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Preface

Our intention in preparing this book was to present in as simple a manner as possible
those branches of error analysis which find direct applications in solving various
problems in engineering practice. The main reason for writing this text was the
lack of such an approach in existing books dealing with the error calculus. Most of
books are devoted to mathematical statistics and to probability theory. The range
of applications is usually limited to the problems of general statistics and to the
analysis of errors in various measuring techniques.

Much less attention is paid in these books to two-dimensional and three-dimen-
sional distributions, and almost no attention is given to problems connected with the
two-dimensional and three-dimensional vectorial functions of independent random
variables. The theory of such vectorial functions finds new applications connected,
for example, with analysis of the positioning accuracy of various mechanisms,
among them of robot manipulators and automatically controlled earth-moving and
loading machines, such as excavators.

Besides basic information concerning classical simple applications of error cal-
culus, a substantial part of the book is devoted to new aspects of more advanced
problems along with numerous examples of practical applications in engineering
practice. Among others, the Mohr circles representation of tensors is used for trans-
formation of the components of covariance tensors, for determination of linear re-
gression, for analysis of the accuracy of artillery fire, and for analysis of the posi-
tioning accuracy of various mechanisms. Methods of determination of the ellipses
and ellipsoids of probability concentration have been described in detail, along with
examples of practical calculations.

Chapters 1, 2, 3 and 4 contain a presentation of the fundamentals of error calcu-
lus: basic characteristics of error distributions, histograms and their various applica-
tions, basic continuous distributions of errors and functions of independent random
variables. In Chap. 5, two-dimensional distributions of errors are discussed with ap-
plications to analysis of the accuracy of artillery fire, to the determination of linear
regression for sets of experimental points, and to the calculation of correlation co-
efficients. Fundamentals of the theory of two-dimensional continuous independent
and dependent random variables are also discussed in that chapter. Then the methods
of determination of the ellipses of probability concentration for a two-dimensional
continuous normal distribution are given.

v
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Chapter 6 deals with the two-dimensional vectorial functions of independent ran-
dom variables along with practical applications to analysis of the positioning accu-
racy of mechanisms with two-dimensional movements. The procedure of determi-
nation of ellipses of probability concentration is also described.

In Chap. 7, three-dimensional distributions of errors are considered, while
Chap. 8 deals with three-dimensional vectorial functions of independent random
variables. The theory is illustrated by examples of analysis of the positioning accu-
racy of robot manipulators. Examples of determining the ellipsoids of probability
concentration are presented.

Chapter 9 consists of basic information connected with calculation of probabil-
ities that functions of independent random variables satisfy specific inequalities.
Such problems are inherent in the theory of reliability of engineering structures and,
on the other hand, are a natural generalization of the traditional error calculus.

The concluding Chap. 10 gives introductory material for future studies in appli-
cation of more advanced probability theory in engineering. It also contains biblio-
graphical remarks for future studies and extended references.

This book has been written for readers whose main interests are applications of
error calculus in various problems of engineering. We have indicated that certain
important concepts of that calculus such as, for example, variance and covariance,
are notionally analogous to the concepts of inertia moments of plane or solid figures.
The standard deviation is analogous to the so-called inertia radius of such figures.
The procedure for calculating such values is analogous to that of determination of
the centers of gravity of plane or solid figures.

In the first nine chapters much attention is paid to the practical significance of
error analysis. However, some additional information concerning its mathematical
foundations has been included in this book. It may be omitted by readers who are
mainly interested in applications of error calculus.

The authors want to express their thanks to Professors Marek Sokolowski and
Richard Hetnarski for their help and discussions during preparation of this book.

Warsaw Zbigniew Kotulski
Wojciech Szczepiński
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Chapter 1
Basic Characteristics of Error Distribution;
Histograms

1.1 Introductory Remarks; Histograms

In engineering practice one can distinguish errors of various origins. Most com-
monly dealt with are:

− measurement errors of a particular parameter (mass, time, length, angle) with
respect to the actual magnitude of that parameter,

− error of a particular parameter of a manufactured product with respect to the
required nominal magnitude of that parameter,

− positioning error of a robot manipulator with respect to the required position.

The errors may be of systematic and random origin. Systematic errors are usually
caused by strictly defined factors affecting the result of measurements (e.g., slight
warming of the measuring device, faulty vision of the operator of the measuring
device, incorrect adjusting of that device). Usually, such systematic errors can be
estimated and eliminated.

On the other hand, random errors result from the random action of numerous
small, sometimes imperceptible, factors connected with the structure of the mea-
suring device, manufacturing machine or a manipulator (e.g., clearances between
moving parts). During measurements they may be the result of the subjectivity of
readings made by the operator.

These random errors are subject to the error calculus based on probability theory.
In general, it is assumed that errors are small with respect to the magnitude measured
during the manufacturing process.

Such random errors are analyzed in the error calculus based on the theory of
probability. Generally, it is assumed that error is small with respect to the magnitude
of the parameter measured during the manufacturing process.

As an exception to this assumption, the example of the center distance error of
two intentionally coaxial elements may be mentioned. The expected magnitude of
such a center distance equals zero. In such cases, the center distance error should
be small compared to the characteristic dimension of the object in question. Other
examples of this kind are discussed in Sect. 3.4.2.

Z. Kotulski, W. Szczepiński, Error Analysis with Applications in Engineering,
Solid Mechanics and Its Applications 169,
DOI 10.1007/978-90-481-3570-7_1, © Springer Science+Business Media B.V. 2010
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2 1 Basic Characteristics of Error Distribution; Histograms

Fig. 1.1 The histogram: the
accuracy of an automatic
machine manufacturing small
rivets

In measuring practice, it is convenient to divide the whole range of possible errors
into a number of small sectors and then to include each specific result of measure-
ments in the respective sector. Usually, all such sectors are chosen to have the same
length. The final result of such a procedure of measurements may be then repre-
sented in the form of a so-called histogram. On the horizontal axis of a histogram,
the ranges of the consecutive sectors are laid off, while the ordinate of each of the
sectors is the so-called frequency ni of results of the measurements which have been
included into that sector, numbered as the i-th sector. Another possibility is to lay
off on the ordinate axis the fraction or proportion wi = ni/n, of the total number of
measurements n.

In such a procedure the distribution of errors, being by its nature continuous, is
treated as a discrete (quasi-step) distribution. It is implicitly assumed that the errors
are of a finite selected number of magnitudes (e.g., equal to the initial magnitude cor-
responding to a specific sector), instead of assuming all practically possible values
of the entire range. The difference between the continuous and step-wise approaches
is more visible when the notion of a probability distribution is used.

In Fig. 1.1 is presented an example of a histogram summarizing the results of
testing the accuracy of a certain automatic machine that manufactures small rivets
for use in the production of light planes. Altogether 149 rivets produced by the
machine were tested. As the pivotal parameter, the elevation T of a rivet’s conical
head over a certain reference plane was measured. The accuracy of measurement
was ±1 µm. In the figure each cross-mark corresponds to the measured elevation
of the particular rivet’s head included in a specific sector of errors of width equal
to 1 µm. The irregularity of results of measurements included in particular sectors
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Fig. 1.2 The histogram from Fig. 1.1 with fewer intervals

of the histogram indicates that the range of each sector was chosen too small. The
subjectivity in including a particular measured elevation in one of the adjoining
sectors plays an important role. When the number of sectors is reduced to eight,
such an irregularity does not occur (Fig. 1.2).

On the vertical axis of the histogram one can also lay off the proportion wi =
ni/n as shown in Fig. 1.2 on its left-hand side. The sum of these proportions in
particular sectors must obviously be equal to unity. Then, joining central points
on the tops of the columns of the histogram, as shown in Fig. 1.2, we obtain the
frequency diagram.

1.2 The Average of a Sample of Measurements

An important parameter in the analysis of the results of a collection (sample) of
measurements is the sample average x. The sample average is defined as follows:

x = 1

n

n∑

j=1

xj . (1.1)

If in the sample that was taken, the result xj occurred nj times (j = 1,2, . . . , k),
where

∑k
j=1 nj = n, then the sample average can be determined using the following

equivalent formula:

x = 1

n

k∑

j=1

xjnj . (1.2)
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In the particular case presented in Fig. 1.2, where the deviations of the measured
quantity from its desired value was measured, the average deviation was found to
be:

t = 1

149

8∑

j=1

nj tj = 3.48 µm.

This is based on the modified histogram shown in that figure, using the central value
of the deviation in each column.

However, if the sample average value is calculated on the basis of the original
histogram (shown in Fig. 1.1), it is slightly different:

t = 1

149

16∑

j=1

nj tj = 3.22 µm.

The difference is about 8%.
Such differences in the values of the sample average are not uncommon when

the histograms are transformed and formula (1.2) is used. Let us note that the true
value of the average, based on the individual values of the measured quantities and
calculated with the use of the basic formula (1.1), would be different than the two
estimates calculated above.

1.3 Dispersion Measures in Error Analysis

Other important factors in the analysis of results presented in the form of histograms
are the dispersion measures of a set of observations or a certain characteristic. The
simplest of such measures is the difference R between the maximum value xmax in
the sample and the minimum value xmin:

R = xmax − xmin. (1.3)

This measure is of a limited practical significance, because it does not give any
information concerning the distribution of the quantity in question. The sample vari-
ance s2 is the usual measure for estimating a distribution dispersion. By definition,
the sample variance is the arithmetical mean value of all squares of deviations of
particular values xj from the average x of the entire sample x1, . . . , xn. Thus, it is
defined by the formula:

s2 = 1

n

n∑

j=1

(
xj − x

)2
, (1.4a)

or by the equivalent, so-called computing formula:

s2 =
(

1

n

n∑

j=1

x2
j

)
− x2. (1.4b)
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If the particular value xj is repeated nj times (j = 1,2, . . . , k), the sample variance
may be defined as

s2 = 1

n

k∑

j=1

(
xj − x

)2
nj (1.5a)

or in another form

s2 =
(

1

n

k∑

j=1

x2
j nj

)
− x2. (1.5b)

The quantity s is called the sample standard deviation.
Replacing in the formula (1.4a) all elements xj by the expressions x0 +aj , where

x0 is a certain arbitrarily chosen constant value and aj stands for the deviation of
element xj from x0, we arrive at another expression for the variance:

s2 = 1

n

n∑

j=1

a2
j − 1

n2

(
n∑

j=1

aj

)2

. (1.6a)

Such a formula is useful in certain calculations. Its application makes it unnecessary
to know the actual values of xj . Only the relative variations of their values are
needed.

By extension, if nj (j = 1, . . . , k) is the number of measurements with the same
deviation aj , the last formula can be written in another form:

s2 = 1

n

k∑

j=1

nja
2
j − 1

n2

(
k∑

j=1

njaj

)2

. (1.6b)

As an example, the latter formula was used to calculate variance and standard de-
viation for the particular case shown in Fig. 1.1, where the value t0 = 0 was chosen
as the reference point. For this case we have

16∑

j=1

a2
j = 3054,

16∑

j=1

aj = 483

and

s2 = 3054

149
−

(
476

149

)2

= 10.28 µm2,

s = 3.21 µm.

Note that if a histogram is altered according to such operations as that shown in
Fig. 1.2, in which a modified version of the histogram from Fig. 1.1 is presented,
the value of the standard deviation calculated with the use of formula (1.6b) may be
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slightly different than that calculated for the original histogram. Using the altered
histogram (shown in Fig. 1.2) we obtain

s = 3.11 µm,

while for the original histogram (Fig. 1.1), we get a slightly larger value

s = 3.21 µm.

Such a consequence of altering the histograms should be kept in mind.
As yet another measure of data dispersion, the sample average deviation d is

sometimes used. This measure is defined as the mean of the absolute values of all
deviations of xi from the sample average x,

d = 1

n

n∑

j=1

∣∣xj − x
∣∣ . (1.7)

This measure is used when all the data are automatically registered. For exam-
ple, measuring the weight of the entire set of n objects, one can directly find the
representative (average or expected) weight x of a single object in the set. By con-
secutive measuring of the actual weight of each of them we can obtain the sum in
(1.7) by adding consecutively the absolute values of deviations of the weights from
the average value.

The average deviation d is for all theoretical distributions of probability directly
connected with the standard deviation σ (see Chap. 2). E.g., for the normal distri-
bution we have σ = 1.25d.

1.4 Cumulative Frequency Distribution

Using the simple example of a histogram representing the elevation of a rivet’s head
as a random variable (Fig. 1.2), one can explain the notion of the cumulative fre-
quency distribution (empirical), which is a step function assuming for each t be-
longing to the l-th section on the axis of abscissa of the histogram the value

Fl (t) =
l∑

j=1

wj , (1.8)

where wj stand for the probabilities (calculated on the basis of the histogram) that
the random variable assumes a value included in the j -th section (j = 1,2, . . . , k).
The calculated empirical values of the cumulative frequency distribution for the
histogram shown in Fig. 1.2 (k = 8) are given in Table 1.1.

The graph of the calculated quasi-stepwise cumulative frequency distribution for
the quasi-stepwise random variable from Fig. 1.2 is shown in Fig. 1.3. The level of
each step of that graph indicates the number of rivets whose head elevation above
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Table 1.1 The empirical cumulative frequency distribution for the example from Fig. 1.2

l 1 2 3 4 5 6 7 8

wl 0.033 0.073 0.167 0.267 0.193 0.160 0.073 0.033
∑l

j=1 wj 0.033 0.106 0.273 0.540 0.733 0.893 0.966 1.000

Fig. 1.3 The cumulative
frequency distribution

the reference plane is equal to or smaller than the magnitude represented by the
right-hand limit point of the section under consideration. The value Fl(t) = 1 of the
highest step (l = 8) indicates that all the measured deviations t were equal to or
smaller than the right-hand end point of the last section.

1.5 Examples of Empirical Distributions

In Fig. 1.4 is presented a old and simple example of practical application of his-
tograms for estimation of the accuracy of artillery fire (comp. [2]). Places hit by
shells during the test are represented by points in the figure. The field covered by
the hit points has been first divided into 22 horizontal strips of equal width. Then
the number of hit points in each of the strips have been represented in the form of
a histogram shown on the right-hand side of the figure. Next the field was divided
into 15 vertical strips and the histogram shown in the lower part of the figure was
prepared. Using such histograms, a preliminary estimation of the accuracy of the
shooting distance X and of lateral deviation from the shooting direction Y could
be found. This problem belongs to the class of two-dimensional distributions. The
theory of such problems will be discussed in Chap. 5.

In Fig. 1.5 is presented the histogram of the age of persons who received the
D.Sc. degree in the field of engineering sciences in Poland (years 1991. . . 1993).
The histogram has three peaks. The reason for this is the fact that the population
under investigation is not homogeneous. The first group of scientists represented in
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Fig. 1.4 The accuracy of
artillery fire, after [2]

Fig. 1.5 was employed permanently at the universities and in research institutes and
systematically received scientific degrees. The second peak corresponds to the indi-
viduals who had been awarded the associate professor position without the degree,
and in view of new legal regulations were required to prepare their dissertations to
maintain their positions. The last peak in Fig. 1.5 reflects the group of engineers
involved in practical projects who wanted to finalize their professional career with
the second doctor’s degree (D.Sc.). As it is seen, even such a simple histogram may
contain significant information about the population.

In Fig. 1.6 is presented a histogram of the lengths of 26713 codfish caught in the
Baltic Sea in 1952 by Polish fishermen. It is made with a step of 1 cm. It is typical
as a picture illustrating a dimension (height, length, thickness, etc.) of some random
population: an average value with the maximum value of the histogram in it and the
tails (longer or shorter) at the left-hand and the right-hand sides. However, a more
detailed analysis of the histogram shows that the displayed population is in fact a
sum of two populations: the males and the females of codfish, with different average
lengths. (Two very close peaks of the histogram in Fig. 1.6 testify to this fact.)

In certain cases histograms may display significant irregularities of their struc-
ture. An example is shown in Fig. 1.7. Two histograms for the distribution of the
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Fig. 1.5 The age of persons who received the D.Sc. degree

dilatation waves velocity in the bedrock below a dam under construction in Poland
are presented (comp. [1]). For the two investigated strata the histograms are of dif-
ferent form. The form of one of them is close to the normal distribution, while for
the other stratum the histogram has a two-modal form (comp. Sect. 3.2).

As another example the scheme of a histogram shown in Fig. 1.8 may be taken.
It represents the distribution of the water level below the ground surface measured
during several years of observations. Such measurements were performed, for ex-
ample, by L. Réthai (comp. [3]).

1.6 Parameters Obtained from the Measured Data and Their
Theoretical Values

In this chapter we have presented several examples of statistical measurements; we
have calculated mean values and variances of the obtained results and plotted his-
tograms on the basis of the measured data. Let us recall two of the examples.
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Fig. 1.6 Length of codfish caught in Baltic Sea in 1952 by Polish fishermen, see [4]

Consider at the beginning the problem illustrated by Fig. 1.5, concerning re-
searchers obtaining the D.Sc. degree in engineering sciences. The histogram rep-
resents here all possible results of the considered phenomenon (all persons who
obtained the degree are represented by crosses in the histogram). Thus, calculat-
ing e.g., the mean age of the population (according to (1.1)) or its variance (using
(1.4a)), we obtain the exact values of these quantities.

We are faced with a different problem considering the example of rivets’ head
elevation. The rivets are made by an automatic machine, each with certain accu-
racy. The data used for preparation of the histogram was obtained by sampling an
inspection lot. Knowing the data, we want to calculate the parameters (the mean
value and the variance) which enable us to characterize the properties of the auto-
matic machine and the parameters of all the rivets produced by the machine in the
past and all which will be produced in the future. This means that having a finite
set of measurements, we are looking for the mean value and the variance of the
random variables describing all the possible results of measurements. Using expres-
sions (1.1) for the sample average and (1.4a) for the sample variance, we deal with
the random variables, depending on the choice of the inspection lot, which is now a
random event. The quantities calculated in this procedure are not the exact values of
the parameters searched for, because they are calculated on the basis of some lim-
ited set of the measured data (the sample) and not on the basis of all possible values
of the parameters (the whole population). Therefore, they are called the estimators
of the parameters, and the procedure of calculation is called parametric estimation.

All the information about the random variable is contained in its probability den-
sity. Before we define this function (in the next chapter), let us remark that the his-
togram presented in Fig. 1.1, obtained on the basis of a finite set of measurements, is
a certain approximation of the probability density function of the inaccuracy of the
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Fig. 1.7 The distribution of
the dilatation waves velocity
in the bedrock below a certain
dam under construction in
Poland, see [1]

rivets’ head elevation. In other words, the histogram is the estimator of the probabil-
ity density and the procedure of obtaining such approximations is a non-parametric
estimation (non-parametric, because its result is not a parameter but a complete
function).

In further considerations we shall distinguish two situations: one, when consid-
ering the parameters of a certain distribution, like the mean value and the vari-
ance, we calculate them from a given distribution (e.g., using the probability den-
sity function) and another, when we deal with estimators of these values (calcu-
lated from the measurements). More about estimators and estimation is provided
in Chap. 10.

The introductory considerations of this chapter show not only the origin of the
error calculus; they also indicate that in some advanced problems, if we want to
obtain precise answers concerning the accuracy of technical devices, we must apply
mathematical tools in formulation of the tasks and in the analysis procedures. The
following chapters present such an approach to error calculus.
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Fig. 1.8 The distribution of
the water level below the
ground surface measured
during several years of
observations, see [3]

Problem 1.1 We change spacing on the scale of lengths of fish of the data presented
in the histogram from Fig. 1.6 to 5 cm and obtain the following table of lengths:

Plot the histogram for the data given in Table 1.2. Change the spacing to a scale
20 cm and plot the histogram for the new data.

Problem 1.2 Using the histograms from Problem 1.1, plot the corresponding cu-
mulative frequency distributions.

Problem 1.3 Calculate the average value, the variance and the standard deviation
for both data sets studied in Problems 1.1 and 1.2. Observe the difference between
the calculated values of parameters.

Table 1.2 The empirical
cumulative frequency
distribution for the example
from Fig. 1.6

Interval No. Interval No.

1−5 0 51–55 1700

6−10 0 56–60 950

11−15 25 61–65 650

16−20 50 66–70 225

21−25 275 71–75 125

26−30 2900 76–80 100

31−35 5300 81–85 25

36−40 6000 86–90 50

41−45 5100 91–95 25

46−50 3200 96–100 25
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Problem 1.4 For the data studied in Problems 1.1–1.3 calculate the average devia-
tion d . Compare the result with the sample standard deviation s of the corresponding
variable.
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Chapter 2
Random Variables and Probability;
Normal Distribution

2.1 Probability and Random Variables

We say that a phenomenon is random if, on the basis of our best knowledge, we can-
not exactly predict its result. What really happens is only one of many possibilities.
In every day life we meet random results of lotteries, a non-predictable dispersion
of gun shots at a target or a random travel time through a crowded city.

An intuitively understandable idea of random phenomena can be formalized by
the concept of random events and probability. Using formal definitions, we say that
the random event (a collection of sample points) is a result of some random phe-
nomena, and its probability is the chance that this phenomenon will occur, expressed
by a number from the interval [0,1].

Example 2.1 (An unbiased coin flipping) During an experiment of a single flip of an
unbiased coin, two results are possible: the occurrence of heads and the occurrence
of tails. Both results are random events. The probability of heads and the probability
of tails are equal and they are 1/2.

In this example we can say that the set of all possible results of the experiment
has two elements (occurrence of heads and occurrence of tails). We interpret the
probabilities of occurrence of these elementary events in the following way: if we
repeat flipping the coin a sufficient number of times, then the number of occurrences
of heads (or, equivalently, the number of occurrences of tails) divided by the num-
ber of flips will tend to 1/2. This is the so-called frequency interpretation of the
probability.

Example 2.2 (Dice casting) During an experiment of a single cast of an unbiased
die, six results are possible: the occurrence of a face with n = 1, 2, 3, 4, 5, or 6 spots.
Then the set of the results (elementary events, sample points) contains six elements.
The probability of each event (the occurrence of a face with n spots) equals 1/6.
This means that if the number of casts tends to infinity, then the following ratio:

Z. Kotulski, W. Szczepiński, Error Analysis with Applications in Engineering,
Solid Mechanics and Its Applications 169,
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number of casts, when n spots occurred

total number of casts

tends to 1/6, for n = 1, 2, 3, 4, 5, and 6.

The expected outcome of the experiment described in Example 2.2 may be more
complicated than the occurrence of a fixed number of spots. For example, we can
ask: What is the probability that the single cast results in a face with an even number
of spots? What is the probability that we will see a face which has more than 4 spots?
Of course, we can easily deduce that in the first case the probability is 1/2 and in
the second one 1/3.

The above examples show that it is conceptually easy to define an event and
the probability of an event if the number of possible outcomes of the experiment
(e.g., coin flipping or dice casting) is finite and the outcome of each result is equally
probable. In such a case, the probability of some event is defined as the frequency
of occurrences of this event when the number of experiments tends to infinity.

In some situations, we can introduce another definition of probability. If the set
of results of an experiment is infinite but it is contained in some set on a plane (alter-
natively: in 3-dimensional space, on a straight line, etc.), then the probability has a
geometrical interpretation. The probability of a certain outcome of an experiment is
the ratio of the area of the subset corresponding to these results, to the area of the set
corresponding to all possible results of the experiment. The geometrical definition
of probability has some limitations: the results of the experiment must be located in
a bounded set on the plane and, moreover, they must be evenly distributed over this
set.

The definitions of an event and the probability of an event used today have their
origin in measure theory. The fundamental object of probability theory is the prob-
ability space. A probability space is defined by the triad (Ω,�,P ), where Ω is the
sample space containing all elementary events (sample points), � is the σ -algebra
of Borel subsets of the sample space Ω containing all possible events (elementary
and compound), and P is a (probability) measure defined on �.

We will now comment on the above definitions. Elementary events ω (being
elements of the sample space Ω) are results of some experiment, mutually exclud-
ing each other; this means that only one elementary event can be the result of the
experiment. Generally, (compound) events in an experiment are elements of the σ -
algebra �. Occurrence of an event A can be the result of several elementary events;
knowing the outcome of an experiment we are able to decide if the event A oc-
curred. The probability measure P or, simply, the probability, has the property that
it is equal to 1 for the certain event (the whole sample space Ω , that is, the event
that the experiment had some outcome). Certainly, the probability of the impossible
event (the empty set ∅) is zero.

Example 2.3 (An unbiased coin flipping, continuation) The probability space for
the experiment of a single fair coin flip is (Ω,�,P ), where: the sample space Ω is
the following 2-element set:

Ω = ({heads}, {tails});
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the σ -algebra � consists of four elements: the empty set ∅, two 1-element sets, and
the whole sample space Ω :

� = (∅, {heads} , {tails} ,Ω) ;

the probability P is defined as:

P ({heads}) = 1

2
, P ({tails}) = 1

2
.

Example 2.4 (Dice casting, continuation) In the experiment of a single balanced die
cast, the probability space is the following: the sample space Ω has 6 elements:

Ω = ({1 spot} , {2 spots} , {3 spots} , {4 spots} , {5 spots} , {6 spots}) ;

the σ -algebra � consists of the following elements: the empty set ∅, all subsets of
Ω containing 1, 2, 3, 4, and 5 elements and the whole sample space Ω :

� =
⎛

⎝
∅, 6 one-element subsets, 15 two-element subsets,
20 three-element subsets, 15 four-element subsets,

6 five-element subsets, Ω

⎞

⎠ ;

the probability P is defined as:

P ({1 spot}) = P ({2 spots}) = P ({3 spots})
= P ({4 spots}) = P ({5 spots}) = P ({6 spots}) = 1

6
.

The concept of randomness and probability presented here identifies events with
subsets of the sample space Ω, which are elements of the σ -algebra �. Therefore,
we are able to perform on these events the operations analogous to the operations of
set theory. For two events A,B ∈ �, we can define the union A ∪ B (A or B hap-
pens), intersection A ∩ B (A and B occur simultaneously), difference A\B (A oc-
curs but B does not), etc. Probability, as we mentioned, is a measure; it has the
following properties:

0 ≤ P (A) ≤ 1, (2.1)

P (∅) = 0, P (Ω) = 1, (2.2)

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) , (2.3)

and for a countable number of disjoint events Aj :

P

(⋃

j

Aj

)
=

∑

j

P (Ai). (2.4)
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In probability theory, it is very important to know the relationship between
events: their dependence or independence. We say that two events A and B are
independent if their probabilities satisfy the following condition:

P (A ∩ B) = P (A)P (B) , (2.5)

which means that the probability of the simultaneous occurrence of both events is
equal to the product of probabilities of their separate occurrence. If condition (2.5)
is not satisfied, the events A and B are dependent.

To know to what extent the events A and B are dependent, we can use the condi-
tional probability P(A|B), which is defined as

P (A|B) = P (A ∩ B)

P (B)
. (2.6)

The quantity P(A|B), which is the probability of A conditioned on B , we un-
derstand to be the probability of occurrence of A under the condition that B has
occurred.

Using formula (2.5) in (2.6), we see that if events A and B are independent then

P (A|B) = P (A) . (2.7)

The concept of the conditional probability is strongly related to the definition
of complete probability. If we have some sequence of mutually excluding events
Bj , j = 1,2, . . . , n, Bk ∩Bl = ∅ for k �= l, satisfying additionally

⋃
j Bj = Ω, then

the probability of any event A can be represented as

P (A) =
∑

j

P
(
A|Bj

)
P
(
Bj

)
. (2.8)

The last equation enables us to calculate the probability of some event A if we
know its probability under some additional conditions, that is, if we know that some
event Bj has occurred.

Example 2.5 (Dice casting, continuation) Consider the experiment of the die sin-
gle cast and define two events: A, the outcome is a face with an even number
of spots, and B, the face with a number of spots greater than 4. We can verify
whether these two events are independent. Using the elementary events defined
in Example 2.4 we find that the events are: A = ({2 spots}, {4 spots}, {6 spots}),
B = ({5 spots}, {6 spots}), and their probabilities are: P(A) = 1

2 , P(B) = 1
3 .

The intersection of the events is: A ∩ B = ({6 spots}), and the probability of
intersection, P(A∩B) = 1

6 . It is seen that the events A and B satisfy condition (2.5),
that is, they are independent.

If we replace the event B with a new one: B1—the number of spots is greater than
5 (that is, B1 = ({6 spots}) and P(B1) = 1

6 ), then the intersection of the events is
A ∩ B1 = ({6 spots}) and it is seen that the events A and B1 are dependent, because
P(A)P (B1) = 1

12 and P(A ∩ B1) = 1
6 , so the condition (2.5) is not satisfied.
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The description of results of experiments or observations of random phenomena
in terms really existing in these processes is very complicated. To make the mod-
eling of the processes more convenient we can introduce the concept of a random
variable.

The real-valued function X(ω) defined on the sample space Ω of random events
ω is called a random variable if a pre-image1 A of every interval of real numbers of
the form I = (−∞, x) is a random event (an element of the σ -algebra �).

Probability P describing properties of random events can also describe random
variables. It is transferred from the σ -algebra of events to the space of real-valued
random variables by pre-images of the intervals I :

P (I) = P (ω such that X (ω) < x) . (2.9)

For a given sample space we can consider various random variables. Our choice
depends on the purpose of the modeling.

Example 2.6 (An unbiased coin flipping, continuation)

(a) Consider the experiment of a symmetric coin single flip. Assign number 1 to
the outcome of heads and number −1 to the outcome of tails. Such a random
variable may be used for description of a random walk on a straight line. We
start from x = 0 and repeat the coin flipping. If the outcome is heads then we
add 1 to x, if tails, we subtract 1. After every trial the value of x is greater by 1 or
smaller by 1 than the value in the previous step. We repeat the trial many times
obtaining the x-coordinate of the walking particle in every step (see, e.g., [11]).

(b) Consider the same experiment. We assign number 1 to heads and number 0 to
tails. Repeating the trials many times and writing down the obtained numbers
we generate random numbers in binary notation.

Analogously to the events, we can define independence of random variables.
We will say that two random variables X and Y (defined on the probability space
(Ω,�,P )) are independent if for all x1 ≤ x2 and y1 ≤ y2 the events of the form
{ω : x1 ≤ X(ω) < x2} and {ω : y1 ≤ Y(ω) < y2} are independent.

The theorem concerning the complete probability (2.8) makes it possible to ap-
ply in many technical problems the so-called conditioning technique. This method
is based on the procedure of decomposition of the initial complicated problem into
a number of tasks easy to solve when we assume certain conditions to be satisfied
with a certain probability. Then the simplified problems are solved and, finally, the
general non-conditioned solution is obtained by averaging of the set of solutions
with respect to the assumed probability distribution. Such a technique lets us calcu-
late the parameters (e.g., moments) or distributions of random variables in various

1Assume, we have a function X : Ω → R and let A be a subset of the set of real numbers R.
The pre-image (or inverse image) A for the function X is a set B ⊂ Ω , containing all the elements
ω ∈ Ω such that their image belongs to A, which means X(ω) ∈ A. In such a case we write:
B = X−1(A).
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engineering problems. The reader can find more about this technique in the papers
[12, 13] or the textbook [20].

2.2 The Cumulative Distribution Function; the Probability
Density Function

Most problems of the error calculus arising in technological applications concern
the analysis of random variables with continuous distributions. Random variables
of such a nature may assume any value from a certain range. The cumulative distri-
bution function (or: probability distribution function) F(x) of any one-dimensional
random variable X is defined by the expression2:

F (x) = P (X < x) , (2.10)

which means that the cumulative distribution function is defined as a function, the
value of which for a given x is equal to the probability of an event that the random
variable X is smaller than the number x.

The cumulative distribution function is defined for all real numbers and it is a
non-decreasing, continuous on the left, function. Moreover, for x tending to minus
infinity and plus infinity, it satisfies the following conditions:

F (−∞) = 0, F (∞) = 1. (2.11)

The probability distribution function can be applied to the calculation of proba-
bilities of the events related to the random variable X. For instance, the probability
of an event that a random variable X belongs to the interval [x1, x2) can be expressed
by means of the probability distribution function (see Fig. 2.1):

P (x1 ≤ X < x2) = F (x2) − F (x1) . (2.12)

Fig. 2.1 The cumulative
distribution function

2We shall denote random variables by capital letters X, Y , while their values, being numbers, will
be denoted by small letters x, y. This does not refer to cases when a random variable in a particular
formula has a physical meaning and is usually denoted by a small letter. P (A) is the probability of
an event A.
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If the random variable X is discrete, that is, if it takes values from a finite (or
countable) set: {xj , j = 1,2, . . . ,N} (or {xj , j = 1,2, . . .}), then the cumulative
distribution function is discontinuous at these points and its jumps are equal to pj .

Moreover, the following equality holds:

P(X = xj ) = pj . (2.13)

Over the intervals of continuity, x ∈ [xj , xj+1), the cumulative distribution function

F(x) of the discrete random variable X is constant and equal to F(x) = ∑j

k=1 pk =
Fj . An example of the cumulative distribution function of some discrete random
variable is presented in Fig. 1.3.

The cumulative distribution function of a random variable with a continuous dis-
tribution (the continuous random variable) may be expressed in the form of the
integral

F (x) =
∫ x

−∞
f (ξ) dξ. (2.14)

Function f (x) in (2.14) is referred to as the probability density function (or sim-
ply probability density) of a random variable X. If the cumulative frequency distri-
bution F(x) has a derivative at any point x, then such a derivative represents the
density

f (x) = F ′ (x) . (2.15)

Since the cumulative distribution function describes the normalized probability
measure (the probability of the certain event equals 1, which means that P(−∞ <

X < ∞) = 1) and is a non-decreasing function, the probability density function
f (x) has the following two properties:

A =
∫ ∞

−∞
f (x)dx = 1 (2.16)

and

f (x) ≥ 0. (2.17)

Thus, the area A between the graph of function f (x) and the horizontal axis x of
the random variable is equal to unity.

The probability of any event that the variable X lies in the interval [x1, x2), which
is, that it will have the value P(x1 ≤ X < x2), is defined by the following:3

P (x1 ≤ X < x2) =
∫ x2

x1

f (x) dx. (2.18)

The relation (2.18) is presented graphically in Fig. 2.2.

3For continuous distributions the probability that a random variable is located in a closed interval
is the same as in an interval closed on one side or as in an open interval. In (2.18) we decided to
choose an option of the interval closed on the left-hand side.
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Fig. 2.2 The probability
density function

Fig. 2.3 The quantile
function, see (2.19)

The cumulative distribution function and the probability density function are not
the only functions characterizing a random variable. In some situations the inverse
distribution function G(α), sometimes called the quantile function, is more conve-
nient. For a given cumulative distribution function F(x), the quantile function is
defined as a function satisfying the following conditions:

x = G(α) = G(F (x)) ,

P (X ≤ G(α)) = α.
(2.19)

This mutual relation between F(x) and G(α) is shown graphically in Fig. 2.3.
In some applications of inspection theory and reliability theory, and also in some

problems of mathematical statistics, the survival function S(x) is useful. It is defined
as the probability that the random variable X is greater than or equal to x:

S (x) = P (X ≥ x) = 1 − F (x) . (2.20)



2.3 Moments 23

More definitions of functions describing the properties of distributions of random
variables can be found in handbooks dealing with probability theory or mathemati-
cal statistics (see, e.g., [6, 7]).

2.3 Moments

Moments play an important role in the error calculus, particularly when multidi-
mensional problems are considered. For the one-dimensional random distributions
discussed in this chapter, the expressions for moments take simple forms.

The first-order moment with respect to the line perpendicular to the x-axis and
crossing it at x = 0 is defined by the formula

m =
∫ ∞

−∞
xf (x)dx. (2.21)

Assuming such a value x that the equality

Ax = m

holds true, we obtain, remembering that A = 1 (comp. (2.16)), the formula

x =
∫ ∞

−∞
xf (x)dx. (2.22)

Using (2.22) one can calculate the average value x. In other words, x represents
the abscissa of the gravity center of the area between the graph of the probability
density function and the x-axis. The moment m may be interpreted as the statical
moment of that field with respect to the x = 0 straight line.

The second-order moment is the quantity J defined as

J =
∫ ∞

−∞
(x − x)2 f (x) dx. (2.23)

Such a moment calculated with respect to the straight line x = x is called the central
second order moment.

Assuming now a quantity σ 2 such that the equality

Aσ 2 = J

holds true, we get, still remembering that A = 1, the relation

σ 2 =
∫ ∞

−∞
(x − x)2 f (x) dx, (2.24)

where σ 2 is the variance of the distribution f (x). The square root of the variance,
denoted by σ , represents the standard deviation of the distribution.
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Note that the quantity J given by formula (2.23) is, in terms used in engineering
applications, the central inertia moment of the area between the graph of the func-
tion f (x) and the x-axis. Using such an interpretation it is seen that the standard
deviation represents the so-called inertia radius of that field.

Of practical significance is also the average deviation d defined as

d =
∫ ∞

−∞
|x − x|f (x)dx. (2.25)

The concept of the average value x may be generalized; in this way we obtain
moments of order n, n = 0,1,2,3, . . . (called the ordinary moments of n-th order),
defined as:

mn = xn =
∫ ∞

−∞
xnf (x) dx. (2.26)

In the new notation the average value (or: the mean value) is the moment of
order 1, namely m1.

The generalization of the variance are central moments of order n,
n = 2,3,4, . . . , defined as:

μn =
∫ ∞

−∞
(x − m1)

n f (x) dx. (2.27)

Using definition (2.27) of the central moment we obtain the following relation
between central moments and ordinary moments:

μn =
∫ ∞

−∞
(x − m1)

n f (x) dx

=
∫ ∞

−∞

(
n∑

j=0

(−1)j
(

n

j

)
xn−jm

j

1

)
f (x)dx =

n∑

j=0

(−1)j
(

n

j

)
mn−jm

j

1. (2.28)

In particular, the variance σ 2 can be represented as:

σ 2 = μ2 = m2 − m2
1. (2.29)

Except for the ordinary and central moments defined above, the absolute mo-
ments (ordinary and central), that is, average values of powers of the absolute value
of x, can be defined by the following formulas:

mabs
n =

∫ ∞

−∞
|x|n f (x) dx, (2.30)

μabs
n =

∫ ∞

−∞
|x − m1|n f (x) dx. (2.31)

The most often used absolute moment is the average deviation d , defined by (2.25).
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Let us remark that for even values of n, the absolute moments and moments
(ordinary and central) are identical.

Existence of moments is strongly connected with integrability of the probability
density function f (x) multiplied by some power of x. The condition of existence
of the moment of a given order n is the convergence of the integral

∫ ∞
−∞ xnf (x)dx;

from the existence of the moment for a certain given range n = n0 we obtain the
moments of lower orders. Therefore, the greatest n for which the moments exist is
called the range of the random variable. In applications, the most often required
assumption is that random variables have finite variances, that is, they are random
variables of the second order.

Example 2.7 (The Cauchy distribution) The probability distribution with the prob-
ability density function

f (x) = 1

πb{[(x − a)/b]2 + 1} (2.32)

and the cumulative distribution function

F (x) = 1

2
+ 1

π
arctan

(
x − a

b

)
, (2.33)

is called the Cauchy distribution. It is an example of distribution which has no mo-
ments (for each n = 1,2, . . . the integral

mn =
∫ ∞

−∞
xndx

πb{[(x − a)/b]2 + 1}
is divergent).

Example 2.8 (The normal distribution) The probability distribution with the proba-
bility density function

f (x) = 1√
2πσ 2

exp

[−(x − m)2

2σ 2

]
(2.34)

is called the normal distribution. It is an example of distribution which has moments
of any order (for each n = 1,2, . . . the integral

mn =
∫ ∞

−∞
xn

√
2πσ 2

exp

[−(x − m)2

2σ 2

]
dx

is finite).

Remark 2.1 Assume that a certain random variable X has a finite mean value mX

and variance σ 2
X . Then we can consider the new random variable X̃, defined as

X̃ = X − mX
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and called the centered random variable. This new random variable X̃ (sometimes
called the fluctuation of X) has zero average (mean) value and a variance equal to
the variance of the original random variable X,

mX̃ = 0, σ 2
X̃

= σ 2
X.

Such decompositions of random variables are often applied in error analysis. In
the above procedure we interpret the random variable X as the result of a mea-
surement with some random error, the mean value mX as the nominal value of the
measured quantity, and the fluctuation X̃ as the random measurement error itself.

2.4 The Normal Probability Distribution

The normal distribution, called also the Gaussian distribution, plays a basic role
in error calculus. In most engineering applications random variables, such as small
errors of measurements, small errors of positioning accuracy of certain mechanisms,
e.g., robot manipulators or small deviations of magnitudes of certain parameters
of objects in mass production, may be treated as those having normal probability
distribution. They are called normal (Gaussian) random variables.

In the normal distribution, the probability density function takes the form [2]:

f (x) = 1

σ
√

2π
exp

[
− (x − x)2

2σ 2

]
, (2.35)

where x is the average value, comp. (2.22), and σ stands for the standard deviation
(comp. (2.24)).

Introducing a new random variable

T = X − x

σ
, (2.36)

which is called the normalized random variable corresponding to X (comp. [19]),
we get another form of the probability density function,

φ (t) = 1√
2π

exp

[
− t2

2

]
. (2.37)

Between the two forms of the probability density function, there exists the relation

f (x) = 1

σ
√

2π
exp

[
− (x − x)2

2σ 2

]
= 1

σ
φ (t) , t = x − x

σ
. (2.38)

The numerical values of the normalized Gaussian distribution φ(t) may be cal-
culated with the use of a computer or even a pocket calculator. Moreover, they are
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Table 2.1 The probability density function φ(t) of the normalized Gaussian distribution

t 0 2 4 6 8

0.0 0.3989 0.3989 0.3986 0.3982 0.3977

0.1 0.3970 0.3961 0.3951 0.3939 0.3925

0.2 0.3910 0.3894 0.3876 0.3857 0.3836

0.3 0.3814 0.3790 0.3765 0.3739 0.3712

0.4 0.3683 0.3653 0.3621 0.3589 0.3555

0.5 0.3521 0.3485 0.3443 0.3410 0.3372

0.6 0.3332 0.3292 0.3251 0.3209 0.3166

0.7 0.3123 0.3079 0.3034 0.2989 0.2943

0.8 0.2897 0.2850 0.2803 0.2756 0.2709

0.9 0.2661 0.2613 0.2565 0.2516 0.2468

1.0 0.2420 0.2371 0.2323 0.2275 0.2227

1.1 0.2179 0.2131 0.2033 0.2036 0.1989

1.2 0.1942 0.1895 0.1849 0.1804 0.1758

1.3 0.1714 0.1669 0.1626 0.1582 0.1539

1.4 0.1497 0.1456 0.1415 0.1374 0.1334

1.5 0.1295 0.1257 0.1219 0.1182 0.1145

1.6 0.1109 0.1074 0.1040 0.1006 0.0973

1.7 0.0940 0.0909 0.0878 0.0848 0.0818

1.8 0.0790 0.0761 0.0734 0.0707 0.0681

1.9 0.0656 0.0632 0.0608 0.0584 0.0562

2.0 0.0540 0.0519 0.0498 0.0478 0.0459

2.1 0.0440 0.0422 0.0404 0.0387 0.0371

2.2 0.0355 0.0339 0.0325 0.0310 0.0297

2.3 0.0283 0.0270 0.0258 0.0246 0.0235

2.4 0.0224 0.0213 0.0203 0.0194 0.0184

2.5 0.0175 0.0167 0.0158 0.0151 0.0143

2.6 0.0136 0.0129 0.0122 0.0116 0.0110

2.7 0.0104 0.0099 0.0093 0.0089 0.0084

2.8 0.0079 0.0075 0.0071 0.0063 0.0063

2.9 0.0060 0.0056 0.0053 0.0050 0.0047

3.0 0.0044 0.0042 0.0039 0.0037 0.0035

tabulated in numerous books (comp. [9, 10]). To make this book sufficiently self-
contained, the values are given in Table 2.1.4 Knowing the function φ(t) and the
standard deviation σ of a particular non-normalized normal distribution, we may

4The numbers 0, 2, 4, 6 and 8 in the heading of the table are values of the second fractional digit
of the number t .
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Fig. 2.4 The normalized probability density function of the normal (Gaussian) distribution

calculate by means of formula (2.38) the values of f (x) for any value of the inde-
pendent variable x. In practical calculations one can use the graph of the function
φ(t) shown in Fig. 2.4. The graph has two inflexion points P, for t = +1 and for
t = −1.

In Fig. 2.4 is also shown a simple graphical procedure allowing us to find the
graph of the function f (x) if the graph of the normalized density function φ(t)

is given. The smaller is the standard deviation σ of the normal distribution, the
smaller will be the dispersion of the random variable X around the average value x.
This property of normal distribution is illustrated in Fig. 2.5, in which three various
normal distributions are presented. Their average value is of the same magnitude
x = 0, while standard deviations are different having the values σ = 0.5, σ = 1.0,

and σ = 2.0, respectively.
The diagrams of normal probability densities are symmetrical with respect to the

average value x, at which they have a maximum. This maximum value of the density
is given by the formula

f (x) = 1

σ
√

2π
. (2.39)

The relation between the half-width tα of any arbitrarily chosen range (−tα, tα)

and the probability α that the random variable T takes the value located inside this
range is of great practical significance. Some selected values of the pairs tα, (1 −α)

are collated in Table 2.2 (comp. Fig. 2.6). The quantity (1 −α) is called the residual
probability.

In practice, certain specific ranges are often used, bounded by the multiplicities
of the standard deviation σ, namely:

(−σ,σ ) , the probability is α = 0.6826,

(−2σ,2σ) , the probability is α = 0.9544,
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Fig. 2.5 The probability density function of the normal distribution for several values of the stan-
dard deviation

Table 2.2 The residual probabilities of the
normal distribution tα 1 − α

0.0 1.0000

0.5 0.6170

1.0 0.3174

1.5 0.1336

2.0 0.0456

2.5 0.0124

3.0 0.0027

(−3σ,3σ) , the probability is α = 0.9973.

These numbers indicate that the normal distribution of a random variable is con-
centrated in the vicinity of the average value x. The probability that the value of a
random variable X with the normal distribution differs from its average value by
more than 3σ equals 0.0027. Such a significant property justifies to a certain degree
the so-called three-sigma rule, that is, often used also in cases when other distribu-
tions are involved, not only when the normal distribution is considered. This rule
should not, however, be used uncritically for any arbitrary probability distribution
(comp. [6]).
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Fig. 2.6 The residual
probability (1 − α)

Fig. 2.7 The cumulative
distribution function of the
standard normal distribution

Between the standard deviation σ of the normal probability distribution and its
average deviation d we have the following, sometimes useful, relation:

d =
√

2

π
σ ≈ 0.798σ. (2.40)

The cumulative distribution function of the normal random variable is given by
the formula

F (x) = 1

σ
√

2π

∫ x

−∞
exp

[
− (ξ − x)2

2σ 2

]
dξ ≡ Φ (t) , t = x − x

σ
, (2.41)

where Φ(t) is the cumulative distribution function of the normalized Gaussian ran-
dom variable:

Φ (t) = 1√
2π

∫ t

−∞
exp

[
−1

2
τ 2

]
dτ. (2.42)

The function Φ(t) is tabulated, see Table 2.3; its graph is presented in Fig. 2.7.
This distribution is sometimes called the standard normal distribution N(0,1).
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Table 2.3 The cumulative distribution function of the normalized Gaussian distribution

t Φ(t) t Φ(t) t Φ(t) t Φ(t) t Φ(t)

−3.00 0.0013 −1.75 0.0401 −0.50 0.3085 0.75 0.7734 2.00 0.9773

−2.95 0.0016 −1.70 0.0446 −0.45 0.3264 0.80 0.7881 2.05 0.9798

−2.90 0.0019 −1.65 0.0495 −0.40 0.3446 0.85 0.8023 2.10 0.9821

−2.85 0.0022 −1.60 0.0548 −0.35 0.3632 0.90 0.8159 2.15 0.9842

−2.80 0.0026 −1.55 0.0606 −0.30 0.3821 0.95 0.8289 2.20 0.9861

−2.75 0.0030 −1.50 0.0668 −0.25 0.4013 1.00 0.8413 2.25 0.9878

−2.70 0.0035 −1.45 0.0745 −0.20 0.4207 1.05 0.8531 2.30 0.9893

−2.65 0.0040 −1.40 0.0808 −0.15 0.4404 1.10 0.8643 2.35 0.9906

−2.60 0.0047 −1.35 0.0885 −0.10 0.4602 1.15 0.8749 2.40 0.9918

−2.55 0.0056 −1.30 0.0968 −0.05 0.4801 1.20 0.8849 2.45 0.9929

−2.50 0.0062 −1.25 0.1056 0.00 0.5000 1.25 0.8944 2.50 0.9938

−2.45 0.0071 −1.20 0.1151 0.05 0.5199 1.30 0.9032 2.55 0.9946

−2.40 0.0082 −1.15 0.1251 0.10 0.5398 1.35 0.9115 2.60 0.9953

−2.35 0.0094 −1.10 0.1357 0.15 0.5596 1.40 0.9192 2.65 0.9960

−2.30 0.0107 −1.05 0.1469 0.20 0.5793 1.45 0.9265 2.70 0.9965

−2.25 0.0122 −1.00 0.1587 0.25 0.5987 1.50 0.9332 2.75 0.9979

−2.20 0.0139 −0.95 0.1711 0.30 0.6179 1.55 0.9394 2.80 0.9974

−2.15 0.0158 −0.90 0.1841 0.35 0.6368 1.60 0.9452 2.85 0.9978

−2.10 0.0179 −0.85 0.1977 0.40 0.6554 1.65 0.9505 2.90 0.9981

−2.05 0.0202 −0.80 0.2119 0.45 0.6736 1.70 0.9554 2.95 0.9984

−2.00 0.0227 −0.75 0.2266 0.50 0.6915 1.75 0.9599 3.00 0.9987

−1.95 0.0256 −0.70 0.2420 0.55 0.7088 1.80 0.9641 – –

−1.90 0.0287 −0.65 0.2578 0.60 0.7257 1.85 0.9678 – –

−1.85 0.0322 −0.60 0.2743 0.65 0.7422 1.90 0.9713 – –

−1.80 0.0359 −0.55 0.2912 0.70 0.7580 1.95 0.9744 – –

In practical calculations often the so-called error function,

erf(t) = 1√
2π

∫ t

0
exp

[
−1

2
τ 2

]
dτ, (2.43)

is used instead of the cumulative distribution function of the normalized Gaussian
random variable. The error function is tabulated and given in various books (comp.,
e.g., [1, 10]). Its values are also given in Table 2.4.

