2/(π2D) of SSCF
plates are presented in Table 4.7 for isotropic (ν = 0.25) plates for various
aspect ratios. Fig. 4.17 contains plots of nondimensional buckling load
versus plate aspect ratio for modes m = 1, 2, 3 of isotropic plates. It
is seen that at the beginning, the buckling load of an isotropic plate
decreases with an increase in the aspect ratio a/b. The minimum value
of the buckling load N̄cr = 1.329 occurs at a/b = 1.635. There is
a mode change at a/b = 2.3149 from m = 1 and m = 2, and the
buckling load for this aspect ratio is N̄cr = 1.503. The minimum
buckling load (N̄cr = 1.329) for mode m = 2 occurs at a/b = 3.27.
For comparatively long isotropic plates, the critical buckling load can be
taken with sufficient accuracy as N̄cr = 1.329.

Table 4.7: Nondimensionalized buckling loads N̄ of SSCF rectangular
plates under uniform axial compression N̂xx = N0.

a
b N̄ a

b N̄ a
b N̄ a

b N̄

0.5 4.518 2.0 1.386 3.5 1.336 5.0 1.329
1.0 1.698 2.5 1.432† 4.0 1.386 5.5 1.347
1.5 1.339 3.0 1.339 4.5 1.339† 6.0 1.339†
† Denotes change to next higher mode.
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Figure 4.17: Nondimensionalized buckling load, N̄ = N0b
2/(π2D),

versus plate aspect ratio a/b for isotropic SSCF plates.

Buckling of SSCC Plates

Here we consider buckling of uniformly compressed rectangular
plates with sides y = 0, b clamped (see Fig. 4.18). The boundary
conditions are

w = 0,
∂w

∂y
= 0 at y = 0, b (4.5.46)

The boundary conditions yield C3 = C4 = 0, and

C1 (coshλ1b− cosλ2b) + C2

(
sinhλ1b− λ1

λ2
sinλ2b

)
= 0,

C1 (λ1 sinhλ1b + λ2 sinλ2b) + C2λ1 (coshλ1b− cosλ2b) = 0 (4.5.47)

The determinant of these equations is

2 (1 − coshλ1b cosλ2b) +
(
λ1

λ2
− λ2

λ1

)
sinhλ1b sinλ2b = 0 (4.5.48)

a b

N

m=1 m=2 m=3
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Figure 4.18: Uniformly compressed SSCC rectangular plate.

Nondimensional critical buckling loads N̄cr = Ncrb
2/(π2D) of SSCC

plates are presented in Table 4.8 for isotropic (ν = 0.25) plates for various
aspect ratios. Figure 4.19 contains plots of buckling load versus plate
aspect ratio for modes m = 1, 2, 3 of isotropic plates. The minimum
value of the buckling load N̄cr = 0.697 occurs at a/b = 0.661. There is
a mode change at a/b = 0.9349 from m = 1 to m = 2, and the buckling
load for this aspect ratio is N̄cr = 8.097. The minimum buckling load
(N̄cr = 0.697) for mode m = 2 occurs at a/b = 1.322.

Table 4.8: Buckling loads N̄cr of SSCC rectangular plates under
uniform axial compression N̂xx = −N0.

a
b N̄ a

b N̄ a
b N̄

0.4 9.448 1.0 7.691† 1.6 7.304
0.6 7.055 1.2 7.055 1.8 7.055†
0.8 7.304 1.4 7.001 2.0 6.972

† Denotes change to next higher mode.
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Figure 4.19: Nondimensionalized buckling load, N̄ = N0b
2/(π2D),

versus plate aspect ratio a/b for isotropic SSCC plates.

4.5.4 Plates with Abrupt Changes in Geometry or Material
Properties

Consider an elastic, rectangular thin plate of length a and width b.
The origin of the coordinate system is set at the center of the lower plate
edge as shown in Fig. 4.20. The plate is simply supported along two
opposite edges that are parallel to the x-axis, i.e., edges AD and BC. The
other two edges AB and CD may have any combination of free, simply
supported and clamped edge conditions. The plate has abrupt changes
along (n − 1)th lines that are perpendicular to the simply supported
edges. These abrupt changes could be due to a change in plate thickness,
presence of an internal line hinge, a change in shear force due to an
internal line support, a change in material properties, or the presence of
an intermediate uniaxial load.

Harik and Andrade (1989), Xiang et al. (1996), and Liew et
al. (1996) developed an analytical approach for determining the exact
buckling solutions for such rectangular plates with abrupt changes. The
approach involves

• the Lévy solution technique to convert the partial differential
equation into a fourth-order ordinary differential equation,

a b

N

m=1 m=3m=2
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Figure 4.20: Geometry and coordinates system for a multisegment
rectangular plate.

• the domain decomposition technique to handle the different
properties in the plate segments bounded by the simply supported
edges and the boundaries of the abrupt changes, and finally

• the state space technique to convert the fourth-order differential
equation that governs each segment problem into a set of first-order
differential equations which can then be solved in a straightforward
manner.

The approach will be briefly described below and sample exact buckling
solutions for rectangular plates with various kinds of abrupt changes are
presented. Based on the classical thin plate theory, the governing partial
differential equation for the elastic buckling of the ith region of the plate
when the plate is subjected to an in-plane compressive stress resultant
N̄i = (σx)ihi per unit length in the x-direction is given by

Di

(
∂4wi

∂x4
+ 2

∂4wi

∂x2∂y2
+

∂4wi

∂y4

)
+N̄i

∂2wi

∂x2
= 0, i = 1, 2, · · · , n (4.5.49)

in which wi(x, y) is the transverse displacement in the ith region of
the plate, x and y are the rectangular Cartesian coordinates, Di =

hi

b

aB

A

C

D

1 2 … i-1 i … n

Simply supported edges

The 1st and 2nd 
interfaces of plate 
segments

x

y

The ith plate 
segment with 
thickness hi
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Eih
3
i /[12(1 − ν2

i )] is the flexural rigidity, hi is the thickness, and Ei

and νi are the elastic modulus and the Poisson ratio.
The essential and natural boundary conditions for the two simply

supported edges at y = 0 and y = b associated with the ith plate segment
are

wi = 0 and (My)i ≡ Di

(
∂2wi

∂y2
+ νi

∂2wi

∂x2

)
= 0 (4.5.50)

where (My)i is the bending moment. As for the other two edges at
x = −a/2 and x = a/2 (see Fig. 4.20), the boundary conditions are

wi = 0 and (Mx)i ≡ Di

(
∂2wi

∂x2
+ νi

∂2wi

∂y2

)
= 0 (4.5.51)

if the edge is simply supported (S),

wi = 0 and
∂wi

∂x
= 0 (4.5.52)

if the edge is clamped (C), and

(Mx)i ≡ Di

(
∂2wi

∂x2
+ νi

∂2wi

∂y2

)
= 0

(Vx)i ≡ Di

[
∂3wi

∂x3
+ (2 − νi)

∂3wi

∂x∂y2

]
+ N̄i

∂wi

∂x
= 0 (4.5.53)

if the edge is free (F ). The subscript i takes the value of either 1 or n
and Vx is the effective shear force.

Adopting the Lévy technique, the displacement function for the ith
segment of the plate can be expressed as

wi(x, y) = Xi(x) sin
mπy

b
, i = 1, 2, · · · , n (4.5.54)

where m is the number of half-waves of the buckling mode in the y-
direction and Xi(x) is an unknown function to be determined. Equation
(4.5.54) satisfies the boundary conditions given by Eqs. (4.5.50).

Using the state–space technique, a homogenous differential equation
system for the ith plate segment can be derived, in view of Eqs. (4.5.49)
and (4.5.54), as

Ψ
′
i − HiΨi = 0, i = 1, 2, · · · , n (4.5.55)
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in which Ψi = {Xi X
′
i X

′′
i X

′′′
i }T and the prime denotes differentiation

with respect to x, Ψ
′
i is the first derivative of Ψi, and Hi is a 4 × 4

matrix. The nonzero elements of Hi are

(H12)i =(H23)i = (H34)i = 1, (H41)i = −
(
mπ

b

)4

(H43)i = 2
(
mπ

b

)2

− N̄i

Di

(4.5.56)

The solution for Eq. (4.5.55) may be expressed as

Ψi = eHixci = Fi(x)F−1
i (0)ci (4.5.57)

in which eHix is a general matrix solution for Eq. (4.5.55) and ci is a
(4× 1) constant column matrix that is to be determined using the plate
boundary conditions and interface conditions between the adjacent plate
segments. The function Fi(x) in Eq. (4.5.57) is related to the eigenvalues
and eigenvectors of Hi (see Braun, 1993). For example, if all eigenvalues
of Hi are real and distinct, then Fi(x) = [f1(x) f2(x) f3(x) f4(x)] where
fj(x) = eλjxvj , λj is the jth eigenvalue and vj is the jth eigenvector.
If the eigenvalues of Hi include complex values or repeated roots, the
readers are referred to Braun (1993) and Xiang et al. (1996) for
determining Fi(x) in Eq. (4.5.57).

Along the interface between the ith segment and the (i + 1)th
segment of the plate, the following continuity conditions must be
satisfied.

For plates with abrupt changes in plate thickness, material properties and
intermediate uniaxial load:

wi = wi+1,
∂wi

∂x
=

∂wi+1

∂x
= 0, (Vx)i + N̄i

∂wi

∂x
= (Vx)i+1 + N̄i+1

∂wi+1

∂x
(4.5.58)

For plates with abrupt changes in shear force due to the presence of an
internal line support:

wi = 0, wi+1 = 0,
∂wi

∂x
=

∂wi+1

∂x
= 0, (Mx)i = (Mx)i+1 (4.5.59)

For plates with abrupt changes in slope due to the presence of an internal
line hinge:

wi = wi+1, (Mx)i = 0, (Mx)i+1 = 0

(Vx)i + N̄i
∂wi

∂x
= (Vx)i+1 + N̄i+1

∂wi+1

∂x

(4.5.60)
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In view of Eq. (4.5.55), a homogeneous system of equations can
be derived by implementing the boundary conditions of the plate along
the two edges parallel to the y-axis [Eqs. (4.5.51) to (4.5.53)] and
the interface conditions between two plate segments [Eqs. (4.5.58) to
(4.5.59)] when assembling the segments to form the entire plate

K{c} = {0} (4.5.61)

where K is a 4n× 4n matrix. The buckling load is evaluated by setting
the determinant of K in Eq. (4.5.61) to be zero.

The proposed method is used to determine exact buckling solutions
for rectangular plates with abrupt property changes. For brevity, letters
F , S and C are used to denote a free edge, a simply supported edge, and
a clamped edge, respectively. A two-letter symbol is used to denote the
left and right edge support conditions in a plate. For example, an SF
plate has a simply supported left edge and a free right edge, while the
other two remaining edges are simply supported.

Plates with Two Different Thicknesses

Consider an SS plate with two segments, each with a different
uniform thicknesses, as shown in Table 4.9. The plate is subjected to
a uniaxial inplane compressive load N in the x-direction (Xiang and
Wang, 2002). The exact results are compared in Table 4.9 with the
very accurate ones computed by Eisenberger and Alexandrov (2000),
who used exact beam stability functions in the stiffness method and
performed the analysis in two directions in cycles. The two sets of results
are in excellent agreement, with the exception of the case h2/h1 = 0.4.
The exception is attributed to the fact that Eisenberger and Alexandrov
(2000) obtained the buckling load factor that corresponds to the third
buckling mode while Xiang and Wang (2002) obtained the correct value
for the first buckling mode. Results for stepped laminated plates can be
found in Xiang and Reddy (2001).

Plates with an Internal Line Hinge

Consider an isotropic plate with an internal line hinge as shown in
Table 4.10. Using the proposed method, the buckling factors for SS, FF
and CC square plates subjected to uniaxial inplane compressive load N
in the x-direction are obtained (Xiang et al., 2001). Results for shear
deformable laminated plates may be found in Gupta and Reddy (2002).
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Table 4.9: Comparison of buckling load factors Nb2/(π2D1) for a
stepped, SS rectangular plate subjected to uniaxial inplane
load (a/b = 2.0, c/a = 0.5, E1 = E2, ν1 = ν2 = 0.25).

Stepped plate with two thicknesses h2
h1

Eisenberger and Xiang and
Alexandrov (2000) Wang (2002)

0.4 0.8619 0.3083
0.6 1.0245 1.0246
0.8 2.3442 2.3442
1.0 4.0000 4.0000
1.2 4.5324 4.5325
1.4 4.6663 4.6663
1.6 4.7292 4.7292
1.8 4.7652 4.7652
2.0 4.7877 4.7878
2.2 4.8026 4.8027

Table 4.10: Buckling load factors Nb2/(π2D1) for SS, FF and CC
square plates having an internal line hinge and subjected
to uniaxial inplane load (a/b = 1.0, h1 = h2, E1 =
E2, ν1 = ν2 = 0.3).

Plate with an internal line hinge c
a SS FF CC

0.001 1.4017 1.4000 4.8497
0.1 1.5770 1.4216 5.1550
0.2 1.7474 1.4676 5.1799
0.3 1.8969 1.5206 3.5428
0.4 2.0035 1.5645 2.8066
0.5 2.0429 1.5820 2.6261

Plates with Internal Line Supports

Table 4.11 contains the exact buckling solutions for SS, FF and CC
square plates having one internal line support and subjected to uniaxial
inplane load (Xiang 2003).

b

a

c

h2h1

b

a

c

h1 h2
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Table 4.11: Buckling load factors Nb2/(π2D1) for SS, FF and
CC square plates having an internal line support and
subjected to uniaxial inplane load (a/b = 1.0, h1 =
h2, E1 = E2, ν1 = ν2 = 0.3).

