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Preface

This book is an opportunity to share our practical experience on rare event probability
estimation. We tried to write the book that we would have appreciated having when
we started working in this research domain several years ago. The book gives a broad
view of current research on rare event probability estimation, and we hope that it will
satisfy the readers.

We thank the contributors to this book, namely M. Brevault, Dr. De Visscher,
M. Dolado-Perez, Dr. Duponcheel, Dr. Jacquemart, M. Lacaze, Prof. Le Gland,
Dr. Missoum, Dr. Pastel, Dr. Vergé, and Prof. Winckelmans, for their helpful
collaboration and for the time they devoted to the project. We also thank Prof. Raphael
T. Haftka who has done us the great honor of writing a foreword to this book. The
works and the daily interactions with the current and former PhD students whom we
have supervized at ONERA have also an important part in this book.

This book would not exist without the confidence of Elsevier-Woodhead Publish-
ing, especially Dr. Glyn Jones and Ms. Harriet Clayton. We would also like to thank
the direction of ONERA-The French Aerospace Lab, especially Prof. Philippe Bidaud
and Dr. Thérèse Donath, for providing us the opportunity to write this book. We also
thank M. Sébastien Aubry and M. Florent Muller for their support in the challenging
and long-term objective of writing a scientific book. We also thank all our colleagues
at ONERA.

We could not conclude this section without thanking our families for always being
there for us and being incredibly supportive.

Jérôme Morio and Mathieu Balesdent
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as research engineer in the System Design and Performance Evaluation Department.
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interests include rare event probability estimation, sensitivity analysis, and uncertainty
management.
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since 2011 as research engineer in the System Design and Performance Evaluation
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Department. He obtained a Ph.D. in mechanical engineering from the “Ecole Centrale
de Nantes” (France) in 2011. His main research interests include rare event probability
estimation, reliability based and multidisciplinary optimization, and aerospace vehicle
design. He is also a regular referee for several international conferences and journals
such as the American Institute of Aeronautics and Astronautics, Springer and Elsevier.



Foreword

It is a great pleasure to be invited to write the foreword to Morio and Balesdent’s book
Estimation of Rare Event Probabilities in Complex Aerospace (and other) Systems—A
Practical Approach, because it is a very timely and needed book and it is done well.

Wikipedia defines rare events as events that occur with low frequency. It says that
the term is conventionally applied for those events that have potentially widespread
impact and which might destabilize society. Rare events encompass natural phenom-
ena (major earthquakes, tsunamis, hurricanes, floods, asteroid impacts, solar flares,
etc.). In aerospace engineering, the term is applied also to less catastrophic events that
may happen at low probabilities, typically less than 10−6. A typical example in this
book is the probability that two aircraft will get dangerously close to each other in a
given airspace.

Calculating accurately the probability of a rare event is usually a challenge, both
in terms of the required data and the computational effort required to translate the
data into a probability estimate. There are two important reasons why estimating such
probabilities has become a hot topic in the past decade or so. First, safety has become
much more important to the public, and so the demands from automotive, civil, and
aerospace designers are much tougher than they used to be. The rising level of safety
means that the causes for failure have become rarer. As one Boeing engineer told me
a few years ago, “It used to be that airplane accidents were due to one unlikely thing
gone wrong. Now they mostly happen due to two or three unlikely things going wrong
at the same time.”

The second reason is our increasing ability to estimate well the probabilities of rare
events. Big data developments mean that we more often have the required information.
Better education of engineers in statistics means that our engineering workforce is
capable of applying properly the sophisticated statistical methods required for that
purpose. Faster computers allow us to estimate accurately the probabilities of rarer
and rarer events.

However, because we usually strive to calculate the probabilities of rarer events
than the combination of computer power and present algorithms permit, there has
been a strong burst of efficient algorithm development for that purpose in the past
20 years. This book is a welcome treatise on most of the currently available methods
and algorithms.

The book is certainly comprehensive. Even though I have worked in this field for
more than a decade, I have come across many useful techniques that I did not know
about. This appears to be partly due to the contribution of several other contributors,
but the two main authors integrated the contributions very well. So the book retains a
unity of notation and style.
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The book has the right balance of mathematical rigor and practical implementation
of the different techniques. Its “French connection” may be partly responsible for the
former, and the practical experience of the authors at ONERA, the French Aerospace
Lab, for the latter.

On the one hand, the book has a set of toy problems to which each technique is
applied, but then it has aerospace applications that show how many of the techniques
are applied to real important engineering problems.

I am thus looking forward to using the book in the near future. On the one hand,
it will be a valuable resource for my research group. On the other hand, I will be
using it in courses where I teach uncertainty quantification and optimization under
uncertainty. I may even be tempted to offer a new course on probability estimation of
rare events.

Prof. Raphael T. Haftka
Distinguished Professor of Mechanical and

Aerospace Engineering at the University of Florida
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1Introduction to rare event
probability estimation
J. Morio, M. Balesdent

1.1 The book purposes

Rare event probability estimation has become a large area of research in the reliability
engineering and system safety domains. A significant number of methods have
been proposed to reduce the computational burden for the estimation of rare events
from advanced sampling approaches to extreme value theory. However, it is often
difficult in practice to determine which algorithm is the most adapted to a given
problem. The purposes of this book are thus to provide a broad up-to-date view of
the currently available techniques to estimate rare event probabilities described with
unified notations, mathematical pseudocodes to ease their potential implementation,
and finally, a large spectrum of simulation results on academic and realistic use cases.
We detail the pros and cons of the different algorithms depending on the problem
characteristics to answer this question: Which rare event probability estimation
techniques are the most adapted to the reader’s situation?

1.2 What are the events of interest considered in
this book?

Let us first specify the main characteristics of the events that are considered in
this book:

● If the event of interest happens, it has a highly severe affect on the performances or the
safety of the system. If we want to analyze the risk of the event, a measure of damage must
be defined (Kaplan & Garrick, 1981).

● The event probability is low; more precisely, it is difficult to observe realizations of this event
of interest considering the available simulation budget. Thus, such rare event probability
cannot be estimated easily with direct Monte Carlo simulations.

● The rare event probability must be assessed very accurately because an error on the rare
event probability could have serious consequences. The underestimation of the rare event
probability must be completely avoided.

The issue of estimating rare event probabilities corresponds to a very large number of
applicative situations. In this book, we focus on rare event probability estimation in
aerospace systems. For instance, Chapter 11 presents the estimation of the probability
that a satellite and a spatial debris collide. This probability must be estimated with
accuracy because a collision will end the mission of the satellite. Thus, it must be
Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
http://dx.doi.org/10.1016/B978-0-08-100091-5.00001-0
Copyright © 2016 Elsevier Ltd. All rights reserved.
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avoided at all costs because of the required financial budget to launch a satellite.
Typical probabilities of collision between satellite and debris are lower than 10−4

and thus cannot be estimated with direct Monte Carlo simulations with a sufficient
accuracy.

1.3 The book organization

The first part of the book provides the essential background in probability and statistics
and describes the different complex systems considered for the estimation of rare
event probabilities. In the second part, we review the main approaches to estimate
rare event probabilities. For each technique, its principle and its main theoretical and
experimental features are presented. We also propose a mathematical pseudocode and
some generally efficient tuning parameters. Some application results on academic test
cases are finally given to evaluate the potential of the described method on different
situations (high dimension, multiple failure domain, etc.). The performances of the
different algorithms to estimate rare event probabilities are then compared in a third
part on realistic test cases from the aerospace field. This comparison enables us in
the last part of this book to propose some guidelines to determine which methods
are the most adapted to a given system, depending on its main characteristics (e.g.,
dimension, the available simulation budget).

Reference

Kaplan, S., & Garrick, B. J. (1981). On the quantitative definition of risk. Risk Analysis, 1(1),
11–27.

http://refhub.elsevier.com/B978-0-08-100091-5.00001-0/rf0010
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2Basics of probability and statistics
J. Morio, M. Balesdent

It is necessary to have a minimal knowledge of some fundamental definitions and
theorems of probability and statistics to understand the principles of the different
rare event probability estimation methods. The main goal of this chapter is thus to
review the elementary notions on this subject, which will be continuously used in the
remainder of the book. For a detailed introduction to probability, we can consult Jacod
and Protter (2003) or Tijms (2004).

2.1 Probability theory operators

2.1.1 Elements of vocabulary

Definition 2.1.1. A random experiment (also called trial) is an experiment that leads
to different results depending on the randomness. The result of the experiment is called
outcome and is generally denoted by ω. The set of all the possible outcomes (also
called sample space) of a random experiment is denoted by �.

The set � can be more or less complex, depending on the system to analyze
or the phenomenon to observe. For instance, if the considered random experi-
ment is a six-sided dice throw, the sample set � is equal to � = {1, 2, 3, 4, 5, 6}.
Figure 2.1 represents 100 random results of a dice throw experiment. The set � can
also be infinite when the system is more complex. Indeed, the fallout position of a
launcher stage (i.e., latitude and longitude) evolves in the two-dimensional sample
space � = [−90◦,+90◦] × [−180◦,+180◦] (where × stands for the Cartesian prod-
uct between the longitude and the latitude spaces). One hundred trials of launcher
stage fallout positions obtained with a simulator are represented in Figure 2.2.
Definition 2.1.2. We denote a random event as a set of outcomes of a random
experiment. A random event is thus a subset of �, the sample space.

In the previous example, the set of outcomes corresponding to “the longitude of
the launcher stage fallout is in [−30◦,−25◦] and its latitude in [−2◦,+1◦]” describes
a random event.
Definition 2.1.3. Let P(�) (also denoted 2�) be the powerset of � (i.e., the set of
all the subsets of �, including � and the empty set ∅). A nonempty subset A ∈ P(�)
is called a σ -algebra on � if it verifies the three following properties:
● � ∈ A
● Stability by complementation: if A ∈ A , then cA ∈ A (with cA the complement of A in �)
● Stability by countable unions: if A1, A2, . . .An are in A , then A1 ∪ A2 ∪ · · · ∪ An ∈ A

In the case of a six-sided dice throw, different σ -algebras can be defined such as
{∅, {1, 2, 3, 4, 5, 6}}, {∅, {1}, {2, 3, 4, 5, 6} , {1, 2, 3, 4, 5, 6}}, or P(�). The most known

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
http://dx.doi.org/10.1016/B978-0-08-100091-5.00002-2
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Figure 2.2 One hundred trials of launcher stage fallout position.

σ -algebra is the Borel algebra. A Borel algebra on � is the smallest σ -algebra
containing all open sets. For example, if� = R, the Borel algebra B(R) is the smallest
σ -algebra on R that contains all the intervals. The notion of σ -algebra allows us to
define the measurable sets. Indeed, according to the theory of measure, the doublet
(�, A ) is a measurable set.
Definition 2.1.4 (Kolmogorov, 1950). A probability P on the measurable set (�, A )

is a mapping from A to [0, 1], such that

● P(�) = 1

● Let (Ai)i∈N be a countable collection of disjoint events in A : P

(+∞⋃
i=0

Ai

)
=

+∞∑
i=0

P(Ai)

The triple (�, A ,P) is called probability space.
To model a dice throw, it is common to choose � = {1, 2, 3, 4, 5, 6}, A = P(�),

and P ({ω}) = 1
6 for all the singletons ω ∈ �.

Property 2.1.1. Let us consider A and B, two elements of A :

● P(cA) = 1 − P(A)
● P(A ∪ B) = P(A)+ P(B)− P(A ∩ B)
● if A ⊆ B, then P(A) ≤ P(B)
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● Let (Ai)i∈N be a finite or countable collection of disjoint elements such that
∑
i∈N

P(Ai) = 1

(also called a partition of �), then the law of total probability holds:

P(B) =
∑
i∈N

P(Ai ∩ B)

● Let (Ai)i∈N be an increasing sequence of elements of A , (∀j ≥ i ≥ 0, Ai ⊆ Aj), then it
holds:

P

(⋃
i∈N

Ai

)
= lim

i→∞P(Ai)

Definition 2.1.5. Let (�, A ,P) and (E, E) be a probability space and a measurable
space, respectively. A random variable (rv) is a measurable application X : � → E
from (�, A ) to (E, E). A random variable is thus characterized by

∀B ∈ E , X−1(B) = {ω ∈ �, X(ω) ∈ B} ∈ A

A real-valued random variable is a function X : � → R such that {ω ∈ �,
X(ω) ≤ c} ∈ A for all c ∈ R. A real-valued random vector of dimension d is a
function X : � → Rd such that {ω ∈ �, X(ω) ∈ B} ∈ A for all B ∈ B(Rd).
Definition 2.1.6. Let (�, A ,P) and (E, E) be a probability space and a measurable
set respectively, and let X : � → E be a random variable. For every B ∈ E , we define

PX(B) = P ({ω ∈ �, X(ω) ∈ B}) = P(X−1(B))

PX : E → [0, 1] is the probability law (also called probability distribution) of X.
It is often written for conciseness PX(B) = P(X ∈ B).

2.1.2 Notion of dependence of random events and
conditional probabilities

Definition 2.1.7. Let A and B be two random events such that P(B) > 0. The
probability of A knowing B denoted P(A|B) is defined by

P(A|B) = P(A ∩ B)

P(B)
(2.1)

Theorem 2.1.1 (Bayes’ theorem). Let A and B be two random events such that
P(B) > 0. The probability of A knowing B, P(A|B) is equal to

P(A|B) = P(B|A)P(A)
P(B)

This theorem is obtained from Equation (2.1) because we have

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)
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Definition 2.1.8. Let A and B be two random events. A and B are said to be
independent if

P(A ∩ B) = P(A)P(B)

Consequently, we deduce from the definition of a conditional probability that
P(A|B) = P(A) when the events A and B are independent. The realizations of A do
not depend on the realizations of B.

2.1.3 Continuous random variables

2.1.3.1 Definitions

For the sake of conciseness, the case of discrete random variables is not detailed
in this book because the vast majority of industrial systems to be analyzed involve
continuous probability distributions. Nevertheless, for more details about discrete
random variables, consult Gordon (1997) and Grinstead and Snell (1998). In the
following, we use only continuous random variables defined as follows:
Definition 2.1.9. Let (�, A ,P) be a probability space and X a variable that is
a real-valued measurable mapping from (�, A ) to (R,B(R)). The variable X is a
continuous random variable if there exists a function f : � → R such that:

1. ∀x ∈ R, f (x) ≥ 0
2. f is a continuous function almost everywhere on �
3.

∫ +∞
−∞ f (x) dx = 1

4. P(X ∈ A) = ∫
A f (x) dx, ∀A ∈ B(R)

The function f is the probability density function (pdf) of the rv X.
Given a random variable X with pdf f , a random sample of length N is a set

of N independent and identically distributed (iid) random variables with pdf f . In
Figure 2.3, we present a simple example of pdf f1 defined on R and some random
samples generated with this pdf.
Definition 2.1.10. Let X be a continuous random variable with a pdf f . The
cumulative distribution function (cdf) F of X is denoted by

F : R → [0, 1]

x → P (X ≤ x)

The cdf can be defined from the pdf by

∀x ∈ R, F(x) =
∫ x

−∞
f (t) dt

It is important to notice that the cdf F uniquely defines the probability law of X (see
Definition 2.1.6). The cumulative distribution function F1 of the pdf f1 in Figure 2.3
is represented in Figure 2.4.
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Figure 2.3 Description of the probability density function f1. (a) pdf f1. (b) Corresponding iid
random samples generated with pdf f1.
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Figure 2.4 Cumulative distribution function F1 of the pdf f1.

2.1.3.2 Parameters of continuous random variables

Assuming that X is a continuous rv with a pdf f , then we define the following
parameters, if the integral convergence is ensured:

● The mathematical expectation (first-order moment) E(X) of X with μ = E(X) = ∫
R

xf (x) dx
● The variance (centered second-order moment) V(X) of X with V(X) = E

[
(X − E(X))2

] =∫
R
(x − μ)2 f (x) dx

● The standard deviation of X with σ(X) = √
V(X)

● The p-order centered moment mp(X) with mp(X) = E
[
(X − E(X))p

] = ∫
R (x − μ)p f (x) dx

(for p ≥ 2)
● The coefficient of variation (also called relative standard deviation or relative standard error)

of X with cv(X) = σ(X)
E(X)

● The continuous entropy H(X) of X with

H(X) =
∫
X

f (x) ln(f (x)) dx

where X is the support of f , that is, X = {x ∈ R|f (x) > 0}
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Theorem 2.1.2 (König–Huygens). If the moments E(X) and E(X2) of a random
variable X are known, then the variance is given by

V(X) = E(X2)− E(X)2

Theorem 2.1.3 (Law of total variance). If X and Y are random variables on the same
probability space, and the variance of Y is finite, then

V(Y) = V (E (Y|X))+ E (V (Y|X))

The conditional variance of Y given X is defined by

V (Y|X) = E
(

[Y − E (Y|X)]2 |X
)

Definition 2.1.11. If X is an rv with cdf F and α ∈ [0, 1], the α-quantile is defined
by the real qα such that:

qα = inf
v∈R{P(X ≤ v) ≥ α} = inf

v∈R{F(v) ≥ α}

α is equivalent to a probability, and thus an α-quantile is assimilated to a quantile
of probability α. It is then possible to define the generalized inverse cdf F−1 with

F−1(y) = inf
v∈R{F(v) ≥ y}

The median corresponds, for instance, to the 0.5-quantile and thus to F−1(0.5).
Definition 2.1.12. A mode xm of a continuous rv X of pdf f corresponds to a value x
at which f has a local maximum value.

If a mode xm is the global maximum of the pdf f , then xm is a major mode of f .
Otherwise, xm is called a minor mode of f . If a pdf f has only one mode on all its
support, then f is said to be unimodal. In the contrary case, f is said to be multimodal.
Some pdfs such as the uniform distribution have no mode.

2.1.4 Continuous multivariate random variables

2.1.4.1 Definitions and theorems

The notions of pdf, cdf, mathematical expectation, and so on can be extended to
multivariate random vectors composed of d random variables.
Definition 2.1.13. Let us define the sample space � ⊂ Rd, A a σ -algebra and a
vector X = (X1, . . . , Xd)

T of dimension d that is a real-valued measurable mapping
from (�, A ) to (Rd,B(Rd)). The variable X is a continuous random vector or a
continuous multivariate random variable if there exists a function f defined on � such
that:
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1. ∀ x = (x1, . . . , xd)
T ∈ Rd, f (x) ≥ 0

2. f is a continuous function almost everywhere on �
3.

∫
Rd f (x1, . . . , xd) dx1 · · · dxd = 1

4. ∀A ∈ B(Rd), P(X ∈ A) = ∫
A f (x1, . . . , xd) dx1 · · · dxd

The function f is the pdf of the random vector X. The cdf of X is defined by the function
F on Rd:

F(x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd)

Definition 2.1.14. If X = (X1, . . . , Xd)
T is a random vector on Rd, then the ith

component Xi of X is an rv. The marginal pdf fXi of Xi can be determined when f
is known in the following way:

fXi(xi) =
∫
Rd−1

f (x1, . . . , xi, . . . , xd) dx1 · · · dxi−1 dxi+1 · · · dxd

The cdf of fXi is denoted FXi .
An example of a two-dimensional random vector pdf is given in Figure 2.5.

Remark 2.1.1. In this book, vectors and matrices will be displayed with a bold letter.
The components Xi, i = 1, . . . , d of a d-dimensional random vector X are scalar so
that X = (X1, . . . , Xd)

T. N iid random samples with the same distribution as X are
denoted Xi, i = 1, . . . , N. A random sample Xi has d components such that Xi =
(Xi1, . . . , Xid)

T. If X is a one-dimensional rv, then N iid random samples with the
same distribution as X are denoted Xi, i = 1, . . . , N.

Similarly to the univariate rv parameters described in Section 2.1.3.2, it is possible
to define several characteristics for the random vectors:

● The mathematical expectation E(X) of X is the vector of the expectations of its components

E(X) = E

⎛⎜⎝ X1
...

Xd

⎞⎟⎠ =
⎛⎜⎝ E(X1)

...
E(Xd)

⎞⎟⎠
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(a)

Figure 2.5 Example of a two-dimensional random vector. (a) Two-dimensional pdf.
(b) Corresponding iid random samples.
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● The covariance matrix V(X) of X with

V(X) = E

[
(X − E(X)) (X − E(X))T

]

=

⎛⎜⎜⎜⎝
V(X1) Cov(X1, X2) · · · Cov(X1, Xd)

Cov(X2, X1) V(X2) · · · Cov(X2, Xd)

...
...

. . .
...

Cov(Xd , X1) Cov(Xd , X2) · · · V(Xd)

⎞⎟⎟⎟⎠
with Cov(Xi, Xj) = E

[
(Xi − E(Xi))

(
Xj − E(Xj)

)] = Cov(Xj, Xi)
● The continuous entropy H(X) of X with

H(X) =
∫
X

f (x1, . . . , xd) ln (f (x1, . . . , xd)) dx1 · · · dxd

where X is the support of f

Theorem 2.1.4 (Transport theorem). Let X be a continuous d-dimensional random
vector with a joint pdf f , φ : Rd → R a measurable function, E(φ(X)), is given by

E(φ(X)) =
∫
Rd

φ(x1, . . . , xd)f (x1, . . . , xd) dx1 · · · dxd

if the integral is absolutely convergent.
This theorem allows us to define the probabilities of interest of an industrial system,

such as probability of failure. This theorem will be extensively used in the following
chapters.

2.1.4.2 Dependence of multivariate random variables

Definition 2.1.15. Let X = (X1, . . . , Xd)
T be a continuous d-dimensional random

vector with joint pdf f and marginal pdfs fX1 , . . . , fXd . The random variables X1, . . . , Xd

are said mutually independent (or independent) if

f (x1, . . . , xd) =
d∏

i=1

fXi(xi)

or

F(x1, . . . , xd) =
d∏

i=1

FXi(xi)

If the random variables X1, . . . , Xd are independent, then the covariance matrix of
the random vector X = (X1, . . . , Xd)

T is equal to a diagonal matrix with components
V(Xi), i = 1, . . . , d. The converse implication is not true.

Copulas are mathematical objects that capture the structure of dependence between
different random variables. In this chapter, we give only a short introduction concern-
ing the copula theory. For more details, consult Nelsen (2006), Jaworski, Durante,
Haerdle, & Rychlik (2010) and Lebrun (2013).
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Definition 2.1.16. A cdf C : [0, 1]d → [0, 1] is a copula if it is a joint cumulative
distribution of a d-dimensional random vector defined on the unit hypercube [0, 1]d
with a uniform marginal pdf.

The copula allows to separate from a joint probability distribution the contribution
of the marginals and the contribution of the dependence structure between each
component of the considered random vector.
Theorem 2.1.5 (Sklar’s theorem (Sklar, 1959)). Any multivariate cumulative dis-
tribution F of X = (X1, . . . , Xd)

T ∈ Rd can be expressed according to its marginal
cumulative distributions FXi , i ∈ {1, . . . , d} and a copula C:

F(x1, . . . , xd) = C(FX1(x1), . . . , FXd (xd))

If the marginal distributions FX1 , . . . , FXd are continuous, the copula C is unique
and we have,

∀u = (u1, . . . , ud)
T ∈ [0, 1]d, C(u) = F(F−1

X1
(u1), . . .F

−1
Xd
(ud))

Samples of different bivariate distributions generated with Gaussian, Student,
Clayton, and Gumbel copulas are provided in Figure 2.6. Unlike the marginals, the
structure of dependency between different random variables is generally very complex
to grasp. One has to choose the appropriate copula (e.g., Gaussian, Clayton, Frank,
Gumbel) that reflects at best the structure of dependence of the random vector to
characterize. In practice, the data at one’s disposal in complex industrial applications
are often too insufficient to have an accurate estimation of the input dependencies.
In such cases, one generally consider the inputs of a system as independent. This
assumption is not trivial and might lead to a misrepresentation of the studied
phenomena.
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Figure 2.6 Random samples generated with different copulas. (a) Gaussian copula.
(b) Student copula. (c) Clayton copula. (d) Gumbel copula.
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2.1.5 Point estimation

Let us consider X1, . . . , XN , N independent samples of the random variable X with
density fθ0 . The term θ0 is an unknown a priori parameter such that θ0 ∈ � with �

the parameter space. For example, if fθ0 is a Gaussian pdf, θ0 might be the mean or the
variance. The objective of point estimation is to estimate the parameter θ0 from the
samples X1, . . . , XN .
Definition 2.1.17. A point estimator θ̂ of θ0 is a statistic T : RN → �, that is, any
function from the data space to the parameter space.

There are infinite numbers of candidate point estimators. It is nevertheless possible
to characterize the quality of an estimator for the estimation of θ0 by defining its bias
and its variance.
Definition 2.1.18. The bias b

θ̂
of an estimator θ̂ of θ0 is defined by

b
θ̂
= E(θ̂ )− θ0

Its variance v
θ̂

is given by the following expression:

v
θ̂
= E

(
(θ̂ − E(θ̂ ))2

)
The mean squared error MSE(θ̂) is then obtained with

MSE(θ̂) = E

(
(θ̂ − θ0)

2
)
= v

θ̂
+ b2

θ̂

The bias gives an indication of the distance between the estimator and θ0 whereas
the variance describes the estimator dispersion near E(θ̂ ). In practice, valuable
estimators of a parameter have a good trade-off between bias and variance.

Let us give a simple example of point estimation and consider the empirical mean
X̂N = 1

N

∑N
i=1 Xi as an estimator of the mathematical expectation E(X). Its bias can

be easily determined. Indeed, we have

E

(
X̂N

)
= 1

N
E

(
N∑

i=1

Xi

)
= 1

N

N∑
i=1

E (Xi)

Because E (Xi) = E (X), we obtain the following equality:

bX̂N
= E

(
X̂N

)
− E (X) = 0

The estimator X̂N is thus said to be an unbiased estimator of E(X). The variance vX̂N

of X̂N for the estimation of E(X) can also be determined in the following way:

vX̂N
= E

(
(X̂N − E(X̂N))

2
)
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and with the König–Huygens theorem, we have

vX̂N
= E

(
(X̂N)

2
)
− E

(
X̂N

)2

Similar definitions for point estimation may be proposed for multivariate random
variables.

2.2 Modeling and sample generation of random
variable pdfs

Different statistical tools enable to define random variable pdfs adapted to a given
problem. In simple cases, the pdf is chosen among common parametric probability
laws and the generation of random samples is well known. A short description of
the most common pdfs is presented in Section 2.2.1.1 for univariate rv and in Sec-
tion 2.2.1.2 in the multivariate case. For more complex pdf designs, a nonparametric
kernel density estimator can be used as described in Section 2.2.2. From a given set
of samples, this estimator consists in approximating the pdfs of these samples with a
mixture of smooth kernel densities. It is also sometimes difficult to sample from a pdf
when, for instance, the pdf expression is known up to a constant. Generating random
samples in that case requires more complex algorithms such as the Metropolis–
Hastings algorithm (see Section 2.3.3).

2.2.1 Overview of common probability distributions

2.2.1.1 Univariate distributions

Uniform distribution
Definition 2.2.1. The pdf of the univariate uniform law U(a,b) on the interval [a, b]
is defined by

f (x) = 1

b − a
1[a,b](x), x ∈ R

where 1[a,b](x) is a function that is equal to 1 for x ∈ [a, b] and 0 elsewhere. The cdf
of U(a,b) is

F(x) =

⎧⎪⎨⎪⎩
0, if x < a
x−a
b−a , if a ≤ x < b

1, if b ≤ x

The mathematical expectation and the variance depend on a and b in the following

way: if X ∼ U(a,b) (∼ means follows), then E (X) = a+b
2 and V (X) = (b−a)2

12 . The
uniform distribution is often chosen when it is known that an rv evolves between a
and b but without any information on its distribution over this interval. Indeed, it is
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Figure 2.7 Examples of different uniform pdfs.

the maximum entropy distribution among all the continuous distributions with support
[a, b]. Different examples of uniform distributions are given in Figure 2.7.

Exponential distribution
Definition 2.2.2. The univariate exponential law E(λ) with λ > 0 is defined by

f (x) = λe−λx1x≥0, x ∈ R

The cdf of E(λ) is

F(x) = (
1 − e−λx) 1x≥0, x ∈ R

If X ∼ E(λ), we also have E (X) = 1
λ

and V (X) = 1
λ2 . The exponential distribution

can be used to model queue waiting time or component lifetime. It is also the
maximum entropy distribution among all the continuous distributions with support
(0,+∞) that have an expectation equal to 1

λ
. Different examples of exponential pdfs

are presented in Figure 2.8.

Gaussian distribution
Definition 2.2.3. The pdf of the univariate Gaussian law N (μ, σ 2) is defined by

f (x) = 1√
2πσ 2

e
−
(

x−μ√
2σ

)2

, x ∈ R

If X ∼ N (μ, σ 2), we have E (X) = μ and V (X) = σ 2. The cdf of N (μ, σ 2) is

F(x) = �μ,σ 2(x) = 1√
2πσ 2

∫ x

−∞
e
− 1

2

(
t−μ
σ

)2

dt, x ∈ R

The cdf of the Gaussian distribution of parameters (μ, σ 2) is indeed often denoted
by �μ,σ 2(·). The Gaussian (or normal) law is one of the most employed probability



Basics of probability and statistics 17

0 1 2 3 4 5
0

0.5

1

1.5

2

x

f
(x

)

(1)
(2)
( 1

5 )
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Figure 2.9 Examples of different Gaussian pdfs.

distributions to characterize the distribution of rv and will be extensively used in the
application cases. The Gaussian law is the maximum entropy distribution among all
real-valued distributions with specified expectation μ and variance σ 2. The central
limit theorem (see Section 2.3.2) also justifies this pdf choice in several domains.
Different examples of Gaussian pdfs are presented in Figure 2.9. The density N (0, 1)
is called the standard Gaussian pdf.

Truncated Gaussian distribution
Definition 2.2.4. The truncated Gaussian univariate distribution N (μ, σ 2, a, b) is
defined by

f (x) =
1√

2πσ 2
e
−
(

x−μ√
2σ

)2

�μ,σ 2(b)−�μ,σ 2(a)
1[a,b](x), x ∈ R

where �μ,σ 2(·) is the cdf of N (μ, σ 2) and b > a.
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Figure 2.10 Example of a truncated Gaussian pdf.

The infinite support of a Gaussian pdf is not always realistic for some physical
characteristics with Gaussian shape. In that case, to improve the modeling of the
variable uncertainty, it can be interesting to consider a truncated Gaussian pdf. An
example of truncated Gaussian pdf is given in Figure 2.10.

Log-normal distribution
Definition 2.2.5. The univariate log-normal distribution lnN (μ, σ 2) is defined
on R∗+ by

f (x) = 1

x
√

2πσ 2
e
−
(

ln(x)−μ√
2σ

)2

, x ∈ R∗+

The cdf of lnN (μ, σ 2) is

F(x) = �μ,σ 2 (ln(x)) , x ∈ R∗+

We also have E (X) = e

(
μ+ σ2

2

)
and V (X) =

(
eσ

2 − 1
)

e
(
2μ+σ 2

)
if X ∼

lnN (μ, σ 2). The log-normal distribution can be used to model variables that stem
from the multiplicative product of many independent positive random variables
because of the central limit theorem (see Section 2.3.2). Different examples of log-
normal pdfs are presented in Figure 2.11.

Cauchy distribution
Definition 2.2.6. The Cauchy distribution C(a, b), with a > 0 is given by

f (x) = a

π

1

(x − b)2 + a2 , x ∈ R

The cdf of C(a, b) is

F(x) = 1

π
arctan

(
x − b

a

)
+ 1

2
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Figure 2.11 Examples of log-normal pdfs.
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Figure 2.12 Examples of Cauchy pdfs.

The mathematical expectation and variance of a Cauchy distribution C(a, b) are not
defined because their integral convergence is not ensured. The Cauchy distribution has
several applications in physics such as in quantum mechanics or calibration problems.
Different examples of Cauchy pdfs are presented in Figure 2.12.

Chi-squared distribution
Definition 2.2.7. The pdf of the chi-squared distribution X 2

k with k degrees of
freedom is defined by

f (x) = x
k
2−1e− x

2

2
k
2�( k

2 )
1x≥0, x ∈ R

with �(α) = ∫∞
0 xα−1e−x dx.

If X1, . . . , Xk are independent standard normal random variables, then the sum
of their squares Q = ∑k

i=1 X2
i follows a chi-squared distribution with k degrees of

freedom. If Q ∼ X 2
k , the mean and the variance of Q are given by E (Q) = k and

V (Q) = 2k, respectively. The chi-squared distribution is notably used to test the
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goodness of fit of an observed distribution to a theoretical one or the independence
between two random variables in the frame of chi-squared tests. Three examples of
chi-squared pdfs with different degrees of freedom are presented in Figure 2.13.

Gamma and beta distributions
Definition 2.2.8. The gamma law �(λ,α) with λ > 0 and α > 0 is given by

f (x) = 1

�(α)
λαxα−1e−λx, x ∈ R∗+

with �(α) = ∫∞
0 xα−1e−x dx.

The expectation and the variance have the following expressions: if X ∼ �(λ,α),
then E (X) = α

λ
and V (X) = α

λ2 . The gamma distribution has been used in a wide
range of fields including queuing models or financial services. Different examples of
gamma pdfs are presented in Figure 2.14.
Definition 2.2.9. The beta distribution β(a, b) with a > 0 and b > 0 is given by

f (x) = �(a + b)

�(a)�(b)
xa−1(1 − x)b−1, x ∈ [0, 1]

Figure 2.13 Examples of different chi-squared pdfs.
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Figure 2.14 Examples of gamma pdfs.
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Laplace distribution
Definition 2.2.10. The univariate Laplace distribution L(μ, b), with b > 0 and
μ ∈ R, is given by

f (x) = 1

2b
e−| x−μ

b |, x ∈ R

The cdf of L(μ, b) is

F(x) =
⎧⎨⎩

1
2 e

x−μ
b , if x < μ

1 − 1
2 e−

x−μ
b , if x ≥ μ

Its expectation and variance are defined with E (X) = μ and V (X) = 2b2 if
X ∼ L(μ, b). The use of Laplace distribution has notably been proposed in signal
processing, biological processes, or finance for modeling phenomena with a less
smooth behavior than the Gaussian law. Different examples of Laplace pdfs are
presented in Figure 2.15.

Some properties of univariate distributions
Definition 2.2.11. The distribution of a random variable X with pdf f is said to have
a (right) heavy tail if and only if∫

R

exp (λx) f (x)dx = ∞, ∀λ > 0

Heavy-tailed distributions are probability distributions that have heavier tails than
exponential distributions. The Cauchy and the log-normal distributions are notable
common heavy-tailed distributions. As a counterpart, a distribution is light tailed if
and only if
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Figure 2.15 Examples of Laplace pdfs.
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R

exp (λx) f (x)dx < ∞, ∀λ > 0

Definition 2.2.12. A univariate exponential family is a set of probability distribu-
tions whose pdf f with parameter θ has the following expression

f (x|θ) = h(x)b(θ) exp (μ(θ)T(x))

where the functions h, b, μ, and T are known functions.
The normal, gamma, exponential, log-normal, or chi-squared distributions are all

exponential families for instance.

2.2.1.2 Multivariate distributions

If the different components of a random vector are independent, the joint probability
density function can be obtained with the product of the univariate pdfs described
previously. Moreover, several generalizations of the univariate distributions presented
in the previous sections can be expressed. In most cases, only the multivariate normal
distribution is practically used for modeling uncertainty in complex systems.

Multivariate normal distribution
Definition 2.2.13. The multivariate normal (Gaussian) distribution N (μ,�),
defined on Rd, can be expressed by its pdf

f (x) = 1

(2π)d/2|�|1/2 e−
1
2 (x−μ)T�−1(x−μ), x ∈ Rd

with μ the expectation and� the covariance matrix, and where |�| is the determinant
of �.

An example of multivariate normal pdf is given in Figure 2.16 for μ =
(

1
−1

)
and � =

(
2 1
1 1

)
.
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Figure 2.16 Example of a two-dimensional normal pdf.
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2.2.2 Kernel-based laws

When no parametric classic density is suitable for the modeling of random variable
samples, nonparametric approaches can be efficient alternatives. Let X1, . . . , XN be
a set of iid random samples with unknown pdf f and dimension d. Kernel density
estimator (kde) enables to approximate the pdf f in the following way:

f̂H(x) = 1

N|H| 1
2

N∑
i=1

K
(

H− 1
2 (x − Xi)

)
where K is a kernel (a non-negative symmetric function that integrates to 1) and H
is a d × d symmetric positive definite bandwidth matrix. There are large numbers
of potentially efficient kernels, but in practice, the most used kernel is the Gaussian
kernel, defined by

K(x) = 1

(2π)
d
2

e−
1
2 xTx

and the Epanechnikov kernel, defined by

K(x) = d + 2

2cd
(1 − xTx)1(xTx≤1)

where cd is the volume of the unit sphere in Rd, that is, cd = ∫
Rd 1(xTx≤1) dx. The

choice of the kernel also depends on the assumptions one makes on the pdf of the
samples X1, . . . , XN as their distribution tail, and so on. For instance, as noticed
in Wand, Marron, & Ruppert (1991), the Gaussian kernel is efficient for estimating
densities that are not so far from a Gaussian shape, but it might perform very poorly
when this is not the case, especially near the boundaries. The bandwidth values
correspond to a trade-off between the bias and the variance of f̂H. In general, a small
bandwidth in a given dimension implies a small bias but a large variance. Different
approaches suggest an estimate of the optimal bandwidth matrix for a given criterion.
In most cases, one can choose an adapted bandwidth Hopt that minimizes the mean
integrated square error (MISE) criterion defined by

MISE(H) =
∫
Rd

E

(
(f (x)− f̂H(x))2

)
dx

Asymptotic versions of MISE (AMISE) can also be considered (Wand & Jones, 1995).
Some empirical choices of adapted bandwidths can be found in Silverman (1986). As
soon as the kernel and the bandwidth have been determined, it is possible to generate
random samples with f̂H. An example of application of kde is presented in Figure 2.17.
From the samples generated with an unknown pdf, it is possible to estimate the sample
density with kde. The influence of the bandwidth is very significant in the shape of
the kde and must be carefully tuned.
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Figure 2.17 Application of kde on samples generated with an unknown pdf. (a) iid samples
generated with an unknown pdf. (b) Corresponding kde for different bandwidths.