The error function is directly connected with the cumulative distribution function
Φ(t) by the simple formulas:

Φ (t) = 1

2
− erf (−t) for t ≤ 0,

Φ (t) = 1

2
+ erf (t) for t > 0.

(2.44)
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Table 2.4 The error function
t erf(f ) t erf(t) t erf(t)

0.00 0.0000 1.00 0.3413 2.00 0.4773

0.05 0.0199 1.05 0.3531 2.05 0.4798

0.10 0.0398 1.10 0.3643 2.10 0.4821

0.15 0.0596 1.15 0.3749 2.15 0.4842

0.20 0.0793 1.20 0.3849 2.20 0.4861

0.25 0.0987 1.25 0.3944 2.25 0.4878

0.30 0.1179 1.30 0.4032 2.30 0.4893

0.35 0.1368 1.35 0.4115 2.35 0.4906

0.40 0.1554 1.40 0.4192 2.40 0.4918

0.45 0.1736 1.45 0.4265 2.45 0.4929

0.50 0.1915 1.50 0.4332 2.50 0.4938

0.55 0.2088 1.55 0.4394 2.55 0.4946

0.60 0.2257 1.60 0.4452 2.60 0.4953

0.65 0.2422 1.65 0.4505 2.65 0.4960

0.70 0.2580 1.70 0.4554 2.70 0.4965

0.75 0.2734 1.75 0.4599 2.75 0.4979

0.80 0.2881 1.80 0.4641 2.80 0.4974

0.85 0.3023 1.85 0.4678 2.85 0.4978

0.90 0.3159 1.90 0.4713 2.90 0.4981

0.95 0.3289 1.95 0.4744 2.95 0.4984

– – – – 3.00 0.4987

The error function erf(t) is a special function and has no representation in the form
of a combination of elementary functions. However, in certain books one can find
approximate expressions allowing one to calculate the values of that function by
means of elementary functions. Two such practical methods are presented below.
They are based on the asymptotic expansions (comp. [1, 7]).

Method 2.1

erf (t) = 1 −
(
a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5
)

exp
[−t2]+ ε (t) , (2.45)

where

z = 1

1 + pt
, |ε (t)| ≤ 1.5 × 10−7

and

p = 0.3275911, a1 = 0.254829592,

a2 = −0.284496736, a3 = 1.421413741,
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Fig. 2.8 Experimental generation of the normal distribution, the Galton box

a4 = −1.453152027, a5 = 1.061405429.

Method 2.2

erf (t) = 1 − 1

(a1t + a2t2 + a3t3 + a4t4 + a5t5 + a6t6)16
+ ε(t), (2.46)

where

|ε (t)| ≤ 3 × 10−7

and

a1 = 0.0705230784, a2 = 0.0422820123,

a3 = 0.0092705272, a4 = 0.0001520143,

a5 = 0.0002765672, a6 = 0.0000430638.

The numerical values of the error function calculated according to each of these
approximate formulas are often more accurate (the accuracy order 10−7 for all x ∈
[0,∞)) than those given in the popular textbooks.

For clarity, the generation of the normal distribution can be demonstrated by
using simple devices, such as that shown in Fig. 2.8 (cf. [5]). Small metal balls
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Fig. 2.9 The scheme of cells in the Galton box

falling down from a container T and striking numerous metal pins are randomly
directed to the right or to the left. Finally, they fall at random into one of the separate
small containers at the bottom of the device. The distribution of the number of balls
in consecutive containers is close to the normal distribution. Similar examples may
be found in [21].

Such a result of this educational experiment may be interpreted in two ways.
From the mathematical point of view we can say that the normal distribution is
formed as the consequence of the so-called central limit theorem, comp. [6]. Each
ball falling down is randomly directed to the right or to the left, suffering a unit
displacement with the same probability. Its final location in a specific container
at the bottom is the sum of such displacements, which is the sum of independent
random variables.

The fact that the distribution obtained in such an experimental device tends to the
normal distribution may be proved by simple calculus, see [17]. Let us consider an
arbitrary set of three cells A, B , C separated from the device in Fig. 2.8, and, more-
over, let us assume that the probability distribution in the model may be described by
a continuous function P(x, y), if the distances between the pins are tending to zero
(a → 0 and b → 0). The configuration of these separated cells is shown in Fig. 2.9.

Let the probabilities that a moving downwards ball falls to the cell B or C are:

P (x − a, y) and P (x + a, y) ,

respectively. Hence, we may express the momentary probabilities of migration of
balls to the cell A located in the lower layer (marked as y + b), using the formula
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for the complete probability, see (2.8). We obtain:

P (x, y + b) = 1

2
P (x − a, y) + 1

2
P (x + a, y) . (2.47)

Then, using Taylor’s expansion of all terms of (2.47) around the point (x, y), we
can write:

P (x, y + b) − P (x, y) = b
∂P (x, y)

∂y
+ 1

2
b2 ∂2P(x, y)

∂y2
+ · · ·,

P (x − a, y) − P (x, y) = −a
∂P (x, y)

∂x
+ 1

2
a2 ∂2P(x, y)

∂x2
+ · · ·,

P (x + a, y) − P (x, y) = a
∂P (x, y)

∂x
+ 1

2
a2 ∂2P(x, y)

∂x2
+ · · ·.

Substituting the above equations in (2.47) and decreasing the dimensions of the cells
to a zero limit in such a way that simultaneously two conditions are satisfied:

a → 0, b → 0, and
a2

2b
= D = const., (2.48)

we obtain the following partial differential equation for the probability density func-
tion P(x, y):

∂P (x, y)

∂y
− D

∂2P(x, y)

∂y2
= 0. (2.49)

Equation (2.49), obtained in [17], is of the same type as the equation of conduc-
tion of heat in solids, cf., e.g., [4]. Its solution can be written in the form

P (x, y) = β√
y

exp

[
− x2

4Dy

]
. (2.50)

To make the solution P(x, y) of (2.50) to be a probability density function we take
the parameter β such that the integral with respect to x of the right-hand of (2.50),
for each y = const. is equal to 1,

∫ ∞

−∞
P (x, y) dx = 2β

√
πD = 1,

from which it follows that

β = 1

2
√

πD
. (2.51)

Thus, the solution to (2.49) can be written as

P (x, y) = 1

2
√

πDy
exp

[
− x2

4Dy

]
, (2.52)
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Fig. 2.10 Approximation of
a histogram presented in
Fig. 1.2 by the normal
probability density function

and after substitution

σ = √
2Dy (2.53)

as

P (x, y) ≡ f (x) = 1

σ
√

2π
exp

[
− x2

2σ 2

]
. (2.54)

Comparing the obtained expression (2.54) with the known probability density
function of the normal distribution (2.35) of a zero mean value (x̄ = 0) we obtain
an argument that the probability distribution, which is a result of random symmetric
(that is with probability 1

2 in every side) reflections of balls on pins of the Galton
box presented in Fig. 2.8, is really the normal distribution.

This result can be also interpreted more generally: we deal with the normal prob-
ability distribution of a random variable when this variable is influenced by numer-
ous independent factors. Such an interpretation explains why the normal distribution
corresponds so well to the distribution of errors of measurements, which usually
arise as a result of numerous unknown external factors.

Let us now consider an example of application of the continuous normal dis-
tribution to the description of the quasi-stepwise distribution shown in the form of
the histogram presented in Fig. 1.2. For the quasi-stepwise distribution, the average
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Fig. 2.11 Examples of distributions of certain mechanical properties of metal alloys, see [8]

value and the standard deviation are equal, respectively, to

t̄ = 3.48 µm, σ = 3.11 µm.

The diagram of the normal distribution calculated for such values of t̄ and σ is
presented in Fig. 2.10 along with the transformed original histogram. The area be-
low the upper stepwise boundary of the transformed histogram equals unity. It is
seen that this stepwise boundary corresponds fairly well to the graph of the normal
probability distribution.

As another example, Fig. 2.11 shows distributions of the yield locus σpl and
limit stress σn under uniaxial tension of a steel sheet 2 mm thick, measured during a
tension test on 330 specimens cut out at various places of the same sheet, comp. [8].
For an aluminum alloy sheet, results of similar tests also shown in the figure display
much smaller dispersion of the limit stress.

Random distributions of mechanical properties observed even in one large piece
of a material contribute to the so-called scale effect: large specimens display smaller
limit stress and yield locus than small specimens made of the same material.

Another example of a practical application of the normal distribution to the de-
scription of the cohesion c of soils is presented in Fig. 2.12. The figure was prepared
on the basis of the experimental results given in [18].
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Fig. 2.12 Application of the normal distribution to the description of the cohesion c of soils,
see [18]

2.5 Two-dimensional Gravity Flow of Granular Material

Before giving more information concerning probability distributions, let us ana-
lyze an example showing that using even the elementary theory of probability one
can solve numerous problems of real practical significance. In the papers [15–17]
J. Litwiniszyn ingeniously analyzed the inverse problem in which the cavities in a
bulk of a loose material move randomly upwards from the bottom. To illustrate his
idea, let us consider a two-dimensional problem of a relatively wide container with
an outlet at the middle of the bottom. Fig. 2.13 shows the assumed initial system of
finite cells analogous to that shown previously in Fig. 2.9. The width to height ratio
of cells connected with the parameter (2.48) should be determined experimentally
for the granular medium in question; for details see [23].

A portion of the loose medium has just now left cell A leaving an empty space
in it. The cavity in A formed in such a manner migrates upwards. We assume, as
in the inverse problem shown in Fig. 2.8 that each time a portion of that cavity
moves upwards, the probability of migrating into the right-hand or into the left-hand
cell lying just above is equal to 1

2 . It means that at the beginning of the migration
process, one half of the initial cavity A moves to the cell B and the other half is
shifted to the cell C. If the volume of each cell is assumed to be a unit volume, the
numbers in consecutive cells indicate how large a portion of the initial unit volume
A passed through the cell during the migration process. Since after migration each
portion of empty space must be filled by the granular medium falling downwards,
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Fig. 2.13 Assumed system of cells for the problem of gravity flow from a bin

these numbers correspond to the average vertical displacement of the medium in
particular cells. These vertical displacements are represented in Fig. 2.14. However,
each particle of the medium is displaced also horizontally.

Below is presented a simple approximate method of determining total displace-
ments [22]. Let us analyze an arbitrary set of three adjacent cells taken from the
system of cells shown in Fig. 2.13. They are represented in Fig. 2.15a. The num-
bers in them correspond to the fraction of the initial volume of the cavity A, which
passed through the cell during the migration towards the free surface of the bulk of
the medium. According to the finite cells methodology, only one half of these frac-
tions migrates from each cell A and B to the cell C. It is assumed that this migration
takes place along the respective lines A − C or B − C joining central points of the
cells. Directions and magnitudes of these migrating portions of the cavity may be
represented by vectors WBC and WAC as shown in Fig. 2.15b. They may be treated
as components of the resulting vector Wcav representing the direction and the mag-
nitude of the averaged momentary flux of the cavity into cell C during the migration
process. The opposite vector Wmat may be treated as a representation of the flux
of the mass of granular medium filling the space left by cavities moving upwards.
In order to calculate the magnitude of the averaged displacement vector u of the
particles of the medium, it is assumed that its direction coincides with the direction
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Fig. 2.14 Vertical displacement of granular material in cells

of the vector Wmat . To make this procedure consistent with that described before,
it is assumed that the vertical component of the displacement vector u is equal to
the vertical displacement of the respective sector of the stepwise deformed bound-
ary between the rows of cells (cf. Fig. 2.14). Using this approximate procedure, the
vectors of displacements have been calculated for the problem shown in Fig. 2.13
and Fig. 2.14. Results are shown in Fig. 2.16.

In Fig. 2.17 is presented an analogous solution for prediction of the movements
of a crowd in a relatively narrow exit [14].

Figure 2.18 shows the theoretical field of displacements vectors calculated in the
manner described above.

In order to verify experimentally such a theoretical motion pattern, a preliminary
simple experimental simulation model composed of an assembly of coins of three
different diameters has been used. The initial configuration of the assembly corre-
sponding to the theoretical problem shown in Fig. 2.17 is presented in Fig. 2.19. The
coins are located on a glass plate in the initial horizontal position. Then the plate is
inclined with respect to the horizontal plane and the coins begin to slide downwards
due to the gravity forces. This movement is disturbed by random mutual contacts
between neighbors. The final configuration of displaced coins is shown in Fig. 2.20.
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Fig. 2.15 Calculation of
displacements of the granular
material in cells, after [22]

Fig. 2.16 Calculated displacements of granular medium in a bin, after [22]

The experiment was performed in three stages. In each stage one of the blocking
strips at the bottom was removed. For each stage displacements of particular coins
were measured. They are shown in Fig. 2.21. The stochastic nature of the move-
ments of coins is visible. Let us notice, however, that their general layout is close to
that shown previously in Fig. 2.18.
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Fig. 2.17 Assumed system of finite cells and vertical displacements in a crowd in narrow exits,
see [14]

Fig. 2.18 Calculated displacements of a crowd in a narrow exit, see [14]

The next example concerns the problem of terrain subsidence caused by subter-
ranean exploitation. The solution is shown in Fig. 2.22 (cf. [24]).

In the lower part of the soil resting on a bedrock, the empty space A−B −C −D

has been left by underground exploitation. In the following process of subsidence
this empty space will be filled by the soil migrating downwards. Let us divide this
empty space into a number of cells, each of them being of unit volume. These unit
cavities migrate upwards through the system of cells shown in the figure. It is as-
sumed that each time a cavity in the particular cell migrates upwards, the probability
that it moves to the left or to the right cell, just above it, is equal to 1/2. Numbers
shown in particular cells indicate how large was the portion of a unit cavity which
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Fig. 2.19 Initial configuration of coins located on a glass plate, see [14]

Fig. 2.20 Final configuration of coins in an experimental simulation of movements of a crowd,
see [14]

has passed through the cell during the migration process. On the basis of these num-
bers, the diagram representing a stepwise approximation of the final subsidence
shown in Fig. 2.23 has been prepared. The procedure described above allows us to
calculate the vectors of displacements in the entire deformation zone Fig. 2.24.
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Fig. 2.21 Experimentally
determined displacements of
coins in the test shown in
Figs. 2.19 and 2.20

Fig. 2.22 Assumed system
of finite cells for the analysis
of terrain subsidence, see [24]

Fig. 2.23 Vertical
displacement of granular
medium in cells of the
assumed system, see [24]

In Fig. 2.25 is presented a simple experimental simulation of such a subsidence
process. The coins of different diameters are located on a glass plate as shown in
the photograph. To simulate the initial configuration corresponding to that shown
in Fig. 2.22, two bottom rows on the right side have been left without coins. Then
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Fig. 2.24 Calculated
displacements of a granular
medium in the process of
terrain subsidence shown in
Figs. 2.22 and 2.23, after [24]

Fig. 2.25 Initial configuration of coins located on a glass plate, see [24]

the blocking strip at the bottom has been removed and the plate was inclined with
respect to its initial horizontal position. The coins slid downwards due to gravity
force. The final configuration of coins is shown in Fig. 2.26.

The displacements of central points of several coins resulting from this experi-
mental simulation are shown in Fig. 2.27.

Let us note that this experimental result is similar to that resulting from theoreti-
cal solution shown in Fig. 2.24.

Summarizing the considerations of this subsection we see that the calculation
methods proposed by J. Litwiniszyn were, both, very effective in solving quite in-
volved geotechnics problems and very illustrative. They were also an inspiration
for mathematically more advanced models, e.g., description of the random walk of
voids by means of diffusive Markov processes, cf. [3].
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Fig. 2.26 Final configuration of coins in an experimental simulation of terrain subsidence

Fig. 2.27 Experimentally determined displacements of coins in the test shown in Figs. 2.25 and
2.26, after [23]

Problem 2.1 Consider a system of four electric elements connected in series. The
probability of defective operation of these elements after one year of work is, re-
spectively, 0.6, 0.5, 0.4, and 0.3, and is independent one from the other. Calculate
the probability of defective operation of the system of elements. Calculate the prob-
ability that the system works correctly.

Problem 2.2 A sample of 200 mass-produced elements is tested by random choice
of 10 elements. It is rejected if at least one of the elements is defective. Calculate
the probability of the rejection of the sample of elements if 5% of the elements in
the sample are defective.

Problem 2.3 Calculate the probability that a sample of 100 mass-produced ele-
ments will be accepted if it contains 5 defective elements and we test 50 elements
allowing at the most two defective elements among them.
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Chapter 3
Probability Distributions
and Their Characterizations

3.1 The Characteristic Function of a Distribution

A distribution of the random variable X may be described (equivalently to its de-
scription by the probability density function) by the characteristic function of the
distribution. It is defined as the Fourier transform of the probability density func-
tion f (x) of the random variable X:

ϕ (λ) =
∫ ∞

−∞
exp[iλx]f (x)dx, (3.1)

where i = √−1.
The equivalence of two descriptions, by the probability density function and by

the characteristic function, is assured by the following Bochner theorem.

Theorem 3.1 If a function ϕ(λ), defined for −∞ < λ < ∞, satisfies the equality
ϕ(0) = 1, then it is a characteristic function if and only if:

(1) it is continuous, and
(2) for n = 1,2,3, . . . , for any real numbers λ1, λ2, . . . , λn and for any complex

numbers a1, a2, . . . , an, the relation

n∑

j,k=1

ϕ
(
λj − λk

)
ajak ≥ 0 (3.2)

is satisfied.

In other words, any continuous function equal to 1 at zero is the characteristic
function of a distribution if and only if it is positive definite (that is, it satisfies
condition (3.2)).

The verification whether some function is positive definite by checking the in-
equality (3.2) is, in a general case, very difficult. For this reason the condition is
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usually tested by calculation of the inverse Fourier transform of ϕ(λ) and examin-
ing whether the obtained function is positive. Another possibility is given by the
following theorem presented by Cramer (cf. [4]):

Theorem 3.2 A bounded and continuous function ϕ(λ) is the characteristic func-
tion of a distribution if and only if ϕ(0) = 1 and the function

ψ (x, a) =
∫ a

0

∫ a

0
ϕ (λ − τ) exp [ix (λ − τ)]dλdτ (3.3)

is real-valued and non-negative for all x and for all a > 0.

The knowledge of the characteristic function of a random variable enables us
to calculate its moments. If the characteristic function ϕ(λ) of the distribution of
random variable X is n times differentiable, then this random variable has a finite
moment of n-th order mn, and the following relation is satisfied:

mn = 1

in

dn

dλn
ϕ (λ) |λ=0. (3.4)

Example 3.1 (Characteristic function of the normal distribution) Consider, as an
example, the normal (Gaussian) distribution. The characteristic function ϕ(λ) of
this distribution has the form

ϕ (λ) = exp

[
im1λ − 1

2
σ 2λ2

]
, (3.5)

where m1 is the mean value and σ 2 = μ2 is the variance of the distribution.

If the characteristic function of a distribution is known, we are able to calculate
all the moments of this distribution using formula (3.4). Concerning the Gaussian
distribution we find that its central moments have simple forms. Calculating the
moments and using formula (2.28) we obtain:

μn =
{

0 for odd n,
σnn!

2
n
2 [( n

2 )!]
for even n. (3.6)

As it is seen, the Gaussian distribution is completely described by its two lowest-
order moments: the mean value and the variance. All the higher-order moments can
be represented by polynomial functions of the mean value and the variance.

Equation (3.4) gives us the relation between the characteristic function of a ran-
dom variable in question and its moments of any order. It is seen that for small
values of λ the characteristic function can be expanded into the Maclaurin series,
where the moments play the role of coefficients of the expansion:

ϕ (λ) = 1 +
n∑

k=1

mk

k! (iλ)k + o
(
λn

)
. (3.7)
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If we consider Maclaurin’s expansion of the natural logarithm of the characteris-
tic function ϕ(λ),

logϕ (λ) =
n∑

k=1

κk

k! (iλ)k + o
(
λn

)
, (3.8)

then the coefficients κk of the obtained series are called the cumulants of random
variable X or the cumulants of the distribution.

The cumulants of a certain distribution can be represented as polynomials of mo-
ments of this distribution. (Analogously: moments can be expressed as polynomials
of cumulants.) The exact formulas can be obtained by formal comparison of the log-
arithm of the expansion (3.7) and the expansion (3.8) (see, e.g., [4]) and equivalence
of the coefficients at equal powers of λ. Thus, we obtain the (usually infinite) system
of equations relating the moments and cumulants.

Example 3.2 (Cumulants of the normal distribution) For the normal distribution we
have:

logϕ (λ) = im1λ − 1

2
σ 2λ2

and, as the consequence of the definition of cumulants, we obtain:

κ1 = m1,

κ2 = σ 2,

κj = 0 for j > 2.

The normal distribution is the only continuous one which possesses a finite num-
ber of non-zero cumulants. For other distributions, infinitely many cumulants pos-
sess non-zero values.

3.2 Constants Characterizing the Random Variables

The information on random variables and the probability distributions presented
above shows that they can be described in various ways. However, the simplest
characterization of them is as numbers (e.g., moments of one-dimensional distribu-
tions). Now we give some additional parameters describing the properties of random
variables.

The most fundamental information about a random variable is connected with
determining the point around which its distribution is concentrated. Introducing mo-
ments we defined the average value of the random variable (sometimes called the
mean value, the expected value or, simply, the expectation), calculated according to
the formula

x =
∫ ∞

−∞
xf (x)dx. (3.9)
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It describes the “center of gravity” of the random variable, calculated with respect
to the measure described by the probability density function f (x).

Another constant characterizing the center of distribution of a random variable
can be defined by a choice of such a value of the argument x of a probability density
function f (x), where this function has a local maximum. We call it the modal value
(mode). If the probability density function has only one maximum (the distribution
is unimodal) then we observe that possible values of the random variable concentrate
around this point (the point where the probability density function has the maximum
value). If the probability density function has two maximums, we call it bimodal
(examples of bimodal distributions are shown in Figs. 1.6 and 1.7b), etc. In the case
of several maximums, the modal values do not give us direct information about the
points of concentration of the distribution.

The median (median value), denoted by m can be some other number describ-
ing the “middle of the distribution”. It is defined as the value of the variable x for
which the probability density function f (x) satisfies simultaneously the two follow-
ing conditions:

F (x) ≤ 1

2
for x ≤ m,

F (x) ≥ 1

2
for x ≥ m.

(3.10)

The number m satisfying the conditions (3.10) always exists but sometimes it
cannot be determined uniquely.

In a general case, for a given random variable, the three defined numbers: the
mean value, the modal value, and the median value differ from each other. In the
special case of unimodal symmetric distributions these numbers are equal to each
other. Then, the value searched for is the point x, where the axis of symmetry of the
probability density function f (x) crosses the x-axis.

To describe the distribution of a random variable more precisely, we must have
some other quantity, describing its dispersion around the point of concentration (the
mean value). Such a number has been defined in Sect. 2.3, concerning the moments
of random variables. We mean here the standard deviation σ being the square root
of the variance σ 2, see (2.24). The standard deviation, however, does not describe
dispersion of the random variable completely. We know that if the standard deviation
equals zero, then the random variable is a constant number:

σ = 0 ⇔ P (X = c) = 1. (3.11)

For non-zero standard deviations we may compare random variables having the
same type of distribution. Then we say that the one of the compared random vari-
ables is more dispersed around its mean value which has a greater standard devi-
ation. For different distributions, the standard deviation gives only some intuitive
information about dispersion of random variables.
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Another measure of dispersion, closely related to the standard deviation, is the
following variation ratio ν of a random variable, defined as

v = σ

m1
. (3.12)

In other words, the variation ratio is equivalent to the standard deviation measured
in units of the mean value of the random variable under consideration.

The next measure of dispersion, applicable to random variables with discrete
distributions or finite samples of random variables with continuous distributions,
is the range δ defined as the distance between the maximum and the minimum
values of the random variable. The concept of the range can be also applied to
any random variable with continuous distribution provided it takes values from a
bounded interval. Then the range δ is the length of that interval.

One can find a relation between the variation ratio ν and the range δ. Let m1 > 0
be the mean value of the random variable X and assume that there exist constants a

and A such that the condition P(a ≤ X ≤ A) = 1 is satisfied. Then

ν ≤
√(

A

m1
− 1

)(
1 − a

m1

)
. (3.13)

In this case the range δ satisfies the condition

δ ≤ A − a. (3.14)

The average deviation d defined in (2.25) can be also considered as a certain
measure of dispersion of a random variable.

After determination of the concentration point and the level of dispersion of the
distribution of a random variable, one can try to describe the properties (the shape)
of the probability density function more precisely. As a curve of reference we can
use the normal distribution. Observing its probability density function (Fig. 2.4) one
can see its characteristic properties: it has one maximum (it is a unimodal distribu-
tion), it is symmetric with respect to the central point, and it is concentrated around
the mean value. Therefore, when a unimodal distribution is considered, we may
compare its symmetry and flattening to an appropriate (with the same mean value
and variance as those for the distribution under consideration) normal distribution.

The most frequently used measure of asymmetry of the probability density func-
tion is the asymmetry (skewness) coefficient γ1 defined as (see [4, 18])

γ1 = μ3

σ 3
, (3.15)

where μ3 is the central moment of the third order, and σ is the standard deviation.
For a normally distributed random variable or any other symmetrical one, the asym-
metry coefficient γ1 equals zero. If γ1 is negative, we deduce that the probability
density function has a long tail on the left-hand side of the mean value. The pos-
itive value of γ1 indicates the existence of the long tail at the right-hand side (see
Fig. 3.1).
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Fig. 3.1 The asymmetry
coefficient, see (3.15)

Fig. 3.2 The excess
coefficient, see (3.16)

The excess (kurtosis) coefficient γ2, defined as

γ2 = μ4

σ 4
− 3, (3.16)

is the measure of flattening of the probability density functions. As in the previous
case, for the normal distribution the coefficient γ2 is equal to zero. If the excess
coefficient γ2 is positive, then the given probability density function is taller and its
shape is slimmer around the modal value than the density of the normal distribution.
The negative value of γ2 leads to the opposite conclusion (see Fig. 3.2).

Another possibility of description of the shape of the probability density function
is the application of the location parameters, called quantiles (fractiles, percentiles).
For a random variable X of any type of distribution and a given p, 0 < p < 1, the
quantile of order p is such a number αp which satisfies the condition

P
(
X < αp

) ≤ p ≤ P
(
X ≤ αp

)
. (3.17)
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If the random variable X has a continuous distribution, then condition (3.17) may
be written in the following form:

P
(
X < αp

) = p, (3.18)

or

F
(
αp

) =
∫ αp

−∞
f (x)dx = p. (3.19)

Let us note that the median (median value) is the quantile of order 1/2.

The appropriate set of quantiles allows us to describe approximately the proba-
bility density function (or cumulative distribution function) of any random variable
with a continuous distribution. They determine “gates” guiding the curve of the den-
sity function to obtain the approximate plot. In the limiting case the knowledge of
all the quantiles (that is, the quantile function) is equivalent to the knowledge of the
cumulative distribution function (see Sect. 2.2).

The quantiles can be applied for constructing the measures of dispersion, skew-
ness and kurtosis. For example, the quarter distance τX , defined as

τX = 1

2

(
α3/4 − α1/4

)
, (3.20)

may be considered as a measure of dispersion.
To complete this section we give one more characteristic of the probability dis-

tribution. We define the entropy which for a continuous distribution with the proba-
bility density function f (x) has the form1

H = −
∫

f (x) logf (x)dx = −E {logf (X)} . (3.21)

For discrete distributions the entropy is defined as

H = −
∑

k

pk logpk = −E {logP(X)} . (3.22)

The entropy describes the amount of information contained in the distribution of
a random variable. If the entropy is greater, the random variable is more dispersed
and one needs more information to describe the distribution of the random variable.
For example, the normal distribution has the greatest entropy among all the con-
tinuous distributions defined along the entire straight line and possessing the same
variance. The exponential distribution (see Sect. 3.4.2) has the analogous property
among the continuous distributions defined along the positive axis.

1Symbol E{.} denotes the expectation of a random variable; it will be defined in Sect. 3.3.
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3.3 Deterministic Functions of Random Variables

In many problems of applied probability theory we use random variables which are
deterministic functions of other random variables. Such a situation occurred during
calculation of the moments of random variables: starting from the random variable
X with a given distribution, we constructed a new random variable being a power
of X and then we calculated its mean value.

Before we start considerations on functions of random variables, let us introduce
some notation. Let E be the symbol of expectation of a random variable, that is, the
integral with respect to the probability P (defined in the σ -algebra of all events).
For the random variable X(ω) possessing the probability density function fX(x),
the integration is equivalent to the integration with respect to the probability density
function:

E {X (ω)} =
∫

�

X (ω)dP (ω) =
∫ ∞

−∞
xfX (x)dx. (3.23)

Thus, the integration of the P -measurable function X(ω) over the set of elemen-
tary events � is replaced by the integration of the real function xfX(x) over the set
of real numbers R = (−∞,∞).

Let g(x) be a deterministic measurable function, g : R → R. Since g(x) is mea-
surable, the function of the random variable X(ω), namely Y(ω) = g(X(ω)), is also
measurable and, as a consequence, is a random variable. To calculate the mean value
of the random variable Y(ω) we can perform one of the two equivalent integrations:

E {Y (ω)} = E {g (X (ω))} =
∫ ∞

−∞
g (x)fX (x)dx =

∫ ∞

−∞
yfY (y) dy. (3.24)

Integration with respect to the probability density function of random variable
Y(ω) requires the knowledge of this function. We can find it by changing variables
under the integration sign in (3.24) and by comparing the corresponding functions.
Finally, we obtain

fY (y) = fX (ψ (y)) |ψ (y)| , (3.25)

provided a unique inverse transformation X = ψ(Y ) exists. If the function inverse
to g(x) is non-unique, that is, some values of y are assigned to several values of x:
ψ1(y), ψ2(y), . . . ,ψk(y), then the probability density function of a random variable
Y can be represented by

fY (y) =
k∑

j=1

fX

(
ψj (y)

)∣∣ψj (y)
∣∣. (3.26)

Performing integration with respect to the probability density function fY (y) we
must remember the correct values of the limits of integration resulting from the form
of function g(x).
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Example 3.3 (The arcsine distribution) If we assume that the random variable X

has a uniform distribution in the interval (− 1
2T , 1

2T ), then the random variable Y =
a sin( 2πX

T
) has the following arcsine distribution:

fY (y) =
{ 1

π
√

a2−y2
for |y| < a,

0 for |y| ≥ a.
(3.27)

One can give a number of useful inequalities for functions of random variables.
One of them is the Jensen inequality. If an arbitrary real-valued function g(x) is
concave and for the random variable X(ω) both E{X(ω)} and E{g(X(ω))} exist,
then

E {g (X (ω))} ≤ g (E {X (ω)}) ; (3.28)

the equality applies only to the linear function g(x) = ax + b.
Assume that g(x) = xp/q , X(ω) = |Z(ω)|q , 0 < p < q . Substituting g(x) and

X(ω) in Jensen inequality (3.28) we get

E
{|Z (ω)|p} ≤ (

E
{|Z (ω)|q})p/q

. (3.29)

The inequality (3.29) confirms the fact that for any given random variable Z(ω)

we can deduce the existence of lower-order moments from the existence of higher-
order moments.

Now a number of basic probability distributions used in engineering applications
will be discussed.

3.4 Some Other One-dimensional Distributions

In addition to the normal probability distribution, which plays a fundamental role,
some other distributions are often used in the error calculus. In this section we
present examples of distributions which are most often encountered in engineering
applications. It is not our purpose to classify all the known probability distributions.
However, we shall present some distributions which are not used directly in prac-
tical applications discussed in this book, but which can be useful for the readers in
their further studies.

3.4.1 Discrete Probability Distributions

We say that a random variable X has a discrete distribution (is discrete) if it takes
at most a countable number of values xj ∈ R, j = 1,2, . . . , with a non-zero prob-
ability. This means that its probability distribution is completely described by the
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sequence of numbers pj , j = 1,2, . . . , (finite or countable) satisfying the following
conditions:

pj = P(ω ∈ � : X(ω) = xj ) > 0 for xj ∈ R, j = 1,2, . . . , (3.30a)
∑

j

pj = 1. (3.30b)

In (3.30b) the subscript j takes a finite or countable number of values, depending
on the particular distribution.

For a discrete random variable the cumulative distribution function is a piecewise
constant function and the probability density function does not exist.

3.4.1.1 The Binomial Distribution

We say that the discrete random variable X, taking values from the finite subset of
natural numbers A = {1,2, . . . , n} ⊂ N , has the binomial distribution b(n,p), if the
probabilities pj are defined by

pj = P(X = j) =
(

n

j

)
pj (1 − p)n−j , (3.31)

where the parameter p takes values from the interval (0,1).
Two lowest-order moments of the binomial random variable X are

E {X} = np, σ 2
X = np(1 − p). (3.32)

The binomial distribution can be applied to describe the number of successes pro-
duced in a sequence (succession) of n Bernoulli trials. In this process we describe
a sequence of n independent experiments which give a result called a “success”,
with probability p, and a “failure”, with probability 1 − p. Then the random vari-
able X describing the number of successes in n Bernoulli trials has the binomial
b(n,p) distribution. The number pj defined in (3.31) represents the probability of
j successes and n − j failures in the sequence.

Example 3.4 (An unbiased coin flipping, continuation) An unbiased single coin flip
is a Bernoulli trial where the probability of success (e.g., of heads) is p = 1

2 . Then
the number of heads in n coin flips has the binomial distribution b(n, 1

2 ).

The binomial distribution is often applied in the reliability theory of compound
systems (describing failures of large systems), telecommunications (transmission
of bits through noisy or non-perfect channels), cryptography (encryption of binary
sequences), etc.
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3.4.1.2 The Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution. As-
sume that we make an experiment which can give one of several (say r) results Bj ,
j = 1,2, . . . , r , each with probability pj , j = 1,2, . . . , r , respectively. Consider a
succession of n such experiments. The probability that in the succession the result
Bj occurs kj times, j = 1,2, . . . , r , has the multinomial distribution

P {N(B1) = k1,N(B2) = k2, . . . ,N(Br) = kr} = n!
k1!k2! · · ·kr !p

k1
1 p

k2
2 · · ·pkr

r ,

(3.33)
provided the following conditions are satisfied:

p1 + p2 + · · · + pr = 1,

k1 + k2 + · · · + kr = n.
(3.34)

Formula (3.33) is called multinomial because its right-hand side expression is
the general term of the multinomial expansion of the n-th power of the sum of
probabilities pj : (p1 + p2 + · · · + pr)

n.
For r = 2 the multinomial distribution reduces to the binomial one.

Example 3.5 (Dice casting, continuation) Results of multiple (honest) die casting
can be described by the multinomial distribution with r = 6 and

p1 = p2 = · · · = p6 = 1

6
.

3.4.1.3 The Poisson Distribution

Let X be a discrete random variable taking values from the set of natural numbers.
If for some real number λ > 0 the probabilities are of the form

pj = P(X = j) = e−λ λj

j ! , (3.35)

for j = 1,2, . . . , then we say that a random variable X has the Poisson distribution.
Two lowest-order moments of the Poisson random variable are

E {X} = λ, σ 2
X = λ. (3.36)

Random variables with the Poisson distributions are often used for description
of physical phenomena. A typical example of application is a model of the natural
radioactivity of matter (e.g., counting the number of pulses by the Geiger-Mueller
detector, see [27]). Another application is modeling of stochastic excitations act-
ing on engineering structures, generated by e.g. road traffic, wind shocks, hail, etc.
(see [11]).
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3.4.2 Continuous Probability Distributions

We say that a random variable X has a continuous distribution if it can take all
values from some real line interval (also: the whole line or the half-line).

3.4.2.1 The Rectangular (Uniform) Distribution

The rectangular distribution is also called the uniform distribution or the equal
probability distribution (comp. [21]). The probability density function for such a
distribution (Fig. 3.3a) takes the form

f (x) =
{

1
b−a

for a ≤ x ≤ b,

0 for x < a and x > b.
(3.37)

The cumulative distribution function is shown in Fig. 3.3b.
It is not expected that such a distribution can really be observed in practice. It

can, however, be useful in various engineering applications, especially, if the so-
called tolerance limits, when certain dimensions of the object may change within a
range between a strictly defined limits from a to b, are dealt with. Examples of such
applications will be given in Sect. 6.2.

The rectangular distribution (3.37) is the simplest one for the analysis. Since the
mean value and the variance have the following simple forms:

m = a + b

2
, σ 2 = (b − a)2

12
, (3.38)

respectively, it can be shown that for a given mean value m and a given variance σ 2,
limiting values a and b must be equal to

a = m −
√

3σ 2, b = m +
√

3σ 2. (3.39)

Fig. 3.3 The uniform distribution: (a) the probability density function, (b) the cumulative distri-
bution function
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Returning to the three-sigma rule presented in Sect. 2.4, one should note that the
random variable of the uniform distribution takes, by definition, all its values within
the range (m − √

3σ,m + √
3σ). Thus, one can say that the uniform distribution is

more concentrated than the normal distribution. (The normally distributed random
variable assumes the values within the three-sigma range with probability 0.9973,
see Table 2.2). The three-sigma range for the rectangular distribution equals: 3σ =√

3
2 (b − a), and it is larger than the half-width of the distribution range.

The characteristic function of the rectangular distribution takes the form

ϕ (λ) = exp[ibλ] − exp[iaλ]
i(b − a)λ

, (3.40)

where i = √−1. The central moments of an arbitrary order of that distribution are

μn =
{

0 for n odd,
1

n+1 ( b−a
2 )n for n even.

(3.41)

In particular, for n = 3 and n = 4 these moments are

μ3 = 0, μ4 = (b − a)4

80
. (3.42)

The rectangular (uniform) distribution plays a basic role in computer simulations
when we want to find the random variables of an arbitrary distribution for problems
in which such variables are dealt with. In such simulations the so-called random
number generators producing a sequence of numbers with the uniform distribution
are used. They usually operate using numerical algorithms allowing one to form
sequences of non-periodic (that means practically: having a sufficiently long period)
numbers within the range [0,1]. Having generated such a random variable one can
find a random variable of an arbitrary probability density distribution by using the
respective transformation (e.g., inversion of the cumulative distribution function).

Example 3.6 (Random numbers generator: the uniform distribution) As an example,
we obtain the sequence {xn,n = 1,2, . . .}, using the algorithm:

yn+1 = ayn + b (mod M), b �= 0,

xn = yn

M
,

where a, b, and y0 are natural numbers from the range [0,M). These numbers must
be carefully selected to obtain a sequence satisfying the conditions of randomness,
uniformity of the distribution, and independence of elements, usually verified by
statistical tests (see Chap. 10).

Examples of other random numbers generators may be found in [3, 12, 22].
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3.4.2.2 The Lognormal Distribution

In numerous cases of random distribution of errors we know that the measured devi-
ations from the desired value of the parameter in question must be positive. Typical
examples are those in which the desired magnitude of a measured parameter equals
zero, e.g., the distance between centers of parts which should be coaxial, the contam-
ination of soil, water or air. In such cases the measured deviation cannot be treated
as a random variable with the normal distribution. It should be treated as the one that
assumes only positive values. The most frequently used distribution corresponding
to such a situation is the lognormal distribution.

We say that a random variable X has the lognormal distribution if the natural
logarithm of the variable displays the normal distribution. The probability density
function of the lognormal distribution is

f (x) =
{

0 for x < 0,

1
x
√

2πσ 2
exp[−(logx/m)2

2σ 2 ] for x ≥ 0.
(3.43)

The lognormal distribution is two-parametric. The parameter m is called the median
(comp. Sect. 3.2), and the other parameter σ stands for the standard deviation of the
natural logarithm of the random variable X. Both these parameters are associated
with the first-order moments.

Namely, the first-order moments (the mean value and the variance) are expressed
by the formulas

mX = m1 = m exp

[
1

2
σ 2

]
,

σ 2
X = μ2 = m2

{
exp[σ 2] − exp

[
1

2
σ 2

]}
.

(3.44)

In Figs. 3.4 and 3.5 are presented two examples of histograms summarizing the
results of large scale measurements, the random nature of which is well described by
the lognormal distribution. These results represent the distribution of contamination
of water sediments by vanadium (Fig. 3.4) and of the soil by cadmium (Fig. 3.5) over
large regions in Poland. For the two histograms in which the independent variable x

represents the amount of contamination in [g/t], two first-order moments and then
the corresponding parameters of the lognormal distribution have been calculated.

In both cases, in spite of different forms of the histograms, fairly good coinci-
dence of empirical distributions with the respective approximation by the lognor-
mal distribution is clearly seen. The values of the calculated parameters are given in
Table 3.1.

For the lognormal distribution one can calculate the moments of an arbitrary
order. They are expressed by the simple formula

mn = mn exp

[
1

2
n2σ 2

]
. (3.45)
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Fig. 3.4 The distribution of contamination of water sediments by vanadium, see [8]

Fig. 3.5 The distribution of contamination of the soil by cadmium, see [8]

Having found the expressions for ordinary moments, one can then calculate the
central moments by means of formula (2.28). For example, the central moments of
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Table 3.1 The parameters of
the lognormal distribution
used for approximation of the
histograms from Figs. 3.4
and 3.5

Vanadium Cadmium

The mean value mX 13.77 [g/t] 2.41 [g/t]
The second-order moment E{X2} 254.6 [g2/t2] 9.12 [g2/t2]
The parameter m 11.92 1.92

The parameter σ 2 0.28 0.455

Fig. 3.6 Applications of the lognormal distribution: (a) the distance of centers, error e, of the two
adjoining parts of a shaft, (b) the deviation e of the hole axis from its desired central position

the third-order and fourth-order are:

μ3 = m3 − 3m2m1 + 2m3
1

= m3
{

exp

[
9

2
σ 2

]
− 3 exp

[
5

2
σ 2

]
+ 2 exp

[
3

2
σ 2

]}
, (3.46)

μ4 = m4 − 4m3m1 + 6m2m
2
1 − 3m4

1

= m4
{

exp

[
16

2
σ 2

]
− 4 exp

[
10

2
σ 2

]
+ 6 exp

[
6

2
σ 2

]
− 3 exp

[
4

2
σ 2

]}
. (3.47)

The lognormal distribution may also be used in other practically important cases
as a good approximation of real distributions. Let us present two examples: the
distribution of distance between the centers, error e, of the two adjoining parts of a
shaft (Fig. 3.6a), or the deviation e of the hole axis from its desired central position
(Fig. 3.6b).

The lognormal distribution may also be adequate for a description of the re-
sults of the so-called fragmentation tests of fiber-reinforced composites. In such
tests a number of identical cylindrical specimens, each with a single central fiber
surrounded by the matrix material, is set in tension as shown in Fig. 3.7. As the
deformation process proceeds, the number of fractured sections of the central fiber
increases. However, at a certain specific elongation of the whole specimen the frac-
turing process in the fiber comes to an end. This is referred to as the saturation state
(comp. [2]). In this state the fiber is divided into a number of separate sectors, each
of length li . In [26] the results of numerous tests were presented in the form of a his-
togram representing the distribution of length of these separate sectors of the fiber
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Fig. 3.7 A sample obtained
in the fragmentation test of
fiber-reinforced composites

Fig. 3.8 The distribution of
length of separate sectors of
the fiber in the saturation state
(the fragmentation test),
see [26]

in the saturation state (Fig. 3.8). The corresponding approximation of that experi-
mental histogram by the continuous lognormal distribution is also presented in the
figure.

In papers concerning engineering problems one can find many applications of the
lognormal distribution. An interesting example of using this distribution for descrip-
tion of a parameter in a model of fatigue crack growth may be found in [6]. Other
applications deal with some problems of the reliability theory (see [5, 20, 25]).

3.4.2.3 The Exponential Distribution

As another example of distribution of a random variable X which may take positive
values only, the exponential distribution may be mentioned. It is a one-parameter
distribution with the probability density given by

f (x) =
{

0 for x < 0,
1
b

exp
[− x

b

]
for x ≥ 0,

(3.48)

where the parameter b equals the mean value of the distribution. The variance of
that distribution equals b2. Thus, the standard deviation is equal to the mean value.
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Fig. 3.9 The probability
density function of the
exponential distribution

The characteristic function of the exponential distribution has the form

ϕ (λ) = 1

1 − ibλ
, (3.49)

where i = √−1. The n-th order ordinary moment is given by

mn = n!bn. (3.50)

Once knowing the ordinary moments, we may calculate (using (2.28)) the central
moments of an arbitrary order. For example, when n = 3 or n = 4 we receive

μ3 = 2b3, μ4 = 9b4. (3.51)

According to the exponential distribution, the probability that the random vari-
able in question takes large values decreases exponentially (see Fig. 3.9). Therefore,
this distribution finds numerous applications in the theory of reliability, where the
probability that a system under consideration works without breakdown exhibits
such a behavior.

The exponential probability distribution finds also applications in the analysis
of layered geological strata, where the sedimentation process of successive layers
happens to be randomly interrupted. For such layered strata one can assume, with a
fair approximation, that the thickness of the layers hi is a random independent vari-
able with the exponential distribution (one can assume that the sedimentation time
of specific layers, that is, the time between cataclysms interrupting sedimentation,
has the exponential distribution). An example of such a layered medium is shown in
Fig. 3.10.

Numerous problems concerning propagation of elastic waves in layered media
with exponential distribution of the thickness of layers are analyzed in [13–17].

Example 3.7 (Generation of random numbers: the exponential distribution) Gener-
ation of random variables with the exponential distribution may be performed with
the use of generators of random numbers. It can be done by means of the so-called
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Fig. 3.10 An example of the
geological stratified medium:
investigation of material
properties by acoustic waves

inversion of the cumulative distribution function. If {yn, n = 1,2, . . .} is a sequence
of independent realizations of random variable Y with a distribution uniform along
the interval [0,1] (generated by an appropriate random numbers generator), then
the sequence {xn = F−1(yn), n = 1,2, . . .} becomes the sequence of independent
realizations of a random variable with the exponential distribution (comp. [3, 13]).
Function y = F(x) represents here the cumulative distribution function of the expo-
nential distribution

y = F (x) =
{

0 for x < 0,

1 − exp[− x
b
] for x ≥ 0,

while function x = F−1(y) is the function inverse to it:

x = F−1 (y) = −b logy for y ∈ [0,1] .

3.4.2.4 The Gamma Distribution

The gamma distribution is defined on a half-line of positive numbers, x ≥ 0. It has
two parameters: p > 0 describing the scale and b > 0 describing the shape of the
distribution. If p is an integer, then the distribution represents the sum of p inde-
pendent exponentially distributed random variables with the same mean value b.
The gamma distribution is often used as a model of waiting times in mass-service
systems and reliability theory. The probability density function of the gamma distri-
bution has the following form:

f (x) =
{

0 for x < 0,

xp−1 exp[− x
b
]

�(p)bp for x ≥ 0,
(3.52)

where the gamma function �(p) for p > 0 is defined as

�(p) =
∫ ∞

0
xp−1e−xdx. (3.53)
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Fig. 3.11 Probability density function of the gamma distribution for b = 1, p = 1 and b = 1,
p = 2

The plot of the probability density function of the gamma distribution for b = 1,
p = 1 and b = 1, p = 2 is presented in Fig. 3.11.

The expressions for basic quantities characterizing the gamma distribution can
be easily calculated. Thus, the mean value and the variance of the random variable
X are:

mX = pb, σ 2
X = pb2. (3.54)

Also the skewness and the kurtosis are elementary functions of the distribution’s
parameters:

γ1 = 2√
p

, γ2 = 6

p
. (3.55)

The characteristic function of the gamma distribution has the form

ϕ (λ) = 1

(1 − ibλ)p
, (3.56)

where i = √−1.
The special cases of the gamma distribution are known as distributions with their

own names. If p is an integer, it is the Erlang distribution. For p = 1 we obtain the
exponential distribution. In a special case of b = 2 and an integer p = n

2 the gamma
distribution becomes the chi-squared distribution with n degrees of freedom.
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Fig. 3.12 The chi-squared
distribution with n degrees of
freedom

3.4.2.5 The Chi-Squared Distribution

The probability density of the chi-squared distribution has been determined by
F.R. Helmert in 1876, [10]. We say that the random variable X has the chi-squared
distribution with n degrees of freedom (denoted by χ2(n)) for n = 1,2, . . . , if its
probability function is

f (x) =
{

0 for x < 0,
1

2
n
2 �( n

2 )
xn/2−1e−x/2 for x ≥ 0, (3.57)

where the gamma function �(p) for p > 0 is defined in (3.53).
In Fig. 3.12 is shown the probability density function of the chi-squared distribu-

tion with n = 1,2,3, and 8 degrees of freedom.
The mean value and the variance of the chi-squared random variable X with n

degrees of freedom are

mX = n, σ 2
X = 2n. (3.58)

The convergence of the distribution of the chi-squared random variable X for
the number of degrees of freedom tending to infinity is its important property. The
probability distribution function of the random variable (X − n)/

√
2n tends to the

cumulative distribution function of the normal distribution N(0,1) for n → ∞.
The chi-squared probability distribution, except for the ellipses and ellipsoids of

the probability concentration presented in this book, is widely applied in mathemat-
ical statistics, especially in the chi-squared distribution agreement tests. In Chap. 5
we shall obtain in a natural way a random variable with the chi-squared distribution
during summation of squares of normal random variables. In this section we have
introduced its formal definition given by the probability density function (3.57).
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Fig. 3.13 Probability density
function of the Weibull
distribution

3.4.2.6 The Weibull Distribution

The Weibull distribution is an example of a two-parametric probability distribution.
We say that a random variable X has the Weibull distribution with parameters b > 0
and c > 0, if its probability density function has the form

f (x) =
{

0 for x < 0,

cb (cx)b−1 exp[−(cx)b] for x ≥ 0.
(3.59)

In Fig. 3.13 the probability density function of the Weibull distribution is shown
for the fixed value of parameter c = 1 and several values b = 0.5, 1, and 2.