Plate with an internal line support c
a SS FF CC

0.001 4.8489 2.3660 6.7481
0.1 5.0467 2.3891 7.3051
0.2 5.3165 2.3966 8.0315
0.3 5.6652 2.2564 8.9336
0.4 6.0482 2.0936 9.8920
0.5 6.2500 2.0429 10.386

Plates with Intermediate Inplane Load

The geometry and load configuration for a plate subjected to an
intermediate inplane load is given in Fig. 4.21. Table 4.12 contains
the buckling intermediate load factor N2b

2/(π2D1) for square and
rectangular SS, FF and CC plates when the end load N1 = 0 (see Xiang,
et al., 2003; and Wang, et al., 2004).

Figure 4.21: Rectangular plate subjected to an intermediate inplane
load.

N1 +N2N2N1

b
Plate

segment 2

Plate
segment

1
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Table 4.12: Buckling intermediate load factors N2b
2/(π2D1) with

N1 = 0 (h1 = h2, E1 = E2, ν1 = ν2 = 0.3).

a/b = 1 a/b = 2

c
a SS FF CC SS FF CC

0.3 5.3134 2.2511 8.4730 4.3540 2.3145 5.2077
0.5 6.3779 2.3282 12.050 4.5430 2.3254 5.9609
0.7 6.6443 2.6384 13.307 5.8152 2.3389 8.8086

Plates with Different Materials

The proposed method may also be used to solve the buckling problem
of rectangular plates with multiple material properties. The buckling
load factors for square plates having two materials and subjected to
uniaxial inplane compressive load N in the x-direction are presented in
Table 4.13. As expected, the buckling factors decrease as the portion of
material 1 (weaker material) increases.

Table 4.13: Buckling load factors Nb2/(π2D1) for SS, FF and CC
plates having two different materials and subjected to
uniaxial inplane load (a/b = 1.0, h1 = h2, E2 =
2E1, ν1 = 0.3, ν2 = 0.25).

Plate with two materials c
a SS FF CC

0.001 7.7623 4.2153 13.079
0.1 7.3876 3.6301 12.131
0.3 6.0912 2.6981 10.999
0.5 5.1983 2.3859 8.7850
0.7 4.6749 2.2997 7.8682
0.9 4.2507 2.2345 7.1064
0.999 4.0030 2.0478 6.7464

4.6 Simply Supported Isosceles Triangular Plates

Han (1960) presented buckling of a simply supported, isosceles
triangular plate of height a and base 2as, and subjected to a normal
compressive force N̂0 along the boundaries, as shown in Fig. 4.22. The

b
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l 1

Material 2N
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governing equation is given by [see Eq. (4.5.28)]

D∇4w + N̂0∇2w = 0. (4.6.1)

The simply supported boundary conditions require

w = 0, ∇2w = 0. (4.6.2)

Figure 4.22: An isosceles triangular plate.

Han (1960) approximated the displacement function as

w ≈
∑
n=1

CnFn(x), Fn = 2 sin
nπx

a
cos

nπy

as
− sin

2nπx
a

(4.6.3)

where Cn are arbitrary constants, and used the Ritz method to minimize
the energy functional associated with Eq. (4.6.1). Clearly, the assumed
approximation satisfies the boundary conditions in (4.6.2). This yields
N̂0 as a function of n, which is then minimized with respect to n to
obtain the critical buckling load

N̂0 =
2π2D

a2

(
1 +

1
3s2

)
(4.6.4)

Although this is an approximate solution for arbitrary s < 1.0, it is exact
for s = 1/

√
3, which corresponds to the case of an equilateral triangle.

For this case the critical buckling load is

N̂0 =
4π2D

a2
(4.6.5)

sa

sa

a

y

x0N̂

0N̂
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For the following alternative choice of Fn in Eq. (4.6.3), when
s ≥ 1.0,

Fn = cos
(m + n)πx

2a
cos

(m− n)πy
2as

− cos
(m− n)πx

2a
cos

(m + n)πy
2as

(4.6.6)
the approximate critical buckling load is given by

N̂0 =
5π2D

4a2

(
1 +

1
s2

)
(4.6.7)

This is exact when s = 1, and the value is given by

N̂0 =
5π2D

2a2
(4.6.8)

Accurate buckling formulas for simply supported and clamped isosceles
triangular plates can be found in the paper by Wang and Liew (1994).

4.7 First-Order Shear Deformation Theory of Plates

4.7.1 Governing Equations of Rectangular Plates

The simplest shear deformation plate theory is the first-order shear
deformation plate theory (or FSDT), also referred to as the Mindlin plate
theory (Mindlin, 1951), and it is based on the displacement field

u(x, y, z) = zφx(x, y) (4.7.1a)
v(x, y, z) = zφy(x, y) (4.7.1b)
w(x, y, z) = w(x, y) (4.7.1c)

where φx and −φy denote rotations about the y- and x-axes, respectively.
In FSDT, shear correction factors are introduced to correct the
discrepancy between the actual transverse shear force distributions and
those computed using the kinematic relations of FSDT. The shear
correction factors depend not only on the geometric parameters but also
on the loading and boundary conditions of the plate.

The equations of equilibrium of the first-order plate theory are given
by

−
(
∂Qx

∂x
+

∂Qy

∂y

)
+

∂

∂x

(
N̂xx

∂w

∂x
+ N̂xy

∂w

∂y

)

+
∂

∂y

(
N̂xy

∂w

∂x
+ N̂yy

∂w

∂y

)
= 0, (4.7.2a)

−
(
∂Mxx

∂x
+

∂Mxy

∂y

)
+ Qx = 0, (4.7.2b)

−
(
∂Mxy

∂x
+

∂Myy

∂y

)
+ Qy = 0, (4.7.2c)

© 2005 by CRC Press LLC



where (N̂xx, N̂yy, N̂xy) are applied inplane compressive and shear forces
per unit length,(Mxx,Myy,Mxy) are the moments, and (Qx, Qy) the
transverse shear forces per unit length (see Fig. 4.1).

The primary and secondary variables of the theory are

primary variables: w, φn, φs

secondary variables: Qn, Mnn, Mns (4.7.3)

where
φx = nxφn − nyφs , φy = nyδφn + nxδφs (4.7.4a)

Qn ≡ Qxnx + Qyny (4.7.4b)

The boundary conditions involve specifying one element of each of the
following pairs:

(w,Qn), (φn,Mnn), (φs,Mns)

Assuming that the plate material is orthotropic and obeys Hooke’s
law, we can express the stress resultants of Eqs. (4.7.2a–c) in terms of
the displacements (w, φx, φy) as

⎧⎨
⎩
Mxx

Myy

Mxy

⎫⎬
⎭ =

⎡
⎣D11 D12 0
D12 D22 0
0 0 D66

⎤
⎦
⎧⎪⎪⎨
⎪⎪⎩

∂φx

∂x
∂φy

∂y
∂φx

∂y + ∂φy

∂x

⎫⎪⎪⎬
⎪⎪⎭ (4.7.5a)

{
Qy

Qx

}
= Ks

[
A44 0
0 A55

]{ ∂w
∂y + φy

∂w
∂x + φx

}
(4.7.5b)

where Ks denotes the shear correction factor, Dij are defined in Eq.
(4.2.9b), and

D11 =
E1h

3

12(1 − ν12ν21)
, D22 =

E2

E1
D11, D12 = D11ν21, D66 =

G12h
3

12
A44 = G23h, A55 = G12h. (4.7.6)

In view of the relations (4.7.5a, b), the equations of equilibrium
(4.7.2a–c) can be expressed in terms of displacements (w, φx, φy) as

KsA55

(
∂2w

∂x2
+

∂φx

∂x

)
+ KsA44

(
∂2w

∂y2
+

∂φy

∂y

)

=
∂

∂x

(
N̂xx

∂w

∂x
+ N̂xy

∂w

∂y

)
+

∂

∂y

(
N̂xy

∂w

∂x
+ N̂yy

∂w

∂y

)
(4.7.7)
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D11
∂2φx

∂x2
+ D12

∂2φy

∂y∂x
+ D66

(
∂2φx

∂y2
+

∂2φy

∂y∂x

)

−KsA55

(
∂w

∂x
+ φx

)
= 0 (4.7.8)

D66

(
∂2φx

∂x∂y
+

∂2φy

∂x2

)
+ D12

∂2φx

∂x∂y
+ D22

∂2φy

∂y2

−KsA44

(
∂w

∂y
+ φy

)
= 0 (4.7.9)

4.7.2 Buckling Loads of Rectangular Plates

As in the case of the classical thin plate theory, analytical solutions
of the first-order shear deformation plate theory can be developed using
Navier’s and Lévy’s methods. Here, we limit our discussion to the
Navier method of solution for the pure bending case (i.e., omit stretching
deformation). The Lévy method of analysis for the first-order shear
deformation plate theory is more involved than the classical plate theory,
and the buckling loads can be determined only numerically by solving the
eigenvalue problem numerically. Additional details on the Lévy method
can be found in the books by Reddy (1999, 2002, 2004).

The simply supported boundary conditions for the first-order shear
deformation plate theory (FSDT) can be expressed as (see Fig. 4.23)

w(x, 0) = 0, w(x, b) = 0, w(0, y) = 0, w(a, y) = 0 (4.7.10a)
φx(x, 0) = 0, φx(x, b) = 0, φy(0, y) = 0, φy(a, y) = 0 (4.7.10b)

Myy(x, 0) = 0, Myy(x, b) = 0, Mxx(0, y) = 0, Mxx(a, y) = 0
(4.7.10c)

where a and b denote the dimensions of the rectangular plate. The
boundary conditions in Eqs. (4.7.10a–c) are satisfied by the following
expansions:

w(x, y) =
∞∑
n=1

∞∑
m=1

Wmn sin
mπx

a
sin

nπy

b
(4.7.11a)

φx(x, y) =
∞∑
n=1

∞∑
m=1

Xmn cos
mπx

a
sin

nπy

b
(4.7.11b)

φy(x, y) =
∞∑
n=1

∞∑
m=1

Ymn sin
mπx

a
cos

nπy

b
(4.7.11c)
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Figure 4.23: The simply supported boundary conditions of the first-
order shear deformation theory.

The substitution of Eqs. (4.7.11a–c) into Eqs. (4.7.7)–(4.7.9),
with N̂xy = 0, yields the following equations for the coefficients
(Wmn, Xmn, Ymn):⎡

⎣ s11 − s̄11 s12 s13

s12 s22 s23

s13 s23 s33

⎤
⎦
⎧⎨
⎩
Wmn

Xmn

Ymn

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (4.7.12)

where sij are defined by (for orthotropic plates)

s11 = Ks(A55α
2
m + A44β

2
n), s̄11 = N̂xxα

2
m + N̂yyβ

2
n

s12 = KsA55αm, s13 = KsA44βn, s22 = (D11α
2
m + D66β

2
n + KsA55)

s23 = (D12 + D66)αmβn, s33 = (D66α
2
m + D22β

2
n + KsA44) (4.7.13)

and αm = mπ/a and βn = nπ/b.
Suppose that the only applied loads are the inplane compressive

forces

N̂xx = N0, N̂yy = γN0, γ =
N̂yy

N̂xx

(4.7.14)

and all other loads are zero. From Eq. (4.7.12) we have⎡
⎣ s11 −N0

(
α2
m + γβ2

n

)
s12 s13

s12 s22 s23

s13 s23 s33

⎤
⎦
⎧⎨
⎩
Wmn

Xmn

Ymn

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (4.7.15)

y

x

b

 a 

= = 0φyw0

= 0Mxx

⎫
⎬
⎭

⎧
⎨
⎩

= = 0φyw0

= 0Mxx

= = 0φxw0

= 0Myy

⎧
⎨
⎩

= = 0φxw0

= 0Myy

⎫
⎬
⎭
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For a nontrivial solution the determinant of the coefficient matrix in
Eq. (4.7.15) must be zero. This gives the following expression for the
buckling load:

N0 =
(

1
α2
m + γβ2

n

)⎡
⎣ c0 +

(
α2
m

KsA44
+ β2

n
KsA55

)
c1

1 + c1
K2

sA44A55
+ c2

KsA55
+ c3

KsA44

⎤
⎦ (4.7.16a)

c0 = D11α
4
m + 2 (D12 + 2D66)α2

mβ2
n + D22β

4
n, c1 = c2c3 − (c4)2 > 0

c2 = D11α
2
m + D66β

2
n, c3 = D66α

2
m + D22β

2
n, c4 = (D12 + D66)αmβn

(4.7.16b)

Table 4.14 contains the critical buckling loads N̄ = Ncrb
2/(π2D22)

as a function of the plate aspect ratio a/b, side-to-thickness ratio b/h,
and modulus ratio E1/E2 for uniaxial (γ = 0) and biaxial (γ = 1)
compression. The classical plate theory (CPT) results are also included
for comparison. The effect of transverse shear deformation is significant
for lower aspect ratios, thick plates and larger modulus ratios. For thin
plates, irrespective of the aspect ratio and modular ratio, the critical
loads predicted by the shear deformation plate theory are very close to
those of the classical plate theory.