2.3 Convergence theorems and general statistical
methods

2.3.1 Strong law of large numbers

Theorem 2.3.1 (Strong law of large numbers). Let X1, . . . , XN be a set of iid
random variables with the same distribution as X and finite mathematical expectation
E(X). Then the empirical mean X̂N = 1

N

∑N
i=1 Xi converges almost surely (as) to the

mathematical expectation E(X),

X̂N = 1

N

N∑
i=1

Xi
as−→

N→+∞E(X), that is P

(
lim

N→+∞X̂N = E(X)

)
= 1.

The strong law of large numbers is very important in statistics because it
ensures that the empirical mean converges to the mathematical expectation. A simple
application of this theorem is proposed in Figure 2.18 with random variables Xi,
i = 1, . . . , N following a standard univariate Gaussian pdf N (0, 1). The empirical
mean X̂N converges to 0, that is, the mathematical expectation of N (0, 1) when N
increases. The law of large numbers can be easily extended to the case of multivariate
random variables in the following way.
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Figure 2.18 Application of the law of large numbers (Xi are sampled from N (0, 1)).
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Theorem 2.3.2. Let X1, . . . , XN be a set of iid d-dimensional random vectors with the
same distribution as X and finite mathematical expectation E(X). Then the empirical
mean X̂N = 1

N

∑N
i=1 Xi converges almost surely to the mathematical expectation

E(X),

X̂N = 1

N

N∑
i=1

Xi
as−→

N→+∞E(X), that is P

(
lim

N→+∞X̂N = E(X)
)

= 1.

2.3.2 Central limit theorem

Theorem 2.3.3 (Central limit theorem (CLT)). Let X1, . . . , XN be a set of iid random
variables with the same distribution as X, E(X) = μ, and V(X) < +∞. The empirical

mean is denoted X̂N = 1
N

∑N
i=1 Xi. Then the variable

√
N
(

X̂N − μ
)

converges in law

(L) to a Gaussian rv with zero mean and variance V(X),

√
N
(

X̂N − μ
) L−→

N→+∞N (0,V(X)),

that is, for any set A ⊂ R, which is a continuity set of Y,

lim
N→+∞P

(√
N
(

X̂N − μ
)
∈ A

)
= P (Y ∈ A)

with Y a Gaussian rv with zero mean and variance V(X).
The intensive use of the Gaussian law in modeling uncertainty is notably justified

by this theorem. An example of application of the CLT is proposed in Figure 2.19 with

Xi, i = 1, . . . , N , N rv sampled from the Gamma distribution. The rv
√

N
(

X̂N − μ
)

converges in law to a Gaussian rv when N increases.
Theorem 2.3.4 (Multivariate central limit theorem). Let X1, . . . , XN be a set of
iid d-dimensional random vectors with the same distribution as X = (X1, . . . , Xd)

T

with a mathematical expectation E(X) = μ and a covariance matrix �. It is also
assumed that E

(
(Xij)

2
)
< +∞ for i = 1, . . . , N and j = 1, . . . , d. The empirical mean

is denoted X̂N = 1
N

∑N
i=1 Xi. Then the variable

√
N
(
X̂N − μ

)
converges in law to a

Gaussian rv with zero mean and covariance matrix �,

√
N
(

X̂N − μ
) L−→

N→+∞N (0,�),

that is, for any set A ⊂ Rd, which is a continuity set of Y,

lim
N→+∞P

(√
N
(
X̂N − μ

) ∈ A
)
= P (Y ∈ A)

with Y a Gaussian rv with zero mean vector and covariance matrix �.
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Figure 2.19 Drawing of trial histograms of random variable
√

N
(

X̂N − μ
)

and the pdf of

N (0,V(X)) to illustrate the CLT when X is sampled from a Gamma distribution. (a) N = 1.
(b) N = 2. (c) N = 10. (d) N = 100.

2.3.3 Simulation of complex laws using the Metropolis–Hastings
algorithm

2.3.3.1 Markov chain

Definition 2.3.1. A Markov chain in discrete time is a sequence X0, X1, X2, . . . of
continuous d-dimensional random vectors that satisfy the following Markov property
for all n ≥ 1,

P (Xn ∈ An|X0 ∈ A0, . . . , Xn−1 ∈ An−1) = P (Xn ∈ An|Xn−1 ∈ An−1)

for any measurable subsets A0, . . . , An of Rd.
The quantity P

(
Xj ∈ B(x′, dx′)|Xj−1 = x

)
where B(x′, dx′) is a ball of infinites-

imal length dx′ centered on x′ is called a transition kernel. The different tran-
sition kernels considered in this book have a pdf denoted πj

(
xj|xj−1

)
for j ≥ 1

such that

P
(
(X0, . . . , Xj) ∈ A0 × · · · × Aj

)
=
∫

A0×···×Aj

π0(x0)π1 (x1|x0) · · ·πj
(
xj|xj−1

)
dx0dx1 · · · dxj
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A simple example of Markov chain is a Gaussian random walk in dimension 1.
Let us define n + 1 standard univariate Gaussian random variables X0, . . . , Xn. The
sum Sn = ∑n

i=0 Xi is a Markov chain on R. The initial density π0(x0) is given by
the law of X0. The transition kernels of the Markov chain Sn have the following
expression

πj
(
xj|xj−1

) = 1√
2π

e
−
( xj−xj−1√

2

)2

Ten trials of the random walk Sn are proposed in Figure 2.20.
A Markov process (Xt)t≥0 in continuous time can also be defined with an initial

law π0(x0) and transition kernels πs,t(x′|x) = P
(
Xt ∈ B(x′, dx′)|Xs = x

)
. In practice,

it is in fact not possible to simulate directly time-continuous Markov processes. We
approximate processes with a Markov chain in discrete time such that t = j�t with j ∈
N and �t a positive constant as low as possible. More details about Markov processes
and Markov chains can be found in Stroock (2014).

2.3.3.2 Some properties of transition kernels

Definition 2.3.2. A transition kernel π is said to be symmetric if π(x′|x) =
π(x|x′) ∀x, x′ ∈ Rd.

The multivariate standard Gaussian distribution is a symmetric kernel. In that case,
we have

π(x′|x) = 1

(2π)d/2 e−
1
2 (x

′−x)T(x′−x)

but also

π(x|x′) = 1

(2π)d/2 e−
1
2 (x−x′)T(x−x′)
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Figure 2.20 Ten trials of a Gaussian random walk.
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Definition 2.3.3. A transition kernel π is reversible relatively to a distribution f if

f (x)π(x′|x) = f (x′)π(x|x′)

Such kernel π is said to be f reversible.
If X follows a multivariate standard Gaussian distribution, a reversible kernel π

relative to X is given by

π(x′|x) = √
1 − ax +√

aw

where W follows a multivariate standard Gaussian distribution and a ∈ (0, 1). Indeed,
if we apply π to X, then X′ has a multivariate standard Gaussian pdf and, conversely,
if we apply π to X′.

2.3.3.3 The Metropolis–Hastings algorithm

One sometimes might want to generate samples following complex densities that do
not belong to the classic law families described in Section 2.2.1. For instance, consider
the two-dimensional random vector X = (X1, X2)

T with the following pdf:

f (x) = | sin(x2 − x1)× exp
(−(x2

2 + x2
1)
) |∫

R2 | sin(x2 − x1)× exp
(−(x2

2 + x2
1)
) |dx1 dx2

It is difficult to generate directly samples of X, notably because of the integral
computation. We can then consider that the pdf f is known up to a constant

f (x) ∝ | sin(x2 − x1)× exp
(
−(x2

2 + x2
1)
)
| (2.2)

In fact, a possible solution to generate samples according to the distribution f is
to consider the Metropolis–Hastings (MH) algorithm (Hastings, 1970; Metropolis,
Rosenbluth, Rosenbluth, Teller, & Teller, 1953), a very well-known Monte Carlo
Markov chain (MCMC) method. The principle of MH is to build a Markov process
Z1, . . . , Zn that will be approximately distributed, over a long term, that is, when
n → ∞ with pdf f . This Markov process is defined with a proposal/refusal method.
Indeed, a sample Z′ is proposed from Zn with transition kernel π , and then Zn+1 is
obtained with

zn+1 =
{

z′, with probability min
(

1, f (z′)
f (zn)

× π(zn|z′)
π(z′|zn)

)
zn, otherwise

The MH algorithm consists then of the different iterative stages described in
Algorithm 1.

A transition kernel π(z′|zn) has to be defined in the MH algorithm. A usual choice
of π(z′|zn) is the multivariate standard Gaussian distribution. We obtain π(zn|z′)

π(z′|zn)
= 1,
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ALGORITHM 1 The Metropolis–Hastings algorithm
Input: The pdf f , the number of iterations N , the transition kernel π , the starting sample

zstart , and the burn in period nb .
Output: The samples (zn )nb ≤n≤N .

1 Set z0 = zstart and n = 0.
2 while n ≤ N do
3 Sample z′ with density π(z′|zn ).

4 Compute the acceptation rate α = min
(

1, f (z′)
f (zn )

× π(zn |z′)
π(z′ |zn )

)
.

5 Sample u with a uniform random variable, u ∼ U(0,1).
6 if u ≤ α then
7 zn+1 = z′.
8 else
9 zn+1 = zn .

10 Set n = n + 1.

11 return (zn )nb ≤n≤N .

which corresponds to the special case of the MH algorithm called the Metropolis
algorithm. It arises when the kernel π is symmetric. If π is an f -reversible kernel,
then the proposal Z′ is always accepted.

Even if f is known up to a constant, the ratio f (z′)
f (zn)

is computable in practice. It is
also important to notice that the samples generated with the MH algorithm are not
independent. It could be necessary to subsample the population z1, . . . , zn to decrease
their correlation. Moreover, if the MH starting sample z0 is not adapted, for instance
if f (z0) has a low value, it is necessary to define a burn in period nb because the first
samples obtained with MH will not be distributed according to the pdf f .

The MH algorithm has been applied to generate samples according to the pdf f
given in Equation (2.2) with a multivariate standard Gaussian distribution and a burn-
in period nb = 1000. The results are presented in Figure 2.21. This algorithm enables
us to draw samples from the pdf f .
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Figure 2.21 Application of MH to sample with the two-dimensional pdf f .
(a) Two-dimensional pdf f . (b) 1000 corresponding samples generated with MH.



30 Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

2.3.3.4 Transformation of random variables

Some specific estimation methods can be applied only on standard multivariate
Gaussian random variables. It might strongly limit the potential application of these
methods on realistic cases. Nevertheless, some transformations τ have been proposed
to transform a random variable X into a standard multivariate Gaussian random
variable U = τ(X). Depending on the available information on the pdf of X, several
transformations can be proposed (Hasofer & Lind, 1974; Lebrun & Dutfoy, 2009a,
2009b; Nataf, 1962; Pei-Ling & Kiureghian, 1991; Rosenblatt, 1952). See Table 2.1
for details on the correspondence between assumptions and transformations. We
do not review all these transformations in this book, but let us consider a simple
example of rv transformation τ using the diagonal transformation. We assume that
X = (X1, X2)

T follows a two-dimensional distribution where the pdf fX1 of X1 and the
pdf fX2 of X2 are given by an exponential law E(1) and a log-normal law lnN (0, 1),
respectively. FX1 and FX2 are their corresponding cdfs. The components X1 and X2 are
independent. Then the variable U = (U1, U2) defined by

u = τ(x) =
(
�−1

0,1(FX1(x1))

�−1
0,1(FX2(x2))

)

follows a two-dimensional standard normal distribution where �−1
0,1 is the inverse cdf

of a standard univariate normal distribution. The inverse transformation τ−1 from U
to X is described by

x = τ−1(u) =
(

F−1
X1
(�0,1(u1))

F−1
X2
(�0,1(u2))

)

where we recall that F−1
X1

and F−1
X2

are the inverse cdfs of X1 and X2, respectively. An
application of the transformation τ on 1000 iid samples with the same distribution as
X is proposed in Figure 2.22.

Table 2.1 Possible transformations τ depending on the assumptions
on the pdf of X

Assumptions on the pdf of X Corresponding transformations τ

X is Gaussian with uncorrelated components Hasofer–Lind transformation
X has independent components (not assumed to be
Gaussian)

Diagonal transformation

Only the marginal laws of X and their covariances
are known

Nataf transformation

The complete law of X is known Rosenblatt transformation
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Figure 2.22 Application of diagonal transformation on 1000 iid samples with the same
distribution as X. (a) 1000 samples of X. (b) 1000 corresponding samples of U = τ(X).
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3The formalism of rare event
probability estimation
in complex systems
J. Morio, M. Balesdent

3.1 Input–output system

3.1.1 Description

An input–output system can represent industrial aerospace (or other) complex codes
(Keane & Nair, 2005) such as a trajectory estimation, structural design, propulsion
analysis, computational fluid dynamics (CFD) simulation, and so on. This system is
mathematically modeled as an input–output function φ(·), considered as a “black-
box,” that is, the behavior of the system can be known only through a (finite)
given number of responses of φ(·). The system is considered as deterministic,
so we assume that all the randomness can be described by the aleatory input
variables.

Different kinds of elements can be of interest to characterize rare events. The
most common is the probability that the output exceeds a given threshold T . Such
probabilities are also called probability of failure in the system safety literature.
Another quantity of interest is the quantile estimation of the system response relative
to a given level of probability.

3.1.2 Formalism

Let X be a d-dimensional random vector with pdf f , and φ(·) be a continuous scalar
function:

φ : Rd → R

X = (X1, . . . , Xd)
T → Y = φ(X)

In some cases, the random variables Xi are considered as independent, but this
assumption is not mandatory. The unknown pdf of Y is denoted by g. The probability
of interest Pf is the probability that the output of the system exceeds a given
threshold T:

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
http://dx.doi.org/10.1016/B978-0-08-100091-5.00003-4
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Pf = P(Y > T) = P(φ(X) > T)

=
∫
Rd

1φ(x)>Tf (x) dx

=
∫
�f

f (x)dx

with �f the failure domain of φ(·), that is, �f = {x ∈ Rd|φ(x) > T}. This equation
involves the indicator function that is defined as follows:

1φ(x)>T =
{

1, if φ(x) > T
0, if φ(x) ≤ T

Remark 3.1.1. The probability that the output is underneath the threshold T can also
be considered, but for the sake of clarity, we present only the different estimation
algorithms with the probability for the output to be above the threshold. Of course,
the methods detailed in this book are compatible with the two alternatives.

In the aerospace field, for instance, the estimation of collision probability between
a space debris and a satellite is modeled with this formalism. The model inputs
are the uncertain debris and satellite position and speed, and the model output is
the minimum distance between the satellite and the debris over a time interval. The
function φ corresponds to a simulation code of spatial object trajectory propagation.
Chapters 5–8 of this book are notably dedicated to the estimation of Pf for input–
output systems from Monte Carlo simulations to more advanced algorithms such as
adaptive splitting.

In addition to the probability of exceedance, we might also be interested in
estimating some extreme quantiles. In that case, given a level of rare event probability
α, we can determine the quantile qα defined as:

qα = inf
v∈R

{P(Y ≤ v) ≥ α}

Remark 3.1.2. In some cases, Y can be multidimensional. Generalizations of the
quantile notions can be used such as the minimum volume sets as described notably
in Pastel, Morio, & Le Gland (2015).

3.2 Time-variant system

3.2.1 Description

The second model considered in this book corresponds to a time-dependent system
on which temporal evolution is modeled by a Markov process or a Markov chain (see
Section 2.3.3.1). This kind of approach is of great interest in different scientific and
engineering fields such as air traffic management (Bakker & Blom, 1993), fiber optics
(Garnier & Del Moral, 2006) and so on. In the same way as input–output systems, the
rare event is modeled by a threshold exceedance.
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3.2.2 Formalism

Let (Xt)t≥0 be a continuous time Markov process in a state space Rd with initial
law π0(x0) at time 0 and transition kernels πs,t(x|x′). The quantity of interest is a
probability P(R) with R defined by

R = {Xt ∈ B, with 0 ≤ t ≤ S} (3.1)

where S is a deterministic stopping time and B ⊂ Rd. Without loss of generality, it
is assumed that the critical set is defined in terms of threshold exceedance of a real-
valued function ϕ

R = {Xt, with ϕ(Xt) ≥ T and 0 ≤ t ≤ S}

with T a given threshold. Thus, we have

R = {Xt, with sup
0≤t≤S

ϕ(Xt) ≥ T}

In practice, it is in fact not possible to directly simulate time-continuous Markov
processes. The continuous problem can be expressed with a discrete time approach.
We then approximate the time-continuous Markov processes by introducing a time
discretization such that t = j�t and S = c�t where �t is a positive constant as low
as possible and j = 1, . . . , c. We then obtain a discrete time Markov chain (Xj)0≤j≤c

with initial law π0(x0) at time 0 and transition kernel πj(xj|xj−1). The estimation of
P(R) in Equation (3.1) is similar in the discrete case to the determination of

R = {Xj, with ϕ(Xj) ≥ T and 0 ≤ j�t ≤ S}

and thus

R = {Xj, with sup
0≤j�t≤S

ϕ(Xj) ≥ T}

Discrete and continuous notations can be used to describe estimation algorithms
without any loss of generality.

Chapter 9 is dedicated to the estimation of P(R) for time-variant systems. For
instance, conflict probability between two aircraft in uncontrolled airspace can be
estimated with this kind of model. Indeed, a flight plan consists of a sequence of
waypoints and speeds along an aircraft trajectory and is designed such that there
will be no conflict risk between aircraft. Nevertheless, the trajectory of an aircraft is
uncertain due to meteorology, pilot error, and so on. Thus, an aircraft does not follow
its flight plan exactly. This uncertainty on the aircraft trajectory is time dependent
and can be modeled by a Markov process. In that case, the goal is to estimate the
probability that the distance between two aircraft with associated trajectories modeled
by a Markov process is below T during a given time interval.
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Remark 3.2.1. The special case of Markov chain that evolves in a countable state
space is not considered in this book. Nevertheless, the reference (Rubino & Tuffin,
2009) gives an overview of efficient algorithms for the estimation of rare event
probabilities in this case.
Remark 3.2.2. A discrete Markov chain can be viewed as an input–output system
with dependent inputs. This property is sometimes used when the length of the Markov
chain is relatively short since it determines the dimension of the input space. However,
in the general case, the rare event estimation methods that are specific to input–
output systems cannot be applied in this way because of the length of a general
Markov chain.

In addition to the probability of exceedance, extreme quantiles are also of interest.
In that case, given a level of rare event probability α, we determine the quantile qα
defined as

qα = inf
v∈R

{
P({ϕ(Xj) ≤ v, with 0 ≤ j�t ≤ S}) ≥ α

}

3.3 Characterization of a probability estimation

Most of the different estimation methods M described in this book propose an estimate
P̂M of the probability Pf when this quantity is rare relative to the available simulation
budget N, that is, when Pf <<

1
N . Because P̂M is a random variable, we thus analyze

its expectation E(P̂M). In practice, we apply Ñ times a given method M on the system
and thus obtain Ñ values of probability estimate, PM

i , i = 1, . . . , Ñ. The expectation

E(P̂M) is then determined by the mean of these Ñ probability estimates,

E(P̂M) ≈ P̂M
Ñ

= 1

Ñ

Ñ∑
i=1

PM
i (3.2)

It is mandatory to characterize the efficiency of an estimate P̂M of Pf . In the case of
rare event probability estimation, possible indicators of this estimation efficiency are
notably its relative bias and its relative deviation. The relative bias describes how close
the probability estimate P̂M is to Pf and is defined as

RB(P̂M) = E(P̂M)− Pf

Pf

In practice, for a given simulation method M, E(P̂M) is approximated with Equa-
tion (3.2). The term RB(P̂M) is not computable if we have no idea of the target
probability value Pf . The relative bias is also positive if P̂M tends to overestimate
Pf and vice versa. The relative standard deviation or relative standard error RE of an
estimator P̂M of Pf is given by the following ratio:
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RE(P̂M) =
√
V(P̂M)

E(P̂M)

The parameter
√
V(P̂M) is estimated by σ̂

P̂M
Ñ

in the following way:

σ̂
P̂M

Ñ
=

√√√√√ 1

Ñ − 1

Ñ∑
i=1

(
PM

i − P̂M
Ñ

)2

for a given simulation method M proposed in this book. The relative error is said
bounded if RE(P̂M) remains bounded when Pf −→ 0 (L’Ecuyer, Blanchet, Tuffin, &
Glynn, 2010; L’Ecuyer, Mandjes, & Tuffin, 2009). In that case, the number of samples
needed to get a specified relative error is bounded whatever the rarity of the event of
interest is. The logarithmic efficiency can also be defined. An unbiased estimator P̂M

of Pf is said to be logarithmic efficient (L’Ecuyer et al., 2010; L’Ecuyer et al., 2009),
if

LE(P̂M) = lim
Pf →0

ln(E((P̂M)2))

ln(Pf )
= 2

Logarithmic efficiency is a necessary but not sufficient condition for bounded relative
error. Characterizing the rare event probability estimate with these concepts is very
important even if they are often difficult to prove in the general case.

Moreover, if a simulation method M enables to estimate the probability P̂M for a
given test case with relative error RE(P̂M) and simulation budget NM , we define the
efficiency νM of this estimate relatively to crude Monte Carlo (CMC) estimate by the
following ratio:

νM = NCMC

NM

where NCMC is the number of required CMC samples to obtain RE(P̂CMC)=RE(P̂M).
If νM > 1, then the method M is more efficient than CMC for the given test case. The
computation of νM is of interest only when the probability estimate P̂M is not too far
from Pf .
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4Introduction
M. Balesdent, J. Morio

4.1 Categories of estimation methods

This book assumes the following classification of the different rare event probability
estimation techniques for input–output systems into four main categories:

● The simulation techniques that consist of several ways of efficiently sampling the input to
decrease the probability estimate variance

● The statistical methods that enable the derivation of a probability estimate of output thresh-
old exceedance from a fixed set of output samples

● The reliability-based approaches that take advantage of geometrical considerations on the
function φ to estimate the rare event probability, sometimes with sampling

● Metamodeling and sensitivity analysis, which are of interest for characterizing rare events
of high dimensional and time-consuming systems

A chapter of this book is devoted to each class of estimation method. The book
gives the principle and the detailed algorithm to ease the implementation of each
technique proposed and illustrates its performances on different toy cases. Depending
on these results, we consider its potential application on the more complex use cases
in Part Three.

The estimation of rare event probabilities corresponds to an integral computation.
Nevertheless, numerical integration methods such as Gaussian quadrature (Novak,
1988) or sparse grids (Gerstner & Griebel, 2003; Smolyak, 1963) are not developed
in this book because they are not adapted to the estimation of rare event probabilities.
These techniques require some smoothness on the function to integrate whereas rare
event probabilities are expressed with an indicator function. The application of some
numerical integration methods can thus lead to significant errors in practice.

4.2 General notations

Because the same formalism will be used for all the estimation methods, let us recall
the notations of Chapter 3 and consider a d-dimensional input random vector X with a
joint pdf f , a continuous scalar function φ : Rd → R and a threshold T . The different
components of X will be denoted X = (X1, X2, . . . , Xd)

T. The function φ is static,
that is, does not depend on time and represents, for instance, an input–output model.
We assume that the output Y = φ(X) is a scalar random variable. The pdf of Y is
denoted by g.

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
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4.3 Description of the toy cases

It is assumed in the different toy cases that X follows a multivariate standard normal
distribution for the sake of simplicity but without any loss of generality because
we recall that several transformations can be applied on the input distribution (see
Section 2.3.3.4) to come down to a multivariate standard normal distribution for the
input.

4.3.1 Identity function

The identity function is a one-dimensional toy case where Y = X. The input variable
X is distributed according to a normal distribution N (0, 1). Even if this toy case does
not bring any information on the algorithm performance in a general situation, it
enables us to present the principle of some specific simulation algorithms. With a
threshold T equal to 3, 4, and 5, the theoretical probability of exceedance (expressed
as P(Y > T) = 1 −�0,1(T)) is given by 1.35 × 10−3, 3.17 × 10−5, and 2.87 × 10−7,
respectively .

4.3.2 Polynomial square root function

This test case is a two-dimensional function and is illustrated in Figure 4.1. The input
space is R2. The input variables are distributed according to a normal distribution
N (02, I2) where I2 refers to the identity matrix of size 2.

T = 6

X ∼ N (02, I2)

φ(x1, x2) = −
√
(−x1 + 10)2 + (x2 + 7)2 + 10 ∗ (x1 + x2)2 + 14.

This toy case allows us to illustrate the ability of a method to estimate a rare event
probability in a relatively simple case. For a threshold T equal to 6, the estimated
probability of exceedance, obtained with a huge CMC, is 2.35 × 10−6.
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Figure 4.1 Polynomial square root function.
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4.3.3 Four-branch system

The four-branch system consists of a two-dimensional test case. The input space
is X = R2. The input variables are distributed according to a normal distribution
N (02, I2).

T = 10

X ∼ N (02, I2)

φ(x1, x2) = 10 − min

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
3 + 0.1(x1 − x2)

2 − x1+x2√
2

3 + 0.1(x1 − x2)
2 + x1+x2√

2
(x1 − x2)+ 7√

2
(x2 − x1)+ 7√

2

This toy case allows us to test the ability of the rare event estimation methods to
accurately estimate the probability in the case of disconnected failure region �f . This
problem involves four zones for which φ(X) > T (Figure 4.2). With a threshold T
equal to 10, the estimated probability of exceedance obtained with a huge CMC
is 2.22 × 10−3. The estimated probability of exceedance with T = 12 is equal to
1.18 × 10−6.

4.3.4 Polynomial product function

The polynomial product test case is a d-dimensional function and is adapted from
the Styblinski–Tang function used in optimization. The input variables are distributed
according to a normal distribution N (0d , Id).

X ∼ N (0d , Id)

φ(x) = 1

2

d∑
i=1

(x4
i + x2

i + 5xi)
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Figure 4.2 Four-branch system with threshold (T = 10).
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Table 4.1 Toy cases based on the
polynomial product function

d T P (φ(X) > T)

5 400 8.44 × 10−7

20 500 1.09 × 10−6

50 700 3.56 × 10−7

200 1000 4.85 × 10−6

−5 −2.5 0 2.5 5
−5−2.502.55

0

200

400

600

x1x2

φ
(x

1,
x

2)

Figure 4.3 Polynomial product function (for d = 2).

This toy case is useful to evaluate the ability of the methods to cope with high
dimensional problems. The different combinations of dimensions and thresholds used
in this book to evaluate the rare event estimation methods are summarized in Table 4.1.
The polynomial product function for d = 2 is illustrated in Figure 4.3.
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5Simulation techniques
M. Balesdent, J. Morio, C. Vergé, R. Pastel

Simulation techniques consist in sampling the input and characterizing the uncertainty
of the corresponding output. This is notably the case of the crude Monte Carlo method
that is well suited to characterize events whose associated probabilities are not too
low with respect to the simulation budget. However, for very seldom observed events,
this approach does not lead to accurate results. In this chapter, we review different
simulation techniques such as importance sampling or adaptive splitting that estimate
rare event probabilities with a low variance and a reduced number of samples. These
methods seek to generate more samples of X so that φ(X) > T .

5.1 Crude Monte Carlo

5.1.1 Principle

A simple way to estimate a probability is to consider crude Monte Carlo (CMC) (Fish-
man, 1996; Kroese & Rubinstein, 2012; Mikhailov, 1999; Niederreiter & Spanier,
2000; Robert & Casella, 2005; Silverman, 1986; Sobol, 1994). For that purpose, we
generate N iid samples X1, . . . , XN with the joint pdf f of X and compute their outputs
with the function φ : φ(X1), . . . ,φ(XN). The probability Pf is then estimated by

P̂CMC = 1

N

N∑
i=1

1φ(Xi)>T

where 1φ(Xi)>T is equal to 1 if φ(Xi) > T and 0 otherwise. The CMC method for
probability estimation is described in Algorithm 2.

This estimation converges almost surely to the target probability Pf as a con-
sequence of the law of large numbers (see Section 2.3.1). There is no regularity
condition concerning φ(·) in order to apply the law of large numbers on this estimator,
but V(1φ(X)>T) < +∞ is required. The relative standard error of the estimator P̂CMC

is provided by (Kroese & Rubinstein, 2012; Silverman, 1986)

RE(P̂CMC) = σ
P̂CMC

Pf
= 1√

N

√
Pf − P2

f

Pf
(5.1)

The CMC convergence speed depends only on N and Pf whatever the dimension d
of the input space is. Considering rare event probability estimation, that is, when Pf

takes low values, we obtain
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lim
Pf →0

σ
P̂CMC

Pf
= lim

Pf →0

1√
NPf

= +∞

The relative error is consequently unbounded. For instance, to estimate a probability
Pf of the order of 10−4 with a 10% relative error, at least 106 samples are required.
The simulation budget is thus an issue when the computation time required to obtain
a sample φ(Xi) is not negligible.

ALGORITHM 2 Crude Monte Carlo simulations for probability
estimation

Input: The pdf f , the number of samples N, the function φ(·), and the threshold T .
Output: The probability estimate P̂CMC.

1 Sample X1, . . . , XN with density f .
2 Apply φ to X1, . . . , XN to determine the samples φ(X1), . . . ,φ(XN ).
3 Estimate P̂CMC = 1

N
∑N

i=1 1φ(Xi )>T .
4 return P̂CMC.

In addition to the probability of exceedance, it is also possible to estimate some
quantiles of φ(X) with CMC. In that case, given a level of probability α, we can
estimate the corresponding quantile with:

q̂CMC
α = inf

y∈R

{
F̂CMC

N (y) ≥ α
}

where F̂CMC
N (y) is the empirical cdf defined by

F̂CMC
N (y) = 1

N

N∑
i=1

1φ(Xi)≤y

It can be shown that q̂CMC
α is a biased estimate of qα , but this bias is negligible com-

pared to 1
N , and the variance of q̂CMC

α can be approximated by (Arnold, Balakrishnan,
& Nagaraja, 1992)

V

(
q̂CMC
α

)
≈ 1 − α

Nf 2(qα)
(5.2)

5.1.2 Application on a toy case

Four-branch system
CMC is applied to the four-branch system. An illustration of CMC sampling is given
in Figure 5.1. The probability estimates obtained with CMC for this toy case are
provided in Table 5.1 for different thresholds. Even with a budget of 106 samples, that
is, a number of samples that is often not available in realistic applications, the relative
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Figure 5.1 Probability estimation with 10,000 CMC samples: (a) CMC samples, (b) CMC
samples above T = 10, and (c) output histogram.

Table 5.1 Results of CMC for the four-branch system

T P̂CMC RB (P̂CMC) RE (P̂CMC) Simulation budget

10 2.3 × 10−3 1% 22% 104

10 2.2 × 10−3 −0.1% 2% 106

12 2.0 × 10−6 69% 704% 104

12 1.0 × 10−6 −11% 88% 106

error on P(φ(X) > 12) reaches a high level. Indeed, CMC is not able to generate
enough samples Xi such that φ(Xi) > T .

5.1.3 Conclusion

The implementation of CMC on input–output functions is simple, but CMC re-
quires a significant simulation budget to estimate a low probability with accuracy.
Nevertheless, it will be interesting to apply CMC to the use cases of part Three because
CMC can be seen as a reference. The main characteristics of CMC are summarized in
Table 5.2.
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Table 5.2 Summary of CMC rare event probability estimation

Criteria CMC characteristics

Rarity of Pf Not adapted; slow convergence

Simulation budget 102

Pf
required samples to estimate Pf with a 10%

relative error
Type of function φ(·) No regularity condition on φ(·)
Multimodality of f restricted to �f Without any influence
Dimension of X No influence on the convergence
Probability estimate error Estimation with analytical formula depending on

Pf and N or with retrials
Difficulty of implementation None

The following sections describe different available alternatives to CMC to improve
the probability estimations, reduce the number of required samples, and increase the
estimation accuracy (i.e., decrease the relative error).

5.2 Simple variance reduction techniques

5.2.1 Quasi-Monte Carlo

The principle of quasi-Monte Carlo (QMC) (Niederreiter & Spanier, 2000) is to
replace the random number sequences of the Monte Carlo method by deterministic
number sequences X1, . . . , XN , which have the property to be better uniformly
distributed in the sense that they are more equidistributed. Figure 5.2 compares the
sample distribution obtained with CMC samples and a Halton sequence (Niederreiter
& Spanier, 2000) to sample a unit square with a uniform law. QMC reduces the
variance of CMC and, depending on the deterministic number sequence used, an
asymptotic variance can be determined. It can be applied in a low-moderate dimension
and is a good compromise between numerical integration methods, such as Gaussian
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Figure 5.2 (a) 100 CMC samples and (b) 100 Halton sequence samples.
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quadrature, and CMC. Nevertheless, QMC is not adapted for the estimation of a rare
event probability because it does not focus on the tail of the probability distributions
but on filling the gap that appears in CMC samples.

5.2.2 Conditional Monte Carlo

5.2.2.1 Principle

The idea of conditional Monte Carlo (Glasserman, 2003) is to decompose the input
vector into X = (W, Z)T such that the conditional expectation E (X|W) is known
analytically. The probability Pf can be then expressed in the following way:

Pf =
∫
Rd

1φ(x)>T f (x) dx =
∫ ∫

1φ(w,z)>T f (w, z) dw dz

It can then be developed using conditional density and probability with

Pf =
∫ ∫

1φ(w,z)>T fZ|W(w, z)fW(w) dw dz,

=
∫

P (φ(W, Z) > T|W = w) fW(w) dw

where fW is the marginal distribution of W and fZ|W is defined by

fZ|W(w, z) =
{

f (w,z)
fW(w) if fW(w) > 0,
0 otherwise

If P (φ(W, Z) > T|W) is computable, we can then derive a Monte Carlo estimator of
the probability Pf with

P̂Cond MC = 1

N

N∑
i=1

P (φ(Wi, Z) > T|Wi)

where Wi are iid samples generated from the distribution of W. The variance of
P̂Cond MC is always lower than the CMC probability estimate variance. Indeed, with
the law of total variance, we have:

V

(
P̂CMC

)
= V

(
P̂Cond MC

)
+ E

(
V
(
1φ(W,Z)>T |W

))
and thus

V

(
P̂Cond MC

)
≤ V

(
P̂CMC

)
Nevertheless, the efficiency of this approach strongly depends on the decomposition
of X.
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5.2.2.2 Conclusion

This method will not be applied in this book because we consider a very general failure
function. Nevertheless, in aircraft design, a good approximation of the failure region
is of the form 1R(W)>C(Z) where R is the response and C is the capacity. We run into
it with stress calculations that may require great deal of computation for R(W), where
W mostly depends on load and geometry randomness, while the strength randomness
C(Z) is cheap to calculate and depends on material variability. Conditional Monte
Carlo can then strongly decrease the CMC variance in this case (Smarslok, Haftka,
Carraro, & Ginsbourger, 2010).

5.2.3 Control variates

5.2.3.1 Principle

The control variate (CV) method (Glasserman, 2003; Meyn, 2007) is a variance
reduction technique based on the correlation of random variables. Let us define the
random variable H = 1φ(X)>T and a random variable M such that E(M) = τ with
τ ∈ R. M is assumed to be correlated with H. The quantity of interest is, of course,
Pf = E(H). We can also derive the rv H∗ so that, given a coefficient c,

H∗ = H + c(M − τ)

H∗ is an unbiased estimator of Pf for any choice of the coefficient c and we have thus
E(H∗) = Pf . The variance of H∗ is given by

V(H∗) = V(H)+ c2V(M)+ 2c Cov(H, M)

It can be shown that choosing the optimal coefficient c∗ defined by

c∗ = −Cov(H, M)

V(M)

minimizes the variance of H∗. In that case, the variance H∗ is equal to

V(H∗) = (1 − ρ2)V(H)

where ρ is the correlation coefficient between H and M. Unfortunately, the optimal
coefficient c∗ is not often available analytically; thus, different techniques allow to
choose efficient values of c. The most obvious technique is to estimate Cov(H, M) and
V(M) with Monte Carlo simulations to approximate c∗. A general algorithm describ-
ing the CV principle is presented in Algorithm 3. The use of CV is difficult in practice
for general complex systems. Indeed, finding an rv M that has a sufficient correlation
with H is not obvious. A possible alternative is to consider a surrogate model (see
Section 8.2) to generate samples of M (Cannamela, Garnier, & Iooss, 2008).
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ALGORITHM 3 Control variate simulation algorithm
Input: The pdf f , the number of samples N , the function φ(·), the threshold T , and a pdf

h .
Output: The probability estimate P̂CV.

1 Sample X1, . . . , XN with density f .
2 Apply φ to X1, . . . , XN to determine the samples φ(X1), . . . ,φ(XN ).
3 Sample M1, . . . , MN with density h such that they have a non-null covariance with

1φ(X1)>T , . . . , 1φ(XN )>T .
4 Compute ŶN = 1

N
∑N

i=1 1φ(Xi )>T and M̂N = 1
N
∑N

i=1 Mi .

5 Estimate ĉ∗ with ĉ∗ = −
(

1
N
∑N

i=1 1φ(Xi )>T Mi −M̂N ŶN

)
1
N
∑N

i=1 M 2
i −M̂ 2

N
.

6 Set ∀i ∈ {1, . . . , N }, H∗
i = 1φ(Xi )>T + ĉ∗(Mi − M̂N ).

7 Estimate P̂CV = 1
N
∑N

i=1 H∗
i .

8 return P̂CV

Table 5.3 Results of CV for the four-branch system
toy case

T P̂CV RB (P̂CV) RE (P̂CV) Simulation budget νCV

10 2.2 × 10−3 −2% 17% 10,000 1.3
10 2.2 × 10−3 0.8% 6% 100,000 1.2

5.2.3.2 Application on a toy case

Four-branch system
Control variate algorithm is applied to the four-branch system. For that purpose, the
variable M is defined as M = 1||X||>3.25 where || · || is the Euclidean norm. It can

be shown that E(M) = exp
(
− (3.25)2

2

)
. Probability estimation results with control

variates are provided in Table 5.3. CV enables to slightly decrease the variance of
CMC without increasing the number of calls to the function φ(·). However, the
efficiency of CV strongly depends on the choice of M.