The mean value and the variance of the random variable with the Weibull distri-
bution are

mX = 1

c
�

(
1

b
+ 1

)
,

σ 2
X = 1

c

2{
�

(
2

b
+ 1

)
−

[
�

(
1

b
+ 1

)]2}
,

(3.60)

where the function �(p) was defined in (3.53).

Example 3.8 (Generation of random numbers: the Weibull distribution) In a way
analogous to Example 3.7 we can generate a sequence of random numbers of the
Weibull distribution. Having generated {yn, n = 1,2, . . .}, the sequence of indepen-
dent realizations of random variable Y with a distribution uniform along the interval
[0,1] we obtain the numbers of the Weibull distribution by inverting the cumulative
distribution function, {xn = F−1(yn), n = 1,2, . . .}. Now the function y = F(x) is

y = F (x) =
{

0 for x < 0,

1 − exp[−(cx)b] for x ≥ 0,
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and its inverse function x = F−1(y) is:

x = F−1 (y) = 1

c
(logy)

1
b for y ∈ [0,1] .

The Weibull distribution is widely applied in the probabilistic descriptions of
stochastic reliability problems of engineering structures. More information on this
subject can be found in the monographs concerned with this field of research, e.g.,
[5, 20, 25], and also [19]. The books contain some definitions, and examples of
applications of the probability distributions characteristic for the reliability theory,
such as the lognormal, gamma, and Gumbel distributions.

3.4.2.7 The Gumbel Distribution

The Gumbel distribution is a case of extreme value distribution. It is used to model
the distribution of the maximum value of observations of variables with different
distributions. The Gumbel distribution is useful for description of the maximum
level of a river at a period on a basis of historical observations, for predicting ex-
treme earthquakes, and in mechanics, for modeling survival time of a structure in
reliability theory.

The probability density function f (x) of the Gumbel distribution is defined on
the whole real line, x ∈ R, and, in a general case, it depends on two parameters,
a ∈ R and b > 0. It has the following form:

f (x) = 1

b
exp

[
−x − a

b

]
exp

[
− exp

[
−x − a

b

]]
. (3.61)

The plot of the probability density function of the Gumbel distribution for a = 0,
b = 1 and a = 1, b = 2 is shown in Fig. 3.14.

Its cumulative distribution function F(x) is given in (3.62);

F (x) = exp

[
− exp

[
−x − a

b

]]
. (3.62)

The lowest-order moments of the Gumbel distribution are:

mX = a + bγ, σ 2
X = π2

6
b2, (3.63)

where γ is the Euler-Mascheroni constant, γ ≈ 0.57721, see [1].
In a special case a = 0 and b = 1 we have the standard Gumbel distribution with

the probability density and the cumulative distribution functions, respectively,

f (x) = e−xe−e−x

, (3.64)

F (x) = e−e−x

. (3.65)
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Fig. 3.14 Probability density function of the Gumbel distribution for a = 0, b = 1 and a = 1,
b = 2

In this case the moments (3.63) are

mX = γ, σ 2
X = π2

6
, (3.66)

which gives one of the equivalent definitions of the Euler-Mascheroni constant, γ .

3.4.2.8 The Student t-Distribution

One of distributions playing an important role in testing statistical hypotheses is
the Student t-distribution. We say that the random variable X has the Student t-
distribution with n degrees of freedom if its probability density function is of the
form

f (x) = �([n + 1]/2)√
nπ�(n/2)

(
1 + x2

n

)− n+1
2

, (3.67)

for x ∈ R.
The probability density function (3.67) has a shape similar to the normal proba-

bility density function, and for n → ∞ it tends to N(0,1), so in practice, for large
n (n > 30) this distribution can be replaced by the normal distribution.

The basic parameters of the Student t-distribution: the mean value, variance,
skewness and kurtosis exist only for a sufficiently large value of the parameter n.
They are, respectively,

mX = 0, for n > 1, (3.68)
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Fig. 3.15 Probability density function of the Student t -distribution

σ 2
X = n

n − 2
, for n > 2, (3.69)

γ1 = 0, for n > 3, (3.70)

γ2 = 6

n − 4
, for n > 4. (3.71)

For the lowest values of the parameter n the Student t-distribution takes an es-
pecially simple form. For n = 1 we obtain the arcus tangens distribution with the
probability density function

f (x) = 1

π(1 + x2)
, (3.72)

and the cumulative distribution function:

F(x) = 1

2
+ 1

π
arctan (x) , (3.73)

for x ∈ R.
For n = 2 these functions are, respectively:

f (x) = 1

(2 + x2)3/2
, (3.74)

F(x) = 1

2

[
1 + x√

2 + x2

]
, (3.75)

also defined for x ∈ R.
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Fig. 3.16 Probability density function of the Pareto distribution for a = 1,p = 1 and a = 1,p = 2

Examples of application of the Student t-distribution can be found in any hand-
book of mathematical statistics, e.g., [7, 23].

3.4.2.9 The Pareto Distribution

The Pareto distribution (also called the Bradford distribution) describes random
variables appearing in scientific, geophysical and also economical phenomena. It is
often used for description of allocation of resources, dimension of grains of a mate-
rial (e.g., sizes of sand particles) and in computer sciences, for modeling lengths of
packages in TCP protocol or execution time of jobs in computer processing.

The probability density function of the Pareto distribution is defined on the posi-
tive half-line and has two parameters a > 0, referring to the scale of the distribution,
and p > 0, reflecting its shape. The probability density function has the following
form:

f (x) =
{

0 for x < a,
pap

x(p−1) for x ≥ a.
(3.76)

An example of such a probability density function is presented in Fig. 3.16 for
two pairs of the parameters: a = 1,p = 1 and a = 1,p = 2.

Equation (3.76) represents an elementary function and therefore the Pareto distri-
bution is easy in calculations, which made it popular in many practical applications.
It is also easy to obtain the exact equations for the cumulative distribution function
of the Pareto distribution and its moments and to calculate its entropy. The mean
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value and the variance are:

mX = pa

p − 1
, for p > 1, (3.77)

σ 2
X = pa2

(p − 1)2(p − 2)
, for p > 2. (3.78)

From the third-order and fourth-order moments we can calculate the skewness
and the kurtosis of the Pareto distribution. They exist for sufficiently large values
of p:

γ1 = 2(1 + p)2√
p − 3

√
p − 1

p
, for p > 3, (3.79)

γ2 = 6(p3 + p2 − 6p − 2)

p(p − 3)(p − 4)
, for p > 4. (3.80)

3.4.3 Remarks on Other Probability Distributions

In practical applications, especially in statistics, numerous probability distributions,
also other than those presented in the previous section, are being used. Some of
them, characterized by particular features of frequent occurrence, have been given
names, e.g., “gamma”, “Fisher’s”, “Rayleigh” distributions. Such distributions are
dealt with in books on general problems of statistics, or in special specifications of
distributions. A comprehensive list of various distributions along with the index of
applications in mathematical statistics can be found in [9].

Any continuous probability distribution can be defined by choosing a proper non-
negative function g(x) of the variable x, integrable along the entire line

∫ ∞

−∞
g (x)dx = C < ∞ (3.81)

and then by normalizing it

f (x) = g (x)

C
, (3.82)

where C is a constant calculated in (3.81). Such a function f (x) may be taken as
the probability density function of a specific random variable.

Example 3.9 (The piecewise linear distribution) Let us assume that the function
g(x) is piecewise linear along a number N of consecutive intervals, and is equal to
zero for other values of x:

g (x) =
{

ajx + bj for x ∈ [lj , rj ), j = 1,2, . . .N,

0 for other values of x,
(3.83)
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Fig. 3.17 An example of the
piecewise linear distribution

where l1 < r1 ≤ l2 < r2 ≤ l3 < · · · < rN−1 ≤ lN < rN . An example of such a func-
tion (N = 8) is given in Fig. 3.17.

The end points of adjacent sectors can overlap, that is, for some j we may have
rj = lj+1. The constant C which normalizes the function g(x) for obtaining the
probability density function is

C =
∫ ∞

−∞
g (x)dx =

N∑

j=1

1

2
aj

(
r2
j − l2

j

)+
N∑

j=1

bj

(
rj − lj

)
. (3.84)

Now lower-order moments of the distribution defined in this manner can be calcu-
lated: the expected value is

E {X} = m = 1

3C

N∑

j=1

aj

(
r3
j − l3

j

)+ 1

2C

N∑

j=1

bj

(
r2
j − l2

j

)
, (3.85)

the second-order ordinary moment is

E
{
X2} = 1

4C

N∑

j=1

aj

(
r4
j − l4

j

)+ 1

3C

N∑

j=1

bj

(
r3
j − l3

j

)
, (3.86)

and the variance (the second-order central moment) is

σ 2 = E
{
X2}− m2. (3.87)

The piecewise linear distribution may be used as an approximation of an arbi-
trary distribution by assuming a sufficiently dense division into a number of sectors.
Such a procedure may be applied for an approximation of the experimental data
(histograms) of a distribution defined by a complex function which may be difficult
for practical calculations.

Example 3.10 (The triangular distribution) Let a piecewise linear function g(x),
discussed in the previous example, be limited to two symmetrically located sectors
only. These sectors have a common point at x = 0, and their outer end points lie on
the x-axis. The probability density depends on one parameter, namely, the length of
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Fig. 3.18 The triangular
distribution

the single interval l, and it has the form

f (x) =

⎧
⎪⎨

⎪⎩

1
l2

x + 1
l

for x ∈ [−l,0) ,

− 1
l2

x + 1
l

for x ∈ [0, l) ,

0 otherwise.

(3.88)

An example of such a probability density function (for l = 1) is presented in
Fig. 3.18.

Moments of odd orders (including the mean value) of the triangular distribution
are equal to zero owing to its symmetry. The variance of that distribution is given
by the formula

σ 2 = 1

6
l2, (3.89)

while the fourth-order moment becomes

E
{
x4} = 1

15
l4. (3.90)

3.4.4 Measures of Deviation from the Normal Distribution

Results of measurements or various accuracy tests form usually a sequence of num-
bers. Once knowing them one can construct a corresponding histogram, which con-
stitutes a certain approximation of the probability density function. One can also
calculate the so-called estimators of these sequences of numbers, such as the ex-
pected value, variance, and moments of various orders, by using formulas analogous
to (1.2) and (1.4a). It is often useful to know which of the theoretical distributions of
random variables corresponds well to that resulting from the specific measurements.
This problem concerns mainly the question whether the result of measurements may
be treated as the normal distribution.

Comparing our empirical distributions with the normal distribution we should
analyze certain similarities. The diagram of the probability density of the normal
distribution (Fig. 2.4) displays certain characteristic features: a single maximum
(it means that it belongs to the class of one-modal distributions), symmetry with
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Table 3.2 The asymmetry γ1 and the excess γ2 coefficients for certain distributions

Distribution γ1 γ2

Gaussian 0 0

Rectangular 0 9
5

Lognormal (w + 2)
√

w − 1 w4 + 2w3 + 3w2 − 6 for w = exp[σ 2]
Exponential 2 6

Triangular 0 − 3
5

respect to its central point, and the fact that it is concentrated in the vicinity of the
average value. Thus, if an experimental distribution is to be treated as the normal
distribution, it has to display the features mentioned above. Moreover, the degree
of symmetry and flattening of the probability density graph of the experimental
distribution may be calculated.

As the measure of the asymmetry of the probability density function, the coeffi-
cient γ1 defined in (3.15) is used. For a random variable with the normal distribution
and for each other random variable with a distribution symmetrical with respect to
its central point, the asymmetry (inclination) coefficient γ1 is equal to zero. The
more γ1 differs from zero, the more the distribution in question differs from the
normal distribution, see Fig. 3.1.

As the measure of flattening of the probability density function, the coefficient γ2

defined by the relation (3.16) is used. Like the inclination coefficient γ1, the excess
(flattening) coefficient γ2 equals zero in the case of the normal distribution. The
more γ2 differs from zero the more the distribution under consideration differs from
the normal distribution, see Fig. 3.2.

After finding the third-order and the fourth-order moments of certain distribu-
tions, we can find the values of their asymmetry and excess coefficients. For some
distributions these formulas are given in Table 3.2.

It is seen that the coefficients γ1 and γ2 do not depend upon the variance for the
rectangular, the exponential, and the triangular distributions, while they do depend
upon it in the case of the lognormal distribution. Comparing the coefficients γ1 and
γ2 for the uniform and the lognormal distributions we can say that the uniform dis-
tribution is “more normal” than the lognormal one, since its asymmetry and excess
coefficients are closer to zero than the analogous quantities of the lognormal distri-
bution. We can also say that the triangular distribution is more flat around the modal
value (x = 0) than the normal distribution, which is confirmed by the negative value
of the excess coefficient γ2. The positive value of γ2 for the uniform distribution
indicates that it is more concentrated around zero than the normal distribution with
the same variance.

To give a definitive answer whether the results of measurements can be treated
as a normally distributed set of data needs application of statistical tests concerning
the problem of normality.
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3.5 Approximate Methods for Constructing a Probability
Density Function

Many types of probability distributions are used in engineering applications. After
gathering experimental data one usually tries to combine the set of numbers and
some a priori assumed distribution fitting the density curve to the data by an appro-
priate selection of the distribution parameters. The statistical regression gives us a
possibility of such an approximate construction of the probability density functions.
Other possibilities of generation of the densities on the basis of experimental data
are asymptotic expansions of the functions.

One of the possible expansions is a representation of the probability density func-
tion in the form of a series of derivatives of the normal distribution probability den-
sity function. Such a series is called the Gram-Charlier series (see [4]). The given
probability density function f (x) can be represented in the form of the series

f (x) = c0φ (x) + c1

1! φ
′ (x) + c2

2! φ
′′ (x) + · · · , (3.91)

where φ (x) is the probability density function of the standard Gaussian distribution,

φ (x) = 1√
2π

exp

[
−x2

2

]
, (3.92)

and the coefficients ci can be expressed by the Hermitian polynomials

ci = (−1)i
∫ ∞

−∞
Hi (x)f (x) dx. (3.93)

The Hermitian polynomials are defined by the following equation:

(
d

dx

)n

exp

[
−x2

2

]
= (−1)n Hn (x) exp

[
−x2

2

]
. (3.94)

The coefficients ci in the Gram-Charlier expansion are polynomials in terms of
moments of the corresponding probability density function f (x). For the normal-
ized distribution (that is, with a zero mean and unit variance) they have the following
form:

c0 = 1, c1 = c2 = 0,

c3 = −μ3

σ 3
= γ1, c4 = μ4

σ 4
− 3 = γ2, (3.95)

c5 = −μ5

σ 5
+ 10

μ3

σ 3
, c6 = μ6

σ 6
− 15

μ4

σ 4
+ 30.

As it is seen, knowing several lower-order moments of a certain distribution,
we can formulate its approximate probability density function using the expan-
sion (3.91).
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Let us remark that in the Gram-Charlier expansion, two initial non-zero coeffi-
cients next to the derivatives of the density of the normal distribution are the known
inclination γ1 and the excess γ2 coefficients. It is seen that a distribution having
the same inclination (that is, symmetric around the mean value) and excess like the
normal distribution, differ from the normal one by terms starting from order 5.

The Gram-Charlier asymptotic expansion is not the only possible one. For exam-
ple, the probability density function can be represented in the form of the following
Edgeworth series (see [4]):

f (x) = φ (x) − 1

3!
μ3

σ 3
φ(3) + 1

4!
(μ4

σ 4
− 3

)
φ(4) + 10

6!
(μ3

σ 3

)2
φ(6)

− 1

5!
(μ5

σ 5
− 10

μ3

σ 3

)
φ(5) − 35

7!
μ3

σ 3

(μ4

σ 4
− 3

)
φ(7)

− 280

9!
(μ3

σ 3

)3
φ(9) + · · · . (3.96)

Another possibility of construction of the approximate expression for the proba-
bility density function, provided several lower-order moments mk , k = 1,2, . . . ,N

are given, is based on application of the maximum entropy principle (see [24]). In
this method we choose this probability density function from densities having mo-
ments equal to the given ones, which has the maximum value of the entropy H ,
defined in (3.21). Any probability density function satisfying the maximum entropy
principle can be represented in the form

p (x) = C exp

[
−

N∑

k=1

λkx
k

]
. (3.97)

To find the probability density function for a given set of moments mk , we must
choose the coefficients λk in such a way that

∫
xnC exp

[
−

N∑

k=1

λkx
k

]
dx = mn, n = 1,2, . . . ,N. (3.98)

Moreover, the constant C should normalize the density p (x) in such a way that
its integral is equal to 1:

1

C
=

∫
exp

[
−

N∑

k=1

λkx
k

]
dx. (3.99)

In the above formulas the limits of integrals are chosen according to the areas
where the probability density function searched for differs from zero.

As it is seen from the above considerations, in the maximum entropy method the
construction of the probability density function leads to solving the system of N +1
equations for the constants C and λk , k = 1,2, . . . ,N .
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To conclude, let us remark that the problem of convergence of asymptotic ex-
pansions of probability densities is very difficult, and some known conditions of the
convergence are hard to verify or are non-effective. For this reason in many practi-
cal tasks, taking into account only a few terms of the expansion of the probability
density function can give a better result than summation of too many terms.

3.6 Multi-dimensional Probability Distributions

In this section we present some introductory, theoretical material which will be de-
veloped in Chaps. 5 and 7, where we shall analyze problems of the error analysis in
engineering applications.

Consider an n-dimensional vector, where each of its coordinates is a random
variable:

X = [X1 (ω) ,X2 (ω) , . . . ,Xn (ω)]T . (3.100)

The vector X will be called the n-dimensional random vector or the n-dimen-
sional random variable. The distribution of multi-dimensional random variables,
similarly to the one-dimensional case, can be described by the probability distribu-
tion function and, in the continuous case, by the n-dimensional probability density
function. The (joint) probability distribution function of the n-dimensional random
variable X is defined as:

F (x1, x2, . . . , xn) = P ({ω : X1 (ω) < x1,X2 (ω) < x2, . . . ,Xn (ω) < xn}) .

(3.101)
Similarly to the one-dimensional case, the (joint) probability density function

f (x1, x2, . . . , xn) is such a function, which allows us to represent the probability
distribution function in the form of the following integral:

F (x1, x2, . . . , xn) =
∫ x1

−∞

∫ x2

−∞
· · ·

∫ xn

−∞
f (ξ1, ξ2, . . . , ξn) dξ1dξ2 · · ·dξn. (3.102)

As it results from the definition of the vector-valued random variable, each of
its coordinates is a (one-dimensional) random variable. We can also define m-di-
mensional random variables, m < n, consisting of m coordinates of n-dimensional
vector X. It is possible to obtain the probability distribution function (probability
density function) of such an m-dimensional vector from the probability distribution
(density) function of the initial n-dimensional random vector. It can be done in a
way analogous to that presented in the following example.

Example 3.11 (The marginal probability distributions) Consider two-dimensional
vectorial random variable [X(ω),Y (ω)]T with the cumulative distribution function
FXY (x, y) and the probability density function fXY (x, y). Each of the random vari-
ables X(ω) and Y(ω) has its own cumulative distribution function and its own prob-
ability density function. These functions can be obtained by integration of the cu-
mulative distribution function (respectively: the probability density function) of the
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random vector with respect to the corresponding independent variable y or x:

FX (x) = FXY (x,∞) =
∫ x

−∞

∫ ∞

−∞
fXY (ξ, y) dξdy,fX (x) =

∫ ∞

−∞
fXY (x, y) dy,

(3.103)

FY (y) = FXY (∞, y) =
∫ ∞

−∞

∫ y

−∞
fXY (x, ζy) dxdζ,fY (y) =

∫ ∞

−∞
fXY (x, y) dx.

(3.104)

The obtained cumulative distribution functions FX(x) and FY (y) are called the
marginal (or projective) distribution functions and the probability densities fX(x)

and fY (y) are the marginal probability densities.

We say that two continuous random variables X(ω) and Y(ω) are independent
(statistically independent2) if their joint bivariate probability density function is the
product of their marginal (one-dimensional) probability density functions

fXY (x, y) = fX (x)fY (y) . (3.105)

Similarly, we say that n continuous random variables are independent if their
joint n-dimensional probability density function is a product of n marginal, univari-
ate probability density functions.

A weaker condition on a pair of random variables (resulting from their inde-
pendence) is non-correlation. We will say that the random variables X and Y are
uncorrelated, if their mutual correlation is equal to zero:

E
{(

X − X
) (

Y − Y
)} = 0. (3.106)

In a general case, uncorrelated random variables need not be independent. An
exception here is the normal distribution, where the conditions of independence and
uncorrelation are equivalent.

Similarly to the conditional probabilities, we can define the conditional proba-
bility density functions. For the two-dimensional random variable [X(ω),Y (ω)]T
the conditional probability density function of X(ω) under the condition Y(ω) = y,
that is, f (x|Y(ω) = y), has the following form:

f (x|Y (ω) = y) = f (x, y)

fY (y)
= f (x, y)∫ ∞

−∞ f (x, y)dx
. (3.107)

The conditional probability density function allows to calculate the joint proba-
bility of two random variables X and Y in two steps:

P (X ∈ A,Y ∈ B) =
∫

B

∫

A

f (x, y)dxdy =
∫

B

∫

A

f (x|Y = y)dxfY (y)dy,

(3.108)

2We say: “statistically independent” or “statistically dependent” in opposition to “functional de-
pendence”. Two quantities are functionally dependent if one is a certain function of another.
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that is, first calculating the conditional probability of one random variable and then
integrating the obtained result with respect to the marginal probability density of
another random variable.

Similarly to the calculation of the expected value (as an integral with respect to
the probability density function), we can calculate the conditional expectation (the
integral with respect to the conditional probability density function):

E {X|Y = x} =
∫ ∞

−∞
xf (x|Y = y)dx. (3.109)

The conditional expected value is often called regression.
It results from the definition of the conditional probability density function that

if the random variables X and Y are statistically independent, then the conditional
probability density function of X under a condition on Y equals the unconditioned
probability density function of X:

f (x|Y(ω) = y) = f (x, y)

fY (y)
= fX(x)fY (y)

fY (y)
= fX(x). (3.110)

Remark 3.1 In this book, which is devoted to problems of measurement errors, we
concentrate on continuous probability distributions and related problems. However,
most of such problems have their countermeasures in discrete probability distri-
butions, the same as in a case of multi-dimensional probability distributions. If a
multi-dimensional random variable of the form (3.100) is discrete, then its proba-
bility distribution can be represented in the following form:

pi1i2···in = P
({

ω : X1 (ω) = xi1,X2 (ω) = xi2, . . . ,Xn (ω) = xin

})
, (3.111)

where xi1, xi2, . . . , xin , i1, i2, . . . , in = 1,2, . . . , are discrete values that are taken
by corresponding coordinates of the random variable X. Consider an example of
two-dimensional random variable (X,Y ) with discrete probability distribution. This
distribution is completely described by the matrix of probabilities P = [pij ] (we
assume that the random variable can take only a finite number of values):

pij = P
({

ω : X (ω) = xi, Y (ω) = yj

})
, i = 1,2, . . . , n, j = 1,2, . . . ,m.

(3.112)
For such a random variable, likewise as for random variables with a continuous
distribution, we can calculate the marginal probability distributions

pi = P ({ω : X (ω) = xi}) =
m∑

j=1

pij , i = 1,2, . . . , n,

pj = P
({

ω : Y (ω) = yj

}) =
n∑

i=1

pij , j = 1,2, . . . ,m,

(3.113)
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conditional probability distributions

p
(
xi |yj

) = P
({

ω : X (ω) = xi |Y (ω) = yj

}) = pij

pj

, i = 1,2, . . . , n

calculated for every yj , j = 1,2, . . . ,m,

(3.114a)

and

p
(
yj |xi

) = P
({

ω : Y (ω) = yj |X (ω) = xi

}) = pij

pi

, j = 1,2, . . . ,m

calculated for every xi, i = 1,2, . . . , n,

(3.114b)

and also calculate the conditional expected values:

E
{
X|yj

} = E
{
X|Y = yj

} =
n∑

i=1

xip
(
xi |yj

)
. (3.115)

As in the one-dimensional case, we can consider vectorial random variables be-
ing functions of other vectorial random variables. Assume now that the n-dimensio-
nal random variable Y is a vector-valued, single-valued function of the n-dimensio-
nal random variable X. Then the probability density function of the vector Y has the
following form:

fY (y1, y2, . . . , yn) = |D| fX (x1, x2, . . . , xn) , (3.116)

where the variables x1, x2, . . . , xn are expressed by y1, y2, . . . , yn and D is the Ja-
cobian determinant of the transformation of variables

D = ∂(x1, x2, . . . , xn)

∂(y1, y2, . . . , yn)
. (3.117)

Example 3.12 (Difference of two normal random variables) If the vectorial random
variable [X(ω),Y (ω)]T has the joint probability density function of the following
Gaussian form:

fXY (x, y) = 1

2πσxσy

exp

[
−1

2

(
x2

σ 2
x

+ y2

σ 2
y

)]
, (3.118)

then the random variable Z defined by Z = X − Y has the density of the form:

fZ (z) = 1√
2πσz

exp

(
− z2

2σ 2
z

)
, (3.119)

where

σ 2
z = σ 2

x + σ 2
y . (3.120)
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Fig. 3.19 The domain of the
two-dimensional distribution
for which the marginal
distributions are uncorrelated
but dependent

Example 3.12 shows that the difference (sum) of two independent normal random
variables is also a normal random variable.

The following examples show that two random variables can be uncorrelated but
statistically dependent.

Example 3.13 (Random variables uncorrelated but dependent) Consider the two-di-
mensional uniform distribution over the surface of the ellipse with its semi-axes a

and b lying on the system of coordinate axes x and y (Fig. 3.19). The probability
density function of this distribution has the following form:

fXY (x, y) =
{

1
πab

for x2

a2 + y2

b2 ≤ 1,

0 for x2

a2 + y2

b2 > 1.

Now we can calculate the marginal probability distributions of the random vari-
ables X and Y . From Fig. 3.19 we see that fX(x) = 0 for |x| > a and it can be
calculated for |x| ≤ a by appropriate integration of the two-dimensional probability
density function fX,Y (x, y) with respect to the second variable:

fX(x) =
∫ b

√
1−x2/a2

−b
√

1−x2/a2

dy

πab
= 2

√
1 − x2/a2

πa
.

By an analogous integration we can obtain the marginal probability density function
for the random variable Y . Finally, the marginal probability density functions can
be written as:

fX(x) =
{

2
√

1−x2/a2

πa
for |x| ≤ a,

0 for |x| > a,
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fY (y) =
{

2
√

1−y2/b2

πb
for |y| ≤ b,

0 for |y| > b.

Now we can see that the random variables X and Y are dependent, because

fX,Y (x, y) �= fX(x)fY (y).

To calculate the covariance of the random variables X and Y ,

cov(X,Y ) =
∫∫

x2

a2 + y2

b2 ≤1
xyfXY (x, y)dxdy,

we change the variables:

x = ar cos θ,

y = br sin θ,

and obtain the integral

cov(X,Y ) =
∫ 2π

0

∫ 1

0
arbr cos θ sin θ

1

πab
abrdrdθ = 0.

It is seen that X and Y are uncorrelated.

Example 3.14 (Random variables uncorrelated but dependent) Consider two inde-
pendent, uniformly distributed random variables R(ω) and θ(ω), the first one over
the interval 0 < r1 ≤ R(ω) ≤ r2 and the second one over the interval 0 < θ(ω) ≤ 2π.

From these random variables we construct two new random variables X(ω) and
Y(ω) being functions of the random variables R(ω) and θ(ω), defined as:

X(ω) = R(ω) cos θ(ω),

Y (ω) = R(ω) sin θ(ω).

The joint distribution of the pair of random variables (R(ω), θ(ω)) is uniform, with
the probability density function defined as:

fRθ (r, θ) =
{ 1

2π(r2−r1)
for (r, θ) ∈ [r1, r2] � (0,2π],

0 otherwise,

The domain of this probability density function is presented in Fig. 3.20.
The probability density function of the pair of random variables (X(ω),Y (ω))

can be obtained by a formula analogous to (3.26) and (3.116). It has the form:

fX,Y (x, y) =
{

1
π(r2

2 −r2
1 )

for r2
1 ≤ x2 + y2 ≤ r2

2 ,

0 otherwise.
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Fig. 3.20 The domain of the
two-dimensional distribution
for which the marginal
distributions are uncorrelated
but dependent

We can calculate the marginal densities for each of the variables X(ω) and Y(ω).
They are:

fX(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

r2
2 −x2

π(r2
2 −r2

1 )
for x ∈ [−r2,−r1] ,

2(

√
r2
2 −x2−

√
r2
1 −x2)

π(r2
2 −r2

1 )
for x ∈ (−r1, r1) ,

2
√

r2
2 −x2

π(r2
2 −r2

1 )
for x ∈ [r1, r2] ,

0 otherwise,

fY (y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

r2
2 −y2

π(r2
2 −r2

1 )
for y ∈ [−r2,−r1] ,

2(

√
r2
2 −y2−

√
r2
1 −y2)

π(r2
2 −r2

1 )
for y ∈ (−r1, r1) ,

2
√

r2
2 −y2

π(r2
2 −r2

1 )
for y ∈ [r1, r2] ,

0 otherwise.

We note that the random variables X(ω) and Y(ω) are dependent because the joint
probability density function is not the product of the marginal distributions:

fXY (x, y) �= fX(x)fY (y).

Now we calculate the mutual correlation of the random variables X(ω) and Y(ω).

Changing variables from the rectangular to a polar system of coordinates, we calcu-
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late the covariance function:

cov(X,Y ) =
∫∫

r2
1 ≤x2+y2≤r2

2

xyfXY (x, y)dxdy

=
∫ 2π

0

∫ r2

r1

r2 cos θ sin θ
1

2π(r2 − r1)
rdrdθ = 0.

In this way we have obtained another example of a pair of random variables which
are dependent but uncorrelated.

Problem 3.1 The probability density function of the random variable X has the
following form:

f (x) = cx2e−kx, k > 0, 0 ≤ x < ∞.

Calculate the normalizing coefficient c. Find the cumulative distribution function of
the random variable X. Find the probability P(X ∈ (0,1/2k)).

Problem 3.2 The Weibull distribution has the following cumulative distribution
function:

F(x) = 1 − exp
(−cxb

)
, x ≥ 0.

Find: (a) the probability density function, (b) the quantile of p-th order, (c) the
modal value of the Weibull distribution.

Problem 3.3 The random variable X has the beta distribution with the following
probability density function:

f (x) =
{

Axa−1(1 − x)b−1 for x ∈ [0,1] ,
0 otherwise.

a > 0, b > 0. Determine the parameter A and calculate the mean value and the
variance of the random variable X.

Problem 3.4 For the random variable X with the probability density function (the
Laplace distribution)

f (x) = 1

2
e−|x|,

find the mean deviation defined as the number E satisfying the following condition:

P(|X − x| < E) = 1

2
.

Problem 3.5 The coordinates X and Y of a random point are independent and have
uniform distributions over the intervals [a, b] and [c, d], respectively. Find the joint
probability density function and the two-dimensional cumulative distribution func-
tion of the vectorial random variable (Y,Y ).
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Problem 3.6 The probability density function of the vectorial random variable
(X,Y ) has the form

fXY (x, y) = C exp
[−αx2 + ξxy − βy2].

Find the marginal probability density functions fX(x) and fY (y). When are the
random variables X and Y independent?

Problem 3.7 The random variables X and Y are independent and identically dis-
tributed with the probability density function

f (x) = 1√
2πσ

exp

[
− x2

2σ 2

]
.

Find the joint probability density function of the random vector (R,Φ) satisfying
the relations

X = R cosΦ, Y = R sinΦ.

Problem 3.8 Calculate the entropy of the Pareto distribution.

Problem 3.9 Propose a method of generation of sequences of random numbers with
the Pareto distribution.
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Chapter 4
Functions of Independent Random Variables

4.1 Basic Relations

In engineering applications, for example, when accuracy of mechanism movements
is dealt with, or in various non-direct measurements, we have to deal with important
cases when a random variable U being under consideration is a function of certain
other independent variables X1,X2, . . . ,Xn, that is:

U = g (X1,X2, . . . ,Xn) . (4.1)

Before treating such a problem in general, let us consider at first some important
particular cases.

As the simplest case, let us consider the relation

U = aX, (4.2)

where a is a certain constant. As an example, a simple feeding mechanism shown
schematically in Fig. 4.1 may be taken. Arm AB turns around point A during re-
peated working cycles. Point D in the figure stands for the desired (nominal) posi-
tion of the grip located at the point B of the arm at the end of each working cycle.
This nominal position is determined by the zero value of the deviation angle (θ = 0).
In practical implementation, the deviation angle θ is of certain small non-zero mag-
nitude (θ �= 0), and therefore, the final position of the grip is slightly shifted ,with
respect to the desired position, by a small distance

U = aθ.

The probabilistic nature of the error [5] of positioning angle θ results in the same
nature of the positioning accuracy of the grip. If the standard deviation of the angle
θ positioning error from its desired position θ = 0 is σθ , then the standard deviation
of the grip positioning error will be σU = aσθ . Consequently, the variances will
satisfy the relation σ 2

U = a2σ 2
θ . In general, returning to relation (4.2) we can write

σ 2
U = a2σ 2

X. (4.3)
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Fig. 4.1 An example of a
simple feeding mechanism

If a random variable U is determined as a sum of two independent (uncorrelated)
random variables X and Y , then between the variances the relation

σ 2
U = σ 2

X±Y = σ 2
X + σ 2

Y (4.4)

resulting from (3.105) will hold valid, see also Example 3.12. Such situations are
illustrated in Fig. 4.2. Variable U (resulting length) presented in Fig. 4.2a results
from the subtraction of two independent variables X and Y , while that shown in
Fig. 4.2b is obtained as the sum of the two. Note that if such elements are mass-
produced, the deviations of the two independent dimensions X and Y will have a
distribution close to the normal distribution.

In general, when a dependent random variable U arises as a consequence of
summation of several independent random variables Xj ,

U =
n∑

j=1

Xj , (4.5)

its variance σ 2
U is defined as

σ 2
U =

n∑

j=1

σ 2
Xj

. (4.6)

Note that the expression (4.6) holds valid also in the cases when some Xj in (4.5)
are negative, that is, if a dimension is subtracted as it was shown in Fig. 4.2a:

U = X − Y.

A typical example of summing independent variables is shown in Fig. 4.3. The
length U of the set of gears results from adding the lengths X1, X2, X3, X4 of the
elements of the set.

From relations (4.3) and (4.6) may be deduced the formula for the variance of
a dependent variable U being a linear combination of a number of independent
variables Xj , that is, for

U =
n∑

j=1

ajXj . (4.7)
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Fig. 4.2 Examples, where
the resulting dimension U is:
(a) the difference of the
random variables X and Y ,
(b) the sum of the random
variables X and Y

The variance σ 2
U in this case can be calculated from the formula

σ 2
U =

n∑

j=1

a2
j σ

2
Xj

. (4.8)

Let us return now to the general case (4.1), when a dependent variable U is an
arbitrary differentiable function of a number of independent random variables Xi .
The average values of the variable U and of the independent variables Xi will be
denoted by u and xi respectively. If the distributions of these independent random
variables are concentrated in the vicinity of their average values, as it happens in
most cases of practical significance, then we may write

U − u ≈ ∂g

∂x1
(X1 − x1) + ∂g

∂x2
(X2 − x2) + · · · + ∂g

∂xn

(Xn − xn) , (4.9a)

or in the compact form

U − u ≈
n∑

j=1

∂g

∂xj

(
Xj − xj

)
, (4.9b)
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Fig. 4.3 The example, where
the resulting dimension U is
the sum of several random
variables X1,X2,X3,X4

where in (4.9a), (4.9b) the values of partial derivatives ∂g
∂xj

, j = 1,2, . . . , n are taken
at points x1 = x1, x2 = x2, . . . , xn = xn.

This relation may be treated as an approximation analogous to the expression for
the total differential

dg =
n∑

j=1

∂g

∂xj

dxj

at small finite deviations of variables from their average values.
According to (4.8) we can write an approximate expression for the variance of a

function of a number of independent random variables

σ 2
U ≈

(
∂g

∂x1

)2

σ 2
X1

+
(

∂g

∂x2

)2

σ 2
X2

+ · · · +
(

∂g

∂xn

)2

σ 2
Xn

, (4.10a)

or in compact form

σ 2
U ≈

n∑

j=1

(
∂g

∂xj

)2

σ 2
Xj

. (4.10b)

As in (4.9a), (4.9b) the derivatives are calculated at points equal to the mean values
of the independent errors of measurements Xj , j = 1,2, . . . , n. The formula (4.10a),
(4.10b) is called the rule of propagation of errors.
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4.2 Simple Examples of Applications

Example 4.1 (Resistance of an ohmic element) The ohmic resistance of a certain
element of an electric device is given by the formula

R = ρ
4a

πd2
, (4.11)

where

ρ is the specific ohmic resistance of the material,
a is the length of the wire,
d is the wire diameter.

Let us calculate the standard deviation σR of that element in mass-production if
standard deviations of independent variables ρ, a, d are:

σρ of the specific ohmic resistance,
σa of the wire length,
σd of the wire diameter.

Calculating the derivatives of resistance R treated as the function of independent
random variables ρ, a, d and then substituting them into (4.10a), we arrive at the
expression for the variance σR of the resistance R:

σ 2
R =

(
4a

πd2

)2

σ 2
ρ +

(
4ρ

πd2

)2

σ 2
a +

(
8ρa

πd3

)2

σ 2
d . (4.12)

The average values of ρ, a, and d should be taken in (4.12).

Example 4.2 (A system of resistors) From mass-produced electric elements A and
B , ohmic resistances of which are random variables with average values RA and RB

and standard deviations σA and σB , respectively, are manufactured electric devices
for various purposes. In the first type of devices the elements are connected in series,
while in the other type they are connected in parallel. Let us calculate the resultant
standard deviations of ohmic resistance in the two cases.

In products where the elements are connected in series, the resultant ohmic re-
sistance is

R = RA + RB

and the variance of that resistance is

σ 2
R = σ 2

A + σ 2
B.

In the other case when elements A and B are connected in parallel, the resultant
resistance is

1

R
= 1

RA

+ 1

RB

,
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which gives:

R = RARB

RA + RB

.

Calculating partial derivatives of R with respect to RA and RB , we obtain from
(4.10a) the expression for the variance of the resultant ohmic resistance R:

σ 2
R =

(
RB

RA + RB

)4

σ 2
A +

(
RA

RA + RB

)4

σ 2
B.

The square root of this magnitude stands for the standard deviation σR of the resis-
tance R.

4.3 Examples of Applications in Non-direct Measurements

In metrology we often deal with numerous cases when it is difficult, or even impos-
sible, to measure directly a specific parameter U of an object under investigation.
In such cases methods of non-direct measuring can be helpful if other parameters
X1,X2, . . . ,Xn, connected with the parameter U in question by a mathematical
relation generally written as (4.1), can be directly measured. Random errors, un-
avoidable when parameters Xi are measured, are transferred on the non-directly
measured parameter U according to the error propagation rule (4.10a). It is assumed
that random measuring errors of parameters Xi have the normal distribution.

Example 4.3 (Non-direct measurements) In Fig. 4.4 is schematically presented an
arrangement for non-direct measuring of the diameter D of a hole in a configuration

Fig. 4.4 Non-direct
measurements of the diameter
with the measuring steel balls
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Fig. 4.5 Non-direct
measurements of the angle
with the measuring steel balls

of difficult direct access. Two measuring steel spheres of the radii R and r , respec-
tively, are used. Non-direct procedure consists in measuring first the depth H of the
hole and then, after inserting both spheres, in measuring the distance h of the high-
est point of the upper sphere from the reference plane. The diameter D is related
with the four distances R, r , H , h by the formula

D = (R + r)

(
1 +

√

1 −
(

H − h − R − r

R + r

)2
)

.

Referring to the formula (4.10a), we can write the expression for the variance of the
non-direct measuring accuracy of diameter D,

σ 2
D =

(
∂D

∂R

)2

σ 2
R +

(
∂D

∂r

)2

σ 2
r +

(
∂D

∂H

)2

σ 2
H +

(
∂D

∂h

)2

σ 2
h ,

if the estimators of variances of the measuring accuracy of dimensions H and h,
and σ 2

R , σ 2
r , which are the variances of the diameters R and r of the two spheres,

are known.

Example 4.4 (Non-direct measurements) In Fig. 4.5 is shown a scheme of a pro-
cedure allowing to measure the angle β of the conical hole with the use of two
measuring spheres. Knowing the radii R and r of the spheres and measuring con-
secutively the depths H and h, we can calculate the angle β using the formula

β = arcsin
R − r

H + r − (h + R)
.

The expression for the variance takes the form

σ 2
β =

(
∂β

∂R

)2

σ 2
R +

(
∂β

∂r

)2

σ 2
r +

(
∂β

∂H

)2

σ 2
H +

(
∂β

∂h

)2

σ 2
h .

As in the previous example, the variance of the measuring accuracy of both di-
mensions H and h and of the radii R and r are assumed to be known.
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4.4 Remarks on Applications in the Calculus of Tolerance Limits

In engineering applications, especially in machine design, it is generally assumed
that dimensions of mass-produced machine parts may vary only within strictly lim-
ited allowable small deviations +�qi and −�qi , referred to as the tolerance limits,
see e.g. [3, 4] . If a resultant dimension is a function of other independent dimen-
sions limited by their tolerance limits, then the question may arise: how large will be
the resultant tolerance limits of that resultant dimension? This problem may be an-
alyzed in terms of the error calculus by assuming that deviations of the dimensions
vary within the limits bounded by a respective pair of tolerance limits according to
the rectangular distribution (comp. Fig. 3.3a).

Let the resultant dimension U be a certain function of a set of other dimensions
qj , j = 1,2, . . . , n (comp. (4.1)),

U = g(q1, q2, . . . , qn). (4.13)

Each dimension qj is bounded by its upper �q+
j and lower �q−

j tolerance limits.
The resultant tolerance limit �U of the resultant dimension U can be calculated

from the general formula

�U =
n∑

j=1

∂U

∂qj

�qj . (4.14)

We get the upper tolerance limit �U+ and the lower one �U− by substituting
appropriately the tolerance limits �q+

i and �q−
i in order, at first, to obtain the largest

possible value of the sum in (4.14), that is, the upper tolerance limit �U+, and then,
its smallest possible value �U− corresponding to the lower tolerance limit.

Note that the tolerance limits may be symmetrical, in which case we have
|�q+

j | = |�q−
j |; or non-symmetrical, when |�q+

j | �= |�q−
j |, with respect to the

desired (nominal) value of a specific dimension qj , j = 1,2, . . . , n.

Example 4.5 (Tolerances) Let the centers of two holes A and B in a rectangular ob-
ject be determined by four dimensions: xA, yA, xB , yB with non-symmetrical toler-
ance limits as shown in Fig. 4.6. Find the resultant tolerance limits �R+ and �R−
of the resultant distance R between the axes of the holes. The desired (nominal)
value of that distance is

R =
√

(xB − xA)2 + (yB − yA)2,

where on the right-hand side the nominal values of the coordinates should be sub-
stituted. In this particular case we obtain R = 58.31 mm.

The partial derivatives are

∂R

∂xA

= − 1

R
(xB − xA) = −0.857,

∂R

∂xB

= 1

R
(xB − xA) = 0.857,
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Fig. 4.6 System of
dimensions for calculation of
the tolerance limits of the
distance between the centers
of two holes

Fig. 4.7 The crankshaft
mechanism

∂R

∂yA

= − 1

R
(yB − yA) = −0.514,

∂R

∂yB

= 1

R
(yB − yA) = 0.514.

These derivatives may be treated as the coefficients of sensitivity of the resultant
dimension to deviations of the basic dimensions.

Now, making use of general formula (4.14) we find the resulting tolerance limits
of the distance R,

�R+ = 0.041 mm, �R− = −0.041 mm.

Calculating the upper tolerance limit �R+ we should substitute the upper toler-
ance limit of a basic dimension if the numerical value of the corresponding deriva-
tive has a positive sign. If the numerical value of the derivative is negative, then the
lower tolerance limit of the corresponding basic dimension should be taken. When
calculating the lower tolerance limit �R− we should substitute the tolerance limits
of the basic dimensions in the opposite manner to that for �R+ in order to get the
smallest possible value of �R−.

Example 4.6 (Sensitivity of positioning accuracy) As another simple example we
shall analyze the sensitivity of the positioning accuracy of the end effector B of
a crankshaft mechanism (shown in Fig. 4.7) to the variations of dimensions (e.g.,
caused by temperature changes) of the arms OA and AB, or to the positioning errors
of the angle ϕ. The position of point B is determined by the length OB = x given
by

x = r cosϕ +
√

l2 − r2 sin2 ϕ.
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The sensitivity coefficients are:

∂x

∂l
= 1√

l2 − r2 sin2 ϕ
= 1.037 mm/mm,

∂x

∂r
= cosϕ − 1√

l2 − r2 sin2 ϕ
= 0.5126 mm/mm,

∂x

∂ϕ
= −r sinϕ − r2 sinϕ cosϕ√

l2 − r2 sin2 ϕ
= −27.097 mm/rad.

The numerical values of the coefficients have been calculated for ϕ = 45◦.

4.5 Statical Analogy in the Analysis of Complex Dimension Nets

As an introductory example of application of the statical analogy method let us
consider a system of bars connected by bolt joints A, B , C, D, E, F (Fig. 4.8). If
all the bars are made with such an ideal accuracy that they are of nominal (desired)
length, then the resultant distance R between points A and B will have a certain
nominal value R0. However, if the real lengths of the bars are slightly different
within the tolerance limits, then also the resultant distance R will differ from its
nominal value. Using the analytical method described in the previous section we
should at first determine the function:

R = R(l1, l2, . . . , l9), (4.15)

where l1, l2, . . . , l9 stand for the lengths of particular bars.
The deviation of distance R from its nominal value R0 is, comp. (4.14),

�R = ∂R

∂l1
�l1 + ∂R

∂l2
�l2 + · · · + ∂R

∂l9
�l9. (4.16)

If the tolerance limits of all lengths lj , j = 1,2, . . . ,9 are given, then the resulting
tolerance limits of R can be calculated in the manner described in Sect. 4.4.

Fig. 4.8 The system of bars connected by bolt joints
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Fig. 4.9 The equivalent system of bars and forces for the system of bars connected by bolt joints,
presented in Fig. 4.8

Note, however, that even in the relatively simple case as that shown in Fig. 4.8
it is not easy to write the specific form of relation (4.15). In such cases the statical
analogy method based on the Maxwell-Mohr method used in structural mechanics
for determining deformation of structures may be useful, see e.g. [1].

Let us treat the system of bars shown in Fig. 4.8 as a statically determinate truss.
To find the change of distance R between points A and B we should at first, using
the Maxwell-Mohr procedure, apply at these points two unit forces acting along
AB in opposite directions. Suppose now that one of the bars, say bar ED, has been
removed and instead of it, two forces s4, as shown in Fig. 4.9, have been applied. To
keep the system in equilibrium, the relation

P�R = s4�l4 (4.17)

must be satisfied, where �R and �l4 are virtual small changes of the lengths of
sectors AB, and ED respectively. It is assumed that tensile internal forces si in the
bars resulting from the unit loading of the system have positive sign, while the sign
of compressive forces is negative. Elongations of bars are treated as having positive
sign, while the sign of shortening is negative. For example, positive �R causes
shortening of bar number 4 and a compressive force in it. Thus, �l4 and s4 should
be taken with negative signs.

Generally, we can write relation (4.17) for each bar of the system in the form

�R = sj�lj . (4.18)

Force P does not appear in this equation because we have assumed earlier that it is
equal to unity.

Thus, if the length lj of each bar changes by a small value �lj , then the change
of the distance R between points A and B will be

�R =
n∑

j=1

sj�lj . (4.19)
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Note that no restrictions concerning the nature of length changes �lj have been
made. In structural mechanics, when a truss is loaded by external forces, elastic de-
formations of particular bars stand for �lj in (4.19). However, formula (4.19) holds
valid also in such cases when the change �lj in length lj results from temperature
changes or simply when �lj is a manufacturing error, that is, the bar has been made
slightly longer or shorter than the bar of nominal length.

The structure of relation (4.19) is the same as that of the previous relation (4.16),
except that instead of derivatives ∂R

∂lj
, internal forces sj appear in it. The method of

statical analogy in the analysis of errors in complex dimension nets is based upon
this similarity [2]. For every dimension network we construct a representative sys-
tem of bars and hinges, and then find the numerical values of derivatives appearing
in (4.14) as internal forces in this system loaded by appropriate unit forces. Note
that for dimension networks without unnecessary “closing” dimensions, the repre-
sentative bar systems are statically determinate.

In Fig. 4.10 is explained the principle of constructing the representative bar sys-
tems. A simple example of dimension nets determining the location of four points
was chosen. Generalized unit loads for the analysis of a resultant linear R or angular
Ω dimension are shown in the figure. Every linear dimension lj is represented by a
bar, while every angular dimension θj is represented by a special node (hinge) able
to transmit a moment. Such nodes are shown schematically as having a “spring”
between the bars. In column A, various combinations of basic dimensions (linear or
angular) determining mutual positions of four points are shown. The resultant linear
dimension under analysis is denoted by R, and the resultant angular dimension is
shown as angle Ω. In column B , the systems of bars for the analysis of deviations of
resultant distance R are presented along with the respective unit load. In column C,

analogous schemes for the analysis of deviations of angular dimension Ω are given.
Note that in such cases, the unit load reduces to two unit moments applied to the
bars forming an angle. These moments are implemented as pairs of forces applied
at the end points of respective bars.

Note that for elastic hinges corresponding to basic angular dimensions, we should
substitute in formula (4.19) the moment acting in the hinge as a generalized force sj ,
and the angular deviation as a generalized deformation �lj .