For isotropic, simply supported, rectangular plates on (Pasternak)
elastic foundation, the critical buckling load is given by (Xiang et al.,
1994)

Minimize
m,n N(m,n) = λmnD

1+λmnD
KsGh

+ k
λmn

+ Gb

1 − β2
n(1−γ)
λmn

(4.7.17)

where k is the modulus of the subgrade reaction, Gb is the shear modulus
of the subgrade, and λmn = α2

m + β2
n.

4.7.3 Buckling Loads of Circular Plates

Here we present critical buckling loads of circular plates using the
relationships between the classical and first-order shear deformation
plate theories (see Wang et al., 2000). Consider an elastic, isotropic
circular plate of radius R, uniform thickness h, Young’s modulus E,
shear modulus G and Poisson’s ratio ν subjected to a uniform radial
compressive load N .
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Table 4.14: Critical buckling loads N̄ of simply supported plates
under in-plane uniform uniaxial (γ = 0) and biaxial
(γ = 1) compression.

γ a
b

h
b

E1
E2

= 1 E1
E2

= 3 E1
E2

= 10 E1
E2

= 25

0 0.5 10 5.523 11.583 23.781 34.701
20 6.051 13.779 35.615 68.798

100 6.242 14.669 42.398 100.750
CPT 6.250 14.708 42.737 102.750

1.0 10 3.800 5.901 11.205 19.252
20 3.948 6.309 12.832 25.412

100 3.998 6.452 13.460 28.357
CPT 4.000 6.458 13.488 28.495

1.5 10 4.045(2,1)† 5.664 8.354 13.166
20 4.262(2,1) 5.942 8.959 15.077

100 4.337(2,1) 6.037 9.173 15.823
CPT 4.340(2,1) 6.042 9.182 15.856

3.0 10 3.800(3,1) 5.664(2,1) 8.354(2,1) 13.166(2,1)

20 3.948(3,1) 5.942(2,1) 8.959(2,1) 14.052
100 3.998(3,1) 6.037(2,1) 9.173(2,1) 14.264
CPT 4.000(3,1) 6.042(2,1) 9.182(2,1) 14.273

1 0.5 10 4.418 9.405 15.191(1,3) 17.773(1,3)

20 4.841 11.070 21.565(1,3) 30.073(1,4)

100 4.993 11.737 25.241(1,3) 40.157(1,4)

CPT 5.000 11.767 25.427(1,3) 40.784(1,4)

1.0 10 1.900 3.015 5.662 7.518(1,2)

20 1.974 3.173 6.433 9.308(1,2)

100 1.999 3.227 6.731 10.156(1,2)

CPT 2.000 3.229 6.744 10.196(1,2)

1.5 10 1.391 1.788 2.614 4.093
20 1.431 1.841 2.769 4.651

100 1.444 1.858 2.823 4.869
CPT 1.444 1.859 2.825 4.879

3.0 10 1.079 1.151 1.227 1.375
20 1.103 1.172 1.251 1.414

100 1.111 1.179 1.259 1.426
CPT 1.111 1.179 1.260 1.427

† Denotes mode numbers (m,n) at which the critical buckling load occurred;
(m,n) = (1,1) for all other cases.
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The governing equations for axisymmetric buckling have the form

d

dr
(rQr) = rN̂rr∇2w, rQr =

d

dr
(rMrr) −Mθθ (4.7.18a)

Mrr = D

(
dφr

dr
+

ν

r
φr

)
, Mθθ = D

(
ν
dφr

dr
+

1
r
φr

)
(4.7.18b)

Qr = KsGh

(
φr +

dw

dr

)
(4.7.18c)

Equations (4.3.17) and (4.4.1) of the CPT and Eqs. (4.7.18a–c) of
the FSDT for isotropic plates can be reduced to

d3ψ

dr3
+

2
r

d2ψ

dr2
+ (λ0 − 1

r2
)
dψ

dr
+

1
r
(λ0 +

1
r2

)ψ = 0 (4.7.19)

where

ψ =

⎧⎨
⎩
−dwC

dr , for CPT

φF
r , for FSDT

(4.7.20a)

λ0 =

⎧⎪⎪⎨
⎪⎪⎩

N̂C
rr
D , for CPT

N̂F
rr

1− N̂F
rr

KsGh

, for FSDT
(4.7.20b)

where superscripts C and F refer to the CPT and FSDT, respectively.
Equation ψ is subject to the boundary conditions

At r = R :
ψ = 0 for clamped plates
dψ

dr
+

ν

r
ψ = 0 for simply supported plates (4.7.21a)

dψ

dr
+

ν

r
ψ = k2ψ for rotational elastic restraint

At r = 0 :
ψ = 0 for all boundary conditions (4.7.21b)

where k2 is the rotational spring constant. In view of the similarity of
the governing equations and boundary conditions, we obtain

N̂F
rr =

N̂C
rr

1 + N̂C
rr

KsGh

(4.7.22)
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The buckling load relationship (4.7.22) also applies to sectorial
plates with simply supported edges and to sectorial plates with simply
supported radial edges and either a clamped or a free circular edge.
The availability of this relationship allows easy and accurate deduction
of critical buckling loads based on the FSDT from their corresponding
CPT critical buckling loads. For more details, see Wang et al. (2000).

Table 4.15 contains the CPT and FSDT buckling factors N̂rrR
2/D

for circular plates with various values of the thickness-to-radius ratio
h/R, elastic rotational restraint parameter k2R/D and Poisson’s ratio
ν = 0.3. Note that the buckling load factor in CPT is independent
of h/R due to the neglect of transverse shear deformation. The
three-dimensional elasticity solutions of Ye (1995) are also included for
comparison.

Table 4.15: Comparison of buckling load factors for circular plates
based on different theories.

h
R

k2R
D CPT FSDT Ye (1995)

0 4.1978 4.1853
0.05 1 6.3532 6.3245

10 12.173 12.068
∞ 14.682 14.530 14.552

0 4.1978 4.1481
0.10 1 6.3532 6.2400

10 12.173 11.764
∞ 14.682 14.091 14.177

0 4.1978 4.0057
0.20 1 6.3532 5.9235

10 12.173 10.688
∞ 14.682 12.572 12.824

0 4.1978 3.7893
0.30 1 6.3532 5.4625

10 12.173 9.2792
∞ 14.682 10.658 11.024
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4.8 Inelastic Buckling of Plates

4.8.1 Introduction

Inelastic buckling analysis of plates may be based on incremental
(or flow) theory of plasticity (e.g., Handelman and Prager, 1948;
Pearson, 1950) or the deformation theory of plasticity (e.g., Kaufmann,
1936; Illyushin, 1947; Stowell, 1948; Bijlaard, 1949; El-Ghazaly and
Sherbourne, 1986), or the slip theory (e.g., Bartdorf, 1949; Inoue
and Kato, 1993). The success of these is varied. For example, the
deformation theory gives a better prediction of critical buckling loads for
long simply supported plates while the incremental theory gives better
results for cylinders under compression and torsion. Accordingly, some
researchers (e.g., Shrivastava, 1979; Ore and Durban, 1989; Tugcu, 1991;
and Durban and Zuckerman, 1999) presented the inelastic buckling loads
of plates based on both the deformation-type theory and the incremental-
type theory. There are, however, other simplified theories such as the one
proposed by Bleich (1952). Bleich assumed a two-moduli plate where the
modulus in the direction of stress that is likely to exceed the proportional
limit be taken as the tangent modulus ET , while in the direction where
there is little stress, the elastic modulus E be taken. Furthermore, the
factor for the twisting moment curvature relation is arbitrarily chosen
as

√
ET /E. Bleich’s simplified theory seems to give results in close

agreement with large-scale test results obtained by Kollbrunner (1946).
Apart from the paper by Shrivastava (1979), the aforementioned

studies on inelastic buckling analysis of plates adopted the classical thin-
plate theory. When dealing with thick plates where buckling occurs in
the plastic range, a shear deformable plate theory has to be employed
so as to admit the significant effect of transverse shear deformation.
Complementing the work of Shrivastava (1979), Wang et al. (2001)
adopted the Mindlin plate theory for the inelastic buckling of rectangular
thick plates under equibiaxial and uniaxial loading, and of circular thick
plates under a uniform radial load.

Following Wang et al. (2001), two plasticity theories are considered
here: the incremental theory (IT) of plasticity with the Prandtl–Reuss
constitutive equations and the deformation theory (DT) of plasticity
with the Hencky stress–strain relation. An important difference between
these two theories is that the strain in the former theory depends on
the manner in which the state of stress is built up, whereas in the
latter theory the strain that corresponds to a certain state of stress is
entirely independent of the manner in which this state of stress has been
reached. Analytical forms of inelastic stability criteria are presented
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for rectangular and circular thick plates for both theories. Critical
buckling stress factors, from both theories of plasticity, are tabulated
for square and circular plates whose materials exhibit strain hardening
characterized by the Ramberg–Osgood stress–strain relation.

4.8.2 Governing Equations of Circular Plates

Consider a circular plate with radius a and uniform thickness h. The
plate is subjected to uniform compressive radial stress of magnitude σ.
According to the Mindlin plate theory, the admissible velocity field for
axisymmetric deformation is given by

vr = zφ; vθ = 0; vz = w (4.8.1)

where φ is the rate of rotation and w the transverse velocity. For
axisymmetric buckling, the nonzero strain rates associated with Eqs.
(4.8.1) are given by

ε̇rr = z
dφ

dr
; ε̇θθ = z

φ

r
; γ̇rz = φ +

dw

dr
(4.8.2)

The constitutive relations are given by (Chakrabarty, 2000)

σ̇rr = E(αε̇rr+βε̇θθ); σ̇θθ = E (βε̇rr + αε̇θθ) ; τ̇rz = KsGγ̇rz (4.8.3)

where E is Young’s modulus, Ks the shear correction factor, G the
effective shear modulus, and the parameters α, β, ρ are given by

α =
1
ρ

[
4 − 3

(
1 − ET

Es

)]
(4.8.4a)

β =
1
ρ

[
2 − 2 (1 − 2ν)

ET

E
− 3

(
1 − ET

Es

)]
(4.8.4b)

ρ = 3
E

Es
+ (1 − 2ν)

[
2 − (1 − 2ν)

ET

E
− 3

(
1 − ET

Es

)]
(4.8.4c)

and the ratios of the elastic modulus E to the shear modulus G, the
tangent modulus ET and the secant modulus Es at the onset of buckling
are expressed by the Ramberg–Osgood elasto–plastic characteristic in
the forms of

E

G
= 2 + ν + 3

(
E

Es
− 1

)
(4.8.5)

E

ET
= 1 + ck

(
σ̄

σ0

)c−1

; c > 1 (4.8.6)

E

Es
= 1 + k

(
σ̄

σ0

)c−1

; c > 1 (4.8.7)
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where σ0 is a nominal yield stress, c is the hardening index that describes
the shape of the stress–strain relationship with c = ∞ for elastic–
perfectly plastic response, and k is the horizontal distance between the
knee of the curve and the intersection of the c curve with the σ/σ0 = 1
line, as shown in Fig. 4.24. The expressions (4.8.4a–c) for α, β, ρ describe
the constitutive equations based on the rate form of Hencky’s stress–
strain relation. By setting Es = E, these expressions reduce to those
corresponding to the Prandtl–Reuss constitutive relations.

Figure 4.24: Ramberg–Osgood stress–strain relation.

To obtain the condition for bifurcation of the plate in the
elastic/plastic range, it is assumed that Shanley’s concept of continuous
loading during buckling is accepted and therefore no unloading takes
place. Consider the uniqueness criterion in the form of (Chakrabarty,
2000) ∫ {

(σ̇rrε̇rr + σ̇θθε̇θθ + τ̇rzγ̇rz) − σ

(
dw

dr

)2
}
dV > 0 (4.8.8)

Using Eqs. (4.8.2) and (4.8.3) and integrating through the thickness of
the plate, the condition for uniqueness is reduced to∫ {

αEh3

12

(
dφ

dr

)
+

αEh3

12

(
φ

r

)2

+
βEh3

6

(
φ

r

)(
dφ

dr

)

+KsGh

(
φ +

dw

dr

)2

− σh

(
dw

dr

)2
}
rdr > 0 (4.8.9)
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The Euler–Lagrange differential equations associated with the
minimization of the functional with respect to arbitrary variations of
w and φ are easily shown to be

KsGh

(
φ +

dw

dr

)
= σh

dw

dr
⇒ dw

dr
= − φ

1 − σ
KsG

(4.8.10a)

and

αEh3

12
r
d2φ

dr2
+

αEh3

12
dφ

dr
− αEh3

12
φ

r
− rKsGh

(
φ +

dw

dr

)
= 0 (4.8.10b)

When the bifurcation occurs in the elastic range (i.e., ET = Es = E),
Eqs. (4.8.10a) and (4.8.10b) reduce to the well-known governing equation
for elastic buckling of circular Mindlin plates (Hong et al., 1993).