5.2.3.3 Conclusion

The direct application of control variates is complicated in the general case because
of the choice of the random variable M since this variable must be correlated with
1φ(X)>T . Joint use of surrogate models and CV is often advised. However, even with
a surrogate model, CV is not very useful for estimating the probability of a rare event
because the surrogate model must be accurate near the input region {x|φ(x) = T} that
is not known a priori. The summary of CV characteristics is given in Table 5.4.
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Table 5.4 Summary of CV for rare event probability estimation

Criteria CV characteristics

Rarity of Pf Increase the required correlation between H and M
Simulation budget At least 103 samples in most cases
Type of function φ(·) No direct influence
Multimodality of f restricted to Pf No direct influence
Dimension of X No direct influence
Probability estimate error Estimation with retrials
Difficulty of implementation Low; difficult to determine an efficient rv M

5.2.4 Antithetic variates

5.2.4.1 Principle

The antithetic variate (AV) method (Hammersley & Handscomb, 1964; Sarkar &
Prasad, 1992) is also a variance reduction technique. To describe the principles of this
method, let us consider the two random variables H1 and H2 with the same probability
law as H = 1φ(X)>T . Then

E(H) = 1

2
(E(H1)+ E(H2)) = E

(
H1 + H2

2

)
and

V

(
H1 + H2

2

)
= V(H1)+ V(H2)+ 2Cov(H1, H2)

4

If H1 and H2 are iid, then Cov(H1, H2) = 0, and we obtain the same variance as the
CMC estimate. The principle of AV is to obtain samples so that Cov(H1, H2) < 0.
The probability estimation is then obtained with CMC.

Nevertheless, AV cannot be easily applied on a complex system. Indeed, it is not
obvious to propose X and X′ such that

Cov(1φ(X)>T , 1φ(X′)>T) < 0

where X and X′ have the same distribution.
In simple cases, AV can still be useful. If X follows a one-dimension normal

pdf with mean μ and standard deviation σ , then X′ = 2μ− X follows the same
law as X. The variables 1φ(X)>T and 1φ(X′)>T are then antithetic variates. See the
general simulation algorithm for AV in Algorithm 4. Dagger sampling described in
Kumamoto, Tanaka, Inoue, & Henley (1980) and more recently in Rongfu, Chanan,
Lin, & Yuanzhang (2010) is an extension of the antithetic variate method. It improves
CMC estimation for specific systems such as networks or fault trees.
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ALGORITHM 4 Antithetic variate simulation algorithm
Input: The pdf f , the number of samples N assuming that N is even, the function φ(·),

and the threshold T .
Output: The probability estimate P̂AV.

1 Sample X1, . . . , XN/2 with density f .
2 Apply φ to X1, . . . , XN/2 to determine the samples φ(X1), . . . ,φ(XN/2).
3 Sample X′

1, . . . , X′
N/2 with density f such that

⎛⎝ 1
N/2

N/2∑
i=1

1φ(Xi )>T 1φ(X′
i )>T − 1

N/2

N/2∑
i=1

1φ(Xi )>T × 1
N/2

N/2∑
i=1

1φ(X′
i )>T

⎞⎠ < 0

Estimate P̂AV = 1
N
∑N/2

i=1 1φ(Xi )>T + 1φ(X′
i )>T .

4 return P̂AV.

Table 5.5 Results of AV for the identity function

T P̂AV RB (P̂AV) RE (P̂AV) Simulation budget νAV

3 1.4 × 10−3 3% 24% 10,000 1.3
4 3.1 × 10−5 −7% 51% 100,000 1.7

5.2.4.2 Application to a toy case

Identity function
Antithetic variates are applied to the identity function toy case. We propose to define
X′ = −X so that X′ and X have the same density, a standard one-dimension normal
pdf. Probability estimation results with antithetic variates are given in Table 5.5. For
a given simulation budget, the variance of CMC decreases with the use of antithetic
variates.

5.2.4.3 Conclusion

Antithetic variate method is a variance reduction method that is not really adapted to
the estimation of rare event probabilities (see Table 5.6). Indeed, exactly 50% of the
AV samples are made of CMC samples. The application of such a method for a general
function φ(·) is also difficult because determining an antithetic variate to 1φ(X)>T is
not obvious.

5.3 Importance sampling

Remark 5.3.1. Because the main mechanism involved in importance sampling is
the modification of the sampling distribution, we will specify in this section for the
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Table 5.6 Summary of AV for rare event probability estimation

Criteria AV characteristics

Rarity of Pf Not adapted to rare event probability
Simulation budget At least 103 samples in most cases
Type of function φ(·) No direct influence
Multimodality of f restricted to �f No direct influence
Dimension of X No direct influence
Probability estimate error Estimation with retrials
Difficulty of implementation Low; difficult to determine an efficient couple H1

and H2 in practice

sake of clarity the sampling distribution by a subscript determining the effective
sampling distribution in the expression of the expectation and variance. For example,
Eh(X) means that the samples used for the calculation of the expectation have been
generated with the pdf h.

5.3.1 Principle of importance sampling

The main idea of importance sampling (IS) (Engelund & Rackwitz, 1993; Kroese
& Rubinstein, 2012; L’Ecuyer, Mandjes, & Tuffin, 2009) is to use an auxiliary
distribution h to generate more samples X1, . . . , XN such that φ(X) > T than with
the initial distribution f . A weight is then introduced in the probability estimate to
take into account the change in the pdf which is used to generate the samples. IS takes
advantage of the fact that

Pf = Ef
(
1φ(X)>T

) = Eh

(
1φ(X)>T

f (X)
h(X)

)
The IS probability estimate P̂IS is then given by

P̂IS = 1

N

N∑
i=1

1φ(Xi)>T
f (Xi)

h(Xi)
(5.3)

where the rv Xi, i = 1, . . . , N are sampled iid from pdf h. The estimate P̂IS of Pf is
unbiased. Its variance is given by the following equation:

Vh

(
P̂IS

)
=

Vh

(∑N
i=1 1φ(Xi)>T

f (Xi)
h(Xi)

)
N2 = Vh

(
1φ(X)>T w(X)

)
N

(5.4)

with w(X) = f (X)
h(X) . The term w(X) is often called the likelihood function in the

importance sampling literature. The variance can be estimated using the classical
Monte Carlo formula as follows:
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V̂h

(
P̂IS

)
= 1

N − 1

(
1

N

N∑
i=1

1φ(Xi)>T w2(Xi)− (P̂IS)2

)
(5.5)

The variance of P̂IS strongly depends on the choice of h. If h is well chosen, the
IS estimate then has a much smaller variance than the Monte Carlo estimate and vice
versa. The objective of IS is to decrease the estimate variance. We can thus define an

optimal IS auxiliary density hopt as the density that minimizes the variance Vh

(
P̂IS

)
.

Because variances are non-negative quantities, the optimal auxiliary density hopt is
determined by canceling the variance in Equation (5.4). hopt is then defined with
(Bucklew, 2004)

hopt(x) = 1φ(x)>T f (x)
Pf

(5.6)

The optimal auxiliary density hopt depends unfortunately on the probability Pf that we
estimate and consequently is unusable in practice. Nevertheless, hopt can be derived
to determine an efficient sampling pdf. Indeed, a valuable auxiliary sampling pdf h
will be close to the density hopt with regard to a given criterion. An optimization of
the auxiliary sampling pdf is then necessary.

This zero variance approach is difficult to implement directly for quantile estima-
tion because the variance of quantile depends on the unknown quantity f 2(qα) (see
Equation 5.2). Nevertheless, using Equation (5.6), a simple and practically feasible
alternative is to choose the following optimal IS auxiliary density to estimate the α-
quantile qα:

hopt(x) = 1φ(x)≥qα f (x)
α

This auxiliary density is often suggested in different articles (Cannamela et al., 2008;
Egloff & Leippold, 2010) without further theoretical justification but based on the
similarity with Equation (5.6).

Specific surveys on IS have been proposed as in Smith, Shafi, & Gao (1997) and
Tokdar & Kass (2010). Some possible importance sampling heuristics are efficient
only in very restrictive cases and thus are not analyzed for the sake of conciseness. In
this book, we review in the next sections only the main IS algorithms that can be used
for a general input–output function φ(·).

5.3.2 Nonadaptive importance sampling

The purpose of nonadaptive IS is to learn the optimal sampling density hopt in a
parametric way with a direct procedure. The required simulation budget is more lim-
ited than with adaptive algorithms. However, the potential application of nonadaptive
importance sampling on real systems is more restricted than adaptive importance
sampling algorithms described in Section 5.3.3.
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5.3.2.1 Simple changes of measure

Principle
In simple cases of function φ(·) or when we have some knowledge of the set �f ,
conventional changes of density f can be efficient for decreasing the probability
estimate variance such as scaling (SC) and mean translation (MT). SC consists in
defining the auxiliary pdf h so that

h(x) = 1

a
f
(x

a

)
with a ∈ R+∗ and usually a > 1. The new auxiliary density considered in MT is of
type

h(x) = f (x − c)

with c ∈ Rd. An example of sampling procedure is given in Algorithm 5 for SC
and MT. The choices of a and c for each method strongly influence the importance
sampling efficiency. Effective values of a and c are not obvious to find without some
knowledge of the function φ(·). Because SC and MT correspond to a parametric
model of the auxiliary density, it is possible to optimize the value of a or c with cross
entropy (see Section 5.3.3).

Application to a toy case
Four-branch system In order to illustrate the mechanics of scaling and mean
translation IS as well as the dependence of their accuracy with respect to the choice of
a and c, these two methods are applied to the four-branch system. For each method,
two values of the auxiliary pdf parameter are selected. The results obtained for this
case are provided in Table 5.7 (for T = 10). The results of MT and SC depend on the
choice of the auxiliary pdf parameters a and c. In this case, the best choice for MT
parameters corresponds to the initial pdf (i.e., [0, 0]) because the regions of the input
space that lead to the threshold exceedance are equidistant from the origin. MT is thus
equivalent in this test case to a CMC simulation. Choosing an appropriate value of
the scaling factor (i.e., a = 1/3) allows to reduce the relative error of the estimation.

ALGORITHM 5 Scaling (or mean translation) with importance
sampling for probability estimation

Input: The pdf f , the number of samples N, the function φ(·), the threshold T , and a
constant a (or c in case of mean translation).

Output: The probability estimate P̂SC (or P̂MT in case of MT).
1 Sample X1, . . . , XN with density h (x) = 1

a f
( x

a

)
(or h (x) = f (x − c) in case of MT).

2 Apply φ to X1, . . . , XN to determine the samples φ(X1), . . . ,φ(XN ).

3 Estimate P̂SC(or P̂MT) = 1
N
∑N

i=1 1φ(Xi )>T
f (Xi )
h (Xi )

.

4 return P̂SC (or P̂MT) .
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Table 5.7 Results obtained by scaling (SC) and mean translation
(MT) IS for the four-branch system and T=10

Value of auxiliary Simulation
pdf parameter P̂ RB (P̂) RE (P̂) budget ν

SC
a = 2 2.0 × 10−3 −10% 1571% 1000 1.8 × 10−3

a = 1/3 2.2 × 10−3 −0.9% 17% 1000 16

MT
c = [0, 0] 2.2 × 10−3 −0.9% 68% 1000 1
c = [−1, 1] 2.2 × 10−3 −0.9% 431% 1000 2.4 × 10−2

Table 5.8 Summary of IS with simple changes of measure for
rare event probability estimation

Criteria MT and SC characteristics

Rarity of Pf No general influence on the methods
Simulation budget At least 103 samples for a reasonable application
Type of function φ(·) No regularity condition on φ(·)
Multimodality of f restricted to �f Monomodality preferable for MT
Dimension of X No theoretical influence on the IS convergence,

but weight degeneracy can occur
Probability estimate error Estimated with Equation (5.5) or with retrials
Difficulty of implementation Low; a priori knowledge of efficient c and a

In most cases, the direct tuning of a and c can be obtained only with some a priori
knowledge on the function φ(·).

Conclusion
Simple changes of measure are basic applications of IS that require some a priori
information for an efficient application. A summary on these techniques is given in
Table 5.8. In practice, simple changes of measure are often considered in a preliminary
auxiliary pdf design but are seldomly used for an accurate estimation, notably in
complex and high-dimensional systems.

5.3.2.2 Exponential twisting

Principle
The main idea of exponential twisting is to define the auxiliary density on the output
Y = φ(X) with

hθ (y) = exp(θy − λ(θ))g(y) (5.7)

where g is the density of random variable Y and λ(θ) = ln
(
Eg (exp (θY))

)
. The

probability is then determined with
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Pf = Ehθ

(
1Y>T

g(Y)

hθ (Y)

)
Exponential twisting can thus be applied only in some specific cases, notably if
Y = ∑d

i=1 Xi (function used in some queueing models (Heidelberger, 1995)) or if the
density g is analytically known. Exponential twisting principle stems from the large
deviation theory (see Section 6.2). The variable Y must have exponential moments
so that λ(θ) can be finite for at least some values of θ . The pdf h depends on the
parameter θ . We would like, of course, to choose θ to minimize variance or, equiv-
alently, the second moment of the probability estimator. The second moment can be
bounded with

Ehθ (1Y>T exp (−2θY + 2λ(θ))) ≤ exp (−2θT + 2λ(θ))

Minimizing the second moment is complicated, but minimizing the upper bound is
equivalent to maximizing θT − λ(θ). The function λ(θ) is convex; thus, an optimal
value θopt can be obtained with saddle point approximation (Daniels, 1954; Goutis &
Casella, 1999; Huzurbazar, 1999) such that

dλ(θ)

dθ

∣∣∣∣
θ=θopt

= T (5.8)

The parameter θopt is then estimated numerically. A property of exponential twisting
is given by

Ehθ (Y) =
dλ(θ)

dθ

If the density f is twisted with parameter θopt, we then have

Ehθ (Y) =
dλ(θ)

dθ

∣∣∣∣
θ=θopt

= T

The distribution of Y has been shifted so that T is now its mean when θ = θopt.

ALGORITHM 6 Importance sampling with exponentially twisted
density

Input: The pdf g, the number of samples N , and the threshold T .
Output: The probability estimate P̂TW.

1 Determine θopt such that d ln(Eg (exp(θY )))
dθ

∣∣∣
θ=θopt

= T .

2 Sample Y1, . . . , YN with density hθopt(y) = exp(θopty − λ(θopt))g(y).

3 Estimate P̂TW = 1
N
∑N

i=1 1Yi>T
g(Yi )

hθopt (Yi )
.

4 return P̂TW.
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When Y = ∑d
i=1 Xi, the estimator P̂TW has a bounded relative error if the variables

Xi have a light tail (Asmussen, 2003; Siegmund, 1976). In case of probabilities
that follow the large deviation principle (see Section 6.2) and under some general
conditions, logarithmic efficiency is guaranteed with exponential twisting IS (Dieker
& Mandjes, 2005).

Application to a toy case
Identity function We present an application of exponential twisting in the simple
case of identity function. The density of Y , g is given by N (0, 1). Thus, hθ is twisted
from g in the following way:

hθ (y) = exp(θy − λ(θ))
1√
2π

exp

(
−1

2
y2
)

with λ(θ) = ln
(
Eg (exp (θY))

)
. It could be shown that Eg (exp (θY)) = exp

(
1
2θ

2
)

and, thus, λ(θ) = 1
2θ

2. The density hθ can be rewritten such that

hθ (y) = 1√
2π

exp

(
−1

2
(y − θ)2

)
The density h corresponds to a twisted normal distribution with a mean θ and
variance equal to 1. In that case, exponential twisting is equivalent to a mean

translation. Because dλ(θ)
dθ

∣∣∣
θ=θopt

= θopt, we then determine that θopt = T to estimate

the probability Pf . The importance sampling density is thus twisted with a mean that
equals the target threshold and is defined by

h(y) = 1√
2π

exp

(
−1

2
(y − T)2

)
Table 5.9 summarizes some probability estimates obtained with exponential twisting
for different thresholds. We find efficient importance sampling probability estimates
in this simple case with a low relative error. Nevertheless, it is often impossible to find
such efficient sampling density for a complex system.

Table 5.9 Results obtained by exponential twisting for the
identity function

T P̂TW RB (P̂TW) RE (P̂TW) Simulation budget νTW

3 1.3 × 10−3 0.7% 6% 1000 213
4 3.2 × 10−5 0.2% 7% 1000 6.4 × 103

5 2.8 × 10−7 0.3% 7% 1000 7.3 × 105
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Table 5.10 Summary of IS with exponential twisting for rare event
probability estimation

Criteria Exponential twisting characteristics

Rarity of Pf Increase the efficiency of the method
Simulation budget At least 103 samples for a reasonable application
Type of function φ(·) Essentially applied when φ(X) = ∑d

i=1 Xi or when
the density of φ(X) is known

Multimodality of f restricted to �f Not really adapted
Dimension of X No influence on the convergence
Probability estimate error Estimated with Equation (5.5)
Difficulty of implementation Low; possible complexity to find θopt

Conclusion
Exponential twisting, an algorithm based on large deviation theory, can be applied
only to very specific cases of function φ(·) or when the output density is analytically
known. Thus, this method could not be applied to complex systems. A summary of IS
with exponential twisting is presented in Table 5.10.

5.3.3 Adaptive importance sampling

The goal of adaptive IS is to learn the optimal sampling density hopt with an iterative
procedure. This approach can be applied for a parametric density, that is, one deter-
mines the parameters of a family density that minimize the variance. Nonparametric
adaptive IS has also been proposed with the use of kernel density estimation (see
Section 2.2.2). Both techniques are described in the following discussion.

5.3.3.1 Cross-entropy optimization of the importance sampling
auxiliary density

Principle
Let us define hλ, a family of pdfs indexed by a parameter λ ∈ � where � is the
multidimensional space in which λ evolves. The parameter vector λ, for instance,
could be the mean and the covariance matrix in the case of Gaussian densities.
Definition 5.3.1 (Kullback–Leibler divergence (Kullback & Leibler, 1951)). Let P
and Q be two probability distributions defined by their pdf p and q with support Rd.
The Kullback–Leibler divergence between P and Q is defined by

DKL(P, Q) =
∫
Rd

ln

(
p(x)
q(x)

)
p(x) dx

DKL is a positive quantity and is equal to 0 if and only if P = Q almost everywhere.
DKL(P, Q) is not symmetric because DKL(P, Q) �= DKL(Q, P). The Kullback–Leibler
divergence, also known as relative entropy, comes from the field of information
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theory as the continuous entropy defined in Chapter 2. The objective of IS with cross
entropy (CE) is to determine the parameter λopt that minimizes the Kullback–Leibler
divergence between hλ and hopt (de Mello & Rubinstein, 2002; Rubinstein & Kroese,
2004). The value of λopt is thus obtained with

λopt = argmin
λ∈�

{
DKL(hopt, hλ)

}
(5.9)

Determining the parameter λopt with Equation (5.9) is not obvious because it depends
on the unknown pdf hopt. In fact, it can be shown (Rubinstein & Kroese, 2004) that
Equation (5.9) is equivalent to Equation (5.10):

λopt = argmax
λ∈�

{
Ef
[
1φ(X)>T ln (hλ(X))

]}
(5.10)

In practice, we do not focus directly on Equation (5.10) but iteratively proceed to
estimate λopt with an increasing sequence of thresholds:

γ0 < γ1 < γ2 < · · · < γk < · · · ≤ T

chosen adaptively using quantile definition. At the iteration k, the value λk−1 is
available, and we determine:

λk = argmax
λ∈�

{
Ehλk−1

[
1φ(X)>T

f (X)
hλk−1(X)

ln (hλ(X))
]}

,

= argmax
λ∈�

{
1

N

N∑
i=1

1φ(Xi)>γk

f (Xi)

hλk−1(Xi)
ln(hλ(Xi))

}

where the samples X1, . . . , XN are generated with hλk−1 . The probability P̂CE is then
estimated with IS at the last iteration (when γk ≥ T). The cross-entropy optimization
algorithm for the IS density is described more precisely in Algorithm 7.

For some particular density families (e.g., exponential), the pdf optimal parameters
can be found analytically by canceling the gradient of the following expression (under
mild regularity conditions)

1

N

N∑
i=1

1φ(Xi)>γk

f (Xi)

hλk−1(Xi)
ln(hλ(Xi))

with respect to λ, which can be written as

1

N

N∑
i=1

1φ(Xi)>γk

f (Xi)

hλk−1(Xi)
∇ ln(hλ(Xi)) (5.11)
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ALGORITHM 7 IS optimized by cross entropy for probability
estimation

Input: The pdf f , the number of samples N, the function φ(·), the threshold T , a value
ρ ∈ (0, 1), and λ0 ∈ �.

Output: The probability estimate P̂CE.
1 Set k = 1.
2 Generate the iid samples X1, . . . , XN with pdf hλ0 .
3 Apply φ to X1, . . . , XN to determine Y1 = φ(X1), . . . , YN = φ(XN ).
4 Compute the empirical ρ-quantile γ1 of the samples Y1, . . . , YN .
5 while γk < T do
6 Optimize the parameters of the auxiliary pdf family with

λk = argmax
λ∈�

{
1
N

N∑
i=1

[
1φ(Xi )>γk

f (Xi )

hλk−1(Xi )
ln
[
hλ(Xi )

]]}

7 Set k ← k + 1.
8 Generate the iid samples X1, . . . , XN with pdf hλk−1 .
9 Apply φ to X1, . . . , XN to determine Y1 = φ(X1), . . . , YN = φ(XN ).

10 Compute the empirical ρ-quantile γk of the samples Y1, . . . , YN .

11 Estimate the probability P̂CE = 1
N
∑N

i=1 1φ(Xi )>T
f (Xi )

hλk−1
(Xi )

.

12 return P̂CE.

which involves the classical “score function” ∇ ln(hλ(X)). For example, if the
auxiliary distribution is composed of d independent Gaussian random variables of
which the mean μj and variance vj, j = 1, . . . , d are optimized by CE, the updating
formula of these parameters at the kth iteration of the algorithm, obtained by canceling
Equation (5.11), are given by

μj =
∑N

i=1 1φ(Xi)>γk
f (Xi)

hλk−1 (Xi)
Xij∑N

i=1 1φ(Xi)>γk
f (Xi)

hλk−1 (Xi)

,

vj =
∑N

i=1 1φ(Xi)>γk
f (Xi)

hλk−1 (Xi)

(
Xij − μj

)2∑N
i=1 1φ(Xi)>γk

f (Xi)
hλk−1 (Xi)

We recall here that the notation Xij stands for the jth component of the ith sample
of X. CE is a very practical algorithm to approximate the optimal sampling density.
Nevertheless, the choice of the parametric family density hλ must be made carefully
to obtain valuable results. Because of the adaptiveness of the algorithm, it is difficult
to ensure the robustness (logarithmic efficiency) of the CE estimate in general. A new
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concept of probabilistic bounded relative error has notably been proposed in Tuffin &
Ridder (2012).

The CE algorithm for α-quantile estimation is relatively similar to Algorithm 7.
Nevertheless, at each iteration k, instead of testing γk < T , we compare γk < q̂CE

α

where q̂CE
α is the α-quantile CE estimate obtained with

q̂CE
α = inf

y∈R

{
FCE

N (y) ≥ α
}

where FCE
N (y) is the empirical cdf defined by

FCE
N (y) = 1

N

N∑
i=1

1φ(Xi)≤y
f (Xi)

hλk−1(Xi)

Application to toy cases
Four-branch system In order to illustrate the mechanisms involved in CE, the CE
method is applied first to the four-branch system with classical unimodal parametric
multivariate Gaussian density. The results obtained for this case are provided in
Table 5.11 for different thresholds. For this toy case, the value of ρ-quantile parameter
has been set to 0.97, the number of samples per iteration is equal to 500, and only the
bandwidth of the auxiliary pdf is optimized. The auxiliary sampling distribution is
illustrated in Figure 5.3. The relative error of CE is relatively high in this case (32%)
although it improves the CMC estimation. This can be explained by the choice of the

Table 5.11 Results of CE for the four-branch system toy
case (with parametric multivariate Gaussian as
auxiliary density)

T P̂CE RB (P̂CE) RE (P̂CE) Simulation budget νCE

10 2.4 × 10−3 −8% 29% 1400 4
12 1.3 × 10−6 10% 32% 10,000 819
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Figure 5.3 CE auxiliary pdf evolution: (a) initialization; (b) final iteration.
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parameterized pdf family (here, a two-dimension normal density function) that is not
appropriate to a disconnected failure region �f .

Polynomial product function CE is applied to the polynomial product function with
different dimensions d and thresholds T . Two auxiliary density families have also been
tested: Laplace pdf and Gaussian pdf. In these two cases, only the bandwidths are
optimized for each dimension of the random vector (we suppose that the dimensions
of the auxiliary pdf are independent). The results obtained for this toy case are
summarized in Table 5.12. The choice of the auxiliary density is crucial in CE. Indeed,
in this toy case, the results obtained with the parametric multivariate Gaussian pdf as
auxiliary density are worse than those obtained with parametric Laplace pdf. The
choice of Gaussian auxiliary density also induces an increase of the simulation budget
in order to provide an estimation of the target probabilities. Conversely, the use of
Laplace pdf results in very accurate probability estimations in a reduced simulation
budget even for relatively high-dimensional problems.

Conclusion
CE optimization is an effective generic approach to determine a valuable parametric
auxiliary IS distribution. Nevertheless, the choice of a parametric density must be
made carefully a priori to fit the unknown optimal auxiliary IS distribution. Valuable
results with a well-chosen parametric density applying CE on realistic test cases could
give valuable results. See the main characteristics of CE in Table 5.13.

5.3.3.2 Nonparametric adaptive importance sampling

Principle
The objective of the nonparametric adaptive importance sampling (NAIS) technique
(Morio, 2012; Neddermeyer, 2009, 2010; Zhang, 1996) is to approximate the IS
optimal auxiliary density given in Equation (5.6) with kernel density function
(see Section 2.2.2). NAIS only requires the choice of a kernel density family and

Table 5.12 Results of CE for the polynomial product toy case (for
different dimensions and auxiliary densities)

d T P̂CE RB (P̂CE) RE (P̂CE) Simulation budget νCE

Auxiliary pdf family: Gaussian

5 400 8.5 × 10−7 0.7% 22% 110 × 103 223
20 500 7.4 × 10−7 −32% 151% 124 × 103 3
50 700 2.7 × 10−7 −24% 309% 210 × 103 1.4
200 1000 2.7 × 10−6 −43% 129% 586 × 103 0.4
Auxiliary pdf family: Laplace

5 400 8.4 × 10−7 −0.5% 20% 8 × 103 3700
20 500 1.1 × 10−6 −0.9% 21% 20 × 103 1030
50 700 3.5 × 10−7 −1.7% 19% 60 × 103 1320
200 1000 4.4 × 10−6 −6% 80% 300 × 103 1.1
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Table 5.13 Summary of IS optimized with CE for rare event
probability estimation

Criteria CE characteristics

Rarity of Pf Increased number of iterations before reaching
convergence

Simulation budget At least 103 samples in most cases
Type of function φ(·) No influence
Multimodality of f restricted to �f High influence on the choice of hλ
Dimension of X Indirect influence through the dimension of �
Probability estimate error Estimated with Equation (5.5) or with retrials
Difficulty of implementation Medium; possible complex optimization to

determine λopt

is thus more flexible than a parametric model such as CE. Its iterative principle is
relatively similar to the CE optimization and is described in Algorithm 8. At each
iteration of NAIS, we iteratively proceed with an increasing sequence of thresholds

γ0 < γ1 < γ2 < · · · < γk < · · · ≤ T

adaptively chosen using quantile definition. At the iteration k, we approximate the

optimal sampling density for estimating P(φ(X) > γk), that is,
1φ(x)>γk f (x)
P(φ(X)>γk)

from the
current available samples with a kernel density hk+1. The use of kernel density
function enables to approximate a large range of optimal auxiliary densities. The
efficiency of NAIS strongly decreases when the dimension of the input space is
greater than 10 (10 as an order of magnitude) because of the numerical cost induced
by the use of kernel density (Morio, 2012) which highly suffers from the “curse of
dimensionality.” The NAIS algorithm for α-quantile estimation is relatively similar to
Algorithm 8. Nevertheless, at each iteration k, instead of testing γk < T , we compare
γk < q̂NAIS

α , where q̂NAIS
α is the α-quantile NAIS estimate obtained with

q̂NAIS
α = inf

y∈R

{
F̂NAIS

N (y) ≥ α
}

where F̂NAIS
N (y) is the empirical cdf defined by

F̂NAIS
N (y) = 1

N

N∑
i=1

1φ(Xi)≤y
f (Xi)

hk(Xi)

Application to toy cases
Four-branch system NAIS is applied to the four-branch system in order to illustrate
its ability to perform probability estimations when the failure region �f is discon-
nected. The results obtained for this case are provided in Table 5.14 for different
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ALGORITHM 8 NAIS for probability estimation
Input: The pdf f , the number of samples N, the function φ(·), the threshold T , a value

ρ ∈ (0, 1), and a kernel K .
Output: The probability estimate P̂NAIS.

1 Set k = 1 and h0 = f .

2 Generate the iid samples X(1)1 , . . . , X(1)N with pdf h0.

3 Apply φ to X(1)1 , . . . , X(1)N to determine Y (1)
1 = φ(X(1)1 ), . . . , Y (1)

N = φ(X(1)N ).

4 Compute the empirical ρ-quantile γ1 of the samples Y (1)
1 , . . . , Y (1)

N .
5 while γk < T do

6 Estimate Ik = 1
kN

∑k
j=1

∑N
i=1 1

φ(X(j )i )≥γk

f (X(j )i )

hj−1(X
(j )
i )

and set

wj (X
(j )
i ) = 1

φ(X(j)i )≥γk

f (X(j)i )

hj−1(X
(j)
i )

.

7 Update the kernel sampling pdf with

hk+1(x) = 1

kNIk det
(

B1/2
k

) k∑
j=1

N∑
i=1

wj (X
(j )
i )Kd

(
B−1/2

k

(
x − X(j )i

))

where Bk is a symmetric positive definite bandwidth matrix optimized with
asymptotic integrated square error (AMISE) criterion (see Section 2.2.2).

8 Set k ← k + 1.

9 Generate the iid samples X(k )1 , . . . , X(k )N with pdf hk .

10 Apply φ to X(k)1 , . . . , X(k )N to determine Y (k )
1 = φ(X(k )1 ), . . . , Y (k )

N = φ(X(k )N ).

11 Compute the empirical ρ-quantile γk of the samples Y (k)
1 , . . . , Y (k )

N .

12 Estimate the probability P̂NAIS = 1
N
∑N

i=1 1
φ(X(k )i )>T

f (X(k )i )

hk (X
(k )
i )

.

13 return P̂NAIS.

Table 5.14 Results of NAIS for the four-branch system
toy case

T P̂NAIS RB (P̂NAIS) RE (P̂NAIS) Simulation budget νNAIS

10 2.2 × 10−3 −0.9% 15% 998 20
12 1.2 × 10−6 1.7% 13% 7120 7137

thresholds. NAIS enables to efficiently estimate the rare event probability. For this toy
case, the ρ-quantile is set to 0.75 and the number of samples per iteration is equal
to 250. The auxiliary sampling distribution evolution is illustrated in Figure 5.4. The
four modes of the optimal auxiliary distribution are determined during the algorithm
process.



Simulation techniques 67

(c)

(b)(a)

(d)

0.2

0.1

0
10

5
50 0–5 –5–10

10

–10

h
0
(x

)

x1 x2

0.1

0.05

0
10

5
50

0–5 –5–10

10

–10

h
1(

x)

x1 x2

0.1

0.05

0
10

5
50

0–5 –5–10

10

–10

h
3(

x)
x1 x2

0.1

0.05

0
10

5
50

0–5 –5–10

10

–10

h
2(

x)

x1 x2

Figure 5.4 NAIS auxiliary pdf evolution. (a) Initialization. (b) First iteration. (c) Second
iteration. (d) Final iteration.

Polynomial product function NAIS is applied to the polynomial product function
for different dimensions d and thresholds T with Gaussian kernels. The results
obtained for this toy case are summarized in Table 5.15. The efficiency of NAIS
sharply decreases when the dimension increases. This toy case illustrates the difficulty
to apply NAIS on high-dimensional use cases because it does not always converge in
such situations.

Conclusion
NAIS approximates the optimal auxiliary IS distribution with a kernel density
estimator. NAIS is thus particularly adapted when the optimal auxiliary IS distribution
is complex (for instance, with several modes) with a dimension that is not too
high. A summary of the main NAIS characteristics is presented in Table 5.16. This
adaptiveness of NAIS makes it interesting to consider on realistic test cases.

Table 5.15 Results of NAIS for the polynomial product toy case
(for different dimensions and thresholds)

Simulation
d T P̂NAIS RB (P̂NAIS) RE (P̂NAIS) budget νNAIS

5 400 8.0 × 10−7 −5% 23% 8730 2754
20 500 4.0 × 10−7 −63% 252% 60,000 6
50 700 Not affordable n/a n/a n/a n/a
200 1000 Not affordable n/a n/a n/a n/a
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Table 5.16 Summary of NAIS for rare event probability estimation

Criteria NAIS characteristics

Rarity of Pf Increased number of iterations needed to
converge

Simulation budget At least 103 samples in most cases
Type of function φ(·) No influence
Multimodality of f restricted to �f Particularly adapted to multimodal pdf

comparatively to parametric algorithms
Dimension of X Great decrease of efficiency when d > 10 (curse

of dimensionality)
Probability estimate error Estimated with Equation (5.5) or with retrials
Difficulty of implementation Medium; NAIS bandwidth estimation can be

complex

5.4 Adaptive splitting technique

5.4.1 Description

The purpose of importance splitting, also called subset sampling, subset simulation,
or sequential Monte Carlo, is to decompose the target probability in a product of
conditional probabilities that can be estimated with a reasonable simulation budget.
Importance splitting was first proposed in a physical context in Kahn & Harris
(1951), and numerous variants (Au, 2005; Au & Beck, 2001; Botev & Kroese, 2012;
Del Moral, 2004; L’Ecuyer, Demers, & Tuffin, 2006; L’Ecuyer, Le Gland, Lezaud, &
Tuffin, 2009) have been worked out since. Considering the set A = {x ∈ Rd|φ(x) >
T}, the objective of adaptive splitting technique (AST) (Cérou, Del Moral, Furon, &
Guyader, 2012) is to determine the probability P(X ∈ A) = P(φ(X) > T). For that
purpose, the principle of AST is to iteratively estimate supersets of A and then to
estimate P(X ∈ A) with conditional probabilities. Let us define A0 = Rd ⊃ A1 ⊃
· · · ⊃ An−1 ⊃ An = A, a decreasing sequence of Rd subsets with the smallest element
A = An. The probability P(X ∈ A) can then be rewritten in the following way through
the Bayes’ theorem (see Section 2.1.2):

P(X ∈ A) =
n∏

k=1

P(X ∈ Ak|X ∈ Ak−1)

where we recall that P(X ∈ Ak|X ∈ Ak−1) is the probability that X ∈ Ak knowing
that X ∈ Ak−1. An optimal choice of the sequence Ak, k = 0, . . . , n is found when
P(X ∈ Ak|X ∈ Ak−1) = ρ, where ρ is a constant, that is, when all the conditional
probabilities are equal. The variance of P(X ∈ A) is indeed minimized in this
configuration as shown in Lagnoux (2006) and Cérou, Del Moral, Le Gland, &
Lezaud (2006). Consequently, if each P(X ∈ Ak|X ∈ Ak−1) is well estimated, then
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the probability P(X ∈ A) is estimated more accurately with AST than with a direct
estimation by Monte Carlo (Cérou et al., 2012).

Let us define fk the density of X restricted to the set Ak. The subset Ak can
be defined with Ak = {x ∈ Rd|φ(x) > Tk} for k = 0, . . . , n with T = Tn > Tn−1 >

· · · > Tk > · · · > T0. Determining the sequence Ak is equivalent to choosing some
values for Tk, with k = 0, . . . , n. The value of Tk can be determined in an adaptive
manner to obtain valuable results (Cérou et al., 2012) using ρ-quantile of samples
generated with the pdf fk. The different stages of AST to estimate P(φ(X) > T) are
described in Algorithm 9.

Generating directly independent samples from the conditional densities fk is in
most cases impossible because they are usually unknown. We can then consider the
Metropolis–Hastings algorithm (see Section 2.3.3.3). Indeed, the pdf fk is known up
to a constant because

fk(x) =
1
φ(x)>γ (k−1)

ρ
f (x)

P(φ(X) > γ
(k−1)
ρ )

Moreover, in the AST procedure, the samples X(k−1)
i , i = 1, . . . , N such that

φ(X(k−1)
i ) > γ

(k−1)
ρ are distributed with pdf fk. They can be used as starting samples

of the MH procedure. A transition kernel π(X′|X(k−1)
i ) must also be defined to apply

a proposal/refusal procedure with the acceptance rate

ALGORITHM 9 Adaptive splitting technique for probability
estimation

Input: The pdf f , the number of samples N , the function φ(·), the threshold T , and a
constant ρ ∈ (0, 1).

Output: The probability estimate P̂AST.
1 Set k = 0 and f0 = f .

2 Generate N samples X(0)1 , . . . , X(0)N from f0 and apply the function φ in order to determine

φ(X(0)1 ), . . . ,φ(X(0)N ).

3 Estimate the ρ-quantile γ (0)ρ of the samples φ(X(0)1 ), . . . ,φ(X(0)N ).

4 while γ (k )ρ < T do
5 Determine the subset Ak+1 = {x ∈ Rd |φ(x) > γ

(k )
ρ } and the conditional density

fk+1.
6 Set k ← k + 1.

7 Generate N samples X(k )1 , . . . , X(k )N with pdf fk and apply the function φ in order to

determine φ(X(k )1 ), . . . ,φ(X(k )N ).

8 Estimate the ρ-quantile γ (k )
ρ of the samples φ(X(k)1 ), . . . ,φ(X(k )N ).

9 Estimate P̂AST = (1 − ρ)k × 1
N
∑N

i=1 1
φ(X(k )i )>T

.