As an example of application of the statical analogy method let us analyze a
system of four holes shown in Fig. 4.11. The configuration of the holes is determined
by five dimensions: four linear a, b, c, d , and one angular α, each with tolerance
limits given in the figure. Let us find the resultant tolerance limits of the resultant
distance R between points B and D.

The corresponding statical system of bars is shown in Fig. 4.12. Note that the
elastic hinge with a “spring” at point B represents the angular basic dimension α.

The system is loaded by two unit forces acting in opposite directions along BD. The
internal forces in the bars are:

bar AB sa ≡ ∂R

∂a
= −0.15,

bar BC sb ≡ ∂R

∂b
= 0.63,
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Fig. 4.10 The principle of constructing representative bar systems

bar CD sc ≡ ∂R

∂c
= 0.95,

bar DA sd ≡ ∂R

∂d
= 0.45.

The moment in the hinge B is

mB = as1 = bs2 ≡ ∂R

∂a
= −45 mm.
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Fig. 4.11 An example of
four holes

Fig. 4.12 The statical system of bars corresponding to the system of four holes presented in
Fig. 4.11

Thus, the sensitivity coefficients have been determined without determining the an-
alytical relation

R = R (a, b, c, d,α) .

They have been found on the basis of graphical representation of this relation given
in Fig. 4.12.

Now, having known numerical values of the sensitivity coefficients, the resulting
tolerance limits of the distance R were calculated:

�R+ = +0.40 mm, �R− = −0.07 mm.
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Fig. 4.13 Graphical
illustration of Problem 4.3

Problem 4.1 Find the expression for the variance of non-direct measuring accuracy
of distance R between holes A and B (Fig. 4.6) if the distances xA, yA, xB , yB have
been measured with the accuracy defined by the variance σ 2.

Problem 4.2 Find the expression for the variance of the desired location of point B

of a simple mass-produced mechanism shown in Fig. 4.7 in the position defined by
the angle ϕ = 45◦. Dimensions are r = 30 mm, l = 80 mm. Their variances are σ 2

r

and σ 2
l , respectively. The variance of adjusting the angle is σ 2

ϕ .

Problem 4.3 Find the sensitivity coefficients of positioning accuracy of the end
effector B of the mechanism shown in the figure for the particular value of the angle
ϕ = 45◦.

Problem 4.4 Using the statical analogy method find the representative unit load for
determining the coefficients of sensitivity of angle EAF in the network shown in
Fig. 4.8, to the deviations of all basic dimensions.

Problem 4.5 Using the statical analogy method find for the mechanism shown in
Fig. 4.7 coefficients of sensitivity of the distance X to the deviations of dimensions
r and l and the adjusting error of angle ϕ = 45◦. Compare the results with those
calculated analytically in Sect. 4.4, Example 4.6.

References

1. Fertis, D.G.: Advanced Mechanics of Structures. CRC Press, Boca Raton (1996)
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4. Szczepiński, W.: Introduction to the Calculus of Tolerance Limits in Mechanical Engineering.

Polish Scientific Editors, Warsaw (1993) (in Polish)
5. Taylor, J.R.: An Introduction to Error Analysis: The Study of Uncertainties in Physical Mea-

surements, 2nd edn. University Science Books (1997)



Chapter 5
Two-dimensional Distributions

5.1 Introductory remarks

As a typical example of two-dimensional distribution, the errors in accuracy of ar-
tillery fire shown in Fig. 1.4 may be taken. The total error is composed of two
independent deviations: error in the shooting distance X and lateral deviation Y

from the shooting direction. Such a relatively small number of points classifies this
distribution among the discrete (quasi-step) distributions.

Using this simple example we shall show how to determine the average point M

of all the points hit by shells and how to check whether the two deviations in x and
y directions are really independent.

Coordinates of central (average) point M are, comp. (1.1),

xM = 1

n

n∑

j=1

xj , yM = 1

n

n∑

j=1

yj , (5.1)

where n is the number of all the hit points. Point M determined in such a manner
is referred to as the estimator of the average values of random variables X and Y .
An obvious analogy can be seen with the procedure of calculating the position of
gravity center of the set of points, each with unit mass.

In the particular problem at hand we get in the appropriately shifted reference
system

xM = 28.7 m, yM = 15.3 m.

Estimators of variances of the random variables X and Y are given by the formu-
las, comp. (1.4a),

σ 2
X = 1

n

n∑

j=1

(
xj − xM

)2
, σ 2

Y = 1

n

n∑

j=1

(
yj − yM

)2
. (5.2)
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Fig. 5.1 Hit points of
artillery fire

Note that the variances calculated in such a manner may be treated as the inertia
moments of that set of hit points with respect to central axes x0, y0 passing through
the central point of the set (Fig. 5.1), divided by the number of all points.

In the particular problem in question we get

σ 2
X = 137.6 m2, σ 2

Y = 62.13 m2.

Thus, the estimators of standard deviations in this case are

σX = 11.71 m, σY = 7.88 m.

To check whether random variables (with the normal distribution) X and Y are
independent, we shall calculate their covariance.1 The formula for the estimator of
the covariance takes the form:

cov (X,Y ) = 1

n

n∑

j=1

(
xj − xM

) (
yj − yM

)
. (5.3)

The covariance may be interpreted as the deviation moment (mixed moment) of the
set of points with respect to central axes x0, y0, divided by the number of points.

1Random variables (as functions of an elementary event) are denoted here by capital letters, while
their actual values (values for a specific event), such as results of measurements, are denoted by
small letters.
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For the particular set of points shown in Fig. 5.1 the estimator of the covariance
was found to be

cov (X,Y ) = −13.81 m2.

The three magnitudes: variances (5.2) and covariance (5.3) stand for the compo-
nents of a certain symmetrical tensor, called the covariance tensor

Tσ 2 =
[

σ 2
X cov(X,Y )

cov(X,Y ) σ 2
Y

]
. (5.4)

Principal directions of this tensor and its principal components may be determined,
for example, by using the Mohr circles representation, see Remark below.

Remark 5.1 (Mohr circles representation of two-dimensional tensors) In two-di-
mensional problems the tensors often appear determined, for example, by their prin-
cipal components along with the principal directions. Such a tensor can be written
as

T =
[

T1 0

0 T2

]
, (5.5)

where T1 and T2 are the principal components. As examples of such tensors in ap-
plied mechanics may be mentioned: stress tensor in plane stress problems, strain
tensor in plane strain problem, tensor of inertia moments of the section of beams
subjected to bending. The covariance tensor in two-dimensional distributions of ran-
dom variables belongs also to this class of tensors.

If the reference system is turned through angle β with respect to the principal
axes 1 and 2, then the tensor will take the form

T =
[

Txx Txy

Tyx Tyy

]
, (5.6)

where the transformed components are

Txx = T1 cos2 β + T2 sin2 β = 1

2
(T1 + T2) + 1

2
(T1 − T2) cos 2β,

Tyy = T1 sin2 β + T2 cos2 β = 1

2
(T1 + T2) − 1

2
(T1 − T2) cos 2β, (5.7)

Txy = Tyx = 1

2
(T1 − T2) sin 2β.

Let us assume now a certain coordinate system with the horizontal axis repre-
senting the components of the tensor having repeated indexes, and with the vertical
axis along which the components with mixed indexes are laid off. It is seen that
in such a reference system, relations (5.7) represent a circle with a radius equal to
1
2 (T1 − T2) and with the center lying on the horizontal axis at a distance equal to
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Fig. 5.2 Determination of
principal directions of a
tensor by means of the Mohr
circles

1
2 (T1 +T2) from the origin, Fig. 5.2. Components Txx , Tyy , and Txy of the tensor are
represented for a given angle by a pair of points A and B on that circle. Position of
the two points is determined by the angle 2β as shown in the figure. Such a graphi-
cal method was proposed by Otto Mohr in 1882 for the analysis of stress tensors. It
finds now applications in other problems.

Let us note that the inverse formulas result directly from the Mohr circle, when
the components Txx , Tyy , and Txy of the tensor are known, while its principal com-
ponents T1, T2 and their directions are to be found. These formulas have the form:

T1 = 1

2

(
Txx + Tyy

)+
√

1

4
(Txx − Tyy)2 + T 2

xy,

T2 = 1

2

(
Txx + Tyy

)−
√

1

4
(Txx − Tyy)2 + T 2

xy,

tan 2β = 2Txy

Txx − Tyy

.

(5.8)

In general three-dimensional problems, when in a chosen coordinate system all
six components of a tensor have non-zero values, the interpretation of the Mohr
circles representation is much more complex. In such three-dimensional cases rather
analytical methods of tensor components transformation are used.

However, in numerous special three-dimensional problems, such as those ana-
lyzed in Chap. 8, when one of the principal components of the covariance tensor
is known, the Mohr circles representation is very useful. The analysis can be done
in the same manner as for two-dimensional problems. The covariance tensor has in
such cases a simplified form

T =

⎡

⎢⎢⎣

Txx Txy 0

Tyx Tyy 0

0 0 Tzz

⎤

⎥⎥⎦ . (5.9)

Its four-element part may be analyzed as a two-dimensional tensor of the type (5.6).
Following the procedure described above, one can find the values of the two re-
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Fig. 5.3 Determination of
principal directions of the
covariance tensor by means
of the Mohr circles

maining principal components and the orientation of the two remaining principal
directions.

Returning to our problem from Fig. 5.1, we find (see Fig. 5.3) the formula for the
angle β of deviation of principal axes of the covariance tensor from the directions
of coordinate axes x0, y0:

tan 2β = 2 cov(X,Y )

σ 2
X − σ 2

Y

. (5.10)

Principal components of the covariance tensor are

σ 2
1 = 1

2

(
σ 2

X + σ 2
Y

)
+

√
1

4

(
σ 2

X + σ 2
Y

)2 + [cov (X,Y )]2,

σ 2
2 = 1

2

(
σ 2

X + σ 2
Y

)
−

√
1

4

(
σ 2

X + σ 2
Y

)2 + [cov (X,Y )]2.

(5.11)

For the particular set of points shown in Fig. 5.1 we get the following numerical
value of the estimator of deviation angle:

tan 2β = − 2 ∗ 13.81

137.16 − 62.13
= −0.3676, β = 10◦5′,

and values of estimators of principal components of the covariance tensor

σ 2
1 = 140.05 m2, σ 2

2 = 59.68 m2.

In Fig. 5.1 is shown the calculated deviation of principal axes 1 and 2 of the
covariance tensor from central axes x0, y0. Such a slight deviation may be in this
case connected with a faulty choice of the reference coordinate system x, y, which
may not coincide with the shooting direction. Such a possibility should always be
considered, because it may happen that the independence of random variables in
question is illusory.

Results presented in Fig. 5.1 illustrate how such and similar practical problems
may be analyzed. Note, however, that in this specific case we should take into ac-
count that the number of registered points (only 38) is too small to ensure that the
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Fig. 5.4 Computer
simulation of
two-dimensional normal
distribution

estimator of angle β has been calculated with sufficient accuracy. In more accu-
rate analysis, statistical tests should be used (see Chap. 10) in order to verify the
hypothesis concerning the estimated value of the deviation angle.

As another example in Fig. 5.4 is shown a set of 3100 points generated by a
personal computer. A simple program generating random numbers with the two-di-
mensional normal distribution was used (comp. Chap. 6, Sect. 6.3—[14, 15]). The
entire field has been divided into 140 small squares. The numbers of points in each
square have been counted and the two-dimensional histogram shown in Fig. 5.5
was built. The height of each column corresponds to the frequency defined as the
quotient of number nrs of points in a specific square r − s divided by the total
number of all generated points n = 3100. If the area of each square in Fig. 5.4 is
assumed to be equal to unity, then the sum of the volumes of all columns will be
equal to unity.

The irregularities in the histogram and its deviation from the regular two-dimen-
sional distribution (comp. Sect. 5.5) are caused by the approximate nature of the
numerical simulation performed.

5.2 Linear Regression of Experimental Observations

In experimental investigations the results observed are usually presented in the form
of a set of points in a certain coordinate system, say, a rectangular x, y system. Each
coordinate represents one of the two magnitudes under investigation, which often
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Fig. 5.5 Histogram built from the data presented in Fig. 5.4

are of different physical dimensions. If we want such a set of experimental points
to be treated as a two-dimensional random variable, we should lay off on the coor-
dinate axes the non-dimensional magnitudes resulting from dividing the measured
quantities by appropriately chosen constant values of the magnitudes measured. In
Fig. 5.6, as an example, is presented a set of experimental points showing how the
austenite share in an alloy steel’s internal structure changes with the amount of in-
troduced plastic deformation (comp. [1]). Such sets of experimental points may be
treated as a realization of the distribution of a certain two-dimensional random vari-
able. In statistics much attention is paid to such a choice of a certain mathematical
curve defined by the generally written equation

y = g1 (x) , (5.12a)

or that it might possibly accurately represent the results of experiment or observa-
tion. Such an equation in mathematical statistics is referred to as the regression of
variable Y with respect to variable X (comp. [10]). Changing the names of vari-
ables, one can also write generally the following equation of regression of variable
X with respect to variable Y :

x = g2 (y) . (5.12b)

Functions (5.12a), (5.12b) represent certain curves in the x, y plane. These curves
are called regression lines. Usually it is not easy to find an appropriate form of func-
tions g1(x) or g2(y) which assure sufficiently good representation of experimental
points. Selection of the mathematical form of these functions is often arbitrary and
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Fig. 5.6 Content of austenite
in the alloy steel versus the
range of plastic deformation
[1]

depends on the researcher’s experience. This problem is still being discussed. More
information may be found in specialized books (see, e.g., [16]).

5.2.1 Nonparametric Regression

Among methods applied for identifying laws resulting from experimental data and
expressed by the curves of the form (5.12a) or (5.12b) we can indicate those that are
more theoretical and those of practical importance, useful for calculations. The non-
parametric regression, which we present now, belongs to more theoretical methods.

Assume that the random variables X and Y are measured simultaneously and the
measurement procedure is repeated n times. As a result we obtain the sequence of
measurement points of the form (xk, yk), k = 1,2, . . . , n. For such a set of measure-
ment data we wish to find a curve of the form (5.12a) or (5.12b), which is the best
approximation of the relation between the two random variables and will enable us
to predict2 from a known value of x the corresponding value of y.

If we know the joint two-dimensional probability distribution of the random vari-
ables X and Y , then we can calculate the conditional expected value of one of them
with respect to the other. We obtain, according to (3.109), for a continuous proba-
bility distribution:

E {X|y} =
∫ ∞

−∞
xf (x|y)dx, (5.13a)

2The relation we defined here makes it possible to complement missing experimental data in a case
where one measurement of the pair is unavailable, or to reduce costs of an experiment omitting one
of two measurements and calculating the missing number from the regression curve.
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E {Y |x} =
∫ ∞

−∞
yf (y|x)dy, (5.13b)

and (3.115) for a discrete probability distribution

E {X|y} =
∑

i

xip (xi |y) , (5.14a)

E {Y |x} =
∑

j

yjp
(
yj |x

)
. (5.14b)

Definition 5.1 The set of points of the plane OXY with co-ordinates (x,E{Y |x})
is called the regression curve of the random variable Y with respect to the random
variable X and the set of points with co-ordinates (E{X|y}, y) is the regression
curve of the random variable X with respect to the random variable Y .

The regression curve can be determined in such a way if the random variable has
the finite expected value. For instance, if E{Y } exists then also (x,E{Y |x}) exists
and one can draw the regression curve of the random variable Y with respect to the
random variable X.

The concept of nonparametric regression is a tool identifying optimal curves of
the form (5.12a), (5.12b). Assume that the two random variables (X,Y ) are given
and we are looking for the formula of the form (5.12a) that minimizes the mean-
square distance of the exact value of the random variable Y and its approximate
value, e.g.,

E
{
(Y − g1 (X))2} = min. (5.15)

It proves to be that such a function minimizes (5.15) if and only if it is of the form

g1 (x) = E {Y |x} . (5.16)

Analogously, in a case of (5.12b) we have:

g2 (y) = E {X|y} (5.17)

and

E
{
(X − g2 (Y ))2} = min. (5.18)

Example 5.1 Let us consider a continuous two-dimensional random variable (Y,Y )

with a joint probability distribution function

fXY (x, y) =
{

((1 + αx)(1 + αy) − α)e−(x+y+αxy) for x > 0, y > 0,

0 otherwise.
(5.19)

We will find the regression of the random variable Y with respect to X. We calculate
in sequence:

fX (x) =
{

e−x x > 0,

0 x ≤ 0,
(5.20)
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f (y|x) = f (x, y)

fX (x)
=

{
((1 + αx) (1 + αy) − α) e−(y+αxy) for x > 0, y > 0,

0 otherwise,
(5.21)

and

E {Y |x} =
∫ +∞

0
yf (y|x)dy = 1 + α + αx

(1 + αx)2
,

that is

g1 (x) = 1 + α + αx

(1 + αx)2
. (5.22a)

From the symmetry of the probability distribution function (5.19) it results that in
the case where the regression of the random variable X with respect to the random
variable Y , we obtain the approximation function

g2 (y) = 1 + α + αy

(1 + αy)2
. (5.22b)

The method of nonparametric regression presented in this subsection is very gen-
eral but it needs knowledge of two-dimensional joint probability distributions of the
random variables for which we seek mutual dependencies. An attempt to find an ap-
proximate expression for the probability distribution (which can be easier in practice
than finding the exact expression) and then calculating the expression (5.12a) can
lead to results less accurate than an alternative method: postulating a priori some
functional dependence (with unknown parameters) between the random variables
and next identifying the values of the parameters. The method of such a kind is
called parametric regression. In a special case of linear dependence of the variables
we have linear regression.

5.2.2 The Method of Least Squares for Determining the Linear
Regression Line

One can distinguish an important group of experiments when experimental points
are laid out in such a manner that one can expect a linear relation between the
two magnitudes that are under investigation. In such cases we can assume that the
generally written relation (5.12a), (5.12b) takes the form of the equation of a straight
line. Two various procedures of calculation are usually recommended.

Procedure 5.1 (Y) Instead of the general relation (5.12a) we assume a linear rela-
tion

y = Ax + B, (5.23)

where A and B are certain constants to be suitably determined in order to ensure
that the calculated straight line well corresponds to the configuration of experimen-
tal points.
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As the criterion for determining both constants A and B it is assumed that the
mean value of squares of all deviations of experimental points from the line (5.23)
should have the minimum value. Such a procedure is called the least squares crite-
rion. In the Y -procedure the sum of squared deviations �y2

j of experimental points
from the corresponding ordinates of straight line (5.23) being sought should take
the minimum value.

Let x∗
j be the abscissa of the j -th experimental point. Then the corresponding

ordinate on the straight line (5.23) is

y0
j = Ax∗

j + B.

Thus, the deviation of real ordinate y∗
j of the j -th experimental point from the line

(5.23) is

�yj = y∗
j − y0

j = y∗
j − Ax∗

j − B.

Now the problem consists in finding the values of constants A and B which make
the sum of squared deviations possibly small:

H =
n∑

j=1

(
y∗
j − Ax∗

j − B
)2 → min . (5.24)

To find these values of the two constants we should differentiate (5.24) first with
respect to A, and then with respect to B . The two derivatives should then be equal
to zero:

∂H

∂A
= 0,

∂H

∂B
= 0.

Solving the obtained system of equations we arrive at the expressions for A and B

A =
∑n

j=1 xjyj − 1
n
(
∑n

j=1 xj )(
∑n

j=1 yj )
∑n

j=1 x2
j − 1

n
(
∑n

j=1 xj )2
, B = y − Ax,

where

x = 1

n

n∑

j=1

xj , y = 1

n

n∑

j=1

yj .

As an example, in Fig. 5.6 the linear regression line calculated for this particular
case is denoted by Y . The angle of its inclination is

β = 28◦57′.

Procedure 5.2 (X) In this procedure, instead of generally written relation (5.12b),
we assume the linear form

x = Cy + D, (5.25)
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where C and D are certain constants to be found. Their values will be calculated
using the least squares method, as in the previous Procedure Y .

Let the actual ordinate of a j -th experimental point be y∗
j . To this value of y∗

j

corresponds on the straight line (5.25) a point with the abscissa

x0
j = Cy∗

j + D.

Thus, the deviation of the actual abscissa x∗
j of the j -th experimental point from

that on the linear regression line is

�xj = x∗
j − x0

j = x∗
j − Cy∗

j − D.

The sum of squares of all such deviations should have the minimum value. Thus, we
can write

S =
n∑

j=1

(
x∗
j − Cy∗

j − D
)2 → min . (5.26)

Now the two constants C and D may be calculated from the system of two equations

∂S

∂C
= 0,

∂S

∂D
= 0.

Finally, we get

C =
∑n

j=1 xjyj − 1
n
(
∑n

j=1 xj )(
∑n

j=1 yj )
∑n

j=1 y2
j − 1

n
(
∑n

j=1 yj )2
, D = x − Cy,

where

x = 1

n

n∑

j=1

xj , y = 1

n

n∑

j=1

yj .

Figure 5.6 shows the linear regression line calculated in this manner. The angle of
its inclination is

β = 35◦6′.

The two linear regression lines X and Y intersect each other at the “gravity”
center of the set of all the experimental points.

5.2.3 The Method of Moments for Determining the Linear
Regression Line

Having assumed the coordinate system x, y (comp. Fig. 5.6) we calculate first the
position of central point M of the set (gravity center) according to formulas (5.1).
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Fig. 5.7 Calculation of the
principal components of the
tensor of the second-order
moments by means of Mohr
circles

Then as the coordinate reference system, central axes x0 and y0 passing through M

are taken.
In the method of moments, instead of variance (5.2), central inertia moments Jx0

and Jy0 of the set of all experimental points with respect to the axes x0 and y0,

Jx0 =
n∑

j=1

(
yj − y0

)2
, Jy0 =

n∑

j=1

(
xj − x0

)2
, (5.27)

should be calculated. Moreover, instead of covariance (5.3), the mixed moment of
the second order with respect to these axes,

Jx0y0 =
n∑

j=1

(
xj − x0

) (
yj − y0

)
, (5.28)

is calculated.
Moments (5.27) and (5.28) represent the components of a symmetrical tensor

TJ =
[

Jx0 Jx0y0

Jx0y0 Jy0

]
. (5.29)

The principal directions and principal components of this tensor may be found, for
example, using the Mohr circles representation.

The angle β of the principal direction of that tensor with respect to the assumed
central coordinate axes x0, y0 is determined by the formula

tan 2β = 2Jx0y0

Jy0 − Jx0

. (5.30)

Principal components of the tensor TJ of inertia moments are

J1 = 1

2

(
Jy0 + Jx0

)+
√

1

4
(Jy0 − Jx0)

2 + J 2
x0y0

,

J2 = 1

2

(
Jy0 + Jx0

)−
√

1

4
(Jy0 − Jx0)

2 + J 2
x0y0

.

(5.31)
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Fig. 5.8 Anisotropy
coefficient versus sheet
deformation

These principal components and their directions have been also determined by using
the Mohr circle shown in Fig. 5.7. In the particular case of the set of experimental
points shown previously in Fig. 5.6, using formulas (5.27) and (5.28) we get the
values of inertia moments

Jy0 = 0.176, Jx0 = 0.065, Jx0y0 = −0.097.

The angle β given by (5.30) is

tan 2β = −2
0.097

0.176 − 0.065
= −1.748,

and

β = 30◦7′.

This value of the angle is close to that which resulted from procedure Y . Such a
linear regression line is shown in Fig. 5.6 as line 1. It represents also the principal
axis of the tensor of inertia moments. The principal inertia moment calculated with
respect to this line is the smallest of all central inertia moments. Thus, the straight
line 1 has such a property that the sum of squares of all orthogonal deviations of
experimental points from it assumes the smallest possible value. In the particular
case shown in Fig. 5.6, this smallest sum of squared deviations, calculated from the
second of formulas (5.31), is

J2 = 0.008.

This value may be treated as a measure of the scatter of experimental points.
Another example of a set of experimental points is shown in Fig. 5.8 (comp. [17]).

In this case the scatter of the points is considerable, which frequently happens in var-
ious investigations. Here a certain coefficient characterizing the initial anisotropy of
a sheet metal was measured. Such a coefficient is often determined experimentally
with the use of a specimen cut out from the sheet pulled in tension. The deforma-
tion, changing in the lateral direction and simultaneously in the thickness direction,
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is measured during the process of tensile loading. The most often used anisotropy
coefficient R, known as the Lankford coefficient, is defined as

R = ln( b
b0

)

ln( h
h0

)
,

where h0 and b0 stand for the initial thickness and for the initial width of the spec-
imen, respectively, while h is the actual thickness and b is width measured during
the test.

Coefficient R changes its value with progressing deformation of the specimen.
Note that the initial value R0 of the sheet cannot be measured directly. It can be
estimated, however, in an indirect manner by calculating the linear regression line
for experimental points shown in Fig. 5.8, and then by extrapolating it to the zero-
deformation point of the diagram.

Following the procedure described above we find inertia moments for that set of
points:

Jy0 = 0.679, Jx0 = 0.048, Jx0y0 = −0.022.

The angle β of inclination of the linear regression line determined by (5.30) is

tan 2β = −0.0702,

and

β = −2◦.

The regression line is shown in Fig. 5.8.

5.3 Linear Correlation Between Experimentally Determined
Quantities

As mentioned above, in numerous problems of interpreting experimental results it is
reasonable to assume a hypothesis of a linear relation between the quantities in ques-
tion in the form (5.23) or (5.25). In most cases a certain scattering of experimental
points takes place as, for example, in Fig. 5.8. Thus, it is important to assess to what
degree the assumption of linearity of that relation is justified. After determining the
linear regression line we should analyze the so-called correlation between the two
quantities which are under investigation. Having the results of measurements in the
form of a set of experimental points in the x, y-plane we may, following the proce-
dure described in Sect. 5.1, calculate the estimators of the components of covariance
tensor (5.4). First let us assume that this tensor has a particular form represented by
a Mohr circle tangent to the vertical covariance axis (Fig. 5.9a). In such a particular
case, the smaller principal component of the tensor (comp. Fig. 5.3) is zero

σ 2
2 = 0.
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Fig. 5.9 Illustration of the concept of linear correlation by means of Mohr circles

Fig. 5.10 Illustration of a case of the collinear location of sample points

It means that in this particular case all experimental points lie without any de-
viation on a single straight line inclined to the x-axis by an angle β . This straight
line is shown in Fig. 5.10 as line P , if the components of covariance tensor, de-
termined in the manner described in Sect. 5.1, are represented by point P on the
Mohr circle, Fig. 5.9a. For other positions of point P on the circle, the correspond-
ing straight lines in Fig. 5.10 will have other positions. Considering a right-angled
triangle NPM (Fig. 5.9a) we get the relation

cov (X,Y ) = σXσY , (5.32)

which holds valid for all points on the Mohr circle, when it takes the specific position
shown in Fig. 5.9a. For other covariance tensors, when none of the two principal
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components vanishes (Fig. 5.9b), we can write instead of (5.32) the inequality

|cov (X,Y )| ≤ σXσY , (5.33)

which is known as the Schwartz inequality (comp., e.g., [9, 16]).
On the basis of relation (5.32), an important coefficient r may be deduced. It

allows us to assess to what extent the layout of experimental points may be ap-
proximated by a linear relation between the measured quantities X and Y . This
coefficient, defined as

r = cov(X,Y )

σXσY

, (5.34)

is called the coefficient of linear correlation, or simply the correlation coefficient. It
may take values within the range

−1 ≤ r ≤ 1. (5.35)

The two limiting values correspond to particular cases when the covariance tensor
is represented by a Mohr circle in the position shown in Fig. 5.9a. This means that
all experimental points are located exactly on a single straight line.

When the correlation coefficient r calculated for a specific case is close to one
of the limiting values (5.35), then the correlation between the measured quantities
is high. Small values of this coefficient indicate that the correlation is weak. Small
values of the correlation coefficient may be caused by:

− Considerable scatter of experimental points which leads to large values of the
two variances σ 2

X and σ 2
Y ; the Mohr circle is then at a considerable distance from

the coordinate origin, Fig. 5.9b.
− Small (or large) inclination of the linear regression line, in other words, the angle

β being close to zero or to π/2. Such a situation occurs when the absolute value
of the covariance is small. When β = 0 or β = π/2, there will be no correlation
at all.

Returning to the sets of experimental points shown in Fig. 5.1 and in Fig. 5.8 we
find that they are characterized by small values of the correlation coefficient.

For the set shown in Fig. 5.1 we get (substituting into (5.34) the values of
variances and of the covariance calculated in Sect. 5.1) the correlation coefficient
r = −0.149. Such a weak correlation of deviations in x and y directions is caused
by significant scattering of hit points and additionally by the small value of the an-
gle β . One can say, with a rather high degree of certainty, that during artillery fire
from a fixed gun the lateral and longitudinal deviations of hit points from the target
point are independent. For the set of experimental points shown in Fig. 5.8 we obtain
r = −0.123. Such a weak correlation results first of all from the almost horizontal
orientation of the correlation line and also from the significant scattering of points.

Another result we obtain by analyzing the set of experimental points shown in
Fig. 5.6. The correlation is strong. The estimator of the correlation coefficient is
r = −0.907.
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Remark 5.2 Let us consider again the problem of calculating the regression line.
According to the Procedure Y the regression line (5.23) can be written as

y − ȳ = r̂
σ̂Y

σ̂X

(x − x̄) ,

where x̄ and σ̂X are the estimators of the mean value and the standard deviation
of the random variable X, calculated from the experimental data using the known
formulas:

x = 1

n

n∑

j=1

xj , σ̂X =

√√√√√
n∑

j=1

x2
j − 1

n

(
n∑

j=1

xj

)2

,

and ȳ and σ̂Y are the analogous quantities calculated for the random variable Y ,

y = 1

n

n∑

j=1

yj , σ̂Y =

√√√√√
n∑

j=1

y2
j − 1

n

(
n∑

j=1

yj

)2

,

while r̂ is the estimator of the linear correlation coefficient of the two random vari-
ables X and Y and is calculated according to the formula

r̂ =
∑n

j=1 xjyj − 1
n
(
∑n

j=1 xj )(
∑n

j=1 yj )√∑n
j=1 x2

j − 1
n
(
∑n

j=1 xj )2
√∑n

j=1 y2
j − 1

n
(
∑n

j=1 yj )2
.

The analogous regression line calculated in the Procedure X has the form

x − x̄ = r̂
σ̂X

σ̂Y

(y − ȳ) .

Now we can write the regression lines in the slope-intercept form y = ax + b. The
slope coefficient obtained in the Procedure Y is

a = aYX = r̂
σ̂Y

σ̂X

,

while the same coefficient obtained in Procedure X is

a = aXY = 1

r̂

σ̂Y

σ̂X

.

We see that the two coefficients are equal, ( aYX = aXY ) if and only if r̂ = ±1, that
is, if the random variables X and Y are linearly correlated.

It is possible to assess the probability that the real value of the correlation coeffi-
cient is larger than its value r∗ calculated on the basis of formula (5.34) and results
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Table 5.1 Probabilities PN(|r| ≥ r∗), that for N measurements of random variables, X and Y will
give the correlation coefficient |r| ≥ r∗ (the empty cells are for probabilities less than 0.01)

N r∗

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10

6 0.85 0.70 0.56 0.43 0.31 0.21 0.12 0.056 0.014

8 0.81 0.63 0.47 0.33 0.21 0.12 0.053 0.017

10 0.78 0.58 0.40 0.25 0.14 0.067 0.024

15 0.72 0.47 0.28 0.14 0.058 0.018

20 0.67 0.40 0.20 0.081 0.025

25 0.63 0.34 0.15 0.048 0.011

30 0.60 0.29 0.11 0.029

35 0.57 0.25 0.08 0.017

40 0.54 0.22 0.06 0.011

45 0.51 0.19 0.045

50 0.49 0.16 0.034

60 0.45 0.13 0.020

70 0.41 0.097 0.012

80 0.38 0.075

90 0.35 0.059

100 0.32 0.046

of N measurements. That probability may be written as

PN

(|r| ≥ r∗) . (5.36)

Such an assessment is specially important when the number N is small and, there-
fore, doubts concerning the degree of correlation arise. Table 5.1 contains the values
of the probability (5.36) for various numbers N . Details concerning the method used
for calculating the numbers given in the table may be found in specialized mono-
graphs [11, 16].

A more precise way of establishing whether the random variables are correlated
would be the application of statistical tests (see Chap. 10).

5.4 Two-dimensional Continuous Random Variables

When in such problems as that shown in Fig. 5.4 the number of points tends to
infinity, and the number of squares, as those in Fig. 5.5, also tends to infinity, we
get instead of a stepwise upper surface of a two-dimensional histogram, a contin-
uous surface f (x, y) of a probability density function. Introducing the concept of
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probability distribution function F(x, y) = P({ω : X(ω) < x,Y (ω) < y}) of a two-
dimensional distribution, comp. (3.101), and assuming its differentiability, we can
express the probability density function as the mixed derivative of F(x, y) at a given
point x, y (see [2, 10])

f (x, y) = ∂2F

∂x∂y
. (5.37)

For continuous random variables X,Y the probability distribution function
F(x, y) is a continuous function. By analogy to (2.14) we can write

F (x, y) =
∫ x

−∞

∫ y

−∞
f (ξ, ζ ) dξdζ. (5.38)

A probability density function must satisfy the obvious condition that the volume
V between the surface representing it and the plane of variables x, y should be equal
to unity (comp. (2.16)). Thus, we have

V =
∫ ∞

−∞

∫ ∞

−∞
f (x, y) dxdy = 1. (5.39)

Knowing the specific form of the two-dimensional probability density function
f (x, y) of a pair of random variables X,Y , we can find the one-dimensional prob-
ability density for each of the two variables. They are the so-called marginal distri-
butions, defined as

fX (x) =
∫ ∞

−∞
f (x, y) dy, fY (y) =

∫ ∞

−∞
f (x, y) dx. (5.40)

They describe the distribution of each of the one-dimensional variables, which
does not depend upon the distribution of the other variable. They represent pro-
jections of the two-dimensional distribution f (x, y) on one of the planes passing
through the x or the y-axis. An example of an old-time application of such marginal
distributions was presented in Fig. 1.4. For a long time the marginal distributions
were used in order to assess the accuracy of artillery fire.

Having found the marginal probability densities we can calculate the first order
moments of random variables X and Y by using definition (2.21). They are, respec-
tively, moment of variable X with respect to the y-axis

mX =
∫ ∞

−∞
xfX (x)dx =

∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dxdy,

moment of variable Y with respect to the x-axis

mY =
∫ ∞

−∞
yfY (y) dy =

∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dxdy.

Assuming such specific values x and y that the equalities

V x = mX,



5.4 Two-dimensional Continuous Random Variables 127

V y = mY ,

hold valid, we can write

x =
∫ ∞

−∞

∫ ∞

−∞
xf (x, y) dxdy, (5.41a)

y =
∫ ∞

−∞

∫ ∞

−∞
yf (x, y) dxdy. (5.41b)

Equality (5.39), according to which volume V is equal to unity, has been taken here
into account.

The two quantities x and y are the average values of the distribution (comp.
(2.22)). In other words, x and y are the coordinates of the gravity center of volume
V , while moments mX and mY are the static moments of that volume with respect
to the axes x and y, respectively. Axes x0 and y0, parallel to the initially chosen
axes x and y and passing through central point (x, y), are called the central axes of
the distribution.

Second-order central moments of volume V with respect to central axes x0 and
y0 are

JX =
∫ ∞

−∞
(x − x)2 fX (x)dx =

∫ ∞

−∞

∫ ∞

−∞
(x − x)2 f (x, y) dxdy, (5.42a)

JY =
∫ ∞

−∞
(y − y)2 fY (y) dy =

∫ ∞

−∞

∫ ∞

−∞
(y − y)2 f (x, y) dxdy. (5.42b)

Assume now two such quantities σ 2
X and σ 2

Y that

V σ 2
X = JX, V σ 2

Y = JY .

Taking into account that V = 1, comp. (5.39), we get the relations:

σ 2
X =

∫ ∞

−∞

∫ ∞

−∞
(x − x)2 f (x, y) dxdy, (5.43a)

σ 2
Y =

∫ ∞

−∞

∫ ∞

−∞
(y − y)2 f (x, y) dxdy, (5.43b)

where σ 2
X and σ 2

Y are the variances of random variables X and Y , respectively.
Square roots of the variances, that is, the quantities σX and σY , are the standard
deviations of the two random variables.

Note that moments JX and JY , given by formulas (5.42a), (5.42b), are in engi-
neering terms the inertia moments of volume V with respect to central axes y0 and
x0, respectively. In such an interpretation standard deviations σX and σY stand for
the so-called inertia radii of volume V .

Continuous random variables X and Y are independent when their joint probabil-
ity density function f (x, y) can be expressed as a product of univariate probability
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densities fX(x) and fY (y),

f (x, y) = fX (x)fY (y) . (5.44)

Similarly, we say that random variables X and Y are uncorrelated when the co-
variance of their two-dimensional distribution equals zero:

cov (X,Y ) =
∫ ∞

−∞

∫ ∞

−∞
(x − x) (y − y)f (x, y) dxdy = 0. (5.45)

Note that covariance (5.45) may be treated as a mixed inertia moment of volume
V with respect to central axes y0 and x0. Let us assume now that random variables
X and Y are independent, which means that their joint probability density func-
tion satisfies condition (5.44). Introducing (5.44) into (5.45) and taking into account
definitions of average values x and y, we arrive at the conclusion that independent
random variables are uncorrelated. As in the previously discussed (in Sect. 5.1) case,
the two variances (5.43a), (5.43b) and covariance (5.45) stand for the components
of a certain symmetrical tensor

Tσ 2 =

⎡

⎢⎢⎣

σ 2
X cov(X,Y )

cov(X,Y ) σ 2
Y

⎤

⎥⎥⎦ . (5.46)

The form of this tensor is identical with the form (5.4), but now the interpretation of
elements of the matrix on the right-hand side is different.

Principal directions of that tensor and its principal components can be calculated
with the use of formulas (5.10) and (5.11).

5.5 The Two-dimensional Normal Distribution

5.5.1 The Case of Independent Random Variables

Let us assume that the one-dimensional random variable X has the normal distribu-
tion determined by the probability density function, comp. (2.35),

fX (x) = 1√
2πσ 2

X

exp

[
− (x − x)2

2σ 2
X

]
, (5.47)

while the other one-dimensional random variable Y has also the normal distribution
with the probability density

fY (y) = 1√
2πσ 2

Y

exp

[
− (y − y)2

2σ 2
Y

]
. (5.48)
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Fig. 5.11 The probability density of the two-dimensional normal distribution of independent ran-
dom variables

The two-dimensional probability density function f (x, y) of the pair (X,Y ) is
called their joint probability density function. Since the two random variables are
independent, the condition (5.44) must be satisfied. Thus, we can write

f (x, y) = 1

2πσXσY

exp

[
− (x − x)2

2σ 2
X

− (y − y)2

2σ 2
Y

]
. (5.49)

This probability density function is represented by a certain hat-like surface hav-
ing a single maximum at the central point (x, y). The probability density takes at
this point the value 1

2πσXσY
. The axes of symmetry of that surface are parallel to the

coordinate axes x and y and they pass through central point (x, y). In Fig. 5.11 such
a surface is schematically shown for the case when coordinate axes x and y are cho-
sen as principal axes, which means that the mean values of both one-dimensional
distributions are assumed to have zero values. In such an important particular case
the probability density function (5.49) takes a simpler form

f (x, y) = 1

2πσXσY

exp

[
−1

2

(
x

σX

)2

− 1

2

(
y

σY

)2]
. (5.50)

The ellipses
(

x − x

σX

)2

+
(

y − y

σY

)2

= const., (5.51a)

or, in the particular case of probability density function (5.50), the ellipses

(
x

σX

)2

+
(

y

σY

)2

= const., (5.51b)

on the plane x, y are the lines along which the probability density has a constant
value. They are often referred to as the lines of probability concentration. In the
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Fig. 5.12 The ellipse of
accuracy of artillery fire [3]

past, practical use of such ellipses was limited to problems of ballistics connected
with the assessment of the accuracy of artillery fire (comp., e.g., Fig. 5.12, [3]). At
present they find also other applications, particularly for assessing the positioning
accuracy of robot manipulators and other similar mechanisms. Such problems will
be discussed in Chap. 6.

5.5.2 The Circular Normal Distribution

The circular normal distribution may be treated as a particular case of the two-di-
mensional normal distribution when

σX = σY = σ. (5.52)

Assume that the coordinate axes x, y of independent random variables X and Y

are central axes. The probability density of such a distribution can be represented
by a certain function of the radius r of a circle on which the point x∗, y∗ under
consideration is located. This function results from general formulation (5.50) after
substituting equality (5.52) and after replacing the previous coordinate system x, y

by a polar coordinate system r , θ . Finally, the circular normal probability density
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Fig. 5.13 The probability density function of the circular normal distribution

function takes the form

f (r, θ) = r

2πσ 2
exp

[
− r2

2σ 2

]
. (5.53a)

It represents the probability density at each point of a circle with the radius r .
However, circular normal probability density may also be presented as a one-di-
mensional distribution with respect to the radius r (comp., e.g., [4]). In such a case,
the probability density for a given radius r will be 2π times larger, see expression
(5.53b). The probability density function of the two-dimensional circular normal
distribution of a random variable is represented by a surface of revolution shown in
Fig. 5.13. The circles r = const are the lines of constant probability. They are also
referred to as circles of probability concentration. Such a concentration increasing
towards the central point is seen in Fig. 5.14 showing results of approximate com-
puter simulation.3

Probability that a two-dimensional random variable X,Y is located inside or on
a circle of a radius r∗ is equal to the probability that random variable R with the
density function fR(r),

fR (r) =
∫ 2π

0
f (r, θ) dθ = r

σ 2
exp

[
− r2

2σ 2

]
, (5.53b)

will be located within the range (0, r∗). Hence, this probability P(0 ≤ R ≤ r∗) will
be

P
(
0 ≤ R ≤ r∗) =

∫ r∗

0
fR (r) dr. (5.54)

3This simulation was made by Professor Z. Wesolowski at the authors’ request.
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Fig. 5.14 Computer
simulation of the circular
normal distribution

These probabilities are tabulated in the form of the so-called χ2(2) distributions
(the chi-squared distribution with two degrees of freedom).

Remark 5.3 Usually, the chi-squared distributions are interpreted in the following
way (comp., e.g., [4]). If m independent normalized random variables

Uk = Xk − xk

σk

(5.55)

have the normal distribution, then the sum of their squares

χ2 =
m∑

k=1

U2
k , (5.56)

has the chi-squared distribution with m degrees of freedom.

The quantiles4 of an order p of such a distribution are denoted by χ2
p(m). In

numerical tables of the chi-squared distribution usually the values of χ2
1−α(m) de-

pending on α are given.
The chi-squared distributions for various m find many applications in statistics,

and monographs are devoted to them (comp., e.g., [5]). Special attention to them is
given also in various books dealing with statistics problems. In the present book we
shall limit our attention to the two cases: when m = 2 and when m = 3, which find
direct applications in engineering problems. Examples of practical applications will
be given in Chaps. 6 and 8.

4For a continuous distribution with the cumulative distribution function F(x), the quantile of an
order p is such a value x (not necessarily unique) for which equality F(x) = p is satisfied, comp.
Sect. 3.4.2
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Table 5.2 The quantiles of
the χ2(2) distribution 1 − α χ2

α(2) 1 − α χ2
α(2)

0.99 0.0201 0.30 2.408

0.98 0.0404 0.20 3.219

0.95 0.103 0.10 4.605

0.90 0.211 0.05 5.991

0.80 0.446 0.02 7.824

0.70 0.713 0.01 9.210

0.50 1.386 0.001 13.855

In the case of the two-dimensional circular distribution discussed here, the chi-
squared distribution has a direct interpretation. Consider a cylinder whose radius
rα (Fig. 5.13) is determined by the assumed value of probability α that random
variable R will lie inside this cylinder (comp. Fig. 2.6 and the analogous problem
for the one-dimensional normal distribution). Note that the expression for the square
of that radius

(rα)2 = x2 + y2 ≡ χ2
α (2) (5.57)

is, according to definition (5.56), a quantile χ2
α(2) of an order α of the chi-squared

distribution with two degrees of freedom, marked by the number 2 in parentheses.
Values of χ2

α(2) are given in Table 5.2.
In practical calculations the corresponding diagram presented in Fig. 5.15 may

be used.
In statistical tables, usually the values of probability P(χ2 ≥ u0) are given. They

are compiled under the assumption that the summed up distributions have unit vari-
ance, in other words, random variables in question have been determined according
to (5.55). Using such tables in the cases when random variables have identical but
not unit variances σ 2, we can replace expression P(χ2 ≥ u0) by P(χ2 ≥ z0σ

2),
where u0 = z0σ

2. For example, for an arbitrary σ , the quantile of order α = 0.5 of
the chi-squared distribution with two degrees of freedom is

r0.5 = σ

√
χ2

0.5 (2) = 1.177σ.

5.5.3 Three-dimensional Gravity Flow of Granular Media

Before discussing in the following section the normal distribution of dependent ran-
dom variables, let us present some examples of practical applications of the nor-
mal distribution of independent random variables. They concern three-dimensional
problems of gravity flow of granular media such as the terrain subsidence caused by
underground exploitation or the movements of such media in bins. In Sect. 2.5 were
presented two-dimensional solutions of such problems based on the original idea of



134 5 Two-dimensional Distributions

Fig. 5.15 The quantiles of the χ2(2) distribution

J. Litwiniszyn [6]. According to Litwiniszyn’s approach the displacements in gran-
ular medium caused by gravity forces are of the mass character of random changes
of mutual contacts between the particles. Consequently, displacements of particles
are random. As the starting point for the three-dimensional analysis of such random
movements of granular media, let us imagine a demonstrating device composed of a
number of plates (layers) resting one on the other. Each plate is formed by a regular
array of cuboid cells with h square holes. Four upper plates in the expanded form
are shown in Fig. 5.16. The cells in subsequent plates are arranged with respect to
each other in such a manner that central axes of holes in a plate coincide with the
common line of the four corners of cells in the plate located just below or above,
see [12].

Let us assume, similarly as in the so-called Galton’s box (Fig. 2.8) for two-
dimensional cases, that small balls falling down from a particular cell in plate I
and striking the common vertical edges of four cells in plate II below are randomly
directed into one of these cells with the probability equal to 1

4 . The random path
of the consecutive falling balls is repeated for each plate below. Finally they fall at
random into one of the separate containers at the bottom. The probabilities that a
ball migrating downwards will pass through a particular cell in a subsequent plate
below are shown as an example in Fig. 5.17 for a few upper plates.

If containers at the bottom of the device are located just below the plate IX, then
the probabilities that a particular ball will fall into one of them will be as presented
in Table 5.3.
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Fig. 5.16 Three-dimensional
analogue of Galton box, after
[12]

Fig. 5.17 Probabilities that a
falling ball passes through
cells in four lower plates of
the device shown in Fig. 5.16

These calculated values of probabilities are shown in the form of a histogram
(Fig. 5.18). It can be seen that the larger is the number of plates in our experimen-
tal device, the more the calculated probability distribution approaches the circular
normal distribution.
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Table 5.3 Probability distribution of a ball falling into containers below level IX

1
65536

8
65536

28
65536

56
65536

70
65536

56
65536

28
65536

8
65536

1
65536

8
65536

64
65536

224
65536

448
65536

560
65536

448
65536

224
65536

64
65536

8
65536

28
65536

224
65536

784
65536

1568
65536

1960
65536

1568
65536

784
65536

224
65536

28
65536

56
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Fig. 5.18 Two-dimensional histogram of the distribution of location of a falling ball in the device
presented in Fig. 5.16

As stated in Sect. 2.5, Litwiniszyn analyzed an inverse problem in which the
cavities existing in the bulk of a loose medium migrate randomly upwards from the
bottom [6–8]. His approach may be used as the basis for the finite cells procedure
for the analysis of three-dimensional movements of granular material in bins. As an
example let us analyze displacements of a granular medium in a bin of rectangular
shape. The outlet has the form of a relatively narrow slit as shown in Fig. 5.19. Let
us assume a system of seven plates with square holes (Fig. 5.20), cf. [12].

When a portion of six elementary unit volumes falls down from the bin through
the outlet at the bottom, the elementary cavities begin to migrate upwards. They
migrate according to the stochastic distribution described above. The probabilities
that they pass during the migration through a particular cell in three lower plates are
shown in Fig. 5.21.

The corresponding probabilities calculated for the upper plate VII corresponding
to the free surface of the bulk are shown in Table 5.4.

Using the calculated data for the upper layer VII we can construct, in a manner
analogous to that described in Sect. 2.5 for a two-dimensional flow, the step-wise
deformation pattern of the upper surface of the bulk contained in the bin. One half of
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Fig. 5.19 Bin with a rectangular cross-section

Fig. 5.20 Assumed system of unit cells for the problem shown in Fig. 5.19

Table 5.4 Measures that a unit cavity reaches cells of the upper layer VII
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the deformed surface for the particular case when three portions of the unit volumes
left the bin through the outlet at the bottom is presented in Fig. 5.22. The step-wise
image of the surface may be treated as the first approximation resulting from the
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Fig. 5.21 Measures that a unit cavity will pass through cells in three lower layers shown in
Fig. 5.20

distribution of the probabilities shown in Table 5.4. Displacement vectors may be
found in a manner analogous to that described in Sect. 3.1, see also [12].

As an example of terrain subsidence (cf. [13]) let us analyze displacements in a
particular configuration shown in Fig. 5.23. In a large bulk of granular medium, part
of which is shown in the figure, we assume the initial cavity in the form of a letter L.
Then in the process of gravity flow the cavity is completely filled up by the medium
migrating downwards. As the result of this migration process the upper surface of
the bulk suffers local deformation and a depression is formed in it.

The assumed system of five plates, each with a regular array of square holes, is
presented in Fig. 5.24. The plates are arranged, one with respect to the adjacent one,
in the manner shown in Fig. 5.16. Each cell in the system is assumed to represent
a unit volume. During the process of deformation all seven elementary empty unit
volumes, forming the initial cavity, begin to migrate upwards. They migrate accord-
ing to the stochastic distribution algorithm described above. The fractions of a unit
cavity that finally will appear in particular cells of the upper plate V are shown in
Table 5.5. Note that in our problem the sum of these fractions must be equal to
seven.