4.8.3 Buckling Solutions of Circular Plates

The elimination of the derivative of w in Eq. (4.8.10b) by using Eq.
(4.8.10a) yields

r2d
2φ

dr2
+ r

dφ

dr
+
(
ξ2 − 1

)
φ = 0 (4.8.11)

where

ξ = r

√√√√(
σh

1 − σ
KsG

)
12

αEh3
(4.8.12)

Equation (4.8.11) is a Bessel’s differential equation with the general
solution

φ = C1J1 (ξ) + C2Y1 (ξ) (4.8.13)

where C1 and C2 are constants and J1(ξ), Y1(ξ) are first-order Bessel
functions of the first kind and second kind, respectively. Since from
axisymmetric condition φ = 0 at the plate center (i.e., at r = ξ = 0), the
constant C2 must vanish in Eq. (4.8.13). Thus, Eq. (4.8.13) reduces to

φ = C1J1(ξ) (4.8.14)

The critical stress would evidently depend on the support condition at
the edge at r = a.
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Clamped Circular Plate

For a clamped circular plate, the rotation at the edge must vanish at
the edge, i.e., φ = 0 at r = a. Thus, in view of this boundary condition
and Eq. (4.8.14), the bifurcation criterion is given by

J1(λ) = 0 (4.8.15)

where, in view of Eqs. (4.8.4a) and (4.8.12),

λ = a

√√√√(
σh

1 − σ
KsG

)
12

αEh3
(4.8.16)

Since λ involves σ/E for any given stress–strain curve, the solution must
be found by an iterative method, such as the false position method.

Simply Supported Circular Plate

For a simply supported circular plate, the bending moment in the
radial direction must vanish at the edge, i.e., dφ/dξ + (βφ)/(αξ) = 0 at
r = a. Thus, in view of Eqs. (4.8.4a) and (4.8.4b), using Eq. (4.8.13) and
noting the fact that J ′

1(ξ) = J0(ξ)−(1/ξ)J1(ξ), we obtain the bifurcation
criterion as

λJ0(λ)
J1(λ)

= 1 − β

α
(4.8.17)

Since the left-hand side of this stability criterion (4.8.17) depends on the
value of σ/E, the critical stress has to be computed iteratively.

Tables 4.16 and 4.17 contain the critical buckling stress factors for
simply supported and clamped circular plates, respectively, for various
values of c and thickness-to-radius ratios h/a. In the calculations,
Ks = 5/6 and ν = 0.3 were taken. The elastic critical buckling stress
factors, obtained by setting ET = Es = E, are also given for comparison
purposes and these elastic results check out with those obtained by
Kanaka Raju and Venkateswara Rao (1983) and Hong et al. (1993).

4.8.4 Governing Equations of Rectangular Plates

Consider a flat, rectangular plate whose sides are of lengths a and
b and of uniform thickness h as shown in Fig. 4.25. The plate is acted
upon by uniform compressive stresses of magnitudes σ1 and σ2 in the
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Table 4.16: Critical buckling stress factors σcha
2/(π2D) for simply

supported circular plates (Ks = 5/6, ν = 0.3, k =
0.25).

σcha2/(π2D)

c E/σ0 h/a = 0.025 h/a = 0.050 h/a = 0.075

IT* DT* IT DT IT DT

Elastic - 0.4250 0.4250 0.4241 0.4241 0.4225 0.4225

2 200 0.4185 0.4181 0.4002 0.3988 0.3756 0.3728
300 0.4153 0.4147 0.3902 0.3881 0.3586 0.3549
500 0.4094 0.4084 0.3726 0.3697 0.3317 0.3270
750 0.4024 0.4010 0.3545 0.3507 0.3067 0.3010

3 200 0.4245 0.4245 0.4167 0.4164 0.3919 0.3907
300 0.4239 0.4239 0.4086 0.4079 0.3665 0.3644
500 0.4220 0.4219 0.3875 0.3861 0.3198 0.3168
750 0.4185 0.4182 0.3589 0.3568 0.2757 0.2720

5 200 0.4250 0.4250 0.4236 0.4236 0.4121 0.4118
300 0.4250 0.4250 0.4217 0.4217 0.3850 0.3843
500 0.4249 0.4249 0.4087 0.4084 0.3160 0.3146
750 0.4246 0.4246 0.3744 0.3735 0.2518 0.2500

20 200 0.4250 0.4250 0.4241 0.4241 0.4225 0.4225
300 0.4250 0.4250 0.4241 0.4241 0.4222 0.4221
500 0.4250 0.4250 0.4241 0.4241 0.3425 0.3424
750 0.4250 0.4250 0.4217 0.4217 0.2429 0.2427

* IT = Incremental theory of plasticity; DT = Deformation theory of

plasticity.

x− and y-directions, respectively. According to the first-order shear
deformation plate theory, the admissible velocity field may be written as

vx = zφ̇x, vy = zφ̇y, vz = ẇ (4.8.18)

where (φ̇x, φ̇y) are the rotation rates about the y- and x-axes,
respectively, and ẇ is the transverse velocity. The strain rates
corresponding to Eqs. (4.8.18) are given by Eqs. (4.8.19) on page 165.
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Table 4.17: Buckling stress factors σcha
2/(π2D) for clamped

circular plates (Ks = 5/6, ν = 0.3, k = 0.25).

σcha2/(π2D)

c E/σ0 h/a = 0.025 h/a = 0.050 h/a = 0.075

IT* DT* IT DT IT DT

Elastic 1.484 1.484 1.472 1.472 1.453 1.453

2 200 1.431 1.409 1.307 1.241 1.176 1.0690
300 1.408 1.377 1.252 1.166 1.105 0.9742
500 1.367 1.320 1.168 1.055 1.009 0.8483
750 1.323 1.260 1.094 0.9573 0.9326 0.7481

3 200 1.470 1.466 1.320 1.282 1.086 1.0010
300 1.453 1.445 1.218 1.158 0.9573 0.8458
500 1.409 1.388 1.060 0.9677 0.8072 0.6601
750 1.342 1.306 0.9296 0.8107 0.7092 0.5311

5 200 1.483 1.483 1.364 1.348 0.9997 0.9467
300 1.480 1.480 1.203 1.171 0.8168 0.7388
500 1.460 1.456 0.9534 0.8941 0.6443 0.5223
750 1.390 1.377 0.7779 0.6918 0.5638 0.3901

20 200 1.484 1.484 1.471 1.471 0.9316 0.9243
300 1.484 1.484 1.283 1.279 0.6689 0.6500
500 1.484 1.484 0.8550 0.8456 0.5178 0.4112
750 1.483 1.483 0.6182 0.5925 0.5164 0.2836

*IT = Incremental theory of plasticity; DT = Deformation theory of plasticity.

Figure 4.25: Plate subjected to uniform compressive stress σ1 along
the x-axis and uniform compression σ2 along the y-axis.
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ε̇xx = z
∂φ̇x

∂x
; ε̇yy = z

∂φ̇y

∂y
, γ̇xy = z

(
∂φ̇x

∂y
+

∂φ̇y

∂x

)

γ̇xz = φ̇x +
∂ẇ

∂x
, γ̇yz = φ̇y +

∂ẇ

∂y

(4.8.19)

The constitutive relations of the Prandtl–Reuss type as well as the
Hencky type for a linearized elastic/plastic solid that behaves identically
under loading and unloading are given by (Chakrabarty, 2000)

σ̇xx = E (αε̇xx + βε̇yy) ; σ̇yy = E (βε̇xx + γε̇yy) (4.8.20a)
τ̇xy = Gγ̇xy; τ̇xz = KsGγ̇xz; τ̇yz = KsGγ̇yz (4.8.20b)

where E is the elastic modulus, G the effective shear modulus, and Ks is
the shear correction factor. The expressions for (α, β, γ, ρ) and the shear
modulus G are given below for the two different plasticity theories.

Incremental theory of plasticity (IT):

α =
1
ρ

[
4 − 3

(
1 − ET

E

)
σ2

1

σ̄2

]
(4.8.21a)

β =
1
ρ

[
2 − 2 (1 − 2ν)

ET

E
− 3

(
1 − ET

E

)
σ1σ2

σ̄2

]
(4.8.21b)

γ =
1
ρ

[
4 − 3

(
1 − ET

E

)
σ2

2

σ̄2

]
(4.8.21c)

ρ = (5 − 4ν) + (1 − 2ν)2
ET

E
− 3(1 − 2ν)

(
1 − ET

E

)
σ1σ2

σ̄2
(4.8.21d)

E

G
= 2(1 + ν) (4.8.21e)

Deformation theory of plasticity (DT):

α =
1
ρ

[
4 − 3

(
1 − ET

Es

)
σ2

1

σ̄2

]
(4.8.22a)

β =
1
ρ

[
2 − 2(1 − 2ν)

ET

E
− 3

(
1 − ET

Es

)
σ1σ2

σ̄2

]
(4.8.22b)

γ =
1
ρ

[
4 − 3

(
1 − ET

Es

)
σ2

2

σ̄2

]
(4.8.22c)

ρ = 3
E

Es
+ (1 − 2ν)

[
2 − (1 − 2ν)

ET

E
− 3

(
1 − ET

Es

)
σ1σ2

σ̄2

]
(4.8.22d)

E

G
= 2 + 2ν + 3

(
E

Es
− 1

)
(4.8.22e)
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wherein the ratios of the elastic modulus E to the tangent modulus ET

and the secant modulus ES at the onset of buckling are expressed by the
Ramberg–Osgood elastoplastic characteristic in the forms of

E

ET
= 1 + ck

(
σ̄

σ0

)c−1

; c > 1 (4.8.23)

E

Es
= 1 + k

(
σ̄

σ0

)c−1

; c > 1 (4.8.24)

The equivalent stress σ̄ is defined on the basis of the von Mises yield
criterion given by

σ̄2 = σ2
1 − σ1σ2 + σ2

2 (4.8.25)

Note that by setting the secant modulus Es in Eqs. (4.8.22a–e) to be
equal to the elastic modulus (i.e., Es = E), the expressions of α, β, γ, ρ
of the Hencky deformation theory (DT) reduce to those corresponding
to the incremental theory (IT) with Prandtl–Reuss equations.

To obtain the condition for bifurcation of the plate in the inelastic
range, consider the uniqueness criterion in the form (Charkrabarty, 2000)

∫
V

{
(σ̇xxε̇xx + σ̇yy ε̇yy + τ̇xyγ̇xy + τ̇xzγ̇xz + τ̇yzγ̇yz)

− σ1

(
∂w

∂x

)2

− σ2

(
∂w

∂y

)2
}
dV > 0 (4.8.26)

Using Eqs. (4.8.19) and (4.8.20) and integrating through the thickness
of the plate, the condition for uniqueness is reduced to

∫
S

{
αEh3

12

(
∂φx

∂x

)2

+
γEh3

12

(
∂φy

∂y

)2

+
βEh3

6

(
∂φx

∂x

)(
∂φy

∂y

)

+
Gh3

12

(
∂φx

∂x
+

∂φy

∂y

)2

+ KsGh

[(
φx +

∂w

∂x

)2

+
(
φy +

∂w

∂y

)2
]

− σ1h

(
∂w

∂x

)2

− σ2h

(
∂w

∂y

)2
}
dxdy > 0 (4.8.27)

The Euler–Lagrange differential equations associated with the
minimization of the functional with respect to arbitrary variations of
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(w, φx, φy) are easily shown to be

KsGh

(
∂φx

∂x
+

∂φy

∂y
+ ∇2w

)
= σ1h

∂2w

∂x2
+ σ2h

∂2w

∂y2
(4.8.28a)

∂

∂x

(
αEh3

12
∂φx

∂x
+

βEh3

12
∂φy

∂y

)
+

∂

∂y

[
Gh3

12

(
∂φx

∂y
+

∂φy

∂x

)]

−KsGh

(
φx +

∂w

∂x

)
= 0 (4.8.28b)

∂

∂y

(
γEh3

12
∂φy

∂y
+

βEh3

12
∂φx

∂x

)
+

∂

∂x

[
Gh3

12

(
∂φx

∂y
+

∂φy

∂x

)]

−KsGh

(
φy +

∂w

∂y

)
= 0 (4.8.28c)

If the tangent modulus and the secant modulus at the point of bifurcation
are the same as the elastic modulus, i.e., ET = Es = E, we have

α = γ =
1

1 − ν2
, β =

ν

1 − ν2
(4.8.29)

and Eqs. (4.8.28a–c) would then reduce to the well-known equations
governing elastic buckling of Mindlin plates (Brunelle, 1971; Wang,
1995).