10 return P̂AST.
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min

(
1, 1

φ(X′)>γ (k−1)
ρ

fk(X′)π(X′|X(k−1)
i )

fk(X
(k−1)
i )π(X(k−1)

i |X′)

)

Then the following random variable �k is distributed with pdf fk thanks to this
proposal/refusal method (Cérou et al., 2012):

�k =

⎧⎪⎪⎨⎪⎪⎩
X′ with probability

min

(
1, 1

φ(X′)>γ (k−1)
ρ

f (X′)π(X′|X(k−1)
i )

f (X(k−1)
i )π(X(k−1)

i |X′)

)
,

X(k−1)
i with φ(X(k−1)

i ) > γ
(k−1)
ρ , otherwise

If π is an f -reversible Markovian kernel, the proposal/refusal procedure is simplified
because

�k =
{

X′ if φ(X′) > γ
(k−1)
ρ ,

X(k−1)
i with φ(X(k−1)

i ) > γ
(k−1)
ρ , otherwise

This proposal/refusal algorithm enables us to generate any number of samples
according to fk in a simple manner. The number of samples to estimate each
P(X ∈ Ak+1|X ∈ Ak) is also kept constant. This operation must be applied for
each density fk. The generated samples are unfortunately dependent and identically
distributed according to fk. Up to now, it is not possible to do this in an independent
fashion. However, under mild conditions, it can be shown (Tierney, 1994) that
applying this proposal/refusal method several times can decrease the variance.

The splitting algorithm for α-quantile estimation is relatively similar to Algo-
rithm 9. Nevertheless, at each iteration k, instead of testing γ

(k)
ρ < T , we evaluate

(1 − ρ)k < α, and then the estimate q̂AST
α is the α

(1−ρ)k -quantile of the samples

φ(X(k)
1 ), . . . ,φ(X(k)

N ) in the last AST iteration.
AST is often applied to estimate very rare events (Pf < 10−4). For higher

probabilities, other simulation methods such as IS are more efficient than AST (Cérou
et al., 2012). The logarithmic efficiency has been proved for splitting with fixed levels
in Cérou, Del Moral, & Guyader (2011).

5.4.2 Application to toy cases

Four-branch system
In order to illustrate the mechanisms involved in AST, it is applied to the four-branch
system for two different values of T (T = 10 and T = 20) with a ρ-quantile set at 0.85
and 1000 samples per iteration. The corresponding results are provided in Table 5.17.
In this case, three iterations of AST are necessary to obtain the estimation of the
target probability. The evolution of the samples for the different iterations is provided
in Figure 5.5. The two main steps of AST (i.e., selection of samples according to the
ρ-quantile and resampling using the MH process) are represented in this figure. In this
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Table 5.17 Results of AST for the four-branch system

Simulation
T P̂AST RB (P̂AST) RE (P̂AST) budget νAST

10 2.2 × 10−3 −0.9% 26% 4400 1.5
12 1.2 × 10−6 1.7% 32% 37,000 226
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Figure 5.5 AST-generated samples and corresponding quantiles: (a) iteration 1—initial
samples; (b) iteration 1—selection of samples; (c) iteration 1—intermediate quantile; (d)
iteration 2—resampling; (e) iteration 2—selection of samples; (f) iteration 2—intermediate
quantile; (g) iteration 3—resampling; (h) iteration 3—selection of samples; and (i) iteration
3—intermediate quantile.

example, AST succeeds in determining the four regions of the input space that lead to
the threshold exceedance.

As seen in Table 5.17, the efficiency of AST relatively to CMC depends on the
order of magnitude of the target probability. In general, the lower the target probability
is, the higher the νAST coefficient will be.



72 Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

Polynomial product
AST is applied to the polynomial product function with different dimensions d and
thresholds T in order to test its ability to cope with high-dimensional problems. The
results obtained for this toy case are summarized in Table 5.18 with a ρ-quantile
set at 0.85 and 2000 samples per iteration. The target probabilities are indicated in
Table 4.1.

AST does not suffer highly from the curse of dimensionality and can be applied
with reliability on high-dimensional systems. We might also notice that the simulation
budget of AST is not impacted by the dimension of the input vector. The required
simulation budget essentially depends on the magnitude order of the probability to
estimate and on the choice of the ρ-quantile parameter (Balesdent, Morio, & Marzat,
2015).

Table 5.18 Results of AST for the polynomial product toy
case (for different dimensions and thresholds)

Simulation
d T P̂AST RB (P̂AST) RE (P̂AST) budget νAST

5 400 8.4 × 10−7 −0.5% 23% 28,000 804
20 500 1.1 × 10−6 0.9% 22% 33,000 569
50 700 3.5 × 10−7 1.7% 22% 50,000 1180
200 1000 4.7 × 10−6 −0.2% 21% 44,000 110

5.4.3 Conclusion

AST is a major algorithm for the estimation of rare event probabilities. It is adapted
to a large number of test cases (multidimensional, multimodal failure region, etc.)
even if its parameter tuning requires some experience. The characteristics of AST are
summarized in Table 5.19. The application of AST on test cases is often mandatory
for comparison with other efficient algorithms.

Table 5.19 Summary of AST for rare event probability estimation

Criteria AST characteristics

Rarity of Pf Increased number of iterations needed to converge;
increased efficiency relative to CMC

Simulation budget At least 104 samples in most cases
Type of function φ(·) No influence
Multimodality of f restricted to �f Particularly adapted to multimodal failure region
Dimension of X Still efficient on high-dimensional systems
Probability estimate error Estimation with retrials
Difficulty of implementation Medium to high; tuning the different AST parameters
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6Statistical techniques
J. Morio, D. Jacquemart, M. Balesdent

Statistical techniques enable to derive a probability estimate and associated confi-
dence interval with a fixed set of samples φ(X1), . . . ,φ(XN). The main statistical
approaches, extreme value theory and large deviation theory, model the behavior of
the pdf tails. We review in this chapter the theoretical features of these techniques.

6.1 Extreme value theory

Extreme value theory (EVT) (Embrechts, Kluppelberg, & Mikosch, 1994; Kotz &
Nadarajah, 2000) characterizes the distribution tail of a random variable based on a
finite reasonable number of observations. Thanks to its general applicative conditions,
this theory has been widely used in the description of extreme meteorological
phenomena (Towler et al., 2010), in finance and insurance (Embrechts et al., 1994;
Reiss & Thomas, 2001), and in engineering (Castillo, Hadi, & Sarabia, 2005). EVT
is notably very useful when only a fixed set of data can be used to estimate the
probability P(φ(X) > T) for a given threshold T . We consequently assume in this
chapter that a finite set of iid samples φ(X1), . . . ,φ(XN) of the output is available and
that we cannot generate new samples of φ(X). It is not mandatory that the samples
φ(Xi) be strictly independent, but this hypothesis is often considered for the sake
of simplicity. Indeed, EVT can still be applied on correlated samples if the extreme
samples are sufficiently separated in the sample sequence (Davis, Mikosch, & Zhao,
2013). In that case, extreme samples can then be considered to be independent.

6.1.1 Law of sample maxima

The associated ordered sample set is defined with φ(X(1)) ≤ φ(X(2)) ≤ · · · ≤
φ(X(N)). The basic theorem of EVT (Embrechts et al., 1994; Gnedenko, 1943;
Resnick, 1987) is that, under certain conditions, the maxima of an iid sequence
converge to a generalized extreme value (GEV) distribution Gξ , which results in the
following cdf

Gξ (x) =
{

exp(− exp(−x)), for ξ = 0,
exp

(−(1 + ξx)−1/ξ
)

, for ξ �= 0

The set of GEV distributions is composed of three distinct cdf types characterized
by ξ = 0, ξ > 0, and ξ < 0 that correspond to the Gumbel, Fréchet, and Weibull dis-
tributions, respectively. Let us define G, the cdf of the iid samples φ(X1), . . . ,φ(XN).
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Theorem 6.1.1 (Resnick, 1987). Let us suppose that there exist aN and bN with aN >

0 such that, for all y ∈ R,

P

(
φ(X(N))− bN

aN
≤ y

)
= GN(aNy + bN)

with

lim
N→+∞GN(aNy + bN) = G(y)

where G is a nondegenerate cdf, and G is a GEV distribution Gξ . In this case, we
denote G ∈ MDA(ξ) where MDA stands for maximum domain of attraction.

The sequences aN and bN are given in Embrechts et al. (1994) for most well-known
pdfs. An approximation of P(φ(X) > T) for large values of T and N may also be
obtained (Embrechts et al., 1994):

P̂EVT ≈ 1

N

(
1 + ξ

(
T − bN

aN

))−1/ξ

(6.1)

The GEV approach is primarily used when only samples of maxima are available. In
that case, the different parameters of the GEV distribution are obtained by determining
maximum likelihood or probability weighted moment estimators. When samples of
maxima are not available, one has to group the samples φ(X1), . . . ,φ(XN) into blocks
and fit the GEV using the maximum of each block (block maxima method). The main
difficulty is in determining an efficient sample size for the different blocks.

6.1.2 Peak over threshold approach

6.1.2.1 Principle

Instead of grouping the samples into block maxima, peak over threshold (POT)
considers the largest samples φ(Xi) to estimate the probability P(φ(X) > T). The
most common way of analyzing extremes with POT is to characterize the distribution
of samples above a threshold u, which is given by the generalized Pareto cdf. The first
paper linking the EVT with the distribution of a threshold exceedance was Pickands
(1975). Later DeHaan obtained a result of the same type with a slightly simplified
conclusion by using slowly varying functions (de Haan, 1984). The following theorem
can then be obtained:
Theorem 6.1.2 (Pickands, 1975). Let us assume that the cdf G of iid samples
φ(X1), . . . ,φ(XN) is continuous. Set y∗ = sup{y, G(y) < 1} = inf{y, G(y) = 1}.
Then, the two following assertions are equivalent:

1. G ∈ MDA(ξ),
2. A positive and measurable function u → β(u) exists such that

lim
u�→y∗

sup
0<y<y∗−u

|Gu(y)− Hξ ,β(u)(y)| = 0
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where Gu(y) = P(φ(X)− u ≤ y|φ(X) > u), and Hξ ,β(u) is the cdf of a generalized
Pareto distribution (GPD) with shape parameter ξ and scale parameter β(u).

The expression of the GPD distribution function is given by

Hξ ,β(x) =
⎧⎨⎩ 1 − exp

(
− x

β

)
, for ξ = 0,

1 −
(

1 + ξx
β

)−1/ξ
, for ξ �= 0

This theorem is in fact useful for estimating a probability of exceedance. Indeed, the
probability P(φ(X) > T) can be rewritten as

P(φ(X) > T) = P(φ(X) > T|φ(X) > u)P(φ(X) > u)

for T > u. A natural estimate of P(φ(X) > u) is given by the CMC estimate (see
Section 5.1)

P̂CMC(φ(X) > u) = 1

N

N∑
i=1

1φ(Xi)>u

With Theorem 6.1.2 and for significant value of u, we obtain

P̂(φ(X) > T|φ(X) > u) = 1 − Hξ ,β(u)(T − u) (6.2)

The estimate of P(φ(X) > T) is then built with

P̂POT =
(

1

N

N∑
i=1

1φ(Xi)>u

)
× (

1 − Hξ ,β(u)(T − u)
)

(6.3)

The mathematical justification of Equation (6.2) and Equation (6.3) is discussed
in D’Agostino & Stephens (1996), Fraga Alves & Ivette Gomes (1996), Kotz &
Nadarajah (2000), and Drees, de Haan, & Li (2006) for a given set of samples to
determine whether this set is suitable for the application of POT. Three parameters
must be determined in the POT probability estimate of Equation (6.3): the threshold
u and the couple of parameters (ξ ,β(u)). The choice of u is very influential because
it determines the samples that are used in the estimation of (ξ ,β(u)). Indeed, a
high threshold leads to consider only a small number of samples in the estimation
of (ξ ,β(u)); thus, their estimate can be spoiled by a large variance whereas a low
threshold introduces a bias in the probability estimate (Dekkers & De Haan, 1999).
Several methods have been proposed to determine a valuable threshold u knowing
the samples. The most well-known ones are the Hill plot and the mean excess plot
(Embrechts et al., 1994), that is defined by (u,E (Y − u|Y > u)). These methods are
nevertheless quite empirical because they are based on graphical interpretation. It is
often necessary in practice to compare the estimates of u given by the different meth-
ods. Once a threshold estimate û is set, the GPD parameters are often estimated by
maximum likelihood (Coles, 2001) or more occasionally by the method of moments



80 Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

(Hosking & Wallis, 1987). The estimate P̂POT(φ(X) > T) given in Equation (6.3) for
T > u is then completely defined. A review of these different methods may be found
in Neves & Fraga Alves (2004). POT is described in Algorithm 10.

ALGORITHM 10 Peak over threshold technique for probability
estimation

Input: The samples φ(X1), . . . ,φ(XN ).
Output: The probability estimate P̂POT.

1 Estimate û with Hill plot or the mean excess plot from φ(X1), . . . ,φ(XN ).
2 Estimate (ξ̂ , β̂(û)) by maximum likelihood or moment method with samples{

φ(Xi ), with φ(Xi ) > û)
}
, i = 1, . . . , N .

3 Estimate P̂POT =
(

1
N
∑N

i=1 1φ(Xi )>û

)
×
(

1 − H
ξ̂ ,β̂(û)(T − û)

)
.

4 return P̂POT.

It is not possible, to our knowledge, to control the probability error estimate in
EVT. Nevertheless, the use of bootstrap on samples φ(X1), . . . ,φ(XN) (Geluk & de
Haan, 2002) can provide some information on the accuracy of EVT.

α-quantiles of φ(X1), . . . ,φ(XN) can also be obtained with POT. It can be shown
that (McNeil & Saladin, 1997)

q̂POT
α = û + β̂

ξ̂

((
Nû

N(1 − α)

)ξ̂
− 1

)

where Nû = 1

N

∑N
i=1 1φ(Xi)>û. In this case, û can be defined as a γ -quantile estimate

of φ(X1), . . . ,φ(XN) with 0 � γ < α.

6.1.2.2 Block maxima versus POT

POT takes into account all relevant high samples φ(X1), . . . ,φ(XN)whereas the block
maxima method can miss some of these high samples and, at the same time, consider
some lower samples in its probability estimation. Thus, POT seems to be more appro-
priate for the design of the sample pdf tail. Nevertheless, the block maxima method
is preferable when the available samples are not exactly iid or when only samples of
maxima are available. For instance, the samples of a monthly river maximum height
corresponds to this situation. Finally, the tuning of block maxima size turns out to be
easier than the tuning of POT threshold u in many situations (Ferreira, Haan, et al.,
2014). Because the output samples are always considered independent in the different
test cases, the following discussion in this book considers only the application of the
POT approach to estimate rare event probabilities with EVT.
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Figure 6.1 Probability estimation with EVT based on 10,000 CMC samples: (a) output
histogram; (b) mean excess plot.

Table 6.1 Results of POT for the four-branch system

T P̂POT RB (P̂POT) RE (P̂POT) Simulation budget νPOT

10 2.1 × 10−3 −3% 35% 1000 4
10 2.3 × 10−3 3% 9% 10,000 5
12 3.3 × 10−5 2600% 324% 1000 n/a
12 2.9 × 10−6 145% 242% 10,000 n/a

6.1.3 Application to a toy case

Four-branch system
POT is applied to the four-branch system. For that purpose, we generate a given
number of Monte Carlo simulations of φ(X) and then apply POT to these samples.
We estimate the parameter û with mean excess plot as illustrated in Figure 6.1 and
evaluate the parameters (ξ̂ , β̂(û)) of the GPD with maximum likelihood. The results
obtained with POT are presented in Table 6.1. POT improves CMC performances even
if POT probability estimations can be biased for a rare event. When the simulation
budget is low, the GPD parameters are not well estimated. Moreover, the gap between
GPD distribution and the true model of pdf of φ(X) becomes also too large when the
event rarity increases.

6.1.4 Conclusion

Extreme value theory is the only method that can be applied when resampling is not
possible, that is, when we must deal with a fixed set of samples φ(X1), . . . ,φ(XN).
Nevertheless, one has to be cautious in the use of POT because a bias can appear in the
probability estimation of rare events even if this estimation is theoretically available.
The main characteristics of POT are presented in Table 6.2. The application of POT
on complex systems is required if resampling is impossible.
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Table 6.2 Summary of POT for rare event probability
estimation

Criteria POT characteristics

Rarity of Pf Possible bias with a weak simulation
budget

Simulation budget Can be theoretically applied with any
sample size

Type of function φ(·) No influence
Multimodality of f restricted to �f No influence
Dimension of X No influence
Probability estimate error Estimation with bootstrap samples
Difficulty of implementation Low; approximate estimation of û with

graphical methods

6.2 Large deviation theory

The large deviation theory (LDT) characterizes the asymptotic behavior of sequence
tails (Dembo & Zeitouni, 1998; den Hollander, 2008; Varadhan, 2008) and more
precisely, it analyzes how a sequence tail deviates from its typical behavior described
by the law of large numbers (see Section 2.3.1). Let us define SN as an infinite
sequence of random variables indexed by N. No assumptions about the dependency
structure are made. We say that SN satisfies the principle of large deviations with a
continuous rate function I if the following limit exists for γ > E (SN):

lim
N→∞

1

N
ln[P(SN > γ )] = −I(γ )

For a large value of N, the existence of this limit implies that

P(SN > γ ) ≈ exp (−NI(γ ))

The probability decays exponentially as N grows to infinity at a rate depending on γ .
This approximation is a well-known result of LDT. If the limit does not exist, then
P(SN > γ ) has a behavior that is too singular or decreases faster than exponential
decay. If the limit is equal to 0, then the tail P(SN > γ ) decreases with N slower than
exp (−Na) with a > 0. The computation of the rate function I is not obvious but can
be obtained through the Gärtner–Ellis theorem (Touchette, 2009). Let us define the
cumulant generating function λ(θ) of SN with

λ(θ) = lim
N→∞

1

N
ln
[
E (exp (NθSN))

]
(6.4)

with θ ∈ R.
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Theorem 6.2.1 (Gärtner–Ellis’ theorem (Ellis, 1984; Gärtner, 1977)). If the function
λ(θ) of the variable SN exists and is differentiable for all θ ∈ R, then SN satisfies the
principle of large deviations and I(γ ) is given by

I(γ ) = sup
θ∈R

[θγ − λ(θ)]

In the specific case of a sum of iid random variables, we can derive the Cramér’s
theorem from Gärtner–Ellis’ theorem (Touchette, 2009).
Theorem 6.2.2 (Cramér’s theorem (Cramér, 1938)). If SN = 1

N

∑N
i=1 Yi where the

random variables Yi are iid with the same probability law as Y, then SN satisfies the
principle of large deviations and the rate function is given by

I(γ ) = sup
θ∈R

[θγ − λ(θ)]

with

λ(θ) = ln
[
E (exp (θY))

]
This theorem holds only for light tail distributions. Let us consider the CMC

probability estimate (see Section 5.1). In that case, we have Yi = 1φ(Xi)>T . The
random variable Yi follows a Bernoulli distribution of mean Pf = P(φ(X) > T). The
sequence SN is defined with

SN =
(

1

N

N∑
i=1

1φ(Xi)>T

)

The functions λ(θ) and I(γ ) can be derived for some well-known pdfs. In the case of
Bernoulli distributions of mean Pf , we have

λ(θ) = ln
(
Pf exp(θ)+ 1 − Pf

)
and

I(γ ) = γ ln

(
γ

Pf

)
+ (1 − γ ) ln

(
1 − γ

1 − Pf

)
The quantity I(γ ) corresponds to the relative entropy (Kullback–Leibler divergence)
of two Bernoulli laws of parameter γ and Pf . In many situations, the large deviation
rate function corresponds to a Kullback–Leibler divergence between probability laws
(Touchette, 2009). We can then obtain the convergence speed of the Monte Carlo
probability estimate in function of the number of samples with the following equation
for γ > Pf :
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lim
N→∞

1

N
ln[P(SN > γ )] = −γ ln

(
γ

Pf

)
− (1 − γ ) ln

(
1 − γ

1 − Pf

)
(6.5)

6.2.1 Conclusion

LDT cannot in fact be applied directly to realistic test cases to determine a rare
event probability in a situation when the density of Y is not known a priori. LDT
can be useful to analyze the deviation of a probability estimate, notably if the
probability estimate is a sum of random variables as shown in Equation (6.5) for
the CMC estimate. Specific surveys on LDT can be found in Juneja & Shahabuddin
(2006) and Blanchet & Lam (2012). Nevertheless, different methods are based on
LDT considerations such as exponential twisting (see Section 5.3.2.2) or weighted
importance resampling (see Section 9.6).
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7Reliability based approaches
J. Morio, M. Balesdent

Researchers in reliability and system safety have proposed specific algorithms for rare
event estimation methods. In most cases, these methods consider sampling strategies
based on geometrical approximations of the limit state function {x|φ(x) = T}. They
may be more efficient than simulation techniques presented in the previous chapter
but some assumptions may reduce their applicability.

7.1 First-order and second-order reliability methods

7.1.1 Principle

First- and second-order reliability method (FORM/SORM) (R. Bjerager, 1991; Lassen
& Recho, 2006; Madsen, Krenk, & Lind, 1986; Yan-Gang & Tetsuro, 1999) are
considered as efficient computational methods for structural reliability estimation.
FORM/SORM give an analytical approximation of the curve {x|T − φ(x) = 0} (also
called limit state function) at the most probable point of failure in the input space
x, that is, the point on the limit state function curve that has the highest probability
content. It is also assumed that X follows a multivariate standard normal distribution.
If this is not the case, several transformations can be applied on the input distribution
(see Section 2.3.3.4). The most likely failure point, also called the design point, x∗ is
obtained by solving the following optimization problem

minimize ‖x‖,
with respect to x,
subject to T − φ(x) = 0

where ||.|| is the Euclidean norm. The constraint T − φ(x) = 0 defines the limit of
failure space for input vector x. The parameter β = ‖x∗‖ is the reliability index.
Several algorithms have been proposed to find x∗ and solve this optimization problem
as proposed in Dietlevsen & Madsen (1996); Hasofer & Lind (1974); Pei-Ling &
Kiureghian (1991); Rackwitz & Flessler (1978). The surface {x|T − φ(x) = 0} at the
solution x∗ is approximated as first-order by a hyperplane in the case of FORM by
using the Taylor series expansion. Accuracy problems can occur when this surface
is strongly nonlinear. Thus, SORM has been established as an attempt to improve
the accuracy of FORM because SORM approximates the limit of failure space at the
design point by a quadratic surface. The rare event probability is then estimated with
FORM by

P̂FORM = �0,1(−β)
Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
http://dx.doi.org/10.1016/B978-0-08-100091-5.00007-1
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Recall that �0,1(·) is the cdf of the standard normal distribution. In the case of SORM,
the failure probability is given by Breitung (1984)

P̂SORM = �0,1(−β)
d−1∏
i=1

(1 − βκi)
−1/2

where κi denotes the principal curvature of T − φ(x) at the design point β. The term
κi is defined with

κi = ∂2(T − φ(x))
∂2xi

∣∣∣∣
x=x∗

FORM/SORM is described in Algorithm 11. A first-order saddle point approximation
(FOSPA) (Du & Sudjianto, 2004; Huanh & Du, 2008) method has also been proposed
as an improvement of FORM/SORM. It consists of using LDT and the saddle point
approximation (Daniels, 1954; Goutis & Casella, 1999; Huzurbazar, 1999; Jensen,
1995), but it is rarely applied in practice. In the same way, the method of moments
(Huang & Du, 2006) that consists in a approximating the cdf of 1φ(X)>T with its
moments can sometimes be an alternative when the design point is difficult to find.

FORM/SORM do not require a large simulation budget to obtain a valuable result.
Nevertheless, their different assumptions require that one has to be careful when
one applies FORM/SORM to a realistic case of function φ(·), notably if the most
probable point of failure is not unique (Sudret, 2012). Nevertheless, a heuristic method
has been developed to find the multiple design points of a reliability problem when
they exist (Der Kiureghian & Dakessian, 1998). It consists in penalizing previously
found solutions to force the algorithm to find a new solution. Once these points
are found, FORM or SORM approximations are constructed at these points and the
probability of interest is computed as the probability of the union of the approximated
events.

ALGORITHM 11 FORM (or SORM) technique for probability
estimation

Input: The pdf f , the function φ(·), the threshold T .
Output: The probability estimate P̂FORM (or P̂SORM ).

1 Evaluate β = ‖x∗‖ with x∗ = argmin
x

||x|| subject to T − φ(x) = 0.

2 Estimate P̂FORM = �0,1(−β) (or P̂SORM = �0,1(−β)∏d−1
i=1 (1 − βκi )

− 1
2 with

κi = ∂2(T − φ(x))
∂2x i

∣∣∣∣∣
x=x∗

).

return P̂FORM (or P̂SORM ).
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There is also no control of the error in FORM/SORM. It is possible from
FORM/SORM to determine an importance sampling auxiliary density around the
design point and then to sample with it to estimate the rare event probability (de
Rocquigny, Devictor, & Tarantola, 2008).

Even if it is possible in theory, it is also important to notice that FORM/SORM are
not efficient in practice to estimate quantiles of φ(X) (de Rocquigny et al., 2008).

7.1.2 Application to toy cases

Polynomial square root function
FORM and SORM are applied to the polynomial square root function. The results
obtained with these two methods are given in Table 7.1.

In this test case, SORM is successful in performing the estimation whereas
FORM overestimates the target probability. These results can be explained by the
relatively high curvature of the limit state (i.e.,

{
x ∈ Rd|φ(x)− T = 0

}
). The linear

approximation of the failure region used in FORM is not valid on this toy case and
leads to the biased obtained results. Let us also notice that because these methods are
deterministic, RE(P̂) is not computable. The different points evaluated on φ(·) during
the search of the most probable point are illustrated in Figure 7.1.

Table 7.1 Results obtained with FORM
and SORM for the polynomial square
root toy case

Method P̂ Simulation budget RB(P̂)

FORM 8.83 × 10−6 894 +4104%
SORM 2.40 × 10−7 899 +14%
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Figure 7.1 Points evaluated on φ(·) during the search of the most probable point.
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Four-branch system
FORM and SORM are also applied to the four-branch system. Results are given in
Table 7.2. For this multimodal test case, neither FORM nor SORM allow making
an accurate estimate of the target probability. This is principally the result of the
multimodality of this test case. Indeed, classical FORM and SORM find only the
most probable point and approximate the total probability from it ([3.54, 3.54] in this
example, Figure 7.2). In other words, FORM and SORM consider only one of the
four branches when estimating the probability. This explains the low values of the
probability estimates with respect to the true probability.

7.1.3 Conclusion

FORM/SORM estimate rare event probabilities by approximating the limit state of
failure domain {x|φ(x)− T = 0}. These methods can be efficiently applied with a
low simulation budget, but one has to be careful in the validity of the different
FORM/SORM assumptions to avoid a bias in the probability estimation. The main
characteristics of FORM/SORM are summarized in Table 7.3. Applying FORM/-
SORM to practical cases is often interesting because a low simulation budget is
required to reach the algorithm convergence.

Table 7.2 Results obtained with FORM
and SORM for the four-branch system
toy case

Method T P̂ Simulation budget RB(P̂)

FORM 12 2.8 × 10−7 12 −77%
SORM 12 1.7 × 10−7 56 −86%
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Figure 7.2 Four-branch system, threshold (12) and most probable point (∗).
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Table 7.3 Summary of FORM/SORM for rare event probability
estimation

Criteria FORM/SORM characteristics

Rarity of Pf No clear influence on the simulation budget
Simulation budget From 10 to 103 samples in most cases
Type of function φ(·) Regularity and differentiability assumptions
Multimodality of f restricted to �f Not adapted; bias in the estimate if all the multiple

design points are not found
Dimension of X Can induce a decrease of the estimator efficiency

(depending on the regularity of φ(·))
Probability estimate error Unknown
Difficulty of implementation Low; optimization required to determine β

7.2 Line sampling

7.2.1 Principle

The underlying idea of line sampling (LS) (P. Koutsourelakis, 2004; P. S. Koutsoure-
lakis, Pradlwarter, & Schueller, 2004; Schueller, Pradlwarter, & Koutsourelakis, 2004)
is to employ lines instead of random points in order to probe the input failure domain
of the system, that is, x so that φ(x) > T . LS has to be applied on input random
vector X that has multivariate standard normal density. If that is not the case, several
transformations can be applied on the input distribution (see Section 2.3.3.4). Let
us define the set A = {x ∈ Rd|φ(x) > T}. The set A can be also expressed in the
following way:

A = {x ∈ Rd|x1 ∈ A1(x−1)} (7.1)

where the function A1 is a function defined on Rd−1 that depends on x−1 =
(x2, x3, . . . , xd)T . The output of A1 is a subset of R. Similar functions A1 may be
defined with respect to any direction in the random parameter space and for all
measurable A. In practice, we determine a unit important direction vector �α ∈ Rd.
It is the direction that enables to reach the curve T − φ(x) = 0 with the shortest path
to the origin. This direction can be found with Monte Carlo Markov chain methods
(Pradlwarter et al., 2005) or with the design point x∗ given by FORM/SORM (see the
previous section). Then we can decompose x in the following way:

x = x⊥ + x‖

where x‖ is the projection of x on �α, that is, x‖ = r�α, and thus x⊥ = x − r�α. r is the
scalar product between �α and x. By applying a coordinate transformation to x, we can
modify x so that �α corresponds to the first coordinate of the new input coordinates.
In that case, we have x1 = r and x−1 = x⊥. Without loss of generality and to obtain
more readable equations, we assume that this is the considered situation.
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The rare event probability Pf can be written with integrals in the following way:

Pf =
∫
Rd

1φ(x)>T f (x) dx,

=
∫
Rd

1x∈A f (x) dx,

=
∫
Rd−1

∫
R

1x1∈A1(x−1)f (x) dx1 dx−1

It can then be rewritten with mathematical expectation over the variable X−1 with

Pf = E
(
P(X1 ∈ A1(X−1))

)
(7.2)

The rare event probability is described as the expectation of the continuous random
variable P(X1 ∈ A1(X−1)) relative to the random vector X−1. This expectation is
replaced practically in LS by its Monte Carlo estimate:

P̂LS = 1

NC

NC∑
i=1

(P(X1 ∈ A1(X
−1
i ))) (7.3)

where (X−1
1 ), . . . , (X−1

NC
) are iid samples of the rv X−1. It is still necessary to estimate

the probability P(X1 ∈ A1(X
−1
i )), that is

P(X1 ∈ A1(X
−1
i )) =

∫
R

1x1∈A1(x
−1
i )

fX1(x1) dx1 (7.4)

where we recall that fX1 is an univariate standard normal variable. It is possible to
show that this integral can be approximated (P. S. Koutsourelakis et al., 2004) in the
same way as it is done in FORM with

P(X1 ∈ A1(X
−1
i )) ≈ �0,1(−ci) (7.5)

where ci is the value of x1 such that φ(ci, x−1
i ) = T . This approximation is valuable

only if there is only one intersection point between the input failure region and the
chosen sampling direction. The variance of the LS estimate is always lower than or
equal to the CMC estimation (P. S. Koutsourelakis et al., 2004). The LS algorithm is
described in Algorithm 12. To our knowledge, LS has never been applied in practice
to estimate quantiles of φ(X).

7.2.2 Application to toy cases

Polynomial square root function
LS is applied to the polynomial square root function. The unit important direction
is determined with 5 SORM simulations with �α = (3,−3)T/

√
(18). Moreover, the
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ALGORITHM 12 Line Sampling algorithm for probability
estimation

Input: The pdf f of X, the function φ(·), and the threshold T .
Output: The probability estimate P̂LS.

1 Determine the unit important direction vector �α ∈ Rd .
2 Generate NC iid samples X1, . . . , XNC of the variable X.

3 Determine the components X⊥
1 , . . . , X⊥

NC
and X‖

1, . . . , X‖
NC

from X1, . . . , XNC .
4 for i ← 1 to NC do
5 Determine ci such as φ(X⊥

i + ci �α) = T .
6 Estimate P̂(X 1 ∈ A1(X−1

i )) = �0,1(−ci ).

7 Estimate P̂LS = 1
NC

∑NC
i=1(P̂(X

1 ∈ A1(X−1
i ))).

8 return P̂LS.

Table 7.4 Results obtained with LS for the polynomial
square root test case

P̂LS RB(P̂LS) RE(P̂LS) Simulation budget νLS

2.34 × 10−6 −0.4% 33% 200 2.2 × 106

2.33 × 10−6 −1% 12% 2000 1.6 × 104

2.34 × 10−6 −0.4% 3% 20,000 2.2 × 104

determination of ci for each sample Xi is made by dichotomy with 20 calls to the
function φ(·). The results obtained with LS are given in Table 7.4. An example of
2000 LS samples is presented in Figure 7.3. This toy case is well adapted to line
sampling because it outperforms the results that can be obtained with CMC. One LS
probability estimation is a mean of NC probability estimations and leads to a low
relative error for a given simulation budget.

Four-branch system
LS is also applied to the four-branch function. The unit’s important direction is the
one given by FORM with 12 calls to the function φ(·) with �α = (3.54, 3.54)T . The
parameter ci is still estimated by a dichotomy with 20 samples. The corresponding
results are summarized in Table 7.5. In the same way as FORM/SORM, LS cannot
cope with multimodal optimal auxiliary distribution. It can concentrate on only one of
the failure modes, and the resulting probability estimate is thus biased.

7.2.3 Conclusion

LS enables to estimate rare event probabilities by sampling on lines parallel to an im-
portant direction toward the failure domain. It can be considered as a complementary
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Figure 7.3 A run of LS with 2000 samples on the polynomial square root function.

Table 7.5 Results obtained with LS for the
polynomial square root test case

P̂LS RB(P̂LS) RE(P̂LS) Simulation budget νLS

1.7 × 10−7 −85% 22% 200 n/a
1.7 × 10−7 −85% 6% 2000 n/a
1.6 × 10−7 −86% 1.5% 20,000 n/a

method to FORM/SORM with a control of the probability error because FORM/
SORM can be used to find the important direction to sample. When LS is adapted,
its probability estimates have a high accuracy even when the simulation budget is
low because this estimate corresponds to a mean of failure probabilities. As with
FORM/SORM, LS is not able to cope with multimodal optimal sampling distribution.
The main characteristics of LS are summarized in Table 7.6. The application of LS
on the test cases in part Three of the book could be of interest if FORM/SORM is
applicable.

7.3 Directional sampling

7.3.1 Principle

Directional sampling (DS) (P. Bjerager, 1988), also called directional simulation,
can be viewed as a joint use of Monte Carlo simulations and line sampling. It
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Table 7.6 Summary of LS for rare event probability estimation

Criteria LS characteristics

Rarity of Pf Low influence on the simulation budget
Simulation budget From 100 to 104 samples in most cases
Type of function φ(·) Regularity and differentiability assumptions
Multimodality of f restricted to �f Not adapted; bias in the estimate due to unadapted �α
Dimension of X Increase the difficulty to find �α; if �α is well

determined, then LS is able to cope with high
dimensions

Probability estimate error Estimation with retrials
Difficulty of implementation Medium as soon as �α is known

must be applied on an input random vector X that has multivariate standard normal
distribution. If this is not the case, several transformations can be applied on the input
distribution (see Section 2.3.3.4).

The vector X can be expressed as

X = RA

where R2 is a chi-squared random variable with d degrees of freedom with density fR
and A is a random unit vector uniformly distributed on the d-dimension unit sphere
�d with density fA. R2 and A are independent random variables. The rare event
probability Pf can be then written as follows:

Pf =
∫

A∈�n

∫ +∞

0
1φ(ra)>T fR(r)fA(a) da dr,

=
∫

A∈�n
P(φ(RA) > T|A = a)fA(a) da

The DS estimation consists of a CMC estimation of P(φ(RA) > T|A = a). In
practice, a sequence of N iid random direction vectors Aj for j = 1, . . . , N is generated
and then we determine rj such that φ(rjAj) = T by dichotomy, for instance. An
estimate of P(φ(RA) > T|A = Aj) is given by 1 − FR2(r2

j ) where FR2 is the cdf of
a chi-squared random variable with d degrees of freedom. This approximation is
valuable only if there is one intersection point between the input failure region and
the chosen sampling direction. The DS probability estimate P̂DS is then obtained with

P̂DS = 1

N

N∑
j=1

(
1 − FR2(r2

j )
)
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ALGORITHM 13 Directional sampling algorithm for probability
estimation

Input: The pdf f of X = (RA), the function φ(·), and the threshold T .
Output: The probability estimate P̂DS.

1 Generate N iid samples A1, . . . , AN of variable A.
2 Determine r1, . . . , rN such that φ(rj Aj ) = T for j = 1, . . . , N by optimization.

3 Estimate P̂DS = 1
N
∑N

j=1

(
1 − FR 2 (r2

j )
)

.

4 return P̂DS.

The DS algorithm is described in Algorithm 13. To our knowledge, DS has never been
applied in practice to estimate quantiles of φ(X).

7.3.2 Application to toy cases

Four-branch system
DS is applied to the four-branch function. Several numbers of sampling directions
are tested and involve different simulation budgets. The results obtained with this
method for different numbers of directions are given in Table 7.7. DS outperforms
CMC simulations on this test case whatever the simulation budget as show the values
of RE(P̂DS) and νDS. A set of samples obtained with DS is presented in Figure 7.4.
Nevertheless, notice that the probability estimate could be biased when too low a
number of sampling directions is chosen. One might also notice that DS is able to
cope with disconnected failure regions �f .

Polynomial product
DS is also applied to the polynomial product function, with different dimensions d
and thresholds T in order to test its ability to cope with high-dimensional problems.
The results obtained for this toy case are summarized in Table 7.8. 10,000 directions
are generated for estimating all the target probabilities. This number of directions
is sufficient and results in unbiased estimated probabilities. The accuracy of DS is

Table 7.7 Results obtained with DS for the four-branch system
test case

Number of directions P̂DS RB(P̂DS) RE(P̂DS) Simulation νDS

budget

10 1.1 × 10−6 −7% 48% 171 21,781
100 1.2 × 10−6 2% 18% 1701 14,788
1000 1.2 × 10−6 2% 4% 17,001 26,834
10,000 1.2 × 10−6 1% 2% 170,001 21,295
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Figure 7.4 A run of DS with 100 directions on the four-branch function.