These numbers indicate also how much the surface of the granular medium has
been lowered in particular cells as the result of migration of voids. The deformation
of the upper surface calculated in this manner is shown in Fig. 5.25. To make the
deformation pattern more clearly visible the portion of the bulk bounded in Fig. 5.23
by the planes ABGF and BCDG has been removed.

The method presented in this subsection as well as its two-dimensional variant
described in Chap. 2 use elementary facts of probability theory and the calcula-
tions can be made even on a pocket calculator. However, the analogous methods can
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Fig. 5.22 Vertical displacements of granular material in the bin shown in Fig. 5.19

Fig. 5.23 Example of a
cavity in the bulk of granular
medium

be applied to realistic problems of geotechnics, e.g., the terrain surface subsidence
over complex shape drifts in mines or several drifts located at different levels. In
such cases one must use computer calculations. Analogously as in widely-used fi-
nite elements methods, also in these problems one can apply automatic design of
partition of cavities and the ground around it into finite cells.
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Fig. 5.24 Assumed system
of cells for the terrain
subsidence problem shown in
Fig. 5.23

Table 5.5 Measures that a unit cavity reaches cells in the upper layer V
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Fig. 5.25 Calculated
step-wise approximation of
terrain subsidence for the
problem shown in Fig. 5.23

5.5.4 The Case of Dependent Random Variables

If random variables X1, X2, each with the normal distribution, are dependent, then
their two-dimensional probability density is also referred to as the normal distribu-
tion. In the exponent of its probability density function, not only the squares of the
two variables x1, x2 but also their product appear. Generally, if the axes x1 and x2

are chosen to be central axes, the probability density function takes the form (see
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Remark 5.4 below)

f (x1, x2) = 1

2π
√

det[kij ]
exp

[
−1

2

2∑

i=1

2∑

j=1

Kijxixj

]
, (5.58a)

or simply

f (x1, x2) = 1

2π
√

det[kij ]
exp

[
−1

2

(
K11x

2
1 + 2K12x1x2 + K22x

2
2

)]
. (5.58b)

Remark 5.4 The case discussed above is the simplest of n-dimensional distributions
of mutually dependent random variables. For such n-dimensional centered normal
distributions, the probability density function takes the general form

f (x1, x2, . . . , xn) = 1√
(2π)n det[kij ]

exp

[
−1

2

n∑

i=1

n∑

j=1

Kijxixj

]
. (5.59)

The normal distribution is fully determined by its central point (the mean value) and
by the matrix of second-order moments (the covariance matrix)

[
kij

] = [
Kij

]−1
, kij = kji, i, j = 1,2, . . . , n, (5.60)

where:

for j = i, kjj = σ 2
j is the variance of Xj ,

for j �= i, kij = cov
{
Xi,Xj

}
is the covariance of Xi and Xj .

Returning to the two-dimensional distribution we can write

x1 = x, x2 = y,

K11 = KXX, K12 = KXY , K22 = KYY .

Coefficients KXX , KXY , and KYY stand for the elements of the inverse matrix to
the matrix of second-order moments [kij ]. Thus, we have

[
Kij

] =
[
KXX KXY

KYX KYY

]
= [

kij

]−1 = 1

kXXkYY − k2
XY

[
kYY −kXY

−kYX kXX

]
(5.61)

where

kXX = σ 2
X is the variance of the random variable X;

kYY = σ 2
Y is the variance of the random variable Y ;

kXY = kYX = cov{X,Y } is the covariance of variables X and Y , called also the
correlation moment.
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Fig. 5.26 The probability density function of the normal distribution of statistically dependent
random variables

Now we can write the probability density function (5.58a) of the two-dimensio-
nal normal distribution in a form more convenient for practical applications

f (x, y) = 1

2πσXσY

√
1 − ρ2

XY

× exp

[
− 1

2(1 − ρ2
XY )

(
x2

σ 2
X

− 2ρXY

x

σX

y

σY

+ y2

σ 2
Y

)]
, (5.62)

where

ρXY = kXY√
kXXkYY

= cov{X,Y }√
σ 2

Xσ 2
Y

(5.63)

is the coefficient of correlation between variables X and Y . For the zero value of
this coefficient, in other words, when cov{X,Y } = 0, expression (5.62) takes the
form (5.50) for independent variables. Thus, the lack of correlation between nor-
mal random variables indicates that the variables are mutually independent. The
distribution (5.62) is represented by a hat-like surface like that shown in Fig. 5.11.
However, now the surface is turned by an angle β with respect to the coordinate
axes x and y (Fig. 5.26). The two axes 1 and 2, lying in the symmetry planes of the
surface, are the principal axes of the distribution (5.62). Knowing the values of vari-
ances σ 2

X and σ 2
Y and of the covariance cov{X,Y }, we may find the angle β as the

angle of each of the principal directions of the covariance tensor (5.46). The Mohr
circles representation may be used as it was shown before in Fig. 5.3.

Sections of the surface shown in Fig. 5.26 by planes f (x, y) = const have an
elliptic form (Fig. 5.27). Their projections on the x, y-plane are determined by the
equation

1

1 − ρ2
XY

[(
x

σX

)2

− 2ρXY

x

σX

y

σY

+
(

y

σY

)2]
= λ2, (5.64)
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Fig. 5.27 The ellipse of a
constant probability of the
normal distribution of
statistically dependent
random variables

where λ is a certain constant, whose numerical value depends on the assumed prob-
ability α that particular values x and y of random variables X and Y will lie inside
the ellipse.

If the distribution (5.62) is presented according to (5.55) as a distribution of nor-
malized random variables

Ux = X

σX

, Uy = Y

σY

,

it will become a circular distribution with density (5.53a). Ellipse (5.64) will then
be transformed into a circle. The procedure showing how to find radius rα of that
circle for an assumed probability α that a point determined by particular values of
variables will be located inside it, has been discussed in the previous section. This
radius is defined by formula (5.57). Returning to our original distribution (5.62) and
to the ellipse (5.64), we do not change this probability. Then, we can write

λ2 = χ2
α (2) . (5.65)

Therefore, the size of the ellipse (5.64) for any assumed probability concentration
level may be found.

Example 5.2 Consider a pair of random variables (X,Y ) that have jointly a Gaus-
sian distribution with the probability density function of the form:

f (x, y) = 1

2πσXσY

√
1 − ρ2

XY

× exp

{
− 1

2(1 − ρ2
XY )

(
(x − mX)2

σ 2
X

− 2ρXY

(x − mX)

σX

(y − mY )

σY

+ (y − mY )2

σ 2
Y

)}
. (5.66)
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Now we find the curve of regression of the random variable Y with respect to ran-
dom variable X. We calculate first the marginal distribution of the random variable
which is the condition, that is X:

fX(x) =
∫ ∞

−∞
f (x, y)dy =

∫ ∞

−∞
1

2πσXσY

√
1 − ρ2

XY

× exp

{
− 1

2(1 − ρ2
XY )

(
(x − mX)2

σ 2
X

− 2ρXY

(x − mX)

σX

(y − mY )

σY

+ (y − mY )2

σ 2
Y

)}
dy

= 1

σX

√
2π

exp

{
− (x − mX)2

σ 2
X

}
. (5.67)

In the next step we calculate the conditional probability distribution of random
variable Y with respect to random variable X:

f (y|x) = f (x, y)

fX(x)

= 1

σY

√
2π(1 − ρ2

XY )

× exp

{
− 1

2(1 − ρ2
XY )

(
(2ρ2
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σ 2
X

− 2ρXY
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σX

(y − mY )

σY

+ (y − mY )2

σ 2
Y

)}

= 1
√

2π

√
(1 − ρ2

XY )σ 2
Y

exp

{
− (y − mY − ρXY

σY

σX
(x − mX))2

2(1 − ρ2
XY )σ 2

Y

}
. (5.68)

The line of regression is the expected value of the random variable conditioned
with the second of the pair random variable X, that is the integral of the conditional
probability density function (5.68) multiplied by y:

E {Y |x} =
∫ ∞

−∞
yf (y|x)dy

=
∫ ∞

−∞
y

√
2π

√
1 − ρ2

XY )σ 2
Y

exp

{
− (y − mY − ρXY

σY

σX
(x − mX))2

2(1 − ρ2
XY )σ 2

Y

}
dy

= mY + ρXY

σY

σX

(x − mX). (5.69)
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As it is seen from the above equation, for the two-dimensional Gaussian distri-
bution the regression curve is the straight line, which means that the general regres-
sion is always the linear regression. In other words, the regression line is the best
approximation of the dependence of the two random variables Y and X among all
the curves of the general form (5.12a).

Problem 5.1 In the table are given the independently observed values of some two-
dimensional random variable (X,Y ). Check if the one-dimensional random vari-

X 12.5 4.7 4.8 3.0 4.0 3.6 6.9 6.9 16.4 5.0

Y 333 123 183 112 118 133 281 281 765 198

X 4.5 6.9 5.0 4.6 4.6 4.5 5.8 6.2 5.6 6.1

Y 135 238 202 213 149 187 341 170 177 310

ables X and Y are correlated.

Problem 5.2 For the random data given in the table calculate the variances and

X 1.91 1.77 1.93 1.67 1.32 1.61 1.52 1.41 1.55 1.96

Y 1.15 1.27 1.22 1.21 1.27 1.29 1.3 1.25 1.18 1.34

X 1.09 1.72 1.93 1.81 1.37 1.25 1.49 1.73 1.11 1.83

Y 1.21 1.25 1.35 1.32 1.32 1.12 1.26 1.27 1.23 1.31

standard deviations of the random variables X and Y and their covariance. Write
down their covariance matrix. What is the correlation coefficient of X and Y ? Treat
the covariance matrix as a tensor and find its principal axes.

Problem 5.3 The results of an experiment are given in the table (X is the strength
of fiber in grams, and Y is the strain in %)

X 130 185 165 150 185 165 220 190 170 180

Y 3.8 4.6 4.6 3.8 5.6 4.4 5.6 5.6 4.4 5.2

X 165 185 190 210 150 160 170 175 165 145

Y 4.8 5.2 5.2 5.6 3.8 4.6 3.2 3.6 4.6 4.2

Do the following: calculate the correlation coefficient for the two random vari-
ables; calculate the regression coefficients by means of the three methods presented
in Sect. 5.2. Compare the obtained results.
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Problem 5.4 The two-dimensional random variable (X,Y ) has the normal distri-
bution with the mean values vector (mX,mY ) = (1,2) and the covariance matrix[ 2 1

1 4

]
. Find the probability density function of this random variable.

Problem 5.5 Find the ellipses of constant probability for the two-dimensional nor-
mal distribution with zero mean value and the covariance matrix:

(a)

[
2 0
0 4

]
, (b)

[
2 −1

−1 4

]
, (c)

[
2 1
1 4

]
.

Problem 5.6 The random variables X and Y are independent and they have the
normal distributions with the probability densities

fX(x) = 1√
2π

exp

[
−x2

2

]
and fY (y) = 1√

8π
exp

[
−y2

8

]
,

respectively. Find the joint probability density function of the vectorial random vari-
able (X,Y ). Find the joint probability density function of the vector-valued random
variable (U,V ) obtained from the vector (X,Y ) by the clockwise rotation of the
coordinate system (x, y) through the angle α = 300.

Problem 5.7 The hit points of artillery fire are concentrated around the point
(x0, y0) = (1000,0) and have the normal distribution in x and y directions inde-
pendent one from another. The variance of the distribution in the x-direction is 100
and in the y-direction it is 50. Find a set on the plane outside of which the probability
of the hit point is less than 0.001.
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Chapter 6
Two-dimensional Functions of Independent
Random Variables

6.1 Basic Relations

Let us analyze at the beginning a simple example of a manipulator shown schemati-
cally in Fig. 6.1. It consists of two arms AB and BO of the length l1 and l2, respec-
tively, and of two revolving joints A and B . In each of the repeated working cycles
the hand located at the end point O of arm BO should reach the desired nominal
position which is determined by nominal coordinates X0 and Y 0. These coordinates
are certain functions of positioning angles θ1 and θ2:

X = l1 cos θ1 + l2 cos (θ1 + θ2) ,

Y = l1 sin θ1 + l2 sin (θ1 + θ2) .
(6.1)

Let θ0
1 and θ0

2 denote the desired values of positioning angles. However, in each
working cycle they are positioned with a certain small random error �θ1 and �θ2
respectively.

In the analysis we shall use a local coordinate system x, y with the origin 0 at
the point of nominal position of the hand. We shall analyze the positioning error of
the hand caused by random small errors �θ0

1 and �θ0
2 in positioning the revolv-

ing joints. The positioning error of the hand may be represented as a vector with
components

U = X − X0, V = Y − Y 0, (6.2)

where X and Y are the actual coordinates of the hand’s position, and X0 and Y 0

stand for the coordinates of the nominal position. Generally, in such problems we
have to deal with a random variable in the form of a vector of deviation from the
average position. Components U and V of this vector are certain functions of inde-
pendent random variables Q1,Q2, . . . ,Qn,

U = g (Q1,Q2, . . . ,Qn) ,

V = h(Q1,Q2, . . . ,Qn) .
(6.3)
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Fig. 6.1 The scheme of a
simple manipulator

In the particular case discussed here, the angles θ1 and θ2 stand for the indepen-
dent random variables, while the errors in the hand’s position (6.2) are the compo-
nents of this vector.

By analogy with expression (4.10a) for a single function of independent random
variables, we can write expressions for the variances of the two random variables U

and V

σ 2
U =

(
∂g

∂q1

)2

σ 2
Q1

+
(

∂g

∂q2

)2

σ 2
Q2

+ · · · +
(

∂g

∂qn

)2

σ 2
Qn

,

σ 2
V =

(
∂h

∂q1

)2

σ 2
Q1

+
(

∂h

∂q2

)2

σ 2
Q2

+ · · · +
(

∂h

∂qn

)2

σ 2
Qn

,

(6.4)

or in compact form

σ 2
U =

n∑

j=1

(
∂g

∂qj

)2

σ 2
Qj

, σ 2
V =

n∑

j=1

(
∂h

∂qj

)2

σ 2
Qj

. (6.5)

The total error of both functions (6.3), caused by deviations �qj of independent
variables Qj from their nominal (expected) values, is represented by a vector p with
components

�u = U − u0, �v = V − v0, (6.6)

where u0 and v0 are the nominal values of the two functions, while U and V are
random variables representing their actual values.

If the values �qi of the small deviations of independent variables are known,
then the components of the error vector (6.6) may be calculated from the linearized
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relations

�u = ∂g

∂q1
�q1 + ∂g

∂q2
�q2 + · · · + ∂g

∂qn

�qn,

�v = ∂h

∂q1
�q1 + ∂h

∂q2
�q2 + · · · + ∂h

∂qn

�qn.

(6.7a)

They are written as an approximate generalization of the expressions for total dif-
ferential

du =
n∑

j=1

∂g

∂qj

dqj , dv =
n∑

j=1

∂h

∂qj

dqj .

Expressions (6.7a) may be written in a matrix form

[
�u

�v

]
=

⎡

⎣
∂g
∂q1

∂g
∂q2

· · · ∂g
∂qn

∂h
∂q1

∂h
∂q2

· · · ∂h
∂qn

⎤

⎦

⎡

⎢⎢⎢⎣

�q1
�q2

...

�qn

⎤

⎥⎥⎥⎦ , (6.7b)

or in a short form

p = A�q, (6.7c)

where the matrix

A =
⎡

⎣
∂g
∂q1

∂g
∂q2

· · · ∂g
∂qn

∂h
∂q1

∂h
∂q2

· · · ∂h
∂qn

⎤

⎦ (6.8)

may be treated as the matrix of coefficients of sensitivity of the resultant error p to
the errors �qj of independent variables. Sometimes they are called the coefficients
of influence. In expression (6.7c) symbols p and �q represent the column matrices

p =
[
�u

�v

]
, �q =

⎡

⎢⎢⎢⎣

�q1
�q2

...

�qn

⎤

⎥⎥⎥⎦ . (6.9)

Let us assume now that errors (fluctuations) �qj of independent variables Qj

have a certain given distribution and that they are statistically independent. Moments
of the second order of the resultant error p may be determined in the following
manner:

[
kij

] def= Aσ 2AT =
[
kUU kUV

kV U kV V

]
, (6.10)
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where

σ 2 =

⎡

⎢⎢⎢⎢⎢⎣

σ 2
Q1

0 . . . 0

0 σ 2
Q2

. . . 0
...

...
. . .

...

0 0 . . . σ 2
Qn

⎤

⎥⎥⎥⎥⎥⎦
(6.11)

is the matrix of variances of independent random variables Qj , while the matrix

AT =

⎡

⎢⎢⎢⎢⎢⎣

∂g
∂q1

∂h
∂q1

∂g
∂q2

∂h
∂q2

...
...

∂g
∂qn

∂h
∂qn

⎤

⎥⎥⎥⎥⎥⎦
(6.12)

is the transposed matrix A in which respective rows have been presented as columns
and vice versa, [1].

Expression (6.10) for the matrix of the second-order moments we shall present
in the expanded form of a product of three matrices,

[
kij

] =
[

kUU kUV

kV U kV V

]

=
⎡

⎣
∂g
∂q1

∂g
∂q2

· · · ∂g
∂qn

∂h
∂q1

∂h
∂q2

· · · ∂h
∂qn

⎤

⎦

⎡

⎢⎢⎢⎢⎢⎣

σ 2
Q1

0 · · · 0

0 σ 2
Q2

· · · 0
...

...
. . .

...

0 0 · · · σ 2
Qn

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

∂g
∂q1

∂h
∂q1

∂g
∂q2

∂h
∂q2

...
...

∂g
∂qn

∂h
∂qn

⎤

⎥⎥⎥⎥⎥⎦
.

The elements of the matrix (6.10) resulting from the product are

kUU = σ 2
U =

(
∂g

∂q1

)2

σ 2
Q1

+
(

∂g

∂q2

)2

σ 2
Q2

+ · · · +
(

∂g

∂qn

)2

σ 2
Qn

,

kV V = σ 2
V =

(
∂h

∂q1

)2

σ 2
Q1

+
(

∂h

∂q2

)2

σ 2
Q2

+ · · · +
(

∂h

∂qn

)2

σ 2
Qn

,

kUV = cov (U,V ) = ∂g

∂q1

∂h

∂q1
σ 2

Q1
+ ∂g

∂q2

∂h

∂q2
σ 2

Q2
+ · · · + ∂g

∂qn

∂h

∂qn

σ 2
Qn

.

(6.13)

These elements are:

kUU = σ 2
U is the variance of the component U of the error vector p;

kV V = σ 2
V is the variance of the component V of the error vector p;

kUV = kV U = cov(U,V ) is the covariance of the two components U and V of the
error vector p, or in other words, the correlation moment.
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Matrix (6.10) is the matrix of a certain tensor. It has the same meaning as matrix
(5.46). However, owing to functional relations (6.3), its components may be calcu-
lated by using formulas (6.13). Distributions of errors of the two variables U and V

are now associated with distributions of errors of independent variables Qi .

6.2 The Rectangular Distribution of Independent Random
Variables

Let us assume that each independent random variable Qi appearing in two-dimen-
sional functions (6.3) has the uniform (rectangular) distribution, comp. Sect. 3.4.2.

In such a distribution the values of random errors are bounded by two marginal
values a and b (Fig. 6.2a) or, alternatively, by the values �q+ and �q− (Fig. 6.2b),
when the nominal value q0 is taken as a reference point. In practical situations it is
difficult to expect that the uniform distribution strictly corresponds to reality, how-
ever, it may be useful when a certain class of engineering problems is analyzed.
Using such a distribution as an auxiliary one, we can solve in terms of the error
calculus various complex problems of the so-called tolerance limits analysis, comp.
Sect. 4.4.

6.2.1 Analytical Method for Determining Two-dimensional
Tolerance Limits Polygons

Let us analyze the movement of the end-point of the vector p of a resultant error
with components �u and �v, when the error �qr of one of the independent vari-
ables, namely qr , is changing, while errors of the remaining independent variables
do not change, comp. [5]. Assume that �qr is a changing parameter in the equations,

Fig. 6.2 The probability density function of the uniform distribution
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comp. (6.7a),

�u = ∂g

∂q1
�q1 + · · · + ∂g

∂qr

�qr + · · · + ∂g

∂qn

�qn,

�v = ∂h

∂q1
�q1 + · · · + ∂h

∂qr

�qr + · · · + ∂h

∂qn

�qn.

(6.14)

From the first of these equations we get the expression for �qr ,

�qr = 1
∂g
∂qr

�u − 1
∂g
∂qr

⎛

⎝
r−1∑

j=1

∂g

∂qj

�qj +
n∑

j=r+1

∂g

∂qj

�qj

⎞

⎠ .

Then introducing this expression into the second of (6.14) we obtain the equations
of a family of straight lines

∂g

∂qr

�v = ∂h

∂qr

�u +
n∑

j=1

⎧
⎨

⎩det

⎡

⎣
∂g
∂qr

∂g
∂qj

∂h
∂qr

∂h
∂qj

⎤

⎦�qj

⎫
⎬

⎭ . (6.15)

On the right-hand side the free term is represented in a form of Jacobian.1 Note
that for j = r all the Jacobians are equal to zero because two of their columns are
identical.

The distance of each of straight lines (6.15) from the origin (located at the nom-
inal position point) depends on the assumed values of independent variable errors
�qj . The two extreme positions of each of these straight lines are obtained by sub-
stituting appropriately the extreme values (tolerance limits) �q− or �q+ in order
to obtain, first, the largest possible value of the sum on the right-hand side of (6.15),
and then its smallest possible value.

This procedure should be repeated for each number r from 1 to n. This means
that we should take consecutively each error �qj as the changing parameter �qr . In
this way we obtain n equations of various families of parallel straight lines and then
their extreme positions. Note, however, that in practical applications of the theory
some families of lines may have identical equations. This means that these families
overlap and that the number of independent families is smaller than n. By deter-
mining extreme positions of the lines of each family we find a polygon of tolerance
limits. All possible positions and magnitudes of the resultant error vector are lim-
ited by boundaries of the polygon. Inside the polygon, the probability distribution is
uniform according to the presented theory.

Example 6.1 Let us analyze the error of positioning the hand O of the manipulator
shown in Fig. 6.1 if its nominal position is determined by the nominal values of the

1det in (6.15) denotes the determinant of the matrix.
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positioning angles of revolving joints A and B ,

θ0
1 = 0, θ0

2 = 3

4
π.

The nominal position of the hand is then determined by coordinates X0, Y0 given
by expressions (6.1) for these values of positioning angles.

The polygon of errors of positioning the hand with respect to its nominal position
will be bounded by two pairs of parallel extreme straight lines, each belonging to
one of the two families of lines determined by the following equations:

for the first family

∂Y

∂θ1
x − ∂X

∂θ1
y = det

[ ∂X
∂θ2

∂X
∂θ1

∂Y
∂θ2

∂Y
∂θ1

]
�θ2, (6.16a)

and for the second family

∂Y

∂θ2
x − ∂X

∂θ2
y = det

[ ∂X
∂θ1

∂X
∂θ2

∂Y
∂θ1

∂Y
∂θ2

]
�θ1. (6.16b)

Calculations will be performed for

l1 = l2 = l = 1000 mm,

and for the tolerance limits of the positioning angles θ1 and θ2:

�θ1 = �θ2 = �θ = ±0.001
√

3 rad.

Calculating the respective derivatives of (6.1) and substituting them into (6.16a),
(6.16b) we obtain the equations of two pairs of straight lines in extreme positions
which determine the polygon of positioning accuracy of the hand in the given posi-
tion

(√
2 − 1

)
x + y = ±l�θ = ±1.73 mm,

x − y = ±l�θ = ±1.73 mm.

The polygon is shown in Fig. 6.3.
As stated, the probability distribution is uniform as shown in Fig. 6.4. The volume

of this parallelepiped must be equal to unity. Thus, we have

f (x, y) = 1

td
. (6.17)

In Fig. 6.3 are also shown the marginal distributions f (x) and f (y), the first being
triangular, while the second is trapezoidal.

The ordinate of the marginal distribution f (x) for an arbitrary value of variable
x was calculated as the product of density (6.17) and the length of the distribution’s
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Fig. 6.3 The range of the positioning errors of the hand of the manipulator presented in Fig. 6.1
for the position analyzed in Example 6.1

Fig. 6.4 Two-dimensional
probability density function
of the positioning error of the
hand of the manipulator
presented in Fig. 6.1 for the
position analyzed in
Example 6.1

extent in the y-direction corresponding to that value of x. In a similar manner the
ordinates of the marginal distribution f (y) for arbitrary values of variable y may be
calculated. Note that the area between the graph of each marginal distribution and
the corresponding axis of variable x or y is equal to unity, comp. Sect. 3.6.

Example 6.2 In problems such as that analyzed in the previous example, the distri-
bution of the resultant error in the hand’s position usually depends on the nominal
position itself. Analyzing the positioning errors of the hand of the mechanism shown
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Fig. 6.5 The range of the
uniform distribution of the
positioning errors of the hand
of the manipulator presented
in Fig. 6.1 for the position
analyzed in Example 6.2

in Fig. 6.1 for another nominal positioning angles of revolving joints, namely for

θ0
1 = 0, θ0

2 = π

2
,

we obtain the polygon of positioning accuracy completely different than that ob-
tained in the previous example.

Repeating the calculations of Example 6.1 we obtain equations of two pairs of
straight lines forming a simple polygon of positioning accuracy. For the given po-
sitioning angles of revolving joints, and for the same remaining data as in Exam-
ple 6.1, the equations are

x + y = ±l�θ = ±1.73 mm,

y = ±l�θ = ±1.73 mm.
(6.18)

The polygon is shown in Fig. 6.5. The comparison of the positioning accuracy poly-
gons shown in Figs. 6.3 and 6.5 demonstrates how strongly the resultant positioning
error may depend on the nominal position of the hand.

6.2.2 Statical Analogy Method for Determining Two-dimensional
Tolerance Limit Polygons

The statical analogy method described in Sect. 4.5 may be useful in determining
the tolerance limit polygons in more complex cases, when analytical formulation of
functions (6.3) is difficult.

We shall explain the concept of the statical analogy method by considering a par-
ticular practical example of a mass-produced mechanism shown in Fig. 6.6. Let us
determine the tolerance limits polygon of the position of point D when dimensions
l1, l2, . . . , l5 determining that position have tolerance limits indicated in the figure.
These dimensions form a certain network as shown in Fig. 6.7. Let us assume the
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Fig. 6.6 The example of a mass produced mechanism

Fig. 6.7 A network of
dimensions for the
mechanism presented in
Fig. 6.6

coordinate system X, Y with the X-axis passing through reference points A and B .
The position of point D is determined by certain functions of dimensions

X = X(l1, l2, . . . , l5),

Y = Y(l1, l2, . . . , l5).

For nominal values of dimensions these functions determine the nominal position of
point D, which will be taken as the origin of the local coordinate system x, y with
axes parallel to the axes X and Y, respectively.

Let �l1,�l2, . . . ,�l5 be the deviations of dimensions l1, l2, . . . , l5 from their
nominal values. Then coordinates x, y of the corresponding position of point D in
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Fig. 6.8 A system of rods
corresponding to the network
of dimensions presented in
Fig. 6.7

the local coordinate system will be

x = ∂X

∂l1
�l1 + ∂X

∂l2
�l2 + · · · + ∂X

∂l5
�l5,

y = ∂Y

∂l1
�l1 + ∂Y

∂l2
�l2 + · · · + ∂Y

∂l5
�l5.

(6.19)

Now let us assume a representative system of rods corresponding to the dimen-
sion network shown in Fig. 6.7. It consists of five rods connected by four hinge-
joints, see Fig. 6.8. In order to satisfy our assumption that sector AB is taken as the
reference X-axis, the system of rods has to be supported at points A and B as shown
in the figure.

Let us now apply at point D a unit force Fx = 1 acting in the x-direction
(Fig. 6.8a). Under such a loading, that point suffers a small displacement whose
horizontal component in the local coordinate system is determined by the abscissa
of the shifted position of point D from its nominal position. According to the pro-
cedure given in Sect. 4.5 we can write for each rod the equality

Fxxj = sx
j �lj , (6.20)

where sx
j denotes the internal force in the j -th rod caused by unit force Fx , and xj

is that part of the x-component of the complete displacement of point D which is
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Table 6.1 The numerical
values of partial derivatives
for the network of dimensions
presented in Fig. 6.7

j sx
j = ∂X

∂lj
s
y
j = ∂Y

∂lj

1 +0.48 −0.28

2 +0.79 +0.45

3 −0.19 −0.11

4 +0.87 +0.50

5 −0.61 +0.80

caused by deformation �lj of the j -th rod. Noting that Fx = 1, we can write

xj = sx
j �lj .

Summing up all the xj we finally obtain expressions for complete component x

of the displacement of point D,

x = sx
1 �l1 + sx

2 �l2 + · · · + sx
5 �l5. (6.21a)

Applying next a unit force Fy = 1 at point D (Fig. 6.8b) we arrive at the analo-
gous expression for the y-component of the displacement of that point,

y = s
y

1 �l1 + s
y

2 �l2 + · · · + s
y

5 �l5. (6.21b)

Comparing expressions (6.21a), (6.21b) with (6.19) it is seen that, for j =
1,2, . . . ,5,

sx
j = ∂X

∂lj
, s

y
j = ∂Y

∂lj
. (6.22)

Thus, the numerical values of partial derivatives ∂X
∂lj

and ∂Y
∂lj

may be found as the
values of internal forces in a representative statical system loaded by respective unit
forces applied at the point under analysis.

In the example being under consideration these internal forces have been found
to be those in Table 6.1.

Now, introducing these values into the general equation (6.15) and proceeding
in the manner discussed in Sect. 6.2.1 we obtain equations of three families of par-
allel straight lines. Theoretically there should be in this particular case five various
families of lines, each of them corresponding to the changing error in the length
of consecutive five dimensions. However, three families are overlapping and have
the same equation. Thus, the number of independent families reduces to three. Such
situations are often met in practice.

The extreme positions of the lines of the three families form a tolerance limits
polygon shown in Fig. 6.9. All allowable vectors of the displacement of point D lie
inside that polygon.

Inside the polygon are shown two variants of the Williot’s diagram for ready
comparison of the results obtained analytically with those obtained with the use
of a graphical method. The latter shall be described in the next section. Note that
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Fig. 6.9 The tolerance limits polygon for the network of dimensions presented in Fig. 6.7

the method of statical analogy may be useful also in the cases when the network
contains not only linear but also angular dimensions. In Sect. 4.5 it was shown how
to proceed in such cases.

6.2.3 Graphical Method for Determining Two-dimensional
Tolerance Limits Polygon. Williot’s Diagram

The graphical method of constructing Williot’s diagram is mostly used in the me-
chanics of structures for the analysis of deformations in truss structures. It may,
however, be used also in the analysis of tolerance limits in complex nets of dimen-
sions or in the analysis of positioning accuracy of certain classes of mechanisms. We
shall present the principles of the graphical method analyzing the problem of posi-
tioning accuracy of a mechanism shown schematically in Fig. 6.10. The mechanism
has three kinematic joints.

Two of them are prismatic joints allowing the length of a respective arm to be
changed, and a single revolving joint at point B . The procedure of constructing the
Williot’s diagram is shown in Fig. 6.11. Assume that dimension a = 700 mm has
been given with the upper tolerance limit �a+ = +0.1 mm. It means that the end
point of the arm AB has been shifted from the nominal position B to the position
B ′ (in the figure, distance BB ′ is exaggerated for clarity).
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Fig. 6.10 The scheme of a mechanism with three kinematic joints

Fig. 6.11 The procedure of constructing Williot’s diagram for the mechanism presented in
Fig. 6.10

Thus, the other arm of the mechanism has been also shifted from its nominal
position BO to the new position B ′1. Now let us assume that adjustment of the
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Fig. 6.12 An example of Williot’s diagram for the network presented in Fig. 6.7

length of arm BD was done with the deviation from the required nominal length
b = 600 mm equal to the upper tolerance limit �b+ = +0.1 mm. This deviation is
represented in the Williot’s diagram by segment 12. Next, assuming that the angle
θ , whose nominal value is θ = 60◦, has been adjusted with the error �θ = −2′ =
−0.00058 rad, we should draw an arc 1I ′ of a circle with the center at point B ′. The
length of that arc is l = |�θ−|b = 600 × 0.00058 = 0.349 mm. However, noting
that all the deviations are small, we can linearize the problem by plotting a straight
segment 2I of that length perpendicularly to the preceding sector 12. Point I of
the diagram represents in the local enlarged scale of errors the final deviation of
the point O of the mechanism from its required nominal position for the chosen
combination of the tolerance limits

�a+ = �b+ = +0.1 mm, �θ− = −2′.

The graph of deviations in the local coordinate system in the vicinity of point O

under consideration is referred to as Williot’s diagram. In Fig. 6.11 the broken lines
represent such a diagram for a different combination of tolerance limits, namely for

�a− = −0.1 mm, �b+ = +0.1 mm, �θ+ = +2′.

Generally, if a net of dimensions is composed of n dimensions (linear or angular),
we can draw 2n different Williot’s diagrams.

In Fig. 6.12 is presented another example of the application of Williot’s diagram.
The network of dimensions shown in Fig. 6.7 of Sect. 6.2.2 shall now be analyzed by
the graphical method. Each of five dimensions forming the network has its tolerance
limits shown in Fig. 6.7 and collected in Table 6.2.
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Table 6.2 Tolerance limits for the network presented in Fig. 6.7 (in mm)

Dimension l1 l2 l3 l4 l5

Upper tolerance limit +0.05 +0.03 +0.05 +0.03 +0.04

Lower tolerance limit −0.05 0 −0.02 −0.02 −0.03

Table 6.3 Tolerance limits for Variant I and Variant II (in mm)

Dimension l1 l2 l3 l4 l5

Tolerance limits, Variant I +0.05 +0.03 −0.02 +0.03 +0.04

Tolerance limits, Variant II −0.05 0 −0.02 +0.03 +0.04

The number of possible combinations of these tolerance limits, and therefore, the
number of variants of Williot’s diagrams, is 25 = 32. As in the previous section, we
shall take segment AB as the reference axis and we shall analyze the deviation of
the position of point D from the nominal position. The analysis will be presented
for a particular combination of tolerance limits given in Table 6.3 as Variant I.

Point B is horizontally shifted to the position B ′ (Fig. 6.12), while point C is
shifted at first to the position C′ along the AC direction. To determine the final
position of that point, it is convenient to first find the auxiliary position of segment
B ′C′′ obtained by shifting in parallel segment BC. Then this shifted segment must
be shortened by the tolerance limit �l3 = −0.02 mm, as shown in enlarged scale
in the figure. Now the final position C∗ of this point is found at the intersection of
two segments C′C∗ and C1C

∗ perpendicular to AC and BC, respectively. Next,
the whole configuration of displacement at point C has to be translated without
rotation to the nominal position of point D. One can say that dimension l4 has
been shifted to the position C∗ − D′. Similarly, sector B ′D′′ represents the shifted
position of dimension l5. The two dimensions are assumed to be reached with their
upper tolerance limits as indicated in Table 6.2 and these tolerance limits have been
laid off as shown in the figure. The final position D∗ of point D is found at the
intersection of the segments perpendicular to these tolerance limits plotted at their
end points.

In practice, only the final configuration in the vicinity of the point under con-
sideration is constructed, as shown in Fig. 6.13. In the figure there is also shown
another Williot’s diagram for a combination of upper and lower tolerance limits
given in Table 6.3 (variant II). The two Williot’s diagrams are also shown in Fig. 6.9
in order to demonstrate that using the graphical method, one can determine poly-
gons of tolerance limits or polygons of positioning accuracy of a certain class of
two-dimensional mechanisms.

Note, however, that in the particular case discussed here, it would be necessary
to construct all 25 = 32 Williot’s diagrams. Thus, in such cases analytical methods
seem to be more useful.
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Fig. 6.13 Williot’s diagram for Variants I and II

6.3 The Normal Distribution of Independent Random Variables

Assume that each of independent random variables Qj appearing in the two-dimen-
sional functions (6.3) has the normal distribution determined by the relation, see [3],

f
(
�qj

) = 1

σj

√
2π

exp

[
−1

2

(
�qj

σj

)2
]

, (6.23)

which defines the probability density that the deviation from the nominal value of
variable Qj equals �qj , comp. Sect. 2.4, relation (2.35). If distributions of indepen-
dent random variables are normal, then the distribution of two-dimensional errors
�u and �v, in problems of practical interest, can be also considered to be normal.2

The probability density function of the two-dimensional normal distribution is
usually written with respect to its central axes in the following form:

f (�u,�v) = 1

2πσUσV

√
1 − ρ2

UV

× exp

[
− 1

2(1 − ρ2
UV )

(
�u2

σ 2
U

− 2ρUV

�u

σU

�v

σV

+ �v2

σ 2
V

)]
, (6.24)

2Let us recall that the errors of positions U and V are calculated with linear approximation (6.7a),
possible to justify for a small range of errors. In general, the distribution of two-dimensional devi-
ations, as a nonlinear function of the normal variables, may not be normal.
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where

ρUV = kUV√
kUUkV V

= cov{U,V }√
σ 2

Uσ 2
V

(6.25)

stands for the coefficient of correlation between the two variables U and V .
Expressions (6.24) and (6.25) are identical with (5.62) and (5.63). However,

now they are not obtained as results of statistical analysis of experimental data or
recorded observations, but they can be calculated analytically with the use of for-
mulas (6.13) if functions (6.3) are known.

The equation of ellipses of uniform probability, also called the ellipses of proba-
bility concentration,

1

(1 − ρ2
UV )

(
�u2

σ 2
U

− 2ρUV

�u

σU

�v

σV

+ �v2

σ 2
V

)
= λ2 = const. (6.26)

is identical with (5.64). But now all coefficients in it may be determined analyti-
cally. Below are given some examples of practical applications of such ellipses of
probability concentration.

Example 6.3 Let us analyze the positioning error of the hand O of a simple ma-
nipulator shown in Fig. 6.1. Assume that its nominal position under analysis is the
same as in Example 6.1. Thus, we have

θ1 = 0, θ2 = 3π

4
. (6.27)

The standard deviation of the normal distribution of adjusting accuracy of the two
angles is assumed to be

σθ1 = σθ2 = σθ = 0.001 rad.

Geometrical data are the same as in Example 6.1,

l1 = l2 = l = 1000 mm.

The elements of the matrix (6.10) of second-order moments calculated with the use
of formulas (6.13) are

kXX = σ 2
X =

[(
∂X

∂θ1

)2

+
(

∂X

∂θ2

)2
]

σ 2
θ = l2σ 2

θ = 1 mm2,

kYY = σ 2
Y =

[(
∂Y

∂θ1

)2

+
(

∂Y

∂θ2

)2
]

σ 2
θ =

(
2 − √

2
)

l2σ 2
θ = 0.586 mm2,

kXY = cov {X,Y } =
(

∂X

∂θ1

∂Y

∂θ1
+ ∂X

∂θ2

∂Y

∂θ2

)
σ 2

θ
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=
(

1 − 1√
2

)
l2σ 2

θ = 0.293 mm2.

The coefficient of correlation of the two components of the error vector (formula
(6.25)) is

ρXY = cov{X,Y }√
σ 2

Xσ 2
Y

= 1

2

√
2 − √

2 = 0.383.

The equation of the ellipses of uniform probability density (ellipses of proba-
bility concentration) is obtained by substituting the magnitudes calculated above
into (6.26). After some rearrangements this equation takes the form

x2 − xy + 1,707y2 = 0.853λ2l2σ 2
θ . (6.28)

As stated in Sects. 5.5.2 and 5.5.4, the value of constant λ2 depends on how large is
the required probability that error vector p will lay inside the ellipse. Assuming that
probability has the value α = 0.683, which corresponds to the so-called one-sigma
range in the one-dimensional normal distribution (comp. Sect. 2.4), by using the
table of the χ2(2) distribution (Table 5.2), or the diagram in Fig. 5.15, we obtain the
value

λ2 = χ2
0.683 (2) = 2.26.

Finally, the equation of the ellipse of probability concentration for α = 0.683 is

x2 − xy + 1.707y2 = 1.928. (6.29)

The longer principal axis makes with the x-axis an angle whose magnitude is γ =
27◦22′, Fig. 6.14. The lengths of semi-axes are

a = 1.75 mm, b = 1.07 mm,

and their ratio is
a

b
= 1.63.

The theoretical ellipse shown in Fig. 6.14 has been compared with the results of a
numerical experiment (comp. [6]). Random small Gaussian deviations from the de-
sired revolving joint positions (6.27) have been numerically generated by a program
for a personal computer calculating the displacement of the hand from its nominal
position. The random displaced positions of the hand calculated by the program
are shown in Fig. 6.15 as the corresponding points. In total, five thousand repeated
cycles of the movement have been simulated with randomly generated joint posi-
tioning errors. The theoretical ellipse from Fig. 6.14 is also shown in Fig. 6.15 for
ready comparison. Note that the theoretical ellipse fits well with the set of numeri-
cally simulated points.
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Fig. 6.14 The ellipse of the
probability concentration for
the position (6.27) of the
hand of the manipulator
presented in Fig. 6.1

Fig. 6.15 The results of
numerical simulation for the
position (6.27) of the hand of
the manipulator presented in
Fig. 6.1

Example 6.4 We shall determine the ellipse of probability concentration for a dif-
ferent position of the same manipulator, see Fig. 6.1. Now the nominal position of
the hand is given by the angles

θ1 = 0, θ2 = π

2
.

Proceeding in the same manner as in Example 6.3, we find the elements of the matrix
of second-order moments (6.10).

They are

kXX = σ 2
X = 2l2σ 2

θ = 2 mm2,

kYY = σ 2
Y = l2σ 2

θ = 1 mm2,

kXY = cov (X,Y ) = −l2σ 2
θ = −1 mm2.
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Fig. 6.16 The ellipse of
probability concentration for
the position of the hand
analyzed in Example 6.4

The same lengths of manipulator’s arms as those used in the previous example and
the standard deviations of positioning accuracy of revolving joints have been as-
sumed.

The correlation coefficient was found to be

ρXY = − 1√
2
.

The ellipse of probability concentration for α = 0.683 is determined by the equa-
tion

x2 + 2xy − 2y2 = λ2l2σ 2
θ = 2.26. (6.30)

The ellipse is shown in Fig. 6.16. The longer axis of the ellipse makes the angle
γ = 31◦43′ with the x-axis. The semi-axes are

a = 2.43 mm, b = 0.93 mm.

Their ratio is
a

b
= 2.62.

Note how different are the ellipses of probability concentration for the same mech-
anism for different nominal positions of the hand.

6.4 Indirect Determination of the Ellipses of Probability
Concentration

The ellipses of probability concentration may also be found indirectly, provided that
all independent random variables Qj in functions (6.3) have the normal distribu-
tion, comp. [2, 4]. First, we assume that independent variables Qj have a substitute
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rectangular distribution instead of the actual normal distribution. Next, the polygon
which limits the region of uniform distribution of errors �u and �v of the two func-
tions (6.3) should be determined in the manner discussed in Sect. 6.2.1. The limiting
values of the substitute rectangular distributions of independent variables errors

�q+
j = +κσj and �q−

j = −κσj ,

depend on the assumed probability that end points of the error vector p, whose
components are �u and �v, will lie inside the polygon. Here, σj stands for the
standard deviation of the actual normal distribution of variable Qj . The polygon
calculated under the assumption that κ = √

3 corresponds to the probability α = 1.
For each κ <

√
3 the corresponding probability may be calculated as the ratio of

the area of the polygon obtained for �qj = ±κσj and the area of the polygon for
�qj = ±√

3σj . Thus, the multiplier κ should have the value

κ = √
3
√

α, (6.31)

where α is the assumed probability level.
Having found the polygon we calculate its second-order moments (inertia mo-

ments). Then its principal axes 1 and 2 and its principal second-order moments
I1, I2 should be determined. The ellipse of probability concentration may be found
as the ellipse with the same principal axes as those of the polygon. Moreover, its
principal second-order moments should have the same values as the corresponding
moments of the polygon. Thus, the lengths a and b of this ellipse may be found by
solving the system of two equations

πab3

4
= I1,

πa3b

4
= I2, (6.32)

where I1 and I2 are the principal second-order moments of the polygon.

Example 6.5 Let us find by means of the indirect method the ellipse of probability
concentration for the problem of positioning accuracy of the mechanism shown in
Fig. 6.1. Assume the probability level to be α = 0.683 and the nominal position to
be determined by the positioning angles

θ1 = 0, θ2 = π

2
.

These data correspond to those assumed in Examples 6.2 and 6.4 analyzed in
Sects. 6.2.1 and 6.3.

The polygon determined in Example 6.4 is shown in Fig. 6.5. It was found under
the assumption that the multiplier κ has the value κ = √

3, that is for the probability
α = 1. In the present case the probability level is assumed to be α = 0.683. Thus,
using formula (6.31) we get

κ = √
3
√

α = 1.43.
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Fig. 6.17 An application of
the indirect method of
determination of the ellipse of
probability concentration,
Example 6.5

Now the polygon, being geometrically similar to that shown in Fig. 6.5, has smaller
dimensions, namely

t = 2.86 mm, d = 2.86 mm.

The second-order moments (inertia moments) with respect to coordinate axes are

Ix = 1

12
dt3 = 5.576 mm4,

Iy = 1

12
d3t = 5.576 mm4,

Ixy = 1

12
d2t2 = 5.576 mm4.

The principal second-order moments are

I1 = 1

2

(
Ix + Iy

)−
√

1

4

(
Ix − Iy

)2 + I 2
xy = 2.128 mm4,

I2 = 1

2

(
Ix + Iy

)+
√

1

4

(
Ix − Iy

)2 + I 2
xy = 14.599 mm4.

Note that these formulas are analogous to (5.11).
By solving the system of (6.32) we find the lengths a and b of semi-axes of the

ellipse of probability concentration

a = 2.64 mm, b = 1.01 mm.

The ellipse is shown in Fig. 6.17 along with the polygon. The ratio of semi-axes
lengths is

a

b
= 2.61.
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The angle γ , which determines the position of the principal axis of the polygon,
which is the longer axis of the ellipse, is given by the formula

tan 2γ = 2IXY

IY − IX

= −2.

Hence,

γ = −31◦43′.

This value is identical with that obtained by the direct method, comp. Example 6.4
and Fig. 6.16. The two ellipses are geometrically similar, their dimensions being
only slightly different.

Problem 6.1 Determine analytically the polygon of positioning tolerance limits for
the manipulator shown in Fig. 6.10. Assume the data:

a = 700 mm, b = 600 mm, θ = 60◦,

and the position tolerance limits:

�a = ±0.1 mm, �b = ±0.1 mm, �θ = ±2′ = ±0.00058 rad.

Problem 6.2 Find the Williot’s diagrams for all eight combinations of the joint
positioning tolerance limits of the manipulator shown in Fig. 6.10.

Problem 6.3 Assuming for the manipulator shown in Fig. 6.10, dimensions a and
b and positioning tolerance limits �a, �b, �θ of the joints are the same as in
Problem 6.1, determine analytically the polygons of the positioning accuracy for
two special positions of the hand determined by the positioning angles

θ = 0◦, θ = 90◦.

Problem 6.4 Determine analytically the ellipse of probability concentration for the
manipulator shown in Fig. 6.1, assuming the same data as in Examples 6.3 and 6.4.
The position of the hand is now determined by the joint positioning angles

θ1 = 0, θ2 = 1

4
π.

Problem 6.5 Using the indirect method find the lengths of the semi-axes and the
orientation of the ellipse of probability concentration for the problem of positioning
accuracy of the manipulator shown in Fig. 6.1. Assume the data as in Example 6.5
and the hand’s position determined by the positioning angles

θ1 = 0, θ2 = 3

4
π.
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Chapter 7
Three-dimensional Distributions

7.1 General Remarks

Three-dimensional random distributions of points do not have such wide applica-
tions in engineering practice as two-dimensional distributions. Of practical signif-
icance, however, are three-dimensional (vectorial) functions of random variables
which will be discussed in Chap. 8, see [6, 8]. In this chapter we shall discuss the
basic principles of the theory of three-dimensional distributions of errors.

Let us consider a certain random distribution of points in a Cartesian three-di-
mensional coordinate system x, y, z. By analogy with the two-dimensional distribu-
tions analyzed in Sect. 5.1 we can write expressions for the coordinates of central
point M of the set of points being analyzed. These expressions are

xM = 1

n

n∑

j=1

xj , yM = 1

n

n∑

j=1

yj , zM = 1

n

n∑

j=1

zj , (7.1)

where n is the number of all the points in the set. If coordinates x, y, z of particular
points are treated as random variables, then the estimators of their variances are
defined by the formulas

σ 2
X = 1

n

n∑

j=1

(
xj − xM

)2
, σ 2

Y = 1

n

n∑

j=1

(
yj − yM

)2
,

σ 2
z = 1

n

n∑

j=1

(
zj − zM

)2
.

(7.2)

The quantities xM,yM, zM defined by (7.1) are treated here as estimators of ex-
pected values of the random variables.

The variances (7.2) may be also treated as inertia moments of the set of points
in question divided by the number of all points. These inertia moments should be
calculated with respect to the central planes x0 = 0, y0 = 0, z0 = 0 of the coordinate
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system x0, y0, z0 with origin at the central point M and the axes parallel to original
coordinate axes x, y, z.

To verify whether random variables X,Y,Z are independent (under assumption
that their distributions are normal), see [4, 7], one should calculate the covariances

cov (X,Y ) = 1

n

n∑

j=1

(
xj − xM

) (
yj − yM

)
,

cov (Y,Z) = 1

n

n∑

j=1

(
yj − yM

) (
zj − zM

)
,

cov (Z,X) = 1

n

n∑

j=1

(
zj − zM

) (
xj − xM

)
.

(7.3)

The covariances may be treated as the so-called mixed inertia moments of the
set of points under consideration divided by the number of all the points. These
moments should be calculated with respect to the central coordinate system x0, y0,
z0.