4.8.5 Buckling Solutions of Rectangular Plates

Simply Supported Rectangular Plates

For a rectangular plate with simply supported edges, the boundary
conditions are

w(0, y) = Mxx(0, y) = φy(0, y) = 0 (4.8.30a)
w(x, 0) = Myy(x, 0) = φx(x, 0) = 0 (4.8.30b)
w(a, y) = Mxx(a, y) = φy(a, y) = 0 (4.8.30c)
w(x, b) = Myy(x, b) = φx(x, b) = 0 (4.8.30d)

where the bending moment rates are

Mxx =
Eh3

12

(
α
∂φx

∂x
+ β

∂φy

∂y

)

Myy =
Eh3

12

(
β
∂φx

∂x
+ γ

∂φy

∂y

) (4.8.31)
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The rates of displacement and rotations that satisfy the foregoing
boundary conditions are given by

w = Cw
mn sin

(
mπx

a

)
sin

(
nπy

b

)
(4.8.32a)

φx = Cφx
mn cos

(
mπx

a

)
sin

(
nπy

b

)
(4.8.32b)

φy = Cφy
mn sin

(
mπx

a

)
cos

(
nπy

b

)
(4.8.32c)

where Cw
mn, Cφx

mn, and C
φy
mn (m,n = 1, 2, · · ·) are constants. The

substitution of Eqs. (4.8.32a–c) into Eqs. (4.8.28a–c) results in the
following three homogeneous equations which may be expressed as

⎡
⎣ A11 A12 A13

A22 A23

sym A33

⎤
⎦
⎧⎨
⎩
Cw
mn

Cφx
mn

C
φy
mn

⎫⎬
⎭ =

⎧⎨
⎩

0
0
0

⎫⎬
⎭ (4.8.33)

where

A11 = KsGh

(
m2π2

a2
+

n2π2

b2

)
− σ1h

(
m2π2

a2

)
− σ2h

(
n2π2

b

)
(4.8.34a)

A12 = KsGh

(
mπ

a

)
(4.8.34b)

A13 = KsGh

(
nπ

b

)
(4.8.34c)

A22 =
αEh3

12

(
m2π2

a2

)
+

Gh3

12

(
n2π2

b2

)
+ KsGh (4.8.34d)

A23 =

(
βEh3

12
+

Gh3

12

)(
mnπ2

ab

)
(4.8.34e)

A33 =
γEh3

12

(
n2π2

b2

)
+

Gh3

12

(
m2π2

a2

)
+ KsGh (4.8.34f)

The critical buckling stress can be determined by setting the determinant
of the matrix [A] to zero.

Consider a square plate (i.e., a = b) constructed from an aluminum
alloy where E = 10.7 msi, ν = 0.32, σ0 = 61.4 ksi, and the Ramberg–
Osgood parameters c = 20 and k = 0.3485. The plate is subjected
to a uniaxial load. The buckling stresses, obtained on the basis of the
deformation theory (DT) and the incremental theory (IT), are given in
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Table 4.18. The use of the deformation theory leads to a lower buckling
stress value when compared to the corresponding value obtained using
the incremental theory, since the latter theory gives a stiffer response
in the plastic range. Also, it can be seen from Table 4.18 that Bleich’s
buckling results, known to agree well with experimental test results, are
closer to the results of the deformation theory.

Table 4.18: Buckling stresses σc (in ksi) for a simply supported plate
under uniaxial load.

b/h Incremental Deformation Bleich’s
Theory (DT) Theory (DT) Theory*

22 70.844 60.080 56.125
23 65.166 58.836 55.139
24 60.713 57.397 54.109
25 57.363 55.730 52.988
26 54.598 53.806 51.712
27 51.938 51.569 50.185
28 49.112 48.962 48.269

* Note that Bleich’s Theory gives

σc =
π2E

√
ET
E

12(1 − ν2)

(
h

b

)2
[

a
b

n[ET
E

]
1
4

+
ET
E

n[a
b
]
1
4

]2

where n is the number of half-waves in which the plate

buckles in the x-direction.

As presented in Figs. 4.26 and 4.27, critical buckling stress factors
(σchb2/π2D) are determined for simply supported, square plates with
different thickness-to-width ratios h/b and various values of c and E/σ0.
Note that D = Eh3/[12(1−ν2)] is the plate flexural rigidity. The Poisson
ratio ν = 0.3 and the shear correction factor Ks = 5/6 are used in all
calculations. The plate is subjected to either a uniaxial inplane load or
an equibiaxial inplane load. It can be observed that the buckling stress
factors obtained by the deformation theory are consistently lower than
those obtained by the incremental theory.

Generally, the differences of results of these two theories increase
with (1) increasing plate thickness (i.e., h/b values) as evident from Figs.
4.26a and 4.26b, and (2) increasing E/σ0 values as can be seen from
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Figs. 4.27a and 4.27b. The Ramberg–Osgood hardening index c and the
loading configuration (i.e., uniaxial load or equibiaxial loads) also affect
the divergence of results from the two theories. It is interesting to note
that both theories give somewhat similar results when the plate is thin
and equibiaxially loaded and the c value is large (say, 20). Apart from the
aforementioned situation, there is a marked difference in buckling stress
factors from the two theories, which could be exploited when designing
experimental tests to establish which one of the theories gives better
estimates of the buckling loads for thick plates.

Figures 4.28a and 4.28b contain plots of variations of the buckling
stress factors with respect to the aspect ratio a/b of uniaxially loaded and
equibiaxially loaded simply supported plates (of h/b = 0.025) for various
values of c. It is worth noting that the kinks, where the number of half-
wave switches, are displaced as a result of transverse shear deformation
as well as the inelastic characteristics. In contrast to the uniaxial loaded
plate case, there are no kinks in the variations of the buckling stress
factors with respect to the aspect ratio, indicating that there is no mode
switching.

Rectangular Plates with Two Opposite Sides Simply Supported

Next, we consider rectangular plates with two opposite edges simply
supported (edges y = 0 and y = b), while the other edges (edge x = 0 and
edge x = a) may take on any combination of free, simply supported and
clamped edges. The boundary conditions for the two simply supported
parallel edges (y = 0 and y = b) are

w(x, 0) = Myy(x, 0) = φx(x, 0) (4.8.35a)
w(x, b) = Myy(x, b) = φx(x, b) (4.8.35b)

and the boundary conditions for the other two edges (x = 0 and x = a)
are given by (Xiang et al., 1996):

Free edge : Mxx = Myx = 0,

Qx − σ1h
∂w

∂x
= 0 (4.8.36)

Simply supported edge : w = Mxx = φy = 0 (4.8.37)
Clamped edge : w = φx = φy = 0 (4.8.38)
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Figure 4.26: Critical buckling stress factors σchb
2/(π2D) versus

thickness ratio h/b for simply supported plates subjected
to (a) uniaxial, and (b) equibiaxial loads (E/σ0 =
750, a/b = 1, ν = 0.3, Ks = 5/6, k = 0.25).
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Figure 4.27: Critical buckling stress factors σchb2/(π2D) versus E/σ0

for simply supported plates subjected to (a) uniaxial,
and (b) equibiaxial loads (h/b = 0.025, a/b = 1, ν =
0.3, Ks = 5/6, k = 0.25).
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Figure 4.28: Critical buckling stress factors σchb2/(π2D) versus aspect
ratio a/b for simply supported plates subjected to (a)
uniaxial, and (b) equibiaxial loads (E/σ0 = 750, h/b =
0.025, ν = 0.3, Ks = 5/6, k = 0.25).
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in which

Qx = KsGh

(
φy +

∂w

∂x

)
(4.8.39a)

Mxx =
Eh3

12

(
α
∂φx

∂x
+ β

∂φy

∂y

)
(4.8.39b)

Myy =
Eh3

12

(
β
∂φx

∂x
+ γ

∂φy

∂y

)
(4.8.39c)

Mxy =
Gh3

12

(
∂φx

∂y
+

∂φy

∂x

)
(4.8.39d)

For such rectangular plates with two opposite sides simply
supported, the Levy type solution procedure may be used to solve the
governing differential equations [Eqs. (4.8.28a–c)] for buckling of plates.
The velocity fields of the plate may be expressed as (Xiang et al., 1996):

⎧⎨
⎩

w(x, y)
φx(x, y)
φy(x, y)

⎫⎬
⎭ =

⎧⎨
⎩
ηw(x) sin mπy

b
ηx(x) sin mπy

b
ηy(x) cos mπy

b

⎫⎬
⎭ (4.8.40)

in which ηw(x), ηx(x) and ηy(x) are unknown functions to be determined,
and m = 1, 2, · · · ,∞ is the number of half-waves of the buckling mode
shape in the y-direction. Equation (4.8.40) satisfies the simply supported
boundary conditions on edges y = 0 and y = b.

By substituting Eq. (4.8.40) into Eq. (4.8.28a–c), the following
differential equation system can be derived:

ψ′ = Hψ (4.8.41)

where ψ = (ηw, η′w, ηx, η′x, ηy, η′y) and ψ′ is the first derivative of ψ with
respect to x, the prime (′) denotes the derivative with respect to x, and
H is a 6 × 6 matrix with the following nonzero elements:

H12 = H34 = H56 = 1, H21 =
(KsGh− σ2h)(mπ/b)2

KsGh− σ1h

H24 =
−KsGh

KsGh− σ1h
, H25 =

KsGh(mπ/b)
KsGh− σ1h

, H42 =
−KsGh

(αEh3/12)

H43 =
−KsGh + (Gh3/12)(mπ/b)2

(αEh3/12)

H46 =
[(βEh3/12) + (Gh3/12)](mπ/b)

(αEh3/12)
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H61 =
KsGh(mπ/b)

(Gh3/12)
, H64 =

−[(βEh3/12) + (Gh3/12)](mπ/b)
(Gh3/12)

H65 =
[KsGh + (γEh3/12)(mπ/b)2]

(Gh3/12)
(4.8.42)

The solution of the differential equation system [Eq. (4.8.41)] can be
obtained as:

Ψ = eHxc (4.8.43)

where c is a constant column vector that can be determined from the
boundary conditions of the plate and eHx is the general matrix solution.
The detailed procedure in determining Eq. (4.8.43) may be found in the
paper by Xiang et al. (1996).

Applying the boundary conditions on the edges parallel to the y-axis,
a homogeneous system of equations is obtained:

Kc = 0 (4.8.44)

The buckling stresses σ1 and σ2 are determined by setting the
determinant of K to be equal to zero. As the buckling stresses are
imbedded in matrix H, it cannot be obtained directly from Eq. (4.8.27).
A numerical iteration procedure was used for the calculations (Xiang et
al., 1996).

Tables 4.19 to 4.21 present the critical buckling stress factors of
square plates under uniaxial and equibiaxial loads. In the calculations,
Ks = 5/6 and ν = 0.3 were taken. For brevity, we shall use the letters F
for free edge, S for simply supported edge and C for clamped edge and a
four-letter designation to represent the boundary conditions of the plate.
Thus, for example, a CSFS plate will have a clamped edge along x = 0, a
simply supported edge along y = 0, a free edge along x = a and a simply
supported edge along y = b. It can be observed that for very thick plates
(h/b = 0.1) and high values of c, the critical buckling load factors of the
incremental theory do not vary much with respect to the E/σ0 ratios. In
contrast, the corresponding buckling results from the deformation theory
decrease significantly with increasing E/σ0 values for very thick plates.
The buckling factors are much lower when compared to their thin plate
counterparts due to the effect of transverse shear deformation.

In general, the deformation theory gives consistently lower values
of critical buckling stress factor when compared to the corresponding
results obtained using the incremental theory. The difference between
the results of these two theories tends to increase with increasing
thickness ratios, E/σ0 values and the c values of the Ramberg–Osgood
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relation. Generally, plastic buckling stress factors are much reduced
from its elastic counterparts, especially when the plate is thick, and
the hardening index c has a large value. The critical buckling stress
factors obtained using the deformation theory are consistently lower than
the corresponding factors of the incremental theory. The divergence of
these two results increases with increasing plate thickness, E/σ0 and c
values. This marked difference in buckling stress factors observed for
thick plates could be exploited when designing experimental tests on
plates to establish which of the two considered theories of plasticity give
better buckling results.

4.8.6 Buckling of Simply Supported Polygonal Plates

It can be shown that the governing equation for inelastic buckling
of a simply supported polygonal plate can be expressed in terms of the
transverse velocity w as (Wang, 2004)

∇2
(
∇2 + λ

)
w = 0 (4.8.45)

where the plastic buckling stress factor λ is given by

λ =
σh

αEh3

12

(
1 − σh

KsGh

) (4.8.46)

For a straight, simply supported edge, the boundary conditions along
the edge are

w = 0, ∇2w = 0 (4.8.47)

The governing plastic buckling equation (4.8.45) and the boundary
conditions given by Eq. (4.8.47) are of the same form as those of their
corresponding elastic buckling problem of simply supported, thin plates
of polygonal shape (Irschik, 1985; Wang, 1995). For the latter problem,
the elastic buckling stress factor λe is given by

λe =
σeh

D
(4.8.48)

in which σe is the critical elastic buckling stress and D the flexural
rigidity of the plate. Thus, for the same polygonal plate dimensions,
the plastic buckling stress based on the Mindlin plate theory may be
related to its elastic buckling stress based on the classical thin plate
theory as

λ = λe ⇒ σh

α(1 − ν2)
(
1 − σ

KsG

) = σe (4.8.49)
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Table 4.19: Critical buckling stress factors σchb
2/(π2D) for FSFS

square plates (Ks = 5/6, ν = 0.3, k = 0.25).