Table 7.8 Results of directional sampling for the polynomial
product toy case (for different dimensions and thresholds)

d T P̂DS RB(P̂DS) RE(P̂DS) Simulation budget νDS

5 400 8.5 × 10−7 +1% 4% 204,301 3831
20 500 1.05 × 10−6 −5% 29% 238,601 46
50 700 3.4 × 10−7 −2% 90% 220,001 16
200 1000 4.6 × 10−6 −2% 97% 190,001 12

influenced by the dimension of the problem. It still performs better than CMC on the
same problem, but this gap decreases when the dimension increases.

7.3.3 Conclusion

The DS method generates samples over a large number of different directions in the
input space and estimates the target probability as a mean of the probabilities obtained
for each sampling direction. The efficiency and accuracy of DS depend directly on
the number of generated directions as shown in the results of the toy cases. The
characteristics of DS are given in Table 7.9. DS can be efficiently applied to complex
cases.
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Table 7.9 Summary of DS for rare event probability
estimation

Criteria DS characteristics

Rarity of Pf Increased number of required sampling
directions to avoid a biased probability

Simulation budget At least 103 samples; depends on the
number of sampling directions

Type of function φ(·) Regularity and differentiability
assumptions

Multimodality of f restricted to �f No influence
Dimension of X Not adapted to high-dimensional systems
Probability estimate error Estimation with retrials
Difficulty of implementation Low; tuning of the number sampling

directions

7.4 Stratified sampling

7.4.1 Principle

The principle of stratified sampling (SS) is very similar to CMC (Cochran, 1977)
but with the idea of partitioning the input space. An extended version of SS called
the coverage Monte Carlo method (Karp & Luby, 1983; Kumamoto, Tanaka, &
Inoue, 1987) has been proposed for very specific systems represented by a fault tree
or a network using its minimal cuts to improve the probability estimation. For the
same kind of systems, recursive variance reduction methods described in Cancela &
El Khadiri (1995, 2003) have also been proposed and have some links with SS.

Stratified sampling consists in partitioning support of X, defined by Rd in several
subsets Qi, i = 1, . . . , m such that Qi

⋂
Qj = ∅ for i �= j and

⋃
i Qi = Rd. For a given

subset Qi, we then generate ni iid samples Xi
1, . . . , Xi

ni
from the pdf hQi defined by

hQi(x) = 1x∈Qi

f (x)
di

where di is defined by

di =
∫
Qi

f (x) dx

The required number of samples N in SS is thus equal to N = ∑m
i=1 ni. The principle

of stratified sampling is to use conditional probabilities and the law of total probability
(see Chapter 2) to estimate Pf such that
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Pf =
m∑

i=1

P(φ(X) > T|X ∈ Qi)P(X ∈ Qi)

The SS probability estimate P̂SS is then obtained in the following way:

P̂SS =
m∑

i=1

P̂(φ(X) > T|X ∈ Qi)P(X ∈ Qi),

=
m∑

i=1

diP̂hQi

where P̂hQi
is defined as

P̂hQi
= 1

ni

ni∑
j=1

1φ(Xi
j)>T

The estimator P̂SS is unbiased and its variance σ 2
P̂SS

depends notably on ni and hQi ,
and is given by the following equation (Keramat & Kielbasa, 1998):

σ 2
P̂SS =

m∑
i=1

di
PhQi

(1 − PhQi
)

ni

where PhQi
is the mathematical expectation of P̂hQi

. If m = 1, the previous equation
corresponds to the CMC estimator variance. SS technique for probability estimation
is described in Algorithm 14. A possible allocation of the samples ni with respect
to N = ∑m

i=1 ni is to set ni = diN. It can be shown in this case that the variance of
P̂SS is then always lower than the corresponding variance of P̂CMC. Nevertheless,
this proportional allocation of samples is not optimal because the ideal allocation
{n1, . . . , nm} is the one that minimizes the variance σ 2

P̂SS
with the constraint N =∑m

i=1 ni. The optimal allocation can be found with a Lagrange multiplier method
such that

ni = n
diPhQi

(1 − PhQi
)∑m

i=1 PhQi
(1 − PhQi

)

In a similar way, it is also possible to estimate some quantiles of φ(X) with SS. In that
case, given a level of probability α, we estimate the quantile with
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ALGORITHM 14 Stratified sampling for probability estimation
Input: The pdf f , the number of samples N, the function φ(·), the threshold T , the

partition Qi , i = 1, . . . , m, of Rd , and the sample numbers ni , i = 1, . . . , m,
with the constraint N = ∑m

i=1 ni .
Output: The probability estimate P̂SS.

1 Define the density hQi (x) = 1x∈Qi
f (x)
di

with di =
∫
Qi

f (x) dx.

2 for i ← 1 to m do
3 Sample Xi

1, . . . , Xi
ni

with density hQi .
4 Apply φ to Xi

1, . . . , Xi
ni

to determine the samples φ(Xi
1), . . . ,φ(Xi

ni
).

5 Estimate P̂SS = ∑m
i=1

di
ni

∑ni
j=1 1

φ(Xi
j )>T .

6 return P̂SS.

qSS
α = inf

y∈R

{
FSS

N (y) ≥ α
}

where FSS
N (y) is the empirical cdf defined by

FSS
N (y) =

m∑
i=1

di

ni

ni∑
j=1

1φ(Xi
j)≤y

The choice of the subsets Qi and of ni is very important in order to reduce the Monte
Carlo estimator variance with SS but requires some information on the input–output
function φ(·). If we have no clue concerning the set �f , the method of stratified
sampling is not applicable to the specific context of rare event estimation and could
increase the Monte Carlo relative error if Qi and ni are not adapted to φ(·) and f .

7.4.2 Monte Carlo method with Latin hypercube sampling

Latin hypercube sampling (LHS) (Ayyub & Kwan-Ling, 1989; Inman, Helson, &
Campbell, 1981; Keqin D. & Chuntu, 1998; MacKay, 1992; McKay, Beckman,
& Conover, 1979; Zhang, Breitkopf, Knopf-Lenoir, & Zhang, 2011) can be used
instead of stratified sampling when the partition Qi, i = 1, . . . , m is difficult to
estimate. The principle is to independently stratify each of the d input dimensions
x = (x1, x2, . . . , xd)T into N equi-possible intervals of probability 1

N . For a given
dimension k, we generate one sample in each interval according to the conditional
joint law of f for the dimension k and thus obtain N scalar samples. The random
matching between the scalar samples in the different dimensions enables to obtain a
N d-tuple X1, . . . , XN that describes an LHS. The probability with LHS is estimated
in the same way as the Monte Carlo with
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P̂LHS = 1

N

N∑
i=1

1φ(Xi)>T .

This estimate is unbiased, and its relative deviation is always lower than CMC (Kera-
mat & Kielbasa, 1997, 1999). Nevertheless, Latin hypercube sampling is a space-
filling method and is thus particularly adapted for estimating nonsmall probabilities.
For rare event probability estimation, applying LHS is not advised because the
obtained variance reduction can be very low.

7.4.3 Adaptive directional sampling

7.4.3.1 Principle

An adaptive allocation of the samples in stratified sampling for rare event probability
estimation has been proposed in Munoz Zuniga, Garnier, Remy, & Rocquigny (2011)
with an algorithm called adaptive directional sampling (ADS). It estimates the SS
optimal allocation in two stages when directional sampling and stratified sampling
are combined in a directional stratified sampling (DSS) probability estimate.

If R2 is a chi-squared random variable with d degrees of freedom with density fR
and A is a random unit vector uniformly distributed on the d-dimension unit sphere
�d with density fA, then the vector X can be expressed as X = RA where R and A
are independent random variables (See Section 7.3). The rare event probability Pf

can then be written as Pf = E (ξ(A)) where ξ(a) = P(φ(RA) > T|A = a). The idea
of ADS is to stratify the support of the variable A that takes values on �d. A natural
approach for that purpose is to partition �d with cones. Let us define Qi, i = 1, . . . , m,
a cone partition of �d. If we apply the principle of stratified sampling, we then obtain:

Pf =
m∑

i=1

P (A ∈ Qi)P
(
φ(RA) > T|A = AQi

)
,

=
m∑

i=1

P (A ∈ Qi)E
(
ξ(AQi)

)
where the random variable AQi follows the law of A restricted to A ∈ Qi. The
probability P (A ∈ Qi) is easily computed by definition of the partition of the unit
sphere, but E

(
ξ(AQi)

)
must be estimated. We generate ni samples of AQi in each

subset Qi. The total number of samples N is thus equal to N = ∑m
i=1 ni. The

probability P
(
φ(RA) > T|A = AQi

) = E
(
ξ(AQi)

)
is estimated with CMC:

P̂
(
φ(RA) > T|A = AQi

) = ξ̂ (AQi) =
1

ni

ni∑
j=1

ξ(Aj,Qi)
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where the samples Aj,Qi , j = 1, . . . , ni follow the law of A restricted to A ∈ Qi.
Rejection sampling is a possible way to obtain samples such as Aj,Qi . The DSS
probability estimator is then given by

P̂DSS =
m∑

i=1

P (A ∈ Qi) ξ̂ (AQi)

It can be shown that the optimal variance of P̂DSS is obtained when the number of
samples in each subset Qi is given by

ni = N
P (A ∈ Qi) σi∑m

j=1 P
(
A ∈ Qj

)
σj

where σi =
√
V
(
ξ(AQi)

)
. This allocation is unknown at the beginning of the DSS

algorithm. ADS thus consists of a two-stage technique based on DSS probability
estimate. We first estimate the optimal sample allocation ni, i = 1, . . . , m, and then
generate new samples in a second stage following this estimated optimal allocation.
We assume that γ1(N)N and γ2(N)N samples are available for each ADS stage
with γ1(N)+ γ2(N) = 1. The γ1(N)N first samples enable to estimate an optimal
allocation:

n̂i = γ1(N)N
P (A ∈ Qi) σ̂i∑m

j=1 P
(
A ∈ Qj

)
σ̂j

where σ̂i is an estimator of σi. Then, in the second stage, this allocation is used to
estimate the rare event probability in the following way:

P̂ADS =
m∑

i=1

P (A ∈ Qi)
1

Ni

Ni∑
j=1

ξ(Aj,Qi)

where Ni = � n̂i
γ1(N)

γ2(N) and �. is the floor function. The ADS probability estimate

P̂ADS is proved to be consistent and unbiased. An expression of its variance can be
derived but must be estimated through retrials of the algorithm. The different stages
of ADS are described in Algorithm 15.

7.4.3.2 Application to toy cases

ADS is applied to three different test cases with the following tuning γ1(N) =
γ2(N) = 0.5 that it seems to provide the best results according to Munoz Zuniga et al.
(2011). The number m of cones in the stratification of variable A is set to 2d; we recall
that d is the input dimension.



Reliability based approaches 103

ALGORITHM 15 Adaptive directional sampling for probability
estimation

Input: The pdf f , the number of samples N , the sample fraction for each ADS stage γ1(N )
and γ2(N) with γ1(N )+ γ2(N ) = 1, the function φ(·), the threshold T , and the
partition Qi , i = 1, . . . , m, of Rd .

Output: The probability estimate P̂ADS.
1 for i ← 1 to m do
2 Generate ni = � γ1(N )N

m  iid samples A1,Qi , . . . , Ani ,Qi of variable AQi with rejection
sampling.

3 Determine r1, . . . , rni such that φ(rj Aj ) = T for j = 1, . . . , ni by optimization.

4 Estimate ξ(Aj ,Qi ) =
(

1 − FR 2 (r2
j )
)

for j = 1, . . . , ni .

5 Estimate the mean ξ̂ (AQi ) and the variance σ̂ 2
i of the samples ξ(Aj ,Qi ) for

j = 1, . . . , ni

6 Evaluate the optimal allocation

n̂i = γ1(N )N
P (A ∈ Qi ) σ̂i∑m

j=1 P
(
A ∈ Qj

)
σ̂j

for i = 1, . . . , m.
7 for i ← 1 to m do
8 Generate Ni = � n̂i

γ1(N )
γ2(N ) iid samples A1,Qi , . . . , ANi ,Qi of variable AQi with

rejection sampling.
9 Determine r1, . . . , rNi such that φ(rj Aj ) = T for j = 1, . . . , Ni by optimization.

10 Estimate ξ̂ (AQi ) = 1
Ni

∑Ni
j=1

(
1 − FR 2 (r2

j )
)

11 Evaluate the probability estimate P̂ADS with

P̂ADS =
m∑

i=1

P (A ∈ Qi ) ξ̂ (AQi )

12 return P̂ADS.

Polynomial square root function
ADS is applied to the polynomial square root function. Several values of simulation
budget N are tested. See Table 7.10 for all the results obtained with this method. A set
of samples obtained with ADS is provided in Figure 7.5. ADS enables to reach a very
low relative error with a reasonable simulation budget. ADS probability estimation
results are thus promising.

Four-branch system
ADS is applied to the four-branch system. Results are given in Table 7.11 with a
threshold equal to 12. The ADS algorithm is able to cope with multimodal failure
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Table 7.10 Results obtained with ADS for the polynomial
square root test case

P̂ADS RB(P̂ADS) RE(P̂ADS) Simulation budget νADS

2.2 × 10−6 −7% 20% 200 5.4 × 104

2.3 × 10−6 −1% 8% 2000 3.4 × 104

2.3 × 10−6 −1% 2% 20,000 4.1 × 104

−10 −5 0 5 10
−10

−5

0

5

10

X1

X
2

Figure 7.5 Set of samples obtained with ADS for polynomial square root function (“*”
corresponds to samples of the first ADS stage and “o” to samples of the second ADS stage).

Table 7.11 Results obtained with ADS for the
four-branch system test case

P̂ADS RB(P̂ADS) RE(P̂ADS) Simulation budget νADS

1.2 × 10−6 3% 14% 200 2.2 × 105

1.2 × 10−6 3% 3% 2000 4.0 × 105

1.2 × 10−6 2% 1% 20,000 2.8 × 105

regions. Moreover, even if there is no principal direction of failure in the input space,
ADS still performs probability estimation with high efficiency. It is then nearly
equivalent to a DS probability estimation because the stratification is not useful in
that case.
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Polynomial product
ADS is also applied to the polynomial product function with different dimensions
d and thresholds T in order to test its ability to estimate probabilities in case of
high-dimensional problems. The results obtained for this toy case are summarized
in Table 7.12. The curse of dimensionality strongly restrains the applicability of ADS.
Indeed, the number m = 2d of different partition regions becomes too important when
the dimension d increases, and then ADS is not applicable.

Table 7.12 Results of ADS for the polynomial product toy case
(for different dimensions and thresholds)

d P̂ADS RB(P̂ADS) RE(P̂ADS) Simulation budget νADS

5 8.4 × 10−7 0.4% 3.4% 24,600 4.1 × 104

20 Not affordable n/a n/a n/a n/a
50 Not affordable n/a n/a n/a n/a
200 Not affordable n/a n/a n/a n/a

7.4.4 Conclusion

ADS is a very reliable method for estimating rare event probabilities by combining
stratified sampling and directional sampling. With a low simulation budget, ADS
reaches a high level of probability accuracy. Nevertheless, this algorithm is not able
to cope with high-dimensional systems because applying ADS when d > 10 (as
an order of magnitude) becomes difficult. When there is no preferential direction,
ADS probability estimation is equivalent to a DS probability estimation. The main
characteristics of ADS are given in Table 7.13. The application of ADS to the use
cases proposed in this book is of interest if their dimension is not too important.

Table 7.13 Summary of ADS for rare event probability estimation

Criteria ADS characteristics

Rarity of Pf Low influence on the simulation budget
Simulation budget From 100 to 104 samples in most cases
Type of function φ(·) Regularity and differentiability assumptions
Multimodality of f restricted to �f Well adapted, resulting from the use of stratification
Dimension of X Not applicable when d > 10
Probability estimate error Estimation with retrials
Difficulty of implementation Medium to hard; tuning of the cone stratification
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7.5 Geometrical methods

Geometrical methods consist in approximating the failure region �f with some
different shapes such as polyhedron (Maire, 1999) or ellipsoid. The failure domain
can also be evaluated with radial exploration (Tahim & Spence, 1980) or exploration
by orthogonal search (Ogrodzki & Styblinski, 1980). These techniques can be very
efficient with a low number of samples, but some knowledge of x and �f is required
to be applicable. These algorithms are notably very sensitive to their initialization.
Moreover, as with FORM/SORM, there is no control of the error in these techniques;
thus, we never really know whether the failure region has been well approximated.
Geometrical methods for estimating rare event probabilities are used in practice in
only very specific cases.
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8Methods for high-dimensional
and computationally intensive
models
M. Balesdent, L. Brevault, S. Lacaze, S. Missoum, J. Morio

Complex simulation codes such as the ones used in aerospace are often computation-
ally expensive and involve a large number of variables. These features significantly
hamper the estimation of rare event probabilities. To reduce the computational burden,
an analysis of the most important variables of the problem can be performed before
applying rare event estimation methods. Another way to reduce this burden is to build
a surrogate model of the computationally costly simulation code and to perform the
probability estimation on this metamodel. In this chapter, we first review the main
techniques used in sensitivity analysis and then describe several surrogate models that
are efficient in the probability estimation context.

8.1 Sensitivity analysis

Sensitivity analysis (SA) is the study of how to apportion the variation in the model
output, qualitatively or quantitatively to variations in the model inputs (Saltelli,
Tarantola, & Campolongo, 2000). Two types of SA can be distinguished: local (around
a baseline) and global (over the entire input variable domain of variation). The use of
global SA methods allows to characterize the influence of the input variables over the
entire input space and to filter out the variables with negligible effects on the output in
order to decrease the computational burden and enhance the efficiency of the elected
rare event methods. The screening of the most important effects helps the decision
maker to determine which variables should be considered.

Different categories of SA methods exist: the variance decomposition methods
(Sobol, 1990), ANalysis Of VAriance (ANOVA) (Lamboni, Monod, & Makowski,
2011), differential analysis (Morris method (Morris, 1991)), derivative-based SA
(Sobol & Kucherenko, 2009), and linear relationship measures (correlation coeffi-
cients (CC), partial correlation coefficients (PCC), standardized regression coeffi-
cients (SRC) (Iooss, 2011)). In this chapter, we briefly describe the main methods.
A complete review of SA methods can be found in Helton, Johnson, Sallaberry, &
Storlie (2006) and Iooss & Lemaître (2015).

The computer-based model that is analyzed is represented as a black box function
φ with d inputs X = (X1, X2, . . . , Xd)

T and an output vector Y = (Y1, Y2, . . . , Ym)
T

related by

Y = φ(X) = φ(X1, X2, . . . , Xd) (8.1)
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Here we consider a scalar output Y for the sake of clarity, but all the derivations can
be generalized for an output vector.

In the first part of this section, we highlight the methods involving importance
measures. We start with the most general one: the Sobol method. Then we detail SA
methods that can be applied under specific assumptions to the model: ANOVA by
design of experiment (DoE), SRC, and PCC. In the second part of this section, we
detail screening SA methods (one variable at a time (OAT), Morris method (Morris,
1991)).

8.1.1 Importance measure-based methods

8.1.1.1 Decomposition of the variance

The variance decomposition methods for SA consist of a decomposition of the
variance of the output into a sum of contributions resulting from the inputs and
their interactions (ANOVA (Lamboni et al., 2011)). Two types of ANOVA can be
distinguished: the functional ANOVA based on Sobol approach and the ANOVA
by DoE (Lamboni et al., 2011). The functional ANOVA method does not require
any hypothesis on the form of the model except that the inputs are independent
and E(φ2(X)) < ∞. Sobol (1990) has demonstrated the following unique functional
decomposition for the function φ:

φ(X) = φ0 +
d∑

j=1

φj(Xj)+
d∑

i<j

φij(Xi, Xj)+ · · · + φ1...d(X1, . . . , Xd) (8.2)

where φ0 = E(φ(X)) = ∫
�
φ(x)f (x) dx. � is the d-dimensional cube [0, 1]d where

the inputs are defined and assumed to have a uniform distribution U[0,1] represented
by the pdf f . Moreover,

φj(Xj) = E
(
φ(X)|Xj

)− φ0,

φij(Xi, Xj) = E(φ(X)|Xi, Xj)− E(φ(X)|Xi)

− E(φ(X)|Xj)+ φ0

and φ1...d(X1, . . . , Xd) is defined as the difference between φ(X) and the sum of all
the increasing dimension functions such that Equation (8.2) is verified.

Furthermore, each function of the decomposition verifies ∀l ∈ {1, . . . , s};
∀{j1, . . . , js} ⊆ {1, . . . , d} (Sobol, 1990)∫

�

φj1,...,js(xj1 , . . . , xjs) dxjl = 0 (8.3)

The orthogonality of the Sobol decomposition functions can be proved from Equa-
tion (8.2) (Sobol, 1990).
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Sobol indices
Based on the functional decomposition in Equation (8.2), Sobol introduces the Sobol
indices (Sobol, 2001) to quantify the partition of the output variance (Sobol, 1990).
With the decomposition of the function φ(·) into the sum of functions of increasing
dimensions (as explained in the previous paragraph) and by using the decomposition
of the variance (Sobol, 1990), it follows that

V(Y) =
d∑

j=1

Vj(Y)+
d∑

i<j

Vij(Y)+ · · · + V123...d(Y) (8.4)

with V the variance and Vj(Y) as defined in Equations (8.7) and (8.8). The variability
of the output Y from all the input variables except Xj is analyzed by fixing the input
variable Xj at a value xj:

V(Y|Xj = xj) = E(Y2|Xj = xj)− E(Y|Xj = xj)
2 (8.5)

To account for all the possible xj, the expectation of the conditional variance is
considered.

Given the total variance

V(Y) = V[E(Y|Xj)] + E[V(Y|Xj)] (8.6)

the value V[E(Y|Xj)] can be used for SA. It increases as the importance of the variable
Xj with respect to the variance of Y increases. To have a normalized quantity, the first-
order Sobol index Sj for the input variable Xj and second-order Sobol index Sij for the
interaction between Xi and Xj are defined by

Sj = V[E(Y|Xj)]
V(Y)

= Vj

V(Y)
(8.7)

Sij = V[E(Y|Xi, Xj)] − Vi − Vj

V(Y)
= Vij

V(Y)
(8.8)

The first-order Sobol index quantifies the part of variance of Y from Xj, referred as the
main effect. The second-order Sobol indices allow to measure the importance of the
interaction between two input variables Xi and Xj. The same principle can be used to
derive the Sobol indices of order 3, 4, and so on. The total Sobol indices STj are the
sum of all the Sobol indices relative to Xj

STj =
∑
j�i

Si (8.9)
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where j�i stands for all the Si1,...,id terms that include the index j. For instance, ST1
includes S1, S12, . . . , S1k, S123, . . . , S123...d. Total Sobol indices measure the part of
output variance explained by all the effects in which the input variable j plays a part
(the first-order and all the higher orders).

For black box functions, Sobol indices cannot be analytically derived and must
be numerically estimated. Several methods can be employed. The crude Monte Carlo
method is traditionally used to estimate Sobol indices. Other sampling schemes such
as proposed in Jansen (1999) or Fourier amplitude sensitivity test (FAST) (Saltelli,
Tarantola, & Chan, 1999) can be performed. However, Sobol index calculations are
computationally expensive and require a high number of calls to the studied function.
The Sobol method is applicable to all the cases for which variances are finite (linear
or nonlinear, monotonic or nonmonotonic functions).
Remark. Note that methods have recently been proposed for dependent inputs
(Caniou, 2012; Chastaing, Gamboa, & Prieur, 2014, 2012; Saltelli et al., 2010) but
are not detailed in this book for the sake of conciseness.

Another approach for SA based on the decomposition of the variance can be
used. Instead of considering the functional ANOVA (Equation 8.2), the conditional
variances are calculated with a DoE.

ANOVA by design of experiment
ANOVA by DoE differs from the functional ANOVA in that it is based on a dis-
cretization of the continuous input variables. Equation (8.4) is discretized according
to a chosen DoE into several levels for each input variable. By choosing appropriate
levels and DoE, the conditional variances can be approximated.

Each observation from the DoE can be modeled as

yX1h1
,X2h2

,...,Xdhd
= η + ηX1h1

+ ηX2h2
+ · · · + ηXdhd

+ ηX1h1
X2h2

+ · · · + ηX1h1
X2h2

...Xdhd

with η: the average effect, ηX1h1
: the effect due to the level h1 of the variable X1, and

ηX1h1
X2h2

: the effect due to the interactions between the level h1 of the variable X1 and

the level h2 of the variable X2. Therefore, if the DoE requires N function calls,

η = 1

N

d∑
j=1

∑
all levels hj

yX1h1
,X2h2

,...,Xdhd
= E

(
yX1h1

,X2h2
,...,Xdhd

)
(8.10)

and for instance

ηX1h1
= E

[
yX1h1

,X2h2
,...,Xdhd

∣∣∣X1 = h1

]
− η (8.11)

with the expectation representing the mean of all the observations in the DoE when
X1 = h1. ANOVA by DoE (Lamboni et al., 2011) allows to write the sum of square
decomposition:
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SS (Ỹ) =SSX1 + SSX2 + · · · + SSXd

+ SSX1X2 + · · · + SSX1X2...Xd (8.12)

where Ỹ is the vector of all the observations given by the DoE, SSXj the quadratic
sum characterizing the main effect of the input variable Xj, SSXjXr the quadratic
sum characterizing the interaction effect between the input variables Xj and Xr.
Equation (8.12) is a discrete version of Equation (8.4).

SS(Ỹ) measures the total variability in the model output

SS (Ỹ) =
d∑

j=1

∑
all levels hj

(
yX1h1

,X2h2
,...,Xdhd

− η
)2

,

=NE

(
y2

X1h1
,X2h2

,...,Xdhd

)
− 2NηE

(
yX1h1

,X2h2
,...,Xdhd

)
+ NE

(
yX1h1

,X2h2
,...,Xdhd

)2
,

=NV(Ỹ)

Moreover, each quadratic sum SSXj corresponds to the mean over the levels of

input variable Xj of the conditional variance of the output Ỹ evaluated at Xj = hj:

SSXj = nj

∑
levels of Xj

(
E

[
yX1h1

,X2h2
,...,Xdhd

∣∣∣Xj = hj

]
− η

)2
,

=NV(E(Ỹ|Xj))

with nj the level discretization number of the input variable Xj. Based on this
decomposition of variance, the sensitivity index “SI” for the input variable Xj is
defined by (Lamboni et al., 2011):

SIXj =
SSXj

SS(Ỹ)

DoEs such as fractional factorial, Latin square, Latin hypercube sampling, or full
factorial designs lead to a decrease of the SA computational cost compared to the
Sobol approach (Monod, Naud, & Makowski, 2006). However, the choices of the
DoE and the different levels are crucial to accurately approximate the variances.

Other SA methods exist under the assumptions of a linear model such as SRC and
PCC and are described in subsequent sections.

8.1.1.2 Standardized regression coefficients

When the function φ(·)may be approximated as a linear function, sensitivity measures
for the model may be computed through linear regression, using standardised



114 Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

regression coefficients (SRC). A linear model for the dependency of the outputs with
respect to the d input variables with N samples (i = 1, . . . , N) is considered:

Yi = a0 +
d∑

j=1

ajXij + εi

with ai the regression coefficients and εi the errors from the approximation (assumed
εi ∼ N (0, σ 2

i )). Least squares fit between predicted and observed output data is
typically used for the determination of the linear model. If we denote Yi as the
observed values, Y as the mean, and Ŷi as the fitted values, then the coefficient of de-

termination is defined by R2 =
∑N

i=1(Ŷi−Y)2∑N
i=1(Yi−Y)2

. This coefficient allows to determine how

well the linear model fits the data. The regression coefficients aj measure the linear
relationship between the inputs and the output. To allow the nondimensionalization
of the regression coefficients, it is possible to normalize the coefficients (Ekström &
Broed, 2006)

Ŷi − Y

t̂
=

d∑
j=1

ajt̂j
t̂

Xij − Xj

t̂j

with Y the mean of the output and Xj the mean of the input Xj over the N samples.
Furthermore,

t̂ =
(

N∑
i=1

(Yi − Y)2

N − 1

)1/2

t̂j =
(

N∑
i=1

(Xij − Xj)
2

N − 1

)1/2

SRCj = ajt̂j
t̂

If the input variables are independent, SRC is a measure of the importance of the
input variables on the variability of the output. Another interpretation comes from
the decomposition of the variance for a linear function (by independence of input
variables) as

V(Y) =
d∑

i=1

a2
i V(Xi)

with a2
i V(Xi), the part of variance resulting from the input variable Xi. Thus, it is

possible to quantify the sensitivity of Y with respect to Xi compared to the part of the
variance from Xi on the total variance
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SRCj = aj

√
V(Xj)

V(Y)

It quantifies the part of the variance of the output because of the variance of the
variable Xi.

8.1.1.3 Correlation coefficients and partial correlation
coefficients

Another SA measure in the case of linear models is given by Pearson’s product
moment correlation coefficients (Ekström & Broed, 2006). They measure the extent
to which two variables can be assumed to have a linear dependency. In our case,
we are interested in measuring the dependency between the input variables Xj and
the output Y. Considering N observations of Y for different Xj, CC are defined by
(Plischke et al., 2009):

CCj = ρXjY = cov(Xj, Y)√
V(Xj)V(Y)

,

=
∑N

i=1(Xji − Xj)(Yi − Y)(∑N
i=1(Xji − Xj)2

)1/2 (∑N
i=1(Yi − Y)2

)1/2

with cov(Xj, Y) the covariance between Xj and Y .
However, CC do not take into account the possible effects that other variables

might have. PCC can be calculated to determine the strength of the linear relationship
between the two inputs when all linear effects from the other input variables are
removed (Iooss, 2011). If we note Sj = {X1, X2, . . . , Xj−1, Xj+1, . . . , Xd}, then the PCC
between Xj and Y with Sj fixed is given by

PCCj|Sj = ρXjY|Sj =
cov(Xj, Y|Sj)√
V(Xj|Sj)V(Y|Sj)

When the input variables are uncorrelated, SRC is equivalent to CC. Note, however,
that SRC and PCC measure different quantities. SRC measure the effect on the output
of the input variables in terms of a percentage of the output standard deviation. PCC
measure how linear is the relationship between one input variable and the output while
removing the effect of other input variables.

The quantitative methods for SA quantify the importance of the variability of
input variables and their interactions on the variability of the output. However, these
methods tend to be computationally intensive. This is particularly true for Sobol
method whereas ANOVA by DoE can be an exception if the number of levels chosen
is small. When only few calls to the function are possible, screening methods can be
employed.
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8.1.2 Screening methods

Screening methods complement quantitative methods because the required number of
model evaluations is low compared to other SA techniques (Ekström & Broed, 2006).
For rare event estimation of complex systems that involve computationally expensive
models and a large number of input variables, screening methods could identify the
variables that have the strongest effects on the output variability.

8.1.2.1 One variable at a time

One variable at a time (OAT) method is based on the variation of only one variable
while the others are kept fixed at a baseline value. If we consider a baseline for the
model (the nominal values of the input variables), we perform the OAT analysis by
varying one of the inputs in an interval (for instance, ±10%) while the other input
variables are fixed at the baseline value. The range of the output is analyzed for the set
of the d-OAT computations. Another OAT technique consists in computing the partial
derivatives of the model function with respect to the input variables. This method is
called local sensitivity analysis because it depends on the choice of the point where
the partial derivatives are calculated (Morris, 1991). The number of model evaluations
is of the order of d (Ekström & Broed, 2006). Although these OAT methods require
few model evaluations, they are local and do not provide information on the entire
range of variation of the input variables.

8.1.2.2 Morris method

The Morris method (Morris, 1991) is based on the repetition of a set of randomized
OAT design experiments. The Morris method overcomes the limitation of the local SA
by performing partial derivative calculations in different locations of the input variable
domain of variation. The method is global because the input variables can vary
over their entire domain of definition. The Morris method consists of R repetitions
of DoE with sequential OAT variation of the inputs (Iooss, 2011). The first point
and the next direction for one experiment are chosen randomly. The Morris method
can determine if the effect of the input variable Xj on the output Y is important or
negligible, linear or nonlinear, with or without interactions with other input variables
X−j. Morris distinguishes three ways an input variable Xj can be important (Morris,

1991) depending on the nature of
φ(Xj+δj,X−j)−φ(Xj,X−j)

δj
, where δj is a variation in the

input variable:

● If this term is nonnull, then Xj has an influence on the output.
● If this term is nonnull and constant across the DoE samples, Xj therefore has a linear influ-

ence on the output and has no interaction with other input variables.
● If this term varies as Xj varies, then Xj affects the nonlinearity of the output with or without

interactions.

It is not possible with the Morris indice to discriminate the effects of non linearity and
of the interactions with other input variables. The mean of the absolute value of the
different partial derivatives is a measure of the sensitivity. The variance is a measure
of both the interactions and the nonlinear effects. The main advantage of the Morris
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method is the low computational cost, requiring only about one model evaluation for
each elementary effect per replication. However, its drawback is that it is not possible
to distinguish nonlinearity from interactions that might be essential for the decision
maker (Ekström & Broed, 2006).

8.1.3 General remark about SA for rare event probability
estimation

We must be careful when applying the SA techniques for reducing the dimension
of the input space. Indeed, some variables might have a small impact on the entire
domain of variability of φ(·) but have a large impact on the probability of failure
P(φ(X) > T) because the region in the input space relevant to the probability
estimation might be very restrictive compared to the definition domain of X. Also, the
contribution of these variables to the global sensitivity of φ(·) might be neglected. The
development of dedicated methods to estimate the sensitivity of the rare event prob-
ability estimate to the input variables is then necessary and is still an open research
issue. We can consult Morio (2011) and Garza & Millwater (2012) for more details.

8.2 Surrogate models for rare event estimation

8.2.1 Introduction

Being able to build an efficient surrogate model which allows to reduce the number
of calls to the expensive input–output function φ(·) while keeping a good accuracy
is a key point in rare event probability estimation. A large number of methods have
been proposed and compared in recent years. For the sake of conciseness, we only
present several methods. For the interested reader, a survey of the different metamodel
methods can be found in Sudret (2012). Classical deterministic surrogate models
have been derived for the estimation of rare event probability such as polynomials
(Bucher & Bourgund, 1990; Das & Zheng, 2000; Gayton, Bourinet, & Lemaire, 2003;
Kim & Na, 1997) neural networks or linear approximation such as the Taylor series
(Gomes & Awruch, 2004; Hurtado & Alvarez, 2000; Papadrakakis & Lagaros, 2002;
Schueremans & Van Gemert, 2005). Polynomial chaos have also been associated with
Monte Carlo sampling to estimate failure probabilities (Blatman & Sudret, 2008;
Hu & Youn, 2011; J. Li & Xiu, 2010). In order to illustrate the joint use of rare
event probability estimators and metamodels, we focus in the following sections on
two specific types of surrogate models that have been widely used in such specific
applications: support vector machine (SVM) and Kriging (also known as Gaussian
process) models.

8.2.2 Support vector machines

8.2.2.1 Presentation

An SVM is a machine-learning technique (Vapnik, 2000, 1998) used in different
applications such as reliability analysis (Basudhar & Missoum, 2008, 2010) or



118 Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

classification, and pattern recognition (Shawe-Taylor & Cristianini, 2004; Tou &
Gonzalez, 1974). An adaptation of SVM can be derived as a regression tool and is
referred to as support vector machine for regression (Clarke, Griebsch, & Simpson,
2005). The main characteristic of SVM lies in its ability to define complex decision
functions that optimally separate different classes of data samples. In rare event
probability estimation (e.g., Bourinet, Deheeger, & Lemaire, 2011; Hurtado, 2004),
SVM can be used as a surrogate model of the computationally expensive input–output
function φ(·) around the threshold T . These surrogates are particularly adapted to
functions presenting discontinuities and to high-dimensional problems. The purpose
of this section is to provide the reader an overview of the SVM main features. For
more details, the reader is referred to Cristianini & Shawe-Taylor (2000) and Steinwart
& Christmann (2008). In this section, only the classical SVM characteristics are
described. Extensions of SVM such as probabilistic SVM (Basudhar & Missoum,
2013; Gao, Gunn, Harris, & Brown, 2002; Platt, 1999) or virtual SVM (Song, Choi,
Lee, Zhao, & Lamb, 2013) have been proposed in the literature but are not described
in this book for the sake of conciseness.

8.2.2.2 Description

Support vector machines for classification
In its basic form, SVM is a binary classifier. In a reliability context, these classes
correspond to the threshold exceedance domain (referred to as the −1 class) and the
domain for which the output is underneath the considered threshold (referred to as the
+1 class). Note that SVM can also be extended to multiclass classification problems
(Duan & Keerthi, 2005).

Consider a training set X = {x1, . . . , xp} of p training samples in a d-dimensional
space. Each sample is associated with one of the two classes characterized by a value
ci = ±1. The SVM algorithm finds the boundary (decision function) that optimally
separates the training data into the two classes. We present the basic SVM theory
through a detailed explanation in the case of a linearly separable data set. We then
extend it to the case in which the data are not linearly separable. Notice that the SVM
training set should include at least one sample in each class to be built.

Linear decision function In the SVM theory, linear decision function is modeled
through the hyperplane defined as

wT .x + b = 0

where w is the vector of hyperplane coefficients and b is the bias. It lies “half
way” between two hyperplanes that separate the two classes of data. This pair of
hyperplanes, referred to as support hyperplanes, is required to pass through at least
one of the training samples of each class (support vectors) whereas no sample can be
found within the margin (Figure 8.1). One of the support hyperplanes consists of the
points that satisfy

wT .x + b = +1 (8.13)
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Figure 8.1 Linear decision function separating class +1 (squares) from class −1 (triangles).

The other hyperplane contains the points that follow

wT .x + b = −1 (8.14)

For separable data, an infinity of decision functions is possible. In order to find the
“optimal” decision function, the basic idea is to maximize the “margin” that separates
the support hyperplanes. All the points of the class c = +1 lead to a positive value of
SVM and all the points in the class c = −1 are negative. Equations (8.13) and (8.14)
and the constraint that no sample can lie between the two aforementioned hyperplanes
can be combined in a single global constraint defined as follows

ci(wT .x + b)− 1 ≥ 0 (8.15)

The width of the SVM margin between the two support hyperplanes is 2
‖w‖ .