If the random variables (being coordinates of particular points) are independent,
the corresponding covariances (7.3) are equal to zero. For random variables with
the normal distribution, the inverse theorem stating that their independence results
from the lack of correlation is also valid [3]. In Chap. 8 this will be demonstrated
on practical applications.

Variances (7.2) and covariances (7.3) are, like the mentioned above inertia mo-
ments, the components of a certain symmetrical tensor

Tσ 2 =
⎡

⎢⎣
σ 2

X cov(X,Y ) cov(X,Z)

cov(Y,X) σ 2
Y cov(Y,Z)

cov(Z,X) cov(Z,Y ) σ 2
Z

⎤

⎥⎦ , (7.4)

which is called the covariance tensor.
In practical applications, some of which are discussed in Chap. 8, often two of the

covariances (7.3) take zero values. In the cases when a covariance tensor takes such
a simple form, its principal directions and principal components may be determined
in the elementary manner described in Sect. 5.1 for a two-dimensional distribution.
Note that if there appears cov(X,Y ) only, the two others being equal to zero, the
principal variances may be calculated with the use of formulas (5.11), because the
third principal variance is known in such a particular case. In general cases, when
all the covariances have non-zero values, determining the principal directions and
components of the covariance tensor is more difficult. Since such a general case
seldom happens in practical applications of the error calculus, we shall not give
here the details of how to transform the covariance tensor in a general case. The
corresponding procedures are described in detail in monographs dealing with the
tensor calculus or with the theory of elasticity.
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7.2 Continuous Three-dimensional Random Variables

The probability density f (x, y, z) for the continuous three-dimensional random
variables X,Y,Z may be interpreted as a distribution of a “specific measure” of
the probability in the whole region of all three variables. The equality

W =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y, z) dxdydz = 1 (7.5)

must be satisfied. It means that the whole “mass” of the probability must be equal
to unity. The first-order moments of random variables X, Y , Z with respect to the
planes of the rectilinear coordinate system x, y, z, are defined as

myz =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xf (x, y, z)dxdydz, with respect to x = 0 plane,

mzx =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
yf (x, y, z)dxdydz, with respect to y = 0 plane,

mxy =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
zf (x, y, z)dxdydz, with respect to z = 0 plane.

(7.6)

Assume now such quantities x, y, and z which ensure that the equalities

Wx = myz, Wy = mzx, Wz = mxy,

hold valid. Note that W is determined by relation (7.5).
Since W = 1 we can write

x =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xf (x, y, z) dxdydz,

y =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
yf (x, y, z) dxdydz,

z =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
zf (x, y, z) dxdydz.

(7.7)

These quantities represent mean values of the distribution, comp. (5.41a),
(5.41b). In other words, x, y, and z are the coordinates of the central point of
the “mass” W of the probability distribution. The coordinate axes x0, y0, z0 with
their origin at that point are called the central coordinate axes.
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The second-order moments with respect to the planes of the central coordinate
system x0, y0, z0 are

Jyz =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − x)2 f (x, y, z) dxdydz,

Jzx =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(y − y)2 f (x, y, z) dxdydz,

Jxy =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(z − z)2 f (x, y, z) dxdydz,

(7.8)

for x0 = 0, y0 = 0, z0 = 0 planes, respectively. They are called the central second-
order moments.

Let us assume three quantities σ 2
X , σ 2

Y , and σ 2
Z , such that the following equalities

are valid:

Wσ 2
X = Jyz, Wσ 2

Y = Jzx, Wσ 2
Z = Jxy.

Remembering that W = 1 (comp. (7.5)) we can write

σ 2
X =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − x)2 f (x, y, z) dxdydz, (7.9a)

σ 2
Y =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(y − y)2 f (x, y, z) dxdydz, (7.9b)

σ 2
Z =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(z − z)2 f (x, y, z) dxdydz, (7.9c)

where σ 2
X , σ 2

Y , and σ 2
Z are the variances of the corresponding variables. Similarly

to the two-dimen sional cases, square roots of the variances represent the standard
deviations of the respective random variables X,Y,Z.

Let us note that moments Jyz, Jzx, and Jxy determined by relations (7.8) may
be treated, to a certain degree, as the “inertia moments” of the “probability mass”
W with respect to the planes of central coordinate system x0, y0, z0. According to
such an interpretation, the standard deviations σX , σY , and σZ may be treated as the
so-called “inertia radii” of the whole mass W .

In the formulas given above for the mean values and for the variances, the in-
tegration has been carried out using the probability density of three-dimensional
distribution of random variables. However, while calculating these quantities we
can, similarly to two-dimensional problems, make use of marginal probability den-
sities, comp. (5.40). Knowing the analytical form of the probability density function
we can perform the integration in an arbitrary order. However, when the probabil-
ity density function has been determined as a result of measurements (empirical
probability density), it may be easier to find the marginal probability density than
the complete three-dimensional probability density. Such a possibility of calculat-
ing the moments of three-dimensional (or more generally, of a multi-dimensional)
distribution should be always taken into account.
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A significant role in the analysis of continuous three-dimensional distributions of
errors is played by the covariances

cov (X,Y ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(x − x) (y − y)f (x, y, z) dxdydz, (7.10a)

cov (Y,Z) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(y − y) (z − z)f (x, y, z) dxdydz, (7.10b)

cov (Z,X) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(z − z) (x − x)f (x, y, z) dxdydz. (7.10c)

Note that covariances (7.10a)–(7.10c) may be treated as mixed inertia moments
of the “probability mass” with respect to the planes of the central coordinate system
x0, y0, z0.

Similarly to the case discussed in Sect. 5.1, variances (7.9a)–(7.9c) and covari-
ances (7.10a)–(7.10c) are the components of a certain symmetrical tensor

Tσ 2 =
⎡

⎢⎣
σ 2

X cov (X,Y ) cov (X,Z)

cov (Y,X) σ 2
Y cov (Y,Z)

cov (Z,X) cov (Z,Y ) σ 2
Z

⎤

⎥⎦ . (7.11)

In practical applications often one of the three random variables is independent
of the two others. In this case let it be variable Z. It means that in this case the three-
dimensional probability density may be presented as a product of a two-dimensio-
nal probability density of variables X and Y, and of a one-dimensional density of
variable Z. Thus, we can write

f (x, y, x) = fXY (x, y)fZ(z).

Hence, two of the covariances appearing in (7.10a)–(7.10c) have zero values,

cov(X,Z) = cov(Y,Z) = 0.

If all three random variables X,Y,Z are independent, their joint probability den-
sity function shall be expressed as a product of one-dimensional densities

f (x, y, x) = fX(x)fY (y)fZ(z). (7.12)

All three covariances have then zero values

cov(X,Z) = cov(Y,Z) = cov(X,Y ) = 0.

The covariance tensor (7.11) becomes a diagonal tensor with variances of one-di-
mensional distributions located along its diagonal.
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7.3 The Three-dimensional Normal Distribution

7.3.1 Independent Random Variables

Let us assume that each of the three independent random variables X,Y,Z has the
normal distribution determined by the probability density function, comp. (2.35),

fX (x) = 1√
2πσ 2

X

exp

[
− (x − x)2

2σ 2
X

]
, (7.13a)

fY (y) = 1√
2πσ 2

Y

exp

[
− (y − y)2

2σ 2
Y

]
, (7.13b)

fZ (z) = 1√
2πσ 2

Z

exp

[
− (z − z)2

2σ 2
Z

]
. (7.13c)

According to (7.12) we obtain for such independent variables their three-dimen-
sional joint probability density function f (x, y, z) in the following form:

f (x, y, z) = 1√
(2π)3σXσY σZ

× exp

[
−1

2

[(
x − x

σX

)2

+
(

y − y

σY

)2

+
(

z − z

σZ

)2
]]

. (7.14)

Assuming a system of central coordinates, that is, a system in which mean (ex-
pected) values of all three variables X, Y , Z are equal to zero, we can write the
probability density (7.14) in a simpler form:

f (x, y, z) = 1√
(2π)3σXσY σZ

exp

[
−1

2

[(
x

σX

)2

+
(

y

σY

)2

+
(

z

σZ

)2
]]

.

(7.15)
The ellipsoids determined in an arbitrary coordinate system by the equation

(
x − x

σX

)2

+
(

y − y

σY

)2

+
(

z − z

σZ

)2

= const., (7.16a)

or in the central coordinate system by a simpler equation

(
x

σX

)2

+
(

y

σY

)2

+
(

z

σZ

)2

= const., (7.16b)

are the surfaces on which the probability density has a constant value. They are
also known as the ellipsoids of probability concentration. Examples of practical
applications of such ellipsoids will be given in Chap. 8.
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7.3.2 The Spherical Normal Distribution

The spherical normal distribution may be treated as a special case of the three-di-
mensional normal distribution when

σX = σY = σZ = σ. (7.17)

Let us assume an arbitrarily oriented system of central coordinate axes x, y, z.
The probability density of the spherical normal distribution may be expressed as a
certain function of the radius r of a sphere on which the point x∗, y∗, z∗ in question
is located, and of the angles θ and ϕ of the spherical coordinate system. Account-
ing for equalities (7.17) we obtain this function by replacing Cartesian coordinate
system x, y, z with a spherical coordinate system r , θ , ϕ. Finally, the probability
density function for the spherical normal distribution takes the form [5]

f (r, θ,ϕ) = r2
√

(2π)3σ 3
exp

[
− r2

2σ 2

]
. (7.18a)

This function represents the probability density at each point on the surface of
a sphere of radius r . Similarly to the case of the two-dimensional circular normal
distribution (see Sect. 5.5.2), the three-dimensional spherical normal distribution
may be also interpreted as a one-dimensional distribution depending on the radius
r only (the value of the probability density function f (r, θ,ϕ) remains constant if
r is unchanged but the angles θ,ϕ vary over their domains). Such a one-dimensio-
nal distribution determines the probability of an event that a point is located on the
sphere of radius r . Hence, the probability density will now be for a given radius 4π

times larger than in the previous definition (7.18a). Thus, we can write finally

fR (r) =
∫ 2π

0

∫ π
2

− π
2

f (r, θ,ϕ) dϕdθ = 2r2

√
2πσ 3

exp

[
− r2

2σ 2

]
. (7.18b)

Surfaces of spheres of a radius r = const., over which the probability density has
a constant value (it does not depend on the two angular coordinates θ,ϕ), are re-
ferred to as the spheres of probability concentration. The level of that concentration
increases toward the central point, as in the case of the two-dimensional circular
distribution, comp. computer simulation shown in Fig. 5.14. The probability that a
three-dimensional random variable X,Y,Z will lie inside the sphere of a specific
radius r∗, in other words that variable R will have a value within the range (0, r∗),
is determined by the integral

P
(
0 ≤ R ≤ r∗) =

∫ r∗

0
f (r) dr. (7.19)

These probabilities have been tabulated in the χ2(3) distribution (the chi-squared
distribution with three degrees of freedom), see [1].
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Table 7.1 The quantiles of
the χ2(3) distribution 1 − α χ2

α(3) 1 − α χ2
α(3)

0.99 0.115 0.30 3.665

0.98 0.185 0.20 4.642

0.95 0.352 0.10 6.251

0.90 0.584 0.05 7.815

0.80 1.005 0.02 9.837

0.70 1.424 0.01 11.341

0.50 2.366 0.001 16.268

Similarly to the case of two-dimensional circular distribution, there is a direct
interpretation of the χ2(3) distribution. Given a radius rα of such a sphere, let us
determine that the probability of the variable R to be located inside this sphere has
a prescribed value α. Note that the expression for the square of that radius,

(rα)2 = x2 + y2 + z2 ≡ χ2
α (3) (7.20)

represents, according to definition (5.56), the quantile χ2
α(3) of the order α of the

chi-squared distribution with three degrees of freedom, as indicated by the number
3 in parentheses. The values of χ2

α(3) are given in Table 7.1.
In practical applications the diagram shown in Fig. 7.1 may be useful.

Fig. 7.1 The quantiles of the χ2(3) distribution
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7.3.3 The Case of Dependent Random Variables

If random variables X1, X2, X3 with the normal distributions are dependent, their
joint probability density function is also normal. It contains in its exponent not only
the squares of variables x1, x2, x3 but also their products. Generally, if axes x1, x2,
x3 are central axes, the probability density function takes the form

f (x1, x2, x3) = 1√
(2π)3 det[kij ]

exp

⎡

⎣−1

2

3∑

i=1

3∑

j=1

Kijxixj

⎤

⎦ , (7.21a)

or, after expansion of sums,

f (x1, x2, x3) = 1√
(2π)3 det[kij ]

× exp

[
−1

2
(K11x

2
1 + K22x

2
2 + K33x

2
3 + 2K12x1x2 + 2K23x2x3

+ 2K13x1x3)

]
. (7.21b)

Introducing new notation X, Y , Z for the three random variables, we can write

x1 = x, x2 = y, x3 = z,

K11 = KXX, K22 = KYY , K33 = KZZ,

K12 = K21 = KXY = KYX,

K23 = K32 = KYZ = KZY ,

K13 = K31 = KXZ = KZX.

(7.22)

Coefficients Kij are, according to (5.60), the elements of the matrix inverse to
the matrix of second-order moments

[
kij

] =
⎡

⎢⎣
kXX kXY kXZ

kYX kYY kYZ

kZX kZY kZZ

⎤

⎥⎦ , (7.23)

where

kXX = σ 2
X is the variance of random variable X;

kYY = σ 2
Y is the variance of random variable Y ;

kZZ = σ 2
Z is the variance of random variable Z;
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kXY = kYX = cov {X,Y } is the covariance of random variables X and Y ;
kYZ = kZY = cov {Y,Z} is the covariance of random variables Y and Z;
kZX = kXZ = cov {X,Z} is the covariance of random variables X and Z.

Knowing the elements of matrix [kij ] one can calculate coefficients [Kij ] appear-
ing in the probability density function (7.21b) by solving, for example, the system
of linear equations resulting from the definition of the inverse matrix: the product of
an original matrix and an inverse matrix is equal to the unit matrix. Hence, such a
system of linear equations may be written in the matrix form

⎡

⎣
kXX kXY kXZ

kYX kYY kYZ

kZX kZY kZZ

⎤

⎦

⎡

⎣
KXX KXY KXZ

KYX KYY KYZ

KZX KZY KZZ

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . (7.24)

In general, the expressions for coefficients Kij are rather long and complex. Their
usefulness in practical calculations is limited. In most practical problems some of
the elements of matrix [kij ] are equal to zero and the solution of the system of
equations resulting from (7.24) becomes significantly simplified. Examples of such
calculations will be given in Chap. 8.

On the surfaces of ellipsoids determined by the equation

KXXx2 + KYY y2 + KZZz2 + 2KXY xy + 2KYZyz + 2KZXzx = λ2 = const.,
(7.25)

the probability density (7.21b) has a constant value, comp. (7.16b). Such ellipsoids
are called ellipsoids of probability concentration. Examples of practical applications
will be given in Chap. 8. If distribution (7.21b) were presented according to (5.55)
in the form of a distribution of normalized random variables

Ux = X

σX

, Uy = Y

σY

, Uz = Z

σZ

,

it would become a spherical distribution with the probability density function
(7.18a), and the ellipsoid (7.25) would be transformed into a sphere. The proce-
dure of determining the radius rα of this sphere for an assumed probability level α

such that a point determined by particular values of the variables will lie inside it,
has been discussed in Sect. 7.3.2. Such a radius is determined by formula (7.20).
Returning to our original distribution (7.21b) and the ellipsoid (7.25), we do not
change this probability. Thus, we can write

λ2 = χ2
α (3) . (7.26)

Remark 7.1 Calculation of the inverse matrix [Kij ] required to construct the prob-
ability density function of normal distribution (two-dimensional, three-dimensional
and also for more dimensions, see Chap. 9) can be done according to the following
general method of calculating inverse matrices [2].
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Let A = [Aij ] be a square matrix of dimension n × n, non-singular, that is such
that its determinant satisfies det A �= 0. The algebraic complement (or signed mi-
nor) of the element Aij of the matrix A (for i, j = 1,2, . . . , n) is the number aij

calculated as

aij = (−1)i+j Dij ,

where Dij is the minor of the element Aij , that is the determinant of the square
matrix (n − 1) × (n − 1) created from the matrix A = [Aij ] by removing its i-th
row and j -th column (they are the row and the column of the matrix A that intersect
at the element Aij ). Now we can generate a new matrix of dimension n × n, which
we denote as AD . This matrix is called the adjacent matrix of the matrix A and its
elements are the algebraic complements of the corresponding elements of the matrix
A written down in a transposed order, that is:

AD =

⎡

⎢⎢⎣

a11 a21 · · · an1
a12 a22 · · · an2
· · · · · · · · · · · ·
a1n a2n · · · ann

⎤

⎥⎥⎦ .

The inverse matrix A−1 is composed of the elements of the adjacent matrix AD after
dividing each element of this matrix by the determinant of the matrix A, that is:

A−1 = 1

det A
AD.

Problem 7.1 We are given the covariance matrix of the three-dimensional normal
random variable (X,Y,Z) and the vector of its mean values:

[
kij

] =
⎡

⎣
6 3 0
3 2 0
0 0 4

⎤

⎦ ,

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
4
0
2

⎤

⎦ .

Find the probability density function of the distribution of (X,Y,Z).

Problem 7.2 We are given the covariance matrix of the three-dimensional normal
random variable (X,Y,Z) and the vector of its mean values:

[
kij

] =
⎡

⎣
11 4 2
4 10 6
2 6 9

⎤

⎦ ,

⎡

⎣
x

y

z

⎤

⎦ =
⎡

⎣
−3
−2
1

⎤

⎦ .

Find the probability density function of the distribution of (X,Y,Z).
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Problem 7.3 We are given the covariance matrix of the four-dimensional normal
random variable (X,Y,Z,U) and the vector of its mean values:

[
kij

] =

⎡

⎢⎢⎣

15 3 1 0
3 16 6 −2
1 6 4 1
0 −2 1 3

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

x

y

z

u

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−5
2
0
4

⎤

⎥⎥⎦ .

Find the probability density function of the distribution of (X,Y,Z,U).

Problem 7.4 A point in the three-dimensional space (X,Y,Z) is located in such a
way, that its coordinates are independent and they have the normal distributions with
the mean values and the variances, respectively: mX = 0, σ 2

X = 1, mY = 1, σ 2
X = 4,

mZ = 0, σ 2
Z = 9. Find the probability that the point will be located within the walls

of two rectangular prisms having their edges parallel to the axes of the coordinate
system and bounded by the planes: x = 0, x = 2, y = 0, y = 2, z = 0, z = 2 and
x = 0.5, x = 1, y = 0.5, y = 1, z = 0.5, z = 1.

Problem 7.5 The random point (X,Y,Z) has the normal distribution with the prob-
ability density function

fXYZ(x, y, z) =
√

3

16π
√

π
exp

{
−1

8

[
2x2 + 4(y − 1)2

− 2(y − 1)(z + 9) + (z + 9)2]
}
.

Find the set of points in which the probability density function takes the value 0.02.

Problem 7.6 The hit points of artillery fire are concentrated around the point
(x0, y0, z0) = (0,0,3000) and have the normal distribution in x, y and z directions,
independent one from the others. The variance of the distribution in the x-direction
is 100, in the y-direction it is 100 and in the z-direction it is 500. Find a set in the
space, outside of which the probability of the hit point is less than 0.001.
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8. Szczepiński, W., Kotulski, Z.: Error Analysis with Applications in Engineering. Lastran,
Rochester (2000)



Chapter 8
Three-dimensional Functions of Independent
Random Variables

8.1 Basic Relations

As a typical example of practical application of three-dimensional functions of in-
dependent random variables, the analysis of the positioning accuracy of a certain
class of mechanisms, especially robot manipulators, may be mentioned. An exam-
ple of such a manipulator with four revolving joints is shown in Fig. 8.1. In this
mechanical system, axis 22 is perpendicular to axis 11. Axes 22 and 33 are parallel
one to the other. Nominal positions of joints are determined by the nominal values
of positioning angles θ1, θ2, and θ3. The position of joint 44 has no influence on the
position of the manipulator’s hand. It is used for turning the hand around the axis of
the manipulator’s end arm.

In the basic coordinate system X,Y,Z, the position of the hand is determined by
three coordinates:

X = [l1 cos θ2 + l2 cos (θ2 + θ3)] cos θ1,

Y = l1 sin θ2 + l2 sin (θ2 + θ3) ,

Z = [l1 cos θ2 + l2 cos (θ2 + θ3)] sin θ1.

(8.1)

In each working cycle, the manipulator’s hand should be positioned at a cer-
tain desired point O determined by its nominal coordinates X0, Y 0,Z0. In practice,
however, real values of these coordinates are certain functions of the positioning
angles θ1 = θ0

1 + �θ1, θ2 = θ0
2 + �θ2, and θ3 = θ0

3 + �θ3, where θ0
1 , θ0

2 , and θ0
3 are

the desired nominal values of the positioning angles. In each repeated working cycle
they are realized with a certain small random error �θ1, �θ2, and �θ3, respectively.

In the analysis of influence of these errors on the resultant positioning error of
the hand we shall use a local coordinate system x, y, z with the origin at the point of
the nominal hand’s position. The positioning error of the hand may be represented
as a vector with three components:

U = X − X0, V = Y − Y 0, W = Z − Z0, (8.2)
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Fig. 8.1 An example of a
manipulator with four
revolving joints

where X,Y,Z are the actual coordinates of the hand’s position, and X0, Y0,Z0 stand
for the coordinates of the nominal position.

Generally, in such problems we have to deal with a random variable in the form
of a vector of deviation from the average position. Components U , V , W of this
vector are certain functions of independent random variables Q1,Q2, . . . ,Qn,

U = g (Q1,Q2, . . . ,Qn) ,

V = h(Q1,Q2, . . . ,Qn) ,

W = k (Q1,Q2, . . . ,Qn) .

(8.3)

In the particular case discussed above, the angles θ1, θ2, and θ3 stand for these
independent random variables, while the errors in the hand’s position (8.2) are the
components of this vector.

By analogy with the two-dimensional functions (6.4), we can write the expres-
sions for the variances of the three resultant random variables U , V , and W :

σ 2
U =

(
∂g

∂q1

)2

σ 2
Q1

+
(

∂g

∂q2

)2

σ 2
Q2

+ · · · +
(

∂g

∂qn

)2

σ 2
Qn

,

σ 2
V =

(
∂h

∂q1

)2

σ 2
Q1

+
(

∂h

∂q2

)2

σ 2
Q2

+ · · · +
(

∂h

∂qn

)2

σ 2
Qn

,

σ 2
W =

(
∂k

∂q1

)2

σ 2
Q1

+
(

∂k

∂q2

)2

σ 2
Q2

+ · · · +
(

∂k

∂qn

)2

σ 2
Qn

,

(8.4)
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or in the compact form

σ 2
U =

n∑

j=1

(
∂g

∂qj

)2

σ 2
Qj

,

σ 2
V =

n∑

j=1

(
∂h

∂qj

)2

σ 2
Qj

,

σ 2
W =

n∑

j=1

(
∂k

∂qj

)2

σ 2
Qj

.

(8.5)

Similarly to the case of two-dimensional functions of independent random vari-
ables (Chap. 6), these expressions may be obtained as a result of more general con-
siderations. The total error of the three functions (8.3), caused by deviations �qj of
independent variables Qj from their nominal values, is represented by a vector p
with components

�u = U − u0, �v = V − v0, �w = W − w0, (8.6)

where u0, v0, and w0 are the nominal values of the three functions, while U , V , and
W are their actual values.

If the values �qj of small deviations of independent variables are known, then
the components of the error vector (8.6) may be calculated from the linearized rela-
tions

�u = ∂g

∂q1
�q1 + ∂g

∂q2
�q2 + · · · + ∂g

∂qn

�qn,

�v = ∂h

∂q1
�q1 + ∂h

∂q2
�q2 + · · · + ∂h

∂qn

�qn,

�w = ∂k

∂q1
�q1 + ∂k

∂q2
�q2 + · · · + ∂k

∂qn

�qn.

(8.7a)

Expressions (8.7a) may be written in a matrix form

⎡

⎣
�u

�v

�w

⎤

⎦ =

⎡

⎢⎢⎣

∂g
∂q1

∂g
∂q2

· · · ∂g
∂qn

∂h
∂q1

∂h
∂q2

· · · ∂h
∂qn

∂k
∂q1

∂k
∂q2

· · · ∂k
∂qn

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎣

�q1
�q2

...

�qn

⎤

⎥⎥⎥⎦ , (8.7b)

or

p = A�q, (8.7c)
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where matrix

A =

⎡

⎢⎢⎣

∂g
∂q1

∂g
∂q2

· · · ∂g
∂qn

∂h
∂q1

∂h
∂q2

· · · ∂h
∂qn

∂k
∂q1

∂k
∂q2

· · · ∂k
∂qn

⎤

⎥⎥⎦ (8.8)

may be treated as the matrix of coefficients of sensitivity of the resultant error p
to the errors �qj of independent variables. In expression (8.7c) symbols p and �q
represent the column matrices

p =
⎡

⎣
�u

�v

�w

⎤

⎦ , �q =

⎡

⎢⎢⎢⎣

�q1
�q2

...

�qn

⎤

⎥⎥⎥⎦ . (8.9)

Let us assume now that errors �qj of independent variables Qj with respect to
their nominal values have a certain given distribution and that they are statistically
independent. Moments of the second order of the resultant error p may be repre-
sented in the form of a matrix (comp. (7.23), (6.10)) and its expansion in the form
of a product of three matrices

[
kij

] =
⎡

⎣
kUU kUV kUW

kV U kV V kV W

kWU kWV kWW

⎤

⎦ def=

⎡

⎢⎢⎣

∂g
∂q1

∂g
∂q2

· · · ∂g
∂qn

∂h
∂q1

∂h
∂q2

· · · ∂h
∂qn

∂k
∂q1

∂k
∂q2

· · · ∂k
∂qn

⎤

⎥⎥⎦

×

⎡

⎢⎢⎢⎢⎣

σ 2
Q1

0 · · · 0

0 σ 2
Q2

· · · 0
...

...
. . .

...

0 0 · · · σ 2
Qn

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

∂g
∂q1

∂h
∂q1

∂k
∂q1

∂g
∂q2

∂h
∂q2

∂k
∂q2

...
...

...
∂g
∂qn

∂h
∂qn

∂k
∂qn

⎤

⎥⎥⎥⎥⎥⎦
. (8.10)

The elements of matrix [kij ] resulting from the operation given just above are

kUU =
(

∂g

∂q1

)2

σ 2
Q1

+
(

∂g

∂q2

)2

σ 2
Q2

+ · · · +
(

∂g

∂qn

)2

σ 2
Qn

,

kV V =
(

∂h

∂q1

)2

σ 2
Q1

+
(

∂h

∂q2

)2

σ 2
Q2

+ · · · +
(

∂h

∂qn

)2

σ 2
Qn

,

kWW =
(

∂k

∂q1

)2

σ 2
Q1

+
(

∂k

∂q2

)2

σ 2
Q2

+ · · · +
(

∂k

∂qn

)2

σ 2
Qn

,

(8.11)

kUV = ∂g

∂q1

∂h

∂q1
σ 2

Q1
+ ∂g

∂q2

∂h

∂q2
σ 2

Q2
+ · · · + ∂g

∂qn

∂h

∂qn

σ 2
Qn

,
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kV W = ∂h

∂q1

∂k

∂q1
σ 2

Q1
+ ∂h

∂q2

∂k

∂q2
σ 2

Q2
+ · · · + ∂h

∂qn

∂k

∂qn

σ 2
Qn

,

kUW = ∂g

∂q1

∂k

∂q1
σ 2

Q1
+ ∂g

∂q2

∂k

∂q2
σ 2

Q2
+ · · · + ∂g

∂qn

∂k

∂qn

σ 2
Qn

.

These elements stand for:

kUU = σ 2
U the variance of the component U of the error vector p,

kV V = σ 2
V the variance of the component V of the error vector p,

kWW = σ 2
W the variance of the component W of the error vector p,

kUV = kV U = cov(U,V ) the covariance of the components U and V of the error
vector p or, in other words, the correlation moment of U and V ,

kV W = kWV = cov(V ,W) the covariance of the components V and W of the error
vector p or, in other words, the correlation moment of V and W ,

kUW = kWU = cov(U,W) the covariance of the components U and W of the error
vector p or, in other words, the correlation moment of U and W .

The matrix (8.10) is the matrix of a certain tensor. It has the same meaning as the
matrix (7.11). Owing, however, to functional relations (8.3), its components may
be calculated with the use of formulas (8.11). The distributions of errors of the
three variables U , V , W are now associated with the distributions of the errors of
independent variables Qj .

8.2 The Rectangular Distribution of Independent Random
Variables

Let us assume that each independent random variable Qi appearing in three-dimen-
sional functions (8.3), has the uniform (rectangular) distribution, comp. Sect. 3.4.2.
In such a distribution the values of random errors are bounded by two marginal
values a and b (Fig. 6.2a) or, alternatively, by the values �q+ and �q− (Fig. 6.2b),
when the nominal value q0 is taken as a reference point.

As in the analogous two-dimensional problems (Sect. 6.2), the rectangular distri-
bution will be used here as an auxiliary distribution in solving in terms of the error
calculus the so-called tolerance limits problems, comp. Sect. 4.4.

Let us analyze the movements of the end-point of the vector of the resultant error
p with the components �u, �v, and �w, when the errors �qr and �qs of two
arbitrarily chosen independent variables, namely Qr and Qs , are changing, while
errors of the remaining independent variables do not change (comp. [2, 3]). Assume
that the errors qr and qs will be treated as changing parameters in equations (8.7a),
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which can be written in a more convenient form

�u = ∂g

∂q1
�q1 + · · · + ∂g

∂qr

�qr + · · · + ∂g

∂qs

�qs + · · · + ∂g

∂qn

�qn,

�v = ∂h

∂q1
�q1 + · · · + ∂h

∂qr

�qr + · · · + ∂h

∂qs

�qs + · · · + ∂h

∂qn

�qn,

�w = ∂k

∂q1
�q1 + · · · + ∂k

∂qr

�qr + · · · + ∂k

∂qs

�qs + · · · + ∂k

∂qn

�qn.

(8.12)

Let us now solve the first two of (8.12) with respect to �qr and �qs . Then we
shall introduce expressions for �qr and �qs into the third equation (8.12). Finally,
we obtain the equation of a family of parallel planes in the local rectangular coordi-
nate system �u, �v, �w. This equation may be written in the following form:

det

[ ∂h
∂qr

∂h
∂qs

∂k
∂qr

∂k
∂qs

]
�u + det

⎡

⎣
∂k
∂qr

∂k
∂qs

∂g
∂qr

∂g
∂qs

⎤

⎦�v + det

⎡

⎣
∂g
∂qr

∂g
∂qs

∂h
∂qr

∂h
∂qs

⎤

⎦�w

=
n∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
det

⎡

⎢⎢⎢⎣

∂g
∂qr

∂g
∂qs

∂g
∂qj

∂h
∂qr

∂h
∂qs

∂h
∂qj

∂k
∂qr

∂k
∂qs

∂k
∂qj

⎤

⎥⎥⎥⎦�qj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (8.13a)

The coefficients on the left-hand side of this equation and free terms on its right-
hand side are represented in the form of a Jacobian.1 Note that for j = r and for
j = s, the corresponding Jacobians on the right-hand side are equal to zero because
two of their columns are identical.

Equation (8.13a) can be written down in a more compact form:

det

⎡

⎢⎢⎣

∂g
∂qr

∂g
∂qs

�u

∂h
∂qr

∂h
∂qs

�v

∂k
∂qr

∂k
∂qs

�w

⎤

⎥⎥⎦ =
n∑

j=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
det

⎡

⎢⎢⎢⎣

∂g
∂qr

∂g
∂qs

∂g
∂qj

∂h
∂qr

∂h
∂qs

∂h
∂qj

∂k
∂qr

∂k
∂qs

∂k
∂qj

⎤

⎥⎥⎥⎦�qj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (8.13b)

Expanding the left-hand side of (8.13b) into sub-determinants, one obtains (8.13a).
Taking consecutively all the possible combinations of pairs of errors �qr and

�qs of independent variables as changing parameters, we obtain equations of var-
ious families of parallel planes. The number of these families m depends on the
number of independent variables n. It may be calculated with the use of the formula

m =
(

n

2

)
= n!

2(n − 1)! , (8.14)

or taken directly from Table 8.1:

1det in (8.13a) denotes the determinant of the matrix.
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Table 8.1 Number of the
plane families versus number
of independent variables

n 3 4 5 6 7 8

m 3 6 10 15 21 28

Note, however, that in practical applications of the theory, some families of the
planes may have identical equations. This means that these families are overlap-
ping and that the number of independent families is smaller than that resulting from
formula (8.14).

The distance of any plane belonging to a particular family from the origin de-
pends on the assumed values of errors �qj of independent variables qj on the right-
hand side of (8.13a). The two extreme positions of these planes are obtained by
substituting appropriately the extreme values of errors �q+

j and �q−
j in order to

obtain at first the largest possible value of the sum on the right-hand side of (8.13a),
and then its smallest possible value.

By determining the extreme positions of planes of each family we find a polyhe-
dron bounded by these extreme pairs of planes. We shall call it the polyhedron of
tolerance limits. All possible vectors of resultant error will lie inside the polyhedron.
Note that inside the polyhedron, the distribution is uniform according to the theory
presented above.

Example 8.1 Let us determine the polyhedron of the positioning accuracy of the
hand of the manipulator shown schematically in Fig. 8.1.

Let the nominal position of the hand be determined by the positioning angles

θ0
1 = 0, θ0

2 = 0, θ0
3 = π

2
. (8.15)

In the basic coordinate system X, Y , Z, the position of the hand is given by ex-
pressions (8.1) for these values of the positioning angles θ1, θ2, θ3. In the following
calculations we shall assume

l1 = l2 = l = 1000 mm. (8.16)

The particular values of partial derivatives of functions (8.1) with respect to in-
dependent variables θ1, θ2, θ3 for the assumed values (8.15) of positioning angles
are given in Table 8.2.

Table 8.2 Values of the
partial derivatives in
Example 8.1

j 1 2 3

∂X
∂θj

0 −l −l

∂Y
∂θj

0 l 0
∂Z
∂θj

l 0 0
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The polyhedron of the positioning accuracy will be bounded by extreme positions
of three pairs of planes determined by (8.13a). To find equations of some particular
families of planes we shall substitute into (8.13a) the appropriate values of partial
derivatives for all possible combinations of pairs (r, s). For example, when �θ1 and
�θ2 are changing, (8.13a) takes the particular form

det

[
∂Y
∂θ1

∂Y
∂θ2

∂Z
∂θ1

∂Z
∂θ2

]
x + det

[
∂Z
∂θ1

∂Z
∂θ2

∂X
∂θ1

∂X
∂θ2

]
y + det

[
∂X
∂θ1

∂X
∂θ2

∂Y
∂θ1

∂Y
∂θ2

]
z

= det

⎡

⎢⎢⎣

∂X
∂θ1

∂X
∂θ2

∂X
∂θ3

∂Y
∂θ1

∂Y
∂θ2

∂Y
∂θ3

∂Z
∂θ1

∂Z
∂θ2

∂Z
∂θ3

⎤

⎥⎥⎦�θ3. (8.17)

Substituting the values of derivatives given in Table 8.2, we obtain the equation of
the first family of planes

det

[
0 l

l 0

]
x + det

[
l 0
0 −l

]
y + det

[
0 −l

0 l

]
z = det

⎡

⎣
0 −l −l

0 l 0
l 0 0

⎤

⎦�θ3.

(8.18)
Determining the dimensions of the polyhedron we shall assume the following

tolerance limits of the positioning angles θ1, θ2, and θ3:

�θ1 = �θ2 = �θ3 = ±0.001525 rad. (8.19)

Repeating the procedure described above for all three pairs of changing position-
ing errors �θr and �θs , we arrive at the equations of extreme positions of planes
forming the faces of the polyhedron. The equations of these planes are

x + y = ±1.525 mm,

y = ±1.525 mm,

z = ±1.525 mm.

(8.20)

The polyhedron is shown in Fig. 8.2.

Example 8.2 In Fig. 8.3 there is presented a scheme of a more complex manipu-
lator with five revolving joints. The position of the manipulator’s hand in the basic
coordinate system X, Y , Z is determined by three coordinates:

X = [a cos θ2 + b cos (θ2 + θ3) + c cos (θ2 + θ3 + θ4)] cos θ1,

Y = [a cos θ2 + b cos (θ2 + θ3) + c cos (θ2 + θ3 + θ4)] sin θ1,

Z = a sin θ2 + b sin (θ2 + θ3) + c sin (θ2 + θ3 + θ4) .

(8.21)

These coordinates are functions of four independent variables: positioning angles
θ1, θ2, θ3, and θ4. General expressions for the partial derivatives of these functions
with respect to the angles are rather lengthy. Thus, the solution in a general form
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Fig. 8.2 The polyhedron of
the positioning accuracy for
the manipulator presented in
Fig. 8.1—Example 8.1

Fig. 8.3 The scheme of a
manipulator with five
revolving joints

is not useful for practical applications. It is more convenient to perform numerical
calculations for the manipulator’s position in question.

Assume the following data for the dimensions of the manipulator and for its
position

a = 700 mm, b = 600 mm, c = 250 mm,

θ1 = 30◦, θ2 = 30◦, θ3 = 30◦, θ4 = −60◦.
(8.22)

We shall derive all equations for an arbitrary value of the angle θ1.
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Table 8.3 Values of the
partial derivatives in
Example 8.2

i 1 2 3 4

∂X
∂θi

−578.1 −869.6 cos θ1 −519.6 cos θ1 0
∂Y
∂θi

1001.3 −869.6 sin θ1 −519.6 sin θ1 0
∂Z
∂θi

0 1156.2 550 −250

The bounding values of the errors (tolerance limits) in positioning the angles are
assumed to be

�θ1 = �θ2 = �θ3 = �θ4 = ±2′ = ±0.00058 rad. (8.23)

For the data (8.22) the partial derivatives constituting the elements of the matrix
(8.8) take the values collated in Table 8.3, where dimensions are given in millime-
ters.

Below are derived the equations of particular families of planes by substituting
respective values of derivatives (sensitivity coefficients) into (8.13a) for all possible
combinations of pairs (r, s). We shall denote these planes by the symbol P(r; s).
For example, P(1;2) denotes the family of planes obtained when �θ1 and �θ2 are
changing.

For the planes P(2;3), when positioning errors �θ2 and �θ3 are changing while
�θ1 and �θ4 have constant values, (8.13a) takes the following form:

det

[ ∂Y
∂θ2

∂Y
∂θ3

∂Z
∂θ2

∂Z
∂θ3

]
x + det

[ ∂Z
∂θ2

∂Z
∂θ3

∂X
∂θ2

∂X
∂θ3

]
y + det

[ ∂X
∂θ2

∂X
∂θ3

∂Y
∂θ2

∂Y
∂θ3

]
z

= det

⎡

⎢⎢⎣

∂X
∂θ2

∂X
∂θ3

∂X
∂θ1

∂Y
∂θ2

∂Y
∂θ3

∂Y
∂θ1

∂Z
∂θ2

∂Z
∂θ3

∂Z
∂θ1

⎤

⎥⎥⎦�θ1 + det

⎡

⎢⎢⎣

∂X
∂θ2

∂X
∂θ3

∂X
∂θ4

∂Y
∂θ2

∂Y
∂θ3

∂Y
∂θ4

∂Z
∂θ2

∂Z
∂θ3

∂Z
∂θ4

⎤

⎥⎥⎦�θ4. (8.24)

Substituting numerical values of the partial derivatives given in Table 8.3 we observe
that the third determinant on the left-hand side and the second determinant on the
right-hand side of (8.24) are equal to zero for any value of angle θ1. Finally, the
equation of planes P(2;3) takes the form

x sin θ1 − y cos θ1 = −1156.2�θ1. (8.25)

These planes are perpendicular to the reference plane x–y.
Repeating this procedure for all possible pairs of changing joint positioning er-

rors �θr and �θs and solving all determinants, we arrive at the equations of all
families of planes.

For example, for P(2;4) planes, when positioning errors �θ2 and �θ4 are chang-
ing, and for P(3;4) planes, when �θ3 and �θ4 are changing, we find that the cor-
responding equations are identical with the equation (8.25). Thus, the families of
planes P(2;3), P(2;4), and P(3;4) are overlapping.
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In the case of P(1;2) planes, when errors �θ1 and �θ2 are changing while errors
�θ2 and �θ4 preserve constant values, their equation takes the form

x cos θ1 + y sin θ1 + 0.7521z = −105.93�θ3 − 188.03�θ4. (8.26)

These planes are inclined with respect to all three axes of the local coordinate system
x, y, z.

For the next P(1;3) family of planes, when errors �θ1 and �θ3 are changing
with the remaining joint positioning errors being kept constant, the equation has the
form

x cos θ1 + y sin θ1 + 0.945z = 222.69�θ2 − 236.18�θ4. (8.27)

These planes are also inclined with respect to all three coordinate axes x, y, z.
The last family of P(1;4) planes, when errors �θ1 and �θ4 are changing, is

determined by the equation

x cos θ1 + y sin θ1 = −869.6�θ2 − 519.6�θ3. (8.28)

These planes are perpendicular to the reference plane x–y.
Thus, we have four independent families of planes determined by (8.25)–(8.28).

The polyhedron of the positioning accuracy will be, therefore, bounded by four
pairs of parallel planes only, instead of six pairs as predicted by formula (8.14). In
practical applications such particular cases may often happen. Extreme positions of
planes of these families will be obtained by substituting the tolerance limits (8.23) of
joint positioning errors into the corresponding equations. The sign of these tolerance
limits should be suitably taken in order to obtain first the largest possible value of
the free term on the right-hand side of each equation, and then its smallest possible
value. In this manner, we arrive at the equations of planes in their extreme positions.
They constitute the faces of the polyhedron of the positioning accuracy when the
value θ1 = 30◦:

Faces P(2;3)—symbolic notation A

A1 y = 0.577x + 0.774,

A2 y = 0.577x − 0.774,

Faces P(1;2)—symbolic notation B

B1 0.866x + 0.500y + 0.7521z = 0.1705,

B2 0.866x + 0.500y + 0.7521z = −0.1705,

Faces P(1;3)—symbolic notation C

C1 0.866x + 0.500y + 0.945z = 0.266,

C2 0.866x + 0.500y + 0.945z = −0.266,
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Fig. 8.4 Three projections of the polyhedron of the positioning accuracy for the manipulator pre-
sented in Fig. 8.3—Example 8.2

Faces P(1;4)—symbolic notation D

D1 y = −1.732x + 1.612,

D2 y = −1.732x − 1.612.

In Fig. 8.4 are presented three projections of the polyhedron. Note that for each
position of the manipulator the polyhedron has a different form, comp. [2].
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8.3 The Normal Distribution of Independent Random Variables

Let us assume that each of the independent random variables Qj appearing in
three-dimensional functions (8.3) has the normal distribution. Then the fluctuations
�qj of these random variables, describing the deviation from the nominal value of
the variable qj , have the probability density functions determined by the relations,
comp. (2.35) in Sect. 2.4,

f
(
�qj

) = 1

σj

√
2π

exp

[
−1

2

(
�qj

σj

)2
]

. (8.29)

If distributions of independent random variables Qj are normal, then the three-di-
mensional distribution of resultant errors �u, �v, and �w, in problems of practical
interest, can be also considered to be normal.2

The probability density function of the three-dimensional normal distribution
takes the following form, comp. (7.21b),

f (�u,�v,�w) = 1√
(2π)3 det[kij ]

× exp

[
−1

2
(Kuu�u2 + Kvv�v2 + Kww�w2 + 2Kuv�u�v

+ 2Kvw�v�w + 2Kuw�u�w)

]
. (8.30)

The elements of matrix [kjl] are determined by relations (8.11). Their relations
with coefficients Kjl result from (7.24).

The ellipsoids of probability concentration are determined by (7.25). We shall
demonstrate in the following examples how to determine them analytically.

Example 8.3 Determine the ellipsoid of probability concentration for the problem
of positioning accuracy of the hand of a simple manipulator shown previously in
Fig. 8.1. The position in question is determined by the nominal positioning angles

θ1 = 0, θ2 = 0, θ3 = π

2
, (8.31)

thus, the position is identical with that assumed in Example 8.1. However, the dis-
tributions of positioning errors of joints (j = 1,2,3) are now assumed to be normal:

f
(
�θj

) = 1

σj

√
2π

exp

⎡

⎣−1

2

(
�θj

σθj

)2
⎤

⎦ . (8.32)

2Note that errors of positions U , V , W are calculated with linear approximation (8.7a). In general,
if errors �qi are large, the distribution of resultant errors �u, �v, and �w, being non-linear
functions of normal variables, may not be normal.
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The manipulator’s dimensions are the same as in Example 8.1. Thus,

l1 = l2 = l = 1000 mm.

Let us assume now that

σθ1 = σθ2 = σθ3 = σ0 = 0.001 rad. (8.33)

The values of partial derivatives of functions (8.1) with respect to the positioning
angles θj have been collated previously in Table 8.2. Substituting these values into
formulas (8.11) we get

kXX = σ 2
X =

(
∂X

∂θ1

)2

σ 2
θ1

+
(

∂X

∂θ2

)2

σ 2
θ2

+
(

∂X

∂θ3

)2

σ 2
θ3

= 2l2σ 2
θ ,

kYY = σ 2
Y =

(
∂Y

∂θ1

)2

σ 2
θ1

+
(

∂Y

∂θ2

)2

σ 2
θ2

+
(

∂Y

∂θ3

)2

σ 2
θ3

= l2σ 2
θ ,

kZZ = σ 2
Z =

(
∂Z

∂θ1

)2

σ 2
θ1

+
(

∂Z

∂θ2

)2

σ 2
θ2

+
(

∂Z

∂θ3

)2

σ 2
θ3

= l2σ 2
θ ,

kXY = kYX = ∂X

∂θ1

∂Y

∂θ1
σ 2

θ1
+ ∂X

∂θ2

∂Y

∂θ2
σ 2

θ2
+ ∂X

∂θ3

∂Y

∂θ3
σ 2

θ3
= −l2σ 2

θ ,

kXZ = kZX = ∂X

∂θ1

∂Z

∂θ1
σ 2

θ1
+ ∂X

∂θ2

∂Z

∂θ2
σ 2

θ2
+ ∂X

∂θ3

∂Z

∂θ3
σ 2

θ3
= 0,

kZY = kYZ = ∂Y

∂θ1

∂Z

∂θ1
σ 2

θ1
+ ∂Y

∂θ2

∂Z

∂θ2
σ 2

θ2
+ ∂Y

∂θ3

∂Z

∂θ3
σ 2

θ3
= 0.

The matrix [kjl] of second-order moments, comp. (8.10), takes, therefore, the form

[
kjl

] =
⎡

⎢⎣
2l2σ 2

θ −l2σ 2
θ 0

−l2σ 2
θ l2σ 2

θ 0

0 0 l2σ 2
θ

⎤

⎥⎦ .

The inverse matrix [Kjl] = [kjl]−1, calculated with the use of (7.24), is

[
Kjl

] =
⎡

⎣
KXX KXY KXZ

KYX KYY KYZ

KZX KZY KZZ

⎤

⎦ =

⎡

⎢⎢⎢⎣

1
l2σ 2

θ

1
l2σ 2

θ

0

1
l2σ 2

θ

2
l2σ 2

θ

0

0 0 1
l2σ 2

θ

⎤

⎥⎥⎥⎦ .

Let us assume now the probability α = 0.683 that the error vector p of the accu-
racy of positioning the hand in its nominal position will lie inside the ellipsoid of
probability concentration. Using Table 7.1 or the diagram in Fig. 7.1 we obtain for
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Fig. 8.5 Three projections of the ellipsoids of probability concentration of the positioning accu-
racy for the manipulator presented in Fig. 8.1, Example 8.3

the assumed probability level that χ2
p(3) = λ2 = 3.5. By substituting all the data into

formula (7.25) we arrive at the equation of the ellipsoid of probability concentration

x2 + 2xy + 2y2 + z2 = λ2l2σ 2
θ = 3.5.

The ellipsoid is shown in Fig. 8.5. Its longer axis makes an angle γ = 31◦43′ with
the x-axis. The principal semi-axes are

a = 3.03 mm, b = 1.16 mm, c = 1.87 mm.

The oblateness of the ellipsoid is given by the parameters

a

b
= 2.61,

a

c
= 1.62,

b

c
= 0.62.

The theoretical ellipsoid shown in Fig. 8.5 has been compared with the results
of a numerical experiment, comp. [4]. Random small Gaussian deviations from
the desired revolving joint positions (8.31) have been numerically generated by a
computer program followed by displacements of the manipulator’s hand from its
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Fig. 8.6 The comparison of the ellipsoids presented in Fig. 8.5 with the results of computer sim-
ulation

nominal position. Calculated random displaced positions of the hand are shown in
Fig. 8.6 as the corresponding points. The theoretical ellipsoid from Fig. 8.5 is also
shown in the figure. The theoretical ellipsoid fits well with the assembly of numeri-
cally simulated points.

Example 8.4 Determine the ellipsoid of probability concentration for the problem
of positioning accuracy of a more complex manipulator shown schematically in
Fig. 8.3. We assume a certain particular position of the hand which is determined by
the nominal values of the positioning angles of revolving joints

θ1 = 0◦, θ2 = 90◦, θ3 = −90◦, θ4 = 30◦.

We shall perform calculations for the following data:

a = 700 mm, b = 600 mm, c = 250 mm,

σθ1 = σθ2 = σθ3 = σθ4 = 0.001 rad.