σchb2/(π2D)

c E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075

IT* DT* IT DT IT DT

Plates under uniaxial load in the x-direction

Elastic – 1.999 1.999 1.946 1.946 1.888 1.888
2 200 1.967 1.872 1.835 1.582 1.683 1.315

300 1.952 1.819 1.794 1.473 1.624 1.188
500 1.925 1.729 1.729 1.316 1.542 1.024

3 200 1.987 1.964 1.815 1.629 1.551 1.216
300 1.974 1.925 1.722 1.447 1.433 1.015
500 1.937 1.826 1.577 1.188 1.306 0.783

5 200 1.998 1.996 1.805 1.694 1.381 1.115
300 1.994 1.988 1.624 1.424 1.240 0.858
500 1.965 1.926 1.392 1.060 1.133 0.599

10 200 1.999 1.999 1.828 1.786 1.226 1.034
300 1.999 1.999 1.520 1.413 1.113 0.892
500 1.994 1.992 1.242 0.961 1.104 0.484

20 200 1.999 1.999 1.881 1.869 1.136 0.999
300 1.999 1.999 1.467 1.418 1.104 0.819
500 1.999 1.999 1.198 0.916 1.104 0.473

Plates under equibiaxial loads

Elastic – 0.9280 0.9280 0.9207 0.9207 0.9106 0.9106
2 200 0.9147 0.8992 0.8735 0.8241 0.8195 0.7372

300 0.9083 0.8860 0.8531 0.7882 0.7852 0.6856
500 0.8961 0.8618 0.8173 0.7308 0.7306 0.6119

3 200 0.9258 0.9241 0.8911 0.8693 0.8033 0.7468
300 0.9232 0.9194 0.8605 0.8227 0.7304 0.6582
500 0.9151 0.9052 0.7910 0.7302 0.6186 0.5346

5 200 0.9279 0.9279 0.9118 0.9074 0.7964 0.7659
300 0.9278 0.9277 0.8821 0.8670 0.6709 0.6314
500 0.9265 0.9257 0.7701 0.7367 0.5072 0.4618

10 200 0.9280 0.9280 0.9204 0.9204 0.8129 0.8021
300 0.9280 0.9280 0.9125 0.9105 0.6298 0.6157
500 0.9280 0.9280 0.7703 0.7582 0.4299 0.4114

20 200 0.9280 0.9280 0.9207 0.9207 0.8461 0.8428
300 0.9280 0.9280 0.9206 0.9207 0.6217 0.6174
500 0.9280 0.9280 0.7914 0.7877 0.4000 0.3930

*IT = Incremental theory of plasticity; DT = Deformation theory of plasticity.

© 2005 by CRC Press LLC



Table 4.20: Critical buckling stress factors σchb
2/(π2D) for SSFS

square plates (Ks = 5/6, ν = 0.3, k = 0.25).

σchb2/(π2D)

c E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075

IT* DT* IT DT IT DT

Plates under uniaxial load in the x-direction

Elastic – 2.312 2.312 2.245 2.245 2.169 2.169
2 200 2.232 2.132 2.013 1.758 1.797 1.436

300 2.199 2.061 1.943 1.624 1.714 1.288
500 2.143 1.942 1.844 1.437 1.606 1.101

3 200 2.278 2.250 1.965 1.773 1.610 1.283
300 2.242 2.185 1.822 1.549 1.466 1.060
500 2.154 2.033 1.632 1.250 1.318 0.811

5 200 2.307 2.305 1.926 1.809 1.402 1.143
300 2.292 2.282 1.678 1.482 1.240 0.874
500 2.199 2.149 1.408 1.085 1.151 0.607

10 200 2.311 2.311 1.926 1.880 1.228 1.043
300 2.311 2.311 1.544 1.439 1.135 0.749
500 2.280 2.272 1.248 0.968 1.129 0.485

20 200 2.311 2.311 1.973 1.959 1.150 1.002
300 2.311 2.311 1.479 1.430 1.129 0.697
500 2.310 2.310 1.215 0.919 1.129 0.435

Plates under equibiaxial loads

Elastic – 1.046 1.046 1.032 1.032 1.015 1.015
2 200 1.034 1.010 0.991 0.916 0.936 0.811

300 1.028 0.994 0.973 0.874 0.905 0.752
500 1.017 0.965 0.939 0.807 0.852 0.669

3 200 1.044 1.041 1.004 0.967 0.911 0.818
300 1.041 1.034 0.973 0.910 0.836 0.716
500 1.033 1.016 1.902 0.801 0.720 0.578

5 200 1.046 1.046 1.022 1.013 0.886 0.831
300 1.045 1.045 0.987 0.957 0.748 0.677
500 1.044 1.042 0.858 0.798 0.579 0.492

10 200 1.046 1.046 1.032 1.032 0.877 0.855
300 1.046 1.046 1.016 1.010 0.675 0.646
500 1.046 1.046 0.827 0.804 0.477 0.429

20 200 1.046 1.046 1.032 1.032 0.892 0.885
300 1.046 1.046 1.031 1.032 0.647 0.636
500 1.046 1.046 0.827 0.819 0.431 0.404

*IT = Incremental theory of plasticity; DT = Deformation theory of plasticity.
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Table 4.21: Critical buckling stress factors σchb
2/(π2D) for CSFS

square (Ks = 5/6, ν = 0.3, k = 0.25).

σchb2/(π2D)

c E/σ0 h/b = 0.025 h/b = 0.050 h/b = 0.075

IT* DT* IT DT IT DT

Plates under uniaxial load in the x-direction

Elastic – 2.336 2.336 2.268 2.268 2.189 2.189
2 200 2.251 2.150 2.022 1.767 1.801 1.441

300 2.217 2.077 1.950 1.631 1.716 1.292
500 2.157 1.955 1.848 1.442 1.607 1.103

3 200 2.300 2.271 1.972 1.780 1.611 1.285
300 2.262 2.204 1.825 1.553 1.466 1.061
500 2.168 2.046 1.632 1.252 1.319 0.812

5 200 2.332 2.329 1.931 1.815 1.402 1.144
300 2.315 2.304 1.679 1.483 1.241 0.874
500 2.215 2.163 1.408 1.085 1.153 0.607

10 200 2.336 2.336 1.929 1.883 1.228 1.043
300 2.336 2.335 1.544 1.439 1.137 0.749
500 2.300 2.292 1.250 0.968 1.131 0.485

20 200 2.336 2.336 1.976 1.962 1.151 1.002
300 2.336 2.336 1.479 1.431 1.131 0.697
500 2.355 2.335 1.216 0.919 1.131 0.435

Plates under equibiaxial loads

Elastic - 1.130 1.130 1.112 1.112 1.090 1.090
2 200 1.119 1.089 1.075 0.981 1.020 0.862

300 1.114 1.071 1.059 0.934 0.991 0.798
500 1.104 1.038 1.028 0.860 0.943 0.707

3 200 1.128 1.124 1.084 1.035 0.991 0.866
300 1.125 1.116 1.055 0.970 0.917 0.755
500 1.118 1.094 0.985 0.849 0.800 0.607

5 200 1.130 1.130 1.100 1.086 0.953 0.873
300 1.130 1.129 1.062 1.018 0.810 0.707
500 1.128 1.125 0.925 0.838 0.638 0.511

10 200 1.130 1.130 1.111 1.111 0.923 0.889
300 1.130 1.130 1.087 1.075 0.712 0.666
500 1.130 1.130 0.870 0.833 0.523 0.441

20 200 1.130 1.130 1.112 1.112 0.921 0.909
300 1.130 1.130 1.109 1.112 0.667 0.649
500 1.130 1.130 0.851 0.839 0.477 0.411

*IT = Incremental theory of plasticity; DT = Deformation theory of plasticity.
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Equation (4.8.49) may be used to compute exact plastic buckling
loads of simply supported Mindlin plates upon supplying the
corresponding exact elastic buckling loads according to the classical thin
plate theory.
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CHAPTER 5

BUCKLING OF SHELLS

5.1 Preliminary Comments

In this chapter, we present the exact elastic buckling solutions of
cylindrical shells, spherical shells and conical shells. For the derivation
of the governing equations, the reader may refer to the following
textbooks which have at least a chapter that is devoted to shell buckling:
Timoshenko and Gere, 1961; Brush and Almroth, 1975; Donnell, 1976;
Calladine, 1983; Bažant and Cedolin, 1991; and Ugural, 1999.

5.2 Axisymmetric Buckling of Circular Cylindrical Shells
under Uniform Axial Compression

Consider a circular cylindrical shell of thickness h, radius R
and subjected to a uniform axial compressive force N (positive for
compression). The governing equation of the axisymmetric buckling of
such a loaded shell is given by (Lorenz, 1908; Timoshenko, 1910)

D
d4w

dx4
+ N

d2w

dx2
+

Eh

R2
w = 0 (5.2.1)

where x is the axial coordinate, w the radial deflection and D =
Eh3/[12(1 − ν2)] the bending rigidity. Equation (5.2.1) is similar to
the buckling equation of a column/beam with elastic foundation.

For a simply supported cylindrical shell having the shell length L
which is a multiple of the half sine waves m in the longitudinal direction,
or if the shell is very long and the boundary conditions are not considered,
the exact solution to the fourth-order differential equation (5.2.1) takes
the form of

w = C sin
mπx

L
(5.2.2)

where C is a constant.
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Figure 5.1: Critical axisymmetric buckling load of cylindrical shell.

The substitution of Eq. (5.2.2) into Eq. (5.2.1) provides the exact
buckling load Nb

Nb = D

[
α2 +

Eh

α2R2D

]
(5.2.3)

which clearly depends on α = mπ/L. By taking the stationarity
condition of Eq. (5.2.3) with respect to α gives

αo =
[
Eh

R2D

]1/4
(5.2.4)

and its substitution into Eq. (5.2.3) yields the least positive value of the
critical buckling load

Ncr =
1√

3(1 − ν2)

(
Eh2

R

)
(5.2.5)

If the length of the shell L is not compatible with the half-wavelength,
the critical load and the number of half-waves can be determined from
Figure 5.1 which shows the various numbers m of half-waves with respect
to α = mπ/L.

It can be seen that the critical axisymmetric buckling load is
proportional to Eh2/R and represents an upper bound on the actual
collapse load.
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crN

m=1 2 3 4 5

π
α l0

D

Nb
2
0α
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5.3 Nonaxisymmetric Buckling of Circular Cylindrical
Shells under Uniform Axial Compression

For nonaxisymmetric buckling of cylindrical shells, the governing
differential equations are given by (Timoshenko and Gere, 1961; Brush
and Almroth, 1975)

∂2u

∂x2
+

1 + ν

2R
∂2v

∂x∂θ
− ν

R

∂w

∂x
+

1 − ν

2R2

∂2u

∂θ2
= 0 (5.3.1)

1 + ν

2R
∂2u

∂x∂θ
+

1 − ν

2
∂2v

∂x2
+

1
R2

∂2v

∂θ2
− 1

R2

∂w

∂θ
− N(1 − ν2)

Eh

∂2v

∂x2

+
h2

12R2

[
1
R2

∂2v

∂θ2
+

1
R2

∂3w

∂θ3
+

∂3w

∂x2∂θ
+ (1 − ν)

∂2v

∂x2

]
= 0

(5.3.2)

ν
∂u

∂x
+

1
R

∂v

∂θ
− w

R
− h2

12R2

[
1
R

∂3v

∂θ3
+ (2 − ν)R

∂3v

∂x2∂θ
+ R3∂

4w

∂x4

+
1
R

∂4w

∂θ4
+ 2R

∂4w

∂x2∂θ2

]
− NR(1 − ν2)

Eh

∂2w

∂x2
= 0

(5.3.3)

in which u, v, w are the longitudinal displacement, tangential
displacement and radial displacement, respectively.

If the origin of coordinates is located at one end of the cylindrical
shell, the general solution of Eqs. (5.3.1) to (5.3.3) can be expressed as

u =
C1

νR
x + C2 +

∞∑
m

∞∑
n

Amn sinnθ cos
mπx

L
(5.3.4)

v =
∞∑
m

∞∑
n

Bmn cosnθ sin
mπx

L
(5.3.5)

w =C1 +
∞∑
m

∞∑
n

Cmn sinnθ sin
mπx

L
(5.3.6)

where Amn, Bmn, Cmn are the unknown buckling amplitudes. Note
that for the particular case in which the solution is expressed only in
terms of C1 and C2, we have the cylindrical form of equilibrium where
the compressed cylindrical shell uniformly expands laterally. For long
cylindrical shells, the simply supported shell results from Eqs. (5.3.4) to
(5.3.6) can be used irrespective of the type of edge restraints.

Denoting β = mπR/L and by substituting Eqs. (5.3.4) to (5.3.6)
into Eqs. (5.3.1) to (5.3.3), one obtains the following algebraic equations

Amn

(
β2 +

1 − ν2

2
n2

)
+ Bmn

n(1 + ν)β
2

+ Cmnνβ = 0 (5.3.7)
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Amn
n(1 + ν)β

2
+ Bmn

[
(1 − ν)

(
1
2

+
h2

12R2

)
β2 +

(
1 +

h2

12R2

)
n2

− N(1 − ν2)
Eh

β2
]

+ Cmnn

[
1 +

h2

12R2
(n2 + β2)

]
= 0 (5.3.8)

Amnνβ + Bmnn

{
1 +

h2

12R2

[
n2 + (2 − ν)

]
β2

}

+ Cmn

[
1 − N(1 − ν2)

Eh
β2 +

h2

12R2
(n2 + β2)2

]
= 0 (5.3.9)

The exact buckling load of the cylindrical shell is determined by
setting the determinant of these three linear equations to zero. Sample
critical buckling factors are given in Table 5.1 for simply supported,
cylindrical shells under axial compression.