Therefore, determining the support hyperplanes (i.e., solving for w and b) results in
the following optimization problem

min
w,b

1

2
‖w‖2 (8.16)

subject to ci(wT .xi + b)− 1 ≥ 0, 1 ≤ i ≤ p

This is a quadratic programming (QP) problem because the objective function is
quadratic and the constraints are linear. Problem (8.16) is convex and can be solved
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efficiently with available optimization algorithms. As a result, the optimal w, b, and
the Lagrange multipliers λi at the optimum are obtained. From this, the classification
of any test point x is obtained by the sign of the following function:

s(x,X ) = b +
p∑

i=1

λicixT
i .x (8.17)

Note that following the Karush Kuhn Tucker conditions (Kuhn & Tucker, 1951),
only the Lagrange multipliers associated with the support vectors will be strictly
positive whereas the other ones will be equal to zero. In general, the number of support
vectors is a small fraction of the total number of samples in X . Equation (8.17) can
be rewritten with respect to the number of support vectors “NSV”:

s(x,X ) = b +
NSV∑
i=1

λicixT
i .x (8.18)

In this case, the data are nonseparable, so optimization problem (8.16) is relaxed
by the introduction of slack variables. When the separation function is nonlinear,
the approach is generalized through the introduction of a kernel as described in the
following.

Nonlinear decision function SVM can be extended to the case of nonlinear decision
functions by projecting the original set of variables to a higher dimension space
referred to as the feature space. In this n-dimension feature space, the new components
of a point x are given by (ψ1(x),ψ2(x), . . . ,ψn(x)) where ψi are the features. The
specific characteristic of SVM is that the nonlinear decision function is obtained by
formulating the linear classification problem in the feature space. The classification is
then obtained by the sign of

s(x,X ) = b +
NSV∑
i=1

λici < ψ(xi),ψ(x) > (8.19)

where ψ = (ψ1(x),ψ2(x), . . . ,ψn(x)) and <,> is the inner product.
The inner product in Equation (8.19) forms a kernel K, so the decision function is

written

s(x,X ) = b +
NSV∑
i=1

λiciK(xi, x) (8.20)

This mechanism is referred to as the kernel trick in the SVM literature. The two
most commonly used kernel functions are the polynomial and the Gaussian kernels.
Some other kernels can be used such as multilayer perceptions, Fourier series, or
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splines (Gunn, 1998). The Gaussian kernel is the most used in the literature and is
defined as

K(xi, x) = exp

(
−‖xi − x‖2

σ 2

)
(8.21)

where σ is the width of the Gaussian kernel.

Support vector machines for regression
The SVM used for support vector regression (SVR) are built with the same approach
as SVM but consider the response function value instead of the classes. SVR requires
the use of different loss functions (Smola & Schölkopf, 2004). Several loss functions
exist (quadratic, Laplace, Huber, ε-insensitive). The latter is particularly used in the
SVR literature and is employed in this section to explain SVR mechanisms. This
function can be written as follows:

Lε(y) =
{

0 for |φ(x)− y| < ε

|φ(x)− y| − ε otherwise

with ε a tolerance margin. Let X be the current training set and φp = [φ(x1), . . . ,
φ(xp)]T be the corresponding vector of responses. In case of linear model, the SVR
construction results in solving the following optimization problem:

min
w,b

1

2
‖w‖2

subject to wT .xi + b − φ(xi) ≤ ε, 1 ≤ i ≤ p (8.22)

− wT .xi − b + φ(xi) ≤ ε, 1 ≤ i ≤ p

When the optimization problem is not feasible with respect to the constraints, slack
variables can be used to find a solution. For the sake of conciseness, the SVR for
nonlinear model is not described in this section. The same kernel trick as the one
used for SVM can be employed in order to build nonlinear SVR. For details, one
can consult Basak, Pal, & Patranabis (2007). SVR has been applied with rare event
techniques such as importance sampling (Dai, Zhang, Wang, & Xue, 2012) or first-
order reliability methods (FORM) (Li, Lü, & Yue, 2006).

8.2.2.3 Refinement strategies

To our knowledge, the SVM model in most applications is based on a fixed training
set built on the global input space (Li et al., 2006) or in specific zones such as those
relevant to the most probable point (e.g., Wang, Yu, & Du, 2012). However, in some
cases, adaptive refinement strategies have been proposed to account for the input space
zones relevant to rare event estimation. These refinement strategies take into account
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the spatial location of the samples in order to determine points to add to the existing
training set. In this section, the most used techniques to refine SVM models are briefly
described.

Determining the SVM training set by minimizing (φ(x)− T )k

This method, proposed in Hurtado & Alvarez (2010), consists in building a series of
SVM models in order to approximate the zone {x|φ(x) = T}. For that purpose, the
following sequence of optimization problems is solved

min
x
(φ(x)− T)k, k = 2o, o ∈ N (8.23)

where k is a parameter that takes different decreasing even values (i.e., 10 for the
first sequence iteration and then 8, 6, etc.). The optimization problem is solved with
a particle swarm optimization (PSO) algorithm. Once this problem is solved, the
optimal population found by PSO is used as the training set to build the SVM model.
The next optimization problem solving uses the previous optimal PSO population
as initialization. The evolution of the k coefficient allows to iteratively improve the
accuracy of the SVM model, smoothing the curvature of the optimization problem
objective function. At each sequence iteration, an estimation of the rare event proba-
bility is performed. The algorithm stops when the probability estimate converges.

Adaptive refinement of the SVM
Hurtado & Alvarez (2003) proposed an adaptive refinement method that consists of
the following steps:

1. A transformation of the input space to the standard space is performed using random variable
transformation techniques (see Section 2.3.3.4).

2. In the standard space, N aleatory samples are generated according to the input joint
distribution.

3. From these samples, l points are selected, corresponding to the ones with the highest distance
to the origin of the standard space. These points are used to build an initial SVM model, and
φ(·) is evaluated on these points.

4. In the N-generated samples, if there exist samples between the SVM margins, the closest
point to the SVM separation is added to the SVM training set and the SVM model is updated.
This step is repeated until no sample is present between the two margins.

This method allows to adaptively reduce the margins around the SVM separation,
reducing the uncertainty of the SVM in the relevant zones to rare event estimation.
This method has been used with crude Monte Carlo (Hurtado & Alvarez, 2003) and
has been extended for the use of sequential simulation techniques as described in the
following section.

Subsets by support vector margin algorithm for reliability estimation (2SMART)
The 2SMART method, described in Deheeger & Lemaire (2007) and Bourinet et al.
(2011), is dedicated to the use of adaptive importance splitting technique (AST) and
consists in defining one SVM model at each adaptive threshold involved in AST. For
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each intermediate threshold, an SVM model is built using a three-stage refinement
approach (localization, stabilization, and convergence), which allows to accurately
represent the regions corresponding to the involved thresholds. At the ith stage of
AST, the main steps of 2SMART are:

1. A first set of samples is generated to build an SVM model in the region corresponding
to the ith level of AST, say φ̂Ti(·), and some of these samples are used to determine the
current intermediate threshold Ti, using the ρ-quantile level of AST and the SVM model in
regression.

2. The SVM φ̂Ti(·) is refined using a three-stage approach, in an iterative manner, inducing
resampling (by Metropolis Hastings algorithm; see Section 2.3.3.3) and clustering the
generated samples. For that purpose, three populations of samples of different size are
generated and used to refine the current SVM model.

3. The last step consists in evaluating the conditional probability P(φ̂Ti(X) > Ti), correspond-
ing to the current threshold Ti.

Adaptive refinement of SVM using max-min technique
The max-min technique, proposed in Basudhar & Missoum (2010), allows to sequen-
tially add new samples to the current training set in order to refine the SVM model.
This technique consists in solving the following optimization problem:

max
x

min
xi∈X

‖xi − x‖
subject to φ̂(x) = T (8.24)

with xi, i ∈ {1, . . . , p} the different samples of the current training set. This method
allows to generate a sample located on the approximated iso-value φ̂(x) = T , which is
at the maximal distance of the current training set samples (Figure 8.2). This method
has been applied with the CMC method (Basudhar, 2011) but is applicable to any
simulation technique. Moreover, this method is not dedicated to SVM and can be
applied to refine other surrogate models, such as Kriging. The max-min approach
does not take into account the distribution of the input variables to refine the surrogate
model in high probability content regions. To overcome this issue, an improvement of
the max-min technique has been proposed and is described in the next section.

Improvement of max-min technique: generalized max-min
The generalized max-min technique proposed in Lacaze & Missoum (2014) is based
on the max-min strategy but accounts for the pdf of the input random variables as
follows:

max
x

min
xi∈X

‖xi − x‖f (x)1/d

subject to φ̂(x) = T (8.25)

with f (·) the joint pdf of the input variables and d the dimension of the input space.
The main difference between the max-min and generalized max-min approaches
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Figure 8.2 Refinement samples by max-min, input density, and curve of iso-value φ(x) = T .

comes from the weighting by the input variable joint pdf, which enables to refine the
surrogate model in relevant regions to rare event probability estimation. Figure 8.3
illustrates the difference between the two sampling approaches. This method has
been applied with CMC (Lacaze & Missoum, 2014) or subset simulation (Lacaze &
Missoum, 2013). As for the max-min technique, the generalized max-min approach is
not dedicated to SVM and can be used to refine other surrogate models.

8.2.3 Kriging

8.2.3.1 Presentation

The Kriging method (Matheron, 1963; Santner, Williams, & Notz, 2003; Sasena,
2002) offers some advantages in rare event probability estimation. Indeed, this
surrogate model is based on a Gaussian process that enables to estimate the variance of
the prediction error and consequently to define a confidence domain of the surrogate
model. This indicator can be directly used to refine the model, that is, to choose
new points to evaluate the exact function that allow to improve the accuracy of the
model. Kriging has been extensively used with the classical Monte Carlo estimator
(Echard, Gayton, & Lemaire, 2011), importance sampling method (Balesdent, Morio,
& Marzat, 2013; Dubourg, Deheeger, & Sudret, 2011; Schueremans & Van Gemert,
2005), importance sampling with control variates (Cannamela, Garnier, & Iooss,
2008), or subset simulation (Bect, Ginsbourger, Li, Picheny, & Vazquez, 2012; Li,
Bect, & Vazquez, 2012; Vazquez & Bect, 2009). The way to refine the Kriging
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Figure 8.3 Refinement samples by generalized max-min, input density, and curve of iso-value
φ(x) = T .

model is a key point to provide an accurate estimation and different strategies have
been proposed to exploit the complete probabilistic description given by the Kriging
in order to evaluate the minimal number of points on the real expensive input–
output function. The main methods are described in the remainder of this chapter.
A numerical comparison of different Kriging-based methods to estimate a probability
of failure can be found in Li, Bect, & Vazquez (2010).

8.2.3.2 Description of Kriging

Kriging (Kleijnen, 2009; Matheron, 1963; Sasena, 2002) is a statistical surrogate
model that can be used to approximate the input–output function φ(·) on its input
space X ⊂ Rd. It requires only a small initial training set, X = {x1, . . . , xp}, for which
the function values have been computed and stored into φp = [φ(x1), . . . ,φ(xp)]T .
The Kriging model consists of a Gaussian process ϒ(·) that is expressed for any input
vector x ∈ X as

ϒ(x) = m(x)+ ζ(x) (8.26)

where the mean function m(·) is an optional regression model estimated from available
data (polynomial in x, for example), and ζ(·) is a zero-mean Gaussian process with
covariance function cov (·, ·). Because the actual covariance function is unknown in
practice, it can be modeled as
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cov
(
ζ (xi) , ζ

(
xj
)) = σ 2

ζ Corr
(
xi, xj

)
(8.27)

where σ 2
ζ is the process variance and Corr(·, ·) is a parametric correlation function. A

classical choice for this correlation function is

Corr(xi, xj) = exp

(
−

d∑
l=1

θl|xil − xjl|pl

)
(8.28)

where the parameters 0 < pl ≤ 2 reflect the smoothness of the interpolation (2 is
the smoothest and corresponds to the Gaussian correlation function) whereas the θl
is scale factor that can be estimated, for example, by maximum likelihood (Sasena,
2002). Other correlation functions exist in literature and the choice of the correlation
functions can have a large impact on the prediction accuracy (Xie, Nelson, & Staum,
2010).

Kriging provides an optimal unbiased linear predictor at any x ∈ X as

φ̂(x,X ) = m(x)+ r (x,X )T R−1(X )
(
φp(X )− mp(X )

)
(8.29)

where⎧⎪⎨⎪⎩
R|ij(X ) = Corr

(
xi, xj

)
r (x,X ) = [

Corr (x, x1) , . . . , Corr
(
x, xp

)]T

mp(X ) = [
m (x1) , . . . , m

(
xp
)]T

(8.30)

Moreover, the use of Gaussian processes makes it possible to compute confidence
intervals for the prediction Equation (8.29) through the variance

σ 2(x) = σ 2
ζ

(
1 − r(x,X )TR−1(X )r(x,X )

)
(8.31)

An illustration of Kriging interpolation and corresponding confidence interval is given
in Figure 8.4.
Remark. Because the Kriging model directly involves a spatial correlation matrix
between the training set samples and its inversion, this surrogate model suffers from
the curse of dimensionality and can be intractable when the dimension of the input
space and the number of training set samples increases. Moreover, this surrogate can
present difficulties in modeling a discontinuous function.

8.2.3.3 Refinement strategies

In case of rare event probability estimation, the surrogate model must be accurate
in the zones of relevance, that is, in the vicinity of the threshold T and in the high
probability content regions. The use of the exact function φ and its surrogate φ̂ in the
probability calculation will lead to the same result if ∀x ∈ Rd, 1φ(x)>T = 1

φ̂(x,X )>T
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Figure 8.4 Kriging model and corresponding confidence interval.

(Figure 8.4). In other words, the surrogate model might not be representative of the
exact function outside the zones of interest as it does not take part of the probability
estimation. From the initial training set X , the Kriging properties (i.e., Gaussian
process, estimation of the predicted error variance) are valuable in determining the
additional samples that must be evaluated on φ(·) to refine its surrogate model.
Different refinement strategies have been developed in the literature and are briefly
described here. Two categories can be distinguished in the methods: the direct and
the one-step look-ahead methods. The first ones use directly the Kriging model to
determine the sample to be added to the training set whereas the latter ones estimate
the influence of the training set candidate sample on the updated surrogate model
(i.e., Kriging model built from the candidate point in addition to past training set
samples). The refinement-stopping criteria used in the different methods are based on
the Kriging prediction error in order to evaluate the accuracy of the surrogate model
and its impact on the rare event probability estimate.

Direct methods
Active learning reliability method combining Kriging and probability estima-
tion method This method (Echard, 2012) determines a new sample point x to add to
the training set X by solving the following optimization problem:

max
x

[
1 −�0,1

(
|T − φ̂(x,X )|

σ(x,X )

)]
(8.32)

where �0,1(·) is the cdf of the standard Gaussian distribution. The used criterion
generates a sample for which the Kriging prediction is closed to the threshold
(numerator of Equation 8.32) and which presents a high prediction error (denominator
of Equation 8.32). Due to the monotonicity of the involved cdf, the optimization
problem (Equation 8.32) is equivalent to:

min
x

|T − φ̂(x,X )|
σ(x,X )

(8.33)
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This criterion has been coupled with CMC (Echard et al., 2011), importance sampling
(Echard, Gayton, Lemaire, & Relun, 2013), and AST (Echard, 2012). In practice, the
optimization problem is not solved, and given a sample set {X1, . . . , XN} provided
by CMC, IS, or AST, the new sample that will be added to the training set is
determined by

X = argmin
X1,...,XN

{
|T − φ̂(X1,X )|

σ(X1,X )
, . . . ,

|T − φ̂(XN ,X )|
σ(XN ,X )

}

Efficient global reliability analysis The efficient global reliability analysis
(EGRA) criterion, initially proposed in Ranjan, Bingham, & Michailidis (2008) and
Bichon, Eldred, Swiler, Mahadevan, & McFarland (2008) and generalized in Bect et
al. (2012), relies on an optimization problem involving an integral in the vicinity of
the threshold in order to find the point to add to the training set. The corresponding
optimization problem is the following:

max
x

Eϒ

(
1(k.σ(x,X ))δ−|T−υ(x,X )|δ≥0

)
(8.34)

where υ denotes a realization of the Gaussian process ϒ (Equation 8.26) and Eϒ(·)
stands for the expectation of the Kriging model. Depending of the value of δ, this
criterion is equivalent to the one proposed in Bichon et al. (2008) (δ = 1) and the one
described in Ranjan et al. (2008) (δ = 2). EGRA can be associated with simulation
techniques for rare event estimation and has been for instance applied with importance
sampling (Bichon et al., 2008).

Margin probability function In Oakley (2004), the authors propose a statistic based
on the so-called margin probability to refine the Kriging model. Let us define the
following sets:

X̂−1
1−α(X) =

{
x ∈ X: φ̂(x,X ) ≤ T − k1−ασ 2(x,X )

}
(8.35)

X̂+1
1−α(X) =

{
x ∈ X: φ̂(x,X ) ≤ T + k1−ασ 2(x,X )

}
(8.36)

with 1 − α the confidence level of the Kriging model (e.g., a confidence interval 1 − α

of 95% corresponds to k1−α ≈ 1.96). The margin probability is defined by

MP(x) = P
[
φ̂(x,X ) ∈

(
X̂+1

1−α(X) \ X̂−1
1−α(X)

)]
, (8.37)

= �0,1

(
T + k1−ασ (x,X )− φ̂(x,X )

σ (x,X )

)

−�0,1

(
T − k1−ασ (x,X )− φ̂(x,X )

σ (x,X )

)
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The new point that is added to the training set is determined with

max
x

MP(x)

This criterion has been used in Picheny, Ginsbourger, Roustant, Haftka, & Kim (2010)
to develop the target integrated mean square error (TIMSE) as described in the “Target
integrated mean square error” section.

Generalized max-min From our knowledge, the generalized max-min (Lacaze &
Missoum, 2014) (see the “Improvement of max-min technique: generalized max-min”
section) has not been applied for Kriging refinement purposes. However, this method
is not dedicated to SVM and can be used to sample points in the zones of interest
regarding to the probability estimation.

One-step look-ahead methods
The one-step look-ahead methods differ from the direct methods in using an es-
timation of the effect of the updated kriging model (i.e., based on the training
set augmented with the new candidate sample) to refine the surrogate model. For
numerical tractability and to estimate the influence of an added sample in the
training set, these methods consider that the variance of the Gaussian process σ 2

ζ in
Equation (8.31), the kernel parameters, and the regression model do not change, and
only the correlation matrix is updated.

Target integrated mean square error The TIMSE proposed in Picheny et al.
(2010) extends the margin probability (see the “Margin probability function” section)
to define a criterion that is an integration over the uncertain space in the vicinity of the
threshold. To define the vicinity of the threshold, a weighting function is introduced

W(x′, {x,X }) = 1

σ(x′, {x,X })√2π
exp

⎛⎝−1

2

(
φ̂(x′, {x,X })− T

σ (x′, {x,X })

)2
⎞⎠

with x′ ∈ X, x the candidate sample to add to the training set X and {x,X } the
increased training set.

The determination of the new sample results from solving an optimization problem
involving an expected value calculation of the mean square error of the Kriging model
weighted by W(·):

min
x

∫
X

σ
(
x′, {x,X })2 W(x′, {x,X })f (x′) dx′

This criterion minimizes the global uncertainty over the uncertain space in the vicinity
of the threshold, taking into account the influence of the candidate sample and the
initial pdf of the input variables. From our knowledge, this criterion has been coupled
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with subset simulation (Picheny et al., 2010) but is compatible with all the simulation
techniques used for rare event estimation.

Reduction of misclassification uncertainty for rare event simulation tech-
niques This method is described in Balesdent et al. (2013) and consists in analyzing
the different samples generated by the used probability estimation techniques. This
method is used to find the sample point to add to the current training set in order to
best reduce the uncertainty of the generated samples that can be misclassified because
of the use of Kriging model. Let XN = {X1, . . . , XN} be a sample set provided by the
rare event simulation technique. Using the notations of Equations (8.35) and (8.36), let
X̃N = X̂+1

1−α(XN) \ X̂−1
1−α(XN) be the uncertain samples of XN regarding the threshold

exceedance, that is, the samples that can be misclassified because of the Kriging model
uncertainty. The new sample to add to the current training set is obtained by solving
the following optimization problem:

max
x

Card(X̃N )∑
i=1

(
σ
(

X̃i,X
)
− σ

(
X̃i, {x,X }

))
(8.38)

with Card(X̃N) the number of samples present in the uncertain sample set X̃N . This
criterion allows to refine the Kriging model with the sample that has the highest
influence on the total standard deviation of the uncertain sample set. This method has
been applied in Balesdent et al. (2013) with parametric and nonparametric importance
sampling but is also applicable with all the simulation techniques used to estimate a
rare event probability.

Stepwise uncertainty reduction The stepwise uncertainty reduction (SUR) (Bect
et al., 2012) determines the new sample x to add to the current training set X by
solving an optimization problem. Given the two following expressions

τ(x,X ) = 1 −�0,1

( |υ(x,X )− T|
σ(x,X )

)
ν(x,X ) = τ(x,X )(1 − τ(x,X ))

four SUR criteria to minimize have been introduced

JSUR
1 (x,X ) =Eϒ

[(∫ √
τ(x′, {x,X })f (x′) dx′

)2
]

(8.39)

JSUR
2 (x,X ) =Eϒ

[(∫ √
ν(x′, {x,X })f (x′) dx′

)2
]

(8.40)

JSUR
3 (x,X ) =Eϒ

[∫
τ(x′, {x,X })f (x′) dx′

]
(8.41)

JSUR
4 (x,X ) =Eϒ

[∫
ν(x′, {x,X })f (x′) dx′

]
(8.42)
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with Eϒ(·) the expectation of the Kriging model. These criteria involve a double
integration, one over the uncertain space and one over the Gaussian process space.
This method has been applied with crude Monte Carlo (Bect et al., 2012) and subset
simulation (Li et al., 2012) but is applicable with all the simulation techniques used to
estimate rare event probability.

K-means clustering strategy for Kriging refinement
The K-means clustering strategy (Dubourg, 2011; Dubourg et al., 2011; Hartigan &
Wong, 1979) is applicable with all the previous criteria. This method is not based on an
optimization method to refine the Kriging model but consists of two steps: a sampling
step and a clustering step in order to provide a set of new samples to add to the
current training set. From the chosen refinement criterion, this method generates new
samples using a Monte Carlo Markov chain (MCMC) method (see Chapter 2). The
criterion is used to create the target distribution employed in the proposal/refusal step
of MCMC. Then a K-means clustering method (MacQueen, 1967) allows to select
the samples relevant to the Kriging refinement. These cluster centroids are obtained
by solving an optimization problem involving the L2 distance with respect to the
MCMC samples. Then these centroids are added to the training set. This method has
been associated with subset sampling (Dubourg et al., 2011) and importance sampling
(Dubourg, Sudret, & Deheeger, 2013).

8.2.4 Conclusion

In this section are described two of the most used surrogate models that can be
associated with rare event probability estimation techniques. In our experience,
Kriging is very efficient for modeling relatively smooth input–output functions in
small to moderate dimensions (e.g., a few dozen). When the dimension on the input
space increases or φ(·) presents discontinuities, the use of the SVM model instead
of Kriging is recommended. The characteristics of the surrogate model for rare event
estimation are summarized in Table 8.1.

Table 8.1 Summary on surrogate model for rare event
probability estimation

Criteria Estimation characteristics

Rarity of Pf Often not adapted to very rare events
(Pf < 10−6)

Simulation budget From 10 to 103 samples in most cases
Type of function φ(·) Regularity assumptions (for Kriging)
Multimodality of f
restricted to �f

Particularly adapted to multimodal failure
region

Dimension of X Depends on the type of surrogate model
Probability estimate error Estimation with retrials
Difficulty High; computation of complex sample criteria
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9Special developments for
time-variant systems
D. Jacquemart, J. Morio, F. Le Gland, M. Balesdent

In this chapter, we analyze the different methods for estimating the probability of
a rare event in dynamical systems modeled by Markov chains. These algorithms are
relatively similar in principle to the ones defined for static input-output systems. Some
special developments must nevertheless be considered for an efficient applicability.

9.1 General notations

Let us recall the notation of Chapter 3 and consider a continuous time Markov process
(Xt)0≤t≤S in state space Rd with S a stopping time. Its initial law at time 0 is defined by
π0(x0), and its transition kernels are denoted πs,t(x, x′). In this chapter, we describe
different algorithms that propose a statistic that can be efficient for estimating the
probability P(R) with R defined by

R = {Xt, with ϕ(Xt) ≥ T and 0 ≤ t ≤ S}
where T is a given threshold and ϕ(·) is a real valued function. Let us also consider
the random variable Z defined by

Z = sup
0≤t≤S

ϕ(Xt) (9.1)

We can remark that Z does not depend on time t and is consequently a static variable.
The probability P(R) is thus given by

P(R) = P(Z > T)

Because it is not possible to directly simulate (Xt)0≤t≤S in practice, discrete
time approach can also be considered (see Section 3.2) with t = j�t and S = c�t.
A discrete time Markov chain (Xj)0≤j≤c with initial law π0(x0) at time 0 and
transition kernels πj(xj|xj−1) is simulated. The following describes the principle of
the different methods for rare event probability estimation with a continuous or a
discrete formalism without any loss of generality.

9.2 Toy case

The different algorithms proposed for probability estimation on dynamical systems
are compared in a general toy case, the standard one-dimensional Brownian bridge.
It consists in a time nonhomogeneous process that solves the following stochastic
differential equation:
Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
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dXt = Xt

t − 1
dt + dWt, with X0 = 0

defined for t ∈ [0, 1]. The term Wt is a standard Brownian motion process, that is,
Wt follows a normal distribution with mean 0 and variance t at time t. The target
probability can be expressed with the function ϕ(·) that corresponds here to the
identity function. It can be shown that X1 = 0 almost surely and that the probability
of interest has the following theoretical expression (Borodin & Salminen, 2002),

P

(
sup

0≤t≤1
(Xt) > T

)
= P(Z > T) = exp

(
−2T2

)
With a threshold T equal to 2, the theoretical probability of exceedance is 3.35 ×
10−4. The probability of exceedance with T = 3 is equal to 1.52 × 10−8. The Euler
scheme (Kroese, Taimre, & Botev, 2011) leads to the following discretization for the
simulation of the Brownian bridge process:

Xj+1 = Xj + c

jc − 1
Xj +√

cWj

where Wj has a standard normal distribution. In this particular simple case, the
transition probabilities of the Brownian bridge have an explicit expression and it
is not necessary to use a numerical approximation scheme to sample the trajec-
tories. In the different simulations proposed in the following sections, c is set
to c = 10−3.

9.3 Crude Monte Carlo

9.3.1 Principle

A usual way to estimate the probability P(R) is to consider crude Monte Carlo (CMC)
method (Robert & Casella, 2005; Sobol, 1994). In practice, we can generate N iid
as (Xt)0≤t≤S Markov processes (X(1)

t )0≤t≤S, (X(2)
t )0≤t≤S, . . . , (X(N)

t )0≤t≤S. One then
estimates N samples Z1, . . . , ZN of the variable Z defined in Equation (9.1). A sample
Zi is thus given by

Zi = sup
0≤t≤S

ϕ(X(i)
t )

The probability P(R) is then estimated with

P̂CMC = 1

N

N∑
i=1

1Zi>T
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ALGORITHM 16 Crude Monte Carlo simulations with Markov
chains for probability estimation

Input: The discrete Markov chain (Xj )0≤j≤c with initial distribution π0(x0) and transition
kernels πj (xj |xj−1), the number of samples N , the function ϕ(·), the threshold T ,
and the stopping time c.

Output: The probability estimate P̂CMC.
1 Sample (X(1)j )0≤j≤c , (X(2)j )0≤j≤c , . . . , (X(N )j )0≤j≤c with initial distribution π0(x0) and

transition kernels πj (xj |xj−1).

2 Estimate Zi = sup
0≤j≤c

ϕ(X(i )j ).

3 Estimate P̂CMC = 1
N
∑N

i=1 1Zi>T .
4 return P̂CMC.

The CMC method for probability estimation with Markov processes is described in
Algorithm 16. This estimator has exactly the same statistical properties as the CMC
estimate defined in Section 5.1 for the static input–output function. CMC quantile
estimate can also be derived in the same way as in Section 5.1.

9.3.2 Application to a toy case

Brownian bridge
CMC algorithm is applied to the Brownian bridge toy case. An illustration of 10 CMC
sample paths is given in Figure 9.1. The probability estimates obtained with CMC for
this toy case are provided in Table 9.1 for two different thresholds. The CMC estimate
needs a significant number of samples to be accurate for rare event probability
estimation. The slight bias in the CMC estimation results from the discretization of
the Markov process.

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

t

X
t

Figure 9.1 Some trials of CMC Brownian bridge sample paths.
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Table 9.1 Results of CMC for the Brownian bridge

T P̂CMC RB (P̂CMC) RE (P̂CMC) Simulation budget

2 2.4 × 10−4 −15% 62% 104

2 2.4 × 10−4 −15% 5% 106

3 0 n/a n/a 104

3 0 n/a n/a 106

Table 9.2 Summary of CMC rare event probability
estimation for Markov processes

Criteria CMC characteristics

Rarity of P(R) Not adapted. Slow convergence of CMC

Simulation budget 102

P(R)
samples required to estimate P(R) with

a 10% error
Type of process Xt No regularity condition on Xt

Dimension of Xt No influence on the CMC convergence
Probability estimate error Analytical formula depending on P(R) and N
Difficulty of implementation None

9.3.3 Conclusion

The implementation of CMC on Markov processes is simple in most cases. However,
as with input–output systems, CMC requires a high simulation budget to estimate a
rare event probability with a decent relative error. This simulation budget is often not
affordable in realistic applications. The main characteristics of CMC are summarized
in Table 9.2. CMC is still seen as a reference due to its simple implementation and
thus, its application to the use case is of interest.

9.4 Importance sampling

9.4.1 Principle

In the same way as described in Section 5.3 for static input–output function, the idea
of importance sampling (IS) (Glynn & Iglehart, 1989; Juneja & Shahabuddin, 2001),
also called sequential importance sampling when applied to Markov chains, is to
replace the original probability distribution of the process by an auxiliary measure.
Although the optimal change of density is not a priori Markovian, the IS auxiliary
measure remains Markovian for convenience (Sandmann, 2005). An estimate of P(R)

is obtained by generating Markov chains (X(i)
j )0≤j≤c for i = 1, . . . , N with respect to

new transition kernels π̃j(xj|xj−1) for j = 1, . . . , c and initial law π̃0(x0). Then we
compute the IS probability estimate with
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P̂IS =
∑N

i=1 ωi1Zi>T∑N
i=1 ωi

with

Zi = sup
0≤j≤c

ϕ(X(i)
j )

and

ωi =
π0(x

(i)
0 )

∏c
j=1 πj(x

(i)
j |x(i)j−1)

π̃0(x
(i)
0 )

∏c
j=1 π̃j(x

(i)
j |x(i)j−1)

The main difficulty of IS is to determine valuable sampling densities π̃j that can reduce
the CMC variance. For a general Markov process, there is, to our knowledge, no
general method to determine an efficient IS auxiliary measure because of the very
broad variety of instances that can be involved. Moreover, in practice, IS can lead
to a degeneracy problem when only a few of the sample paths (X(i)

j )0≤j≤c will have
significant weights ωi, and all the other sample paths will have very small weights.
One common way to deal with degeneracy in particle filtering is resampling, but it
is not adapted to rare event simulation. In the case of continuous state space when
the value of c in the relation c�t = S is not too large (e.g., say a few dozen), it
is nevertheless possible (Johansen, 2006; Johansen, Del Moral, & Doucet, 2006) to
determine potentially efficient sampling transition kernels using the sequential Monte
Carlo sampler framework. Tuning these kernels requires the user to have a significant
experience with the studied system. Two examples are provided in Johansen (2006).
The IS algorithm is detailed in Algorithm 17.

ALGORITHM 17 Importance sampling algorithm with Markov
processes for probability estimation

Input: The discrete time Markov process (Xj )0≤j≤c with initial distribution π0(x0) and
transition kernels πj (xj |xj−1), the IS auxiliary initial transition distribution π̃0(x0)

and kernels π̃j (xj |xj−1), the number of samples N , the function ϕ(·), the
threshold T , and the stopping time c.

Output: The probability estimate P̂IS.
1 Sample (X(1)j )0≤j≤c , (X(2)j )0≤j≤c , . . . , (X(N )j )0≤j≤c with initial distribution π̃0(x0) and

transition kernels π̃j (xj |xj−1).

2 Estimate Zi = sup
0≤j≤c

ϕ(X(i )j ).

3 Estimate P̂IS =
∑N

i=1 ωi 1Zi >T∑N
i=1 ωi

with ωi = π0(x
(i)
0 )

∏c
j=1 πj (x

(i )
j |x(i )j−1)

π̃0(x
(i)
0 )

∏c
j=1 π̃j (x

(i )
j |x(i )j−1)

.

4 return P̂IS.



142 Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems

9.4.2 Application to a toy case

Brownian bridge
To apply IS on the Brownian bridge, the proposed auxiliary IS density W ′

j at time j
is a Gaussian distribution with mean b and variance 1. The considered model of IS
auxiliary density is simple because b does not depend on j. We have a priori no idea
of the potential efficiency of this parametric type of density on the Brownian bridge. If
b = 0, then IS corresponds to the CMC case. The difficulty is that there is no rule on
how to tune the parameter b. IS is applied to the Brownian bridge for different settings
of b to evaluate the efficiency of this algorithm. The different results are presented in
Table 9.3. IS enables to significantly decrease the variance of the estimation when
b is well chosen. The choice of an efficient value for b is complex and is driven by
variance minimization. This task could require a large number of samples. Similar
to CMC, a part of the bias in the IS estimation results from the discretization of the
Markov process. Ten IS sample paths for b = 0.5 are proposed in Figure 9.2.

9.4.3 Conclusion

IS is theoretically an interesting approach for estimating rare event probabilities on
a continuous Markov process. Nevertheless, the practical determination of the c + 1
densities π̃j, j = 0, . . . , c is an open issue. Because no guide to their tuning exists,

Table 9.3 Results of IS for the Brownian bridge

T b P̂IS RB (P̂IS) RE (P̂IS) Simulation budget νIS

2 0.01 3.2 × 10−4 −5% 112% 103 n/a
2 0.1 2.9 × 10−4 −13% 8% 103 501
2 0.2 7.6 × 10−5 −77% 125% 103 n/a
3 0.2 1.26 × 10−8 −17% 10% 103 6 × 106
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t

Figure 9.2 Some trials of IS Brownian bridge sample paths with b = 0.5.
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Table 9.4 Summary of IS rare event probability estimation
for Markov processes

Criteria IS characteristics

Rarity of P(R) Increase the difficulty to find valuable π̃j, j = 0, . . . , c
Simulation budget At least 103 samples
Type of process Xt No regularity condition on Xt

Dimension of Xt Increase the difficulty to find valuable π̃j, j = 0, . . . , c
Probability estimate error Estimated with retrials
Difficulty of implementation Low to medium; difficult to find valuable π̃j, j = 0, . . . , c

the user must conduct a series of experiments in order to determine potential efficient
auxiliary densities for the estimation of a given probability.

The main characteristics of IS are presented in Table 9.4. Thus, the application of
IS on realistic test cases with Markov processes is more complex than on input–output
functions but is nevertheless of interest for comparison.

9.5 Importance splitting

9.5.1 Principle

The idea of importance splitting for Markov processes is to decompose the sought
probability in a product of conditional probabilities that can be estimated with a
reasonable computation time. A similar approach has been proposed for static input–
output function (see Section 5.4). Splitting methods on dynamical systems have been
compared in Garvels & Kroese (1998) and L’Ecuyer, Demers, & Tuffin (2006). Some
developments can also be found in Cérou, Del Moral, Le Gland, & Lezaud (2005) and
Cérou, Del Moral, Le Gland, & Lezaud (2006). In these papers, a unified framework
is described and rigorous proofs of convergence are given.

The splitting method is notably adapted when we consider processes that have
continuous trajectories or at least right continuous and left limited trajectories. The
principle of splitting is to determine a sequence of decreasing supersets of B:

Rd = B0 ⊃ B1 ⊃ · · · ⊃ Bm−1 ⊃ Bm = B

Let us define Sk = inf{t ≥ 0 with Xt ∈ Bk} for k = 1, . . . , m, and SB = inf{t ≥ 0,
with Xt ∈ B}. We consequently have P(SB ≤ S) = P(R). A Bayes’ formula gives the
following decomposition product:

P(R) =
m∏

k=1

P(Bk|Bk−1)
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The previous equation is equivalent to

P(SB ≤ S) = P(S1 ≤ S)×
m∏

k=2

P(Sk ≤ S|Sk−1 ≤ S)

The importance splitting principle consists in estimating separately each probability
P(Sk ≤ S|Sk−1 ≤ S) with accuracy for a small sample size. The supersets of B are
often defined by using the function ϕ(·) in the following way

Bk = {x, with ϕ(x) ≥ Tk}, k = 1, . . . , m

for a suitable sequence of real numbers T0 < T1 < · · · < Tm = T . The variable Sk and
its associated probability can then be rewritten with

Sk = inf{t ≥ 0, withϕ(Xt) > Tk}

and thus

P(SB ≤ S) = P

(
max

0≤t≤S
ϕ(Xt) > T

)
which leads to

P(Sk ≤ S|Sk−1 ≤ S) = P

(
max

0≤t≤S
ϕ(Xt) > Tk| max

0≤t≤S
ϕ(Xt) > Tk−1

)
In practice, the goal of the splitting technique is to estimate the conditional

probabilities P(Sk ≤ S|Sk−1 ≤ S). They are chosen large enough to be estimated
by Monte Carlo sampling with accuracy. In a first stage, N samples of Markov
process Xt are generated until time min(S1, S). If I1 is the number of trajectories that
have reached B1, then P(S1 ≤ S) is estimated by I1/N. For stage k ≥ 1, N starting
points are randomly and uniformly chosen among the Ik crossing points between
the subset Bk and the previously sampled trajectories. N paths of the process Xt are
sampled from these crossing points according to the Markov dynamic of the process
until time min(Sk+1, S). Among those trajectories, Ik+1 reaches the set Bk+1, and
P(Sk+1 ≤ S|Sk ≤ S) is estimated by Ik+1/N.