In the coordinate system X, Y , Z the position of the hand is determined by
functions (8.21) given in Example 8.2, Sect. 8.2. The numerical values of partial
derivatives of these functions with respect to the independent variables for the ma-
nipulator’s position in question are given in Table 8.4.
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Table 8.4 Values of the
partial derivatives in
Example 8.4

j 1 2 3 4

∂X
∂θj

0 −825 −125 −125
∂Y
∂θj

816.5 0 0 0
∂Z
∂θj

0 816.5 816.5 216.5

The matrix [kjl] (comp. (8.10)) of the second-order moments takes the following
form (numerical values in mm2):

[
kjl

] =
⎡

⎣
0.7119 0 −0.8028

0 0.6667 0
−0.8028 0 1.3803

⎤

⎦ ,

and the inverse matrix is

[
Kjl

] = [
kjl

]−1 =
⎡

⎣
4.028 0 2.374

0 1.500 0
2.374 0 2.105

⎤

⎦ .

By substituting the respective values into equation (7.25) we obtain for the prob-
ability α = 0.683 the equation of the ellipsoid of probability concentration

4.082x2 + 1.500y2 + 2.105z2 + 4.748xz = 3.50.

The ellipsoid is shown in Fig. 8.7 along with the result of a computer simulation.

8.4 Indirect Determination of the Ellipsoids of Probability
Concentration

The ellipsoids of probability concentration may be also found indirectly, provided
that all independent variables Qj in functions (8.3) have the normal distribution,
comp. [1]. First we assume, as in the analogous case of two-dimensional distribu-
tions (comp. Sect. 6.4), that independent random variables Qj have a substitute
rectangular distribution instead of the actual normal distribution. Then the polyhe-
dron bounding the region of uniform distribution of errors �u, �v, and �w of
all three functions (8.3) should be determined by using the procedure described in
Sect. 8.2. The bounding values of the substitute rectangular distribution of indepen-
dent variables errors

�q+
j = +κσj and �q−

j = −κσj ,

depend on the assumed probability α that end points of the resultant error vec-
tor p, whose components are �u, �v, and �w, will lie inside the polyhedron. Here
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Fig. 8.7 Two projections of
the ellipsoids of probability
concentration of the
positioning accuracy for the
manipulator presented in
Fig. 8.3 along with the results
of computer simulation,
Example 8.4

σj stands for the standard deviation of the actual normal distributions of any vari-
able Qj .

The polyhedron has been calculated under the assumption that κ = √
3 corre-

sponds to the probability α = 1. For each κ <
√

3 the corresponding probability may
be calculated as the ratio of the volume of the polyhedron obtained for �qj = ±κσj

to the volume of the polyhedron obtained for �qj = ±√
3σj . Thus, for a prescribed

probability level α one should assume, comp. (6.31),

κ = √
3 3
√

α. (8.34)

Having found the polyhedron for a chosen probability level we calculate at first
its second-order moments (inertia moments) with respect to the local central coor-
dinate system. Then its principal central axes 1, 2, 3, and principal second-order
moments I1, I2, and I3 should be determined.

The ellipsoid of probability concentration may now be found as the ellipsoid
having the same principal axes as the polyhedron. Moreover, its principal second-
order moments should have the same values as the corresponding principal second-
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order moments of the polyhedron. Thus, the lengths a, b, c of the semi-axes of the
ellipsoid may be found by solving the system of three equations

4

15
πab3c = I1,

4

15
πa3bc = I2,

4

15
πabc3 = I3, (8.35)

where I1, I2, and I3 are the principal second-order moments of the polyhedron.

Example 8.5 Find by means of the indirect method the ellipsoid of probability con-
centration for the problem of the positioning accuracy of the manipulator shown
previously in Fig. 8.1. We shall assume the same data as in Examples 8.1 and 8.3.
The nominal position of the manipulator’s hand is assumed to be determined by the
positioning angles

θ1 = 0, θ2 = 0, θ3 = π

2
.

The lengths of the arms are

l1 = l2 = l = 1000 mm,

and standard deviations of the normal distribution of errors in positioning the re-
volving joints are

σθ1 = σθ2 = σθ3 = σθ = 0.001 rad.

Assume the probability level α = 0.683 that the error vector, in positioning the hand,
will lie inside the ellipsoid of probability concentration. Thus, using formula (8.34)
we get κ = 1.525 and

�θ1 = �θ2 = �θ3 = ±κσθ = ±0.001525 rad.

The polyhedron for these data was determined in Example 8.1 and shown in
Fig. 8.2. Its second-order moments with respect to the reference planes of a local
coordinate system shown in that figure are:

Ixx = 1

6
d3he = 43.99 mm5, moment with respect to x = 0 plane;

Iyy = 1

12
dh3e = 21.98 mm5, moment with respect to y = 0 plane;

Izz = 1

12
dhe3 = 21.98 mm5, moment with respect to z = 0 plane.

The mixed second-order moment with respect to the reference planes x = 0 and
y = 0 is

Ixy = − 1

12
d2h2e = −21.98 mm5.
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Principal axis 1 of the polyhedron coincides with the plane z = 0 and makes with
the x-axis an angle γ determined by the relation, comp. formula (5.10),

tan 2γ = 2Ixy

Ixx − Iyy

= −2.

Hence, we get γ = −31◦43′. Thus, the angle is the same as that obtained for the
ellipsoid by means of a direct method, see Fig. 8.5.

The principal second-order moments of the polyhedron are

I1 = 1

2
(Ixx + Iyy) −

√
1

4
(Ixx − Iyy)2 + I 2

xy = 8.42 mm5,

I2 = 1

2
(Ixx + Iyy) +

√
1

4
(Ixx − Iyy)2 + I 2

xy = 57.56 mm5,

I3 = Izz = 21.98 mm5.

By solving the system of (8.35) we shall find the lengths a, b, c of semi-axes of
the ellipsoid of probability concentration

a = 3.11 mm, b = 1.19 mm, c = 1.92 mm.

The ratios of semi-axes are

a

b
= 2.61,

a

c
= 1.62,

b

c
= 0.62.

Thus, the ellipsoid calculated by means of the indirect method differs only
slightly from that obtained analytically in Example 8.3.

Note, however, that in more complex problems (comp. Fig. 8.4) calculations of
second-order moments for the polyhedron may not be easy. Generally speaking, the
direct method discussed in Sect. 8.3 is more universal in practical applications.

Problem 8.1 Find the polyhedron of the positioning accuracy for the manipulator
shown in Fig. 8.3. Assume the position determined by the positioning angles

θ1 = 0◦, θ2 = θ3 = 30◦, θ4 = −60◦,

and the data (8.22) and (8.23) given in Example 8.2.

Problem 8.2 Find the ellipsoid of probability concentration for the problem of posi-
tioning accuracy of the hand of a manipulator shown in Fig. 8.3. Assume the position
determined by the positioning angles

θ1 = 0◦, θ2 = θ3 = 30◦, θ4 = −60◦.
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Dimensions of the manipulator and the standard deviations of joint positioning er-
rors are:

a = 700 mm, b = 600 mm, c = 250 mm.

σ1 = σ2 = σ3 = σ4 = 0.001 rad.

Assume the probability that the end point of the error displacement vector lying
inside the ellipsoid is p = 0.683.
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2. Szczepiński, W.: Theory of polyhedron of positioning accuracy of manipulators. Mech. Mach.
Theory 26(7), 697–709 (1991)
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4. Szczepiński, W., Wesołowski, Z.: On determining positioning accuracy of robot manipulators.
Bull. Acad. Pol. Sci., Sér. Sci. Tech. 42, 177–186 (1994)



Chapter 9
Problems Described by Implicit Equations

9.1 Introduction

In previous chapters we considered the basic problems of the error calculus that, in
their simplest form, can be formulated as calculation (or estimation) of the proba-
bility of an event of the form

A(ω) < b, (9.1)

where A(ω) is the value of the measurement’s error, which is a measurable function
of the parameter ω ∈ Ω (an elementary event) from the probability space (Ω,�,P ),
see Chap. 2 and b is a deterministic constant. The parameter b can be interpreted
as an acceptable value of the measurement error. The basic inequality in a form
formulated in (9.1) refers to a one-dimensional random variable. However, such an
inequality can be generalized to more complicated cases. In Chap. 4 we presented
the problem where the random variable A(ω) is a function of n statistically indepen-
dent random variables X1,X2, . . . ,Xn. In such a case one should find the probability
distribution of the random variable

A(ω) = A(X1 (ω) ,X2 (ω) , . . . ,Xn (ω)) , (9.2)

which is a resultant distribution of the distributions of independent random vari-
ables, and from it calculate appropriate probabilities. However, even in the simplest
practical cases of engineering applications we must apply approximate probability
distributions. In the problems of error calculus presented in previous sections, we
have used as an approximation the uniform distribution or the normal distribution,
depending on the assumed distributions of arguments, with the parameters of the
distribution obtained by linearization of the function A(x1, x2, . . . , xn).

Further generalizations of (9.1) lead to increasing the dimension of the state space
(the dimension of the space of values of the random variable A(ω)). Problems in
engineering practice have been presented in Chaps. 5 and 6 (two-dimensional prob-
lems) and in Chaps. 7 and 8 (three-dimensional problems). In such cases instead
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of one-dimensional inequalities estimating measurement errors one must consider
ellipses and ellipsoids of probability concentration (for normal statistically indepen-
dent random variables) and polygons or polyhedrons of tolerances (for uniformly
distributed statistically independent random variables) in two and three-dimensional
problems, respectively. In previous chapters we already presented computational
problems resulting from such engineering tasks. A wide area of applications can be
described by another generalization of the formula (9.1). Let us assume that both
quantities in (9.1) are the random variables and that

A(ω) < B (ω) . (9.3)

The inequality of the form (9.3) leads to more complicated calculations than the
calculations arising from (9.1), since they require application of the joint two-
dimensional probability distributions of the random variables A(ω) and B(ω) to
approximate the probability of the event that {ω : A(ω) < B(ω)}. In practical appli-
cations when the two random variables are certain functions of some other random
variables, this condition leads to calculation of the probabilities of events of the form

A(X1 (ω) ,X2 (ω) , . . . ,Xn (ω)) < B (X1 (ω) ,X2 (ω) , . . . ,Xn (ω)) , (9.4)

where the probability distributions of the random variables X1,X2, . . . ,Xn are
known, which is an involved computation problem. Examples of such tasks can
be found in the following paragraphs of this chapter.

Before starting presentation of concrete computational tasks, we indicate areas
of possible applications of the generally formulated (9.4). In technological sciences
it is most frequently used in reliability theory, see e.g., [3, 5, 6, 9]. This is because
the inequality (9.4) can be interpreted as the condition that the set of structural pa-
rameters represented by the random variable A(ω) is within the area of safe values
bounded by their critical values (above which a crash is possible) represented by the
random variable B(ω).

Example 9.1 Consider the problem of reliability of the stretched steel rod. In such a
case the random variable A(ω) is the value of the stretching force, the random vari-
able B(ω) is the rod’s strength resistance and the condition (9.4) defines the state of
the rod’s failure-free work. Exceeding the condition defined by the inequality (9.4)
results in the rod’s destruction (exceeding plasticity limit, rupture, etc.).

Analogously, the inequality (9.4) can be used in congestion problems to compare
nominal and actual time of functioning of a service and also in optimization prob-
lems with constraints, e.g., in reliability-based optimization, see [10]. However, such
practical applications exceed the scope of this book so we omit them and return to
computational problems of estimating the probability of satisfying the inequality of
the form (9.4).
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Fig. 9.1 The domain of
integration for calculation of
the value of probability (9.5)

9.2 Statistically Independent Random Variables

9.2.1 Two Independent Random Variables

Consider two independent random variables A(ω) and B(ω) and the inequality of
the form (9.3) written for the two variables. To simplify our reasoning, let us as-
sume that their probability distribution is continuous. To obtain the probability of
the event {ω : A(ω) < B(ω)} we must calculate the following integral of the joint
probability density function of the two random variables A(ω) and B(ω), which in
this particular case is a product of one-dimensional probability density functions
fA(x), fB(y) (see (3.105)), over an area of the form {(x, y) : x < y}. Thus, we have

P (A(ω) < B (ω)) =
∫∫

x<y

fAB (x, y) dxdy =
∫∫

x<y

fA (x)fB (y) dxdy. (9.5)

The domain of integration is shown in Fig. 9.1.
It is seen in Fig. 9.1 that the integral of the form (9.5) can be transformed to the

following simpler form:

P (A(ω) < B (ω)) =
∫ ∞

−∞

∫ y

−∞
fA (x)dxfB (y)dy =

∫ ∞

−∞
FA (y)fB (y) dy,

(9.6)

where FA(x) is the cumulative distribution function of the random variable A(ω).
Alternatively, we can transform it to

P (A(ω) < B (ω)) =
∫ ∞

−∞
[1 − FB (x)]fA (x)dx = 1 −

∫ ∞

−∞
FB (x)fA (x)dx,

(9.7)

where now FB(y) is the cumulative distribution function of the random variable
B(ω).
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As we can see, in a case of independent random variables with an arbitrary known
distribution, calculation of the probability (9.5) is a rather simple task, especially if
we apply numerical computations. However, to do this one should know explicit
expressions of the functions in (9.6) or (9.7).

Consider now the particular case of independent random variables that have the
normal distribution, see (2.35). Thus, we assume that the random variable A(ω)

has the distribution N(mA,σ 2
A), and the random variable B(ω) has the distribution

N(mB,σ 2
B). In such a case, instead of the inequality (9.3), we can consider the other

equivalent inequality, that is to calculate the following inequality:

P (A(ω) < B (ω)) = P (A(ω) − B (ω) < 0) = P (Z (ω) < 0) . (9.8)

The random variable occurring in (9.8),

Z (ω) = A(ω) − B (ω) , (9.9)

which is a difference of the two normally distributed statistically independent ran-
dom variables, is also normally distributed, see (3.118)–(3.120); the parameters of
its distribution are

mZ = mA − mB,

σ 2
Z = σ 2

A + σ 2
B.

(9.10)

Thus, it suffices to perform a single integration of the probability density function
of the normal distribution with the parameters given in (9.10) or read out the appro-
priate value from the standardized normal distribution tables according to (9.11)

P (A(ω) < B (ω)) = P (Z (ω) < 0) = Φ

(−mZ

σZ

)
= Φ

⎛

⎝−mA + mB√
σ 2

A + σ 2
B

⎞

⎠ . (9.11)

Example 9.2 In Fig. 9.2 is presented the problem of calculation of the probability
defined in (9.8) for the particular case of two independent normal distributions such
that the random variable A(ω) has N(3,1) distribution and the random variable
B(ω) has N(1,4) distribution. In such a case, the random variable Z(ω) has N(2,5)

distribution. The value of the probability that we seek is equal to the measure of the
marked area under the probability density plot fZ(x), or, according to (9.11), equal
to Φ(−0.894) ≈ 0.19.

As we can see, the calculation of the probability of a random event of the form
(9.3) is rather complicated even if we consider a single random variable instead of a
function of random variables, as in (9.4). It is also seen that the analogous calcula-
tion becomes much easier if the random variables under consideration are normally
distributed. This observation suggests an idea to make calculations on Gaussian
random variables also in more general cases than (9.3). In the following part of this
chapter we will show that, after applying a specific transformation, we can bring
calculations on a wide class of distributions to calculations on the Gaussian distri-
bution.
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Fig. 9.2 Probability density functions of two independent random variables and of their difference

9.2.2 A Function of Independent Random Variables

Let us consider an inequality of the form (9.4) in a particular case where the random
variables X1(ω),X2(ω), . . . ,Xn(ω) are statistically independent. In such a case the
statistically independent random variables are described by the joint probability den-
sity function which is a product of one-dimensional probability density functions de-
scribing distributions of each of the random variables Xi(ω), i = 1,2, . . . , n. Thus,
the probability density function fX(x), where x = (x1, x2, . . . , xn) has the following
form:

fX (x) = fX1 (x1) fX2 (x2) · · ·fXn (xn) . (9.12)

The probability density function (9.12) can be used for calculation of the probability
of the event (9.4), that is

p = P (ω : A(X1 (ω) ,X2 (ω) , . . . ,Xn (ω)) < B (X1 (ω) ,X2 (ω) , . . . ,Xn (ω))) .

(9.13)
Applying (9.12) we can write

p =
∫

A(x1,x2,...,xn)<B(x1,x2,...,xn)

fX1 (x1) fX2 (x2) · · ·fXn (xn) dx1dx2 · · ·dxn

=
∫

g(x1,x2,...,xn)<0
fX1 (x1) fX2 (x2) · · ·fXn (xn) dx1dx2 · · ·dxn, (9.14)
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where in (9.14) we introduced the function

g (x1, x2, . . . , xn) = A(x1, x2, . . . , xn) − B (x1, x2, . . . , xn) (9.15)

to define the boundary of integration area. As we can see, to calculate the probability
(9.14) one should know the adequate area (in n-dimensional space) defined by a
hypersurface of the form

g (x1, x2, . . . , xn) = 0, (9.16a)

or after introducing the new notation x = (x1, x2, . . . , xn), xi ∈ R, i = 1,2, . . . , n,

g (x) = 0. (9.16b)

Thus, the area of integration in (9.14) is such an area of the n-dimensional Euclidean
space Rn, where the following condition is satisfied :

g (x) < 0. (9.17)

Calculation of the integral (9.14), for arbitrary probability distributions fi(x),
i = 1,2, . . . , n, although they are statistically independent, is not an easy task. In
such a case the transformation leading to normally distributed random variables can
be helpful, as we have observed in the case of the inequality (9.3) for two random
variables, when the result for the normal distribution was easy to obtain.

Thus, consider the n-dimensional standardized normally distributed random vari-
able u = (u1, u2, . . . , un). Let us assume that we are able to make such a transforma-
tion of an n-dimensional random variable X with statistically independent coordi-
nates of arbitrary continuous distributions into n-dimensional standardized random
variable U with normal distributions,

U = T(X), (9.18)

that will make it possible to calculate the probability p. It proves to be that in a
case of statistically independent random variables such a transformation has a very
simple form; it can be written for each coordinate as

ui = Φ−1 (FXi (xi)
)
, (9.19)

for i = 1,2, . . . , n, where Φ−1(.) is a map inverse to the cumulative distribution
function of the Gaussian distribution and FXi

(xi) for i = 1,2, . . . , n, are the cumu-
lative distribution functions of the transformed random variables,

FXi (x) =
∫ x

−∞
fXi (s) ds. (9.20)

This procedure also changes the equation of the hypersurface limiting the area of
integration and writes it down in the new coordinates, corresponding to the domain
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of the n-dimensional standardized normal distribution. The transformation of the
integration boundary has the following form:

g(x) = 0 ⇒ g
(

T−1 (u)
)

= G(u) = 0. (9.21)

Before we start more precise explanations of the relationship (9.21), we will give
several useful formulas. Thus, the equation (9.19) can be written formally as

ui = Ti(xi), (9.22)

where Ti(xi) is the i-th coordinate of the vector-valued function T(x) and its inverse
function T −1

i (ui) (the i-th coordinate of the vector-valued function T−1(u)) can be
represented as

xi = F−1
Xi

(Φ(ui)), (9.23)

where F−1
Xi

(.) are the inverse functions to the cumulative distribution functions of
the random variables Xi, i = 1,2, . . . , n. Using (9.23) we can write the equation of
hypersurface (9.21) in an expanded form:

G(u1, u2, . . . , un) = g
(
F−1

X1
(Φ (u1)) ,F−1

X2
(Φ (u2)) , . . . ,F−1

Xn
(Φ (un))

)
= 0.

(9.24)
Since the new probability distribution, which is the standardized n-dimensional

normal distribution, is well known, the key problem in calculation of the probability
(9.13) is constructing an adequate transformation of the hypersurface (9.24). How
does such a construction look practically? To show this we will start from the par-
ticular case when both the initial and the transformed distributions are the normal
distributions.

Example 9.3 Consider an example of the Gaussian random variables Xi , i = 1,

2, . . . , n with arbitrary finite expected values mi and arbitrary finite variances σ 2
i . In

such a case we can easily find the relationships (9.19) and (9.23). In turn, we make
the following transformations (using the explicit form of the known cumulative dis-
tribution functions):

FXi (xi) = Φ (ui) ,

∫ xi

−∞
1√

2πσi

exp

(
−1

2

(
v − mi

σi

)2
)

dv =
∫ ui

−∞
1√
2π

exp

(
−1

2
s2
)

ds,

∫ xi−mi
σi

−∞
1√
2π

exp

(
−1

2
s2
)

ds =
∫ ui

−∞
1√
2π

exp

(
−1

2
s2
)

ds,

so,

xi − mi

σi

= ui
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Fig. 9.3 Transformation of a system of independent normal random variables (a) to the system of
standardized normal random variables (b)

and

xi = σiui + mi.

Finally we obtain that for any function g(x), the function obtained after transforma-
tion G(u) has the following form:

G(u) = G(u1, u2, . . . , un)

= g(σ1u1 + m1, σ2u2 + m2, . . . , σnun + mn). (9.25)

In the particular case when we are considering the inequality (9.3), that is we deal
with two random variables only, the resulting equations of the hypersurfaces (which
in this particular case are the straight lines) have the following form:

g (x1, x2) = x1 − x2 = 0,

G(u1, u2) = σ1u1 + m1 − σ2u2 − m2 = 0.

Thus, the transformation of the straight line is its shifting and proportional length-
ening along the axis of the coordinates system as it is shown in Fig. 9.3.

As we see from the presented example, for independent Gaussian distributions
the map transforming the hypersurface g(x) = 0 into the hypersurface G(u) = 0 is
the composition of parallel shift along the axes of the coordinate system and propor-
tional extension of the hypersurfaces in the directions parallel to these axes. Let us
remark that even if the above transformation is not complicated, obtaining practical
results needs numerical calculations. It is not in fact an essential constraint because
usually the calculation of the probability (9.13) is numerical, due to a complicated
shape of the hypersurface G(u) = 0 defining the integration area.

For arbitrary non-Gaussian statistically independent probability distributions, the
maps leading to obtaining the functions G(u) from the functions g(x) have the
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Fig. 9.4 Transformation of a system of arbitrary random variables to the system of standardized
normal random variables

form (9.24). They cannot be represented in a linear form (9.25), as it is in the case
of the Gaussian distributions. The result of this fact is that now the straight line
from Fig. 9.3a is transformed into some arbitrary curve depending on the distribu-
tion of the random variables X1,X2, and in the case of more-dimensional spaces:
the plane is transformed into some non-plane surface in three dimensions and hy-
perplanes are transformed into general hypersurfaces. In a general case, when the
constraints put on the random variables X1,X2, . . . ,Xn are defined by an arbitrary
function g(x1, x2, . . . , xn), the hypersurface G(u) = 0 obtained after the transfor-
mation (9.18) can be of quite general shape. An example of such a transformation
in two dimensions is shown in Fig. 9.4.

9.3 Statistically Dependent Random Variables

9.3.1 Two Dependent Random Variables

Calculating the probability of an event of the form (9.3) or (9.4) for dependent ran-
dom variables is much more difficult than it is in a case of independent random
variables presented in Sect. 9.2. Also in this case the advantageous operation is such
a change of variables that leads the dependent random variables X1,X2, . . . ,Xn to
the form of a system of statistically independent random variables U1,U2, . . . ,Un

with a known, optimally normal probability distribution. The appropriate transfor-
mation will be of the general form (9.18). However, it cannot be represented as a
vector of one-dimensional transformations, as it was in a case of statistically inde-
pendent random variables. To illustrate the problem we will start from the particular
example of two statistically dependent random variables and the inequality (9.3).
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Fig. 9.5 The probability density function (9.26)

Example 9.4 Consider the two-dimensional random variable (X,Y ) with probabil-
ity density function of the form

fXY (x, y) =
{

1
2 for |x| + |y| ≤ 1,

0 for |x| + |y| > 1.
(9.26)

The function defined in (9.26) is plotted in Fig. 9.5.
We can see that the two-dimensional joint probability density function of the

random variables X and Y is not a product of the two one-dimensional marginal
probability density functions of X and Y ,

fXY (x, y) �= fX (x)fY (y),

from which follows that the random variables X and Y are statistically dependent.
Now we calculate the probability of the random event X(ω) < Y(ω). To do this we
find the probability density function of the random variable Z(ω) = X(ω) − Y(ω)

and next we calculate the probability of the random event that Z(ω) < 0. We find the
probability density function of the random variable Z in two steps. In the first step
we find the joint probability density function of the vector-valued random variable
(V ,Z), where V (ω) = X(ω) + Y(ω) and Z(ω) = X(ω) − Y(ω). Using (3.116) we
obtain

fV Z (v, z) =
{

1
4 for − 1 ≤ v ≤ 1,−1 ≤ z ≤ 1,

0 for the other v, z.
(9.27)

This new probability density function is shown in Fig. 9.6.
The second step is calculating the marginal probability density function fZ(z),

that is calculating the integral of the joint two-dimensional probability density func-
tion (9.27) with respect to the argument v. As a result we obtain

fZ (z) =
{

1
2 for − 1 ≤ z ≤ 1,

0 for the other z.
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Fig. 9.6 The probability density function (9.27)

Finally we have: P(Z(ω) < 0) = 1
2 .

The result of calculations in Example 9.4 is rather natural and it results from
the symmetry of the probability distribution of the two-dimensional random vari-
able (X,Y ). However, the calculations performed show that for dependent ran-
dom variables obtaining the probability of the form (9.13), especially in the multi-
dimensional case, is not easy. As in the case of independent random variables, a
transformation of the arbitrarily distributed dependent random variables into inde-
pendent standardized normal random variables can be helpful. Before discussing
the general example of multi-dimensional dependent random variables of arbitrary
distribution, let us have a look at dependent Gaussian random variables.

9.3.2 The Case of Gaussian Random Variables

The multi-dimensional normal distribution discussed in this section is a specific
distribution from the point of view of the transformation (9.18). As we observed in
Example 9.3, considered in Sect. 9.2.2, in a case of independent random variables
of the normal distribution, the appropriate transformation is a linear function (or,
more precisely, affine transformation) of coordinates. The analogous property can
be observed also for dependent normal random variables with the claim that now the
transformation does not refer to particular coordinates but to vectors of coordinates.

In previous chapters we defined the examples of the probability density functions
of the one-, two-, and three-dimensional normal distributions. It is known that such
a distribution is completely defined by two parameters: the expected value (in the
general n-dimensional case, by the vector of expected values) and by the variance
(the covariance matrix, in the general case). Using these quantities we can write the
probability density function of the n-dimensional normal distribution in a general
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form:

f (x1, x2, . . . , xn) = 1√
(2π)n det[kij ]

exp

[
−1

2

n∑

i=1

n∑

j=1

Kij (xj − mj)(xk − mk)

]
,

(9.28)

where k = [kij ] is the covariance matrix of the random variables X1,X2, . . . ,Xn,
the matrix K = [Kij ] is the inverse matrix to k, and m = (m1,m2, . . . ,mn)

T is the
vector of the average values of the random variables X1,X2, . . . ,Xn. Such a form
of the probability density function is valid if it defines a non-degenerate normal dis-
tribution, that is all the random variables X1,X2, . . . ,Xn are linearly independent:
none of them can be represented as a linear combination of some of the others.

Now we rewrite the probability density function (9.28) using matrix and vector
notation. The obtained formula for the probability density function is

f (x) = 1√
(2π)n det k

exp

[
−1

2
(x − m)T K (x − m)

]
, (9.29)

where x = (x1, x2, . . . , xn)
T is the vector of arguments of the probability density

function. Now we can use the fact that the covariance matrix k is non-degenerate
and positive definite. In such a case we can represent it as a product of two triangular
positive definite matrices in the form

k = PPT , (9.30)

that is, as a product of the matrix P and its transpose matrix. Also the matrix K can
be represented in the form of two triangular matrices:

K =
(

PT
)−1

P−1. (9.31)

The matrix decomposition of the form (9.31) makes it possible to construct an or-
thogonalizing transformation of the system of random variables, which means a
transformation that builds an equivalent system of statistically independent random
variables.

Now let us try to calculate the probability (9.14) for the probability density func-
tion of the form (9.29). As a result we obtain (this notation is written symbolically
since in fact the integration is with respect to n arguments):

p =
∫

g(x)<0

1√
(2π)n det k

exp

[
−1

2
(x − m)T K (x − m)

]
dx

=
∫

g(x)<0

1√
(2π)n det k

exp

[
−1

2
(x − m)T

(
PT

)−1
P−1 (x − m)

]
dx

=
∫

g(x)<0

1√
(2π)n det k

exp

[
−1

2

(
P−1 (x − m) ,P−1 (x − m)

)

Rn

]
dx, (9.32)
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where (.,.)Rn is the scalar product of two vectors in Rn. Now we can introduce the
new argument u,

u = P−1(x − m), (9.33)

or equivalently

x = Pu + m, (9.34)

and write down the last integral in (9.32) in the following form:

p =
∫

g(PU+m)<0

1√
(2π)n

exp

[
−1

2
(u,u)Rn

]
du

=
∫

G(U)<0

1√
(2π)n

exp

[
−1

2
(u,u)Rn

]
du, (9.35)

where during a change of variables in (9.35) we used the fact that
√

det k = det P =
(det P−1)−1. As we can see from (9.35), the transform of variables of the form
(9.33) makes it possible to find the equation of a hypersurface defining the area
of integration after transforming the set of statistically dependent Gaussian random
variables into the appropriate system of independent Gaussian random variables.
Thus, in the new system of variables we have

G(U) = g(Pu + m). (9.36)

A simple example of the two-dimensional Gaussian distribution illustrates the
method presented above.

Example 9.5 Consider the two-dimensional normal distribution with a known vec-
tor of expected values and a known covariance matrix. The vector and the matrix
are

m =
[
m1
m2

]
, k =

[
σ 2

1 ρσ1σ2

ρσ1σ2 σ 2
2

]
.

The matrix k can be decomposed into a product of matrices of the form (9.30),
where the matrix P is

P =
[

σ1 0

ρσ2 σ2

√
1 − ρ2

]
.

The inverse matrix P has the form

P−1 =
⎡

⎣
1
σ1

0

−ρ

σ1

√
1−ρ2

1
σ2

√
1−ρ2

⎤

⎦ .

Thus, the transformation of the variables has the form

u = P−1 (x − m)
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Fig. 9.7 Transformation of the two-dimensional normal random distribution to the standardized
normal random distribution

=
⎡

⎣
1
σ1

0

−ρ

σ1

√
1−ρ2

1
σ2

√
1−ρ2

⎤

⎦
[
x1 − m1
x2 − m2

]

=
⎡

⎣
x1−m1

σ1

− ρ(x1−m1)

σ1

√
1−ρ2

+ x2−m2

σ2

√
1−ρ2

⎤

⎦ =
[
u1
u2

]
,

and for a given curve g(x1, x2) = 0 the transformed curve G(u1, u2) = 0 has the
form

G(u1, u2) = g
(
σ1u1 + m1, ρσ2u1 + σ2

√
1 − ρ2u2 + m2

)
= 0.

In Fig. 9.7 we present as an example a transformation of the two-dimensional Gaus-
sian random variables in a case when the boundary of the integration area takes the
form of a straight line. Due to the transformation of arguments, the boundary of
the integration area in the new system of coordinates has also the form of a straight
line arisen from the original one by a composition of rotation, shift, lengthening and
homothetic transformation of the plane.

9.3.3 More Random Variables: the Rosenblatt Transformation

After the preceding considerations of this chapter, only the most general case of the
transformations of random variables remain to be analyzed: the initial random vari-
ables X1,X2, . . . ,Xn are statistically dependent and their probability distribution
is known. Before we start the analysis let us recapitulate the conclusions from the
results of Sect. 9.3.2.



9.3 Statistically Dependent Random Variables 225

The first observation resulting from the previous considerations is that the trans-
formation of the variables leading to a standardized normal distribution is of a spe-
cific structure. The result of the transformation is a vector-valued function, where
the first coordinate depends on one argument, the second coordinate depends on two
arguments, etc., and finally the n-th coordinate depends on n arguments being the
values of the random variables under transformation.

The second observation is that the normal distribution has a specific prop-
erty: each of the transforms described above is a linear map of, respectively,
one, two, . . . , n arguments. This is the counterpart of a fact that for the normal
distribution the conditional expected value (the regression) is a linear function of
the measurement data, see e.g. [2].

The above two observations suggest the following general form of the map trans-
forming a system of n arbitrary dependent random variables X1,X2, . . . ,Xn into
the system of standardized Gaussian random variables U1,U2, . . . ,Un. This map is
called the Rosenblatt transform, see [8]. Such a transformation has two fundamental
properties: the number of its arguments grows by one in each line of the transfor-
mation and if the transformed random variables are Gaussian the transformation is
a linear map.

The Rosenblatt transformation is expressed by equality of the probabilities de-
fined, respectively, by the cumulative distribution function of the Gaussian distribu-
tion and by the conditional cumulative distribution functions of the transformed, in
sequence, random variables Xi, i = 1,2, . . . , n. The Rosenblatt transformation can
be symbolically written by means of the conditional cumulative distribution func-
tions as:

Φ (u1) = FX1(x1),

Φ (u2) = FX2(x2|X1 = x1),

Φ (u3) = FX3(x3|X1 = x1,X2 = x2),

. . .

Φ (un−1) = FXn−1(xn−1|X1 = x1,X2 = x2, . . . ,Xn−2 = xn−2),

Φ (un) = FXn(xn|X1 = x1,X2 = x2, . . . ,Xn−1 = xn−1),

(9.37)

or by means of the conditional probability density functions:

Φ (u1) =
∫ x1

−∞
f1 (τ ) dτ,

Φ (u2) =
∫ x2

−∞
f2 (x1, τ )

f1 (x1)
dτ,

Φ (u3) =
∫ x2

−∞
f3 (x1, x2, τ )

f2 (x1, x2)
dτ,

(9.38)
. . .
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Φ (un−1) =
∫ xn−1

−∞
fn−1 (x1, x2, . . . , xn−2, τ )

fn−2 (x1, x2, . . . , xn−2)
dτ,

Φ (un) =
∫ xn

−∞
f (x1, x2, . . . , xn−1, τ )

fn−1 (x1, x2, . . . , xn−1)
dτ,

where

f1 (x1) =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
f (x1, x2, x3, . . . , xn) dx2dx3 · · ·dxn,

f2 (x1, x2) =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
f (x1, x2, x3, . . . , xn) dx3dx4 · · ·dxn,

. . .

fn−1 (x1, x2, . . . , xn−1) =
∫ ∞

−∞
f (x1, x2, x3, . . . , xn) dxn.

(9.39)

Example 9.6 Consider two statistically dependent random variables X,Y having
the joint probability density function of the form

fXY (x, y) = (x + y + xy) e−(x+y+xy). (9.40)

For the two random variables, the probability that the condition

X (ω) < Y (ω) (9.41)

is satisfied can be calculated by integration of the two-dimensional probability den-
sity function (9.40) over such an area of the Euclidean space where x < y, that is

g (x, y) = x − y < 0. (9.42)

Thus, the boundary line separating the areas where the inequality (9.41) is satisfied
or is not satisfied is the straight line. Now we apply the Rosenblatt transformation to
write down this boundary line in the new coordinates system u1, u2, corresponding
to the probability density function of the standardized Gaussian random variables
U1,U2.

f1(x) = fX (x) =
∫ ∞

0
fXY (x, y) dy =

∫ ∞

0
(x + y + xy) e−(x+y+xy)dy

= e−x

[
x

∫ ∞

0
e−(1+x)ydy + (1 + x)

∫ ∞

0
ye−(1+x)ydy

]

= e−x

[
x

1 + x
+ 1 + x

(1 + x)2

]
= e−x, (9.43)

Φ (u1) =
∫ x

0
f1 (τ ) dτ =

∫ x

0
e−τ dτ = 1 − ex, (9.44)



9.4 Computational Problems 227

Φ(u2) =
∫ y

0

f2 (x, τ )

f1 (x)
dτ

=
∫ y

0

(x + τ + xτ) e−(x+τ+xτ)

e−x
dτ =

∫ y

0
[x + τ (1 + x)] e−(1+x)τ dτ

= 1 − (1 + y) e−(1+x)y . (9.45)

The appropriate transformation of the variables in the function (9.42) allows us to
obtain the arguments x, y expressed as functions of u1, u2 by solving the following
system of equations:

1 − ex = Φ(u1),

1 − (1 + y) e−(1+x)y = Φ(u2).
(9.46)

9.4 Computational Problems

In this chapter we have discussed the task of calculating the probability of an
event described by the inequality (9.4), which we called for simplicity, the implicit
problem. Analogously as in problems of the error calculus presented in preceding
chapters, many such problems can be reduced to calculating probabilities for the
multi-dimensional standardized Gaussian distribution. However, in the case of error
calculus problems we considered the probability integrals over an area symmetric
with respect to the center of the distribution, bounded by a spherical surface or
n-dimensional ellipsoid (or in the lower dimensional spaces by, respectively, two
points, ellipses and ellipsoids), but in the implicit problems the integration area is
an area bounded by a general hypersurface in the n-dimensional space (analogously,
in the lower dimensions: a curve of a surface). Therefore calculations of the proba-
bilities in the implicit problems are performed with the use of approximate methods,
usually numerical methods.

The mathematical methods presented in Chap. 9 are very often used in the branch
of mechanics called structural reliability theory. Those readers who are interested in
details of application in reliability theory may study specialized monographs, e.g.,
[1, 3] or [6], where one can find both theoretical aspects of reliability problems and
computational methods. In particular, the extended information about applications
of the Rosenblatt transformation that is an effective tool in reliability methods of
engineering structures leading to unified calculations of standardized Gaussian dis-
tributions can be found in original papers, e.g. in [4, 10] and also in the monograph
by Ditlevsen and Madsen [3].

Let us return to the initial problem formulated in Sect. 9.1. We presented there
the two inequalities (9.3) and (9.4). The first of them described the relation of two
random variables, in a general case statistically dependent ones, while the second in-
equality described two functions of systems of statistically dependent random vari-
ables. We presented a detailed analysis of the inequality (9.4), obtaining as a result
an explicit expression for the probability that the inequality is satisfied, which is in
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a form of integral of the probability density function in n-dimensional Euclidean
space. The problem presented in such a form makes possible an extended analy-
sis taking into account the influence of each of the constituent random variables
X1,X2, . . . ,Xn on the resultant probabilities. It is especially important in reliability
theory problems where one can analyze the influence of each of the factors in the
model on the lifetime of an engineering structure.

Except for the exact analysis of the inequality (9.4) presented above, the prob-
lem of most interest is its approximate analysis which consists in reduction of the
problem to the form (9.3) and calculation of the appropriate probabilities for such
an inequality. It is known that random variables of the form (9.2), that is to say

A(ω) = A(X1(ω),X2(ω), . . . ,Xn(ω)),

B(ω) = B(X1(ω),X2(ω), . . . ,Xn(ω)),
(9.47)

are deterministic functions of the random variables X1(ω),X2(ω), . . . ,Xn(ω) with
a known distribution, so one can find (approximately, in a general case) the joint
probability distribution of the random variables (9.47). Thus, instead of integrations
in the n-dimensional space one integrates in a two-dimensional space. Such calcula-
tions, although less accurate, are sufficient in some applications. If additionally we
use the Rosenblatt transformation, we can calculate probabilities for functions of
n random variables of arbitrary distributions using the two-dimensional probability
density function of the normal distribution.

The fundamental problem to solve is calculation of an integral of the two-
dimensional circular normal distribution (see Chap. 5). Difficulties in such a calcu-
lation are due to the irregular shape of the integration area resulting from the form
of the boundary curve G(u1, u2) = 0. Calculation of the probability p with high ac-
curacy, where φ(u1, u2) is the probability density function of the two-dimensional
standardized normal distribution,

p = P (A(ω) < B (ω)) =
∫

G(u1,u2)<0
φ (u1, u2) du1du2, (9.48)

is a very complicated task. A high accuracy in calculations is essential in profes-
sional technological applications, see e.g. [3, 7, 10].

In some problems one need not calculate the exact value of the probability (9.48)
and it suffices to estimate its value from above (in a case of a crash probability)
or from below (in a case of the probability of structural reliability). Then one can
approximate the exact areas of integration {u1, u2 ∈ R2 : G(u1, u2) < 0} with such
subsets of the R2 space for which the integration of the probability density function
is easy. The areas of such a kind are: circles with their center coinciding with the
center of the system of coordinates O or their sectors, circular rings with their mid-
dle in O or their sectors, half-planes, plane wedge-shaped sectors with their top in
O and systems of such subsets.

Example 9.7 Let us consider the example presented in Fig. 9.8. In this problem
one should calculate the probability of the area cut out from the plane by the curve
G(u1, u2) = 0. The exact value of this probability lies in between χ2

2 (r) and Φ(r).
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Fig. 9.8 An example of
approximation of the
probability (9.48)

The first of the numbers is the probability of hitting the circle with its cen-
ter coinciding with the center of the coordinate system and tangent to the curve
G(u1, u2) = 0. As we know from Chap. 5, it is calculated according to the chi-
squared distribution with two degrees of freedom. The second number is the prob-
ability that the one-dimensional standardized normally distributed random variable
(that is, the random variable corresponding to the distance measured along the line
normal to the curve G(u1, u2) = 0) will exceed the value r . Since the values of the
normally distributed random variable are strongly concentrated around the center of
the coordinate system, the presented approximation is quite precise.

Concluding this chapter we give a number of examples of the value of the prob-
ability for specific areas of integration.

The circle with a center located in the center of the system of coordinates O and
the radius r :

p = Fχ2(2)(r),

where Fχ2(2)(r) is the value at the point r of the cumulative distribution function of
the chi-squared distribution with two degrees of freedom.

The sector of the above circle with the angle α rad:

p = α

2π
Fχ2(2)(r).

The circular ring with the center O and two radii r1 and r2 satisfying r1 < r2:

p = Fχ2(2) (r2) − Fχ2(2)(r1).
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The sector of the above circular ring with the angle α rad:

p = α

2π

(
Fχ2(2) (r2) − Fχ2(2) (r1)

)
.

The half-plane containing the center of the coordinate system O and limited with
a straight line located with a distance r from O:

p = Φ(r).

References

1. Biegus, A.: Probabilistic Analysis of Steel Structures. Polish Scientific Editors, Warsaw (1999)
(in Polish)

2. Bryc, W.: The Normal Distribution. Characterization with Applications. Lecture Notes in
Statistics, vol. 100. Springer, New York (1995)

3. Ditlevsen, O., Madsen, H.O.: Structural Reliability Methods. Wiley, Chichester (1996)
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Chapter 10
Useful Definitions and Facts of Probability
Theory for Further Reading

10.1 Statistical Linearization

In many practical problems one must calculate a moment (e.g., the mean value) of
the random variable Y which is a nonlinear function of the random variables Xj ,
j = 1,2, . . . ,N (see Sect. 2.3). Sometimes this operation can be done accurately,
however in most cases we face certain computational problems. To find a remedy,
we usually try to perform some approximate calculations to express the moment
of the random variable Y as a deterministic function of moments of the random
variables Xj , j = 1,2, . . . ,N . The most popular method of such an approximation
is the so-called linearization, that is, an exchange of the nonlinear function

Y = g(X1,X2, . . . ,XN), (10.1)

by the linear expression

Y ≈ Z = A0 +
N∑

j=1

Aj(Xj − mj), (10.2)

where the coefficients Aj , j = 0,1,2, . . . ,N and mj , j = 1,2, . . . ,N are chosen in
a specific way. The method applied for selection of the coefficients is a foundation
of the quality of the approximation made. For this reason, depending on the require-
ments of a certain engineering problem where nonlinear functions are applied, we
can choose one of several possible methods of linearization, see e.g. [51].

One of the methods of linearization, relatively easy to perform and giving good
results for smooth, regular functions g(.), is the method of direct linearization. In
this method we expand the nonlinear function g(x1, x2, . . . , xN) into the Taylor se-
ries and treat its linear terms as the approximation of the function:

g(x1, x2, . . . , xN) ≈ g(m1,m2, . . . ,mN) +
N∑

j=1

∂g

∂xj

(xj − mj), (10.3)
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where the partial derivatives ∂g
∂xj

for j = 1,2, . . . ,N are calculated at points x1 =
m1, . . . , xN = mn.

In this method we proceed in two steps. First we linearize the deterministic func-
tion g(x1, x2, . . . , xN); next we obtain the approximate value of the random vari-
able Y substituting in the formula (10.3), instead of the independent variables xj ,
j = 1,2, . . . ,N , the random variable Xj , j = 1,2, . . . ,N . The point (in RN ) around
which we do the linearization is usually the vector of mean values of the random
variables Xj :

mj = E{Xj }, j = 1,2, . . . ,N. (10.4)

Finally, the random variable Y can be represented by

Y = g(m1,m2, . . . ,mN) +
N∑

j=1

∂g

∂xj

(Xj − mj), (10.5)

where the derivatives ∂g
∂xj

are calculated as in formula (10.3).
The method of direct linearization gives good results in the case when terms of

higher order in the Taylor expansion of the function g(.) are small enough, with
probability equal to 1, in comparison to linear terms of the expansion. This means
that the derivatives of higher order of the function g(.) are bounded and the random
variables Xj , j = 1,2, . . . ,N are strongly concentrated around their mean values
(which gives small variances).

The method of direct linearization can be applied to vector-valued functions of
random variables in a way analogous to the one presented above.

In this book, the method of direct linearization is consistently applied in the anal-
ysis of the errors of measurements. Examples of application of this method to solu-
tions of stochastic differential equations can be found in [48].

In addition to the method presented above there are some other approaches to
linearization of functions of random variables or, more generally, stochastic sys-
tems. This group of methods, called stochastic linearization, is based on the gen-
eral assumption that the nonlinear function must be replaced by a linear approxi-
mation (10.2), where the coefficients Aj = 0,1,2, . . . ,N are chosen according to
some criterion of stochastic optimality. Selection of a criterion depends on its ap-
plicability in the problem under consideration. The number of variants of stochastic
linearization is quite large and its usefulness has been confirmed in many practical
engineering problems.

The problem of statistical linearization is extensively studied in the literature.
Complete presentation of the state of the art exceeds the boundaries of this book.
More information and some bibliographical references can be found in [38, 45].
Now let us present some simple examples illustrating the idea of the method.

Example 10.1 Given the random variable Y which is a nonlinear function of some
random variable X with the mean value mX and the variance σ 2

X:

Y = g(X). (10.6)
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We search for the coefficients A0 and A1, such that the random variable Z defined
as

Z = A0 + A1(X − mX) (10.7)

and the random variable Y have equal mean values and variances, that is, they satisfy
the conditions

E {Y } = E {Z} and σ 2
Y = σ 2

Z. (10.8)

We find that

A0 = E {g(X)} (10.9)

and

A1 = ±
√√√√σ 2

g(X)

σ 2
X

. (10.10)

The term σ 2
g(X) in (10.10) is the variance of the random variable Y defined in (10.6)

and is a deterministic function of the random variable X. The sign in (10.10) is the
one which fits better the approximation to the function g(.).

Example 10.2 Now we postulate that the random variables defined in Example 10.1
satisfy the least squares condition

minE
{
[Y − Z]2} = min

A0, A1
E
{[

g(X) − A0 − A1(X − mX)
]2}

. (10.11)

After calculating the square of the bracket expression and the mean values we find
A0 and A1 by minimizing the expression (10.11). We obtain A0 as that given in
(10.9) while the coefficient A1 takes now the form

A1 = E{[g(X) − Eg(X)][X − mX]}
σ 2

X

. (10.12)

Both examples show how the result of the linearization depends on the optimality
criterion: depending on the method, we obtained two different values of the expan-
sion coefficients Ai in formula (10.7).

The method of stochastic linearization is sometimes difficult to apply, especially
if we consider stochastic differential equations. It gives, however, a possibility to
solve problems in which the nonlinear function g(.) is non-differentiable, because it
does not require the smoothness property. This attribute of the method is particularly
important in the case of experimentally determined functions, because in such a
case the existence of derivatives and possibility of estimating them is often very
problematic.
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10.2 Multi-dimensional Regression

In Chap. 5 we considered a problem of finding relationships between two random
variables when we have a series of simultaneous measurements of them. The pur-
pose of the analysis was to obtain an explicit expression of the form (5.12a) or
(5.12b), making it possible to calculate a value of one of the variables from the
value of the other.

In this section we consider a more general problem of practical importance con-
nected with measurements of multi-dimensional random variables. Let us assume
that one measures simultaneously k + 1 random variables that make a vector U:

U = (X1,X2, . . . ,Xk,Y ) , (10.13)

written here as a row vector. The purpose of the analysis is to construct a function
of k arguments of the form

y = g (x1, x2, . . . , xk) (10.14)

that could express functional dependence of the random variable Y from the random
variables X1,X2, . . . ,Xk considered as arguments. The appropriate approximation
should be made from a sample of n observations (measurements) of the vector U,
that is from ui = (xi1, xi2, . . . , xik, yi), i = 1,2, . . . , n.

The problem defined by (10.13) and (10.14) and methods of its solution are a
generalization in more dimensions of the problem of constructing the regression
curve or the regression line formulated in Chap. 5 for two-dimensional spaces. In
this section we will present how to find the best linear expression approximating an
arbitrary function defined in (10.14).