Table 5.1: Critical buckling factors NcR
√

3(1 − ν2)/Eh2 for simply
supported cylindrical shells under axial compression (ν =
0.3)

h/R L/R NcR
√

3(1 − ν2)/Eh2

1/100 1 0.962416 (m = 1, n = 7)
5 0.904858 (m = 1, n = 3)
10 0.886141 (m = 3, n = 4)

1/500 1 0.984486 (m = 1, n = 11)
5 0.924240 (m = 1, n = 5)
10 0.924240 (m = 2, n = 5)

If we neglect the terms containing the squares of h2/12a2 and
N(1 − ν2)/Eh, as they are rather small with respect to unity, the
expanded characteristic equation may be expressed as

N =
Eh

1 − ν2

Φ
Ψ

(5.3.10)

where

Φ = (1 − ν2)β4 +
h2

12R2

[
(n2 + β2)4 − (3 − ν)(2 + ν)n2β4

+ 2(1 − ν2)β4 − (7 + ν)n4β2 + (3 + ν)n2β2 + n4 − 2n6
]
(5.3.11)
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Ψ = β2
{

(n2 + β2)2 +
(
n2 +

2
1 − ν

β2
)[

1 +
h2

12R2
(n2 + β2)2

]

− 2ν2β2

1 − ν
+

h2

12R2

(
n2 +

2
1 − ν

β2
) [

n2 + (1 − ν)β2
]}

(5.3.12)

The foregoing equation includes the ring and chessboard buckling modes
as special cases. For a ring buckling mode, the radial displacements are
in the form of waves along the length of the shell with the displacements
constant around the perimeter of any transverse section. The chessboard
buckling mode takes the form of waves in both the longitudinal and
transverse directions, giving a pattern of rectangular depressions and
bulges all over the shell.

By observing that the minimum value of N takes place when β2 and
n2 are large numbers, the expression in Eq. (5.3.10) may be simplified
to

N =
Eh

(1 − ν2)

[
h2

12R2

(n2 + β2)2

β2
+

(1 − ν2)β2

(n2 + β2)2

]
(5.3.13)

The buckling mode associated with Eq. (5.3.13) is of the chessboard
type. Note that when n = 0, the above expression reduces to the critical
axisymmetric buckling load of shells given by Eq. (5.2.3).

In order to determine the minimum value of N , we let ξ = (n2 +
β2)2/β2 and equation (5.3.13) becomes

N =
Eh

(1 − ν2)

[
h2

12R2
ξ +

(1 − ν2)
ξ

]
(5.3.14)

Taking the stationarity condition of N with respect to ξ furnishes

ξ =

√
12R2(1 − ν2)

h2
(5.3.15)

and when substituted into Eq. (5.3.14) yields the minimum value of N

Nmin =
1√

3(1 − ν)

(
Eh2

R

)
(5.3.16)

Interestingly, this buckling load coincides with Eq. (5.2.5). It is
worth noting that the critical buckling load depends on the material
properties, thickness and radius and it is independent of the length of
the cylindrical shell.
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Xiang et al. (2004) obtained exact buckling solutions for axially
compressed, cylindrical shells with intermediate ring supports as shown
in Fig. 5.2. In solving the buckling problem, they first divided the shell
into segments at the locations of the ring supports. The displacement
fields for the ith segment may be expressed as

ui(x, θ) = Ui(x) cosnθ
vi(x, θ) = Vi(x) sinnθ (5.3.17)
wi(x, θ) = Wi(x) cosnθ

where the subscript i (i = 1, 2, . . . ,m) denotes the ith segment of
the shell, 2n is the number of half-waves of the buckling mode in the
circumferential direction, and Ui(x), Vi(x) and Wi(x) are unknown
functions to be determined. Using the state space technique and
the domain decomposition method, a homogenous differential equation
system for the ith segment can be derived in view of Eqs. (5.3.1) to
(5.3.3) and Eqs. (5.3.17a–c) after appropriate algebraic operations:

Ψ
′
i − HiΨi = 0 (5.3.18)

in which

Ψi = {Ui U
′
i Vi V

′
i Wi W

′
i W

′′
i W

′′′
i }T (5.3.19)

The prime in Eq. (5.3.19) denotes the derivative with respect to x, and
Hi is an 8 × 8 matrix with the following nonzero elements:

Figure 5.2: Geometry and coordinate system of a circular cylindrical
shell with intermediate ring supports and subjected to axial
compression.
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(Hi)12 = (Hi)34 = (Hi)56 = (Hi)67 = (Hi)78 = 1

(Hi)21 =
(1 − ν)n2

2R2
, (Hi)24 = −(1 + ν)n

2R

(Hi)26 = − ν

R
, (Hi)42 =

1
∆1

[
(1 + ν)n

2R

]

(Hi)43 =
1

∆1

[
(1 + k)n2

R2

]
, (Hi)45 =

1
∆1

[
(1 + kn2)n

R2

]

(Hi)47 =
1

∆1
(−kn) , (Hi)82 = − 1

kR2

[
ν

R
− k(2 − ν)(1 + ν)n2

2R∆1

]

(Hi)83 = − 1
kR2

[
n

R2
− k(2 − ν)(1 + k)n3

R2∆1
+

kn3

R2

]

(Hi)85 = − 1
kR2

[
1
R2

+
kn4

R2
− k(2 − ν)(1 + kn2)n2

R2∆1

]

(Hi)87 = − 1
kR2

[
−2kn2 +

(2 − ν)k2n2

∆1
+

Nx

C

]
(5.3.20)

where

k = h2/(12R2), C = Eh/(1−ν2), ∆1 =
1 − ν

2
+k(1−ν)−Nx

C
(5.3.21)

The solution for Eq. (5.3.18) can be expressed as

Ψi = eHixci (5.3.22)

where eHix is a general matrix solution of Eq. (5.3.18) and ci is an 8×1
constant column matrix that is to be determined using the boundary
conditions and/or interface conditions between the shell segments.

The boundary conditions at the shell ends are given below for various
types of support.

Simply Supported End

wi = 0, (Mx)i = 0, (Nx)i = 0, vi = 0 (5.3.23)
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Free End

(Nx)i =0, (Nxθ)i +
(Mxθ)i

R
= 0, (Mx)i = 0

(Qx)i +
1
R

∂(Mxθ)i
∂θ

−Nx
∂wi

∂x
= 0

(5.3.24)

Clamped End

ui = 0, vi = 0, wi = 0,
∂wi

∂x
= 0 (5.3.25)

where i takes the value 1 or M , and the stress resultants are given by

Nx =
Eh

(1 − ν2)
(εx + νεθ) , Nθ =

Eh

(1 − ν2)
(εθ + νεx)

Nxθ =
Eh

2(1 + ν)
εxθ, Mx =

Eh3

12(1 − ν2)
(κx + νκθ)

Mxθ = Mθx =
Eh3

24(1 + ν)
τ, Qx =

∂Mx

∂x
+

1
R

∂Mθx

∂θ

(5.3.26)

and the strain, curvature and twist of middle surface terms are related
to the displacement fields by

εx =
∂u

∂x
, εθ =

1
R

(
∂v

∂θ
+ w

)
, εxθ =

1
R

∂u

∂θ
+

∂v

∂x

κx = −∂2w

∂x2
, κθ =

1
R2

(
∂v

∂θ
− ∂2w

∂θ2

)
, τ = − 2

R

(
∂2w

∂x∂θ
− ∂v

∂x

)

(5.3.27)
Two types of constraints of the intermediate ring supports are

considered and they are defined as follows:

1. Type I Ring Supports: The displacement w = 0 is imposed at
the ring supports. Along the interface between the ith and (i + 1)th
segments, the following essential and natural continuity conditions must
be satisfied:

wi = 0, wi+1 = 0, ui = ui+1, vi = vi+1,
∂wi

∂x
=

∂wi+1

∂x

(Mx)i = (Mx)i+1, (Nx)i = (Nx)i+1,

(
Nxθ +

Mxθ

R

)
i
=
(
Nxθ +

Mxθ

R

)
i+1

(5.3.28)
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2. Type II Ring Supports: The displacements u = 0, v = 0 and
w = 0 are imposed at the ring supports. Along the interface between the
ith and (i+1)th segments, the following essential and natural continuity
conditions must be satisfied:

ui = 0, ui+1 = 0, vi = 0, vi+1 = 0, wi = 0, wi+1 = 0
∂wi

∂x
=

∂wi+1

∂x
, (Mx)i = (Mx)i+1

(5.3.29)

In view of Eq. (5.3.22), a homogeneous system of equations can be
derived by implementing the boundary conditions of the shell [see Eqs.
(5.3.23)–(5.3.25)] and the interface conditions between two segments
[Eqs. (5.3.28) and (5.3.29)] when assembling the segments to form the
whole shell. We have

Kc = 0 (5.3.30)

where K is an 8m× 8m matrix and c is an 8m× 1 vector. The buckling
load N0

x is evaluated by setting the determinant of K in Eq. (5.3.30) to
be zero and solving the characteristic equation.

Tables 5.2 and 5.3 present sample exact buckling factors for simply
supported and clamped shells with one intermediate ring support. The
location of the ring support is at a/L = 0.1, 0.3 and 0.5; the thickness-to-
radius ratio h/R is set to be 1/100 and 1/500; and the length-to-radius
ratio L/R is fixed at 1 and 5, respectively.

Table 5.2: Buckling load factors NcR
√

3(1 − ν2)/
(
Eh2

)
for simply

supported cylindrical shells with one intermediate ring
support (values in brackets are n where 2n denotes
the number of half-waves of the buckling modes in the
circumferential direction).

Type of h/R L/R a/L = 0.1 a/L = 0.3 a/L = 0.5
Ring Support

Type I 1/100 1 0.979227 (7) 0.986687 (9) 0.984639 (9)
5 0.969032 (6) 0.970115 (6) 0.955306 (5)

1/500 1 0.996949 (20) 0.995912 (17) 0.993557 (15)
5 0.991097 (14) 0.993269 (13) 0.960711 (7)

Type II 1/100 1 0.988980 (9) 0.991294 (9) 0.993897 (8)
5 0.971191 (7) 0.976794 (8) 0.985376 (9)

1/500 1 0.998834 (17) 0.997507 (20) 0.998834 (17)
5 0.994004 (15) 0.995092 (17) 0.998834 (17)
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Table 5.3: Buckling load factors λ = No
xR
√

3(1 − ν2)/
(
Eh2

)
for

clamped shells with one intermediate ring support (values
in brackets are n where 2n denotes the number of
half-waves of the buckling modes in the circumferential
direction).

Type of h/R L/R a/L = 0.1 a/L = 0.3 a/L = 0.5
Ring Support

Type I 1/100 1 1.01149 (9) 1.00941 (9) 1.01167 (9)
5 0.98072 (8) 0.98072 (8) 0.98072 (8)

1/500 1 0.99833 (20) 0.99829 (20) 0.99822 (20)
5 0.99602 (18) 0.99602 (18) 0.99602 (18)

Type II 1/100 1 1.01729 (9) 1.02325 (8) 1.02314 (8)
5 0.98871 (9) 0.98422 (9) 0.98570 (9)

1/500 1 0.99868 (20) 1.00009 (20) 1.00130 (19)
5 0.99770 (20) 0.99820 (20) 0.99756 (20)

5.4 Buckling of Circular Cylindrical Panels under
Uniform Axial Compression

Consider a simply supported, cylindrical panel of length L, radius R,
thickness h and central angle φ. The panel is under a uniform axial
compressive force N as shown in Fig. 5.3.

Figure 5.3: Cylindrical panel under uniform compression.

© 2005 by CRC Press LLC



The governing buckling equations are the same as those for the
circular cylindrical shells [i.e., Eqs. (5.3.1) to (5.3.3)]. The displacement
functions are, however, given by

u =
∞∑
m

∞∑
n

Amn sin
nπθ

φ
cos

mπx

L
(5.4.1)

v =
∞∑
m

∞∑
n

Bmn cos
nπθ

φ
sin

mπx

L
(5.4.2)

w =
∞∑
m

∞∑
n

Cmn sin
nπθ

φ
sin

mπx

L
(5.4.3)

By substituting Eqs. (5.4.1) to (5.4.3) into Eqs. (5.3.1) to (5.3.3), we
obtain the same equations as Eqs. (5.3.7) to (5.3.9); the only change is
n being replaced by nπ/φ. So Eq. (5.3.13) becomes

N =
Eh

(1 − ν2)

⎡
⎣ h2

12R2

(n
2π2

φ2 + β2)2

β2
+

(1 − ν2)β2

(n2π2

φ2 + β2)2

⎤
⎦ (5.4.4)

Therefore, the buckling load for a cylindrical panel under uniform axial
compression is given by

Nmin =
1√

3(1 − ν2)

(
Eh2

R

)
(5.4.5)

which is the same as that of its circular cylindrical shell counterpart.
When the angle φ is very small, the buckling behavior of

the cylindrical panel approaches that of a longitudinally compressed
rectangular plate. The critical buckling load is furnished by taking n = 1,
i.e.,

N =
Eh

(1 − ν2)

⎡
⎣ h2

12R2

(π
2

φ2 + β2)2

β2
+

(1 − ν2)β2

(π2

φ2 + β2)2

⎤
⎦ (5.4.6)

5.5 Buckling of Circular Cylindrical Shells
under Lateral Pressure

For buckling of circular cylindrical shells under uniform lateral
pressure p, the governing equations are given by (Timoshenko and Gere,
1961)
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∂2u

∂x2
+

1 + ν

2R
∂2v

∂x∂θ
− ν

R

∂w

∂x
+

1 − ν

2R2

∂2u

∂θ2

+
p(1 − ν2)

Eh

(
∂2v

∂x∂θ
− ∂w

∂x

)
= 0 (5.5.1)

1 + ν

2R
∂2u

∂x∂θ
+

1 − ν

2
∂2v

∂x2
+

1
R2

∂2v

∂θ2
− 1

R2

∂w

∂θ

+
h2

12R2

[
1
R2

∂2v

∂θ2
+

1
R2

∂3w

∂θ3
+

∂3w

∂x2∂θ
+ (1 − ν)

∂2v

∂x2

]
= 0 (5.5.2)

− h2

12R2

[
1
R

∂3v

∂θ3
+ (2 − ν)R

∂3v

∂x2∂θ
+ R3∂

4w

∂x4
+

1
R

∂4w

∂θ4
+ 2R

∂4w

∂x2∂θ2

]

+ν
∂u

∂x
+

1
R

∂v

∂θ
− w

R
− p(1 − ν2)

Eh

(
w +

∂2w

∂θ2

)
= 0 (5.5.3)

For simply supported cylindrical shells in which the boundary conditions
at the ends are w = 0 and ∂2w/∂x2 = 0, the displacement functions take
on the following expressions

u =C1 sinnθ sin
πx

L
(5.5.4)

v =C2 cosnθ cos
πx

L
(5.5.5)

w =C3 sinnθ cos
πx

L
(5.5.6)

Note that the shell buckles with a half-wave of a sine curve while the
circumference is divided into 2n half-waves.