The main parameters that must be set in splitting are the thresholds T1, T2, . . . , Tm−1.
This choice is very important because it strongly influences the variance of the
estimated probability. Indeed, if a threshold is misplaced, the probability of reaching
it starting from the previous threshold could be very small and splitting becomes
inefficient. Because there is no analytical formula that links the thresholds to
conditional probabilities, it is often complicated to set the threshold values a priori.
To circumvent this problem, the algorithm presented in Cérou & Guyader (2007)



Special developments for time-variant systems 145

proposes an adaptive choice of the thresholds. To estimate the thresholds, the authors
consider quantile estimation in the same way as that can be done for static input–
output function. For that purpose, a general adaptive importance splitting algorithm
(GAISA) has been proposed from Cérou & Guyader (2007). It is decomposed in two
stages. The first one estimates intermediate thresholds with Ñ trajectories, and the
second one determines the starting points at level Bk. We can indeed sample some
new Markov processes from the entrance distribution at level Bk and determine their
maxima before time S. If we define the threshold as Tk+1 the (1 − ρ)-quantile of these
maxima, then we have:

P(Sk+1 ≤ S|Sk ≤ S) ≈ ρ

The GAISA is detailed in Algorithm 21.
GAISA can also be used to estimate α-quantiles of the variable Z. The

application principle is relatively similar to the one proposed with adaptive
splitting in Section 5.4. Indeed, at each iteration k, instead of testing Tk <

T , we compare the conditional probability product
∏k

l=1 p̂l < α, and then

the estimate q̂GAISA
α is the α∏k

l=1 p̂l
-quantile of the samples max

S
(ji)
k ≤t≤S

ϕ(X(i)
t ),

i = 1, . . . , N in the last GAISA iteration.

9.5.2 Application to a toy case

Brownian bridge
The GAISA is applied to the Brownian bridge. From our experience of the algorithm,
the sample number Ñ is set to Ñ = 0.1 × N. There is indeed no need to use a high
number of trajectories to estimate the intermediate thresholds. The choice of ρ is
a trade-off between computation time and variance. Here the quantile parameter ρ
is equal to 0.5 because it seems to give the best probability estimators. The different
results are presented in Table 9.5. GAISA is a very efficient algorithm for this toy case
with a low relative variance. In the same way as in the previous estimation methods,
the bias in the GAISA estimation results from the discretization of the Markov
process. Ten GAISA sample paths for N = 10 and T = 3 are given in Figure 9.3.

Table 9.5 Results of GAISA for the Brownian bridge

T N P̂GAISA RB(P̂GAISA) RE(P̂GAISA) Simulation budget νGAISA

2 103 2.9 × 10−4 −16 15 4440 31
2 104 2.9 × 10−4 −13 6 4.5 × 104 21
3 103 1.2 × 10−8 −20 39 8975 4.8 × 104

3 104 1.2 × 10−8 −18 14 8.9 × 104 3.7 × 104
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ALGORITHM 18 GAISA for probability estimation
Input: The continuous time Markov process (Xt )0≤t≤S with initial distribution π0(x0)

and transition kernels πs ,t (x, x′), the number Ñ of trajectories to estimate a
threshold, the number N of trajectories to estimate crossing points, a constant
ρ ∈ (0, 1), the function ϕ(·), the threshold T , and the stopping time S .

Output: P̂GAISA

1 Set T0 = 0, J0 = {1, 2, . . . , N}.
2 for i = 1, . . . , N do
3 Set S (i )0 = 0 and sample X′(i )

0 independently from law π0.

4 Set e (i )0 = X′(i )
0 .

5 k = 0.
6 while Tk < T do
7 for i = 1, . . . , Ñ do
8 Choose randomly and uniformly a subscript ji ∈ Jk .

9 Sample a path X(i )t starting from e (ji )k at time S (ji )k and until final time S .

10 Set Zi = max
S
(ji )
k ≤t≤S

ϕ(X(i )t ).

11 Estimate the threshold Tk+1 = Z
([(1−ρ)Ñ ]+1).

12 for i = 1, . . . , N do
13 Choose randomly and uniformly a subscript ji ∈ Jk .

14 Sample a path X′(i )
t starting from e (ji )k at time S (ji )k and until time min(S (i )k+1, S )

where S (i )k+1 = inf{S (ji )k ≤ t ≤ S , withϕ(X′(i )
t ) ≥ Tk+1}.

15 Set e (i )k+1 = X′(i )
min(S (i)k+1,S )

.

16 Set Jk+1 = {i , (min(S (i )k+1, S )) < S } and Ik+1 = |Jk+1|.
17 Set p̂k+1 = Ik+1

N
.

18 k ← k + 1.

19 Among the last sampled paths t �→ ϕ(X′(1)
t ), . . . , t �→ ϕ(X′(N )

t ), a proportion r reaches S
before final time T .

20 Estimate P̂GAISA = ∏k−1
l=1 p̂l × r .

21 return P̂GAISA.

9.5.3 Conclusion

Importance splitting is a very efficient method for estimating rare event probabilities
on continuous Markov chains with a high improvement of CMC performances. The
tuning of its parameters does not significantly influence the estimator variance. The
main characteristics of importance splitting are presented in Table 9.6. The use of
splitting on realistic test cases is mandatory.
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Figure 9.3 Set of GAISA sample trajectories on the Brownian bridge.

Table 9.6 Summary of GAISA rare event probability estimate
for Markov processes

Criteria GAISA characteristics

Rarity of P(R) Increase efficiency relatively to CMC
Simulation budget At least 103 samples
Type of process Xt Xt must be right continuous with left limits
Dimension of Xt Still efficient on high dimensional systems
Probability estimate error Estimated with retrials
Difficulty of implementation Medium to high because of the algorithm complexity

9.6 Weighted importance resampling

9.6.1 Principle

IS algorithms could increase the occurrence of rare events, but in most cases,
the studied dynamical system is so complicated that it is impossible to determine
properly an efficient auxiliary distribution. An alternative to IS is weighted importance
resampling (WIR) algorithm, also called interacting particle system, presented in
Del Moral & Garnier (2005). It provides a method for rare event probability estimation
in the form P(Xc ∈ B) = P(ϕ(Xc) > T), that is, for some events that occur at terminal
time based on large deviation theory (LDT) considerations.

This formalism is not directly adapted to the estimation of P(R). Nevertheless, we
can rewrite the estimation of the probability

P
(
ϕ(Xj) > T , for some 0 ≤ j ≤ c

) = P

(
max
0≤j≤c

ϕ(Xj) > T

)
so that it fits the WIR framework. To apply WIR to the estimation of P(R), the idea
is to introduce the process of maxima Mj of the Markov chain Xj before time j,
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Mj = max
l=0,...,j

ϕ(Xl) = max(Mj−1,ϕ(Xj))

However, the sequence Mj is not a Markov one and, thus, it is necessary to consider
the process Yj

Yj = (Xj, Mj) (9.2)

which is a Markovian sequence. It is straightforward to check why Y is a Markov
chain. Indeed, one has

Yj+1 = (Xj+1, max(Mj,ϕ(Xj+1)))

Because the conditional law of Xj+1 given the past depends only on the present state
Xj, the preceding formulation shows that the conditional law of Yj+1 given the past
depends only on the present state Yj. WIR can thus be applied without any restriction
to estimate P(R) with Markov process Yj.

The WIR algorithm consists of a set of N paths (X(i)
j )1≤j≤c, i = 1, . . . , N. The

initial generation is a set of a N-sample X(1)
0 , . . . , X(N)

0 independently and identically
sampled from the initial distribution of the chain π0. The trajectories are updated from
j to j + 1 to give an advantage to the ones that can potentially reach the rare event B.
WIR is performed in two steps. First, the selection stage consists in choosing with
replacement the trajectories according to an empirical weighted measure built with a
function Gj that depends on X(1)

0:j , . . . , X(N)
0:j . The notation X0:j is used for the vector

(X0, X1, . . . , Xj)
T . The function Gj must be strictly positive. Trajectories that are more

likely to reach the rare set are multiplied, and the others are removed. Second, the
mutation stage consists in applying the Markov transition kernel πj to the trajectory
evolution. The complete method is presented in Algorithm 12.

The WIR probability estimate is unbiased. The paper (Del Moral & Garnier, 2005)
also proposes to use one of the two following weighted functions Gj:

Gβ
j (X0:j) = exp(βϕ(Xj))

and

Gα
j (X0:j) = exp(α(ϕ(Xj)− ϕ(Xj−1))) (9.3)

for some strictly positive parameters β and α. In Equation (9.3), we must set X−1 = x0
where x0 is any point of Rd. According to Del Moral & Garnier (2005), the use of
weight function Gα

j gives better results. Also, using these functions does not require

remembering the entire trajectories X(i)
0:j but only X(i)

j or (X(i)
j−1, X(i)

j ) at each step.

WIR tuning is nevertheless needed when using the functions Gβ
j or Gα

j . In general,
for two different probability estimations on same Markov chains, Algorithm 12 is not
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ALGORITHM 19 The WIR algorithm

Input: The discrete time Markov process
(
Xj
)

0≤j≤c with initial distribution π0(x0) and
transition kernels πj (xj |xj−1), the sample size N , the strictly positive weight
functions Gj , and the function ϕ(·)

Output: P̂WIR

1 for i = 1, . . . , N do
2 Sample independently X(i )0 from law π0.

3 Initialize the weights: W (i )
0 = 1.

4 for j = 0, . . . , c − 1 do

5 Compute the normalizing constant ηj = 1
N
∑N

i=1 Gj (X
(i )
0:j ).

6 Choose independently N paths according to the measure

μj (dx0:j ) = 1
Nηj

∑N
i=1 Gj (X

(i )
0:j )δX(i )0:j

(dx0:j ),

7 and rearrange the weights accordingly. The selected paths are noted X̃(i )0:j ,

i = 1, . . . , N and the corresponding weights W̃ (i )
j .

8 for i = 1, . . . , N do

9 The chain evolves under πj+1: X̃(i )j

πj+1−→ X(i )j+1.

10 Set X(i )0:j+1 = (X̃(i )0:j , X(i )j+1).

11 Set W (i )
j+1 = W̃ (i )

j ×
(

Gj (X̃0:j )
)−1

.

12 Estimate P̂WIR = ∏c−1
j=0 ηj × 1

N
∑N

i=1 1
ϕ((X(i)n )>T ) ×

(
W (i )

n

)
.

efficient for the same values of α (or β). Although asymptotic variance expression can
be computed (Del Moral & Garnier, 2005), optimal values of these parameters depend
on the unknown probability to estimate.

With the WIR algorithm, only a fraction of paths reaches the rare set, whereas most
of the trajectories sampled with efficient importance transition kernels get through it.
As a result, the smaller the probability, the larger the number of needed trajectories.
WIR main advantage is that the transition from Xj to Xj+1 does not need to be changed.
To our knowledge, WIR has not been derived to estimate quantiles.

9.6.2 Application to a toy case

Brownian bridge
WIR is applied to the Brownian bridge for two values of simulation budget and
selection parameter α. Typical WIR sample paths are illustrated in Figure 9.4. In the
same way as before, the discretization of the Markov process implies a bias in the WIR
probability estimation. The different results are presented in Table 9.7. A fine tuning
of α is needed to reduce the estimation variance (Morio, Jacquemart, Balesdent, &
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Figure 9.4 WIR typical sample trajectories on the Brownian bridge.

Table 9.7 Results of WIR for the Brownian bridge

T α P̂WIR RB(P̂WIR) RE(P̂WIR) Simulation budget νWIR

2 6 2.9 × 10−4 −14 33 103 27
2 6 2.9 × 10−4 −14 10 104 30
2 10 2.9 × 10−4 −16 76 103 5
2 10 2.9 × 10−4 −14 31 104 3
3 6 1.1 × 10−8 −26 234 103 1.2 × 10−4

3 6 1.3 × 10−8 −17 86 104 8.8 × 103

3 10 1.1 × 10−8 −30 77 103 1.1 × 105

3 10 1.3 × 10−8 −12 35 104 5.3 × 104

Marzat, 2013). The performances of WIR are relatively equivalent to those obtained
with GAISA in the previous section.

9.6.3 Conclusion

WIR is a valuable alternative to GAISA for the estimation of rare event probabilities.
There is no need to determine an auxiliary sampling density unlike IS but a selection
parameter must be tuned. The main characteristics of WIR are presented in Table 9.8.
The use of WIR on realistic test cases would be interesting.

9.7 Extreme value theory

9.7.1 Principle

The principle of extreme value theory (EVT) is described in Section 6.1 for input–
output functions. Their application is the same for Markov processes. We assume
that a set of N iid as (Xt)0≤t≤S Markov processes (X(1)

t )0≤t≤S, (X(2)
t )0≤t≤S, . . . ,
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Table 9.8 Summary of WIR rare event probability estimation
for Markov processes

Criteria WIR characteristics

Rarity of P(R) Increase efficiency relatively to CMC
Simulation budget At least 103 samples
Type of process Xt Xt must be right continuous with left limits
Dimension of Xt Still efficient on high dimensional systems
Probability estimate error Estimated with retrials
Difficulty of implementation Medium to high because of the algorithm complexity

(X(N)
t )0≤t≤S are available. If we consider the variable Z defined in Equation (9.1),

we can then obtain the samples Z1, . . . , ZN such that

Zi = sup
0≤t≤S

ϕ(X(i)
t )

The peak over threshold (POT) approach can be then applied to the samples
Z1, . . . , ZN in the same way as described in Section 6.1 for probability or quantile
estimation. The whole procedure is given in Algorithm 20.

9.7.2 Application to a toy case

Brownian bridge
The POT approach is applied to the Brownian bridge case. The parameter û is
estimated with mean excess plot, and the parameters (ξ̂ , β̂(û)) of the generalized
Pareto distribution (GPD) are evaluated with maximum likelihood. The results
obtained with POT are presented in Table 9.9. The conclusions are exactly the same
as for input–output functions. CMC probability estimation is improved with the use
of POT but we must be careful if it is applied on too rare events.

ALGORITHM 20 Peak over threshold technique for probability
estimation with Markov processes

Input: The samples (X(1)t )0≤t≤S , (X(2)t )0≤t≤S , . . . , (X(N )t )0≤t≤S , the threshold T , and the
stopping time S .

Output: The probability estimate P̂POT.
1 Estimate Zi = sup

0≤t≤S
ϕ(X(i )t ), i = 1, . . . , N .

2 Estimate û with Hill plot or the mean excess plot from Z1, . . . , ZN .
3 Estimate (ξ̂ , β̂(û)) by maximum likelihood with samples

{
Zi , Zi > û

}
, i = 1, . . . , N .

4 Estimate P̂POT =
(

1
N
∑N

i=1 1Zi>û

)
× (

1 − Hξ ,β(û)(T − û)
)
.

5 return P̂POT
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Table 9.9 Results of POT for the Brownian bridge

T P̂POT RB (P̂POT) RE (P̂POT) Simulation budget νPOT

2 3.2 × 10−4 −4% 45% 1000 15
3 4.7 × 10−5 320,000% 160% 1000 n/a
2 3.2 × 10−4 −5% 12% 10,000 21
3 1.2 × 10−6 7900% 352% 10,000 n/a

9.7.3 Conclusion

POT is the only method that can be applied when only a fixed set of Markov processes
is available. Nevertheless, the use of POT for probability estimation of too rare events
is not advised even if this estimation is theoretically possible. The main characteristics
of POT are presented in Table 9.10. The application of POT on realistic cases is
advised only when resampling is impossible.

Table 9.10 Summary of POT rare event probability estimation
for Markov processes

Criteria POT characteristics

Rarity of P(R) Possible bias with a weak simulation budget
Simulation budget Can be theoretically applied with any sample size
Type of process Xt No regularity condition on Xt

Dimension of Xt No influence
Probability estimate error Estimation with bootstrap samples
Difficulty of implementation Low; approximate estimation of û with graphical methods
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10Estimation of launch vehicle
stage fallout zone
L. Brevault, M. Balesdent, J. Morio

10.1 Principle

The estimation of launch vehicle fallout safety zone is a crucial problem in aerospace
because a mistake in the estimation potentially involves dramatic repercussions on the
population and the environment. Figure 10.1 illustrates some boosters of NASA Space
shuttle floating in the Atlantic Ocean. For that purpose, an efficient estimation of the
probability that a launch vehicle stage (or boosters) falls at a farther distance than a
given safety limit is strategic for the qualification of such vehicles.

In this chapter, we consider a hypothetical small launch vehicle (∼150 tons) that
lifts off from the European spaceport at Kourou (French Guyana) and aims to deliver
a payload in a polar orbit (altitude of 700 km). This launch vehicle is composed of
three solid propulsion stages. The first and second stages fall back into the Atlantic
Ocean (Figure 10.2), and the third stage is launched into the same orbit as the payload.
We consider in this chapter the fallback zone of the second stage. The second-stage
separation occurs at an altitude of approximately 164 km and with a velocity of
3.7 km s−1. Examples of impact points generated from 500 trials and associated joint
pdf estimated with kde are illustrated in Figure 10.3.

10.2 Simulation description

This case can be modeled as an input–output function φ(·) with the launch vehicle
stage fallback phase initial conditions and several launch vehicle characteristics as
inputs. The input–output function is the integration of the launch vehicle stage
fallback trajectory. The output is the distance between the estimated launcher stage
fallback position and the predicted one. A launch vehicle stage fallback trajectory
simulator developed at Onera is used to estimate the impact points of the second
stage.

The components of the input vector are:

● The stage separation altitude X1 and velocity X2 perturbations. The stage separation can also
vary depending on weather conditions during the atmospheric flight.

● The flight path X3 and azimuth X4 angles at the stage separation (two inputs). These an-
gles characterize the orientation of the stage with respect to the velocity vector at the
stage separation and thus influence the ballistic fallback phase and consequently the impact
position.
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Figure 10.1 Boosters of NASA Space shuttle floating in the Atlantic Ocean © NASA.

° W 90° W 45° W 0°   

Impact points of the stage 2

Figure 10.2 Launch vehicle lift off site (circle) and second-stage impact points (plus).

● The launch vehicle mass X5. The mass of the different parts of the launch vehicle is also
slightly random during the fallback because the propellant might not be totally burned during
the powered flight.

● The weather variations X6. These variations during the fallback can influence the impact
position.

For the sake of clarity, we suppose here that all the random input variables are
independent and follow standard Gaussian laws and that the input–output code
includes the transformation that allows to switch from the standard space to the
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Figure 10.3 Second-stage impact points obtained from 500 random trials and associated joint
pdf (obtained using kde). (a) Impact points. (b) Joint pdf.

physical space in which the launch vehicle mass, altitude, velocity, flight path angle,
azimuth angle, and weather variations evolve.

10.3 Analysis of the input space

Let us consider a distance threshold of 12 km between the predicted and the simulated
impact points. 106 samples have been generated with Crude Monte Carlo (CMC)
and show that the target probability is on the order of 5 × 10−3 with a 1% relative
error. The marginal distributions (obtained with histograms) of the input variables
conditional to the threshold exceedance are given in Figure 10.4. As illustrated in
this figure, the velocity and flight path angle distributions that lead to the considered
event present two symmetric modes. Consequently, approaches based on the use of
parametric pdf, such as cross entropy (CE), must be finely tuned in order to converge.

10.4 Estimation results

A huge CMC of 108 samples is performed with a threshold corresponding to
20 km (Figure 10.5). The probability estimate is 9.9 × 10−7 with a relative standard
error of 10%. We will consider it as a reference probability for this case in
the following discussion. The different available algorithms for rare event prob-
ability estimation are applied 50 times in this case in order to obtain statistics
on their probability estimate. Their performances are analyzed in the following
subsections.
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Figure 10.4 Input variable histograms (in the standard space) of samples that lead to a
threshold exceedance (obtained with T = 12 km and CMC with 106 samples). (a) Altitude
at stage separation: X1. (b) Velocity at stage separation: X2. (c) Flight path angle at stage
separation: X3. (d) Azimuth angle at stage separation: X4. (e) Stage mass variation: X5.
(f) Weather variation: X6.

10.4.1 Adaptive splitting technique

With the notations defined in Section 5.4, the adaptive splitting technique (AST)
parameter tuning that gives the best results for this test case involves:

● Number of samples per iteration N: 1000.
● Value of the quantile parameter (ρ) used to define the intermediary thresholds: 0.7.
● Number of applications of the Markovian kernels during the sample generation step: 2.

The AST probability estimation results are given in Table 10.1. AST closely converges
to the reference probability with a relative bias of 11% and a relative error of 32%,
which is quite large for this application. However, the efficiency with respect to CMC
is relatively important (398). To obtain the same results in terms of relative standard
error with CMC, the simulation budget must be increased by a factor 398. The
evolution of the generated output samples using AST is illustrated in Figure 10.6 for
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Figure 10.5 Predicted launch vehicle stage impact (+) and probability threshold.

Table 10.1 Results obtained with AST for the launcher
stage fallout zone test case

P̂AST RB (P̂AST) RE (P̂AST) Simulation budget νAST

1.1 × 10−6 11% 32% 25,000 398

several iterations. In this test case and with the parameter tuning described previously,
AST converges in 12 iterations.

10.4.2 Importance sampling

Because the failure space is totally unknown, only adaptive importance sampling
techniques (i.e., CE and nonparametric adaptive importance sampling (NAIS)) are
applied to the launch vehicle fallout test case.

10.4.2.1 Nonparametric adaptive importance sampling

The following parameters are used as parameter tunings of NAIS:

● Number of samples per iteration N: 1000.
● Value of the quantile parameter (ρ) used to define the intermediary thresholds: 0.8.
● Type of kernels used as the auxiliary pdf: Gaussian and Laplace.

NAIS is applied to the launch vehicle fallout zone test case with success (see
Table 10.2). Indeed, with a very restricted budget of 5000 samples, this algorithm
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Figure 10.6 Impact positions corresponding to AST-generated samples. (a) Iteration
1—initial samples. (b) Iteration 1—selection of samples. (c) Iteration 4—resampling.
(d) Iteration 4—selection of samples. (e) Last iteration—resampling. (f) Last
iteration—selection of samples.

Table 10.2 Results obtained with NAIS for the launcher stage
fallout zone test case

Kernel P̂NAIS RB (P̂NAIS) RE (P̂NAIS) Simulation budget νNAIS

Gaussian 9.95 × 10−7 0.5% 19% 5000 5102
Laplace 1.06 × 10−6 7% 27% 5000 2834

allows to estimate the probability of interest with very low relative bias (0.5% with
Gaussian kernel and 7% with Laplace kernel) and relative error (19% with Gaussian
kernel and 27% with Laplace kernels, respectively), which results in a very high
efficiency relative to CMC (5102 with Gaussian kernels and 2834 with Laplace
kernels, respectively). The efficiency of the NAIS estimator can be explained by
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Figure 10.7 Histograms of NAIS-generated samples over the iterations (with Gaussian
kernels). (a) X1—iteration 1. (b) X1—iteration 3. (c) X1—iteration 5. (d) X2—iteration 1.
(e) X2—iteration 3. (f) X2—iteration 5. (g) X3—iteration 1. (h) X3—iteration 3. (i)
X3—iteration 5. (j) X4—iteration 1. (k) X4—iteration 3. (l) X4—iteration 5. (m)
X5—iteration 1. (n) X5—iteration 3. (o) X5—iteration 5. (p) X6—iteration 1. (q)
X6—iteration 3. (r) X6—iteration 5.
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the fact that the dimension of the input space is not very important (the dimension
is only 6) and is compatible with the use of kernel-based auxiliary pdf. Moreover,
because the optimal auxiliary pdf is multimodal (see Figure 10.7), NAIS estimates the
probability with accuracy whereas classical CE fails.

10.4.2.2 Cross-entropy optimization

CE is applied to this test case with the following parameter tuning:

● Number of samples per iteration N : 1000.
● Value of the quantile parameter (ρ) used to define the intermediary thresholds : 0.95.
● Type of auxiliary pdf: Gaussian and Laplace. The center and bandwidth of the auxiliary pdf

are optimized.

As illustrated in Figure 10.8, CE succeeds in catching only the most dominant mode
of the optimal auxiliary pdf with Gaussian kernels. This is the result of the static
parameterization of the auxiliary pdf with CE, which in this case is not compatible
with multimodal distributions. This effect is less sensitive with Laplace distribution
because its pdf tail is heavier than the tail of Gaussian pdf (Table 10.3). Thus, CE with
Laplace pdf is able to successfully estimate a valuable probability, but its efficiency is
still lower than NAIS efficiency.
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Figure 10.8 Histograms of CE-generated samples at the last iteration (with Gaussian auxiliary
pdf). (a) X1. (b) X2. (c) X3. (d) X4. (e) X5. (f) X6.

Table 10.3 Results obtained with CE using Gaussian and
Laplace auxiliary pdf of which the center and the
bandwidth are optimized

Aux. pdf P̂CE RB (P̂CE) RE (P̂CE) Simulation budget νCE

Gaussian 6.0 × 10−7 −39% 54% 8000 423
Laplace 9.1 × 10−7 −8% 59% 8000 363
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10.4.3 Directional sampling

Directional sampling (DS) is applied to the launch vehicle stage fallout zone
test case for different numbers of generated directions with the following
tunings:

● Number of directions: 10, 100, 1000, and 10,000.
● Repartition of points on the unit hypersphere: random points uniformly distributed.

The results obtained with DS for different numbers of directions are given in
Table 10.4. The efficiency of DS in terms of relative error particularly depends on the
number of generated directions. Thus, a compromise has to be established between
the simulation budget (i.e., number of directions) and the accuracy of the method.
Nevertheless, for a sufficient number of directions (1000), the efficiency of DS is
analogous to AST in terms of relative error and simulation budget.

Table 10.4 Results obtained with DS for the launcher
stage fallout zone test case

Number of Simulation
directions P̂DS RB (P̂DS) RE (P̂DS) budget νDS

10 7.3 × 10−7 −26% 399% 222 286
100 9.9 × 10−7 0.4% 96% 2537 432
1000 9.4 × 10−7 −6% 32% 26,761 373
1000 1.0 × 10−6 4% 9% 282,650 438

10.4.4 Adaptive directional sampling

Adaptive directional sampling (ADS) is applied to this test case with the following
parameter tuning:

● Same number of samples for all the ADS stages: γ1(N) = γ2(N) = 0.5.
● Number m of cones in the stratification of variable A is set to 2d = 64.

ADS is well adapted to this rare event probability estimation because it is able to
catch the different multiple failure regions as illustrated in Table 10.5. The efficiency
of ADS is of the same order as NAIS and is thus particularly accurate with a small
simulation budget.

Table 10.5 Results obtained with ADS for the launcher
stage fallout zone test case

P̂ADS RB (P̂ADS) RE (P̂ADS) Simulation budget νADS

1.0 × 10−7 7% 27% 3200 4300
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10.4.5 FORM/SORM

The most probable point found by first-order reliability methods (FORM) and second-
order reliability methods (SORM) is given in Table 10.6, and its impact position is
illustrated in Figure 10.9. This point does not correspond to the maximum of impor-
tance sampling auxiliary pdf, which explains the relatively inaccurate results obtained
by FORM and SORM. Because the failure space is not connected, FORM/SORM is
not adapted to this case and does not succeed in estimating a valuable probability
(Table 10.7).

Table 10.6 Coordinates of the
design point

x1 x2 x3 x4 x5 x6

0.45 3.69 2.54 0.30 0.47 −2.34
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Figure 10.9 Impact position relative to the most probable point (∗) and probability threshold.
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Table 10.7 Results obtained with FORM
and SORM for the launcher stage
fallout zone test case

P̂FORM RB (P̂FORM) Simulation budget

1.6 × 10−7 −84% 137

P̂SORM RB (P̂SORM) Simulation budget

2.37 × 10−7 −76% 267

10.4.6 Line sampling

The important direction of line sampling (LS) is determined through the design point
given by FORM. Because FORM is not effective in this case, LS is also inadequate
whatever the simulation budget (Table 10.8). LS enables to sample around only one
of the failure modes and thus a biased probability estimation is obtained.

Table 10.8 Results obtained with LS for the
launcher stage fallout zone test case

P̂LS RB (P̂LS) RE (P̂LS) Simulation budget νLS

2.3 × 10−7 −75% 19% 200 n/a
2.3 × 10−7 −77% 6% 2000 n/a

10.5 Conclusion

The main characteristic of this use case that concerns a launcher fallout zone probabil-
ity estimation is the multimodality of the failure region. Consequently, algorithms that
may only be applied when there is only one main failure mode such as FORM/SORM
or LS are thus not efficient. The most relevant algorithms for this test case are NAIS
and ADS, which are particularly efficient because the input dimension is low. AST,
DS, and CE succeed in estimating the rare event probability but with a lower efficiency
than NAIS and ADS. Because there are several failure modes, CE with unimodal
densities is not completely adapted. This also explains why ADS performs better than
DS. The performance of AST can be considered disappointing relative to the other
methods. This is principally caused by the low dimension of this test case and by the
relatively high required simulation budget to obtain an AST probability estimation.
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11Estimation of collision
probability between space
debris and satellites
J. Morio, J.C. Dolado Pérez, C. Vergé, R. Pastel, M. Balesdent

11.1 Principle

On February 10th, 2009, active commercial satellite Iridium-33 and out-of-order
Russian satellite Cosmos-2251 collided (Kelso, 2009). The impact produced more
than 2000 trackable debris. Most debris can destroy any satellite whether in use
or not that it might encounter. Space debris can in general be from rocket stages,
nonoperational satellites, and fragments from explosions or collisions as illustrated
in Figure 11.1. The safest practice for satellites that encounter space debris is to
avoid collision. Avoidance maneuvers are efficient in reducing the collision proba-
bility between two orbiting objects; nevertheless, they consume fuel, reducing the
operational lifetime of the satellite and disturb its operational mission. Consequently,
teams responsible for satellite safety must determine a satellite’s operational mission
before determining actual collision avoidance maneuver and try to combine, whenever
possible, planned station-keeping maneuvers with collision avoidance maneuvers.
Avoidance maneuvers are based on the estimated collision probability among other
parameters.

In this test case, we consider two spatial objects (a debris object and a satellite)
orbiting around an Earth-centered inertial reference frame. The orbital motion of the
spatial objects is simulated using a simplified deterministic dynamical model that can
be modeled as an input–output function. Their geometry is assumed spherical (i.e.,
the objects have a high tumbling motion when compared with their orbital period)
and we assume that we perfectly know the radius of the sphere and the mass of the
objects. We wonder about the relative position of the satellite and the debris and ask
whether the distance between the two objects could be smaller than a conflict distance
T during the given time span I.

11.2 Simulation description

To model the orbital motion of both space objects, we consider a general perturbation
approach in which the original equation of motion is replaced with an analytical
approximation that captures the essential character of the motion over some limited
time interval, which also enables the determination of analytical integration of the

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
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Figure 11.1 Rocket body explosions © ESA.

equations. SGP4 model (Miura, 2009) is used to propagate the trajectories of debris
and satellite according to the time. At time t, the spatial objects will be represented
by their six-dimensional state vectors �s1(t) and �s2(t), that is, their three-dimensional
position vectors �r1(t) and �r2(t) and their three-dimensional speed vectors �v1(t) and
�v2(t) such that �si = (�ri, �vi). The initial conditions for our example are defined in terms
of two-line elements (TLE), similar to those provided by North American Aerospace
Defense Command (NORAD), as the SGP4 model used for the orbital propagation of
the considered objects. The initial condition value is denoted �sm

i at a given time tmi .
SGP4 is used to propagate the orbit of both space objects through time, denoted by a
scalar continuous function ν such that

∀i ∈ {1, 2}, ∀t ∈ I, �si(t) = ν(�sm
i , tm

i , t),

δ = min
t∈I

{‖�r2 − �r1‖(t)}

The function of time t ∈ I �→ ‖�r2 − �r1‖(t) makes δ available through numerical
optimization in a deterministic approach. Figure 11.2 presents the corresponding
debris and satellite trajectories in an inertial Earth-centered reference frame and
their relative distance as a function of time. In fact, the position and velocity of
space objects are estimated from more or less imprecise measurements. Whereas
the measurement means used for satellites (e.g., GPS, laser) result in a reasonable
orbital accuracy (e.g., several tens of meters), the measurement means used for debris
and uncooperative space objects (e.g., mainly radar and telescopes) could result in
quite imprecise orbits (e.g., several hundred of meters or few kilometers). This lack of
accuracy depends on a high number of factors. TLE sum up this information and feed
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Figure 11.2 Debris and satellite trajectories and their relative distance (in km) in function of
time (in days). (a) Trajectories (scale in km). (b) Relative distance.

the models with the couple (�sm
i , tmi ) for i = 1, 2, but to cope with their uncertainty, we

have added iid Gaussian noises to the model inputs �sm
i .

This case can be modeled as an input–output function where:

● The input X is a 12-dimensional standard multivariate normal random vector that corre-
sponds to the satellite and debris measurement errors on their position and speed. For sim-
plicity, the drag coefficient and the atmospheric effects are considered as perfectly known;
thus, we will not consider these parameters as uncertain.

● The input–output function φ(·) enables to propagate the debris and satellite trajectories with
the SGP4 model during I. The input–output code includes the transformation that allows to
switch from the standard space of the input to the physical space in which the satellite and
debris position and speed evolve.

● The output Y is the minimum distance between the debris and the satellite during I.

In this test case, the quantity of interest is the probability that P(φ(X) < T) = P

(Y < T).

11.3 Analysis of the input space

Let us consider a distance threshold of T = 50 m. 106 samples have been generated
with Crude Monte Carlo (CMC) and show that the target probability is in the
order of 7 × 10−3 with a 2% relative error. The marginal distributions (obtained
with histograms) of the input variables conditional to the threshold nonexceedance
are given in Figure 11.3. Except for X1, the marginal distributions that lead to the
rare event strongly correspond to the initial marginal distributions. The different
correlations between the input components are the most significant contributors to
the reach of the rare event due to high nonlinearity of the function φ(·). This feature
makes the considered rare event probability difficult to estimate in this case.

11.4 Estimation results

A CMC estimation with 107 samples has been performed and enables to estimate
P(Y < T) with T = 10 m. The CMC probability estimate is 4.2 × 10−5 with a 5%
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Figure 11.3 Input variable histograms (in the standard space) of samples that lead to a
threshold nonexceedance (obtained with T = 50 m and CMC with 106 samples). (a) X1.
(b) X2. (c) X3. (d) X4. (e) X5. (f) X6. (g) X7. (h) X8. (i) X9. (j) X10. (k) X11. (l) X12.

relative error. This value corresponds to a reference probability for the estimation
of the different algorithm bias. All the different available algorithms for rare event
probability estimation are applied 50 times in order to obtain statistics on their
probability estimate. Their performances are analyzed in the following subsections.

11.4.1 Adaptive splitting technique

With the notations defined in Section 5.4, the adaptive splitting technique (AST)
parameter tuning that give the best results for this test case are:

● Number of samples per iteration N: 1000.
● Value of the quantile parameter (ρ) used to define the intermediary thresholds: 0.7.
● Number of applications of the Markovian kernels during the sample generation step: 2.

The AST probability estimation results are given in Table 11.1. AST is applied to
the debris-satellite collision case with success. This algorithm allows to estimate the
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Table 11.1 Results obtained with AST for the
debris-satellite collision case

P̂AST RB (P̂AST) RE (P̂AST) Simulation budget νAST

5.2 × 10−5 20% 22% 19,000 25

probability of interest with a valuable efficiency. AST converges in eight iterations to
the target probability with a relative bias of 20% and a relative error of 22%.

11.4.2 Importance sampling

Only adaptive importance sampling techniques (i.e., CE and nonparametric adaptive
importance sampling (NAIS)) can be applied to this case because the failure space is
not known a priori.

11.4.2.1 Nonparametric adaptive importance sampling

Whatever the parameter tuning used for NAIS, this algorithm has not been able to
converge in 100 iterations with a simulation budget of 105 samples. The dimension of
the input space is too large for a potentially efficient application of NAIS in this case.

11.4.2.2 Cross-entropy optimization

Cross entropy (CE) is applied to this debris-satellite case with the following parameter
tuning:

● Number of samples per iteration N : 1000.
● Value of the quantile parameter (ρ) used to define the intermediary thresholds: 0.95.
● Types of auxiliary pdf: Gaussian and Laplace. The center and bandwidth of the auxiliary

pdf are optimized.

The probability estimates obtained with CE are indicated in Table 11.2. CE converges
but estimates the target probability with a very significant bias. The strong noncon-
nectivity of the failure space explains why CE is not adapted to this case and is not
able to capture its different modes.

Table 11.2 Results obtained with CE using Gaussian and
Laplace auxiliary pdfs of which the center and the
bandwidth are optimized

Aux. pdf P̂CE RB (P̂CE) RE (P̂CE) Simulation budget νCE

Gaussian 2.5 × 10−10 −100% 203% 4000 n/a
Laplace 6.2 × 10−9 −99% 183% 8000 n/a
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11.4.3 Directional sampling

Directional sampling (DS) is applied to the debris-satellite case for different numbers
of generated directions, with the following parameters:

● Number of directions: 10, 100, 1000, and 10,000.
● Repartition of points on the unit hypersphere: random points uniformly distributed.

Table 11.3 presents the different results obtained with DS. The DS probability
estimates are biased positively because the assumptions used in DS are not valid.
With the notations of Section 7.3, we notice that 1 − FR2(r2

j ) is not a good estimate
of P(φ(RA) < T|A = Aj) because there exists r′j > rj such that 1φ(r′jAj)<T = 0. The

lower the difference r′j − rj, the worse is the approximation 1 − FR2(r2
j ).

Table 11.3 Results obtained with DS for the debris-satellite case

Number of
directions P̂DS RB (P̂DS) RE (P̂DS) Simulation budget νDS

10 8.9 × 10−3 20,977% 309% 234 n/a
100 4.5 × 10−3 10,635% 106% 2422 n/a
1000 5.2 × 10−3 12,387% 30% 23,451 n/a
10,000 4.9 × 10−3 12,434% 14% 282,650 n/a

11.4.4 Adaptive directional sampling

Adaptive directional sampling (ADS) requires a simulation budget that is too impor-
tant to be applied to this debris-satellite case. Indeed, the number m of cones in the
stratification of variable A is set to 212 = 4096. With N = 20 samples per cone, ADS
needs 163,840 samples for one probability estimation. The dimension of the input is
too important for an efficient application of ADS. Moreover, in the same way as DS,
the probability approximation with the chi-squared distribution is not valid.