The problem under consideration is: find a set of constants α0, α1, α2, . . . , αk that
satisfy the following condition:

E
{

[Y − (α0 + α1X1 + α2X2 + · · · + αkXk)]
2
}

= min . (10.15)

After making measurements we have a set of data that can be written as an n by k

matrix X containing values of the arguments of the function and the n-dimensional
vector Y containing the measured values of the function:

X =

⎡

⎢⎢⎣

x11 x12 · · · x1k

x21 x22 · · · x2k

· · · · · · · · · · · ·
xn1 xn2 · · · xnk

⎤

⎥⎥⎦ , Y =

⎡

⎢⎢⎣

y1
y2
· · ·
yn

⎤

⎥⎥⎦ . (10.16)

Finding a linear expression of the form

g (x1, x2, . . . , xk) = α0 + α1x1 + α2x2 + · · · + αkxk, (10.17)
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which minimizes (10.15), leads to the task of calculating such values of the param-
eters α0, α1, α2, . . . , αk that minimize the following expression:

H (α0, α1, α2, . . . , αk) =
n∑

i=1

(yi − α0 − α1xi1 − α2xi2 − · · · − αkxik)
2 . (10.18)

The values are solutions of a system of equations obtained by equating to zero partial
derivatives with respect to αi, i = 0,1,2, . . . , k of the function defined in (10.18):

∂

∂αi

H (α0, α1, α2, . . . , αk) = 0, i = 0,1,2, . . . , k. (10.19)

The first of (10.19) makes it possible to eliminate the parameter α0 from the rest of
the equations by substitution:

α0 = y −
k∑

j=1

αjxj , (10.20)

where

y = 1

n

n∑

i=1

yi, xj = 1

n

n∑

i=1

xij , j = 1,2, . . . , k. (10.21)

Let us observe that after the substitution of (10.20) into (10.18) we obtain a function
of only k arguments and its value is calculated for centered values of the measure-
ments:

H1 (α1, α2, . . . , αk) =
n∑

i=1

(
(yi − y) − α1(xi1 − x1) − α2(xi2 − x2) − · · ·

− αk(xik − xk)
)2

. (10.22)

For simplicity in calculations, to obtain the parameters αi , i = 1,2, . . . , k, of the
map defined in (10.17), we can solve the following system of equations:

∂

∂αi

H1 (α1, α2, . . . , αk) = 0, i = 1,2, . . . , k. (10.23)

From (10.23) after elementary transformations we obtain a system of linear equa-
tions which in matrix-vector notation takes the form

K̂k âk = ĉk, (10.24)

where K̂k is an estimator of the covariance matrix of measured arguments
X1,X2, . . . ,Xk ,

K̂k = [
Kij

] = [
cov

(
Xi,Xj

)] =
[

1

n

n∑

p=1

(xpi − x̄i )(xpj − x̄j )

]
, i, j = 1,2, . . . , k,

(10.25)
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ĉk is an estimator of the covariance vector of the measured arguments X1,X2,

. . . ,Xk and the resulting variable Y ,

ĉk = [
cj

] = [
cov

(
Y,Xj

)] =
[

1

n

n∑

p=1

(yp − ȳ)(xpj − x̄j )

]
, j = 1,2, . . . , k,

(10.26)
and âk is the vector of system parameters that are wanted,

âk = [α1, α2, . . . , αk]T . (10.27)

Finding the optimal linear function which satisfies the condition (10.15) is now
reduced to solving the system of (10.24) and calculating the missing parameter α0
from (10.20).

More results concerning multi-dimensional regression and its applications can be
found in specialized monographs, e.g. [15, 40].

10.3 Limit Theorems of Probability Theory

Probability theory, being by definition a tool for description of random phenomena,
has some regularities which make it possible to predict some properties of their be-
havior. Remember the results of the classical physical experiment shown in Fig. 2.8,
where, due to multiple random reflections of a large number of balls from the pegs
at the especially prepared board, we obtain a shape of the Gaussian probability den-
sity function. This and other similar processes were described in an abstract way
and formalized as the limit theorems of probability theory. To present these results
we must introduce the concepts of probabilistic convergence.

10.3.1 Concepts of Probabilistic Convergence

Consider the sequence of random variables Xj , j = 1,2, . . . . We want to give vari-
ous definitions of convergence of this sequence to a limit. For the sake of simplicity
we will assume the convergence to zero. In the case of sequences with a non-zero
limit we can subtract this value from every element of the sequence, obtaining fi-
nally the required condition.

We say that the sequence Xi is stochastically convergent (or: converges in prob-
ability) to zero if for every ε > 0 the following condition is satisfied:

lim
j→∞P

(|Xj | > ε
) = 0. (10.28)

Let Fj , j = 1,2, . . . be the sequence of the probability distribution functions
corresponding to random variables Xj , j = 1,2, . . . . We say that the sequence of
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random variables Xj converges to zero according to probability distribution func-
tions (or in distribution) if the sequence of distributions satisfies the condition

lim
j→∞Fj (x) =

{
0 for x < 0,

1 for x > 0.
(10.29)

It can be shown (see, e.g., [14]) that the definitions of convergence in probability
and convergence in distribution (for continuous distributions) are equivalent.

The concepts of convergence defined above are weaker than the following one.
We say that the sequence of random variables Xj , j = 1,2, . . . , converges to zero
with probability 1 (or: almost everywhere, almost certainly, almost surely) if it sat-
isfies the condition

P

(
ω : lim

j→∞Xj(ω) = 0

)
= 1. (10.30)

The convergence in probability of the sequence Xj , j = 1,2, . . . , follows from
its convergence with probability equal to 1.

For random variables possessing a finite second-order moment we can define the
concept of mean-square convergence. We say that the sequence Xj , j = 1,2, . . . ,
converges to zero in a mean-square sense if it satisfies the condition

lim
j→∞E

{
X2

j

} = 0. (10.31)

For random variables with finite second-order moments, the mean-square con-
vergence results from the convergence with probability equal to 1. The stochastic
convergence results from the mean-square convergence. The last fact is a conse-
quence of the following Tchebyshev inequality (see, e.g., [14]).

For an arbitrary random variable X, a non-negative measurable function λ, and
for every ε ≥ 0, the following inequality is satisfied:

P (X ∈ Aε) ≤ E{λ(X)}
ε

, (10.32)

where Aε = {x : λ(x) ≥ ε}.
One can also consider a generalization of the mean-square convergence, the con-

vergence in the mean of order p, reasonable for the sequences of random variables
possessing finite p-th moment. The sequence Xj , j = 1,2, . . . , tends to zero in the
mean of order p if

lim
j→∞E

{
X

p
j

} = 0. (10.33)

10.3.2 The Law of Large Numbers

A class of limit theorems called laws of large numbers enables us to calculate fun-
damental numerical parameters characterizing the sums of independent, identically
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distributed random variables, provided the number of elements of the sum tends to
infinity.

Example 10.3 (The Bernoulli law of large numbers) Let Xj , j = 1,2, . . . be a
sequence of independent random variables which have the binomial distribution
b(n,p) (see (3.31)), taking values from the set {1,2, . . . , n}. Define a new sequence
of random variables Yn by

Yn = Xn − np, (10.34)

where p is the probability of a success in the Bernoulli trial (see Sect. 3.4.1). Then,
for every ε > 0 the following condition is satisfied:

lim
n→∞P (|Yn| > ε) = 0, (10.35)

that is, the sequence Yn tends to zero in probability. This means that if the number n

of the Bernoulli trials grows infinitely, then the ratio of the number of successes to
the number of trials tends to the probability for success p in a single trial.

The law of large numbers enables us, in many situations of practical applications,
to construct estimators of parameters or the state of systems (more precisely: their
mathematical models) using experimental data (the measured values of appropri-
ately chosen quantities), see Sect. 9.3.1.

10.3.3 The Central Limit Theorems

The central limit theorems present the conditions which must be satisfied to obtain
a Gaussian random variable by summing up a sequence of independent random
variables possessing certain properties.

Example 10.4 (The de Moivre-Laplace theorem) Let Xn, n = 1,2, . . . be a sequence
of independent random variables with the binomial distribution b(n,p) (see (3.31)),
taking one of the values from the set {1,2, . . . , n}. Consider the sequence Yn, n =
1,2, . . . of the normalized random variables

Yn = Xn − np√
np(1 − p)

. (10.36)

Let Fn be the sequence of the cumulative distribution functions of random variables
Yn. If 0 < p < 1, then for every real number y the following condition holds:

lim
n→∞Fn(y) = 1√

2π

∫ y

−∞
ey2/2dy. (10.37)

This means that the sequence of the normalized random variables (10.36) converges
(by convergence of the cumulative distribution functions) to a certain normalized
Gaussian random variable.
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Let us note that the random variables Xn, n = 1,2, . . . , of the binomial distribu-
tion are in fact sums of independent Bernoulli random variables taking the value 1
with probability p and the value 0 with probability 1 − p. This means that the de
Moivre-Laplace theorem can be interpreted as the limit theorem for the sums of the
Bernoulli random variables. Analogous limit theorems can be proved for sums of
independent random variables with other distributions.

Example 10.5 (The Lindeberg-Levy theorem) Consider the sequence of indepen-
dent, identically distributed random variables Zj , j = 1,2, . . . , with the mean value
and the variance equal, respectively, to

E
{
Zj

} = m, E
{
(Zj − m)2} = σ 2. (10.38)

Define the new sequence of random variables Yn, n = 1,2, . . . , by

Yn =
∑n

j=1 Zj − nm

σ
√

n
. (10.39)

Then, the sequence of the probability distribution functions Fn, n = 1,2, . . . , of
the random variables Yn, n = 1,2, . . . , satisfies for every value of y the following
equation (cf. [14]):

lim
n→∞Fn(y) = 1√

2π

∫ y

−∞
ey2/2dy. (10.40)

The central limit theorem can be essential in many practical problems. It con-
firms, e.g., the fact that measurement errors, being a result of a number of inde-
pendent random factors, have the normal distribution. It allows us also to apply
statistical tests to verify that the model parameters estimated from the measured
experimental data have acceptable values.

The limit theorems of probability theory have many generalizations. In the liter-
ature one can find theorems in which various concepts of convergence are used, the
summed-up random variables are dependent (“weakly dependent” in some sense)
or some of their moments are unbounded. More information on this subject can be
found in [14, 18, 25, 39, 58].

10.4 Elements of Mathematical Statistics

Most of the numerical parameters describing errors of measurements, e.g., the mean
value, the variance, and moments of higher order, are calculated from the experi-
mental data obtained from measurements. Generally, it is hopeless to measure all
the possible values of a given quantity. This means that the values of parameters
are obtained on the basis of an arbitrary set of measurements, generated at random
according to some probabilistic law. Thus, the calculated value is a random variable
which depends on the event of collecting measurements. Mathematically rigorous
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calculation of errors and verification of their validity requires application of statis-
tical methods, especially from the theory of estimation and the methods of testing
statistical hypotheses.

10.4.1 Estimators

First of all we should define the estimator of a quantity searched for. In the literature
there are a number of abstract definitions of the estimator (comp., e.g., [27]). For
our purposes it is enough to say that the estimator p̂ of some unknown parameter p

is such a function of experimental data which makes it possible to choose the best
approximation of the real value of p (choosing the value from the set of all assumed
choices). Of course, one should determine what “the best” means in the above def-
inition. The precise formulation exceeds the scope of this chapter. Therefore, we
restrict ourselves to some examples of estimators used in this book.

Expression (1.1) is the estimator of the mean value, based on the data obtained
from an experiment (a sample of measurements). This means that if we measure
some independent random variables Xi with the same distributions of the (un-
known) mean value m, then possessing a sample of n measurements xi we can
assume m = x. If we continue the measurements and then calculate x using more
data points (some larger n), we will obtain another value of the estimator, probably
closer to the real value of m. However, for a fixed number n of the measured experi-
mental points, the best approximation of the parameter m is given by formula (1.1).

Analogously, if the random variables have a common variance σ 2, then its esti-
mator can be given by expression (1.4a). It is a question whether this estimator is
the best one. If in formula (1.4a) we substitute the known exact value m for x, then
we will obtain a “good” estimator. However, if we use in (1.4a) the value x defined
in (1.1), then the obtained estimator is biased, that is, its expected value is not equal
to the real value of the parameter searched for. Using instead of the estimator (1.4a)
the following one:

σ̂ 2 = 1

n − 1

n∑

j=1

(
xj − x

)2
, (10.41)

we can show by a simple calculation that E{σ̂ 2} = σ 2, which means the new esti-
mator (10.40) is unbiased. It is seen that for large values of n both expressions for
the estimator of the variance are equivalent.

In Sect. 5.2.2 we presented a method of estimating the coefficients of linear re-
gression, called Procedure Y . The criterion of choice of the best expression for
the estimators of parameters A and B is the minimum of the mean square dis-
tance (5.24). Such an estimator is called the least squares estimator. Some other
criterion, e.g., the minimization of the average sum of absolute values of distances
of the sample points from the regression line would give different expressions for
the estimators of A and B .
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The examples presented here show that constructing the estimators is usually
a complicated procedure, and it is restricted by many precise assumptions. Read-
ers interested in details should study dedicated textbooks or monographs, e.g., [27]
or [41].

10.4.2 Testing Statistical Hypotheses

As it was noted in the previous section, by constructing appropriate estimators we
can calculate, using experimental data, the values of parameters of distributions of
the observed random variables. After such calculations, however, we would like
to know the reliability of the obtained results. It can happen that we made wrong
assumptions concerning a certain type of measured random variable, the set of ex-
perimental data is too small or someone preparing the data made some changes
which disturbed their random character (comp. [36]). Statistical tests can help us in
detecting or excluding such incorrectness. In this section we will present a general
idea of testing statistical hypotheses.

The statistical hypothesis is any conclusion drawn from experimental data which
are considered random variables. If this conclusion is associated with parameters
of the measured random variables (e.g., the mean value, the correlation coefficient),
the hypothesis is called a parametric one. If it is connected with other properties of
the distributions of random variables (e.g., the type of distribution, the dependence
or independence of two random variables), the hypothesis is nonparametric. A pro-
cedure of verification whether a hypothesis H0 is true or false is called the statistical
test. One of the following decisions is usually the result of such a test: we accept
the initial hypothesis H0 or reject it. The only way to make a proper decision is
to perform the exhaustive test, that is, to make all possible measurements and then
make the decision. In general, such a procedure is impossible and usually the inves-
tigator has a limited number of data samples. Then the following four situations are
possible (with a certain probability):

The hypothesis H0 is false and we reject it. Probability of this event is called the
power of the test.

The hypothesis H0 is false but we accept it. This decision is called the error of
the 2nd kind.

The hypothesis H0 is true and we accept it.
The hypothesis H0 is true but we reject it. This decision is called the error of

the 1st kind. Some arbitrarily fixed maximum probability of this error is called the
significance level of the test.

From many possible tests with a given level of significance, we usually choose
the test which has the maximum power. Such a test is called the strongest one (on a
certain level of significance).

To construct a statistical test we should build a certain function of the measured
statistical data, called the statistic, the probability distribution of which, under the
assumption that the tested hypothesis is true, is known. Such a function is a measure
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of difference between the theoretically assumed distribution and the really estimated
probability distribution of the investigated random variable (comp. [41]). To perform
the test, one should fix some area, called the critical area, depending on the postu-
lated level of significance and the power of the test. Now, if the value of the statistic
calculated for the data measured in an experiment made for verification of the hy-
pothesis belongs to the critical area, we reject the hypothesis H0. If it is outside of
the critical area, we accept this hypothesis.

In the literature there is reported a large number of tests which make it possible to
verify various postulated properties of empirical probability distributions, both one-
dimensional and multi-dimensional. Here we give the most important areas where
the statistical tests enable us to verify the statistical hypotheses indispensable in
engineering applications. They are:

Tests of randomness, which let us decide if a sample of measurements can be
considered a sequence of realizations of random variables. They also let us verify if
a random sample is representative in order to make other statistical tests.

Tests of goodness of fit, which allow us to determine the distribution of some
sequence of measurements or to decide if two sequences of the measured data have
the same probability distribution.

Tests of normality, which are a specific kind of tests of goodness, deciding if
a sample of data can be considered to be normally distributed; they are especially
important in practice so they have their own name.

Tests for parameters of a certain distribution (the parametric tests), which let us
verify the reliability of parameters, e.g., moments, parameters of population, esti-
mated from a series of measurements.

Tests of independence, which make it possible to detect, after measurements, if
random variables (two or more) can be considered to be independent.

Examples of tests of each of the group listed and some other special tests may be
found in dedicated monographs, see, e.g., [14, 28].

10.4.3 Confidence Intervals

The problems of estimation and testing of the statistical hypotheses are strongly
connected with the concept of a confidence level and confidence intervals. As we
know, a certain value of a parameter estimated from a series of measurements, that
is, the estimator of the real value of this parameter, is a random variable. For any
series of measurements it takes some different values, according to its specific prob-
ability distribution. This probability distribution can often be calculated, provided
the distributions of the measurements are known. It is interesting to find an interval
where the values of the estimator will occur with some a priori assumed probabil-
ity. In such a case this assumed probability is called the confidence level and the
corresponding interval is called the confidence interval (see e.g., [14, 41]).

Let us recall the three-sigma rule for the normal distribution. If we generate a
random number according to N(0,1), that is, the normal distribution with a zero
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mean and a unit variance, then it will be in the interval (−3,3) with probability
0.9973.

If we now generate independently two numbers such as those in the previous
case, then the sum of their squares will have the χ2(2) probability distribution.
Hence, the sum of squares, with probability of 0.5, will lie inside the circle of radius
1.386 (comp. Table 5.2). This circle can be called the confidence set for the level of
confidence equal to 0.5.

10.5 Bibliographical Notes for Future Studies

Error calculus is a mathematical tool which enables us to consider, among others,
random properties of measurements of engineering objects. It has been an element
of scientific experimental analysis in engineering problems. One can find many
examples in the literature dealing with both the practical aspects of measurement
technique and the mathematical foundations of error calculus or, in a wider sense,
data analysis (see, e.g., [7, 10, 34, 35, 43, 55]). But the error analysis enables us
to take into account only the most elementary effects of randomness in the behav-
ior of structures or technological processes. They can be, for example, clearances
in mechanisms, material imperfections of mass-produced elements, or some envi-
ronmental disturbances during artillery shots. Observations of practically operating
engineering structures show that their behavior fluctuates randomly in time and, as
a consequence, can be appropriately described by stochastic processes (or random
fields with space-time arguments).

Our purpose has not been a presentation of advanced stochastic analysis of engi-
neering structures. We give, however, some notes for the readers who, after studies
of error analysis, are interested in more advanced problems of probabilistic engi-
neering mechanics. Below we provide the titles of several monographs and text-
books which can indicate new directions of studies.

We start with some general books on probability theory, where the foundations
of probability theory [13, 14, 33] and associated field of mathematics like measure
theory [4, 9] or combinatorics [11] are presented. We can also mention applica-
tions of probability theory in engineering problems, such as reliability of structures
[12, 30, 31, 53].

A detailed analysis of errors should involve, as we mentioned, advanced statis-
tical methods. Information on mathematical statistics, especially testing statistical
hypotheses and estimation theory, may be found in [27, 28, 36, 41, 59].

As we have mentioned, the realistic description of work of engineering mech-
anisms and structures requires application of stochastic processes. The theory of
stochastic processes is well developed both as an abstract theory and as a tool for
analysis of real phenomena. Information on stochastic processes can be found in
[17, 33, 39, 57, 60, 62] and on random fields in [49].

A specific class of stochastic processes are the solutions of so-called stochas-
tic differential equations. Stochastic differential equations are the counterpart of
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deterministic differential equations (ordinary or partial) in the case when the ini-
tial conditions, parameters, and excitations are random variables or stochastic pro-
cesses. There is a large literature on the theory of stochastic differential equations
[20, 42, 46] and in their applications in many fields of engineering such as mechani-
cal engineering [45, 48, 50], random vibrations [5, 38, 52, 54], wave processes [47],
and stability theory [44, 56].

We should also indicate some specific methods useful in stochastic mechanics
such as stochastic finite element methods [16, 22], numerical methods [23, 24], and
computer simulations of physical phenomena [8, 19, 29, 37, 61].

Returning to measurements and data analysis we should mention the case when
the results of individual measurements are mutually dependent. They may then be
modeled as specific stochastic processes, e.g., Markov processes [3, 39], but in most
cases it is convenient to treat them as time series, which are stochastic processes with
discrete time argument [6, 32].

Applications of the results of measurements and data analysis are a necessary
part of many practical problems of engineering. We refer here to some of them:
estimation, prediction, identification, filtering of signals and stochastic control [1, 2,
21, 26], stochastic optimization of processes and structures [63].

The list of books presented in this section is far from being complete. But we
think that it may show readers the directions for their own studies.
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Solutions

Problems of Chap. 1

1.1 The table of lengths for the scale to 20 cm is

Interval 1–20 21–40 41–60 61–80 81–100

No. 75 14475 10950 1100 125

Fig. S.1 Histogram 1 in
Problem 1.1

Z. Kotulski, W. Szczepiński, Error Analysis with Applications in Engineering,
Solid Mechanics and Its Applications 169,
DOI 10.1007/978-90-481-3570-7, © Springer Science+Business Media B.V. 2010
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Fig. S.2 Histogram 2 in
Problem 1.1

1.2

Interval wl

∑l
j=1 wj Interval wl

∑l
j=1 wj

1−5 0 0 51−55 0.064 0.919

6−10 0 0 56−60 0.036 0.954

11−15 0.001 0.001 61−65 0.024 0.978

16−20 0.002 0.003 66−70 0.008 0.987

21−25 0.010 0.013 71−75 0.005 0.992

26−30 0.109 0.122 76−80 0.004 0.995

31−35 0.198 0.320 81−85 0.001 0.996

36−40 0.225 0.544 86−90 0.002 0.998

41−45 0.191 0.735 91−95 0.001 0.999

46−50 0.120 0.855 96−100 0.001 1.000

Interval 1−20 21−40 41−60 61−80 81−100

wl 0.003 0.541 0.410 0.041 0.005
∑l

j=1 wj 0.003 0.544 0.954 0.995 1.000
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Fig. S.3 Cumulative
frequency distribution 1 in
Problem 1.2

Fig. S.4 Cumulative
frequency distribution 2 in
Problem 1.2

1.3 The parameters are given in the following table:

Scale 5 cm Scale 20 cm

The average value 42.94 50.07

The variance 103.34 146.39

The standard deviation 10.17 12.10
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1.4 The parameters are given in the following table:

Scale 5 cm Scale 20 cm

The average deviation d 7.79 11.07

The standard deviation s 10.17 12.10
s

d
1.31 1.09

Problems of Chap. 2

2.1 The probability that the individual elements will work correctly is, respectively,
0.4, 0.5, 0.6, and 0.7. The probability that the system will work correctly is

P(A) = 0.4 ∗ 0.5 ∗ 0.6 ∗ 0.7 = 0.084,

and the probability of a defect during one year of work is

P(A′) = 1 − P(A) = 0.916.

2.2 First we find the probability of the complementary event that the sample will
be accepted. This means that we should get a sequence of 10 correct elements, each
with the probability, respectively, 190

200 , 189
199 , . . . , 181

191 . The probability of the accep-
tance of the sample is

P(A′) = 190

200
∗ 189

199
∗ · · · ∗ 181

191
= 0.5915,

and the probability of the rejection of the sample is

P(A) = 1 − P(A′) = 0.4085.

2.3 The sample of 50 elements can be chosen in
( 100

50

)
ways.1 The sample will be

accepted if it contains no defective elements
(( 95

50

)
choices

)
, exactly one defective

element
(( 95

49

)( 5
1

)
choices

)
or exactly two defective elements

(( 95
48

)( 5
2

)
choices

)
.

Thus, the probability of acceptance of the sample is

P(A) =
( 95

50

)+ ( 95
49

)( 5
1

)+ ( 95
48

)( 5
2

)
( 100

50

)

= 47 ∗ 46 + 5 ∗ 50 ∗ 47 + 10 ∗ 50 ∗ 49

8 ∗ 99 ∗ 97
= 38412

76824
= 0.5.

1Symbol
(

n
k

)
is a number of k-elements combinations of elements of an n-element set and is

defined as
(

n
k

) = n!
k!(n−k)! = n∗(n−1)∗···∗(n−k+1)

k∗(k−1)∗···∗2∗1 .
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Problems of Chap. 3

3.1

c = 1∫ ∞
0 x2e−kxdx

= k3

2
,

FX(x) =
∫ x

0

k3

2
x2e−kxdx = 1 − 1

2
(k2x2 + 2kx + 2)e−kx,

P (X ∈ (0,1/2k)) = F(1/2k) = 1 − 1

2

(
1

4
+ 1 + 2

)
e−1/2 ≈ 0.0144.

3.2

(a) f (x) =
{

cbxb−1 exp[−cxb] for x > 0,

0 for x ≤ 0,

(b) αp =
[
−1

c
ln (1 − p)

]1/b

,

(c)

(
b − 1

bc

)1/b

.

3.3

A =
[∫ 1

0
xa−1(1 − x)b−1dx

]−1

= �(a + b)

�(a)�(b)
,

E [X] = a

a + b
, Var [X] = ab

(a + b)2(a + b + 1)
.

3.4 Since the Laplace distribution is symmetric, x = 0. Then,

1

2
= P(|X − x| < E) =

∫ E

−E

1

2
e−|x|dx =

∫ E

0
e−xdx = 1 − e−E

and E = ln 2 = 0.6931.

3.5

fXY (x, y) =
{

1
(b−a)(d−c)

for a ≤ x ≤ b, c ≤ y ≤ d,

0 outside this rectangle

FXY (x, y) = FX(x)FY (y),

where

FX(x) =

⎧
⎪⎨

⎪⎩

0 for x < a,
x−a
b−a

for a ≤ x ≤ b,

1 for x > b,
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FY (y) =

⎧
⎪⎨

⎪⎩

0 for y < c,
y−c
d−c

for c ≤ y ≤ d,

1 for y > d.

3.6

fX(x) =
∫ ∞

−∞
fXY (x, y)dy = C

√
π

β
exp

[
−
(

α − ξ2

4β

)
x2

]
,

fY (y) =
∫ ∞

−∞
fXY (x, y)dx = C

√
π

α
exp

[
−
(

β − ξ2

4α

)
x2

]
.

The random variables are independent if

fXY (x, y) = fX(x)fY (y),

that is, if the condition√
αβ

πC
exp

[
−ξ2

4

(
x2

β
− 4xy

ξ
+ y2

α

)]
= 1

is satisfied. This is possible only if ξ = 0 and C =
√

αβ
π

.

3.7 The joint probability density function of the random vector (X,Y ) is

fXY (x, y) = 1

2πσ 2
exp

[
−x2 + y2

2σ 2

]
.

The probability density function of the vector (R,Φ) can be calculated according
to the formula

fRΦ(r,ϕ) = fXY (x(r,ϕ), y(r,ϕ))

∣∣∣∣
∂(x, y)

∂(r,ϕ)

∣∣∣∣ ,

where
∣∣∣∣
∂(x, y)

∂(r,ϕ)

∣∣∣∣ =
∣∣∣∣∣

∂x
∂r

∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

∣∣∣∣∣ = r.

Finally,

fRΦ(r,ϕ) = r

2πσ 2
exp

[
− r2 cos2 ϕ + r2 sin2 ϕ

2σ 2

]

= r

2πσ 2
exp

[
− r2

2σ 2

]
.

It is seen that the random variables R and Φ are independent, because

fRΦ(r,ϕ) = fR(r)fΦ(ϕ),
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where

fR(r) = r

σ 2
exp

[
− r2

2σ 2

]
, r ≥ 0,

is the probability density function of the Rayleigh distribution, and

fΦ(ϕ) = 1

2π
, 0 ≤ ϕ < π,

is the probability density function of the uniform distribution.

3.8 For the Pareto distribution with parameters a > 0 and p > 0 the entropy (with
base e) is

H = log
(p

a

)
− 1

p
− 1.

3.9 We repeat the procedure of Example 3.7 of the inversion of the cumulative
distribution function, now for the Pareto distribution. Let {yn, n = 1,2, . . .} be a se-
quence of independent realizations of random variable Y with a distribution uniform
along the interval [0,1]. In such a case the sequence {xn = F−1(yn), n = 1,2, . . .}
represents independent realizations of a random variable with the Pareto distribu-
tion provided that y = F(x) is the cumulative distribution function of the Pareto
distribution with the parameters a > 0 and p > 0,

y = F (x) =
{

0 for x < a,

1 − [ a
x
]p for x ≥ a,

and the function x = F−1(y) is the function inverse to it:

x = F−1 (y) = a
[
1 − y

]− 1
p for y ∈ [0,1] .

Problems of Chap. 4

4.1

R =
√

(xB − xA)2 + (yB − yA)2,

σ 2
R =

[(
∂R

∂xA

)2

+
(

∂R

∂xB

)2

+
(

∂R

∂yA

)2

+
(

∂R

∂yB

)2
]

σ 2,
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or in numbers, comp. Example 3.5,

σ 2
R =

[
(−0.857)2 + 0.8572 + (−0.514)2 + 0.5142

]
σ 2 = 1.997σ 2.

4.2

x = r cosϕ +
√

l2 − r2 sin2 ϕ,

σ 2
x =

(
∂x

∂l

)2

σ 2
l +

(
∂x

∂r

)2

σ 2
r +

(
∂x

∂ϕ

)2

σ 2
ϕ ,

or in numbers, comp. Example 3.6,

σ 2
x = (1.037)2 σ 2

l + (0.5126)2 σ 2
r + (−27.047)2 σ 2

ϕ .

4.3

x = r cosϕ +
√

l2 − (h + r sinϕ)2 ,

∂x

∂l
= 1.08 mm/mm,

∂x

∂r
= 0.41 mm/mm,

∂x

∂h
= −0.42 mm/mm,

∂x

∂ϕ
= −30.0 mm/rad.

4.4

Fig. S.5 Graphical
illustration of the solution of
Problem 4.4
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Fig. S.6 Graphical illustration of the solution of Problem 4.5

4.5

sl ≡ ∂x

∂l
= 1.04, sr ≡ ∂x

∂r
= 0.51, mϕ ≡ ∂x

∂ϕ
= −27 mm/rad.

Problems of Chap. 5

5.1 We calculate:

x = 1

20

20∑

j=1

xj = 6.08, y = 1

20

20∑

j=1

yj = 232.45,

cov(X,Y ) = 1

20

20∑

j=1

(
xj − x

) (
yj − y

) = 386.704,

so the random variables X and Y are strongly correlated.

5.2 We calculate

x = 1

20

20∑

j=1

xj = 1.599, y = 1

20

20∑

j=1

yj = 1.256,

σ 2
X = 1

20

20∑

j=1

(
xj − x

)2 = 0.0708, σ 2
Y = 1

20

20∑

j=1

(
yj − y

)2 = 0.0036,

cov(X,Y ) = 1

20

20∑

j=1

(
xj − x

) (
yj − y

) = 0.005456,

[
σ 2

X cov(X,Y )

cov(X,Y ) σ 2
Y

]
=

[
0.0708 0.005456

0.005456 0.0036

]
,

ρ = cov(X,Y )

σXσY

= 0.034.
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The principal axes of the covariance tensors are rotated through the angle β =
| 1

2 tan−1 2cov(X,Y )

σ 2
Y −σ 2

X

)| = 4.61◦ with respect to the axes of the coordinate system. We

take the positive value of the rotation angle because the random variables X and Y

are positively correlated.

5.3 We calculate

x = 1

20

20∑

j=1

xj = 172.75, y = 1

20

20∑

j=1

yj = 4.62,

σ 2
X = 1

20

20∑

j=1

(
xj − x

)2 = 438.6875, σ 2
Y = 1

20

20∑

j=1

(
yj − y

)2 = 0.5116,

cov(X,Y ) = 1

20

20∑

j=1

(
xj − x

) (
yj − y

) = 10.995,

ρXY = cov(X,Y )

σXσY

= 0.7339.

Procedure Y:

A = 0.0251, B = 0.290,

and the angle of inclination is β = tan−1 A = 1.43◦.
Procedure X:

C = 24.49, D = 73.46,

and the angle of inclination is β = tan−1 1
C

= 2.34◦.
The method of moments gives

TJ =
[

8773.75 219.9
219.9 10.232

]

and the angle of inclination is β = 1
2 tan−1 2Jx0y0

Jy0−Jx0
= 1.44◦. We see that the method

of moments gives a result between the results of Procedure X and Procedure Y.

5.4 We find

σX = √
2, σY = 2, ρXY = 1

2
√

2

and, according to formula (5.62),

f (x, y) = 1

2π
√

7
exp

[
−1

7

(
2x2 − xy + y2

)]
.



Problems of Chap. 5 257

5.5 We find the standard deviations and the correlation coefficient of the random
variables X and Y and then the general equations of the ellipses of constant proba-
bility:

(a) σX = √
2, σY = 2, ρXY = 0,

x2

2
+ y2

4
= λ2,

(b) σX = √
2, σY = 2, ρXY = −1

2
√

2
,

8

7

[
x2

2
+ xy

4
+ y2

4

]
= λ2,

(c) σX = √
2, σY = 2, ρXY = 1

2
√

2
,

8

7

[
x2

2
− xy

4
+ y2

4

]
= λ2.

The principal axes of the covariance tensors are:
(a) parallel to the axes of the coordinate system; (b) rotated through the angle

−22.5◦; (c) rotated through the angle 22.5◦ with respect to the axes of the coordinate
system.

5.6 Since the random variables X and Y are independent, their joint probability
density function is the product of the one-dimensional probability density functions,

fXY (x, y) = 1

4π
exp

[
−x2

2
− y2

8

]
.

The random variables (U,V ) are expressed by the random variables (X,Y ) as

U = X cos 30◦ + Y sin 30◦ =
√

3

2
X + 1

2
Y,

V = −X sin 30◦ + Y cos 30◦ = −1

2
X +

√
3

2
Y.

The mean values and the covariance tensor of the new random variables (U,V ) are

[
u

v

]
=

[
0
0

]
,

[
σ 2

U cov(U,V )

cov(U,V ) σ 2
V

]
=

[
1 3

4
3
√

3
4

3
√

3
4 3 1

4

]
,

and the standard deviations and the correlation coefficient are, respectively,

σU =
√

7

2
, σV =

√
13

2
, ρUV =

3
√

3
4√

7
2

√
13
2

= 3
√

3√
91

≈ 0.5447.



258 Solutions

Finally, we obtain the probability density function of the random vector (U,V ),

fUV (u, v) = 1

4π
exp

{
− 91

128

[
4u2

7
− 3

√
3uv

2
+ 4v2

13

]}
.

We observe that the random variables U and V are correlated (they are statistically
dependent).

5.7 We consider the normalized random variables

U = X − 1000

10
and V = Y√

50
.

According to (5.56), the sum of their squares has the chi-squared distribution with
two degrees of freedom, so outside of the ellipse

(
X − 1000

10

)2

+ Y 2

50
= χ2

0.001(2) = 13.855

the probability of the hit point is less than 0.001.

Problems of Chap. 6

6.1 The polygon of positioning tolerance limits is bounded by three pairs of parallel
straight lines. The equations of these lines are:

y = ±0.2606,

y − 1.732x = ±0.8692,

y + 0.577x = ±0.1732.

The polygon is shown in the figure.

Fig. S.7 Graphical
illustration of the solution of
Problem 6.1
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6.2 Eight combinations of joint positioning tolerance limits are collated in the table:

Variant I II III IV V VI VII VIII

�a +0.1 +0.1 −0.1 −0.1 −0.1 +0.1 +0.1 −0.1
�b +0.1 −0.1 −0.1 −0.1 +0.1 +0.1 −0.1 +0.1
�θ −2 −2 −2 +2 +2 +2 +2 −2

All eight Williot’s diagrams are shown in Fig. S.8. The end point of each diagram
is denoted by the number of the corresponding variant of positioning tolerance limits
combination.

Compare the Williot’s diagrams with the tolerance limits polygon in Problem 6.1.

6.3 The polygon for θ = 0◦ is bounded by two pairs of parallel straight lines deter-
mined by the equations

y = ±0.348, x = ±0.200.

For θ = 90◦ the polygon is bounded also by two pairs of straight lines

y = ±0.100, x = ±0.448.

Fig. S.8 Graphical illustration of the solution of Problem 6.2
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Fig. S.9 Graphical
illustration of the solution of
Problem 6.3

Fig. S.10 Graphical
illustration of the solution of
Problem 6.4

The two polygons are shown in Fig. S.9.
Note how strongly the shape and dimensions of the polygon of the positioning

accuracy depend on the position of the mechanism.

6.4 The ellipse of probability concentration is determined by the equation

x2 + xy + 0.293y2 = 0.146λ2l2σ 2
θ = 32.0.

The ellipse is shown in Fig. S.10.

6.5 The lengths of the semi-axes of the ellipse are

a = 17.51 mm, b = 10.75 mm.

The ellipse and the polygon are shown in Fig. S.11.
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Fig. S.11 Graphical illustration of the solution of Problem 6.5

Problems of Chap. 7

7.1 We observe that random variables (X,Y ) and Z are independent and

fXYZ(x, y, z) = fXY (x, y)fZ(z),

where

fXY (x, y) = 1

2π
√

3
exp

{
−2

[
(x − 4)2

6
− (x − 4)y

2
+ y2

2

]}

and

fZ(z) = 1

2
√

2π
exp

[
− (z − 2)2

8

]
.

7.2 We must calculate the elements of the inverse matrix [Λjk] = [λjk]−1. First we
calculate the algebraic complements of the determinant of Δ = |λjk|,

Δ11 =
∣∣∣∣
10 6
6 9

∣∣∣∣ = 54, Δ12 = −
∣∣∣∣
4 6
2 9

∣∣∣∣ = −24,

Δ13 =
∣∣∣∣
4 10
2 6

∣∣∣∣ = 4, Δ22 =
∣∣∣∣
11 2
2 9

∣∣∣∣ = 95,

Δ23 = −
∣∣∣∣
11 4
2 6

∣∣∣∣ = −58, Δ33 =
∣∣∣∣
11 4
4 10

∣∣∣∣ = 94,

and then the determinant
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∣∣λjk

∣∣ =
∣∣∣∣∣∣

11 4 2
4 10 6
2 6 9

∣∣∣∣∣∣
= 11Δ11 + 4Δ12 + 2Δ13 = 506.

Since Δjk = Δkj , the corresponding terms under the exponent in the probability
density function are equal and the density can be written as

f (x, y, z) = 1

2π
√

1012π
exp

{
− 1

1012

[
54(x + 3)2

− 48(x + 3)(y + 2) + 8(x + 3)(z − 1) + 95(y + 2)(y + 2)

− 116(y + 2)(z − 1) + 94(z − 1)2]
}
.

7.3 We must calculate the elements of the inverse matrix [Λjk] = [λjk]−1. First we
calculate the algebraic complements of the determinant of Δ = |λjk|,

Δ11 =
∣∣∣∣∣∣

16 6 −2
6 4 1

−2 1 3

∣∣∣∣∣∣
= 28, Δ12 = −

∣∣∣∣∣∣

3 6 −2
1 4 1
0 1 3

∣∣∣∣∣∣
= −13,

Δ13 =
∣∣∣∣∣∣

3 16 −2
1 6 1
0 −2 3

∣∣∣∣∣∣
= 16, Δ14 = −

∣∣∣∣∣∣

3 16 6
1 6 4
0 −2 1

∣∣∣∣∣∣
= −14,

Δ22 =
∣∣∣∣∣∣

15 1 0
1 4 1
0 1 3

∣∣∣∣∣∣
= 162, Δ23 = −

∣∣∣∣∣∣

15 3 0
1 6 1
0 −2 3

∣∣∣∣∣∣
= −291,

Δ24 =
∣∣∣∣∣∣

15 3 1
1 6 4
0 −2 1

∣∣∣∣∣∣
= 205, Δ33 = −

∣∣∣∣∣∣

15 3 0
3 16 −2
0 −2 3

∣∣∣∣∣∣
= 633,

Δ34 =
∣∣∣∣∣∣

15 3 1
3 16 6
0 −2 1

∣∣∣∣∣∣
= −405, Δ44 = −

∣∣∣∣∣∣

15 3 1
3 16 6
1 6 4

∣∣∣∣∣∣
= 404,

and then the determinant itself

∣∣λjk

∣∣ =

∣∣∣∣∣∣∣∣

15 3 1 0
3 16 6 −2
1 6 4 1
0 −2 1 3

∣∣∣∣∣∣∣∣
= 15Δ11 + 3Δ12 + Δ13 = 397.

Since Δjk = Δkj , the corresponding terms under the exponent in the probability
density function are equal and the density can be written as
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f (x, y, z,u) = 1

4π2
√

397
exp

{
− 1

794

[
28(x + 5)2 − 26(x + 5)(y − 2)

+ 32(x + 5)z − 28(x + 5)(u − 4) + 162(y − 2)2

− 582(y − 2)z + 410(y − 2)(u − 4)

+ 633z2 − 810z(u − 4) + 404(u − 4)2]
}
.

7.4 Since the random variables are independent, for numbers a < b, c < d , e < f

the following relation is true:

P(a ≤ X < b,c ≤ Y < d, e ≤ Z < f )

= P(a ≤ X < b)P (c ≤ Y < d)P (e ≤ Z < f ).

The probabilities, for the normal distribution, may be expressed by the cumulative
distribution function of the normalized distribution, Φ(x), given in Table 2.3, e.g.,

P(a ≤ X < b) = Φ

(
b − mX

σX

)
− Φ

(
a − mX

σX

)
.

Finally, the probability P that the point is located within the walls of the rectangular
prisms is the difference of the probability that it is inside the larger prism and the
probability that it is inside the smaller one :

P = [Φ(2) − Φ(0)][Φ(0.5) − Φ(−0.5)][Φ(0.667) − Φ(0)]
− [Φ(1) − Φ(0.5)][Φ(0) − Φ(−0.24)][Φ(0.333) − Φ(0.167)]

≈ 0.0443 − 0.00114 = 0.043.

7.5 The set of the constant value of the probability density function contains the
point coordinates which solve the equation

0.02 =
√

3

16π
√

π
exp

{
−1

8

[
(2x2 + 4(y − 1)2 − 2(y − 1)(z + 9) + (z + 9)2]

}
,

that is, the solutions of

−8 log

(
32π

√
π

100
√

3

)
= 2x2 + 4(y − 1)2 − 2(y − 1)(z + 9) + (z + 9)2.

7.6 We consider the normalized random variables

U = X

10
, V = Y

10
and W = Z − 3000√

500
.
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The sum of their squares has the chi-squared distribution with three degrees of free-
dom, so outside the ellipsoid

(
X

10

)2

+
(

Y

10

)2

+
(

Z − 3000

10
√

5

)2

= χ2
0.001(3) = 16.268

the probability of the hit point is less than 0.001.

Problems of Chap. 8

8.1 The equations of the planes bounding the polyhedron are

1.329x + z = ±0.227,

1.058x + z = ±0.282,

x = ±0.806,

y = ±0.671.

The polyhedron is shown in Fig. S.12.

Fig. S.12 Graphical illustration of the solution of Problem 8.1
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8.2 In the reference Cartesian coordinate system X,Y,Z, the position of the end-
effector is determined by the following functions of the four independent variables
θ1, θ2, θ3, θ4:

X = [a cos θ2 + b cos(θ2 + θ3) + c cos(θ2 + θ3θ4)] cos θ1,

Y = [a cos θ2 + b cos(θ2 + θ3) + c cos(θ2 + θ3θ4)] sin θ1,

Y = a sin θ2 + b sin(θ2 + θ3) + c sin(θ2 + θ3θ4).

The values of partial derivatives of these functions after substituting the values
of dimensions and angles are

– i = 1 i = 2 i = 3 i = 4

∂X
∂θi

0 −869.62 −519.62 0
∂Y
∂θi

1156.22 0 0 0
∂Z
∂θi

0 1156.22 550 250

Matrix (8.10) of the second-order moments takes on now the following form
(in mm2):

[
kij

] =

⎡

⎢⎢⎣

1.026 0 −1.291

0 1.337 0

−1.291 0 1.701

⎤

⎥⎥⎦ .

The inverse matrix [Kij ] reads

[
Kij

] =

⎡

⎢⎢⎣

21.390 0 16.224

0 0.748 0

16.224 0 12.894

⎤

⎥⎥⎦ .

For the assumed value of the probability α = 0.683 we find from Fig. 7.1 that
χ2 = 3.50. Substituting the derived data into (7.25) we find the ellipsoid of proba-
bility concentration

21.390x2 + 0.748y2 + 12.894z2 + 32.448xz = 3.50.
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A
Artillery fire, 7, 108
Asymmetry coefficient, 53, 78
Average deviation, 24, 53
Average value, 51, 56, 127

B
Bernoulli trial, 58
Bochner theorem, 49

C
Central point, 127
Characteristic function, 49
Computer simulation, 61, 112, 131, 167, 204,

206
Conditioning, 19
Confidence interval, 242
Confidence set, 243
Constant

Euler-Mascheroni, 71
Convergence

almost certainly, 237
almost everywhere, 237
almost surely, 237
in distribution, 237
in probability, 236
in the mean of order p, 237
mean-square, 237
stochastic, 236
with probability 1, 237

Correlation
linear, 121

coefficient of, 123
moment, see covariance

Covariance, 108, 179
matrix of normal distribution, 141
tensor

three-dimensional, 110, 176, 179
two-dimensional, 109, 128

Cramer theorem, 50
Cumulants, 51
Cumulative distribution function, 20

empirical, see cumulative frequency
distribution

properties of, 20
Cumulative frequency distribution, 6

D
Difference, 4
Dispersion, 4
Distribution

arcsine, 57
arcus tangens, 73
beta, 88
bimodal, 52
binomial, 58
Bradford, 74
Cauchy, 25
chi-squared, 69, 229

m degrees of freedom, 132
three degrees of freedom, 182
two degrees of freedom, 132

continuous, 21, 60
discrete, 21, 57
equal probability, see distribution, uniform
Erlang, 68
exponential, 65, 78

entropy of, 55
gamma, 67
Gaussian, see distribution, normal
Gumbel, 71
Laplace, 88
lognormal, 62, 78
marginal, 81, 126
multinomial, 59
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normal, 26
characteristic function of, 50
circular, 130
cumulants of, 51
deviation from, 78
entropy of, 55
moments of, 25, 50
spherical, 181
three-dimensional, 201
three-dimensional of dependent r.v., 183
two-dimensional, 129, 165
two-dimensional of dependent r.v., 141

one-dimensional, 20
Pareto, 74
piece-wise linear, 75
Poisson, 59
quasi-step, see distribution, discrete
range of, 53
Rayleigh, 253
rectangular, 60, 78, 153, 193
standard normal, 30
student t , 72
three-dimensional, 175, 191
triangular, 76, 78
two-dimensional, 107
uniform, see distribution, rectangular
unimodal, 52
Weibull, 70, 88

E
Ellipse of constant probability, 142

determination of, 167, 169
indirect method of determination of, 171

Ellipse of probability concentration, 129,
see ellipse of constant probability

Ellipsoid of constant probability, 180
determination, 203, 204
indirect method of determination, 207

Entropy, 55
Error

propagation rule, 94, 96
random, 1
systematic, 1

Estimator, 11, 240
biased, 240
of the average value, 3
of the correlation coefficient, 123
of the covariance, 108
of the variance, 4, 240
the least squares, 240
unbiased, 240

Event
compound, 16
dependent events, 18

elementary, 16
independent events, 18
random, 19

Excess coefficient, 54, 78
Expectation, see average value

conditional, see regression
Expected value, see average value

F
Fractiles, see quantiles
Frequency diagram, see histogram
Function

linear, 231
nonlinear, of random variables, 231
of a random variable, 56
of n random variables, 91
positive definite, 49

G
Gamma function, 67, 69

H
Hermitian polynomials, 79
Histogram, 2, 3, 8, 9

two-dimensional, 112

J
Jacobian, 84, 194
Jensen inequality, 57

K
Kurtosis coefficient, see excess coefficient

L
Lankford coefficient, 121
Least squares condition, 233
Limit theorem, 236

central limit theorem, 238
De Moivre-Laplace theorem, 238
Lindeberg-Levy theorem, 239

law of large numbers, 238
Bernoulli law of large numbers, 238

Linear combination, 92
Linearization, 231

direct, 231
statistical, 232

M
Maclaurin series, 50
Manipulator, 91, 149, 161, 189, 197
Mathematical statistics, 239
Maxwell-Mohr procedure, 101
Mean value, see average value
Measurement, 92

non-direct, 96, 97
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Median, see median value
Median value, 52, 55
Modal value, 52
Mode, see modal value
Mohr circles, 109, 119, 121
Moment, 23, 50

absolute, 24
central, 24
first order, 127, 177
first-order, 23
of n-th order, 24
ordinary, 24
second order, 178
second-order, 23
static, 127

P
Percentiles, see quantiles
Positioning, 91, 99, 149, 154, 157, 189, 195,

197
Probability, 15

complete, 18
conditional, 18, 82
properties of, 17
residual, 28

Probability density function, 21
conditional, 82
Edgeworth expansion of, 80
Gram-Charlier expansion of, 79
joint, 129
marginal, 126
maximum entropy expansion of, 80
n-dimensional, 81
properties of, 21

Probability distribution function, see cumula-
tive distribution function

n-dimensional, 81
two-dimensional, 126

Probability space, 16

Q
Quantile function, 22
Quantiles, 54

of chi-squared distribution
three degrees of freedom, 182
two degrees of freedom, 133

Quarter distance, 55

R
Random event, see event
Random numbers generator, 61, 66, 70
Random variable, 19

centered, 26
continuous, 21

correlation of random variables, 82
discrete, 21
fluctuation of, 26
function of, 56
Gaussian, see normal random variable
independence of random variables, 19, 82,

179
n-dimensional, 81

probability density function of, 84
normal, 26

one-dimensional, 26
three-dimensional, 180
two-dimensional, 129

normalized, 26, 143
range of, 25
statistically dependent random

variables, 219
three-dimensional, 175, 190

continuous, 177
two-dimensional

continuous, 126
uncorrelation of random variables, 82
vector-valued, 81

Random walk, 19
Regression, 83

linear, 113, 234
method of moments, 119
the least squares criterion, 116

multi-dimensional, 234
Reliability of structures, 212
Resistors, 95, 96
Rosenblatt transformation, 224

S
Sample average, 3
Sample average deviation, 6
Sample point, see event, elementary
Sample space, 16
Sample standard deviation, 5
Sample variance, 4
Schwartz inequality, 123
Sensitivity, 99
Skewness coefficient, see asymmetry

coefficient
Standard deviation, 23, 52
Statistic, 241
Statistical hypothesis, 241
Statistical test, 241

error of 1st kind, 241
error of 2nd kind, 241
power of, 241
significance level of, 241

Survival function, 22
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T
Taylor series, 231
Tchebyshev inequality, 237
Tensor

deviation angle of principal axes, 112
principal axes of, 111
principal components of, 111

Three-sigma rule, 29
Tolerance limits, 98, 100, 104

polygon, 153

analytical method of determination, 154
statical analogy, 158
Williot’s diagram, 161

polyhedron, 194, 196, 200
Total difference, 93, 151, 191, 194
Total differential, 94, 151

V
Variance, 23, 127
Variation ratio, 53
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