By substituting Eqs. (5.5.4) to (5.5.6) into Eqs. (5.5.1) to (5.5.3) and
using the notation that λ = πR/L, one obtains

−C1

(
λ2 +

1 − ν2

2
n2

)
+ C2nλ

[
(1 + ν)

2
+

pR(1 − ν2)
Eh

]

+C3λ

[
ν +

pR(1 − ν2)
Eh

]
= 0 (5.5.7)

C1
(1 + ν)

2
nλ− C2

[
1 − ν

2
λ2 + n2 +

h2

12R2
{n2 + (1 − ν)λ2}

]

−C3n

[
1 +

h2

12R2
(n2 + λ2)

]
= 0 (5.5.8)
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C1νλ− C2n

{
1 +

h2

12R2

[
n2 + (2 − ν)

]
λ2
}

−C3

[
1 +

h2

12R2
(n2 + λ2)2 +

pR(1 − ν2)
Eh

(1 − n2)
]

= 0 (5.5.9)

By setting the determinant of the above equations to zero, we obtain the
following characteristic equation

pR(1 − ν2)
Eh

{
(1 − n2)(n2 + λ2)2 − νλ4 − pR(1 + ν)2

Eh
(1 − n2)n2λ2

+
h2

12R2
Ω
}

+ (1 − ν2)λ4 +
h2

12R2

{
Θ +

h2

12R2
λ4(n2 + λ2)

× [(1 − ν)n2 + 2λ2]
}

= 0 (5.5.10)

where

Ω = (1 − n2)

(
n2 +

2λ2

1 − ν

)
[n2 + (1 − ν)λ2] +

1 + 3ν
1 − ν

n4λ2

+
2 + 3ν − ν2

1 − ν
n2λ4 − 2νn2λ2

1 − ν
− 2νλ4 − 1 + ν

1 − ν
n2λ2(n2 + λ2)2 (5.5.11)

Θ = (n2 + λ2)4 − 2n2
(
n2 +

3 − ν

2
λ2
)

[n2 + (2 + ν)λ2]

+ [n2 + (1 − ν)λ2][n2 + 2(1 + ν)λ2] (5.5.12)

By neglecting small terms, Eq. (5.5.10) may be simplified to

p =
Eh

R(1 − ν2)

{
1 − ν2

(n2 − 1)(1 + n2

λ2 )
+

h2

12R2

(
n2 − 1 +

2n2 − 1 − ν

1 + n2

λ2

)}

(5.5.13)
In view of Eq. (5.5.13), the elastic critical pressure of a very long

cylindrical shell (i.e., λ � n), with free ends, is given by (with n = 2)

pcr =
1

4(1 − ν2)
Eh3

R3
(5.5.14)

For short cylindrical shells with ends held in the circular direction
but otherwise unconstrained, the critical buckling pressure is given by

pcr = 0.807

[
1

(1 − ν2)3

(
L

R

)2
]1/4

Eh2

RL
(5.5.15)
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For closed-ended cylindrical shells subjected to both axial and lateral
pressure, the critical axisymmetric buckling pressure is given by

pcr =
2√

3(1 − ν2)
Eh2

R2
(5.5.16)

5.6 Buckling of Spherical Shells under Hydrostatic
Pressure

Consider a complete spherical shell of radius R, thickness h and
subjected to an external hydrostatic pressure p. The shell’s buckled
surface is symmetrical with respect to a diameter of the sphere. In view
of this symmetry, the governing equations for the elastic buckling of such
loaded spherical shells are given by (Timoshenko and Gere, 1961)(

1 +
h2

12R2

)(
d2u

dθ2
+ cot θ

du

dθ
− (ν + cot2 θ)u

)
− (1 + ν)

dw

dθ

+
h2

12R2

[
d3w

dθ3
+ cot θ

d2w

dθ2
− (ν + cot2 θ)

dw

dθ

]

− pR(1 − ν2)
2Eh

(
u +

dw

dθ

)
= 0 (5.6.1)

(1 + ν)
(
du

dθ
+ u cot θ − 2w

)
+

h2

12R2

[
−d3u

dθ3
− 2 cot θ

(
d2u

dθ2
+

d3w

dθ3

)

+ (1 + ν + cot2 θ)

(
du

dθ
+

d2w

dθ2

)
− cot θ(2 − ν + cot2 θ)

(
u +

dw

dθ

)

− d4w

dθ4

]
− pR(1 − ν2)

2Eh

(
−u cot θ − du

dθ
+ 4w + cot θ

dw

dθ
+

d2w

dθ2

)
= 0

(5.6.2)

Let us introduce an auxiliary variable ψ where u = dψ/dθ and also
the Legendre functions for the two variables, i.e.,

ψ =
∞∑
n=0

AnPn (5.6.3)

w =
∞∑
n=0

BnPn (5.6.4)

where Pn is the Legendre function of order n.
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By substituting Eqs. (5.6.3) and (5.6.4) into Eqs. (5.6.1) and (5.6.2),
one obtains the following two homogeneous equations

An

[
n(1 + n) − 2 + (1 + ν) +

pR(1 − ν2)
2Eh

]

+ Bn

{
h2

12R2
[n(1 + n) − 2] + (1 + ν) +

pR(1 − ν2)
2Eh

}
= 0

(5.6.5)

An

{
h2

12R2
[n(1 + n) − 2]2 + n(1 + n)

[
(1 + ν) +

pR(1 − ν2)
2Eh

]}

+ Bn

{
h2

12R2
[n(1 + n) − 2][n(1 + n) + 1 + ν] + 2(1 + ν)

− pR(1 − ν2)
2Eh

n(1 + n)
}

= 0 (5.6.6)

By setting the determinant of these two equations to zero, the buckling
pressure may be expressed as

p =
2Eh

R(1 − ν2)

(
(1 − ν2) + h2

12R2

{
ξ(2 + ξ) + (1 + ν)2

}
ξ + 1 + 3ν

)
(5.6.7)

where ξ = n(1 + n) − 2.
In order to determine the critical buckling pressure which is the

smallest positive value of p, we take the stationarity condition of p with
respect to ξ

dp

dξ
= 0 (5.6.8)

By neglecting the small terms, Eq. (5.6.8) gives

ξ2 + 2(1 + 3ν)ξ − 12R2

h2
(1 − ν2) = 0

⇒ ξ = −(1 + 3ν) +

√
12R2

h2
(1 − ν2)

(5.6.9)

The substitution of Eq. (5.6.9) into Eq. (5.6.7) yields the critical buckling
pressure pcr of a spherical shell

pcr =
2Eh

R(1 − ν2)

⎛
⎝
√

(1 − ν2)
3

h

R
− νh2

2R2

⎞
⎠ (5.6.10)

© 2005 by CRC Press LLC



If the second term in the bracket is neglected, the buckling pressure
expression simplifies to

pcr =
2√

3(1 − ν2)

(
Eh2

R2

)
(5.6.11)

5.7 Buckling of Truncated Conical Shells under
Axial Vertex Load

Consider a long truncated conical shell with constant thickness
h, semivertex angle φ, modulus of elasticity E, Poisson’s ratio ν and
subjected to an axial vertex load P as shown in Fig. 5.4. The governing
equations for the axisymmetric buckling of such a loaded shell are given
by (Seide, 1956).

s
d2u

ds2
+

du

ds
− u

s
+
(
w

s
− ν

dw

ds

)
cotφ = 0 (5.7.1)

and

s
d4

ds4

(
s
dw

ds

)
+

12P (1 − ν2)
πEh3 sin 2φ

[
d2

ds2

(
s
dw

ds

)
− 1

s

d

ds

(
s
dw

ds

)]

+
12ν cot2 φ

h2

[
d

ds

(
s
dw

ds

)
− w

s

]

− 12 cot2 φ
h2

{
d

ds

[
s

(
s
d2u

ds2
+

du

ds
− u

s

)]
+ ν

(
s
d2u

ds2
+

du

ds
− u

s

)}
= 0

(5.7.2)
where u is the displacement in the direction of cone generator, w is the
displacement normal to the middle surface of the cone due to buckling
and s the distance from the vertex.

By denoting Φ = s(dw/ds) and substituting Eq. (5.7.1) into
Eq. (5.7.2), one obtains

s2d
4Φ
ds4

+
P

Dπ sin 2φ

(
s
d2Φ
ds2

− dΦ
ds

)
+

12(1 − ν2) cot2 φ
h2

Φ = 0 (5.7.3)

where D = Eh3/[12(1 − ν2)]. By differentiating once, Eq. (5.7.3) may
be expressed as(

s
d2

ds2
+

P

2πD sin 2φ

)(
s
d2Φ′

ds2
− P

2πD sin 2φ
Φ′
)

−
(

P

2πD sin 2φ

)2
⎡
⎣1 −

(
2Eh2π cos2 φ
P
√

3(1 − ν2)

)2
⎤
⎦Φ′ = 0 (5.7.4)
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where Φ′ = dΦ/ds = d(sdw/ds)/ds. The solution of Eq. (5.7.4) is given
by

Φ′ =
dΦ
ds

=
d

ds

(
s
dw

ds

)

= −b1
{
C1[2

√
b1s]J1[2

√
b1s] + C2[2

√
b1s]Y1[2

√
b1s]
}

− b2
{
C3[2

√
b2s]J1[2

√
b2s] + C4[2

√
b2s]Y1[2

√
b2s]
}

(5.7.5)

where Jp and Yp are Bessel functions of the first and second kinds,
respectively, and

b1,2 =
P

2πD sin 2φ

⎧⎪⎨
⎪⎩1 ±

√√√√1 −
(

2Eh2π

P
√

3(1 − ν2)
cos2 φ

)2
⎫⎪⎬
⎪⎭ (5.7.6)

The integration of Eq. (5.7.5) yields the general solution for w, i.e.,

w = C1

{
2J0[2

√
b1s] + [2

√
b1s]J1[2

√
b1s]
}

+ C2

{
2Y0[2

√
b1s] + [2

√
b1s]Y1[2

√
b1s]
}

+ C3

{
2J0[2

√
b2s] + [2

√
b2s]J1[2

√
b2s]
}

+ C4

{
2Y0[2

√
b2s] + [2

√
b2s]Y1[2

√
b2s]
}

+ C5 (5.7.7)

Figure 5.4: Truncated conical shell under axial vertex load.
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The solution of Eq. (5.7.1) that can be written as

d

ds

[
s3 d

ds

(
u

s

)]
=
(
νs

dw

ds
− w

)
cotφ (5.7.8)

furnishes the corresponding expression for the displacement u

u = 2 cotφ
[
C1

{
2
J1[2

√
b1s]

2
√
b1s

+ νJ1[2
√
b1s]

}
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√
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2
√
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+ νY2[2
√
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}

+C3

{
2
J1[2

√
b2s]

2
√
b2s

+ νJ2[2
√
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}

+C4

{
2
Y1[2

√
b2s]

2
√
b2s

+ νY2[2
√
b2s]

}]
+ C5 cotφ (5.7.9)

Note that although there are five unknown constants of integration, only
four boundary conditions are needed to determine the buckling load since
the constant C5 in both u and w corresponds to a rigid body movement
in the direction of the cone axis.

For simply supported edges and rigid rings, the boundary conditions
at the edges (i.e., at s = s1 and s = s2) are

d2w

ds2
+

ν

s

dw

ds
= 0 and u sinφ− w cosφ = 0 (5.7.10a, b)

The substitution of Eqs. (5.7.7) and (5.7.9) into the boundary
conditions (5.7.10a, b) and setting the determinant of the matrix to
be zero yields the stability criterion

P
√

3(1 − ν2)
2Eh2π cos2 φ

=
1
2

[
X2

n
8s1
h

√
3(1 − ν2) cotφ

+
8s1
h

√
3(1 − ν2) cotφ

X2
n

]

(5.7.11)
where n = 1, 2, 3, . . . and X2

n = 4 b1,2s31
s2

.

For large values of the parameter Ψ = 8s1
h

√
3(1 − ν2) cotφ, the

minimization of Eq. (5.7.11) with respect to Ψ/X2
n yields the critical

buckling load

Pcr =
2πEh2 cos2 φ√

3(1 − ν2)
(5.7.12)
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