11.4.5 FORM/SORM

First-order reliability method (FORM) and second-order reliability method (SORM)
do not succeed to estimate a valuable debris-satellite collision probability. Indeed, the

Table 11.4 Results obtained with FORM and
SORM for the debris-satellite case

P̂FORM RB (P̂FORM) Simulation budget

0.13 285,330% 186

P̂SORM RB (P̂SORM) Simulation budget

6.32 × 10−3 13,595% 90
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FORM/SORM estimates are positively biased as summarized in Table 11.4, because
the failure space is disconnected and its limit state surface is strongly nonlinear.

11.4.6 Line sampling

In the same way as FORM/SORM, LS is not efficient to estimate this debris-satellite
collision probability (see Table 11.5). The important direction of LS is determined
through the design point given by FORM, which is not effective on this case.
Moreover, the approximation of Equation (7.5) is not true since there is not one unique
intersection between the input failure region and the chosen sampling direction.

Table 11.5 Results obtained with LS for the
debris-satellite case

P̂LS RB (P̂LS) RE (P̂LS) Simulation budget νLS

3.9 × 10−3 9171% 25% 200 n/a
3.7 × 10−3 8612% 6% 2000 n/a

11.5 Conclusion

AST is the only algorithm that is able to estimate with accuracy the target probability
of this debris-satellite case, which is a very complex because the failure space
is disconnected and relatively high-dimensional. Moreover, the reach of the rare
event results mainly from specific combinations of input components. Most of the
approximations made in rare event probability estimation techniques such as DS,
ADS, FORM/SORM, and LS are not valid, and these algorithms result in biased
estimates. Moreover, finding an efficient IS auxiliary distribution is also too complex
with NAIS or CE because of the input dimension and the disconnected failure space.
AST does not require any hypothesis and is well adapted to the cases where d > 10.
The efficiency of AST compared to CMC is medium (about 25 for the chosen
probability estimate), but this latter will increase if the target probability decreases.
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12Analysis of extreme aircraft
wake vortex circulations
J. Morio, I. De Visscher, M. Duponcheel, G. Winckelmans,
D. Jacquemart, M. Balesdent

12.1 Principle

As a consequence of its take-off, an aircraft generates a complex turbulent wake
emanating from the wing and horizontal tail plane. This wake rolls up to form
a pair of counter-rotating vortices in the far field (Figure 12.1) and lasting for
several minutes after the aircraft has flown by an object. Those vortices whose initial
circulation and lateral spacing depend on the aircraft characteristics are transported
and decay depending on the environmental conditions (wind, turbulence, temperature
stratification, and ground proximity). The initial circulation of the vortices, �0, is
related to the aircraft weight, flight speed, wing span, and wing loading through
�0 = W

ρ V s b with W the aircraft weight, V its flight speed, b its span, ρ the air density,
and s the spacing factor defined as the ratio between vortex lateral spacing and aircraft
span, which depends on the wing loading. A following aircraft’s encounter with such
a vortex pair can be hazardous because of the induced rolling moment and downwash
velocity. The related wake hazard is at the origin of the separations to be applied
between a landing or departing aircraft. Nevertheless, the increased air traffic in recent
years makes these separation standards a limiting factor for the capacity of the busiest
airports. A solution to airport congestion is thus to reduce some of the separation
minima while at least maintaining the current safety level. For that purpose, a deeper
understanding of the behavior of wake vortices and their interactions with a following
aircraft is needed. This requires characterizing the potential encounter of wake vortex
circulation, including the extreme cases with very low decay, as leading to the highest
possible circulation at the time of encounter.

12.2 Simulation description

A wake vortex prediction tool, called the deterministic wake vortex model (DVM),
has been developed at Université Catholique de Louvain (UCL) to predict the
behavior of aircraft wake vortices. DVM uses several simplified physics-based models
(described in De Visscher, Bricteux, & Winckelmans, 2013; De Visscher, Lonfils, &
Winckelmans, 2013; De Visscher et al., 2010) to forecast in real time the transport
and circulation decay of wake vortices depending on the aircraft that generates
them and on the environmental conditions (meteorological conditions and ground

Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems
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Figure 12.1 Illustration of the wake roll-up behind an aircraft (Simulation by
G. Daeninck, UCL).

proximity). From a more practical point of view, DVM consists of a scalar input–
output function. The uncertain input parameters, considered for this study, are the
aircraft weight, the vortex spacing factor, and the lateral wind. The simulation code
also considers other parameters for the aircraft’s characteristics (wingspan, flight
angles, etc.) and meteorological conditions (e.g., headwind, atmospheric turbulence,
thermal stratification), but they are assumed to be set in the considered scenario. It is
to be noted that the dimensionless coefficients of the simplified physical models used
in DVM can also be varied, but those variations are not considered here. The output
analyzed here is the total wake vortex circulation that characterizes the vortex strength
at a given time after the aircraft has flown by.

In the chosen scenario, the aircraft has the following characteristics:

● Its wingspan is 79.75 m.
● Its weight is uncertain and follows a uniform law on the interval U[0.75×MLW,0.95×MLW], with

maximum landing weight (MLW); the aircraft MLW is set to 386,000 kg.
● The aircraft flies at an altitude of 80 m, thus close to ground.
● The aircraft flight speed is 70 m s−1.

The spacing factor of the wake vortex follows a uniform law on U[0.7,0.9]. Only the
crosswind is considered. Its speed at 10 m high is described by a normal density
of mean value 1.75 m s−1 and standard deviation 0.3 m s−1. The whole wind profile
follows a logarithmic layer wind profile (“Manual on Low-level Wind Shear”, 2005).

In this chapter, we assume that only some crude Monte Carlo (CMC) samples of the
total wake vortex circulation in a given scenario are available and no new CMC sample
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can be then obtained. The only possible method to obtain a probability estimate of a
high threshold exceedance in this case is the extreme value theory (EVT). It is indeed
able to cope with a fixed set of samples.

12.3 Estimation results

A set of 10,000 iid samples Y1, Y2, . . . , YN of the total wake vortex circulation is
available. The sample set corresponds to CMC samples of the left wake vortex cir-
culation 60 s after its generation. The resulting histogram is presented in Figure 12.2.
From this set of 10,000 samples, we have used a bootstrap procedure, 100 sets
of N = 100, 1000, 5000 samples. The EVT—and, more precisely, the peak over
threshold (POT) approach—is applied to these sets of samples. The parameter û of
the generalized Pareto distribution (GPD) is estimated using the mean excess plot
that is defined by (u,E (Y − u|Y > u)). Figure 12.3 presents the mean excess plot on
the samples that lead to the threshold û = 655 m2 s−1. The parameters (ξ̂ , β̂(û)) of
the GPD are then evaluated with maximum likelihood. The different results obtained
with POT are presented in Table 12.1.

Because the different probabilities that are considered are not known, their true
value is replaced by their estimate obtained with the 10,000 samples to characterize
RE (P̂POT) and RB (P̂POT). Then the relative deviation RE (P̂POT) and bias RB (P̂POT)
of the probability are estimated using the bootstrap procedure. This approach is also
applied for the CMC probability estimation results.

Different sample sizes are simulated in order to analyze the size influence on the
accuracy of the probability estimate. For comparison, CMC probability estimates
are also given in Table 12.2. EVT enables to decrease the relative error of CMC
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Figure 12.2 Histogram of CMC samples Y1, Y2, . . . , YN . The wake vortex circulation is
in m2 s−1.
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Figure 12.3 Mean excess plot of samples Y1, Y2, . . . , YN . u is in m2 s−1.

Table 12.1 Results of POT for the wake vortex test case

T P̂POT RB (P̂POT) RE (P̂POT) Simulation budget νPOT

650 2.9 × 10−2 7% 18% 100 10.3
675 9.4 × 10−3 135% 81% 100 n/a
700 8.7 × 10−4 210% 450% 100 n/a
725 8.9 × 10−4 2019% 603% 100 n/a
650 2.8 × 10−2 8% 9% 1000 4.1
675 5.3 × 10−3 33% 35% 1000 1.9
700 3.2 × 10−4 16% 138% 1000 1.7
725 2.1 × 10−4 402% 434% 1000 n/a
650 2.9 × 10−2 5% 4% 5000 4.1
675 4.2 × 10−3 6% 20% 5000 1.3
700 3.2 × 10−4 15% 61% 5000 1.7
725 2.8 × 10−5 −33% 128% 5000 4.4

estimations for a given simulation budget. Nevertheless, this estimation appears to
be biased when the available simulation budget is too low.

12.4 Conclusion

EVT proposes a valuable probability estimate on a fixed set of N samples when the

target probability does not exceed approximately 10−2

N in practice. For rare events, a
bias can appear in the estimate, and we must be cautious about its validity. The use of



Analysis of extreme aircraft wake vortex circulations 181

Table 12.2 Results of CMC for the wake vortex
test case

T P̂CMC RB (P̂CMC) RE (P̂CMC) Simulation budget

650 3.4 × 10−2 14% 58% 100
675 3.8 × 10−3 −6% 153% 100
700 2.0 × 10−4 −29% 703% 100
725 1.0 × 10−4 92% 1022% 100
650 2.7 × 10−2 −7% 18% 1000
675 3.8 × 10−3 −5% 55% 1000
700 1.8 × 10−4 36% 241% 1000
725 3.0 × 10−5 −29% 571% 1000
650 3.0 × 10−2 4% 9% 5000
675 3.9 × 10−3 −3% 21% 5000
700 2.7 × 10−4 −4% 80% 5000
725 5.2 × 10−5 19% 175% 5000

EVT on this typical fixed-sample set scenario is nevertheless mandatory to improve
the CMC estimation method even if one has to be careful on the tunings of EVT
parameters.

References

De Visscher, I., Bricteux, L., and Winckelmans, G. (2013). Aircraft vortices in stably stratified
and weakly turbulent atmospheres: Simulation and modeling. AIAA Journal, 51(3),
551–566.

De Visscher, I., Lonfils, T., and Winckelmans, G. (2013). Fast-time modeling of ground effects
on wake vortex transport and decay. Journal of Aircraft, 50(5), 1514–1525.

De Visscher, I., Winckelmans, G., Lonfils, T., Bricteux, L., Duponcheel, M., and Bourgeois, N.
(2010). The WAKE4D simulation platform for predicting aircraft wake vortex transport
and decay: Description and examples of application. In AIAA atmospheric and space
environments conference. August. Toronto, Ontario, Canada. Paper AIAA 2010-7994.

Manual on low-level wind shear [Computer software manual]. (2005). (Doc 9817- AN/449)

http://refhub.elsevier.com/B978-0-08-100091-5.00012-5/rf0010
http://refhub.elsevier.com/B978-0-08-100091-5.00012-5/rf0015
http://refhub.elsevier.com/B978-0-08-100091-5.00012-5/rf0020


This page intentionally left blank



13Estimation of conflict probability
between aircraft
J. Morio, D. Jacquemart, M. Balesdent

13.1 Principle

A flight plan consists of a sequence of waypoints and speeds along the trajectory. It
ensures that the aircraft can safely reach its destination and complies with air traffic
control requirements in order to minimize the risk of midair collision. Deterministic
trajectory of an aircraft is governed by flight mechanics equations. However, the
large number of involved parameters, particularly because of the wind and of the
tracking, navigation, and control error, makes the trajectory prediction inexact, and
random patterns must be considered. An illustration of aircraft conflict is shown in
Figure 13.1.

An aircraft trajectory is well modeled by a stochastic process in continuous time
(Prandini, Hu, Lygeros, & Sastry, 2000). A first approach is to include randomness to
the flight mechanics equations describing the aircraft motion (Blom, Bakker, Everdij,
& Park, 2003). Another method (Hu, Lygeros, Prandini, & Sastry, 1999; Paielli &
Erzberger, 1997, 1999) consists in superimposing a stochastic component to the
nominal aircraft motion. This chapter uses the latter idea.

More precisely, we assume that the three-dimensional position of an aircraft at time
t is given by the following drifted Brownian motion,

dXt = v dt + σ t dWt (13.1)

where v is a three-dimensional speed vector, σ t is a correlation matrix, and Wt is a
standard three-dimensional Brownian motion. The initial position is given by some
X0. The cross-correlation between the along track and cross-track error is small
enough to be considered null. The vertical position error can be negligible when
compared to the along track and cross-track position error (Paielli & Erzberger,
1997). If we assume that the aircraft has a constant speed v = ‖v‖ in a coordinate
system in which the abscissa axis is parallel to the aircraft trajectory, we have
Xt = (X(a)

t , X(c)
t , X(v)

t )T where⎧⎪⎨⎪⎩
dX(a)

t = v dt + ga(t) dW(a)
t

dX(c)
t = gc(t) dW(c)

t

dX(v)
t = 0

(13.2)
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Figure 13.1 Conflict between aircraft. Uncertainty bubbles at time T1, T2, T3. (Courtesy of
A. Joulia, Onera).

and W(a)
t and W(c)

t are two independent standard one-dimensional Brownian motions,
with W(a)

0 = W(c)
0 = 0 and X(a)

t , X(c)
t , and X(v)

t denote the along track, cross-track, and
vertical positions, respectively.

As commonly assumed (Blom, Krystul, Bekker, Klompstra, & Klein Obbink,
2007; Prandini, Blom, & Bakker, 2011), the relative mean square error of the distance
between the expected and real positions of an aircraft is linear with the time t. The
slope equals ra = 0.25 nautical miles per minute (nmi min−1) in the along track
direction and rc = 0.2 nmi min−1 in the cross-track direction.

We thus must determine some functions ga and gc so that

x(a)t = x(a)0 + vt +
∫ t

0
ga(s) dW(a)

s ∼ N
(
vt, (rat)2

)
and

x(c)t = x(c)0 +
∫ t

0
gc(s) dW(c)

s ∼ N
(

0, (rct)2
)

With Itō’s isometry, checking that the following two functions satisfy the problem is
straightforward

ga(t) = ra
√

2t, gc(t) = rc
√

2t

Finally, if the speed vector v has angles θ1 and θ2 with the horizontal and the vertical
axes, the aircraft position is obtained by applying the corresponding rotation matrix.
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13.2 Simulation description

We consider a two-aircraft scenario with a given flight plan. The simulated time
horizon is 20 min and the speed of the aircraft is set to 20 nmi min−1 (see Figure 13.2).
The left panel presents a top view of the two aircraft trajectories, and the right panel
describes the separation distance between aircraft as a function of time. For both
panels, the dashed lines are the expected position and the expected separation distance.
The continuous curves are a realization of the random trajectory of the aircraft given
in Equation (13.1).

We are interested in estimating the probability that the distance between aircraft is
lower than a given separation distance T during the flight duration S, that is,

P(R) = P

({
‖X1

t − X2
t ‖ ≤ T , for some t ≤ S

})
(13.3)

where X1
t and X2

t denote the position of aircraft 1 and 2, respectively. It is straightfor-
ward that Equation (13.3) can be rewritten with the ϕ(·) function defined by

ϕ :

{
R3 × R3 −→ R+

(X1, X2) �−→ ‖X1 − X2‖ (13.4)

We conclude for any T ≥ 0 that

R =
{

inf
0≤t≤S

ϕ(X1
t , X2

t ) ≤ T

}
(13.5)

13.3 Estimation results

The different algorithms proposed in Chapter 9 are applied to estimate P(R). For each
algorithm, the stochastic process (13.1) is implemented using the Euler scheme with
a discretization step � = 0.05 min. Each estimation is performed with 50 retrials. A
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Figure 13.2 Aircraft positions (a) and separation distance as functions of time (b). The
expected position and separation distance are in dashed lines, and the true position and
separation distance are in continuous lines.
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one-shot crude Monte Carlo (CMC) estimation of 108 samples is performed and shows
that the target probability is approximately 2.26 × 10−6. We will take this probability
as a reference to estimate RE and RB for the different methods.

13.3.1 Importance splitting

General adaptive importance splitting algorithm (GAISA) is well adapted to Marko-
vian simulation model. It is applied with the following parameters: the sample number
Ñ is set to Ñ = 0.1 × N, and the quantile parameter ρ is equal to 0.5. Several GAISA
sample paths are illustrated in Figure 13.3. Tuning of GAISA parameters is not
complicated because their influence is not very important on the estimation accuracy.
GAISA converges to the expected probability with a high efficiency compared to
CMC (Table 13.1).
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Figure 13.3 Typical distance processes obtained with GAISA.

Table 13.1 Results obtained with GAISA for aircraft collision case

P̂GAISA RB(P̂GAISA) RE(P̂GAISA) N Simulation budget νGAISA

1.22 × 10−6 −45% 256% 100 685 98
2.22 × 10−6 −1% 174% 1000 6295 23
2.28 × 10−6 1% 42% 10,000 6.1 × 104 40

13.3.2 Weighted importance resampling

Weighted importance resampling (WIR) is also applied to the aircraft collision case.
The parameter α must be tuned in this algorithm and has a high influence on the
estimated probabilities. About 60, 000 samples are necessary in this use case to
determine an efficient value with α = 1.14. Table 13.2 shows the results for different
budgets and α values. Moreover, typical stochastic processes obtained with WIR are
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Table 13.2 Results obtained with WIR for aircraft
collision case

P̂WIR α RB (P̂WIR) RE (P̂WIR) N νWIR

2.08 × 10−6 1.14 −11% 55% 1000 1467
2.10 × 10−6 1.14 −10% 16% 10,000 1728
2.10 × 10−6 1.14 −10% 6% 100,000 1229
2.10 × 10−6 0.5 −10% 47% 100,000 20
1.65 × 10−6 2 −26% 60% 100,000 12.3
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Figure 13.4 Typical distance processes obtained with WIR.

given in Figure 13.4. The tuning of α may be complicated and has a significant
influence on the probability estimation, but if this parameter is accurately determined,
the performances of WIR algorithm are very high comparatively to CMC and even
GAISA.

13.4 Conclusion

For this use case, only two simulation techniques are adapted. Indeed, CMC is
computationally intractable for this magnitude order of target probability. Moreover,
it is impossible to find an efficient importance sampling (IS) distribution because of
the distance process complexity and the problem dimensionality in the Markov space.
Nor is extreme value theory adapted when resampling is possible and therefore has
not been applied considered. Only WIR and GAISA can be applied with efficiency
to estimate the probability of aircraft conflict proposed in this chapter and obtain
accurate results. WIR is the most efficient method but needs the fine-tuning of a
selection parameter α that significantly influences the WIR probability relative error.
A simulation budget required to determine an efficient α must be considered. On the
contrary, GAISA is more robust to its different parameter variation, but if it is well-
tuned GAISA seems to give less accurate results than WIR.
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14Synthesis of rare event
probability estimation methods
for input–output systems
J. Morio, M. Balesdent

14.1 Synthesis

This book presents an overview of the different possible algorithms that are applicable
to the estimation of rare event probabilities modeled by a threshold exceedance
of an input–output function φ(·). In general, we advise to consider the following
algorithms in order to improve the probability estimation accuracy of crude Monte
Carlo (CMC): nonparametric adaptive importance sampling (NAIS), cross entropy
(CE), adaptive splitting technique (AST), first-order reliability method/second-order
reliability method (FORM/SORM), line sampling (LS), directional sampling (DS),
adaptive directional sampling (ADS), extreme value theory (EVT), and their potential
association with a surrogate model. The algorithm domain of applicability can vary
significantly from one algorithm to another (Table 14.1).

The proposed synthesis consists of a series of questions that can help the reader to
choose the appropriate methods for a specific estimation problem.

1. Is the function φ(·) available to sample the output? If resampling is not possible, that is, if
we consider a fixed set of samples φ(X1), . . . ,φ(XN), the only available method is EVT. A
surrogate model could also be built if the samples X1, . . . , XN are also known, thus enabling
to estimate the rare event probability with the surrogate model instead of the true function
φ(·). Notice that in that case, there might be a high risk of biased estimation if the surrogate
is not accurate in the relevant zones for rare event estimation. If resampling is possible, the
other proposed algorithms should be considered.

2. Is the input failure region multimodal? If so or if the answer to this question is not known,
the use of first-order reliability method (FORM), second-order reliability method (SORM),
or LS is not advised. CE can cope with a multimodal failure region if its parametric density
family is well tuned. The other algorithms can deal with multimodal failure region.

3. What is the dimension d of the input? If d < 10 (value given as an order of magnitude),
NAIS, ADS, CE, LS, FORM, and SORM are often very efficient on very general functions
φ(·). AST and DS are applicable but are not the best estimation techniques. If 10 < d < 30
(values given as an order of magnitude), AST, CE, DS, LS, and FORM/SORM are the
most efficient algorithms. If d > 30, AST, LS, and FORM/SORM are the most appropriate
techniques. Consider the opportunity of performing sensitivity analysis to reduce the input
dimension.
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4. What is the available simulation budget N? If N < 1000 (value given as an order of
magnitude), FORM/SORM, LS, DS, or ADS must be used. Also CE, NAIS, and AST can
be applied when N < 1000 and jointly used with a surrogate model. If N > 1000 (value
given as an order of magnitude), CE, NAIS, and AST can then be applied, but LS, DS, or
ADS are still efficient. When FORM/SORM requires more than 1000 samples, this is often
because it has not converged.

5. Is the function φ(·) highly nonlinear? Surrogate model and FORM/SORM can induce a bias
in the estimation and must be applied carefully. The probability approximation proposed in
LS, DS, and ADS also might be not accurate.

6. Is a control of the estimation error required? If so, FORM/SORM could not be applied.
Depending on the algorithms, the estimation error can be estimated with retrials or an
analytical formula.

14.2 Some remarks for a successful practical rare event
probability estimation

The following are some tips for estimating rare event probability successfully:

● Pay great attention to the computer code modeling and the joint pdf input definition (partic-
ularly the statistical dependence between the inputs).

● Learn some computer code characteristics (the most influential parameters, etc.).
● If the simulation budget is restrained, consider the use of a surrogate model instead of the

complex function φ(·) for the probability estimation. For high-dimensional systems, evalu-
ate a possible reduction of the input dimension. In both cases, be aware that it could result
in a biased probability estimate.

● Avoid the use of algorithms unadapted to the structural characteristics of the input space or
of the input–output function (e.g., application of NAIS on a high-dimensional system).

● Using your experience, tune the parameters of the algorithms if the simulation budget is
important (the parameter tuning proposed in this book is of course not optimal for all situa-
tions).

● Characterize the estimation of the rare event probability by an error indicator (a relative
error, a bound, etc.).

● Be sure that the input–output function’s domain of definition is well characterized. Indeed,
because most of the rare event estimation techniques generate samples in zones that are
not usually activated for classical use of the black-box function, we must verify that this
function will provide consistent results in these zones.
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Table 14.1 Synthesis table

Impossibility of
resampling

Failure region
disjoint; info
not available

Dimension d

(order of
magnitude)

Simulation
budget N

Control of
estimation
error φ Nonlinear

Potential
efficiency

NAIS × √
<10 >1000 (<1000

with surrogate)
Analytic
formula or
retrials

√
+++

CE × × <30 >1000 (<1000
with surrogate)

Analytic
formula or
retrials

√
+++

AST × √ ≥1 >1000 (<1000
with surrogate)

With retrials
√

++

FORM/SORM × × ≥1 >10 Impossible × not
applicable

LS × × ≥1 >100 With retrials × ++
DS × √

<30 >1000 With retrials × ++
ADS × √

<10 >100 With retrials × +++
EVT

√ √ ≥1 >100 With bootstrap
√

+

“
√

”—The method presents some advantages for the characteristic being considered.
“×”—The method presents some drawbacks for the characteristic being considered.
+++: very good; ++: good; +: medium.
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15Synthesis for time-variant
systems
D. Jacquemart, J. Morio, M. Balesdent, F. Le Gland

15.1 Synthesis

Over the past 50 years, different algorithms have been worked out for the probability
estimation of identifying a rare set in a dynamic Markov framework. Selecting the
most adapted method for the problem modeling requires a study of the state of the art.
In our opinion, four main algorithms can be considered for rare event probability esti-
mation: extreme value theory (EVT), importance sampling (IS), weighted importance
resampling (WIR), and general adaptive importance splitting algorithm (GAISA). IS
can provide accurate results in some cases, especially when the state spaced is finite
or countable. Otherwise, GAISA and WIR algorithms are often preferable. To choose
the best adapted algorithm for a given case, we propose a decision tree (Figure 15.1).
Some information on the different leaves of this decision tree are given in the
following.

● Leaf 1. EVT is the only alternative when no resampling is possible. It can also be viewed
as a quick estimation to get a rough idea of the order of magnitude of the probability of
interest.

● Leaf 2. Because of the broad diversity of complex problems, there is, to our knowledge, no
specific procedure for such a case in the literature. If the simulation time is continuous and
if the rare event is modeled by a threshold exceedance of a real score function ϕ, GAISA
techniques can be used. A continuous time interpolation makes a splitting plan possible,
setting Xt = Xi/n for i/n ≤ t < (i + 1)/n with a score function ϕ. IS can be efficient on a
case-by-case basis for finite or countable state spaces if we have a good idea of auxiliary
sampling distributions.

● Leaf 3. For time continuous problems and for rare events that are modeled by a threshold
exceedance of a real score function ϕ, GAISA can be applied. For discrete time processes,
WIR algorithm is efficient, especially more than GAISA, but we must choose its parameter
tuning properly. The same continuous time interpolation as for Leaf 2 is required when using
a splitting plan.

● Leaf 4. Efficient IS algorithms have been worked out and are often considered in practice.
GAISA can also be applied for real function threshold exceedance characterization of the
rare event. Even if the WIR algorithm is tractable, its use is not always recommended in this
case because of its sensitive tunings in comparison with IS algorithms.

● Leaf 5. The implementation of splitting requires an easy tuning and is the best candidate.
Stopping time S can be either random or deterministic.
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Figure 15.1 Algorithm decision tree for rare event probability estimation of time-variant
systems (Homogen. = Homogeneous and Determin. = Deterministic).

● Leaf 6. GAISA algorithm with a time continuous interpolation of the process will provide
good results. An IS plan is still possible, but determining an efficient auxiliary distribution
is a complicated task in general.

● Leaf 7. GAISA and WIR algorithms are both tractable. WIR is possibly difficult to tune
correctly and efficiently. Nevertheless, if WIR is well tuned, it often performs better than
GAISA.

15.2 Some remarks for a successful practical rare
event probability estimation

The following are some things to know in order to estimate rare event probability
successfully:

● Pay attention to the transition kernel modeling, particularly the tail.
● For time-continuous processes, remember that the discretization step tuning is a trade-off

between computational time and probability bias.
● Tune the parameters of the probability estimation algorithms if the simulation budget is

important. If the simulation budget is limited, it is more often adapted to the use of GAISA
than WIR.

● Be careful when using IS. Most of the time, defining an efficient auxiliary sampling distri-
bution is complicated.

● Characterize the estimation of the rare event probability with an error indicator (a relative
error, a bound, etc.).



Index

Adaptive directional sampling, 101, 165, 174
Adaptive splitting technique, 68, 143,

160, 172
ANOVA, 112
Antithetic variates, 52

Central limit theorem, 25
Conditional Monte Carlo, 49
Conditional probabilities, 7, 49, 68
Continuous random variables, 8
Control variates, 50
Correlation coefficients, 115
Covariance matrix, 12
Cross-entropy optimization, 60, 164, 173
Crude Monte Carlo, 45, 138, 159, 171,

179, 185
Cumulative distribution function, 8, 46,

63, 65

Directional sampling, 94, 165, 174

Efficiency, 37
Entropy, 9, 12
Expectation, 9, 11
Exponential twisting, 57
Extreme value theory, 77, 150, 179

First Order / Second Order Reliability
Methods, 87, 166, 174

General adaptive importance splitting
algorithm, 145, 186

Geometrical methods, 106

Importance sampling, 53, 140
Input-output system, 33, 41, 157, 169

Kernel-based laws, 23, 64
Kriging, 124
Kullback-Leibler divergence, 60, 83

Large deviation theory, 58, 82, 147
Latin Hypercube Sampling, 100

Line sampling, 91, 167, 175
Logarithmic efficiency, 37

Markov Process, 26, 34, 137, 183
Mean Integrated Squared Criterion, 23
Mean translation, 56
Median, 10
Metropolis-Hastings algorithm, 28, 69
Mode, 10
Morris method, 116

Non parametric adaptive importance
sampling, 64, 161, 173

One At a Time sensitivity method, 116

Partial correlation coefficients, 115
Point estimation, 14
Probability density function, 8

Quantile, 10, 46, 55, 63, 65, 70, 80
Quasi-Monte Carlo, 48

Relative bias, 36
Relative error, 36

Scaling, 56
Sensitivity analysis, 109
Sobol indices, 111
Standardized Regression Coefficients, 113
Statistical dependence, 12
Stratified sampling, 98
Strong law of large numbers, 24,

45, 82
Support Vector Machines, 117

Time-variant system, 34, 137, 183

Variance, 9, 36

Weighted importance resampling,
147, 186




	Front Cover
	Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach
	Copyright
	Dedication
	Contents
	Preface
	Foreword
	Biography of the external contributors to this book
	Abbreviations
	Chapter 1: Introduction to rare event probability estimation
	1.1 The book purposes
	1.2 What are the events of interest considered in this book?
	1.3 The book organization
	 References

	Part One: Essential Background in Mathematics and System Analysis
	Chapter 2: Basics of probability and statistics
	2.1 Probability theory operators
	2.1.1 Elements of vocabulary
	2.1.2 Notion of dependence of random events andconditional probabilities 
	2.1.3 Continuous random variables
	2.1.3.1 Definitions
	2.1.3.2 Parameters of continuous random variables

	2.1.4 Continuous multivariate random variables
	2.1.4.1 Definitions and theorems
	2.1.4.2 Dependence of multivariate random variables 

	2.1.5 Point estimation 

	2.2 Random variable modeling
	2.2.1 Overview of common probability distributions
	2.2.1.1 Univariate distributions
	Uniform distribution
	Exponential distribution
	Gaussian distribution
	Truncated Gaussian distribution
	Log-normal distribution
	Cauchy distribution
	Chi-squared distribution
	Gamma and beta distributions
	Laplace distribution
	Some properties of univariate distributions

	2.2.1.2 Multivariate distributions
	Multivariate normal distribution


	2.2.2 Kernel-based laws

	2.3 Convergence theorems and sampling algorithms
	2.3.1 Strong law of large numbers 
	2.3.2 Central limit theorem 
	2.3.3 Simulation of complex laws using the Metropolis–Hastings algorithm
	2.3.3.1 Markov chain
	2.3.3.2 Some properties of transition kernels
	2.3.3.3 The Metropolis–Hastings algorithm 
	2.3.3.4 Transformation of random variables


	 References

	Chapter 3: The formalism of rare event probability estimation in complex systems
	3.1 Input–output system
	3.1.1 Description
	3.1.2 Formalism

	3.2 Time-variant system
	3.2.1 Description
	3.2.2 Formalism

	3.3 Characterization of a probability estimation
	 References


	Part Two: Practical Overview of the Main Rare Event EstimationTechniques
	Chapter 4: Introduction
	4.1 Categories of estimation methods
	4.2 General notations
	4.3 Description of the toy cases
	4.3.1 Identity function
	4.3.2 Polynomial square root function
	4.3.3 Four-branch system
	4.3.4 Polynomial product function

	 References

	Chapter 5: Simulation techniques
	5.1 Crude Monte Carlo
	5.1.1 Principle
	5.1.2 Application on a toy case
	Four-branch system

	5.1.3 Conclusion

	5.2 Simple variance reduction techniques
	5.2.1 Quasi-Monte Carlo
	5.2.2 Conditional Monte Carlo
	5.2.2.1 Principle
	5.2.2.2 Conclusion

	5.2.3 Control variates
	5.2.3.1 Principle
	5.2.3.2 Application on a toy case
	Four-branch system

	5.2.3.3 Conclusion

	5.2.4 Antithetic variates
	5.2.4.1 Principle
	5.2.4.2 Application to a toy case
	Identity function

	5.2.4.3 Conclusion


	5.3 Importance sampling
	5.3.1 Principle of importance sampling
	5.3.2 Nonadaptive importance sampling
	5.3.2.1 Simple changes of measure
	Principle
	Application to a toy case
	Conclusion

	5.3.2.2 Exponential twisting
	Principle
	Application to a toy case
	Conclusion


	5.3.3 Adaptive importance sampling
	5.3.3.1 Cross-entropy optimization of the importance sampling auxiliary density
	Principle
	Application to toy cases
	Conclusion

	5.3.3.2 Nonparametric adaptive importance sampling
	Principle
	Application to toy cases
	Conclusion



	5.4 Adaptive splitting technique
	5.4.1 Description
	5.4.2 Application to toy cases
	Four-branch system
	Polynomial product

	5.4.3 Conclusion

	 References

	Chapter 6: Statistical techniques
	6.1 Extreme value theory 
	6.1.1 Law of sample maxima
	6.1.2 Peak over threshold approach
	6.1.2.1 Principle
	6.1.2.2 Block maxima versus POT

	6.1.3 Application to a toy case
	Four-branch system

	6.1.4 Conclusion

	6.2 Large deviation theory
	6.2.1 Conclusion

	 References

	Chapter 7: Reliability based approaches
	7.1 First-order and second-order reliability methods
	7.1.1 Principle
	7.1.2 Application to toy cases
	Polynomial square root function
	Four-branch system

	7.1.3 Conclusion

	7.2 Line sampling
	7.2.1 Principle
	7.2.2 Application to toy cases
	Polynomial square root function
	Four-branch system

	7.2.3 Conclusion

	7.3 Directional sampling
	7.3.1 Principle
	7.3.2 Application to toy cases
	Four-branch system
	Polynomial product

	7.3.3 Conclusion

	7.4 Stratified sampling
	7.4.1 Principle
	7.4.2 Monte Carlo method with Latin hypercube sampling
	7.4.3 Adaptive directional sampling
	7.4.3.1 Principle
	7.4.3.2 Application to toy cases
	Polynomial square root function
	Four-branch system
	Polynomial product


	7.4.4 Conclusion

	7.5 Geometrical methods
	 References

	Chapter 8: Methods for high-dimensional and computationally intensive models
	8.1 Sensitivity analysis
	8.1.1 Importance measure-based methods
	8.1.1.1 Decomposition of the variance
	Sobol indices
	ANOVA by design of experiment

	8.1.1.2 Standardized regression coefficients
	8.1.1.3 Correlation coefficients and partial correlation coefficients  

	8.1.2 Screening methods
	8.1.2.1 One variable at a time 
	8.1.2.2 Morris method

	8.1.3 General remark about SA for rare event probability estimation

	8.2 Surrogate models for rare event estimation
	8.2.1 Introduction
	8.2.2 Support vector machines
	8.2.2.1 Presentation
	8.2.2.2 Description
	Support vector machines for classification
	Support vector machines for regression

	8.2.2.3 Refinement strategies
	Determining the SVM training set by minimizing (φ(x) −T )k
	Adaptive refinement of the SVM
	Subsets by support vector margin algorithm for reliability estimation (2SMART)
	Adaptive refinement of SVM using max-min technique
	Improvement of max-min technique: generalized max-min


	8.2.3 Kriging
	8.2.3.1 Presentation
	8.2.3.2 Description of Kriging
	8.2.3.3 Refinement strategies
	Direct methods
	One-step look-ahead methods
	K-means clustering strategy for Kriging refinement


	8.2.4 Conclusion

	References

	Chapter 9: Special developments for time-variant systems
	9.1 General notations
	9.2 Toy case
	9.3 Crude Monte Carlo
	9.3.1 Principle
	9.3.2 Application to a toy case
	Brownian bridge

	9.3.3 Conclusion

	9.4 Importance sampling
	9.4.1 Principle
	9.4.2 Application to a toy case
	Brownian bridge

	9.4.3 Conclusion

	9.5 Importance splitting
	9.5.1 Principle
	9.5.2 Application to a toy case
	Brownian bridge

	9.5.3 Conclusion

	9.6 Weighted importance resampling
	9.6.1 Principle
	9.6.2 Application to a toy case
	Brownian bridge

	9.6.3 Conclusion

	9.7 Extreme value theory
	9.7.1 Principle
	9.7.2 Application to a toy case
	Brownian bridge

	9.7.3 Conclusion

	 References


	Part Three: Benchmark of the Methods to Aerospace Problems
	Chapter 10: Estimation of launch vehicle stage fallout zone
	10.1 Principle
	10.2 Simulation description
	10.3 Analysis of the input space
	10.4 Estimation results
	10.4.1 Adaptive splitting technique
	10.4.2 Importance sampling
	10.4.2.1 Nonparametric adaptive importance sampling
	10.4.2.2 Cross-entropy optimization

	10.4.3 Directional sampling
	10.4.4 Adaptive directional sampling
	10.4.5 FORM/SORM
	10.4.6 Line sampling

	10.5 Conclusion

	Chapter 11: Estimation of collision probability between space debris and satellites
	11.1 Principle
	11.2 Simulation description
	11.3 Analysis of the input space
	11.4 Estimation results
	11.4.1 Adaptive splitting technique
	11.4.2 Importance sampling
	11.4.2.1 Nonparametric adaptive importance sampling
	11.4.2.2 Cross-entropy optimization

	11.4.3 Directional sampling
	11.4.4 Adaptive directional sampling
	11.4.5 FORM/SORM
	11.4.6 Line sampling

	11.5 Conclusion
	 References

	Chapter 12: Analysis of extreme aircraft wake vortex circulations
	12.1 Principle
	12.2 Simulation description
	12.3 Estimation results
	12.4 Conclusion
	 References

	Chapter 13: Estimation of conflict probability between aircraft
	13.1 Principle
	13.2 Simulation description
	13.3 Estimation results
	13.3.1 Importance splitting
	13.3.2 Weighted importance resampling

	13.4 Conclusion
	 References


	Part Four: Practical Guidelines of Rare Event Probability Estimation
	Chapter 14: Synthesis of rare event probability estimation methods for input–output systems
	14.1 Synthesis
	14.2 Some remarks for a successful practical rare event probability estimation

	Chapter 15: Synthesis for time-variant systems
	15.1 Synthesis
	15.2 Some remarks for a successful practical rareevent probability estimation


	Index
	Back Cover

